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MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade



Special Issue Editor

Jordi Suñé

Universitat Autònoma de
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Preface to ”Memristors for Neuromorphic Circuits and

Artificial Intelligence Applications”

The applications of artificial intelligence (AI) and their impacts on global society are currently

growing at an exponential pace. Image and speech recognition and processing, business optimization,

medical diagnosis, autonomous cars, and science discovery are only some of these applications.

Although the term AI was coined in the late 1950s, it is only in the past decade that due to

the impressive improvements in computing power, AI has found applications in many areas,

even exceeding humans in some tasks. It is convenient to distinguish between conventional (narrow)

AI applications designed for one specific task, and artificial general intelligence (AGI), which aims

at emulating humans in the most general situations. All big AI industrial players are committed to

achieving AGI with the idea that once you solve intelligence, you can use it to solve everything else.

AI is heralded as a revolutionary technology for the 21st century; it has many applications for the

good but, in its AGI version, it has also been signaled as one of the significant risks for the future of

humanity. Artificial neural networks (ANNs) are inspired by the structure of the brain and are formed

by artificial neurons interconnected by artificial synapses exhibiting plasticity effects. During the

training of an ANN, large amounts of data are provided through the input neurons and the strength

of the synaptic interconnections are progressively modified until the network learns how to classify

not only the training data but also unforeseen data of a similar kind. Most AI algorithms have been

implemented by software programs run on conventional computing systems with a Von Neumann

architecture, such as central processing units, graphical processing units, and field programmable

gate arrays. Recently, specially designed integrated circuits, such as the tensor processing unit (TPU),

have been introduced to optimize the type of operations (vector-matrix multiplication) required for

training and inference. In these computing systems, the memory and processing units are physically

separated so that significant amounts of data need to be shuttled back and forth during computation.

This creates a performance bottleneck both in processing speed due to the memory latency and in

power consumption due to the energy requirements for data retrieval, transportation, and storage.

The problem is aggravated by deep learning systems growing significantly in complexity for better

recognition accuracy; as a consequence, training time, cost, and energy consumption significantly

increase. This trend has the drawback that the over-the-air distribution required by edge applications

becomes more difficult, if not impossible. Given the required complexity of computing resources

and the huge amounts of energy consumed, alternative approaches to software-based AI tools are

urgently needed. In this regard, the hardware realization of AI applications and, in particular,

the use of memristors to implement ANNs might be the next step in the way toward fast, compact,

and energy efficient AI systems with a performance much closer to that of the human brain.

In this book, various reputed authors cover different aspects of the implementation of these

memristive neuromorphic systems. The book starts with an editorial and two invited contributions

that review the state-of-the-art ANNs implemented in hardware and present the basic concepts

of neuromorphics. After this, different papers cover the whole field by focusing on advanced

memristor devices for synaptic applications, including modelling for device improvement and

circuit simulation; on some issues related to the organization of memristors in dense crossbar

arrays, and finally on the application of these circuits to AI problems. The device-related papers

cover promising three-terminal structures based on complex perovskite oxides, devices based on

binary oxides and new training protocols to achieve improved synaptic properties, and new vertical

ix



resistive random-access resistive memories for 3D crossbar stacking and improved integration

density. Then, the contributions addres memristor modelling, including a multiscale physics-based

approach, a time-series and quantum point contact model, and a behavioral model for the realistic

simulation of non-volatile memory and neuromorphic applications. The organization of the

memristors crossbar arrays is also considered, dealing with non-idealities at the device (variability)

and the interconnection (series resistance) levels. Finally, several papers focus on the application

of memristors to neuromorphic applications, including a memristor emulator able to reproduce

simple association behavior, self-organizing unsupervised spiking networks for pattern classification,

and the application of CMOS-memristor neuromorphic circuits to emulate brain functions such as

the coupling between sensory and hippocampal responses of cortical neurons. In summary, this book

provides an updated general overview of the hardware implementation of neuromorphic systems for

AI applications from the device to the system level.

I dedicate this book to my children. To my big boys, Cristian and Quim, who are living their

independent lifes, always fighting against adversity. To my beautiful daughters, Alma and Guiomar,

who are the light of my life. For better times, after several years of conflict and personal growth.

Jordi Suñé

Special Issue Editor
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Abstract: Artificial Intelligence has found many applications in the last decade due to increased
computing power. Artificial Neural Networks are inspired in the brain structure and consist in the
interconnection of artificial neurons through artificial synapses in the so-called Deep Neural Networks
(DNNs). Training these systems requires huge amounts of data and, after the network is trained, it
can recognize unforeseen data and provide useful information. As far as the training is concerned,
we can distinguish between supervised and unsupervised learning. The former requires labelled
data and is based on the iterative minimization of the output error using the stochastic gradient
descent method followed by the recalculation of the strength of the synaptic connections (weights)
with the backpropagation algorithm. On the other hand, unsupervised learning does not require
data labeling and it is not based on explicit output error minimization. Conventional ANNs can
function with supervised learning algorithms (perceptrons, multi-layer perceptrons, convolutional
networks, etc.) but also with unsupervised learning rules (Kohonen networks, self-organizing maps,
etc.). Besides, another type of neural networks are the so-called Spiking Neural Networks (SNNs)
in which learning takes place through the superposition of voltage spikes launched by the neurons.
Their behavior is much closer to the brain functioning mechanisms they can be used with supervised
and unsupervised learning rules. Since learning and inference is based on short voltage spikes, energy
efficiency improves substantially. Up to this moment, all these ANNs (spiking and conventional)
have been implemented as software tools running on conventional computing units based on the
von Neumann architecture. However, this approach reaches important limits due to the required
computing power, physical size and energy consumption. This is particularly true for applications
at the edge of the internet. Thus, there is an increasing interest in developing AI tools directly
implemented in hardware for this type of applications. The first hardware demonstrations have been
based on Complementary Metal-Oxide-Semiconductor (CMOS) circuits and specific communication
protocols. However, to further increase training speed andenergy efficiency while reducing the system
size, the combination of CMOS neuron circuits with memristor synapses is now being explored. It
has also been pointed out that the short time non-volatility of some memristors may even allow
fabricating purely memristive ANNs. The memristor is a new device (first demonstrated in solid-state
in 2008) which behaves as a resistor with memory and which has been shown to have potentiation
and depression properties similar to those of biological synapses. In this Special Issue, we explore
the state of the art of neuromorphic circuits implementing neural networks with memristors for
AI applications.

Keywords: artificial intelligence; neural networks; resistive switching; memristive devices; deep
learning networks; spiking neural networks; electronic synapses; crossbar array; pattern recognition

Materials 2020, 13, 938; doi:10.3390/ma13040938 www.mdpi.com/journal/materials1
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1. Introduction

The applications of Artificial Intelligence (AI) and their impact on global society are currently
growing at an exponential pace. Image recognition, speech processing, business management and
optimization, stock markets, medical diagnosis, global climate forecast, autonomous cars, and science
discovery are only some of the present AI applications. The term AI was coined back in the late fifties,
but it is only in the last decade that, due to the impressive improvements in computing power driven
by the Moore’s law, AI has been successfully applied in many areas, even overcoming humans in some
tasks [1]. At this point, it is convenient to distinguish between conventional (narrow) AI applications,
which are designed for one specific task, and Artificial General Intelligence (AGI) programs that aim
at emulating human in the most general situations. All big players such as IBM, Google, Facebook,
Microsoft, Baidu and practically everybody who’s anybody in the AI field is committed to achieve
AGI. The main idea behind AGI research programs is that once you solve intelligence, you can use it to
solve everything else. AI is heralded as a revolutionary technology for the 21st century, it has many
applications for the good but, in its AGI version, it has also been signaled as one of the significant risks
for the future of humanity [2].

1.1. Artificial Intelligence and Its Implementation in Software

The internet has fueled AI applications providing huge amounts of data which can be fed into
artificial neural networks (ANNs) to reveal relevant information about complex systems which could
not otherwise be analyzed. ANNs are inspired in the low-level structure of the brain and are formed by
artificial neurons interconnected by artificial synapses exhibiting plasticity effects. During the training
of an ANN, large amounts of data are provided through the input neurons and the strength of the
synaptic interconnections are progressively modified until the network learns how to classify not only
the training data but also unforeseen data of a similar kind. The process of data recognition of the
trained network is most often called inference. In the training phase, we can distinguish between
supervised and unsupervised learning algorithms. Supervised learning requires the labelling of the
raw data while unsupervised learning can directly deal with unstructured data. Supervised learning is
implemented with the so-called Deep Neural Networks (DNNs) but also with other types of ANNs
DNNs consist in an ordered arrangement of neuron layers interconnected with the adjacent layers by
synapses. There is an input layer through which the data are supplied, an output layer which provides
the processed information and, one or several hidden layers with different hierarchical levels of data
representation. The actual architecture of interconnections gives rise to different types of networks
optimized for different applications (fully connected networks, convolutional networks, recurrent
networks, etc.). DNNs are trained using the backpropagation algorithm which consists in calculating
an error function (the cost function) as the sum of the squared differences between the obtained and
the expected outputs for mini batches (a subset of whole training database, which are called epochs.
The cost function is progressively minimized using the stochastic gradient descent method and the
back propagation of errors from output to input allows modifying the synaptic weights and train
the system. In unsupervised learning networks, the expected response is not a priori known and
hence, no cost function can be minimized and the backpropagation technique cannot be used. These
networks learn to classify the data by themselves and the meaning of the classification results has to
be finally interpreted. These systems are very promising to reveal previously unnoticed features in
unstructured data and have the advantage of not requiring data labelling. For a nice recent review of
DNNs characteristics and applications, see the work of Hinton [1].

Another type of networks are the so-called Spiking Neural Networks (SNN), in which the data
moves back and forward through the network in the form of spikes generated by the neurons. These
spikes progressively modify the synaptic weights in a way which is much more similar to the way
synapses are potentiated or depressed in the human brain. In general, these systems are energetically
much more efficient and use bioinspired learning rules. One example of these rules is the so-called
Spike Time-Dependent Plasticity (STDP) in which a synapsis is potentiated or depressed when forward
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and backwards voltage spikes overlap at the terminals of the device. When the forward pulse arrives
before than the backwards pulse (stimulus-response causal relation), the synapsis is potentiated,
while if the backwards pulse arrives first, the synapsis is depressed. The STPD learning rules is very
typically and easily applied for unsupervised learning in SNNs. However, there are also many works
developing supervised learning algorithms to SNN like, for example, the spiking spatio-temporal
back-propagation technique. The overwhelming success of DNNs has somehow slowed down the
progress of SNNs applicationsHowever, these are certainly the most promising systems for the future,
including applications which continue learning along their operation live. Nice reviews about SNNs
can be found in the works of Brette et al. [3] and Tavanaei et al. [4].

Most AI algorithms have been implemented by software programs which run on conventional
computing systems with a Von Neumann architecture such as central processing units (CPUs), graphical
processing units (GPUs) and field programmable gate arrays (FPGAs). Recently, especially designed
application specific integrated circuits such as the tensor processing unit (TPU) have been introduced to
optimize the type of operations required for training and inference. In all these computing systems, the
memory and processing units are physically separated so that significant amounts of data need to be
shuttled back and forth during computation. This creates a performance bottleneck both in processing
speed due to the memory latency and in power consumption due to the energy requirements for
data retrieving, transportation and storage. It must be noticed that most of the involved energy is
related to memory operations which can consume up to more than 1000X the energy consumed in
arithmetic operations. [5] The problem is aggravated by the fact that deep learning systems are growing
significantly in size (more and more hidden layers) in order to improve output accuracy and, as a
consequence, training time, cost and energy consumption significantly increase. This growth of size
has also the drawback that it is difficult to distribute large models through over-the-air update for
applications at the edge of the internet, such as autonomous cars or mobile phone applications. As
for the size increase and the associated reduction of training speed, we can consider the evolution of
Microsoft ResNet system for image recognition. ResNet18 (18 layers of neurons) required 2.5 days
of training to reach an error rate of about 10.8% while ResNet152 training takes 1.5 weeks to reach a
prediction failure rate of 6.2%. Let us consider the case of AlphaGo as a last example. In 2016, AlphaGo,
a complex AI tool developed by DeepMing (Google), defeated the top-ranking professional player, Lee
Sedol, in the ancient game of Go which, according to the developers is 10100 times more complex than
chess [6]. AlphaGo used deep neural networks trained by a combination of supervised learning from
human expert games, and reinforcement learning, based on a reward for success, a way of learning
inspired in phycology. The two neural networks of AlphaGo used Monte Carlo tree search programs
to simulate thousands of random games of self-play [6]. It its largest distributed version, running on
multiple machines, used 40 search threads, 1920 CPUs and 280 GPUs. On the other hand, while Lee
Sedol consumed about 20 Watts of power to play, AlphaGo power consumption was of approximately
1 MW (200 W per CPU and 200 W per GPU), i.e. an electricity bill of USD 300 was genenerated for
a single game. Given the required complexity of computing resources and huge amounts of energy
consumption, alternative approaches to the implementation of AI tools are required. In this regard,
the hardware implementation of AI and, in particular, neural networks built with memristors, might
be the next step in the way towards reduced size, energy efficient AI systems with performace much
closer to that of the human brain.

1.2. Artificial Intelligence and Its Hardware Implementation

Nowadays, there is a rising interest for the hardware implementation of ANNs using neuromorphic
circuits. These are ordered networks of electron devices implementing artificial neurons and their
synaptic interconnections. These hardware networks allow in-memory computing (computation
performed directly on a non-volatile memory array), massive parallelism and huge improvements in
power consumption. Moreover, they are highly suited for applications at the edge of the internet.
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The first hardware implementations of neural networks are those based on CMOS technology. In
these systems, neurons are based on CMOS circuits (both for computing and memory) and the required
high density of interconnections is usually implemented by a virtual wiring system consisting in a
digital bus and a special purpose communication protocol. Using this approach, large-scale SNN chips
have been developed, reaching up to one million neurons per chip [7]. Interconnecting these chips on
a board or a wafer and assembling them to form more complex systems have also been demonstrated.
This approach is scalable to implement very complex neuromorphic systems. However, these systems
require large amounts of circuitry and are costly in terms of area and energy consumption. Scaling these
systems to the complexity of the brain (roughly 1011 neurons and 1015 synapses) would require a space
of the size of a room. These drawbacks have motivated the exploration of other hardware alternatives
such as those which combine CMOS for neuron implementation and memristors for synapses. This is
the scope of this special issue namely, the application of memristors to build improved neuromorphic
systems for AI.

The solid-state nanoelectronic implementation of the memristor was reported for the first time
in 2008 by the HP group led by Stanley Williams [8]. In 1971, Leon Chua used symmetry arguments
to predict a device which should relate electric charge and magnetic flux [9], just as inductors relate
current and magnetic flux or capacitors relate charge and voltage. However, the memristor is better
understood as a resistor with memory. A resistor whose value depends on an internal variable that
changes with the applied voltages or currents and hence, it is able to store information in an analogue
and non-volatile manner. On the other hand, these devices (with can be scaled down to 10 nm) can
be fabricated in dense crossbar arrays (an array of perpendicular wires with a memristor at each
crossing point) in the back-end of the CMOS process. Moreover, these layers can be stacked one
on top of another to provide a highly dense 3D array of non-volatile memory (an implementation
of the so-called storage-class memory) or, alternatively, an array of interconnections with synaptic
properties for neuromorphic circuits. These memory arrays allow toperform computing tasks within
the data themselves using for example their capability to perform operations such as matrix-vector
multiplication (MVM) in an analogue, highly parallel and energy-efficient way. This type of one-step
MVM calculations are based on physical laws such as the Ohm’s law and the Kirchoff´s law and they
are the basis of in-memory computing. This is a very important change of paradigm which overcomes
the limitations of the Von Neumann architecture for some tasks. On the other hand, these hybrid
CMOS/memristor based neuromorphic systems will allow reducing the energy consumption by a
factor of at least 103 with respect to pure CMOS implementations. Furthermore, there is a very relevant
reduction of area so that a complex neural system with the density of the brain neurons and synapses
could in principle be fabricated in a single board. The possibility of fabricating memristors with
short-term non-volatility also points out to the possibility of implementing purely memristive DNNs
and SNNs [10]. By purely memristive we refer to systems that implement both synapses and neurons
with memristors.

In recent years, many different device concepts have been considered for implementing the
memristor. These include the phase change memory (PCM), in which resistance is modified by partial
crystallization/amorphization of a small volume of chalcogenide material; the Resistive Random
Access Memory (RRAM) where conductance change is related to the electro-ionic modulation of
a conducting filament across an oxide layer (mainly in binary oxides such as Ta2O5, Al2O3, HfO2,
TiO2, . . . ) or to the homogenous modulation of an injection barrier (mainly in complex perovskite
oxides); spintronic devices in which the memristor internal variable is the partial spin polarization,
ferroelectric devices which use changes in the dielectric polarization to modify the device conductance,
and others. Memristors have been implemented mainly in two-terminal devices (2T) but recently,
three-terminal (3T) structures are also being explored to optimize some fundamental device properties
for neuromorphic applications such as linearity in the conductance change and conduction symmetry.

Recently, there have been several hardware demonstrations of neural networks with synaptic
interconnections implemented with memristors. The very first demonstration was that of Prezioso
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and coworkers [11] who implemented a single layer perceptron using a 12 × 12 passive crossbar
array of RRAM. Using supervised training, they demonstrated classification of a small dataset of 3x3
images into three classes. Recently, the same research group presented another demonstrator of a
perceptron classifier with one hidden layer implemented with two purely passive 20 × 20 crossbar
arrays board-integrated with discrete conventional components [12]. With this system, they reached
an error rate of only 3% with ex-situ supervised learning. Larger arrays have also been recently
reported but all these incorporate an MOS transistor (selector) in series with the memristor (1T1R
configuration) at each cross point. The transistor increases the required area and compromises the
desired scalability. However, it is necessary to limit the current thus avoiding damaging the memristor
during the forming/potentiation phases. On the other hand, the transistor allows to eliminate the
crosstalk effects (sneak-path problem) which are increasingly significant for large synaptic arrays.
With this 1T1R structure, a hardware accelerator based on 165,000 PCM synapses was implemented
and used for image classification using the Modified National Institute of Standards and Technology
(MNIST) database of handwritten digits [13]. The same set of MNIST data was also recently used for the
in-situ supervised training of 1T1R RRAM synaptic crossbars of about 8000 memristors, showing high
accuracy and tolerance to defective devices (stuck at low conductance) and reaching high recognition
accuracy [14]. Also remarkable is the recent demonstration of the ex-situ training of a two-layer
perceptron DNN implemented with a 4Kbit 1T1R RRAM array which not only achieved high accuracy
but also very low power consumption [15].

Progress in the implementation of neural networks using memristors as synapses is remarkable.
However, many issues still need to be resolved both at the material, device and system levels so as
to simultaneously achieve high accuracy, low variability, high speed, energy efficiency, small area,
low cost, and good reliability. This requires combined research efforts in these three interconnected
areas: devices, circuits and systems. Towards this goal, high quality compact behavioral models are a
very important ingredient to explore compare different devices at the circuit and system levels. In this
regard, Stanley Williams recently made a call to the memristor research community requesting high
quality compact models for the circuit designers and systems architects to use with confidence for their
circuit and system simulations and validations [16].

2. Synopsis

In this special issue we are honored to have two invited review papers by recognized leaders
in the field. Camuñas-Mesa, Linares-Barranco and Serrano-Gotarredona focus their review on
the implementation of SNNs with hybrid memristor-CMOS hardware, and review the basics of
neuromorphic computing and its CMOS implementation [17]. Milo, Malavena, Monzio Compagnoli
and Ielmini, mainly focus on memristive devices implementing electronic synapses in neuromorphic
circuits [18]. They consider different memory technologies for brain-inspired systems including
mainstream flash memory technologies, and memristive technologies with 2T and 3T structures.
Finally, they review recent results on the use of these devices in both SNN and DNN memristive/CMOS
neuromorphic networks. Both reviews provide an updated complementary view of the state-of-the-art
in the implementation of neuromorphic systems with memristive synapses. Besides these two featured
papers, a total number of 11 contributed papers complete this special issue.

Truong proposes a method to correct the line resistances when writing the desired values of
conductance in DNN for feedforward applications [19]. Circuit simulations of a 64 × 16 single layer
perceptron for the recognition of 26 characters (8× 8 grayscale pixels) support significant improvements
of network recognition when line resistance increases above 1.5Ω.

Wang et al. report an optimized RRAM device with a forming-free Al2O3/TaOX stacked oxide
which shows non-filamentary switching, and an analog bipolar switching that permits to program
the conductance in an ANN with a high precision (error rate < 10%) [20]. The device shows relevant
synaptic properties such as long-term potentiation and depression, spike-time dependent plasticity
and pulse-pair facilitation. Although the conductance change of such synapses as a function of the
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number of constant voltage amplitude pulses is highly nonlinear, optimization of the training method
allows obtaining rather linear changes and this would allow good accuracy in ANNs.

Van Nguyen et al. contribute to this issue with two papers that deal with mimicking the brain’s
neocortical operation in hardware. In the first one, they propose a memristor-CMOS hybrid circuit for
the temporal-pooling of sensory and hippocampal information [21]. This circuit is composed by an
input layer which combines sensory and temporal/location information in a memristor crossbar. The
output layer of neurons also contains a memristor crossbar and integrates the information to make
predictions. Both input and output layers contain memristor crossbars and standard CMOS circuits
such as current-voltage converters, comparators, AND gates, latches and other circuits. Instead of the
backpropagation algorithm, they use the much simpler Hebbian learning, which can be suitable for
online learning. Moreover, the authors verify their proposal by circuit simulation with a Verilog-A
phenomenological model for the memristor. Application of the circuit to the Enhanced-MNIST database
demonstrates very good accuracy in both word and sentence recognition. In their second paper, they
deal with reducing the effects of defects in the memristor crossbars such a stuck-at faults and memristor
variations [22]. First, they show that the boost-factor adjustment can make the system fault-tolerant by
suppressing the activation of defective columns. Second, they propose a memristor-CMOS hybrid
circuit with the boost-factor adjustment to realize a defect-tolerant Spatial Pooler in hardware. Using
the MNIST database, they show that the recognition accuracy is reduced only by 0.6% by the presence
of up to 10% crossbar defects, with a very low energy overhead related to boost factor adjustment.

Fernández-Rodríguez et al. deal with a new class of 3T memristive devices based on the
Metal-Insulator-Transition (MIT) in YBa2Cu3O7-δ (YBCO), a complex perovskite oxide with well-known
high-T superconducting properties [23]. At 300K, YBCO doesn’t show any sign of superconduction but,
small changes in the oxygen concentration produce large changes in resistance due to the MIT so that
reversible non-volatile memory effects are observed. The authors fabricate prototype 3T transistor-like
devices (memistors) which allow demonstrating volume switching effects different from the widely
studied filamentary or interfacial effects. The reported results allow the fabrication of highly functional
trans-synaptic devices where the input signal modifies the conductance of the output channel.

Rodríguez et al. investigate the origin of novel laser-fabricated graphene oxide memristors [24].
They use numerical tools linked to Time Series Statistical Analysis to reveal that these memristors are
based on a local change of the stoichiometry in a conducting filament (as it is the case in most of binary
oxides memristor). For the filament conduction they use the widely known point-contact model.

Hajtó et al. deal with the problem of the high variability of memristor properties [25]. First,
they thoroughly discuss the need of more reliable devices for ANNs and neuromorphic in-memory
computation, which require multi-state digital memristors and analog memristors, respectively. To
reduce variability, they propose to use several interconnected memristors (memristor emulator circuit)
at each synaptic location. After having simulated these circuits in previous works, in this issue they
present real measurements demonstrating the change of operation properties of the emulator circuits
and the reduction of the variability index. The evident drawbacks of this approach are the increase of
effective consumed chip area (either in 2D crossbars or 3D stacks of crossbars) and the reduction of
energy efficiency.

Pedró et al. deal with the simulation of fully unsupervised learning in self-organized Kohonen
networks [26]. After experimentally characterizing HfO2 memristors and demonstrating STDP
synaptic properties in these devices, they propose a set of waveforms to minimize conductance
change non-linearity. Using a realistic compact behavioral model for these memristors, they simulated
the neuromorphic system, thus testing the learning algorithm. They also discuss that the selected
system design and learning scheme permits to concatenate multiple neuron layers for autonomous
hierarchical computing.
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The high complexity and limited knowledge about the physical processes taking place in RRAM
memristors is nowadays hampering the development, optimization and application of these devices.
Moreover, these devices are to be used in different applications, such as embedded non-volatile
memories, SNNs and DNNs, and the device requirements change for each application. Thus, La
Torraca et al. present a multi-scale simulation platform which includes all physical mechanisms
such as charge transport, charge trapping, ion generation, diffusion, drift and recombination in an
environment that considers the 3D distribution of temperature and electric field [27]. This multiscale
approach allows simulating the performance of RRAM devices connecting their electrical properties to
the underlying microscopic mechanisms, optimizing their analog switching performance as synapses,
determining the role of electroforming and studying variability and reliability. Using this platform, the
device performance can be optimized for different applications with different RRAM requirements.

Sun et al. discuss the application of 3D crossbar structures for the implementation of multi-layer
neuromorphic networks (DNNs) [28]. They focus on RRAM memristors with a 3D structure and
propose a new optimization method for machine learning weight changes that considers the properties
of Vertical Resistive Random Access Memories (VRRAM). The operating principle of VRRAM allows
to simplify the structure of the neuron circuit. The studied devices are promising for high-density
neural network implementations.

Cisternas Ferri et al. use a phenomenological compact model for RRAM memristors, already
experimentally validated in previous works, to construct a memristor emulator [29]. The main
advantage of emulators over simulators is that they can be connected to external circuits to characterize
their behavior in realistic environments. Moreover, the parameters of the emulated device can be
arbitrarily changed so as to optimize the circuit performance and guide the ulterior fabrication of
devices with optimum properties for a certain application. The memristor model is implemented using
an Arduino microprocessor which solves the required differential equations. An analog-to-digital
converter in the microcontroller measures the voltage on a digital potentiometer and the microprocessor
changes its resistance accordingly. The emulator is validated comparing the obtained experimental
results with model simulations (sinusoidal frequency memristive response, STDP, and response to
voltage pulses). Finally, the emulator is introduced in a simple neuromorphic circuit that exhibits the
main characteristics of Pavlovian conditioned learning.
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Abstract: Inspired by biology, neuromorphic systems have been trying to emulate the human brain for
decades, taking advantage of its massive parallelism and sparse information coding. Recently, several
large-scale hardware projects have demonstrated the outstanding capabilities of this paradigm for
applications related to sensory information processing. These systems allow for the implementation of
massive neural networks with millions of neurons and billions of synapses. However, the realization
of learning strategies in these systems consumes an important proportion of resources in terms
of area and power. The recent development of nanoscale memristors that can be integrated with
Complementary Metal–Oxide–Semiconductor (CMOS) technology opens a very promising solution
to emulate the behavior of biological synapses. Therefore, hybrid memristor-CMOS approaches
have been proposed to implement large-scale neural networks with learning capabilities, offering a
scalable and lower-cost alternative to existing CMOS systems.

Keywords: neuromorphic systems; spiking neural networks; memristors; spike-timing-dependent
plasticity

1. Introduction

The outstanding evolution of computers during the last 50 years has been based on the
architecture proposed by Von Neumann in the 1940s [1]. In this model of stored-programme computer,
data storage and processing are two independent tasks performed in separated areas with a high
need of data communication between them. With the development of integrated circuits, Gordon
Moore predicted in the 1960s that the number of transistors in an integrated circuit would double
every 18 to 24 months [2]. This exponential evolution allowed for the development of more efficient
computing systems, with increasing processing speed and decreasing power consumption. However,
even the current technologies for semiconductor manufacturing are reaching the limits of Moore’s
law [3], so different solutions have been proposed to keep the future evolution of processing systems [4].
Two different strategies suggest the development of new processing paradigms and novel devices
beyond conventional Complementary Metal–Oxide–Semiconductor (CMOS) technologies.

In parallel with the development of computing platforms, in the 1960s some researchers used the
emerging electronic technologies as a mechanism for modeling neural systems, from individual
neurons [5–10] to more complex networks [11]. The increasing understanding of the structure
and fundamental principles of behavior of the human brain revealed a very different processing
paradigm from the traditional computer architecture with a much better performance. Even when
comparing with current supercomputers which excel at speed and precision, the human brain is still
much more powerful when dealing with novelty, complexity and ambiguity for practical tasks like
visual recognition and motion control, while presenting a negligible power consumption around
20W [12]. This comparison between conventional computers and the brain led to the emergence of
neuromorphic computing. The term neuromorphic engineering was first coined by Carver Mead
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to refer to developing microelectronic information processing systems mimicking the operation of
their biological counterparts [13,14]. During the 1980s, Carver Mead highlighted the analogy between
the physics in biological neurons and the behavior of transistors in sub-threshold regime [13,14],
developing neural networks based on analog circuits; leading to the implementation of the first
silicon retinas [15] and proposing a new computing paradigm where data and processing tasks are
performed by indivisible entities, taking inspiration from biological neural systems. Along the years,
the neuromorphic engineering field has broaden its inspiration. Today’s neuromorphic computing
engineers not only try to mimic the highly parallel architecture of biological brains and the use
of in-memory computing architectures as a way of improving the speed and energy performance,
but also have deeply studied the signal information encoding, computational principles and learning
paradigms that enable even simple biological brains with admiring performance in the interaction and
adaptation to complex and unexpected environments with high reaction speeds and minimal power
consumption despite relying on very simple and highly unreliable computation units [16].

Alternatively, many novel beyond-CMOS technologies have been proposed to overcome the
limits of Moore’s law. One of the most promising available devices is the nanoscale memristor.
The memristor was first described theoretically by Chua in the 1970s as the fourth passive element
establishing a relationship between electric charge and magnetic flux [17]. Much later in 2008,
a team at HP Labs claimed to have found Chua’s memristor experimentally based on a thin film of
titanium oxide [18]. This 2-terminal device behaves as a variable resistor whose value can be modifed
by applying certain voltages or currents. The most common structure for this device is a union
metal-dielectric(s)-metal, where the dielectric layer can be as thin as a few nanometers. The application
of electric fields and controlled currents across the dielectric produces an alteration of its resistance
by growing a filament or other mechanisms like barrier modulation. Currently available memristors
are mostly binary devices, as they can switch between two resistance values: HRS (High-Resistance
State) and LRS (Low-Resistance State) [19]. Since the appearance of the memristors, many logic
families based on memristors for digital computation have been proposed [20,21], their potential as
digital long-term non-volatile memory technology has also been demonstrated [22–25], and their
use as biosensing devices looks also promising [26]. In the field of neuromorphic engineering,
the memristors have attracted a special interest due to its particular plasticity behaviour which
ressembles the adaptation rules observed in biological synapses. Memristors can adapt and change its
behaviour over time in response to different stimulation patterns as it happens in the human brain.
In particular, it has been demonstrated that if stimulated with pulse-trains simulating the input from
spiking neurons, memristors may exhibit a biologically inspired learning rule [27–30] resembling the
spike-timing-dependent plasticity (STDP) observed in biological neurons [31–36]. Hence, memristors
have been considered as artificial inorganic synapses.

In this paper, we analyze the current trend towards using memristors over CMOS platforms
to implement neuromorphic systems, demonstrating a new paradigm which overcomes current
limitations in conventional processing systems. In Section 2, we give a general overview of
the basis of neuromorphic computing, while in Section 3 we review the main large-scale CMOS
hardware implementations of neuromorphic systems. In Section 4, we describe proposed hybrid
Memristor-CMOS approaches, while in Section 5 we emphasize the suitability of this strategy to
implement learning algorithms in neural systems. Finally, in Section 6 we give our future perspective
for this field.

2. Neuromorphic Computing

As already stated, neuromorphic computing systems take inspiration on the architecture,
the technology and the computational principles of biological brains. Morphologically, the human
brain is composed of approximately 1011 elementary processing units called neurons, massively
interconnected by plastic adaptable interconnections called synapses. Each neuron connects
approximately to 103–104 other neurons through synaptic connections. The neurons are known
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to be distributed in layers, and most of the synaptic interconnections are devoted to interconnect
neurons belonging to successive layers.

The first computing systems inspired by this structure of biological brains were published in the
1940s–1950s and were called Artificial Neural Networks (ANNs) [37,38]. They appeared as powerful
computational tools that proved to solve, by iteratively training algorithms that adapted the strength
of the interconnection weights, complex pattern recognition, classification or function estimation
problems not amenable to be solved by analytic tools. The first generations of neural networks did not
involve any notion of time nor any temporal aspect in the computation.

Mc Culloch and Pitts, proposed in 1943, one of the first computational models of the biological
neurons. Figure 1 illustrates the operation of each proposed neural computational unit. As illustrated
in Figure 1, a neuron Nj receives inputs from n other previous neurons x1, x2, ..., xn. The output
of each neuron x1, x2, ..., xn in the previous layer is multiplied by the corresponding synaptic
weight w1j, w2j, ..., wnj, also know as synaptic efficacy. The combined weighted input is transformed
mathematically using a certain non-linear transfer function or an activation function ϕ, generating an
output oj. In the original Mc Culloch and Pitts’ neural model the activation function was a thresholding
gate, giving as neural output a digital signal [37]. This digital output neuron was the core of the first
generation of neural networks.

Figure 1. Diagram of an artificial neuron with n inputs with their corresponding synaptic weights.
All weighted inputs are added and an activation function controls the generation of the output signal.

In 1958, Rosenblatt proposed the perceptron. The architecture of the perceptron is shown in
Figure 2a. In Figure 2, the computational units or neurons are represented by circles, interconnected
through trainable weights representing the synaptic connections. The original perceptron consisted of
a single layer of input neurons fully interconnected in a feedforward way to a layer of output neurons.
A learning hebbian rule [39] to adapt the weights was proposed [38]. This single layer perceptron was
able to solve only linearly separable problems [40].

In the 1950–60s, a second generation of computational units arose were the thresholding activation
function was replaced by a continuous analog valued output like a smooth sigmoid, radial basis
function or a continuous piece-wise linear function [41,42]. Recently, the rectifying non-linear activation
function, also known as ReLU has become very popular for its better training convergence and its
hardware friendly implementation [43]. Furthermore, gradient descent based learning algorithms
could be now applied to optimize the network weights. Alternative learning rules were proposed
as the delta rule based on the Least Mean Squares (LSM) algorithm published by Widrow [44,45].
This second generation proved to be universal approximators for any analog continuous function,
that is, any analog continuous function could be approximated by a network of this type with a single
hidden unit [41].
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Figure 2. (a) Architecture of a single layer perceptron. The architecture consists of a layer on input
neurons fully connected to a single layer of output neurons. (b) Extension to a multi-layer perceptron
including more than one layer of trainable weights. In this example, the network includes 3 layers:
input, hidden and output layer. Each connection between two neurons is given by a certain weight.

The backpropagation algorithm extended the application of the gradient descent techniques
to networks with any number of hidden layers, popularly known as Deep Neural Networks
(DNNs) [46–48]. Figure 2b illustrates a case with 3 layers: a first layer of input neurons, a second
layer of hidden neurons, and a third layer of output neurons, although a general architecture can
contain any given number of hidden layers.

The ANN architectures shown in Figure 2a,b are pure feedforward architectures as the signal
propagates from input to output in an unidirectional way. Other architectures, known as recurrent
neural networks, including feedback connections from upper layers in the architecture to lower
layers, have been proposed. The Adaptive Resonance Theory (ART) architectures by Grossberg [49],
the Kohonen self-organizing maps [50] or the Hopfield models [51] can be cited among the
pioneering ones.

The presented ANNs have been typically developed in software, and trained offline. The training
of DNNs requires a vast amount of annotated data to correctly generalize the problem without
overfitting [52] and intensive computation resources. However, in recent years, the increase in the
computation capabilities of modern computers and the availability of vast amounts of information
have made DNN very popular allowing the development of many DNN-based applications [53,54]
that use complex architectures like LeNet for handwritten digit recognition [55], Microsoft’s speech
recognition system [56] or AlexNet for image recognition [43]. As a consequence we have witnessed
the explosion of DNNs and machine learning.

Despite the impressive advances that DNNs have demonstrated in recent years, their performance
in terms of efficiency (speed and power consumption) compared with the human brain is still low
as it is low their resemblance to the human brain in terms of information coding. In the biological
brain, the information is processed in a continuous way in time, not just as a sequence of static frames
as DNNs recognition systems do. Furthermore, in conventional DNNs, the output of the different
neural layers are computed in a sequential way. Each layer has to wait until the output of the previous
layer has been computed to perform its computation, thus introducing a significant recognition delay
in the network. On the contrary, biological neurons transmit their information to the next neuronal
layers in the form of spikes. Whenever a neuron emits a spike, the spike is transmitted to its afferent
connected neurons and processed with just the delay of the synaptic connection. In 1996, Thorpe
demonstrated that the human brain was able to recognize a visual familiar object in the time that
just one spike propagates through all the layers of the visual cortex [57]. Similar visual processing
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speeds have been measured in the macaque monkeys by Rolls [58]. These experiments reveal an
extremely efficient information coding in the biological brains. In this context, the 3rd generation of
neural networks, spiking neural networks (SNNs), aims to bridge the gap between neuroscience and
machine learning, using biologically-realistic models of neurons to carry out information coding and
computation trying to fully exploit the efficiency in the spatio-temporal signal coding and processing
and the corresponding power efficiency observed in the biological brains. SNNs operate using spikes
in a similar way as biological neurons do. That way, in addition to the state of the neuron and the
synaptic weight, SNNs also incorporate the concept of time into their model of operation. In these
neurons, there is no propagation cycle, so each neuron fires an output spike only when its state
reaches a certain threshold. Therefore, the information flows in these networks are spike trains which
propagate between neurons asynchronously, and temporal correlation between spikes is crucial [41].
Spike trains offer the possibility of exploiting the richness of the temporal information contained in
real-world sensory data. This allows SNNs to be applied to solve tasks which dynamically changing
information like visual gesture recognition or speech recognition in a more natural way than current
conventional (non spiking) artificial intelligent systems do. When dealing with dynamic information
(as video sequences), conventional artificial systems perform computations using sequences of static
images sampled at a constant periodic time (photogram time in the case of vision). Recognition of
dynamic sequences may involve the use of recurrent neural network architectures or the resolution of
continuous time differential equations. These computations are quite intensive using conventional
framed ANN. However, the use of SNN where computation is driven in a continuous time way
naturally and driven only by the occurrence of spikes detecting certain spatio-temporal correlations
can be much more advantageous.

Many different coding methods for these spike trains have been proposed. Many authors have
proposed to code the activity level of the neurons as the frequency of the firing rate. However, this type
of coding does not benefit from the spike sparsity that should characterize SNN processing and thus,
it does not enable the corresponding low power communication and computation due to the sparsity of
the spike coding. Regarding the fast computation capability expected from SNN, this firing rate coding
introduces a latency in the computation of the output firing rate. Furthermore, it is not biologically
plausible as evidenced by the experiments of Thorpe [57] and Rolls [58] which demonstrated that the
computation of a single cortical area is completed in 10–20 ms while the firing rate of the neurons
involved in the computation is below 100 Hz, which does not make possible the computation based on
the coding of analog variables in firing rates. However, as discussed by Thorpe et al. [59], there are
many other biologically plausible and more efficient coding strategies. Other coding schemes that have
been considered are in the timing between spikes [60], in the delay relative to a given synchronization
time also known as time to first spike (TFS) [59] encoding, just coding the values in the order of spikes
which is known as rank order coding [61], or synchronous detection coding [59].

Regarding the SNN neuron models, there are many neuron models that describe the behaviour of
biological neurons with different levels of complexity [5–10]. The classic Hodgkin-Huxley model [5] is
a 4-th order biophysical model that describes the behaviour of the currents flowing into the neuron ion
channels in a biologically realistic way. However, due to its complexity, different 2nd order simplified
models have been proposed like the one proposed by FitzHugh and Nagumo [6,7] and the Morris-Lecar
model [8], among others. In the last years, the Izhikevich model [10] and the Adaptive Exponential
Integrate and Fire (AdEx) model [9] have become very popular for their ability to reproduce a large
variety of spiking regimes observed in the biological neurons just by varying a reduced number of
model parameters. However, while detailed biophysical models can reproduce electrophisiological
activity of biological neurons with great accuracy, they are difficult to analyze computationally and not
friendly for hardware implementations. Because of these reasons, for computational purposes simple
first-order phenomenological models like the Integrate and Fire model are frequently used.

The behavior of a single integrate-and-fire spiking neuron is illustrated in Figure 3. A spiking
neuron receives input spikes from several dendrites and sends out spikes from its output axon,
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as shown in Figure 3a. Every time an input spike arrives, the state of the neuron is updated, and when
it reaches the threshold, it generates an output spike and reset its state, as seen in Figure 3b. In this
case, spikes are fully characterized by their firing time. In Figure 3, it can be observed that there is a
constant slope decay of the membrane potential between two arriving spikes as it is the case of a leaky
integrate and fire neuron. Mathematically, a leaky integrate-and-fire neuron can be described as:

iin(t) =
vmem(t)− vrest

R
+ C

dvmem(t)
dt

(1)

where vmem(t) represents the membrane potential, iin(t) the injected current, vrest the resting
value of the membrane potential, C the equivalent capacitance of the membrane, and R the leak
resistance. A leaky integrate-and-fire neuron can be easily implemented in hardware following the
resistance-capacitance (RC) "text book" concept scheme presented in Figure 4, where an input current
iin is integrated in capacitor C with leak resistance R. The integrated voltage vmem is compared with
a reference vth, generating an output given by vout. Additionally, integrate-and-fire neurons may
consider a refractory period that forces a minimum time interval between two consecutive spikes of a
neuron. A comprehensive overview of circuit realizations of spiking neurons with different levels of
complexity can be found in [62].

Figure 3. Illustration of the behavior of a leaky integrate-and-fire spiking neuron. (a) A spiking neuron
receives spikes from several inputs, processes them, and generates output spikes from its output node.
(b) Temporal evolution of the neuron state while it receives input spikes. When the threshold is reached,
it generates an output spike.

Figure 4. Example of a hardware implementation of an RC leaky integrate-and-fire neuron.
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In terms of connectivity, the most general type of neural network is fully connected, meaning
that each single neuron in layer i is connected to all neurons in layer i + 1. This scheme applies no
limitation to the learning capabilities of the network; however, it presents some difficulties for practical
implementations. A very popular way of reducing the amount of interconnections is represented by
Convolutional Neural Networks (ConvNets), where each neuron in layer i is connected to a subset
of neurons in layer i + 1 representing a projective field. This receptive field can be represented as
a convolutional kernel, with shared weights for each layer [63]. This scheme is inspired by biology,
as it has been observed in the visual cortex [64]. In a similar way to the biological visual cortex,
this convolutional neural network architecture is commonly used for image processing applications in
the earlier more massive parallel feature extraction layers, as it implies an important reduction of the
number of connections.

Table 1 (adapted from [65]) contains a comparison of the main distinctive features between ANNs
and SNNs. As previously stated, the latency in each computation stage in an ANN is high as the whole
computation in each stage has to be completed on the input image to generate the corresponding
output. On the contrary, in an SNN processor the computation is performed spike by spike so that,
output spikes in a computational layer are generated as soon as enough spikes evidencing the existence
of a certain feature has been collected. In that way, the output of a computation stage is a flow of spikes
that is almost simultaneous with its input spike flow. This property of SNN systems has been called
“pseudo-simultaneity” [65,66]. The latency between the input and output spike flows of a processing
SNN convolution layer has been measured to be as low as 155 ns [67]. Regarding the recognition speed,
whereas in an ANN the recognition speed is strongly dependent on the computation capabilities of
the hardware and the number of total operations to be computed (which is dependent on the system
complexity), in an SNN, each input spike is processed in almost real time by the processing hardware
and the recognition is performed as soon as there are enough input events that allow the system to
take a decision. This recognition speed strongly depends on the input statistics and signal coding
schemes as previously discussed. In terms of power consumption, the ANNs power depends on the
consumption of the processor and the memory reading and writing operations but for a giving input
sampling frequency and size does not depend on the particular visual stimulus. However, in an SNN,
the power consumption depends also strongly on the statistics of the stimulus and coding strategies.
If efficient coding strategies are used, the system should benefit from the power efficiency of sparse
spike representations.

On the negative side, as it has been already pointed out, the addition of the time variable
makes SNN neuron models more complex than ANN ones. Also, as the computation of ANN is
time-sampled, in each sampling time the algorithmic computation is performed using the available
hardware resources that can be time multiplexed by fetching data and storing intermediate variables.
However, in true SNN the spikes should be processed as they are generated in real time, requiring
parallel hardware resources which cannot be multiplexed. The scaling up of the system can be done by
modular expansion of the hardware resources.

However, where SNN should have major advantage is in applications requiring recurrent neural
architectures, such as, in recognition of dynamic stimulus. The computation of recurrent connections in
ANN requires computationally intensive iterations until convergence is reached, while the convergence
of recurrent connections in SNN is almost instantaneous due to their pseudo-simultaneity property.

In terms of accuracy, as it will be discussed in Section 5, the learning methods that have been
developed for ANN are not directly applicable to SNN. Although the learning theory of SNN still lacks
behind its equivalent methods for ANN, some recent work reports for the same architecture an error
increment of only 0.15% for the ImageNet dataset and 0.38% for the CIFAR10 dataset [68]. However,
the temporal dependence introduces complexity so that once a SNN has been trained, its accuracy
drops if the input temporal coding changes. But it also introduces the potential to recognize dynamic
sequences in a more efficient way.
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Table 1. Table comparing different features of ANNs and SNNs.

Feature ANN SNN

Data processing Frame-based Spike-based
Latency High Low

Pseudo-simultaneity
Time resolution Low High

Preservation of spatio-temporal
correlation

Time processing Sampled Continuous
Neuron model complexity Low High

Recognition accuracy Higher Lower
Hardware multiplexing Possible Not possible

System scale-up Ad hoc Adding modules
Recognition speed Low High

Independent on input stimulus Dependent on input statistics
Dependent on hardware resources
Dependent on system complexity Not dependent on system complexity

Power consumption Determined by processor power Determined by power-per-event
and memory fetching processing in modules

Independent on input stimulus Dependent on stimulus statistics
Recurrent topologies Need to iterate until converge Instantaneous

3. CMOS Neuromorphic Systems

Simulating SNNs on normal hardware is very computationally-intensive since it requires simulating
coupled differential equations of large neuron populations running in parallel. Fully exploiting the
coding and computation capabilities of biological brains requires the adequacy of the corresponding
hardware platform to the peculiarities of the algorithm at different levels: from signal coding up to high
level architectures. At the architectural level, the intrinsic parallelism of neural networks lends to the
development of neuromorphic custom parallel hardware resembling the architecture of the biological
brain to emulate its computing capabilities [62,69,70]. Furthermore, at the signal level, SNNs are better
suited than ANNs for hardware implementation, as neurons are active only when they receive an
input spike, reducing power consumption and simplifying computation.

One of the major issues when trying to implement in a parallel hardware large arrays of neural
populations is the implementation of the synaptic interconnections. In a parallel 2D hardware,
the physical wiring does allow to implement connections between just neighbouring neurons,
while the biological neurons are distributed in 3D and massively interconnected among populations.
Address-Event-Representation (AER) [71] is an asynchronous communication protocol that was
conceived to massively interconnect neuron populations that can be located in the same or different
chips as a ‘virtual wiring’ system. Figure 5 illustrates two neural populations communicated through
an AER bus. In the particular case of this figure, neurons in the emitter population code their activity
as a density of output pulses which is proportional to their activation level. However, the AER
communication scheme can be applied to any type of pulse signal encoding [59]. Whenever a neuron
in the emitter population generates a spike, it codes its physical coordinates (x, y) or address in a
digital word in a fast digital bus and activates an asynchronous request (Rqst) signal. The coded
address is sent through the fast digital bus to the receiver population. Upon reception of an active
request, the receiver decodes the arriving neuron address and activates the acknowledge (Ack) signal.
The received pulse can be sent to the corresponding neuron where the original activity of the sending
neurons can be reproduced (as illustrated in Figure 5) or to a group of virtually connected neurons in
the receiving population implementing a projection field [72]. The high-speed of the inter-population
digital bus (in the order of nanoseconds) compared to the inter spike interval of biological neurons
(in the order of milliseconds) allows to multiplex the connections of a million neurons in a shared
time-multiplexed digital bus. Most of the developed large-scale CMOS neuromorphic computing
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platforms make use of this AER communication protocol. As neuromorphic systems have scaled up in
size and architectural complexity, many variations of the original point-to-point AER communication
scheme [71,73,74] have been proposed trying to improve the overall system communication bandwidth.
The broadcast-mesh-AER [75–77] proposes a generic approach to interconnect a mesh of AER devices
using a global mapper and interconnecting the devices in a chain architecture. The pre-structured
hierarchical AER approach [78] uses the knowledge of the network topology to interconnect AER
devices through different AER links. Mappers can be used in every link, however, once the
AER devices have been physically interconnected the changes in the configuration are limited.
The Hierarchical-Fractal AER [79] proposes different levels of interconnection by adding address
bits at higher level based on the idea that the traffic of spikes is going to be more intense at a
local level. The router-mesh AER [80] proposes to avoid an external mapper by placing a router
with a mapping table inside every AER module taking ideas from traditional NoC topologies [81].
The multicasting-mesh AER approach [82] proposes a simplification of the router-mesh AER by
employing routing tables that contain only information of the connectivity between modules instead
of allowing full neuron to neuron connectivity programming. Another approach developed to allow
programmable interconnections inside the same chip or at wafer scale has been to implement massive
programmable cross-point interconnects to configure the network topology [83] and including off-wafer
rerouting for longer range interconnects [84]. Recently, the Hierarchical Routing AER has been
proposed that establishes different hierarchical levels of nested AER links where each link has a
dynamically reconfigurable synaptic routing table which allows programmable connectivity of the
neurons without restriction on the spatial range of connectivity [85]. Moradi et al. have proposed
a mixed-mode hierarchical-mesh routing scheme that exploits a clustered connectivity structure to
reduce memory requirements and get a balance among memory overhead and reconfigurability [86].

Figure 5. Illustration of two neural populations communicated through a point-to-point AER bus. Each
neuron in the emitter population can be virtually connected to every neuron in the receiver population.

The above mentioned spike routing schemes have allowed the implementation of highly parallel
massively interconnected spiking neural networks and the multichip integration of SNN hardware
devoted to realize different specific parts of the cognitive function including integration of spike-based
sensors and neural processors.

CMOS spike-based vision sensors have been developed since the very beginning of the
neuromorphic engineering field [15]. Since then, a variety of AER visual sensors can be found in the
literature that use different approaches to encode the luminance such as simple luminance to frequency
transformation sensors [87], Time-to-First-Spike (TFS) coding sensors [88–91], foveated sensors [92,93],
sensors encoding the spatial contrast [94,95], spatial and temporal filtering sensors that adapt to
illumination and spatio-temporal contrast [96] and temporal transient detectors [97–104]. Among them,
the temporal transient detectors also know as Dynamic Vision Sensors (DVSs) have recently become
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very popular. They produce as output a stream of asynchronous events where each pixel codes the
temporal variation of the illumination inpinging on the pixel. Figure 6 illustrates the operation of a
DVS sensor. One of the advantages of this sensor is that it codes the information in a compressive
way sending only spikes when there is a relevant change in the illumination and thus removing the
static background features of the scene from the moving object. Another advantage is that all the
exact spatio-temporal information of the object is preserved with a reported precision in the spiking
times of the order of 10 μs. This converts these sensors in ideal candidates for high-speed processing
and recognition systems. Several companies are nowadays making an effort to develop commercial
prototypes of high-resolution DVS cameras: iniVation, Insightness, Samsung [105], CelePixel [106],
and Prophesee, aiming to develop high-speed autonomous intelligent vision systems. Other types of
spiking sensors have been developed such as cochleas [107–109] and tactile sensors [110,111] following
similar principles of encoding the sensed signal relative changes as a flow of neural spikes, thus,
generating a compressed information.

Figure 6. Illustration of the operation of a Dynamic Vision Sensor. (a,b) illustrate the operation a
DVS pixel. (a) plots the illumination inpinging on a pixel that varies as a sinusoidal waveform along
time with period 2.5 ms, and (b) illustrates the output spikes generated by the corresponding DVS
pixel. The blue traces correspond to positive output spikes which are generated when the illumination
increases, while the red traces illustrate the negative signed spikes generated by an illumination
decreasing over time. (d) illustrates real measurements of the response of a DVS when observing a
white rotating dot on a black background rotating with a 2.5 ms period, as shown in (c).

Regarding the neuromorphic hardware for processing, it should be distinguished between
the hardware implementing specific functionalities of the cognitive function and general purpose
SNN hardware platforms intended for emulating massive neural arrays. Among the specific
functional neuromorphic circuits, researchers have developed SNN neuromorphic chips implementing
computational primitives and operations performed in the brain such as:

• Winner-Take-All (WTA) is a brain inspired mechanism implemented by inhibitory interactions
between neurons in a population that compete to inhibit each other. The result is that the neuron
in the population receiving the highest input remains active while silencing the output of the rest
of the neurons. Hardware modules of spiking Winner-take-all networks have been reported [112].
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• Spiking Convolutional Networks (ConvNets): neural networks implementing in real time
the behaviour of the feature extraction layers of the cortex region have been implemented in
hardware [113–115].

• Hardware implementations of spiking neural networks for saliency maps detection have been
proposed as emulators of brain attention mechanisms [116].

• Spiking Liquid State Machines have also been implemented for recognition of sequential patterns
such as speech recognition tasks [117,118].

The specific SNN neuromorphic chips can be combined in a modular and scalable way [78] to
achieve optimum performance in terms of complexity, speed, and power consumption depending on
the specific application. However, the current evolution of hardware neuromorphic platforms tends to
large-scale modular computing systems with increasing numbers of neurons and synapses [62,119]
that are meant to be easily reconfigurable for different applications. Some of the most remarkable
large-scale neuromorphic systems developed until the present are:

• The IBM TrueNorth chip is based upon distributed digital neural models aimed at real-time
cognitive applications [120].

• The Stanford NeuroGrid uses real-time sub-threshold analogue neural circuits [121]. It has been
recently reversioned with the Braindrop chip prototype [122] which is a single core planned to be
part of the 1-million-neuron Brain Storm System [123].

• The Heidelberg BrainScaleS system uses wafer-scale above threshold analogue neural circuits
running 10,000 times faster than biological real time aimed at understanding biological systems,
and in particular, long-term learning [124].

• The Manchester SpiNNaker is a real-time digital many-core system that implements neural and
synapse models in software running on small embedded processors, again primarily aimed at
modelling biological nervous systems [125].

• The Intel Loihi chip consists of a mesh of 128 neuromorphic cores with an integrated learning
engine on-chip [126].

• The Darwin Neural Processing Unit is a hardware co-processor with digital logic specifically
designed for resource-constrained embedded applications [127].

• The ROLLS chip was developed at ETHZ-INI including 256 neurons and 128 k on-line learning
synapses [128]. Recently, it has been updated to the Dynamic Neuromorphic Asynchronous
Processor (DYNAPs) with 1 K neurons and 64 k on-line learning synapses [86].

• A digital realization of a neuromorphic chip (ODIN) containing 256 neurons and 64 K 4-bit
synapses exhibiting a spike-driven synaptic plasticity in FDSOI 28 nm technology has recently
been developed in the University of Leuven [129].

