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Preface to ”ASTER 20th Anniversary”

The Advanced Speceborne Thermal Emission and Reflection Radiometer (ASTER) is a research

facility instrument on NASA’s Terra spacecraft. We celebrated the 20th anniversary of ASTER’s

launch in December 1999. ASTER has been providing high spatial resolution multispectral data in

the VNIR, SWIR, and TIR regions, and along-track stereo data. Starting April 2016, ASTER data have

been distributed to the public at no cost. The most popular data set is the ASTER Global DEM, which

covers almost the entire land surface with a 30 m grid size. ASTER data have been widely used

in a variety of applications such as land surface mapping and change detection, volcano and other

natural hazard monitoring, mineral exploration, and urban heat island monitoring. This Special

Issue consists of 12 papers (2 reviews, 9 articles, and 1 technical note) and covers topics including

development of new techniques to process ASTER data, calibration activities to ensure long-term

consistency of ASTER data, validation of the ASTER data products, and scientific achievements

using ASTER data. Abrams and Yamaguchi (2019) provide a comprehensive review of ASTER

contributions to lithological mapping and mineral exploration. Ramsey and Flynn (2020) present the

history of ASTER’s contribution to volcanology, highlighting unique aspects of the instrument and

its data. Kurata and Yamaguchi (2019) propose a method for combining and visualizing multiple

lithological indices derived from ASTER data and topographical information derived from DEM

data. Gonzales et al. (2019) propose a new methodology to build an Earth-wide mosaic using

ASTER images in pseudo-true color. Fu et al. (2019) analyzed the geomorphologic and lithologic

features of Wudalianchi volcanoes in Northeastern China using ASTER multispectral and DEM

data. Kouyama et al. (2019) assess the sensitivity degradations of the ASTER bands based upon

the lunar and deep-space observation data obtained in 2003 and 2017. Tonooka and Tachikawa

(2019) developed a method for ASTER cloud coverage assessment using the MODIS cloud mask

product and also evaluated performance of the cloud avoidance function implemented in the

ASTER observation scheduler. Cudahy et al. (2020) show that ASTER mineral maps revealed

both the compositional heterogeneity of loess as well as the complexity of the sediment transport

pathways of individual loess components around the Great Wall of China, built during the Ming

Dynasty. Tsuchida et al. (2020) discuss the sensor degradation curves of the ASTER VNIR bands

based on the results of the onboard calibrator, the vicarious calibration, and the cross calibration

since February 2014. Batbaatar et al. (2020) propose a method to map the “zero curtain” as a

precursor for delineating permafrost boundaries, determined from ASTER and MODIS land-surface

temperature data. Mushkin et al. (2020) provide validation of the ASTER emissivity product using

data from the airborne TIR hyperspectral Mako sensor. Fujisada et al. (2018) describe the technical

methodology for improving the initial tile-based waterbody data that are created during production

of the ASTER GDEM.

Yasushi Yamaguchi, Michael J. Abrams

Special Issue Editors
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The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is a research
facility instrument on NASA’s Terra spacecraft. We celebrated the 20th anniversary of ASTER since its
launch in December 1999. ASTER has been providing high spatial resolution multispectral data in the
visible to near infrared (VNIR), short wave infrared (SWIR) and thermal infrared (TIR) regions, and
along-track stereo data. Starting April 2016, ASTER data have been distributed to the public at no cost.
Another important, and the most popular data set, is the ASTER Global digital elevation model (DEM),
which covers almost the entire land surface at 30 m grid size. ASTER data have been widely used in a
variety of application areas such as land surface mapping and change detection, volcano and other
natural hazard monitoring, mineral exploration, and urban heat island monitoring.

This special issue consists of 12 papers (2 reviews, 9 articles and 1 technical note), and covers
topics including the development of new techniques to process ASTER data, calibration activities to
ensure long-term consistency of ASTER data, validation of the ASTER data products, and scientific
achievements using ASTER data. Abrams and Yamaguchi [1] provide a comprehensive review on
ASTER contribution to lithological mapping and mineral exploration. Ramsey and Flynn [2] present
the history of ASTER’s contribution to volcanology, highlighting unique aspects of the instrument
and its data. Kurata and Yamaguchi [3] propose a method of combining and visualizing multiple
lithological indices derived from ASTER data and topographical information derived from DEM data.
Gonzalez et al. [4] propose a new methodology to build an Earth-wide mosaic using ASTER images in
pseudo-true color. Fu et al. [5] analyze the geomorphologic and lithologic features of Wudalianchi
volcanoes in northeastern China by using the ASTER multispectral and DEM data. Kouyama et al. [6]
assess sensitivity degradations of the ASTER bands based upon lunar and deep-space observation
data obtained in 2003 and 2017. Tonooka and Tachikawa [7] develop a method for ASTER cloud
coverage assessment using the Moderate Resolution Imaging Spectroradiometer (MODIS) cloud
mask product, and also evaluated performance of the cloud avoidance function implemented in the
ASTER observation scheduler. Cudahy et al. [8] show that ASTER mineral maps revealed both the
compositional heterogeneity of loess, as well as the complexity of the sediment transport pathways
of individual loess components around the Great Wall of China, built during the Ming Dynasty.
Tsuchida et al. [9] discuss the sensor degradation curves of the ASTER VNIR bands based on the
results of the onboard calibrator, the vicarious calibration, and the cross calibration since February 2014.
Batbaatar et al. [10] propose a method to map the “zero curtain” as a precursor for delineating permafrost
boundaries, determined from ASTER and MODIS land-surface temperature data. Mushkin et al. [11]
provide validation of the ASTER emissivity product by using data from the airborne TIR hyperspectral
Mako sensor. Fujisada et al. [12] describe the technical methodology for improving the initial tile-based
waterbody data that are created during production of the ASTER GDEM.
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Abstract: The Advanced Spaceborne Thermal Emission and Reflection Radiometer is one of five
instruments operating on the National Aeronautics and Space Administration (NASA) Terra platform.
Launched in 1999, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)
has been acquiring optical data for 20 years. ASTER is a joint project between Japan’s Ministry of
Economy, Trade and Industry; and U.S. National Aeronautics and Space Administration. Numerous
reports of geologic mapping and mineral exploration applications of ASTER data attest to the unique
capabilities of the instrument. Until 2000, Landsat was the instrument of choice to provide surface
composition information. Its scanners had two broadband short wave infrared (SWIR) bands and a
single thermal infrared band. A single SWIR band amalgamated all diagnostic absorption features
in the 2–2.5 micron wavelength region into a single band, providing no information on mineral
composition. Clays, carbonates, and sulfates could only be detected as a single group. The single
thermal infrared (TIR) band provided no information on silicate composition (felsic vs. mafic igneous
rocks; quartz content of sedimentary rocks). Since 2000, all of these mineralogical distinctions,
and more, could be accomplished due to ASTER’s unique, high spatial resolution multispectral bands:
six in the SWIR and five in the TIR. The data have sufficient information to provide good results
using the simplest techniques, like band ratios, or more sophisticated analyses, like machine learning.
A robust archive of images facilitated use of the data for global exploration and mapping.

Keywords: ASTER; mineral exploration; geologic mapping

1. Introduction

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of
five instruments on the U.S. Terra spaceborne platform (the other instruments are the Moderate
Resolution Imaging Spectroradiometer (MODIS), Clouds and the Earth’s Radiant Energy System
(CERES), Multi-angle Imaging SpectroRadiometer (MISR), and Measurement of Pollution in the
Troposphere (MOPITT)). Launched in December 1999, ASTER has been continuously acquiring image
data for 20 years. ASTER is a joint project between Japan’s Ministry of International Trade and
Industry (MITI) (later changed to Ministry of economy, Trade and Industry (METI)) and the U.S.
National Aeronautics and Space Administration (NASA). Japanese aerospace companies built the
ASTER subsystems for METI; NASA provided the Terra platform and the Atlas 2AS launch vehicle.
Both organizations are responsible for instrument calibration, scheduling, data archiving, processing,
and distribution.

ASTER was conceived as a geologic mapping instrument. It was designed to provide several
improvements over instruments existing at the time, like Landsat. The science team pushed for better
spatial resolution, high spectral resolution short wave infrared (SWIR) bands, multispectral thermal
infrared (TIR) bands, and along-track stereo capability. Until April 2008, the ASTER subsystems

Remote Sens. 2019, 11, 1394; doi:10.3390/rs11111394 www.mdpi.com/journal/remotesensing3
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performed nominally. At that time, the SWIR subsystem had a failure of the detector cooling apparatus
(not the Stirling cycle cooler), so no further SWIR data could be captured. Since April 2016, all of the
ASTER scenes in the data archive, and all of their derived products, were made available to all users at
no cost.

As a general-purpose imaging instrument, ASTER-acquired data are used in numerous scientific
disciplines, including land use/land cover, urban monitoring, urban heat island studies, wetlands
studies, agriculture monitoring, forestry, etc. [1]. Significant resources are devoted to monitoring 1500
active volcanoes and 3000 valley glaciers. However, of special importance is the use of ASTER data for
geologic applications: lithologic mapping and mineral exploration.

This article reviews the geologic applications of early spaceborne optical instruments, discusses
the history of the ASTER instrument, describes the instrument, and reviews applications of ASTER
data for lithologic mapping and mineral exploration

2. Early Geologic Applications of Spaceborne Instruments

The first optical satellite data applied for geologic mapping were acquired by NASA’s Landsat
1 (also known as ERTS (Earth Resources Technology Satellite)) Multispectral Scanner (MSS) with
four bands in the visible to near infrared wavelengths (VNIR), and about 80 m spatial resolution,
launched in 1972. Several studies demonstrated the usefulness of these data for geologic mapping.
An early publication by Goetz and his team in 1975 [2] described mapping the geology of the Coconino
Plateau on the south rim of the Grand Canyon in northern Arizona. They were able to distinguish
lithologic units and faults, applying the results for ground water exploration. Identification of the
composition of sedimentary geologic units was not possible, given the scanner’s broad bands and
restricted wavelength position; different mappable units could, however, be separated and mapped.
Baker [3] reviewed similar applications in presentations delivered at one of the first geology applications
symposia, focusing on additional results using Landsat MSS data.

In 1978 and 1980, two very influential textbooks describing the usage of Landsat 1 for geologic
applications alerted the general applications community to the value of remote sensing data. The first
of many textbooks describing geologic applications of satellite data was Remote Sensing: Principles
and Interpretations written by Floyd Sabins in 1978 [4]. He introduced remote sensing to Chevron,
leading to oil discoveries in Sudan and Papua New Guinea. His programs for digitally processing
Landsat images discovered world-class Chile copper deposits. A second influential book was Remote
Sensing in Geology, edited by Siegal and Gillespie [5] published in 1980. These two books alerted the
general geologic community to the possible applications of satellite remote sensing data, and led
several resource exploration companies to form their own in-house technical divisions.

In 1982, NASA launched the first in a series of Landsat Thematic Mapper (TM) instruments,
on Landsat 4. This groundbreaking scanner had 30 m spatial resolution, repeat global coverage,
and seven spectral bands: four in the VNIR like the MSS, two in the SWIR, and one in the TIR [6].
The late addition of SWIR band 7 in the 2–2.5 micron region, was directly the result of studies using
aircraft instrument data, demonstrating the application of data from the SWIR region for detecting
hydrothermal alteration minerals [7] (a change in mineralogy as a result of interaction of the rock with
hot fluids). The Cuprite, Nevada test site, used for this study, became a spectral validation site for
most future optical instruments.

A seminal study, detailing a 4-year NASA sponsored project, was the joint NASA and Geosat
test case report, published in 1985 [8]. The project was a joint collaboration between NASA and the
non-renewable resources exploration industry to test and document the applications of remote sensing
data for porphyry copper, uranium, and petroleum exploration. Methods used for data processing
were adopted by later researchers and exploration geologists.

For the next 18 years after 1982, Landsat TM data were the workhorse of the geology remote
sensing community. A sampling of relevant publications includes geologic mapping and mineral
targeting in Precambrian terrain in India [9]; mapping mafic and ultramafic rocks in the Oman Ophiolite,
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and targeting hydrothermal alteration zones related to possible massive sulfide copper deposits [10]
(band 7 data were crucial for detecting hydrothermal alteration); mapping ophiolite lithologies in
Cyprus, and delineation of a critical lithologic boundary to target possible massive sulfide deposits
(all TM bands were needed to distinguish two types of lava flows [11]). Several geologic mapping
studies in the Arabian Shield and Middle East focused on mineral exploration for uranium, gold,
copper, and other metal deposits [12,13]; again, the availability of SWIR data was critical to detect
hydrothermal alteration. In 1999, Sabins [14] published a comprehensive review of the application
of remote sensing data for mineral exploration. Following on the heels of his earlier book on remote
sensing applications to geology, this publication was key in influencing exploration companies to
further embrace remote sensing technology in their reconnaissance exploration strategies.

A fascinating application of Landsat 5 TM data for geobotanical mapping was reported by
Almeida et al. [15]. Their goal was to detect geobotanical anomalies associated with hydrothermal
alteration in epithermal high-sulfidation gold deposits in the Amazon region in an area of virgin tropical
rain forest, Brazil. Their method was to concentrate information and reduce data dimensionality by
applying spectral indices, principal component analyses to the indices, another principal component
analysis to the original VNIR and SWIR bands, and convolutional filtering. Field information showed
a near-perfect spatial correlation between color classes highlighted in this Landsat image product and
hydrothermal alteration facies identified in outcrops.

In 1992, NASDA/MITI/STA (National Space Development Agency/Science and Technology Agency)
launched the Japanese Earth Resources Satellite (JERS-1) with a synthetic aperture radar instrument,
and a high resolution optical scanner (OPS) with eight bands. In addition to three VNIR bands, OPS had
four SWIR bands. The instrument was designed to provide remote sensing data to Japan’s resource
exploration industry to search globally for non-renewable resources. The instrument had a 75 km
swath width, and about 25 m spatial resolution [16]. The SWIR band performance was fairly poor,
with excessive noise (the VNIR and SAR bands performed well). In one report [17], advanced image
processing techniques were applied to the SWIR data. When combined with Landsat TM data for a
test site in Eritrea, JERS-1 data permitted routine identification of marbles, and allowed distinction of
rocks bearing either Al-OH or Mg-OH phyllosilicates. In 1998, JERS-1 ceased operations, with very few
geologic studies reported. However, it did provide the foundation for the next generation Japanese
instrument, by demonstrating the value of multispectral SWIR bands for geologic applications. As a
result, ASTER came into being, as described in the following sections.

3. ASTER History

ASTER has its roots in several moderate resolution imaging sensors [18]. The Landsat instruments
(Multispectral Scanner, and Thematic Mapper) had developed a large and devoted user community
adapted to analyzing multispectral data. The second most used data was provided by the French
SPOT (Satellite Pour l’Observation de la Terre) instruments, with 10–20 m VNIR wavelength data,
and cross-track stereo. Between 1992 and 1998, the JERS-1 OPS acquired three bands of VNIR data,
four bands of SWIR data, and along-track stereo data.

The Earth Observing System (EOS) ASTER program began as two separate instruments proposed
separately by the U.S. and Japan [19] in the 1980s. The US had a proposal for the Thermal Infrared
Ground Emission Radiometer (TIGER), a 14 channel imager plus a profiling spectrometer. At the same
time Japan’s MITI was designing and proposed the Intermediate Thermal Infrared Radiometer (ITIR)
with five SWIR bands and four TIR bands [20,21] as a follow-on to JERS-1. Once again, the design
of the Japanese instrument focused on geologic applications. Starting in 1989, the joint U.S. and
Japan science team worked jointly to come up with a compromise design for a VNIR-SWIR-TIR
instrument to go on NASA’s EOS AM-1 platform (re-named Terra after launch). The number of TIR
bands was increased to five; the number of SWIR bands was increased to six; spatial resolution was
decided; VNIR band 3 was selected for the along-track stereo; and bandpasses of all the channels were
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determined. In December 1999, ASTER was launched on NASA’s Terra spacecraft, along with four
other Earth observing instruments.

4. ASTER Instrument

The ASTER instrument comprises three separate scanners, located on different sites on the Terra
platform (Figure 1). Each was built by a different Japanese aerospace company.

Figure 1. Artist’s rendition of Terra platform and position of Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER)’s visible to near infrared wavelengths (VNIR), short wave infrared
(SWIR) and thermal infrared (TIR) imaging sensors.

In accordance with the scientific objectives of the mission, the ASTER instrument was designed
to meet certain baseline performance requirements. In addition, several specific improvements were
included to better ASTER’s performance compared to existing optical sensors such as Landsat TM,
SPOT HRV and JERS OPS:

• increased number of SWIR bands to six to improve mapping of surface composition;
• increased number of TIR bands to five to derive accurate surface temperature and emissivity

measurements [22];
• improved radiometric accuracy and resolution [23].
• increased base-to-height (b/h) ratio of the stereo data, from 0.3 to 0.6, to improve surface

elevation determination

ASTER acquires swaths of images that are 60 km wide, while orbiting the earth at 705 km altitude,
in a sun-synchronous near-polar descending orbit. The equatorial crossing time is 10:30 am, a few
minutes behind Landsat 7. ASTER (on the Terra platform) flew in formation with NASA’s EO-1 satellite
and Argentina’s SAC-C satellite to form the morning constellation. ASTER must be tasked to acquire
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data; however, because the instrument has been in operation for almost 20 years, near-global coverage
of the land has been achieved (Appendix A).

The three VNIR bands, with 15 m spatial resolution, have bandpasses similar to Landsat TM bands
2, 3, and 4 and the optical sensor of the JERS-1 OPS (Figure 2). In addition, the VNIR has along-track
stereo coverage in band 3, with nadir and backward-looking telescopes. The base-to-height ratio of 0.6
allows calculation of Digital Elevation Models with 30 m postings, and about 15 m vertical accuracy [24].
The SWIR bands, with 30 m spatial resolution, were chosen mainly for the purpose of surface soil
and mineral mapping. Band 4 is similar to TM band 5 located at 1.6 μm; bands 5–9 are narrow SWIR
bands, replacing TM’s single band 7, positioned in the 2–2.5 μm region to detect the presence of
mineral absorption features, such as occur in clays, carbonates, and sulfates (Figure 2). The TIR bands,
with 90 m spatial resolution, provide two major improvements over TM’s single TIR band: derivation
of emissivity values allows estimation of silica content, which is important in characterizing silicate
rocks, the most prevalent rocks at the earth’s surface [25]; and by correcting for emissivity, accurate
surface kinetic temperature can be determined for energy flux modeling and climate modeling. Thus,
ASTER data have greater mineral and lithologic mapping capability than Landsat data due to more
SWIR and TIR bands with corresponding higher spectral resolution (Figure 2).

Figure 2. Spectral bandpasses of ASTER, Landsat Thematic Mapper, and the Operational Land Imager
(OLI), the newest Landsat 8. Background is atmospheric transmission (Testa, F. et al. 2018).

5. Lithologic Mapping with ASTER Data

5.1. Mapping Using Only ASTER Data

In 2003, Rowan and Mars were one of the first researchers to report on lithologic mapping using
ASTER data, over the rare earth mineral deposit at Mountain Pass, California [26]. Using all 14 ASTER
bands, they were able to distinguish calcite from dolomite, mapped skarn deposits and marble in
the contact metamorphic zones, distinguished Fe-muscovite from Al-muscovite in the granites and
gneisses, and discriminated quartzose rocks. None of these discriminations could be accomplished
with Landsat TM data, due to the lack of multispectral SWIR and TIR spectral bands. Watts and
Harris [27] applied this method to map granite and gneiss in domes in the Himalayas. Yamaguchi
and Naito [28] developed spectral indices using orthogonal transformation with ASTER SWIR bands
for lithologic mapping. Their method relied on band ratios and thresholding. Wherever there were
good rock exposures, ASTER data produced good results. Analyzing all of the ASTER spectral bands,
Byrnes et al. [29] mapped volcanic lava flows from the Maunu Ulu eruption, Island of Hawaii. The TIR
data highlighted variations in the silica coatings, the VNIR and SWIR bands indicated relative ages
of the flows as they developed surface weathering products. Gomez et al. [30] published a paper
describing lithologic mapping in arid Namibia using ASTER’s VNIR and SWIR bands. They first
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converted the data to apparent reflectance, then processed the data with principal components analysis
and supervised classification. Comparison with an existing 1:250,000 scale geologic map indicated that
the ASTER data could be used to discriminate most of the geologic units. Several additional units were
found, based on compositional differences, though the geologic map defined them as belonging to
the same stratigraphic unit. Kargel et al. [31] reviewed applications of ASTER data for glaciological
studies. The data were used to distinguish differences in surface cover on top of glaciers, as well as the
extent of glacial lakes.

One of the first applications of ASTER TIR data for lithologic mapping was published by
Ninomiya et al. [32]. They developed mineralogical indices using blended ratios of the TIR bands to
create a Quartz Index, Carbonate Index, and Mafic Index; then tested their technique over arid parts of
northwest China, eastern central Australia, and southern Tibet. Their results demonstrated the stability
of the mineral indices to temperature and atmospheric changes. In succeeding years, many projects
used Ninomiya “indices” for lithologic mapping with ASTER TIR data. More quantitative analyses of
ASTER TIR data were reported by Hook et al. [33], who determined weight percent silica in igneous
rocks, and validated the findings with laboratory measurements of field samples.

About the same time, Rowan et al. [34] reported on lithologic mapping of ultramafic rocks with
ASTER data in Mordor Pound, NT, Australia. Analysis of the data, coupled with lab measurements,
showed dominantly Al-OH and ferric-iron VNIR–SWIR absorption features in felsic rock spectra,
and ferrous-iron and Fe,Mg-OH features in the mafic–ultramafic rock spectra. ASTER ratio images,
matched-filter, and spectral-angle mapper processing were evaluated for mapping the lithologies.
Combining analyses of VNIR, SWIR and TIR data resulted in discrimination of four mafic–ultramafic
categories; three categories of alluvial–colluvial deposits; and a significantly more completely mapped
quartzite unit than could be accomplished by using either data set alone. Hewson et al. [35] described
a method to seamlessly mosaic 35 ASTER scenes to produce a regional mosaic for analysis. They then
mapped Al-OH and carbonate from SWIR data, and quartz content from TIR data. SWIR bands were
also used to map Al-OH composition. Comparison with large-scale maps and airborne hyperspectral
data, supplemented with field sampling, constrained the ASTER map accuracy.

Qiu et al. [36] compared several spectral classification techniques, using a laboratory spectral
library, ground spectral measurements, or selecting endmembers from the image. In the Allaqi-Heiani
suture, Egypt, they found all three methods fairly similar, and allowed successful mapping of the
well-exposed lithologies. Mapping carbonates and associated rocks in Oman was published by
Rajendran et al. [37] and Rajendran and Nasir [38]. They were able to separate the ophiolitic rocks,
carbonates, quartz-rich silicates, and surficial deposits. The remote sensing maps were very similar
to the published geologic maps, and they recommended using ASTER data for mapping in other,
similar environments. Guha et al. [39] also mapped carbonates, using ASTER data for the Kolkhan
limestone in India. They applied different spectral mapping techniques; the results were similar with
each of them. In the region near Askja volcano, Iceland, Grattinger et al. [40] used ASTER data to map
glaciovolcanic deposits, including glaciovolcanic tuffs and subaerial pumice. The results were applied
to paleo-ice reconstruction in a relatively inaccessible area. Tayebi et al. [41] mapped salt diapirs and
surrounding areas using neural network models in the Zagros fold belt, Iran. Field observations and
X-ray diffraction analysis of field samples confirmed the minerals identified remotely.

Yajima and Yamaguchi [42] used simple color composites of TIR data to separate mafic-ultramafic
rocks (such as gabbro, dolerite and dunite) from various quartz-rich felsic rocks (such as granite and
alluvium). This is a simple method to display lithological information from the TIR bands. Ninomiya
and Fu [43] applied Ninomiya indices (Quartz Index, Mafic Index, and Carbonate Index) for ASTER
TIR data to do lithological mapping in Tibet. Mapping relied on classification of quartzose rocks based
on variations on the carbonate and mafic indices, and the granitic rocks based on the feldspar content.
Ozyavas [44] applied standard image processing techniques to ASTER data over the study area around
the Salt Lake Fault, Turkey. They were able to map gypsum and carbonate rocks, primarily based
on spectral differences in the SWIR bands. A variation of the band ratio method was described by
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Askari et al. [45] for lithologic mapping of sedimentary rocks, north Iran. Using VNIR and SWIR bands,
they mapped quartz, carbonate, Al, Fe, Mg-OH bearing minerals, and created lithologic maps that
matched well with existing geology maps. Hubbard et al. [46] used ASTER TIR emissivity images to
characterize the physiochemical characteristics of sand dunes at seven different sites. They found that
“ . . . less dense minerals typically have higher abundances near the center of the active and most
evolved dunes in the field, while more dense minerals and glasses appear to be more abundant
along the margins of the active dune fields.” ASTER data were applied to characterize limestones
for industrial rock resource assessment in Oman by Rajendran et al. [47]. They were able to separate
dolomite from calcite-bearing marble; this has a direct application in the industrial rock business.

Several studies focused on mapping granitoid rocks. Massironi et al. [48], working in the Saghro
massif, Morocco, used all the ASTER bands, applying simple processing techniques. They were
able to distinguish different granitoid rocks with similar silica content based on secondary minerals,
and separate plutons with varying silica content using TIR data. Bertoldi et al. [49] used field and
laboratory data to guide processing of ASTER data to map lichen-covered granitic rocks in the western
Himalayas. Their maps were based on characterizing spectral differences from various lichens,
with spectral characteristics of muscovite. In the Dahab Basin, Egypt, Omran et al. [50] used band
ratios of ASTER VNIR, SWIR, and TIR data, combined with field investigations, to map and separate
granitoid rocks of Cambrian and Cretaceous ages. They revised and updated existing geologic maps
by adding rock units and re-interpreting the geologic history. Zheng and Fu [51] used band ratios of
ASTER SWIR and TIR data to separate alkali-feldspar granite, granite, granodiorite, and monzogranite.
These distinctions relied on determination of silica difference expressed in the TIR bands. In the
Anti-Atlas Mountains, Morocco, El Janati et al. [52] used classification algorithms to map the spatial
distribution of porphyritic granites, granodiorites, and peraluminous leucogranites. They also were
able to map different kinds of metamorphic rocks and carbonate cover rocks. Guha and Kumar [53]
developed a variation of Ninomiya’s thermal indices to map granitoids in Dharwar Craton, India.
They found that their mafic index was comparable with Ninomiya’s index, but their quartz index was
better, for their study area. Asran et al. [54] used band ratios of ASTER data to separate granodiorite,
monzogranite, syenogranite, and alkali-feldspar granite. Mapping their distribution, with structural
information and microfabric data, led to revised interpretation of their deformation history.

Another group of reports described applications of ASTER data for mapping ophiolite complexes.
These unusual terranes expose dominantly mafic and ultramafic rocks. ASTER data have been shown
to be particularly effective in separating the dark rocks. Li et al. [55] mapped the Derni ophiolite
complex using spectral matching methods with spectra from a spectral library. Their results were of
mixed accuracy, dependent on the quality of their spectral library. Using similar methods, Huang and
Zhang [56] were more successful in mapping various rock types, in the Yarlung-Zangpo suture zone,
Tibet. They used both the VNIR-SWIR data, and TIR data to achieve their results. In the Neyruz
ophiolite, Iran, Tangestani et al. [57] used field and laboratory spectral measurements to train supervised
classification of ASTER data with spectral feature fitting algorithm. Results suggested that this method
could be applied to map other, more poorly mapped, ophiolite complexes. Ozkan et al. [58] mapped
an accretionary complex in Turkey using hybrid color composite images combining ratio images and
principal components images. They were able to delineate peridotite, gabbro, basalt, epi-ophiolitic
sedimentary rocks, siliceous and carbonate rocks, and degrees of serpentinization.

5.2. Lithologic Mapping with ASTER and Other Remote Sensing Data

Deller and Andrews [59] combined Landsat, ASTER, and Advanced Land Imager (ALI) data
to discriminate three laterite facies in Eritrea and Arabia, based on differences of iron and clay
minerals. The results can be used to assess ground water quality, agricultural land, building resources,
and potential mineralization sites. Qari et al. [60] used Landsat data to identify lineaments, and ASTER
data to map lithology of the basement rocks in an area of Saudi Arabia. The resulting 1:100,000 geologic
map was validated by fieldwork. Lithologic mapping in the Sighan ophiolite complex, Iran, was the
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subject of work by Pournamdari et al. [61]. They used band ratios and principal components analysis to
separate mafic and ultramafic rocks. In the Neyriz ophiolite, Iran, Eslami et al. [62] also applied ASTER
and Landsat data for lithologic mapping, using similar techniques. In North Africa, Adiri et al. [63]
combined Landsat and ASTER data to map sedimentary rocks in Morocco. Lamri et al. [64] combined
airborne magnetic and gamma-ray spectrometry data with ASTER data to map geology in a hardly
accessible area in Saharan Africa. Integration of the two data sets allowed mapping of the Paleozoic
and aeolian sand sedimentary cover, and the underlying granitoids. In West Africa, Metelka et al. [65]
analyzed ASTER, Landsat, Radarsat, and Japanese Phased Array type L-band Synthetic Aperture Radar
(PALSAR) radar data, combined with airborne gamma-ray spectrometry, to map geomorphological
landform units. The resulting maps, over an area of long-term lateritic weathering history, were more
accurate than existing maps. Yang et al. [66] combined ASTER data with high spatial resolution
Chinese GaoFen-1 data to map lithologic units in the Tien Shan mountains, China. In comparison with
lithologic mapping results using ASTER data alone, the fused data set was more accurate. Ge at al. [67]
combined ASTER data with Sentinel-2A and digital elevation data to map lithologies in the Shinbanjing
Ophiolite Complex, Mongolia. They found their method yielded high classification accuracy.

Hassan et al. [68] combined analyses of Landsat and ASTER data to map the basement rocks
associated with the Meatiq dime, Egypt. ASTER data analysis revealed four granitic varieties,
and Landsat data analysis allowed regional geologic mapping. Ali-Bik et al. [69] used data from ASTER,
Landsat, and Sentinel-2 to map gneiss complex, low-grade ophiolitic and island-arc assemblages in the
Gebel Zabarra area, Egypt. They used ASTER mineral indices, principal components analysis, and color
composites to map the different rock types. They were able to propose revised metamorphic and
tectonic history for the area based on the remote sensing results. Hadigeh and Ranjbar [70] combined
ASTER data with panchromatic Indian Remote Sensing (IRS) data (moderate to high spatial resolution
VNIR data) to map lithologies in Iran. Their classification maps closely matched published geologic
maps. By combining ASTER data with SPOT-5 data, Lohrer et al. [71] mapped weathered wadi deposits
in Jordan. They found that the initial transformation from hematite to goethite is the dominant process,
and it is possible to predict new archaeological areas using remote sensing techniques. Over the
Newer Volcanic Province, Australia, Boyce et al. [72] used ASTER data, airborne magnetic data, digital
elevation models, and Google Earth images to identify eruptive centers. Seven previously identified
eruptive centers were brought into question, and three new ones were identified.

Soltaninejad et al. [73] compared ASTER data and Landsat data for mapping evaporite minerals
of Sirjan Playa, Iran. They used both spectra from field samples, and endmember spectra to classify
both sets of images. Classification accuracy was about 92% for both data sets; better accuracy was
achieved using image derived spectra. Chen et al. [74] mapped variations in metamorphic rocks in the
Wuliangshan Mountains, China. They looked for spectral differences from minerals such as actinolite,
chlorite, epidote, biotite, muscovite, hornblende, and sillimanite. Identification of metamorphic rocks
in five mapped areas were consistent with existing data. Two new areas of unmapped metamorphic
rocks were identified for further field study. In a vegetated area in the Yanshan Mountains, China,
Wang et al. [75] used ASTER data to classify quartz sandstone, carbonate rocks, gneiss and andesite.
Compared to the outcrop geologic map, accuracies were 90%, 87%, 77%, and 52% respectively. This is
excellent, considering the presence of vegetation contamination and cover. A final example, published
in this 20th Anniversary ASTER Special Issue, by Kurata and Yamaguchi [76] proposed a method of
combining and visualizing multiple lithological indices derived from ASTER data, and topographical
information derived from digital elevation model data, in a single color image that can be easily
interpreted from a geological point of view. Indices highlighted silicate rocks, carbonate rocks,
and amounts and types of clay minerals. Results were verified by field survey and comparison with
previous studies in the test area.
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6. Mineral Exploration with ASTER Data

6.1. Technique Development for Alteration Mapping

Many studies focused on developing techniques to extract mineralogical information from ASTER
data. Crosta et al. [77] applied principal components analysis to data over epithermal deposits in
Patagonia. The method was adopted by many later users and is referred as the “Crosta” method.
Galvao et al. [78] demonstrated that ASTER data could be useful for alteration detection even in tropical
savannah environments where there was some surface material showing between the vegetation cover.
More image processing technique development by Moore et al. [79] applied principal components
analysis and matched filter processing to identify unknown targets based on training sets over known
deposits. Data from ASTER’s thermal infrared bands were used by Rockwell and Hofstra [80] to
identify quartz and carbonate minerals in Nevada based on detection of emissivity features in the
TIR region. ASTER’s unique multispectral TIR bands particularly allow mapping of SiO2 variation,
often a key characteristic of alteration associated with mineralization. Hosseinjani and Tangestani [81]
used sub-pixel unmixing to determine the relative proportions of different minerals within each pixel.
This technique relies on having a laboratory of mineral spectral responses, or end-member spectra
extracted from the data. Another application of principal components analysis by Honarmand et al. [82]
combined this with spectral angle mapper [83] to determine the probability of a mineral being present
in a pixel.

In Birjand, Iran, Abdi and Karimpour [84] also applied spectral angle mapper to ASTER data to
discriminate hydrothermal alteration. Spectral feature fitting method was used in Rabor area, Iran,
to enhance hydrothermal alteration by Abbaszadeh and Hezarkhani [85]. This method compares
the fit of image spectra to reference spectra using a least-squares technique. Additionally, in Iran, in
the Dehaj-Sarduiyeh Copper Belt, Zadeh et al. [86] used mixture tuned matched filtering approach
to map alteration. This method estimates the relative degree of match to each reference spectrum,
and estimates the sub-pixel abundance [87]. More sophisticated (complicated) image processing
methods were reported by Tayebi et al. [88]. They integrated coded spectral ratio images with SOM
neural network models. Results were acceptable, though the method is transportable to other areas,
and able to be used by other researchers, with great difficulty. Continued interest in application of
sub-pixel unmixing was published by Modaberri et al. [89] for areas in Iran. They sought to map the
usual assortment of alteration minerals, including alunite and jarosite.

6.2. General Alteration Mapping

In one of the first studies to appear, Rowan et al. [90] used ASTER data to map hydrothermal
alteration minerals and zones at the Cuprite, Nevada test site. The work verified earlier results obtained
with airborne scanners, and validated the mineralogical information extractable from the ASTER
VNIR, SWIR, and TIR data. Numerous subsequent studies used newly-developed image processing
techniques (described in the previous section) for alteration mapping. Bhadra et al. [91] reported on
their analysis of ASTER data for mineral potential mapping in central Rajasthan, India, using standard
image processing classification methods. In Jiafushaersu Area, China, Liu et al. [92] used color
composites and principal components to map alteration associated with molybdenum mineralization
adjacent to granitoid intrusions. Popov and Bakardjiev [93] used band ratios and spectral angle mapper
analyses to identify alteration minerals in a humid and vegetated area. Known deposits with pits and
tailings ponds were found. Several other possible, unknown targets were identified. In the Gobi Desert
area, China, Son et al. [94] used band ratios to characterize a known Cu-Au mineral deposit. Using the
indicator mineral assemblage, they identified a new area with pervasive argillic alteration. Two test
sites in India, exposing intrusive and volcanic rocks, were sampled by Canbaz et al. [95] for material to
analyze in the laboratory, using XRD (X-ray diffraction) and spectrometer measurements. They used
the lab measurements to help interpret ASTER ratio and principal components images, and found that
the combination of lab and remote sensing data were effective in mapping argillic alteration zones. In
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a highly vegetated area in India, Mahanta and Maiti [96] used band ratios and principal components
analysis of ASTER data to map alteration assemblages: iron-rich gossans, sericitization, ferruginization,
and chloritization. They identified two potential mineral prospects, one for hydrothermal polymetallic
sulfides, and secondary iron and manganese mineralization. In Egypt, band ratios and principal
components analysis were used by Abdelkareem and El-Baz [97] to identify hydrothermal alteration
zones. Spectral analyses allowed characterization of chlorite, kaolinite, muscovite, and hematite.
Validation by field investigations and XRD analyses contributed to the delineation of important
prospects for gold and massive sulfide mineralization.

In another example, ASTER data were even used for lithological and alteration mapping in
Antarctica. Pour et al. [98] reported work in the Oscar II coast area, northeastern Graham Land,
Antarctic Peninsula. They applied special band ratios and band combinations with all 14 ASTER bands
to detect muscovite, kaolinite, illite, montmorillonite, epidote, chlorite, and biotite. In their three-scene
strip area, good geologic maps existed for the central scene, providing some control. However,
poor or no maps existed for the northern and southern areas. Despite shadows, snow, and glaciers,
they concluded that their approach for lithological and alteration mapping was highly successful.

In 2012, Australia’s Commonwealth Scientific and Industrial Research Organization (CSIRO)
released a series of Geoscience mineral maps for the continent of Australia, described by Cudahy [99].
These maps were created from thousands of ASTER scenes, acquired between 2000 and 2008. The CSIRO
maps are the first (and only) continental-scale mineral maps generated from an imaging satellite,
designed to measure clays, quartz, and other minerals. There are 17 Australia Geoscience products,
such as kaolinite abundance, iron oxide species, and quartz content. Each product is a calibrated
index of the geoscience product it represents. Color-coded displays are a visualization of the product’s
values. Their 100 m spatial resolution allows them to be used at the deposit as well as the regional
scale. An example of the iron oxide abundance map is shown in Figure 3.

Figure 3. Australian ASTER Geoscience map of iron oxide abundance. Color code is red for high,
to black for low [99].

More recent publications attest to the continuing use of ASTER data for mineral exploration.
Testa et al. [100] described their work on the eastern flank of the Andean Cordillera, Argentina to
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do lithologic and hydrothermal alteration mapping of epithermal, porphyry, and tourmaline breccia
districts. Argillic, phyllic, propylitic, and silicic alteration mineral assemblages were identified and
mapped from the ASTER images. The results from field control areas confirmed the presence of the
targeted minerals. They concluded “ASTER image processing of large areas has the ability to effectively
discriminate smaller targets where it is possible to find mineral deposits. We believe it is critical
to understand that interpreted hydrothermal alteration zones may not be real, so field verification
is essential.”

6.3. Alteration Mapping with ASTER Data and Other Data Sources

A few years after launch, geologists starting using ASTER data in combination with other remote
sensing data and geophysical data for alteration mapping. An early study by Hubbard et al. [101]
compared alteration mapping with ASTER, Hyperion, and ALI data in the VNIR and SWIR regions.
Hyperion’s hyperspectral data provided more information about mineralogy than either ASTER or
ALI. However, the 7.5 km swath width was a distinct limitation. In Greenland, Bedini [102] used
aircraft HyMap data with ASTER data to detect alteration minerals (HyMap has 128 bands in the
0.4–2.45 μm region and 5 m spatial resolution). Results and conclusions were similar to the previous
study. In the Kerman magmatic arc in Iran, Honarmand et al. [103] used ASTER and ALI data
to map alteration. Since ALI has broad spectral bands, similar to Landsat, very little additional
information was added to the ASTER data. In another project Pour and Hashim [104] used ASTER,
ALI, and Hyperion data for both lithologic and alteration mapping. Hyperion added additional
mineralogical separation information, but ALI added very little to the ASTER data. Similarly, in
a project reported by Ramos et al. [105] in the Andes, Hyperion data supplemented ASTER data
for alteration mineral mapping, but was limited by its spatial coverage. In Gabal Dara, Egypt,
Gemail et al. [106] used airborne magnetic geophysical data to complement mineralogical information
from ASTER data for mineral exploration. The geophysical data added lithologic characteristics
not available from optical remote sensing data. In Australia, most of the country is covered with
weathered regolith, making exploration challenging. Lampinen et al. [107] used ASTER SWIR data
with surface geochemistry analysis and gamma-ray spectrometry over a known base-metal deposit.
The geophysical data allowed discrimination of lithologic units underneath the regolith. This guided
interpretation of the geochemical and ASTER spectral information. Two recent studies over sites in
China described combined use of ASTER data with other, seldom-reported, remote sensing instruments.
Liu et al. [108] combined information from the Chinese hyperspectral scanner on the Tiangong-1
space station, with ASTER data for regional alteration mapping in the Jintanzi-Malianquan area.
The hyperspectral instrument allowed detection of muscovite, kaolinite, chlorite, epidote calcite and
dolomite, while ASTER data allowed detection of the first five, not dolomite. Hu et al. [109] combined
ASTER data with Sentinel-2A multispectral data and Hyperion data. The image processing results
were validated by field investigations. Identified hydrothermally altered rocks corresponded with five
porphyry copper deposits. By extrapolation, three new prospects were discovered as a result.

6.4. ASTER Data Applied to Porphyry Copper Exploration

As early as 2003, a report was published by Volesky et al. [110] describing use of ASTER data
to characterize massive sulfide copper deposits in Saudi Arabia. ASTER’s SWIR data were crucial to
characterize hydrothermal alteration minerals associated with these deposits.

Starting about the same time, and continuing to the present, studies in Iran dominate the literature
on porphyry copper deposits, characterized by analysis of ASTER data. There are several reasons for
this: (1) Iran hosts the largest number of porphyry copper deposits yet found; (2) the deposits are
located in arid, desert landscapes: vegetation cover is minimal, exposures of the surface are almost
100%; (3) a wide range of alteration minerals are present, as erosion has cut into different depths of
individual porphyry copper systems, exposing alteration zones from potassic and phyllic to propylitic
and argillic.
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One type of report concentrated on characterizing existing, known deposits in Iran.
Karimpour et al. [111] described discrimination of erosion levels in the Maherabad, Shadan, and Chah
Shaljami areas. Mohebi et al. [112] reported on delineation of structural controls on alteration and
mineralization around Hanza Mountain. Sojdehee et al. [113] described discriminating hydrothermal
alteration zones using SWIR data at the Daralu copper deposit. Farahbanksh [114] combined ASTER
data with QuickBird data to characterize the Naysian porphyry copper deposit. Yousefi et al. [115,116]
discriminated alteration zones using SWIR and TIR data to map sericitic, phyllic, and quartz-rich
alteration zones in the Kerman Magmatic Arc. Safari et al. [117] combined Landsat and ASTER data
to characterize the Shar-e-Babak deposit. In every one of these studies, the unique mineralogical
information contained in the ASTER SWIR bands was critical to detect and map hydrothermal
alteration zones.

A second type of report on the Iranian copper deposits focused on using ASTER data as an
exploration tool to identify promising targets, usually extracting information gleaned by analyzing
known deposits, then extrapolating to poorly explored or unexplored areas. The use of ASTER
SWIR data featured strongly in Pour and Hashim’s [118,119] in the Urumieh-Dokhtar Volcanic
Belt. Applying a porphyry copper formation model, that postulated concentric alteration zones
with characteristic mineral assemblages, promising targets were identified. Honarpazhouh [120]
combined stream sediment geochemistry with ASTER data for reconnaissance mapping in the Khatun
Abad area. This was a more effective exploration strategy than using the remote sensing data
alone. Pazand et al. [121] applied ASTER data for reconnaissance exploration for porphyry copper
mineralization in the Ahar area. In the Daraloo-Sarmeshk area, Alimohammadi et al. [122] used ASTER
data to explore for undetected copper deposits using ASTER SWIR data to highlight alteration zones.
Similar projects were reported by Yazdi et al. [123] in the Chahargonbad area, by Saadat [124] in the
Feyz-Abad area, and by Zadeh and Honarmand [125] in the Dehaj-Sarduiyeh copper belt.

One of the best applications of ASTER data for regional mineral exploration in a copper belt was
published by Mars and Rowan in 2006 [126]. They mosaicked 62 ASTER scenes covering a 900 km-wide
belt in the Zagros magmatic arc, Iran. They first developed a series of logical operators involving
band ratios and thresholds of ASTER data to highlight the presence of spectral absorption features
associated with phyllic and argillic alteration. The operators were tested over the Cuprite, Nevada
calibration and validation site [7], before being applied to the Iran data. Based on the alteration patterns,
~50 potential porphyry coper deposits were mapped northwest of the Zagros-Makran transform zone,
and 11 potential deposits were mapped southeast of the transform. A small part of the mapped area is
shown in Figure 4, around the Meiduk copper mine. Note the two large alteration centers northwest
and southeast of the mine.

Studies focused on other areas of the world include Carrino et al.’s [127] project in the Chapi
Chiara area of southern Peru. They used ASTER data to map the geology and alteration mineralogy
of the region to define possible copper targets. Ibrahim et al. [128] applied ASTER and Landsat data,
with field data in the North Hamisana shear zone, Egypt, to detect structural and lithologic controls
for base metal sulfide deposits. By combining information extracted from ASTER and Landsat data,
Zhang et al. [129] mapped hydrothermal alteration minerals around the Duolong copper deposit in
Tibet. Rajendran and Nasir [130] characterized the spectral response of ASTER bands to map alteration
zones of volcanogenic massive sulfide deposits in several known deposits. Additional work in China,
by Zhang and Zhou [131] over the Baogutu porphyry copper deposit, used ASTER data to identify the
associated alteration zones. This information could be used to explore other nearby areas with similar
geology. In the Bangonghu-Nujiang metallogenic belt, Tibet, Dai et al. [132] used alteration detection
from ASTER data to define new target areas with characteristic spectral features related to desired
mineralogical assemblages.
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Figure 4. Landsat TM band 7 image with ASTER-derived argillic and phyllic alteration around the
Meiduk copper mine, Iran. (From [126], Figure 17).

6.5. ASTER Data Applied to Gold Exploration

Second in numbers to reports on applications of ASTER data for porphyry copper exploration,
are publications describing exploration for gold. The largest number of studies focused on describing
alteration associated with gold deposits, and developing methods to identify new targets in Egypt.
The mineralogical information provided in the ASTER SWIR bands provided the unique tool to
successfully detect and map different intensities of hydrothermal alteration, in the same way as was
done for porphyry copper exploration. Egypt is an arid, desert environment, with near 100% surface
rock and soil exposures; ideal for application of optical remote sensing data.

Amer et al. [133] used ASTER data to detect gold-related alteration in the Um Rus area.
Salem et al. [134] combined geologic mapping and alteration mapping with ASTER data to identify
new exploration targets at the Barramiya District. Mapping alteration associated with potential gold
deposits at Wadi Allaqi was published by Salem and Soliman [135]. Hasan et al. [136] combined
spectral analysis of ASTER data with aeromagnetic data to identify promising gold exploration targets
in the Eastern Desert. The two data sets provided complementary information on rock types and
mineralogy, allowing a fuller picture to be created of promising areas. By combining ASTER spectral
analysis with geochemical data from surface-collected samples, Salem et al. [137] were able to validate
alteration zones detected on the remote sensing data, and strengthen the association of ASTER-defined
targets with potential gold deposits. Abdelnasser [138] and Salem et al. [139], in separate studies,
reported similar ASTER-plus-geochemistry studies at the Atud gold deposit and the Samut area,
respectively. By establishing a physical tie between alteration and gold occurrence, an exploration
strategy using only remote sensing data was formulated.
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Orion Gold announced in 2013 [140] the discovery of new exploration gold target areas in
Queensland, Australia, based on analysis of ASTER images. The area has known productive mines
in low sulfidation epithermal gold systems and porphyry gold-copper systems. ASTER data were
interpreted to locate occurrences of high temperature illite, crystalline kaolinite, dickite, and possible
vegetation anomalies. Along with K/Th radiometric anomalies, five target areas were identified
(Figure 5) for further ground- and laboratory-based analyses. Follow-up drilling in 2015 intersected
multiple epithermal veins and stockwork zones.

Figure 5. ASTER interpretation of clay anomalies and delineation of five target areas. Pick/shovel symbol
represents known gold of copper prospects. ASX (Australian Stock Exchange) announcement [140].

The first gold discovery using the Australia ASTER Geoscience minerals maps (described
previously) was announced in 2014 by Kentor Gold Limited on the Australian Stock Exchange soon
after the public release of the satellite products [141]. Their discovery at Chukbo in the east Arunta of
the Northern Territory, Australia was based on recognition in the ASTER geoscience maps of coincident
phyllic and propyllitic alteration (Figure 6). Similar new additional targets are also apparent.

Articles have been published describing applications of ASTER data for gold exploration in other
parts of the world. An early work by Zhang et al. [142] applied ASTER data for lithologic mapping
and alteration detection in the Chocolate Mountains, California. They analyzed the geologic setting
of a known gold mine, then used the extracted characteristics to search for similar environments.
A similar study by de Palomera [143] was carried out in the Deseado Massif, Argentina to prospect for
epithermal gold-silver deposits. At Mount Olympus, Australia, Wells et al. [144] used ASTER data to
characterize alteration associated with sediment-hosted gold mineralization. Their results defined a
different suite of alteration minerals compared with hydrothermal alteration found in epithermal or
Carlin-type gold deposits. At the Gua Musang Goldfield, China, Yao et al. [145] applied ASTER SWIR
and TIR data to map rock types and quartz content to search for promising host rocks for possible gold
mineralization. Yousefi et al. [146] integrated ASTER and Landsat data to map geologic setting of the
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Zarshuran Carlin-type deposit in Iran. ASTER data provided mineralogical and lithologic information,
and Landsat provided regional structural information. Rani et al. [147] combined mineralogical
information from ASTER data with ground magnetic data, ground spectroscopy and gravity data to
identify potential targets for gold sulfide mineralization. This project was an improvement over many
other, remote-sensing only projects: bringing in geophysical data provided a more complete geologic
picture of the setting; ground spectroscopy provided validation of the mineralogical information
derived from the ASTER data.

Figure 6. Published (from Kentor Gold) geology and mineral occurrences in the Jervois area, Northern
Territory (left) and propyllitic alteration (warmer colors) evident in the ASTER “MgOH” product,
which was critical in the discovery of Chukbo (right).