A comparison of the main features of these generic neuromorphic systems and the human brain is
shown in Table 2. In general, these systems are based on a processing chip which is part of a multi-chip
board (or wafer for BrainScaleS), and in some cases these boards can be assembled in multi-board racks,
scaling up more and more the size of the implemented network. Some of the most recent approaches
have not reported yet such multi-chip platforms.
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4. Hybrid Memristor-CMOS Systems

As was mentioned in Section 1, progress in silicon technologies is reaching physical limitations
which are causing the end of Moore’s law, and traditional Von Neumann computing architectures
are reaching scalability limits in terms of computing speed and power consumption. Novel brain
inspired architectures have emerged as alternative computing platforms specially suitable for cognitive
tasks that require the processing of massively parallel data. As already stated in Section 3, one of
the main bottlenecks of the CMOS implementation of these neuromorphic parallel architectures
is the physical implementation of the massive synaptic interconnections among neurons and the
synaptic adaptability. The implementation of adaptable synaptic connections in CMOS technology
requires the use of large amount of circuitry for analog memory or digital memory blocks that
are costly in terms of area and energy requirements. Furthermore, learning rules to update these
synaptic memory devices have to be implemented. The interest in developing a compact adaptable
device obeying biological learning rules to implement the synaptic connections has motivated the
investigation on alternative nanotechnologies to complement the CMOS technology in this regard.
Memristive devices are novel two terminal devices able to change their conductance as a function
of the voltage/current applied to their terminals that were predicted in 1971 by Chua based on
circuit theory reasoning [17] and whose existence was experimentally demonstrated in nanomaterials
devices much later in 2008 [18]. Different materials with different conductance switching mechanisms
have been proposed [130] such as Phase-Change-Memory (PCM) [131], Conductive Bridge Memory
(CBRAM) [132], Ferroelectric Memories (FeRAM) [133], Redox-based resistive switching Memories
(ReRAM) [134], or organic memristive devices (OMD) [135–139]. Each of them presents different
characteristics in terms of compactness, reliability, endurance, memory retention term, programmable
states, and energy efficiency [69,140].

These devices present some properties specially valuable as electronic synaptic elements [141]:

• Memristors can be scaled down to feature sizes below 10 nm.
• They can retain memory states for years.
• They can switch with nanosecond timescales.
• They undergo spike-based learning in real time under biologically inspired learning rules as

Spike-Time-Dependent Plasticity (STDP) [31,32,34–36].

The characteristic i/v equations of a memristive element can be approximated by:

iMR = G(w, vMR)vMR

dw/dt = fMR(w, vMR)
(2)

where iMR, vMR are the current and the voltage drop at the terminal devices, respectively (as shown in
Figure 7a, G(w, vMR) is the conductance of the device that changes as function of the applied voltage
(supposing a voltage or flux controlled device model [142]), and w is some physical parametric
characteristic whose change is typically governed by a nonlinear function fMR of the applied
voltage including a threshold barrier. A typical fMR observed in memristive devices [142] can be
mathematically approximated by [28–30,143]

fMR =

⎧⎪⎨
⎪⎩

Io ∗ sign(vMR)(e|vMR |/vo − evTH/vo ) i f |vMR| > vTh

0 otherwise
(3)

Figure 7b depicts the typical non-linear memristive adaptation curve fMR.
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Figure 7. (a) Memristor symbol and (b) typical thresholded memristive adaptation curve

According to Equations (2) and (3), when a voltage higher than vTH is applied between the
terminals of a voltage-controlled memristor, its resistance changes. This property has been used
to adapt supervisely the weights of simple perceptron networks [38] by applying voltage pulses
controlled by some error function to memristive devices. The performance of correct categorization
has been experimentally demonstrated [144–146]. Although these novel memristive devices open
very promising alternatives for electronic technologies, they are still far from the maturity reached
by CMOS sytems during the last decades. Instead, they are very promising technologies for
being integrated in 3D with CMOS technology providing a high-density memory closely tight to
computational units, thus overcoming the limitations of Von Neumann’s architecture. Very dense
architectures for 3D-integration of CMOS computing units with crossbar arrays of nanodevices like
the semiconductor/nanowire/molecular integrated circuits (CMOL) [147] architecture have been
proposed. A CMOL system combines the advantages of CMOS technology (flexibility and high
fabrication yield) with the high density of crossbar arrays of nanoscale devices. This structure consists
of a dense nanowire crossbar fabric on top of the CMOS substrate with memristor devices assembled
in the crossings between nanowires as shown in Figure 8. Figure 8a shows a crossbar nanoarray
where nanowires run in orthogonal directions. A memristive device is located at each cross point of
a vertical and horizontal nanowire. Figure 8b shows the proposed CMOL structure. The nanowire
crossbar is tilted with respect to the orientation of the 2D array of CMOS neurons. Each CMOS neuron
has an output pin (red dots in Figure 8b) and an input pin (blue dots in Figure 8b). Each neuron
output is connected to just one nanowire and each neuron input is connected to another nanowire in
the perpendicular direction. The crosspoint memristive devices implement the synaptic connections
between neurons. In the illustration of Figure 8b, the output of neuron 2 is connected to the input of
neuron 1 through the synaptic memristive device located at the intersection point (marked as a black
circle) of the two perpendicular nanowires (plotted as green lines) connected to neuron 2 output and
neuron 1 input, respectively. Other alternative architectures for neuromorphic structures based on
3D integration of CMOS neurons and memristive synapses have been proposed as CrossNets [148].
A functional digital FPGA-like implementation of a small CMOL prototype where the memristors
where used as digital switches to re-configure the digital hardware implemented in the CMOS cells
has been demonstrated [149].
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Figure 8. Illustration of the proposed hybrid CMOS/memristive CMOL architecture. (a) Memristive
devices fabricated in the cross-points of a crossbar array and (b) proposed CMOL architecture.
(c) Neuromorphic architecture composed of CMOS neurons connected to a crossbar array of memristors.

Neuromorphic architectures composed of CMOS neurons connected to a crossbar array of
memristors as shown in Figure 8c have also been proposed as accelerators to perform the intensive
matrix multiplications needed in deep machine learning architectures. In the memristive crossbar
shown in Figure 8c, the input vector [Vin1, Vin2, ..., VinN ] is applied as input voltages to the rows,
each memristor in an (i,j) crossbar position is programmed with an analog value wij so that the currents
flowing through the vertical columns are the result of the vector-matrix multiplication

Ij = ∑ wijVini. (4)

Many works have proposed including ReRAM memristive memory crossbars to implement
Matrix-Vector-Multiplication Units in computer architectures to accelerate Neural Network
applications [150–155] demonstrating great benefits in power consumption levels. PRIME [151] and
RESPARC [150] report simulations of energy savings compared to fully CMOS Neural Processors Units
in the order of 103 depending on the particular neural network architecture. Energy savings in the order
of 103–105 respect to baseline CPU implementations have been reported [153,155]. However, in these
works the memristor crossbars are included at a simulation level. A real hardware implementation
of a hybrid CMOS system including an array of ReRAM crossbar as vector matrix multiplication
elements for neural network computing acceleration at low energy consumption has been reported [22].
However, in this work the memristors are used in digital flip-flops as non-volatile digital devices.
The real integration of CMOS neurons with a crossbar of CBRAM memristors is also demonstrated [156]
for functional programming of a crossbar array of memristors in a digital way. More advanced
fabrication techniques have been proposed to integrate up to 5 layers of 100 nm memristors in 3D
crossbar arrays [157]. Some works have demonstrated the feasibility of integrating both carbon
nanotube field-effect transistors (CNFETs) and RRAM on vertically stacked layers in a single chip on
top of silicon logic circuitry, reporting 1952 CNFETs integrated with 224 RRAM cells for brain-inspired
computing [158], or a prototype with more than 1 million RRAM cells with more than 2 million
CNFETs in a single chip [25]. A recent work reported some circuit-level techniques for the design of
a 65 nm 1 Mb pseudo-binary nonvolatile computing-in-memory RRAM macro which is capable of
storing 512 k weights for Deep Neural Networks (DNN) [159].

However, so far experimental demonstrations of classification and training of memristive based
analogue-memory learning systems have been on reduced systems and without achieving monolithic
integration of the CMOS and memristive part [160], and suffered from classification inaccuracies
due to device imperfections as control of the weight update, the programming of multilevel values,
or variation in the device conductance range, limiting their application and severely degrading the
performance of the network [161,162]. Another important shortcoming that limits the density of the
implemented crossbars, as well as the practical hardware implementation of CMOL neuromorphic
memristive systems, is the necessity of implementing a MOSFET in series with each memristive
device (the so-called 1T1R devices) to limit the currents flowing through each memristor avoiding
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damage due to transient high-currents. When the transistor device is omitted, the current limitation
is done in the peripheral CMOS circuitry, limiting the size of the array to reduce the risk of local
high parasitic transient currents. In the 1T1R structures, the transistor also acts as a selection device
to update individually each memristor avoiding alteration of the nearby devices. As a summary,
although memristors are a very promising technology to implement high-density analog memories
close to the computing system that could potentially implement high-speed low power learning
cognitive system, there are still some technological limitations that are currently being investigated
that have not allowed to implement such large scale systems.

5. Learning with Memristors (STDP)

Given that these SNNs are more powerful, in theory, than 2nd generation networks, it is natural to
wonder why we do not see widespread use of them. One main issue that currently lies in practical use
of SNNs is that of training. Learning mechanisms are crucial for the ability of neuromorphic systems
to adapt to specific applications. In general, the goal of a learning algorithm is to modify the weights of
the synaptic connections between neurons in order to improve the response of the network to a certain
stimulus. Two main categories can be considered: supervised or unsupervised learning. In supervised
learning, the dataset samples are labeled with the identification of the expected ‘correct’ network
output. The measured deviation between the desired output and the real one is used to modify the
synaptic weights. In unsupervised learning, there is no labeled information, so the own characteristics
of the input data are analyzed by the network in order to self-organize.

As explained in Section 2, in the ANN field, the powerful computational capabilities of modern
GPUs and CPUs and the availability of large amount of annotated data have made possible to train
complex deep learning architectures using the supervised backpropagation learning algorithm [48] to
solve complex cognitive problems in some cases with better accuracy than humans. However, there
are no known effective supervised training methods for SNNs that offer higher performance than 2nd
generation networks. The popular backpropagation learning strategies are not directly usable in SNN
networks. On the one hand, if spikes are represented computationally as the occurrence of an output
event at a particular time (as represented in Figure 3) they are not differentiable; on the other hand,
differentiating the error back across the spatial layers (as it is done in the backpropagation algorithm)
looses the precise temporal information contained in the spike timings. Therefore, in order to properly
use SNNs for real-world tasks, we would need to develop an effective supervised learning method
that takes space and time simultaneously into account [163]. Several approaches for SNN training
have been adopted:

Training an ANN and conversion to SNN [66,164–167]. Some authors have proposed ANN to
SNN direct conversion methods which are based on the training of ANN using static input images
and directly mapping the network to an SNN converting the input stimulus to spikes using frequency
rate encoding [164,165,167]. Bodo et al. implemented several optimizations achieving for a rate coded
input similar performance than equivalent ANN implementations [165]. However, such encoding
reduces the power efficiency of SNN. Other authors have proposed to train SNN with sensory data
coming directly from a spike-based sensor (as a DVS recording). For that purpose, an equivalent
ANN using static images generated from histograms of the input recordings of spiking stimulus
is trained. Afterwards, a method to convert the weights of the ANN to the corresponding SNN is
devised [66]. The additional timing parameters as leakage time or refractory period characteristics
of SNN are optimized as hyper-parameters in the SNN resulting on different optimized parameter
values for different input dynamics. Bodo et al. recently proposed an ANN to SNN conversion method
based on time-to-first-spike input conversion code [166]. In all of these methods, training is done on
static images and thus they do not fully exploit directly all the spatio-temporal information contained
in the events.

Supervised training in the spiking domain. For the above mentioned reason, some methods
for direct supervised learning in the spiking domain have been proposed [168–179]. Some of the
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earlier SNN training methods were based on an adaptation of the Delta Learning Rule [44] and were
appropriate to train single layer architectures [169,171,172]. More recent SNN learning methods have
been reported that try to apply the backpropagation learning rules to SNN with several learning
layers. They include coding the spike times to have a differentiable relationship with a subset of
previous spikes and hence compatible with the gradient descent back-propagation rule in the temporal
domain [180], or approximating the spike shape response activity to be differentiable across neural
layers [174,175,177]. Wu et al. introduced an SNN Spatio-Temporal BackPropagation algorithm [177].
Not only do they approximate the spike shape as a continuous differentiable function, but also they
use a back-propagation-through-time (BTT) [163] which backpropagates the error in the space as
well as the time dimension reporting the best recognition accuracy achieved by previously reported
SNN on the MNIST and N-MNIST datasets and equivalent to the state-of-the-art of ANNs. Similarly,
the SLAYER method [178] considers back-propagation in space and time and trains both weights and
delays of the synaptic connections.

Unsupervised training in the spiking domain. The unsupervised SNN training methods are
mostly based on the well known Spike-Timing-Dependent Plasticity (STDP) learning rule [31,32]. STDP
is a Hebbian learning rule. The traditional Hebbian synaptic plasticity rule was formulated in 1940
suggesting that synapses increase their efficiency if they persistently take part in firing the post-synaptic
neuron [39]. Much later in 1993, STDP learning algorithms were reported [31,32] as a refinement of this
rule taking into account the precise relative timing of individual pre- and post-synaptic spikes, and not
their average rates over time. In comparison with traditional Hebbian correlation-based plasticity,
STDP proved to be better suited for explaining brain cortical phenomena [181,182], and demonstrated
to be successful in learning hidden spiking patterns [183] or performing competitive spike pattern
learning [184]. Interestingly, shortly after that, in 1997, STDP learning was experimentally observed
in biological neurons [33–35]. Figure 9a,b illustrate the STDP learning rule as observed in biological
synapses. Figure 9a plots a presynaptic neuron with a membrane potential Vpre which is connected
through a synapse with synaptic strength w to a postsynaptic neuron with membrane potential Vpost.
The presynaptic neuron emits a spike at time tpre which contributes to the generation of a postsynaptic
spike at time tpost. The biological learning rule observed by Bi and Poo is illustrated in Figure 9b.
When the two connected neurons generate spikes close in time, if ΔT = tpost − tpre is positive, meaning
that the presynaptic pulse contributed causally to generate the postsynaptic pulse, there is a positive
variation in the efficacy of the synaptic connection ξ(ΔT) > 0; on the contrary, if ΔT = tpost − tpre is
negative, the variation in the efficacy of the synaptic connection ξ(ΔT) < 0 is negative. Being STDP
a local learning rule, and memristors two-terminal devices exhibiting plasticity controlled by the
local applied voltage/current to their terminals converts memristors as ideal candidates to implement
high-density on-line STDP-based neuromorphic learning systems [27]. Linares et al. [28] showed that
by combining the memristance model formulated in Equation (2) with the electrical wave signals
of neural impulses (spikes) as shaped in Figure 9c applied to the pre- and post-synaptic terminals
of the memristive synaptic-like device, the STDP behavior shown in Figure 9d emerges naturally.
Considering the mathematical equation describing the spike shape shown in Figure 9c versus time

spk(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

A+
mp

et/τ+−et+tail /τ+

1−et+tail /τ+
i f − t+tail < t < 0

A−
mp

e−t/τ−−e−t−tail /τ−

1−e−t−tail /τ− i f 0 < t < t−tail

0 otherwise

(5)

and a memristive synapse-like device where a presynaptic spike spk(t) with attenuation αpre arrives at
time t to its negative terminal and a postsynaptic spike spk(t + ΔT) with attenuation αpos arrives at
time t + ΔT to its positive terminal, a voltage difference
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vMR(t + ΔT) = αposspk(t + ΔT)− αprespk(t) (6)

is generated among the device terminals. The total change in the memristance parameter w can thus
be computed as,

Δw(ΔT) =
∫

fMR(vMR(t + ΔT))dt = ξ(ΔT) (7)

Interestingly, for the memristor model considered in Equation (2) and the spike shape considered
in Equation (5), the memristance learning rule shown in Figure 9d ξ(ΔT) is obtained which resembles
the STDP rule observed by Gerstner in biological neurons. By playing with the spike shapes, many
other STDP update rules can be tuned as demonstrated by Zamarreño et al. [29,30].

Figure 9. Illustration of STDP learning rule. (a) Pre-synaptic neuron generating a spike Vpre at time tpre

that arrives to a post-synaptic neuron that generates a spike Vpost at time tpost, being ΔT = tpost − tpre,
and (b) illustrates the variation of the synaptic efficacy ξ(ΔT) Vs ΔT, STDP learning rule, as the
observed by Bi and Poo in biological synapses. (c) Illustrates the spike shape that applied to the
memristive devices describes in Section 4 reproduces the STDP learning rule shown in (d).

In the last decade, many different works have demonstrated the emergence of STDP learning in
memristive devices of different kinds of materials [137,180,185–189]. However, as already stated in
Section 4, at a system level, the current limitations of the memristor technology in terms of control
of the resolution of the weigh updating, have not made possible the implementation of working
STDP memristive learning systems with analog synaptic elements. Precision in the weight update
is difficult to control and most of the memristive devices operate changing between binary states.
For that reason, stochastic STDP learning rules that operate with binary weights during inference
and updating operation have been proposed. Seo et al. [190] applied this idea to simple classification
problems, but they found that they could not learn to separate more than 5 patterns. Recently,
Yousefzadeh et al. [191] were able to classify more elaborated databases (as MNIST) by introducing
some other techniques that improved the performance.

Combining unsupervised feature extraction methods with supervised categorization training.
While supervised learning methods like backpropagation are not energy efficient, are not appropriate
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for on-line chip learning, and do not look like biologically plausible, unsupervised learning rules
are appropriate to extract repetitive structures in the training data but not appropriate to take
decisions [192,193]. For example, Mozafari et al. propose to combine unsupervised STDP layer
with supervised Reinforcement Learning STDP layers [193]. The resulting network is more robust to
overfitting compared to backprogation training as it extracts common features and performs well with
reduced number of training samples.

6. Future Perspective

It is well known that the human brain contains about 1011 neurons interconnected through
1015 synapses, and with a power consumption of around 20 W it is capable of performing complex
sensing and cognitive processing, sophisticated motor control, learning and abstraction, and it
can dynamically adapt to changing environments and unpredicted conditions. For this reason,
neuromorphic engineers have been using the brain as a processing paradigm for several decades
in order to fabricate artificial processing systems with similar capabilities. After the initial
attempts of building the first spike-based processing systems demonstrated their feasibility and
showed their promising potential [78], it became evident the need for scaling up these systems
in terms of number of neurons and synapses [62]. Several works developed by both academic
institutions [86,121–125,127–129] and industrial players like IBM [120] or Intel [126] fabricated
neuromorphic chips with up to 1 M neurons and 256 M synapses, which could be ensembled in
multi-chip boards and multi-board platforms, opening the way to implement large systems in the near
future with numbers of neurons and synapses similar to the brain. However, these systems, based on
different CMOS technologies, will be limited by the their large room-scale size. Besides, the complexity
of current implementations of learning algorithms in CMOS limits their scalability.

The emergence of memristors and their synaptic-like behavior opened the possibility to overcome
the limitations of CMOS technologies. Memristors can be a few nanometers size and can be packed
densely in a two-dimensional layer with nanometer-range pitch, potentially offering higher neuron
and synaptic density. With a fabrication process much cheaper than CMOS, memristor layers can be
stacked in 3D. Assuming a reasonable 30-nm pitch, the superposition of 10 memristive layers could
theoretically provide a memory density of 1011 non-volatile analog cells per cm2. This approach could
in principle reach the neuron and synaptic density of the human brain in a single board, including
learning capabilities [194]. Furthermore, the close 3D dense packaging between the CMOS neural
computation units and the memristive adaptive memory synaptic elements can significantly reduce
the current consumption of the resulting systems.

Current available memristors are described as 1T1R devices, meaning that they are formed by the
series connection of a MOS transistor and a memristive element. This transistor is used to limit the
current flowing through the memristor during each operation (Forming, Writing, Erasing, Reading)
to avoid damaging the device. However, this structure is limiting the density of memristors, as they
are also consuming area in the CMOS substrate. An alternative to overcome this limitation is given
by 1S1R devices (1-selector-1-resistor), where a volatile memristor (1S) is connected in series with a
non-volatile memristor (1R), eluding any CMOS area consumption [195].

Hybrid systems with memristor layers fabricated on top of a CMOS substrate can provide highly
parallel massive storage tightly coupled to CMOS computing circuitry. Therefore, computing and
learning processes in the brain can be imitated by combining memristors with spiking processors
and integrate-and-fire neurons in silicon. Using mesh techniques [82], grids of tens of chips can
be assembled modularly on a Printed Circuit Board (PCB), allowing for scaling up the numbers of
neurons and synapses in a neural system [65]. The combination of all these techniques together
with the resolution of the multiple technical challenges currently associated to dense memristive
layers (reliability, repeatability, reprogrammability) could provide an important step towards the
hardware implementation of brain-scale low-power neuromorphic processing systems with online
STDP learning.
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Abstract: Neuromorphic computing has emerged as one of the most promising paradigms to overcome
the limitations of von Neumann architecture of conventional digital processors. The aim of neuromorphic
computing is to faithfully reproduce the computing processes in the human brain, thus paralleling its
outstanding energy efficiency and compactness. Toward this goal, however, some major challenges have
to be faced. Since the brain processes information by high-density neural networks with ultra-low power
consumption, novel device concepts combining high scalability, low-power operation, and advanced
computing functionality must be developed. This work provides an overview of the most promising
device concepts in neuromorphic computing including complementary metal-oxide semiconductor
(CMOS) and memristive technologies. First, the physics and operation of CMOS-based floating-gate
memory devices in artificial neural networks will be addressed. Then, several memristive concepts
will be reviewed and discussed for applications in deep neural network and spiking neural network
architectures. Finally, the main technology challenges and perspectives of neuromorphic computing
will be discussed.

Keywords: neuromorphic computing; Flash memories; memristive devices; resistive switching;
synaptic plasticity; artificial neural network; spiking neural network; pattern recognition

1. Introduction

The complementary metal-oxide semiconductor (CMOS) technology has sustained tremendous
progress in communication and information processing since the 1960s. Thanks to the continuous
miniaturization of the metal-oxide semiconductor (MOS) transistor according to the Moore’s law [1]
and Dennard scaling rules [2], the clock frequency and integration density on the chip have seen an
exponential increase. In the last 15 years, however, the Moore’s scaling law has been slowed down by
two fundamental issues, namely the excessive subthreshold leakage currents and the increasing heat
generated within the chip [3,4]. To overcome these barriers, new advances have been introduced,
including the adoption of high-k materials as the gate dielectric [5], the redesign of the transistor with
multigate structures [6,7], and 3D integration [8]. Besides the difficult scaling, another crucial issue
of today’s digital computers is the physical distinction between the central processing unit (CPU)
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and the memory unit at the origin of extensive data movement during computation, especially for
data-intensive tasks [9]. Solving the memory bottleneck requires a paradigm shift in architecture,
where computation is executed in situ within the data by exploiting, e.g., the ability of memory arrays
to implement matrix-vector multiplication (MVM) [10,11]. This novel architectural approach is referred
to as in-memory computing, which provides the basis for several outstanding applications, such as
pattern classification [12,13], analogue image processing [14], and the solution of linear systems [15,16]
and of linear regression problems [17].

In this context, neuromorphic computing has been receiving increasing interest for its ability
to mimic the human brain. A neuromorphic circuit consists of a network of artificial neurons and
synapses capable of processing sensory information with massive parallelism and ultra-low power
dissipation [18]. The realization of scalable, high density, and high-performance neuromorphic circuits
generally requires the extensive adoption of memory devices serving the role of synaptic links and/or
neuron elements. The device structure and operation of these memory devices may require specific
optimization for neuromorphic circuits.

This work reviews the current status of neuromorphic devices, with a focus on both CMOS and
memristive devices for implementation of artificial synapses and neurons in both deep neural networks
(DNNs) and spiking neural networks (SNNs). The paper is organized as follows: Section 2 provides
an overview of the major neuromorphic computing concepts from a historical perspective. Section 3 is
an overview of the operating principles of mainstream NAND and NOR Flash technologies, and their
adoption in neuromorphic networks. Section 4 describes the most important memristive concepts being
considered for neuromorphic computing applications. Section 5 addresses the adoption of memristive
devices in DNNs and SNNs for hardware demonstration of cognitive functions, such as pattern
recognition and image/face classification. Finally, Section 6 discusses issues and future perspectives for
large-scale hardware implementation of neuromorphic systems with CMOS/memristive devices.

2. Neuromorphic Computing Concepts

The origin of neuromorphic computing can be traced back to 1949, when McCulloch and Pitts
proposed a mathematical model of the biological neuron. This is depicted in Figure 1a, where the
neuron is conceived as a processing unit, operating (i) a summation of input signals (x1, x2, x3, . . . ),
each multiplied by a suitable synaptic weight (w1, w2, w3, . . . ) and (ii) a non-linear transformation
according to an activation function, e.g., a sigmoidal function [19]. A second landmark came in
1957, when Rosenblatt developed the model of a fundamental neural network called multiple-layer
perceptron (MLP) [20], which is schematically illustrated in Figure 1b. The MLP consists of an input
layer, one or more intermediate layers called hidden layers, and an output layer, through which the
input signal is forward propagated toward the output. The MLP model constitutes the backbone for
the emerging concept of DNNs. DNNs have recently shown excellent performance in tasks, such as
pattern classification and speech recognition, via extensive supervised training techniques, such as
the backpropagation rule [21–23]. DNNs are usually implemented in hardware with von Neumann
platforms, such as the graphics processing unit (GPU) [24] and the tensor processing unit (TPU) [25],
used to execute both training and inference. These hardware implementations, however, reveal all the
typical limitations of the von Neumann architecture, chiefly the large energy consumption in contrast
with the human brain model.
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Figure 1. (a) Conceptual illustration of McCulloch and Pitts artificial neuron architecture, where the
weighted sum of the input signals is subject to the application of a non-linear activation function
yielding the output signal. (b) Schematic representation of a multilayer perceptron consisting of two
hidden layers between the input and the output layer.

To significantly improve the energy efficiency of DNNs, MVM in crossbar memory arrays has
emerged as a promising approach [26,27]. Memory devices also enable the implementation of learning
schemes able to replicate the biological synaptic plasticity at the device level. CMOS memories, such
as the static random access memory (SRAM) [28,29] and the Flash memory [30], were initially adopted
to capture synaptic behaviors in hardware. In the last 10 years, novel material-based memory devices,
generically referred to as memristors [31], have evidenced attractive features for the implementation of
neuromorphic hardware, including non-volatile storage, low power operation, nanoscale size, and
analog resistance tunability. In particular, memristive technologies, which include resistive switching
random access memory (RRAM), phase change memory (PCM), and other emergent memory concepts
based on ferroelectric and ferromagnetic effects, have been shown to achieve synapse and neuron
functions, enabling the demonstration of fundamental cognitive primitives as pattern recognition in
neuromorphic networks [32–35].

The field of neuromorphic networks includes both the DNN [36], and SNN, the latter more
directly inspired by the human brain [37]. Contrary to DNNs, the learning ability in SNNs emerges
via unsupervised training processes, where synapses are potentiated or depressed by bio-realistic
learning rules inspired by the brain. Among these local learning rules, spike-timing-dependent
plasticity (STDP) and spike-rate-dependent plasticity (SRDP) have received intense investigation for
hardware implementation of brain-inspired SNNs. In STDP, which was experimentally demonstrated
in hippocampal cultures by Bi and Poo in 1998 [38], the synaptic weight update depends on the relative
timing between the presynaptic spike and the post-synaptic spike (Figure 2a). In particular, if the
pre-synaptic neuron (PRE) spike precedes the post-synaptic neuron (POST) spike, namely the relative
delay of spikes, Δt = tpost − tpre, is positive, then the interaction between the two spikes causes the
synapse to increase its weight, which goes under the name of synaptic potentiation. On the other
hand, if the PRE spike follows the POST spike, i.e., Δt is negative, then the synapse undergoes a
weight decrease or synaptic depression (Figure 2b). In SRDP, instead, the rate of spikes emitted
by externally stimulated neurons dictates the potentiation or depression of the synapse, with high
and low frequency stimulation leading to synaptic potentiation and depression, respectively [39].
Unlike STDP relying on pairs of spikes, SRDP has been attributed to the complex combination of
three spikes (triplet) or more [40–43]. In addition to the ability to learn in an unsupervised way and
emulate biological processes, SNNs also offer a significant improvement in energy efficiency thanks to
the ability to process data by transmission of short spikes, hence consuming power only when and
where the spike occurs [18]. Therefore, CMOS and memristive concepts can offer great advantages in
the implementation of both DNNs and SNNs, providing a wide portfolio of functionalities, such as
non-volatile weight storage, high scalability, energy efficient in-memory computing via MVM, and
online weight adaptation in response to external stimuli.
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Figure 2. (a) Sketch of the spike-timing-dependent plasticity (STDP) learning rule. If the PRE spike
arrives just before the POST spike at the synaptic terminal (Δt > 0), the synapse undergoes a potentiation
process, resulting in a weight (conductance) increase (top). Otherwise, if the PRE spike arrives just
after the POST spike (Δt < 0), the synapse undergoes a depression process, resulting in a weight
(conductance) decrease (bottom). (b) Relative change of synaptic weight as a function of the relative
time delay between PRE and POST spikes measured in hippocampal synapses by Bi and Poo. Reprinted
with permission from [38]. Copyright 1998 Society for Neuroscience.

3. Mainstream Memory Technologies for Neuromorphic and Brain-Inspired Systems

3.1. Memory Transistors and Mainstream Flash Technologies

The memory transistor represents the elementary building unit at the basis of modern mainstream
non-volatile storage technologies. It consists of a mainstream MOS transistor whose structure is
modified to accommodate a charge-storage layer in its gate stack, allowing carriers to be confined in a
well-defined region due to the resulting potential barriers. As shown in Figure 3, the most adopted
solutions for such a layer are based either on highly doped polycrystalline silicon (polysilicon) or a
dielectric material able to capture and release electrons and holes thanks to its peculiar high density
of defects. The charge storage layer is usually referred to as floating gate in the former case, and
charge-trap layer in the latter one. However, in both cases, storing a net charge in the memory transistor
floating gate or charge-trap layer results in a shift of the drain current vs. gate voltage (IDS −VGS) curve
due to the corresponding variation of the device threshold voltage (VT). In particular, such variation is
mainly ruled by the capacitance between the transistor gate and the charge-storage layer, Csg, according
to ΔVT = −Qs/Csg, meaning that a net positive or negative stored charge (Qs) is reflected in a negative
or positive VT shift (ΔVT), respectively. As a consequence, a proper discretization of the stored charge
in each memory transistor allows one or multiple bits of information to be stored that can be accessed
through a VT read operation.

Figure 3. Schematic of a memory cell exploiting (left) a highly doped polysilicon layer and (right) a
dielectric layer with a high density of microscopic defects for charge storage.

41



Materials 2020, 13, 166

In order to reliably accomplish the tuning of the stored charge and, consequently, the modification
of the information content through the program (making the stored charge more negative) and
erase (making the stored charge more positive) operations, suitable physical mechanisms must be
selected. As schematically depicted in Figure 4, the most widely adopted physical mechanisms are
the Fowler–Nordheim (FN) tunneling, for both program and erase operations, and the channel hot
electron injection (CHEI), for program operation only. In the former case, the bias voltages applied to
the memory transistor contacts are chosen to generate large vertical electric fields that activate carrier
exchange between the substrate and the storage layer by the quantum mechanical current through
the energy barrier separating them. In the latter case, instead, CHEI is achieved by accelerating the
transistor on-state current electrons by applying a positive drain-to-source voltage drop (VDS). If VDS
is large enough, the energy acquired by the channel electrons is sufficient for them to overcome the
tunnel-oxide energy barrier and to be redirected to the charge-storage layer due to the positive VGS.
Moreover, it is worth mentioning that, for a target ΔVT to be achieved over comparable time scales,
CHEI requires much lower voltages to be applied with respect to FN tunneling. On the contrary,
its injection efficiency is of the order of 10−5 only, much smaller than that of FN tunneling (very close to
one). A final but important remark is that for both CHEI and FN tunneling, the maximum number of
program/erase cycles that can be performed on the devices is usually smaller than 105; in fact, for larger
cycling doses, the number of defects generated in the tunnel oxide by the program/erase operations
severely undermines the transistor reliability.

Figure 4. Physical mechanisms and corresponding voltage schemes exploited to change the amount
of charge in the cell storage layer, consisting of (left) Fowler–Nordheim (FN) and (right) channel
hot-electron injection (CHEI).

Starting from the schematic structure shown in Figure 3, the arrangement of memory transistors
to build memory arrays and their working conditions are strictly related to the specific targeted
application. In particular, two solutions that have ruled the non-volatile memory market since their
very first introduction are the NAND Flash [44] and NOR Flash [45] architectures (Figure 5). Although
they share the important peculiarity that the erase operation, exploiting FN tunneling to reduce the
amount of the stored negative charge, involves a large number of cells at the same time (a block of cell),
some relevant differences can be mentioned.

NAND Flash technology is the main solution for the storage of large amounts of data, therefore
achieving large bit storage density, i.e., the ratio between the chip capacity and its area is a mandatory
requirement. For this purpose, NAND Flash memory transistors are deeply scaled (up to a feature
size as small as 15 nm) and arranged in series connection, making the memory cells belonging to each
string accessible only through the contacts at their top and bottom ends (Figure 5a). In such a way,
the area occupancy of each cell is minimized; on the other hand, the attempt to minimize the array
fragmentation and to reduce the area occupancy of the control circuitry makes the random access time
to the cells quite long (tens of μs), due to the consequent delays of the signals propagating over the
long WLs and BLs. For this reason, programming schemes taking advantage of the low current and

42



Materials 2020, 13, 166

high injection efficiency of FN tunneling were developed to program many memory transistors at the
same time, allowing extremely high throughputs (tens or even hundreds of Mbytes/s) to be achieved.

The NOR Flash technology, on the other hand, is mainly intended for code storage, making the
storage and retrieval of small packets of data (a few bytes) as fast as possible a mandatory requirement.
As a consequence, in order to make each memory cell directly accessible through dedicated contacts,
the memory transistors are connected in parallel, as shown in Figure 5b. Thanks to this architecture,
a fast and single-cell selective program operation can be easily achieved exploiting CHEI. From the
cell design standpoint, this results in a limited channel scalability, due to the need for the cell to
withstand relatively high VDS during its operation. Even though these features determine a larger cell
footprint and, in turn, a higher cost of NOR Flash with respect to NAND Flash technologies, they allow
NOR Flash arrays to guarantee a superior array reliability, being an important requirement for code
storage applications.

Figure 5. Schematic of memory arrays based on (a) NAND Flash and (b) NOR Flash architecture.

3.2. Memory Transistors as Synaptic Devices in Artificial Neural Networks

The first proposal of exploiting memory transistors as artificial synapses in artificial neural
networks (ANNs) and brain-inspired neural networks dates back to the 1990s directly from the
pioneering work presented in ref. [46]. The basic idea proposed there is to take advantage of the
subthreshold characteristic IDS −VGS of an n-channel floating-gate memory transistor to reproduce the
biologically observed synaptic behavior and to exploit it to build large-scale neuromorphic systems.
In fact, when operated in a subthreshold regime, a memory transistor exhibits an IDS −VGS relation
that can be expressed as:

IDS = I0 · exp

⎡⎢⎢⎢⎢⎢⎢⎣
qαG
(
VGS −Vre f

T

)
mkT

⎤⎥⎥⎥⎥⎥⎥⎦ · exp
[−qαGΔVT

mkT

]
, (1)

where I0 is the current pre-factor, q is the elementary charge, m is the subthreshold slope ideality
factor, kT is the thermal energy, αG is the gate-to-floating-gate capacitive coupling ratio, and ΔVT is the
floating-gate transistor VT shift from an arbitrary chosen Vre f

T .
With reference to the previous equation, IDS can be decomposed in the product of two contributions.

The first factor, I0 · exp

⎡⎢⎢⎢⎢⎢⎣
qαG

(
VGS−Vre f

T

)
mkT

⎤⎥⎥⎥⎥⎥⎦, is a function of VGS only, and represents the input presynaptic

signal; the remaining scaling factor, W = exp
[−qαGΔVT

mkT

]
, instead, depending on ΔVT but not on VGS,

can be thought of as the synaptic weight.
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When compared with other modern approaches based on emerging memory technologies,
this solution presents the clear advantages of (i) limited power consumption, thanks to the reduced
currents peculiar of transistors operated below the threshold; (ii) fine weight granularity, coming to the
virtually analog and bidirectional VT tuning; and (iii) a mature and well-established CMOS fabrication
technology. In particular, the relevance of the last point can be easily understood by considering the
possibility of arranging a large number of floating-gate transistors in very dense and reliable memory
arrays, normally employed for storage purposes. However, when exploited as synaptic arrays in
neuromorphic applications, such memory arrays must meet the mandatory condition of single-cell
selectivity during both program and erase operations, meaning that both the positive and negative
tuning of the VT (weight) of each memory cell (synapse) must be guaranteed. Even if this consideration
makes a NOR-type array inherently more suitable to be used in these fields because of its architecture
that allows direct access to each cell by dedicated contacts, its standard block-erase scheme must
still be overcome. For this reason, since its very first proposal, the synaptic transistor introduced in
refs. [46–48], and tested on LTD and LTP based on the STDP learning rule in refs. [30,48], includes
an additional contact with respect to standard n-channel floating-gate transistors (Figure 6) to be
connected to signal lines running orthogonal to the WLs [46]. While keeping CHEI for the program,
the erase operation takes place by removing stored electrons by FN tunneling when a sufficiently high
electric field is developed between the tunneling contact and the transistor floating gate that, as shown
in Figure 3, is properly extended in close proximity of such a contact. Note that this erase scheme
is indeed single-cell selective because the substrate contact, common to all the array cells, is kept to
the ground.

Figure 6. Top view (up) and side view (down) of the synaptic transistor. Physical mechanisms exploited
for program (electron injection) and erase (electron tunneling) are highlighted too. Adapted with
permission from [48]. Copyright 1997, IEEE.

Although, recently, some more effort was devoted to build new custom synaptic devices and test
them in SNNs [49–51], a more convincing proof of the feasibility of the floating-gate transistor to build
large-scale neuromorphic systems comes from a different approach. The basic idea consists in slightly
modifying the routing of commercially available NOR Flash memory arrays to enable a single-cell
selective erase operation while keeping the cell structure unchanged. For this purpose, NOR memory
arrays developed with a 180 nm technology by Silicon Storage Technology, Inc. (SST) [52] are chosen
in refs. [53–56]. The basic memory cell, as depicted in Figure 7a, features a highly asymmetric structure
presenting a floating gate only near the source side, with the gate stack at the drain side made only of
the tunneling oxide. In spite of this structure, the program operation can still be performed by CHEI at
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the source side; as for the erase operation, instead, a positive voltage is applied between the gate and
source, resulting in the emission of stored electrons toward the gate by FN tunneling.

Figure 7. (a) Schematic cross-section of the Silicon Storage Technology (SST) cell structure (top) and its
equivalent circuit (bottom) and NOR array with (b) classic and (c) modified routing together with the
respective erase protocol. Reprinted with permission from [53]. Copyright 2015, IEEE.

The arrangement of such SST cells to make a NOR array is shown in Figure 7b, where the erase
voltages are highlighted too. Since both WLs and SLs run parallel to each other and orthogonal to the
BLs, the erase protocol involves all the cells in a row at the same time. For this reason, in refs. [54],
a modification to the array routing as reported in Figure 7c is proposed, with the WLs now running
parallel to the BLs. In this way, single-cell selectivity is achieved during both the program (involving
WL, BL, and SL) and erase (involving WL and SL only).

In refs. [54,55], two SST NOR arrays, re-routed as explained before, are employed to build and
test a fully integrated three-layer (784 × 64 × 10) ANN, trained offline on the Modified National
Institute of Standards and Technology (MNIST) database for handwritten digit recognition via the
backpropagation algorithm [21–23]. In particular, in order to enable the implementation of negative
weights, and also to reduce random drifts and temperature sensitivity, a differential solution is adopted.
As shown in Figure 8a, following this approach, each couple of adjacent memory cells implements
a synaptic weight, with the resulting BL currents summed and read by CMOS artificial neurons
built exploiting a differential current operational amplifier. The whole one-chip integrated network,
whose schematic structure, including two synaptic arrays together with two neuron layers and some
additional circuitry, is reported in Figure 8b, has shown a 94.7% classification fidelity with one-pattern
classification time and energy equal to 1 μs and less than 20 nJ, respectively. Moreover, a reduction
of the total chip active area, amounting to 1 mm2 in the discussed work, is expected together with
an increase of its performance when moving to the next 55 nm SST technology. In this regard, some
preliminary results about MVM were already presented in ref. [56].

Although this solution based on re-routing commercially available NOR arrays appears promising,
it comes together with its main drawback consisting in the increased area occupancy (the single-cell area
in the modified array is 2.3 times larger than the original one). A different approach aiming at avoiding
this disadvantage is proposed in [57–59]. Here, the authors suggest a modified working scheme for a
mainstream double-polysilicon common-ground NOR Flash arrays developed in a 40 nm embedded
technology by STMicroelectronics (Figure 9a) without any change needed in the cell or array design.
While keeping CHEI as the physical mechanism for the program, single-cell selectivity during the erase
is achieved by employing hot-hole injection (HHI) in the cell floating gate. In particular, by keeping
the source and substrate contacts to the ground while applying a positive and negative voltage to
the drain and to the gate, respectively, the developed electric field triggers the generation of holes by
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band-to-band tunneling at the drain side and accelerates them (Figure 9b); if the applied voltages are
high enough, the energy acquired by the holes allows them to overcome the energetic barrier of the
tunnel oxide and to be redirected toward the floating gate thanks to the negative gate voltage.

Figure 8. (a) Differential implementation of a synaptic connection followed by a hidden-layer
neuron, consisting of a differential summing operational amplifier and an activation-function block.
(b) High-level architecture of the artificial neural network and needed additional circuitry. Reprinted
with permission from [55]. Copyright 2018, IEEE.

Figure 9. (a) Schematic for a mainstream common-ground NOR Flash array and (b) proposed physical
mechanism exploited for the erase operations. Reprinted with permission from [57]. Copyright
2018, IEEE.

To validate this program/erase scheme in a brain-inspired neural network, the authors
demonstrated long-term potentiation/depression through the design of the presynaptic and postsynaptic
waveforms as shown in Figure 10a. The short rectangular pulse applied to the BL as a consequence
of a postsynaptic fire event overlaps with a positive or negative WL voltage according to the time
distance between the presynaptic and postsynaptic spike, Δt. In particular, Δt > 0 leads to long-term
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potentiation by HHI and Δt < 0 leads to long-term depression by CHEI. To further confirm the validity
of this protocol, a prototype two layers 8 × 1 SNN was tested on pattern recognition, producing
encouraging results as shown in Figure 10b; in fact, as expected, while the synapses corresponding to
the input pattern are quickly potentiated, the remaining ones are gradually depressed.

Figure 10. (a) Pulse scheme proposed to implement the spike-timing-dependent plasticity (STDP)
waveform exploiting the erase mechanism shown in Figure 9b and (b) evolution of the weights of the
implemented NOR Flash-based spiking neural network during the learning phase. Reprinted with
permission from [57]. Copyright 2018, IEEE.

A final remark, being of great relevance especially in DNN inference, is the finite tuning precision
of the cells array, VT, and its stability after the offline training phase. In the case of ANN based on
NOR Flash memory arrays, two of the most relevant physical mechanisms causing reliability issues
of this kind are program noise (PN), determining an inherent uncertainty during the program phase
due to the statistical nature of electron injection in the floating gate, and random telegraph noise
(RTN), inducing VT instabilities arising from the capture and release of charge carriers in tunnel-oxide
defects. In ref. [60], the authors assess the impact of both PN and RTN on a neuromorphic digit
classifier through parametric Monte-Carlo simulations. The main result, relevant in terms of projection
of the previously discussed results on future technological nodes, is that such non-idealities play a
non-negligible role, setting a stringent requirement both on the maximum scalability of the array cell
and on the adopted program/erase schemes.

4. Memristive Technologies

To replicate neural networks in hardware, memristive devices have been recently investigated for
the realization of compact circuits capable of emulating neuron and synapse functionalities. Increasing
interest toward these novel device concepts first results from their ability to store information at the
nanoscale in an analogue and non-volatile way. Also, they allow the memory to be combined with the
computing function, enabling in-situ data processing, also referred to as in-memory computing [11],
which is currently the major approach toward the achievement of energy-efficient computing paradigms
beyond the von Neumann bottleneck. In detail, the landscape of memristive technologies can be
divided into the classes of memristors with two or three terminals, which are explained in the
following subsections.

4.1. Memristive Devices with 2-Terminal Structure

As shown in Figure 11, the class of memristive devices with a two-terminal structure covers various
physical concepts, such as resistive switching random access memory (RRAM), phase change memory
(PCM), spin-transfer torque magnetic random access memory (STT-MRAM), and ferroelectric random
access memory (FeRAM), which share a very simple structure consisting of a metal-insulator-metal
(MIM) stack, where an insulating layer is sandwiched between two metallic electrodes called the top
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electrode (TE) and bottom electrode (BE), respectively. As a voltage pulse is applied, these devices
undergo a change of physical properties of the material used as the switching layer, which results in a
change of the resistance for RRAM and PCM, magnetic polarization for STT-MRAM, and electrical
polarization for FeRAM. Importantly, all these memristive elements offer the opportunity to read,
write, and erase the information in memory states by electrical operations on the device, thus making
them potentially more attractive in terms of scalability than other memory concepts, such as the Flash
memories based on charge storage.

Figure 11. Sketch of the most promising two-terminal memristive devices used in neuromorphic
computing applications. (a) Structure of resistive switching random access memory (RRAM) device
where the insulating switching layer is sandwiched between two metal electrodes. (b) Current-voltage
characteristics of RRAM displaying that the application of a positive voltage causes an abrupt resistance
transition, called set, leading the device from the high resistance state (HRS) to the low resistance
state (LRS) while the application of a negative voltage causes a more gradual resistance transition,
called reset, leading the device from LRS to HRS. (c) Structure of phase change memory (PCM) device
where a chalcogenide active layer is sandwiched between two metal electrodes. (d) Resistance-voltage
characteristics of PCM displaying that the crystallization process in the active layer gradually leading the
PCM from HRS to LRS is achieved at voltages below the melting voltage, Vm, while the amorphization
process gradually leading the PCM from LRS to HRS is achieved at voltages above Vm. (e) Structure
of spin-transfer torque magnetic random access memory (STT-MRAM) device, where a tunnel layer
is sandwiched between two ferromagnetic metal electrodes. (f) Resistance-voltage characteristics of
STT-MRAM displaying two binary resistance transitions leading the device from the anti-parallel (AP)
to the parallel (P) state (set) at positive voltage and from P to AP (reset) at negative voltage. (g) Structure
of ferroelectric random access memory (FeRAM) device, where a ferroelectric layer is sandwiched
between two metal electrodes. (h) Polarization-voltage characteristics displaying binary operation
between two states with a positive residual polarization, +Pr, and a negative residual polarization, −Pr,
achieved by application of a positive and negative voltage, respectively. Reprinted with permission
from [11]. Copyright 2018, Springer Nature.

Figure 11a shows the MIM stack of the RRAM device, where an insulating oxide material serves
as the switching layer [61–63]. To initiate the device, a preliminary electrical operation called forming
is performed by application of a positive voltage at TE by causing a soft breakdown process, leading to
the creation of a high conductivity path containing oxygen vacancies and/or metallic impurities, also
known as a conductive filament (CF), within the oxide layer. This results in the change of the resistance
of the device from the initial high resistance state (HRS) to the low resistance state (LRS). After forming,
in the case of bipolar RRAM devices, the application of negative/positive voltage pulses at TE leads the
device to experience reset and set transitions, respectively. The application of a negative pulse causes
the rupture of CF (reset process), leading to the opening of a depleted gap via drift/diffusion migration
of ion defects from BE to TE, hence to the HRS. On the other hand, the application of a positive pulse
allows the gap to be filled via field-driven migration of ion defects from TE to BE, thus leading the
device back to LRS (set process) [64,65]. Two resistance transitions can be noted by the current-voltage
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characteristics shown in Figure 11b, which evidence both the abrupt nature of the set process due to
the positive feedback loop involving the two driving forces for ion migration, namely the electric field
and temperature, and the more gradual dynamics of the reset process due to the negative feedback
occurring within the device as a negative pulse is applied [66]. Similar to the bipolar RRAM described
in Figure 11b, which typically relies on switching layers, including HfOx [67], TaOx [68], TiOx [69],
SiOx [70], and WOx [71], the conductive-bridge random access memory (CBRAM), where metallic
CFs are created/disrupted between active Cu/Ag electrodes, has also received strong interest in recent
years [72]. In addition to bipolar RRAM concepts, another type of filamentary RRAM called unipolar
RRAM, typically based on NiO [73–75], has been widely investigated, evidencing that pulses with the
same polarity can induce both set and reset processes as a result of the key role played by Joule heating
for the creation/disruption of CF [73,75]. Moreover, the RRAM concept also includes non-filamentary
devices referred to as uniform RRAM, exhibiting an interface resistive switching due to the uniform
change of a Schottky or tunneling barrier on the whole cell area [76]. One of the fundamental features
making RRAM suitable for in-memory computing is the opportunity to modulate its resistance in an
analog way, thus enabling multilevel operation via the storage of at least 3 bit [77–81]. In addition to
multilevel operation, it also combines high scalability up to 10 nm in size [82] and the opportunity to
achieve 3D integration [83].

Figure 11c shows the schematic structure of a PCM device, which relies on a chalcogenide material,
such as Ge2Sb2Te5 (GST) [84], as the switching layer. Here, resistance variation arises from an atomic
configuration change within the active layer from the crystalline to the amorphous phase and vice-versa
via application of unipolar voltage pulses at TE [85–87]. As a voltage higher than the voltage, Vm,
needed to induce the melting process within the active layer is applied across the cell, local melting
takes place within the chalcogenide material, leading the device to HRS as a result of the pinning of
the Fermi level at the midgap. Otherwise, if the applied voltage is below Vm, a gradual crystallization
process is triggered via local Joule heating, leading PCM to LRS [88]. These physical processes can
be better visualized by the resistance-voltage characteristics in Figure 11d, where the set transition
displays a gradual behavior due to the gradual crystallization process induced by Joule heating while
the reset transition displays faster dynamics than the set transition. Compared to RRAM, where the
HRS/LRS ratio is about 10, PCM offers a higher resistance window, ranging from 100 to 1000, which
makes PCM very attractive for multilevel operation as reported in [89], where a 3 bits/cell PCM device
was demonstrated. Moreover, in addition to classic GST, other materials, such as GeSb [90], doped
In-Ge-Te [91], and Ge-rich GST [92], have been investigated, receiving strong interest since they offer
higher crystallization temperatures for enhanced retention performances.

Figure 11e shows the schematic structure of an STT-MRAM device based on an MIM stack
called magnetic tunnel junction (MTJ), including an ultrathin tunneling layer (TL), typically in MgO,
interposed between two ferromagnetic (FM) metal electrodes, typically in CoFeB, called the pinned
layer (PL) and free layer (FL), respectively [93–95]. Unlike RRAM and PCM enabling multilevel
operation, STT-MRAM allows only two states to be stored, with a very small resistance window of
the order of a factor 2 [94] because of the tunnel magneto-resistance (TMR) effect [96]. The two states
are encoded in the relative orientation between PL magnetic polarization, which is fixed, and FL
magnetic polarization, which is instead free to change via the spin-transfer torque physical mechanism
discovered by Slonczewski [97] and Berger [98] in 1996. As a positive voltage is applied at TE, a current
of electrons with the same spin-polarization of the fixed layer is transmitted through the tunneling layer,
causing the transition of the polarization orientation from anti-parallel (AP) to parallel (P), which leads
the device to LRS. In contrast, as a negative bias is applied, the reflection back of electrons entering
from the free layer with the opposite magnetization takes place, thus causing the transition from the P
to AP state, hence from LRS to HRS. Figure 11f shows the resistance response of the STT-MRAM device
as a function of the applied voltage, evidencing that the application of positive/negative voltage pulse
induces set/reset transition with very abrupt dynamics, which further supports the incompatibility of
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STT-MRAM with multilevel applications. However, STT-MRAM has shown high potential in scalability,
as reported in ref. [99], fast switching speed [100], and almost unlimited cycling endurance [101,102].

Figure 11g shows the MIM stack of FeRAM, where an insulating layer based on a ferroelectric (FE)
material, typically in doped HfO2 [103] or perovskite materials [104,105], is sandwiched between two
metal electrodes. Its operation principle relies on the polarization switching within the FE layer due to
the rotation of electrical dipoles under an external bias [106]. As shown by the polarization-voltage
characteristics in Figure 11h, a positive voltage above the coercive voltage, +Vc, at TE induces the
set transition, leading the device to exhibit a positive residual polarization, +Pr, whereas a voltage
more negative than −Vc leads the device to exhibit a negative residual polarization, −Pr. Importantly,
note that the FE switching process does not impact on the device resistance, which makes FeRAM
unusable as resistive memory.

4.2. Memristive Devices with Three-Terminal Structure

In addition to the two-terminal devices, memristive concepts also include the class of three-terminal
devices whose main examples are those depicted in Figure 12, namely (a) the ferroelectric field-effect
transistor (FeFET) [107], (b) the electro-chemical random access memory (ECRAM) [108], and (c)
the spin-orbit torque magnetic random access memory (SOT-MRAM) [109]. Other interesting
three-terminal concepts that have been recently investigated for neuromorphic computing applications
are the 2D semiconductor-based mem-transistors [110,111] and the domain-wall-based magnetic
memories [112,113].

Figure 12. Sketch of three fundamental examples of three-terminal memristive devices. (a) Schematic
structure of ferroelectric field-effect transistor (FeFET) device, where the ferroelectric switching
phenomenon allows the transistor threshold voltage to be modulated, thus gradually changing the
channel conductivity. (b) Schematic structure of electro-chemical random access memory (ECRAM)
device, where the channel conductivity is controlled by the migration of ion species, e.g., Li+ ions,
into an electrolyte material being induced by the voltage applied at the gate terminal. (c) Schematic
structure of spin-orbit torque magnetic random access memory (SOT-MRAM), where the current flow
in a heavy metal (HM) line causes a polarization switching in the MTJ-free layer, resulting in a device
conductance change. Reprinted with permission from [107,108]. Copyright 2017, IEEE. Copyright
2018, IEEE.

Figure 12a shows the structure of the FeFET consisting of an MOS transistor with an FE material,
such as doped-HfO2 [103], and perovskites [106], serving as the gate dielectric. Here, the application
of external pulses at the gate terminal induces a non-volatile polarization switching within the FE
dielectric, leading to a change of the transistor threshold, hence of the channel conductivity, which
can be probed simply by reading the current at the drain terminal. As a result, the FeFET concept
allows significant issues due to transient read currents and destructive read operation limiting FeRAM
operation to be overcome. This three-terminal device has recently been operated into memory
arrays with 28 nm CMOS technology [114] and exhibits a strong potential for the development of 3D
structures [115]. Also, it has been operated to replicate synapse [116] and neuron [117,118] functions,
which, combined with 3D integration opportunity, makes it a strong candidate for neuromorphic
computing applications.
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Figure 12b illustrates the device structure of the ECRAM consisting of an MOS transistor
where a solid-state electrolyte based on inorganic materials, such as lithium phosphorous oxynitride
(LiPON) [108,119], or organic materials, such as poly (3, 4-ethylenedioxythiophene):polystyrene
sulfonate (PEDOT:PSS) [120], is used as the gate dielectric. Its operation relies on the
intercalation/de-intercalation of ions in a channel layer to tune the device conductance. As reported
in [108], the intercalation of Li+ ions into the WO3 layer by application of a positive voltage at the gate
terminal leads the device to experience a conductance increase whereas the de-intercalation of Li+ ions
under negative bias leads the device to experience a conductance decrease. The linear conductance
change is achievable in ECRAM thanks to the decoupling of read/write paths, which makes this device
concept very attractive for synaptic applications, mainly for hardware implementation of synaptic
weights in ANNs, where analog and symmetric weight updates play a crucial role. Also, the device
investigated in [108] provides fast operation at the nanosecond timescale, thus opening the way toward
a significant acceleration of the training process in hardware ANNs.