6.6. ASTER Data Applied to Exploration for Other Minerals

Several papers have appeared describing application of ASTER data in the search for iron
ore deposits. Using ASTER data alone, or in combination with data from other satellites (Landsat
and Hyperion) or airborne geophysics, methods were developed over targets in India, Iran, Brazil,
and Australia by Rajendran et al. [148], Huang et al. [149], Duuring et al. [150], Mansouri et al. [151],
and Mazhari et al. [152]. One report by Moghtaderi et al. [153] used ASTER and Landsat data to
determine iron mineral contamination in an iron mine area in Iran. These studies mainly relied on the
VNIR bands, as this spectral region covers the diagnostic spectral absorption features associated with
ferric and ferrous iron minerals.

A few articles have appeared where ASTER data have been applied in the search for specific
minerals. Cardoso-Fernandez [154] reported on the use of ASTER data in the search for lithium-bearing
pegmatites. TIR data were one of the key inputs to their exploration model. Shawky et al. [155]
processed ASTER data to detect the presence of known uranium localities in Egypt, hoping to develop
a more general exploration tool. In Australia, Hewson et al. [156] analyzed ASTER data to map geology
associated with manganese mineralization. In Kurdistan, Othman and Gloaguen [157] discovered a
new chromite body in the Mawat Ophiolite Complex. They combined lithologic mapping to delineate
possible host rocks, then identified targets using Support Vector Machine classification, searching for
unknown deposits using known targets as training sites.
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ASTER data have been applied in oil exploration to search for hydrocarbon seepage induced
alteration by Fu et al. [158], Shi et al. [159], Siydon et al. [160], Pena and Abdelsalam [161],
and Petrovic et al. [162]. Generally, surface effects are reduction/oxidation reactions, and alteration to
produce clay minerals. In a few cases, over known oil fields, alteration has been successfully detected.
Application as an exploration tool is still in the experimental stage; but ASTER data are considered an
addition to an exploration protocol.

7. Discussion and Conclusions

All of these examples conclusively demonstrate the tremendous advances in lithologic mapping
and mineral exploration provided by ASTER’s multispectral SWIR and TIR bands. For the first
time, global image data were acquired at sufficient spatial resolution to be applicable to deposit-scale
mapping, as well as regional reconnaissance exploration. In addition, the systematic search for
indicators of potential base and precious metal deposits was enabled by the ability to detect minerals
associated with propylitic, argillic, potassic, phyllic, and silicic hydrothermal alteration. Clays,
carbonates, sulfates, and other hydrous minerals were discriminated, not just lumped into a single
category as with Landsat data.

Researchers described a variety of initial ASTER data products (radiance-at-the-sensor, surface
reflectance, etc.) as their inputs for analysis. Further pre-processing steps varied, depending on
the final analysis and information extraction algorithms used. This variety of data analysis and
processing methods, then applied to the pre-processed ASTER data, shows that there is no “perfect
workflow” to successfully extract mineralogical information. The data have sufficient information
to provide satisfactory results using the simplest techniques like color composites and band ratios
of radiance-at-the-sensor data, or more sophisticated analyses, like machine learning. Mineralogical
indices seem to be a good middle ground (see Appendix B).

The aerospace commercial sector took note of the sizable exploration geology user community
using ASTER and Landsat data, and gauged there was a sufficiently large market to add multispectral
SWIR capability to a for-hire satellite scanner. Since 2015, DigitalGlobe’s WorldView-3 instrument has
provided data for sale to customers desiring high spatial resolution data. The instrument provides
eight SWIR bands with 7.5 m pixel size, four in the 1.6–1.75 μm region and four in the 2.15–2.35 μm
region; and eight VNIR bands with ~1.2 m pixel size, and has bands with similar bandpasses to ASTER
VNIR-SWIR bands except for ASTER SWIR band 9. The images have a swath width of 13.1 km, so the
data are not suitable for reconnaissance of medium to large areas, as can be done with ASTER data.
However, the band positions allow better clay and carbonate mineral identification than with ASTER,
as reported by Mars [163] over the Mountain Pass, California site. No funded, future instrument by any
country or agency currently exists to provide high spatial resolution TIR data. Several hyperspectral
VNIR-SWIR scanners are either operational or planned for launch in the next few years. None of these
provide global coverage, as they are all sampling missions, with narrow (~30 km) swath widths.

Since the launch of the Landsat MSS scanner in 1972, geologists have increasingly turned to
satellite-based remote sensing data as an integral tool in lithologic mapping and mineral exploration
programs. The 1982 launch of the Landsat Thematic Mapper scanner, with its single 2–2.5 μm band,
was a breakthrough for detecting hydrothermal alteration that could be associated with potential
mineral deposits. Japan’s 1992 launch of OPS with its four SWIR bands demonstrated the potential
capability to not only detect hydrothermal alteration minerals, but to identify individual and classes
of these minerals. The ASTER instrument, with its six SWIR bands, and five TIR bands, was the
next logical step in developing a spaceborne instrument with greatly enhanced geological mapping
capabilities. For the past 20 years, ASTER data have been shown again and again to be an important
tool to map the surface of the Earth. Several announced mineral deposit discoveries (and undoubtedly
many unannounced discoveries) attest to the success of ASTER’s design.
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Acronyms

AIST National Institute of Advanced Industrial Science and Technology
ALI Advanced Land Imager
ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer
CSIRO Commonwealth Scientific and Industrial Research Organisation
EO-1 Earth Observer
EOS Earth Observing System
ERTS Earth Resources Technology Satellite
GDEM Global digital elevation model
HRV High resolution visible
IRS Indian Remote Sensing
ITIR Intermediate Thermal Infrared Radiometer
JERS Japan Earth Resources Satellite
LPDAAC Land Processes Distributed Active Archive Center
METI Ministry of Economy, Trade and Industry
MITI Ministry of International Trade and Industry
MSS Multispectral scanner
NASA National Aeronautics and Space Administration
NASDA National Space Development Agency
OLI Operational Land Imager
OPS Optical sensor
PALSAR Phased Array type L-band Synthetic Aperture Radar
SAC-C Scientific Application Satellite-C
SPOT Satellite pour l’Observation de la Terre
STA Science and Technology Agency
SWIR Short wave infrared
TIGER Thermal Infrared Ground Emission Radiometer
TIR Thermal infrared
TM Thematic Mapper
VNIR Visible and near infrared

Appendix A ASTER Operations

Appendix A.1 Data Acquisition

Due to its limited duty cycle, the ASTER instrument is scheduled each day for specific data
collections. On any given day there are thousands of possible data acquisitions that could be collected.
The ASTER science team developed an automatic scheduler to prioritize the possible acquisitions and
produce a daily acquisition schedule. On average, about 500–550 scenes are collected daily, limited
by the capacity of the onboard data recorders. To date, ASTER has acquired almost 4 million images
(Figure A1).
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Figure A1. Mosaic of ASTER browse images showing near-global coverage achieved over the lifetime
of the mission.

Appendix A.2 Data Products

The ASTER project provides the user community with Standard Data Products throughout the
life of the mission. Algorithms to create these products were created by the ASTER Science Team,
and were rigorously peer reviewed by outside scientists [164]. This ensured that the products met
NASA standards for accuracy and scientific soundness. Adhering to NASA procedures, products
are labeled by level, from 1 to 3. “Level 1A are reconstructed, unprocessed instrument data at
full resolution, time-referenced and annotated with ancillary information, including geometric and
radiometric calibration coefficients and georeferencing parameters computed and appended but not
applied to Level 0 data. Level 1B data are L1A data that have been processed to sensor units. Level 2
data are derived geophysical variables at the same resolution and location as Level 1 source data.
Level 3 data are variables mapped on uniform space-time grid scales, usually with some completeness
and accuracy.” [165]. A list of the ASTER data products can be found here [166].

Appendix A.3 Data Archiving and Distribution

In the U.S., NASA’s Land Processes Distributed Active Archive Center (LPDAAC; https://lpdaac.
usgs.gov) is responsible for archiving, processing, and distribution of all ASTER data products. In Japan,
Japan Space Systems (http://jspacesystems.or.jp) is responsible for archiving the entire ASTER Level 0
and Level 1 data. Distribution of a limited suite of ASTER products in Japan is implemented by the
National Institute of Advanced Industrial Science and Technology (AIST) through the Geologic Survey
of Japan (https://gbanks.gsj.jp/madas/). As of January 2019 ASTER had acquired over 3.8 million
images. A complete catalog of links to ASTER data providers can be found on the ASTER website
(https://asterweb.jpl.nasa.gov/data.asp).

Since April 2016, both METI and NASA agreed to distribute all ASTER data products to all users
at no cost. For the period April 2016 to April 2019, over 32 million ASTER Level 1, 2, and 3 files have
been distributed (excluding the Global Digital Elevation Model (GDEM)). For the past two years,
the most popular product has been the ASTER GDEM. The number of these files ordered has exceeded
55 million.
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Appendix B Spectral Indices

Appendix B.1 TIR Spectral Indices

In 2005, Ninomiya et al. [32] proposed mineralogical spectral indices using ASTER’s TIR bands.
The indices were based on spectral absorption features of silicates and carbonates, located in the
8–12 micron wavelength region.

CI = Carbonate index = B13/B14, where B13 is the value of radiance-at-sensor of ASTER TIR band 13;
CI is high for calcite and dolomite
QI = Quartz Index = (B11 × B11)/(B10 + B12)
MI =Mafic Index = (B12 × B143)/B134

Appendix B.2 Logical Operators

In 2006, Mars and Rowan [126] developed logical operators to map argillic and phyllic alteration.
Their algorithms were written using IDL (Interactive Data Language). Input data were the ASTER
calibrated surface reflectance products, atmospherically corrected. In addition, the ASTER data were
adjusted using Hyperion data, resampled to ASTER bandpasses.

Argillic alteration:

((float(B3/B2 le 1.35) and (B4 gt 260) and ((float (B4)/B5) gt 1.25) and ((float(B5/B6) le 1.05) and
((float(b7)/B6) ge 1.03)

The first term masks vegetation; the second term masks dark pixels; the third term maps the
2.165 micron feature; the fourth term delineates argillic from phyllic alteration; the last term maps the
2.20 micron feature.

Phyllic alteration:

((float(B3)/B2) le 1.35) and (B4 gt 260) and ((float(B4)/B6) gt 1.25) and ((float(B5)/(B6) gt 1.05) and
((float(B7)/B6) ge 1.03)

The first term masks vegetation; the second term masks dark pixels; the third term maps the
2.20 micron feature; the fourth term delineates argillic from phyllic alteration; the last term maps the
2.20 micron feature.

Appendix B.3 Australian Geoscience Maps

In 2012, CSIRO released “Satellite ASTER Geoscience Products for Australia” [99]. These consisted
of 17 geoscience products for the entire continent of Australia, created from 35,000 ASTER images.
Fourteen were from the VNIR and SWIR bands, three from the TIR bands. The geoscience maps
started with ASTER radiance-at-sensor data products; further processing included geometric correction,
cloud and vegetation masking, mosaicking images to make a seamless mosaic, and application of
product masks/thresholds to generate the geoscience products.

The 17 products are false color (Bands 3,2,1 in RGB); Landsat TM Regolith ratios; green vegetation
content; ferric oxide content; ferric oxide composition; ferrous iron index; opaque index; AlOH
group content; AlOH group composition; Kaolin group index; FeOH group content; MgOH group
content; MgOH group composition; ferrous iron content in MgOH/carbonate; silica index; quartz
index; and gypsum index.

An example of the algortihms used is the MgOH group content, designed to highlight the
abundance of calcite, dolomite, magnesite, chlorite, epidote, amphibole, talc and serpentinite.

Algorithm = (B6+B9)/(B7+B8)
Masks = green vegetation <1.4 and cloud, water, shadow and sun glint
Stretch = linear 1.05–1.2
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Abstract: During the past two decades, the Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) instrument on the Terra satellite has acquired nearly 320,000 scenes of the
world’s volcanoes. This is ~10% of the data in the global ASTER archive. Many of these scenes
captured volcanic activity at never before seen spatial and spectral scales, particularly in the thermal
infrared (TIR) region. Despite this large archive of data, the temporal resolution of ASTER is simply
not adequate to understand ongoing eruptions and assess the hazards to local populations in near real
time. However, programs designed to integrate ASTER into a volcanic data sensor web have greatly
improved the cadence of the data (in some cases, to as many as 3 scenes in 48 h). This frequency
can inform our understanding of what is possible with future systems collecting similar data on the
daily or hourly time scales. Here, we present the history of ASTER’s contributions to volcanology,
highlighting unique aspects of the instrument and its data. The ASTER archive was mined to provide
statistics including the number of observations with volcanic activity, its type, and the average cloud
cover. These were noted for more than 2000 scenes over periods of 1, 5 and 20 years.

Keywords: ASTER; thermal infrared data; volcanic processes; image archive; future concepts

1. Introduction

1.1. ASTER Instrument and History

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument
was launched on the NASA Terra satellite on 18 December 1999. Prior to the instrument beginning its
operational phase on 4 March 2000, ASTER acquired several images including the first thermal infrared
(TIR) image on 6 February (Figure 1). That image was of Erta Ale volcano (Ethiopia), and initiated a
long association of ASTER data with volcanological observations. ASTER was developed and built in
Japan under the Japanese Ministry of Economy, Trade and Industry (METI), and is one of five Earth
observing instruments on Terra. The combined science team of Japanese and United States investigators
has changed over the years, however always maintaining a strong volcanological component [1,2].
During the past two decades, the data from ASTER have been applied to numerous questions and
scales of surface processes, most notably for volcanic activity, e.g., [3–6].

ASTER was designed to observe the surface at multiple spatial and spectral resolutions as well
as from different viewing geometries. It is actually a suite of three instruments with independent
bore-sighted telescopes, originally having 14 spectral channels in the visible/near-infrared (VNIR),
the shortwave infrared (SWIR), and the thermal infrared (TIR) regions [7]. The VNIR instrument
(0.52–0.86 μm) has three spectral channels at a spatial resolution of 15 m/pixel paired with one channel
oriented in a backward look direction for the creation of digital elevation models (DEMs). The SWIR
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instrument (1.6–2.43 μm) unfortunately failed in 2008, but originally had six channels at a spatial
resolution of 30 m/pixel. Finally, and perhaps most important for many aspects of volcanological
remote sensing, the TIR instrument (8.13–11.65 μm) has five channels at a spatial resolution of
90 m/pixel. During the lifetime of the mission, ASTER has acquired over 3.5 million individual
scenes—approximately 22% of which were collected at night. Here, we describe the two-decade
history of ASTER, specific programs to improve the observational frequency of volcanoes, and present
examples of those data.

 

Figure 1. The first Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)
multispectral thermal infrared (TIR) image acquired on 6 February 2000, before the start of the
instrument’s science operational phase. Erta Ale volcano, Ethiopia (summit location: 13.60◦N, 40.67◦E),
is shown using a decorrelation stretch (DCS) of the TIR bands 14, 12, 10 in red, green, and blue,
respectively. Color variations are mainly caused by rock and soil compositional differences, and only
possible with the ASTER multispectral TIR data. The blues and purple colors are indicative of
dominantly basaltic lava flows. The small cluster of white pixels in the lower central part of the image
is the summit lava lake thermal anomaly. The ASTER DCS data are overlain on a visible Google Earth
image for context. Image credit: NASA/METI/AIST/Japan Space Systems, and U.S./Japan ASTER
Science Team.
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1.2. Twenty Years of Volcanic Studies Using ASTER Data

The ASTER Science Team created useful derived science products that have benefited numerous
scientific fields such as volcanology. These include a robust temperature emissivity separation algorithm
for the first orbital high spatial resolution multispectral TIR data [8], programs such as the Science
Team Acquisition Request (STAR) to acquire data focused on important science questions of individual
users/teams, as well as the ability to generate DEMs [9]. These individual-scene DEMs of 60 by 60 km
were later composited globally into the ASTER Global DEM or GDEM—version 3 of which was
released in August 2019 [10,11].

Arguably, volcanology is one of the scientific disciplines on which ASTER data have had the
greatest impact. In order to quantify this impact and gather all volcanology related studies together into
one reference document, we have performed an extensive literature review (Appendix A). This found
271 peer-reviewed publications from 1 January 1995 to 1 December 2019, an average of nearly 11
per year (Figure 2). Papers published prior to the Terra launch were considered precursory studies,
commonly describing how the future ASTER data would be used for certain volcanic studies. This list
of 271 publications was subdivided into 12 categories based on the volcanic focus of the papers.
The category names and number of papers in those categories (shown in parentheses) are: Analogs
(3), Calibration (4), Lava Flows (4), Gas/Plumes (30), Geothermal (9), Mapping (54), Modeling (16),
Monitoring (96), Operational (4), Other (4), Precursory (16), and Topography (31). Based on this
categorization, ASTER data have been primarily used to monitor volcanic activity; somewhat surprising
considering the lower temporal frequency of the data. This speaks to the need for future high spatial,
high spectral resolution data at temporal resolutions far better than the nominal 16 day equatorial repeat
time of ASTER and Landsat, or even the 5 day resolution of the Sentinel-2 constellation. This same
finding was also brought forward in the most recent Decadal Survey for Earth Science, which noted
data such as these are critical for addressing two of the most important science questions related to
natural hazards [12].

Figure 2. The number of volcano-related publications per year that have incorporated ASTER data
in some aspect of the work. Through 2016, the growth has been roughly exponential (dashed line).
That growth has declined somewhat in the last several years, although still remaining respectable.
The total number of publications shown is 271, spanning the last 25 years.
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2. Background

2.1. Volcanological Remote Sensing

The data from spaceborne sensors used to detect, monitor, and even forecast eruptions have been
analyzed since the earliest days of the satellite era, e.g., [13–15]. Those early studies using the data
available at the time focused mostly on hot spot detection and temperature measurements with TIR
data. The studies continued to expand despite the fact that no sensor launched by any country has
ever been specifically devoted to volcano science. Scientific studies grew ever more complex with
the launch of new sensors providing better spatial, temporal and spectral data, arguably creating
the field of spaceborne volcanology. The ability to extract critical information from subtle phases
of precursory activity in order to perform the detailed spectral mapping of the erupted products
grew exponentially [16]. Many of these studies describe the detection of a new thermal anomaly at a
quiescent volcano, which gave rise to models of the sub-pixel temperature distribution. High temporal
temperature data allowed more accurate modeling of lava and gas flux rates as well as chronological
descriptions of each eruptive phase. Ramsey and Harris [17] summarized the history of satellite-based
TIR research of active volcanoes into four broad themes: (1) thermal detection, (2) analysis of sub-pixel
components, (3) heat/mass flux studies, and (4) eruption chronologies. Ramsey [2] added a fifth theme,
the creation of sensor webs consisting of integrated data from multiple sensors to improve the spatial
and/or temporal resolution.

Volcanology, as is the case for many other disciplines relying on orbital image data, adapted to the
fundamental technological divide of the availability of high temporal/low spatial resolution versus
that of low temporal/high spatial resolution data. Volcanological processes operating at the minute
to hourly time scale (e.g., lava effusion, plume emplacement, drifting ash clouds) require data very
different than those acquired on the time scale of days to weeks. The former falls under a class of
TIR sensors designed primarily for weather and atmospheric studies and includes sensors such as
the Advanced Very High Resolution Radiometer (AVHRR), the Along Track Scanning Radiometer
(ATSR), the Moderate Resolution Imaging Spectroradiometer (MODIS), the Visible Infrared Imaging
Radiometer Suite (VIIRS), as well as instruments on the Geostationary Operational Environmental
Satellites (GOES). These sensors are commonly designed with wide swath widths, a limited number of
spectral bands, and spatial resolutions of 1.0 km/pixel or larger, which result in temporal frequencies of
minutes to hours. Modeling the data to extract information below the scale of the pixel have made these
datasets invaluable for both the rapid detection of new activity as well as the analysis of time-scale
dependent eruptive processes [18–20].

TIR data of the Earth’s surface evolved from very course spatial resolution to the sub-100 m scale,
and from one spectral channel for temperature measurements to five for the ASTER and ECOsystem
Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) instruments. This class
of sensors includes instruments on the current Landsat platforms as well as older systems like ASTER
and newer ones such as ECOSTRESS. These commonly have a larger number of spectral bands than
the weather class of sensors, spatial resolutions of 100 m/pixel or better, but a temporal frequency of
days to weeks. The improved spatial and spectral resolution does provide for studies of smaller-scale
volcanic processes with detection of much smaller temperature variations, e.g., [3,5,21]. These sensors
are also excellent for detecting early precursory activity despite the infrequent coverage, e.g., [22].
However, the data cannot be used to describe the high-frequency changes ongoing during an eruption
despite providing a detailed “snapshot in time” of that activity.

2.2. The 2018 Decadal Survey Recommendations

Land surface image data at ever-improving spatial, spectral and temporal scales, which also span
a wide wavelength range from the VNIR to the TIR, have greatly improved our understanding of
geological and biological processes operating at those observational scales. This has been recognized
for decades with Landsat data, which have been improved spatially and spectrally as changes were
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made to the instrument design. Following its launch, ASTER data greatly increased both the spatial and
spectral ranges, providing new capabilities from that of Landsat, significant especially for volcanology.

The need to continue (and improve upon) this class of measurement was recognized in the first
Decadal Survey (DS) for Earth Science in 2007 [23]. In that report, a notional list of mission concepts
was proposed, which included the Hyperspectral Infrared Imager (HyspIRI) mission that paired a
hyperspectral visible/shortwave infrared (VSWIR) instrument with a multispectral TIR instrument.
Many years of planning, design and science concept studies were later performed. Ultimately, however,
the mission was never selected by NASA to move forward and the concept study was formally ended
with the publication of the second Decadal Survey in 2018 [12].

The second report focused on science questions and key observables, around which new mission
concepts could be structured. Notably, the lack of future global TIR and VSWIR image data was once
again brought forward in the new DS report. For example, the requirement for infrared measurements
spanned all of the working group panels, being mentioned over 190 times in the report and 12 times
in the requests for information from the general science community. Focusing specifically on the
reports of the Ecosystems and the Earth Surface and Interior panels, which contributed most directly
to the need for TIR data, those data were key inputs for 14 different science objectives—half of which
were designated as “most” or “very” important, the top categories. The science and applications
summary includes the need for measurements of surface geology, active geologic processes such as
natural disasters, surface/water temperature, as well as functional traits of vegetation and ecosystems.
The Earth Surface and Interior panel, for example, focused two of its top-level science questions
on natural disasters: data prior to the event and the outcomes following. TIR measurements are
noted as vital for several of these disasters, including volcanoes, landslides and wildfires. Although
temperature is an important measurement, the need for vast improvements in TIR spatial, spectral
and temporal resolution data was made clear. TIR data acquired in 1–2 channels at 100 m resolution
every 2 weeks no longer satisfies the requirements deemed important by the science community for
the future. Hyperspectral TIR coupled with vastly improved temporal resolution at spatial scales
exceeding current ASTER capabilities were recommended. The DS report lists several Designated
Observables (DOs), including the Surface Biology and Geology (SBG) DO. A mission concept designed
to address this DO will likely include some combination of these recommended scales of TIR data,
which will allow far more detailed volcanic measurements than currently possible with either ASTER
or Landsat data.

3. The Methodology of ASTER Volcano Observations

3.1. The Need for More Routine ASTER Volcano Observations

3.1.1. The ASTER Volcano Science Team Acquisition Request (STAR)

The recognition that ASTER data would provide a fundamentally new tool for volcanic observations
was documented even before the Terra launch [7]. During that development period, the ASTER Science
Team (AST) foresaw that the instrument would eventually provide data at spatial and spectral scales
never before observed, routine data at night, the ability to point off-nadir to improve temporal revisit
time, and therefore, required daily observation schedules. Being a scheduled instrument, unlike
many other nadir-viewing systems, brought both a higher level of mission complexity as well as
unique opportunities for Earth observations. Scheduling allowed specific ground targeting, a focus on
larger-scale global processes, as well as an important goal of creating a global map of ASTER data.

One observational and scheduling strategy developed was the creation of the science team
acquisition request or STAR. The STARs are a series of globally distributed regions of interest (ROIs)
over targets with high scientific value. The ROIs had associated attributes such as seasonality,
instrument gain settings, number of observation attempts per year, etc. These targets were integrated
into the daily scheduling so that both STAR-focused scenes were acquired together with the many
other required observations during any given orbital period. The STAR’s assured a priority set of
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observations for high-interest science such as monitoring the global land ice inventory, change detection
of large urban environments, and volcanic activity [24–26].

The ASTER Volcano STAR’s scheduling plan was designed to allow routine observations over the
world’s volcanoes, which were then made available to the scientific community as quickly as possible [26].
The original plan divided the global list of the approximately 1000 active and/or potentially active
volcanoes into high, medium and low priority classes. These divisions, initially dubbed class A, B, and C,
respectively, varied according to the historical frequency of their eruption activity. Class A consisted of
volcanoes that had several recorded eruptions during the prior decade; class B volcanoes had several
recorded eruptions during the past several decades; and class C consisted of the remainder of volcanoes
that had not seen activity in the prior century. The STAR designated that class A targets would be
observed every 48 days during the day and every 32 days at night. Class B targets were to be observed
every 3 months, both in the day and night. Finally, class C targets were to be observed once every
6 months [27,28]. Although this plan continues to provide regular data of all the volcanoes on Earth, many
eruptions and the precursory activity prior, were missed due to this schedule rigidity. For the Volcano
STAR, ASTER acquires ~16,000 scenes per year on average, which is a combination of day and nighttime
data, for a total of ~320,000 individual ASTER volcano scenes over the mission lifetime. Therefore, for the
964 individual volcano ROIs in the ASTER Volcano STAR, each volcano is observed ~16 times per year on
average. Although an improvement over the nominal observational schedule, this frequency is still not
enough to allow rapid response observations nor discrimination of short-timescale activity, especially
considering that some percentage of these scenes are dominated by clouds.

3.1.2. The ASTER Urgent Request Protocol (URP)

Because of the lack of an adequate temporal sampling of the very restless and actively erupting
volcanoes with the volcano STAR, the ASTER Urgent Request Protocol (URP) Program was proposed [2,29].
Simply, the URP is a means to improve the number of observations at the most active volcanic centers
around the world. The URP integrates ASTER into a sensor web construct where all scales of activity at
an erupting volcano can be captured [29,30]. The initial and most straight-forward implementation of
this approach for the URP uses detection of thermally elevated pixels in high temporal resolution data
to subsequently trigger more rapid scheduling and acquisition of the higher spatial/spectral resolution
data from ASTER. With such a system in place, the high-frequency activity can be continually imaged
throughout the eruption, with the high spatial resolution data ideal for capturing small scale changes.
These ASTER data also serve as validation for the low spatial, high temporal resolution data.

The URP program has been in place as part of the ASTER sensor’s operational scheduling since
2005 [2,29], responsible for over 5000 additional scenes of active volcanoes during that time (one
new scene on average every day). Perhaps more importantly, the URP can be triggered manually if
precursory activity is noted based on ground-based observations or reports. This allows pre-eruption
data to be acquired that significantly add to the monitoring process [22].

Later expansion of the URP Program increased the original monitored area from the northern Pacific
region to the entire globe [2]. The URP currently operates with two global monitoring systems using
MODIS data: MODVOLC [31] and Middle InfraRed Observation of Volcanic Activity (MIROVA) [32] as
well as AVHRR data focused in the north Pacific region using the Okmok algorithm [33]. New triggering
systems are now being tested that will integrate ground-based thermal camera data as the source for
new URP data. A trial system at Mt. Etna volcano in Italy has been ongoing since mid-2019 and
will expand to Piton de la Fournaise volcano on Réunion Island in 2020 using seismic alerts as the
triggering source. The addition of the URP to the ASTER observation schedule is a vast improvement
from the original volcano STAR [3,27]. Importantly, however, the URP operates in tandem with the
volcano STAR. The volcano STAR data represent additional scenes for the very active volcanoes,
thus supplementing the URP archive. Conversely, the volcano STAR data are commonly the only
information for the less active, non-thermally elevated targets, and therefore continue to represent an
important source for global volcano data.
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3.2. Volcano Data Archives

3.2.1. The ASTER Image Database for Volcanoes

The entire ASTER archive is available at the Land Processes Distributed Active Archive Center (LP
DAAC), which can be searched using tools such as EarthDATA and GloVis (Table 1). Other web-based
data repositories, however, have been created specifically for the volcano data products. The first of
these is the Image Database for Volcanoes (IDV), which was created by M. Urai, and is located in and
served from Japan [27,34]. A new volcano image is commonly added within a week of acquisition. The
database contains all ASTER images of the 964 target volcanoes that comprise the ASTER Volcano STAR.
A 20 km2 area centered on the geographic location of volcano is shown and stored in the database. Links
to each volcano are also displayed and upon selection, the best VNIR image, geographic information,
and a table ordered by date of all the acquisitions are shown. The chronological list has thumbnails of
the each of the three ASTER imaging systems (where available) along with metadata links for access
and download.

Table 1. Volcano-specific data archives and search tools available for all ASTER data.

Site Name Site Web Address and Relevant Information

Land Processes Distributed Active
Archive Center (LP DAAC)

https://lpdaac.usgs.gov/data/get-started-data/collection-overview/
missions/aster-overview/

Contains the entire ASTER archive from 2000 to present, including the
on-demand higher-level data products

Image Database for Volcanoes
(IDV)

https://gbank.gsj.jp/vsidb/image/index-E.html

Contains a 20 km2 area around each of the 964 volcanoes in the ASTER
Volcano STAR database, for the entire mission from 2000 to present

ASTER Volcano Archive (AVA)

http://ava.jpl.nasa.gov

Contains the full ASTER scene in multiple formats for ~1500 volcanoes,
in addition to other sensor data and derived products. Archive currently

spans from 2000 to 2017

EarthDATA Search Tool
https://earthdata.nasa.gov/

Searchable visual archive for the entire ASTER mission from 2000 to
present, including the on-demand higher-level data products

GloVis Search Tool
https://glovis.usgs.gov/

Searchable visual archive for the entire ASTER mission from 2000 to
present

Urai [34] conducted an initial evaluation of the ASTER Volcano STAR performance using data in
the IDV. As expected, volcanoes in Iceland and Kamchatka were observed the most frequently. At the
time of the study, 77% of all the volcanoes in the database had at least one daytime image with <10%
cloud cover. The IDV remains active as of the time of this writing, and as of the latest IDV update
on 1 December 2019, the average number of scenes acquired had grown to 146.3 (daytime) and 185.4
(nighttime) per volcano.

3.2.2. The ASTER Volcano Archive (AVA)

The second online volcano database to appear was the AVA, which is housed and served in the
United States at the Jet Propulsion Laboratory [27,28]. The AVA is the largest dedicated archive of
web-accessible volcano images now containing image data other than ASTER as well as secondary
derived products for each volcano (Table 1). The archive provides capabilities to inventory and monitor
properties and processes over time. These include the spectral signatures for volcanic emissions (e.g.,
eruption columns and plumes) and surficial deposits (e.g., lava flows, pyroclastic flows), as well as
eruption precursor data. AVA has helped to improve the global monitoring and access to archival
ASTER image data of more targets (~1500) than are in the ASTER Volcano STAR. Much like the IDV,

37



Remote Sens. 2020, 12, 738

volcanoes can be searched by name or location, and thumbnail images. Unlike the IDV, AVA data can be
downloaded as full ASTER scenes in geoTIFF, KML, or HDF formats. These data can be also combined
with the DEM files and ancillary data in an easily accessible format, which is useful in organizing the
multispectral geological analysis of a particular volcano [35]. As of this writing, however, no new data
have been added to the archive since late 2017. This is scheduled to be reactivated sometime in 2020.

3.3. Operational Structure of the Ongoing ASTER Volcano Observations

All ASTER data acquired as part of ongoing routine Earth observations (i.e., the Volcano STAR,
global map imaging, etc.) are archived at the LP DAAC. These data are stored in several formats
including raw radiance at sensor, from which numerous level 2 data products (e.g., digital elevation
model, surface TIR temperature), can be ordered as on-demand products. Image data that fulfill the
requirements of the Volcano STAR are also assessed weekly and stored in the IDV and the AVA archives,
the latter until 2017. These volcano archives allow quick data searches on particular volcanoes and
visualizations of the latest data, whereas the LP DAAC archive contains all the data, all possible level 2
options and the most up to date processing levels for each on-demand product.

Data collected as part of the URP Program are also eventually stored in the LP DAAC ASTER
archive and are pulled over to the individual volcano archives as well. However, because of their
expedited classification, these data are processed quickly into the Level 1BE (expedited) format and
staged on the expedited data system webpage at the LP DAAC for immediate download and assessment.
Within 2 h of the data being acquired, all scientists involved with the URP Program are automatically
notified by email and have immediate web-based access to the new scene. Any significant changes
detected in the data of a particular eruption are disseminated to the responsible monitoring agencies,
local scientists working on the eruption, as well as the global community through e-mail and mailing
lists. More detailed science analysis is then commonly performed over time and with the arrival of
new data. All new, newly scheduled, and ongoing volcano observations of each URP volcano are
tracked both through a database and email system as well as web-based map tool showing all the
current targets color coded by ASTER observations status (Figure 3). Each color coded pin is clickable
allowing a query of the latest observations and links to the metadata for each scene. Also shown is the
current position of the Terra satellite.

 

Figure 3. The ASTER Urgent Request Protocol (URP) Program scheduling interface using Google
Maps, and maintained at the LP DAAC. All currently monitored URP target volcanoes are shown with
a color-coded pin. These are updated automatically when new targets are triggered or existing ones
have a change of status. Each pin is clickable to display more information and links to other metadata.
The position of the Terra spacecraft and its orbit tracks are also shown.
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3.4. Statistical Analysis

All ASTER scenes used in this study were acquired from the LP DAAC through the NASA
EarthData web-based search tool using an initial search refinement by date. The refined datasets were
then downloaded as ASTER Level 2 surface kinetic temperature (AST_08) products. This data product
allows the most efficient way to identify volcanic activity by temperature within a given scene. Scenes
were automatically scanned and later visually inspected for any thermal variations. If no activity was
initially identified, a more detailed investigation for thermally elevated pixels was performed for each
scene. If this process yielded a negative result, the scene was classified as having no detectable volcanic
activity. If volcanic (thermal) activity was present, then the type of activity was classed as a plume,
lava flow, other flow, or summit hot spot. The cloud cover percentage was also visually determined for
all the scenes investigated. This was then compared to the ASTER Cloud Cover Assessment Algorithm
(ACCAA) value for future assessment analysis.

4. Results

4.1. ASTER Capabilities and Observation Strategies

The unique instrument characteristics that make ASTER particularly well suited for volcanic
observations include multispectral TIR data, routine TIR data at night, high spatial resolution data,
variable gain settings to limit data saturation, off-axis pointing, and generation of along-track digital
elevation models [3,36]. For example, the multispectral TIR data at a relatively high spatial resolution
allowed a variety of surface materials to be distinguished and a better understanding of thermal and
compositional mixing at the sub-100 m pixel scale [6,37,38]. The following are examples particularly
relevant to each of the ASTER instrument characteristics. For a complete list of all ASTER-specific
volcanological papers, see Appendix A.

4.1.1. Routine TIR Data at Night: Elevated Temperatures at Fuego Volcano, Guatemala

Unlike other orbiting instruments of similar spatial and temporal resolutions, ASTER routinely
acquires TIR data at night. In certain special observational modes (e.g., large and highly radiant lava
flows), VNIR nighttime data can also be acquired. Nighttime TIR have the advantage of reduced
residual solar heating, reduced thermal topographic effects, and typically have lower cloud percentages
compared to daytime scenes [3]. Subtle thermal anomalies are therefore more easily identified in
nighttime TIR data. A new study by Flynn and Ramsey [39] of Fuego volcano from (1 January 2000
until 30 April 2018) found that ASTER acquired 308 scenes—193 of which were collected at night.
Of those nighttime scenes, 109 had visible volcanic activity present, with 47 being summit hot spots
and 62 showing either lava flows or pyroclastic density currents (PDCs). These data were compared
to the Guatemalan monitoring agency’s weekly reports to determine the specific volcanic event that
could have caused the thermal detections in the ASTER data. This data synthesis is then used to create
volcanic hazard maps and cross check datasets for missed events. Without the nighttime TIR data,
many of these volcanic events may not have been observed.

4.1.2. Multispectral TIR Data: SO2 Plumes from Lascar Volcano, Chile

The multispectral resolution of the ASTER TIR data enabled Henney et al., [40] to detect and
measure very low SO2 concentrations (<1 g/m2) released from Lascar volcano in December 2004
(Figure 4). Of note by the authors was the high spatial resolution and radiometric sensitivity, which
along with the needed multispectral resolution allowed these retrievals of very small SO2 burdens,
which are not possible with any other orbital instrument. The TIR results were also compared
to ground-based measurements made in the ultraviolet (UV) spectral region during a coordinated
overpass of ASTER and found to be well within the error of those instruments.
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Figure 4. The map of the very low SO2 burden retrieved using ASTER TIR data acquired at Lascar
volcano, Chile (summit location: 23.37◦S, 67.73◦W) on 7 December 2004. Image is draped on a visible
Google Earth image for context. Numbered lines indicate transects taken through the plume and
reported in the original study. SO2 results were created using the Map_SO2 software of Realmuto [41]
and each color bin corresponds to ~0.3 g/m2 of SO2. Figure modified from Henney et al. [40].

4.1.3. High Spatial Resolution Data: TIR Analysis of Hawaiian Volcanoes

The high spatial resolution of the ASTER data, in particular in the TIR, was documented by Patrick
and Witzke [42] for long-term mapping and monitoring of the active or potentially active volcanoes on
the islands of Hawai’i and Maui. The goal of the study was to determine the baseline thermal behavior
over ten years (2000–2010) in order to assess thermal changes that may precede a future eruption.
They used cloud-free kinetic temperature ASTER data acquired for the five major subaerial volcanoes
in Hawai‘i (Kı̄lauea, Mauna Loa, Hualālai, Mauna Kea, and Haleakalā). The data were geolocated
and stacked to create time-averaged thermal maps and to extract temperature trends over the study
period. Conspicuous thermal areas were found on the summits and rift zones of Kı̄lauea, Mauna Loa,
and the small pit craters on Hualālai. No thermal areas were detected on Haleakalā or Mauna Kea.
One limiting factor noted for the lack of detections was the pixel size of the ASTER TIR, which despite
being one of the highest from orbit, was seen as still too large to detect possible subtle thermal changes
as well as to identify small-scale, low-temperature thermal activity.

4.1.4. Variable Gain Settings (VNIR/SWIR): High Temperature Monitoring of Klyuchevskoy
Volcano, Russia

The ASTER VNIR and SWIR (no longer functioning) subsystems both have/had the ability to
acquire data at different data gain settings. The VNIR has three settings (low, normal, and high),
whereas the SWIR had four (low1, low2, normal, and high). These gain settings must be set prior to
scheduling an observation, so some degree of advanced knowledge of the target is required. They
were created to limit data saturation in regions of excessively high or low radiance (e.g., bright glacier
and clouds surfaces, dark water body surfaces, etc.). Typically, these gain settings are uniformly set
across all bands in the VNIR and the SWIR (when it was operating). However, a unique scenario was
created for the volcano STAR whereby every other SWIR band was alternated between the normal
and the low2 gain settings in order to maximize the possibility of capturing some unsaturated data
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of a future volcanic target that may have lava on the surface [25]. The saturation pixel-integrated
brightness temperature for the SWIR ranged from 86 ◦C in band 9 (wavelength = 2.336 μm and gain =
high) to 467 ◦C in band 4 (wavelength = 0.804 μm and gain = low2). For the VNIR, the range is 669 ◦C in
band 3 (wavelength = 0.807 μm and gain = high) to 1393 ◦C in band 1 (wavelength = 0.556 μm and gain =
low). By comparison, the TIR has only one gain setting and a saturation pixel-integrated brightness
temperature of 97 ◦C.

These variable gain settings have proven quite useful for deriving accurate pixel-integrated
brightness temperatures of large, highly radiant lava flows over the ASTER mission lifetime.
For example, Rose and Ramsey [43] describe the use of all three ASTER subsystems to monitor
the emplacement of multiple long lava flows at Klyuchevskoy volcano, Kamchatka during the 2005
and 2007 eruptions. In 2007, temperatures were extracted from 4 January to 7 June 2007 and fit into
the volcanic warning color codes over that period (Figure 5). For the first 4.5 months of the eruption,
TIR data remained unsaturated and the SWIR-derived temperatures, acquired in high-gain mode,
were only detectable in the highest SWIR wavelengths. This corresponded to the time period that
Klyuchevskoy was designated with yellow and orange color codes, signifying increasing levels of
restlessness, but no eruption. From 26 April to 10 May, all TIR and SWIR-derived temperatures became
saturated due to the emplacement of new open-channel lava flow that was radiant enough to be
detected at the 15 m VNIR spatial scale. VNIR-derived temperatures (852–895 ◦C) were detected for
the first time in the eruption. These detections took place one week before the alert level was raised to
red (signifying an active eruption), attesting to the importance of high-repeat, non-saturated data for
the monitoring of these more remote volcanoes.

Figure 5. Maximum ASTER-derived pixel-integrated brightness temperatures detected during the
2007 eruption of Klyuchevskoy volcano, Russia. Thermal infrared (TIR) temperatures are denoted with
purple squares; shortwave infrared (SWIR) temperatures with green triangles; and visible/near-infrared
(VNIR) temperatures with blue circles. The background colors represent the volcanic color code issued
by the monitoring agencies (yellow = elevated unrest above known background levels; orange =
heightened unrest with increased likelihood of eruption; red = eruption is forecast to be imminent).
TIR and SWIR temperatures become saturated (and VNIR temperatures become measureable) near the
time shown by the thin vertical line. This saturation indicates that a significant amount of highly radiant
lava is on the surface and occurred despite adjustments to the SWIR gain settings. Importantly, this was
more than two weeks before the color code is changed to red. Modified from Rose and Ramsey [43].
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4.1.5. Off-Axis Pointing Capability: Improved Observational Frequency at Piton de la Fournaise
Volcano, France

During the April–May 2018 eruption of Piton de la Fournaise volcano on Réunion Island,
satellite-based surveillance of the thermal activity and emitted plumes was paired with near-real-time
flow modeling to create an ensemble-based approach in response to the crisis [44]. This combined effort
of four institutions in several countries using data from numerous sensors to model and forecast lava
flow advance was done as a proof of concept in order to assist the small staff of the volcano observatory
on the island. Rapid data acquisition was critical and provided by MODIS via the MIROVA system
to determine lava discharge rates. The less frequent but higher spatial resolution ASTER data were
important both for determining the length, shape and direction of the flow using the TIR data (Figure 6),
as well as the precise location of the vent using the VNIR data. The TIR images served as a validation
for the MODIS data and the predicted down slope flow modeling, whereas the VNIR-derived vent
location was used as the initiation point for the flow modeling, critical for model accuracy. During the
35 day eruption, a total of 11 ASTER images were acquired. This average of ~1 image every 3 days
was a significant improvement over the nominal 16 day repeat time for targets close to the equator.
The improved temporal resolution was only made possible with the ASTER URP Program and the
off-nadir pointing capability of 8◦ nominally and up to 24◦ for the VNIR.

 
Figure 6. Piton de la Fournaise volcano, Réunion Island (summit location: 21.24◦S, 55.71◦E) during the
April–May 2018 eruption crisis. Image/data modified from Harris et al. [44]. A color-coded Moderate
Resolution Imaging Spectroradiometer (MODIS) radiance image produced by the Middle InfraRed
Observation of Volcanic Activity (MIROVA) monitoring system is draped over a 3D Google Earth
visible image for context. These KML image products are routinely produced by MIROVA. Draped on
both data sets is the nighttime ASTER TIR data acquired as part of the URP Program. The ASTER image,
acquired 6 days after the triggering MODIS detection, shows the spatial details of the propagating lava
flow as the brighter white pixels within the colorized MODIS pixels.

4.1.6. Generation of Along-Track Digital Elevation Models (DEMs): Volcanoes in Guatemala,
New Zealand, and Mexico

The ability to produce single 60 by 60 km scene DEMs from any daytime VNIR data is another
significant capability of the instrument. Importantly, these data provided digital topography for most
of the Earth’s land surface at 10 m accuracy early in the mission when such information was not
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available from other data sources such as radar. Later in the mission, these individual-scene DEMs
were compiled into a seamless global data set known as the ASTER Global DEM or GDEM. The GDEM
has better signal to noise and removes areas of clouds or other artificial errors commonly found in the
single-scene DEMs (Figure 7). The final version (v.3) was released in August 2019 having corrections
made to minor areas of known errors.

 
Figure 7. Examples of ASTER-derived DEMs for Fuego Volcano, Guatemala (summit location: 14.48◦N,
90.88◦W). (A) Single-scene DEM from VNIR data acquired on 10 December 2018. Clouds are causing
the erroneous topographic high that obscures the summit and central crater. The pixel to pixel noise
is also clearly visible. (B) ASTER GDEM v3 using only cloud-free scenes and greatly improving the
signal to noise of the DEM.

Whereas the GDEM provides an excellent baseline for volcanological studies reliant upon
topography, it does not account for changes to the surface, either during the period used for the
GDEM creation (2000–2011) as they would have been averaged out or not included in subsequent
data. Dynamic topography is a characteristic of most active volcanoes and accurate knowledge of that
topography becomes important for any type of lava or pyroclastic flow forecast modeling. Therefore,
current single-scene DEMs continue to be an important dataset for volcanological studies using ASTER.
Stevens et al., [45] noted this point in their study examining the accuracy of the ASTER single-scene
DEM for Ruapehu and Taranaki volcanoes in New Zealand. They found an average root-mean-squared
(RMS) error of ~10 m for the ASTER single-scene DEM compared to digitized 1:50,000 scale topographic
maps, and later noted that these data will continue to be relevant for future surface change even as
global DEM products from radar systems came online. A later study by Huggel et al., [46] evaluated
the ASTER DEM against such a global dataset, the Shuttle Radar Topography Mission (SRTM) DEM.
The data were used for lahar modeling on Popocatépetl Volcano, Mexico. They found that although the
higher number of errors in the ASTER DEM affected certain models more, both the ASTER and SRTM
DEMs were feasible for lahar modeling, but that verification and sensitivity analysis of the chosen
DEM is fundamental to deriving accurate hazard maps from the modeled inundation areas.

4.2. URP-Specific Results

ASTER data for a subset of volcanoes over several different time intervals were examined for this
study and the significant statistics were compiled. The volcanoes were all continuously (or nearly so)
active throughout these periods. The goal of this statistical analysis was to determine the improvement
of the URP over the nominal Volcano STAR observations. Further details such as the number of cloudy
scenes, the number of scenes with confirmed activity and the days between successive observations
were also calculated. The interval periods were: one year (1 June 2018 to 31 May 2019) for 10 volcanoes;
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the approximate five-year period of the global URP observations (1 January 2014–31 May 2019) for
four of those volcanoes; and the nearly entire period of the ASTER mission (13 April 2000–31 May
2019) for one of those volcanoes.

The average percentage of scenes for all the periods that contained detectable volcanic activity
was 47.6%, with a range of 19%–69%. For this same period and number of scenes, the average
cloud percentage was 50.5%, with a range from 16% to 84%. Finally, during the last five years of
the implementation of the global URP Program, the average days between observations at the four
volcanoes studied was 6.5 days, compared to 20.2 days with the Volcano STAR Program, a nearly
200% improvement.

4.2.1. One-Year Analysis

Ten volcanoes were chosen for a statistical analysis over a recent one-year period (Table 2).
The volcanoes chosen represent a range of eruptive styles, compositions, and latitudinal distributions
(Figure 8). All volcanoes were active during the study period and that activity triggered the ASTER
URP observations. The number of triggers (derived from MODIS data by the MODVOLC and
MIROVA systems) varied from 36 for Popocatépetl to 837 for the Nyamuragira-Nyiragongo volcanoes.
The number of triggers is determined by several factors—the most important of which is the style of
activity (i.e., persistently active lava lake versus an intermittently active lava dome) and size of the
thermal feature on the ground. These combine to determine the overall emitted radiant power. Other
factors contributing to the number of ASTER URP triggers also include the latitude of the target together
with the average daily cloud cover. Higher latitude volcanoes will have more overpasses due to the
converging orbit tracks of the MODIS sensors and hence, more triggers. Persistently cloudy targets
will commonly mask thermal activity, lowering the number of triggers. Average cloud percentage
was determined by visual inspection of each URP scene done at the same time as the inspection for
volcanic activity.

Table 2. Statistical analysis of ten URP-monitored volcanoes active during one year (1 June 2018 to
31 May 2019). Each ASTER scene was inspected for confirmed/detected volcanic activity (e.g., thermally
elevated pixels, presence of a plume) and average cloud cover. The percentage of those URP scenes
with confirmed activity is also given and generally correlates to the average cloud percentage.

Number of URP
Triggers

Number of
URP Scenes

Detected Volcanic
Activity and (%)

Avg. Cloud

Ambrym 138 21 4 (19.0%) 62.7%
Erebus 824 36 16 (44.4%) 84.2%

Erta Ale 760 29 13 (44.8%) 16.0%
Fuego 532 30 16 (53.3%) 32.9%

Nyamuragira-Nyiragongo 837 42 23 (54.8%) 61.9%
Piton de la Fournaise 456 22 5 (22.7%) 44.5%

Popocatépetl 36 22 9 (40.9%) 31.5%
Sangeang Api 251 27 11 (40.7%) 46.8%

Shiveluch 623 29 20 (69.0%) 55.0%
Yasur 209 18 1 (5.6%) 77.6%

These MODVOLC and MIROVA triggers resulted in 276 new ASTER scenes during the one-year
period with confirmed volcanic activity in ~45% of those scenes, with the remainder being obscured by
clouds. The frequency of ASTER URP scenes increases at the higher latitude volcanoes on the list (e.g.,
Erebus and Shiveluch) as expected. However, Erta Ale at a much lower latitude had a similar number
of observations to those two targets, a function of nearly continuous thermally elevated activity present
there during the one-year period.
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Figure 8. Map of the statistics for the 10 volcanoes detailed in Table 2, which were compiled over 1 year
(1 June 2018 to 31 May 2019). Small black triangles indicate active URP-monitored volcanoes at the
time, but not analyzed for this study. (A) Number of ASTER scenes acquired. (B) Number of those
ASTER scenes with visible volcanic activity.

4.2.2. Five-Year Analysis

Four of the volcanoes in the prior list were then selected for a longer study period of slightly over
five years (1 January 2014–31 May 2019). This period begins when the ASTER URP Program became
fully global with the integration of the MODVOLC triggering system. The time frame, therefore,
provides the most complete global higher temporal resolution ASTER data for any thermally elevated
volcano. As such, the statistics for these observations are the most comprehensive analysis available for
the planning of future orbital TIR systems, for example (e.g., expected long-term cloud cover, optimal
temporal frequency, etc.).