Figure 12c shows the device structure of the SOT-MRAM, where a heavy metal (HM) line, typically
in Pt [121] or Ta [122], is located under an MTJ. This three-terminal device is programmed by the flow
of a horizontal current through the HM line, which induces a spin accumulation as a result of the
spin Hall or the Rashba effects [123,124], leading to the switching of magnetic polarization in the MTJ
FL. Unlike the program operation, the read operation can be performed by measuring the vertical
current flowing in MTJ as a result of the TMR effect, which means that the three-terminal structure of
SOT-MRAM offers the opportunity to decouple read/write current paths and consequently improve
the endurance performance compared with STT-MRAM. Regarding device applications, SOT-MRAM
was used to implement neuromorphic computing in ANNs, by exhibiting the synapse function [125],
the neuron function [126], and the associative memory operation [127].

5. Memristive Neuromorphic Networks

Thanks to their rich physics and nanoscale size, memristive concepts are believed to be promising
candidates to achieve the huge density and behavior of real synapses and neurons, thus enabling
brain-like cognitive capabilities in hardware neural networks. Based on this appealing approach, many
hardware or mixed hardware/simulation implementations of the neural networks currently dominating
the neuromorphic computing scenario, namely the DNNs and the SNNs, have been proposed.

5.1. DNNs with Memristive Synapses

DNNs encompass various ANN architectures, such as feedforward MLP and convolutional neural
network (CNN) [36], that have attracted wide interest in the neuromorphic computing scenario thanks
to the excellent performance achieved in machine learning tasks, such as image classification [128],
face verification [129], and speech recognition [130]. Because of the very high complexity of the
CNN architecture, which consists of a deep hierarchy of convolutional layers followed by some fully
connected layers, and processing strategy, which is based on the extraction of the most significant
features of submitted images via the application of large sets of filters, hardware implementation of
DNN tasks with memory devices has mostly been focused on feedforward MLP networks. In this type
of ANN, the training phase is based on a supervised learning algorithm called backpropagation [21–23]
and consists of three sub-procedures called forward propagation, backward propagation, and weight
update [36]. Note that although the backpropagation algorithm is chiefly considered lacking in
biological plausibility [131], recent works have questioned this aspect [132]. During training, upon any
input presentation from a training database containing images of objects, digits, or faces, the input signal
propagates in the forward direction from the input to output layer, passing through the multiplication by
synaptic weights of each layer and the summation at the input of each hidden/output neuron. Forward
propagation yields an output signal, which is compared with the target response of the network,
namely the label of the submitted image, thus leading to the calculation of the corresponding error
signal. At this point, the calculated error signal is propagated in the backward direction from the output
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to the input layer and is used to update all the synaptic weights, hence the name backpropagation.
Repeating this scheme for every image of the training database for a certain number of presentation
cycles or epochs, the optimization of synaptic weights is achieved, leading the network to specialize on
the training database. After, the training phase is followed by the test phase, namely the phase where
the classification ability of DNN is evaluated by submitting another database, called the test dataset,
only once, via forward propagation of the signal encoded in all the test examples [36].

The downside of the outstanding results achieved running DNNs in software on high-performance
digital computers, such as GPU and TPU, or very large servers is given by the excessive power
consumption and latency due to the von Neumann architecture. To overcome this issue, memristive
devices, in particular RRAM and PCM, have been intensively investigated to accelerate artificial
intelligence (AI) applications in hardware thanks to their ability to execute in-memory computing
with extremely high energy efficiency and speed by exploiting basic physical laws, such as the Ohm’s
law and Kirchhoff’s law [11]. However, hardware implementation of a real in-situ weight update for
DNN training has been challenged by critical non-idealities affecting the conductance response of the
majority of memristive devices, mainly RRAM and PCM, during set (potentiation) and reset (depression)
processes, such as the non-linearity, the asymmetry, and the stochasticity [34,133,134]. Motivated
by these significant limitations, a wide range of alternative materials and technologies have been
intensively investigated, leading to the recent emergence of novel concepts, such as ECRAM [108] and
the ionic floating gate [135], thanks to their highly linear, symmetric, and analog conductance behavior.

In the last 10 years, great advances in crossbar-based demonstrations of DNNs for pattern classification
have been achieved using RRAM and PCM devices [12,13,136–138]. In ref. [12], a medium-scale crossbar
array containing 165,000 PCM devices with a one-transistor-one-resistor (1T1R) structure was used to
demonstrate an image classification task by hardware implementation of the three-layer DNN schematically
shown in Figure 13a. This network is based on an input layer with 528 input neurons, a first hidden layer
with 250 neurons, a second hidden layer with 125 neurons, and an output layer with 10 neurons, and was
operated on a cropped version (22 × 24 pixels) of handwritten digit images from the MNIST database
for training and test operations. To implement positive and negative synaptic weights of the network,
Burr et al. proposed a differential configuration based on pairs of 1T1R PCM cells with conductance,
G+ and G-, respectively, as shown in Figure 13b. According to this structure, each weight can be potentiated
or depressed by increasing G+with fixed G- or increasing G- with fixed G+, respectively. Also, the network
was implemented with software neurons, providing the conversion of the sum of input currents into
an output voltage by application of the tanh non-linear function. After the training process, which was
carried out on 5000 MNIST images by using a complex pulse overlap scheme, the network’s classification
ability was evaluated, leading to a best performance of only 83% due to the asymmetry and non-linearity
of the PCM G-response (Figure 13c). To tackle this limitation, a novel artificial synapse combining the 1T1R
differential pair with a three-transistor/one-capacitor (3T1C) analog device was presented in ref. [138].
This led the PCM-based DNNs with improved hardware synapses to match the software performance
on both the MNIST and CIFAR databases [139]. Later, other DNN implementations in small-scale 1T1R
RRAM crossbar arrays were demonstrated, enabling MNIST classification with 92% test performance [137]
and gray-scale face classification on the Yale face database with 91.5% performance [136], thanks to
the RRAM conductance responses displaying high linearity and symmetry in both update directions.
Moreover, an alternative approach aiming at combining high performance with high energy efficiency
was proposed in ref. [140]. Here, after an off-line training resulting in the optimization of synaptic weights
in the software, the floating-point accuracy of synaptic weights was reduced only to five levels, which
were stored in a hardware 4 kbit HfO2 RRAM array using a novel multilevel programming scheme.
The following execution of the inference phase with the experimental conductances stored into the 4 kbit
RRAM array led to a maximum classification accuracy of 83%. A simulation-based study showed that the
implementation of synaptic weights using more conductance levels can move performance beyond 90%
with larger arrays.
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Figure 13. (a) Schematic representation of a three-layer DNN operated on the MNIST database for an
image classification task. (b) Weight implementation in DNN by differential pairs of 1T1R PCM cells
with conductances Gij

+ and Gij
−, which provide a positive current and a negative current, respectively.

(c) Experimental classification accuracy achieved by three-layer DNN during the inference phase.
Reprinted with permission from [12]. Copyright 2014, IEEE. Deep neural networks, DNNs; Modified
National Institute of Standards and Technology, MNIST; one-transistor-one-resistor, 1T1R.

5.2. SNNs with Memristive Synapses

Although DNNs have shown to be capable of excellent performance in fundamental cognitive
functions, exceeding the human ability in some cases [128,141], the interest in SNNs is rapidly increasing
thanks to their attempt to replicate structure and operation principles of the most efficient computing
machine found in nature, which is the biological brain. The brain can efficiently learn, recognize, and
infer in an unsupervised way thanks to the plasticity of biological synapses controlled by local rules,
such as STDP, which has recently inspired many hardware implementations of synaptic plasticity at
the device and network level exploiting the attractive physical properties of memristive devices.

One of the earliest STDP demonstrations at the memristive device level was performed by Jo and
coauthors in ref. [142] by using an Ag/Si-based CBRAM device as the synapse and a time-division
multiplexing approach based on synchronous time frames which was designed to achieve STDP
characteristics thanks to the conversion of the time delay into the amplitude of the pulse to be
applied across the synaptic device. After this precursor implementation, another scheme based on
voltage overlap at the terminals of memristive synapses was experimentally demonstrated in both
RRAM [143] and PCM [144]. Both works demonstrate potentiation and depression characteristics very
close to biological STDP, exploiting the analog modulation of device conductance achieved via the
superposition of voltage spikes with suitably tailored waveforms. Specifically, Kuzum et al. proposed
the voltage waveforms shown in Figure 14a as PRE and POST spikes for achieving potentiation in PCM
devices [144]. As the relative delay is positive, in this case Δt = 20 ms, the overlap of the PRE spike,
which consists of a sequence of high positive pulses with increasing amplitudes followed by another
sequence of small positive pulse with decreasing amplitudes, with the POST spike, which consists of a
single 8 ms long negative pulse, leads the total voltage across the PCM cell, Vpre − Vpost, to only cross
the minimum threshold for potentiation, vP, thus leading the synapse to undergo potentiation via a
set process within PCM. Changing the sign of Δt, depression was also demonstrated, thus allowing
the STDP characteristics shown in Figure 14b to be achieved, which exhibit a very nice agreement
with the Bi and Poo measurements [38]. Moreover, note that this scheme offers the opportunity to
finely tune the shape of STDP characteristics, by suitably designing the PRE spike waveform [144].
Taking inspiration from this approach based on overlapping spikes across the memristive device, more
recently, other significant STDP demonstrations were achieved in individual two-terminal memristive
devices, thus enabling unsupervised learning in small-scale memristive SNNs [145–149]. However, the
synapse implementation using individual two-terminal memristive devices might suffer from serious
issues, such as (i) the requirement to control the current during set transition in RRAM devices to avoid
an uncontrollable CF growth [64], which would reduce the synapse reliability during potentiation;
(ii) the sneak paths challenging the operation of crossbar arrays; and (iii) the high energy consumption.
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Figure 14. (a) PRE and POST spike waveforms applied at terminals of a PCM-based synaptic device to
change its weight via an overlap-based STDP scheme. The application of a positive time delay of 20 ms
leads to a conductance increase (potentiation) in the PCM synapse since the spike overlap leads the
effective voltage across the PCM to cross the potentiation threshold whereas the higher depression
threshold is not hit. (b) Measured weight change as a function of the spike timing achieved using a
PCM synapse against experimental data collected by Bi and Poo in biological synapses. Reprinted with
permission from [144]. Copyright 2012, American Chemical Society.

To overcome these drawbacks, a novel hybrid CMOS/memristive STDP synapse using the 1T1R
structure was proposed in refs. [150,151]. Figure 15a shows the schematic structure of the 1T1R device
presented in ref. [151], where a Ti/HfOx/TiN RRAM is serially connected to the drain of an MOS
transistor acting as selector and current limiter. As schematically shown in Figure 15b, the ability of
the 1T1R cell to operate as a synapse capable of STDP was validated in the hardware [152]. The 1T1R
synapse operation can be explained as follows. The application of a pulse designed as a PRE spike at the
gate terminal of the transistor combined with the low voltage bias applied at the TE of the RRAM device
activates a current flowing toward the BE. At this point, the current enters in an integrate-and-fire
circuit implementing POST where it is integrated, causing an increase of the POST internal potential,
Vint. As a sequence of PRE spikes leads the POST to cross its internal threshold, the POST emits both
a forward spike toward the next neuron layer and a suitably designed spike, including a positive
pulse followed by a negative pulse, being delivered at TE, thus creating the conditions for synaptic
weight update according to STDP [151]. As shown in Figure 15c, if the PRE spike anticipates the
POST spikes (Δt > 0), only the positive pulse of the POST spike with amplitude VTE+ (VTE+ > Vset)
overlaps with the PRE spike, thus inducing a set transition within the RRAM device, leading RRAM
to LRS, and, therefore, the synapse to be potentiated. Otherwise, if the PRE spike follows the POST
spike (Δt < 0), only the negative pulse with amplitude VTE− (|VTE−| > |Vreset|) overlaps with the PRE
spike, thus inducing a reset transition within the RRAM device, leading RRAM to HRS, and, therefore,
the synapse to be depressed (not shown). Thanks to this operation principle, the 1T1R synapse was
shown to capture STDP functionality implementing the 3D characteristics shown in Figure 15d, where
the relative change in conductance, η = log10(R0/R), is plotted as a function of the initial resistance state,
R0, and relative delay, Δt. They support potentiation/depression at positive/negative Δt, evidencing
that maximum potentiation is obtained for R0 =HRS, whereas maximum depression is obtained for
R0 = LRS. If the 1T1R synapse is initially in LRS/HRS, no potentiation/depression occurs because it
cannot overcome the boundary conductance values set by LRS and HRS [151–153]. Importantly, note
that the weight change in the 1T1R synapse can be induced only via spike overlap, hence only for
delays in the range −10 ms < Δt < 10 ms in this experiment [152].
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Figure 15. (a) Schematic structure of the 1T1R RRAM structure. (b) Schematic representation of the
1T1R structure as a synapse to achieve STDP in hardware via overlapping PRE and POST voltage
spikes applied at the gate terminal and RRAM top electrode, respectively. (c) Schematic sketch of PRE
and POST overlapping spikes leading to synapse potentiation via the activation of a set process in
the RRAM cell. (d) STDP characteristics experimentally demonstrated in the 1T1R RRAM synapse.
Adapted with permission from [151,152]. Copyright 2016, IEEE.

Although the STDP characteristics achieved in the 1T1R RRAM synapse [151,152] display a
squared shape due to binary operation of the RRAM cell instead of the exponentially decaying
behavior observed in biological experiments, the plasticity of the 1T1R synapse was exploited
in many SNN implementations enabling neuromorphic tasks, such as unsupervised learning of
space/spatiotemporal patterns [151,152,154,155], the extraction of auditory/visual patterns [156,157],
pattern classification [158–160], and associative memory [161–163], in both simulation and hardware.

Figure 16a shows the schematic representation of the RRAM-based SNN used in ref. [152] to
demonstrate unsupervised learning of visual patterns in hardware. This perceptron SNN consists
of 16 PREs connected to a single POST via individual synapses with the 1T1R RRAM structure of
Figure 15a. Pattern learning experiment is based on three sequential phases where only one 4 × 4
visual pattern among Pattern #1, Pattern #2, and Pattern #3 shown in Figure 16b is submitted to the
input layer, and was conducted using a stochastic approach according to which the probability to
submit the pattern image or a random noise image similar to the last 4 × 4 pattern in Figure 16b at
every epoch is 50%. Using this training approach, Figure 16c shows that the submission of three
patterns alternated with noise resulted in the on-line adaptation of SNN synapses to the presented
pattern in all three phases, evidencing a selective potentiation of synapses within the submitted pattern
due to the correlated spiking activity of corresponding PREs and the depression of synapses outside
the pattern, typically called background synapses, due to the uncorrelated nature of noise inducing
POST spike-PRE spike depression sequences for the background with a high probability [151,152].
Note that the frequency and amount of submitted noise has to be carefully designed to prevent learning
dynamics from becoming unstable [164]. To further support the unsupervised pattern learning ability
of SNN with 1T1R RRAM synapses, Figure 16d shows the raster plot of spikes generated by PREs
during the whole experiment, leading to the time evolution of synaptic conductance evidenced in
Figure 16e, where the pattern/background synaptic conductance converges to LRS/HRS at the end of
each training phase. Note that the stochastic approach used in this experiment also allowed for the
implementation of multiple pattern learning by a winner-take-all scheme [165] based on the use of
software inhibitory synapses between 2 POSTs, and unsupervised learning of gray-scale images [152].
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Figure 16. (a) Schematic sketch of a single-layer perceptron network where a 4 x 4 input layer is fully
connected to a single POST. (b) Sequence of three visual patterns (Pattern #1, Pattern #2, and Pattern #3)
submitted to the neural network during training process and an example of a random noise image, which
is alternatively applied to patterns according to a stochastic approach. (c) Conductance/weight color
plots measured at epochs 0, 300, 600, and 1000 evidencing the ability of the synaptic weights to adapt to
submitted patterns thanks to selective potentiation of pattern synapses and noise-induced depression of
background synapses. (d) Raster plot of PRE spikes applied to pattern and background input channels
during the learning experiment. (e) Time evolution of the measured synaptic conductance during three
phases of the unsupervised learning experiment showing convergence of pattern/background synapses
to LRS/HRS. Reprinted from [152].

The main drawbacks generally limiting the implementation of synaptic plasticity in overlap-based
synaptic concepts, such as the 1T1R synapse, are the pulse duration and energy efficiency. Overlap-based
implementations first require a pulse width of the order of time delays to allow for conductance change
within the device, which results in pulses with a long duration causing a high power consumption.
In addition to this, the need for long pulses to program overlap-based memristive devices also
causes too slow signal processing in large neuromorphic networks, which leads to low throughput
performance [166].

An alternative approach to achieve synaptic plasticity overcoming the limitations affecting
overlap-based memristive devices consists of the adoption of non-overlap memristive devices, such as
the second-order memristor [167,168]. Unlike first-order memristors, such as RRAM and PCM, where
device conductance can change only if overlapping voltage pulses are applied at device terminals,
resistive switching in second-order memristors can take place by sequential application of two spikes
with a certain Δt at device terminals as a result of short-term memory effects encoded in the time
evolution of second-order variables, e.g., the internal temperature. As shown in Figure 17a, if Δt is long,
two sequential spikes applied at terminals of a second-order memristor induce small independent
changes in temperature, which results in no conductance change. On the contrary, if Δt is short, the
superposition of the effects of applied spikes results in a large change in temperature thanks to a limited
thermal constant of about 500 ns, thus leading to a long-term conductance variation in the device as
a result of short-term memory effects. Importantly, short memory effects observed in second-order
memristors have recently attracted great interest because they can allow for the emulation in hardware
of a fundamental biological process playing a key role in the real synapse response as the Ca2+ ion
dynamics [169,170] and to finely replicate biological STDP and SRDP [168,171]. An interesting STDP
demonstration by a second-order memristor is reported in ref. [168]. Here, a Pt/Ta2O5−x/TaOy/Pd
RRAM device was operated as a non-overlap synapse to achieve STDP via sequential application of
PRE and POST voltages. As shown in Figure 17b, the PRE spike consists of a positive pulse with
amplitude of 1.6 V and duration of 20 ns followed after 1 μs by a longer positive pulse with amplitude
of 0.7 V and duration of 1 μs whereas the POST spike includes a positive pulse with amplitude of 1.1 V
and duration of 20 ns followed after 1 μs by a longer positive pulse with amplitude of 0.7 V and 1 μs
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width. Note that both the first pulse, called the programming element, and the second pulse, called the
heating element, within PRE and POST spikes cannot cause independently a conductance change in
the RRAM device. The application of the PRE/POST spike at TE/BE of the RRAM device results in an
effective voltage drop across the device, evidencing a PRE–POST spike sequence for positive Δt and
POST–PRE spike sequence for negative Δt, as shown in Figure 17c. In the case of the PRE–POST spike
sequence (Δt > 0), the heating effect of the PRE spike affects the POST spike, making the positive change
in conductance due to the negative programming pulse in the POST higher than the negative change in
conductance due to the positive programming pulse in the PRE, hence causing the non-overlap RRAM
synapse to undergo potentiation. On the other hand, in the case of the POST–PRE sequence (Δt < 0),
the opposite occurrence order of spikes results in an effective negative conductance change in the
Pt/Ta2O5−x/TaOy/Pd RRAM device, resulting in the depression of the non-overlap synapse. Figure 17d
shows the STDP characteristics experimentally measured in the Pt/Ta2O5−x/TaOy/Pd RRAM device for
variable Δt in the range –6 μs – 6 μs, which exhibit strong similarity with biological data and a good
agreement with simulation results achieved by a numerical model of the second-order memristor.

Figure 17. (a) Schematic representation of a non-overlap scheme enabling STDP in second-order
memristors. Short-term memory effects observed in second-order physical variables, e.g., internal
temperature, allow for the implementation of potentiation/depression for short/long delays. (b) PRE
and POST spike waveforms applied at top electrode (TE) and bottom electrode (BE) to implement
non-overlap STDP. (c) Effective voltage across a second-order memristor to induce potentiation (left) and
depression (right). (d) STDP characteristics measured in a second-order memristor against calculated
curves achieved by numerical modeling. Reprinted with permission from [168]. Copyright 2015,
American Chemical Society.

Similar to the second-order memristor device, other memristive concepts also allowed bio-realistic
synaptic plasticity to be demonstrated using non-overlap schemes. In ref. [172], an atomic switch
RRAM, whose stack includes a silver BE, an Ag2S-based solid electrolyte, and a metal TE separated
from the Ag2S layer by a nanogap, was proposed as an artificial synapse thanks to the short-term
memory effects controlling its physical processes. In fact, the application of voltage pulses at TE
induces the gradual creation of an Ag atomic bridge within the nanogap leading to a short-term
potentiation process after a few pulses, resulting in an incomplete atomic bridge, which is followed by
a long-term potentiation process achieved after many pulses resulting in the formation of a complete
atomic bridge. In addition to short-term plasticity due to the spontaneous relaxation process of the
atomic bridge, this non-overlap device also offers the opportunity to capture SRDP potentiation and
depression depending on whether the frequency of the applied pulses is high or low. Thanks to this
functionality, the sequential learning of visual patterns was demonstrated in a 7 × 7 array of Ag2S
inorganic synaptic devices.

Another memristive concept to implement non-overlap synapses in hardware was recently
presented in ref. [171]. Here, a hybrid device based on the serial configuration of a volatile RRAM with
a SiOxNy:Ag stack serving as the select device and a non-volatile RRAM serving as the resistive device,
also known as a one-selector-one-resistor (1S1R) structure, was designed to demonstrate non-overlap
synaptic plasticity for neuromorphic computing. Exploiting spontaneous relaxation of CF similar to
the one taking place in atomic switches, the introduction of a volatile RRAM or diffusive memristor
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in series to a non-volatile RRAM, where conductance change can only be induced by the electric
field, enabled 1S1R synapses capable of both SRDP and STDP depending on the rate or occurrence
timing of PRE and POST spikes applied in sequence at TE. Note that the strong potential of 1S1R
synapses for neuromorphic computing applications was also investigated in simulation in [173,174].
Moreover, diffusive memristors developed in ref. [171] were used as neurons to build in hardware a
fully memristive neural network, which was shown to achieve outstanding performance in a pattern
classification task by the implementation of unsupervised learning [175].

6. Discussion

While neuromorphic networks have recently demonstrated an excellent ability in fundamental
cognitive computing applications, such as image classification and speech recognition, their large-scale
hardware implementation is still a major challenge. Achieving such a goal primarily requires
nanoscale, energy-efficient, and fast devices capable of emulating faithfully high-density, ultra-low
power operation and low latency of biological synapses and neurons. Moreover, depending on the
architecture (DNN or SNN) and the application of neuromorphic networks, such devices should also
fulfill other significant requirements, such as high retention, high linearity in conductance response,
and long endurance [35]. In Table 1, the CMOS-based and memristive emerging memory devices
investigated for neuromorphic computing we discussed in Sections 3 and 4 are compared in terms of
performance, reliability, and suitability for DNN, with the distinction between training and inference
phases, and SNN applications; however, it is evidenced that no emerging memory device can currently
optimize all the metrics for any network architecture and application.

Table 1. Comparison of key features exhibited by CMOS mainstream memory devices and memristive
emerging memory devices under investigation to implement neuromorphic computing in hardware.
Adapted from [35].

Technology
CMOS Mainstream

Memories
Memristive Emerging Memories

NOR
Flash

NAND
Flash

RRAM PCM STT-MRAM FeRAM FeFET SOT-MRAM Li-ion

ON/OFF Ratio 104 104 10–102 102–104 1.5-2 102–103 5–50 1.5–2 40–103

Multilevel
operation 2 bit 4 bit 2 bit 2 bit 1 bit 1 bit 5 bit 1 bit 10 bit

Write voltage <10 V >10 V <3V <3V <1.5 V <3 V <5 V <1.5 V <1 V

Write time 1–10 μs 0.1–1 ms <10 ns ~50 ns <10 ns ~30 ns ~10 ns <10 ns <10 ns

Read time ~50 ns ~10 μs <10 ns <10 ns <10 ns <10 ns ~10 ns <10 ns <10 ns

Stand-by power Low Low Low Low Low Low Low Low Low

Write energy (J/bit) ~100 pJ ~10 fJ 0.1–1 pJ 10 pJ ~100 fJ ~100 fJ <1 fJ <100 fJ ~100 fJ

Linearity Low Low Low Low None None Low None High

Drift No No Weak Yes No No No No No

Integration density High Very High High High High Low High High Low

Retention Long Long Medium Long Medium Long Long Medium -

Endurance 105 104 105–108 106–109 1015 1010 >105 >1015 >105

Suitability for
DNN training No No No No No No Moderate No Yes

Suitability for
DNN inference Yes Yes Moderate Yes No No Yes No Yes

Suitability
for SNN

applications
Yes No Yes Yes Moderate Yes Yes Moderate Moderate

To efficiently execute DNN online training in hardware, high speed and low energy consumption
are two essential features of synaptic devices to maximize the network throughput, namely the rate of
trained patterns, and enable DNNs in embedded systems, respectively. In addition to these features,
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high accuracy in weight update operation imposes the use of devices exhibiting a conductance response
with a high degree of linearity. This functionality makes almost all the emerging devices unsuitable as
synaptic devices for online training. The only exception is represented by novel Li-ion devices, which
appear to be very promising, with a simulated performance of around 98% [119], even though the
necessary technology maturity and high-density integration have not been reached yet. Alternatively,
more complex structures, including multiple pair of memristive devices, such as PCM and RRAM,
could mitigate the need for high linearity, but at the expense of a lower integration density [176].

Differently from DNN online training consisting of forward propagation, backpropagation, and
weight update operations, DNN inference only relies on forward propagation, which means that the
high linearity needed to accurately update the weights is not an essential feature of synaptic devices
for this task. Specifically, hardware suitable for optimizing the inference process should primarily
exhibit low latency to accelerate the classification of each test pattern and low-power consumption to
enable DNN inference at the edge. In addition to these features, high retention of analogue states is
also essential to prevent charge fluctuations in CMOS devices [177], stochastic noise in RRAM [178],
and resistance drift in PCM [179] from degrading the weights programmed in one shot after the off-line
training procedure. These requirements can be fulfilled not only by Li-ion devices, as in the case of
DNN training, but also by CMOS floating gate memory [55], RRAM [137], and PCM [148] devices
thanks to their ability to finely tune the conductance with analog precision to encode the stored weights.

On the other hand, hardware implementation of brain-inspired SNNs for sensors or embedded
systems primarily requires high energy efficiency to enable sensory information processing for long
times even in limited-energy environments. The high endurance of synaptic and neuron devices is also
strongly required in that SNN operation relies on a learning approach based on continuous synaptic
updates and continuous reset operations of integrate-and-fire neurons upon fire events. In addition
to these features, a high resistance window could be useful for accurate continual learning although
multilevel weight storage could be not strictly needed, as shown by significant applications using
binary stochastic memory devices, such as STT-MRAM. Therefore, both NOR Flash memory [57],
despite higher operating voltages, and all the memristive emerging devices show a strong potential for
hardware implementation of SNNs emulating the efficiency and 3D architecture of the biological brain.

Although some limitations currently hinder the large-scale industrialization of memory-centric
neuromorphic technology, the rich physics of memory devices can also offer additional biologically
inspired functionalities and more. For instance, besides synaptic implementation, integrate-and-fire
neuron functionality has been recently demonstrated in various types of memristive devices,
including RRAM [180], volatile RRAM [175], Mott memristor [181], PCM [182], STT-MRAM [183,184],
SOT-MRAM [126], and paramagnetic MTJs [185], thus opening the way for hardware implementation
of high-density fully memristive neural networks with a high area and energy efficiency. Also, thanks
to the short-term memory effects observed in some materials, a more realistic implementation of
biological synaptic behavior taking into account the impact of spatiotemporal patterns has been
achieved [171–173]. Moving from the standpoint of the device to that of the system, in-memory
computing with memristive devices is opening the way to the exploration of new learning algorithms
exhibiting strong similarity with human experience, such as reinforcement learning [186], which has
already been shown to enable complex tasks [187].

Finally, memristive devices are receiving increasing interest for the development of other
computing concepts by neuromorphic networks with high computational power, such as the Hopfield
recurrent neural network [188]. Although high acceleration performance has been achieved for the
solution of hard constraint-satisfaction problems (CSPs), such as the Sudoku puzzle, via CMOS-based
circuits [189], FPGA [190], and quantum computing circuits [191], the use of memristive devices in
crossbar-based neural networks can further speed up computation by the introduction of a key resource
as the noise [192] without the requirement of additional sources [193]. Moreover, very recent studies
have also evidenced the strong potential of memristive devices for the execution of complex algebraic
tasks, including the solution of linear systems and differential equations, such as the Schrödinger
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and Fourier equations, in crossbar arrays in only one computational step [16], thus overcoming the
latency of iterative approaches [15]. Therefore, these achievements suggest CMOS/memristive devices
as enablers of novel high-efficiency computing paradigms capable of revolutionizing many fields of
our society.

7. Conclusions

This work provides an overview of the most promising devices for neuromorphic computing
covering both CMOS and memristive device concepts. Physical MVM in memristive/CMOS crossbar
arrays implementing DNNs and SNNs has enabled both fundamental cognitive applications, such as
image and speech recognition, and the solution of algebraic and constraint-satisfaction problems
in hardware. These milestones can thus pave the way to highly powerful and energy-efficient
neuromorphic hardware based on CMOS/memristive technologies, making AI increasingly pervasive
in future society.
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Abstract: Memristive devices are attracting a great attention for memory, logic, neural networks, and
sensing applications due to their simple structure, high density integration, low-power consumption,
and fast operation. In particular, multi-terminal structures controlled by active gates, able to process
and manipulate information in parallel, would certainly provide novel concepts for neuromorphic
systems. In this way, transistor-based synaptic devices may be designed, where the synaptic
weight in the postsynaptic membrane is encoded in a source-drain channel and modified by
presynaptic terminals (gates). In this work, we show the potential of reversible field-induced
metal-insulator transition (MIT) in strongly correlated metallic oxides for the design of robust and
flexible multi-terminal memristive transistor-like devices. We have studied different structures
patterned on YBa2Cu3O7−δ films, which are able to display gate modulable non-volatile volume MIT,
driven by field-induced oxygen diffusion within the system. The key advantage of these materials is
the possibility to homogeneously tune the oxygen diffusion not only in a confined filament or interface,
as observed in widely explored binary and complex oxides, but also in the whole material volume.
Another important advantage of correlated oxides with respect to devices based on conducting
filaments is the significant reduction of cycle-to-cycle and device-to-device variations. In this work,
we show several device configurations in which the lateral conduction between a drain-source channel
(synaptic weight) is effectively controlled by active gate-tunable volume resistance changes, thus
providing the basis for the design of robust and flexible transistor-based artificial synapses.

Keywords: strongly correlated oxides; resistive switching; neuromorphic computing;
transistor-like devices

1. Introduction

Digital computers can process a large amount of data with high precision and speed. However,
compared to the brain, the computer still cannot approach a comparable performance considering
cognitive functions such as perception, recognition, and memory. Neuromorphic computing, operating
with a parallel architecture connecting low-power computing elements (neurons) with multiple
adaptive memory elements (synapses), appears as a very attractive alternative to von-Neuman based
algorithms in future cognitive computers [1,2]. The advantages of using analogue with very large-scale
integration include: Inherent parallelism, as well as reducing the chip area and power consumption in
comparison with digital implementations [3]. Design of computational systems mimicking the way
that brain works, with intrinsically massive parallel information processing, is completely unfeasible
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by using the existing hardware which is based on conventional digital logic. Although stable learning
has been achieved with digital logic for low-precision applications using binary weights [4,5], the
development of novel functional materials, and individual device components able to resemble the
properties of neurons and synapses, are mandatory to bring a revolutionary technological leap toward
the implementation of a fully neuromorphic computer.

Resistive-switching devices, modeled as memristors, have become a leading candidate to mimic
basic functionalities of biological components in a neural network, while providing clear advantages
in energy and scalability [3,6]. The resistive switching effect consists of a non-volatile reversible switch
between different resistance states, induced by an electric field [7]. Strongly correlated metal oxides
showing metal–Mott insulating transitions (MIT) appear as particularly interesting materials for future
neuromorphic device architectures, because they show large resistance variations, induced by small
carrier concentration modulations, driven by an electric field, allotted to obtain multilevel analogue
states [8–10]. The ability to continuously tune the electrical resistance, as well as to induce both volatile
and non-volatile transitions, put them in a unique position to mimic neurons and synapses on a device
level [11,12].

In particular, to achieve useful synaptic plasticity, a multistate behavior should be changed in an
analog continuous fashion with long retention time so that the device resistance continuously depends
on the electrical history. Spike time dependent plasticity (STDP) has been successfully demonstrated
in different memristive devices based on two-terminal (2T) metal-insulator-metal passive circuit
elements [13,14]. However, in biological systems, signal transmission and synapse learning are both
generally regarded to occur concurrently in synapse-connected neuron pairs. Current 2T artificial
synaptic devices operate by separating the signal transmission and self-learning processes in time. In
this context, three-terminal (3T) synaptic devices, being able to realize both functions simultaneously,
offer a promising solution for efficient synapse simulation [11,15,16]. Another reason why research on
multiterminal devices is relevant is the possibility of having several gates which can obtain signals
from different sources simultaneously, and they can therefore experience spatiotemporal effects, which
2T devices cannot [15]. Lately, new multiterminal devices that are able to mimic important aspects
of biological sensing functions have been developed. In this sense, through the utilization of a
simple organic electrochemical transistor based device with multiple gates, a sensing system has been
demonstrated that is analogous to the orientation selectivity from the thalamus (the center part of the
brain) to the visual cortex, which governs the vision process in the brain [17]. In a second example,
a series of split-gate molybdenum sulfide transistors were implemented to mimic the coincidence
nerve network in the owl’s brain [18]. Given the huge number of neurons and synaptic connections
in the human brain, multi-terminal memristors are also needed to perform complex functions as
heterosynaptic plasticity [19–22].

We have recently demonstrated stable volume field-induced resistive switching in structures
based on strongly correlated metallic perovskite oxides (La1−xSrxMnO3 (LSMO) and YBa2Cu3O7-δ

(YBCO)), modulated through oxygen diffusion [23,24]. Optimally doped LSMO and YBCO materials
are metallic in its initial state and they evolve into the insulating state by decreasing the oxygen
content [25,26]. Multiple resistance states, needed for synaptic applications, can be achieved by tuning
the oxygen doping with the applied voltage. In order to elucidate this behavior, Figure 1 displays
different curves obtained by measuring the R(T) evolution of a switched contact in a YBCO film, after
applying different voltage pulses. A clear MIT transition from the optimally doped metallic state to an
underdoped insulating state is observed.
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Figure 1. Resistance versus temperature obtained for a YBCO film after applying a series of voltage
pulses to a silver contact of 100 μm.

The key advantage of these systems is that the resistive switching is based on the MIT, which being
an intrinsic property of the material, causes a homogeneous change of resistance in a gate modulable
volume, allowing the design of flexible transistor-like devices (memristors) [23]. It is worth noting that
the volume resistance modulation, observed in metallic perovskites, offers enhanced robustness, in
terms of cycle-to-cycle and device-to-device variations, when compared with that induced in strongly
correlated oxides that are insulating in the pristine state, where the switching phenomena is strongly
localized at the contact interface or in confined filaments [7,27].

Here, we report on the study of the oxygen diffusion in YBCO based multi-terminal memristor
devices in which the oxygen redistribution, and thus the conductance of a drain-source channel, may
be tuned by using various gates. A sketch of the oxygen diffusion mechanism occurring below the
gate, emulating a synaptic process, is shown in Figure 2.

Figure 2. Schematic representation of a transistor-like device emulating a biological synapse. Blue
and red in the bottom pictures depict optimally doped and under-doped YBCO, respectively.
According to the oxygen doping, the schemes represent (a) high, (b) intermediate, and (c) low
source-drain conductance.

The conductance between a source-drain channel (post-synaptic membrane) is controlled through
modulatory gate terminals (pre-synaptic inputs). By the application of a gate voltage, oxygen vacancies
are redistributed within the YBCO channel, locally changing its doping level, thereby their resistance
(conductance). Synaptic plasticity characteristics may be obtained with intermediate synaptic weight
states achieved by tuning the amount of oxygen vacancies created. Multiple pre-synaptic input
terminals have been emulated by using multiple intermediate gates between the drain-source channel.
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2. Materials and Methods

The geometry of YBCO transistor-like devices consist of a drain-source channel with different gate
terminals to modulate the channel conductance. Optimally doped, epitaxial YBa2Cu3O7−δ (YBCO) thin
films, with thickness of 100 nm, were grown by pulsed laser deposition (PLD) on (001)-LaAlO3 single
crystal substrates. The parameters used in this process were previously optimized for our purposes.
The substrate was heated up to T = 800–810 ◦C, with an O2 partial pressure of 0.3 mbar during the
deposition and a fixed target-substrate distance of 52.5 mm. A high fluence laser (∼2 J/cm2) working at
a frequency of 5 Hz was used. During the cooling ramp, we increase the P(O2) in the chamber in order
to obtain well oxygenated samples. The thickness of the film is mainly determined by the number of
pulses. For these samples, 2600 pulses were applied obtaining a thickness of 100 nm. Topography
shows a high-quality flat surface in all cases, the root-mean-square (rms) value of surface roughness
is found to be below 1 nm. The structural features of YBCO films have been studied by theta-2theta
X-ray diffraction (Siemens Diffractometer D5000, Siemens AG, Munich, Germany). The epitaxial
nature of the films was evidenced by the detection of only (001) peaks along with the corresponding
(001) peaks originating from the (001)-LAO substrates in the theta-2theta X-ray diffraction spectra.
Photolithography and wet etching were used to pattern channels with different widths, w = 5–100 μm.
After the patterning, multiple 50 nm thick, 100 × 100 μm2 silver contacts, spaced different distances
apart, d = 100–300 μm, were deposited by sputtering and lift-off.

Electrical measurements were performed at room temperature with a Keithley 2450 source-meter at
ambient pressure and temperature. Voltage pulses of 4 s, were applied between two top gates (top–top
configuration), located at different positions of the channel, while measuring the current–voltage (I–V),
and associated resistance–voltage (R–V) characteristics, in a two-point configuration. The variation
of the drain-source conductance through the channel, obtained after applying the gate pulses, was
evaluated by measuring the resistance at intermediate segments of the channel, N, (RN, N = 1, 2, 3, 4, 5)
in a standard four-point method, using two external electrodes to inject the current and intermediate
contacts to measure the voltage. In this way, we avoid the contribution of the contact resistance and
thus we obtain the bulk resistance change. Figure 3a shows a schematic representation of the proposed
device and Figure 3b an optical microscopy image of several devices with different channel widths
(w = 100, 50, 20, 10, and 5 μm).

Figure 3. (a) Schematic representation of a transistor-like device with a source-drain channel and
multiple tunable gates. The channel conductance is evaluated by measuring intermediate resistances
(RN); (b) optical microscope image of several devices patterned with different channel widths from 5 to
100 μm.

3. Results and Discussion

3.1. Switching Characteristics between Two Gates

Figure 4 shows repeated I–V scans (Figure 4a), and the associated R–V curves (Figure 4b), obtained
for a device with a channel of w = 50 μm, by applying positive and negative voltage pulses within two
gate electrodes placed d = 200 μm apart. A complementary switching behavior was reproduced, since
the two gates, see opposite voltage polarities in opposite directions [28,29]. Thus, for a given polarity,
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one electrode undergoes a set process (incorporating oxygen and thus switching from a high resistance
state (HRS) to a low resistance state (LRS)) while in the other one a reset transition is produced (losing
oxygen and switching from an LRS to an HRS). The set (Vset) and reset (Vreset) voltages, associated
to each gate electrode, are depicted in Figure 4b. In general, for both polarities, Vset occurs at lower
voltage values than Vreset, due to a fast motion of oxygen in the low conductivity regions [23]. In a
device with symmetrical gates, the resistance values obtained at the HRS and LRS for a given voltage
pulse are the same thus providing a symmetrical loop, as the one shown in Figure 4b.

 
Figure 4. Typical (a) I–V and (b) R–V, obtained by using a two-point measurement, for a YBCO
transistor-like device with a channel width of w = 50 μm, obtained by applying several voltage pulses
through two identical gates separated at a distance of d = 200 μm, in a top–top electrode configuration.

The evolution of Vset and Vreset have been investigated by evaluating different I–V curves obtained
for devices with different channel widths applying the minimum voltage pulse able to reversibly
switch the gates at different distances (see Figure 5a). The values of Vset and Vreset increase linearly
with the electrode distance, according to a constant dependence with the set and reset electric field (Eset

and Ereset, respectively) which are of the order of, Eset ~ (1–1.5) × 104 V/m, Ereset ~ (1.5–2) × 104 V/m.
Bias voltages of V ~ 2 V are needed to switch gates placed 10 μm apart and lower values, favorable for
practical applications, are expected by reducing the device dimensions. Figure 5b shows the HRS and
LRS resistances obtained for devices of different widths. The HRS have been read at V ~ 0 V, whereas
for the LRS we considered the minimum value of the loop resistance. Both values are indicated in
Figure 4b by dashed arrows.

It is clearly observed that the resistance values for the HRS and LRS increase with decreasing the
channel width, with a behavior that is essentially linear, which is completely consistent with a volume
resistive switching process [23]. Deviations of the linear dependence at low channel widths may be
attributed to fabrication factors or border effects. In this way, by changing the gate area or unbalancing
the applied positive/negative voltage pulse, one can modulate the weight of resistance variation in
each gate. Figure 6a shows a typical example of a device with different gate areas in which the HRS
and LRS of each gate exhibit different resistance changes, thus producing an asymmetrical R–V curve.
Figure 6b shows an example of an asymmetrical R–V curve obtained in a device with equal gates but
applying asymmetrical voltage pulses. In this case, the maximum applied negative voltage is lower
than Vreset and thus the contact that should switch at the HRS at this polarity does not change. Both
situations will be better described in the following.
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Figure 5. (a) Set (closed symbols) and reset (open symbols) voltages as a function of the gate distance
obtained for devices of different widths; (b) evolution of the HRS and LRS resistance values with the
device width. Dashed lines correspond to a linear dependence of R with the channel width, solid lines
are guides to the eye. All values have been obtained by using a two-point configuration.

 
Figure 6. Typical I–V characteristics, obtained by using a two-point measurement, for YBCO
transistor-like devices by applying (a) symmetrical voltage pulses using two gates with different
switching performance; (b) asymmetrical voltages pulses to switch just one gate.

Next, we will demonstrate that the reversible gate resistance modulation, which occurs through a
field-induced MIT driven by oxygen diffusion, is not just occurring below the gates, but also effectively
modifies the volume resistance of the drain-source channel.

3.2. Conductance Modulation in a Drain-Source Channel

The conductance modulation of the device channels has been evaluated by measuring the
relative variation of volume resistance at different segments of it (in a four-point configuration), after
applying several positive and negative voltage pulses between two intermediate gates, in a two-point
configuration. Figure 7a shows a schematic representation of the active gates (in yellow) and voltage
probe positions considered for a device with a track of w = 10 μm and gate distance d = 100 μm.
Figure 7b shows the R–V curves measured through the yellow gates by applying a maximum voltage of
12 V. A complementary switch of the two contact gates is clearly evidenced with a rather symmetrical
R–V hysteresis curve. We plot in Figure 7c the percentage resistance change, measured at different
segments of the channel, ΔRN, calculated by using Equation (1).

ΔRN = 100 × [RN(t) − RN(i)]/RN(i) (1)
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were RN(i) and RN(t) are the resistance values measured at the N segment at the initial state and after
several voltage pulses, respectively, using a four-point configuration. A clear correlation between
ΔRN and the applied pulses is observed in Figure 7c. Large resistance variations (ΔRN ~ 15–35%)
are obtained at the segments close to the gates (N = 2, 3, 4), whereas the resistance does not change
on those segments located further away from the gates (N =1, 5). It is worth pointing out that the
variation of resistance at different regions of the channel compensate each other, providing a nearly
constant resistance when measured through the whole channel (RTOTAL). This is in agreement with a
redistribution of oxygen vacancies within the channel, with no external oxygen exchange, as modeled
in [23].

Figure 7. (a) Schematic representation of the oxygen redistribution in a YBCO device with a channel of
w = 10 μm, by applying positive (top) and negative (bottom) voltage pulses between the two yellow
gates separated at d = 100 μm. Red and blue colors represent HRS and LRS, respectively; (b) R–V
characteristics, obtained by applying voltage pulses between the gates in two-point configuration;
(c) percentage resistance change, measured at different segments of the device, using a four-point
configuration, after a series of gate voltage pulses. The initial resistance of all segments was RN ~
1500–2000 μm.

The major effect of field induced oxygen diffusion is a drift of oxygen vacancies going from the
negatively charged gate to the positive one. Thus, an accumulation of oxygen vacancies confined below
the right gate occurs for positive voltage pulses (top Figure 7a), that is detected with a switching of this
gate to the HRS in the two-point configuration measurement (Figure 7b). The complementary effect is
obtained for negative voltage pulses with an accumulation of oxygen vacancies below the left gate
(bottom Figure 7a) thus inducing a switching of this gate to the HRS. We have depicted this localized
gate effect (from now on referred as gate switching) by coloring blue and red regions (not at scale) below
the gates for LRS and HRS, respectively. The gate switching cycles produce a non-trivial reversible
oxygen redistribution within the channel, that have been evaluated by measuring the resistance at
different segments in a four-point configuration. The measured resistance at a given segment of
the channel is directly correlated with its local oxygen concentration, being higher by increasing the
amount of oxygen vacancies [25,30]. Thus, assuming a homogenous switch and considering that the
resistivity of the HRS is much higher than that of the LRS, the amount of switched channel volume can
be directly correlated from the resistance variation as schematically represented in Figure 7a. When
one of the gate electrodes is switched to the LRS, there is a region nearby the gate that loses oxygen,
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i.e., segment N = 2 for the left gate (top Figure 7a) and segments N = 3 and N = 4 for the right (bottom
Figure 7a). Although the device presents a rather symmetrical R–V curve (Figure 7b), the slightly
different gate performance produces an asymmetry in the oxygen redistribution. That is, the right gate
(with a higher HRS value) is able to inject oxygen vacancies in a wider lateral distance than the left one.
It is worth noting that the oxygen vacancy accumulation/decrease produces a large effect in the oxygen
redistribution within the channel that induces resistance changes not only in the segments localized
between the gates but also in the concomitant ones, envisaging the large oxygen mobility occurring in
these devices.

Conductivity modulation along the track can be tuned by further unbalancing the weight of the
resistance switch in each gate. Figure 8 shows conductance measurements performed in a device with
w = 100 μm and a gate distance d = 500 μm, considering the configuration schematically shown in
Figure 8a. In this case the R–V hysteresis curves measured are clearly asymmetric, with very different
high-resistance states achieved in the two gates (Figure 8b). The resistance variation at different
segments of the channel for this device is shown in Figure 8c. In this case, the oxygen distribution is
highly inhomogeneous, with a larger resistance change (~200%) concentrated close to the right gate
(segment N = 4), and a complementary smoother resistance variation, that occupies a large region of
the channel, nearby the left gate (segments N = 1, 2, and 3). As in the previous case, the gate that
undergoes a transition to a more insulating state (left gate in this case) is the one that is able to inject
oxygen vacancies to further lateral distances.

Figure 8. (a) Schematic representation of the oxygen redistribution in a YBCO device with a channel of
w = 100 μm, by applying positive (top) and negative (bottom) voltage pulses between the two yellow
gates separated at d = 500 μm. Red and blue colors represent HRS and LRS, respectively; (b) R–V
characteristics, obtained by applying voltage pulses between the gates in two-point configuration;
(c) percentage resistance change, measured at different segments of the device, using a four-point
configuration, after a series of gate voltage pulses. The initial resistance of all segments was RN ~
150–200 μm.

The maximum applied voltage in the I–V curves may also be used as a tuning knob to control
the oxygen redistribution (and thus the conductance) through the channel. We show in Figure 9 an
extreme case, for a device with w = 30 μm and d = 500 μm, in which we just switch one of the two
gates, maintaining the other at the LRS. To do so, we apply a negative voltage pulse higher than Vreset

to switch the left contact to the HRS (Figure 9b). This contact is then switched back by to the LRS by
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applying a positive voltage higher than Vset but lower than that needed to switch the right contact to
the HRS (Vreset).

Figure 9. (a) Schematic representation of the oxygen redistribution in a YBCO device with a channel of
w = 30 μm, by applying positive (top) and negative (bottom) voltage pulses between the two yellow
gates separated at d = 500 μm. Red and blue colors represent HRS and LRS, respectively; (b) R–V
characteristics, obtained by applying voltage pulses between the gates in two-point configuration.
Maximum applied positive voltage pulse has been kept below Vreset in order to maintain the right
contact at the LRS; (c) percentage resistance change, measured at different segments of the device, using
a four-point configuration, after a series of gate voltage pulses. The initial resistance of all segments
was RN ~ 400–500 μm.

The resistance variation through the channel is shown in Figure 9c and the associated oxygen
redistribution is schematically depicted in Figure 9a. In this case, we observe that by switching the
left gate to the LRS, oxygen vacancies are injected in the segments nearby (N = 1, 2). Subsequent
voltage cycles produce a reversible motion of oxygen vacancies form N = 1, 2 to N = 3. Note that the
conductance is not affected in the sections near the right gate, N = 4, 5, which is kept at the LRS.

Resistance experiments directly confirm that the conductance between a drain-source channel can
be effectively modulated by using different active gates and that the oxygen redistribution in it strongly
depends on the switching performance of each gate, and the applied voltage pulse. These results
provide a proof-of-concept of resistance modulation in multi-gate memristor structures based on the
strongly correlated materials showing the MIT. However, the top–top application of voltage strongly
limits not only the device performance but also the complete characterization of synaptic functions.
For practical applications, top–bottom configurations should be used to increase the on-off ratio, to
allow reliable programming intermediate states and to design the required devices characteristics
(linear conductance change, symmetric set and reset, retention, etc.). The proposed devices provide a
wide design space based on material engineering (oxide doping, oxygen scavenging layers, etc.) and
geometrical engineering (oxide thickness, separation between gates, number of gates, etc.) which may
help to achieve the desired device characteristics for synapses and neurons.

4. Conclusions

Our work shows the potential of multi-terminal memristive structures, based on strongly correlated
YBCO metallic oxide, as a promising approach for the design of neuromorphic devices, exploiting the
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tuneability of field-induced oxygen doping. Results demonstrate that multiple gates can be used to
change the conductance (local oxygen doping) between a source-drain channel, thus emulating the
synaptic weight. The movement and redistribution of oxygen vacancies within the channel, and thus
its conductance, may be controlled by the device geometry, gate dimensions and position, and bias
voltage. A large design flexibility can be obtained by changing the switching performance of different
gates, thus offering the possibility to locally adjust the conductance response as required to implement
neuromorphic functionalities.
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Abstract: Synaptic devices with bipolar analog resistive switching behavior are the building blocks
for memristor-based neuromorphic computing. In this work, a fully complementary metal-oxide
semiconductor (CMOS)-compatible, forming-free, and non-filamentary memristive device
(Pd/Al2O3/TaOx/Ta) with bipolar analog switching behavior is reported as an artificial synapse
for neuromorphic computing. Synaptic functions, including long-term potentiation/depression,
paired-pulse facilitation (PPF), and spike-timing-dependent plasticity (STDP), are implemented based
on this device; the switching energy is around 50 pJ per spike. Furthermore, for applications in
artificial neural networks (ANN), determined target conductance states with little deviation (<1%)
can be obtained with random initial states. However, the device shows non-linear conductance
change characteristics, and a nearly linear conductance change behavior is obtained by optimizing
the training scheme. Based on these results, the device is a promising emulator for biology synapses,
which could be of great benefit to memristor-based neuromorphic computing.

Keywords: memristor; artificial synapse; neuromorphic computing

1. Introduction

Over the last decades, rapid advances in digital computing system based on complementary
metal-oxide semiconductor (CMOS) integrated circuit technology have substantially changed society.
However, due to the limitations of classical von-Neumann computers (the von-Neumann bottleneck)
in speed, power efficiency, and parallel processing, there are urgent demands for novel computing
structures and systems [1]. The human brain is likely to be the most efficient computing system,
because the operating frequency of our brain is in the range of 1–10 Hz, and it consumes only around
1–10 W of power, which means the energy consumption per synaptic event is only approximately
1–100 fJ [2]. Therefore, the novel computing system—neuromorphic computing, inspired by the
brain—has attracted scientists’ attention in recent years for its advantages, such as being massively
parallel and fault-tolerant. The weight modulation ability of synapses is known as synaptic plasticity,
which is believed to be the primary reason for learning and memory in the brain. In order to implement
neuromorphic computing, such as artificial neural networks (ANN), an electronic synaptic device
is necessary.
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Recently, the implementation of artificial synapses with memristors has been proposed. Memristors
are two compact terminal devices that change their resistances when subjected to electrical stimulation [3–6].
Several memristors, ranging from resistive random access memory (RRAM) [7–11], to phase change
memory (PCM) [12], to ferroelectric RAM [13–15], have been proposed for neuromorphic computing
applications as artificial synapses. Several memristors based on new materials [16,17] have been
proposed for neuromorphic computing. However, when memristors are employed in neuromorphic
computing systems (e.g., artificial neuron networks), binary memristors with only two resistance
states (i.e., high resistance state (HRS) and low resistance state (LRS)) have been proven to be effective
only in some specific applications [18,19]. In some neuromorphic computing systems designed for
complex applications, such as image recognition, the use of only two states as synaptic weights presents
disadvantages in performances [20,21]—for example, low accuracy or area-efficiency. On the other
hand, in biology neuromorphic systems, synaptic weights are continuously tunable in depression
and potentiation; thus, memristors with gradually changing conductance in bipolarity could be more
like the biology synapse, and can therefore emulate brain functions better than binary memristors.
As artificial synapses, memristors with tunable conductance have attracted growing attention for being
promising candidates for weight storage in neuromorphic computing systems, owing to the advantages
in accuracy and area-efficiency. Several methods have been discussed to implement analog-resistive
switching behavior, including using multiple memristors to construct one synapse [22], utilizing a
unipolar analog behavior in some metal oxide-based filamentary memristors [11,23,24], optimizing
programming schemes [25,26], adding heat enhancement layers [27], or using non-filamentary
memristors [28–30]. Compared with the filamentary memristors, non-filamentary memristors can
implement multilevel states more easily, but usually have poorer retention [31–33] However, realizing
bipolar analog conductance change in both SET (transition from HRS to LRS) and RESET (transition
from LRS to HRS) processes with satisfying retention time remains an open challenge.

In this paper, a fully CMOS-compatible, forming-free, and non-filamentary memristor device
based on Ta/TaOx/Al2O3/Pd, with analog SET and RESET processes, is proposed for neuromorphic
computing as an artificial synapse. The direct current (DC) sweeping results demonstrate that
the device has bipolar analog resistance switching behavior, and the multilevel conductance
states can be obtained with satisfying retention time. Synaptic plasticity, including long-term
potentiation/depression (LTP/LTD), paired-pulse facilitation (PPF), and spiking-time-dependent
plasticity (STDP), can be mimicked by our devices. For the applications in ANN, determined target
conductance states and the linearity of conductance change are carefully examined.