The data for the four volcanoes chosen (Ambrym, Erta Ale, Popocatépetl, Shiveluch) are shown
in Table 3. With the exception of Shiveluch, the others are more equatorial. The four do, however,
represent a range of compositions (e.g., dacite, andesite, and basalt) and styles (e.g., dome-forming, lava
lakes, and flows). A total of 1001 ASTER scenes were downloaded and analyzed for these four targets.
Volcanic activity was confirmed in 535 of these (53.5%) with the remainder being too cloud-covered or
having no obvious activity visible in the image. Erta Ale had the highest percent of observed activity
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(80.2%) whereas Ambrym had the lowest (29.7%), a clear function of the semi-arid, nearly cloud-free
location of Erta Ale compared to the tropical, nearly cloud-covered location of Ambrym. Also analyzed
was the average days between an observation for the routine Volcano STAR (20.2 days/scene) as
compared to those data from the URP Program (6.5 days/scene). This was an average improvement of
215%, with the best improvement (261%) for Ambrym volcano. The URP Program excels at acquiring
more data of targets that are commonly cloudy or close to the equator, and therefore typically missed
by the routine STAR observations.

Table 3. Statistical analysis of four volcanoes from Table 2 active during the longer global URP period
(1 January 2014–31 May 2019). Each ASTER scene was inspected for confirmed/detected volcanic
activity (e.g., thermally elevated pixels, presence of a plume) and average cloud cover. The percentage
of those URP scenes with confirmed activity is also given and generally correlates to the average cloud
percentage. The time between scenes decreases dramatically for the URP operations as compared to
the ASTER Volcano STAR. The last column shows this improvement percentage in the number of days
between scenes using the URP versus the STAR scheduling.

ASTER
Scenes

Detected
Activity/%

Avg.
Cloud

Days/Scene
(URP)

Days/Scene
(STAR)

% Change
(URP/STAR)

Ambrym 239 71 (29.7%) 62.0% 6.4 23.0 261.0%
Erta Ale 243 195 (80.2%) 38.6% 4.4 13.2 198.6%

Popocatépetl 313 153 (48.9%) 19.0% 7.0 24.4 247.1%
Shiveluch 206 117 (56.8%) 62.4% 8.0 20.3 153.8%

4.2.3. Twenty-Year Analysis

Finally, one volcano (Shiveluch) was selected for analysis for nearly the entire period (13 April
2000–31 May 2019) that Terra has been in orbit (Table 4). The first ASTER image acquired of Shiveluch
was on 13 April 2000, only 40 days after the start of the operational phase. These early scenes of
the volcanoes of Kamchatka also captured the products of a large eruption at Bezymianny volcano
described by Ramsey and Dehn [47]. Shiveluch has been persistently active nearly the past twenty
years (e.g., [6]) and therefore provides a good target for long-term analysis. It was also imaged more
frequently early in the mission because of its location at higher latitudes as well as being one of the
northern Pacific volcanoes originally monitored in the first phase of the URP Program, which began in
2005 and relying upon AVHRR data for detection triggering [29].

Table 4. Statistical analysis of a single volcano (Shiveluch) from Table 2 active during most of the
entire ASTER orbital period (13 April 2000–31 May 2019). Each ASTER scene was inspected for
confirmed/detected volcanic activity (e.g., thermally elevated pixels, presence of a plume, etc.) and
average cloud cover. The percentage of those URP scenes with confirmed activity is also given and
generally correlates to the average cloud percentage.

ASTER
Scenes

Detected
Activity/%

Activity
(plumes)

Activity
(flows)

Activity
(hot spot)

Avg.
Cloud

Days/Scene
(URP)

Shiveluch 815 430 (52.8%) 53 109 268 62.8% 5.1

The analysis results are shown in Table 4. A total of 815 confirmed scenes were downloaded
and interrogated. Similar to the prior results, volcanic activity was confirmed in 430 (52.8%) of the
scenes. We further analyzed the type of activity seen in those clear scenes. Plumes were noted in 53
(12.3%) scenes, flows in 109 (25.3%), and summit hot spots in 268 (62.3%) scenes. We also examined the
impact of the URP Program to acquire more rapid data of eruption activity. The average time between
ASTER Volcano STAR observations at Shiveluch is 8.8 days, much lower than the more equatorial
volcanoes (~20 days). Implementation of the URP Program, however, reduced this temporal resolution
slightly to 6.1 days. If one were to only consider the data following a new URP triggering event,
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this value decreases further to 5.1 days. If volcanic activity wanes and then renews, the first ASTER
image acquired after a new triggering event may come many days to weeks after the prior image was
acquired. Therefore, this lower interval is likely a better metric of the URP operational behavior. It is
also close to the theoretical minimum frequency of ASTER for high latitude targets.

5. Discussion

5.1. ASTER as a Volcanological Instrument

ASTER, unlike almost any instrument designed or chosen by a space agency in the past several
decades, was first and foremost a geological sensor. The wavelength regions chosen, the placement of
the multispectral bands, the multispatial resolution, and the DEM capability are all critically important
for geologic surface mapping. Although it was not designed specifically for volcanology, the geologic
heritage of ASTER makes the instrument’s data well suited for active volcanic monitoring and data
collection. Perhaps the only capability missing was a mid-infrared channel for high-temperature
detections. This was offset for the first 8 years of the mission with the 2 μm region SWIR data.
As originally noted by Pieri and Abrams [3] and later described by Ramsey [2] and herein, six important
instrument/data characteristics made ASTER particularly well suited for spaceborne volcanology.
These are the multispectral TIR data, routine TIR data at night, high spatial resolution data, variable
gain settings in the VNIR and SWIR, off-axis pointing, and generation of DEMs. Individually, these
characteristics all have been used for specific volcanic studies. Where combined, these capabilities
become much more powerful for addressing pressing questions in volcanology [45,48].

5.2. Toward an Improving Temporal Resolution

ASTER is able to provide data with improved radiometric resolutions (absolute reflectance ≤ 1.3%
and absolute temperature ≤0.3 K) [7]. Moreover, it provides data at improved spatial (15–90 m) and
spectral resolutions (14 wavelength band total, with 5 in the TIR and 6 in the SWIR). This multiscale
spatial resolution across a wide wavelength range provides a unique tool for volcanological applications.
For example, the wavelength range coupled with the variable gain settings allows the acquisition
of unsaturated data over a wide temperature range (−73–1393 ◦C). Furthermore, saturation in one
wavelength region (e.g., the TIR) can be compensated using the nested pixels from a shorter wavelength
region (e.g., the 9 SWIR or 36 VNIR pixels) to correct for that saturation (e.g., [38]). These data enable
thermal anomalies of only a few degrees above the background temperature, as well as sub-pixel,
highly radiant anomalies of only several m2, to be determined.

For the past 15 years, an ASTER-focused program called the Urgent Request Protocol (URP) has
combined the rapid detection capability of higher temporal resolution instruments like MODIS with
the high spatial resolution scheduled observations of ASTER. These observations have improved our
knowledge of multi-year volcanic monitoring, ongoing eruption behavior, and post-eruption change.
They have also become important for capturing points-in-time during any ongoing lava flow or plume
forming eruption. More commonly, the ASTER URP data (as well as the entire ASTER volcanic archive)
are being used for operational response to new eruptions; determining thermal trends months prior to
an eruption; inferring the emplacement of new lava lobes; and mapping the constituents of volcanic
plumes, to name a few (see Appendix A). These all require the higher spatial resolution data of ASTER,
and in most cases, its multispectral capability.

A framework like the URP sensor web only works in its current form if there is a large enough
radiant target to be detected by the operational systems using MODIS data like MODVOLC and
MIROVA. The MIROVA system applies an enhanced thermal index (ETI) and therefore detects more
subtle thermal signals as compared to MODVOLC [32]. Even with this enhanced detection, however,
there will be a significant number of thermal events and numerous volcanoes missed every year
because they are not large enough (spatially or radiantly) to be detected in a 1 km MODIS pixel. It is
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these smaller signals that are frequently important as they indicate the onset of renewed activity,
sometimes months to years prior to an eruption [22].

There are some volcanoes whose eruptions are long-lived enough and/or whose character changes
throughout their ongoing eruptions, which allow sporadic larger signals to be detected with MODIS.
These then trigger subsequent ASTER data, which captures more subtle, transient activity. The best
examples of such activity are typically dome-forming eruptions. Larger thermal signals are caused by
dome collapse exposing the hotter material or periodic larger dome-destroying eruptions. With renewed
dome growth, the cooler carapace insulates the hotter interior and limits detection by MODIS. One of
the best examples of this eruptive style is Sheveluch volcano, Russia. In a recent set of three observations
by ASTER over a one week period, small changes in the dome’s thermal output and moderately
sized block-and-ash flows were captured (Figure 9). Although interesting from a volcanological
perspective for Sheveluch, it is these relatively high-frequency ASTER URP data, captured over the
one to multi-year timeframe, which greatly improve our understanding of how eruptions proceed and
how volcanoes reawaken.

 
Figure 9. An example of the improved time series made possible by the ASTER URP Program,
here showing the ASTER data draped over a 3D Google Earth visible image viewed looking NW toward
Sheveluch volcano, Russia (summit location: 56.65◦N, 161.36◦E). (A) ASTER VNIR image acquired on
20 April 2019. The small white plume is visible drifting to the north. (B) ASTER TIR data from the same
date. Two thermally elevated regions are seen on the summit lava dome. (C) ASTER nighttime TIR
image acquired ~36 h later (21 April 2019) showing a significant increase in the area of the thermally
elevated region on the dome and a ~2 km flow down the eastern side of the valley. (D) ASTER nighttime
TIR data acquired on 28 April 2019 showing the continued, but somewhat lower, thermal activity on
the dome and a new debris flow extending ~3 km down the western side of the valley.

6. Conclusions

Despite the two-decade archive of multispectral, multispatial resolution ASTER data (or perhaps
because of its success), there have been no approved follow-on instruments by NASA or other space
agencies that have similar spatial and spectral scales. Some of this land imaging is filled by sensors on
the Landsat, Sentinel-2, and SPOT satellites, but the data gap discrepancy looms largest in the TIR.
Currently, only the limited mission lifetime ECOSTRESS instrument on the ISS is the most similar.
This gap was also noted in both the 2007 and 2018 Decadal Surveys for NASA Earth Science. In 2007,
a notional mission called HyspIRI was recommended, from which ECOSTRESS derives its heritage.
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In 2018, the focus was on specific science questions and important designated observables. TIR data
was again highlighted numerous times.

What will arise from the 2018 recommendations is yet to be formulated. TIR instruments will
likely get smaller and more numerous using uncooled detectors, becoming CubeSat compatible and
operating in a dense sensor web network for improved response times. Although perhaps not designed
specifically for volcanology, the data from these instruments will become critical for volcanic crisis
response and enable never before possible measurements such as the global inventory of volcanic
degassing, thermal precursory trends at every volcano, and accurate temperatures of small activity,
which can be used as input to predictive flow and hazard assessment models.

This next generation of high spatial, high spectral TIR data captured at ever-improving temporal
resolutions will only become possible because of the ASTER instrument design and mission success,
most notably for volcanic remote sensing. For example, with the Terra spacecraft’s converging orbits
at the poles, higher latitude volcanoes like those in Kamchatka, Iceland, and Antarctica are imaged
more routinely. The addition of off-axis pointing in the ASTER design and the later establishment
of the STAR and URP Programs further improved this temporal resolution to near the theoretical
maximum. Multispectral TIR data are now being routinely acquired that allow us to track subtle
thermal anomalies, precursory activity, explosive events, plumes, and the percentage of obscuring
clouds. These data can help inform future instrument and mission design. For example, looking again
at the data in Table 2, one can calculate a “miss rate percentage” between the number of MODIS-based
triggers and the number of ASTER scenes acquired from those triggers. This rate varies from a low of
39.8% (Popocatépetl volcano) to a maximum of 96.2% (Erta Ale volcano), with an average of 87.6%.
These high values demonstrate the amount of high spatial resolution data that are theoretically being
missed because there is not a TIR sensor or sensor system with the spatial/spectral resolution of ASTER
and the temporal resolution of MODIS. Perhaps even more critically, with an average cloud percentage
near 50% based on our analysis of the ASTER URP archive, half of the current observation attempts fail
to detect surface activity. This further highlights the need for improved temporal resolution. Ultimately,
these results provide a baseline for future TIR orbital concepts that could respond to the 2018 Decadal
Survey recommendations for the TIR data critically needed to address key science questions.

Author Contributions: The following contributions were provided by each author: conceptualization, M.S.R.;
data curation, I.T.W.F. and M.S.R.; formal analysis, M.S.R. and I.T.W.F.; funding acquisition, M.S.R.; investigation,
M.S.R. and I.T.W.F.; methodology, M.S.R.; project administration, M.S.R.; resources, M.S.R.; supervision, M.S.R.;
validation, M.S.R. and I.T.W.F.; visualization, M.S.R.; writing—original draft, M.S.R.; writing—review and editing,
M.S.R. and I.T.W.F. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by NASA and several successful proposals to the Science of Terra and Aqua
Program over the years, with the current being 80NSSC18K1001.

Acknowledgments: The authors wish to thank the members of the ASTER Science Team for helpful discussions,
comments, and support during the past 20 years of the mission—in particular, David Pieri at the Jet Propulsion
Laboratory, who, along with Minoru Urai at the Geologic Survey of Japan, headed up the early days of volcano
science with ASTER. We would like to thank Ben McKeeby for his assistance with the ASTER archival search and
creation of Figure 8, as well as Tyler Leggett, Marco Michelini, James Thompson, and Daniel Williams for their
assistance with the painstaking reference checking for the Appendix A. We apologize in advance for any papers
inadvertently left off this list; it was not intentional. We intend to keep this list updated on the lead author’s
laboratory website (http://ivis.eps.pitt.edu/archives/ASTER/). Please send any future or past/missing references
to the lead author and they will be added to the online table. Finally, the authors would like to thank the three
anonymous reviewers, whose comments and suggestions helped to improve the quality of this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

49



Remote Sens. 2020, 12, 738

Appendix A

Table A1. Reference list of 271 volcanological publications that use, contain, or make mention of
(in the case of the Precursory category) ASTER data. The list spans 25 years, from 1995 to 2019,
and is subdivided by category with references therein listed in chronological order. The full citations
appear below.

Publication
Category

Reference List

Analogs Davies et al., 2008; Price et al., 2016; Ramsey et al., 2016.

Calibration Barreto et al., 2010; Vaughan et al., 2010; Blackett & Wooster, 2011; Thompson et al., 2019.

Gas/Plumes

Corradini et al., 2003; Urai, 2003; Urai, 2004; Ino et al., 2005; Iwashita et al., 2006; Pugnaghi et al.,
2006; Kearney et al., 2008; Campion et al., 2010; Diaz et al., 2010; Kobayashi et al., 2010b; Camiz et
al., 2010; Spinetti et al., 2011; Campion et al., 2012; Henney et al., 2012; Abrams et al., 2013; Pieri et
al., 2013; Spinetti et al 2013; Campion, 2014; Diaz et al., 2015; Stebel et al., 2015; Carn et al., 2016;
Realmuto & Berk, 2016; Robertson et al., 2016; Xi et al., 2016; Kern et al., 2017; Moussallam et al.,
2017; Troncoso et al., 2017; Williams & Ramsey, 2019; Williams et al., 2019; Laiolo et al., 2019.

Geothermal
Hellman & Ramsey, 2004; Viramonte et al., 2005; Vaughan et al., 2012a; Vaughan et al., 2012b;
Silvestri et al., 2016; Braddock et al., 2017; Caudron et al., 2018; Mia et al., 2018a; Mia et al., 2018b.

Lava Flows Wright et al., 2010; Favalli et al., 2012; Wadge et al., 2012; Head et al., 2013.

Mapping

Hubbard et al., 2003; Rowan et al., 2003; Watanabe & Matsue, 2003; Byrnes et al., 2004: Torres et al.,
2004; Dmochowski, 2005; Tralli et al., 2005; Capra, 2006; Mars & Rowan, 2005; Rowan et al., 2006;
Coolbaugh et al., 2007; Davila et al., 2007; Hubbard et al., 2007; Kervyn et al., 2007; Carter et al.,
2008; Kervyn et al., 2008c; Saepuloh et al., 2008; Schneider et al., 2008; Carter & Ramsey, 2009;
Baliatan & Obille, 2009; Bogie et al., 2010; Brandmeier, 2010; Kobayashi et al., 2010a; Piscini et al.,
2010; Chadwick et al., 2011; Davila-Hernandez et al., 2011; Mars & Rowan, 2011; Wadge & Burt,
2011; Wantim et al., 2011; Diaz-Castellon et al., 2012; Amici et al., 2013; Graettinger et al., 2013;
Lara et al., 2013; Watt et al., 2013; Boyce et al., 2014; Mars, 2014; Tayebi et al., 2014; Castruccia &
Clavero, 2015; Ramsey, 2015; Selles et al., 2015; Folguera et al., 2016; Oikonomidis et al., 2016;
Prambada et al., 2016; Suminar et al., 2016; Ulusoy, 2016; Yulianto & Sofan, 2016; Ali-Bik et al.,
2017; Bustos et al., 2017; Takarada, 2017; Auer et al., 2018; Godoy et al., 2018; Krippner et al., 2018;
Aufaristama et al., 2019b; Fu et al., 2019; Pallister et al., 2019.

Modeling

Favalli et al., 2006; Huggel et al., 2007; Huggel et al., 2008; Carter et al., 2009; Favalli et al., 2009;
Joyce et al., 2009b; Munoz-Salinas et al., 2009; Capra et al., 2011; Sosio et al., 2012; Worni et al., 2012;
Wantim et al., 2013; Rose et al., 2014; Rose & Ramsey, 2015; Carr et al., 2019; Ramsey et al., 2019;
Rogic et al., 2019.

Monitoring

Tsu et al., 2001; Urai et al., 2001; Ellrod et al., 2002; Mattiolo et al., 2004; Pieri & Abrams, 2004;
Ramsey & Flynn, 2004; Ramsey & Dehn, 2004; Patrick et al., 2005; Pieri & Abrams, 2005; Wright et
al., 2005; Gogu et al., 2006; Vaughan & Hook, 2006; Carter et al., 2007; Permenter & Oppenheimer,
2007; Vaughan et al., 2007; Hirn et al., 2008; Joyce et al., 2008; Kervyn et al., 2008b; Moran et al.,
2008; Sincioco, 2008; Tunk & Bernard, 2008; Vaughan et al., 2008; Ji et al., 2009; Joyce et al., 2009a;
Rose & Ramsey, 2009; Zlotnicki et al., 2009; Bailey et al., 2010; Carter & Ramsey, 2010; Coombs et
al., 2010; Ferguson et al., 2010; Ganas et al., 2010; Ji et al., 2010; Murphy et al., 2010; Thomas &
Watson, 2010; Wessels et al., 2010; Urai & Pieri, 2010; Grishin, 2011; Mathieu et al., 2011; Murphy et
al., 2011; Rybin et al., 2011; Saepuloh et al., 2011; Urai, 2011; Urai & Ishizuka, 2011; Gutierrez et al.,
2012; Hooper et al., 2012; Jousset at al., 2012; Patrick & Orr, 2012; Ramsey et al., 2012; Solikhin et al.,
2012; Bleick et al., 2013; Buongiorno et al., 2013; Colvin et al., 2013; Dvigalo et al., 2013; Girina,
2013; Jay et al., 2013; Murphy et al., 2013; Ramsey & Harris, 2013; Roverato et al., 2013; Saepuloh et
al., 2013; Wessels et al., 2013; West, 2013; Delgado et al., 2014; McGimsey et al., 2014; Moyano et al.,
2014; Pritchard et al., 2014; Smets et al., 2014; Worden et al., 2014; Jay et al., 2015; Mars et al., 2015;
Volynets et al., 2015; Whelley et al., 2015; Brothelande et al., 2016; Carr et al., 2016; Naranjo et al.,
2016; Patrick et al., 2016; Rathnam & Ramashri, 2016a; Rathnam & Ramashri, 2016b; Reath et al.,
2016; Blackett, 2017; Furtney et al., 2018; Girina et al., 2018; Girona et al., 2018; Harris et al., 2018;
Plank et al., 2018; Wadge et al., 2018; Aufaristama et al., 2019a; Caputo et al., 2019; Gray et al., 2019;
Harris et al., 2019; Henderson et al., 2019; Kaneko et al., 2019; Mannini et al, 2019; Mia et al., 2019;
Reath et al., 2019; Sekertekin & Arslan, 2019; Silvestri et al., 2019.

Operational Duda et al., 2009; Patrick & Witzke, 2011; Abrams et al., 2015; Ramsey, 2016.

Other Scholte et al., 2003; Patrick et al., 2004; Mantas et al., 2011; Rivera et al., 2014.
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Table A1. Cont.

Publication
Category

Reference List

Precursory

Fujisada, 1995; Pieri et al., 1995; Oppenheimer, 1996; Oppenheimer, 1997; Realmuto et al., 1997;
Oppenheimer et al., 1998; Yamaguchi et al., 1998; Glaze et al., 1999; Harris et al., 1999; Ramsey &
Fink, 1999; Urai et al., 1999; Wright et al., 1999; Flynn et al., 2000; Realmuto, 2000; Realmuto &
Worden, 2000; Wright et al., 2000.

Topography

Stevens et al., 2004; Kass, 2005; Kervyn et al., 2006; Pavez et al., 2006; Urai et al., 2007; Kervyn et al.,
2008a; Arellano-Baeza et al., 2009; Gilichinsky et al., 2010; Inbar et al., 2011; Volker et al., 2011;
Zouzias et al., 2011; Ebmeier et al., 2012; Fornaciai et al., 2012; Grosse et al., 2012; Camiz et al., 2013;
Ebmeier et al., 2013; Le Corvec et al., 2013; Pritchard et al., 2013; Hamlyn et al., 2013; Kim & Lees,
2014; Albino et al., 2015; Walter et al., 2015; Kereszturi & Procter, 2016; Bannari et al., 2017; Camiz
et al., 2017; Girod et al., 2017; Holohan et al., 2017; Aisyah et al., 2018; Raharimahefa &
Rasoazanamparany, 2018; Deng et al., 2019; Morgado et al., 2019.

Complete Reference List for Table A1.
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Data Sets for Volcanology Applied to Mt Etna, Italy. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
2013, 6 (2), 375–385. https://doi.org/10.1109/JSTARS.2012.2224095.
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in 2006 and 2010. J. Volcanol. Geotherm. Res. 2018, 357, 239–253. https://doi.org/10.1016/j.jvolgeores.
2018.05.001.
Albino, F.; Smets, B.; D’Oreye, N.; Kervyn, F. High-Resolution TanDEM-X DEM: An Accurate Method
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2015, 120 (6), 4189–4207. https://doi.org/10.1002/2015JB011988.
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Abstract: This paper proposes a method of combining and visualizing multiple lithological indices
derived from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data
and topographical information derived from digital elevation model (DEM) data in a single color
image that can be easily interpreted from a geological point of view. For the purposes of mapping
silicate rocks, carbonate rocks, and clay minerals in hydrothermal alteration zones, two new indices
derived from ASTER thermal infrared emissivity data were developed to identify silicate rocks, and
existing indices were adopted to indicate the distribution of carbonate rocks and the species and
amounts of clay mineral. In addition, another new method was developed to visualize the topography
from DEM data. The lithological indices and topographical information were integrated using the
hue–saturation–value (HSV) color model. The resultant integrated image was evaluated by field
survey and through comparison with the results of previous studies in the Cuprite and Goldfield
areas, Nevada, USA. It was confirmed that the proposed method can be used to visualize geological
information and that the resulting images can easily be interpreted from a geological point of view.

Keywords: ASTER; DEM; lithological mapping; thermal infrared

1. Introduction

In geological remote sensing, surface materials such as rocks and minerals are characterized and/or
discriminated based on their spectral features, which are captured by a multi- or hyperspectral sensor
mounted on an aircraft or spacecraft (e.g., [1–4]). The Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) is a multispectral imaging sensor on NASA’s Terra spacecraft and has
already imaged almost all land areas worldwide except for those in the polar regions. ASTER has three
optical subsystems: the visible and near-infrared (VNIR), shortwave-infrared (SWIR), and thermal
infrared (TIR) radiometers, as described in Table 1 [5]. The VNIR and SWIR bands were designed
to capture the diagnostic absorption features of clay, carbonate, and iron oxide minerals, as well as
vegetation, whereas the TIR band was designed to measure the surface temperature and detect the
emissivity patterns of silicate rocks.

Several methods have been developed and applied to express or quantify the diagnostic spectral
features of rocks and minerals using ASTER data. The band ratio technique (e.g., [6]) has been widely
used to enhance spectral patterns because of its simple calculation. It can suppress the effects of
topography, but can examine only one absorption feature with one band ratio. The spectral angle
mapper (SAM) [7], spectral indices [8], and conventional classification methods such as supervised
classification (e.g., [9]) are also popularly used to map the distributions of different rocks and minerals.
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However, these methods cannot express gradual changes and/or mixtures of multiple constituents.
Moreover, when a color composite image is generated by assigning each index a color primitive of the
conventional red–green–blue (RGB) color model, there is a limitation in that the RGB color composite
can deal with only up to three indices at a time. Additionally, it is necessary to interpret the meanings of
the colors on a case-by-case basis, and this is one of the major difficulties facing general geologists when
interpreting color images generated by remote sensing techniques. Moreover, the spectral features of
rocks and minerals are generally analyzed and expressed separately in each spectral region, and it
is thus difficult to integrate results derived from spectral bands of different wavelength regions into
one image. One reason for this is that the spatial resolutions of spectral bands in different wavelength
regions are different; in the case of ASTER, the resolutions are 15, 30, and 90 m for the VNIR, SWIR,
and TIR bands, respectively.

Table 1. Spectral ranges and spatial resolutions of the Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) spectral bands.

Subsystem. Band No. Spectral Range Spatial Resolution

VNIR

1 0.52–0.60

15 m
2 0.63–0.69

3N 0.78–0.86
3B 0.78–0.86

SWIR

4 1.600–1.700

30 m

5 2.145–2.185
6 2.185–2.225
7 2.235–2.285
8 2.295–2.365
9 2.360–2.430

TIR

10 8.125–8.475

90 m
11 8.475–8.825
12 8.925–9.275
13 10.25–10.95
14 10.95–11.65

Another problem is that topographical information is not available in many of the resultant
color images generated by the methods described above, because these methods tend to suppress the
effects of topography, which often hampers the discrimination of rocks and minerals. However, the
topography often serves as an important indicator of geology and is also important in the identification
of the locations of target features (e.g., [10,11]). There have been very few methods combining
lithological indices and topography, necessitating the development of an effective method that can
combine them. As ASTER has along-track stereo capabilities, it is always possible to obtain the digital
elevation model (DEM) whenever the surface image is captured by the other spectral bands. Moreover,
high-spatial-resolution global DEM datasets have recently become available (e.g., [12,13]), and it is
beneficial for geologists to integrate spectral information with topographical information derived from
DEM data. LiDAR is another important source of topographical information, and surface roughness
derived from LiDAR can be used to map geological features (e.g., [14]).

Kurata and Yamaguchi [15] proposed the use of the HSV color model [16] to combine the spectral
indices derived from the ASTER data in different wavelength regions and generate a single integrated
color image. In their method, spectral indices indicating the mineral species and amount are allocated
to the hue (H) and saturation (S) elements, respectively, whereas topographical information is included
in the image as the value (V) element. In this particular case, ASTER SWIR band 4 with 30 m spatial
resolution was pansharpened using the VNIR bands with 15 m spatial resolution and was assigned
to the V element by assuming that the pansharpened image represented topography, because most
of rocks and minerals except gypsum have no absorptions in band 4 and generally have the highest
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reflectance in band 4 if the surface is dry. However, the pansharpened image was often affected by the
albedo of surface materials and could not clearly indicate topography. Moreover, silicate rocks could
not be readily distinguished in the resultant color image.

In the present study, the concept proposed by Kurata and Yamaguchi [15] was used to employ
the HSV color model to integrate the spectral indices in the different wavelength regions. Clay,
carbonate, and silicate minerals and rocks were selected for discrimination because they are important
for mineralogical mapping and mineral exploration and they have characteristic spectral features in
the SWIR and TIR regions. Iron oxide minerals are also important for mineral exploration. Distribution
of iron oxide minerals is independent of distribution of clay and carbonate minerals, but they often
overlap each other. As a result, it would be difficult to display all these minerals simultaneously in a
single image, and thus we did not include iron oxide minerals in this study. New spectral indices to
distinguish silicate rocks are proposed in this paper and are allocated to the H and S elements in a
different manner from that proposed by Kurata and Yamaguchi [15]. In addition, the colors allocated
to the clay, carbonate, and silicate minerals are also different from those of Kurata and Yamaguchi [15].
Moreover, the topographical information to be allocated to the V element was derived from a DEM, not
the pansharpening of the SWIR band data. Thus, the proposed method is a substantial improvement
on that developed by Kurata and Yamaguchi [15]. The goal of the present work was to develop an
effective technique that enables the combination and visualization of multiple lithological indices
derived from ASTER data and topographical information derived from DEM data in a single-color
image that can be easily interpreted from a geological point of view.

2. Methods and Materials

2.1. Fundamental Concept

In this study, a method of integrating and visualizing lithological and topographical information
derived from ASTER and DEM data in a single-color image was developed. The HSV color model [16]
was employed to generate a color image by allocating lithological and topographical indices to the
three HSV color model elements; the HSV model was used as an alternative to the RGB color model,
which has been conventionally used to produce color composite images in remote sensing. The HSV
color model uses the H, S, and V elements to express colors, whereas the RGB model uses the intensities
of the three-color primitives red (R), green (G), and blue (B). The values of the HSV elements and RGB
primitives used to express a particular color are mutually convertible. The H element represents the
type of color and is typically expressed as an angle between 0◦ and 360◦; for example, the values 0, 120,
and 240 correspond to red, green, and blue, respectively. The S and V elements have values ranging
from 0 to 1 that determine the vividness and brightness of the color, respectively.

For the purpose of mapping the distribution and gradual change of clay minerals in hydrothermal
alteration zones, the orthogonal transformation and band ratios were used for the SWIR surface
reflectance product (AST_07XT), and the species and amounts of clay minerals were allocated to the H
and S elements, respectively. Additionally, two new spectral indices were proposed to map silicate
rocks using the TIR bands, and an existing spectral index [17] was employed to map carbonate rocks
using the TIR bands as well. The silica content and its mineral form (crystal or amorphous) were
allocated to the H and S elements, respectively, for each target pixel corresponding to a silicate rock.
Topographical information derived from DEM data was allocated to the V element.

2.2. Data and Test Sites

2.2.1. Data

The ASTER standard data products of TIR surface emissivity (AST_05) and SWIR surface reflectance
(AST_07XT) were used for lithological mapping in this study. The surface emissivity product was
generated using the emissivity temperature separation algorithm developed by Gillespie et al. [18].
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It is important to mention that data selection was very important, particularly for the TIR region. In this
study, only summer night data were considered, as they have a relatively small dependence on slope
orientations and high signal-to-noise (S/N) ratios and thus, a high accuracy of separation between
kinetic temperature and spectral emissivity.

The acquisition dates for the ASTER data used in this study are as follows: SWIR surface reflectance
of Cuprite: 2007.04.28; TIR surface emissivity of Cuprite: 2005.07.03; Sierra Nevada including SN_obs:
2011.08.03; Sierra Nevada including SN_gr: 2016.08.16; Navajo Sandstone: 2017.06.29; Kilauea:
2017.02.21; Sahara: 2009.06.12; and Great Dyke: 2005.11.13.

The DEM dataset of the 3D Elevation Program (3DEP) were also used to visualize the topography.
3DEP has been operated by the United States Geological Survey (USGS) and provides seamless DEM
datasets with a spatial resolution of 1/3” (in the 48 conterminous states, Hawaii, territories of the United
States, and part of Alaska), 1” (in the conterminous states and part of Alaska), or 2” (only in Alaska).
The 3DEP datasets are available for free online from the website of USGS.

2.2.2. Test Sites

The Cuprite and Goldfield areas in Nevada, USA, were selected as test sites in this study because
a variety of rocks and minerals including silicate rocks, carbonate rocks, and hydrothermal alteration
zones are widely distributed in these areas. In addition, these areas are easily accessible and have
been well studied as famous geological remote sensing test sites and reference area for remote sensing
sensors and application, allowing the present results to be compared with those of previous studies
(e.g., [19–22]).

2.3. Lithological Indices

2.3.1. TIR Spectral Indices for Mapping Silicate Rocks

The emissivity patterns for rocks show a systematic relation to reflect the silica content and
the types of mineral present [23]. Figure 1a shows the spectral shapes derived from ASTER TIR
emissivity data at 10 locations around the world with distributions of different types of silicate rocks
(Table 2). Several dozen pixels were sampled at each location and were averaged to represent the
typical emissivity spectrum of each rock type. On the basis of the results in Figure 1a, new indices are
proposed for silicate rocks: The T-depth, which represents the silica content, and the T-angle, which
represents the mineral form. The T-depth represents a decrease in the emissivity in bands 10, 11, and
12, relative to those in bands 13 and 14, and it is defined as:

T-depth =
B13 + B14

2
− B10 + B11 + B12

3
(1)

here B10, B11, B12, B13, and B14 are the emissivities of ASTER TIR bands 10, 11, 12, 13, and
14, respectively.

The emissivities of felsic rocks with a higher silica content in bands 10, 11, and 12 are lower than
those of mafic rocks (Figure 1a). Thus, felsic rocks have larger T-depths, and mafic rocks have smaller
T-depths. A larger T-depth corresponds to a high silica content of the target rock. For example, the
emissivity average of bands 10–12 was lowest for the quartzose sands in the Sahara Desert, followed
by the Navajo Sandstone in Utah with almost 100% quartz grains; the basalt lava in Kilauea Volcano,
Hawaii, with a thin silica coating [24]; and the quartzite in Cuprite, Nevada. The T-depth values of
these targets were high, as shown in Table 3.
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Table 2. Characteristics of the sampling areas for thermal infrared (TIR) emissivity spectra.

Sampling Area and Approximate Location
SiO2

(%)
Lithology Minerals Texture

Felsic Samples

1. Cup_qz (37◦37′35” N/117◦16′58” W)
100 Quartzite Quartz

Well-sorted
quartz grainsQuartzite in the northwest of Cuprite, Nevada, USA

2. Navajo (37◦42′05” N/111◦22′35” W)
100 Quartzose

sandstone
Quartz

Well-sorted
quartz grainsNavajo Sandstone in Utah, USA

3. Sahara (25◦47′14” N/25◦21′07” E)
100 Quartzose

sediments
Quartz

Unconsolidated
Well-sorted

quartz grainsSand dunes in western New Valley, Egypt

4. SN_obs (37◦54′40” N, 119◦01′20” W)
100 Obsidian Glass AmorphousObsidian on the hills in south side of Mono Lake,

California, USA

5. Kilauea (19◦16′55” N, 155◦21′08” W)
?

Amorphous
silica on

pahoehoe lava
Glass AmorphousBasalt lava with thin silica coating in Kilauea

Volcano, Hawaii, USA

6. SN_gr1 (37◦52′47” N, 119◦20′58” W)
66~70 Granite

Quartz
Feldspar

CrystallineGranite of Lembert dome in Yosemite,
California, USA

7. SN_gr2 (37◦28′ 48” N, 119◦29′ 09” W)
66~70 Granite

Quart
Feldspar
Biotite

CrystallineGranite near Olmsted Point in Yosemite,
California, USA

8. SN_gr3 (37◦50′43” N, 119◦26′40” W)
66~70 Granite

Quartz
Feldspar
Biotite

CrystallineGranite in the North of Tenaya Lake in Yosemite,
California, USA
Mafic Samples

9. Dyke_gb (20◦19′07” S, 29◦48′27” E)
Gabbro in southern in the southern Great Dyke,

Midlands, Zimbabwe
45~52 Gabbro

Amphibole
Pyroxene

Plagioclase
Crystalline

10. Dyke_sp (20◦26′23” S, 29◦44′35” E)
Serpentinite in the southern Great Dyke,

Midlands, Zimbabwe
32~43 Serpentinite Serpentine Crystalline

Table 3. Average T-depth values in each sampling area.

Sampling Area. Average of T-Depth

Felsic Samples

Cup_qz 10.058
Navajo 12.464
Sahara 31.009
SN_obs 4.804
Kilauea 10.388
SN_gr1 4.944
SN_gr2 5.440
SN_gr3 4.542

Mafic Samples

Dyke_gb 2.394
Dyke_sp 1.387
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Figure 1. (a) Typical emissivity spectra in the TIR region in the sampling areas; (b) typical emissivity
spectra of bands 10, 11, and 12 in the three sampling areas, where quartzose materials are distributed;
(c) typical emissivity spectra of SN_obs (obsidian) and Kilauea, where a thin amorphous silica layer
covers the surface. Please note that the spectra in (b,c) are offset for clarity. The vertical scale resolution
is 10% emissivity.

The T-angle quantifies the emissivity patterns in ASTER bands 10, 11, and 12 to detect the mineral
form—in this particular case, quartz or amorphous silica—by using the orthogonal transformation.
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This index is defined as the angle between two vectors expressed in the three-dimensional space of
the ASTER bands 10, 11, and 12 emissivities. The two vectors are a reference vector and a variable
(or target) vector (Figure 2). In this case, the reference vector represents a spectral pattern linearly
increasing from band 10 to 12 and is set to have an orientation of 0◦. The transform coefficients were
calculated according to the method by Jackson [25]. The T-angle is given by

cos T-angle = −
√

2
2 B10 +

√
2

2 B12

sin T-angle =
√

6
6 B10−

√
6

3 B11 +
√

6
6 B12

T-angle = arctan
( sin T-angle

cos T-angle

)
(0◦ ≤ T-angle ≤ 360◦).

(2)

The spectral patterns can be described by the T-angle, which ranges from 0◦ to 360◦. Quartz-rich
materials have a diagnostic spectral pattern in this wavelength region (Figure 1b), whereas
amorphous-silica-rich materials have a different spectral pattern (Figure 1c), which is represented
by T-angles of approximately 210◦ and 300◦, respectively. Quartz has relatively low emissivity in
ASTER bands 10 and 12, and a relatively high emissivity in band 11 due to its fundamental asymmetric
Si-O-Si stretching vibration [17,23]. In contrast, amorphous-silica-rich materials such as glass, opal, and
obsidian show emissivity patterns that decrease from band 10 to band 12 due to their broad emissivity
depression at around 9.1 microns [24,26]. As the two proposed indices, T-depth and T-angle, have fixed
value ranges, the index values derived from different scenes or different areas can easily be compared.

Figure 2. Concept of orthogonal transformation in the three-dimensional space of the reflectance of
ASTER bands 10, 11, and 12.

2.3.2. Delineating Carbonate Rocks

Carbonate rocks are generally detected using SWIR spectral data. However, in this study, a
carbonate index for ASTER TIR data [17] was used to delineate carbonate rocks because ASTER SWIR
band 9 data show some problems in the surface reflectance product. It may be possible to replace this
index of 90 m spatial resolution with the relative band depth (RBD) of bands 7, 8, and 9 of 30 m spatial
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resolution when reliable surface reflectance data including SWIR band 9 are available. The carbonate
index used here is defined as:

carbonate index = B13/B14. (3)

2.3.3. Delineating Hydrothermal Alteration Zones

To map hydrothermal alteration areas, two clay mineral indices developed by Kurata and
Yamaguchi [15] were adopted. The clay index quantifies the SWIR spectral patterns by using the
orthogonal transformation, and the spectral pattern changes depending on type of clay mineral.
This index is defined as the angle between two vectors expressed in the three-dimensional space of
the reflectances of ASTER SWIR bands 5, 6, and 7 in a manner similar to the definition of the T-angle.
The two vectors are a reference vector and a variable (or target) vector. The angle between the two
vectors is calculated from the inner product of the vectors with elements representing the reflectances
of ASTER SWIR bands 5, 6, and 7 and two orthogonal unit vectors. The transform coefficients were
calculated according to the method by Jackson [25]. The clay index assigned to the H element is
calculated using the following formula:

cos(clay index) = −
√

2
2 B5 +

√
2

2 B7

sin(clay index) =
√

6
6 B5−

√
6

3 B6 +
√

6
6 B7

clay index = arctan
(

sin(clay index)
cos(clay index)

)
(0◦ ≤ clay index ≤ 360◦)

(4)

where B5, B6, and B7 are the reflectances of ASTER SWIR bands 5, 6, and 7, respectively. We used
the ASTER standard data product of SWIR surface reflectance (AST_07XT), including the crosstalk
correction. The spectral pattern of alunite takes a clay index of 10◦, and the clay indices of kaolinite
and montmorillonite would be approximately 45 and 90.

The index describing the clay mineral amount is defined as

SWIR depth = (B4 × 3)/(B5 + B6 + B7). (5)

This index indicates the depth of the absorption caused by the –OH radicals of clay minerals in the
SWIR region corresponding to ASTER bands 5, 6, and 7.

2.3.4. Allocation of Spectral Indices to the H and S Elements

The lithological indices were integrated by allocating each of them to the H or S element of the HSV
color model. Figure 3 shows the meanings of the colors determined by the following procedure. In the
integration stage, the following minerals were considered in order of descending priority: clay minerals,
carbonate minerals, and silicate minerals. This order was selected because it reflects the general relative
importance of these minerals in metal explorations. Namely, the indices of silicate rocks were first
allocated to all pixels in the image as a background, then the carbonate and clay mineral indices were
progressively overwritten to the pixels where these indices exceeded the corresponding threshold.

The T-depth values ranging from 1.16 to 9.85 were linearly rescaled to the range 210–315 and
assigned to the H element of the HSV color model; this means that the silica content is represented
by the pixel color. The two thresholds 1.16 and 9.85 were determined empirically by comparing the
T-depth values (Table 3) and rock types of target pixels on actual ASTER images. For example, the
lower threshold of 1.16 corresponds to the average T-depth value of the mafic rocks that include the
basalt in Cuprite and the mafic intrusions of the Great Dyke. Please note that the T-depth values in
Table 3 are just typical examples. As we used approximately three times as many pixels to obtain the
thresholds, the T-depth average in Table 3 does not coincide with the threshold. Pixels whose T-depth
is lower than 1.16 are regarded as mafic rock and assigned an H value of 210◦. Similarly, the higher
threshold of 9.85 was determined using the T-depth values of the felsic rocks on actual ASTER images.
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Pixels whose T-depth is higher than 9.85 are regarded as felsic rock and assigned an H value of 300◦.
The thresholds for the clay and carbonate indices were similarly determined.

Figure 3. Meanings of the colors determined by the procedures to allocate lithological indices to the
hue (H) and saturation (S) elements of the hue–saturation–value (HSV) color model.

Silica-rich materials (e.g., quartzose sand and obsidian) are thus represented by H values close to
315, corresponding to pink, whereas silica-poor materials (e.g., basalt) are represented by H values
close to 210, corresponding to blue. In this case, the S element was set to (0.5 + α), where α, which
ranges from 0.0 to 0.5, was determined from the value of the T-angle, which represents the mineral
form of the silicates, whether the target felsic rock is composed of crystalline quartz or amorphous
silica. T-angles ranging from 210.0 to 310.0 were linearly rescaled to the given range of α values.
This assignment means that the parts of the images in which the T-angle was between 210.0 and 310.0
are represented by a more vivid color for high T-angles, whereas other areas are displayed in a dull
color. As a result of this process, quartz and amorphous silica could be distinguished from each other,
as shown in Figure 4a–d, respectively.

Then, to integrate the carbonate index into the image, the carbonate index values were linearly
rescaled to the range between 0.0 and 1.0 by excluding the top 2% and bottom 2% as unexpected
values. This procedure is scene-dependent. In this case, pixels with rescaled indices exceeding the
lower threshold of 0.65 were selected as areas with carbonate rocks. The H element of these pixels was
then set to 120, corresponding to light green, and the S element was replaced by the rescaled index
in the target area; this means that areas containing carbonate rocks are shown in light green with a
vividness representing the index value.
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Figure 4. Images generated by integrating the T-depth and T-angle, which can distinguish between
quartz (a,b), and amorphous silica (c,d): (a) quartzite in Cuprite, Nevada, USA; (b) Navajo Sandstone
in Utah, USA; (c) Obsidian in the hills in the southern part of Mono Lake, California, USA; (d) thin silica
coating on pahoehoe lava in Kilauea, Hawaii, USA. The ellipses indicate representative areas where
these target rocks are distributed. Coordinates of the ellipse centers; (a) 37◦37′17.14” N/117◦17′26.87”
W, (b) 37◦42′05.32” N/111◦22′35.22” W, (c) 37◦53′39.43” N, 119◦00′29.60” W, (d) 19◦16′34.93” N,
155◦09′21.74” W.

Lastly, indices representing the clay mineral species (clay index) and amount (SWIR depth) were
allocated to the H and S elements, respectively. For the purpose of visualizing gradual changes
in the clay minerals in hydrothermal alteration zones, clay index values between 10.0 and 110.0,
which includes the spectral patterns of alunite, kaolinite, and montmorillonite (or sericite)—minerals
commonly distributed in hydrothermal alteration zones—were assigned to the H element after
rescaling to the range of 0, corresponding to red, to 90, corresponding to greenish yellow, using the
following formula:

Hclay = (90− 0)
(

h− 10
110− 10

)1/1.2

(6)

where h is the clay index. The SWIR depth and carbonate index were rescaled to the range of 0.0
to 1.0 and were allocated to the S element. The pixels satisfying the following conditions were
selected as hydrothermal alteration zones: (1) the clay index is between 10.0 and 110.0, and (2) the
stretched SWIR-depth value exceeds 0.6. The H and S elements were modified for the pixels that fulfill
these conditions.

2.4. DEM Visualization by the V Element

A new method of visualizing the topography as a grayscale relief map (GRM) obtained from
DEM data was developed in this study. This method combines two existing methods: the overground
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openness by Yokoyama et al. [27] and the inverted slope by Yajima and Yamaguchi [28]. The overground
openness describes a sky extent measured by a solid angle (steradian) over the point within a certain
distance. In this particular case, it was measured at each pixel for an area within 30 m. The overground
openness of a target pixel is defined as the average of the slope of the ground in eight radial directions,
and the slope in each direction is determined by taking the maximum slope between the target pixel
and the pixels within a certain distance in each direction. However, the actual topography cannot
easily be understood from the overground openness because the angles of slopes are not shown, even
though mountain ridges and valleys are accurately indicated. However, the inverted slope can be used
to visualize the angles of slopes by using the Guth hybrid slope algorithm [29], which can estimate the
slope at a target pixel by taking the maximum slope measured in eight radial directions from the target
pixel to adjacent pixels. A steeper slope is expressed as darker in an inverted slope image, whereas
a gentle slope is expressed as brighter; flat areas are expressed as white. As a result, characteristic
topographical features (e.g., conus or tables) corresponding to different lithological units can be visually
interpreted. However, both ridges and valleys are represented as white, and it is difficult to distinguish
them in an inverted slope image, as shown in Figure 5a.

The proposed GRM method utilizes the advantages of these two existing methods and combines
them in the following equation:

GRM = (Overground openness × γ) + Inverted slope. (7)

In this study, the value of γ was set to 3.0 based on visual comparisons of images with several
different values. The GRM is expressed in grayscale, and it can thus be allocated to the V element of the
HSV color model. In addition, as this method is independent of the illumination direction, meaning
there is no selective enhancement by illumination. Therefore, as shown in Figure 5b, mountain ridges
(white) and valleys (black) are easily distinguishable in images generated using this new method.

Figure 5. (a) Inverted slope image of Stonewall Mountain located to the southeast of Cuprite;
(b) Grayscale relief map (GRM) image of the same area. In (a), the valley trending northwest-southeast
shown by the arrow is white and looks similar to the parallel white ridges in the ellipse. In (b), this
valley is black and is easily distinguishable from the ridges in the ellipse.
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3. Results

Figure 6 shows the results of applying the image processing method proposed in this study. All of
the lithological indices and topographical information were combined to generate a single image
that clearly exhibits the distribution of silicate rocks, carbonate rocks, and hydrothermal alteration
zones, as well as the topography, using the HSV color model. The V elements, which correspond to
the brightness of the colors, express the topography. Because dark colors indicate steep slopes, the
topography is depicted as the surface ruggedness overlaid on the integrated image. Figure 7 shows
GRM images along with photographs of the actual topographical features represented in the images.

Colors ranging from blue to pink represent the silica content based on the T-depth. The silica
content is low in blue areas as “basalt” in the image, high in pink areas, and intermediate when the
color is between blue and pink. In addition, areas in which quartz is abundant on the surface are
represented by vivid pink as “quartzite” in the image. Areas rich in carbonate rocks are shown in
light green with a high vividness in the color image because the only carbonate rock area has higher
carbonate index values than the other regions in the image. A hydrothermal alteration zone depicted
in the integrated image exhibits a concentric pattern of hues; the color changes from red at the center
to yellow and finally greenish yellow in the surrounding marginal areas. This characteristic pattern
of colors indicates a typical spatial distribution of clay minerals in a hydrothermal alteration zone,
from alunite in the central acidic alteration zone through kaolinite to montmorillonite in the peripheral
alkali alteration zone (e.g., [20,30]). There are 3 zones having the characteristic pattern in the integrated
image, Cuprite, Goldfield and an unconfirmed area.

As shown in Section 2.3.4, it was confirmed that quartzite in Cuprite (Figure 4a), quartzose in
Navajo Sandstone (Figure 4b), and obsidian near Mono Lake (Figure 4c) and amorphous silica on
pahoehoe lava in Kilauea (Figure 4d) are displayed in a pinkish color because of their high T-depth
values. Additionally, the former two, which consist of almost 100% quartz, are exhibited in a vivid color
according to a particular T-angle value, whereas the latter two, which consists of amorphous silica, is
exhibited in a pale color. A comparison of the present image with the results obtained in previous
studies (e.g., [20,22]) reveals that chalcedony previously identified at the center of the eastern Cuprite
hill (silicified area in Figure 8a) is clearly depicted in the image obtained using the proposed method,
as shown in Figure 8b. In addition, a flat plateau of basalt in the southwestern part of the Goldfield
area confirmed by Ashley [31] is also clearly depicted in pale blue, indicating mafic rock. Therefore,
the T-depth can be considered to accurately represent the silica content of chemical compositions, and
the T-angle can be used to successfully discriminate between quartz and amorphous silica, which have
different mineralogical forms.

The results of the field verification are shown in Figure 9. The reflectance spectrum of the silicified
rock with chalcedony at the center of the hill (Figure 9a) shows a weak absorption at 2.25 microns due
to hydroxyl [32]. Alunite and kaolinite were identified in the hydrothermally altered rock samples
collected south of the hill (Figure 9b,c). These results are consistent with the integrated image shown in
Figure 8 as well as previous studies, indicating a typical zonation of hydrothermal alteration (e.g., [20]).

The integrated image was also compared with the mineral map generated using the AVIRIS
data [22]. Reddish areas in Figure 8b coincided well with the alunite areas, orange areas with the
alunite + kaolinite or kaolinite areas, and yellowish areas with the kaolinite + white mica ± alunite or
halloysite areas in Swayze et al. [22]. Calcite distributions in these two studies also agreed well.
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Figure 6. Integrated image simultaneously exhibiting multiple lithological indices and the topography.
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Figure 7. GRM images and photographs the topographical features contained in the images: (a,b) GRM
image; (c) Stonewall Mountains; (d) Alluvial plain; (e) Table plateau.

Figure 8. Comparison between (a) Zonation of the hydrothermal alteration in Cuprite, Nevada by
Ashley and Abrams [20] and (b) integrated image.
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Figure 9. Reflectance spectra and outcrop photographs of the hydrothermal alteration zone in Cuprite.
See the locations in Figure 8. The upper and lower spectra for each sample indicate measurements for
the fresh surface and the weathered surface, respectively. Absolute reflectance values are not meaningful
due to imprecise measurement conditions. The noisy patterns at around 1.4 and 1.9 microns are due to
the atmospheric water vapor as these spectra were obtained outdoor by using sunlight as an illumination
source. (a) Silicified rock with chalcedony at the center of the alteration zone, (b) hydrothermally
altered rock that includes alunite, and (c) hydrothermally altered rock that includes kaolinite.
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4. Discussion

4.1. Integration Method

The method of integrating lithological and topological information in an HSV image was evaluated
on the basis of two considerations: whether the HSV model is more appropriate than the conventional
RGB color composite for data integration and whether the method shows site or target dependence.
The RGB color composite has been widely used and explored; for example, it has been used to represent
combinations of band ratios for various mineralogical features in [33]. An integrated image generated
by the HSV color model (Figure 10a) and the corresponding RGB color composite image (Figure 10b)
were compared based on how well the zonal structure of the hydrothermal alteration in the image
could be visualized. The proposed integration method has several advantages over the conventional
method. First, in the RGB color composite, up to three indices of the surface materials are directly
allocated to the intensities of the RGB color primitives, whereas more than three appropriate indices
can be arbitrarily selected for allocation to the HSV elements. Additionally, in the RGB color composite
images, the mapping target must be assessed by interpreting the meanings of colors on a case-by-case
basis, whereas the meanings of the colors in the HSV images generated with the proposed method
are determined in advance, making them easily interpretable, and important targets can be readily
enhanced by varying the S element value.

Figure 10. Images showing the zonal structures of the hydrothermal alteration generated by: (a) The
method proposed in this paper; (b) The RGB color composite method with the R, G, and B primitives
representing the kaolinite group index, the AlOH group content, and the FeOH group content,
respectively, as developed by Cudahy [34]. (c) Geological map of this area [35].

86



Remote Sens. 2019, 11, 162

Regarding the second consideration, it is important to analyze different regions or targets because
the proposed method may show site and/or target dependence. This study focused on the geological
mapping of multiple types of rocks and minerals and selected a large target area (approximately
4,000 km2) containing distributions of a variety of rock types. Apart from the method having target
dependence in that appropriate indices were selected for lithological mapping, there is additional site
dependence in terms of the allocation of indices to HSV elements and rescaling them to a specific value
range. The T-depth, T-angle, and clay index originally had definite value ranges, but the carbonate
index and SWIR depth did not, and thus the resultant ranges could vary according to the data used in
the analysis. This inconsistency forces the index range to be adjusted on a case-by-case basis, which
causes site dependence. This means that the processes of allocating indices to the HSV elements is
fundamentally dependent on both the target and the site, similarly to the problem of the RGB color
composite technique.

However, the fundamental concept of this method can be applied to other targets and areas by
selecting appropriate indices to detect the targets according to their spectral features. As a next step, it
might be necessary to develop a method that can allocate index values to fixed ranges or select indices
that have definite value ranges.

4.2. Lithological Indices and Geological Interpretation

As discussed, the integrated image could be used to easily interpret various geological situations
that cannot be shown by separate lithological indices and topographical images. Some examples
illustrating this are discussed here. First, the method for mapping hydrothermal alterations was
successfully used to clearly visualize the different geological situations of the two hydrothermal
alteration zones in Cuprite and Goldfield. Concentric zonation patterns were observed in both areas
but with opposing patterns of changing colors: from red at the center of the concentric zonal structure
to greenish yellow at the margin in Cuprite and from greenish yellow at the center to red at the
margin in Goldfield. This implies that a region that underwent hydrothermal alteration with an acidic
environment was distributed on the edge of the circular structure in Goldfield [31,36]. As highly
acidic environments generally form at the center of hydrothermal alteration zones, this phenomenon
could have produced a characteristic pattern in Goldfield in which the center of the hydrothermal
alteration zone was not coincident with the center of the concentric zonal structure, unlike Cuprite,
where the two centers were coincident. This inference is consistent with the suggestion in a previous
study [31] that in Goldfield, a series of hydrothermal alteration zones is arranged in a circle along
the circular structure formed by volcanic activity. This discussion indicates that this method could
provide important geological information on hydrothermal alteration zones and the integrated image
is a powerful tool to effectively and efficiently exhibit the geological characteristics.

Second, in the eastern part of Goldfield, the characteristic spatial distribution of the colors indicates
the presence of a hydrothermal alteration zone (“unconfirmed area” in Figure 6). Clay minerals are
distributed in the hills, and some linear distributions of greenish yellow and mixed distributions of
red, yellow, and greenish yellow colors are observable in the flatlands around the hills. A geological
interpretation of these patterns indicates that outcrops of a hydrothermal alteration zone are present
on the hills and sediments derived from those outcrops were transported and spread onto the flat
alluvial plains. This information was obtained from image interpretation only. Unfortunately access
to the area is restricted due to military use. In a similar way, the topographical information enables
the outcrops to be distinguished from the alluvia, which includes the sediments that flowed from the
outcrops, as in the area around the flat plateau of basalt in the western part of Goldfield [35] (“basalt” in
Figure 6). Furthermore, there are two different topographies in this area that were colored by vivid
pink representing quartzose rocks but showed different morphologies: rugged and flat surfaces.
These differences could have been caused by the different rock types, such as quartzite at the rugged
hills and quartzose sedimentary rock or sediments in the flat surfaces. It can thus be concluded that the
integrated image generated by the method proposed in this study is easily geologically interpretable.
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Further studies are required to investigate the effects of vegetation cover. In this paper, we chose
areas with sparse vegetation. It is likely that the H and S values for geological components will change
if these components are mixed with a vegetation component. Removal of the vegetation component
might be required prior to the application of the proposed integration method.

5. Conclusions

The goal of this study was to develop a new method of combining and visualizing multiple
lithological indices derived from ASTER data in different wavelength regions and topography derived
from DEM data in a single-color image that can be easily interpreted from a geological point of view.
The proposed method consists of three parts: a technique to combine multiple indices using the HSV
color model, the derivation of appropriate spectral indices to discriminate among different lithologies,
and a method of visualizing the topography derived from DEM data. Consequently, a method that
can be used to visualize geological information was successfully developed, and the resulting images
were demonstrated to be more easily interpretable than those generated using conventional methods.
It was confirmed that integrated images generated by combining lithological indices and topographical
information enable the interpretation of detailed geological situations. The integration method can also
be applied to various targets by adjusting the spectral indices and their allocation to the elements in
the HSV color model. The newly developed lithological indices, the T-depth and T-angle, have definite
value ranges and thus enable scene-independent analysis of silicate rocks, although the new method
still has some shortcomings and target dependence. For example, the quantitative correspondence
between the index values of T-depth and silica content of the actual lithology is not clear. Furthermore,
the parameters used in the allocation process of the carbonate index and SWIR depth as well as the
ranges of index values and thresholds are site-dependent. These points must be improved when the
method is applied to other regions or geological targets. Regarding the visualization of the topography,
it was confirmed that the new GRM method can clearly exhibit topographical differences.

The integration of multiple indices was effective in the geological mapping performed in this
study. By adopting the proposed method of integrating multiple indices, even people who are not
familiar with remote sensing can use geological remote sensing more easily to detect or map a particular
geological unit and better understand its characteristics. This would facilitate the introduction of
geologic remote sensing to geological studies and would contribute to bridging the gap between the
fields of geology and geological remote sensing.
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Abstract: This work proposes a new methodology to build an Earth-wide mosaic using high-spatial
resolution (15 m) Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)
images in pseudo-true color. As ASTER originally misses a blue visible band, we have designed
a cloud of artificial neural networks to estimate the ASTER blue reflectance from Level-1 data
acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) on the same satellite Terra
platform. Next, the granules are radiometrically harmonized with a novel color-balancing method and
seamlessly blended into a mosaic. We demonstrate that the proposed algorithms are robust enough to
process several thousands of scenes acquired under very different temporal, spatial, and atmospheric
conditions. Furthermore, the created mosaic fully preserves the ASTER fine structures across the
various building steps. The proposed methodology and protocol are modular so that they can easily
be adapted to similar sensors with enormous image libraries.

Keywords: Terra ASTER; Terra MODIS; True Color imagery; Mosaic; atmospheric correction;
Artificial Neural Network

1. Introduction

The Terra satellite was launched on 18 December 1999. This satellite platform has five instruments
which include the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and
the Moderate Resolution Imaging Spectroradiometer (MODIS). ASTER was built by the Japanese
Ministry of Economy, Trade and Industry (METI) [1], while MODIS was designed by National
Aeronautics and Space Administration (NASA), Goddard Space Flight Center (GSFC).

ASTER is a 15 m resolution, 14 bands multispectral instrument. It has been used for change
detection, calibration, validation, and land surface studies from individual granules analysis [1].
However, the global monitoring of the Earth and ocean surfaces will be greatly helped by the
integration of the satellite granule database from 2003 to 2012 into a unique natural color global
mosaic, referred to as CLAMS (Color-Land ASTER MosaicS). The distributed ASTER granules cannot
produce natural-color images, since ASTER sensors lack a blue visible band as illustrated by Figure 1.
Generally, false color RGB composites are created by assigning red, green and blue to visible near
infrared bands 3N, 2, and 1, respectively. However, ice/snow areas appear grey, desert areas yellow,
and vegetation red, as illustrated on the left hand side of Figure 2.
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Figure 1. Normalized spectral response functions of ASTER (solid line) and MODIS (dotted lines)
VNIR bands.

Figure 2. Examples of ASTER granules over different areas (ice/snow, desert, vegetation) rendered
either with the false color composite (R:G:B = Bands 3N:2:1) on the left hand side, or with the simulated
true color composite (R:G:B = Bands 3N:2:simulated blue) on the right hand side.

In this work, we aim at constructing a global mosaic at 15 m of ground resolution, which blends
our true-color visible ASTER images.

Several studies have addressed various ways of generating the simulated true color imagery for
optical satellite sensors, which do not have a part of visible bands. Chen and Tsai [2] proposed spectral
transformation techniques between Système Probatoire de l’Observation de la Terre (SPOT) false
color image and Landsat-5 Thematic Mapper (TM) true color imagery. They used an unsupervised
fuzzy c-means classifier and spectral control points. Knudsen [3] proposed a pseudo-natural color
methodology for aerial imageries by using a simple least-squares adjusted linear model for the
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relationship between the blue band and the green, red and near-infrared (NIR) bands. This paper
showed the possibilities of cost-efficiency by using the color-infrared (CIR) traditional photogrammetric
products recorded by a traditional aerial camera. Patra et al. [4] developed spectral transformation
techniques with spectral control points to IKONOS false-color imagery and natural color (simulated
true color) imagery, and they evaluated their developed transformation method by using Quickbird,
MODIS, Indian remote sensing satellite (IRS-P6) LISS-4, LISS-3, and AWiFS sensors. Huixi and
Yunhao [5] applied the atmospheric correction algorithm, ATCOR to Landsat-7 ETM+, SPOT, and Terra
ASTER imageries. They used the spectral similarity scale (SSS) method with a spectral library for
generating pseudo natural color composites, and could obtain excellent results. Zhu et al. [6] developed
a non-linear model based on a spectrum machine learning (SML) method with the spectral library,
and they applied it to Landsat-7 ETM+, SPOT, and ASTER imageries. The atmospheric correction
algorithm FLAASH from ENVI software was first applied, followed by the SML method to establish
an implicit non-linear relationship between the blue band and other bands. The next-generation
GOES-R advanced baseline imager (ABI) does not have a green band, and high-resolution atmospheric
model simulations have been used to produce the ABI reflective band imagery required for true-color
imagery [7,8]. Most researchers suggest that true-color algorithms are affected by sun-target-sensor
geometry and atmospheric conditions.

There have been several efforts to construct cloud-free true color base-maps from moderate or
high spatial resolution (less than 100 m) satellite data. ASTER has been operated over 19 years since
Terra satellite launch in 1999. Thus, the huge available acquisitions database makes it possible to
generate cloud-free global mosaics. The large number of ASTER image granules (about 780,000) used
in this study were collected over many years, different seasons, and under varying vegetation and
illumination conditions. Without the appropriate corrections, the resulting mosaic can appear as a
patchwork of individual images. To avoid this, it deems necessary to apply atmospheric corrections and
to smoothen seasonal effects. There have been several attempts of true-color mosaic constructions for
various satellite optical sensors, mostly using adjustments of radiometric characteristics. Guindon [9]
proposed radiometric adjustment for seamlessness mosaic of Landsat-5 MSS for northwestern
Ontario area. Liew et al. [10] calculated solar zenith angle corrected radiances, and have used a
brightness thresholding method to identify the best cloud-free and non-shadow pixels among the
pixels from the multiple images at a given region. They successfully tested their mosaic technique
with SPOT images acquired over the South East Asia region. Du et al. [11] applied a radiometric
equalization techniques for representative pixel pairs in each overlap area, selected by means of
a principal component analysis and calculation of linear correlation coefficients. They proved the
methodology by mosaicking 6–7 Landsat-5 TM granules over the Boreal Ecosystem-Atmosphere
Study (BOREAS) transect. Bindschadler et al. [12] generated a seamless cloud-free Landsat-7
ETM+ mosaic of Antarctica by radiometric adjustment. Roy et al. [13] produced a mosaic of the
conterminous United States (CONUS) using 6521 Landsat-7 ETM+ imageries from December 2007 to
November 2008. Choi et al. [14] developed the mosaic algorithm for high resolution images captured
by Kompsat-2 sensor. This algorithm can be applied to different images affected by seasonal change,
and is applicable to other high resolution optical sensor images. There exist two global mosaics,
GeoCover2000 [15] (Landsat-7) and Landsat-8 VNIR maps [16], that have processed 30 m Landsat
images and pansharpened them to 15 m. In summary, most attempts of generating mosaics of high
resolution optical imageries were mostly carried out over regional areas, as the construction of a
global cloud-free mosaic of high resolution imageries is extremely difficult due to the large amount of
spatially and temporarily varying acquisitions.

We propose a protocol to assemble a true-color global mosaic from high-resolution ASTER
imagery. The protocol first implies the construction of the missing ASTER blue band making use of
the Moderate Resolution Imaging Spectroradiometer (MODIS) Terra instrument as it sits on board
of the same satellite platform acquires time and space synchronized images with all visible bands,
though at a lower spatial resolution (250–500 m). In 2012, we developed a first algorithm in which,
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after atmospheric corrections, the ASTER pseudo-blue band was constructed from a single artificial
neural network (ANN), making it possible to generate ASTER granules in true color composite.
These processed ASTER images are currently distributed by the AIST MADAS system as one of
ASTER-VA products [17,18]. This first algorithm was not completely satisfactory and a couple of
years ago, we decided to improve the blue color retrieval in particular over the ocean, as described
in Section 2. The new retrieval algorithm this time uses a cloud of ANN’s, which preserve the finest
details of the atmospheric components, such as dust, smoke and thin clouds.

The second key feature of the constructed CLAMS mosaic is that it is worldwide color-balanced,
in the sense that the radiometric differences between the adjacent images introduced by the solar
incident angle, atmosphere, and illumination condition are equalized. This is achieved by a novel
color-balancing method for ASTER based on a MODIS reflectance reference library (FondsDeSol, FDS)
proposed by Gonzalez et al. [19]. By automatically selecting appropriate color reference information
from the FDS library according to the geographical scope and acquisition season information of
the target images, the proposed approach provides effective solutions for eliminating color error
propagations between adjacent granules over the globe. We will illustrate the rendered color quality of
the mosaic in Section 3.1 and on the website http://newtec.univ-lille1.fr/LARGEMOSAICSFR/.

The third feature of the CLAMS mosaic is that it preserves the ASTER fine 15 m structures across
the various building steps, as demonstrated in Section 3.2.

2. Methodology for ASTER Blue Reflectance Reconstruction

In the entire document, all presented data correspond to reflectance values from MODIS L1B or
ASTER L3A products to which minimum atmospheric corrections were applied to compensate for the
Rayleigh scattering contribution, and correct for ozone according to the 6S radiative transfer code [20],
with the same equations as in Ref. [21]. These corrected reflectances are denoted hereafter as ρ. In all
the figures, we present ASTER granules geometrically corrected to Plate Carrée projection (North
oriented) within a bounding box of 75 km × 75 km, and we specify both the dates and geolocalization
of their central points.

The ASTER granules suffer from two main defects. The first is linked to signal saturations in
the 0.56 μm and 0.66 μm bands over bright surfaces as explained in Section 2.1, while the second
corresponds to the missing 0.4 μm band which is reconstructed with ANNs using MODIS reflectance
data as detailed in Section 2.2. To train the ANN and to reconstruct the saturated ASTER pixels missing
values we use as input data the 0.555, 0.645, and 0.858 μm bands from MODIS and the 0.469 μm blue
band as target output data. To retrieve the ASTER blue band we use as input data the 0.56, 0.66,
0.81 μm ASTER bands.

2.1. Reconstruction of Saturated ASTER Level1 Pixels

In the process of correcting the bright surface saturation we do not expect to retrieve the real
reflectances but simply to create reasonable values giving true color composites close to reality.
Saturated values only appear for the 0.56 and 0.66 μm bands (noted ρ1 and ρ2). A correction model
was empirically determined using MODIS reflectances over the ASTER saturated areas. It turned out
that simple first and second-order polynomial functions of the 0.81 μm (ρ3N) reflectances could be
used to assign unsaturated reflectance values ρ1 and ρ2, as detailed in Table 1.
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Table 1. Polynomial expansions for the saturation correction of bands ρ1 (0.56 μm), ρ2 (0.66 μm) using
ρ3N (0.81 μm).

Ocean Colors

ρ3N < 0.2 ρ1 = −1.627869 × ρ2
3N + 0.714701 × ρ3N + 0.370053

ρ2 = −17.420099 × ρ2
3N + 6.117370 × ρ3N − 0.180111

ρ3N > 0.2 ρ1 = 2.298600 × ρ2
3N − 1.202424 × ρ3N + 0.591962

ρ2 = 0.725354 × ρ3N + 0.202700

Desert

ρ1 = 0.564969 × ρ3N − 0.002576
ρ2 = 0.808582 × ρ3N − 0.001048

Clouds

ρ1 = 1.176044 × ρ3N − 0.081713
ρ1 > 0.15 ρ1 = 1.096000 × ρ3N − 0.020926

ρ2 = 1.220622 × ρ3N − 0.086758
ρ2 > 0.15 ρ2 = 1.186130 × ρ3N − 0.090857

Figures 3–5 demonstrate that the desaturation algorithm visually corrects the missing values over
desert, ocean and cloudy areas.

Figure 3. Visualization of the saturation corrections over cloudy areas: (a) final true color composite;
(b) original saturated granule; (c) mask of the saturated areas (in red for the 0.66 μm band and in yellow
for both 0.56 and 0.66 μm bands).

95



Remote Sens. 2019, 11, 441

Figure 4. Visualization of the saturation corrections over the ocean: (a) final true color composite;
(b) original saturated granule; (c) mask of the saturated areas (in red for the 0.66 μm band and in yellow
for both 0.56 and 0.66 μm bands).

Figure 5. Visualization of the saturation corrections over desert areas: (a) final true color composite;
(b) original saturated granule; (c) mask of the saturated areas (in red for the 0.66 μm band and in yellow
for both 0.56 and 0.66 μm bands).

2.2. ANN to Reconstruct ASTER Blue Reflectances

Fine-tuning the parameters of an ANN (Stuttgart Neural Network Simulator (SNNS) [22]) to
faithfully reconstruct ASTER blue reflectances turned out to be a tricky process. In 2012, we designed
an ANN that used for the training inputs the 3 MODIS 0.555, 0.645, 0.858 μm bands (spectrally close to
the VNIR ASTER bands, 0.56, 0.66, 0.81 μm), and the blue MODIS band at 0.469 μmas target values.
This ANN is a fully connected feedforward network [23]. The ANN topology we present yields the
best blue retrieval out of many tests we carried out. It consists of two hidden layers with 10 nodes
each (See Figure 6). The training data set used a selection of about fifty MODIS granules for which
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we hand-selected representative areas such as water, ocean colors, deserts, rocks, white and bright
surfaces, etc. Once trained, the network was tested on various MODIS granules and the training ANN
data set was enlarged with those showing inaccurate (poor correlation with respect to MODIS real blue
reflectances) reconstructed blue values. However, the blue retrieval was not fully accurate, yielding
yellow colors over hazy areas and bright reefs as illustrated by the examples on the left hand side of
Figure 7.

Figure 6. Topology of the ANN with one input layer taking 0.555, 0.645, and 0.858 μm reflectance
values, the 0.465 μm.

Figure 7. Comparisons of ASTER granules obtained with the blue retrieval algorithms of 2012 (left)
and 2018 (right). The center panel shows the correlations between the reflectance values collected
within the red boxes, obtained with the 2012 (x-axis) and 2018 (y-axis) algorithms.
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Based on our recent experience with ANNs design for aerosol optical depth retrievals [21],
we found out that ANNs training and accuracy are improved if applied to specific classes of reflectance
values. Thus, our new algorithm uses MODIS values that are classified into three groups according
to the values x = 0.2 × ρMODIS(0.645) + 0.8 × ρMODIS(0.555), defining two main areas, the first one
corresponding to water, dark areas and vegetation (x < 0.2), the second one to desert areas (x > 0.2).
The third group encompasses the brightest cloudy pixels selected by according to the following
three-fold tests:

{ρMODIS(0.555) > 0.2} & {ρMODIS(0.858) > 0.2} &
{

ρMODIS(0.555)
ρMODIS(0.645)

> 0.9
}

. (1)

The histograms of the three groups are drawn in Figure 8. Each of the three histograms are split
to define subclasses of pixel values defining the inputs of ANNs. The determination of the number
of data by classes (bins) was carried out in successive stages by monitoring both the convergence
of the networks and the quality of the blue retrieval over about one hundred MODIS granules that
compose the training data sets. It soon became clear that the first group requires a more precise
division (800 networks) and converges with an average number of 4000 pixels per bin. In group 2,
the subdivision is wider with 1900 networks and an average number of 2200 pixels per bin was
necessary. The third group requires 1300 networks with an average number of 3200 pixels per bin.
Figure 9 demonstrates how the histogram classification is used to split the MODIS data. For each bin,
a dedicated ANN with a feedforward topology, with the same architecture as before (3 inputs, 2 hidden
layers with 10 nodes each, and 1 output value, see Figure 6), is designed. Altogether an ensemble of
4000 ANNs is trained. The training dataset was enlarged to about one hundred MODIS granules.

Figure 8. Histograms of the three groups of MODIS data to define the ANNs inputs.

For the retrieval, the three ASTER bands (0.56, 0.66, 0.81 μm) are scaled to match the MODIS ones
(0.555, 0.645, 0.858 μm) as:

{ρ1 = ρASTER(0.56)× 0.9140} ; {ρ2 = ρASTER(0.66)× 0.8918} ; {ρ3 = ρASTER(0.81)× 0.8857}, (2)

the coefficients being determined from linear regressions.
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The central panel of Figure 7 demonstrates that the 2018 blue retrieval algorithm yields enhanced
blue reflectances, improving the final image rendering. Furthermore, the absolute quality of the 2018
blue reconstruction is proven by Figure 10 showing the excellent correlations (at least 0.98 with low
standard deviations, max of 0.03) between all three bands of ASTER and MODIS. This is further
highlighted by Figure 11 where a comparable agreement is found with Landsat-8 OLI L1T products
which holds a real blue channel. This Landsat-8 L1T were obtained via the USGS EarthExplorer.

Figure 9. Scheme illustrating the pixel classification of the training (a) MODIS data. Subfigures (b–d)
display the selected pixels (unselected pixels in magenta) sorted into classes (bins) by the (e–g)
histograms. In histogram (e), we select 10 bins from 0.072 < x < 0.078 (h), and display the spatial
location of two bins as green and red dots in the zoom (i). The MODIS reflectance values within a
bin are used as inputs of the dedicated ANN (feedforward ANN with 3 inputs, 2 hidden layers with
10 nodes each, and 1 output) to retrieve the 0.469 μm blue band.

In order to preserve the spectral response of ASTER instrument, the red and green bands of the
final visible composite are the ASTER original measurements, while the blue is reconstructed from
the cloud of ANNs. As the MODIS and ASTER bands response are slightly shifted (See Figure 1),
one can observe in Figure 12 subtle differences for red and green areas in the final color rendering of
the natural ASTER composite with respect to MODIS.

To further illustrate the accuracy of the blue reconstruction, we present in Figure 13, examples of
heterogeneous natural-color reconstructions. The final results preserve the 15 m ASTER sensitivity,
as we notably recognize the signatures of thin clouds on both dark (Figure 13a,b) and bright
backgrounds (Figure 13c) with their shadows, as well as the fine patterns of bright sand dunes
in deserts (Figure 13d).
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Figure 10. Correlations between ASTER and MODIS reflectance values for the red, green and blue
bands, across several surfaces (selected within the red boxes), as ice/melt areas (blue dots), bright
desert areas (red dots), and dark desert areas (magenta dots).

Figure 11. Correlations between ASTER (blue), OLI (red) and MODIS reflectance values (selected
within the red box) for the red, green and blue bands over a desert area.
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Figure 12. Comparison between the color rendering by MODIS on the left and ASTER (natural color
simulated) on the right.

(a) Thin cloud diffusion over Brazilian deep forest (b) Thin clouds over ocean glitter

(c) Thin cloud structures over Taklamakan desert (d) Sand structures

Figure 13. Examples of heterogeneous reconstructions of natural-color ASTER granules in different
areas. The left figure is the ASTER granule and the right inset a zoom into the red box.

3. Building a Global Mosaic

The protocol to construct the CLAMS global mosaic released in 2012 has involved the scanning of
the whole distributed ASTER portfolio from 2003 onwards to define a classification algorithm that sorts
images with respect to their temporal distance to a seasonal reference date, but also with increasing
degree of cloudiness as to minimize cloudy granules. About 780,000 granules where analyzed from
where 70% were downloaded and colorized, while 40% contribute to the final mosaic.
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3.1. Color-Matching of ASTER Granules to FondsDeSol Reference

In order to construct a seamless global mosaic image, radiometric and phenomenological scene
differences have to be minimized across space and time. Helmerand and Ruefenacht [24] used
histogram matching of adjacent scenes to build small-size regional mosaics, but this approach leads
to increasingly growing bias when applied to large-scale areas. The availability of a world-wide
cloud-free surface reflectance database FondsDeSol [19] centered at the end of august is used as
reference to equalize the ASTER granules over the whole Earth.

To achieve the color equalization of the ASTER RGB bands and remove as far as possible
bidirectional effects and seasonal changes, we have used the iterative distribution transfer (IDT)
algorithm proposed by Pitié et al. [25], which allows within few iterations, typically less than 10,
an excellent color match to the FondsDeSol reference. It is noteworthy that this colorization process
allows to partially dehaze ASTER granules that are blurred by the atmospheric aerosols. An example
is displayed in Figure 14, which presents in subset Figure 14 (1) patched natural color ASTER granules
tainted by the atmospheric components. Figure 14 (2) shows the same patch colorized by the IDT
process, the only visible transitions being that of the granules boundaries. Indeed, seasonal effects are
smoothened but may be still be slightly visible when the land surface is significantly altered across
various seasons (field structures, forest, rivers, etc.).

Figure 14. Illustrations of the ASTER mosaic quality over Van Diemen Gulf (Australia): (1) patch of
the natural color ASTER granules; (2) patch the IDT colorized granules; (3) seamless blending of IDT
colorized granules.

3.2. Seamless ASTER Granules Blending

To create seamless mosaics, we relied on an effective methodology using the Laplacian
pyramid-based algorithm introduced by Burt and Adelson [26]. Multi-scale Gaussian pyramid
representations of the overlapping areas of the patched granules are used to merge all the spatial
structural details at the 15 m resolution, the color matching being already achieved by the FondsDeSol
color equalization preceding step. Figure 15 illustrates the reflectance values over transects of two
different surface types in the Nusa Tenggara (Indonesia) and Van Diemen Gulf (Australia). The black
curves represent the original ASTER natural color granules, the magenta or purple lines refer to the
values across IDT colorized granules, while the R,G,B curves correspond to the final results after
pyramid blending. Note that the different steps shift the reflectance values but preserve the fine
structures of the original data. In Figure 15a, the colorization and blending effects are minor across the
granules boundaries (vertical black lines). In Figure 15b we have highlighted with red circles large
changes in the reflectance values between the two last steps of the mosaic process (IDT and blending).
In this example the blending step (displayed in the (3) inset) brings in thin smoke plumes from the
background image (https://earthexplorer.usgs.gov/).
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(a) Nusa Tenggara (Indonesia) region

(b) Van Diemen Gulf (Australia) region

Figure 15. RGB reflectance values across the red marked transects; black lines refer to the patch of the
natural color ASTER granules (1); magenta lines to the patch of IDT colorized granules (2); red, green,
and blue lines correspond to the final reflectance values in the seamless CLAMS mosaic (3). Black
vertical lines mark the granules boundaries.

3.3. Filling the Gaps

For limited numbers of very small areas, where we did not find any suitable ASTER granules,
we patched the mosaic with less than 100 Landsat-7 ETM+ granules processed by NASA/JPL CalTech,
which is derived from GeoCover2000 [15]. These were color-equalized with the IDT algorithm and
merged into the mosaic with the pyramid blending method.

3.4. Distribution of the Mosaic

Partial mosaics samples can be seen on http://newtec.univ-lille1.fr/LARGEMOSAICSFR/ with
a web interface that allows to visualize and zoom into several subsets of the global mosaic, with
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the 2012 blue algorithm (France, Saudi Arabia), and the 2018 blue algorithm (Australia, Indonesia,
South Africa, Bahamas, Antarctic). The global mosaic with the 2012 blue algorithm will be available on
the https://gbank.gsj.jp/madas/?lang=en web-platform in 2019, while the latest higher quality one
shall be also available in the near future.

4. Conclusions and Future Work

This work is the first world-wide mosaic of ASTER images in natural colors. Two main problems
of the distributed data have been tackled, namely the saturation over bright surfaces, and most
importantly the lack of a blue band. The latter was reconstructed using a large cloud of ANNs
trained on MODIS reflectance values, improving the blue rendering with respect to the 2012 version.
The granules with the 2012 version are readily available on the https://gbank.gsj.jp/madas/?lang=en
web-platform, while the latest higher quality ones shall be available in the near future. The availability
of true-color ASTER granules is by itself relevant to help comparisons with other huge high-resolution
database as Landsat, in particular to monitor surface changes.

The construction of the mosaic implies to harmonize the colors of spatially and temporarily
separated granules and to fusion them with seamless blending algorithms. We have demonstrated
that the various steps preserve the 15 m spatial structures of the original ASTER images. The created
global mosaic is a real 15 m resolution mosaic that can serve as a reference to validate the quality
of other global maps [15,16]. The presented mosaic protocol with the improved blue retrieval will
shortly be applied to create a revised version of the ASTER mosaic. The proposed algorithmic protocol
has processed several hundred thousands ASTER images and its robustness and modularity can be
adapted to similar sensors with enormous image libraries, such as SPOT.
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Abstract: Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imaging
system onboard NASA’s (National Aeronautics and Space Administration’s) Terra satellite is capable
of measuring multispectral reflectance of the earth’s surface targets in visible and infrared (VNIR)
to shortwave infrared (SWIR) (until 2006) as well as multispectral thermal infrared (TIR) regions.
ASTER VNIR stereo imaging technique can provide high-resolution digital elevation models (DEMs)
data. The DEMs data, three-dimensional (3D) perspective, and ratio images produced from the
ASTER multispectral data are employed to analyze the geomorphologic and lithologic features of
Wudalianchi volcanoes in the northeastern China. Our results indicate that the 14 major conical
volcanic craters of Wudalianchi volcanoes are arranged as three sub-parallel zones, extending in a NE
(Northeast) direction, which is similar to the direction of regional fault system based on the ASTER
DEMs data. Among the 14 volcanic craters in Wudalianchi, the Laoheishan, and Huoshaoshan lavas
flows, after the historic eruptions, pouring down from the crater, partially blocked the Baihe River,
which forms the Five Large Connected Pools, known as the Wudalianchi Lake. Lithologic mapping
shows that ASTER multispectral ratio imagery, particularly, the Lava Flow Index (LFI) (LFI = B10/B12)
imagery, can clearly distinguish different lava flow units, and at least four stages of volcanic eruptions
are revealed in the Wudalianchi Quaternary volcano cluster. Thus, ASTER multispectral TIR data
can be used to determine relative dating of Quaternary volcanoes in the semi-arid region. Moreover,
ASTER 3D perspective image can present an excellent view for tracking the flow directions of different
lavas of Wudalianchi Holocene volcanoes.

Keywords: 3D perspective view; morphology; lithology; Wudalianchi volcano; ASTER multispectral
data

1. Introduction

Remote sensing can provide a certain resolution of spectral, spatial, and temporal coverage based
on the type of sensor for geologic mapping and monitoring at numerous volcanoes throughout the
world [1,2]. The use of spaceborne and airborne remote sensing data to monitor the volcanoes and
map the products of eruptions has been ongoing for decades [3]. Satellite remote sensing data have
been widely used to detect or monitor the eruption of volcanoes [4–6]. However, how to document the
products of volcanic eruptions and morphology using satellite remote sensing data is another challenge
for geoscientists [6,7]. The weathering of active lava flows in arid and semi-arid environments is
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accompanied by changes in their thermal infrared emittance spectra [8,9]. The spectral differences
caused by the weathering can be measured and mapped with multispectral imaging system [8].

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor was
launched in 18 December, 1999, onboard the first NASA’s Earth Observation System (EOS) series of
satellites, Terra [10,11]. The ASTER covered a wide spectral region with 14 bands from visible to thermal
infrared with high spatial, spectral and radiometric resolution as shown in Table 1. Three visible and
near infrared (VNIR) bands, six shortwave infrared (SWIR) bands (until 2006), and five thermal infrared
(TIR) bands with the spatial resolution of 15 m, 30 m, and 90 m, respectively. In addition, the bands 3N
and 3B in near infrared bands have a stereoscopic capability, which can be used to generate DEM [12].
ASTER-TIR is the first satellite-borne multispectral TIR remote sensing system with spectral, spatial,
and radiometric resolutions adequate to be used for geologic applications, such as determining the
relative age dating of lavas [13,14]. Compared with two bands of Landsat TM or ETM in the SWIR
region (between 1.6 to 2.5 microns), the ASTER SWIR sensor has six bands in this region and has
the capability to identify mineral component of surface rocks in the semi-arid to arid region [15,16].
The ASTER multispectral SWIR and TIR sensors can provide an important tool for monitoring heat
flow related to volcanic activities [4,5]. Therefore, ASTER can provide a potential tool for mapping the
products from active volcanoes from regional to global scales.

Table 1. Wavelength Range of The Advanced Spaceborne Thermal Emission and Reflection Radiometer
Data [10,12].

Band Wavelength Range (μm) Band Type Spatial Resolution (m)

B1 0.52–0.60 VNIR (visible and near infrared) 15
B2 0.63–0.69 VNIR 15

B3N 0.76–0.86 VNIR 15
B3B 0.76–0.86 VNIR 15
B4 1.60–1.70 SWIR (shortwave infrared) 30
B5 2.145–2.185 SWIR 30
B6 2.185–2.225 SWIR 30
B7 2.235–2.285 SWIR 30
B8 2.295–2.365 SWIR 30
B9 2.36–2.43 SWIR 30
B10 8.125–8.475 TIR (thermal infrared) 90
B11 8.475–8.825 TIR 90
B12 8.925–9.275 TIR 90
B13 10.25–10.95 TIR 90
B14 10.95–11.65 TIR 90

There are two Quaternary volcanoes with historic eruptions in northeastern China (Figure 1a, WD,
Wudalianchi Volcano; TC, Changbaishan Tianchi Volcano). Petrology, chronology, and geochemistry of
these Quaternary volcanoes have been widely addressed by researchers [17–20]. However, general
research on the topographic and geomorphologic features of these Quaternary volcanoes is still lacks.
Furthermore, no detailed map shows the distribution of lava flows from these different stages.
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(a) 

 
(b) 

Figure 1. (a) Topographic map generated from the USGS (United States Geological Survey) SRTM
(Shuttle Radar Topography Mission) DEM (Digital Elevation Model) data, showing the locations
of Wudalianchi (WD) and Tianchi (TC) volcanoes in northeast China. (b) ASTER thermal infrared
(band 13) image observed at 6 April, 2004 in the Wudalianchi volcanic region. WH: Wohushan;
SG: South Gelaqiushan; NG: North Gelaqiushan; B: Bijiashan; L: Laoheishan; H: Huoshaoshan;
W: Weishan; WJ: West Jiaodebushan; EJ: East Jiaodebushan; X: Xiaogushan; WL: West Longmenshan;
EL: East Longmenshan; M: Molabushan; Y: Yaoquanshan.

In this study, we documented the products of eruptions and morphology of Quaternary volcanoes
in northeast China using satellite remote sensing techniques. The main goal of this study is to
verify how to map geomorphologic features and lava flows of Quaternary volcanoes using ASTER
multispectral data. A field investigation was conducted around the Wudalianchi volcanoes from late
July to early August, 2005 as part of a collaborative project between the Institute of Geology and
Geophysics, Chinese Academy of Sciences and Geological Survey of Japan, The National Institute
of Advanced Industrial Science and Technology. During the field investigation, we observed the
difference of vegetation coverage in the Wudalianchi volcanoes, which can provide useful information
to understand the spectral difference of the lava flows in the Laoheishan and Huoshaoshan lava
flow regions.
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2. Geologic Setting

The Wudalianchi and Changbaishan volcanoes in northeastern China have been widely
studied [18–22]. Previous studies indicated that they are intraplate volcanoes far from the West
Pacific Plate subduction zone [22–24].

The Wudalianchi volcanic cluster is located on Wudalianchi city, about 350 km north of Harbin,
capital of Heilongjiang Province (Figure 1a). The volcanic group covers an area of about 800 km2

and is composed of 14 major volcanic cones (Figure 1b). These lava rocks in the Wudalianchi region
are strong alkaline potassium-rich volcanic rock with an average K (Potassium) content of 5.28% and
average SiO2 content of 50.46%. [17,25].

The K-Ar (Potassium-Argon) dating of Wudalianchi monogenetic volcanic products suggested
three stages of eruptions: Early-middle Pleistocene (circa 1.33 ± 0.08 to 0.8 ± 0.02 Ma), Late Pleistocene
(circa 0.63–0.3 Ma), and historic periods [18,26]. Among the 14 volcanoes in the Wudalianchi volcanic
cluster, the lava flows distributed around Xiaogushan (X), Yaoquanshan (Y), Wohushan (WH), and West
Jiaodebushan (WJ) are alkaline basalt that belongs to the Early-middle Pleistocene; the lava flows
from Molabushan (M), Bijiashan (B), South Gelaqiushan (SG), North Gelaqiushan (NG), Weishan (W),
and East Jiaodebushan (EJ) are alkaline basalt that belongs to the Late Pleistocene [27]. However, it is
still a big debate on the historic volcanic activity. Some researchers indicated that the most recent
major explosive eruption occurred between 1719–1721 AD and formed craters of the Laoheishan (L)
and Huoshaoshan (H) volcanoes [17,28]. Historical local documents suggest that the lava flows from
Laoheishan and Huoshaoshan craters were mainly occurred in 1719–1721 AD and 1776 AD [26,27,29].
Tectonically, the Wudalianchi volcanic cluster is located in the triangular area formed by the three
structural units of the Greater Khingan uplift, the Lesser Khingan uplift and the Songliao faulted
basin. Previous studies suggested that the distribution of 14 volcanoes in the Wudalianchi area is
associated with the Northeast (NE)-striking faults, Northwest (NW)-striking faults and near Eastwest
(EW)-striking faults or fracture zones [30,31]. However, the geological interpretation of ASTER DEM
image (Figure 2) shows that the NE and NW-striking faults are major structure in the Wudalianchi
volcanic field. The most of volcanoes are extending as NE-striking direction (such as L, B, M and WH
in Figure 2). We inferred that these conjugate faults might provide the pathway for magma migration
during the volcanic eruption.

 

Figure 2. Geological sketch showing the relation between tectonic context and volcanism in the
Wudalianchi region. Letters refer to name of volcanic craters are same as Figure 1b.
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Concerning the geodynamics of the formation of the Wudalianchi volcanoes, some studies
suggested that they are the intraplate volcano associated with the westward extending subduction
slab of the West Pacific Plate [22–24]. Based on analysis of the topographic image as well as the
previous data given by seismic evidence [32,33], we have drawn a three-dimensional geodynamic
sketch map using Artificial Intelligence (AI) software, which shows the relationship between the active
intraplate volcanoes in NE China and the deep subduction of the Pacific slab as shown in Figure 3.
This geodynamic sketch map implies that the intraplate volcanoes in the interior of the Asian continent
are not the back-arc volcanoes related to the subducting Pacific slab such as the Japanese Islands,
but the continental volcanoes are likely induced by the deep subduction and dehydration of the west
Pacific stagnant slab, possibly through hot and wet upwelling in the big mantle wedge under the NE
China as suggested by the geophysical studies [34–37].

 

Figure 3. The three-dimensional (3D) geodynamic sketch map showing that the active volcanoes
in Northeastern Asia are induced by the deep subduction of the western Pacific stagnant and
subducting slabs.

The Wudalianchi volcano was successfully selected as one of the UNESCO (United Nations
Educational, Scientific and Cultural Organization) Global Geoparks in 2003. The major reason is that
the lava flow composition of the Wudalianchi volcanic belt is very special and is characterized by
strong alkaline potassium-rich volcanic rock [38]. Its color ratio (40%–55%) is higher than the coarse

110



Remote Sens. 2019, 11, 2663

porphyry and ring rock (35%–20%), while at the same time, it does not contain basic plagioclase,
which basalt should have; thus, it is neither a rough rock nor an alkaline basalt.

Moreover, Laoheishan and Huoshaoshan are the latest volcanoes in the Wudalianchi volcanic
group, whose most recent eruptions occurred in 1719–1721 AD and 1776 AD as recorded by historic
documents. Thus, their lava flows formed by the eruptions are bare, well preserved, and the lava flows
characteristics are clear. As the geomorphologic and lithologic features of the eruptions on Laoheishan
and Huoshaoshan are well preserved, the Wudalianchi volcano has the reputation of “Volcano Natural
Museum” [39,40], which is another important reason for its selection in the UNESCO Global Geoparks.

3. Methodology

Three scenes of relatively cloud-free ASTER data covering the Wudalinchi region were used in
this study. The DEM data, which belongs to the ASTER Level-3A product, were derived from the
ASTER Level-1A data, with a vertical accuracy of 20 m [10,12]. See Table 2 for details. The datasets
used in this study is described in a flowchart (Figure 4).

Table 2. Details of ASTER data.

Obtained Date Central Point Product Level
Vertical Accuracy of

Digital Elevation Model

7 March, 2002 48.87◦N, 126.42◦E orthorectified Level-3A 20 m
6 September, 2002 48.73◦N, 125.82◦E orthorectified Level-3A 20 m

6 April, 2004 48.60◦N, 125.98◦E orthorectified Level-3A 20 m

 

Figure 4. The flowchart of the datasets used in this study.

3.1. The Generation of Contour Image and 3D Perspective View Image

A contour image was derived automatically from ASTER Level-3A DEM data by using ER-Mapper
(Earth Resource-Mapper) software. Three-dimensional (3D) perspective view image was generated
through superimposing a three bands color composite image (the bands 2, 3, and 1 assigned in red,
green, and blue, respectively) on the ASTER DEM data by using the same software.

3.2. Laboratory Measurement for the Emissivity of Lava Fows

The laboratory emissivity of typical lava rocks from the Wudalianchi region were measured by
using portable FTIR (Fourier Transform Infrared Spectrometer) spectrometer (μ-FITR, Model 102)
manufactured by Designs and Prototypes, Ltd., USA, in Nimoiya’s Spectral Lab. of Geological Survey of
Japan. The emissivity measurements of the samples of relatively low temperature (typically < 60 degree
in Celsius) at the natural surfaces are difficult in achieving high S/N (Signal-Noise) ratio, thus,
the measurements were generally made for the polished surfaces of the highly heated samples using
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the plate heating pot in the laboratory. This instrument provides spectral coverage from 2 to 16 μm
with 6 cm−1 spectral resolution (which means band width) [41]. We collected three samples around
Laoheishan and Huoshaoshan; the lithologic characters of these samples are listed in Table 3. As shown
in Figure 5, the emissivity curve of sample WD-2w is displaying as flat one, which is the weathered
surface of lava covered by some dry lichen-a symbiotic complex of algae and fungi [42]. As for the
other samples, the high emissivity is located around ASTER band 10, and low emissivity of these
lavas located around ASTER band 12 as shown in Figure 5. Moreover, the depth of low emissivity
near 9.6 μm for these samples is quite different (such as WD-3c and WD-3w), which indicates that there
is a spectral difference with increase of weathered degree. So far, we can highlight these lava flows
by using Lava Flow Index (LFI) of B10/B12 in order to distinguish whether the lava flows are fresh
one or weathered one covered by dry lichen or low vegetation. This is different from using the Mafic
Index (MI = B12/B13) to extract lithologic information for mafic-ultramafic rocks, as suggested by
Ninomiya et al. [14].

Detailed description of samples WD1, WD2, and WD3 see Table 3.

Table 3. Lithologic characters of samples collected from the Wudalianchi volcanoes.

Sample No. Lithologic Characters Location

WD-1 fresh surface of black lava South part of Huoshaoshan
WD-2c fresh cut surface of lava North part of Laoheishan
WD-2w weathered surface of lava covered by some dry lichen North part of Laoheishan
WD-3c fresh cut surface of lava South part of Laoheishan
WD-3w weathered surface of lava South part of Laoheishan

Figure 5. Emissivity of typical rock samples collected from Wudalianchi.

Furthermore, band ratios of 2/1 and 4/6 in the VNIR and SWIR regions are used to highlight
hematite and altered Al(OH)3 bearing minerals considering that weathered volcanic lavas may contain
Hematite and Al(OH)3. Moreover, the band ratios of B2/B1 for displaying as green could highlight the
area covered by snow and ice, which is helpful to distinguish the lave flows from snow and ice.

4. Results

4.1. Topographic and Geomorphologic Features of Quaternary Volcanoes

The ASTER DEMs image shows that the study area is at an elevation range of 175–578 m above sea
level as shown by elevation bar in Figure 6a. The 14 major conical volcanic craters are arranged as three
sub-parallel zones, extending NE direction, which is similar to the direction of regional fault system [19]
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and thus, imply that they are associated with NE-striking normal fault system. The east volcanic
zone consists of three shield volcanoes with six conical craters (Molabushan, East Longmenshan,
West Longmenshan, Xiaogushan, East Jiaodebushan, West Jiaodebushan), the central zone composed
of four shield volcanoes (Weishan, Laoheishan, Huoshaoshan, Wohushan) and two isolated cones
(Bijiashan, Yaoquanshan), and the west zone consists of a large shield volcano (North Gelaqiushan,
South Gelaqiushan) (Figure 7a). A shield volcano always has a low slope, generally less than 5◦,
while the diameter of the volcanic pedestal is large, generally more than 3 km. While the cone volcano
is mainly composed of basalt and the volcanic cone has a relative height difference of 50 m to 750 m.
The shape of cone volcano is just like a cone [43].

A contour image can highlight topographic features of these Quaternary volcanoes (Figures 6b and 7).

Figure 6. (a) ASTER DEM image, assigned a step color mode, showing the 14 cone-shaped volcanic
craters in the Wudalianchi region. The DEM data obtained on 7 March, 2002. Letters refer to name of
volcanic craters are same as Figure 1b. (b) Contour image derived from ASTER DEM data showing
topographic features of the Laoheishan and Huoshaoshan volcanoes. Contour interval is 20 m,
and summits of these craters are indicated by five-shaped stars.
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Figure 7. Enlarged contour image derived from ASTER data showing the topographic features of
volcanic craters in the Wudalianchi volcanic zone. Letters refer to name of volcanic craters are same
as Figure 1b, and contour interval is 20 m. (a) The east Wudalianchi volcanic zone. (b) The west
Wudalianchi volcanic zone.

From Figures 6a and 7, Laoheishan volcano is located on southeast and it is about 505 m in
height. Meanwhile, there is a deep crater with an elevation of 385 m to west of the summit. However,
the Huoshaoshan volcano appears as a northward-facing horseshoe-shaped volcanic landform with
two summits about 355 m in height (as indicated by five-shaped stars in Figure 6b). There are four
striking shield volcanoes as shown in Figure 7a. The most remarkable shield volcano with a diameter
of 2 km is located in middle of image, which consists of three craters (EL, WL, and X in Figure 7a). Two
of them (WL and EL) appear as one pair of nearly eastwest extending glasses with a diameter of circa
400 m in the middle eastern part, and the crater of Xiaogushan (X in Figure 7a) in the south flank of
EL crater appears as a northeastward-facing horseshoe shape with a diameter of 200 m. The highest
elevations of these three carters are 565 m, 570 m, and 445 m (WL, EL, and X, respectively, in Figure 7a).
In the north of this large shield volcanic landform, there is a ring shield volcano with a diameter of
about 1000 m and summit height of 505 m (M in Figure 7a). The shield volcano in the southwest
part of image consists of two craters with summits of 515 m and 465 m, respectively (EJ and WJ in
Figure 7a). Another shield volcano has a diameter of 1250 m and a summit of 495 m, appearing in the
top-left of image (W in Figure 7a). Figure 7b shows that an NNE striking shield landform with a pair of
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cones distributes along the western volcanic zone. The southern zone (SG) exhibits a westward-facing
horseshoe shape and the northern zone (NG) exhibits a circular shape with a diameter of 500 m and
220 m, respectively. The summits are about 560 m and 525 m above sea level (SG and NG in Figure 7b)
according to the ASTER DEMs contour image.