2. Materials and Methods

The metal–insulator (double functional layer)–metal structure and the cross-sectional transmission
electron microscopy (TEM) image of the Ta/TaOx/Al2O3/Pd device are shown in Figure 1a,b,
respectively. The fabrication process of the device is shown in Figure 1c. First, the Si substrate
was cleaned with acetone, ethanol, and de-ionized water. 30 nm-thick Pd and 15 nm-thick Ta as the
bottom electrode were deposited on the Si substrate by magnetron sputtering. A TaOx layer was
formed by rapid thermal annealing (RTA) carried out for 300 s in plasma O2 by plasma-enhanced
chemical vapor deposition (PECVD) at 275 ◦C. Direct oxygen plasma with a power of 100 W was
applied on the Ta film. After RTA, 7 nm-thick Al2O3 was deposited by atom layer deposition (ALD).
Finally, 40 nm Pd as the top electrode was deposited by magnetron sputtering after the lithography
process. For our device, the highest temperature of the process is only 275 ◦C (below 400 ◦C), and all
the materials (Pd, Ta, Al) were CMOS compatible. As a result, our device was fully CMOS compatible.
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Figure 1. (a) The schematic, (b) a cross sectional transmission electron microscopy (TEM) image of
the Ta/TaOx/Al2O3/Pd device, (c) the fabrication processes of the Ta/TaOx/Al2O3/Pd device, and
(d) typical I–V curves of the Ta/TaOx/Al2O3/Pd showing bipolar analog switching (SET voltage = 6 V,
RESET voltage = −6 V).

The DC electrical characteristics of the device were measured by an Agilent B1500A semiconductor
parameter analyzer (Santa Rosa, CA, US). During the electrical measurement, the voltage was applied
to the top Pd electrode, while the Ta/Pd bottom electrode was tied to ground.

3. Results and Discussions

The resistive switching characteristics of the device were evaluated under DC programming
conditions. The typical current–voltage (I–V) characteristic of the Ta/TaOx/Al2O3/Pd device under
DC sweep mode from −6 V to 6 V is shown in Figure 1d. The device is forming-free, and no abrupt
change of current in both SET and RESET switching processes is observed, indicating a bipolar analog
resistive switching feature. Within 6 V and −6 V stop voltages on SET and RESET processes, a ~103

ratio between HRS and LRS can be obtained (read voltage is 1 V), which is larger than our recent work
of similar TaOx/Al2O3 stack device (~102 ratio, Ti/AlOx/TaOx/Pt) [34].

To further demonstrate the analog characteristics, the DC sweep with different working voltages
and without compliance currents (SET voltage: 2.5 V, 3 V to 5.5 V; and RESET voltage: −2 V, −2.5
to −6 V) and the DC sweep with different compliance currents during SET process are shown in
Figure 2. The initial resistance of the device is ~1011 Ω (read at 1 V). When the positive sweeping
voltage is applied to the device, the resistance of the device is retained until the voltage reaches
2.5 V, then the resistance gradually decreases. During the consecutive SET process, as shown in an
inset of Figure 2b, the responding currents (read at 1 V) can gradually increase with the increment
of the stop voltages, indicating that different conductance states can be obtained in the SET process.
Various conductance states can also be obtained by setting different compliance currents during the
SET process. With compliance currents from 500 nA to 2.2 mA, the corresponding I–V curves and the
60 different resulting conductance states are shown in Figure 2c and the inset, respectively. The RESET
process can be implemented by applying a negative DC sweeping voltage to the device. As shown
in Figure 2a, eight consecutive negative DC sweeps with various stop voltages are applied to the
device. As the voltages decrease from −2 to −6 V with a −0.5 V step, the device is switched to a
higher resistance state after each step. Moreover, the multilevel resistance states can be preserved
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within satisfying retention time, as shown in Figure 2d. The multilevel resistance states are obtained by
consecutive positive voltage sweepings (2 to 6 V with a 0.25 V step). After each sweeping, the device
resistance states are monitored by a series of 1 V reading pulses at 0.5 s intervals. As it is shown in
Figure 2d, though with slightly decay, nine different states can be clearly distinguished after 1000 s.

 
Figure 2. Bipolar analog-resistive switching characteristics of the Ta/TaOx/Al2O3/Pd device under
the DC sweeping mode: (a) consecutive DC sweeping with different stop voltages from −2 to
−6 V in the RESET process; (b) consecutive DC sweeping with different stop voltages from 2.5
to 5.5 V in the SET process; (c) consecutive DC sweeping with different compliance currents from
500 nA to 2.2 mA in the SET process (inset: 60 different conductance states obtained by modulating
different compliance currents); and (d) retention characteristics of nine different resistance states of the
Ta/TaOx/Al2O3/Pd device.

The characteristics of the bipolar analog-resistive switching in pulse mode are investigated via
positive (0 to 4.5 V) and negative (0 to −5 V) triangle pulses, as shown in Figure 3a,b, respectively.
The curves of current and voltage versus time for the SET and RESET processes are shown in the insets
of Figure 3a,b, respectively. These results further confirm the analog resistive switching characteristics
under both positive and negative pulses. The results reveal that in both the SET and RESET processes,
gradual tuning of the multilevel conductance states can be obtained. Bipolar analog resistive switching
characteristics are fully analogous to the biology synapse; thus, the devices have the potential to mimic
synaptic functions in neuromorphic computing system.
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Figure 3. (a) Gradual SET under positive triangle pulses (from 0 to 4.5 V) (inset: the I-t and V-t curves
of (a), representing the gradual increasing of current with time); (b) gradual RESET under negative
triangle pulses (from 0 to −5 V) (inset: the I-t and V-t curves of (b), representing the gradual decreasing
of current with time).

Long-term potentiation/depression (LTP/LTD) is when the synaptic weight can be changed
gradually under spiking signals and the changed weight can be maintained from several minutes
to years [35]. To evaluate the long-term potentiation/depression of a device, 50 consecutive pulses
with different pulse amplitudes and widths are applied to the device, as shown in Figure 4. All the
conductance of the device is monitored by 1 V reading voltage. The change of conductance can be
modulated by different amplitudes and widths. As shown in Figure 4a,b, the amplitude here was
fixed at 5.5 V during potentiation and −5.5 V during depression, with different widths (1 μs, 10 μs,
and 100 μs). In addition, Figure 4c,d show the potentiation and depression with a fixed 100 μs width
and different amplitudes (potentiation: from 4.5 to 5.5 V; depression: from −4.5 to −5.5 V). With a
higher amplitude or larger width, the change of the conductance is increased in both potentiation and
depression. For our device, when the pulse amplitude (write voltage) is ~±4.5 V and the pulse width
is 1 μs, the write current is around ~10−5 A; thus, the switching energy is 50 pJ per spike. To conclude,
the device conductance is continuously increased by positive pulses, which can mimic long-term
potentiation. In addition, the device conductance is continuously decreased by negative pulses, which
can mimic long-term depression.
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Figure 4. The measured long-term potentiation and long-term depression synaptic function with
identical pulses. A total of 50 pulses with 5.5 V pulse amplitude and different pulse widths for
(a) potentiation (1 μs, 10 μs, and 100 μs); (b) depression (1 μs, 10 μs, and 100 μs); 50 pulses with 100 μs
pulse width and a different pulse amplitude (c) for potentiation (4.5 V, 5 V, and 5.5 V) and (d) for
depression (−4.5 V, −5 V, and −5.5 V).

Moreover, the device can emulate other synaptic features, such as paired-pulse facilitation (PPF)
and spiking-time-dependent plasticity (STDP), as shown in Figure 5. Most research on artificial
synapses focuses on the long-term plasticity, because long-term changes provide a physiological
substrate for learning and memory. However, short-term plasticity is also significant, since it supports
a variety of computations, such as synaptic filtering, adaptation, and enhancement of transients,
decorrelation, burst detection, and sound localization [36]. PPF is an important kind of short-term
plasticity. In biological synapses, PPF functions can be described as follows: the second post-synaptic
response current becomes larger than the first under two successive spike stimuli, with the interval
time of spikes less than recovery time [8]. The experimental demonstration of PPF functions in our
device is shown in Figure 5a. When a pair of pulses is applied to the device, the conductance gradually
increases during the positive pulses, and the maximum responding current of the second pulse is
clearly larger than the first, and a decay phenomenon can be observed during the pulse interval, which
is similar to the PPF in the biological system.
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Figure 5. (a) The short-term plasticity: paired-pulse facilitation (PPF) synaptic function of the
Ta/TaOx/Al2O3/Pd device; (b) illustration of spike signals and spiking-time-dependent plasticity
(STDP) function of the device. The individual pre-synaptic or post-synaptic spike signal is designed
as a pair of pulses (−2.5 V, 10 μs pulse and 2.5 V triangle pulse) applied to the top and bottom
electrode, respectively.

In biological systems, synaptic weight can be modulated by the temporal relationship of the
activity between the pre- and post-synaptic neurons, which is called spiking-time-dependent plasticity
(STDP). According to STDP, the change of synaptic weight (ΔW) is a function of the time difference
between pre- and post-synaptic activity (Δt). To emulate the STDP function in the device, a pair of
pulses acting as the spiking signals with different time intervals is applied to the device. Individual
pre-synaptic or post-synaptic spiking signals are designed as a pair of pulses (−2.5 V, 10 μs pulse and
a 2.5 V triangle pulse) applied to the top and bottom electrode, respectively, as shown in Figure 5b.
It should be noted that an individual positive signal or an individual negative signal is not strong
enough to modulate the resistance of the device. As shown in Figure 5b, the effective signal to the
device is the pre-synaptic signal minus the post-synaptic signal. When the pre-spike appears before the
post-spike (Δt > 0), the conductance (synaptic weight) of the device is enhanced (potentiation), and the
change in weight decreases with the increase of Δt. On the contrary, when the pre-spike appears after
the post-spike, the conductance of the device depresses and the change of the weight decreases with
the increase of Δt. The measurement result shows that the Ta/TaOx/Al2O3/Pd device can emulate the
STDP learning rules successfully, which has potential to be used in the spiking neuron network (SNN).
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To fully explore bipolar conductance tuning characteristics and demonstrate the potential
application of the device in some specific neuromorphic computing systems like ANN, determined
target conductance states with different initial states have been tested. As shown in Figure 6a, the initial
state is 2.41 nS, after two tuning processes: 5.7 V positive pulses with 10 μs width for rough-tuning, and
−5 V negative pulses with 10 μs width for fine-tuning. The target conductance state of 5.5 nS can be
obtained with little deviation (<1%). The same target conductance state can also be obtained when the
initial conductance state is 13.5 nS, by −5.7 V negative pulses with 10 μs width for rough-tuning and
5 V positive pulses with 10 μs width for fine-tuning, as shown in Figure 6b. As shown in Figure 6c,d,
another target conductance state (10 nS), can be obtained with little deviation. It is worth noting that
the target conductance states are determined randomly. Based on this result, it can be proven that
precision is achieved across a wide dynamic range. Writing error is a standard plot when characterizing
resistive switching write noise. The write error of the device has been tested, as shown in Figure 7.
A DC sweeping with 100 μA compliance current is used to get nearly the same initial states. Only one
programming pulse (4.5 V/10 μs for potentiation and −4.5 V/10 μs for depression) is applied after
each DC sweeping. The conductance states (total 10 cycles) are obtained by 1 V reading voltage.
As shown in Figure 7b,d the standard deviation is 0.079 nS after one potentiation pulse, and 0.11 nS
after one depression pulse, respectively. The dynamic range is around 20 nS under 4.5 V/10 μs training
pulses. As a result, the write error is only around 0.6% of the total dynamic range.

 

Figure 6. The bipolar conductance tuning to randomly determined target states (5.5 nS ± 1% and 10 nS
± 1%) under pulses with different initial states: (a) the initial state is 2.41 nS, and the target conductance
state is obtained by 5.7 V positive pulses for rough-tuning and −5 V negative pulses for fine-tuning;
(b) the initial state is 13.5 nS, and the target conductance state is obtained by −5.7 V negative pulses for
rough-tuning and 5 V positive pulses for fine-tuning; (c) the initial state is 2.2 nS, and the target state
is obtained only by rough-tuning; and (d) the initial state is 23 nS, and the target state is obtained by
rough-tuning and fine-tuning methods.
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Figure 7. (a) The conductance states after one 5 V/10 μs P pulse from nearly the same initial states.
(b) Conductance distribution from (a), where the standard deviation is 0.079 nS. (c) The conductance
states after one −5 V/10 μs P pulse from nearly the same initial states. (d) Conductance distribution
from (c), where the standard deviation is 0.11 nS.

The recognition accuracy of the ANN highly depended on the linearity of the synaptic weight
change—i.e., the recognition accuracy is low under high non-linearity [37,38]. However, as shown in
Figure 4, the device is highly non-linear. To improve the linearity of the conductance change of the
device, a non-identical pulse scheme is adopted, as shown in Figure 8. The training pulses are fixed at
width but with increasing amplitudes. The amplitude range of the potentiation process is from 2 to
6 V with 0.1 V steps, and the range of the depression process is from −2 to −6 V with −0.1 V steps.
The weight updates are recorded in four training cycles, as shown in Figure 8. The non-linearity factor
(NL) has been calculated by NL = average ( G−Glinear

Glinear
) [39], so the non-linearity factors of the normal

training method are 1.09, 1.427, and 1.332 respectively, based on the data in Figure 4a. In addition, the
non-linearity factors of the incremental training method are −0.62 for long-term potentiation and 0.13
for long-term depression, based on the data in Figure 8a.
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Figure 8. The measured long-term potentiation/depression synaptic function with non-identical
training pulses: (a) the training pulses with increasing amplitudes (potentiation: from 2 to 6 V, 100 μs;
depression: from −2 to −6 V, 100 μs); and (b) the weight updates, recorded in four training cycles.

The investigation of the switching mechanism of the device is shown in Figure 9. The conductance
of the filamentary memristors mostly depends on the size and morphology of the conductive filament
with several nanometers diameter in the device. Thus, the conductance of filamentary memristor
does not significantly change with the change of the electrode areas. The I–V curves of the 1st SET
process and conductance distribution of 25 different devices at LRS with various electrode areas (from
10 to 100 μm2) are shown in Figure 9a,b, respectively. In Figure 9a, the current level after SET shows a
positively proportional relationship with the electrode area. In statistical analysis of 25 devices at LRS
in Figure 9b, such a trend can be more clearly seen in the plotting of the conductance with the electrode
area. As shown in inset of Figure 9b, the linear fit result confirms that the device conductance scales
linearly with the device area. As a result, the switching occurs across the entire electrode area, but not
just within a local filament, suggesting a non-filamentary switching mechanism of Ta/TaOx/Al2O3/Pd
device. The temperature dependencies of the device conductance at LRS and HRS are studied in
Figure 9c,d, respectively. With the increase of temperature, the conductance at both LRS and HRS
increases as well, indicating the semiconductor conduction behavior of the device. To explain the
switching mechanism of the device, we proposed a simple model [40], shown in Figure 9e. The device
can be divided into three parts: a barrier layer (Al2O3), a switching area (interface of Al2O3 and
TaOx), and a conductive oxidation layer (TaOx). The switching area is located at the interface of Al2O3

and TaOx. During SET operation, a positive voltage is applied on the top electrode, the oxygen ions
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in the barrier layer are pulled away from the interface layer, and the materials in the interface are
reduced. During RESET operation, a negative voltage is applied on the top electrode, the oxygen ions
in the barrier layer are pushed into the interface layer, and the materials in the interface are oxidized.
The push-and-pull of the oxygen ions in the surface can change the resistance of the device.

To implement neuromorphic computing, the device should be integrated into an array. To operate
an array, a half-bias scheme is a common method. However, our device has a low ON/OFF ratio (<100)
between the selected voltage and the half-selected voltage, which may cause a sneak path issue during
write operation. As a result, it is hard for our device to implement a dense crossbar array without
the help of a transistor or selector device. A one transistor one resistor (1T1R) or one selector one
resistor (1S1R) structure should be adopted to overcome the sneak path issue during writing operation.
The device structure can still be optimized to improve the linearity of the conductance changes and
decrease the working voltage. In addition, the detailed non-filamentary switching mechanism in this
device needs to be further explored.

 

Figure 9. (a) The I–V curves of the first SET process with different electrode area sizes (from 10 μm
× 10 μm to 100 μm × 100 μm). (b) Conductance distribution at LRS with different sized areas (the
conductance states are obtained by 1 V reading voltage in 25 different devices) (inset: the linear fit
result confirms that the device conductance scales linearly with device areas). (c) Conductance of LRS
with different temperatures from 20 to 100 ◦C; (d) Conductance of HRS with different temperatures
from 20 to 100 ◦C. (e) The schematic of the switching mechanism of the device; the switching area is
the interface of TaOx-Al2O3, and the push-and-pull of the oxygen ions in the surface can change the
resistance of the interface layer.
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4. Conclusions

In this paper, a Ta/TaOx/Al2O3/Pd memristor is fabricated, to be used as artificial synapse.
The device shows bipolar analog-resistive switching behavior. Moreover, multilevel conductance
states with a satisfying retention time (>1000 s) can be obtained by modulating voltages or compliance
currents under DC sweeping mode. Based on the bipolar analog switching, synaptic functions,
including long-term potentiation/depression, paired-pulse facilitation, and spiking time dependent
plasticity are successfully mimicked. For ANN applications, the determined target conductance, the
linearity, and the writing errors are carefully examined. The results suggest that as an artificial synapse,
the Ta/TaOx/Al2O3/Pd memristor is a promising candidate for neuromorphic computing.
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Abstract: Memristor devices are generally suitable for incorporation in neuromorphic systems as
synapses because they can be integrated into crossbar array circuits with high area efficiency. In
the case of a two-dimensional (2D) crossbar array, however, the size of the array is proportional to
the neural network’s depth and the number of its input and output nodes. This means that a 2D
crossbar array is not suitable for a deep neural network. On the other hand, synapses that use a
memristor with a 3D structure are suitable for implementing a neuromorphic chip for a multi-layered
neural network. In this study, we propose a new optimization method for machine learning weight
changes that considers the structural characteristics of a 3D vertical resistive random-access memory
(VRRAM) structure for the first time. The newly proposed synapse operating principle of the 3D
VRRAM structure can simplify the complexity of a neuron circuit. This study investigates the
operating principle of 3D VRRAM synapses with comb-shaped word lines and demonstrates that
the proposed 3D VRRAM structure will be a promising solution for a high-density neural network
hardware system.

Keywords: RRAM; vertical RRAM; neuromorphics; neural network hardware; reinforcement learning

1. Introduction

In recent years, neuromorphic computing has emerged as a complementary system to the von
Neumann architecture. Much of the research on neural network hardware implementation discusses
how to connect large numbers of neurons and synapses. As a consequence, various memory devices
such as static random-access memory, resistive random-access memory (RRAM), floating-gate (FG)
memory, and phase change memory have been implemented as the synapse model in neural network
hardware systems [1–4].

The most popular device-level component chosen to implement the synapses is the “memory
resistor”, or memristor, because the resistance value of a memristor is a function of its historical activity.
Moreover, energy efficiency is a key challenge of neuromorphic computing and RRAM is attractive for
large-scale system demonstration due to its relatively lower energy consumption as compared with
other synaptic devices [5]. The most common use of the memristor two-dimensional (2D)-crossbar is
as a multiple memristor synapse since a single memristor cannot represent the positive and negative
weights of synapses. However, 2D crossbar array synapses are not suitable for the implementation of
deep neural networks (DNN) because the chip area depends on both the depth of the neural network
and the number of input and output nodes.

The three-dimensional (3D) vertical resistance random-access memory (VRRAM) promises to
minimize the area of a resistive memory. It can be categorized into two types based on its word
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line structures [6]: 3D VRRAM with a word line (WL) planar structure uses metal planes as WL
electrodes, while a 3D VRRAM with a WL even/odd structure has comb-shaped WLs separated by
etching. This structure is more promising than a WL plane structure for the VRRAM architecture
because it has the same performance as a double cell bit [7,8]. Therefore, if a 3D VRRAM is used
for synapses instead of a 2D crossbar array, as shown in Figure 1, the chip area of a DNN system
can be effectively reduced. Recently, several works have evaluated the synaptic RRAM using 3D
VRRAM. A high-density 3D synaptic architecture based on Ta/TaOx/TiO2/Ti RRAM is proposed as
a neuromorphic computation hardware and the analog synaptic plasticity is simulated using the
physical and compact models [9]. The potentiality of the VRRAM concept for various neuromorphic
applications is investigated with one synapse being emulated by one VRRAM pillar [10]. Yet many of
these studies have focused on experimental demonstration at a single RRAM cell level, and the idea
that neuromorphic applications are possible is only presented as a concept. There are some previous
studies related to 3D VRRAM with a WL planar structure. For example, the four-layer 3D RRAM
integrated with FinFET (Fin Field-Effect Transistor) was developed for brain-inspired computing and
in-memory computing [11], and 3D vertical array of RRAM was proposed for storing and computing
large-scale weight matrices in the neural network [12]. However, a 3D VRRAM with comb-shaped
WLs is more promising for a more efficient synaptic RRAM architecture because it has a double cell
bit. Although research on 3D VRRAM with comb-shaped WLs has been published, it has focused on
RRAM device variation, and explored the concept of many devices connected to one pillar operating
as one synapse to overcome the variation [13]. Implementing a single synapse with multiple devices
reduces the benefits of using 3D VRRAM. Moreover, reported previously related studies did not
evaluate the circuit level properties of 3D VRRAM with comb-shaped WLs. Theoretical investigations
are insufficient for exploring the relationship between synapse weight change and memory device
resistance in 3D VRRAM.

Figure 1. (a) The input pattern for letter ‘S’. (b) A neural network consisting of 49 input neurons and
26 output neurons (red lines = increased weights in the learning process) (c) Two-dimensional (2D)
crossbar array synapses for implementing the neural network as shown in (b). (d) 3D vertical resistive
random-access memory (VRRAM) synapses with the same performance as the synapses in (c).

In this study, we propose a new optimization method for machine learning weight changes that
considers the structural characteristics of 3D VRRAM. This study investigates the operating principle
of 3D VRRAM synapses with comb-shaped WLs and demonstrates that this structure is a promising
synaptic model for neural network systems. The remainder of this paper is organized as follows:
Section 2 describes a new 3D VRRAM crossbar array synapse incorporating a synaptic memristor
model and learning operations for a guide training algorithm [14,15]. In Section 3, the accuracy of a
neural network with 3D VRRAM synapses is measured by classifying 7 × 7 alphabet letter images
using HSPICE circuit simulation. The conclusions are presented in Section 4.
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2. Materials and Methods

2.1. A Neural Network Learning Method Using a 3D VRRAM Synapse

A neural network system design with 3D VRRAM synapses is shown in Figure 1. We evaluated
the accuracy of the proposed 3D VRRAM synapses circuit by classifying 7 × 7 images representing
alphabet letters as shown in Figure 2. Figure 1b shows a neural network consisting of 49 input
neurons and 26 output neurons designed to classify input letter images into 26 classes as shown in
Figure 1a. For the letter ‘S’, the nodes or neurons that generate the output spike are represented in
gray, and increased weights in the learning process are indicated by red lines. The most common
memristor application in neuromorphic systems is as the synapses in a 2D crossbar array as shown
in Figure 1c. The weight of one synapse is represented by the conductance difference between two
memristors because a single memristor cannot have both positive and negative weight values for a
synapse [2]. For example, neuron 1 compares the total current of “positive out 1” in the red line with
that of the “negative out 1” as shown in Figure 1c. If the “positive out 1” current is greater than the
“negative out 1” current, neuron 1 spikes, which means the output of neuron 1 is a ‘1’. In contrast,
when the “negative out 1” current is greater than the “positive out 1” current, the output of neuron
1 is ‘0’. The learning architecture for this implementation is constructed as a 49 × 52 2D memristor
crossbar array.

 
Figure 2. 7 × 7 original alphabet images.

If a 3D VRRAM is used for synapses, however, the chip area efficiency can be increased. Figure 1d
shows a 3D VRRAM synapses structure with the same performance as Figure 1c. The ‘red’ and ‘blue’
word lines in Figure 1d represent “positive” and “negative” outputs, respectively. Therefore, only the
area for 26 vertical pillars is needed to implement 26 classes in contrast to the need for 52 column lines
in the 2D crossbar array. Moreover, the pillar structure of 3D VRRAM makes it simpler to build neuron
circuits because there is no need for a circuit to a compare positive and negative current.

A “guide training” algorithm is used to verify the accuracy and the performance of the 3D VRRAM
synapses in HSPICE simulation [14,15]. This is a modified reinforcement learning algorithm and it is
optimized for hardware implementation because it does not include a backpropagation algorithm.
The algorithm was applied to image classification using the 2D crossbar memristor synaptic circuit,
and its performance has been verified by showing a high learning success rate. The initial synaptic
weights were randomized before the new training event was started. The single data set of 26 images
(Figure 2), one for each alphabet letter, was defined as one epoch. After training, testing was performed
to classify 20 test image sets consisting of the original or inverted pixel images, as shown in Figure 3.
For example, the noise 0% test set consisted of 520 original images, and the noise 4% test set consisted
of 520 images with two randomly selected pixels inverted.
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Figure 3. 7 × 7 inverted pixel “A” image with noise from 4% to 20%.

2.2. 3D VRRAM Synapse Operation Mechanism

For this paper, we actually simulated the 3D VRRAM structure as shown in Figure 1d, but a
description of the behavior of the real structure would be very complex. Therefore, we will explain the
operation of 3D VRRAM with a simple structure as shown in Figure 4.

Figure 4a,b shows a simple two-pixel image to illustrate the weight change in a 3D VRRAM
synapse configured as shown in Figure 4c. To categorize an image, a spike should be generated at the
corresponding output or neuron of the input image. This means that a spike will occur at the Out1
neuron when Figure 4a is an input, and it will appear at the Out2 neuron if Figure 4b is an input.
To allow a 3D VRRAM to operate as synapse circuit, its ‘Out1’ current must be larger than its ‘Out2’
current when Figure 4a is the input image. Conversely, if Figure 4b is an input image, Out2 current
should be larger than Out1 current.

The 3D VRRAM in Figure 4c has a total of 8 memristors between its pillars (Out1 and Out2)
and odd word lines (positive word line; P1, P2) or even word lines (negative word line; N1, N2).
The number of word lines indicates the number of pixels. The memristor is a two-terminal device,
so the “P1-Out1” memristor existing between the P1 word line and the Out1 pillar or vertical bit line is
controlled by the bias of P1 and Out1. Reduced resistance in the memristors connected to the positive
word line results in an increase in pillar current, while increased resistance of the memristor connected
to the negative word line reduces the pillar current.

There are various memristor models for circuit simulation [16–20]. We used the generalized
memristor model for this work [16,17], and it was coded in Verilog-A for the HSPICE circuit simulator.
Figure 4d is the nonlinear I-V characteristic and Figure 4e is the linearly modulated potentiation
behavior of an experimentally measured Ta2O5 memristor device [21]. It shows that the experiment
and simulation results using our model are qualitatively consistent.

Figure 4. A two-pixel image where (a) pixel 1 is black and Out1 is “1”; (b) pixel 2 is black and Out2
is “1”; (c) 3D VRRAM synapse for a two-pixel image; (d) nonlinear I-V characteristic; and (e) linearly
modulated potentiation behaviors of the Ta2O5 memristor device [21].

The memristor current is modeled by the hyperbolic sine function, as shown in Equation (1) [15,16].
Conductance is proportional to state variable x(t), which has a value between 0 and 1.

I(t) =
{

a1x(t)sinh(bV(t)), V(t) ≥ 0
a2x(t)sinh(bV(t)), V(t) < 0

}
(1)
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The change in the state variable over time is based on two different functions, g(V(t)) and f (x(t)).

dx
dt

= g(V(t)) f (x(t)) (2)

g(V(t)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ap
(
eV(t) − eVp

)
, V(t) > Vp

−An
(
e−V(t) − eVn

)
, V(t) < −Vn

0, −Vn ≤ V(t) ≤ Vp

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (3)

f (x(t)) =

⎧⎪⎪⎨⎪⎪⎩
e−αp(x−xp)wp

(
x, xp
)
, x ≥ xp

1, x < xp

⎫⎪⎪⎬⎪⎪⎭ (4)

f (x(t)) =
{

eαn(x+xn−1)wn(x, xn), x ≤ 1− xn

1, x > 1− xn

}
(5)

wp
(
x, xp
)
=

xp − x
1− xp

+ 1 (6)

wn(x, xn) =
x

1− xn
(7)

where g(V(t)) is a function of a programming threshold on the memristor model and f (x(t)) was used
to limit the motion of the state variable (xp and xn). The function wp and wn are developed to limit
the range of the state variable between 0 and 1. The model parameters used in this study are listed in
Table 1.

Table 1. Parameters used in the synapse guide model.

Symbol Value Symbol Value

a1 1 × 10−5 An 1 × 107

a2 1 × 10−5 xp 0.2

b 2.1 xn 0.25

Vp 1 (V) αp 7

Vn 1 (V) αn 6

Ap 3 × 106 xo 0.3

The memristor’s conductance changes from a high-resistance state (HRS) to a low-resistance state
(LRS) when subjected to a voltage higher than the set voltage (= 1.2 V). A lower voltage than the reset
voltage (= −1.2 V) changes the conductance of the memristor from an LRS to an HRS. The weight of a
synapse or the resistance of each memristor could be changed during the network’s learning process
but should be unchanged during the test process. To find the proper training voltage (Vtraining)
and test voltage (Vtest), the change of resistance is simulated by applying various voltages to each
memristor device. The voltage was applied from 0.5 V to 1.5 V or −0.5 V to −1.5 V at 0.25 V intervals.
The unit pulse width is 10 ns and the rising and falling edge time is 0.5 ns. The line resistance of a
vertical pillar is 3 Ω/cell with 20 nm class technology [8]. As shown in Figure 5a, the resistance changes
only at 1.25 V and 1.5 V for five applied voltages because applying voltages greater than the set voltage
(Vset) reduces resistance. Similarly, Figure 5b shows that the resistance changes at a voltage lower than
the reset voltage (Vreset) but does not change at a higher voltage. Therefore, we set Vtraining = 1.5 V
or −1.5 V, and Vtest = 1 V or −1 V considering the voltage drop in the crossbar array.
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Figure 5. Resistance change of a memristor according to the (a) positive voltage and (b) negative
voltage applied.

First, the sequence of 3D VRRAM synapse learning is as follows. Figure 6 shows the circuit
diagram of Figure 4c. If the input image is Figure 4a or Figure 4b, a spike is generated at the Out1 or
Out2 neuron, respectively. In this study, we adopted the “winner-take-all” method to determine the
neurons in which spikes occur. Thus, a spike in Out1 means that the current flowing to this neuron is
the largest among the output neuron currents. Referring to Figure 6, the current of the Out1 neuron
should be larger than the current of Out2 when the input image is Figure 4a. In the guide training
method, only black pixel data is used for neural network learning, changing the weight of the synapse,
or the resistance of the memristor connected to the black pixel [15].

Figure 6. Simplified circuit diagrams of the 3D vertical synapse during the training procedure showing
the voltages applied to (a) P1-Out1; (b) N1-Out1; (c) P2-Out2; and (d) N2-Out2 memristors when
training Figure 4a,b.

Memristors connected to word lines P1 and P2 act as positive memristors that increase the weight
of synapses. Increasing synaptic weights means that the resistance of the memristors is reduced,
so Vtraining = 1.5 V is applied to P1 and P2 to increase the current flowing to Out1. In contrast,
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the memristor connected to N1 and N2 is a negative memristor that reduces the current in the Out1
neuron, and Vtraining = −1.5 V is applied to increase the resistance of the memristor. The number of
positive and negative word line pairs matches the number of pixels. For example, P1 and N1 determine
the characteristics of pixel 1 of the input image.

An example of training for Figure 4a is illustrated in Figure 6a,b. The goal of the synapse learning is
to lower the weight of synapses connected to black pixels, increasing the Out1 line current. In principle,
all memristor devices connected to the Out1 line (P1-Out1, P2-Out1, N1-Out1, N2-Out1), which is
shown in black lines in Figure 6, affect the generation of a spike when Figure 4a is the input image.
However, since only pixel 1 is black in Figure 4a, the resistance of P1-Out1 and N1-Out1 is changed to
increase the current of Out1 as shown in Figure 6a,b. In other words, the current of Out1 becomes larger
than Out2 only when pixel 1 is black. Therefore, the resistance of “P1-Out1” should be reduced and
that of “N1-Out1” should be increased to generate a spike on the Out1 neuron or increase Out1 current.

The most important thing in the 3D vertical synapse learning process is that only the weights of
the black pixel memristors change during learning, leaving other memristors unchanged. Therefore,
to change the weight, a voltage greater than Vset is applied between the two electrodes of the P
memristor, and a voltage less than Vreset is applied to its complementary N memristor. Figure 6a,b
illustrates the training of the positive and negative memristors for the Figure 4a image and the Out1
neuron. During Out1 neuron training, Out2 remains at 0.75 V, and 0 V is applied to Out1 during
positive memristor training and Vtraining (= 1.5 V) during negative memristor training. Basically,
Vtraining (= 1.5 V) and 0 V are applied to the positive word line and negative word line, respectively,
corresponding to the black pixels of the input image. The other four memristors (P1-Out2, P2-Out2,
N1-Out2, N2-Out2), which are pictured with red lines in Figure 6, generate a spike on the Out2 neuron
when the input is Figure 4b. Figure 6c,d shows the training procedure for Figure 4b like the training
for the Out1 neuron.

The pillar of the 3D VRRAM connected to the Out1 neuron is used in common to train the positive
and negative memristors. Therefore, the two processes should be done sequentially. The bias conditions
for training and testing over time are shown in Figure 7. “Pos. for Out1” and “Neg. for Out1” represent
the voltages that change the resistance of the positive and negative memristors. Since there are two
pixels in Figure 4a,b, training occurs in a total of four sequences in Figure 7. The learning sequence
increases in proportion to the number of pixels in the input image. The number of output neurons
determines the number of test sequences. For example, if the input images are Figure 4a,b, we need
two output sequences in this learning simulation.

Figure 8 shows the voltages in the simplified circuit diagrams of the 3D vertical synapses during
the testing procedure. Unlike the learning process, the weight of the synapse (i.e., the resistance of
the memristors), should not change during the testing process. Therefore, the test voltages are set to
1 V for the positive memristor and −1 V for the negative memristor, which are smaller than the set
or reset voltages. During the learning process, the voltage applied to the memristor is determined
by the difference between the voltage applied to the positive or negative word line and the voltage
applied to the output line. During the test, however, the output line is held at 0 V and its current is
determined only by the voltage applied to the word line. It means that 1 V and −1 V are respectively
applied to the positive and negative word lines corresponding to black pixels. Therefore, when a
voltage corresponding to Figure 4a is applied to the positive and negative word lines, the current of
the Out1 neuron becomes larger than that of Out2 neuron, corresponding to the memristor resistances
changed during the training process.
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Figure 7. Input signal voltages at training and testing procedures.

Figure 8. Simplified circuit diagrams of 3D vertical synapse during the testing procedure showing the
test voltages applied to (a) the Out1 neuron and (b) the Out2 neuron.

3. Results

To evaluate the accuracy of the proposed 3D VRRAM synapses, a guide training algorithm was
tested by classifying the alphabet in 7 × 7 letter images in an HSPICE simulation. The initial synaptic
weights were randomized before the start of the new training event. The single data set of 26 images
(Figure 2), one for each alphabet letter, was defined as 1 epoch. After training, testing was performed
to classify 20 test image sets consisting of the original or inverted pixel images. For example, the noise
0% test set consisted of 520 original images, and the noise 4% test set consisted of 520 images with two
randomly selected pixels inverted.
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To confirm that the resistances were changed according to the training epoch, we applied the “S”
image to the input and observed the synaptic change between the input neuron and the corresponding
output neuron. Figure 9 shows the resistance change of the positive memristors according to the
training epoch. There are 49 lines in the graph because the number of pixels or input neurons is 49.
The training process enhances the synaptic weights of the input neurons associated with black pixels
among the 49 pixels, and the enhancement of the synaptic weight means a decrease in resistance.
The memristors with lowered resistance by training are shown by the red lines in Figure 9. In contrast
to the positive memristors, the resistance of the negative memristors are increased by the training
epoch. In Figure 10, as in Figure 9, only the memristors with increased resistance by training are shown
in red.

Ω
Ω

Figure 9. Resistance change of the positive memristors as a function of training epochs.

Ω
Ω

Figure 10. Resistance change of the negative memristors as a function of training epochs.

4. Discussion

In order to determine the appropriate number of training epochs, the learning accuracy was
evaluated by varying the number of training epochs from 1 to 300. Figure 11a shows the accuracy of
pattern classification according to the number of training epochs. Only the original image was used
in the test, and the accuracy of the pattern classification increases as the number of training epochs
increases. The accuracy of the training after 100 epochs, however, is almost unchanged. Thus, we set
100 epochs as the default for neural network training simulation.
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Figure 11. The accuracy of pattern classification after training according to (a) the number of training
epochs and (b) the percentage of inverted pixels.

In order to verify how accurately the pattern classification can be performed even if noise is
added to the input image, simulations were performed with an increasing number of inverted pixels as
shown in Figure 11b. Obviously, as the noise increases in the input image, the accuracy of the pattern
classification decreases. The simulation results, however, show 80% accuracy until the inverted pixel
percentage increases to 12%. This means that 3D VRRAMs are usable as synapses in a neural network
system. Therefore, using 3D VRRAM as the synapse structure of a neural network can greatly improve
chip area utilization. In this study, we evaluated the accuracy of a neural network consisting only
of input and output nodes with no hidden layers. A 3D VRRAM synapse with comb-shaped WLs
structured with hidden layers is a subject for future work, and we will demonstrate the effects of 3D
VRRAM synapses by performing simulations in a more diverse learning environment.

5. Conclusions

In this study, a 3D VRRAM structure was newly proposed as the synapse of a neural network
system. It was concluded that 3D VRRAM implemented as synapses can increase the chip area efficiency
and simplify the neuron circuits. This study investigates the operating principle of 3D VRRAM using
comb-shaped WL synapses and proves that this structure has promise for a neural network system.
The accuracy of a neural network with 3D VRRAM synapses was measured by classifying 7× 7 alphabet
letter images using a circuit simulator. The guide training algorithm was optimized for hardware
implementation because it does not include a backpropagation algorithm. Therefore, the guide training
algorithm and winner-take-all methods were used to validate the performance accuracy of the 3D
VRRAM synapses in a HSPICE simulation. The simulation results showed 80% accuracy until the
inverted pixel count reached 12%. This means that 3D VRRAMs are usable as synaptic mimic circuits
in neural network systems. A 3D vertical synapse with an integrated 3D VRRAM structure will be a
promising solution for a high-density neuromorphic chip.
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Abstract: Memristor-based neuromorphic systems have been proposed as a promising alternative
to von Neumann computing architectures, which are currently challenged by the ever-increasing
computational power required by modern artificial intelligence (AI) algorithms. The design and
optimization of memristive devices for specific AI applications is thus of paramount importance, but
still extremely complex, as many different physical mechanisms and their interactions have to be
accounted for, which are, in many cases, not fully understood. The high complexity of the physical
mechanisms involved and their partial comprehension are currently hampering the development of
memristive devices and preventing their optimization. In this work, we tackle the application-oriented
optimization of Resistive Random-Access Memory (RRAM) devices using a multiscale modeling
platform. The considered platform includes all the involved physical mechanisms (i.e., charge
transport and trapping, and ion generation, diffusion, and recombination) and accounts for the 3D
electric and temperature field in the device. Thanks to its multiscale nature, the modeling platform
allows RRAM devices to be simulated and the microscopic physical mechanisms involved to be
investigated, the device performance to be connected to the material’s microscopic properties and
geometries, the device electrical characteristics to be predicted, the effect of the forming conditions
(i.e., temperature, compliance current, and voltage stress) on the device’s performance and variability
to be evaluated, the analog resistance switching to be optimized, and the device’s reliability and failure
causes to be investigated. The discussion of the presented simulation results provides useful insights
for supporting the application-oriented optimization of RRAM technology according to specific
AI applications, for the implementation of either non-volatile memories, deep neural networks, or
spiking neural networks.

Keywords: AI; neuromorphic computing; multiscale modeling; memristor; optimization;
RRAM; simulation

1. Introduction

Artificial Neural Networks (ANNs) are possibly the most prominent computational model used
in modern artificial intelligence (AI) applications. The computational scheme of ANN, loosely based
on biological neural networks, comprises a collection of interconnected processing elements, referred
to as artificial neurons, often organized in layers [1,2].

An ever-increasing effort has been devoted to the experimentation of different ANN architectures,
which has led to the development of ANNs constituted by an extremely high number of neurons
and layers [1,2], known as deep neural networks (DNNs). Thanks to their high flexibility and
application-agnostic nature, DNNs have proved extremely effective in a variety of applications, such
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as image recognition [3,4] and speech recognition [5], easily outperforming other ANN architectures
and machine learning techniques (i.e., Support Vector Machines, K-Nearest Neighbors).

However, the exceptional performance shown by the most advanced DNNs requires a heavy
investment in terms of energy and hardware resources, during both the training of the network and
the inference [6–8]. In fact, in most practical applications, DNNs are implemented in software and
executed on von Neumann computer architectures that have to provide (i) sufficient computational
power for fast training and inference, and (ii) a sufficiently large and fast memory for storing all the
artificial neuron weights and any partial result. Nonetheless, the energy efficiency of training and
inference must also be considered.

In order to achieve fast and efficient DNNs, computation has been progressively shifted from
central processing units (CPUs) to optimized coprocessors, referred to as AI accelerators or Neural
Processing Units (NPUs), that enable high parallelization by exploiting the DNN layered topology.
Graphical Processing Units (GPUs) have readily been used as NPUs for their inherent capability
to conduct efficient vector and matrix operations [9], followed by the development of the first
Tensor Processing Units (TPUs), capable of efficient tensor operations and better data reuse [10].
Application-specific integrated circuits (ASICs) have recently been developed as special-purpose NPUs,
co-designed with the desired DNN, exchanging a low flexibility for a higher energy efficiency, an
optimized memory size and use, and a low area occupation [11–14].

Despite their steady improvements, even ASIC NPUs are now facing technological limits (i.e., the
imminent end of Moore’s law and the already broken Dennard scaling) and the intrinsic limits of
the von Neumann architecture, mainly the so-called von Neumann bottleneck (i.e., the limited data
transfer speed between the processor and memory, as well as the energy required for the data transfer
itself). This is especially true in applications with strict volume, weight, and power constraints,
such as automotive, battery-powered vehicles (i.e., drones); mobile devices; and Internet of Things
(IoT) devices. In this context, memristor-based neuromorphic systems can potentially overcome the
limitations posed by von Neumann architectures, not only to DNNs, but to AI in general.

Memristors are electronic passive devices characterized by a pinched hysteresis I-V curve, thus
exhibiting a time-varying and non-volatile electrical resistance [15,16]. Ideally, the conductivity of a
memristor can be arbitrarily modified by applying a proper electrical stimulus, indefinitely retaining
the resistance state in the absence of external stimuli.

The peculiar memristor characteristics, combined with their extremely small size, have made
them very appealing for the development of new non-volatile memories (NVMs), characterized by a
low power, high density, and possibly multilevel data storage [17,18].

Even more importantly for AI applications, memristive crossbar arrays have been proposed
as DNN accelerators, natively implementing an in-memory (typically analog) vector-matrix
multiplication [18–20], which is the fundamental operation for the computation of a layer output
in DNNs. By storing the weights of a DNN layer in the memristive array as conductance values,
matrix-vector multiplication can be executed at once by only exploiting Ohm’s and Kirchhoff’s laws.
The computation of a single DNN layer requires a single execution step and, moreover, it is performed
at the data location, preventing the massive data transfer of weight values between the memory and
processor required in von Neumann architectures.

Memristors are also finding applications in more biologically-plausible neural networks, such
as Spiking Neural Networks (SNNs), in which the computation is performed by mimicking the
actual operation of biological neurons (i.e., spatio-temporal coding of the information, synaptic
plasticity, cell membrane V-I relationship, generation of action potentials, and intrinsically stochastic
behavior) [18,19,21]. Different memristor-based artificial synapse implementations have been proposed,
and have successfully exhibited both deterministic and stochastic spike-time-dependent plasticity
(STDP) [21,22]. Their application to SNNs has highlighted the potential for supervised and unsupervised
learning, and adaptation to input stimuli. A recent analysis on the Hodgkin–Huxley neuron model [23],
known for being the most biologically-sound model of the neuron action potential, suggested that
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memristors are key components for its implementation [24]. Moreover, the intrinsic stochasticity of
real memristors can be exploited for mimicking the probabilistic and noisy behavior of biological
neurons [22], enabling more biologically-plausible artificial neuron implementations and overcoming
the limits of the strictly deterministic CMOS implementations. Memristor-based SNNs thus have a
huge potential, providing a new architectural and computational paradigm approaching a brain-like
computation and circumventing the von Neumann bottleneck at once.

Since the fabrication of the first TiO2 memristor in 2008 [25], many memristor technologies have
been proposed [19,26]. In Resistive Random-Access Memories (RRAMs), the switching is induced by the
formation of a conductive path in a dielectric material, controlled by an ion-based mechanism [27–31]. In
Phase-Change Memories (PCM), the modulation of a chalcogenide material phase (i.e., amorphous and
crystalline) through localized Joule heating allows the resistance switching [32–34]. In a Ferroelectric
Tunnel Junction (FTJ), the tunneling electroresistance of a ferroelectric material is modulated by setting
its internal polarization [35–37]. In a Magnetic Tunnel Junction (MTJ), the tunneling electroresistance
of a thin insulator enclosed between two ferromagnetic layers is modulated by their magnetic
polarization [38].

Although the proposed memristor technologies are characterized by a simple structure and are
easy to fabricate, the physical principles underlying their analog resistance switching and, in general,
the implications of the atomic material properties (i.e., defects, phase, morphology) on the electrical
performances, are extremely complex and are still not comprehensively understood. This lack of
knowledge is currently hampering the development of memristor-based systems.

In fact, all the memristor applications previously discussed ask for devices with different
performance metrics, as summarized in Table 1. Memristors must thus be appropriately chosen,
designed, and optimized to satisfy the performance requirements for each specific application. This, in
turn, requires a deep knowledge of the physical mechanisms responsible for the resistance switching
phenomena, their interplay, and how they are affected by the device materials and geometry. However,
the partial comprehension of the physical mechanisms underlying memristor operation prevents the
application-oriented design and tuning of the devices.

Table 1. Summary of desired performance metrics for memristors.

Metric NVM 1 [26] DNN 2 [39] SNN 3 [40]

Feature size <12 nm <10 nm -
Number of levels ≥2 (1 bit) >100 (6.45 bits) ≥64 (6 bits)

Dynamic range (on/off ratio) - ≥100 ≥00
State retention >1 year >10 years >10 years

Device endurance >103 cycles >109 cycles >109 cycles
Energy consumption <100 pJ/write <10 fJ/programming pulse <10 fJ/spike

Linearity - Yes Yes
Symmetry - Yes -

Switching time <100 μS <100 ns -
1 System level performance for replacing a NAND flash memory. 2 Performance for memristors in a deep neural
network (DNN) accelerator with a crossbar memory array architecture. 3 Performance for memristors as a Spiking
Neural Network (SNN) artificial synapse.

Physical multiscale modeling and simulation provide a powerful tool for investigating the physical
mechanisms responsible for analog switching in memristors and to highlight the effects of the material
properties (including defects) on the device performance. This information can then be used to further
develop memristive technology, optimizing the properties of the devices (i.e., geometry and materials)
to match the specifications required for the desired application (i.e., electric properties, data retention,
variability, and noise), and strongly reducing its time-to-market.

In this paper, we use a multiscale modeling platform to simulate RRAM devices and investigate the
physical mechanisms underlying their operation. The simulations are designed to highlight the effects
of the device geometry, materials, forming conditions (i.e., temperature, current compliance, voltage
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stress mode), and programming. The discussion on the simulation results shows the relevance of the
obtained insights for the different AI applications (i.e., non-volatile memories, deep neural networks, or
spiking neural networks) and provides useful design principles for RRAM application-oriented design.

2. Materials and Methods

As highlighted in Section 1, the design of memristive devices requires complete knowledge
of all the involved resistance switching phenomena, including the effects of the device geometry
and materials.

In RRAMs, the fundamental mechanisms include (i) the interaction between the electronic and
ionic transport, (ii) the effects induced by the applied electric field, and (iii) the influence of the
microscopic material properties [41].

Due to the complexity of those mechanisms, exacerbated by their interplay, the physical modeling
of RRAMs presented in this work is extremely advantageous, as it easily allows the following: (i)
prediction of the device performance (i.e., switching time, endurance, and retention) from the material
properties (which is one of the key novel aspects of this work, which allows the materials and the
process conditions to be directly screened when targeting specific applications); (ii) investigation of the
trade-off between the device scaling and variability; (iii) evaluation of the process effects on the device
and its materials through the interpretation of electrical characterization data; and (iv) co-design of the
device materials and geometries for satisfying the specific application requirements (see Table 1).

In this section, we first review the physical mechanism underlying the RRAM operation, and then
present a multiscale modeling platform that includes all the presented effects and mechanisms.

2.1. RRAM Devices

In RRAMs, the analog resistance switching is controlled by a reversible, voltage-driven, and
ion-based mechanism that allows the geometry of a conductive path within a dielectric layer to
be modulated. Different switching mechanisms have been proposed for the implementation of
RRAM [26,42,43], with each one requiring the comprehensive knowledge of different physical processes
for being thoroughly understood.

In CBRAMs [44–46], a conductive filament (CF) is created (and dissolved) in a solid electrolyte
by means of redox reactions. By applying a positive voltage to the “active” electrode (the anode), it
releases metallic cations into the electrolyte that migrate towards the “inert” electrode (the cathode)
pushed by the electric field. Once they reach the cathode, the cations are reduced, contributing to
the formation of the CF and eventually connecting the two electrodes. Through reversing the redox
process by applying a negative voltage to the anode, the CF is progressively dissolved.

Optimizing CBRAMs requires an understanding of the kinetics and interplay between the redox
processes and the transport of metallic cations in solid electrolytes (i.e., drift and diffusion). Moreover,
all the effects related to the material interactions and geometry must be considered.

In OxRAMs [47–51], a conductive path constructed of oxygen vacancies is formed in a high-k
oxide layer (e.g., TiO2, HfO2, TaO5), breaking the oxide atomic bonds (Figure 1a).

When applying a voltage to the oxide layer (Figure 1b), its lattice bonds are stretched. With a
sufficiently high voltage, the bonds eventually break, generating a negatively charged oxygen ion
and a positively charged oxygen vacancy (Frenkel pair). If no recombination of the pair occurs, the
oxygen ion and vacancies migrate in opposite directions under the action of the electric field. However,
due to their relatively high diffusion energy barrier [52], the oxygen vacancies experience little to
no motion, locally increasing the electrical conduction and power dissipation in the material. The
resulting temperature increment supports the creation of new oxygen ions/vacancies, leading to the
rapid formation of a highly conductive path of oxygen vacancies between the two electrodes (Figure 1c).
The conductive path can be broken by recombining the oxygen vacancies with the oxygen ions, i.e.,
bringing the oxygen ions near the oxygen vacancies by applying a negative voltage to the oxide layer
(Figure 1d).
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Figure 1. Structure and operation of a filamentary OxRAM device. (a) Device in pristine conditions.
(b) Forming operation: a positive voltage is applied to the top electrode, generating oxygen ion/vacancy
pairs. The ions (blue spheres) migrate under the effect of the electric field, leaving the oxygen vacancies
(red spheres) behind. (c) Formed device with a conductive filament (CF) made of oxygen vacancies
connecting the two electrodes. (d) Reset operation: a negative voltage is applied to the top electrode,
bringing the oxygen ions near to the oxygen vacancies. The resulting recombination leads to partial
dissolution of the CF and the formation of a dielectric barrier.

The analog resistance switching in OxRAMs relies on the modulation of a conductive path created
during a forming process, consisting of a current-controlled breakdown of the dielectric. After the
formation, only a thin portion of the formed conductive path is affected by the oxygen ion/vacancies
generation and recombination processes. The conductance switching thus requires precise control of
the geometrical properties of a thin insulating barrier.

Depending on the forming conditions (i.e., temperature, current compliance, voltage stress mode),
the conductive path can assume either a uniform or filamentary shape. In the former [51], the dielectric
conduction is uniformly modulated across its section and the resistance is thus controlled through the
insulating barrier thickness only. In the latter [47–50], a CF is formed within the dielectric, enabling
control of the resistance by both the barrier thickness and the CF diameter.

The design of OxRAMs requires an understanding of the complex processes of oxygen
ions/vacancies generation, diffusion, and recombination under the action of an external electric
field; their interplay with the charge transport in dielectrics; and the effects of the material properties
and geometries on all those processes.

In this work, we focus on the multiscale simulation of OxRAM devices, and investigate the
interplay between the physical mechanisms involved and their impact on the device performance,
reliability, and variability. Specifically, we mainly consider OxRAM devices with a one-oxide-layer
stack made of TiN/HfOx/TiOy/TiN (where TiOy is a parasitic layer). For comparison, we also consider a
two-oxide-layer stack made of TiN/Ta2Ox/TiOy/TiN, showing the different properties enabled by such
structural and material combination.

2.2. Multiscale Modeling of RRAMs

The multiscale modeling platform sketched in Figure 2 allows the RRAM devices to be thoroughly
investigated. Starting from the key material properties, calculated using ab-initio methods [53–55], and
the other device-specific properties (e.g., geometry and materials), the platform models the electrical
device response considering all the complex physical mechanisms involved in the different RRAM
operations, while accounting for all the resulting changes in the 3D electric and temperature fields, and
in the material structure.
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Figure 2. Multiscale modeling platform for RRAM devices. The device-level simulation engine includes
three main modules: one for the simulation of charge transport; one for charge trapping; and one for
the simulation of atomic species generation, diffusion, and recombination. The simulation requires the
material parameters, calculated using ab-initio methods, and a definition of the device geometry. The
modeling platform considers the 3D potential and electric field and how they are affected by localized
trapped charge and power dissipation at defects. The results are the various characteristic curves
describing the device electrical response.

The multiscale modeling platform comprises three main modules, addressing charge transport,
charge trapping, and the generation/diffusion/recombination of atomic species (i.e., oxygen vacancies
and interstitial ions), respectively.

For a comprehensive simulation of charge transport, many mechanisms are considered, including
trap-assisted tunneling (TAT), thermo-ionic emission (TE), the Poole–Frenkel effect (PF), and
Drift-Diffusion (DD) through conduction and valence bands, and through sub-bands originating
from metal-rich regions formed within the oxide. Interestingly, in most RRAM devices, the TAT and
DD phenomena dominate the charge transport dynamics, the first at low defect densities (i.e., the
conduction in the oxide is mainly defect-assisted, typical of binary and ternary oxides [56–62]), and the
latter for sufficiently high defect densities (i.e., a conductive path is present within the oxide). The TE
and the PF phenomena are typically negligible in materials with a medium/high bandgap, such as
transition metal oxides [63].

The TAT conduction is described using a multiphonon TAT model, inherently considering the
electron-phonon coupling oxides by accounting for the atomic lattice rearrangement in the vicinity of
the defect due to the presence of a trapped charge [56–58,64]. The TAT transport considered is fully
described in [65]. This model requires knowledge of the relaxation energy, EREL, associated with the
atomic lattice relaxation process; the defect thermal ionization energy, ET; and the defect density in the
material, NT. Both EREL and ET are calculated by means of ab initio methods (i.e., Density Functional
Theory and Molecular Dynamics simulations). The DD conduction is best described by adopting the
Landauer approach [66], which accounts for delocalized electron flow in the conductive path.

The defect-assisted charge transport naturally results in localized power dissipation at the defect
sites, affecting the temperature distribution in the device. The power dissipation is self-consistently
computed across the entire device volume by including the charge carrier’s energy released at both the
defects (at every charge trapping event) and the lattice (due to inelastic scattering mechanisms, i.e.,
optical and acoustic phonons). The temperature distribution in the device volume is calculated from
the power dissipation by solving the Fourier’s Law for heat conduction.
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The charge transport dynamics are strongly coupled to the different phenomena related to atomic
species in the oxide (i.e., generation, diffusion, recombination). Therefore, they must be consistently
calculated to effectively model the structural material modifications occurring during RRAM operations
(i.e., forming, setting, and resetting).

The generation of atomic species is described by a thermochemical bond breakage model [67],
consisting of compact effective-energy formulas accounting for the microscopic material properties
and the two main generation mechanisms: (i) the breakage of atomic bonds, enhanced by the local
electric and temperature field profiles and locally favored by the possible presence of precursors [68]
and other defects, and (ii) the redox reactions that occur at the interfaces, as well-favored by the local
electric and temperature fields. The resulting generation rate is

G(x, y, z) = G0,G exp
[
−EA,G − b · F(x, y, z)

kBT(x, y, z)

]
, (1)

where b = p0
2+k

3 is the bond polarization factor related to the molecular dipole moment, p0 is the bond
breakage activation energy, k is the material dielectric constant, G0,G is the effective bond vibration
frequency, EA,G is the bond breakage activation energy, F(x, y, z) is the 3-D electric field, kB is the
Boltzmann’s constant, and T(x, y, z,) is the 3-D temperature field. The material-related parameters
(i.e., the effective bond vibration frequency G0,G, the molecular bond polarizability p0, and the bond
breakage activation energy EA,G) are calculated using ab-initio methods [54,69].

The transport of atomic species is dominated by a DD mechanism, driven by the electric field and
strongly accelerated by the local temperature, described by the equation

GD(x, y, z) = G0,D exp
[
−EA,D − γ · E(x, y, z)

kBT(x, y, z)

]
, (2)

where G0,D is the effective bond vibration frequency, EA,D is the diffusion activation energy, γ is the
field acceleration factor, F(x, y, z) is the 3-D electric field, kB is the Boltzmann’s constant, and T(x, y, z,)
is the 3-D temperature field.

However, both the electric and temperature fields are in turn affected by the presence of atomic
species, implying a strong and complex coupling between the transport mechanism and the fields
in the device. For correctly modeling the DD transport, the internal device conditions (e.g., current,
trapped charge distribution, electric and temperature fields) are updated every time an individual
defect is generated, recombined, or moved.

The stochastic nature of the mechanisms involved in RRAM is successfully accounted for by using a
kinetic Monte Carlo approach, which allows a consideration of phenomena like the intrinsic variability
of the forming, set, and reset processes, and the occurrence of Random Telegraph Noise [70–74],
together with their dependence on the material properties and geometry, providing insights for
their optimization.

The presented modeling platform successfully reproduces the RRAM electrical responses to
arbitrary voltage and current inputs, allowing for the extraction of various characteristic curves of the
device (I-V, C-V, and G-V). The parameters used in all the simulations are reported in Table 2.
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Table 2. Simulation parameters.

Symbol Quantity Material

HfO2 Ta2O5 TiO2

Material Parameters

EG Band-gap (eV) 5.8 3.6 1.3
χ Electron affinity (eV) 2.4 3.4 4.3
k Relative dielectric permittivity 21 25 95

me* Electron tunneling effective mass 0.25 m0 0.3 m0 0.2 m0
WF TiN work function (eV) 4.57 4.57 4.57

Defect Parameters

ET Defect thermal ionization energy (eV) 1.7–2.7 0.8–1.2 0.1–0.5
EREL Defect relaxation energy (eV) 1.19 0.88 0.7
NT Defect density (cm−3) 5 × 1019 5 × 1019 5 × 1019

Metal-Oxygen Bond Breakage Parameters

p0 Polarizability (eÅ) 5.2 1.8 4
EA,G Activation energy (eV) 2.1 1.0 5.3
G0,G Effective bond vibration frequency (Hz) 4.5 × 1013 4.5 × 1013 4.5 × 1013

Oxygen Ion Diffusion Parameters

Γ Field acceleration factor (eÅ) 0.3 0.2 0.4
EA,D Activation energy (eV)—in x/y/z direction 0.8/0.8/0.7 1.2/1.2/1.0 1.0/1.0/0.75
G0,D Effective bond vibration frequency (Hz) 4.5 × 1013 4.5 × 1013 4.5 × 1013

3. Results

The multiscale modeling platform presented in Section 2 combines all the most relevant physical
mechanisms involved in RRAM operation, directly connecting the electrical performance of RRAM
devices to their geometries and to the microscopic properties of the employed materials. Noticeably,
thanks to the multiscale nature of the modeling platform, it can be used to gain insights into RRAM
devices at different levels.

At the physical level, the modeling platform can be used to investigate the included physical
mechanisms and the effects of their interplay on the generation of the conductive path. At the device
level, it allows the whole conductance switching cycle (i.e., forming, set, and reset operations) to
be simulated, and can therefore be used to predict the performance of RRAM devices. Moreover,
its inherently stochastic implementation allows the device variability and reliability (retention and
endurance) properties to be effectively investigated. Multiscale modeling thus provides a powerful
tool for accelerating the further development and optimization of RRAM technology, focusing on the
specific application (i.e., NVM, ANN, or SNN).

In this section, we use the presented multiscale modeling platform to perform multiscale
simulations of RRAM devices. The different simulations are specifically designed to highlight the
effects of the device geometry, materials, forming conditions (i.e., temperature, current compliance,
voltage stress mode), and programming. The parameters used for the simulations are summarized in
Table 2.

3.1. Conductance Switching Cycle

The presented multiscale modeling platform allows the whole conductance switching cycle to be
simulated. Starting from a pristine device with specified geometries and materials, it is possible to
investigate the device formation and the following conductance switching operations (SET and RESET)
under different conditions. The electric and temperature fields and the location of atomic species
in the device can also be monitored during simulations to gain insights into the involved switching
mechanisms and their interplay.
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As an example, Figure 3a shows the I-V characteristic curves of a simulated device made of a TiN/5
nm HfOx/TiOy/TiN stack RRAM device, including the forming (solid red), the reset (dotted green),
and set (dashed blue) operations. The simulations are performed by applying ramped voltages and a
compliance current of 10 μA.

 
Figure 3. Simulation results of a TiN/5 nm HfOx/TiOy/TiN stack RRAM device: (a) Current–Voltage
characteristic during forming (solid red), reset (dotted green), and set (dashed blue) operations with a
compliance current of 10 μA; (b) oxygen vacancy (red spheres) and ion (blue spheres) distribution,
temperature profile, and potential profile of the simulated device at different operation stages (labeled
A, B, C, D, E, and F in Figure 3a).

In the pristine state (state A), the conduction is dominated by the TAT through the relatively few
preexisting defects in the material (i.e., oxygen vacancies accumulated at grain boundaries), which
determines the very high initial resistance of the device. At a low voltage (V < VFORM = 1.7 V in
Figure 3), both the electric field and the power dissipation are too small to result in strong localized
defect generation, leading to a very modest and uniform generation of defects across the whole volume
of the device. Once the applied voltage exceeds VFORM, the oxide bonds start to break under the effect
of the increasing electric field, creating a significant number of atomic defects. Due to the different
diffusion energy barriers, the oxygen ions generated drift towards the top electrode under the effect
of the electric field, while the oxygen vacancies mostly remain in place. Noticeably, the oxygen ions
accumulate at the TiOx layer, creating the so-called “oxygen reservoir”. The newly created oxygen
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vacancies support the TAT, locally increasing the current flow, power dissipation, and temperature, in
turn assisting with the generation of new defects. A thermally-driven positive feedback process is thus
established, leading to the rapid formation of a CF. After the formation (state B), the device is in a low
resistance state. The conduction is dominated by DD in the vacancy-rich regions constituting the CF,
while the oxygen ion counterparts are gathered at the top electrode.

The reset operation is simulated by the device configuration resulting from the described forming
operation. This approach is advantageous since, in comparison to other approaches proposed in the
literature [66,75], no a-priori assumptions of the CF structure and characteristics are required. Upon
the application of a negative voltage ramp (state C), the oxygen ions gather in the oxygen reservoir
during the forming drift towards the bottom electrode under the effect of the electric field. During
their motion, the oxygen ions can recombine with the oxygen vacancy defects in the oxide, leading to
the progressive formation of a thin dielectric barrier within the CF, causing resistive switching to the
high resistance state (state D). Interestingly, this process is not associated with a large temperature
increment in the device, suggesting that it is mostly driven by the electric field.

Lastly, the set operation is simulated by the device configuration obtained at the end of the reset
operation. Upon the application of a positive voltage ramp (state E), the device experiences a process
similar to that of forming, but confined to the thin dielectric barrier created during the reset process.
Since the applied voltage drops almost completely across the thin dielectric barrier, the electric field
required for the breaking of oxide bonds and the generation of new defects is easily exceeded at
relatively low voltages (V < VFORM). The restoration of the CF is thus initiated at lower voltages
compared to the forming process. The same thermally-driven positive feedback described for the
forming process is established, resulting in a quick restoration of the CF and the switch to a low
resistance state (state F).

3.2. Effects of Forming Conditions

The presented multiscale modeling platform allows the effects of the forming condition
(i.e., temperature, current compliance, voltage stress mode) on the performance and properties
exhibited by the device after the forming process to be investigated.

The beneficial effects of a high-temperature forming process have been thoroughly reported in the
literature, and have been associated with lower forming voltages and variability of the low resistance
state, while improving the stability and reliability of the device [76–78]. The external temperature
affects the forming process assisting the defect generation and promoting the oxygen ion diffusion
in the device, leading to a lower density of oxygen ions near the conductive path after the forming
process. The subsequent oxygen ion/vacancy recombination is strongly reduced, resulting in a higher
stability and lower variability of the conductive path.

This is evidenced in Figure 4a, which shows the low state resistance distribution exhibited by
TiN/5 nm HfOx/TiOy/TiN RRAM stacks after the forming process at two different external temperatures
(i.e., 25 and 125 ◦C), using a ramped voltage and a 1 μA compliance current. In accordance with
the literature [76], the experimental data (marked by the symbols in Figure 4a) show that the higher
forming temperature leads to a tighter resistance distribution.
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Figure 4. (a) Experimental (symbols) and simulated (lines) cumulative distributions of TiN/5 nm
HfOx/TiOy/TiN RRAM stacks’ low state resistances after forming at 25 and 125 ◦C. (b) Resulting oxygen
ions/vacancies distribution in the device after forming at 25 ◦C. (c) Resulting oxygen ions/vacancies
distribution in the device after forming at 125 ◦C. The forming process was performed using a ramped
voltage and a 1 μA compliance current.

The effects of the forming temperature on the oxygen ions/vacancies generation and diffusion
can be effectively investigated using the presented multiscale modeling platform. The simulations of
the forming processes (shown by the lines in Figure 4), whilst not perfectly matching the measured
samples, accurately reproduce the trend and order of magnitude of the experimental data, showing
a tighter resistance distribution in the higher temperature forming case. The discrepancy between
the experimental results and those of the simulation can be ascribed to several effects not considered
in these simulations, mainly, the oxide thickness and area variations due to the fabrication process
tolerances, and process-dependent interface effects between the oxide and the electrodes.

The microscopic differences caused by the higher forming temperature can be better appreciated
in Figure 4b,c, which shows the simulated oxygen ions/vacancies distribution in the device after the
forming process. At a low temperature (25 ◦C), the conductive path (in this case, a CF) made of oxygen
vacancies is tightly surrounded by oxygen ions affecting its resistance and stability. Conversely, at a
high temperature (125 ◦C), the oxygen ions are scattered in the device volume, affecting the CF to a
lesser extent and leading to a tighter resistance distribution.

The platform can therefore be used to explore the best strategies to control the device-to-device
variability of RRAMs for specific applications: for instance, high-temperature forming could reduce the
variability for high-accuracy DNNs, while precisely controlling the temperature during the forming
process could be used to obtain the desired variability level, optimizing the performance of stochastic
learning networks.

The forming compliance current has a very strong impact on the morphology of the conductive
path as it allows the defect generation processes in the device to be controlled by limiting the maximum
current flow and power dissipation in the device. For example, in filamentary RRAMs, it has
been observed that the magnitude of the compliance current allows the diameter of the CF to be
controlled [57]. Moreover, it also greatly affects the low resistance state magnitude and variability: a
sufficiently high compliance current allows the formation of a dense population of defects, forming
low-resistance CFs with a similar morphology, while a low compliance current leads to a sparse
population of defects, forming weak CF characterized by a larger variability. This is evidenced in
Figure 5, which shows the low state resistance distribution exhibited by TiN/5 nm HfOx/TiOy/TiN
RRAM stacks after the forming process at three different compliance currents (i.e., 1, 5, and 10 μA),
using a ramped voltage and an external temperature of 25 ◦C.
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Figure 5. Experimental (symbols) and simulated (lines) cumulative distributions of TiN/5 nm
HfOx/TiOy/TiN RRAM stacks’ low state resistances after forming at 1, 5, and 10 μA. The forming
process was performed using a ramped voltage and 25 ◦C external temperature.

The effects of the compliance current on the defect generation processes and the resulting device
resistance magnitude and variability can be effectively investigated using the presented multiscale
modeling platform. The simulations of the forming processes, shown in Figure 5, reproduce the
trend found in the experiments, highlighting that the lower variability of the low resistance state is in
fact related to the higher density of oxygen vacancies generated at higher compliance currents. The
platform confirms its effectiveness for investigating the best strategies to control the device-to-device
variability for specific applications, as previously mentioned.

In filamentary RRAM, the morphology of the CF is also strongly affected by the forming voltage
stress mode (i.e., the time-varying profile of the forming voltage), as it determines different distributions
of oxygen ions and vacancies in the device volume. Evaluating the effect of a specific voltage stress
mode is highly desirable, since it allows the best strategy for a specific application to be identified.
However, this task is extremely complex, as it requires the interplay between the (possibly) time-varying
forming voltage, the defect generation processes driving the growth of the CF, and the oxygen ions
diffusion to be considered. The presented multiscale modeling platform provides a powerful tool for
such investigation.

Figure 6 shows the simulation of the oxygen ions/vacancies distribution in TiN/5 nm HfOx/TiOy/TiN
RRAM stacks after the forming process using three different voltage stress modes (i.e., constant voltage,
ramped voltage, and pulsed voltage), a compliance current of 1 μA, and an external temperature
of 25 ◦C.

 
Figure 6. Simulated distributions of the oxygen ions (blue) and vacancies (red) in TiN/5 nm
HfOx/TiOy/TiN RRAM stacks after forming with a (a) constant voltage, (b) ramped voltage, and
(c) pulsed voltage. The forming process was performed using a 1 μA compliance current and 25 ◦C
external temperature.

Noticeably, the oxygen ions distribution is significantly affected by the voltage stress mode. At
constant voltage forming, the oxygen ions are mostly accumulated near the top electrode, while ramped
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and pulsed voltage forming results in a more uniform distribution. The pulsed voltage forming,
however, leads to a higher radial diffusion of the oxygen ions compared to the constant voltage forming.

Comparing the oxygen ions and vacancies distribution shown in Figures 4 and 6, it can be noticed
that the distribution corresponding to a low-temperature forming process (Figure 4b) is similar to the
one of a ramped voltage forming process (Figure 6b). Conversely, the distribution corresponding to
a high-temperature forming process (Figure 4c) is closer to that of a pulsed voltage forming process
(Figure 6c). The similarity of the oxygen ions and vacancies suggests a similar behavior of the device.
This is confirmed by experimental results [79], showing that pulsed voltage forming is associated with
a tighter resistance distribution with respect to constant or ramped voltage forming.

The voltage stress mode can thus be exploited for optimization of the oxygen ions distribution in
the formed device for achieving a tighter resistance distribution, similar to the previously discussed
forming temperature. The platform can support such optimization, allowing for the fine tuning of
RRAM device-to-device variability according to the specific application requirements.

3.3. Analog Resistance Switching Optimization

As previously discussed, the analog resistance switching in RRAM devices is driven by two
different mechanisms. The switching from a high resistance state to a low resistance state is dominated
by thermal positive feedback triggered by an electric field, leading to a mostly uncontrolled generation
of oxygen vacancies and resulting in the abrupt formation of a conductive path. Conversely, the
switching from a low resistance state to a high resistance state is determined by the recombination of
oxygen ions/vacancies driven by the electric field, resulting in the new formation of a high-resistance
dielectric barrier. The dielectric barrier formation, being unassisted by the temperature, is typically
slower than the formation of the conductive path.

The differences between the two switching mechanisms cause strong asymmetry in the device
characteristics, as evidenced in Figure 3, which has been recognized as detrimental for many applications
(i.e., ANNs and SNNs). Moreover, the extremely fast formation of the conductive path prevents the
fine control of analog resistance switching, potentially limiting both the number of distinguishable
resistance levels (thus the number of bits per cell in NVM) and the device linearity.

A well-established method for mitigating the non-idealities exhibited by RRAM devices is pulsed
programming, i.e., controlling the resistance switching by applying a sequence of voltage pulses to the
device. Ideally, each set (reset) voltage pulse should decrease (increase) the device resistance by a small
amount, according to the device’s electrical characteristics, enabling fine tuning of the resistance [80].

In the simplest approach, the applied pulses are all identical in amplitude and width (with opposite
signs in set and reset operations), allowing for better control of the conductive path formation. However,
this is often not sufficient for the full compensation of RRAM non-idealities, requiring sequences of
non-identical pulses and possibly a combination of positive and negative pulses for each set or reset
operation [80]. Fine tuning of the pulse sequence shape, amplitude, and width is thus of paramount
importance for exploiting the full potential of RRAM devices.

A combined design of the device geometries and materials can be beneficial for controlling
the RRAM non-idealities and achieving linear resistance analog switching without using complex
voltage pulse schemes [81]. A simple solution consists of using a two-layer RRAM stack made of two
different dielectric materials, comprising a thin (~1–2 nm) low-k (LK) material and a thicker high-k
(HK) material. The resulting distribution of the electric field across the device allows the switching
mechanism to be controlled and gradual modulation of the device resistance to be produced. In
such a configuration, the structural material changes responsible for the resistance switching (i.e., the
conductive path and dielectric barrier formation) are confined to the LK layer, where the electric field
is the highest, regardless of the layers’ thickness. The confinement of these phenomena in the LK layer
is the key factor that leads to a gradual change of the electrical resistance in the device, which is crucial
to achieving precise and linear analog switching. Moreover, this two-layer structure allows for better
control of the oxygen ions diffusion. The low electric field in the HK layer hinders the diffusion of
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oxygen ions coming from the LK layer, leading to the formation of an ion reservoir at the LK–HK
interface. Having the oxygen ions reservoir near the conductive path contributes to smoothening the
whole switching process and results in gradual modulation of the electrical resistance, with obvious
benefits for applications requiring a linear and gradual conductance change, e.g., DNNs.

The presented multiscale modeling platform allows the devices’ non-idealities and their effects
on the device performance (i.e., symmetry, linearity, number of levels) to be evaluated. The retrieved
information can then be exploited, supporting optimization of the device structure and materials, and
the programming pulse sequence for achieving linear analog resistance switching.

Starting from a one-layer device, Figure 7 shows the experimental and simulated conductance
evolution of TiN/6 nm HfOx/TiOy/TiN RRAM stacks under the application of set pulse trains with an
identical width (1 ms) and different voltage amplitudes (0.7, 0.8, 0.9, and 1 V). After each single set
pulse, the conductance was read with a read pulse with 0.1 V amplitude and 1 ms width, which did
not significantly influence the device resistance.

Noticeably, only pulse trains with amplitudes of 0.8 V and above induce a variation of the device
conductance, mostly during the first few pulses (<5) of the sequence. The conductance quickly
saturates, highlighting both the nonlinear characteristic of the device and the abrupt formation of
the conductive path. These trends are accurately reproduced by the simulations. The fluctuation in
conductance exhibited by the experimental results can be ascribed to the random nature of oxygen
migration caused by the voltage pulses [82]. In fact, even after the conductance saturation, each pulse
causes a small random motion of the oxygen ions in the RRAM stack, resulting in fluctuations of the
conductance around a mean value.

Taking advantage of the RRAM stack’s nonlinear and saturating behavior, it is possible to
associate a set conductance value with a specific pulse voltage. Further simulations could support the
optimization of pulse amplitudes for the best discrimination of conductance levels.

Figure 7. Experimental (symbols) and simulated (lines) conductance evolution of TiN/6 nm
HfOx/TiOy/TiN RRAM stacks under the application of set pulse trains with a 1 ms width and variable
amplitude: (red) 0.7 V; (green) 0.8 V; (blue) 0.9 V; (magenta) 1.0 V. Initial forming was performed with a
100 μA compliance current.

Similar results are obtained by modulating the pulse width, as shown in Figure 8a, which depicts
the experimental and simulated conductance evolution of the same device under the application of set
pulse trains with an identical voltage amplitude (0.9 V) and different widths (10 μS, 100 μS, and 1 ms).
As shown in Figure 8b, it is possible to take advantage of the nonlinear and saturating behavior
exhibited by the considered RRAM stack to associate a set conductance value with a specific pulse
width, which achieves six well-separated and recognizable resistance levels with an approximately
linear characteristic. Finely tuning the programming pulse train for both set and reset processes allows
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a linear resistance update to be achieved for any specific RRAM device. The best combination of pulse
amplitude, width, and sequence can be effectively investigated by the presented multiscale modeling
platform, in order to optimize the synaptic behavior of the device. On the other hand, the platform
could be useful for implementing design-circuit co-design strategies to enhance the device performance
for multi-level memory applications, increasing the robustness and possibly reducing the bit error rate.

Figure 8. (a) Experimental (symbols) and simulated (lines) conductance evolution of TiN/6 nm
HfOx/TiOy/TiN RRAM stacks under the application of set pulse trains with a 0.9 V amplitude and
different widths: (red) 10 μS; (green) 100 μS; (blue) 1 ms. Initial forming was performed with a 100 μA
compliance current. (b) Simulated conductance modulation obtained using set pulse trains with an
increasing width: (black) 1 μS; (red) 10 μS; (green) 100 μS; (blue) 1 ms; (magenta) 10 ms.

Using a two-layer RRAM stack made of a thin LK layer (i.e., Ta2O5) and a thick HK layer (i.e., TiO2),
a linear conductance characteristic can be obtained. Figure 9 shows the experimental and simulated
conductance evolution of TiN/2 nm Ta2Ox/35-nm TiOy/TiN RRAM stacks during both set and reset
operations, under the application of pulse trains with an identical width (100 μS) and different voltage
amplitudes. After each single pulse, the conductance was read with a read pulse with a 0.1 V amplitude
and 1 ms width, which did not significantly influence the device resistance.

Figure 9. Experimental (symbols) and simulated (lines) conductance evolution of TiN/2 nm Ta2Ox/35-nm
TiOy/TiN RRAM stacks under the application of set pulse trains with a 100 μS width and variable
amplitude. (a) Set operation: (red) 2 V; (green) 2.5 V; (blue) −3.5 V. (b) Reset operation: (red) −3 V;
(green) −4 V; (blue) −5 V.

Noticeably, the considered device exhibits an extremely linear behavior during both the set and
reset operations, especially if compared with the characteristics of the one-layer device (Figures 7 and 8).
However, the pulse voltage required for the switching to occur is considerably larger, starting at 2.5 V
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for the set process and requiring up to −4 V for the reset process. All these trends are accurately
reproduced by the simulations.

While the two-layer stack structure allows for the fabrication of RRAM devices with an intrinsically
linear characteristic, the lack of symmetry still prevents their use for ANN and SNN applications
and could be detrimental in NVMs. The symmetry of the electrical characteristic can be pursued by
further investigating the novel two-layer stack, using the presented modeling platform to optimize the
materials and geometries combination, or by using specifically designed pulse sequences. Interestingly,
the latter solution is relatively easy to implement: thanks to the intrinsic linearity of the set and reset
characteristics, symmetry can be obtained by using different pulses (i.e., with different amplitudes) in
the two operations.

3.4. Switching Reliability Optimization

The fundamental mechanism enabling analog resistance switching in RRAM devices is the
diffusion of oxygen ions in the oxide layer. This process is greatly affected by the interaction of ions
with the surrounding lattice, thus by the material’s properties, and in turns affects many of the device’s
electrical properties. For example, as previously discussed, precise control of oxygen ion diffusion is
key to achieving well-separated resistance levels. Even more importantly, the properties of the ion
diffusion process are of paramount importance for evaluating the variability and endurance of RRAM
devices [83]. In fact, precise switching between different resistance levels requires the dielectric barrier
to be consistently modulated for the full lifespan of the device, with little to no variations between the
cycles. Conversely, the newly proposed stochastic learning algorithms for SNNs can take advantage
of device variability and non-uniformity. In both cases, the oxygen ion diffusion process must be
thoroughly investigated for specific optimization of the devices. The presented multiscale modeling
platform, fully accounting for the oxygen ion kinetics, can be used to investigate its effects on the
reliability and variability of RRAMs.

The simulations of a TiN/5 nm HfOx/TiOy/TiN stack RRAM device, shown in Figure 10, reveal
the high sensitivity of the device reset operation to the oxygen ion diffusion kinetics properties.
Starting from a correctly formed device (Figure 10a), the reset operation was simulated considering
slow and anisotropic (motion predominantly in the vertical direction) oxygen diffusion (Figure 10b),
corresponding to well-performed reset operation. Then, starting from the same post-formed conditions,
the simulation was performed for fast and anisotropic oxygen diffusion (Figure 10c), corresponding to
an excessively high voltage reset process, and for slow and isotropic oxygen diffusion (Figure 10d).
Interestingly, this last condition describes the diffusive motion of oxygen ions due to the sole
temperature field.
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Figure 10. Simulated distributions of oxygen ions (blue) and vacancies (red) in TiN/5 nm HfOx/TiOy/TiN
RRAM stacks: (a) after forming; (b) after the reset operation with slow and anisotropic oxygen diffusion,
showing an efficient reset process; (c) after the reset operation with excessively fast and anisotropic
oxygen diffusion, showing an inefficient reset process with the formation of a dielectric barrier near the
bottom electrode; (d) after the reset operation with slow and isotropic oxygen diffusion (with significant
motion in the radial direction), showing an inefficient reset process due to the excessive motion of the
oxygen ions away from the CF.

An efficient reset operation was only obtained in the first case, where the oxygen ions are carried
towards the CF in a mostly anisotropic way (some radial motion is beneficial) and are provided with
enough time for recombination with the CF oxygen vacancies. In the case of fast diffusion of the oxygen
ions (i.e., for an excessively high-voltage reset process), the latter condition is hindered: a significant
portion of the oxygen ions are swept through the oxide, recombining along the CF length and eventually
forming a dielectric barrier near the bottom electrode, as suggested in [52]. Finally, the slow and
isotropic diffusion of oxygen ions leads to an inefficient reset of the device, as the excessive scattering
of ions in the device volume prevents the formation of a fully dielectric barrier. The simulation results
are in accordance with the experimental results showing thermally-driven oxygen ions diffusion from
the “reservoir” to the CF [84].

The set operation is also affected by the diffusion of newly generated oxygen ions towards the
TiOx “reservoir” at the top electrode. Significant radial motion of the oxygen ions during the set
operation would spread the ions in the “reservoir”, not creating ion storage in sole proximity to the
CF, leading to an increasingly ineffective reset operation and possibly to failure of the device. The
cycling endurance of a device is clearly negatively affected by excessive radial motion of the oxygen
ions induced by the diffusion. Therefore, convenient process recipes to optimize material properties
can be implemented based on the results of these simulations to optimize the endurance and switching
uniformity of RRAM devices, depending on the specific application target and its requirements.

4. Discussion

Memristors have an extremely high potential for revolutionizing both the memory and AI fields. In
fact, memristors have been proposed for implementing high-density, high-speed, and low-power NVMs,
and crossbar memory arrays supporting fast and efficient in-memory vector-matrix multiplication for
DNN acceleration, and are finding applications in the development of SNNs, enabling the realization of
artificial synapses exhibiting an STDP learning mechanism and biologically plausible artificial neurons
(i.e., in accordance with the Hodgkin–Huxley model).
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As illustrated in Table 1, each of the memristor applications poses different constraints for the
performance metrics, demanding devices with rather different characteristics. However, the design
and optimization of memristors is still difficult and, most of the time, impractical, due to the limited
knowledge on the resistance switching phenomena, their interplay, and the effects of the device
materials and geometry on such phenomena.

In this context, the described physical multiscale modeling and simulation provide an extremely
powerful tool for the application-oriented optimization of RRAM-based memristors.

As shown in Section 3, the presented multiscale modeling platform allows the device properties,
such as its macroscopic electrical properties, its resistance switching dynamics, and its microscopic
properties (i.e., the oxygen ions and vacancies distribution), to be simultaneously extracted, and
how such properties are affected by the device materials, geometry, and forming conditions to be
investigated. Despite a few differences between the simulations and the experimental results, mainly
evidenced in Figures 4 and 6, the platform proved capable of capturing the trends and fundamental
relationships between the OxRAM devices’ microscopic properties and their behavior.

The discrepancies shown by the simulations can be ascribed to several effects not considered by the
platform, such as the oxide thickness and area variations due to the fabrication process tolerances, and
process-dependent interface effects between the oxide and the electrodes. The platform can therefore
be further improved by including the said effects. Moreover, it could be extended for simulating other
memory devices, such as CBRAMs (i.e., including the chemical reaction phenomena at the device
interfaces) and Phase Change Memories (PCMs) (i.e., accounting for the phase change in sub-regions
of the device).

Nevertheless, the information obtained through the presented multiscale simulation can be
effectively used to determine the best combination of OxRAM materials, geometry, forming conditions,
and pulse schemes for the desired application, dramatically reducing the time required for its
marked deployment.

The application of memristors to NVMs is less demanding performance-wise [26]. Noticeably, for
binary NVM applications, the conductance update linearity and symmetry are not required, greatly
relaxing both the device and pulse scheme design.

Even in this simple case, device optimization must account for its microscopic properties in order
to satisfy the state retention and endurance constraints. In fact, as highlighted by the simulations
presented in Section 3.4, the motion of oxygen ions in the device is of paramount importance for
achieving an efficient and enduring resistance switching mechanism.

The multiscale simulations can effectively support the optimization of an RRAM-based memristor
for NVMs. The device materials, geometry, forming condition, and pulse scheme can be optimized
according to the energy consumption and switching time constraints, and the oxygen ions and vacancies
distribution can be extracted at the same time. This information can then be used to discard the
configurations exhibiting an instable conductive path, thus not satisfying the state retention and
endurance constraints.

From the perspective of extending the number of levels of the memristive NVMs, the support of
multiscale simulations is even more advantageous, as the higher number of levels requires a tighter
resistance distribution of each level. As shown in Sections 3.1 and 3.2, the resistance variability of
the devices can be precisely controlled by finely tuning the forming conditions (i.e., temperature,
compliance current, and voltage stress), and the presented simulations allow the best forming condition
to be explored.

It should be noted that a device with non-linear and/or non-symmetric resistance switching can
still be used in multilevel applications if compensated for by designing a suitable pulse scheme [85–87],
as shown in Section 3.3. With the support of the described multiscale simulations, the required pulse
scheme can be co-designed with the device properties and optimized to achieve the required number
of levels. However, linear and symmetric resistance switching would be highly desirable, as it allows
for easier and more effective level control, without requiring complex pulse schemes.
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As shown in Section 3.3, using a two-layer geometry RRAM allows linear resistance switching
to be achieved. In this case, the interplay between the resistance switching phenomena of the two
different dielectrics determines an extremely complex behavior, which can be effectively investigated
through a multiscale simulation of the device. With the support of the extracted information, the
two-layer structure (i.e., its materials and geometry) can be easily optimized to achieve the desired
linear, and possibly symmetric, resistance switching.

The implementation of a DNN accelerator with a crossbar memory array architecture requires
memristors with very different characteristics [39].

First, the number of levels is dictated by the weight precision required by the implemented DNN:
a higher number of levels corresponds to a better learning capability, higher inference accuracy, and
higher robustness. A precision as low as 6 bits (i.e., 64 levels) has been shown to be effective for both
training and inference [88]. Moreover, the resistance switching must be absolutely linear and symmetric
to avoid significant losses in the DNN accuracy [89]. This is especially true for online-trained DNNs,
while for offline-trained DNNs, the non-ideal conductance update can be compensated for by suitable
writing schemes.

For this application, a two-layer structure is clearly beneficial and, as stated before, the support of
the described multiscale simulations allows a better understanding of the device’s complex behavior
and optimization of its structure to match the requirements.

Due to the high number of levels required, the dynamic range must increase in parallel with
the weight precision to ensure a sufficient separation of the levels, while ensuring a sufficiently high
resistance value of the low-resistance state in order to limit the inference energy consumption. The
energy consumption of the training phase is instead determined by the programming energy, which
must be limited. A related performance metric is the switching time, which must also be as low as
possible to ensure both fast and energy-efficient training.

All of these metrics are interconnected and their relationship with the device geometry and
materials, and their trade-offs cannot be easily appreciated and designed. The low-resistance state
value and the variability of the resistance levels can be controlled by the forming conditions, as
previously stated and as shown in Sections 3.1 and 3.2, but the effects on the required programming
energy and switching time are not obvious. The multiscale simulation provides an extremely powerful
tool to explore the possible solutions and possibly optimize the device materials, geometry, and forming
conditions to match the requirements.

Finally, the reliability-related metrics (i.e., endurance and retention) are extremely demanding
and critical: the training phase (or the weights set up in the case of offline training), requiring a
large number of switching operations, can be stressful for the devices and the weight values must be
retained (ideally) indefinitely. As for the NVM application, the stability of the conductive path in a
specific device can be easily investigated though multiscale simulations, allowing for the recognition
of unsuitable solutions.

The desired performance for memristors implementing SNN artificial synapses is extremely
similar to that required for DNN accelerators [40], especially those concerning the number of levels
and the reliability-related metrics (i.e., endurance and retention). This is reasonable, since SNNs also
undergo a stressful training phase (or synaptic weight set up), requiring many switching operations.
Moreover, the specific requirements for feature size and switching time can be reasonably assumed to
be similar to those of DNN accelerators. Additionally, recent works suggest that artificial synapses
with symmetric conductance updates allow for a better accuracy in SNNs [90].

Noticeably, the application-level effects of memristors’ stochasticity, i.e., uniformity (or lack
of thereof) and variability, are little discussed in the literature. In NVM applications, both the
non-uniformity and high variability of the memory cell can be detrimental [39], posing a challenge for
technology development. Neural network applications exhibit a good tolerance to device-to-device and
cycle-to-cycle variations, especially if online training is used [88,89]. Interestingly, the exploitation of
memristors’ stochasticity has recently been proposed for implementing stochastic learning algorithms
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for SNNs [22,91]. In such a context, the device’s variability, non-uniformity, and noise become key
components of the learning algorithm, thus requiring a precise design. All those properties can also be
investigated using multiscale simulations, e.g., as previously stated, the device’s variability can be
controlled and optimized by tuning the forming conditions.

5. Conclusions

We have shown that multiscale modeling and simulation can effectively support the
application-oriented optimization of RRAM devices.

With the support of the presented multiscale modeling platform, we simulated the microscopic
behavior of RRAMs and investigated the effects of the device geometry, materials, forming conditions
(i.e., temperature, current compliance, voltage stress mode), and programming on the device
performance. The multiscale simulations allowed the properties of RRAMs during their whole
operation, from the forming process to the subsequent set-reset cycle, to be investigated, providing
information about the device linearity, symmetry, dynamic range, and reliability.

The presented multiscale simulations provide useful design principles for RRAM technology
optimization according to the specific AI application, for the implementation of non-volatile memories,
deep neural networks, or spiking neural networks.

Moreover, the multiscale simulation allows the effects of different implementations of the device
(i.e., different geometries or materials) to be explored, and both the forming conditions and the pulse
scheme (i.e., amplitude, width, sequence) to be finely tuned for achieving the desired performance.
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Abstract: This work investigates the sources of resistive switching (RS) in recently reported
laser-fabricated graphene oxide memristors by means of two numerical analysis tools linked to
the Time Series Statistical Analysis and the use of the Quantum Point Contact Conduction model.
The application of both numerical procedures points to the existence of a filament connecting the
electrodes that may be interrupted at a precise point within the conductive path, resulting in resistive
switching phenomena. These results support the existing model attributing the memristance of
laser-fabricated graphene oxide memristors to the modification of a conductive path stoichiometry
inside the graphene oxide.

Keywords: memristor; RRAM; variability; time series modeling; autocovariance; graphene
oxide; laser

1. Introduction

Memristors have shown great potential in the context of neuromorphic circuits. Their operation,
based on resistance modulation by means of ion transport and redox reactions, leads to the creation
of regions of different conductivity mimicking neuronal synapses in a coherent and natural manner.
Consequently, memristors are of most interest for the fabrication of optimized hardware that aims
to design and implement artificial neural networks [1–3]. This potential, along with their intrinsic
facet of non-volatility, poses the set of features needed by memristors to become the cornerstone
for computation schemes beyond of the classical von Neumann paradigm, such as neuromorphic
computing. This new focus will be essential to push forward the artificial intelligence challenges that
the industry is facing currently [2,3].

From a more general perspective, the outstanding features of memristors make them also suitable
for applications that run through non-volatile memories, Internet of Things (IoT) devices, 5G, etc.
Among their promising characteristics, the following can be highlighted: fast read/write times for
the set and reset processes, low power consumption, scalability and CMOS technology compatibility
among others [3–7].

The physics behind memristors is strongly dependent on the materials employed and the details
of their fabrication process. In this respect, there is a plethora of recent experimental, modeling
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and simulation studies on technologies that make use of transition metal oxides as the switching
dielectric [4,5,8–15]. However, in the field of memristors based on 2D materials, the amount of studies
and published manuscripts is much lower. In this context, the difficulties related to the creation of high
quality metal contacts, the purity of the materials and the fabrication details pose extra difficulties for
dealing with all of the facets of the study of these devices, and in particular, in regards to the physical
simulation and modeling.

In the 2D material memristors landscape, there are h-BN based devices, memristors with a different
number of graphene layers or other 2D materials that are employed for oxygen ion scavenging and other
particular purposes [3,16,17]. Among all the 2D materials-based contenders, the laser fabrication of
memristors based on graphene oxide (GO) was recently introduced [18]. GO is a highly functionalized
form of polycrystalline nanographene that is decorated with oxygen-containing groups [19]. The use
of GO as a memristive material takes advantage of its inherent 2D materials potential with respect to
conduction and structural flexibility properties while simultaneously including its non-volatility and
electrical plasticity [20], as expected in ideal memristors [21].

The implementation of a laser-assisted fabrication protocol provides the device with several
attractive features for its potential industrial implementation: (i) the fabrication process is very simple,
comprising a limited number of steps; (ii) there is no need for lithographic masks since the laser itself
defines the geometry of the memristor; (iii) the devices do not require scarce or hazardous materials for
their fabrication; (iv) the resistive switching behavior originates in the GO (and not in the electrodes)
adding versatility from the contacting electrodes perspective and (v) the supporting substrate can be
selected with versatility from a rigid surface to flexible polymers for conformal integration.

The novelty of the devices employed here results in a lack of studies linked to their resistive
switching features, both from the physical modeling and experimental viewpoint. Therefore, the
physics lying behind their operation has only had its surface scratched [18]. In this work, we intend to
tackle this issue making use of well-established numerical techniques previously developed for more
“conventional” memristors that are developed with 3D stacks of transitions metal oxides [13,15,22,23].
Therefore, in this manuscript, we specifically deal with the characterization and analysis of resistive
switching processes and charge conduction in laser-fabricated graphene oxide (GO) memristors [18]
from a statistical perspective. We do not focus this study on the digital performance of the devices; we
consider instead their conductance variation in an analogic manner, as it is the proper approach for
neuromorphic applications.

The device variability has also been considered in this study, specifically by using Time Series
Statistical Analysis (TSSA) [24–27]. From the statistical viewpoint, information can be extracted that
is related to the correlation of successive RS cycles and the inherent stochasticity of RS memristors
operation. The quantum properties of conduction along the conductive filaments that short the
electrodes have been scrutinized by means of the Quantum Point Contact (QPC) model as described
in [15,22].

Therefore, the outline of this work is as follows: the fabricated devices and measurement process
are described in Section 2, and the numerical procedure, the main results and the discussion are
explained in Section 3. Finally, the conclusions are given in Section 4.
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2. Device Fabrication and Measurement

The memristors fabricated for this study are fully based on the process described in [18] and
summarized in Figure 1. The raw precursor material is a graphene oxide colloid (4 mg/mL) prepared
following a modified version of Hummers and Offerman’s method [28]. The GO colloid is deposited
by drop-casting onto a PET (Polyethylene terephthalate, 3 M) film (0.5 mL/cm2) and left on a 3D-shaker
for 48 h until the water has completely evaporated (293 K, RH 50%). The CNC-driven laser is then
applied in a rectangular pattern with the precise power that reduces the GO at the point where
memristance is manifested (Plaser ~ 70 mW, λ = 405 nm) [18]. After the laser treatment, the volume
of the reduced GO increases; the height difference between the GO film and the laser-treated GO is
~10 μm, determined using a DekTak XT profilometer from Bruker (Bruker Corporation, MA, USA).
The devices were contacted using micro drops of conductive carbon-based paste (Bare Conductive
Electric Paint, London, UK).

 
Figure 1. Schematic representation of the fabrication steps for graphene oxide memristors produced by
laser. Graphene Oxide colloid is drop-casted on a PET substrate (a) and left 48 h on a 3D shaker for
water evaporation (b). Then the laser diode is applied (70 mW) to partially reduce the GO resulting
in the memristive structures (c). Finally, electrical contacts are created by depositing microdrops of
organic bare conductive paint (d).

The electrical measurement experiments were performed with the support of a two-channel
Keysight® B2902A (Keysight Technologies, Inc., CA, USA) precision source-measurement unit
controlled by Easy-Expert® software (version 6.2.1927.7790, CA, USA). Figure 2a presents measured
current–voltage characteristics showing two consecutive voltage cycles extracted from an L = 2.2 mm,
W = 1 mm laser-fabricated graphene oxide memristor. These curves reveal the characteristic fingerprint
of a memristor device that is determined by a pinched hysteresis loop closed in the origin of the
current–voltage axis [29]. Figure 2b depicts the time evolution of the current when a −3 to 3 V
symmetric voltage ramp is applied, illustrating the fast and abrupt transitions of the resistance.
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Figure 2. (a) Experimental current versus voltage for two different cycles within a resistive switching
series. A ramped voltage with step of 10 mV was employed in the measurement process. (b) Voltage
and current versus time for the cycle A shown previously. (c) Conductance values obtained during
device cycling with limited compliance current [18]. The resistance was extracted in the range [−1,1] V
of the current–voltage characteristics.

Figure 2c shows the device conductance extracted under successive device cycling from a
laser-fabricated GO memristor. These measurements constitute the input of the Time Series Statistical
Analysis discussed in Section 3. To avoid resistive switching degradation of the device, the current
is limited to 20 μA [18]. As observed, the Low Resistance State (LRS) conductance presents a
monotonic derivative, whereas the High Resistance State (HRS) conductance remains stable with
cycling. The reader can notice the small conductance jump at cycle 28. This phenomenon is attributed
to the defective nature of GO, which is heavily decorated with oxygen, hydroxyl and epoxy groups.
Spontaneous movements of functional groups along the conductive path yields to local modification
of the stoichiometry of the sample and, therefore, to the modification of its conductance [19]. Further
structural and electrical details of Laser-Fabricated Graphene Oxide Memristors can be found in
reference [18], including spectroscopic characterization, retention time and variability. The electrical
results (average HRS/LRS ratio, 6; retention time, 104 s; endurance, 102 cycles [18]) can be considered
to be promising given the early stage of development of this technology, and they are expected to
become more attractive once advanced laser lithography tools are employed for the development of
GO laser-fabricated memristors.

3. Numerical Analysis of Charge Conduction and Resistive Switching Mechanisms, Results
and Discussion

3.1. Time Series Statistical Analysis (TSSA)

The TSSA has been employed to characterize the statistical features of the device operation
variables through a long RS series [24]. In particular, the resistances in the LRS and HRS have
been studied. The Autocorrelation (ACF) and Partial Autocorrelation functions (PACFs) have been
calculated and represented in Figure 3 (see also Supplementary Materials). As can be observed, the
degree of correlation between the measurements of previous cycles is very high with respect to other
technologies (see, for instance, Reference [24] for other technologies with transition metal oxides as
a dielectric).

136



Materials 2019, 12, 3734

Figure 3. (a) ACF and (b) PACF versus cycle lag for the inverse of the values shown in Figure 2c. These
functions show the ACF and PACFs versus cycle number that represent the distance apart in cycles
within a RS series, see Reference [24]. The ACF and PACF minimum threshold bounds for the devices
under study are ±0.195 for both plots (see the supplementary information for the information linked to
the calculation of these threshold bounds), shown with dashed lines. We have considered 100 cycles in
our series; this is a reasonable number to extract information on the correlation between the data and to
extract a TSSA model.

It can be concluded that to obtain these results, the high conductivity region does not change
much between different cycles; this feature is the main source of the correlation. This fact leads us
to assume a filamentary-like conduction mechanism where a channel of high conductivity region is
formed after a set process that shorts the electrodes. In addition, the high correlation suggests that the
high conductivity path does not change much between cycles, keeping unaltered the main conduction
properties. It is reasonable to assume that it is just a narrow region that changes in between two larger
high conductivity regions that remain mostly unaltered. This narrowing is modified leading to the
creation of a fully-formed high conduction path that shorts the electrodes or that isolates them in case
the path is ruptured, leading to two large virtual electrodes (filaments remnants connected to the
electrodes [6]).

We have employed TSSA to analytically describe the dependencies of the LRS and HRS resistances
on previous cycles throughout the complete RS series (see in the Supplementary Material a summary
of the steps needed to develop a TSSA model). The general expression employed was based on an
Autoregressive (AR) approach [24], as seen in Equation (1):

RLRS/HRS(t) = Φ1 × RLRS/HRS(t-1) + Φ2 × RLRS/HRS(t-2) + . . . + Φp × RLRS/HRS(t-p) + εt (1)

where t stands for the cycle number within a long resistive switching series. In this modeling technique,
the order (p) is linked to the physics governing RS process in these devices. No previous knowledge
is assumed to extract the information from experimental data because the underlying technology
details and physics mechanisms are “hidden” in the RS data collected. The TSSA models are empirical
and determine the weights set (Φ1, ..., Φp), and the model order is determined by p. The term εt is
a residual that accounts for the model error (the difference between the measured and the modeled
value). In this respect, we focus here on the statistical information of the measured data without any
previous assumption linked to the underlying physics.

The resistance at the LRS can be modeled with an AR(2) approach, as seen in Equation (2).

RLRS(t) = 4936.018 + 0.7306 × RLRS(t-1) + 0.229 × RLRS(t-2) + εt. (2)

The HRS resistance works well with an AR(1), as described in Equation (3).
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RHRS(t) = 69955.16 + 0.9236 × RHRS(t-1) + εt. (3)

The time series residuals that are left after a comparison with the experimental data show a
white noise behavior; therefore, we can conclude that all the statistical information is included in
the models described in Equations (2) and (3). It is important to highlight at this point that TSSA
is an ideal tool used to analyze data in a series (such as a RS series); in this respect, it works well
for cycle-to-cycle variability analysis if we consider parameters such as the set and reset voltages or
LRS/HRS device resistances.

3.2. Quantum Point Contact Modeled Conduction

An analysis of the I–V curves in terms of second derivative dependencies has been performed
following [22]. In this respect, it is important to highlight that a screening procedure was developed
in [22] to detect charge conduction features that can be modeled with the QPC model. The results are
shown in Figure 4.

Figure 4. Experimental current versus applied voltage in the devices under study including the second
derivative of the current versus voltage for cycle A (a) and cycle B (b) shown in Figure 2a. A pattern in
agreement with the QPC model is seen in [22].

The characteristic one or two maxima in the current second derivative are seen in these devices.
Following previous results [22], this behavior could be regarded as a footprint of the existence of QPC
conduction. However, the fitting of the second derivative leads to an N parameter (number of channels
in the QPC model [22]) lower than the unity, which is inconsistent with the QPC model. In this respect,
a new representation is obtained assuming a series resistance of 5000 Ω (second numerical derivative
of the corrected current, I, taking into account the series resistance is shown in Figure 5). This series
resistance is reasonable considering the device resistance both at LRS and HRS, see Figure 2c. In this
manner, the voltage on the constriction that leads to quantum effects can be obtained accurately.
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Figure 5. Second derivative of the experimental current (symbols) versus voltage in the device under
study for the two reset curves shown in Figure 2. The analytically calculated QPC modeled current
second derivative (solid lines) is also shown. The QPC model parameters employed for cycle A are
the following: α = 6.5 (eV)−1; β = 0.4; Φ = 0.13 eV; N = 1; and for cycle B: α = 7.5(eV)−1; β = 0.5;
Φ = 0.055 eV; N = 1.

In both cases, there is only one channel for charge conduction, and this result corresponds to
a low dimensional high conductivity region. Also, a low energy barrier is observed, suggesting an
almost ohmic charge conduction regime, although in a low conductivity regime when compared with
conventional memristors based on transition metal oxides.

The previous results support the existing model that attributes resistive switching in laser-reduced
GO to the non-uniformity in the number and location of functional groups that create nanometric-size
regions of different conductance [18]. The sp2 regions present high-conductivity but they are interrupted
by low-conductivity sp3 domains at a nanoscale level that are responsible for a low current flow [30,31].
At certain locations within the structure, under the action of the voltage bias in the HRS, large
electrostatic potential gradients are created in the nanometric-size low-conductivity regions, resulting
in large localized electric fields. Assisted by Joule heating effects, these electric fields can trigger
the drift of oxygen and oxygen-containing groups due to the low migration barrier in GO [32,33].
The group migration at a specific point within the structure establishes a continuity path of sp2 domains,
which was previously impeded by a nanometric sp3 domain (quantum point contact as identified
in this work) and leads to a LRS [18]. Finally, it is worth mentioning that the findings in this work,
disclosing the filamentary nature of the conduction in laser fabricated GO memristors, open the path
for scaling the devices down by using high precision laser scribing systems.

4. Conclusions

The origins of resistive switching in recently introduced laser-fabricated graphene oxide memristors
have been studied by using statistical and numerical analysis tools. Time Series Statistical Analysis
applied to the high and low resistance states of the devices has shown high correlation that supports
the model of the formation of a conductive filament as the main source of the device internal resistance
switching. Furthermore, the quantum point contact conduction method has pointed to the existence of
a quantized point of conduction, which is formed and destroyed, connecting the electrodes by means
of a conductive path. These results underpin the existing theory that attributes the memristance in GO
to the formation of a highly reduced path in which stoichiometry is modified at a precise point leading
to the resistive switching.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/12/22/3734/s1.
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Abstract: One of the main obstacles for memristors to become commonly used in electrical engineering
and in the field of artificial intelligence is the unreliability of physical implementations. A non-uniform
range of resistance, low mass-production yield and high fault probability during operation are
disadvantages of the current memristor technologies. In this article, the authors offer a solution
for these problems with a circuit design, which consists of many memristors with a high operational
variance that can form a more robust single memristor. The proposition is confirmed by physical device
measurements, by gaining similar results as in previous simulations. These results can lead to more
stable devices, which are a necessity for neuromorphic computation, artificial intelligence and neural
network applications.

Keywords: memristor; neuromorphic computing; artificial intelligence; hardware-based deep
learning ICs; circuit design

1. Introduction

Since the theoretical [1] and practical [2] discovery of memristors, they have been
extensively studied [3–5] as elementary building blocks for artificial intelligence and neuromorphic
computing applications.

The expected properties of memristors for such applications are wide and analog resistance range,
low variance of device parameters and high device stability during long-term operation. Research has
been done [6] to find optimal materials that satisfy these expectations, but even then there are other
possibilities to further increase the capabilities of memristors.

In binary memory applications, three important properties should be considered. The first one is
having two clearly distinguishable states and these state declarations should apply to every element
in a memory array. The second one is having a fast switching speed between the states. To reach
the performance of the current complementary metal–oxide–semiconductor (CMOS) technology’s
RAM the switching speed should be less than 10 ns. The third one is cycle endurance, which is
the number of write–erase cycles without permanent device failure.

In crossbar-network applications, a certain amount of uniformity of the memristors is necessary.
The programming voltage and current levels are the same for every element and thus one expects that
they will behave similarly for the same input signals.

In the case of ANN applications, more deviance could be tolerated, but many state devices are
needed, so the memristors developed for binary or multi-state memory purposes will not be sufficient.

The mass production of devices, which can reliably fulfill these requirements, is not trivial.
If the production yield of single devices is less than 100 percent (as they are not functioning
as memristors or they are outside of the accepted range of parameters), then they can also affect
the access circuit and the encompassing parts of the neuromorphic system.
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If the production yield of single devices is less than 100 percent (as they are not functioning
as memristors or they are outside of the accepted range of parameters), then they can also affect
the access circuit and the encompassing parts of the neuromorphic system.

In very large scale integration (VLSI) device manufacturing, it is often easier and tends to cause
fewer faults to make the same device many times, and use it as a building block to emulate other devices,
instead of creating fewer, but different devices [7]. The same approach can be applied to memristors,
but one should take into consideration their special nonlinear behavior in the voltage–current domain.
This idea is further supported by the fact that memristors as two-terminals, could be manufactured
more easily on many layers on microchips [8] than transistors. However, with every extra layer,
the probability of device defects could also increase.

In order to maintain or even improve the virtual yield of the production, interconnected structures
of the memristor network are proposed. These circuits and the presented measurement results provide
a response to the above mentioned challenges. Our proposed circuit constructions can be efficiently
implemented on microchips, stacking the memristors of the circuit on top of each other. If a decent
multilayer production technology arises with memristors, the disadvantage of the usage of several
layers for the implementation of a single layer of memristor would be neglectable.

This paper is organized as follows: after the above problem proposal, the measurement
environment is introduced and explanatory discussion is given about our circuitry. The third section
contains the proposed circuits and the measurement results that are more detrimental to the yield.
This circuitry effectively addresses the proposed task. In the fourth section, the results are summarized
and analyzed. The article is closed with a brief summary of the results in the conclusion section.

2. Materials and Methods

2.1. Materials

The measured memristor devices are made of Ge2Se3 (germanium-selenide) and Ag (silver)
based chalcogenide dielectric with W (Tungsten) conductors. The devices have a switching threshold,
meaning that under a certain threshold voltage (0.1 V in our case), their state does not change.
This feature makes the memristor implementation desirable for applications where reading the state
should not change the state itself. On the other hand, usually it has very few metallic dendrites,
which makes the characteristic very coarse. The memristors are current-controlled and the typical
writing-erasing voltages are 2.5 V. One of the consequences of being current-controlled is that
the erasing process is faster than the writing process.

The measurement setup consists of an amplifier circuit as a current–voltage converter and a current
regulator resistor as it can be seen in Figure 1. The current regulator resistor helped to ensure that
the current does not reach high values where the device could become faulty. The used signal generator
and measurement device is an “NI ELVIS II+”, controlled by LabView software (National Instruments,
Austin, TX, United States). The sampling frequency is 500 kSample/s for every measurement. The state
of every device has been set to an OFF state before every measurement.
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R1 ≡ 220 kΩ

R2 ≡ 814 kΩ
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Figure 1. Measurement environment circuit. The measurement setup consists an amplifier circuit
as a current controlled voltage source and a current regulator resistor. The used amplifier is a “TL082”.
The applied voltage Vx was strictly between −2.5 V and 2.5 V. The memristor symbol represents
either a single memristor or a network of memristors depending on the measurement.

2.2. Methods

2.2.1. Metrics

First of all, it is important to differentiate two main types of memristors from a functional
point of view. The first type is the analog purpose memristor (APM). It operates in the continuous
domain, which means it can have any resistance (or conductance) value in its operational range.
This might sound unrealistic as we know that at a very low scale, energy levels are quantized, but it
can be interpreted as the memristor having so many states that can be considered as infinitely many.
Another formal definition is that an APM can store any real value between the normalized range of
zero and one.

The second type is the digital (or discrete) purpose memristor (DPM), which has several but
countable states and the resistance value can only be one of these states. An important property is that
these states should be clearly distinguishable from each other. This type can be used trivially as an n
state memory unit based on the number of its possible states.

An extreme, but important case of the DPM is when only two states can be clearly distinguished,
as they can be further classified as binary purpose memristors (BPM). With its reduced capabilities
they lack applications beside their use as binary memory units supplementary to the CMOS based
digital systems or implementing routing in logic gate arrays, like Field programmable gate arrays
(FPGAs) [9].