Three-dimensional (3D) perspective view image can provide an excellent view for geomorphologic
features of geologic targets from different view directions [44]. Figure 8 represents an ASTER
3D perspective view image of the Laoheishan and Huoshaoshan volcanoes and adjacent region,
which exhibits geomorphologic features of these historic volcanoes clearly (Figure 8).

Figure 8. ASTER 3D perspective view image (taken on 6 Sepember, 2002, with a three-time vertical
exaggeration), showing lava flow and morphology of the Laoheishan and Huoshaoshan volcanoes.
Three bands of ASTER VNIR data used to generate false color composite image (bands 2, 3, and 1
assigned in red, green, and blue, respectively). Green and dark blue color patterns represent vegetation
and water body, and the five lakes are marked by numbers 1 to 5. Southward-looking view. The red
and cyan arrow marks represent two different types of flow directions of lavas from Laoheishan crater
and the white arrow marks represent the flow direction of lavas from Huoshaoshan crater.

Laoheishan crater covered with green vegetation exhibits a cone and locates in the central of the
Three-dimensional (3D) perspective view image (Figure 8). About 2.5 km northeast of Laoheishan,
Huoshaoshan crater shows a much more broken cone with a half-size of Laoheishan crater (Figure 8).
Another geomorphologic feature is lava flows from these two historic volcanoes as shown in Figure 8.
Based on different color tones and texture characteristics displayed on remote sensing images, different
lavas of Laoheishan and Huoshaoshan can be distinguished. Lava flows from Laoheishan crater can be
classified into two types: one is the reddish grey lava exhibiting a radial pattern and flowing as far as
15 km (indicated by red arrows in Figure 8), and the other is the darkish grey to black lava distributed
around the crater (indicated by blue arrows in Figure 8). Black lava from the Huoshaoshan crater
mainly flowed northward and southward (indicated by white arrows in Figure 8). Flow directions
of lavas can be distinguished clearly according to the 3D perspective view image combined with the
field observation, although over 280 years has passed. The 3D perspective view image also shows that
several lakes distribute around the north and east part of these two volcanoes. The Wudalianchi is
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named after the Five Large Connected Pools, encircling Laoheishan and Huoshaoshan, as shown in
Figure 8. The lakes were formed after the historic eruptions, when molten lava flows, pouring down
from the crater, partially blocked the Baihe River.

4.2. Lithologic Mapping of Lava Products and Their Relative Age Dating

A false color composite image of B10/ B12, B2/B1, and B4/B6, assigned as R, G, and B, was derived
to enhance subtle spectral change of products from lava flows in different stage of eruptions, as shown
in Figure 9. Figure 9 shows that the volcanic lava flows have quite different color patterns (purplish
red to bright red), which may represent lava flows formed in different eruptive stages as indicated
by Kahle et al. [8] for Hawaiin lava flows by using airborne TIMS (Thermal Infrared Multispectral
Scanner) images. In the Wudalianchi region, the lava rocks are strong alkaline potassium-rich volcanic
rock with an average K (Potassium) content of 5.28% and average SiO2 content of 50.46%. The mineral
composition has not big difference. Therefore, we consider that the different eruptive stages are mainly
responsible for these color patterns. During the field investigation, we had observed the difference in
vegetation coverage, which can also affect these color patterns in the Wudalianchi area.

 
Figure 9. ASTER composite image (taken on 7 March, 2002), band ratios of 10/12, 2/1, and 4/6 displayed
as red, green, and blue, respectively, showing the lithologic units in the Wudalianchi region. Letters
refer to volcanic craters are same as Figure 1b. Letters “a”, “b”, “c”, and “d” refer to relative dating
for Quaternary lava flows. “WD1”, “WD2”, “WD3” refer to the location of samples. “K1” shows the
Cretaceous sandstones and argillites. Bright green color patterns represent snow and ice. The five lakes
of Wudalianchi are marked by numbers 1 to 5.

According to the results shown in Figure 9, the Wudalianchi Quaternary lava flows can be divided
into at least four stages. Compared with the published maps of these flows in [27], the four stages
are: (1) historic lava flows from Laoheishan and Huoshaoshan craters showing a bright red pattern
(indicated by letter a in Figure 9), which formed by the most recent eruptions in 1719–1721 AD and
1776 AD as recorded by historic documents [17,28]; (2) lava flows distributed around the west flank of
West Longmenshan (WL) and north flank of Molabushan showing a reddish pattern, which represent
younger volcanoes (indicated by letter b in Figure 9) and belong to the Holocene [27]; (3) lava flows
showing a pink pattern in Figure 9 (indicated by letter c), which may represent the product of third
stage abruptions, which is the alkaline basalt belonging to the Late Pleistocene [27]; (4) the purplish
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blue pattern shows the products from the oldest eruption in the Wudalianchi region (indicated by letter
d in Figure 9), which is the alkaline basalt belonging to the Early-middle Pleistocene [27]. In addition,
the regions with a purplish red pattern show the Cretaceous sandstones and argillites as observed
in the field (indicated by the letter K1 in Figure 9). Our results are consistent with the regional
geological map [27], except that they suggested the lava flows among Molabushan (M) belong to the
Late Pleistocene, while our results demonstrated that they are at the same stage with the lava flows
distributed around west flank of West Longmenshan (WL), which belong to the Holocene.

The enlarged ASTER image (Figure 10) displays more detailed lithologic features of the Laoheishan
and Huoshaoshan volcanoes. Although the lava flows around the Laoheishan and Huoshaoshan
volcanoes belong to the same stage, their color tones still have subtle differences.

 
Figure 10. Enlarged ASTER composite image (taken on 6 April, 2004), band ratios of 10/12, 2/1, and 4/6
displayed as red, green, and blue, respectively, showing the detailed lithologic units of historical lava
flows. Letters refer to volcanic craters are same as Figure 1b. The five lakes of Wudalianchi are marked
by numbers 1 to 5.

5. Discussion

The quality of the available digital elevation models (DEMs) is crucial for the mapping topographic
and geomorphologic features of Quaternary volcanoes. ASTER stereo imaging system can provide high
quality DEMs data as shown in Figures 6 and 7. Contour images (Figures 6b and 7) in the Wudalianchi
volcanic region demonstrate that ASTER DEMs data have a high vertical accuracy of 20 m without
ground control points [12]. It can provide detailed topographic and geomorphologic features of the
volcanic landforms with a low relief contrast (50–160 m) in the Wudalianchi region. The resolution of
ASTER VNIR data up to 15 m is perfectly suited for large overviews of volcanoes. 3D perspective view
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image generated from ASTER VNIR and DEMs data provides excellent views for geomorphologic
feature of the volcanoes (Figure 8).

According to the ASTER DEMs (Figures 2, 6 and 7), the most of volcanoes are distributed along
the NE-trending faults. We inferred that these conjugate faults might provide the pathway for magma
migration during the volcanic eruption [19].

As shown in Figure 9, lava flows from different eruption stages show different color patterns in
ASTER multispectral ratio images. Interpretations of these images suggest that at least four stages of
volcanic eruptions occurred during the Quaternary. This interpretation for relative dating has a good
agreement with geologic mapping given by [27], except for the different judgments of what stage that
the lava flows around Molabushan (M) should belong to. However, early studies suggested that there
were three stages of lava flows: Early-middle Pleistocene (circa 1.33 ± 0.08 to 0.8 ± 0.02 Ma (million
years), Late Pleistocene (circa 0.63–0.3 Ma), and historic periods [18,26]. Therefore, it is necessary to
remeasure age for the lava flows in the Wudalianchi volcanic results revealed by this study.

Another point that needs to be addressed is the subtle differences of lava flows’ color tones among
the Laoheishan and Huoshaoshan volcanoes. Concerning the different color pattern in ASTER image
of these lava flows represent the TIR spectral differences, we suggest that at least two different aspects
may have been responsible for subtle spectral differences:

(1) The effects of terrestrial weathering of lava flows. There is a spectral difference with increase
of weathered degree as shown in Figure 5 and Table 3. Similar results also revealed that the
weathering of Hawaiian basalts has caused their spectral changes [8,9].

(2) The presence of vegetation on lava flows. Spectral measurement shows that the value of emissivity
in band 12 increases comparing weathered surface covered by the lichen (WD-2w) with cut surface
of same sample (WD-2c in Figure 5). Field investigation shows that some lava flows are indeed
covered by dry lichen or low brushes although vegetation is sparsely in the Wudalianchi volcanic
region (Figure 11).

  
(a) (b) 

Figure 11. Field photographs (taken on August 2005). (a) The crater of the Laoheishan and lava flows
from 1719–1721 AD eruptions. Northward-looking. (b) The lava flows of 1719–1721 AD eruptions
from the Huoshaoshan volcano. The crater is the Huoshaoshan in the north part. Northeast-looking.
Note lava flows covered by sparse vegetation.

6. Conclusions

ASTER DEMs data can provide detailed topographic features for describing volcanic landforms.
The resolution of ASTER VNIR data up to 15 m is perfectly suited for large overviews of volcanoes.
In this paper, through a series of processing of ASTER images and field investigation, it is implied that
the Wudalianchi volcanoes are extending in a NE direction, which is likely influenced by the regional
conjugate faults.
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ASTER 3D perspective view images can provide excellent view for geomorphologic features of
volcanoes, and thus, ASTER stereo imaging gives geoscientists a comprehensive tool for generating high
quality topographic images of Quaternary volcanoes. Among the 14 volcanic craters in Wudalianchi
region, the molten lava flows of Laoheishan and Huoshaoshan volcanoes partially blocked the Baihe
River, which forms the Five Large Connected Pools, known as the Wudalianchi Lake.

Lithologic mapping indicates that at least four stages of volcanic eruptions are revealed in the
Wudalianchi Quaternary volcano cluster. The lava flows from different stages of Quaternary volcanic
eruptions are mapped successfully in the Wudalianchi volcanic cluster. These results demonstrate that
ASTER multispectral data, particularly, the Lava Flow Index (LFI) (LFI = B10/B12) imagery, can be
used to map subtle spectral variations caused by the surface weathering. Mapping of these lava flows
on the basis of spectral properties may allow us to discriminate the relative age of the lava units in the
sparsely vegetated region with arid and semi-arid climate conditions on the earth.

Although this study successfully distinguished four different formation stages of Wudalianchi
volcanic lavas, it is still necessary to remeasure age and mineral component for the lava flows in the
future research, to figure out what the major reason for these lava flows is with different color patterns
in the ASTER image, which represent spectral differences.

In general, ASTER covers a wide spectral region with 14 bands from visible to thermal infrared
with high spatial, spectral, and radiometric resolution. Therefore, ASTER can provide an effective
approach for mapping the products from late Quaternary volcanoes.
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Abstract: The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), which
is a multiband pushbroom sensor suite onboard Terra, has successfully provided valuable multiband
images for approximately 20 years since Terra’s launch in 1999. Since the launch, sensitivity
degradations in ASTER’s visible and near infrared (VNIR) and thermal infrared (TIR) bands have
been monitored and corrected with various calibration methods. However, a unignorable discrepancy
between different calibration methods has been confirmed for the VNIR bands that should be assessed
with another reliable calibration method. In April 2003 and August 2017, ASTER observed the Moon
(and deepspace) for conducting a radiometric calibration (called as lunar calibration), which can
measure the temporal variation in the sensor sensitivity of the VNIR bands enough accurately (better
than 1%). From the lunar calibration, 3–6% sensitivity degradations were confirmed in the VNIR
bands from 2003 to 2017. Since the measured degradations from the other methods showed different
trends from the lunar calibration, the lunar calibration suggests a further improvement is needed for
the VNIR calibration. Sensitivity degradations in the TIR bands were also confirmed by monitoring
the variation in the number of saturated pixels, which were qualitatively consistent with the onboard
and vicarious calibrations.

Keywords: ASTER; lunar calibration; radiometric calibration; VNIR; TIR

1. Introduction

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), which is a
multiband-sensor suite composed of visible and near infrared (VNIR), shortwave infrared (SWIR), and
thermal infrared (TIR) sensors onboard Terra [1], has successfully operated for 20 years since Terra’s
launch in 1999, and ASTER has provided numerous multiband images for those 20 years [2]. Similar
to other spaceborne sensors, accurate radiometric calibration has been a center issue for the ASTER
mission to provide reliable datasets. During the mission, characteristics of the radiometric performance
of ASTER have been continuously monitored with several calibration methods, such as onboard
calibration [3], vicarious calibration [4–6] and cross calibration [7,8], and sensitivity degradations in
the VNIR, SWIR, and TIR have been confirmed. Since the measurement of the sensitivity degradations
is used for correcting the observed brightness in ASTER products as radiometric correction coefficients
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(RCC), the accurate measurement for the degradation is important to maintain the reliability of the
ASTER products. The latest version of the RCC is version 4, which has been used since February 2014
for Level 1A processing, and the RCC was developed based on both onboard and vicarious calibration
methods [9].

Due to the unresolved uncertainty in each calibration method, however, it has been confirmed
there are large discrepancies among the results from the calibration methods for the VNIR bands [10].
For instance, the onboard calibration method measured a 10% larger sensitivity degradation for
the shortest-wavelength band of the VNIR bands than that from the vicarious calibration method
in 2015 [10]. Because the current RCC for the VNIR products uses a degradation trend based on
both onboard and vicarious calibration methods, an additional calibration method for assessing the
inconsistency between them has been expected to improve the RCC [10].

For the visible and near-infrared wavelength regions, lunar calibration has become a common
calibration method and a standard calibration approach in an international satellite community [11],
because it can accurately evaluate a temporal (i.e., relative) variation in a senor’s sensitivity (on the
order of 0.1%) [12–14]. Thus it is good for stability monitoring of a sensor [15], although the absolute
accuracy of the lunar calibration method has been considered insufficient yet (5–10%) [16]. The better
accuracy of the lunar calibration method for the relative degradation can be used for assessing the
validity of onboard and vicarious calibration methods for the VNIR bands.

The lunar calibration method can be conducted through a comparison of the observed Moon
brightness with the expected Moon brightness derived from lunar brightness models, such as a model
developed based on radiance images acquired by the ground-based RObotic Lunar Observatory
(ROLO) [17], and a model developed from observations by Spectral Profiler (SP) onboard SELENE,
which was a Japanese lunar exploration orbiter. SP observed whole lunar surfaces with various
illumination conditions without any significant degradation [18,19]. The ROLO models allows to
simulate irradiance of the Moon observed from the Earth or from a low Earth orbit [17], and the SP
model allows the simulate of any observation of the Moon with any observation geometry [20].

In addition to VNIR calibration, the Moon can be used to confirm the sensitivity degradation
of the TIR bands by monitoring variation in the number of saturated pixels in a TIR image when
the TIR sensor observes the Moon. This is because if sensitivity degradation of a TIR band occurs
(i.e., the dynamic range of the TIR band is broadened) then the TIR band can capture areas of higher
temperature without saturation. In 2003, because of the high temperature of the lunar surface around
the sub-solar point (more than 120 ◦C [21]), the TIR images of the Moon had many saturated pixels.
On the other hand, based on the degradation trend in the TIR bands [6], it is expected that the TIR
sensor captured images of the Moon with a much smaller number of saturated pixels in 2017 if the TIR
observes the Moon with a lunar surface temperature profile similar to that in 2003. Therefore, if we see
a smaller number of saturated pixels in TIR images in 2017 as we expected, it supports the sensitivity
degradation of the TIR bands, at least qualitatively.

In this study, we present a lunar calibration result for ASTER based on two lunar observations
conducted in 2003 and 2017. For the VNIR bands, we will compare the observed lunar brightness with
the expected lunar brightness from the lunar surface reflectance models (the SP and ROLO models).
For the TIR bands, we will confirm the distribution of saturated pixels in 2003 and 2017. Each lunar
calibration result will be used to assess validity of the results from other calibration approaches.

2. Lunar Observations and Data

Lunar calibration has a good ability for measuring relative variations in the sensor sensitivity
of a sensor with a small uncertainty (the order of 0.1%) [13]. To measure the relative variation in a
sensor sensitivity, at least two lunar observations are required. ASTER first observed the Moon in
April 2003 with special pitch maneuver of Terra, which was required to observe the Moon with sensors
that have narrow fields of view, especially for the ASTER VNIR, SWIR and TIR. Fourteen years later,
in August 2017, ASTER successfully observed the Moon again. Therefore, we can apply the lunar
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calibration method for ASTER by using the two observations of the Moon in 2003 and 2017. Because
the Moon is an irregular observation target for Terra, the lunar observation required careful discussion
and well-prepared operations of the pitch maneuver in terms of reducing any operational risk. This is
a part of reasons we needed the 14 years between the two lunar observations. In this study, we focused
on the ASTER VNIR and TIR sensors that observed the Moon in both 2003 and 2017 (the SWIR sensor
observed the Moon only in 2003 due to the rise in temperature of the detectors since May 2008, which
has resulted in saturation and severe striping [22]).

Both the VNIR and the TIR sensors are multi band sensors; the VNIR sensor has three observation
bands, and the TIR sensor has five bands. The specifications of both sensors are listed in Table 1.
Because of the high spatial resolution of ASTER images, the Moon can be resolved with several
hundred of pixels by the VNIR bands and ~100 pixels by the TIR bands. Note that to construct pairs
of stereo images, the VNIR sensor is composed of two telescopes: a nadir-looking telescope and a
backward-looking direction. The nadir-looking telescope has three bands (Band 1, Band2, and Band
3N), and the backward-looking telescope has one band (Band 3B) whose wavelength range is the same
as that of Band 3N.

Table 1. Specifications of visible and near infrared (VNIR) and thermal infrared (TIR) bands of
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER).

VNIR TIR

Wavelengths
Band 1: 520–600 nm
Band 2 630–690 nm

Band 3N/3B: 760–860 nm

Band 10: 8125–8475 nm
Band 11: 8475–8825 nm
Band 12: 8925–9275 nm

Band 13: 10250–10950 nm
Band 14: 10950–11650 nm

Ground sampling distance 15 m 90 m
Swath width 60 km 60 km

Bit depth 8 bits 12 bits
Spatial resolution for the Moon

(from a 384,400 km distance) 8.2 km 25 km

In Table 2, the geometries of ASTER’s observations of the Moon in 2003 and 2017 are summarized.
Each parameter is required for using both the ROLO and SP models. Although the lunar surface
condition is photometrically stable (e.g., changes that influence lunar irradiance at the 1% level are
expected at intervals of the order of 108 years [23]), it has been known that different observation
geometries may cause a calibration uncertainty of up to 1% due to the complicated surface features
of the Moon [17]. To reduce this uncertainty, we choose the observation date of 2017 when ASTER
could observe the Moon with an observation geometry similar to that from 2003. In both observations,
deepspace was also in ASTER’s field of view and was observed before and after capturing the Moon,
which can be used for assessing the bias level of the observation.

Table 2. Observation geometries in the ASTER lunar observations on 14 April 2003 and 5 August 2017.

14 April 2003 5 August 2017

Phase angle −27.7◦ −20.3◦
Sub solar latitude −0.9◦ −0.3◦

Sub solar longitude 22.1◦ 17.5◦
Sub observer latitude −6.8◦ −4.2◦

Sub observer longitude −5.1◦ −2.6◦
Sub observer local time 10.2 h 10.7 h

Distance: Sun-Moon 1.005 AU 1.017 AU
Distance: Moon-Terra 359,021 km 394,856 km
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2.1. Lunar Images Taken by the Visible and Near Infrared Bands

At the lunar observations, Terra changed its attitude with pitch maneuver from its nominal one
to the attitude in which sensors onboard Terra could see the deepspace and the Moon. According to
the pitch rotation, the VNIR and TIR scanned the Moon almost from north to south. To avoid the
“undersampling” condition in which ASTER may miss observing some regions of the lunar surface,
ASTER observed the Moon at a slower rotation speed for Terra than usual, so that the same region
of the Moon was observed several times (called the “oversampling” condition). Figure 1 shows an
example of lunar images obtained by the VNIR bands whose oversampling effect was not corrected.
Due to the oversampling effect, the silhouette of the observed Moon was an ellipse, whereas the actual
shape of the Moon is circle.

Figure 1. Images of the Moon obtained by ASTER VNIR Band 1 on 14 April 2003 and on 5 August 2017.
Because the observation was conducted under oversampling conditions, the Moon’s shape is elongated
in the image frame.

The factor of the oversampling effect can be measured from information on the attitude control of
a satellite in an observation of the Moon or can be measured with an image-processing method, such
as fitting an ellipse to the elongated Moon (Appendix A). By adopting the ellipse-fitting method based
on [24], we found that the oversampling factors were 4.57 in 2003 and 4.58 in 2017 whose uncertainties
were less than 0.03 measured from residuals of the fitting, and we confirmed that these values were
consistent with information on the attitude control provided by the Terra Flight Dynamics Team,
4.55 measured from the planned pitch maneuver rate of 0.122 degree s−1 [25] (Appendix A).

2.2. Lunar Images Taken by the Thermal Infrarred Bands

At the same time as the VNIR observations, the TIR sensor observed the Moon with Bands 10
to 14 in both 2003 and 2017. Figure 2 shows examples of the lunar images taken by the TIR sensor
in 2003 and 2017 with Band 10. Since the TIR sensor is a whisk-broom sensor with 10 detectors for
each band and the lunar observations were conducted under oversampling conditions same as the
VNIR, the Moon was observed as a discrete shape, though the TIR sensor observed the whole lunar
disk without any observation gaps (Appendix A). In 2003, due to the high temperature of the lunar
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surface around the sub-solar point (more than 120 ◦C), many pixels around the subsolar location
were saturated. This saturation occurred because the specifications of the TIR bands were adjusted
to monitor the temperature profile of the terrestrial surface. On the other hand, there were fewer
saturated pixels in the images from 2017 and the saturation level was higher in 2017 than in 2003,
which should reflect the sensitivity degradation over the 14 years. The validity of the saturation level
is discussed in Section 4.

Figure 2. Images of the Moon taken by the TIR Band 10 on (a) 14 April 2003 and (b) 5 August 2017,
whose oversampling effects were not corrected. Black pixels in the Moon disks indicate saturation due
to the high temperature of the Moon that exceeds the observable range of the band.

3. Lunar Calibration for the Visible and Near Infrared Bands: Evaluating the Sensitivity Degradation

Because the brightness of the Moon depends on several geometric parameters (such as the distance
between the Sun and the Moon, distance between the Moon and an observer, the phase angle between
the Sun, the Moon, and an observer), it is difficult to investigate the VNIR’s sensitivity variation simply
by comparing the lunar brightness observed at different times. In the lunar calibration approach,
to address the dependence of the lunar brightness on geometric parameters, a simulation of the lunar
brightness that can reproduce the geometric dependence is required. Then, by comparing the ratio
between the observed and the simulated lunar brightness (the former is affected by the sensor sensitivity
degradation and the latter is not affected), we can investigate how much the sensor experiences a
sensitivity degradation.

In addition to simulating the lunar brightness, several basic image-processing procedures are
also required to achieve better accuracy in measuring the sensitivity variation. To convert the digital
numbers in the image of the Moon, which are the original output from the VNIR sensor, to a physical
quantity, i.e., the radiance (W m−2 sr−1 μm−1), we used the latest version (version 4) of the RCC
that was distributed by the ASTER Science Team and Japan Space Systems [22]. The RCC contains
parameters for flat-fielding, removing bias, and correcting temporal variations in the sensor sensitivities
of the VNIR bands, which are derived from ASTER’s onboard calibration and a vicarious calibration.
Note that in this study, the correction of the temporal variations in the sensitivities of the VNIR bands
was not performed for investigating the variations in the sensitivity by lunar calibration.
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In this section, we will first show the additional correction for the remaining bias that was found
through analyzing the deepspace region, and then we will show the lunar calibration result based on
the lunar reflectance models (the SP and ROLO models).

3.1. Bias Reduction by Deepspace Observations

Ideally, if no energy is input into a detector, no digital count is expected. However, due to dark
currents, stray light, and other reasons, offset counts are usually observed, which may affect the
uncertainty in the radiometric measurements of a target. Therefore, the temporal variations in the
offset levels in the VNIR bands are monitored with an onboard calibration system and night-side
observations [3].

Deepspace is an ideal target to validate offset monitoring because a detector receives no energy
input from deepspace. Before and after scanning the Moon, ASTER also observed deepspace with
several thousand lines. Figure 3 shows an example of averaged offsets in deepspace regions that
were measured from a lunar and deepspace image taken by VNIR Band 1 in 2003. Small but nonzero
offsets remained in all bands in both 2003 and 2017, even after the expected offsets based on the RCC
were subtracted from the images. Even pixels and odd pixels have different amplification circuits,
and the difference may affect profiles of the offset values for even and odd pixels [26]. Since the
remaining offsets may affect the lunar calibration accuracy for which we assumed no remaining offset,
we subtracted the offset at each pixel and successfully reduced the offsets to less than 10−3 W m−2 sr−1

μm−1 that can be ignored when measuring the lunar brightness.

 
Figure 3. (a) An example of offset patterns observed in the VNIR images (Band 1, 2003). The brightness
level was stretched to enhance the offset. (b) Measured offsets for each pixel obtained from averaging
the apparent brightness in deepspace regions (indicated by the rectangular regions shown in (a)).
“Even” and “Odd” represent offset values for even pixels and odd pixels, respectively.

3.2. Sensitivity Degradation from 2003 to 2017

Because the appearance of the Moon is different under different observation conditions (phase
angles and libration conditions), it is difficult to evaluate the sensor sensitivity degradation by directly
comparing the lunar brightness in different observations. Instead, in the lunar calibration method,
the sensor sensitivity degradation is investigated by monitoring the variation in the ratio between
the observed and expected brightness levels of the Moon. To evaluate the expected lunar brightness,
we used two different lunar surface reflectance models, the SP model [19,20] and the ROLO model [17],
to validate the consistency in the lunar calibration result.

The SP model is a map-base lunar surface reflectance model with a resolution of 0.5◦ × 0.5◦ that covers
the whole lunar surface. Each grid in the SP model has hyper-spectral radiance factors that correspond
to standardized lunar surface reflectance with a specified observation geometry (incident angle = 30◦,
emission angle = 0◦, and phase angle = 30◦). The wavelength coverage of the SP model is 512–1650 nm
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with 6–8 nm spectral intervals, which covers the wavelengths of the VNIR bands. In addition, the
photometric dependence of the surface reflectance on incident, emission, and phase angles was also
modeled in the SP model [19]. By utilizing the reflectance map and the modeled photometric dependence,
we can simulate the lunar brightness as an image with any observation geometry [20]. On the other hand,
the ROLO model provides an expected lunar irradiance that corresponds to integrated brightness over
the whole lunar disk in an observed image. By modeling the dependence of disk-equivalent reflectance of
the Moon on observation geometries as listed in Table 1, the ROLO model allows to simulate the lunar
irradiance observed from the Earth or from a low-Earth orbit [17].

Figure 4a shows examples of the observed lunar images in 2003 and 2017 with VNIR Band 1,
whose oversampling effects were corrected (Appendix B), and Figure 4b shows their SP simulations.
Both the observed and simulated images were sufficiently similar (correlation coefficients > 0.99),
which enables a pixel-by-pixel comparison between the observed and simulated lunar images [20].

 

Figure 4. (a) Observed images of the Moon by VNIR Band 1 (520–600 nm) on 14 April 2003 and 5 August
2017 whose oversampling effects were corrected, whereas the effects from the sensor sensitivity degradation
were not corrected. (b) Simulated images of the Moon for the two observations using the SP model.

Figure 5 shows the brightness ratios in 2003 and 2017 for Band 1 derived from the observed and
simulated images of the Moon shown in Figure 4. As in Figure 5, the brightness ratio in 2017 was
smaller than that in 2003 for the whole luanr disk, indicating that VNIR Band 1 experienced a sensitivity
degradation during the 14 years. This tendency was the same in other bands. The amount of sensitivity
degradation from 2003 to 2017 (i.e., the relative degradation) from the SP model can be measured by

r2003→2017 =

(
Iobs
Isim

)
2017

/
(

Iobs
Isim

)
2003

, (1)
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where Iobs represents the observed brightness, and Isim represents the simulated brightness at each
observation. The overbars in (1) indicate averaging over the region we used (incident angle < 60◦, and
emission angle < 45◦). Similarly, the degradation can be measured from the ROLO model by using the
total irradiance of the Moon as

r2003→2017 =

(
Irrobs

IrrROLO

)
2017

/
(

Irrobs
IrrROLO

)
2003

, (2)

where Irrobs is the observed irradiance and IrrROLO is an expected irradiance of the Moon with the
ROLO model (Appendix C).

Figure 5. Brightness ratios for the observed and simulated brightness of the Moon for Band 1 in (a) 2003
and (b) 2017. The regions surrounded by solid black lines (incident angle < 60◦, emission angle < 45◦)
were used for evaluating the sensitivity degradation.

Note that the reason why the lunar disk size in 2003 was larger than that in 2017 is that the
distances to the Moon at the lunar observation in 2003 was 10% shorter than that in 2017 (see Table 2).
Evaluations from both the ROLO and SP models are not affected by the distance variation, because the
ROLO model includes a distance correction, whereas the SP models simulates a lunar image with a
consideration of the distance.

Table 3 shows the sensor sensitivity degradations observed in VNIR Bands 1, 2, 3N, and 3B from
2003 to 2017 measured from the lunar calibration based on the SP and ROLO models. Note that
following [20], only the limited regions (incident angle < 60◦ and emission angle < 45◦) in the lunar
disks were used for lunar calibration with the SP model, where the SP model provides valid brightness
values [19]. For comparing observations with simulations from the ROLO model, which simulates the
irradiance of the Moon, we integrated the observed radiance of whole lunar-disk pixels in the VNIR
images to measure the irradiance of the Moon (see Appendix C).

Table 3. Percentages of the sensor sensitivity degradation of the ASTER/VNIR bands from 2003 to 2017
measured from the lunar calibration based on Spectral Profiler (SP) and RObotic Lunar Observatory (ROLO)
models. SP model (nominal) indicates the lunar calibration results using a limited region of the lunar disk
according to the recommendation of [19], and SP model (whole Moon) indicates using the whole lunar disk.

Calibration Methods ROLO Model
SP Model
(Nominal)

SP Model (Whole Moon)

Band 1 3.0% 3.1% 3.6%
Band 2 5.4% 5.2% 5.6%

Band 3N 6.3% 5.8% 6.3%
Band 3B 3.0% 3.2% 3.9%

129



Remote Sens. 2019, 11, 2712

Considering that the error ranges in lunar calibration can be up to 1% from the discussion in [16],
the lunar calibration results from SP and ROLO models were consistent with each other for all bands
within the error range. Since the two models were developed independently, the consistency between the
two models indicates the validity of the lunar calibration results. The lunar calibration results suggested
that the VNIR bands experienced the sensitivity degradations of three to six percent from 2003 to 2017.

Although the SP model is expected not to be accurate at an observation condition with large incident
and emission angles [19], it is worth to investigate how the result from the SP model changes when we use
the whole lunar disk that includes both large incident and emission angle conditions to understand the
performance of the SP model more. A planetary exploration mission, Hayabusa 2, conducted the lunar
calibration with such a severe condition in which it had to use the whole lunar disk because of the small
disk size of the Moon [27,28], although only the SP model was applicable because Hayabusa 2 observed
the far-side of the Moon. We confirmed that the results from using the whole lunar disk provided basically
lager degradation values, but the difference was only 1% from the results of the SP model (nominal case)
and the ROLO model (Table 3). In addition, because an image registration technique is performed for
simulation of the lunar image with the SP model [20], the accuracy of the lunar calibration with the SP
model should not be sensitive to the accuracy of the oversampling factor. Indeed, even when we used a
wrong oversampling factor (we tested with the factor of 4.2), we confirmed the measured degradation for
the VNIR Band 1 from 2003 to 2017 was 3.1%, which was the same as the degradation when we used the
correct oversampling factor. The robustness of the SP model against the accuracy of the oversampling
factor should be worth to be investigated in future studies.

Finally, we confirmed the linearity of the VNIR bands by comparing the simulated and observed
lunar brightness in 2003 and 2017 (Figure 6 for Band 1). In both years, the brightness distributions
had clear linear relationship in all bands as in Figure 6, indicating no significant linearity variation
happened in the VNIR bands.

Figure 6. Comparison of simulated and observed radiance for Band 1 in (a) 2003 and (b) 2017.
The simulated radiance was measured from the SP model. The gray scale represents the normalized
frequency, and the gray line represents a line with a slope of the mean ratio between simulated and
observed brightness in each plot.

4. Lunar Calibration for the Thermal Infrared Bands: Validation of the Measured Sensitivity
Degradation

For the TIR bands, the amount of sensitivity degradation has been validated within 1 K uncertainty
by onboard calibration and vicarious calibration, and both methods have shown consistent calibration
results with each other since Terra’s launch [6]. Based on the calibration, variation in the saturation
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levels can be expected in each band for 2003 and 2017. Considering that the highest temperature on the
lunar surface can exceed 120 ◦C [21], there should be many saturated pixels in TIR images, especially
in Band 10 in 2003 (Figure 7). In Figure 7, the saturation temperature was determined as the brightness
temperature converted from the highest unsaturated digital counts of the TIR with the on-orbit
calibration coefficients at each observation, thought the temperature could be an approximation value
because 120 ◦C is out of the calibration range for the TIR [6].

Figure 7. Expected saturation brightness temperature for each detector of each TIR band in 2003 (gray
dots) and in 2017 (black dots). The higher saturated brightness temperatures in 2017 are due to the TIR
sensor’s sensitivity degradation that caused a wider dynamic range in the sensor. Note that the surface
temperature of the Moon can exceed 120 ◦C (dashed line).

On the other hand, it is expected that the TIR sensor could observe the Moon surface with a
smaller number of saturated pixels in 2017 even with Band 10. For this expectation, we assumed the
temperature profile at the observation in 2017 was similar to that in 2003 at least around the sub-solar
point, because the lunar surface has a good repeatability of the surface temperature in terms of the
solar elevation [21] due to lack of atmosphere and water and the slow rotation speed of the Moon, and
the observations in 2003 and 2017 were conducted with almost the same solar distance and the similar
illumination and viewing conditions (Table 2).

Although it is difficult to determine the TIR’s sensitivity degradation quantitatively with only the
Moon due to the lack of a published surface brightness model in the TIR range, the degradation can
be qualitatively confirmed by monitoring the variations in the saturation levels and the number of
saturated pixels in the TIR images from 2003 to 2017.

Figure 8 shows sets of the TIR images of the Moon from 2003 and 2017 whose oversampling
effects were corrected. In 2003, saturation occurred in all bands, whereas saturation occurred only
in Band 10 in 2017, which has the lowest saturation temperature of the TIR bands. Although there
were still saturated pixels in Band 10 in 2017, the number of saturated pixels was significantly reduced
(from 3370 pixels in 2003 to 63 pixels in 2017). Saturation occurred only in Band 10 in 2017, which
was consistent with the expectation of the TIR sensor’s sensitivity degradation from the onboard and
vicarious calibrations (Figure 6), assuming that the maximum temperature on the Moon is 120 ◦C.
Quantitative evaluations will be possible when we conduct another lunar observation with the TIR
sensor in the future for which we can compare TIR images that have no saturated pixels.
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Figure 8. Observed images of the Moon in (a) 2003 and (b) 2017. The oversampling effects were
corrected by averaging pixels whose field of views overlapped. The black pixels in the lunar disk
represent regions where at least one pixel in the original image was saturated when averaging.

5. Discussion

Since lunar calibration can measure a temporal variation in a sensor sensitivity accurately (within
1% uncertainty), the validity of other calibration methods can be assessed through the comparison of
their results with the result from the lunar calibration. Figure 9 shows a comparison of the relative
sensitivity degradations from 2003 to 2017 measured by the lunar calibration with those from other
calibration methods in Bands 1, 2, 3N, and 3B of the VNIR sensor. To estimate the relative degradation
with onboard calibration, we used degradation values at the lunar observations measured by the
onboard calibration system of ASTER, that is, 0.771, 0.844, and 0.895 for Bands 1, 2, and 3N on April
13 2003 and 0.694, 0.749, and 0.794 on August 11 2017, respectively. The onboard calibration for the
VNIR bands is performed with onboard halogen lamps whose performances have been monitored
with photodiodes [26]. For vicarious calibration, we used the degradation trends obtained from three
selected observation sites (Railroad Valley, Alkari Lake, and Ivanpah Playa) as reported in [4,10].

From Figure 9, somewhat large discrepancies in the onboard calibration from other calibration
methods can be confirmed. This finding indicates that the uncertainty in the onboard calibration
increases with time. On the other hand, the lunar calibration results were more consistent with the
results from the vicarious calibration. Although there were still a few percent discrepancies between
them, especially in Band 3N, they were consistent with each other within the range of the uncertainties
by considering the possible uncertainties of 3–5% in the vicarious calibration results [29]. The benefit
from the lunar calibration is that we may determine the magnitude of the degradation within the
smaller uncertainty, in other words, the vicarious calibration has a room for improvement in terms
of the uncertainty. Obata et al. [10] proposed an approach for correcting vicarious calibrations by
considering the surface reflectance spectra at the calibration sites with a band transition technique for
inter-band comparisons (called “inter-band calibration”). The measured sensitivity degradations from
the inter-band calibration were much more consistent with those from the lunar calibration than those
from the vicarious calibration (Figure 8).

It should be noted that the current RCC for the VNIR bands is developed by mixing degradation
trends from the onboard calibration and the vicarious calibration [9]. This feature is the reason that
the magnitude of the degradation based on the RCC was different from that of others (Figure 9).
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The discrepancy between the RCC and the lunar calibration results was beyond the error ranges of the
lunar calibration, indicating that a further update is also required for the RCC.

Note that it is still unclear what things cause the large uncertainty in the onboard calibration.
The possible candidates of the unresolved uncertainty are degradation of optical transparency of the
calibration optics, sensitivity degradation of the monitoring photodiodes, and degradation of filters for
the photodiodes [3] that have not been monitored, and thus their performances are highly uncertain.

Figure 9. Comparison of the sensor sensitivity degradations in the VNIR bands from 2003 to 2017 measured
from the onboard calibration (triangles), the vicarious calibration (white rectangles), and the lunar calibration
(SP and ROLO models, crosses). The degradations measured from the inter-band calibration and the current
RCC (version 4) are also shown (gray rectangles and black circles, respectively).

6. Conclusions

ASTER successfully observed the Moon in 2003 and 2017. Based on the two observations of the Moon,
the temporal variations in the sensor sensitivities of ASTER’s visible and near-infrared bands (Bands 1, 2,
and 3N) were evaluated. The lunar calibration results indicate that sensor sensitivity degradations of
several percent occurred in all the VNIR bands. The lunar calibration was basically consistent with the
vicarious calibration, but there were still a few percent discrepancies between both results, which indicates
further improvement is needed for ASTER calibration. For the TIR bands, the Moon can be used for
validating the onboard and the vicarious calibration results by monitoring saturated pixels in images of
the Moon. As expected of the onboard and the vicarious calibrations, there were fewer saturated pixels in
2017 than 2003, which supports the validity of the calibration for the TIR bands.

Although the lunar calibration for the VNIR bands can provide only one-point information about
the sensitivity degradation from 2003 to 2017, the information can be used as a constraint when we
fit a degradation trend measured from other calibration methods. In addition, other instruments
onboard Terra, such as Moderate Resolution Imaging Spectroradiometer (MODIS), Multi-angle Imaging
Spectroradiometer (MISR), Measurements Of Pollution In the Troposphere (MOPITT), observed the
Moon at exactly the same time of ASTER’s observations, indicating an ideal cross-calibration condition
among these instruments via the Moon. Further analysis on the combination of all the calibration
methods and collaborations with other calibration approaches, such as a calibration with the pseudo
invariant calibration method [30] that can also provide high quality results for long-term stability
trending, will provide a better RCC in the future and will enhance consistency among sensors.
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Appendix A

In this section, we will show estimations of oversampling factors for the VNIR and the TIR bands
based on attitude control information and image processing.

For the VNIR, which is a pushbroom sensor, if the pitch rotation rate is given from the attitude
control information of Terra and the rate is constant during the lunar observation, the oversampling
factor for the VNIR can be estimated as

fos
(VNIR) =

θiFOV
(VNIR)

rpte(VNIR)
(A1)

where θiFOV
(VNIR) is the instantaneous field of view of the VNIR (i.e., angular size of one pixel), rp is a

pitch rotation rate, and te
(VNIR) is a scan interval. From the specification of the VNIR [31], θiFOV

(VNIR)

= 21.3 μrad, te
(VNIR) = 2.199 ms, and from the attitude control information, rp = 0.122 degree s−1 [25].

The estimated oversampling factor for the VNIR bands was 4.55. Note that the pitch rotation rate was
common with the TIR bands.

For the TIR, which is a whiskbroom sensor, the oversampling factor can be estimated from the
attitude control information as

fos
(TIR) =

θiFOV
(TIR)

rpte(TIR)
× ndetector (A2)

where ndetector represents number of detectors of each TIR band aligned with an along-track direction.
Because the TIR is a whiskbroom-type sensor, the TIR repeats cross-track scans by utilizing oscillation
of an observation mirror, and te means an interval of cross-track scans. The configuration of the
oversampling condition for the TIR bands is illustrated in Figure A1.

By substituting the TIR’s specification [31], θiFOV = 127.8 μm, te = 131.94 ms, and ndetector = 10,
then we have fos

(TIR) = 4.55, which is same as the factor for VNIR. The effect from the orbital motion of
Terra (~7 km s−1) can be ignored in above calculation because the distance between the Moon and
Terra at the observation was too large (more than 350,000 km).

On the other hand, since the VNIR has an enough resolution for capturing the Moon with a several
hundred pixels, an ellipse fitting technique is applicable to estimate the oversampling factor. Figure A2a
shows an example of our fitting results for the VNIR’s lunar images with a robust ellipse fitting technique
based on [24]. As illustrated in Figure A2b, by using the horizontal length of the ellipse, la, which
represents an actual radius of the Moon in a VNIR image, and the vertical length, le, which is longer than
la due to the oversampling condition, we can estimate the oversampling factor simply as

fos
(VNIR) =

le
la

. (A3)
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The estimated fos
(VNIR) was 4.57 for 2003 images and 4.58 for 2017 images with an uncertainty of 0.03.

The uncertainty was evaluated from a standard deviation of residuals between the fitted ellipse and
the locations of the extracted limb points of the Moon. The standard deviation was up to 1.1 pixels
whereas the size of the lunar disk was more than 400 pixels, thus we concluded that the uncertainty of
the estimated oversampling factors from the image processing can be less than 0.5%.

Figure A1. Schematic views of TIR’s whiskbroom observations in (a) a nominal observation condition
and (b) an oversampling condition. Note that each TIR band has 10 detectors and the actual TIR
detectors are aligned with a stagger configuration.

Figure A2. (a) An example of ellipse fitting for elongated lunar images (Band 1 for 2017). The standard
deviation of residuals between the fitted ellipse and the locations of the extracted limb points in this
example was 0.5 pixel whereas la and le as shown in (b) were 413 and 1893 pixels, respectively.
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Appendix B

In this section, we will show our procedure of generating a corrected lunar image with a resampling
technique for a lunar calibration with the SP model. To evaluate a brightness for a resampled pixel at
(I, J) position in the corrected image, we calculated a weighted mean brightness as

Ic
(I,J) =

∑
j wjIr

(I, j)∑
j wj

(A4)

where Ic
(I,J) means the brightness for the resampled pixel, Ir

(I, j) is an observed brightness at (I, j)
position in a raw image, and wj represents a weighting factor for j-th line in the raw image. wj is
determined from the projected position of a pixel in the corrected image as illustrated in Figure A3.

Because the oversampling factors for the VNIR and TIR bands are not integer, the values of the
total weight

∑
j

wj can be different at different J. We confirmed the values of the total weight were from

4.53 to 4.62 for the Band 1 lunar image in 2003. But since we used a weighted mean value for the
resampling, the effect from the difference in the total weight was canceled. For the TIR bands, the
correction of the oversampling effect can be done with the same manner.

Figure A3. (a) Schematic view of correcting the oversampling effect for the VNIR bands in this study.
(b) An example of calculating a weighted mean brightness for a pixel in a corrected image for the case 4
< fos < 5. Note that the distributions of wj are different for different lines in the corrected image due to
the non-integer fos.

Appendix C

We measured the observed lunar irradiance from the VNIR images by

Irrobs =
1
fos

Ωp

∑
i, j

Ii, j (A5)

where fos is an oversampling factor, Ωp is a solid angle of each pixel, and Ii, j is the radiance of a pixel at
(i, j). We integrated pixels not only in the lunar disk but also surrounding deepspace regions within
approximately 200-pixel distance from the lunar disk limb. We confirmed the selection of the width for
the deepspace did not so affect the measured irradiance (the order of 0.1%, we tested with 100, 200,
and 300 pixels).
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For computing the simulated irradiance from the ROLO model, we followed the calculation
proposed in [17] as

Ik =
AkΩMEk
π fd

(A6)

where Ik represents modeled irradiance for k-th ROLO band (k = 1–32, corresponding to 350–2383
nm), Ak is the disk-equivalent albedo for band k, ΩM is the solid angle of the Moon observed from a
standard distance (384,400 km), and Ek is the solar irradiance (derived from the model of Wehrli [32])
at 1 AU for the band k. fd is a distance parameter for canceling the distance effect to the irradiance as

fd =
(DS−M

1 AU

)2( DV−M

384, 400 km

)2
(A7)

Note that Ak is a function of geometry parameters [17], such as phase angle, sub-solar longitude,
sub-observer latitude and longitude on the Moon that are listed in Table 3.

Above calculation is for ROLO bands (i.e., irradiance will be obtained at discrete wavelengths).
To obtain a continuous irradiance spectrum, following to [17], we fitted a mixed spectrum of a returned
Apollo soil sample [33] and a lunar breccia sample [34] to Ak. Then we performed (A6) and (A7) for
the fitted reflectance spectrum. Finally, we obtained the modeled irradiance for a VNIR band as

IrrROLO =

∫
λ

I f it(λ) SVNIR(λ)dλ∫
λ

SVNIR(λ)dλ
(A8)

where I f it represents the fitted ROLO irradiance, SVNIR is the spectral response function of the target
band. Then the amount of sensitivity degradation from 2003 to 2017 (i.e., the relative degradation) can
be measured by

r2003→2017 =

(
Irrobs

IrrROLO

)
2017

/
(

Irrobs
IrrROLO

)
2003

. (A9)
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Abstract: Since the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)
instrument cannot detect clouds accurately for snow-covered or nighttime images due to a lack of
spectral bands, Terra/MODIS cloud mask (MOD35) products have been alternatively used in cloud
assessment for all ASTER images. In this study, we evaluated ASTER cloud mask images generated
from MOD35 products and used them to analyze the mission operations of ASTER. In the evaluation,
ASTER cloud mask images from different MOD35 versions (Collections 5, 6, and 6.1) showed a large
discrepancy in low- or high-latitude areas, and the rate of ASTER scenes with a high uncertain-pixel
rate (≥30%) showed to be 2.2% in daytime and 12.0% in nighttime. In the visual evaluation with
ASTER browse images, about 2% of cloud mask images showed some problems such as mislabeling
and artifacts. In the mission operations analysis, the cloud avoidance function implemented in the
ASTER observation scheduler showed a decrease in the mean cloud coverage (MCC) and an increase
in the rate of clear scenes by 10% to 15% in each. Although 19-year-old time-series of MCC in five
areas showed weather-related fluctuations such as the El Niño Southern Oscillation (ENSO), they
indicated a small percent reduction in MCC by enhancement of the cloud avoidance function in April
2012. The global means of the number of clear ASTER scenes were 15.7 and 6.6 scenes in daytime and
nighttime, respectively, and those of the success rate were 33.3% and 40.4% in daytime and nighttime,
respectively. These results are expected to contribute not only to the ASTER Project but also to other
optical sensor projects.

Keywords: Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER); MODIS;
MOD35; cloud mask; cloud coverage; uncertain flag; mission operations; observation scheduler;
cloud avoidance; success rate

1. Introduction

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is an optical
sensor onboard NASA’s Terra satellite launched on 18 December 1999 [1]. The ASTER instrument has
14 spectral bands divided by the following three subsystems: the visible and near-infrared (VNIR)
subsystem (three bands), the shortwave infrared (SWIR) subsystem (six bands), and the thermal
infrared (TIR) subsystem (five bands). The spatial resolution is 15 m, 30 m, and 90 m, for the VNIR,
the SWIR, and the TIR subsystems, respectively, and the swath width of each subsystem is 60 km.
Table 1 gives the spectral range and the ground resolution of each ASTER band [1]. ASTER products
have been widely used in various fields such as surface mineralogical mapping, long-term global
monitoring of glaciers, volcanoes, and coral reefs, as well as regional surface heat balance analysis [2].
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In the generation of such products, cloud coverage (CC) assessment for each scene is a fundamental
procedure. An assessment result is used not only for higher product generation but also for purposes
such as image search and mission operations analysis. In the ASTER level-1 processing, the ASTER
cloud cover assessment algorithm (ACCAA) has been implemented [3,4]. The original ACCAA which
is a modified version of the automatic cloud cover assessment (ACCA) of Landsat-5 TM [5] uses three
filters (i.e., threshold tests) with ASTER bands 2 (VNIR), 4 (SWIR), and 11 (TIR). Since 28 October
2000, an improved version of ACCAA has been used for all ASTER scenes observed in the full mode
in which all bands are on [6]. This improved version which was developed based on the ACCA of
Landsat-7 ETM+ [5] has eight filters with bands 1 to 3 (VNIR), band 4 (SWIR) and band 13 (TIR) and
two passes, where the pass one goal is to develop a reliable cloud signature for use in pass two where
the remaining clouds are identified [5]. The improved ACCAA is more accurate than the original
ACCAA, but it performs less well in some combinations of surface type and sun elevation angle
such as desert observation under a low sun elevation [6]. In addition, the original and the improved
ACCAAs are not accurate enough for nighttime scenes due to thresholding with single TIR band [7],
and also became unreliable particularly in the cryosphere after April 2008, because SWIR imaging
has been saturated due to anomalously high SWIR detector temperature [8]. Although Hulley and
Hook have proposed a new methodology for ASTER cloud detection and classification [9], on the
one hand, it is difficult to use in operation due to a lack of SWIR bands. On the other hand, the
Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra satellite provides cloud
mask (MOD35) products [10,11] by simultaneous observations with ASTER using effective bands for
cloud detection, although the spatial resolution is lower than ASTER. Thus, the ASTER Project has
operated the ASTER CC reassessment system using MOD35 products since June 2009 [6,12]. In this
system, ASTER cloud mask images are generated from only collocated MOD35 products and used for
recalculation of ASTER CC values. ASTER cloud mask images generated are provided to the public
through the Internet [13].