In general, the mass production of BPMs is solved, there are manufacturers [10], who sell
commercial devices for an affordable price. DPMs are existing in an early development state at research
institutes [11]. APMs, which have practically an infinitely many numbers of states, are yet to be
introduced and might even be impossible to produce due to physical limitations [12]; or it requires new
quantum mechanical solutions, which are also under development [13]. In general, from an application
point of view, digital memory technologies use BPMs, artificial neural networks need at least DPM
complexity, and neuromorphic computation applications require APMs.

Our previously introduced circuit proposals [14] were intended to convert several DPMs into
a single APM. This was tested through simulations, which showed that this circuit topology can
achieve analog behavior when made from solely multi-state memristors. However, in this work real
device measurement results are given, which proves that the same circuit can effectively convert
several unreliable BPMs into a more reliable one.

The same control signal should produce the same result, both in the transient characteristics
and the final state of the memristor. By reliability, we mean a low variance of the characteristics.
Our aim was to avoid using a memristor model as an absolute reference, and be able to approximate
the real memristors more accurately. Therefore, our analysis focuses on the mean and variance of
characteristics of several measurements on the same device or network in a short period of time.
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The index of dispersion has been used as the measure of unreliability. It formulates as the sum
of the variance of the signal, normalized by the amplitude of the signal, due to the expectation that
higher amplitude signals have naturally higher variance. This measure is valid only for positive data
points. For this reason, the absolute value of the signal has been used:

u =
N

∑
i

σ2
i

|μi| , (1)

where u is the unreliability of the device, N is the number of measurement points, i is a measurement
point of the measuring signal, σ2

i is the variance of a measurement point over the consecutive
measurements and μi is the mean of a measurement point over the consecutive measurements.

The approximation of the yield of a production technology is highly dependent on the available
number of samples of the given device. having a limited number of devices, this question can not be
addressed, but it has been shown in a previous work [14] that the yield of a production technology can
be increased with this method.

The planning and execution of the measurements have been carried out with consideration of
previous related studies [15] on memristor measuring techniques.

2.2.2. Circuits

The measurements were carried out on four different memristor network circuit topologies of
which two were introduced before [14] with corresponding simulation results. The H-fractal (Figure 2a)
and checkerboard-like (Figure 2b) topology both gave comparably good results, which shows that
verifying both cases with measurements is reasonable. During simulations with heavy defect
probability, the checkerboard-like topology has given slightly better results.

(a) (b) (c)

Figure 2. Measured general circuits. (a) H-fractal type of array. (b) Checkerboard type of array.
(c) Our newly introduced array.

In this article a third general circuit design is proposed (Figure 2c), which can be implemented
as a 2 × 2 × 4, three-dimensional grid structure on a multilayer carrier. A structure proposal can be
seen in Figure 3a. This new circuit had a better compromise between open and short connection faults,
but can only be constructed effectively in a three dimensional structure. The disadvantage is that since
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the height of the grid was even, and the top and bottom electrodes are aligned, they cannot form
a crossbar network.

A workaround could be that this type of network can scale with the height of the 2 × 2 column,
and it can be 2× 2× 3 or 2× 2× 5 sized. These new non-general networks result in different memristor
parameters. The advantage of an odd height is that it can be realized in a crossbar network as it can be
seen in Figure 3b.

Memristor networks that use binary memristors as building components will technically result in
a discrete memory capacity as either component can be in the OFF or ON state. The overall resistance
value can be calculated for every combination, which is a limited number of possible resistances.
However, with sufficiently large grids, this effect can be neglected as the individual operational
variances of the elements are also summing up, resulting in a complex macro-characteristics.

Another important property to consider is the used chip area. These networks should be
implemented efficiently on a chip as a two dimensional crossbar network. The implementation of
the previous networks was only possible using sixteen times more chip area for the emulation of a single
device. The new network uses only four times more area with a similar reliability gain, as compared to
a single memristor.

(a) (b)

Figure 3. The proposed three dimensional cell structures. (a) Two emulated cells from a 2 × 2 × 4 array.
(b) Two emulated cells from a 2 × 2 × 3 array.
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3. Results

3.1. Single Memristor Measurements

First test measurements were prepared with a single memristor device. Here two types of signals
were used. The first one was a single, 2.4 s long 2.5 V writing pulse, which shows some parameters of
the device. The results can be seen in Figure 4. The average ON state was 57 kΩ, the average OFF
state was 11.5 MΩ. The ON/OFF ratio is approximately 200.

The second type of signal is a sequence of a writing and an erasing signal. The writing pulse
was 160 ms long, while the erasing one was shorter, 40 ms. The results can be seen in Figure 5.
The writing process was faster and starts at a lower voltage level, but the switching was not as sharp
as in the previous case (Figure 4). During the reading sequence, the small amplitude pulses did not
change the state of the memristor.
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Figure 4. Long timescale measurement on a single memristor device with focus on the writing
characteristics. (a) The input signal and output response in the time domain. (b) Phase portrait of
the measurement. Switching is very sharp and the ON/OFF ratio is at least 100.
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Figure 5. Write-read-erase-read cycle measurement on a single memristor device. (a) The input signal
and output response in the time domain. (b) Phase portrait of the measurement. The read sequence
after the write and erase pulses are colored as blue and red, respectively.

3.2. Memristor Emulation Comparison Measurements

The following measurements were carried out on four different network types and on a single
memristor for reference. The measuring signal is alternating write–erase sinusoidal pulses with
a length of 23 ms in a sequence of 50 cycles.
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This measurement is supposed to simulate a general training scenario, where an analogue
memristor characteristic is expected and the training is done by several small pulses. According to this
consideration, the writing pulses of the measurement have not enough energy to change the state of
a single memristor into its ON state.

The results can be seen in Figures 6 and 7. Subfigures (a),(c) and (e) show the voltage–current
diagram of the whole signal. Subfigures (b),(d) and (f) are the voltage–current diagrams of the average
of all 50 write–erase signals with the current shown on a logarithmic scale.
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Figure 6. Short-time pulses on a single memristor, the checkerboard like and the H-fractal memristor
network, respectively. (a,c) and (e) show the voltage–current diagram of the whole signal. (b,d,f) are
the average of all 50 write–erase signals on a logarithmic scale.
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Figure 7. Short-time pulses on a single memristor, the new three dimensional network with sixteen
memristors and the reduced network with twelve memristors, respectively. (a,c) and (e) show
the voltage–current diagram of the whole signal. (b,d) and (f) are the average of all 50 write–erase
signals on a logarithmic scale.

4. Discussion

The checkerboard type of network was practically unable to switch its state significantly compared
to other solutions. This was probably due to the limited number of parallel connections in the network,
which produced less possible routes to open. Higher control voltage could change its state, but the risk
of device damage increases with the increased after-switch current. Longer pulses could also help,
but it makes the writing process slower.
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The results for the H-fractal type of network are very similar to the newly introduced network
regarding the writing of the state into low resistance position. However, this type of network has
problems with erasing the state into the OFF state and could get stuck at an in-between state.

The ON and OFF resistance values of the network with twelve memristors are lower than the other
networks due to the reduced number of serial layers. However, when one compares it to a single
memristor, it has lower ON resistance value and higher OFF resistance, meaning the network is more
sensitive to control signals than only one memristor. In other words, a pulse with the same voltage
level could make a clearer distinction between the initial and after states.

The previous simulation results suggested that the switching speed could decrease using
memristor grids. Surprisingly, the switching speed did not decrease, but increased instead.
The networks are approximately three times faster than a single memristor. This is fairly unexpected,
as the control voltage stayed constant in both measurements, which means that the voltage on any
single memristor in a network measurement had to be strictly lower than in the case of a single device
measurement at any given time during measuring.

One explanation of this phenomenon could be the following: under the threshold voltage,
the device behaves as a very small capacitor. As the metal flows into the dielectric matter to build
up the filament, the partially charged capacitor discharges, causing a short-time high-energy electric
current burst. The other devices are sensitive to fast current changes and the filament forming is
starting in them as well. It can be seen as a “domino effect” with the consecutive memristors. If any of
the OFF state memristors in a series switches to the ON state, the rest will automatically switch as well
immediately after.

If any of the memristors which closes the source in the series, opens, the rest will automatically
open immediately after.

Based on the above presented measurements the following parameter values were acquired,
presented in Table 1. The resistance values are the average ON/OFF ratio values of the 50 cycle long
measurement sequence.

Table 1. The table shows the main properties of emulating memristor networks. Higher ON/OFF ratio
is considered better and the best values are indicated accordingly, namely the highest OFF resistance,
the lowest ON resistance and the highest overall ON/OFF ratio. Lower dispersion is also considered
better. The lowest is indicated.

Measured Object OFF Resistance ON Resistance ON/OFF Ratio Dispersion Index

Single memristor 5.7889 MΩ 0.7185 MΩ 8.0569 0.04553
H-fractal network 19.472 MΩ 0.6717 MΩ 28.990 0.02718

Checkerboard network 20.322 MΩ 5.4633 MΩ 3.7197 0.04921
3D 2 × 2 × 4 network 20.651 MΩ 0.7072 MΩ 29.201 0.01800
3D 2 × 2 × 3 network 9.3426 MΩ 0.4194 MΩ 22.276 0.02491

Another important feature of th networks to note is the stronger nanobattery effect [16].
This causes the visible shift of the zero current level after the erasing pulse. The nanobattery effect is
undesired in most applications, but can be dealt with by an appropriate control voltage and timing.
It can also be taken advantage of, in some scenarios.

5. Conclusions

Two new types of memristor networks have been introduced, which are able to emulate more
reliable memristors. Measurements have been successfully carried out for both the previously
presented networks and the new networks. The measurements provided new information about
the macro-characteristics of memristor networks compared to the previous simulations. The increased
switching speed of memristor networks should be further investigated. This solution can be used with
existing devices to support the implementation of neuromorphic applications.
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The following abbreviations are used in this manuscript:

VLSI Very large scale integration
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DPM Digital (or discrete) purpose memristor
BPM Binary purpose memristor
CMOS Complementary metal–oxide–semiconductor
RAM Random access memory
FPGA Field programmable gate array
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Abstract: Memristor crossbar arrays without selector devices, such as complementary-metal oxide
semiconductor (CMOS) devices, are a potential for realizing neuromorphic computing systems.
However, wire resistance of metal wires is one of the factors that degrade the performance of
memristor crossbar circuits. In this work, we propose a wire resistance modeling method and
a parasitic resistance-adapted programming scheme to reduce the impact of wire resistance in a
memristor crossbar-based neuromorphic computing system. The equivalent wire resistances for
the cells are estimated by analyzing the crossbar circuit using the superposition theorem. For the
conventional programming scheme, the connection matrix composed of the target memristance values
is used for crossbar array programming. In the proposed parasitic resistance-adapted programming
scheme, the connection matrix is updated before it is used for crossbar array programming to
compensate the equivalent wire resistance. The updated connection matrix is obtained by subtracting
the equivalent connection matrix from the original connection matrix. The circuit simulations are
performed to test the proposed wire resistance modeling method and the parasitic resistance-adapted
programming scheme. The simulation results showed that the discrepancy of the output voltages of the
crossbar between the conventional wire resistance modeling method and the proposed wire resistance
modeling method is as low as 2.9% when wire resistance varied from 0.5 to 3.0 Ω. The recognition
rate of the memristor crossbar with the conventional programming scheme is 99%, 95%, 81%, and 65%
when wire resistance is set to be 1.5, 2.0, 2.5, and 3.0 Ω, respectively. By contrast, the memristor
crossbar with the proposed parasitic resistance-adapted programming scheme can maintain the
recognition as high as 100% when wire resistance is as high as 3.0 Ω.

Keywords: memristor; crossbar array; neuromorphic computing; wire resistance; synaptic weight;
character recognition

1. Introduction

Neuromorphic computing was investigated by C. Mead in the late 1980s as a hardware-based
approach for artificial intelligence [1]. The word “Neuromorphic” refers to an electronic circuit
that is based on digital and analog components to mimic the neurobiological structures in nervous
systems. Neuromorphic computing systems can be implemented on various VLSI (very-large scale
integration) systems [2–6]. The prevailing VLSI technology today comprises mainly of CMOS
(complementary-metal oxide semiconductor) devices. However, CMOS technology is approaching
the end of their capabilities because scaling CMOS down faces several fundamental limiting factors
stemming from electron thermal energy and quantum-mechanical tunneling [7,8]. The emerging
memristive devices, termed memristors, have been considered a promising candidate for realizing
the neuromorphic computing systems. Memristor was postulated by L. O. Chua in 1971 as the fourth
fundamental passive circuit element and experimentally demonstrated by HP (Hewlett Packard) Labs
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in 2008 [9,10]. Memristors has been potentially used to implement the neuromorphic computing
systems because the nonlinear relationship between magnetic flux and electric charge of memristors is
very similar to the plasticity behavior of biological brain [11,12]. In biological brains, synapse is the
connection between a presynaptic neuron and a postsynaptic neuron. The strength of a synapse is
represented by a synaptic weight. According to the neuron activities including excitatory and inhibitory,
synaptic weights can be positive or negative [13,14]. Synapses can be modeled by memristors as
shown in Figure 1 [11]. The synaptic weight is represented by the conductance of memristor, which
can increase or decrease according to the current flowing through the device.

 
Figure 1. A conceptual diagram of a memristor-based synapse [11].

A memristor crossbar array is a fully connected mesh of perpendicular wires, in which any two
crossing wires are connected by a memristor [15]. Neuromorphic computing systems employing
crossbar architecture of memristors have gained more advantages in terms of the flexibility, power
consumption, cost, and area [16–23]. Miao Hu et al. proposed a crossbar architecture of synaptic array
composing of a plus and minus crossbar arrays representing plus- and minus-polarity connection
matrices for analog neuromorphic computing [20]. To reduce the area and power consumption,
S. N. Truong proposed a new memristor crossbar architecture, which is composed of a single memristor
array and a constant-term circuit [21]. The proposed architecture can reduce the power consumption
by 48% and the area by 50% [21]. The memristor crossbar has also applied to the applications of speech
recognition and image recognition [22,23].

In a memristor crossbar array, some amount of voltage drop can be caused by parasitic
resistance, also known as wire resistance along the row and the column lines [19,24–28]. Hereinafter
“wire resistance” and “parasitic resistance” are used interchangeably. The impact of wire resistance
becomes inevitable when the array size increases [22]. To mitigate the impact of wire resistance,
several interesting schemes were proposed [25–28]. A design methodology has been proposed to
reduce the impact of wire resistance in a one-selector-one resistive device (1S1R) crossbar array [27].
The proposed design methodology seems to be complicated since the physical specification of the
devices must be considered [27]. Another approach to deal with the wire resistance is to use a dynamic
reference scheme [25]. The read operation is performed with two steps associated with a special reading
circuit. [25]. These proposed schemes are effective when they are applied to a memristor crossbar
array, in which memristors are used as binary switches between two distinct high and low resistance
states (HRS (High Resistance State) and LRS (Low Resistance State)). These solutions are mainly based
on the additional techniques or circuits to compensate the variation of reading voltage caused by
wire resistance. To the best of our knowledge, there is a lack of the techniques that can be applied to
the programming process of crossbar circuit to lessen the impact of wire resistance in the inference
process. In this work, we propose a parasitic resistance-adapted programming scheme for memristor
crossbar-based neuromorphic computing systems, in which memristors are used as analog connections.
An equivalent wire resistance is proposed for modeling wire resistance in crossbar circuit. The proposed

154



Materials 2019, 12, 4097

equivalent wire resistance matrix is used to compensate wire resistance during the programming
process. As the result, the impact of wire resistance in inference process is reduced significantly.

2. Materials and Methods

In neuromorphic computing systems, the synaptic weights obtained from the training process
are either positive or negative according to they are excitatory synapses or inhibitory synapses [13,14].
The signal passing through these synaptic connections can be strengthened or weakened. When modeling
biological synapses using memristors, it should be guaranteed that the synaptic weights could be
negative values or positive values, consistent with the inhibitory or excitatory synapses. For doing
this, the crossbar architecture with two memristor crossbar arrays for plus and minus connection
matrices was proposed [20]. Figure 2a shows a conceptual diagram of crossbar architecture of an analog
neuromorphic computing system [20]. Here plus-polarity and minus-polarity connection matrices are
utilized to implement the synaptic array, in which synaptic weights can be programmed to be negative
or positive. The circles in Figure 2a represent the memristors that connect the inputs and the columns.
a0 to an are additions, and s0 to sn are subtractions that produce the output voltages from V0 to Vn.
g+0,0 is the memristor’s conductance value of the crossing point between the first row and the first
column in M+ array. Similarly, g−0,0 is the memristor’s conductance in M- array, as shown in Figure 2a.
The output voltage for the ith column can be calculated as

Vi =
m∑

j=0
Vin, jg+ j,i −

m∑
j=0

Vin, jg− j,i

Vi =
m∑

j=0
Vin, jwj,i

Here, wj,i = (g+ j,i − g− j,i)

(1)

Figure 2. (a) The conceptual diagram of two crossbar arrays for implementing plus- and minus-polarity
connection matrices [20] and (b) the optimized crossbar architecture, which employs only one memristor
crossbar and a constant-term circuit for realizing negative and positive synaptic weights [21].
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In Equation (1), the output voltage is a summation of inputs, which are weighted by the corresponding
weights, wj,i. The synaptic weight, wj,i, is decided by the difference of two conductance values of
memristors in two arrays; g+j,i in the M+ array, and g−j,i in M− array. To reduce the power consumption
and area, S. N. Truong proposed a new crossbar architecture, which employed only one crossbar array
and a constant-term circuit [21]. The proposed crossbar architecture is conceptually shown in Figure 2b.
There is only one memristor crossbar array instead of two memristor crossbar arrays for representing
the signed synaptic array. The negative synaptic weight is generated using an additional column,
which connects to the inputs through RBs, as shown in Figure 2b. Here, a constant-term circuit is used
to replace a crossbar array without changing the functionality of the crossbar circuit [21].

In previous works, memristor crossbar circuits are simulated with ignoring the presence of wire
resistance. However, the impact wire resistance in crossbar is inevitable. It becomes more serious as
the array size increases [25]. Wire resistance is modeled by small-value resistors lying on the vertical
lines and the horizontal lines, as shown in Figure 3. In Figure 3, if wire resistance is omitted, the output
voltage of the ith column is calculated by Equation (2) [21].

VO,i =
m∑

j=0
Vin, jwj,i

where, wj,i = R0

(
1

RB
− 1

Mj,i

) (2)

Mm,1

M1,1

r

VIN,m

VIN,j

VIN,2

VIN,1

R0 R0 R0 R0

VF VO,0 VO,1 VO,i VO,n-1

GF G0 G1 Gi Gn-1

r

r

r

r

r

r

r

r

r r

r

Wire resistance

r

Mj,i

Figure 3. The schematic of memristor-based neuromorphic computing circuit with the presence of wire
resistance. Wire resistance is modeled by small-value resistors on vertical lines and horizontal lines.

Equation (2) is used for calculating the output voltage of the ith column. The output of each
column is a summation of the weighted inputs, hence each column works as a perceptron neuron.
In Equation (2), Mj,i is the memristance value of the crossing point between the jth row and ith column.
RB is a constant, the synaptic weight, wj,i, can be decided to be either negative or positive by adjusting
the memristance, Mj,i.

If wire resistance is not omitted, it can be modeled by small-value resistors along vertical and
horizontal lines as shown in Figure 3. The ith column of crossbar is separated and shown in Figure 4.
The output voltage of the ith column is calculated by applying Ohm’s law and the Kirchhoff’s current
law to the node of V− of the Op-amp, as presented in Equation (3).

Vo,i = R0i0

where i0 +
m∑

j=1
i j = 0 (3)

To analyze the circuit in Figure 3, we can use the well-known superposition theorem. In particular,
we isolate the circuit row by row as shown in Figure 4a. When we calculate the current for the jth
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row, we can assume that the inputs for other rows are zero, as shown in Figure 4b. Since the value
of the resistor, r, is very small compared to the memristance values, the circuit in Figure 4b can be
approximated by using the equivalent circuit, as illustrated in Figure 4c. In Figure 4c, the resistors,
which the current i1 passes through, can be approximately represented by an equivalent resistor R1,i:

R1,i = ir + mr (4)

where R1,i is an equivalent wire resistance for cell M1,i. In general, we can approximate the wire
resistance for the cell Mj,i as follows

Rj,i = ir + (m− j + 1)r (5)

where, m is the number of rows in the crossbar circuit. r is wire resistance value.
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r

r

r
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ij

Figure 4. Analyzing the crossbar circuit using superposition method. (a) The schematic of the ith
column with the presence of wire resistance; (b) analyzing the circuit using superposition method,
and (c) the equivalent wire resistance for the cell Mj,i.

In this work, we proposed a wire resistance modeling method by using the proposed an equivalent
wire resistance matrix for an m × n crossbar array, as illustrated in Figure 5. The elements in the
proposed matrix are the equivalent resistance values of wire resistance on vertical line and horizontal
line, which are calculated by Equation (5) for the corresponding cells.

157



Materials 2019, 12, 4097

 

ith column

jth row

nth column

mth row

Figure 5. The proposed equivalent wire resistance matrix for modeling wire resistance in an m × n
crossbar array. Here r is the value of wire resistance, m is the number of rows, and n is the number
of columns.

The proposed equivalent wire resistance matrix was used to compensate the impact of wire
resistance in crossbar array by adjusting the connection matrix according to the proposed equivalent
wire resistance matrix. In particular, we proposed a parasitic resistance-adapted programming scheme
to compensate wire resistance for a memristor crossbar-neuromorphic computing. The proposed
scheme is conceptually shown in Figure 6b. Figure 6a shows a conventional programming scheme for
a crossbar circuit. The synaptic weights that were obtained from the training process were converted
to the values of memristance using Equation (2). The memristance values of the cells in crossbar form
a connection matrix M as presented in Figure 6. For the conventional programming scheme, the cells
in the crossbar array were programmed to the target values presented in the connection matrix M.
Wire resistance was not considered during programming process and inference phase. To consider
the presence of wire resistance, the connection matrix was updated before it is used to program the
crossbar array. Specifically, the target memristance matrix was obtained by subtracting the proposed
equivalent wire resistance matrix from the original connection matrix, as conceptually shown in
Figure 6b. By updating the connection matrix with the proposed equivalent wire resistance matrix,
wire resistance was compensated in the inference phase. The connection matrix is updated using the
Equation (6)

Mj,i = Mj,i −Rj,i
= Mj,i − ir + (m− j + 1)r

(6)

where, Mj,i is memristance of the cell between the jth row the ith column. In the conventional
programming scheme, the cell Mj,i is programmed to have the memristance of Mj,i. In the proposed
programming scheme, the cell Mj,i is programmed to have the memristance of Mj,i − ir + (m − j + 1)r,
where the amount of ir + (m − j + 1)r represents the equivalent wire resistance for the cell Mj,i. By doing
this, wire resistance is compensated in the inference phase.
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Figure 6. (a) The conventional programming scheme, in which the memristance values in connection
matrix are used to program the corresponding cells in crossbar array and (b) the proposed parasitic
resistance-adapted programming scheme, where the value of connection matrix is updated by
subtracting the proposed equivalent wire resistance matrix from the original connection matrix.
The updated connection matrix is then used to program the crossbar array. R is the proposed equivalent
wire resistance matrix for an m × n crossbar array. r is the value of wire resistance, m is the number of
rows, and n is the number of columns.

3. Results

The circuit simulations were performed to verify the proposed wire resistance modeling
method and the parasitic resistance-adapted programming scheme for a memristor crossbar-based
neuromorphic computing system. The simulations were performed using the SPECTRE circuit
simulation provided by Cadence Design Systems Inc. [29]. Memristors were modeled using Verilog-A
and CMOS technology is given by SAMSUNG 0.13 mm process technology [30,31]. Figure 7a shows a
hysteresis behavior of a real memristor based on the film structure of Pt/LaAlO3/Nb-doped SrTiO3

stacked layer and a memristor model that can be used to describe various memristive behaviors [30,31].
The memristor model and parameters are presented in [30]. The crossbar circuit was used for the
application of character recognition. Figure 7b shows eight × eight images of characters used in these
simulations. Each character was composed of 64 black-and-white pixels. The crossbar circuit was
schematically shown in Figure 7c for recognition of the characters from “A” to “Z”. To recognize
26 characters, the memristor crossbar was composed of 26 columns and a constant-term of RB as
depicted in Figure 7c. The constant-term column connected to all inputs through RB to generate the
negative voltage as mentioned in the previous work [21]. The crossbar had 26 columns corresponding
to 26 perceptron neurons for recognizing 26 characters from “A” to “Z”. For example, the first column is
trained to be activated with the input character “A” and the 26th column is trained to be activated with
the input character “Z” [21]. Wire resistance was modeled by small-value resistors along vertical and
horizontal lines, as shown in Figure 7c. Here RB and R0 were set to be 60 KΩ and 200 KΩ respectively.
RF1 should be equal to RF2 as mentioned in previous work [21].
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Figure 7. (a) The memristor’s current–voltage characteristic measured from the real device and the
memristor’s behavior model; (b) the eight × eight images of characters used to test the proposed
equivalent wire resistance modeling method and the parasitic resistance-adapted programming scheme;
and (c) the schematic of crossbar circuit for the application of character recognition.

The proposed wire resistance modeling method using equivalent wire resistance matrix was
verified by the simulation that was set up as presented in Figure 8a,b. The synaptic weights obtained
from the training process were converted to the memristance values in connection matrix using
Equations (2) and (6). For the conventional method, wire resistance was modeled by small-value
resistors along vertical and horizontal lines, as shown in Figure 8a. The crossbar was programmed to
the target memristance values presented in the connection matrix using the VDD/3 write scheme [32].
For the proposed method, we calculated the equivalent wire resistance matrix as shown in Figure 5.
The small-values resistors were not present in the crossbar circuit, the value of equivalent wire resistance
matrix was added to the connection matrix instead, as conceptually shown in Figure 8b. In other
words, the connection matrix was updated by adding corresponding elements of the connection
matrix and the proposed equivalent wire resistance matrix. The crossbar was then programmed
to the target memristance values presented in the updated connection matrix using VDD/3 write
scheme. In Figure 8c, the output voltages of 26 columns for recognizing 26 characters were measured
when the vector of character “A” was applied to the inputs. Among the 26 columns, only the first
column produced high voltage for recognizing character “A”. When wire resistance was set to be
2.0 Ω, the voltage drop on wire resistance made the output voltages of columns increase, as shown in
Figure 8c [33]. Since the voltage drop on wire resistance depends on the length of metal line, the column
close to the first column had less change of voltage whereas the column far from the first column had
much change of voltage, as demonstrated in Figure 8c [33]. The result obtained from the conventional
method is represented by the square symbols and that one obtained from the proposed method with
equivalent wire resistance matrix is represented by the round symbols. The discrepancy between the
two methods was as low as 3%.

In Figure 8d, we calculated the percentage error, which is defined as the difference of the output
voltages between the conventional wire resistance modeling method in Figure 8a and the proposed wire
resistance modeling method in Figure 8b, in which wire resistance was modeled using the proposed
equivalent wire resistance matrix. In these simulations, wire resistance was varied from 0.5 to 3.0 Ω.
This range of wire resistance is commonly used and obtained from the International Technology
Roadmap for Semiconductors [24,25,34–37]. When wire resistance was set to be 0.5 Ω, the percentage
error was as low as 2.2%. The percentage error increased slightly when wire resistance increased,
as shown in Figure 8d. On average, the discrepancy between the two methods was as low as 2.9%.
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The simulation results indicate that wire resistance in crossbar circuit could be modeled using the
proposed equivalent wire resistance matrix, which is presented in Figure 5.
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Figure 8. (a) The conventional method for the crossbar circuit simulation with taking the presence
of wire resistance into account. Here wire resistance is modeled by small-value resistors along the
vertical and horizontal lines; (b) the proposed method with equivalent wire resistance for the crossbar
circuit simulation with considering the presence of wire resistance. Here, the small-value resistors are
not present in the crossbar circuit, the connection matrix is updated by adding the equivalent wire
resistance matrix to the connection matrix instead; (c) the output voltages of 26 columns for the input
character “A” and (d) the percentage error with varying wire resistance from 0.5 to 3.0 Ω.

Figure 9 shows the comparison of the recognition rate of memristor crossbar array between
the conventional programming scheme and the proposed parasitic resistance-adapted programming
scheme for recognizing 26 characters when wire resistance was varied from 0.5 to 3.0 Ω. For the
conventional programming scheme, the connection matrix obtained from the training process of
memristor crossbar for recognition of 26 characters was used for the crossbar array programming.
In the proposed parasitic resistance-adapted programming scheme, the connection matrix was updated
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by subtracting the proposed equivalent wire resistance matrix from the original connection matrix.
The updated connection matrix was then used for the crossbar array programming. The recognition
rate of the memristor crossbar with using conventional programming scheme declined dramatically
when wire resistance increased. This was due to the fact that the synaptic weight is a nonlinear
function of memristance as presented in Equation (2), the change of memristance caused by wire
resistance makes the synaptic weight change remarkably. As a result, the recognition rate was degraded
dramatically. In particular, the recognition rate of the memristor crossbar with using the conventional
programming scheme was 99%, 95%, 81%, and 65% when the wire resistance was set to be 1.5, 2.0, 2.5,
and 3.0 Ω, respectively, as indicated in Figure 9. The presence of wire resistance causes the output
voltage increased as mathematically analyzed and experimentally demonstrated in previous work [33].
The last column had the large variation of output voltage caused by wire resistance [33]. Therefore,
the increase of wire resistance caused the recognition rate to decrease significantly, as the shown in
Figure 9. By contrast, the memristor crossbar with using the proposed parasitic resistance-adapted
programming scheme could maintain the recognition as high as 100% when wire resistance was as high
as 3.0 Ω. This was because the value of memristance in connection matrix was updated by subtracting
the equivalent wire resistance matrix from the original connection matrix. By doing this, the wire
resistance in crossbar circuit was compensated.

Ω

Figure 9. The comparison of recognition rate between the conventional programming scheme and the
proposed parasitic resistance-adapted programming scheme when wire resistance is varied from 0.5 to
3.0 Ω.

Wire resistance degraded the performance of crossbar circuit dramatically. In this work, we tried
to mitigate the impact of wire resistance by compensating wire resistance. It was done by adjusting the
memristance values before they were used to program the crossbar array. In particular, the connection
matrix was updated by subtracting the equivalent wire resistance matrix from the original connection
matrix. By doing this, no additional circuits or components were required. The proposed parasitic
resistance-adapted programming scheme was effective for memristor crossbar-based neuromorphic
computing systems.

4. Conclusions

Wire resistance is one of the factors that degrade the performance of the crossbar circuits
significantly. In this work, we proposed a parasitic resistance-adapted programming scheme to mitigate
the impact of wire resistance in memristor crossbar array. Firstly, a wire resistance modeling method
using equivalent wire resistance matrix was proposed. The equivalent wire resistance matrix was
achieved by analysis the crossbar circuit using the superposition method. The connection matrix was
updated before it was used as a target for memristor crossbar programming. The updated connection
matrix was obtained by subtracting the proposed equivalent wire resistance matrix from the original
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connection matrix. The circuit simulations were performed to verify the proposed wire resistance
modeling method and the parasitic resistance-adapted programming scheme. The simulation results
showed that the discrepancy of the output voltages of the crossbar circuit between the conventional
wire resistance modeling method and the proposed wire resistance modeling method was as low as
2.9% when wire resistance varied from 0.5 to 3.0 Ω. The recognition rate of the memristor crossbar
with conventional programming scheme was 99%, 95%, 81%, and 65% when wire resistance was set to
be 1.5, 2.0, 2.5, and 3.0 Ω, respectively. By contrast, the memristor crossbar with the proposed parasitic
resistance-adapted programming scheme could maintain the recognition as high as 100% when wire
resistance was as high as 3.0 Ω.
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Abstract: Memristive devices have found application in both random access memory and
neuromorphic circuits. In particular, it is known that their behavior resembles that of neuronal
synapses. However, it is not simple to come by samples of memristors and adjusting their parameters
to change their response requires a laborious fabrication process. Moreover, sample to sample
variability makes experimentation with memristor-based synapses even harder. The usual alternatives
are to either simulate or emulate the memristive systems under study. Both methodologies require
the use of accurate modeling equations. In this paper, we present a diffusive compact model of
memristive behavior that has already been experimentally validated. Furthermore, we implement an
emulation architecture that enables us to freely explore the synapse-like characteristics of memristors.
The main advantage of emulation over simulation is that the former allows us to work with real-world
circuits. Our results can give some insight into the desirable characteristics of the memristors for
neuromorphic applications.

Keywords: memristor; compact model; emulator; neuromorphic; synapse; STDP; pavlov

1. Introduction

Memristive elements or resistive switches are two-terminal components that exhibit a hysteretic
relation between voltage and current [1–3]. Because they are highly nonlinear and have the property
of non-volatility, there is a great interest in their use in the design of new applications in neuromorphic
circuits [4–15], programmable logic [16–18] and chaotic circuits [19–21], as well as in the development
of new memory technologies [22–25]. Unfortunately, it is not simple to come by samples of memristors.
Moreover, each time a researcher desires to adjust a parameter to change their response, she needs to go
through a laborious fabrication and testing process. The usual alternatives are to either simulate [26–30]
or emulate [31–37] the memristive systems under study. Emulation has the additional advantage
that it allows to test the interaction of memristors with real circuit components [38]. For this reason,
we present a simple emulator, based on widely-available and low-cost hardware that can work with
various numerical models of memristors.

Since synapses can be understood as two-terminal elements with variable conductance, there has
been an increasing interest on the application of memristors as synaptic junctions [4–8,13]. In particular,
it has been proposed to modulate memristors conductance by applying specific signals, namely action
potentials, with shapes and time characteristics that define the response of the neuromorphic circuit
such as in the case of the Spike-Timing-Dependent Plasticity (STDP) process [6,8]. STDP relates the
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change in connection strength between two neurons as a function of the temporal distance between pre
and postsynaptic stimuli [39–41]. It has been observed that the synaptic strength increases (decreases)
when the presynaptic cell fires before (after) the postsynaptic neuron.

In the literature, we find some sophisticated protocols and complex circuits that allow for
qualitatively mimicking the behavior of synapses [4]. However, it has been recently shown that
the response of memristors with diffusive dynamics is already very similar to that of a synaptic
junction [29,42]. Thus, it is interesting to study the application of this type of memristors in
neuromorphic computing systems.

Memristors have also been used as part of more complex neuromorphic circuits. Particularly,
in those that mimic the classical learning rule known as Pavlovian conditioning [43–45]. In this
learning procedure, a specific stimulus that provokes a given response is paired with a neutral stimulus
and, as a result of this pairing, the neutral stimulus can later evoke a response in the absence of the
specific stimulus [46].

Since memristors with diffusive dynamics are well-suited to mimic the behavior of a synapse,
in this work, we focus on the study of such type of memristors in simple neuromorphic circuits that
present STDP behavior and Pavlovian conditioning, and study their performance as a function of
the memristive device response time. To this aim, we consider a compact model of memristor that
accurately describes the behavior of actual memristive systems [47–49]. This memristor model was
implemented in an emulation architecture based on a microcontroller and a digital potentiometer.
An exhaustive characterization of the emulator device and preliminary results of the STDP process
were presented in Ref. [50].

1.1. Compact Model of Memristive Behavior

In this section, we review a compact model for memristors with diffusive dynamics that we have
already introduced and have shown to represent accurately the experimentally measured behavior of
actual devices [47–49].

Memristive devices are usually modeled by two equations. While one of the equations describes
the I–V characteristic, the other governs the evolution of a state variable on which the I–V characteristic
depends on. Many experimental reports show that, as multiple conductive channels in the insulator
are created or destructed, metal-insulator-metal devices exhibit more than two conductive states.
For this reason, we developed a model whose state variable tracks the fraction of active conductive
channels [47–49]. Assuming that the channel creation probability follows a threshold distribution
f+(v), the dependence of the creation of conductive channels Γ+ on the applied voltage v can be
calculated as

Γ+(v) =
∫ +∞

−∞
H(v − ξ) f+(ξ)dξ , (1)

where H(x) is the Heaviside function. On the other hand, the destruction of conductive channels Γ−

can be obtained by considering the destruction threshold distribution f−(v). Both Γ+ and Γ− are used
to define a recursive formula for the discretized-time evolution of active conductive channels as

λ(v(t)) = min
{

Γ−(v(t)), max
[
λ(v(t − h)), Γ+(v(t))

]}
, (2)

where h is the integration time step. The evolution of λ is highly sensitive to the creation and
destruction distributions f±(v). For instance, skewed distributions may be suitable to describe devices
where transitions take place abruptly upon reaching a given threshold potential while bell-shaped
distributions may be used to describe those devices with gentle transitions [51]. For the sake of
simplicity, we consider the latter approach with f±(v) following logistic distributions. Thus, the Γ±

functions are given by sigmoid functions

Γ±(v) = 1
1 + e−α±(v∓δ±)

. (3)
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Parameters δ± and α± are positive constants that account for the positive and negative threshold
potentials and transition rates, respectively. Figure 1 depicts voltage distributions f± and the
corresponding Γ± functions. Equation (2) fixes the evolution of active channels λ between the
region delimited by Γ±. Conductive channels are neither aggregated nor dissolved instantaneously.
Moreover, the response time depends on the magnitude of the driving signal. Experiments have
shown that switching time and voltage are related by an exponential function. In order to account this
phenomenon, the time evolution of active channels w(t) is described by the differential equation

τ0 exp
(
−|v(t)|

v0

)
d
dt

w(t) + w(t) = λ(v(t)) , (4)

where τ0 is a characteristic response time, associated with a diffusive process, and v0 a positive constant
that weights the input stimuli.

+-

f +f -
v

Figure 1. Threshold distributions f± are bell-shaped. The number of active channels λ is a function of
the applied potential v and evolves within the region delimited by Γ+ and Γ−.

The model is completed by specifying a relationship between w(t) and the I–V characteristics
of the device. In previous works, the I–V characteristic equation was a nonlinear relationship that
resembled that of two identical opposite-biased diodes [52,53]. As the main goal is to study the
dynamics of switching effect, we simplified the I–V relation to that of a linear variable resistance
described by

R(t) = Ronw(t) + Roff (1 − w(t)) , (5)

where Ron and Roff are the low and high-resistance levels of the memristor, respectively. This simplified
relation alleviates the computation burden of simulation and emulation processes, without changing
the essence of the model.

1.2. Emulation Architecture

Many emulation architectures have been proposed [31–37]. Following the work of Olumodeji and
Gottardi [36], we base our design on an Arduino board and a digital potentiometer. A schematic of
the emulator design is shown in Figure 2. The analog-to-digital converters (ADCs) in the Arduino
are used to measure the current that flows through the potentiometer. The microcontroller integrates
the differential equations that model the behavior of the memristor and changes the resistance of the
potentiometer. A description of the emulator architecture is given in Section 3.1. In Section 2.1, we
present results that validate the correctness of the implemented emulator.
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Figure 2. Schematic of the proposed emulator. An analog-to-digital converter (ADC) in the
microcontroller measures the voltage on the digital potentiometer. The differential equations
describing the memristor behavior are numerically integrated based on those measurements; then,
the potentiometer resistance is changed accordingly. Signal conditioning is required to adapt the
voltage to the microcontroller ADC input range.

1.3. Memristors for Neuromorphic Applications

There is a vast literature on the application of memristors for machine learning and computation
(see, e.g., [54–58] and references therein). In particular, a review of the pertinent bibliography reveals a
special interest on the use of memristors in neuromorphic circuits [4–15]. The focus of this paper is
to study the possibility of using memristors as neuronal synapses and to characterize the role of the
parameters that influence the dynamics of the memristive behavior.

A synapse is a biological structure that allows the communication of two neurons which is located,
for example, in the junction of an axon with a dendrite of a different cell. The modulation of the
synaptic strength plays a crucial role in learning and memory formation. By adjusting the weight
of cells’ connections, the neural network can be reconfigurated. The connection strength between
network elements is adapted through processes known as learning rules. One type of these processes
is the one described by the Hebbian theory where it is postulated that the synaptic modulation is
driven by correlations between pre and postsynaptic neuronal activity. Spike-Timing-Dependent
Plasticity (STDP) process [39–41,59] is one common protocol to analyze the adaptation of synaptic
strength. The initial strength of connection is quantified by measuring the response of the postsynaptic
neuron to the application of a measurement pulse to the presynaptic cell. Then, a periodic sequence
of presynaptic and postynaptic stimuli, separated by a time Δt, is applied. The effect of such stimuli
signals is evaluated by measuring the postsynaptic response to a new test pulse in the presynaptic
neuron. STDP describes the dependence of the change of synaptic strength, before and after the
treatment, on Δt. In Section 2.2, we review results of a series of experiments [50] with emulated
memristors that mimic the STDP process of real biological synaptic junctions.

Classical conditioning is another type of learning theory that relates preceding stimuli and
behavioral reactions in animals. Let us assume that there is an unconditioned stimulus (US) that
provokes an unconditioned response (UR). There is also a neutral stimulus (NS) that initially does
not provoke any response. If the neutral stimulus is presented to the subject simultaneously with
the unconditioned stimulus in one or more opportunities, then an association is created and the NS
becomes a conditioned stimulus (CS) that, even in the absence of the US, provokes a conditioned
response (CR) like the unconditioned one. The typical example from Pavlov’s original research is
the physiological reaction of dogs in the presence of food [46]. A dog naturally salivates (UR) in the
presence of food (US). If, for example, a dog is stimulated by the sound of a bell (NS), no reaction
in the digestive system is found. However, if the food is accompanied by a bell sound in several
opportunities, the dog learns to associate the bell to food. Then, the sound of the bell becomes a CS
that provokes salivation in the absence of food (CR).

There are many examples of neuromorphic circuits involving memristors that appear to mimic
Pavlovian learning [31,43–45,60,61]. Tan et al. [45] note that Pavlovian conditioning comprises three
different behaviors: (1) acquisition of the association by training trials where NS and US are either
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simultaneous or close in time, (2) extinction of the association (forgetting) when CS is applied alone,
and (3) recovery by a training process after the last extinction. According to Tan and colleagues, no
previous works addressed all three features of classical learning.

Figure 3 shows a block diagram of the experimental setup identical to that in Hu et al. [43].
The unconditioned stimulus is fed into neuron 3 through synapse 1. Since the response to the US
is innate and assumed to be unchangeable, synapse 1 is simply implemented as a constant resistor.
The conditioned stimulus is fed into neuron 3 through synapse 2. Given that actual conditioning
occurs in this synapse, its implementation is slightly more complex and it involves a memristor.
Moreover, this synapse receives feedback from neuron 3. The output of the experimental setup is a
simple comparator that gives a binary signal (salivation/no-salivation) based on the output of neuron 3.
In Section 2.3, we show that the simplified model in Equations (2)–(5) is useful to reproduce the essence
of classical conditioning when used to emulate the memristor in Figure 3. A detailed description of the
experimental setup, including circuits schematics, is given in Section 3.2.

Neuron 1

Neuron 2

Neuron 3

Synapse 1

Synapse 2

Bell/CS

Food/US

Comparator

Salivation/
Response

Figure 3. Block diagram of the system used to mimic Pavlovian learning [43].

2. Results and Discussion

2.1. Validation of the Emulation Architecture

We verified the correctness of the emulator design by implementing the memristor model
introduced in Section 1.1 and comparing the resulting measurements with numerical simulations.
The circuit schematic of the experimental setup and typical measurements are shown in Figure 4.
The circuit under test, shown in Figure 4a, is comprised of an arbitrary wave generator that feeds the
emulator device with a sinusoidal signal and an in-series measuring resistance that tracks the flowing
current. Figure 4b shows experimental results for two driving frequencies. It can be seen that the
rate at which the driving signal changes influences the apparent switching threshold [62]. In order to
validate the memristor emulator, we solved Equations (2)–(5) numerically. These results are presented
in Figure 4b showing a good agreement with the emulator results.
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AWG

vg

R(t)

vs

Rs

(a) Experimental setup
(b) Typical hysteresis cycles

Figure 4. Emulator results: (a) experimental setup. The circuit under test is driven by an arbitrary
waveform generator (AWG). Current through the memristor is measured as a voltage drop on an
in-series resistor Rs = 1 kΩ. (b) circuit current vs. memristor voltage: simulation (solid line) and
measured emulator (points) results. The AWG provides a variable frequency sinusoidal signal with
amplitude A = 2.5 V. The switching thresholds move towards higher voltage values when the input
frequency increases. Parameters were set to α± = 15 V−1, δ± = 0.2 V, Ron = 35 Ω, Roff = 9.5 kΩ,
v0 = 0.3 V, and τ0 = 0.01 s.

2.2. Synapse Mimicking

Part of the material in this section was already presented in Ref. [50]. The main goal is to reproduce
the STDP process by an appropriate pulsing experiment with the memristor playing the role of the
synapse. We used a simple circuit comprising an arbitrary waveform generator, a resistor, and the
memristor emulator as it is schematized in Figure 4a. We applied a 500 ms-period signal consisting
of two stimulus pulses, one positive (the presynaptic stimulus) and one negative (the postsynaptic
stimulus). The signal also included two measurement pulses, one of them 50 ms before the presynaptic
pulse and the other 50 ms after the postsynaptic stimulus. While the stimuli were 50 ms-wide and had
an absolute amplitude of 1.5 V, the measurement pulse was only 25 ms-wide and 200 mV high. Pulse
duration was partly determined by the frequency limitations of the emulator circuit (see Section 3.1).
The measurement pulse amplitude was chosen in order to avoid a significant resistance change.
Figure 5 shows a particular example where two stimuli overlap for Δt = 25 ms. Figure 5 also shows
results tracking the current flowing through the emulator. As expected, the transient response of the
current corresponds to the resistance change of the emulator. Let us remark that the results in Figure 5,
as well as the results in all the remaining figures of this work, were experimentally obtained on the
basis of emulated memristors.

Having fixed the pulsing protocol, model parameters were chosen on a trial and error basis, aiming
to obtain the desired synapse-like behavior: α± = 30 V−1, δ± = 0.75 V, Ron = 1 kΩ, Roff = 5 kΩ,
and v0 = 0.2 V. Since we are interested on the influence of the device’s response time, τ0 was varied.
In order to understand the behavior of the memristor with the selected parameters, Figure 6 shows
experimental results, measured on the emulator, for different values of τ0. The experimental setup is
the same as in Figure 4a, where a sinusoidal signal is applied. The frequency (1 Hz) and amplitude
(1.5 V) were set to be commensurate to those in the pulsing experiment. It is interesting to compare
the resulting curves in Figure 6 with those in Figure 4b. Whereas in the latter case Ron and Roff are
attained in each cycle (as evidenced by the same extreme slopes for both driving frequencies), in the
former case, the memristance changes between two intermediate values. Moreover, the two extreme
resistance values depend on the response time τ0.
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Figure 5. Driving signal vg and current i flowing through the emulator. Two 50 ms-wide and 1.5 V-high
stimulus pulses and two 25 ms-wide and 200 mV-high measurement pulses comprise each period.
In this example, Δt = 25 ms and the pre and postynaptic stimuli overlap for 25 ms. Parameters:
α± = 30 V−1, δ± = 0.75 V, Ron = 1 kΩ, Roff = 5 kΩ, v0 = 0.2 V, and τ0 = 10 s.

Figure 6. Circuit current vs. memristor voltage: measured emulator results. The AWG provides a
1 Hz sinusoidal signal with amplitude A = 1.5 V. Parameters were set to α± = 30 V−1, δ± = 0.75 V,
Ron = 1 kΩ, Roff = 5 kΩ, and v0 = 0.2 V. The device’s response time was varied: τ0 = 5, 10, 20 s (red,
blue, and green lines, respectively). Extreme memristance values depend on the value τ0.

Let us now return to the pulsing protocol in Figure 5. For a fixed Δt, we applied a driving signal
that was composed of several periods of the stimulus signal. In this way, we studied the relation
between Δt and the resistive change of the device. Figure 7 shows the resistance behavior during
the first eight periods for two Δt and a pair of different initial conditions. The figure shows that the
final value of the resistance is sensitive to the delay Δt but not to the initial setting. We thoroughly
characterized this behavior by exciting the memristor with 20 consecutive periods of the stimulus
signal and changing the value of Δt. Figure 8 shows the relation between the final resistance and
Δt. In particular, we show results for τ0 = 5, 10, and 20 s (see Equations (2)–(5)). As it can be seen,
the behavior depends on whether Δt is smaller or greater than the pulsewidth (50 ms). Whenever there
is destructive interference between the pre and postsynaptic stimuli (|Δt| < 50 ms), the final state
exhibits a strong dependence on |Δt|. However, no such dependence is observed when |Δt| > 50 ms
and only τ0 influences the final resistance.
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Figure 7. Behavior of the resistance. Initial conditions are indicated by the upside (=Roff) and
downside (=Ron) triangles. Red and blue colors stand for Δt = 5 ms and Δt = 50 ms, respectively.
All experimental parameters were as in Figure 5 except that τ0 = 5 s.

Figure 8. Influence of Δt on the emulator resistance for τ0 = 5 (blue), 10 (red) and 20 s (green).
The initial setting was 5 kΩ and the remaining experimental parameters were as in Figure 5.

Figure 9 shows the influence of Δt and τ0 on the ratio of change of the resistance in relation to its
final state. Since the measured behavior of the resistance as a function of Δt is qualitatively similar
to that observed in real neurons, we believe that memristive devices that are modeled by this type
of dynamic behavior are suitably to be used in neuromorphic circuits inspired by the STDP process.
As the final state of resistance is affected by the parameter τ0, it will affect the resistance change ratio.
The change of resistance decreases as τ0 increases.
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Figure 9. Percentage of change of the resistance vs. Δt for characteristics times τ0 = 5 (blue), 10 (red),
and 20 s (green). The larger the τ0, the weaker the learning rule.

2.3. Classical Conditioning

In this section, we show that the simplified model in Equations (2)–(5) is useful to reproduce the
essence of classical conditioning. Figure 3 shows a block diagram of the experimental setup identical
to that in Ref. [43]. Details of the experimental setup are given in Section 3.2.

Figure 10 shows typical results of our experimental setup for Pavlovian conditioning. Results are
grouped into four blocks. In the first block, in the absence of association, the bell (signal Vb) is a neutral
stimulus that does not provoke any response (no salivation in the last row). In the second block,
the unconditioned stimulus (food, Vf ) is accompanied by the unconditioned response. Although the
bell follows immediately after the US has disappeared, no association is produced and there is no
response to the neutral stimulus. In the third block, food and bell are simultaneous and the association
is acquired: there is a conditioned response to the conditioned stimulus even after the unconditioned
stimulus has disappeared. Moreover, after a lapse in which CS is applied alone, the association is
forgotten. Finally, in the fourth block, the association is recovered. Note that the forgetting process takes
longer than in the third block, which corresponds intuitively to the reinforcement of the association.
In summary, all three features described by Tan et al. [45] as necessary for classical conditioning are
present, viz. acquisition, extinction and recovery of the association.

One of the advantages of using an emulator instead of an actual memristor is the possibility of
changing model parameters easily. It is this advantage that allows us to study the influence of the
characteristic response time of the memristor τ0 on learning time and memory persistence. Figure 11
shows results for the same experimental setup as in Figure 10. Memory persistence is measured as
the number of input bell pulses, after the food stimulus has disappeared that produces a conditioned
response. Since small random variations may produce changes in the measurements, Figure 11 presents
results of ten experiments. Although it can be expected that, as τ0 increases, the memory lasts longer,
Figure 11 seems to exhibit a different picture. However, the fact is that, as τ0 increases, it takes longer
to produce a strong association between the conditioned stimulus (bell) and the conditioned response
(salivation). Weaker association for larger memristor response time is reflected in shorter memory
persistence. Even in Block 3, no association is learned when τ0 = 20 s. Longer memory persistence in
Block 4 is due to the strengthening of association after a second round of training.

In order to evaluate memory persistence without the confounding element of learning time, we
conducted a different set of experiments where the system departs from a strong association (low
memristor resistance, ∼1 kΩ). At the beginning of each experiment, both the unconditioned and
conditioned stimuli are present for five pulses. After this association-strengthening period, both stimuli
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are interrupted for a variable lapse (measured as number of absent stimulus pulses or blank spaces).
Finally, only the conditioned stimulus is enabled again after the no-stimuli lapse. Memory persistence
is measured as the number of CS pulses that produce a response in this final period of the experiment.
Figure 12 shows a typical experiment and Figure 13 shows the results of five experiments. As it can be
observed, the learned association persists longer as the characteristic time τ0 increases, as it intuitively
expected. Moreover, there is no significant evidence of a stronger forgetting process as the period
without stimuli gets longer.
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Figure 10. Pavlovian conditioning. When present, stimuli Vf (food) and Vb (bell) are represented
1 V-high square waves with a 20 Hz frequency and 30% duty cycle. Parameters of the memristor model:
v0 = 0.2 V, α+ = 10 V−1, α− = 5 V−1, δ+ = 0.7 V, δ− = 0.6 V.
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Figure 11. Memory persistence in Pavlovian conditioning. Results correspond to 10 experiments
in the same conditions as in Figure 10. As the characteristic response time of the memristor, τ0,
increases, it takes longer to produce a strong association between the conditioned stimulus (bell) and
the conditioned response (salivation).

The characteristic response time τ0 varies between the different memristive systems.
Amorphous silicon devices present τ0 values of the order of 103 to 104 s [63,64], HfOx/AlOx structures
of the order of 102 s [65], and Ti/HfO/Pt of the order of 1 s [66]. Moreover, many devices present a
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highly asymmetric behavior between ON/OFF switching times [67]. For these reasons, it is important
to perform preliminary characterizations of the neuromorphic circuit to be implemented. Our results
suggest that applications, where the information is to be retained for the longest time, should be based
on devices with high τ0 value. However, this has the disadvantage that the resulting learning rules are
going to be weaker. On the other hand, in applications where the reconfiguration of the connections is
dynamic and it is expected to obtain appreciable changes in short times, the design should be based on
devices with low τ0 where the learning rules are stronger.
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Figure 12. A typical example of the experiments to quantify memory persistence. After both stimuli
are interrupted, only the conditioned stimulus (bell’s sound) is re-enabled. In this case, there are five
blank spaces (no-stimuli lapse) and the memory persistence is measured as 14. Model parameters are
as in Figure 10, except for τ0 = 20 s.
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Figure 13. Memory persistence in Pavlovian conditioning. Results correspond to five experiments in
the same conditions as in Figure 12.
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3. Materials and Methods

3.1. Details of the Emulator Architecture

Figure 2 shows the schematic of the emulator design. A detailed description and analysis of
the architecture of the emulator can be found in Ref. [50]. Time steps of the numerical integration
algorithm are limited by the computation speed of the microprocessor. For this reason, we resorted to
one of the fastest Arduino boards, the Arduino Due with an Atmel SAM3X8E processor running at 84
MHz [68]. The resulting integration time step was ∼400 μs and, hence, frequency of input signals are
required to be 	 2.5 kHz.

We used a Renesas X9C103P [69] potentiometer that accepts bipolar voltage signals and has 100
possible resistance values between ∼35.0 Ω and ∼9.5 kΩ. Although we found this potentiometer
adequate for our current implementation, it would be convenient to upgrade future designs with a
higher resolution potentiometer.

The code used to interact with the digital potentiometer was developed by Timo Fager [70].
The X9C103P potentiometer is controlled by an external clock that sequentially changes the resistance
by increment or decrement steps. The larger the change in resistance, the longer it takes to realize it
due to this sequential programming feature, leading to larger integration time steps. Larger time steps,
in turn, limit the highest admissible frequency of the input signals.

Analog-to-digital converters (ADCs) of the Arduino Due admit inputs only between 0.0 and 3.3 V.
To prevent damage and malfunction of the microprocessor, there is a signal conditioner circuit to
adapt the sensed voltage to adequate signal levels (see Figure 2). Essentially, the signal is buffered,
attenuated and biased to comply with the ADC input range.

Measurement errors also limit the emulation accuracy. We found measurement errors much
higher than the ADC resolution of the Atmel SAM3X8E microcontroller (12 bits, LSB < 1 mV) due to
several noise sources, suggesting that a better noise-resistant circuit design is needed, especially in
signal adaptation stage in Figure 2. One of the possible noise sources is due to digital clock feedthrough.
Noise problems were somewhat alleviated with low pass filters.

The model described in Section 1.1 is implemented in Arduino Due using a semi-implicit Euler
integration algorithm. Algorithm 1 shows the pseudocode of the main loop. Function SETRESISTANCE()
uses the utilities in Ref. [70]. Function READVOLTAGES() reads the results from the microcontroller’s
ADCs and computes the voltage drop on the potentiometer on the basis of the signal adaptation circuit
(see Figure 2). The remaining functions are explained in Algorithms 2 and 3.

Algorithm 1 Model implementation in Arduino Due: Main loop

while True do
Δt = TIMEMEASURE() � Computes the actual integration time step

v = READVOLTAGES() � Reads voltage adapted at the ADC’s input

R = UPDATERESISTANCE(v,Δt) � Integrates the differential equation of the model

SETRESISTANCE(R) � Sets the potentiometer resistance
end while

Algorithm 2 Model implementation in Arduino Due: Integration time step

function TIMEMEASURE
t = micros() � Read microcontroller’s running time in microseconds

Δt = t − told � Time step

told = t

return Δt
end function
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Algorithm 3 Model implementation in Arduino Due: Numerical Integration

function UPDATERESISTANCE(v,Δt)
Γ+ = 1

1+e−α+(v−δ+)

Γ− = 1
1+e−α−(v+δ−)

λ = min {Γ−, max [λold, Γ+]}
τ = τ0 exp

(
−|v|

v0

)

w = τwold+Δtλ
Δt+τ

R = Ronw + Roff (1 − w)

wold = w

λold = λ

return R
end function

3.2. Details of the Conditioned Learning Experiment

Figure 3 shows a block diagram of the experimental setup identical to that in Ref. [43] and
Figure 14 shows a schematic of our implementation. We must note that Figure 14 shows only the
outputs of neurons 1 and 2 in Figure 3: Vf is the response of neuron 1 to the unconditioned stimulus
(i.e., food) and Vb is the response of neuron 2 to the conditioned stimulus (i.e., bell sound).

The unconditioned stimulus Vf is fed into neuron 3 through synapse 1. Since the response to the
US is innate and assumed to be unchangeable, synapse 1 is simply implemented as a constant resistor
Rsyn. The conditioned stimulus Vb is fed into neuron 3 through synapse 2. Since actual conditioning
occurs in this synapse, its implementation is slightly more complex and it involves an emulated
memristor Rm instead of a constant resistor. Since the strength of the input to neuron 3 depends on
the voltage divider formed by Rc and Rm, the input becomes stronger as Rm decreases. The constant
voltage source Vforget tries to force the memristor in high resistance values. In this sense, Vforget acts as
a forgetting drive that is always present. The state of Rm can also be altered by the feedback from the
output of neuron 3, which is the actual source of association between salivation and the CS.

Simple calculations show that the voltage drop on the memristor is

Vm =
Rs

Rs + Rsyn
Vf + Vb + Vforget. (6)

Observe that Vm is independent of Rm and it depends only on the stimuli. This fact implies that
the learning (or forgetting) process is independent of the state of the association between NS/CS and
the response.

The output of neuron 3 is fed into a comparator in order to obtain a binary output (Vout) such that
a high level corresponds to a (conditioned or unconditioned) response to stimuli.
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Figure 14. Circuit schematic of the system used to mimic Pavlovian learning. Only the output of the
input neurons is represented: Vf is the response of neuron 1 to the unconditioned stimulus (i.e., food)
and Vb is the response of neuron 2 to the conditioned stimulus (i.e., bell’s sound)—cf. Figure 3.
Resistance values: R = 3.3 kΩ, Rsyn = 220 Ω, Rs = 2.2 kΩ and Rc = 2 kΩ. Constant voltages:
Vforget = 600 mV, Vref = 232 mV.

4. Conclusions

It has been argued in the literature that diffusive memristor devices may mimic the behavior of
synapses. In this work, we presented a computationally-efficient simplification of an accurate and
compact model of such devices. We believe that this model can be very useful in the study of complex
neuromorphic circuits and we present its application to two simple examples.

The proposed model was used in a memristor emulator composed of a digital potentiometer
and a microprocessor. The main advantage of emulation over simulation is its ability to interact
with real-world circuits. In order to validate the correct operation of the emulator, several numerical
simulations of a very simple circuit were made under different conditions, finding a good agreement
with the experimental results. Although the implemented emulation architecture is simple, it has
some limitations. In particular, it is based on a microprocessor with relatively low computing capacity.
Future work with more complex circuits or a larger number of emulated memristors will require a
faster microprocessor.

The emulated memristor was shown to mimic the Spike-Timing-Dependent Plasticity behavior of
synapses. Moreover, it was found that the response time parameter of the memristor, τ0, affects the
resistance change ratio in the STDP process. The larger τ0, the lower the change of resistance.

Finally, we introduced a memristor-based neuromorphic circuit that exhibited the main
characteristics of Pavlovian conditioned learning. We also explored the influence of the response time
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τ0 in learning and memory persistence. In general, the larger τ0, the longer it takes the system to
learn. However, once the conditioned response has been learned, a larger τ0 leads to a longer memory
persistence.
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Abstract: A fully-unsupervised learning algorithm for reaching self-organization in neuromorphic
architectures is provided in this work. We experimentally demonstrate spike-timing dependent
plasticity (STDP) in Oxide-based Resistive Random Access Memory (OxRAM) devices, and propose
a set of waveforms in order to induce symmetric conductivity changes. An empirical model is
used to describe the observed plasticity. A neuromorphic system based on the tested devices is
simulated, where the developed learning algorithm is tested, involving STDP as the local learning
rule. The design of the system and learning scheme permits to concatenate multiple neuromorphic
layers, where autonomous hierarchical computing can be performed.

Keywords: memristors; neuromorphic engineering; OxRAM; self-organization maps; synaptic device

1. Introduction

The implementation of electronic synapses is nowadays one of the challenges of hardware-based
neuromorphic engineering, which aims to design electronic circuits with a similar architecture and
behavior to the one found in biological brains. Within this context, the conductivity of an electronic
device with memristive characteristics is identified as the weight or strength of a connection between
two neurons (Figure 1), usually within a crossbar array which implements the synaptic matrix layer of
an electronic neural network (Figure 2a). An analog behavior of the electronic synapse is desirable to
improve the robustness of the network [1–3], showing a large window between its higher and lower
conductivities and displaying many accessible conductivity levels in between. The conductivity of an
analog synaptic device is then finely tuned according to some learning rule during the training stage
of a learning algorithm. Among the different technologies that have been proved to be suitable for
synaptic applications, the oxide-based resistive random access memory (OxRAM) technology stands
out when analog conductivity changes are required [1–7].
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Figure 1. Electronic synapses can be implemented with memristive devices. The electronic neural
network is implemented in a synaptic matrix layer.

1.1. Spike-Timing Dependent Plasticity (STDP) in Memristive Electronic Synapses

The synaptic weight updating process is therefore the basis for the application of any learning
algorithm in a neural network, and is related to the capability of the synapse to adapt its conductivity
through experience, namely its property of plasticity. In the case of electronic synapses, this feature
involves the modulation of the conductivity (G) of an electronic device, where changes (ΔG) can be
induced by applying the appropriate voltage drop between its two terminals (Figure 2b). These updates
in the conductivity of the device are applied according to the recent activity of the neurons it connects.
For instance, temporal correlations and causality between the recent activity of the input and output
neurons can determine the magnitude and direction of the relative synaptic weight change, ΔG/G.
The so-called spike-timing dependent plasticity (STDP) has been reported in biological systems [8–16],
and is a popular bio-inspired learning rule implemented in artificial neural networks and computational
neuroscience [10–15], where ΔG/G is described as a function of the time delay Δt between the pre
(input) and post-synaptic (output) neurons spike firing, respectively (Figure 2c). The nature of the
synaptic change is what depends on the causality between the input and output neurons activations.

Figure 2. (a) Neuromorphic memristive array. Each node within the crossbar corresponds to the weighted
connection (synapse) between two neurons, implemented with a memristor. (b) The conductivity of the
device can be changed according to the activity of the neurons it connects. (c) STDP function.

In order to demonstrate the plasticity property of memristive devices, the input and output
activities are assumed to be in the form of voltage pulses, and the significant change in ΔG/G occurs
when these pulses meet at the terminals of the synaptic device, overlapping in time, causing a significant
voltage drop (Figure 2b). In this case, the STDP function (Figure 2c) can be tuned by changing the shape
of the input and output neuron pulses [12–15]. The most popular shape of the STDP, resembling the
one reported in a biological culture by Bi and Poo [16] (Figure 2c shows the average of the experimental
data), has already been reported in many electronic devices [12,13,17–21]. However, the possibility
to tune the STDP function shape, concerning the electronic synapse electrical characteristics, is often
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skipped. Variety in STDP functions appears in biological synapses [8,12–15]. This variety extends the
application of the STDP as a local learning rule in artificial intelligence learning schemes [12], especially
in those based on unsupervised techniques.

1.2. Unsupervised Learning and Self-Organizing Neural Networks

Unsupervised learning involves a methodology where the training stage does not require the
calculation of any error made by the system for a certain input, in order to improve its performance.
That is, both user and system are not meant to know the actual solution of the problem entered to the
network, nor detailed information about the input dataset properties, in contraposition with supervised
learning techniques. Unsupervised learning implementation would be beneficial for neuromorphic
architectures, since on the one hand, it does not rely on the error computation and correction as the
supervised learning techniques do, so extra circuitry specialized for this purpose could be avoided.
Furthermore, unsupervised learning models, such as the above mentioned STDP learning rule, are
considered to be biologically plausible. By reverse engineering simple and primitive biological nervous
systems as a first approach, the neuromorphic community would take advantage and inspiration
because of the simplicity of their design, compared to the ones found in artificial deep learning neural
networks, which present an extremely high density of synapses, neural layers and complex pathways
and dynamics. Applications of unsupervised learning algorithms are related to classification, symbolic
representation, and associative tasks, usually by extracting the relevant statistical features of the input
dataset. Examples of bio-inspired unsupervised learning implementations based on memristive devices
for image recognition tasks can be found in [17–21]. However, the hardware-based implementation of
other unsupervised learning applications remains unexplored.

A particular example of bio-inspired unsupervised learning is the self-organizing map (SOM),
also called Kohonen network [22]. Applications of SOM extend to financial predictions, medical
diagnosis, or data mining, among others [22–24]. The aim of this learning algorithm consists in
mapping the input dataset onto a regular and usually two-dimensional grid, which corresponds to
the output layer, under an unsupervised and competitive learning scheme. A diagram of a Kohonen
network is depicted in Figure 3a. In here, the input layer is unidimensional and consists of three nodes
(input neurons). The output layer is bidimensional, and each node corresponds to an output neuron.
Output neurons can communicate to their immediate neighbors. All of the input nodes have a weighted
connection (synapse) with every output node. The weight of the synapse determines how strong an
output neuron responds to the activation of a particular input. These neural networks are inspired in
the topological maps found in the sensory-processing areas of the brain (Figure 3b), where neurons
that respond to similar inputs are spatially located very close. The key of this algorithm consists in
evaluating the similarity between the set of weights of an output neuron and the input data, which is
fed to the system as a vector. The original software algorithm consists in the sequential execution of
the following steps, parting from a network with randomly initialized weights. For randomly chosen
input from a particular dataset, the Euclidean distance between the input and the weights of every
output neuron must be computed, in order to determine which is the output neuron whose weights
are closer to the input. This element is identified as the best matching unit (BMU) and its weights are
updated in order to slightly reduce its distance with the input data.

Once trained, these networks present topographical organization such as the one found in sensory
processing areas of the brain, such as the tonotopic map found in the primary auditory cortex, in charge
of processing sound (Figure 3b). In here, the neurons that respond to similar sound frequencies
are grouped in clusters, which appear in a frequency-ordered fashion. In this way, similar inputs
activate neurons in the output layer which are found close to each other, whereas dissimilar ones
affect distant regions [22,25–27]. The output layer neurons in a trained SOM appear organized in
clusters, whose relative size and location provides statistical information of its corresponding input
data item characteristics. It is actually the presence or absence of an active response of an output
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neuron cluster, and not so much the exact input–output signal transformation or magnitude of the
response, that provides an interpretation of the input information [22–24].

Many methods are derived from the SOM algorithm, where the neural system is built with SOMs
as basic blocks or layers, such as the multi-layer or hierarchical SOM (HSOM) [22]. In the latter
case, the network is constituted by concatenating SOMS in a feed-forward way (cascade), where one
SOM layer is trained by receiving as input the outputs of another previous SOM. The advantage of
HSOMs is that they require less computational effort than a standard SOM to perform certain tasks or
problems that present a hierarchical or thematic structure, and moreover, HSOMs provide a simpler
representation of the results, which leads to an easier interpretation because they allow the user to
check what clustering has been performed at each level of the hierarchy.

Figure 3. (a) Example of a self-organizing map. (b) An example of a topological map in the human
brain, corresponding to the tonotopic map of the primary auditory cortex.

In this work, we propose an unsupervised hardware adaptation of the SOM algorithm to
be implemented in an on-line learning neuromorphic OxRAM-based crossbar array, by means of
bio-inspired unsupervised learning methods, being the first of its kind, to the best of our knowledge.
There is another work related to the electronic implementation of the SOM algorithm: [28] is also a
simulation work, and is based upon the previous calculation of the desired synaptic weight update,
hence not being an unsupervised learning algorithm. In contrast, in our work we provide a fully
unsupervised learning algorithm, in which the weight updating process relies on the STDP property
of the employed memristive devices. For the sake of simplicity, a very simple input dataset is used
as an example, for which a color identification task is provided. First of all, a model from a previous
work [29] is used to analyze the plasticity property of the tested devices, which is further verified
experimentally. A methodology for tuning the STDP function, which is a key element to control the
learning process, is proposed. The obtained STDP curves are used as the local learning rules within
the adapted SOM algorithm, for which a fundamental application is demonstrated. The learning
mechanisms introduced in this work can concatenate multiple SOMs without extra circuitry, providing
a step towards the implementation of hardware-based hierarchical computing systems.

2. Materials and Methods

2.1. Electrical Characterization and Device Modeling

The devices employed in this study are TiN/Ti-HfO2-W metal–insulator–metal (MIM) structures.
They were fabricated on silicon wafers either with an oxide isolation scheme or as a single crossbar
on a thermally grown 200 nm-thick silicon dioxide. The 10 nm-thick HfO2 layer was deposited by
atomic layer deposition at 225 ◦C using TDMAH and H2O as precursors, and N2 as carrier and purge
gas. The top and bottom metal electrodes were deposited by magnetron sputtering and patterned by
photolithography. The bottom electrode (BE) consists of a W layer and the top electrode (TE) of TiN on
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a 10 nm-Ti layer acting as oxygen getter material. The fabricated devices are square cells with an area
of 5 × 5 μm2. Figure 4a shows a scanning electron microscope (SEM) (IMB-CNM (CSIC), Barcelona,
Spain) image of the tested structures, where the TE and BE are indicated. More details on the electrical
behavior and fabrication process of these samples can be found in [30,31].

Figure 4. (a) SEM image of the tested structure (b) Experimental I-V characteristics of the analyzed
devices [29]. A voltage limit for the RESET process was set to −1.6V, whereas for the SET process,
the conductivity-controlling parameter was the maximum current driving the device (current
compliance, Ic) set by the user.

In Figure 4b, a few examples of experimental I–V curves are shown, where it can be noted that
the tested devices display a bipolar resistive switching behavior, consisting in transitions from high
(HRS) to low (LRS) resistance states and vice versa. These transitions are identified as the SET and
RESET processes, respectively. The main results of a previous work [30] show that small changes in the
conductivity at the low resistance state (LRS) can be induced by means of controlling the maximum
current driving the devices during the SET process, proving their plasticity property, and thus indicating
that the tested devices are suitable to play the synaptic role in a neuromorphic crossbar-array. In [29],
a pulse-programming setup was proposed, with the aim of analyzing in which ways fine changes
in the conductivity of the device can be induced by the application of single pulses. The proposed
setup allowed obtaining the experimental G–V characteristics of the tested devices, by means of the
application of increasing and decreasing amplitude single pulses with a fixed pulse-width over time.
Results from [29] are shown in Figure 5, where the pulse amplitude and the conductivity measured
after every single applied pulse (in Go units, being Go = 77.5 μS the quantum of conductance unit)
are plotted against the number of applied pulses. The conductivity state G was measured after the
application of every pulse (Figure 5a, red pulses), by means of applying 50mV (Figure 5b, gray pulses)
and reading the current flowing through the device. In the analyzed voltage range, conductivity can
take values between ~10 Go and 30 Go.

By means of representing the obtained experimental conductivity as a function of the applied
voltage, the experimental the G–V characteristics can be fitted according to the compact model of [32].
In here, the so-called hysteron function is used to describe a time-independent conductivity window
as a function of the applied voltage in non-linear memristive devices. An example of an ideal hysteron
function of a non-linear memristive device is depicted in Figure 6a. The normalized internal state
λ is represented as a function of voltage drop at the memristor. The top and bottom boundaries
are identified as the maximum (gmax) and minimum (gmin) conductivity states. In order to increase
(decrease) the conductivity state of the device, a positive (negative) voltage has to be applied so that
λ shifts towards gmax (gmin), describing the Γ+ (Γ−) trajectories. The pair of logistic ridge functions
Γ+ and Γ− can be modeled with two cumulative distribution functions (cdf) [29], related to the pulse
amplitudes applied to the non-linear memristive device, being V+, σ+ and V−, σ− the average and
standard deviation values of the cdf related to Γ+ (for dV/dt > 0) and Γ− (dV/dt < 0) curves, respectively.
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Both of them define the boundaries of the possible conductivities of the device within a range limited
by the minimum and maximum conductivity states, gmin and gmax, respectively.

Figure 5. (a) Stair-case pulse-programming scheme used in [29] for obtaining the G–V characteristics of
a memristive device. (b) The pulse amplitude was increased and decreased over time to change the
device conductivity. (c) Conductivity G as a function of the applied pulses.

 
Figure 6. (a) Ideal hysteron function of a non-linear memristive device [31]. (b) Examples of experimental
(gray dots) and an example of a fitted particular case (blue and red lines) G–V characteristics. The fitting
parameters V± and σ± are also indicated at the top left and bottom right parts of the figure.

In Figure 6b, examples of the experimental G–V characteristics of the tested device are shown,
alongside an example of a fitted curve (continuous lines). In here, a conductivity state sub-space is
identified as a sub-hysteron (gray area). The main parameters which allow confining the conductivity
of a device within the gSHmax and gSHmin conductivity boundaries as the top and bottom limits of the
identified sub-hysteron are V±max and V±min. Asymmetry of the obtained G–V characteristics can be
noted by comparing the mean value on the two cdf, V+ and V−, which were used to fit the experimental
data to the logistic ridge functions Γ+ and Γ−. The obtained time-independent empirical model
allows computing the conductivity change of the employed devices when single pulses with varying
amplitude are applied, such as the ones required for studying the STDP property of electronic synapses.

2.2. STDP as a Learning Rule

For this application, the experimental STDP windows obtained in [33] were fitted using the above
described model. The experimental STDP measurements were obtained by means of applying identical
pre and post-synaptic waveforms with a spike width of 1 ms and a maximum voltage of |0.7Vpeak|

(Figure 7a), which corresponds to the voltage required to set the conductivity state of the device at
gSHmin ~15Go (Figure 6b). Two examples of the experimental and modeled STDP functions are shown
in Figure 7b. In here, a bias towards synaptic depression is observed. This biasing is related to the
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asymmetry observed in the G–V characteristics shown in Figure 6b. Also, saturation of the synaptic
weight update is observed for small and negative Δt. This occurs mainly because the voltage drop
applied to the device is so large in magnitude, that the reached conductivity state after its application
is its lowest value gmin, so the dependence of Δg with Δt is lost for −0.5 ms < Δt < 0 ms.

Figure 7. (a) Identical pre (red) and post-synaptic (blue) waveforms are applied to the tested samples,
which result in an equivalent voltage drop waveform (black) showing a dependence on the time delay
Δt. (b) Experimental [33] (dots) and modeled (line) STDP functions.

In order to get symmetrical STDP functions, instead of using identical pre and post-synaptic
waveforms, we propose using the pair of synaptic pulse shapes shown in Figure 8a (pre) and Figure 8b
(post), so the STDP function can be easily tuned in terms of biasing, according to the desired working
regime of the employed devices. The resulting equivalent voltage drop applied to the simulated device
is depicted in Figure 8c. The maximum and minimum voltage drops at the synaptic device are defined
as the V±max and V±min parameters, respectively (see Figure 6b). By using the proper V±max and V±min

values, a linear operation regime can be achieved (gray area identified as a sub-hysteron in Figure 6b),
where the conductivity state can be finely updated according to the STDP rule, and the saturation of
ΔG is withdrawn. Moreover, the stochasticity related to the RESET process is avoided. In our case, the
following parameters were employed: Vpre

+ = 0.7 V, Vpre
− = −0.225 V, Vpost

+ = 0.875 V and Vpost
− =

−0.25 V. With these voltages, the conductivity is kept within a sub-hysteron region, in this case ranging
from gSHmin = 0.33 (13 Go) to gSHmax = 0.8 (22 Go).

This procedure allows implementing the balanced STDP functions shown in Figure 8e (simulation),
where multiple cases involving different initial conductivity values (ginit) within the sub-hysteron
region are shown. Since there is a dependence on the STDP function shape and ginit, the symmetry
in the induced conductivity changes has to be checked at the normalized conductivity state of ginit

~0.5 within the sub-hysteron region, corresponding to ginit ~17.5 Go in our case. These results support
that symmetrical conductivity changes can be induced by using the proposed pre and post-synaptic
waveforms, this symmetry being a key factor for increasing the neural network performance [6].

189



Materials 2019, 12, 3482

Figure 8. Pair of proposed pre (a) and post-synaptic (b) waveforms. Resulting voltage drop waveform
applied to the sample for an active (c) and silent (d) pre-synaptic (input) neuron. (e) Balanced STDP
function. Each curve corresponds to a different initial conductivity state of the same device.

2.3. Self-Organizing Neural Networks Based on OxRAM with Fully-Unsupervised Learning Training

The obtained symmetric STDP function in Figure 8e is used as a local learning rule in a proposed
electronic implementation of a unidimensional self-organizing map (SOM). The simulated system consists
in a single memristive synaptic layer, which is implemented by an OxRAM-based crossbar array. Input
and output neurons share the same structure and functionality, so that the neuron layer roles can be
interchanged, and multiple synaptic layers can be concatenated without adding extra circuitry.

The neurons are considered to be integrate-and-fire neurons: the received charge is accumulated,
which causes the neuron to depolarize along its membrane (membrane potential), until a certain
threshold potential is reached. This process is analogous to a capacitor being charged. Finally, due to
this depolarization, the neuron is able to transmit an electrochemical signal towards its synapses,
thus communicating with post-synaptic (output) neurons. A schematic of the proposed electronic
neuron is shown in Figure 9a. It has six input/output terminals: terminals In1 and In4 receive current
signals from the previous and following synaptic arrays, respectively. These signals polarize the
neuron and update its accumulated charge, related to the membrane potential. The depolarization is
monitored by means of comparing the accumulated charge to a charge threshold, Qthr. In the case of
an output neuron, when this threshold is reached, the neuron is discharged (its accumulated charge is
reset to 0). Then, it triggers a voltage pulse backwards through Out1 and forwards via terminal Out4,
towards its synapses. Lastly, I/O2 and I/O3 are communication ports related to the neuron neighbor’s
activity signaling, providing communication with the neuron immediate neighbors. For instance, if a
neuron fires a pulse, its terminal I/O2 and I/O3 flags will be activated, so its neighbors are warned and
will consequently trigger a pulse, which is independent of its actual accumulated charge. When this
event occurs, the accumulated charge of the neighbors is also reset. The system depicted in Figure 9b is
a simple example of a 2 × 2 crossbar array, showing all of the above mentioned connections. The system
consists in two neural layers behaving as the input and output layers. The input and output layers
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are connected through the 2 × 2 memristive crossbar array, where every intersection corresponds to a
weighted connection between an input and an output neuron, provided by a memristor. Adjacent
neurons within the neuron layers are connected (black wide line) in order to provide lateral interaction,
which is one of the key aspects of the proposed hardware-adapted learning algorithm.

For simplicity, a system with a single synaptic layer is considered in this work. The neuron
behavior was included mathematically. Implementations of the designs of electronic neurons based
in CMOS technology can be found in [34,35]. In the case of a single synaptic layer system, such as
the one depicted in Figure 9b, the input neurons of the system are in charge of triggering voltage
pulses through terminal Out4 according to the input dataset (signaled via In1), sourcing or draining
current from/to the synaptic layer, and have the integrate function disabled, as well as the neighbor
interaction. Output neurons integrate the received current through terminal In1, which corresponds to
the summation of each of the input neurons voltage pulse, weighted by its connection weight or device
conductivity. These output neurons fire a post-synaptic pulse backwards, as a response to the input
neurons activity if their accumulated charge reaches the charge threshold, and also communicate with
their immediate neuronal neighbors within the output layer via terminals I/O2 and I/O3. Its activity is
measured through Out4. Finally, its terminal In4 is left unconnected.

 
Figure 9. (a) Schematic of the proposed electronic neuron, which can play both input and output
neuron roles. (b) A simplified scheme of the proposed self-organizing neuromorphic network.

A few aspects concerning the learning algorithm are worth to be highlighted: lateral neural
neighbor interaction and vertical inhibition within a synaptic column. Lateral neighborhood interaction
is one of keys regarding the self-organizing property of the network. According to T. Kohonen
in [22], “it is crucial to the formation of ordered maps that the cells doing the learning are not affected
independently of each other but as topologically related subsets, on each of which a similar kind of
correction is imposed”. This means that when one output neuron receives a signal from a neighbor,
which has recently fired a voltage pulse, it is also meant to trigger an identical pulse, both to its
own connections with the input layer, and also to its other output neuron neighbor. In other words,
the output activity of a particular output neuron propagates through the output neuron layer, leading
to the activation of its neighbors. The number of affected neighbors can be defined externally, as well
as the shape of the neighborhood interaction function.
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The implementation of a neighborhood interaction function whose amplitude decays laterally is
often used in the software versions of the self-organizing networks (Figure 10). This is motivated by
both anatomical and physiological evidence of the way neurons in nervous system interact laterally.
The most popular choices for this function include a rectangular (abrupt) interaction function, Gaussian
(a soft transition) or the so-called Mexican hat function, which consists in a soft transition involving the
inhibition of the outermost neurons within the neighborhood. In our case, the decaying amplitude of the
neighborhood interaction function is inherent to our system, because of the implementation of the above
described STDP function as a local learning rule. Despite the neighbors of the maximally responding
output neuron are intended to fire an identical pulse, this pulse will be delayed in comparison with the
response of the main responding neuron (center of the neighborhood). With increasing Δt, the induced
ΔG/G will also decay with increasing lateral distance, as shown in Figure 10. The radius or number of
affected neighbors can be set externally by controlling the time delay: the whole neighborhood activity
can be delayed (all delayed, AD), and the propagation delay (PD) between immediate neighbors.

In Figure 10, different neighbor interaction functions are depicted as examples considering different
types of delay, where ND states for “not delayed”. The ND curve corresponds to a function where
minimum delays are considered: the main firing output neuron B is firing with an accumulative delay
AD of one time unit with respect to the last pre-synaptic pulse sent by neuron A, and the PD is also of
one time unit. Therefore, the time delay in which a neuron C within the neighborhood fires a pulse
after the main responding neuron A has triggered one, as an answer to an input neuron, corresponds
to AD + PD·(N+1), being N the number of neurons which separate neurons B and C. In Figure 10,
the distance between neurons B and C is none, thus N = 0. The AD/NPD and AD/PD curves present a
delay of AD = 5 time units, so that all the conductivity changes in the neighborhood are diminished
equally. The difference between these two functions relies on the propagation delay: AD/NPD has the
minimum PD, whereas AD/PD has a PD of two time units. As seen in Figure 10, increasing PD results
in a narrower function, reducing the number of affected neurons.

Figure 10. Neighborhood interaction functions based on the STDP rule. The ND curve (yellow squares)
shows an example where any delay is considered. AD/NPD curve (blue triangles) consists in a delayed
response from the main spiking neuron, but minimum propagation delay. The AD/PD curve is an
example of the presence of both delays.

Another important aspect is the inhibition of the synapses within the synaptic column of an active
neuron. The synaptic column comprises all of its synapses, some of them connecting the neurons
with inactive input neurons. For our system, both potentiation of the synapse, relating the firing
neuron with the active inputs, and the depression of its synaptic weights which connect it with the
inactive inputs, are mandatory to efficiently group or cluster the output neurons, so that a complete
correction of the synaptic weights (and thus, of its neighborhood) is performed. This means that if a
particular OxRAM conductivity is increased as a result of applying the STDP rule, the other OxRAMs
in that synaptic column, connecting the same output neuron with the inactive input neurons, shall
be depressed (i.e., their conductivity is decreased). We refer to this process as synaptic inhibition,
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which leads to an increase of the sensitization of an output neuron to a single input neuron, facilitating
clusters specialization to a specific input property. In order to implement this feature electronically,
the silent input neurons at a particular time are not actually silent, but rather applying a small and
negative voltage through terminal Out4 to their synapses, in analogy with the biological neurons’
resting potential. When an output neuron is firing a pulse backwards, the induced voltage drop at the
synapses connecting to a silent input neuron will cause a decrease in their conductivity states. In this
case, there is no direct relationship with the STDP rule, since the induced voltage drop at the synapses
is not related to any time correlation between the pre and post-synaptic activities.

A sketch of the operation of the 2 × 2 crossbar array with active and silent neurons, where all of
these signals are indicated, is shown in Figure 11. In here, the arrows indicate the current flow in the
system. The accumulated charge of the output neurons is also depicted. The input neuron layer consists
on neurons A and X, whereas the output neuron layer consists on neurons B and C. In Figure 11a, input
neuron X fires a pulse through Out4, and input neuron A remains silent. These signals update the
accumulated charge of the output neurons B and C. In Figure 11b, input neuron A fires a pulse, and output
neuron B accumulated charge reaches the charge threshold, Qthr. In Figure 11c, the accumulated charge
of B is reset, and B fires a pulse delayed by a certain delay AD with respect to the firing time of input
neuron A. The voltage drop at the synapses within the B column causes a change in their synaptic weights.
Then, neuron B communicates with its neighbors (only neuron C is depicted). Finally, in Figure 11d,
neuron C triggers a pulse with increased time delay with respect to the firing time of A, AD + PD, and its
accumulated charge is reset. Because its pulse presents a larger time delay, the magnitude of the change
of its synapses will be smaller, according to the induced STDP function.

Figure 11. Sketch of the 2 × 2 crossbar array operation. (a) Input neuron X fires a pulse through Out4,
and input neuron A remains silent. (b) Input A fires a pulse, and output neuron B accumulated charge
reaches the charge threshold, Qthr. (c) The accumulated charge of B is reset, and B fires a pulse delayed
by AD with respect to the firing time of A. (d) Neuron B communicates with its neighbors (only C is
depicted). Neuron C triggers a pulse delayed AD + PD with respect to the firing time of A, and its
accumulated charge is reset.
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Lastly, the methodology suggested for the unsupervised self-organization process to arise is
discussed. The synaptic layer is randomly initialized, that is, the conductivity state of each RRAM
device is set randomly between the gSHmin and gSHmax values defined previously in Figure 6b. In order
to amplify the initial differences between each output neuron synaptic weight values, the threshold
potential has to be set large enough, so that the first post-synaptic firing occurs after the presentation of
at least 100 pre-synaptic pulses in the case of our electronic synapses. This value takes into account the
initial conductivity state values of the employed synaptic devices, and the voltages required to induce
the conductivity change according to the STDP function (Figure 8e).

The active input neurons provide current (red arrows) to the output neuron layer, whereas silent
input neurons drain current (blue arrows) from the system because of the polarity of its resting potential.
In this way, active inputs depolarize the neurons increasing their membrane potential, whereas silent
inputs decrease it (Figure 11a,b). The identification of the best matching unit by means of calculating
the Euclidean distance of the whole set of synaptic columns is avoided, which simplifies the electronic
implementation of the learning algorithm compared to the original Kohonen’s self-organizing learning
algorithm, despite a larger number of iterations being required in order to execute this step. On the
other hand, if a neuron has recently fired a spike, it will present a refractory period, meaning that it will
not be able to fire again after some time, because its accumulated charge has been reset. By doing this,
the output neurons which have not fired recently are encouraged to do it. We do not explore the effects
of dynamically changing the threshold potential of the output layer. However, a dynamic threshold
could improve the performance in terms of convergence time of learning algorithms [36].

The whole training stage is summarized in the flow diagram depicted in Figure 12. Initially, all
of the devices are assumed to have a random conductivity around 15–18Go in our case. The output
neurons membrane potentials are also initialized to zero. The input dataset is then fed to the system
through the input neurons, which are triggering the pre-synaptic voltage waveform depicted in
Figure 8a if active, or applying their resting potential (small negative voltage) to the synaptic array,
if silent (as shown in the sketches of Figure 11a,b). The output neurons potentials increase as the
output neurons integrate the pulses of the input neurons that they receive, which are weighted by
the conductivity of the synaptic devices. That is, the output neurons are receiving a charge whose
magnitude is related to the input activity and the weight of the connections between each of them and
the input layer. Eventually, one of the output neurons potential will reach the defined charge threshold
Qthr. At this point, the weight updating process occurs: the output neuron resets its accumulated
potential to zero, and triggers the post-synaptic voltage waveform from Figure 8b backwards, affecting
its synapses (Figure 11c). The maximum voltage drop given by this post-synaptic voltage pulse and the
active input neuron corresponds to the sum of V+pre and V−post (positive Δt), so this particular synapse
is strengthened. On the other hand, the synapses with silent input neurons are depressed, being their
voltage drop equal to the sum of V+pre and the input neurons resting potential, which is a DC voltage
of 0.2·V+pre V. Therefore, the induced conductivity change in these synapses has a smaller magnitude
in comparison with the one induced to the synapse that connects the winning output neuron with the
active input neurons. After the weight updating of the main neuron has been executed, its activity is
propagated through the output layer, affecting its immediate neighbors. These other output neurons
trigger a voltage pulse with the same amplitude, but with a certain accumulated delay (Figure 11d).
That is, the magnitude of the change in the strengthened synapses will be decreasing as the output
signal propagates through the output layer, until reaching a non-significant synaptic change, following
the neighbor interaction function of Figure 10. The affected neighbors will also reset their output
potential to zero.
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Figure 12. Flow diagram of the self-organizing algorithm based on STDP.

In order to reach a convergence state of the map, the maximum synaptic change is diminished
by increasing the firing neuron time delay over the iterations. Also, the size of the neighborhood is
naturally decreasing over time, since the neighbor firings are consequently delayed. At the end of this
training stage, the crossbar weights are organized in clusters, which present overlapped areas. In this
way, nearby output neurons will be prompt to react to the same input, whereas distant output neurons
will be sensitized to other inputs, as occurs in the software version of the Kohonen map.

3. Application

A fundamental application of the proposed autonomous SOM is shown as an example. In here,
a single synaptic layer system of 150 OxRAM synapses is simulated. The synapses are distributed in a
3 × 50 array, 3 being the size of the neuron input layer, and 50 the length of the output neuron layer.
The input of the system are the red (R), green (G), and blue (B) color components of a pixel of an image.
During the training stage, only one of these components is shown at each time, that is, only one input
neuron is firing a pre-synaptic pulse (Figure 8a) with the Vpre

+ value as the one shown above (Vpre
+ =

0.7 V), i.e., is active at each time. The silent input neurons resting potential is set to a DC voltage of
−0.2·Vpre

+ = −0.14V. These voltage waveforms are weighted by the synaptic devices conductivities,
which are randomly initialized between 15 Go and 18 Go. The accumulated charge threshold of the
output neurons has to be set in a way that only one output neuron reaches this threshold after a certain
time. In the case of the simulated system, the accumulated charge threshold is set to Qthr = 1 mC,
so that initially only one output neuron fires a post-synaptic spike. This firing is delayed initially by
seven time units (being in our case a time unit t = 0.05 μs, so that initially, AD = 0.35 μs) with respect
to the pre-synaptic pulse, so that the maximum relative conductivity change magnitude of a 10%
according to the STDP function depicted in Figure 8e. The propagation delay PD is kept constant at
five time units = 0.025 μs.
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Through the iterations, the system is able to self-organize in an autonomous way, without any
intervention, being a fully-unsupervised training scheme. After the training stage, the memristors in
the column of every neuron within the output layer have a different synaptic weight combination,
according to the conductivity states found in the memristors’ column of the output neuron. An example
of the obtained topographical pattern is depicted in Figure 13. In particular, Figure 13a displays the
gray-scale used to represent the synaptic weights of Figure 13b, which are normalized according
to the maximum and minimum conductivity values found in the sub-hysteron region of Figure 6b.
The highest conductivity states, depicted in white, correspond to 21Go, whereas the lowest ones in black
correspond to 13.5 Go, being within the defined range of gSH (13–22Go). Figure 13b is a representation
of the simulated crossbar array after the training, where the synaptic weights are depicted according
to the above mentioned gray-scale. The size of this matrix is of 3 × 50 (3 rows and 50 columns),
corresponding to the number of input and output neurons, respectively, which are not shown in this
representation. It can be seen that, in each of the three rows of the matrix, the synaptic weights increase
and decrease gradually. The synapses with the highest synaptic weights of the three rows are located
in different regions of the crossbar array, corresponding to the 24th and 50th output neurons in the
case of the first row, to the 15th for the second row, and lastly, to the 46th for the third row. The first
row of synapses was connected to an input neuron representing the red color component, whereas the
second and the third rows were connected to input neurons representing the green and the blue color
components, respectively. Then, nearby output neurons appear to have similar colors components
assigned, as expected. Hence, groups of output neurons sensitive to one of the primary colors used
during the training stage can be identified.

Figure 13. (a) Gray-scale used to represent the synaptic weights of the crossbar array. (b) 3 × 50
crossbar array displaying the normalized conductivity states of the simulated OxRAM devices after the
learning stage. (c) Output neuron layer color assignation. The system shows a topographical or spatial
organization of the RGB color components. (d) Activation response of the output neurons when a red
(red line with diamonds), green (green dotted line), or blue (blue line with triangles) color is presented
as an input.

The synaptic weights from every output neuron are related to a RGB coded color, and each of
the RGB components is represented by one or two groups of output neurons. The system shows a
topographical or spatial organization of the RGB color components. According to Figure 13b, there are
output neurons that have a synapse with a large synaptic weight connecting to only one of the three
input neurons, whereas their other synapses have a low synaptic weight. This means that these neurons
will increase its accumulated charge rapidly, if the input neuron that they are tightly related to shows a
strong activity (it fires many pulses in a brief period of time), i.e. these neurons are highly connected to
an input neuron, and thus, are highly specialized to a certain color component. Some output neurons,
such as the ones found between the 7th and the 13th output neurons, have two synapses with medium
synaptic weights, whereas the third one has an extremely low weight. These neurons have a significant
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relationship with two input neurons, and will respond equally to both of them. If these two input
neurons are firing at the same time, because a color consisting of a mixture of green and blue is being
used as an input to the system, the output neurons with the two medium-weight synapses will show a
stronger response, compared to their response given when only one input neuron is active.

The specialization of the output neurons to a certain input neuron or to a combination of them
can be represented by computing the resulting color given by the linear combination of the synaptic
weights, relating each of the output neurons to each of the input neurons. The output neuron layer
color assignation is represented in Figure 13c, where the color which each of the output neurons is
specialized to is depicted. The output neurons’ specialization to a certain color component or its
combinations can also be checked by plotting their activation pattern, that is, the change in their
accumulated charge due to a certain input activity. Examples of activation patterns of the simulated
crossbar caused by single input activity, meaning that only one input neuron is active at a certain time,
are shown in Figure 13d, consisting in the increment of the output neurons’ accumulated charge when
a red (red line with diamonds), green (green dotted line), or blue (blue line with triangles) color is
presented as an input. By means of comparing the output neurons activation as a response of the input
data, the system is able to map and classify any combination of the presented colors to the most similar
color cluster (i.e., the one showing the highest activation), behaving as a simple self-organizing neural
network, such as the software version of the self-organizing map neural network. It is the activation of
a particular region of the output neuron layer, corresponding to a certain cluster of output neurons,
which gives the information of which input color is being fed to the system. Since the mapping relies
on the activation of a group of neurons, redundancy is actually being added to the system. For instance,
if one neuron or some synapse is damaged or has an unexpected behavior, the system performance is
not going to be affected by it. In a previous work [37], the training reliability of the proposed algorithm
was checked. To do so, in [37], different cycle-to-cycle variability levels were considered, and it was
proved that the training algorithm presents a significant tolerance to noise and synaptic variability.

The training stage time can be computed in terms of the number of applied pulses and the time
scale of the implemented STDP function. The crossbar array after the training shown in Figure 13b was
developed within two presentations of the whole input dataset, consisting of 106 pulses of a defined
total spike-width T = 2 μs (see Figure 8a), being the time between the input pulses of 10T, which
corresponds to a total training time tT = 24 s. The design of the proposed self-organizing map is based
on the fact that there is no difference in the electronic design and behavior between the input and
output neurons. Because the training scheme is based on hardware-adapted unsupervised learning
techniques and the neurons are designed to be able to implement both pre and post-synaptic roles
simultaneously (Figure 9a), it is possible to concatenate multiple crossbar arrays, where information
flows in a bidirectional manner.

By means of adding computing layers to a self-organizing neural network such as the one
presented in this work, hierarchical computation can be achieved. Figure 14 displays an example
of a hierarchical SOM system, where the first synaptic layers are constituted by SOMs, such as the
color-mapping SOM presented in this work (Layer 1.1), which can also be trained with audio data
(Layer 1.2) as to classify the sounds of English vowels. This primary level of the hierarchy (Level 1)
pre-processes the information to be fed to higher-order levels, where an associative process between
colors and sounds takes place in another SOM, located in Level 2. In other words, the hierarchy permits
to develop more complex data structures involving not only the self-organizing property, but also
associative learning, which can be summarized as the ability to correlate different memories to the
same fact or event [38]. This would represent a step forward towards reproducing complex neural
processes and biologically-plausible learning mechanisms in neuromorphic architectures [38].
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Figure 14. Basic hierarchical computing architecture where the first level (primary) is composed
of two memristive synaptic layers, which pre-process the information following the unsupervised
algorithm introduced in this work. The output of these layers is fed as the input data of a layer within a
higher-order of computation level, where associative learning takes place.

4. Conclusions

Neuromorphic engineering takes inspiration from the biological neural networks learning models,
especially when unsupervised techniques are preferred. The most popular learning rule related to
unsupervised learning in electronic synapses is the STDP, because it can be easily induced in analog
memristive devices, such OxRAM. In this work, a methodology to obtain a symmetrical STDP function
in terms of conductivity changes is proposed. It is further applied in the first hardware-adapted version
of the self-organizing map (SOM) learning algorithm, which includes other bio-inspired mechanisms
in order to achieve topological organization in an autonomous way. This algorithm is performed
in a simulated single-layer crossbar array based on the tested devices, for which a fundamental
color-mapping application is shown. The introduced system can be potentially used as the basic
building block of a multi-layer neuromorphic system, in which hierarchical computing can be achieved
without modifying the training algorithm or adding extra circuitry.
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Abstract: As a software framework, Hierarchical Temporal Memory (HTM) has been developed to
perform the brain’s neocortical functions, such as spatial and temporal pooling. However, it should
be realized with hardware not software not only to mimic the neocortical function but also to
exploit its architectural benefit. To do so, we propose a new memristor-CMOS (Complementary
Metal-Oxide-Semiconductor) hybrid circuit of temporal-pooling here, which is composed of the
input-layer and output-layer neurons mimicking the neocortex. In the hybrid circuit, the input-layer
neurons have the proximal and basal/distal dendrites to combine sensory information with the
temporal/location information from the brain’s hippocampus. Using the same crossbar architecture,
the output-layer neurons can perform a prediction by integrating the temporal information on
the basal/distal dendrites. For training the proposed circuit, we used only simple Hebbian
learning, not the complicated backpropagation algorithm. Due to the simple hardware of Hebbian
learning, the proposed hybrid circuit can be very suitable to online learning. The proposed
memristor-CMOS hybrid circuit has been verified by the circuit simulation using the real memristor
model. The proposed circuit has been verified to predict both the ordinal and out-of-order sequences.
In addition, the proposed circuit has been tested with the external noise and memristance variation.

Keywords: memristor-CMOS hybrid circuit; temporal pooling; sensory and hippocampal responses;
cortical neurons; hierarchical temporal memory; neocortex

1. Introduction

The neocortex occupying most of the brain’s surface area has been believed to perform the most
human-like functions such as intelligence, cognition, etc. among all human organs. It is just 2.5-mm
thick and is composed of six layers [1–3]. All six neocortical layers have the same columnar architecture,
where the neocortical neurons are connected in both the vertical and horizontal directions to form various
feedback and feedforward paths to communicate with each other. Anatomical experiments have observed
the columnar architecture consistently through the entire neocortex [4,5]. This fact may hint that there is a
canonical neural circuitry that can describe various neocortical functions with one model [6].

In this paper, we try to develop a memristor-CMOS hybrid circuit that can emulate the neocortex’s
canonical neural circuitry by combining nanoscale memristor crossbars with CMOS peripheral circuits.
Memristors have been studied intensively for many years for their possible use of neuromorphic
hardware since the first experimental demonstration [7,8]. This is because the memristive behavior
seems very similar with the biological synaptic plasticity, where the synaptic connection can be
strengthened and weakened dynamically according to the sensory stimulus [9]. The ionic dynamics of
memristors can also be used in implementing the reservoir computing hardware, where the cognitive
function can be processed simply by applying the time-domain signals to the memristor-based
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reservoir [10]. Moreover, the memristor crossbars can be built in a 3-dimensional architecture by a
CMOS-compatible fabrication process, where the 3-dimensionality is very similar to the anatomical view
of the real biological neuron-synapse connections in the neocortex [11,12]. Also, the memristor crossbar can
perform a bitwise parallel operation which has been thought as one of the key aspects of energy-efficient
computing of the human brain’s cognition, compared to modern state-of-the-art computers [13,14].

As a software framework for modeling the neocortical function, Hierarchical Temporal Memory
(HTM) has been developed recently [15–20]. Figure 1a shows a functional block diagram of HTM that is
composed of the Spatial Pooler (SP) and Temporal Memory (TM). SP receives the sensory information
to learn the cortical representation. As a result, SP generates Sparse Distributed Representation
(SDR) [16]. SDR is a mathematical description for representing the cortical neurons that may be
activated or deactivated in response to the sensory information from the cochlea, retina, etc. Actually,
SP was proposed as a software algorithm in the HTM software framework [15–20]. To realize the
spatial pooling with hardware, we developed the spatial-pooling memristor crossbar circuit in a
previous work, where the circuit could convert the sensory information to the SDR that meant the
representation of cortical neurons [21].

Figure 1. (a) The functional block diagram of Hierarchical Temporal Memory (HTM): The spatial
pooler receives the sensory information from various sensory organs and forms the Sparse Distributed
Representation (SDR) output representing the collective cortical neurons activated in response to
the sensory information. The temporal memory learns the sequence of items that are represented
by the SDR vectors by combining the sensory information with the temporal information. (b) The
cross-sectional view of the human brain: Here, the neocortex and hippocampus regions are shown for
processing the “what” and “when/where” information, respectively.

The temporal memory (TM) in Figure 1a puts together the “what” and “when/where” vectors that
come from the spatial pooler and hippocampus model, respectively [22,23]. By combining the “what”
with “when/where”, the temporal memory can perform both the spatial recognition and the temporal
prediction. For the temporal prediction, the representation of temporal succession (“when”) should be
segregated from the representation of the content (“what”), as shown in Figure 1a [24,25]. From the
experimental observations, the hippocampus has been known to play a central role in encoding the
information of ordinal sequences (“when”) [25,26], whereas the representation of the content (“what”)
has been known to come from the neocortex, as indicated in Figure 1b.

The representation of the temporal sequence (“when”) can be extended to the spatial sequence
(“where”) [27,28]. For example, the order of the words during reading depends on where one is
looking (“where”). However, the order of the words during listening can be interpreted as the
temporal sequence (“when”’). Actually, every principal neuron in the hippocampus can work as either
a “place cell” or “time cell” [29]. By doing so, the hippocampus can model both the temporal (“when”)
and spatial (“where”) information with the same kinds of representation. Thus, we can think that the
spatial sequence of location information is one case of the temporal sequence [26].

Though HTM has been developed as the software framework for performing the neocortex’s
cognition, it should be realized with hardware not only to mimic the neocortex’s function but also to
exploit its architectural benefit. One reason for this need of a hardware version is the demand of the
edge-computing devices in the Internet of Things (IoT) era [30–32]. For the near-sensor processing
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and computing of IoT devices, the speed and power benefit due to the bitwise parallel-processing
of memristor crossbars can be very important in terms of the possibility of real-time and on-chip
cognitive functions for various edge-computing applications [32]. Thus, the neocortex’s cognitive
function combined with the crossbar’s architectural merit can accelerate the transition from the HTM
software framework to its hardware emulator [30].

To implement HTM by hardware not software, in this paper, we propose a new memristor-CMOS
hybrid circuit for realizing the temporal-pooling function of the human brain, which is composed of
the input and output layers, to mimic the temporal prediction of neocortical neurons. In the hybrid
circuit, the input layer has proximal and basal/distal dendrites to combine the sensory information
with the temporal/location information. The output layer composed of the same circuitry with the
input layer can perform a prediction by integrating the temporal information through the basal/distal
dendrites. In this paper, the input and output layers realized with the memristor-CMOS hybrid circuit
are verified to perform the temporal recognition and prediction that are the same functions within the
human brain’s neocortex.

2. Proposed Methods

Memristor crossbars are thought to be very suitable in mimicking the anatomical and functional
architecture of neocortex. Memristive behaviors seem similar with the synaptic plasticity of biological
neurons. Moreover, the 3-D connectivity of crossbars can be useful in realizing the real neuronal
3-D architecture of the neocortex. Also, the crossbars can perform a bitwise parallel computation,
as the pyramidal neurons do in the neocortical layers. To develop the neocortex-mimicking memristor
crossbar, first, we need to understand the functional model of neocortical columns and layers [33,34].

Figure 2a shows the conceptual model of temporal memory composed of input-layer and output-layer
neurons [23]. From previous experimental observations, the HTM theory deduced a couple of rules to
describe the neocortex’s operation. First, it is assumed that the input-layer neurons receive the sensory
information though the single proximal dendrite [23]. The synapses connected to this proximal
dendrite are involved in only local signal-processing, as shown in Figure 2a. They do not communicate
with the neurons outside the local region. The proximal dendrite is more likely to form short-distance
vertical connections to receive the sensory information. On the contrary, the basal/distal dendrite is
responsible for long-distance horizontal communication [23]. The dendrite can receive information
from distantly located regions such as the hippocampus. One thing to note is that one neocortical
neuron is allowed to have only single proximal dendrite. However, the basal/distal can have multiple.

Input
layer

Output
layer

Sensory
SDR 

Temporal/
location

SDR

4 axons

Basal/distal 
dendrites

Proximal  
dendrites

Mini-column (4 cells)

4 cells

(a) (b)

Temporal/
location

SDR

Figure 2. (a) The conceptual model of temporal memory architecture: The red and blue lines represent
the proximal and basal/distal dendrites, respectively. (b) The schematic of a pyramidal neuron with a
single proximal dendrite and multiple basal/distal ones. The number of output axons can be multiple
too. Here, we showed 4 axons to constitute one mini-column with 4 cells. The pyramidal neurons are
known as the majority of neocortical neurons.
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Figure 2a also shows the output-layer neurons that are basically the same as the input-layer
ones. The proximal dendrite is for short-and-direct connections from the input-layer neurons.
The output-layer neurons can receive long-distance information horizontally through multiple
basal/distal dendrites for the temporal integration of “when” vectors. The two-layer model is
regarded as a general feature of the neocortex and can be used as an elemental unit in realizing
the memristor-based temporal-pooling crossbar [23].

Figure 2b shows the schematic of a pyramidal neuron that incorporates the axonal and dendritic
connections. The proximal dendrite receives the direct feed-forward inputs from the sensory organs.
The basal/distal dendrite can be driven by the long-distance signals from far away regions, such as
the hippocampus.

Figure 3 shows the conceptual schematic of the temporal-pooling memristor crossbar composed
of input-layer and output-layer neurons. The input-layer neurons receive sensory SDR and
temporal/location SDR from the spatial pooler and hippocampus model, respectively. The sensory
SDR vectors are connected with the proximal dendritic synapses. The basal/distal dendrites of the
input-layer neurons receive hippocampal responses that contain the temporal and location information.

The output-layer neuron in Figure 3 has the same circuitry as the input-layer neuron, as shown in
Figure 2b. The proximal connection of the output-layer neuron comes from the axonal output of an
input-layer neuron. The basal/distal dendrite can make the output-layer neuron a predicted state by
depolarizing its body. If the body is depolarized enough by the previous basal/distal dendritic inputs,
it can fire spikes sooner than the other output-layer neurons, if they are not in the predicted state. If the
output-layer neuron is not in the predicted state, it cannot fire spikes, even though it receives the same
feedforward input as the predicted-state neuron. Only the predicted-state neuron which is depolarized
already can fire spikes in response to the proximal dendritic input.

Input-layer
neuron

Output-layer
neuron

 t-1
t

Sensory
SDR

Temporal/
location

SDR

 t-2

Spatial pooler Hippocampus model

Figure 3. The conceptual schematic of a temporal-pooling memristor crossbar composed of input-layer
and output-layer neurons: The input-layer neuron receives sensory SDR and temporal/location SDR
from the spatial pooler and hippocampus model, respectively. The sensory and temporal/location SDR
are generated from the spatial-pooling memristor crossbar that was developed in a previous work [21].
The output-layer neuron can perform a prediction by integrating the temporal information through
multiple basal/distal dendrites.

In Figure 4a, we propose a memristor-CMOS hybrid circuit that has the input and output layers
for the temporal-pooling of sequences such as words, sentences, etc. Here, the sensory SDR vectors
enter the proximal dendrites of m0, m1, m2, etc. The temporal/location SDR vectors are connected
to the basal/distal dendrites of m3, m4, m5, etc. One thing to note in Figure 4a is that each neuron
is allowed to have only a single proximal dendrite. However, for the basal/distal ones, the neuron
can have multiple dendrites, as explained in Figure 2. The sensory SDR and temporal/location SDR
are collectively received by the input-layer neurons. The column current of the sensory SDR “A” is
delivered to C0, where the column current is converted to a voltage and then compared with the
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threshold. The detailed schematic of C0 is shown in Figure 4b. Similarly, the column current of “B”’ is
delivered to C1. The temporal/location SDR vectors of “#1”, “#3”, and “#2” generate the row currents
which are delivered to C2, C3, and C4, respectively. A0, A1, and A2 are the AND gates that combine
the sensory information of “A”’ with the temporal/location SDRs of “#1”, “#3”, and “#2”, respectively.
The outputs of A0, A1, and A2 are represented with i0, i1, and i2, respectively. They enter the pulse-type
set-reset latches of L0, L1, and L2, respectively. The pulse-type set-reset latch is shown in Figure 4c.
L0 can be set if the SDR “A” and SDR “#1” are recognized at the same time. L1 is set for “A” and “#3”.
L2 is switched to the SET state for “A” and “#2”. Similarly, L3, L4, and L5 can respond to the input
SDR of “B#1”, “B#3”, and “B#2”, respectively. The set-reset latch in Figure 4c is reset by the delayed
version of the “EOW_P” pulse from the delay line τ. Here, “EOW_P” means the pulse indicating the
end of the word. “EOW_P” is generated when the word ends.