Thus, in this study, we evaluate the reliability of MOD35-based ASTER cloud mask images, and,
then, perform ASTER mission operations analysis using those cloud mask images. As for the accuracy
of MOD35 products, Ackerman et al. performed a comprehensive study for Collection 5 (C5) MOD35
products using lidar data [14], and Wilson et al. reported that C5 MOD35 products have a bias induced
by land cover types [15]. Wang et al. evaluated C6 Aqua/MODIS cloud mask (MYD35) products
using Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) products [16],
and Moeller et al. described improvements of MOD35 products in updating from C6 to C6.1 [17].
These studies, however, do not focus on usage of MOD35 products in cloud assessment for a type of
high-resolution sensor such as ASTER. For the evaluation of the reliability of MOD35-based ASTER
cloud mask images, we, therefore, report results for a comparison among C5, C6, and C6.1 MOD35
products, an evaluation of uncertain pixels in MOD35 products, and a visual evaluation with ASTER
browse images. Although the visual evaluation of MOD35-based ASTER cloud masks was reported by
Tonooka et al. [6], we demonstrate an updated result using C6.1 MOD35 products as of August 2019.

With respect to ASTER mission operations analysis using cloud mask images, we report results of
an effectiveness evaluation of the cloud avoidance function implemented in the ASTER observation
scheduler [18]. The cloud avoidance function of the ASTER scheduler has not been evaluated in the
past. We also report results from the time-series analysis of the mean cloud coverage, and from global
mapping of the number of clear scenes and the success rate, where, in this study, the success rate is
defined as the rate of clear scenes with a CC of 20% or less. Although King et al. reported the global
maps of the seasonal mean cloud fraction using MODIS C5.1 cloud products from 2000 to 2011 [19],
our time-series analysis and global mapping with MOD35 products differs from their study in that
we use only MOD35 products accompanied by ASTER observations mainly over land areas. Since
Tonooka et al. have already performed global mapping of a number of clear scenes and the success
rate for ASTER using C5 MOD35 products as of 2010 [6], we demonstrate updated results using C6.1
MOD35 products as of August 2019.
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Table 1. Spectral range and ground resolution of each Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) spectral band [1].

Subsystem Spectral Range [μm] Ground Resolution

VNIR
Band 1: 0.52−0.60
Band 2: 0.63−0.69

Band 3N, 3B: 0.78−0.86
15 m

SWIR

Band 4: 1.600−1.700
Band 5: 2.145−2.185
Band 6: 2.185−2.225
Band 7: 2.235−2.285
Band 8: 2.295−2.365
Band 9: 2.360−2.430

30 m

TIR

Band 10: 8.125−8.475
Band 11: 8.475−8.825
Band 12: 8.925−9.275
Band 13: 10.25−10.95
Band 14: 10.95−11.65

90 m

2. Materials and Methods

2.1. ASTER Cloud Coverage Reassessment Using MOD35 Products

2.1.1. Overview of MOD35 Products

The MOD35 product is a level-2 product with a spatial resolution of 1 km or 250 m [10,11].
In the ASTER Project, the MOD35 product with a spatial resolution of 1 km is used for CC reassessment,
because a spatial resolution of 250 m is not available in nighttime [6]. In the MOD35 algorithm, each
pixel is classified to a particular domain according to surface type and solar illumination, and then
tested by a series of threshold tests prepared for each domain. According to the confidence flag
calculated through these tests, one of four levels (0, cloudy; 1, uncertain; 2, probably clear; and 3, clear)
is assigned to each pixel as a cloud mask value. The details on this algorithm can be found in [10,11].

The MOD35 algorithm was significantly improved in C4 to C5 updating, particularly for polar
regions and oceans in nighttime [20]. Ackerman et al. validated C5 MOD35 products through lidar
observations from ground, aircraft, and spaceborne platforms, concluding that the MODIS algorithm
agreed with the lidar about 85% of the time, the optical depth limitation of the MODIS cloud mask
was approximately 0.4, and approximately 90% of the mislabeled scenes had optical depths less than
0.4 [14]. Wilson et al. pointed out that C5 MOD35 cloud mask had a systematic land cover bias, and
this bias partly remained also in C6 MOD35 cloud mask [15].

In updating from C5 to C6, various improvements such as use of normalized difference vegetation
index (NDVI) background maps and addition of a new night ocean test were applied [11,21]. Wang et al.
evaluated C6 MYD35 products using Cloudsat CALIPSO products, showing that the total agreement
(the sum of the clear- and cloud-hit rates) between them was 77.8%, and MODIS mislabeled cloud as
clear for 9.1% and clear as cloudy for 1.8% [16].

Updating of MOD35 from C6 to C6.1 was performed due to reprocessing of level-1B (L1B) radiance
products. C6 L1B products of Terra MODIS had several calibration issues including an electrical
crosstalk contamination in TIR bands [22], and these issues have been solved in C6.1 L1B products [23].

2.1.2. ASTER Cloud Coverage Reassessment System

The ASTER CC reassessment system generates a cloud mask image of each ASTER scene from the
MOD35 product simultaneously observed with ASTER, and calculates the CC of that ASTER scene [6].
The system has been operated by Ibaraki University since June 2009, now providing a reassessment
result in two days after each ASTER observation. The system has the following procedures:
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1. Obtain daily ASTER catalogue information from Japan Space Systems (JSS);
2. Obtain MOD35 products from NASA Goddard Space Flight Center (GSFC);
3. Generate cloud mask images for all ASTER scenes in the catalogue;
4. Send the reassessment results (CC etc.) to JSS, Land Processes Distributed Active Archive Center

(LP DAAC), and Institute of Advanced Industrial Science and Technology (AIST);
5. Release ASTER cloud mask images to public through Internet [13].

The cloud mask for each scene has the same size with an ASTER/TIR level-1A image (700 × 700 pixels)
by assignment of MOD35 results to ASTER/TIR pixels with the nearest neighbor interpolation. The CC
of each ASTER scene is calculated from each cloud mask by giving 100% to cloud pixels, 50% to
uncertain pixels, and 0% to probably clear or clear pixels, and averaging them over the scene. Since
the rate of uncertain pixels in each scene can be used as a reliability index, this value is added as an
ancillary information to the delivered result.

Although the system started with C5 MOD35 products, C6.1 MOD35 products have being used
since January 2017. Reprocessing with C6.1 MOD35 products was completed for all ASTER archives.

As of 10 August 2019, the total number of ASTER scenes accompanied with MOD35-based cloud
masks is 3,618,286, 99.4% of all ASTER archives (equals 3,640,027). The rate of ASTER scenes without
MOD35-based cloud masks is 0.71% in daytime observations, and 0.23% in nighttime observations.
The reason why daytime observations have more losses is because Terra MODIS had more observation
losses in the period of 2000 to 2001 in which ASTER did not have many observations in nighttime.
Main causes of MODIS observation losses which affected ASTER cloud reassessment are events
such as Solid State Recorder (SSR) anomaly, Science Formatting Equipment (SFE) anomaly, and Terra’s
maneuver [24].

2.2. Evaluation of MOD35-Based ASTER Cloud Masks

2.2.1. Comparison of ASTER Cloud Coverage Among MOD35 Versions

In the ASTER CC reassessment system, three versions of MOD35 products, C5, C6, and C6.1, have
been used since June 2009. Since the CC values based on C5 or C6 MOD35 products were distributed
to ASTER users before January 2018, we randomly selected 17,845 daytime scenes and 8521 nighttime
scenes from ASTER scenes observed in 2016 (13.3% and 14.2% of daytime and nighttime scenes in
2016, respectively), and compared the CC values among C5, C6, and C6.1. The results are described in
Section 3.1.1.

2.2.2. Rate of High-Uncertain Scenes

Since a MOD35 product with many pixels labeled as “uncertain” will be less reliable, the rate of
uncertain pixels in an ASTER cloud mask image can be used as an index of reliability for that cloud
mask image. We, therefore, mapped the rate of high-uncertain scenes (referred to as the high-uncertain
rate) over 0.1 × 0.1 degree grids for daytime and nighttime using all ASTER archives as of 10 August
2019, where a high-uncertain scene is defined as a scene that the rate of uncertain pixels in that scene is
30% or greater. The results can be found in Section 3.1.2.

2.2.3. Visual Evaluation of ASTER Cloud Mask Images Using Browse Images

C5-based ASTER cloud mask images have been visually evaluated with ASTER browse images
by human analysts [6]. In this study, we evaluated C6.1-based ASTER cloud mask images in the same
way, although this approach is affected by ambiguity in human judgment.

First, we selected daytime and nighttime scenes randomly from all ASTER archives, and acquired
the VNIR, SWIR, and TIR browse images for each daytime scene, and the TIR browse image for each
nighttime scene. Then, we visually evaluated consistency between the C6.1-based ASTER cloud mask
image and the browse image(s) for each of evaluable scenes in the selected scenes. The total number of
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evaluated scenes is 24,706 for daytime, and 8006 for nighttime, corresponding to about 0.9% and 1.0%
of all daytime and nighttime scenes, respectively. The results are described in Section 3.1.3.

2.3. ASTER Mission Operations Analysis Using MOD35-Based ASTER Cloud Masks

2.3.1. Validation of the Cloud Avoidance Function in the ASTER Observation Scheduler

The ASTER instrument has the pointing function because the swath width of 60 km is narrower
than the orbit-to-orbit distance at the equator (172 km) [1]. Using this function effectively, on the one
hand, ASTER needs to respond to various observation requests such as global mapping, scientific
studies, disaster monitoring, and calibration. On the other hand, the ASTER instrument has a limited
duty cycle of 8%, corresponding to the two-orbit maximum data acquisition time of 16 min, mainly
due to limitations in the data volume allocated in Terra’s SSR, and the communications link with the
Tracking and Data Relay Satellite System (TDRSS) and ground stations [1,18]. In addition, ASTER has
several instrumental limitations such as the operating time and the total number of pointing changes.
Thus, the ASTER Project has developed and used the ASTER observation scheduler for responding to
many observation requests optimally under various limitations throughout the mission period [18].

Basically, an observation schedule is generated on a day-by-day basis using the ASTER observation
scheduler. This is called a one-day schedule (ODS). Each ODS is generated as of two or more days
before each observation day. This is called a normal ODS (referred to as N-ODS in this paper). Each
ODS is regenerated as of 16 hours before each observation time, and each N-ODS is replaced by that.
This is called a late-change ODS (referred to as LC-ODS in this paper). In generation of N-ODS and
LC-ODS, the priority function for each observation request is first calculated by multiplying eleven
subfunctions from f1 to f11. Next, the score of each observation request is calculated by multiplying the
priority function of that request with the overlapping area of the requested and the overpassed areas.
The derived score is then compared among conflicting requests, and the observation request with
the maximum score is finally selected and included in ODS. In this procedure, various instrumental
limitations are also considered.

In the eleven subfunctions, f4 is the subfunction prepared for avoiding clouds and increasing
cloud-free scenes. This subfunction is calculated by

f4 = b + a × arctan{ κ × (1 − Cmax) × (Cmax − Cpred)}, (1)

where Cmax is the maximum CC accepted by each observation request; Cpred is the predicted CC for
each observation request; and a, b, and κ are fixed coefficients. Although the values of a and b have
not been changed since the launch (a = 1 and b = 1.5708), the value of κ was changed from 50 to
10,000,000 in April 2012 for enhancing the effect of the cloud avoidance function. Using the updated
value of κ, the value of f4 is about 10−5.4 for Cmax < Cpred, and about 10+0.6 for Cmax > Cpred. A notable
point here is that f4 is calculated for LC-ODS, but not for N-ODS, because the cloud prediction is
generally less accurate as of two days before each observation day. Thus, a cloud prediction result is
used in only LC-ODS, where the cloud prediction dataset used for LC-ODS is the total cloud coverage
(TCC) which is the “TCDC: entire atmosphere” layer extracted from the “T1534 Semi-Lagrangian grid”
data produced by the Global Forecast System (GFS) of National Centers for Environmental Prediction
(NCEP) [25]. TCC provides a 6 h averaged CC with the horizontal resolution of 3072 E-W grids and
1536 N-S grids at 6 h intervals until 72 hours after the present.

As an example, Figure 1 shows observation areas scheduled on 7 April 2018, where the background
is the daily cloud fraction image from the MODIS MOD08 product on the same day. “Only N-ODS”
and “only LC-ODS” show scheduled areas included in only N-ODS and in only LC-ODS, respectively,
and “Common” shows scheduled areas included in both N-ODS and LC-ODS. The common scenes of
N-ODS and LC-ODS account for about a half of the total scenes of LC-ODS on average. Figure 1 indicates
that the cloud avoidance function worked well as expected, but it should be more quantitatively
evaluated by a comparison of CC between actually observed ASTER scenes included in only LC-ODS

144



Remote Sens. 2019, 11, 2798

and not-observed (fictitious) ASTER scenes included in only N-ODS on a day-by-day basis. Although
fictitious ASTER scenes do not exist, the CCs of them can be calculated by a combination of N-ODS
data and MOD35 products. Thus, we evaluated the effectiveness of the cloud avoidance function in
the ASTER observation scheduler by this approach using the ASTER cloud reassessment system.

First, we investigated which areas were frequently cancelled from N-ODS by the cloud avoidance
function. In this analysis, we defined the cancellation rate as

cancellation rate = Nonly-N / { Nonly-N + Ncom}, (2)

where Nonly-N is the number of scenes included in “only N-ODS”, and Ncom is that included in both
N-ODS and LC-ODS, on a day-by-day basis. Next, we compared the mean cloud coverage (MCC) of
N-ODS and that of LC-ODS for the three years (1 May 2016 to 30 April 2019). The results obtained by
these analyses are described in Section 3.2.1.

2.3.2. Time-Series Analysis of the Mean Cloud Coverage

The MCC value is affected by climate classification and also by factors such as seasonal change,
abnormal weather, long-term climate change, and MOD35 product error. Moreover, is reduced if
the cloud avoidance function works effectively, indicating that the MCC value is affected also by
scheduling ways. We, therefore, performed time-series analysis of MCC over 10 × 10 degree grids at
three-month intervals in the period from April 2000 to June 2019.

First, we selected grid cells which had been repeatedly observed by the ASTER instrument in all
seasons throughout 19 years since the launch, because such grid cells are suitable for time-series analysis
at three-month intervals. Then, we performed seasonal decomposition with moving averages [26] for
the MCC data at three-month intervals in the selected grid cells, and divided the time-series data of
each cell into three components, the trend, the seasonal change, and the residual.

Next, we investigated whether the three-monthly MCC values were affected by updating of the
coefficient κ in Equation (1), in April 2012. In order to reduce the effects of the El Niño Southern
Oscillation (ENSO) [27], we derived the three-monthly Niño 3.4 index from April 2000 to June 2019,
where the monthly Niño 3.4 index is the monthly mean of the deviation of sea surface temperature (SST)
from the average in a single fixed 30-year base period in the Niño 3.4 region (5N to 5S in latitude, 120 to
170W in longitude) [28]. We, then, selected only the three-monthly MCC values with a three-monthly
Niño 3.4 index within ±0.5 (i.e., less effect of ENSO), and investigated the effect of the updating of κ to
the three-monthly MCC values.

The results obtained by these analyses are described in Section 3.2.2.

 
Figure 1. Scheduled areas included in only normal one-day schedule “(N-ODS)”, only late change
one-day schedule “(LC-ODS)”, and both N-ODS and LC-ODS (“common”) on 7 April 2018.
The background is the daily cloud fraction image from the MODIS MOD08 product on the same
day (blue, cloud and white, clear).

145



Remote Sens. 2019, 11, 2798

2.3.3. Mapping of the Number of Clear Scenes and the Success Rate

Tonooka et al. generated the global maps of the number of clear scenes and the success rate
in daytime and nighttime as of September 2010, using ASTER cloud mask images based on the C5
MOD35 product [6]. In this study, we generated those maps as of August 2019 using C6.1 MOD35
products. The results can be found in Section 3.2.3.

3. Results and Discussion

3.1. Evaluation of MOD35-Based ASTER Cloud Masks

3.1.1. Comparison of ASTER Cloud Coverage Among MOD35 Versions

Figure 2 shows the difference of C6-based CC and C5-based CC (C6−C5), and that of C6.1-based
CC and C6-based CC (C6.1−C6) in daytime and nighttime, as a function of latitude. Table 2 gives
the mean of the difference (bias), and the rates of ASTER scenes with the CC difference of 10% or
greater (R10%), and with that of 50% or greater (R50%), for each of C6−C5, and C6.1−C6 in daytime and
nighttime. In updating from C5 to C6, R10% and R50% are 18.5% and 6.5% in daytime, respectively, and
16.3% and 2.8% in nighttime, respectively. The most likely cause that nighttime shows smaller rates
than daytime is that snow-covered and vegetated areas giving a large CC-difference in daytime have
not been prioritized in ASTER nighttime scheduling. Figure 2 indicates that C5 has a larger CC than
C6 in low latitude areas, whereas C6 has a larger CC than C5 in Antarctica.

Figure 2. Difference of ASTER CC between different MOD35 versions as a function of latitude. (a) C6
minus C5 in daytime, (b) C6 minus C5 in nighttime, (c) C6.1 minus C6 in daytime, and (d) C6.1 minus
C6 in nighttime. A total of 17,845 daytime scenes and 8521 nighttime scenes observed in 2016 were used.

In comparison to C6−C5, the difference of CC between C6.1 and C6 is smaller, because updating
to C6.1 is a change in input L1B radiances; the bias is −0.6%, and R10% and R50% are about 2% and 0.4%,
respectively, in both daytime and nighttime. Since the crosstalk issue in C6 L1B products gave an impact
to the test for detecting ice clouds over water surfaces in the MOD35 algorithm, the improvements
by C6.1 updating were seen mainly over oceans [17]. Thus, another reason why no large differences
between C6 and C6.1 are seen in Figure 2c,d is because the rate of ASTER ocean scenes is low. Figure 2
also shows that C6 gives a larger CC than C6.1 in most inconsistent cases seen in low- or high-latitude
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areas, where it should be noted that such inconsistency was caused from a time-dependent error on C6
L1B radiances. Thus, C6.1-based cloud mask images should be used for ASTER scenes.

Table 2. Mean of the CC difference (bias), R10%, and R50% in daytime and nighttime for C6 minus C5
and C6.1 minus C6.

Parameter
C6 Minus C5 C6.1 Minus C6

Daytime Nighttime Daytime Nighttime

bias −5.7% −1.4% −0.6% −0.6%
R10% 18.5% 16.3% 1.9% 2.1%
R50% 6.5% 2.8% 0.4% 0.3%

3.1.2. Rate of High-Uncertain Scenes

Figure 3 displays the C6.1-based high-uncertain rate maps generated for daytime and nighttime.
Globally, the high-uncertain rate is 2.2% in daytime, 12.0% in nighttime, and 4.4% in total; the
high-uncertain rate in nighttime is five-times larger than that in daytime. On the one hand, in daytime,
the high-uncertain rate is larger particularly in low latitude areas such as Venezuela to the Amazon
River estuary area, the Yucatan Peninsula, the Gulf of Guinea, and the Congo areas, Indonesia, and the
Mekong River estuary area, or in snow-covered areas such as the south part of Greenland and the
inland of Antarctica. In addition, the high-uncertain rate is large in a part of land areas such as the
north part of Mozambique, the Yellow River basin, and the Ganges River basin, and in ocean areas
such as the offshores of San Francisco and Newfoundland, and the Sea of Okhotsk. On the other hand,
the high-uncertain rate in nighttime is large particularly in mountainous areas such as Tibet and the
north of the Andes basin (Colombia to Peru), and in glacier lake areas such as a part of Canada, the
south part of Chile, the south part of Scandinavia, and Scotland. Such regionality indicates that there is
a cloud fraction bias or higher uncertainty associated with certain land cover types, as pointed out by
Wilson et al. [15].

 

Figure 3. C6.1-based high-uncertain rate maps over 0.1 × 0.1 degree grids for daytime and nighttime
using all ASTER archives as of 10 August 2019.
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On the basis of the above results, it should be highlighted that the reliability of MOD35-based
cloud masks is strongly dependent upon location and day and night difference.

3.1.3. Visual Evaluation of ASTER Cloud Mask Images Using Browse Images

The visual evaluation of ASTER cloud mask images with browse images was performed for
24,706 daytime and 8006 nighttime scenes. As a result, 98.3% of daytime scenes (24,288) and 96.6% of
nighttime scenes (7737) showed high consistency between cloud mask and browse images, leaving
1.7% of daytime and 3.4% of nighttime scenes with differences. As for 687 scenes with a problem, 31%
of them were due to mislabeling in snow-covered areas (case 1), 19% of them were due to mislabeling
of a water surface as a cloud in a coastal area (case 2), 15% of them were due to artifacts probably
associated with ancillary data used in the MOD35 algorithm (case 3), and 35% of them were due to
a large discrepancy in CC over surfaces such as ocean and desert (case 4). Figure 4 demonstrates
examples of cases 1 to 4.

Thus, it should be noted that the above type of problems can be seen in a limited number of
MOD35-based ASTER cloud masks, particularly in snow-covered or coastal areas.

Figure 4. Examples of ASTER cloud mask images with a problem in visual evaluation for daytime and
nighttime for case 1 (snow/ice area), case 2 (coastal waters), case 3 (artifact), and case 4 (others including
ocean and desert). Images in each cell are the cloud mask image (left), the visible and near-infrared
(VNIR) browse image (middle, only daytime; BGR = bands 1, 2, and 3N), and the thermal infrared
(TIR) browse image (right; BGR = bands 10, 12, and 14). White, dark gray, and black on each cloud
mask image indicate clear, cloud, and background, respectively.

3.2. ASTER Mission Operations Analysis Using MOD35-Based ASTER Cloud Masks

3.2.1. Validation of the Cloud Avoidance Function in the ASTER Observation Scheduler

Figure 5 displays the cancellation rate of N-ODS for three years from 1 May 2016 to 30 April 2019
over 10 × 10 degree grids. As shown, observation cancels caused by the cloud avoidance function occur
frequently in most of global land areas. In the west coast of USA, the cancellation rate is relatively low
because this area is often observed by calibration-related requests without the cloud avoidance. As for
Antarctica and Greenland, the cancellation rate in daytime is significantly low because these areas are
frequently observed by requests without the cloud avoidance from the Global Land Ice Measurements
from Space (GLIMS) Project [29].
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Figure 5. Cancellation rate of N-ODS for three years from 1 May 2016 to 30 April 2019 over 10 × 10
degree grids for each of daytime and nighttime.

Figure 6 gives the daily MCC values of “only N-ODS” and “only LC-ODS” as a function of date
in daytime and nighttime. As shown, the TCC-based cloud avoidance function reduced the MCC
significantly throughout the period, while it scatters more largely in nighttime. Table 3 gives the root
mean square (RMS) differences of MCC and the clear-scene rate between N-ODS and LC-ODS for
daytime and nighttime in the three years, where the clear-scene rate is defined as the rate of scenes
with a CC of 20% or less. The table shows two cases that common scenes are included or not. Since
the common scenes of N-ODS and LC-ODS account for about a half of the total scenes of LC-ODS in
average as mentioned, the RMS differences with common scenes reduce by half, but the results show
that the cloud avoidance function decreased MCC by 10% to 15% and increased the clear-scene rate
by 10% to 15% even if common scenes are considered. The likely reason why the cloud avoidance
function showed a better result in nighttime is probably because the subfunction f4 would affect ODS
more strongly in nighttime due to fewer conflicts among fewer observation requests than in daytime.

Figure 6. Daily mean cloud coverage (MCC) values of “only N-ODS” and “only LC-ODS” as a function
of date in the three years from 1 May 2016 to 30 April 2019.

149



Remote Sens. 2019, 11, 2798

Table 3. RMS differences of MCC and the clear-scene rate between N-ODS and LC-ODS for daytime
and nighttime in the three years. Two cases that common scenes are included or not are shown.

Day/Night
RMS Difference of MCC RMS Difference of Clear-scene Rate

no Common with Common no Common with Common

daytime 20.1% 11.4% 21.5% 12.3%
nighttime 25.3% 15.4% 25.8% 15.8%

Figure 7 displays the difference of MCC between “only LC-ODS” and “only N-ODS” over 10 × 10
degree grids for daytime and nighttime in the three years. If a grid cell has a negative difference,
it means that LC-ODS has a smaller MCC than N-ODS, indicating the success of the cloud avoidance
for that grid cell. As demonstrated by Figure 7, many grid cells are bluish, and reddish grid cells are
limited in a small part of high latitude areas. This indicates that the cloud avoidance function performs
well in most areas.

 
Figure 7. Difference of MCC between “only LC-ODS” and “only N-ODS” over 10 × 10 degree grids
for daytime and nighttime in the three years from 1 May 2016 to 30 April 2019. In bluish cells, “only
LC-ODS” has a smaller MCC than “only N-ODS”, indicating the success of the cloud avoidance function.

3.2.2. Time-Series Analysis of the Mean Cloud Coverage

Figure 8 shows the time-series satisfaction rate for global grid cells in daytime and nighttime,
where the time-series satisfaction rate is defined as the rate of three-month terms including 10 scenes
or more in a grid cell. The red grid cells are suitable for time-series analysis because they have been
repeatedly observed in all seasons throughout 19 years, while the light purple or white grid cells
are not suitable because observations are limited to a specific season or a part of the mission period.
According to this result, we selected the following five grid cells, as shown in the figure: (A) USA,
(B) Argentina, (C) Mozambique, (D) Indonesia, and (E) Japan.
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Figure 8. Time-series satisfaction rate for global grid cells in daytime and nighttime. The five grid cells
used for the time-series analysis are also shown.

Next, we performed seasonal decomposition with moving averages [26] for the MCC data at
three-month intervals in the grid cells A to E, and divided the time-series data of each cell into the
three components. As an example, Figure 9 displays the obtained time-series data at the grid cell
E in daytime as follows: (a) the original MCC data, (b) the trend, (c) the seasonal change, and (d)
the residual.

Figure 9. Time-series data at the grid cell E in daytime as an example: (a) the original MCC data,
(b) the trend, (c) the seasonal change, and (d) the residual.
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Figure 10 gives the trend plots of the three-monthly MCC values for the grid cells A to E in daytime
and nighttime, also showing the trend plot of the monthly Niño 3.4 index. As shown, it appears that
the fluctuations seen in the MCC trends can be partly explained by ENSO. For example, El Niño is
often associated with warm and dry conditions around Indonesia [27]. The grid cell D, therefore, seems
to have smaller MCC values in Niño events (positive in the monthly Niño 3.4 index), and larger MCC
values in La Niña events (negative in the index).

Figure 10. Trend plots of the three-monthly MCC values for the grid cells A to E in daytime and
nighttime, also showing the trend plot of the monthly Niño 3.4 index.

Table 4 shows the means of the three-monthly MCC values for the five grid cells in daytime and
nighttime over the period before the updating of κ (Period 1) and over the period after the updating
(Period 2). The table also shows the difference between Periods 1 and 2 for each grid cell in daytime
and nighttime. As demonstrated, the mean of the three-monthly MCC value in daytime is 0.5% to 7.9%
smaller in Period 2 than in Period 1 for all grid cells in daytime and two grid cells (C and E) in nighttime,
probably due to enhancement of the cloud avoidance function by updating of κ. The likely reason why
the grid cells A, B, and D gave a positive difference in nighttime is due to weather fluctuations, although
it is also noted that the high-uncertain rate is high around the grid cell D in nighttime (see Figure 3),
and that the cancellation rate of N-ODS is low at the grid cell A (see Figure 5).
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Table 4. The means of the three-monthly MCC values for the grid cells A to E in daytime and nighttime
over the period before the updating of κ in Equation (1) (Period 1) and over the period after the updating
(Period 2). The difference between Periods 1 and 2 in each case is also shown.

Grid Cell
Daytime Nighttime

Period 1 Period 2 diff. Period 1 Period 2 diff.

(A) USA 29.1 23.3 −5.8 24.2 26.0 1.8
(B) Argentina 24.0 18.3 −5.7 25.6 26.3 0.7

(C) Mozambique 39.0 31.2 −7.9 33.7 27.4 −6.3
(D) Indonesia 60.7 60.3 −0.5 64.0 67.8 3.8

(E) Japan 64.9 59.4 −5.4 66.7 62.8 −3.9

3.2.3. Mapping of the Number of Clear Scenes and the Success Rate

Figure 11 displays the daytime and the nighttime maps of the number of clear scenes over 10 × 10
degree grids in 19.5 years from March 2000 to August 2019, where a clear scene is defined as a scene
with a CC of 20% or less. The overall mean values are 15.7 scenes in daytime, and 6.6 scenes in
nighttime. In daytime, a large number of clear scenes can be seen in more frequently observed areas
such as the west part of USA and Japan, in arid areas such as the Middle East, Sahara, the south of
Africa, and the west coast of Central and South America, and in the polar areas with a narrower orbit
spacing. Although the same tendency can be seen also in nighttime, the number of clear scenes is
smaller in snow-covered or dense vegetated areas, because these areas have not been prioritized in
nighttime scheduling.

 
Figure 11. Daytime and nighttime maps of the number of clear scenes with a CC of 20% or less over
10 × 10 degree grids in 19.5 years from March 2000 to August 2019.

Figure 12 shows the daytime and the nighttime maps of the success rate over the same grids in
the same period. The mean success rates in daytime and nighttime are 33.3% and 40.4%, respectively.
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The spatial distribution of the success rate is similar between daytime and nighttime, the rate is higher
in arid areas, and lower in humid areas. The success rate in arid areas such as Sahara, Middle East,
Australia, and Namibia is somewhat smaller in nighttime than in daytime, while that in high latitude
areas is somewhat larger in nighttime.

 
Figure 12. Daytime and nighttime maps of the success rate over 10 × 10 degree grids in 19.5 years from
March 2000 to August 2019.

4. Summary and Conclusions

Since the ASTER instrument cannot detect clouds accurately for snow-covered or nighttime images
due to lack of spectral bands, the MOD35 product has been alternatively used in cloud assessment
for all ASTER images. The most advantageous point of this approach is that the MODIS instrument
onboard the same platform (Terra) always provides coincident and collocated observations using
effective bands for cloud detection, although spatial resolution differences between ASTER and MODIS
should be noted. In this study, we evaluated the reliability of MOD35-based ASTER cloud mask
images, and then performed ASTER mission operations analysis using these cloud mask images.

For the evaluation of ASTER cloud mask images, we first compared them among different MOD35
versions. In updating from C5 to C6, the rates of ASTER scenes with the CC difference of 10% or greater
(R10%) and with that of 50% or greater (R50%) were 18.5% and 6.5% in daytime, respectively, and 16.3%
and 2.8% in nighttime, respectively. The likely cause of discrepancy between daytime and nighttime
is a difference of observation areas. In updating from C6 to C6.1, R10% and R50% were about 2% and
0.4%, respectively, in both daytime and nighttime. Since C6 MOD35 products have been affected by an
error on input L1B radiances, the ASTER Project has been generating cloud masks using C6.1 MOD35
products for all ASTER scenes.
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Next, we analyzed the rate of uncertain pixels in each MOD35-based ASTER cloud mask image,
because the uncertain flag in the MOD35 product can be used as a reliability index of cloud masks.
The high-uncertain rate (the rate of scenes with the rate of uncertain pixels ≥30%) was 2.2% in daytime,
and 12.0% in nighttime, indicating that the reliability of cloud masks is lower in nighttime. The results
also indicate that the high-uncertain rate depends on location; daytime scenes have a large value in
low-latitude areas, snow-covered areas, or some localized areas such as the north of Mozambique and
the basin of Yellow River, and nighttime scenes have a large value in mountainous or glacier-lake areas.
In addition, we evaluated MOD35-based ASTER cloud mask images visually using ASTER browse
images for 24,706 daytime scenes and 8006 nighttime scenes. As a result, about 2% of the evaluated
scenes showed some problems such as mislabeling in snow-covered or coastal areas, artifacts probably
associated with ancillary data used in the MOD35 algorithm and mismatching in the cloud coverage.

With respect to ASTER mission operations analysis using MOD35-based ASTER cloud mask
images, we first investigated the effectiveness of the TCC-based cloud avoidance function implemented
in the ASTER observation scheduler. The analysis using N-ODS and LC-ODS data in the period from
May 2016 to April 2019 showed that the cloud avoidance function canceled observations frequently
in most of global land areas except for some areas frequently observed without the cloud avoidance
function, such as the west area of North America, Antarctica and Greenland. Such canceled observation
reduced MCC effectively in most areas, even if uncanceled scenes were considered, the cloud avoidance
function decreased MCC by 10% to 15% and increased the rate of clear scenes by 10% to 15%.
The time-series analysis of the three-monthly MCC values based on actual observations since the
launch was also performed for the five grid cells (USA, Argentina, Mozambique, Indonesia, and Japan)
in daytime and nighttime. Although the trend plots of MCC seem to have been partly affected by
weather fluctuations, such as the ENSO, those plots showed a reduction of 0.5% to 7.9% in MCC
between before and after April 2012 in which the coefficient κ in the cloud avoidance function was
updated, except for three grid cells in nighttime. Finally, we generated the global maps of the number
of clear scenes and the success rate using MOD35-based ASTER cloud mask images. The maps showed
that the mean of the number of clear scenes was 15.7 scenes in daytime, and 6.6 scenes in nighttime, the
mean success rate was 33.3% in daytime, and 40.4% in nighttime, and the success rate in arid areas was
somewhat lower in nighttime than in daytime and that high-latitude areas had the opposite tendency.

Almost twenty years have passed since the ASTER instrument was launched in December 1999,
and there are not many optical sensors with such a long-operation life. The results reported in this
study are expected to contribute not only to the ASTER Project but also to other optical sensor projects.
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Abstract: The earthen border wall (Great Wall) built by the Ming is largely made of wind-blown
loess. However, does the composition of this loess change along the length of the wall in response to
variations in regional sediment transport pathways and impacting on the wall’s erosional durability?
To date, defining these sediment transport pathways has been a challenge because of the paucity of
spatially-comprehensive, compositional information. Here, we show that satellite ASTER mineral
maps, combined with field sample measurements along a 1200 km section of the Ming’s earthen
wall, reveal both the compositional heterogeneity of loess as well as the complexity of the sediment
transport pathways of individual loess components, including: (i) quartz sand from Cretaceous
sandstones in the Gobi Desert; (ii) gypsum from evaporative lakes in the Tengger Desert; (iii) kaolinite
from Devonian Molasse in the Qilian Shan; and (iv) chlorite and muscovite from meta-volcanic
rocks exposed across the Alashan Block. Sediment transport pathways involve a combination of
colluvial, aeolian and fluvial (ephemeral and permanent) processes shaped by the topography. ASTER
enabled mapping of compositional gradients related to two pathways, namely: (i) quartz sand driven
by aeolian saltation in concert with the Yellow River; and (ii) clay and fine silt travelling large
distances (>500 km) by long-term wind suspension. The most intact section of wall is found along
the Hexi Corridor, which is poor in quartz sand and rich in (kaolinitic) clay and fine-silt, driven by
wind-shielding by the Alashan Block. We also found evidence that the Ming: (i) mined loess from
close by the wall (<1 km); (ii) targeted loess richer in finer fractions; and (iii) routinely applied a
Ca-rich additive (probably lime).

Keywords: ASTER; mineral mapping; earthen Great Wall; loess; Ming Dynasty; sediment transport
pathways; mineral system; erosion; deposition; aeolian; fluvial

1. Introduction

The Ming Dynasty’s program of building an earthen border wall began following a decisive battle
that forced the Ordos Mongols north of the Yellow River in 1473 [1]. The initial plan was to rapidly
build an ~800 km border wall across the Ordos Plateau to separate sand dune-fields in the north from
agriculturally productive lands in the south [2] (Figure 1a). The Ming were able to build this wall to
a height of 5–8 m (Figure 1d,e) in just three months using their “hangtu” method of ramming earth
between formwork [1,3]. This technique resulted in a characteristic 15–30 cm horizontal layering [4]
and contrasts with that built by earlier dynasties where a thinner (7–10 cm) layering of earth was often
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sandwiched between horizons of rock and/or vegetation [5]. The completion of the wall across the
Ordos Plateau soon delivered military success [1], giving impetus for eastward continuation towards
Beijing and westward along the Hexi Corridor towards Jiayuguan (Figure 1a).

This rapid construction of the Ming’s border wall required easy access to suitable earthen building
materials. Even though wind-generated loess (dominated by angular, silt-size grains) deposits are
readily eroded [6,7], the Ming selected loess for wall construction because of its pervasive development
at/near the surface across the Ordos Plateau, especially south of the Mu Us Desert (Figures 1a and
2c). However, it is not known where the Ming mined their loess for wall construction. That is, was it
sourced close by the wall (<1 km away) or from distant (>100 km), centralized, quarries?

 

Figure 1. (a) Satellite ASTER false-color mosaic (Band 3: red; Band 2: green; Band 1: blue) spanning
the Ordos Plateau and Hexi Corridor from Shenmu in the east to Jiayuguan in the west and including
approximately 1200 km of the earthen Ming Great Wall (yellow line). The geological blocks, mountains,
deserts, rivers, loess extent, thickness of the late-Pleistocene Malan loess unit [8], towns/cities, and field
sample sites are also shown. (b–e) Oblique views of rendered digital elevation models of selected field
sites generated from drone natural color imagery. The nature of local surface materials is indicated as
well as several features of the wall.
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Loess is typically buff colored, structureless, and flat-lying [8], although its thickness varies
regionally. Over the Ordos Plateau, loess is up to 400 m thick [8] being the result of 20 million years of
dust activity over a relatively stable platform. In contrast, loess deposits along the Hexi Corridor are
much younger (Holocene) and often only 1 m thick [9]. This contrast in thickness is potentially driven
by repeated uplift and erosion along the northeast margin of the Tibetan Plateau [10] and/or possibly
the effects of climate-related variations in vegetation cover [9]. The most recent loess deposits include:
the Late Pleistocene (11,700 to ~1,000,000 years) Malan Loess Unit, which decreases in thickness from
Yinchuan (~30 m thick) to Xian (~5 m thick) (Figure 1a) [8]; and Holocene (0–11,700 years) layers,
which are up to 8 m thick [11,12] and continue to accumulate today [13].

Mineral composition is a factor in the erosive potential of earthen materials. For example,
minerals such as kaolinite (Al2Si2O5(OH)4) and muscovite (KAl2(AlSi3O10)(FOH)2) do not expand
on wetting in contrast to montmorillonite ((Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2·nH2O) and illite
((K,H3O)(Al,Mg,Fe)2(Si,Al)4O10((OH)2,(H2O)), which swell when wet and contract when dry causing
desiccation cracking and therefore are more prone to structural disintegration [14]. The cohesive
strength of earthen material is also enhanced by the proportion of clay-sized material (<2 μm) because
of increased levels of hydrogen bonding between water molecules and the surfaces of these grains [15],
which typically comprise minerals such as kaolinite, illite, and montmorillonite. Coarser particles such
as sand (63–2000 μm), which often comprises quartz (SiO2), do not share this propensity for hydrogen
bonding [15,16].

Silicate minerals can also react with calcite (CaCO3), lime (Ca(OH)2), and/or quicklime (CaO) to
form cementing agents such as Ca-silicates (e.g., hydrogarnets) and (recrystallized) calcite [17] as part
of a “pozzolanic” reaction. Loess is an effective pozzolan as it comprises SiO2 + Al2O3 + Fe2O3 ≥ 70
wt.%. The Ming Dynasty natural scientist, Song Yingxing, described how their “tabia” or “binding
material” method used lime mixed with soil and sand [18].

These considerations help explain why the rate of erosional deterioration of earthen structures at
Jiaohe in northwest China is related to the mineralogy of the building materials [19]. The question is,
does the composition of the loess used by the Ming change along the length of the wall? If so, then
what processes are responsible for this compositional change? Finally, have changes in composition
impacted on the erosional durability of the earthen wall?

In theory, dust particles with a diameter <70 μm are capable of transportation by wind
suspension [20]. The <20 μm fraction (i.e., clay and fine-silt) can potentially remain in wind-suspension
for several days, travelling hundreds to thousands of kilometers and is termed long-term wind
suspension [20]. In contrast, the 20–70 μm fraction (i.e., coarse-silt) can remain in wind-suspension
for minutes to hours, travelling distances of meters to kilometers, and is termed short-term wind
suspension [20]. Grains >70 μm in size (i.e., sand) are not carried by wind-suspension but instead
bounce or saltate across the land surface, travelling only meters per wind event [20]. Factors determining
where this range of particle sizes can accumulate as deposits of loess include: prevailing wind direction;
distance from source; and topographic and/or vegetation traps.

The large volumes of sediment required to generate the loess deposits across the Ordos Plateau
and Hexi Corridor have been attributed to the combination of cold deserts juxtaposed against rapidly
uplifting mountainous regions [21,22]. That is, rocks in high areas are eroded and reduced in particulate
size by glacial grinding and cold weathering processes before being transported in fluvial-suspension
by snowmelt-fed rivers into neighboring desert basins that act as sediment sinks to be later re-worked
by wind activity. However, identifying which mountainous source areas, rivers, deserts, and/or winds
were critical in loess development has proved to be much more problematic. Mountainous regions
proposed as the primary source of particulate materials include: the Qilian Shan [22]; Gobi Altay [22];
Tianshan; Alashan Block; and Tibetan Plateau [23,24]. Researchers have also identified alluvial fans
as a secondary source of the eroded grains, including those along the Hexi Corridor [10] and Gobi
Altay Mountains [22]. Proposed sandy or stony desert secondary sources include: the Taklamakan [25];
Qaidam Basin [23]; Gobi [22,26]; Mu Us; Hobq; Ulan Buh; Tengger; and Badain Jaran [22,26–29]. Rivers
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include: Yellow River [25,30,31] and ephemeral rivers along the Hexi Corridor, such as the Shiyang
and Heihe [32] that drain into neighboring desert basins (Figure 1a). The prevailing wind patterns
alternate between westerly to northerly flows of the East Asian Winter Monsoon (EAWM) versus
southerly flows of the East Asia Summer Monsoon (EASM) [26].

To date, determining the primary/secondary sources of loess material has relied on point-sample
measurements of: grain size [8,33,34]; major elements [35,36]; trace elements [35]; rare earth
elements [25,35]; zircon U-Pb geochronology [37,38]; scanning electron microscope energy dispersive
spectrometers [27]; luminescence [39]; electron magnetic spin [40,41]; oxygen isotopes [42]; Nd and Sr
isotopes [43,44]; magnetics [45]; and mineralogy [32,46–49]. However, interpreting transport pathways
using such sparse point-sample data collected from heterogeneous landscapes is thwart with difficulties.
Indeed, the most recent Loessfest meeting [50] concluded “there is a need to develop new methods and
approaches for quantitative paleoenvironmental and paleoclimatic reconstructions”.

Geologists have been tackling a similar challenge in their targeting of economic mineral deposits
by collecting spatially-comprehensive data, such as geophysical [51] and mineral mapping imagery [52],
to better elucidate target fluid transport pathways that extend from source rocks to sites of potential
(metal) deposition. This so-called “mineral-system” approach [53] requires both: (i) the definition of
essential ingredients and their related mappable criteria; and (ii) the assembly of regional geoscientific
data in order to create maps that target these mappable criteria.

Given that “the nature of the material is paramount, and the formation of the material is paramount.
And this means the formation of the actual units, the actual particles [=mineral grains] which comprise
the deposit of loess” [54], we propose a “loess system” based on a mappable suite of essential mineral
components. The critical “loess system” mapping tool we used here for tracking the provenance of
the loess sourced by the Ming to build their earthen wall is the satellite-borne, Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER) sensor [55]. ASTER was designed to map land
surface composition, albeit at moderate spectral resolution. It was launched in December 1999 and has
since acquired multiple coverages of the Earth’s land surface at <83◦ latitude [56].

Based on the principles of mineral spectroscopy [57], we processed the calibrated ASTER
imagery [58] to generate a suite of thematic mineral mapping products at ~30 m pixel resolution
for an area of ~60,000 km2 spanning the 1200 km section of Ming earthen wall between Shenmu
and Jiayuguan (Figure 1a). We focused here on five essential mineral components of loess, namely
quartz-sand, white-mica (muscovite and illite), chlorite (as well as carbonate), gypsum and kaolinite, as
these are measurable at ASTER’s spectral resolution [58–61]. Field data (optical spectra as well as other
geochemical, mineralogical, and particle size measurements) from 21 sites along the Ming earthen
wall were collected to provide both validation of the satellite maps as well as information about the
compositional homogeneity/heterogeneity of the wall building material and any relationships with
local (<100 m) surface materials.

From this multi-scale, spatially-comprehensive framework, we obtained a more detailed
perspective of the compositional variability of the loess. This compositional information then
provided the basis for solving the provenance of the loess used by the Ming to build their earthen wall,
which has two essential parts: (i) Where did the Ming mine their loess, i.e., was it from local sources
(<1 km away) or from centralized quarries many kilometers away? (ii) Where did the particles of
loess originate? With regards to the second, do specific minerals partition within particle size ranges,
reflecting different transport processes? In addition, has compositional heterogeneity impacted on the
wall’s erosional state as this could assist in wall’s future preservation? Finally, we underline the value
of using the Ming earthen wall validating our satellite ASTER mineral maps because it provides a
1200 km east–west transect across the entire study area.
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2. Materials and Methods

2.1. Field Recognition of the Ming Earthen Border Wall

Several features helped us establish whether a section of wall was built by the Ming or by an
earlier Dynasty. The key criteria for it to be Ming related include:

• Horizontally-layered (10–30 cm), loess-dominated building material (earlier walls are often
associated with abundant rock fragments);

• Regularly spaced guard towers (Figure 1b–e) also built using the same materials/methods;
• Aprons of the same types of fragmented, usually glazed stoneware and porcelain containers found

scattered around these guard towers; and
• The relatively well preserved (height) nature of the earthen wall (Figure 1c), especially given that

the Ming wall was the last completed in Chinese dynastic history.

2.2. Field Sampling

The Great Wall is protected by Chinese law, which is administered at the province level. Field
sampling for this study thus was carefully designed to minimize any impact. Measurements types
included: remote imaging, e.g., drone survey or field LIDAR; surface contact, e.g., field portable
spectrometers and pXRF; and those requiring a physical sample, e.g., particle size and XRD. The field
samples taken were <100 g each and were sampled as follows: (i) one sample from either side of the
wall ideally from recently fallen material; (ii) surface samples 15 m to the north and south of the wall;
and (iii) surface samples 45 m to the north and south of the wall. Field-portable X-ray fluorescence
(pXRF) measurements were taken at each sample point. For some sites, additional samples and in situ
measurements were taken, such as from within eroding layers (green arrows in Figure 2).

2.3. 3D Model Generation

A high resolution (<5 cm) 3D surface model, ortho-mosaic image, and digital elevation model
(DEM) were generated for each field site (e.g., Figure 1b–e), using drone digital imagery (where
allowed by government authorities) and observed at five different look angles (1 nadir and 4
oblique). Camera calibration, photo aligning, dense point-cloud building, mesh and texture building,
DEM, and ortho-mosaic building were processed with photogrammetric software called Agisoft
Photoscan/Metashape [61].

2.4. Assessment of the Wall’s Erosional Condition

Two independent methods were used to assess the erosional status of the Ming earthen wall. The
first involved visual assessment of the wall in the field using a five-level classification. The scores were
reassessed later in the office using site photos and other information. A 5/5 classification was given
to wall of >4 m height (above base-line), steep-sided (~80◦) wall sides (e.g., Figure 2d), a flat 2–4 m
wide wall-top that sometimes includes remnant brick or stone walkway lining, as well as battlements
such as a parapet (Figure 1e). A 1/5 classification was given to wall characterized by a convex, narrow
(<1 m wide) wall top and a lack of steep-sided walls (Figure 1b), which in places could be the result of
a build-up of wind-blown sediment (Figure 1d).

The wall classification determined using the 3D model, ortho-mosaic image, and DSM generated
from the drone photogrammetric involved digitally calculating the wall’s geometry and projected
volume per linear meter through any scree and/or sand cover.

2.5. Particle Size

Particle size measurements of wall samples were only conducted using a Malvern Mastersizer
2000 at the Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of
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Sciences in Beijing. The whole samples were pre-treated with a weak hydrochloric acid solution to
remove organic particles. Nineteen particle size ranges were measured for each sample.

2.6. Field Portable XRF

The pXRF measurements of in situ wall and background surface materials were measured using
an Olympus InnovX pXRF instrument. Measured samples were flat and air dried where possible.
Thirty-five of the detectable elements were recorded, although particular attention was given to Si, Al,
Fe, Ca, Mg, S, and Cl.

 

Figure 2. Field site photos and data. (a) Twenty-centimeter-wide layering of the Ming earthen wall
(cyan arrows) at Site 48 (38◦19.33′N; 101◦58.25′E. (b) Abundant white clay-carbonate fragments within
“hangtu” construction layers at Site 28 (37◦56.29′N; 107◦13.49′E). (c) A recently exposed cutting <1 km
from Site 28 exposing a ~1 m thick surface layer of loess developed over an eroded red and white
horizontal layered clay-rich paleosol with white clay-carbonate fragments. (d) South-side view of the
well-preserved earthen wall at Site 48 (38◦19.33′N; 101◦58.25′E). Preferentially eroding “hangtu” layers
are shown by green arrows while sub-vertical rills are shown by yellow arrows. Field sampling points
for pXRF and ASD measurements are numbered (#). (e) Close-up view at Site 48 showing isolated,
sub-rounded grey siltstone pebbles and cobbles in a beige colored loess matrix. (f) A road cutting along
the Shandan section (38◦27.40′N; 101◦27.53′E) showing a ~1 m thick surface layer of loess developed
over grey, sub-rounded, siltstone pebbles, and cobbles similar to those evident in (e). (g) A table of field
pXRF chemistry and ASD gypsum information of selected sample points (#) in (d,i). (h) Preferential
erosion along multiple “hangtu” layers at Site 33 (38◦16.34′N; 106◦32.18′E). (i) Recent collapse of the
earthen wall at Site 38 (37◦57.34′N; 105◦47.78′E) related to undercutting along a ~50 cm wide erosional
zone (#7) rich in halite. (j) Visual classification of the earthen wall’s erosional status where: 1 = little
remaining of the original wall above the exposed land surface; and 5 = well-preserved wall, including
the remnants of battlements. The magenta box highlights the well-preserved Shandan section.
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2.7. Laboratory XRD

Laboratory mineralogical analyses were conducted on a Bruker D4 Endeavour XRD instrument.
Whole samples were prepared as random powders (nominally 80% <75 μm) and back-mounted into
circular holders. Samples were typically scanned from 2◦ to 70◦. First pass mineral identification
was facilitated using the XPLOT software program [62]. This software search-matches peak positions
with respect to the ICDD mineral standards library [63]. Quartz was identified in the diffraction
patterns and used as an internal standard to correct for any instrumental shifts in 2θ position. The
same software was also used to measure mineral-targeted peak heights and full-width-half-heights
(FWHH). For example, the FWHH of the 10 Å peak was used to identify muscovite (FWHH < 0.2)
versus illite (FWHH > 0.2).

2.8. Field and Laboratory Spectral Measurements

A single beam, Analytical Spectral Devices (ASD) FieldSpec Pro spectrometer [64] was used to
measure the 350–2500 nm bi-directional reflectance of field samples. A 100% reflectance Spectralon
panel [65] was used as the reference standard, with both the target and reference illuminated in series,
either: (1) under the same optical geometry (off the specular angle) with a 1000 W Quartz Halogen
light source; or (2) using the contact-probe attachment, which has its own illumination source.

The emissivity of field samples was measured using a portable FTIR (Fourier transform infrared)
spectroradiometer Model 102 designed and built by Designs and Prototypes [66]. This instrument
measures emissivity in the 3–5 and 8–14 μm wavelength regions at approximately 6 wavenumber
resolution. The area sensed is approximately 20 mm diameter or less. Measurements of hot and cold
blackbodies establish calibration to radiance at sensor. A correction for background or sky down
welling irradiance is implemented using a brass reference plate to retrieve absolute surface radiance.
The method for temperature-emissivity separation and extraction of surface emissivity involved an
assumption for an emissivity of ~1.0 at the Christiansen frequency.

2.9. Satellite ASTER Imagery

Orthorectified, radiance-at-sensor (L1T) ASTER images of the study area were sourced from
NASA’s Earthdata web portal [67]. Approximately 250 images from 25 overlapping paths were selected
on the basis of cloud cover (<10%) and season (ideally late summer). However, for some areas, the
only available images in the archive were compromised by cloud cover, snow, and/or green vegetation,
which potentially impacted on the accuracy of the subsequent image cross-calibration.

Pre-processing the 250 satellite ASTER L1T images into a cross-calibrated mosaics involved the
following steps conducted using ENVI™ software: (i) spatial resampling of the VNIR and TIR module
data to 30 m (nearest the nearest neighbor sampling); (ii) merging of all three wavelength modules for
each image into a single 30 m pixel resolution file; (iii) masking any pixels without a full complement
of VNIR, SWIR, and TIR radiance-at-sensor data; (iv) finding pairs of overlapping images followed by
manual selection of ~25 invariant targets for each pair and spanning a wide range of radiance values
from which linear regressions were established (using EXCEL™) and the gains and offsets calculated
and used to adjust one image to the same levels as the adjoining image—this procedure was conducted
for all single images and/or paths of temporally coincident images till a single cross-calibrated mosaic
was established; (v) a linear, across-image correction (de-ramp) for a systematic calibration error most
evident in ASTER Band 5 (see Appendix A) was implemented; and (vi) an offset for each of Bands 1–9
was calculated using a dark-point estimation method developed by the lead author (not published)
and then corrected.

Even using this pre-processing strategy, residual calibration errors between images/paths remain
in the final mosaic (examples highlighted by white block arrows in Figures 4a, 5a, 6a and 7a). Note,
however, that these apparent calibration errors do not persist for the entire length of a given satellite
path and much less so for those areas close by where the invariant targets were selected. That is,
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poorly exposed areas with extensive snow or dynamic green vegetation cover and often associated
with higher topographic elevation often show these overlapping image mismatches. There are also
errors caused by local variations in atmospheric conditions, especially water vapor and aerosols. These
localized errors could be reduced through additional cross-calibration of the aberrant images.

2.10. ASTER Spectral Mineral Indices

We used spectral indices, such as band ratios, to enhance the often-subtle mineralogical signal
by cancelling extraneous effects that often dominate the signal. In the VNIR-SWIR, these extraneous
“multiplicative” effects include topographic illumination and surface scattering while in the TIR it is
kinetic temperature [52]. Care is essential in ensuring that any additive effects are first corrected before
attempting to use normalization-based compositional indices [60]. The ASTER spectral indices used
here are based on those developed in other studies [58,60,68].

The TIR-based ASTER Gypsum Index (GI) [68], which is sensitive to the presence and abundance
of gypsum and targets a related reststrahlen feature near 8600 nm, is calculated as follows:

GI = (B10 + B12)/B11 (1)

This ratio is inverse to the commonly used quartz index [58,68].
The TIR-based ASTER Silica Index (SI3) [69,70], which is sensitive to the amount of coarse

(>100 μm particulate size) silicate minerals such as quartz [71,72], targets silicate reststrahlen features
between 8000 and 9000 nm [73] and is calculated as follows:

SI3 = B13/(B10 + B11 + B12) (2)

The SWIR-based ASTER AlOH abundance index (2200D) [60], which is sensitive to the content of
dioctahedral minerals, such as kaolinite, white mica (e.g., illite, muscovite, phengite, and lepidolite),
and montmorillonite, and targets related absorption at 2200 nm [57], is calculated as follows:

2200D = (B5 + B7)/B6 (3)

However, the 2200D index is also sensitive to changes in dioctahedral mineral composition
with kaolinite generating a lower response while white mica generates a higher response. It is also
complicated by the nature of scattering interactions with other mineral grains, whether they be opaque
phases such as graphite [74] or transparent ones such as quartz [75,76].

The SWIR-based ASTER AlOH composition index (2165D) [70], which targets changes in the
geometry of the 2200 nm absorbing minerals, especially kaolinite (left-asymmetric) to white mica
(right-asymmetric), is calculated as follows:

2165D = (B7 + B8)/(B5 + B6) (4)

The SWIR-based ASTER MgOH abundance index (2330D) [70], which is sensitive to a broad suite
of trioctahedral silicate (e.g., chlorite, amphibole, talc, and serpentine) and carbonate (e.g., calcite and
dolomite) minerals and targets related absorption/s between 2250 and 2380 nm, is calculated as follows:

2330D = ((B5 + B6 + B9)/B8) (5)

The above spectral indices were implemented on both the satellite ASTER and field ASD and
microFTIR data, with the latter two first convolved to simulate ASTER band responses.
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2.11. Vegetation Unmixing of ASTER Mineral Indices

The seasonally-variable effects of green vegetation on the ASTER spectral mineral indices were
compensated using a linear unmixing approach [70,77,78]. This first step involves estimating the
abundance of green vegetation (GV) as follows:

GV = (B3/B2)1/3 (6)

An orthogonal mixing relationship between GV and the target mineral index is then assessed
via a 2D scattergram before scaling the ranges of the two input indices between 0 and 1. It is then a
simple task to add or subtract GV and the target mineral index, depending on the geometry of the
data cloud [70]. Removing the effects of dry vegetation can also be implemented [52,70] but was not
attempted here.

2.12. Validation of the ASTER Mineral Indices Using the Field Spectral Data

The statistical comparison of the field versus satellite results was based on selecting three regions
of interest (ROI) of 5–50 pixels for each field site in the ASTER imagery: (i) north of the Wall; (ii) south of
the Wall; and (iii) along the trace of the Wall (1–3 pixels wide, i.e., <100 m). Where possible, pixels were
excluded from the ROI where they were considered to be compromised by snow, cloud, vegetation,
creeks/rivers, roads, and other manmade infrastructure including earlier Walls. These ASTER ROI
data (Figures 4b, 5b, 6b and 7b) were then used for visual comparison with the associated field data
(Figures 4c, 5c, 6c and 7c). Note that we do not imply that the 15–90 m pixel resolution of ASTER
can be used to directly map the composition of the wall, which has a width ~6 m (not including any
erosional scree slope that can extend the surface expression of the wall’s loess material by up to 30 m
width). Instead, our methodology relies on recognizing similar compositional patterns along the
1200 km length of the Ming earthen wall between the ASTER ROIs and the field data, which include
field sample points located 15 m and 45 m on either side of the wall as well as those from the wall.

2.13. Interpreting Mineral Transport Pathways

The assumptions used in interpreting the loess system mineral sediment transport pathways
include:

• The loess-related surface materials sensed by the ASTER satellite sensor are either Holocene or
possibly late Pleistocene in age.

• Sediment dispersal (transport) of a given mineral type from its source generates a related decreasing
compositional gradient, especially downslope or along flat topography.

• Reversals in compositional gradients can be caused by sediment “sinks” such as topographic lows
or banking-up against topographic highs.

• The spatial pattern and distance travelled by a particular sediment type is dependent on its particle
size and the nature (energy) of the transport process, namely:

◦ colluvial transport is short (<50 km) and located adjacent to topographic highs;
◦ fluvial transport is spatially restricted, e.g., within floodplains and (dry) river beds (wadis);
◦ aeolian transport by saltation is confined to connected lowlands; and
◦ depending on wind energy and particle size, aeolian transport by suspension can rise above

topography and cross-cut fluvial transport networks.

• The relative timing of transport events, whether they be related to ephemeral rivers or aeolian
sand saltation flow, can be assessed by their cross-cutting (compositional) nature.

• Sand dune patterns have largely developed since the last ice age, i.e., post late-Pleistocene, and
thus are a potential indicator of prevailing wind direction/s.
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• Longitudinal sand dunes, which are large amplitude (1–10 km) and often vegetation-stabilized,
are formed by prevailing winds operating parallel to the dunes.

• Transverse dunes, which are small amplitude (~100 m) and typically free of vegetation, are formed
by winds operating orthogonal to the dunes.

3. Results

3.1. Earthen Wall Building Materials

All 21 field sites (Figure 1a) showed that the Ming’s “hangtu” method was used to build the
earthen border wall, including the characteristic 15–30 cm thick, sub-horizontal layering of loess
(Figure 2a). We often found sporadic (<15% by volume) pebbles and cobbles (1–10 cm in diameter;
Figure 2b,e) in the wall, especially in areas of thin (<1 m) loess cover. The composition and form of
these clasts were similar to local (<100 m) rock fragments exposed on the ground surface or exhumed
by nearby building works and road cuttings (Figure 2c,f, respectively). We found loess-type material
nearby (<100 m) for all but Sites 38 and 43 (Figure 1a,c), which were built directly on rocky ground in
higher relief terrain.

3.2. Earthen Wall Status

Exposed, steep-sided walls often show a variety of erosional characteristics [79]. These include
layer-parallel, erosional embayments with widths ranging from 3 to 60 cm (green arrows, Figure 2).
The smaller ones (1–3 cm width) are often associated with the 15–30 cm “hangtu” layering (Figure 2a)
while the larger ones (5–60 cm) often span a number of these layers (Figure 2h,i) and are usually located
<2 m above the wall’s base (Figure 2d,h,i) where not backfilled by aeolian sand (Figure 1d). These
embayments can become so recessed that they eventually cause the collapse of the overhanging wall
(Figure 2i). Sub-vertical rills (yellow arrows in Figure 2d,h) also contribute to this erosional decay.

The condition of the remnant Ming earthen wall was gauged both visually in the field and
digitally using a high-resolution digital elevation model (DEM) generated from drone-acquired, stereo,
visible imagery (Figure 1b–e). These different methods yielded similar results though only the visual
assessments are presented here. The results (Figure 2j) show a trend of better-preserved wall westward,
except for Site 62, which is largely covered by sand dunes. The best-preserved part of the earthen wall
is the ~120 km long “Shandan section” (Sites 48–60 and highlighted by a magenta box in Figure 2j).

3.3. Loess Particle Size

The particle size of wall material (43 samples from 21 sites) was measured for 19 particle size
bins spanning the range from 1 to 1000 μm. The results (Figure 3a) show tight standard deviations
(STD ~2%) for all bin sizes ≤100 μm. The volumetrically-dominant bin-size is 20–50 μm (25 ± 7%),
i.e., coarse-silt fraction (yellow box, Figure 3a). Combining all of the silt-size bins (2–63 μm) accounts
for ~54% of the loess material, whereas sand (>50 μm) represents ~38% and clay (<2 μm) ~8%. This
dominance of silt-size grains and left-skewness in particle size distribution (Figure 3a) are characteristic
indicators for loess [80]. There is also inverse correlation (R2 = 0.74) between the combined clay and
fine-silt fractions (<20 μm) versus the combined sand fractions (>50 μm), given the coefficient of
determination (R2) for 21 samples is significant at the 90% confidence level where R2 > 0.57. However,
this excludes the 20–50 μm coarse-silt fraction, which yields no improvement when combined with
either the finer or coarser fractions. In addition to the main peak at 20–50 μm, there are minor peaks
spanning the 0–8 μm (centered at 1–2 μm) and 8–14 μm (centered at 8–10 μm) ranges.

To better understand the spatial pattern of these particle size data, we grouped the particle size
bins into four types: (i) 0–3 μm (~clay); (ii) 3–20 μm (~fine-silt); (iii) 20–50 μm (~coarse-silt); and (iv)
50–1000 μm (~sand). Figure 3b shows the coarse-silt group has a relatively flat trend (~25%) along the
1200 km length of the wall. In contrast, the clay and fine-silt groups show smooth-changing curves
that vary by a factor of ~2 and are well-modeled using fourth-order polynomials, with minima located
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near Site 28 and maxima located near Sites 55 (major) and 10 (minor). The 50–1000 μm group is
also well-modeled using a fourth-order polynomial and is broadly opposite in pattern to the 1–3 μm
and 3–20 μm data, although it also reveals a linear upward trend from Sites 4 (~35%) to 39 (~55%)
before rapidly dropping to a minimum at Site 55 (~10%). The well-preserved “Shandan” section of
earthen wall (Figure 2j) is associated with this minimum in sand content, where it becomes less than
the combined finer fractions. Normalizing all the <50 μm fractions by the combined 50–2000 μm
fraction highlights this sand-poor nature of the well-preserved Shandan section of the Ming earthen
wall (magenta box in Figure 3c).

To assess possible local (<300 km) sources of the different loess dust components, we measured
for each of the 19 particle size bins the distance between a given sample site and three potential source
regions: (i) sand dune fields of the Badain Jaran, Tengger, and Mu Us Deserts; (ii) evaporative lakes at
the outflow zone of the Shiyang River in the Tengger desert; and (iii) alluvial fans along the northern
edge of the Qilian Shan (Figure 1a). Using fitted linear-functions, the results (Figure 3d) show: (i) clay
is inversely correlated with the distance from the alluvial fans and to a lesser degree the evaporative
lakes and positively correlated with the dune fields; (ii) fine-silt is positively correlated with the sand
dunes and to a lesser degree inversely correlated with the alluvial fans and evaporative lakes; (iii)
sand is inversely related with the dune fields, albeit weakly; and (iv) coarse-silt shows no relationship.
These correlations are improved when fitted with higher order functions. For example, when using
a second-order polynomial: (i) clay versus alluvial fans increases up to R2 = 0.74, with the related
minima coinciding with the location of the Yellow River; (ii) fine-silt versus sand dunes increase up
to R2 = 0.73, with the related minima located ~30 km to the south of the dune-fields; and (iii) sand
versus deserts increases up to R2 = 0.43 with the related maximum located ~30 km to the south of the
dune-fields. Coarse-silt shows no apparent improvement.

3.4. Field XRF Chemistry—Wall and Background

The pXRF measurements of both wall and background samples show the following spatial
patterns: (i) the Si/(Si + Al + Fe) ratio (Figure 3e) approximates a sinusoidal shape for both datasets
with their peaks positioned near Site 20 and their inflexion points positioned between Sites 33 and
38 (i.e., where the Yellow River crosses); (ii) the Si/(Si + Al + Fe) ratios for background samples (red
diamonds) are ~15% higher than their associated wall samples (blue dots) for localities nearby (<30 km)
sandy deserts, i.e., Sites 10–33, 39, and 62; (iii) wall and background samples show a similar trend for
Fe and Mg contents which linearly increase westward from 2% to 4% (red dots and green diamonds,
respectively, in Figure 3f,g), although wall samples have less variability, (iv) Ca contents are more
variable though both wall and background samples show a weak, linear, increasing trend westward
(blue triangles in Figure 3f,g); (v) Ca contents of wall samples are on average 2–3% higher than their
corresponding background samples (6.0% ± 1.6% versus 3.8 ± 2.2%, respectively); (v) there is a zone
between Sites 28 and 48 in wall samples where Ca contents are up ~4% above the general trend of
~6%, which also corresponds to the zone of elevated S; (vi) S contents are typically <0.01% (i.e., below
detection limits) for both wall and background samples accept west of Site 28 and especially for a zone
between Sites 28 and 48 where S levels can reach up to 5% (yellow circles in Figure 3f,g); and (vii)
Cl levels are typically below detection limits (~0.03%) except for wall samples (and one background
sample at Site 28) between Sites 28 and 62 where contents are up to 3% (magenta squares in Figure 3f,g).
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At a site-scale, the field pXRF measurements show considerable heterogeneity and differences
between chemical elements down a given vertical section of the wall. For example, at Site 48 (Figure 2d),
S decreases from 3.1% at ~2 m above ground (#1 in Figure 2d,g) to 0.2% at ~30 cm above ground (#5 in
Figure 2d,g). Similarly, Cl also shows considerable variability. For example, at Sites 48 (Figure 2d) and
38 (Figure 2i), Cl measurements from within (e.g., #2, #5, and #7) and immediately adjacent (<15 cm,
e.g., #4) to wide (15–50 cm), sub-horizontal embayments (green arrows in Figure 2d,h,i) yield high
(0.1–3.1%) values (Figure 2g). Away from these eroded layers (e.g., #1, #3, and #6), Cl values are below
pXRF detection limits. In contrast, the Si/(Si + Al + Fe) ratio remains constant throughout.

We interpret these pXRF as follows: (i) the similarity between the Si/(Si + Al + Fe) chemistry
(Figure 3e) and particle size distribution (Figure 3b,c) is driven by a change in composition across
the spectrum of particle sizes, namely Si-rich (i.e., quartz) coarser fractions to Al-rich (i.e., white
mica, kaolinite) and/or Fe-rich (e.g., chlorite) finer fractions; (ii) Fe and Mg are related to the mineral
chlorite [(Fe2+,Mg,).5Al2Si3O10(OH)8], which was sourced from the west (up gradient); (iii) the similar
patterns for wall versus background samples for Si/(Si + Al + Fe) (Figure 3e) as well as Fe, Mg, and
S (Figure 3f,g) are evidence that the Ming locally (~100 m) sourced the loess to build their earthen
wall; (iv) the lower Si/(Si + Al + Fe) values of wall samples versus their associated background surface
samples nearby sand deserts is evidence that the Ming had developed methods to assess and selectively
mine loess poor in quartz-sand content; (v) the low variability of Fe for wall (1 STD = 0.6%) versus
background samples (1 STD = 1.0%) is evidence that the Ming used visual color for grading the quality
of the loess, given that Fe is contained in either chlorite (green/brown) or related weathering products,
namely hematite (red) or goethite (yellow); (vi) the elevated S contents west of Site 28 in both wall
and background samples (yellow circles in Figure 3f,g) is related to gypsum (CaSO4.2OH), which is
aeolian in origin and derived from evaporative lakes in the Tengger Desert; (vii) the relative lack of
Cl in background surface samples but common occurrence in wall materials west of Site 28 can be
explained by aeolian halite (Na.Cl) derived from a nearby source (e.g., evaporative lakes in the Tengger
Desert) that is readily leached from the surface into the groundwater where it then can be mobilized,
presumably by capillary action, up into specific “hangtu” layers of the wall; and (viii) the consistently
higher Ca content of wall samples versus background samples is evidence that the Ming routinely
applied a Ca-rich additive, most likely lime.

3.5. XRD Mineralogy—Selected Wall Samples

Ten wall samples were measured using laboratory X-ray diffraction (XRD), namely Sites 4, 10, 21,
30, 33, 43, 48, 49, 55, and 62. The mineralogy interpreted from these whole-sample analyses include:
quartz, albite, microcline, muscovite, chlorite (chlinochlore and chamosite), kaolinite, calcite (no
dolomite), amphibole (actinolite), gypsum, halite, poorly crystalline, hydrated clay (~montmorillonite
and/or interstratified clay), a zeolite, and possibly a hydrogarnet. We determined muscovite rather
than illite in these bulk sample XRD analyses given the 10 Å peak-width at half-height-maximum
(FWHM) is <0.2 Å. The zeolite mineral, laumontite [Ca(AlSi2O6)2·4H2O]), was identified by peaks
at 9.46 Å and 6.83 Å (Sites 48 and 49). Similar to the pXRF Ca, Cl, and S results (Figure 3e), gypsum,
halite, and laumontite were only detected by XRD west of Site 28 (Figure 3h). All samples show a
number of other minor but difficult to interpret XRD peaks, including one at 2.64 Å, which is possibly
related to a Ca-bearing hydrogarnet.

3.6. Field and Satellite VNIR-SWIR Results

Selected field ASD spectra of wall loess samples taken from the same sites chosen for the XRD
analyses (Figure 3h) are presented in Figure 3i. Absorption by water vapor (and surface water) is
masked out between 1800 and 2000 nm. These wall loess samples are all intimate mixtures of minerals,
including: muscovite (2200, 2350, and 2450 nm); illite (2200, 2350, 2450 nm, and well-developed water
related shoulder near 2000 nm); chlorite (2000, 2245, and 2330 nm); and gypsum (1445, 1490, 1540,
1746, 2215, and 2410 nm). Kaolinite (2165 and 2205 nm) and calcite (2335 nm) are more difficult to

171



Remote Sens. 2020, 12, 270

recognize, although kaolinite is identified because of a characteristic sharp absorption locked in at 2205
nm (~18 nm FWHH, whereas the muscovite and illite absorption is >30 nm width and can vary in
wavelength [52]) and a depressed shoulder near 2165 nm, as shown by ASD spectra from Sites 43–55
(excluding Site 48). This subtlety reflects the fact that kaolinite represents only a minor component of
the loess compared with minerals such as muscovite.

The mineral information targeted using ASTER’s moderate spectral-resolution capabilities
(Figure 3h) included: (i) the presence of gypsum; (ii) the proportion of quartz sand versus clay
(called sand-clay index or SI3); (iii) the content of silicate minerals such as kaolinite and white mica
(called 2200D); (iv) the proportion of kaolinite versus white mica and/or montmorillonite (called 2165D);
and (iv) the combined content of chlorite, carbonate and/or amphibole (called 2330D). We validated
these ASTER mineral maps using coincident ROIs of the field ASD data convolved to ASTER responses.
Full-spectral resolution field ASD were also used where required to more accurately interpret the
composition of the mineral components.

3.6.1. Gypsum

The full spectral resolution field ASD data show diagnostic gypsum absorptions at 1446, 1490
and 1540 nm for wall samples collected from Sites 40, 48 (Figure 3i), 55 (Figure 3i), 60, and 62 and
background surface samples collected at Site 43 only. Thus, the ASD, XRD, and pXRF data all indicate
a similar pattern where gypsum is present in a zone spanning Sites 28–62.

The ASTER gypsum index [61] was clipped to identify pixels most likely to contain gypsum.
The resultant map (white filled polygons in Figure 4a) reveals numerous, large (up to 50 km wide)
occurrences of gypsum associated with evaporative lakes. Most of these ephemeral lakes are found in
the Tengger Desert (“A”), with less in the Badain Jaran Desert and no apparent gypsum occurrences
are evident in the Mu Us and Hobq Deserts, at least at this map-scale (Figure 4a).

We propose that northerly to westerly winds (light yellow arrows in Figure 4a) transported
gypsum-laden dust as long-term suspension from evaporative lakes in the Tengger and Badain Jaran
Deserts to areas <300 km away. We also suggest that this gypsum-laden dust was able to cross
topographic highs of the Helan Shan and the Alashan Block (Figures 1a and 4a).

3.6.2. Sand-clay Index

The SI3 index is sensitive to the abundance of sand rich in quartz (and other silicates such as
feldspars) relative to clay materials (size and composition) and is driven by the wavelength and intensity
of the silicate reststrahlen feature near 8.6 μm [70,81]. The satellite and field SI3 data show similar
sigmoidal patterns (Figure 5a,b, respectively) that are well-modeled using third-order polynomials and
are consistent with the pXRF Si/(Si + Al + Fe) results (Figure 3e). All show inflexion points positioned
between Sites 33 and 39 (i.e., approximate position of the Yellow River), with quartz-sand-rich materials
to the east and clay-rich materials to the west. Similar to the particle size results, which show that the
loess along the Shandan section is poor in sand (Figure 3c), the associated field SI3 values are also at
their lowest, i.e., least amount of quartz sand (Figure 4c).

The ASTER SI3 map (Figure 4a) depicts areas rich in quartz-sand as warmer tones while areas
rich in clays are cool tones. The two areas most abundant in quartz-sand are parts of the Gobi Desert
(near “C”) and the Hobq Desert (“D”). From the limited spatial coverage selected for our study area,
we recognize SI3 gradients extending away from these enriched zones as follows. The area of highest
SI3 values in the Gobi Desert (near “C”) is located over terrain comprising exposed Mesozoic and
Cainozoic sedimentary rocks, including Cretaceous sandstones. From here, the SI3 progressively
decreases east-southeastward (i.e., the direction of quartz-sand transport) along a linear ~500 km long
trajectory (“C” to “A”), paralleling (restricted by) the highlands of the Alashan Block to the south
(“H”). In the process, this SI3 signature seamlessly crosses the >40 km wide wadi of the Heihe River
(Figure 1a). That is, this aeolian activity is sufficiently frequent to obscure the potentially cross-cutting
effects of fluvial sediment transport.
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Continuing eastward from the Heihe River wadi, the SI3 signature extends down-gradient for
~100 km across dune-fields of the Badain Jaran Desert, which comprise linear to complex dune patterns
consistent with an easterly flow of quartz-sand mobilized by saltation. The SI3 gradient then begins
to increase for ~100 km across similar dune-fields concomitant with a rise in topography (100 m),
reaching a maximum height along the Yabra Shan (Figure 1a). Beyond here, the pathway of quartz
sand transport becomes more diffuse as it enters the lowland expanse of the Tengger and Ulan Buh
Deserts (Figure 1a). The SI3 map also provides evidence for the input of quartz sand into this desert
pathway from the Qilian Shan (“F”) and Alashan Block (“H”), although we suggest this sediment was
mobilized downslope chiefly by fluvial and/or colluvial processes (dark red arrows in Figure 4a).

 

Figure 4. (a) ASTER SI3 base-map depicting the proportion of quartz sand (warm colors) to clay (cool
colors) material overlain with a threshold mask of the ASTER Gypsum Index (white). (b) Scattergram
of the west-to-east spatial trend of satellite ASTER SI3 responses collected from three (north, south,
and centered over the wall) ROIs (~50 pixels each) of the field sites. (c) Scattergram of the west-to-east
spatial trend of field SI3 responses of wall samples only. A magenta box highlights the well-preserved
“Shandan” wall section.
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The SI3 gradients across the Tengger Desert are more variable, which is consistent with the
complex pattern of linear dune systems, both longitudinal and transverse. The net result is a saltation
movement of aeolian quartz sand (magenta arrows) that terminates against the Yellow River or its
ephemeral tributaries (e.g., between Sites 39 and 45, Figure 4a). Importantly, the ASTER SI3 values
markedly step-down along this boundary, which is clear evidence for aeolian saltation flow. That
is, quartz sand has not been transported by wind-suspension across the river to be deposited some
distance across on the opposite bank near, e.g., near “E”.

Thus, the entire volume of quartz sand flowing by aeolian saltation through the Tengger Desert, and
presumably Ulan Buh Desert, is consumed by the Yellow River before being transported downstream
(thick orange arrow). This is consistent with field studies which have found a pronounced increase in
the sand sediment load along this section of the Yellow River [81–84] and corresponds to a change in
flow regime from a deep, meandering channel upstream to a shallow, braided system downstream that
extends along the margin of the Hobq Desert. It then returns to a single, deep channel, presumably
because the river’s load of sand has been deposited.

The SI3 pattern across the Ordos Plateau is less complex, driven largely by southeastward saltation
of quartz sand (magenta arrows) paralleling longitudinal dunes in the southern half of the Mu Us
Desert. The highest SI3 values are located in a ~50 km wide, lens-shaped zone spanning vegetation-free,
transverse dunes (<100 m amplitude) of the Hobq Desert (“D” in Figure 4a). Southeastward from
here the SI3 gradient decreases for ~100 km values before gradually increasing over the Mu Us Desert
concomitant with the development of longitudinal dunes. A series of quartz sand rich incursions or
cusps (red arrows) extend for >30 km southeastward into the zone of loess. These cusps appear not to
be constrained by topography as they are located over both shallow valleys and low hills. In contrast
with the sharp southern boundary of the Tengger Desert, the southern margin of the Mu Us Desert
(white dotted line in Figure 4a) shows a diffuse SI3 transition with the adjacent loess deposits across a
~50 km zone.

There is no indication from the SI3 map (Figure 4a) that the upper catchment of the Yellow River
(west of “G”) in northeast part of the Tibetan Plateau was a significant source of quartz sand. This
contrasts with the Qilian Shan near “F”, which has both exposed rocks and associated downslope fans
and alluvial plains of the Shiyang River with characteristically high SI3 values.

3.6.3. Al-Clay Content Index

Both the field and satellite 2200D data show similar weak patterns which are modeled here using
fifth-order polynomials. These show a narrow low centered near Sites 55 and 56 (Figure 5b,c), which
is coincident with the zone poor in (quartz) sand size material (Figure 3c). This association helps to
explain this apparent 2200D low as the lesser amount of optically-transparent quartz grains reduces
the overall optical thickness, resulting in less opportunity for electromagnetic radiation to interact with
clay mineral particles [75,76]. This optical transparency effect also helps explain why the quartz-rich
dune-fields (Figure 5a) have moderate to high 2200D values (warmer tones) even though they generally
contain less clay mineral content compared with loess (Figure 3b,e and Figure 5b,c). One exception,
however, is the western part of the Badain Jaran Desert (“I”), which has a low 2200D response that
seamlessly merges with the wadi of the Heihe River and not the nearby Gobi Desert (“C”) or the
Alashan Block (“H”). Instead, we trace the source rocks up the Heihe River to areas of low 2200D
signature along the western part of the Qilian Shan, i.e., south of Sites 54–62. Similarly, the higher
2200D response of the eastern half of the Badain Jaran Desert can be traced to sediment eroded from
the Alashan Block (dark red arrows in Figure 5a).

Further east along the Qilian Shan, there are rock exposures near “F” (Figure 5a) that generate the
highest 2200D responses across the study region. This high response then persists downslope across
associated alluvial fans and then along the Shiyang River wadi before merging seamlessly into the
Tengger Desert (dark red arrow). In contrast, the upper reaches of the Yellow River catchment (near
“G”) comprise a relatively low 2200D signature, although it does increase downstream near “E”, where
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it seamlessly merges with the 2200D signature of the Tengger Desert. This signature can be traced
southward across the Yellow River and over loess deposits for >100 km (“E”), although appears to be
constrained (given image miscalibration error) by the eastward extension of the Qilian Shan, where
topography is >500 m above background (triple white lines). This apparent lack of 2200D contrast
between dune-fields and loess is also evident across the Ordos Plateau between the Mu Us Desert and
loess to its south (between Sites 4 and 26 in Figure 5a).

Figure 5. (a) Satellite ASTER 2200D index base-map depicting the amount of Al-bearing minerals
(i.e., muscovite/illite, kaolinite) with greater abundances in warmer tones. (b) Scattergram of the
west-to-east spatial trend of satellite ASTER 2200D responses of ROIs collected from three (north, south,
and centered over the wall) ROIs (~50 pixels each) of the field sites. (c) Scattergram of the west-to-east
spatial trend of field 2200D responses of both wall (filled red triangles) and background (open red
triangles) samples. Fifth-order polynomials are fitted to the satellite and background field sample data.
A magenta box highlights the well-preserved “Shandan” wall section.

3.6.4. Kaolin—White Mica Index

The ASTER 2165D is sensitive to the composition of dioctahedral clay minerals with kaolinite
generating a higher response and white mica a lower response, although this interpretation is most
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appropriate for those areas sharing a similar 2200D response. Both the field and satellite ASTER 2165D
data show a similar sigmoidal (dextral offset) pattern (Figure 6b,c, respectively), with the Yellow River
valley (Sites 33–39) marking the inflexion point. That is, there are higher levels of kaolinite relative to
white mica (high 2165D response) in the zone between Sites 40 and 48 in background samples, whereas
there are higher levels of white mica to kaolinite in the zone between Sites 26 and 33. This pattern
is broadly consistent with the height of the kaolinite related XRD peak at 7.169 Å (green squares in
Figure 6c). Wall samples along the well-preserved Shandan wall section tend to be rich in kaolinite,
although the associated background samples are more variable (Figure 6c). This is related to the fact
that background surface samples were not always available from exposed loess but instead either
alluvium (e.g., Sites 49, 54, and 55) or sand dunes (e.g., Site 62).

 

Figure 6. (a) Satellite ASTER 2165D index base-map depicting the proportion of kaolin (warmer tones)
versus white mica (cooler tones). (b) Scattergram of the west-to-east spatial trend of satellite ASTER
2165D ROI responses. (c) Scattergram of the west-to-east spatial trend of field 2165D responses of both
wall (filled red circles) and background (open red circles) samples. These are underlain by laboratory
XRD results of the 7.169 Å kaolinite peak height (green boxes) for selected wall samples. A magenta
box highlights the well-preserved “Shandan” wall section.

The satellite 2165D map (Figure 6a) shows areas richer in kaolinite as warmer tones. Regionally,
kaolinite is more abundant over the Tibetan Plateau with some of the highest 2165D responses
associated with Devonian molasse in the Qilian Shan (purple polygon). These exposures have
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associated downslope colluvial/alluvial aprons (light purple arrows in Figure 6a). However, aeolian
transport by long-term westerly wind suspension (dark purple arrows in Figure 6a) is also required to
account for the 2165D gradient that extends for up to 300 km eastward across to the southern parts of
the Tengger Desert and the upper Yellow River catchment (“G”).

The lowest 2165D responses (cooler tones, i.e., rich in white mica) are found over the Badain Jaran
Desert (I) and the Alashan Block (“H”). We propose that the eroding geology of the Alashan Block
is a (the) primary source of white mica with derived sediments initially transported downslope by
colluvial/alluvial processes before entering the aeolian sediment transport pathway along the Badain
Jaran and then ultimately the Tengger and Ulan Buh Deserts. The associated low 2165D response then
crosses southward across the Yellow River into loess deposits near E as well as eastward to the Ordos
Plateau. However, the 2165D gradient then increases eastward, which could be a function of increased
weathering related to higher rainfall in this region resulting in the formation of kaolinite after minerals
such as chlorite and feldspar [85]. Given this apparent, mildly elevated level of kaolinite across the
Ordos Plateau is caused by weathering, the dominant white mica component is likely transported by
long-term wind suspension uplifted from the Badain Jaran and Tengger Deserts (white arrows) with
related particles originating from source rocks exposed across the Alashan Block (“H”).

3.6.5. Chlorite/Carbonate/Amphibole Content

We identified chlorite as the dominant 2330D absorbing mineral from the field ASD spectra based
on absorptions at around 2000, 2250, and 2230 nm. Both the satellite and field 2330D data show a
similar sigmoidal (sinistral offset) pattern (Figure 7b,c, respectively), that is opposite to that observed
with the 2165D data (Figure 6b,c). However, all share a similar position for their inflexion point, which
is located over Yellow River valley (Sites 33–40). Wall samples along the well-preserved Shandan
section are relatively poor in chlorite and less variable compared with their associated background
samples (Figure 7c), which often comprise colluvial/alluvial material (e.g., Sites 49, 54, and 55).

The satellite 2330D map (Figure 7a) shows areas richer in chlorite as warmer tones. The highest
2330D responses are found on the Alashan Block (“H”) from which stems a seamless, decreasing
gradient spanning the eastern part of the Badain Jaran Desert and then across the Tengger Desert (“A”)
before dispersing across the Yellow River southeastward towards “E” and eastward over the Ordos
Plateau. The lack of a 2330D north–south gradient across the Ordos Plateau is evidence that the source
of these aeolian-borne trioctahedral minerals were not local but from a distant region. The low 2330D
signatures that characterize the Tibetan Plateau, loess deposits in the upper reaches of the Yellow River
(“G”), the Qilian Shan, Hexi Corridor, and Heihe and Shiyang Rivers (Figures 1a and 7a) indicate these
areas are not intrinsic to the chlorite (and carbonate and other trioctahedral minerals) mineral transport
pathway. We thus interpret the 2330D transport pathway from source to loess deposition as initially
being downslope, colluvial-fluvial movement from source rocks exposed across the Alashan Block
(dark red arrows) before being entrained by westerly to northwesterly wind long-term suspension
(white arrows) that deliver chlorite to distant (>500 km) areas including loess deposits of the Ordos
Plateau (Figure 1a).
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Figure 7. (a) Satellite ASTER 2330D mosaic, which is sensitive to the content of chlorite. (b) Scattergram
of the west-to-east spatial trend of satellite ASTER 2330D ROI responses. (c) Scattergram of the
west-to-east spatial trend of field 2330D responses of both wall (filled red circles) and background
(open red circles) samples. These are plotted with laboratory XRD results of the 14.1 Å chlorite peak
height (green boxes) for selected wall samples. A magenta box marks the well-preserved “Shandan”
wall section.

4. Discussion

We have presented here a range of evidence that shows the Ming earthen wall changes in
composition along its 1200 km length between Shenmu and Jiayuguan (Figure 1a). These compositional
changes are apparent in field sample measurements of wall samples and nearby surface background
materials (Figures 3b,c,e–h, 4c, 5c, 6c, and 7c) and are consistent with the ASTER surface mineral maps
and related ROI data (Figures 4a,b, 5a,b, 6a,b, and 7a,b). All show that the loess used by the Ming
to build their earthen wall is compositionally heterogeneous. This has implications for improved
understanding of: (i) where the Ming mined loess to build their earthen wall; (ii) the origin of the
loess materials; and (iii) the importance of mineral composition in determining the wall’s long-term
erosional durability.

In addition to the similarity in composition (mineralogy and chemistry) between wall and
background (<50 m away from the wall) materials (Figures 3e–g, 4b,c, 5b,c, 6b,c, and 7b,d), there
is also the similarity in the nature of rock fragments (where available) at a given site. We cite these
as key evidences for the Ming sourcing their earthen wall building material from nearby (<500 m),
surficial (<30 m depth) loess deposits of presumably Holocene or possibly late Pleistocene (i.e., Malan
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loess units) age. We conjecture that, where available, the Ming’s inclusion of up to 20% local rock
fragments into the wall building material (Figure 2b,e) simply served as an expedient additive rather
than being designed for improving the wall’s structural performance, unlike previous Dynasties such
as the Han who incorporated layers of rock into their wall design, i.e., were a mixture of both grain
(=rock) supported as well as matrix (=loess) supported.

We further propose that the Ming established at least three methods to improve the quality of the
loess for their earthen wall construction. The first is that they routinely gauged the sand content of the
loess and, if required, selectively mined deeper loess layers richer in silt and/or clay content if required
(Figure 3e). This would have been particularly important across the Ordos Plateau where incursions
of saltating sand grains regularly occurred because of a lack of physical barriers such as vegetation,
mountains, and permanent rivers. At the same time, it was fortuitous for the Ming that the limited
depth of loess across the Hexi Corridor (~1 m layer, Figure 2f) was of high-quality building material
rich in finer fractions (Figures 3c,e and 4c), else they would have had to either transport loess from
mines located a great distance away or found an alternative locally-available building material, much
of which has a high content of rock. Similarly, we propose that the Ming used color, which is related to
the content of iron oxide and/or chlorite, to assess the quality or at least maintain consistency of the
mined loess (Figure 3f).

The third method we propose is that the Ming applied a Ca-rich material, possibly calcite but more
likely lime. This is based on the consistent ~2% higher levels in Ca content of wall versus background
materials across the study area (Figure 3f,g, respectively). The lack of a similar pattern for both Mg
and S indicates that neither dolomite [(Ca,Mg)CO3] nor gypsum was involved. Lime was well known
to the Ming having been used in construction back to the Shang Dynasty (1700–1027 BC) [2]. In theory,
a 2% lime application rate is sufficient to reach the “lime fixation point” where ions are absorbed
by clay minerals, which increases the unconfined compressive strength of the earthen material [86].
After this point, alkali activation can cause the (re)precipitation of calcite as part of a pozzolanic type
reaction [54]. However, nano-fibers of secondary calcite are also found in natural loess material [48]
such that (re)crystalized calcite in the earthen wall material is not itself conclusive evidence for lime
addition by the Ming.

The advanced stages of pozzolanic reaction generate a variety of Ca-bearing silicate and/or
alumino-silicate minerals, such as ettringite, tobermorite, zeolites, and hydrogarnets [17,86]. From
our limited XRD data, we detected the zeolite mineral, laumontite, at Sites 48 and 49 (Figure 3h).
Given that zeolites can also form by subaerial dissolution of silicate minerals in a range of geologic
environments at near-surface conditions [87], its limited distribution is unlikely to be the result of
systematic application of lime by the Ming. Instead, we suggest its overlapping pattern with gypsum
and halite (Figure 3h) is the result of aeolian transport from nearby evaporative lakes (Figure 4a). From
the available data, we are not confident that hydrogarnet or any other Ca-bearing alumino-silicate
cementing minerals are present in the wall material. Thus, even though we conclude that the Ming
added ~2% Ca, most probably lime, to their loess building material, this may only have had the
intended effect of improving its compressive strength rather than generating a binding cement.

Previous studies have been unable to agree on the sediment transport pathways that generated
the vast loess deposits across north-central China [21–50]. We suggest that this lack of consensus is
a function both of the complexity of the loess system and the limitations of the analytic tools and
sampling strategies used to date. Similar to the parable of the elephant and the six blind men, only
when one can see the bigger picture is it possible to begin to resolve the relationship of the parts. We
argue that our use of satellite ASTER mineral maps has assisted in untangling this complexity by
enabling a view of the “whole”, at least for a few mineral components of the loess. To that end, Table 1
lists the essential ingredients and mappable criteria [53] we conclude are valuable for mapping the
“loess system” using ASTER’s limited but valuable spectral/spatial/radiometric resolution.

Using the ASTER mineral maps (Figures 4a, 5a, 6a, and 7a), we identify at least two sediment
transport pathways, both of which source mineral grains from a variety of exposed rocks. These two

179



Remote Sens. 2020, 12, 270

pathways or “loess subsystems” are driven by their grainsize energy potential: (i) sand; and (ii) clay to
fine-silt (Table 1).

Table 1. A mineral-based “loess system” sediment transport model using ASTER satellite imagery.

Sand Sub-System Clay and Fine Silt Sub-System

Essential
components

(i) quartz (ii) white mica (muscovite and/or illite)

(iii) chlorite
(iv) kaolinite
(v) gypsum

ASTER mappable
criteria

(i) ASTER SI3 index (ii) ASTER 2200D and 2165D indices

(iii) ASTER 2200D and 2165D indices
(iv) ASTER 2300D index
(v) ASTER SI3 index

Particle size (i) sand (ii)–(iv) fine-silt to clay
(v) fine silt (?)

Primary source
(i) Mesozoic and Cainozoic
sedimentary rocks exposed in the
Gobi Desert

(ii) pre-Mesozoic metamorphic rocks of the
Alashan Block

(iii) pre-Mesozoic metamorphic rocks of the
Alashan Block
(iv) Devonian molasse exposed in the Qilian
Shan
(v) evaporative lakes of the Tengger Desert

Transport
mechanisms

• aeolian saltation by westerly
winds west of the Yellow River

• aeolian long-term suspension by westerly to
northwesterly winds

• Fluvial erosion alongside the
Tengger and Hobq Deserts and
deposition alongside the Hobq
Desert.
• aeolian saltation by northerly
winds east of the Yellow River

Detectable gradient
size

• <200 km • >500 km

Pathway constraints
• connected (downslope or flat)
lowlands

• topography <2000 m elevation above
background

• topography <100 m elevation
above background

Sediment
traps/reservoirs

• eastern Badain Jaran Desert
(topographic upslope)

(ii) and (iii) eastern Badain Jaran and Tengger
Deserts

• Hobq Desert (Yellow River
braided system bedload
deposition)

(iv) alluvial fans off the Qilian Shan

•Mu Us Desert (topographic
upslope)

(ii)–(v) low energy, long-term suspension dust
fallout areas, topographically shielded from
saltation flow of sand

The transport pathway for the quartz sand fraction (>50 μm), which accounts for ~40% of the
loess material (Figure 3a,b), is initially driven by colluvial/alluvial downslope movement from source
rocks in the Gobi Desert, Alashan Block, and Qilian Shan (dark red arrows in Figure 4a). There could
also be a significant amount of quartz sand originating from rocks to the north and/or west of the
limits of the current study area. The quartz sand then travels by aeolian saltation flow along lowlands
of the Badain Jaran, Tengger, and Ulan Buh Deserts (magenta arrows in Figure 4a) forming arrays
of multi-scale linear dunes systems. Most of this quartz sand is then consumed by the Yellow River
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and delivered downstream to where it is then deposited along the banks of the western Mu Us and
Hobq Deserts (thick orange arrow). It then becomes available for transport by northwesterly wind
saltation flow before finally depositing along the northern margin (<100 km wide) of the loess plateau.
Related ASTER SI3 gradients change over distances of <300 km determined by distance from “source”
and topography. A gentle rise of even 1:1000 appears to retard saltation flow causing a bank-up
(deposition) of quartz sand, resulting in a reversal of the SI3 gradient. An example is the eastern part
of the Badain Jaran Desert (between “I” and “A”), which has the highest star dunes (~500 m high) in
the world. A greater rise in topography to 1:100 appears to inhibit the saltation flow of quartz sand, as
demonstrated by the western flank of the Helan Shan Figures 1a and 4a). These observations help
explain why the loess developed along the Hexi Corridor is relatively poor in quartz sand because of
shielding by mountains of the Alashan Block from quartz sand moving by north-northwesterly wind
saltation along the Badain Jaran Desert (Figure 5a).

The transport pathway for the combined clay and fine-silt fraction (<20 μm), which accounts for
~30% of the loess material (Figure 3a,b), is characterized by aeolian long-term suspension with related
sediment travelling for many hundreds of kilometers, often at high elevation (>2000 m). We identified
several rock sources of these finer particles in our study area using the ASTER indices (Table 1):
(i) gypsum (SI3 index) from evaporative lakes in the Tengger Desert (Figure 4a); (iii) kaolinite (2200D
and 2165D indices) from Devonian Molasse in the Qilian Shan (Figures 5a and 6a); and (iv) chlorite
(2330D index) and muscovite (2200D and 2165D indices) from the Alashan Block (Figures 5a, 6a, and
7a). Previous mineralogical work across the Chinese Loess Plateau on the Malan Loess Unit [88,89]
found that the dominant minerals of the fine-silt fraction comprise quartz (~30%), muscovite (~27%)
and chlorite (~22%) while the clay fraction comprises illite (~46%), kaolinite (~16%), and chlorite
(~15%). This mineralogical distinction according to particle size is consistent with our spectral results.
That is, both muscovite and chlorite share the same sediment transport pathway, originating primarily
from source rocks in the Alashan Block by colluvial/fluvial processes (dark red arrows in Figures 5a,
6a, and 7a) before being uplifted by westerly to northwesterly wind long-term suspension (white
arrows in Figures 5a, 6a, and 7a) to eventually be deposited in areas >500 km away, including the
Chinese Loess Plateau. This shared transport pathway is expressed as a continuous down-gradient
in the ASTER 2165D (dark blue to cyan in Figure 6a) and 2330D (red to yellow to green in Figure 7a)
maps. It is also expressed as a southeastward decrease in chlorite and muscovite content of the loess
developed across the Ordos region [34,46,48]. These observations are consistent with both muscovite
and chlorite being significant components of the fine-silt fraction.

We trace kaolinite using the ASTER 2200D and 2165D maps back to source rocks in the Tibetan
Plateau, including Devonian Molasse exposed along the Qilian Shan (Figures 5a and 6a). However, this
kaolinite comprises a range of particle sizes given that it shows a 2165D gradient spanning <500 km
north/east from “F” and with characteristics of both downslope colluvial/alluvial transport, associated
with fans and ephemeral drainage networks (mauve arrows in Figure 6a), and aeolian dispersal across
the southern parts of the Tengger Desert and western loess plateau (dark purple arrows in Figure 6a).
Note that this “primary” kaolinite is different to the “weathering” kaolinite in the southeastern part of
the study area, which has been identified by other workers [13,34,85] and suggested to be related to
increasing rainfall.

In addition to the “sand” and “clay to fine-silt” subsystems described in Table 1, we also
acknowledge the existence of other sediment transport systems contributing to the development of
loess: (i) “clay”; and (ii) “coarse-silt”. The coarse-silt fraction (20–50 μm), which accounts for ~30%
of the loess material, shows no coherent spatial pattern along the length of the Ming earthen wall
(Figure 3b). It also does not yield any statistical association with other particle size fractions or targeted
source areas (Figure 3d). Given that U-Pb studies [24,30,31,37], which measure zircon grains of >30 μm
size (i.e., coarse silt size), have consistently concluded that the Yellow River is sourcing a significant
amount of material from the Tibetan Plateau (and adjoining Qaidam Basin), we suggest that the Yellow
River is transporting the bulk of this coarse-silt sediment through the study region. The mineralogy of
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this coarse-silt likely includes plagioclase, alkali feldspar, and amphibole [31,88]. Similar to the sand
fraction, a significant part of this coarse-silt material is deposited alongside the Hobq Desert before
mobilization southward by aeolian saltation where it is finally incorporated into loess. The thickest
part of the Malan Loess Unit (Figure 1a) reflects this south(east)ward flow of coarse-silt (and sand)
originating from the banks of the Yellow River during the late Pleistocene and most likely through the
Holocene [8].