Sensory 
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Figure 4. (a) The schematic of the proposed memristor-CMOS hybrid circuit for the temporal pooling
of sequences such as words, sentences, etc: The input layer is composed of the memristor crossbars
for sensory and temporal/location SDRs, the current-to-voltage converters, comparators, the AND
gates, etc. The output layer is composed of the memristor crossbars, converters, comparators, latches,
etc. (b) The schematic of the current–voltage converter and comparator and (c) the schematic of the
pulse-type set-reset latch.

As mentioned earlier, if the sensory SDR of letter “A” and the location SDR of “#3” are applied
to the input-layer neuron, Q1 is activated. Similarly, when the sensory SDR of “B” and the location
SDR of “#2” are recognized, Q5 becomes high. When “EOW_P” is activated, the two latches of L1

and L5 keep Q1 and Q5 high, respectively, until the reset. Assuming that the dendritic synapses of the
output neuron O0 are already put in the predicted state with “A#3” and “B#2”, m7 and m9 are already
programmed LRSs (Low Resistance States) as a result of crossbar training. Here, the solid and open
circles represent LRS and HRS (High Resistance State), respectively. At end-of-word, if the row current
of k0 is larger than the output-layer neuron’s threshold, O0 becomes high. Actually, we can think that
the k0 current represents the integration of temporal responses to the sensory/location SDRs of “A#3” and
“B#2” because “A#3” and “B#2’ were already recognized at the previous time. Similarly, if “A#2” and “B#1”
are recognized one by one, the row current k1 becomes larger than the threshold and can activate O1.
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Figure 5a shows a current–voltage relationship of the measured memristor that was obtained by
a Keithley-4200 (Semiconductor Characterization System, Tektronix, Inc., Beaverton, OR, USA) [35].
The measured memristor’s film is a Pt/LaAlO3/Nb-doped SrTiO3 stacked layer [35]. Here, the LRS
and HRS were measured as 10 kΩ and 1 MΩ, respectively. The black line in Figure 5a represents
the behavioral model of memristors [35]. The measured data are represented with the red line.
The behavioral model described by Verilog-A was used in the circuit simulation of the hybrid
circuits of memristors and CMOS in this paper. Here, the circuit simulation was performed using
CADENCE SPECTRE (Cadence Design Systems, Inc., San Jose, CA, USA) and SAMSUNG 0.13-μm
circuit simulation parameters [36]. The mathematical equations of the Verilog-A model of memristors
were explained in a previous publication in detail [35].
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Figure 5. (a) The current–voltage relationships of memristors for the measurement and Verilog-A
model: The black line represents the Verilog-A model of memristors used in the circuit simulation
in this paper [35]. The red line is for the measurement [35]. The details of the measurement and the
Verilog-A model were explained well in a previous publication [35]. (b) The waveforms of the proposed
memristor-CMOS hybrid circuit for temporal pooling shown in Figure 4.

Figure 5b shows the waveforms of Figure 4 obtained from the CADENCE (Cadence Design
Systems, Inc., San Jose, CA, USA) circuit simulation with the memristor’s Verilog-A model in Figure 5a
and the SAMSUNG 0.13-μm SPICE parameters. First, we assumed the sensory SDR of letter “A” and
the location SDR of “#3” are generated by the spatial pooler. As a result, the IN0 and IN5 pulses are
high, while the others are low in Figure 5b. By doing so, Q1 becomes high. Second, if the spatial pooler
generates the sensory SDR of letter “B” and the location SDR “#2”, Q5 becomes high. At end-of-word,
the pulse of “EOW_P” is enabled and the output neuron O0 becomes active. Here, the output neuron is
already put in the predicted state by the previous signals of Q1 and Q5. After the output neuron O0 fires a
pulse, O0 returns to low, as the typical integrate-and-fire neuron acts. To do so, the “EOW_P” pulse goes
through the delay line τ and its delayed pulse resets the set-reset latches. The integrate-and-fire operation
is realized very simply using the digital CMOS gates and the memristor crossbar, as shown in Figure 4a–c.

3. Results

In this paper, we tested the proposed memristor-CMOS hybrid circuit of temporal pooling in
Figure 4a with an EMNIST (Extension of Modified National Institute of Standards and Technology)
data-set of handwritten letters [37]. For training the memristor crossbar to recognize EMNIST
handwritten letters, we applied the simple Hebbian learning to 26 EMNIST letters from “a” to “z”.
The operational steps of simple Hebbian learning of memristor crossbars is shown in Figure 6. Here,
first, we initialized the memristor crossbar. Second, we calculated the amount of overlap between the
input vector and the crossbar’s column or row. If the crossbar’s column or row has an overlap larger
than the threshold, the column or row is activated. In this case, the permanence values of matched
and unmatched memristor cells belonging to the activated column or row are increased and decreased
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according to the predetermined parameter Δ, respectively. If the permanence value becomes larger than
1 or less than 0, the memristor corresponding to the permanence is strengthened or weakened according
to the memristor programing circuit. Here, we used the typical VDD/2 scheme for programming
memristors. One thing to note is that the memristor programming based on Hebbian learning does not
need the complicated backpropagation calculation [21]. By doing so, the proposed memristor-CMOS
hybrid circuit can be very suitable to online learning because the hardware complexity of Hebbian
learning is much simpler than that of a backpropagation-based system.

 

Initialization of 
memristor 
crossbar

Overlap 
computation

Permanence 
updating and 
memrisrtor 

programming

Activation and 
deactivation by 

thresholding

Figure 6. The operational steps of simple Hebbian learning of memristor crossbars: initialization,
overlap computation, activation and deactivation by thresholding, and permanence updating and
memristor programming. Here the memristor programming based on Hebbian learning does not need
the complicated backpropagation calculation.

In this test, the 26 EMNIST letters have 60,000 training vectors. Each image is composed of
20 × 20 gray pixels. To estimate the recognition rate, we tested 10,000 execution vectors of an EMNIST
letter. The first row in Figure 7 shows 4 images of EMNIST letters. They are “c”, “o”, “m”, and “e”,
respectively. EMNIST vectors are randomized first and then applied to the spatial-pooling memristor
crossbar proposed in a previous work [21]. The second row in Figure 7 shows the randomized version
of the EMNIST vectors. It should be noted that the memristor-CMOS hybrid circuit does not need to
use the complicated random number generation circuit. Once we decided the randomization function,
we applied the same function to all the test vectors without changing it for every vector [21]. Thus,
we did not use the random number generator circuit in a previous work [21].

EMNIST vector
(20x20)

Randomized
(20x20)

SDR
(16x16)

EMNIST
Vector #

99

0

20x20 pixels per EMNIST vector

SDR #

99

0
16x16 bits per vector

Figure 7. The first row shows the EMNIST handwritten letters of “c”, “o”, “m”, and “e”, respectively.
The second row shows randomized images of EMIST handwritten letters. The third row are the SDRs
that are obtained from the spatial-pooing memristor crossbar for the randomized images of “c”, “o”,
“m”, and “e”. The fourth row shows 100 EMNIST input vectors. Each EMNIST vector is composed of
20 × 20 pixels. The fifth row shows 100 SDRs with 16 × 16 bits which are obtained from 100 EMNIST
input vectors with 20 × 20 pixels. Among the 16 × 16 bits, only 2% of the bits become active to maintain
the sparsity ratio around 2% by spatial-pooling for EMNIST vectors [21].
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If we perform the spatial pooing with 256 columns, we can obtain 16 × 16 SDRs from 20 × 20
EMNIST input vectors. The third row in Figure 7 shows the SDRs that are obtained from the
spatial-pooing memristor crossbar for the randomized images of “c”, “o”, “m”, and “e”, respectively.
The fourth row in Figure 7 shows the pixel map of 100 EMNIST test vectors. The average sparsity
of the EMNIST test vectors is as high as 55.8%; that means 55.8% of the pixels can be white. On the
contrary, the SDRs from the spatial-pooling crossbar have a sparsity as low as 2%. The fifth row shows
100 SDRs with 16 × 16 bits. Among the 16 × 16 bits of each SDR, only 2% of the bits become active
by the spatial-pooling of the 20 × 20-pixel EMNIST vector. This low sparsity of SDRs is very useful
in cognitive computations such as union, pattern matching, etc. [38]. In addition, the small number
of active bits can reduce the number of LRS cells in a memristor crossbar. By doing so, the power
consumption and sneak-leakage problem can be improved much in the spatial-pooling crossbar [39].

To test the temporal-pooling memristor-CMOS hybrid circuit in Figure 4a, we put together
EMNIST handwritten letters to form arbitrary words. Figure 8 shows the recognition rate of the
proposed temporal-pooling circuit for the 40 words tested in this paper. The recognition rate of words
is estimated as high as 95.6%, 99.1%, and 99.3% for 256-bit SDRs, 1024-bit SDRs, and 4096-bit SDRs,
respectively. One thing to note is that the recognition rate of words is much better than the recognition
rate of EMNIST letters. This is because the temporal-pooling circuit interprets both sensory and
temporal/location information together, as indicated in Figure 2. Combining the sensory SDRs with
the location SDRs makes the recognition of words better than the recognition of letters. Figure 8 also
shows the recognition rate of sentences as high as the rate of words. The recognition rate of sentences
is simulated 96.5%, 99.3%, and 99.7% for 256-bit SDRs, 1024-bit SDRs, and 4096-bit SDRs, respectively.
Here, the number of sentences tested in Figure 8 is 10.
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Figure 8. The recognition rate of words and sentences with varying the number of bits per SDR.

Figure 9 shows the recognition rate by varying the amount of noise added to SDRs. The noise is
added by randomly flipping a fraction of the active bits to inactive, and vice versa so that the sparsity
can be maintained constant. As shown in Figure 4a, the temporal-pooling circuit receives both the
sensory and location SDRs from the spatial pooler. Here, the red circles represent the recognition rate
for the noise added to the sensory SDRs. The black boxes are for the noise added to the location SDRs.
From this figure, the noise added to the location SDRs seems more critical in terms of recognition rate.
If a noise as large as 40% is added to the location SDRs, the recognition rate becomes as low as 45.3%.
However, the rate can be as high as 92.5% for the same amount of noise added to the sensory SDRs.
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Figure 9. The recognition rate of words by varying the amount of noise added to location SDRs and
sensory SDRs: The red circles represent the recognition rate for the noise added to the sensory SDRs.
The black boxes are for the noise added to the location SDRs.

In Figure 10, we assumed the statistical distribution of LRS and HRS with the memristance
variation = 10%, as shown in the inset figure. Here, the main figure shows the recognition rate by
varying the amount variation in memristance from 0% to 15%. Here, the median values of HRS
and LRS are assumed as 1 MΩ and 10 KΩ, respectively. Though the variation is as large as 15%,
the recognition rate is still as high as 85.9%. The loss of recognition rate for the variation = 15% is only
as small as 13.2% compared to the variation = 0%.

Figure 10. The recognition rate of words by increasing the percentage variation in memristance from
0% to 15%: The inset figure shows the statistical distribution of LRS and HRS for the memristance
variation = 10%.

Figure 11 shows the prediction rate of sentences by increasing the number of words sensed in the
tested sentence. Here, we tested two cases of sequences which are ordinal and out-of-order sequences,
respectively. First, let us explain the ordinal sequence. Assume that we try to recognize two sequences
of “‘A-B-C-D-E” and “A-B-C-E-D”. Here, the first three SDRs are “A-B-C” which are the same for
both sequences. Also, the fourth and fifth SDRs are different each other. If the first SDR of “A” comes
to the memristor crossbar, it cannot distinguish the two sequences. Similarly, for the second SDR
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of “B”, the crossbar circuit also cannot make a judgement between “A-B-C-D-E” and “A-B-C-E-D”.
However, if the fourth SDR is given to the crossbar, it can predict if the fifth SDR will be “E” or “D”
according to the fourth SDR information. This is called the ordinal prediction in Figure 11, where the
temporal-pooling circuit can predict the ordinal sequence of SDRs. Figure 11 shows the prediction rate
of ordinal sentences. The prediction rate starts from zero. This means the crossbar can predict nothing
at the starting time of prediction. If the first SDR is given, the crossbar starts to predict the rest words
of the tested sentence. As the crossbar receives more words from the spatial pooler, the prediction
becomes more accurate, as shown in Figure 11. When the crossbar receives the final SDR at the end
of sentence (period symbol), the prediction rate in Figure 11 becomes equal to the recognition rate of
sentences in Figure 8.

Figure 11. The prediction rate of sentences by increasing the number of words sensed for recognizing
the sentences: Here, both the ordinal and out-of-order sequences can be recognized by the
temporal-pooling memristor crossbar circuit proposed in this paper.

We also tested the prediction for out-of-order sequences in Figure 11. In the out-of-order prediction,
the sequence of SDRs are out of order. In spite of the out-of-order sequence, the crossbar can accumulate
the information of the sensed words over time. By doing so, the temporal-pooling circuit can guess
what word should come next. This out-of-order prediction is exactly the same case as the crossword
puzzle problem. In solving the crossword puzzle, we predict the word by accumulating the information
of letters in the out-of-order sequence over time. When the temporal-pooling circuit is given only
half words in the tested sentence, Figure 11 indicates that the crossbar can predict the ordinal and
out-of-order sentences as accurate as 79.8% and 54.2%, respectively.

4. Discussion

In this section, we compare the proposed memristor-CMOS hybrid circuit with the previous
sequential memristor crossbar [40] in terms of the memristor crossbar area, power consumption,
and prediction of the ordinal and out-of-order sequences. The previous sequential memristor crossbar
was designed not to consider the concept of location SDR in the crossbar, unlike the proposed
temporal-pooling hybrid circuit in this paper [40]. Thus, the previous sequential scheme can recognize
only the ordinal not the out-of-order sequence [40]. This is a very big disadvantage of the previous
sequential scheme. For the power consumption, we had to program memristor cells of the serial chain
one by one in the previous sequential crossbar to recognize the ordinal sequences [40]. This results
in a large amount of programming power consumption in the previous scheme. On the contrary,
the proposed temporal-pooling hybrid circuit does not demand the memristor programming in
recognizing both the ordinal and out-of-order sequences. By doing so, the power consumption of the
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proposed temporal-pooling circuit can be almost as small as 1/29 of the previous scheme, as indicated
in Table 1. One more thing to note is the CMOS peripheral circuit in Figure 4a consumes only a
negligible amount of the power than the memristor crossbar. Actually, most of the power is consumed
in the LRS cells in the crossbar. Thus, minimizing the number of LRS cells in the memristor crossbar
is very critical not only for alleviating the sneak leakage problem but also for reducing the power
consumption [21]. Comparing the memristor crossbar’s area between the previous and proposed
schemes indicates the number of memristors of the proposed temporal-pooling hybrid circuit is
estimated almost the same with that of the previous scheme, as shown in Table 1.

Table 1. A comparison of the memristor crossbar area, power consumption, and prediction of the
ordinal and out-of-order sequences.

Scheme
The Previous Sequential
Memristor Crossbar [40]

The Proposed Memristor-CMOS
Hybrid Circuit of Temporal Pooling

The number of memristors
(Memristor crossbar area) 17556 17027

The amount of power consumption
(LRS = 1 MΩ, HRS = 100 MΩ) 151.5 μW 5.24 μW

Prediction of ordinal sequences O O

Prediction of out-of-order sequences X O

Finally, we discuss here the practical applications of Hebbian-based HTM algorithm. Actually,
if we compare the Hebbian-based HTM algorithm with the previous deep-learning ones such
Convolutional Neural Networks, etc. for recognizing the benchmark image data-set, the deep learning
outperforms the Hebbian-based HTM [21]. However, according to Numenta Inc. that developed
HTM algorithm, the biologically inspired HTM can work best with data that meets the following
characteristics: streaming data rather than batch data files, data with time-based patterns, many
individual data sources where hand crafting separate models is impractical, subtle patterns that cannot
always be seen by humans, and data for which simple techniques such as thresholds yield substantial
false positives and false negatives [41]. This means that the Hebbian-based HTM algorithm can be
more suitable to the area of Human-like sensory information such as the streaming data composed of
anomaly patterns, as we showed in the case of the out-of-order prediction in Figure 11. On the contrary,
for a static image data-set such as MNIST, CIFAR, etc., the conventional deep learning techniques can
be better than HTM [21]. The real practical applications of the Hebbian-based HTM algorithm were
explained in detail in previous publications [41,42]. In addition, the experimental results of memristor
crossbars with Hebbian learning were shown in previous publications [43,44], where memristor’s
conductance was trained by the Hebbian algorithm for various neuromorphic applications.

5. Conclusions

As a software framework, Hierarchical Temporal Memory (HTM) has been developed to perform
the brain’s neocortical functions such as spatial and temporal pooling in software. However, it should
be realized with hardware not software not only to mimic the neocortex’s function but also to exploit
its architectural benefit. To do so, in this paper, we proposed the memristor-CMOS hybrid circuit to
realize the temporal-pooling function of human brain, which is composed of the input and output
layers to mimic the neocortical neurons. In the hybrid circuit, the input layer has proximal and
basal/distal dendrites to combine the sensory information with the temporal/location information
caused from the brain’s hippocampus. Using the same crossbar architecture, the output layer can
perform predictions by integrating the temporal information through the basal/distal dendrites.
For training the memristor-CMOS hybrid circuit, we used only simple Hebbian learning, not the
complicated backpropagation algorithm. Due to the simple hardware of Hebbian learning, the hybrid
circuit can be thought very suitable to online learning.
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The proposed memristor HTM circuit was verified by the circuit simulation using memristor’s
Verilog-A model obtained from the measurement. The proposed crossbar circuit was tested to recognize
words and sentences that are composed of EMNIST data-set of handwritten letters. The recognition
rate for sentences was estimated as high as 96.5% for 256-bit Sparse Distributed Representation
(SDR). In addition, the proposed circuit was tested with the external noise and memristance variation.
The proposed temporal-pooling circuit also was verified to perform both the ordinal and out-of-order
predictions. When the proposed circuit was given only half words in the tested sentence, it could
predict the ordinal and out-of-order sequences with the accuracy of 79.8% and 54.2%, respectively.
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Abstract: Hierarchical Temporal Memory (HTM) has been known as a software framework to
model the brain’s neocortical operation. However, mimicking the brain’s neocortical operation
by not software but hardware is more desirable, because the hardware can not only describe the
neocortical operation, but can also employ the brain’s architectural advantages. To develop a hybrid
circuit of memristor and Complementary Metal-Oxide-Semiconductor (CMOS) for realizing HTM’s
spatial pooler (SP) by hardware, memristor defects such as stuck-at-faults and variations should
be considered. For solving the defect problem, we first show that the boost-factor adjustment can
make HTM’s SP defect-tolerant, because the false activation of defective columns are suppressed.
Second, we propose a memristor-CMOS hybrid circuit with the boost-factor adjustment to realize this
defect-tolerant SP by hardware. The proposed circuit does not rely on the conventional defect-aware
mapping scheme, which cannot avoid the false activation of defective columns. For the Modified
subset of National Institute of Standards and Technology (MNIST) vectors, the boost-factor adjusted
crossbar with defects = 10% shows a rate loss of only ~0.6%, compared to the ideal crossbar with
defects = 0%. On the contrary, the defect-aware mapping without the boost-factor adjustment
demonstrates a significant rate loss of ~21.0%. The energy overhead of the boost-factor adjustment is
only ~0.05% of the programming energy of memristor synapse crossbar.

Keywords: memristor-CMOS hybrid circuit; defect-tolerant spatial pooling; boost-factor adjustment;
memristor crossbar; neuromorphic hardware

1. Introduction

The human brain’s neocortex covers the brain’s surficial area, which is known to carry out the
most intelligence functions. The thickness of neocortex has been observed as thin as 2.5 mm, where six
layers are stacked one-by-one [1–3]. The six neocortical layers seem to be columnar, in which the
complicated vertical and horizontal synaptic connections are intertwined among neurons to form the
3-dimensional neuronal architecture [4,5]. The neocortical neurons collectively respond to human’s
sensory information from retina, cochlea, and olfactory organ [6]. The collective activation of neocortical
neurons are trained over and over with respect to time, by changing the synaptic connection’s strength
according to the sensory stimuli. The neuronal activation and synaptic plasticity can be thought of as
a fundamental aspect of human perception and cognition, which are computed in a different way from
the conventional Von Neumann machines.

As a software framework, Hierarchical Temporal Memory (HTM) has been developed to model
the cognitive functions of neocortex [7–11]. By doing so, HTM can recognize and interpret various
spatiotemporal patterns, mimicking how the human brain’s neocortex understands human’s sensory
stimuli. The software framework of HTM is divided into two functional blocks: Spatial Pooler (SP)
and Temporal Memory (TM). The role of SP is receiving and learning the sensory information. In SP,
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the sensory information is transformed into the collective activation of neocortical neurons. From the
biological experiments, the neocortical neurons have been observed to be activated sparsely, not densely,
in response to human sensory stimuli. The sparse activation of neocortical neurons is mathematically
described as Sparse Distributed Representation (SDR) in HTM [1]. After SP learning the spatial features
of the sensory stimuli, TM responds to the temporal sequences of SDR patterns generated from SP.
By learning the temporal sequences of SDR patterns, TM can perform recognition and prediction
for them.

Figure 1a shows a conceptual diagram of SP operation, where the input-space neurons are mapped
to the SP neurons [8]. Here, the input-space and SP neurons refer to the neurons of sensory organ and
neocortex, respectively. The sensory stimuli generated from the input-space neurons are connected
with the neocortical neurons, as indicated in Figure 1a. The lines between the input and the SP spaces
represent the synaptic connections. Synaptic weights of the connections are trained according to
Hebbian learning rule in HTM [8]. If an SP neuron becomes active, in response to an input-space
stimulus, the synaptic weights belonging to this neuron are strengthened, and weakened otherwise [8].
The circle zone in the SP space represents a local inhibition area, within which only few neurons are
allowed to be active. In HTM, the size of inhibition zone in the SP space can be decided to control
the sparsity of neuronal activation. It has been known that the percentage of neuronal activation is as
sparse as 2% on average in the brain’s neocortex. This low sparsity of neuronal activation may have
something to do with high energy-efficiency of neocortical cognitive operation.

Figure 1. (a) The conceptual diagram of Spatial Pooler (SP) operation, where the input-space neurons
are mapped to the SP neurons; and (b) the comparison of the ideal crossbar without defects and the real
crossbar with defects. LRS and HRS mean Low Resistance State and High Resistance State, respectively.

In the previous publications, we developed hybrid CMOS-memristor circuits for implementing
HTM, which was developed as the software framework originally, as mentioned earlier [12,13].
Memristors have been studied intensively for many years for their potential in neuromorphic hardware,
since the first experimental demonstration [14,15]. This is because the memristive behaviors seem
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very similar with the experimental synaptic plasticity observed from biological neurons. From the
biological experiments, the synaptic connections have been observed to be strengthened or weakened
dynamically by electrical spiking signals applied to them [16].

Moreover, memristors can be fabricated to build 3-dimensional crossbar architecture using the
CMOS-compatible Back-End-Of-Line (BEOL) process [17,18]. The 3-dimensional connectivity of
memristor-synapses is very similar to the anatomical structure of the biological neocortex. In terms
of cognitive functions, the memristor crossbar can perform vector-matrix multiplications in parallel,
which can be considered very important in implementing energy-efficient computing like human
brain’s cognition, unlike the state-of-the-art Von Neumann based computers [19,20].

One important thing to consider in the memristor crossbar is defects, as shown in Figure 1b. In the
real memristor crossbar, there are stuck-defects, such as stuck-at-0, stuck-at-1, etc. [21]. In addition,
variation-related defects can also be considered, where each memristor can have different LRS and
HRS values due to process variations [22]. Here, LRS and HRS mean Low Resistance State and
High Resistance State, respectively. Figure 1b compares the ideal crossbar (without defects) and
the real one (with defects). The solid and open red circles with stars represent stuck-at-LRS and
stuck-at-HRS defects, respectively. For the memristor defects such as stuck-at-faults and variations,
these defects may be caused from the random nature of filamentary current path which can be formed
or erased by the applied current and voltage to the memristor. The filamentary current path created
or erased during the memristor programming can have statistical distributions like FLASH memory.
Various statistical distributions by device-to-device, wafer-to-wafer, lot-to-lot, and process-to-process
lead to the variations in memristance and stuck-at-faults [21].

To minimize a loss of recognition rate due to these memristor defects, we can consider the
defect-tolerance scheme based on the conventional defect-aware mapping [21]. To explain the
previous defect mapping scheme, the following logic function is assumed, f = X1X2 + X2X3 + X3X1 +

/X1/X2/X3 is implemented in the crossbar [21].
In the logic function, /X1 means the inversion of X1. Figure 2a shows the real memristor crossbar

(with defects). Here, I1, I2, etc. represent input columns. O1, O2, etc. are output rows. The gray
circle indicates a good memristor cell, which can be programmed with HRS or LRS. The solid and
open red circles represent stuck-at-1 and stuck-at-0 defects, respectively. Figure 2b shows the direct
mapping without considering the defect map. P1, P2, P3, and P4 indicate the first, second, third, and
fourth partial products in the target logic function. P1 calculates X1X2. However, P2 calculates X1X2X3,
not X2X3 defined in the logic function, because of the stuck-at-1 fault on the crossing point between X1

and P2. P4 also calculates the wrong partial product. The stuck-at-0 fault is found at the crossing point
between /X2 and P4. By doing so, P4 calculates /X1/X3 instead of the target product of /X1/X2/X3.
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Figure 2. (a) The real crossbar with defects; (b) the direct mapping of the logic function without considering
the defect map; (c) the defect-aware mapping of the logic function with considering the defect type
and location; (d) the flowchart of crossbar training using the conventional defect-aware mapping [21];
and (e) the proposed flowchart of the defect-tolerant crossbar training without using the defect map.

Figure 2c shows the defect-aware mapping, where the defects can be used in implementing the
logic function according to the defect type and location. To do so, the crossbar’s rows in Figure 2c are
reordered to consider the defect type and location in calculating the partial products. For example,
the first row in Figure 2c is assigned to P3, not P1. P1 is assigned to the second row to calculate X1X2.
The stuck-at-1 fault on the second row can be used in calculating P1 = X1X2. Similarly, the stuck-at-1
fault on P4 can be employed to calculate P4 = /X1/X2/X3. Moreover, the stuck-at-0 faults on P2 and P4

do not cause a wrong result for the calculation of partial products of P2 and P4. As shown in Figure 2c,
the defects can be employed in implementing the target logic function according to the defect type and
location. However, the defect-aware mapping scheme demands very complicated circuits, such as
memory, processor, controller, etc., to be implemented in hardware.

Figure 2d shows the flowchart of crossbar training using the conventional defect-aware mapping.
After fabricating the memristor crossbar, the defect map should be obtained by measuring the crossbar.
As a post-fabrication configuration, the trained synaptic weighs can be transferred to the crossbar
using the defect-aware mapping, as explained in Figure 2c. To do so, however, the complicated digital
circuits, such as memory, controller, processor, etc., are needed for implementing the defect-aware
mapping in hardware, as mentioned earlier.

Not using the defect-aware mapping, in this paper, we propose a simple memristor-CMOS hybrid
circuit of defect-tolerant spatial-pooling, which does not need the complicated circuits of memory,
controller, processor, etc., as shown in Figure 2e, where, unlike in Figure 2d, the crossbar’s defect
map is not used. For developing the hybrid circuit of memristor-CMOS, we first show that the
spatial-pooling based on Hebbian learning can be defect-tolerant, owing to the boost-factor adjustment,
in Section 2. Additionally, we propose a new memristor-CMOS hybrid circuit, where the winner-take-all
circuit is implemented not using capacitors occupying large area. In Section 3, the proposed hybrid
circuit is verified to be able to recognize well Modified subset of National Institute of Standards
and Technology (MNIST) hand-written digits, in spite of memristor defects such as stuck-at-faults,
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variations, etc. In Section 4, we discuss and compare the following three cases: (1) Spatial-pooling
without both the boost-factor adjustment and the defect-aware mapping, (2) spatial-pooling with the
defect-aware mapping, and (3) spatial pooling with the boost-factor adjustment, in terms of hardware
implementation, energy consumption, and recognition rate. Finally, in Section 5, we summarize
this paper.

2. Materials and Methods

To develop a memristor-CMOS hybrid circuit for realizing HTM’s SP function by hardware, memristor
defects such as stuck-at-faults and variations should be considered. To consider the memristor defects in
developing the hybrid circuit of the SP function, we explain the memristor fabrication and its behavioral
model in the following sub-section of ‘a. Materials’. Then, we describe the boost-factor adjustment in
HTM’s SP operation can make it defect-tolerant, because the false activation of defective columns in the
crossbar are suppressed, in the sub-section of ‘b. Methods (scheme)’. In the sub-section of ‘c. Method
(circuit)’, we propose the memristor-CMOS hybrid circuit by explaining its schematic and operation in detail.
The hybrid circuit with the boost-factor adjustment is discussed and compared with the previous techniques
without the boost-factor adjustment, later in this paper. The simulation result and comparison indicates that
the memristor-CMOS hybrid circuit with the boost-factor adjustment can improve the recognition rate by
more than ~20%, than the previous defect-map-based technique. This hybrid circuit can be very useful
for energy-efficient computing in future IoT systems, where many IoT sensors are connected to a cloud of
centralized data processing, as explained later.

a. Materials

Figure 3a shows a cross-sectional view of the fabricated memristor in this paper. The fabricated
memristor has a film structure made of a Pt/LaAlO3/Nb-doped SrTiO3 stacked layer [23].
A microscope picture of the measured device is shown in Figure 3b, where the top electrode area is
100 μm × 100 μm [24]. The top and bottom electrodes were formed by Platinum (Pt) and SrTiO3, in the
measured device, respectively [23].

Figure 3c shows current–voltage relationships of the fabricated memristor and the Verilog-A model,
respectively [23]. The measurement was performed by Keithley-4200 (Semiconductor Characterization
System, Tektronix, Inc., Beaverton, OR, USA) [23]. Here, the HRS/LRS ratio in Figure 3c was observed
as large as 100. The black and red lines in Figure 3c represent the behavioral model of memristors and
the measured data, respectively. The behavioral model described by Verilog-A in Figure 3c was used
in the circuit simulation of the memristor-CMOS hybrid circuit in this paper.

Figure 3. (a) The cross-sectional view of the measured memristor [23]; (b) the microscope picture of the
measured memristor [24]; and (c) the memristor’s current–voltage relationships of the measurement
and Verilog-A model [23].
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b. Methods (scheme): boost-factor adjustment scheme for defect-tolerant spatial-pooling

The spatial-pooling in HTM software framework is composed of initialization, overlap computation,
inhibition, and learning, as shown in Figure 4a [8,12]. After the initialization step (Phase 1), three steps:
Overlap computation (Phase 2), inhibition (Phase 3), and learning (Phase 4), are repeated sequentially [8,12].
In Phase 1, random sets of inputs are selected from the input space, as indicated in Figure 1a. The number
of random sets of inputs per training vector is the same with the number of crossbar’s columns. Each input
in this random set can be connected to an output neuron in the SP via a synapse [8,12]. In Phase 2,
an amount of overlap of each output neuron with the chosen set of inputs from the input space is
calculated [8,12] The amount of overlap of each neuron in the SP can be calculated with the number of the
connected synapses with the active inputs, multiplied by each column’s boost factor. In Phase 3, we decide
which columns can be winners within the inhibition radius [8,12]. By doing so, the sparsity regarding the
percentage of activation in the neocortical neurons can be controlled to not exceed a certain limit. In the
case of the human brain’s neocortex, only 2% of neocortical neurons have been observed to be activated in
response to human sensory stimuli. In Phase 4, Hebbian learning is performed to strengthen and weaken
synaptic connections [8,12]. For the winners chosen in Phase 3, the synaptic permanence values for the
active inputs are increased by p+. For the inactivate inputs, the permanence values are decreased by p-.
p+ and p- represent the increment and decrement of synaptic permanence, respectively. The permanence
value is allowed to vary between 0 and 1. If it reaches 1 or 0, the synaptic weight is changed to LRS or
HRS, respectively.

Figure 4. (a) The spatial-pooling algorithm composed of initialization, overlap computation, inhibition,
and learning [8,12]; and (b) the defect map of a memristor crossbar with 10% random defects. Here the
numbers of rows and columns of the crossbar are 400 and 256, respectively. The random defects are
stuck-at-LRS and stuck-HRS defects.

One more parameter needed to be updated after the activation of each neuron is a boost factor.
The boost factor can be defined with the following inverse relationship with the activity ratio [8]:

bi = e−β(ai−〈ai,neighbor〉) (1)

Here, bi means the boost factor of column, i. β is a positive parameter that controls the strength of
the adaptation effect. ai is the activity ratio of column i, and < ai, neighbor >means the average activity
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ratio of the column’s neighborhood. For given M test vectors, the activity ratio of column, i, can be
calculated with

ai =
1
M

M∑
j=1

(activation(column, i)). (2)

Here, ai is the activity ratio of column i. M is the number of test vectors. The activation function
defined with ‘activation(column, i)’ in Equation (2) becomes one, if the column, i, is activated. If the
column is not activated, the activation function should be zero. For a neuron activated very frequently,
its boost factor should be adjusted to be very small to lower the probability of activation. On the
contrary, if a neuron is chosen very rarely, its boost factor should be increased. As explained just
earlier, by adjusting each column’s boost factor according to each column’s activity ratio, the number
of activations can be distributed more evenly for all columns in the crossbar.

We now discuss how each column’s activity ratio can be affected by memristor defects.
Figure 4b shows a defect map of 400 × 256 memristor crossbar. Here, we assume random defects = 10%
in the crossbar. The random defects can be stuck-at-HRS and stuck-at-LRS. Because the HRS defects do
not cause erroneous activation of neurons, we focus on the LRS defects here.

In Figure 5a, the number of defects per column is ranked from the largest to the smallest.
The number of columns in the crossbar is assumed to be 256 in Figure 5a. Each column is assumed to
have 400 cells. Among the 400 cells per column, the most defective column has almost ~90 defects.
The smallest number of defects per column is ~0. Figure 5b and c compare the simulated boost factors of
the crossbars without and with the boost-factor adjustment, respectively. In Figure 5b, all 256 columns
have the same boost factor, fixed by 50. On the contrary, in Figure 5c, each column’s boost factor is
adjusted between 0 and 100, according to each column’s activity ratio.

Figure 5d and e compare the activity ratios of the crossbars without and with the boost-factor
adjustment. Here, each column’s activity ratio is shown on the y-axis with respect to the ranked column
number according to the number of defects. Figure 5d clearly indicates that a large number of defects
in a defective column causes frequent activation of the column. The small number of defects results in
the rare activation of the column. The frequent activation due to the defective column is very likely to
be false and should be suppressed not to happen. Figure 5e shows that the frequent activation of the
defective columns can be suppressed, by decreasing the boost factor of the defective columns lower
than the neighbors. By doing so, we can reduce the false activation of the defective columns. Thus,
the recognition rate loss due to the defective columns can be minimized by the boost-factor adjustment.

In Figure 5f, the crossbar’s entropy is compared without and with the boost-factor adjustment.
The entropy of the crossbar with N columns is calculated with Equation (3) [8].

Entropy =
N∑

i=1

[
−ai log2 ai − (1− ai) log2(1− ai)

]
(3)

In Equation (3), ‘Entropy’ means the calculated amount of entropy. N is the number of columns in
the crossbar. ai is the activity ratio of column i. ‘log’ means the logarithmic function. Figure 5f indicates
that the crossbar with the boost-factor adjustment shows much larger entropy than the crossbar without
the boost-factor adjustment. The better entropy can result in a better recognition rate, as shown later in
this paper.
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Figure 5. (a) The number of defects per column ranked from largest (left) to smallest (right); (b) the simulated
boost factor of the crossbar without the boost-factor adjustment; (c) the simulated boost factor of the crossbar
with the boost-factor adjustment; (d) the simulated activity ratio of the crossbar without the boost-factor
adjustment; (e) the simulated activity ratio of the crossbar with the boost-factor adjustment; and (f) the
comparison of crossbar entropy without and with the boost-factor adjustment.

c. Methods (circuit): memristor-CMOS hybrid circuit of defect-tolerant spatial pooling

Figure 6a shows a schematic of the memristor-CMOS hybrid circuit of defect-tolerant spatial
pooling, where each column’s boost factor can be adjusted to make each column’s activity ratio
more even. The memristor crossbar is composed of 400 rows and 256 columns for recognizing the
MNIST hand-written digits. The 400 rows can receive 20 × 20 input pixels of each MNIST test vector.
The 256 columns correspond to the 256 output neurons of the SP. In Figure 6a, X0 and X1 are the first and
second row, respectively. g0,0 means memristor’s conductance of row #0 and column #0. Similarly, g1,0

means memristor’s conductance of row, #1, and column, #0. I0 and I1 represent the currents of columns,
#0 and #1, respectively. I0 and I1 enter the current–voltage converters of B0 and B1, respectively,
where each column’s boost factor can be adjusted according to each column’s activity ratio. Here, V0

and V1 are the converted voltages of columns #0 and #1, respectively. The converted voltages, V0 and
V1, enter the comparators of C0 and C1, respectively, where V0 and V1 are compared with VREF. VREF is
obtained from the maximum output voltage among the neighbors using the diode-connected MOSFETs
of M0, M1, etc. If we assume the diode ‘ON’ voltage is very small, VREF can be very similar with the
maximum voltage among all the output voltages such as V0, V1, etc. If V0 or V1 is very close to VREF,
then column #0 or column #1 will be activated as a winner, inhibiting the neighboring columns from
being activated. One thing to note here is that the VREF for selecting the winner columns is obtained
dynamically by extracting the largest output voltage among the neighbors. If a new input vector is
applied to the crossbar, the output voltages are changed, too. Thus, we can obtain a new maximum
voltage for the new input vector dynamically. Comparing each column’s output voltage with the new
maximum, we can choose the next winner columns that are very close to the new maximum voltage.
Y0 and Y1 refer to the output SDR bits for columns #0 and #1, respectively.

The circuit proposed in this paper does not use any capacitor for realizing the winner-take-all function,
as shown in Figure 6a. This is different from the previous publications [12,20], where the capacitor was
used to integrate the column current over time to accumulate the charge. The accumulated charge can
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be represented by the capacitor’s voltage. If one column’s voltage reaches a certain level at the earliest
time, then that column is chosen as the winner [12,20]. Instead of capacitors occupying a very large area,
the diode-connected MOSFETs are used here to obtain the maximum voltage among all output voltages,
as shown in Figure 6a. The winning column can be chosen by comparing each column’s output voltage
with the maximum voltage extracted from the diode-connected MOSFETs. The diode-connected MOSFETs
in Figure 6a can occupy a much smaller area than the capacitors used in the previous publications [12,20].

One problem with the winner-take-all circuit using the diode-connected MOSFETs in Figure 6a
is that the winner may be multiple, not single, in some cases. To investigate the number of winning
columns per input vector, the statistical sparsity distribution is compared between the previous
winner-take-all and the proposed circuit in Figure 6a. To do so, the average and variance of sparsity
distribution are calculated for the previous winner-take-all and the proposed circuit in Figure 6a.
The average sparsity of the previous winner-take-all and the proposed circuit in Figure 6a, are 2.2% and
2.3%, respectively. The calculated variance values are 0.09 and 0.11, respectively. The small difference
in variance between the previous and proposed indicates that the winner-take-all can be implemented
with the diode-connected MOSFETs and voltage comparators, not using the capacitors occupying
a very large area.

Figure 6b shows a detailed schematic of the current-to-voltage converter, B0, with the boost-factor
adjustment. OP1 and OP2 are OP amplifiers. The column current, I0, goes though R1. The node
voltage, N1, becomes–I0 × R1. The converted voltage from I0 is given to R2. Thereby, the current
though R2 goes to Mb,0 and is finally converted to V0. V0 is the output voltage of the current–voltage
converter. Here, we used R1 = 5 kΩ and R2 = 100 MΩ, respectively. For the boost-factor adjustment,
Mb,0 should be changed according to the activity ratio of column #0, with respect to the activity ratios
of the neighbors. S1, S2, and S3 are the switches controlled by SW0. SW0 is applied by the boost-factor
adjustment controller. VP means the memristor programming pulse. VP is applied to Mb,0, through S1

and S2, to change the memristor’s conductance. VP is applied to the boost-factor memristor for the
boost-factor adjustment, when SW0 is high. On the contrary, when SW0 is low, S3 becomes ‘ON’ and
V0 is compared with the other output voltages such as V1, V2, etc.

Figure 6c shows the operational diagram of the proposed memristor-CMOS hybrid circuit
illustrated in Figure 6a,b. As indicated in Figure 6c, the crossbar performs the overlap calculation,
in which the input voltage is multiplied with the memristor’s conductance. Then, each column’s
current can be calculated by summating all the cell currents belonging to the column. The column
current enters the current-to-voltage converter. The converted voltage from each column is delivered to
the winner-take-all, where the winning column is chosen. Based on the winning column, the learning
controller adjusts each column’s boost factor and the permanence values of the cells belonging to the
column, according to Hebbian rule. The steps indicated in the operational diagram in Figure 6c are
repeated again, when a new input vector is applied to the crossbar.
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Figure 6. (a) The detailed schematic of the memristor-CMOS (Complementary Metal-Oxide-Semiconductor)
hybrid circuit of defect-tolerant spatial pooling. The hybrid circuit is composed of the memristor crossbar,
the current–to-voltage (I–to-V) converters with the boost-factor adjustment, and the winner-take-all
circuit with the diode-connected Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs) and
comparators; (b) the detailed schematic of the voltage-converter circuit with the boost-factor adjustment;
and (c) the operational diagram of the memristor-CMOS hybrid circuit.

The simulated waveforms in Figure 7 demonstrate the operation of the proposed memristor-CMOS
hybrid circuit with the boost-factor adjustment. Here, the circuit simulation was performed using
CADENCE SPECTRE (Cadence Design Systems, Inc., San Jose, CA, USA) and SAMSUNG 0.13-μm
circuit simulation parameters [25]. The mathematical equations of the Verilog-A model of memristors
used in the circuit simulation were explained in-detail in a previous publication [23]. In the simulation,
we assumed the memristor crossbar of SP with 400 rows and 256 columns. The number of synaptic
memristors per column is 25 among 400 cells. It means the 25 cells can be activated at the maximum
among 400 cells per column in the crossbar. The increment and decrement of permanence are +0.01
and −0.01, respectively. The initial permanence values are assumed to be random between 0 and 1.
The minimum amount of overlap between the input-space and spatial-pooler space can start from
zero. The amount of overlap can be calculated by multiplying the input voltages with the memristor
synaptic weights. The size of inhibition circuit zone is 64 columns in the crossbar. The number of
winning columns is allowed not to exceed 2 among 64 columns. Thereby, the sparsity in Figure 6a can
be controlled within 2%, as the brain’s neocortex does.

In Figure 7, during the crossbar training time, each column’s activity ratio is calculated by counting
the number of activation of each column. If column #0 becomes activated, Y0 becomes high. Similarly,
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if column #1 becomes activated, Y1 is high. After the crossbar training time, the boost factor can be
adjusted according to each column’s activity ratio, as described in Equation (1). The more frequent
activation of column #0 leads to decrease the boost factor more. The less frequent activation of column
#1 reduces the boost factor little, as shown in Figure 7. For adjusting the boost factors of columns #0
and #1, the pulse widths of SW0 and SW1, respectively, are modulated. Mb,0 can be decreased more
than Mb,1 by many programming pulses of VP, because SW0 is high for a longer time than SW1. On the
contrary, Mb,1 is changed little, due to the fact that SW1 is high only for a very short time. The pulse
modulation of SW0 and SW1 can be controlled very easily by counting the number of activations of
each column during the crossbar training time.

Figure 7. The simulated waveforms of the proposed memristor-CMOS hybrid circuit with the
boost-factor adjustment.

3. Simulation Results

For calculating the recognition rate, we tested MNIST vectors [26,27] with the proposed memristor-
CMOS hybrid circuit. To reflect the real crossbar with non-ideal effects, we considered source resistance,
neuron resistance, wire resistance, etc., in the recognition-rate simulation [22]. Figure 8a shows a schematic
of memristor crossbar that includes these non-ideal parasitic effects. Here, RS and RN represent source
resistance and neuron resistance, respectively [2]. RW represents wire resistance from metal layers. In the
non-ideal crossbar, RN and RS are assumed to be 0.27% of HRS and 0.067% of HRS, respectively [22]. RW is
assumed to be ~1Ω per cell in this paper. These RS and RN, which are 0.27% of HRS and 0.067% of HRS,
respectively, are the worst-case values of the source and neuron resistance observed from the fabricated
real crossbars [22]. In Figure 8a, V0, V1, and Vn represent the input voltages. I0, I1, and Im represent the
column currents.

We now explain the crossbar architecture for recognizing the MNIST vectors. Here, the number
of rows in the crossbar should be 400, which should be the same with the number of input voltages.
Each MNIST vector is composed of 20 × 20 = 400 pixels. Thus, the number of input voltages is
400 for recognizing the MNIST vector. For the number of columns of the SP crossbar, 256, 1024,
and 4096 columns are used in Figure 8b, c, and d, respectively. It is known that having more SP
columns can result in a better recognition rate [12]. This is because each SP column can store a specific
feature of tested vectors. If the number of SP columns becomes larger, then more features can be
stored in the columns. Thereby, the recognition rate for the tested images can be improved with
increasing the number of SP columns. The number of SP columns = 256 is the same condition for the
memristor-implemented Convolutional Neural Network, where the testing image has 20 × 20 pixels,
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the kernel size is 5 × 5, and the number of kernels = 1. Similarly, the number of SP columns = 1024
is the same condition of Convolutional Neural Network, with 20 × 20 image, 5 × 5 kernel, and the
number of kernels = 4. The number of SP columns = 4096 is the same condition of Convolutional
Neural Network, with 20 × 20 image, 5 × 5 kernel, and the number of kernels = 16. In this simulation,
we did not simulate the crossbars with SP columns more than 4096, because we do not use the number
of kernels more than 16 for recognizing the MNSIT vectors, in Convolutional Neural Network.

Figure 8. (a) The memristor crossbar with the non-ideal effects of RS, RN, and RW. Here RS = 0.27%*HRS
and RN = 0.067%*HRS.; (b) the MNIST recognition rate of the non-ideal crossbar with 256 SP columns.
Here, SP means Spatial Pooler. The percentage σ of memristance variation of HRS and LRS is assumed
to be 0% in Figure 8.; (c) the MNIST recognition rate of the non-ideal crossbar with 1024 SP columns.
Here the percentage σ of memristance variation of HRS and LRS is 0%; and (d) the MNIST recognition
rate of the non-ideal crossbar with 4096 SP columns. The percentage σ of memristance variation in
HRS and LRS is assumed 0%.

Figure 8b shows MNIST recognition rate of the memristor crossbar with SP columns = 256.
Here, the percentage of defects in the crossbar is changed from 0% to 20%. The percentage σ of
memristance variation of HRS and LRS is assumed to be zero. For the percentage of defects = 0%,
the crossbars without and with the boost-factor adjustment show the recognition rates of 77.3% and
77.6%, respectively. When the percentage of defects is very small, the boost-factor adjustment affects
the recognition rate very little. However, if the percentage increases, the boost-factor adjustment plays
an important role to keep the recognition rate as high as the rate of defects = 0%, as shown in Figure 8b.
For the defects = 20%, the boost-factor adjustment can show the recognition rate better by as much as
30.6%, compared to the crossbar without the boost-factor adjustment.

Figure 8c is for the SP columns = 1024. As mentioned earlier, the crossbar with the SP columns =
1024 recognizes MNIST vectors better than the SP columns = 256. For the percentage of defects = 0%,
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the recognition rates of 256 and 1024 SP columns are 77.6% and 92.5%, respectively. As indicated in
Figure 8b, the boost-factor adjustment in Figure 8c can maintain this good recognition rate, even though
the percentage of defects is increased to 20%. For the percentage = 20%, the gap of recognition rates
without and with the boost-factor adjustment is as much as 35.9%.

Figure 8d is for the SP columns = 4096. If the percentage of defects is 0%, the recognition rate of the
crossbar is as high as 96.2%. In spite of the percentage of defects = 20%, the boost-factor adjustment can
keep the rate as high as 94%, whereas the crossbar without the boost-factor adjustment is as low as 78%.

Figure 9a shows the statistical distributions of HRS and LRS, where the percentageσ of memristance
variation is assumed to be 30%. Figure 9 b, c, and d are for the SP columns = 256, 1024, and 4096,
respectively. As indicated in Figure 9, the more SP columns can result in the better recognition rate.
In Figure 9b, the percentage of defects is changed from 0% to 20%. For the percentage of defects = 0%,
the boost-factor adjustment affects the recognition rate very little. However, if the percentage of
defects is increased to 20%, the boost-factor adjustment can improve the recognition rate significantly
compared to the crossbar without the boost-factor adjustment. Similarly, in Figure 9c with the SP
columns = 1024, the recognition rates without and with the boost-factor adjustment are 54% and 87%,
respectively, when the defects = 20%. In Figure 9d with the SP columns = 4096, the recognition rates
without and with the boost-factor adjustment are 74% and 93.9%, respectively, when the defects = 20%.

Ω
σ

ΩΩ

Ω
σ

Figure 9. (a) The statistical distributions of LRS and HRS with the percentage σ of memristance variation
= 30% in the simulation; (b) the MNIST recognition rate of the non-ideal crossbar with 256 SP columns
and the percentage σ of memristance variation = 30%. Here, SP means Spatial Pooler.; (c) the MNIST
recognition rate of the non-ideal crossbar with 1024 SP columns and the percentage σ of memristance
variation = 30%; and (d) the MNIST recognition rate of the non-ideal crossbar with 4096 SP columns
and the percentage σ of memristance variation = 30%.
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4. Discussion

In this session, to understand the benefit of the proposed circuit exactly, we discuss and compare the
following three SP schemes in Table 1: (1) Spatial-pooling without both the boost-factor adjustment and
the defect-aware mapping, (2) spatial-pooling with the defect-aware mapping, and (3) spatial-pooling
with the boost-factor adjustment.

Table 1. Comparison of possibility of hardware implementation, energy consumption for the crossbar
programming, and MNIST recognition rate for the three SP schemes. Here, SP means Spatial Pooler.
Energy consumption is calculated during the training time of 10,000 MNIST vectors.

Possibility for Hardware
Implementation

Energy Consumption of the
Crossbar Programming

(SP Column = 256)

MNIST Recognition Rate

# of SP
Columns

Rate (%)
Defects = 0%

Rate (%)
Defects = 10%

(1) Spatial-pooling
without the boost-factor

adjustment and the
defect-aware mapping

Able to be implemented
with hardware

3.9 mJ for the crossbar programming

256 77.3 55.6

1024 92 65.4

4096 95.7 81.1

(2) Spatial-pooling
with the

defect-aware mapping

The defect-aware mapping in
Figure 2d demands the very

complicated hardware of memory,
processor, controller, etc.

3.9mJ for the crossbar programming
256 77.3 56.3

1024 92 66.5

4096 95.7 82.4

(3) Spatial- pooling
with the

boost-factor adjustment

Able to be implemented
with hardware

3.9 mJ for the crossbar programming,
+2uJ for the boost-factor adjustment
(Energy overhead due to boost-factor

adjustment: ~0.05%)

256 77.6 77

1024 92.5 91.8

4096 96.2 95.4

First, we discuss the possibility of hardware implementation in Table 1. As mentioned earlier,
(1) and (3) can be implemented in hardware. However, the defect-aware mapping of (2), as indicated
in Figure 2d, demands very complicated circuits such as memory, processor, controller, etc.

Second, the energy consumptions of the crossbar programming are compared among (1), (2),
and (3) in Table 1. The amount of programming energy is simulated during the training time of
10,000 MNIST vectors (1) and (2) consume 3.9 mJ for programming the crossbar with HRS and LRS,
according to Hebbian learning rule, as explained in Figure 4a. The energy overhead due to the
boost-factor adjustment is less than ~0.05% of the crossbar programming energy. This is because each
column has only one memristor for the boost-factor adjustment, compared to 400 cells per column for
Hebbian learning.

For the recognition rate, in Table 1 (1), without the boost-factor adjustment and defect-aware
mapping, shows MNIST recognition rates of 77.3% and 55.6%, when the defects = 0% and 10%,
respectively. Similarly, (2), with only the defect-aware mapping, shows the rates of 77.3% and 56.3%,
when the defects = 0% and 10%, respectively. Without the boost-factor adjustment, the defective
columns necessarily become activated frequently. The frequent activation of defective columns
degrades the recognition rate significantly, as shown in (2) in Table 1. On the contrary, (3) with the
boost-factor adjustment shows the rates of 77.6% and 77%, when the defects = 0% and 10%, respectively.
It has very little loss of the recognition rate, in spite of the defects = 10%. The gap between the defects
= 0% and 10% is negligibly small for the crossbar with the boost-factor adjustment.

We now discuss the relationship of this work to the previous works performed in HTM hardware
realization. Actually, as a previous works of this paper, we developed the memristor crossbar circuits
for performing the SP and TM operations of HTM, respectively [12,13]. However, in the previous works,
we did not consider the memristor defects, which should be taken into account in the real memristor
crossbar having defects of stuck-at-faults and variations. Thus, the SP hardware implemented with
the real defective memristor crossbar can be an essential part of future HTM’s hardware system.
Additionally, as a further work, we try to fabricate the crossbar having more than 100 memristors
and combine the fabricated crossbar with the CMOS circuit to verify the SP operation by hardware,
for testing the MNSIT vectors.

Finally, we discuss possible applications of the memristor-CMOS hybrid circuit of HTM’s hardware.
As Internet of Things (IoT) sensors become more popular in human life and environment, an amount
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of data generated from the sensors becomes enormous [28–30]. To handle this huge amount of data
from the physical world, we can think of the integration of IoT sensors and memristor-CMOS hybrid
circuit into one chip [31,32]. By doing so, the unstructured data from the sensors can be pre-processed
and interpreted near the sensors by the integrated memristor-CMOS hybrid circuit of HTM hardware.
If we deliver all the data generated from the IoT sensors to the cloud, without any pre-processing of
the unstructured data near the IoT sensors, an amount of computing energy demanded at the cloud
may be huge [33]. Thus, the memristor-CMOS hybrid circuit that can perform the pre-processing of
the unstructured data from the IoT sensors can be very useful for energy-efficient computing in future.

5. Conclusions

The SP of HTM has been known as the software framework to model human brain’s neocortical
operation such as recognition, cognition, etc. However, mimicking the brain’s neocortical operation
by hardware rather than software is more desirable, because the hardware not only describes the
neocortical operation, but also employs the brain’s architectural advantages such as high energy
efficiency, extreme parallel-computation, etc.

To realize HTM’s SP by hardware, in this paper, we developed the memristor-CMOS hybrid circuit.
One thing important for hardware implementation is that memristor defects such as stuck-at-faults,
memristance variations, etc., should be considered in developing the memristor-CMOS hybrid circuit
of SP.

For considering memristor defects in hardware implementation, first, we showed that the
boost-factor adjustment can make HTM’s SP defect-tolerant, because the false activation of defective
columns can be suppressed. Second, we proposed the memristor-CMOS hybrid circuit with the
boost-factor adjustment for realizing the defect-tolerant spatial-pooling in hardware. The proposed
circuit does not rely on the conventional defect-aware mapping scheme, which cannot avoid the false
activation of defective columns in spatial-pooling. For the MNIST data-set, the boost-factor adjusted
crossbar with the defects = 10% was verified to have a rate loss as low as ~0.6%, compared to the ideal
crossbar with the defects = 0%. On the contrary, the defect-aware mapping without the boost-factor
adjustment demonstrated a significant rate loss, as much as ~21.0%. The energy overhead of the
boost-factor adjustment was estimated to be as little as ~0.05% of the programming energy of the
memristor synapse crossbar.
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