Clay-size grains, which can travel distances of 1000s of kilometers by long-term wind suspension
[8,47,89], are also readily transported by fluvial suspension. The Yellow River, which carries the largest
volume of sediment of any river on the Earth [90], owes its distinctive beige-yellow color to a mixture
of suspended clay minerals and iron oxides. Much of this suspended clay material is deposited into
marine environments >1000 km to the east of the study area. Drill cores sampled from the Bohai
and Yellow Seas [90] show that the clay-size mineralogy comprises: illite (average: ~60%), smectite
(average: ~15%), chlorite (average: ~15%), and kaolinite (average: ~10%). This dominance of illite
in the clay fraction is mirrored in the Malan loess unit [8] found across the Ordos region (Figure 1a).
Illite formation is unlikely to occur through regional weathering because at surface temperatures
the crystallization of illite requires a specific range of Si and K activities usually found in saline
environments [91]. That is, illite is more likely to have formed in evaporative basins, such as parts
of the Tengger, Badain Jaran, and Taklamakan Deserts [25,92,93]. The Taklamakan Desert has been
identified as a key source of clay size material transported by long-term westerly wind suspension to
the Ordos region [33,40,41,93].

The Ordos Plateau region thus represents a depositional “cross-road” for at least four sediment
transport pathways. This contrasts with the Hexi Corridor which lacks significant contributions of sand
associated with the Badain Jaran aeolian saltation pathway as well as coarse-silt associated with the
Yellow River pathway. This has resulted in the loess developed along the Hexi Corridor being relatively
abundant in clay and fine silt (Figure 3c) and with a composition relatively poor in quartz (Figures 3e
and 4c) and richer in kaolinite (Figure 6c) because of its proximity to kaolinitic source rocks in the Qilian
Shan (“F” in Figures 5a and 6a). These factors have likely driven the relative erosional robustness
of the Ming’s earthen wall along the Shandan section (Figure 2j), because of greater opportunity for
hydrogen bonding between water molecules and the surfaces of the finer mineral grains [16].

Groundwater penetration along specific “hangtu” layers continues to generate a cycle of
crystallization and dissolution of salts, resulting in erosion and undercutting of the wall (Figure 3i) [94].
We observed in the field that when irrigated farming abutted the wall, then the erosion immediately
above was dramatically enhanced compared with the wall <10 m away from the edge of the cropped
field (e.g., at Site 49, 38◦19.952′N; 101◦54.259′E). Thus, the control of groundwater movement is crucial
in the continued preservation of the earthen wall.

ASTER has proven valuable for mapping and understanding the complexity of mineral-
composition patterns not apparent in point-sample field data alone. In so doing, ASTER has enabled
us to build a “loess system” model for at least two sediment transport pathways. However, ASTER’s
modest spectral resolution (compared with hyperspectral systems) has impacted what loess mineral
information can be targeted. Higher spectral resolution systems with tens to hundreds of spectral bands
should in theory provide more detailed compositional information and thus improve the accuracy
and detail of this loess system analysis. For example, the Tschermak chemical composition of both
muscovite and chlorite can be measured and traced back to more specific rock sources [52].

NASA’s hyperspectral VNIR-SWIR EMIT imaging system, which is scheduled for operation
starting 2020 on board the International Space Station (ISS) [95], is one candidate, especially given
that it has the task of mapping the surface mineralogy of dust generating regions of the Earth to
assist in global climate models. It is a shame that ASTER was not also tasked to help deliver this
important information, especially given its 20-year archive of multi-temporal, global land surface
imagery. Interestingly, EMIT will operate on the ISS alongside Japan’s hyperspectral VNIR-SWIR
imaging system called HISUI [96], which is focused on mineral and energy resource applications.
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These two hyperspectral VNIR-SWIR imaging systems will essentially be acquiring similar mineral
compositional information from the same platform and at the same time, albeit for different end-users.
However, unlike ASTER, these two systems do not possess spectral bands that cover the TIR, which
is essential for mapping quartz sand information (as well as carbonates and sulfates). This gap in
wavelength coverage could be augmented by NASA’s ECOSTRESS [97], which is currently operating
on the ISS.

ASTER’s publicly available, global data archive presents us with the future opportunity to extend
our mapping and understanding of loess-related mineral transport pathways beyond our current study
area (Figure 1a), especially northwards across the Ulan Buh and Gobi Deserts, westwards towards the
Taklamakan Desert, and southwestwards over Tibetan Plateau and Qaidam Basin. It also provides the
wider geoscience community with the unprecedented opportunity to map and understand a range of
other earth science challenges, including temporal monitoring of soil loss and the related process of
desertification [98–101].

5. Conclusions

The main conclusions from this study include:

• The Ming earthen wall provided a valuable 1200 km transect for validating a >600,000 km2

mosaic of satellite ASTER mineral maps, with both showing similar patterns for quartz sand,
muscovite-kaolinite, and chlorite content.

• The composition (mineralogy, particle size, and chemistry) of loess used by the Ming to build
their earthen wall across the Ordos Plateau and Hexi Corridor is heterogeneous.

• The ASTER mineral maps enable the tracking of sediment transport pathways of loess related
minerals not detected in previous studies relying on point-sample data.

• These pathways help explain both the compositional variation of the loess along the Ming earthen
wall as well as the wall’s erosional robustness.

• Two sediment transport pathways are well mapped using ASTER, namely:

◦ Quartz sand is sourced from exposed rocks (e.g., Cretaceous sandstones) in the Gobi stony
desert, Alashan Block, and Qilian Shan. This sand travelled by west-northwesterly wind
saltation along lowlands of the Badain Jaran, Tengger, and Ulan Buh Deserts before being
consumed by the Yellow River. It was then transported downstream where it is was deposited
along the margins of the Mu Us and Hobq Deserts, where it is finally moved by northwesterly
wind saltation across to the Loess Plateau.

◦ Clay and fine-silt are relatively rich in either muscovite and chlorite, which are sourced from
metavolcanics and associated sediments of the Alashan block, or kaolinite, which is largely
sourced from Devonian molasse exposed in the Qilian Shan. Initial movement of these
minerals is via downslope colluvial/alluvial processes before eventual uplift from alluvial
fans and wadis by westerly to northerly wind long-term suspension. These fine mineral
grains are then deposited 100 s to 1000 s of kilometers away across fields of loess deposition.

• The well-preserved Shandan section of the earthen wall along the Hexi Corridor is associated
with loess poor in quartz sand and an increase, albeit minor, in kaolinite content.

• We also propose that the Ming established a number of methods for building their earthen
wall, including:

◦ Locally sourcing loess (not from distant, centralized mines);
◦ Gauging the amount of sand content relative to clay and fine silt so that better-quality loess

layers (finer fractions) could be mined; and
◦ Adding a Ca material, possibly calcite but more likely lime, to either improve the compressive

strength of the loess or to generate a cement as part of a pozzolanic reaction.
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Appendix A Systematic Detector-Array Calibration Error in ASTER Band 5

The process of generating “seamless”, compositionally-accurate mosaics from ~250 ASTER images
spanning the Ming earthen wall study region required cross-calibration of 26 overlapping satellite
paths. This is because, without applying this cross-calibration step to the as-received L1T ASTER
data [67], subsequent band normalization techniques (e.g., band ratios) to generate compositional
information would result in mismatches between adjacent images/paths, especially for the VNIR-SWIR
bands (Figure A1a,c). Much of this apparent error is related to atmospheric effects, both aerosol
scattering (additive effect) in the VNIR and absorption attenuation by gases such as water vapor in the
SWIR (multiplicative effect). However, instrument related error is also likely, especially an additive
SWIR component [60] related to uncorrected residuals of the so-called “cross-talk” effect [102].

 

Figure A1. (a) ASTER B7/B6 mosaic generated from L1T data, i.e., no image cross-calibration applied;
(b) ASTER B7/B6 mosaic after image cross-calibration (and transformation from universal transverse
Mercator (UTM) to geographic latitude-longitude); (c) ASTER B5/B6 mosaic generated from L1T data,
i.e., no image cross-calibration applied; and (d) ASTER B5/B6 mosaic after image cross-calibration (and
geometric transformation from UTM to geographic latitude-longitude).
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To solve these miscalibrations between images/paths, we collected VNIR-SWIR band statistics for
20–35 coincident invariant targets (or regions of interest (ROIs)) from each opposing pair of image
overlaps, with each ROI comprising between 10 and 200 pixels. We then gauged whether there
existed significant linear correlations for the coincident ROI band means sampled from each pair of
opposing paths (which always proved to be the case). The resultant gains and offsets from these
linear correlations were then used to transform (cross-calibrate) one image path to the other. This was
repeated 25 times until the entire mosaic was complete. This cross-calibration method was effective for
most of the VNIR-SWIR bands, as demonstrated by the B7/B6 ratio (Figure A1b). That is, previous
mismatches obvious in the uncorrected L1T ratio product (Figure A1a) are absent in the cross-calibrated
L1T ratio product (Figure A1b). However, ratios involving ASTER Band 5 generated a ramp effect
across the mosaic, as shown by ASTER B5/B6 (Figure A1d). This ramp effect is also apparent in color
composites of the cross-calibrated ASTER bands that include Band 5 (Figure A2a).

To better understand the nature of this ramp effect, we extracted pixel values from a transect
across the mosaic (red line in Figure A3a) for Bands 5–7 (Figure A3c) and then generated ratios for
B7/B6 and B5/B6 (Figure A2d). In contrast with the B7/B6 ratio (orange data points), which shows an
overall flat trend across the transect, the B5/B6 ratio (purple data points) shows a linear slope, except
for a segment of pixels from 34,000 to 37,000, which corresponds to an image path not cross-calibrated
using coincident ROIs as there was no available image overlap. These results indicate that: (i) ASTER
Band 5 has a systematic calibration error; and (ii) our method of using coincident ROIs across image
overlaps was susceptible to this error.

Figure A2. (a) Cross-calibrated ASTER color composite of SWIR Bands R:7 G:6 B:5. A transect from
which pixel values were extracted is shown by a red line. (b) A linear ramp model. (c) Pixel values of
cross-calibrated Bands 5 (blue), 6 (green) and 7 (red) for the transect shown in (a). (d) The same data as
in (b) but with Bands 5 and 7 each normalized with respect to Band 6. Note the linear trend in the
B5/B6 ratio data (mauve line), which was used for the design of the model.
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To better understand the nature of this systematic ASTER Band 5 calibration error, a random suite
of full-image-width segments from different paths and dates were sampled from the B5/B7 mosaic
(Figure A3a). These normalized segments all show the same systematic noise not evident in the raw
Bands 5 and 7. All segments show: (i) a broad (<200 pixels wide ) bright band on the left side of each
image swath (red line); (ii) a pair of narrow (~20 pixels) dark bands (yellow arrow); and (iii) a broad
shoulder (blue dotted lines). The mean B5/B7 values for six transects taken from these six images
(Figure A3b) highlights this systematic line across different dates of imagery. This mean is clearly
not flat across the image swath. The implication is that cross-calibration using ROIs collected from
either side of a given image swath will be compromised by this systematic non-flatness. Indeed, ROIs
collected from the 150 pixel-wide column on the left highlighted by the red bar will be ~2% higher
than those ROIs collected from the 150 pixel-wide column on the right highlighted by the green bar.
This difference drove the Band 5 miscalibration using coincident ROIs sourced from the as-received
L1T data.

Figure A3. (a) A selection of six full-image-width segments from across the non-cross-calibrated ASTER
B5/B7 mosaic with each showing the similar systematic column noise, including: a broad (<200 pixels
wide) bright band on the left side of each image (red line); a pair of narrow (~20 pixels) dark bands
(yellow arrow); and a broad shoulder (blue dotted lines). (b) Scattergram of the ASTER scene pixel
number versus the mean B5/B7 values for six transects taken from (a). The 10-point moving average is
shown as a black line.

We solved this ASTER Band 5 detector array calibration issue by constructing a scaled linear-ramp
model across the entire mosaic using ENVI™ software (Figure A2b), which was then used to normalize
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the cross-calibrated Band 5 (Figure 4a). This de-ramped Band 5 (Figure A4b) was then normalized with
the cross-calibrated Band 6 to generate a B5/B6 ratio that no longer shows the ramp effect (Figure A4d).
This Band 5 de-ramp process proved to be essential for all ASTER compositional products involving
Band 5, such as 2200D (Figure 5a) and 2165D (Figure 6a).

 

Figure A4. (a) Band 5 after cross-calibration but before applying the linear ramp in (b). (b) Band 5
after cross-calibration and applying the linear ramp in (b). (c) The B5/B6 ratio after cross-calibration
but before applying the linear ramp in (b). (d) The B5/B6 ratio after cross-calibration and applying the
linear ramp in (b).

In theory, this systematic ASTER Band 5 calibration error could be solved at the stage of L0
corrections where the data have not yet been rotated from their original detector array vertical
column configuration, similar to that developed for satellite Hyperion push-broom sensor [103].
Implementation of an improved ASTER Band 5 detector array calibration file would solve both this
east–west bias in image cross-calibration using coincident ROIs (Figure A1d) as well as remove the
systematic striping observed in the current ASTER ratio products, such as those highlighted by yellow
arrows in Figure 3a. Note that the image cross-calibration method used to generate the Australian
ASTER mineral maps [104] was not prone to this error, as the statistics were calculated on a per-scene
basis (not image overlaps) and weighted against “global” statistics.
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Abstract: The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) onboard
Terra platform, which was launched in 1999, has three separate subsystems: a visible and near-infrared
(VNIR) radiometer, a shortwave-infrared radiometer, and a thermal-infrared radiometer. The ASTER
VNIR bands have been radiometrically corrected for approximately 14 years by the sensor degradation
curves estimated from the onboard calibrator according to the original calibration plan. However,
this calibration by the onboard calibrator encountered a problem; specifically, it is inconsistent with
the results of vicarious calibration and cross calibration. Therefore, the ASTER VNIR processing
was applied by the radiometric degradation curves calculated from the results of three calibration
approaches, i.e., the onboard calibrator, the vicarious calibration, and the cross calibration since
February 2014. Even though the current degradation curves were revised, the inter-band and lunar
calibrations show some inconsistencies owing to the different traceability in the bands by different
calibration approaches. In this study, the current degradation curves and their problems are explained,
and the new curves that are derived from the vicarious calibration with lunar calibration are discussed.
The new degradation curves that have the same traceability in the bands will be used for future
ASTER VNIR processing.

Keywords: ASTER; vicarious calibration; lunar calibration; radiometric calibration; VNIR

1. Introduction

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) onboard Terra
platform, which was launched in 1999, has three separate subsystems: a visible and near-infrared (VNIR)
radiometer, a shortwave-infrared (SWIR) radiometer, and a thermal-infrared (TIR) radiometer [1].
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The detector temperature of the SWIR radiometer started to increase owing to the degradation of the
detector cooling system, which resulted in the progressive deterioration of product quality in 2007,
and low-quality SWIR images have been acquired since May 2008 [2]. However, the VNIR and TIR
radiometers have been providing good images for approximately 20 years, and several calibration
approaches have been applied to the radiometers [3–17].

The preflight calibration utilized standard large integrating spheres whose radiance levels were
traceable to primary standard fixed-point blackbodies [3]. The VNIR and SWIR radiometers have
onboard calibrators that consist of two halogen lamps with photodiode monitors for the onboard
calibration [4]. For VNIR, the vicarious calibration using the reflectance-based approach has been
conducted by three separate groups [5]. In April 2003 and August 2017, ASTER observed the Moon
(and the deep space) to conduct a radiometric calibration (i.e., lunar calibration) that can measure
the temporal variation in the sensor sensitivity of the VNIR bands sufficiently accurately (better than
0.1%) [6]. Numerous studies have reported the cross calibration of ASTER and Moderate Resolution
Imaging Spectroradiometer (MODIS) VNIR bands [7–11], but the trends in the cross-calibration results
are not necessarily consistent [11]. Inter-band radiometric calibration, which can be used to evaluate
inter-band consistency, was applied for the ASTER VNIR bands; then, the radiometric degradation
curves of ASTER Bands 2 and 3N with a reference to Band 1, which is well calibrated compared with
other bands, were calculated [12].

ASTER data were radiometrically corrected by the L1 processing using the radiometric calibration
coefficients (RCC) in the radiometric database (DB) [13], which has the information of the degradation
curves. For the VNIR radiometer, its degradation curves in the radiometric DB ver. 1 to 3 have been
estimated from the onboard calibrator [14] according the original calibration plan [15] for approximately
14 years since Terra’s launch. However, the degradation curves produced by onboard calibration
are inconsistent with the results obtained by vicarious and cross calibrations [16]. Therefore, the
degradation curves calculated from the results of three calibration approaches (i.e., onboard, vicarious,
and cross calibrations) have been applied to the latest version of the radiometric DB (ver. 4) on the L1
processing since February 2014 [17]. Even though the degradation curves have been revised in the
radiometric DB ver. 4, the inter-band and lunar calibrations have reported a few inconsistencies [6,12],
which is attributed to the different traceability of each band with a different calibration approach.

In this study, the current degradation curves and their problems are explained, and the new curves,
which are derived from vicarious and lunar calibrations, are discussed. The new degradation curves
that have the same traceability in the bands have been selected to be used for the next radiometric DB
ver. 5 in the ASTER VNIR processing.

2. Vicarious and Lunar Calibrations for ASTER VNIR

2.1. ASTER VNIR

The ASTER VNIR radiometer is the multiband sensor with a 15 m spatial resolution and a 60 km
swath width; the instrument has three bands (Bands 1, 2, and 3N) with a nadir view and one band
(Band 3B) with a backward view. Bands 3N and 3B were used for the topographic interpretation and
the digital elevation model (DEM) mapping.

The center wavelength of Bands 1, 2, and 3 are 0.56, 0.66, and 0.81 micrometers, respectively [3].
This VNIR radiometer has three gain modes (high, normal, and low gains). The values of normal and
low gains in all bands are 1.0, 0.75, respectively. The value of high gain in Band 1 is 2.5, and the value
of high gain in Bands 2 and 3 is 2.0 [1].

2.2. Vicarious Calibration Using the Reflectance-Based Method

Vicarious calibration using the reflectance-based method [18,19] was performed for ASTER VNIR
by three separate groups [i.e., Saga University, the University of Arizona, and the National Institute of
Advanced Industrial Science and Technology (AIST)]. The method is used by all three groups with
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differences in the equipment used in the data collection, sampling strategies, and the radiative transfer
code results. Although there were differences in the method used by the groups, the results produced
by the three groups were in good agreement between each other for four years after the launch [5].

In this study, the RCCs for all ASTER VNIR bands (Bands 1, 2, 3N, and 3B) were calculated from
the vicarious calibration by the AIST method [5,12,20–22]. The AIST group performed a field campaign
for the vicarious calibration for ASTER at six sites in the United States and two sites in Australia.
We used the data from all eight sites (the United States six and Australian two sites) to obtain the
degradation curves for the current radiometric DB ver. 4. However, to have a more clear traceability
with almost the same quality, the new degradation curves for the next ver. 5 of the radiometric DB
were derived from the vicarious calibration at only three sites of Ivanpah Playa (35.57N, 115.40W)
in California, USA, Railroad Valley Playa (38.50N, 115.69W), and Alkali Lake (37.85N, 117.41W) in
Nevada, USA.

At the three sites, which are horizontal planes in clay-dominated dry lakes in semi-arid areas,
the field campaigns were carried out with a rectangular target of 90 × 80 m in size and approximately
900 measurements of the surface reflectance factor of the target for one band for each field campaign.
However, except these three sites, the field campaigns were performed for the current radiometric DB
ver.4 without the abovementioned conditions of ground surface and/or measurements, owing to the
convenience of each site.

The solar model for this work is based on the World Radiation Center model, because this model
was standard for the Terra sensors and was selected by the ASTER science team [5]. After the Terra
lunch, many newer solar models have been proposed, and one of the recent ASTER products, ASTER
L1T generated by the United States Geological Survey [23], used a new solar model; however, the effect
of this switch of the model is estimated at <0.3% for all VNIR bands [24].

Figure 1 shows the RCCs vs. days since launch (DSL) in ASTER VNIR bands derived from this
vicarious calibration from 2000 to 2017.

Figure 1. Radiometric calibration coefficients (RCCs) derived from the vicarious calibration of the
reflectance-based method carried out from 2000 to 2017.
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2.3. Lunar Calibration with the Spectral Profiler Model

Lunar calibration is one of the radiometric calibrations using the Moon that is conducted by
comparing the observed Moon brightness with the expected brightness calculated from the lunar
surface reflectance model [25–27]. Although the absolute accuracy of the lunar calibration method
is considered to be insufficient (5–10%), the lunar calibration, temporal variation of relative sensor
sensitivity can be accurately measured on the order of 0.1% [6].

In April 2003 (DSL = 1213) and August 2017 (DSL = 6440), ASTER observed the Moon and the
deep space to perform lunar calibration with the Robotic Lunar Observatory [25] and spectral profiler
(SP) [26,27] models, and the calibration results of the two models were consistent with each other
within the error range [6].

In this study, we use the relative sensor sensitivity degradation (RD) from 2003 to 2017, and the
RD value is the degradation ratio of RCC (DSL = 6440)/RCC (DSL = 1213). The RDL is the RD value
derived from the lunar calibration with the SP model. The values of RDL in Bands 1, 2, 3N, and 3B are
shown in Table 1 [6].

Table 1. Relative sensor sensitivity degradation (RDL), which is the degradation ratio of RCCs for
VNIR bands from 2003 (DSL = 1213) to 2017 (DSL = 1213) by lunar calibration using the SP model [6].

Band
Relative Sensor Sensitivity Degradation (RDL)

Degradation Ratio: RCC (6440)/RCC (1213)

1 0.969

2 0.948

3N 0.942

3B 0.968

3. Radiometric Degradation Curves in the Current Radiometric DB and Its Problems

ASTER data were radiometrically corrected by the L1 processing using the RCC in the Radiometric
DB [13], which has the information of the degradation curves. For the VNIR radiometer, the degradation
curves in the old radiometric DBs ver. 1 to 3 have been estimated from the onboard calibrator [14]
according the original calibration plan [15] for approximately 14 years since the launch. However, the
degradation curves produced by onboard calibration are inconsistent with the results from vicarious
and cross calibrations [16], especially for Bands 1 and 2.

The radiometric degradation curves in the current radiometric DB ver. 4 have been used for L1
processing since February 2014, and the best curve obtained using a different estimation method of
each band was selected as of 2014 by the ASTER science team [17]. However, a problem has occurred
using a different traceability of each band as described below.

3.1. Radiometric Degradation Curves

The dotted lines in Figure 2 indicate the current degradation curves in the radiometric DB ver.
4 for ASTER VNIR bands estimated from the results of three calibration approaches (i.e., onboard,
vicarious, and cross calibrations) from 2000 to 2012. The equations and their parameters are shown in
Tables 2 and 3.
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Figure 2. Degradation curves of ASTER VNIR bands in the current radiometric DB ver. 4. Bands (a)
1, (b) 2, (c) 3N, and (d) 3B. Dotted lines correspond to the current degradation curve in the current
radiometric DB estimated from the results of three calibration approaches (i.e., onboard, vicarious, and
cross calibrations) from 2000 to 2012. Dashed lines indicate the degradation curves derived from the
onboard calibration, which is almost the same as that in the radiometric DB ver. 3. The solid lines
indicate the degradation curves estimated from the inter-band calibration for ASTER VNIR Bands 2
and 3N.

197



Remote Sens. 2020, 12, 427

Table 2. Equations and parameters of the current radiometric degradation curves in the radiometric
DB ver. 4 for ASTER VNIR bands.

Band
Duration
(d: DSL)

Equation
(R(d): RCC)

Coefficients

a0 a1 a2

1 whole duration R(d) = a0 (1.0− a1) exp(−a2 d) + a0 a1 0.990 0.794 0.00181

2 whole duration R(d) = a0 (1.0− a1) exp(−a2 d) + a0 a1 0.949 0.886 0.00181

3N
d < 673 R(d) = a0 + a1 d + a2 d2 0.9817 −5.726× 10−5 −9.360× 10−9

673 ≤ d < 4825 See Table 3

4825 ≤ d R(d) = a0 0.8259 - -

3B whole duration R(d) = a0 1.000 - -

Table 3. Equations and parameters of the current radiometric degradation curves in the radiometric
DB ver. 4 for ASTER Band 3N.

Band
Duration
(d: DSL)

Equation
(R(d): RCC)

Coefficients

a0 a1 a2

3N

673 ≤ d < 2394

R(d) = a1 exp(−a2 d) + a0

0.8599 0.2163 0.0014974

2394 ≤ d < 3123 0.8590 0.5750 0.0019668

3123 ≤ d < 3857 0.8428 0.1054 0.0006679

3857 ≤ d < 4450 0.8310 0.1176 0.0005303

4450 ≤ d < 4825 0.7086 0.2051 0.0001096

The degradation curve of Band 1 in the radiometric DB ver. 4 [dotted line in Figure 2a] was
estimated from the results of three calibration approaches, but the vicarious calibration influences
the degradation curve the most among the approaches. The degradation curve is expressed by the
following exponential equation in the degradation model for the contamination and/or corrosion [28].

R(d) = a0c = a0 × T/T0 = a0(1.0− a1) exp(−a2 d) + a0 a1 (1)

where R(d) represents the radiometric calibration coefficient (RCC) of the DSL d, c is the scaled
calibration coefficient, T represents the transmittance of DSL d in the radiometer optics (lenses, mirrors
and etc.), and T0 represents the transmittance T when d = 0. The degradation parameters, a0, a1, and a2

represent the RCC at launch, the minimum (saturated) transmittance of the contamination/corrosion
layer of the sensor lenses, and the degradation rate, respectively. Band 1 has a0 = 0.990, a1 = 0.794, and
a2 = 0.00181 coefficients (Table 2).

The a0 coefficient, which equals the R(0), was extrapolated by the RCC trend (i.e., the a0 coefficient
was estimated from best-fit with the distribution of RCCs) in the period of 0 < d ≤ 673 by the onboard
calibration [4]. That was because the RCC trend in this period by the onboard calibration shows
smooth curve [dashed line in Figure 2a] and was consistent with the trend by the vicarious and
cross calibrations.

The a1 and a2 coefficients were estimated from the distribution of the RCCs of the vicarious
calibration [16] and the RCCs of the cross calibration [29,30] by the least squares method. The RCCs
of the cross calibration were obtained from image data with high-gain mode and solar zenith angle
limited to 45◦ or less.

The degradation curve of Band 2 in the radiometric DB ver. 4 [dotted line in Figure 2b] was
estimated from the RCCs in the vicarious and cross calibrations, and the curve is also expressed by
Equation (1). The coefficients of degradation curve in Band 2 are a0 = 0.949, a1 = 0.886, and a2 =

0.00181 (Table 2). However, Band 2 had a problem with the gain ratio at the time of determining
the value of these coefficients; the radiance obtained from the Band 2 image of the high-gain mode
shows a 7–11% difference with the normal-gain mode [7,29,30]. In most ASTER images used for the
vicarious calibration, the gain modes of Bands 1, 2, 3N, and 3B are set to High, High, Normal, and
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Normal, respectively. However, the normal-gain mode was used for all ASTER bands in the onboard
calibration. Therefore, the large difference (almost 10%) existed in the RCCs between vicarious and
onboard calibrations. To determine the degradation coefficients in the radiometric DB ver. 4, the
onboard calibration result was not applied to Band 2. It was difficult to use both calibrations together
owing to the abovementioned large difference, and the recent RCC from the onboard calibration
seemed too small to apply the coefficients. Because the distribution of RCCs of vicarious calibration
and cross calibration is highly scattered, it is not desirable to obtain the coefficient of the degradation
curve only from this distribution. Therefore, the a2 coefficient that determines the shape of the curve,
which is the degradation rate, was assumed to be the same as that of Band 1. The a0-high coefficient,
which equals the R(0) in the high-gain mode, was estimated from the best-fit with the distribution of
the RCCs by vicarious and cross calibrations using the image in the high-gain mode. The a0 coefficient,
which equals the R(0) in the normal-gain mode, was calculated from a0-high and the gain ratio rg of the
normal-gain and the high-gain mode (i.e., a0= a0-normal = a0-high × rg). The value of rg was investigated
from the two sets of the cross calibration, MODIS Band 1 vs. ASTER Band 2 with the normal-gain
mode and MODIS Band 1 vs. ASTER Band 2 with the high-gain mode [29]. The values of a0-high and
rg were 0.87 and 1.091, respectively; thus a0 = a0-normal = a0-high × rg = 0.87 × 1.091 = 0.949. Lastly,
a1 was estimated from the distribution of the RCCs of the vicarious calibration and the RCCs of the
cross calibration by the least squares method. The RCCs of the cross calibration was obtained from
image data with a high-gain mode and solar zenith angle limited to 45◦ or less. The cause of this gain
ratio problem is that the ratio after launch changed by almost 10% from the preflight calibration ratio,
which was determined from the analysis of the onboard electrical calibration [31]. On the basis of this
analysis, in the radiometric DB ver. 4, the Band 2 images in the high-gain mode were radiometrically
corrected by +8% [17].

The degradation curve of Band 3N in the radiometric DB ver. 4 [dotted line in Figure 2c] was
mainly estimated from the RCCs in the onboard calibration, and this curve is expressed by the following
equations [4,14]:

R(d) = a0 + a1d + a2d2 in d < 673
R(d) = a1 exp(−a2 d) + a0 in 673 ≤ d < 4825
R(d) = a0 in 4825 ≤ d

(2)

where the values of coefficients (i.e., a0, a1, and a2) of the degradation curve are shown in Tables 2 and 3.
Band 3N does not have a large difference in the RCCs between onboard and vicarious calibrations

but has a small difference in the degradation trend. The degradation trend by the onboard calibration
shows a gradual downward slope in all periods (from the launch to the present) [dashed line in
Figure 2c]. The trend obtained by the vicarious calibration also shows a downward slope, but the
recent trend does not appear to have a slope (Figure 1). Therefore, the degradation curve in d < 4825
was obtained from the onboard calibration, as with the radiometric DB ver. 3. It was assumed that the
curve in 4825 ≤ d did not degrade, and the RCCs were then set to be a constant.

Band 3B does not have a correction for the degradation [dotted line in Figure 2d], and the equation
is as follows:

R(d) = a0 = 1 (3)

In the vicarious calibration, the degradation of Band 3B was observed. However, this degradation
is small compared with that of the other bands (Bands 1, 2, and 3N), and Band 3B does not have an
onboard calibrator. Therefore, the radiometric DB ver. 4 assumed that Band 3B had no degradation, as
with the radiometric DB ver. 3.

3.2. Problems with the Current Radiometric DB

The degradation curves were revised in this current radiometric DB ver. 4, but the inter-band
and lunar calibrations have reported problems [6,12], which are probably caused by the different
traceability of each band with the different calibration approach.
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Inter-band radiometric calibration can be used to evaluate the inter-band consistency. The solid
lines in Figure 2b,c are the degradation curves of Bands 2 and 3N calculated from the degradation
curve of reference band, Band 1, using the inter-band calibration technique. In this study, Band 1
is set to a reference band, because the three calibration approaches (i.e., onboard, vicarious, and
cross calibrations) exhibited good agreement between each other for the Band 1 degradation curve
estimation, in the early stage (from launch day to approximately day 673), and Bands 2 an 3N do not
have good agreement among three approaches [12]. The degradation curves of Bands 2 and 3N from
this inter-band calibration have inconsistencies with the curves from the radiometric DB ver. 4 and the
onboard calibration in Figure 2.

The inter-band inconsistency owing to the difference in traceability can also be read on the basis of
the lunar calibration results. Figure 3 shows the comparison of the RD in VNIR bands from 2003 to 2017
derived from the RCCs in the radiometric DB ver. 4 and three different calibration methods (i.e., lunar,
inter-band, and onboard calibrations) [6]. RD4, RDL, RDI, and RDO are the RD values derived from the
radiometric DB ver.4, lunar calibration, inter-band calibration, and onboard calibration, respectively.

 
Figure 3. Comparison of the relative sensor sensitivity degradation (RD) in ASTER-VNIR bands from
2003 to 2017 derived from the RCCs in the radiometric DB ver. 4 and three different calibration methods
(i.e., lunar, inter-band, and onboard calibrations) [6].

The RD4 of Band 1 in the radiometric DB ver. 4 is consistent with RDL in the lunar calibration,
but for Bands 2 and 3B, the RD4 of ver. 4 is larger than RDL of the lunar calibration; however, for
Band 3N, the RD4 of ver. 4 is smaller than RDL of the lunar calibration. However, the RDI in the
inter-band calibration is consistent with the RDL in the lunar calibration for all three bands, and RDO in
the onboard calibration shows lower values compared with RDL in the lunar calibration for all bands.

On the basis of the abovementioned points, it was necessary to improve the degradation curve in
the current radiometric DB.

4. Radiometric Degradation Curves in the Next Radiometric DB

In the next radiometric DB ver. 5 for ASTER VNIR L1 processing, new radiometric degradation
curves with the same traceability among the bands are necessary to obtain good inter-band consistency.
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4.1. Selection of the Calibration Approach

In the ASTER science team, several calibration approaches (i.e., preflight, onboard, vicarious,
cross, lunar, and inter-band calibrations) have been performed and discussed for the ASTER VNIR
radiometers. Vicarious and lunar calibration approaches have been selected [32], and the radiometric
degradation curves for ASTER VNIR processing have been derived from the vicarious and lunar
calibrations. The basic ideas (i.e., reason and philosophy) of this selection are explained as follows.

For the onboard calibration, the uncertainty of the onboard calibrator typically increases with
time in the harsh environment of space [5,33]. In ASTER, as described above, the RCCs of Band 1
obtained from the onboard calibration tended to deviate from the RCCs of other calibration approaches
after 673 days since the launch, and Band 3B did not have an onboard calibrator. Therefore, we did not
use the ASTER onboard calibrator, which has been in space for a long period of time, to obtain the
degradation curves for the next radiometric DB.

Recently, numerous studies have reported the cross calibration of ASTER and Terra-MODIS
VNIR bands [7–11], but the trends in the cross-calibration results are not necessarily consistent.
This inconsistency may be attributed to the differences between the versions of the radiometric DBs
used in the ASTER radiometric calibration [11]. The different corrections of spectral and spatial effects
between ASTER and MODIS can also cause inconsistencies. At this point in time, it is difficult to obtain
the degradation curves of the ASTER VNIR bands from the cross calibration.

The inter-band calibration appears to be a promising approach, because it was consistent with
vicarious and lunar calibrations, as shown in the previous section. However, the inter-band calibration
in the current analysis method cannot be applied between bands with different view-angles and
observation times, i.e., between nadir-view bands (Bands 1, 2, and 3N) and backward-view bands
(Band 3B). Therefore, the degradation curve of Band 3B cannot be obtained from inter-band calibration
with reference to Band 1, and the same traceability cannot be given to all bands.

The degradation curve of the sensor cannot be obtained from only the preflight calibration, and
its RCC can only be used at the launch. The assumption that the sensor is not damaged at the launch
is needed in order to apply the RCC of the preflight calibration to the RCC of the degradation curve
at the launch. From the point of view of the onboard and vicarious calibrations in Figures 1 and 2,
it appears that there was a small damage at the launch for ASTER VNIR, and thus, the RCC from the
preflight calibration is not used.

Therefore, the remaining calibration approaches (i.e., vicarious and lunar calibrations) are selected.
Vicarious calibration is an excellent approach to obtain an absolute value of the RCC when the sensor
is performing normal observation (observing the earth). Although the absolute accuracy of the lunar
calibration is considered to be insufficient (5–10%), the relative accuracy of lunar calibration (i.e.,
temporal variation of relative sensor sensitivity) is extremely high (the order of 0.1%) [6]. Vicarious
calibration in ASTER VNIR has been carried out many times throughout the ASTER operation period;
however, lunar calibration has only been conducted twice, in April 2003 (DSL = 1213) and August 2017
(DSL = 6440). Therefore, the base of the degradation curve is obtained from the vicarious calibration,
and the result of the lunar calibration with high accuracy against relative changes (relative degradation)
is used as the constraint condition.

4.2. Radiometric Degradation Curves

Because the uncertainty of the vicarious calibration using the reflectance-based method is not
small (Appendix A), it is difficult to correctly obtain the curve parameters of the degradation from the
RCC distribution of the vicarious calibration. However, if the degradation stops and the RCC value
can be regarded as a constant (or can be regarded to have a linear distribution), a relatively accurate
average (or regression line) of RCCs can be obtained even from the vicarious calibration.

In Figure 1, after 3000 DSL, the degradation stops in all bands, and the RCC is almost constant.
Thus, the RCC value after 3000 DSL can be set by the average of the RCCs of vicarious calibration.
On the other hand, before 3000 DSL, we decided to obtain the degradation curve parameters by the
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least squares method from the distribution of the RCCs of the vicarious calibration, and the result (the
value of relative degradation) from the lunar calibration is used as a constraint for the estimation of the
degradation curve parameters as described below.

After 3000 DSL, the degradation is thought to have stopped; the RCC is assumed to be constant
and is expressed by the following equation:

R(d) = a0 = x in 3000 < d (4)

where x is the average of the RCCs derived from the vicarious calibration over 3000 DSL. For the period
before 3000 DSL, the same degradation model [28] as Equation (1) is adopted and expressed by the
following equation:

R(d) = a0 c = a0 × T/T0 = a0 (1.0− a1) exp(−a2 d) + a0 a1 in 0 ≤ d ≤ 3000 (5)

where R(d) represents the radiometric calibration coefficient (RCC) of the DSL d, c is the scaled
calibration coefficient, T represents the transmittance of DSL d in the radiometer optics (lens, mirror
and etc.), and T0 represents the transmittance T when d=0. The degradation parameters a0, a1, and a2

represent the RCC at launch, the minimum (saturated) transmittance of the contamination/corrosion
layer of the sensor lenses, and the degradation rate, respectively. The degradation coefficients a0, a1,
and a2 are obtained by the least squares method from the RCCs of the vicarious calibration in Figure 1,
and the following two constraints are given:

R(3000) = a0 (1.0− a1) exp(−3000× a2) + a0 a1 = x (6)

R(6440)
R(1213)

=
x

a0 (1.0− a1) exp(−1213× a2) + a0 a1
= y (7)

where y is the value of RDL in Table 1 calculated from the lunar calibration. Equation (6) is used to
connect (at 3000 DSL) Equation (4) of the straight line (i.e., constant value) to Equation (5) of the curve;
Equation (7) is used to reflect the result of the lunar calibration.

The radiometric degradation curves obtained from the abovementioned equations are shown in
Figure 4, and their coefficients are shown in Table 4.

Table 4. The equations and parameters of the new radiometric degradation curves in the radiometric
DB ver. 5 for ASTER VNIR bands.

Band
Duration
(d: DSL)

Equation
(R(d): RCC)

Coefficients

a0 a1 a2

1
0 ≤ d ≤ 3000 R(d) = a0 (1.0− a1) exp(−a2 d) + a0 a1 1.017 0.7730 0.001791

3000 < d R(d) = a0 0.7869 - -

2
0 ≤ d ≤ 3000 R(d) = a0 (1.0− a1) exp(−a2 d) + a0 a1 1.008 0.8016 0.001114

3000 < d R(d) = a0 0.8152 - -

3N
0 ≤ d ≤ 3000 R(d) = a0 (1.0− a1) exp(−a2 d) + a0 a1 0.9849 0.8192 0.0008238

3000 < d R(d) = a0 0.8218 - -

3B
0 ≤ d ≤ 3000 R(d) = a0 (1.0− a1) exp(−a2 d) + a0 a1 0.9762 0.9009 0.0003670

3000 < d R(d) = a0 0.9116 - -
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(b) 

 
(c) 

 
(d) 

Figure 4. New degradation curves of ASTER VNIR bands for the next radiometric DB ver. 5. Bands (a)
1, (b) 2, (c) 3N, and (d) 3B. Solid lines correspond to the new degradation curves for the next radiometric
DB estimated from the vicarious calibration data from 2000 to 2017 with the lunar calibration on April 14,
2003 (DSL = 1213), and August 5, 2017 (DSL = 6440). Dotted lines correspond to the current degradation
curves in the current radiometric DB ver. 4. The marks show the RCCs from the vicarious calibration.
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5. Discussion

The shape of the newly obtained degradation curves in Figure 4 for the next radiometric DB is
similar between bands. This approach considerably differs from that used in the current radiometric
DB ver. 4. The shape of new degradation curves is similar to the curve shape of the inter-band
calibration, and the inter-band consistency of new curve shows almost same trend as the inter-band
calibration within the uncertainty of the inter-band calibration (Appendix B). In addition, the shape of
new degradation curves is also different from the curve shape of the onboard calibration in Figure 2.
The onboard calibrator was in the outer space for a long period of time after the launch, and its
degradation may have occurred. In all bands, the RCC value at the launch (the RCC value when d = 0)
obtained from the new degradation curve slightly differs from 1.00 (by approximately 1–3%). This may
indicate that the sensor experienced some changes at the launch, but the difference was small; thus,
this discrepancy may be within the uncertainty in the degradation curve.

The new degradation curve of Band 1 is almost the same as that in the current ver. 4. There is
only a slight difference in the RCC value at launch. Because Band 1 degraded more rapidly than the
other bands, the degradation curve can be accurately obtained from the vicarious calibration, even if
there is no constrain from the result of the lunar calibration.

The new degradation curve of Band 2 is very different from that in the current ver. 4. The
degradation curve in the current ver. 4 has been calculated from the data in the old radiometric DB ver.
3. The problem of electrical calibration for the gain ratio [31] was not improved in the old radiometric
DB. Therefore, the degradation curve of ver. 4 was obtained on the basis of several assumptions, and
some of the assumptions may have been inappropriate.

For Band 3N, because the degradation in the current ver. 4 is based on the onboard calibration,
the new curve obtained from vicarious and lunar calibrations also considerably differs from the current
version. However, after 4825 DSL, the consistency between the current and new curves is higher
because the vicarious calibration is also used as a reference for the current curve.

Band 3B in the current ver. 4 was set to have no degradation. However, for the first time,
its degradation curve is obtained in this study. In this new degradation curve, approximately 10%
degradation exists.

The new degradation curves for the next radiometric DB have the same traceability in the bands,
can represent the distribution of the RCCs from the vicarious calibration, and are highly consistent
with the lunar calibration.

6. Conclusions

In 2014, the radiometric correction of ASTER VNIR bands was once improved by the current
radiometric degradation curves in the radiometric DB ver. 4 [17], compared to the previous DBs ver.
1 to 3. However, the calibration approach applied for each band is different; thus, the traceability is
complicated. Therefore, the problem with the radiometric DB ver. 4 was indicated by inter-band and
lunar calibrations.

For the next radiometric DB ver. 5, vicarious and lunar calibrations were selected, and the base
of the degradation curve was obtained from the vicarious calibration, and the result of the lunar
calibration with high accuracy against relative changes (relative degradation) was used as the constraint
condition. The shape and format of the calibration function of the newly obtained degradation curves
for the next radiometric DB are now similar between bands.

The new degradation curve for Band 1 is almost the same as that in the current radiometric DB
ver. 4; however, other bands have curves that differ from the current version. Specifically, for Band
3B, there is no degradation in the current ver. 4, but the degradation of nearly 10% exists in the new
degradation curve.

In this study, for the next update of the radiometric DB, new favored degradation curves were
obtained. The favored curves have the same traceability in the bands, can represent the distribution of
the RCCs from the vicarious calibration, and are consistent with inter-band and the lunar calibrations.
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However, in order to obtain a better degradation curve in the future, further analysis of other
calibration approaches, e.g., cross calibration and pseudo-invariant calibration had better to be
conducted (Appendix C).

Such long-term calibration activities for one sensor are rare, and we expect that the experience
and knowledge will be useful for the calibration of other sensors in the future.
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Appendix A

In this study, we have used the legacy vicarious calibration approach based on the reflectance-based
method that was established in 1990s, and the uncertainty of this approach is not small, approximately
5%, [34] which is calculated by the analysis of the error sources for one field campaign (or one data).
However, the uncertainty of the degradation curve R(d) derived from multiple field campaigns (or
multiple data) shows smaller than the uncertainty from one field campaign as described below.

The value uc of the uncertainty in the degradation curve R(d) is expressed by the following
equation [35]:

uc =

√
u2

r + u2
s (A1)

where ur and us represent the uncertainty of the degradation curve R(d) for the random and systematic
components respectively. The ur value is written by the deviation of the R(d) as a regression curve of
the RCC derived from the vicarious calibration.

ur =

√∑n
i=1(R(di) −Ri)

2

n(n− p)
(A2)

where di represents the DSL of the i-th field data (or field campaign), Ri is the RCC of the DSL di, n is
the number of the field data, and the p is the number of the parameters for the function R(d). On the
other hand, the error sources of the reference panel and solar irradiance can be set at least as the
systematic components. Therefore, the us value is calculated from the error sources of the reference
panel (2.0%) [34] and solar irradiance (0.3% or less) [24]. Table A1 shows these uncertainties calculated
above equations for ASTER VNIR in this study, and the uncertainty uc is estimated to be approximately
2% or more.

Many of the error sources of the vicarious calibration are assumed to be the random components,
however if there are unknown error sources of the systematic components except the reference panel
and solar irradiance, the uc value should become larger.
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Table A1. The uncertainties of R(d) calculated from the multiple field data for ASTER VNIR bands.

Uncertainty of R(d) Duration (d:DSL) Band 1 Band 2 Band 3N Band 3B

ur
0 ≤ d ≤ 3000 0.0053 0.0056 0.0076 0.0089

3000 < d 0.0072 0.0065 0.0064 0.0067

us Independent to d 0.020 0.020 0.020 0.020

uc
0 ≤ d ≤ 3000 0.021 0.021 0.022 0.022

3000 < d 0.021 0.021 0.021 0.021

Appendix B

The shape of newly obtained degradation curves is similar to the curve shape of the inter-band
calibration, but the shape of the current degradation curve of Band 2 and 3N in the radiometric DB
ver.4 is different from it (Figure A1a–c). The RCC difference of Band 1, Band 2, and Band 3N between
new degradation curve and the degradation curve from the inter-band calibration are 0.003, 0.016, and
0.018 respectively, which are average values in the period of 0–6500 DSL.

To compare the inter-band consistency among three kinds of degradation curve, Figure A2a–c
shows the RCC ratio between bands for each degradation curve. The curve shape of the RCC ratio of
new degradation curve is similar to the shape of the RCC ratio curve from the inter-band calibration,
but the curve shape of the RCC ratio of current degradation curve is different from the curve from the
inter-band calibration. The percent difference of the RCC ratio curve in Band 1 / Band 3N, Band 2 /
Band 1, and Band 3N / Band 2 between new degradation curve and the degradation curve from the
inter-band calibration are 1.8%, 1.6%, and 0.4% respectively, which are average values in the period of
0–6500 DSL. The uncertainties of the inter-band calibration for ASTER VNIR bands are 3.0, 2.6, and 2.5,
respectively, for Bands 1 and 3N, Bands 1 and 2, and Bands 2 and 3N [12]. The inter-band consistency
of new curve shows almost same trend as the inter-band calibration within the uncertainty of the
inter-band calibration.

 
(a) (b) 

 
(c) 

Figure A1. Comparison of the shape of the degradation curve calculated from the inter-band calibration,
the current radiometric DB ver.4, and the next radiometric DB. Bands (a) 1, (b) 2, and (c) 3N.
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(a) 

 
(b) 

 
(c) 

Figure A2. The RCC ratio between bands for each degradation curve for comparison of inter-band
consistency. (a) Band 1/Band 3N, (b) Band 2/Band 1, and (c) Band 3N/Band 2.

Appendix C

The cross calibration is a good method that can be carried out frequently and has lower uncertainty
than vicarious calibration. However, we have encountered the two problems with applying it to
the ASTER VNIR radiometer. One is the large spread (Band 1: almost 10%, Band 2: 5–10%) in the
RCC values, which is calculated from the cross-calibration between ASTER and MODIS, among the
sites [7–9]. The other is the large spread (Band 1: 3–7%, Band 2: 7–11%) in the RCC values, which
is calculated from the cross-calibration between ASTER and MODIS, between the normal and high
gains [7,29,30]. The Band 2 High/Normal gain problem was corrected from the analysis of the onboard
electrical calibration [31] at the current radiometric DB, but the other problem is currently under
investigation. Moreover, the onboard electrical calibration showed many kinds of problems [31].
Recent studies of the cross calibration have been conducted at only one site (Railroad Valley), but
the results show still the 1–4% difference between the studies [10,11]. We have identified and solved
the problems inherent in the ASTER VNIR radiometer one by one using the results from the cross
calibration. The studies of the cross calibration for the ASTSER will be continued and eventually
reflected in the sensor trends.

The pseudo-invariant calibration [36] is a good method that can be carried out frequently and has
high accuracy for monitoring of the relative degradation. However, we could not obtain a sufficient
number of ASTER images for the study of the pseudo-invariant calibration. The swath width of ASTER
image is 60 km, then the ASTER sensor pointing system in cross-track direction has covered 232 km
width. It means that the ASTER does not observe the pseudo-invariant calibration sites (PICSs) at
every overpass-time, and its observation has been planned according to the operational mission and
user request. For example, in Libya-4 desert site, the number of ASTER-VNIR images for 20 years
after the launch is almost 40 scenes in the daytime, and the number of the cloud-free nadir images (i.e.,
the cloud-free images at the overpass-time) is almost 10. Moreover, 10 cloud-free and nadir observed
scenes include different gain modes. The ASTER-VNIR images observed at different targets and/or
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by the different gain modes sometimes cause the different results as mentioned above in the cross
calibration. We hope that these problems will be solved, then pseudo-invariant calibration will finally
be applied to the ASTER VNIR.
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Abstract: Permafrost is degrading under current warming conditions, disrupting infrastructure,
releasing carbon from soils, and altering seasonal water availability. Therefore, it is important to
quantitatively map the change in the extent and depth of permafrost. We used satellite images of
land-surface temperature to recognize and map the zero curtain, i.e., the isothermal period of ground
temperature during seasonal freeze and thaw, as a precursor for delineating permafrost boundaries
from remotely sensed thermal-infrared data. The phase transition of moisture in the ground allows
the zero curtain to occur when near-surface soil moisture thaws or freezes, and also when ice-rich
permafrost thaws or freezes. We propose that mapping the zero curtain is a precursor to mapping
permafrost at shallow depths. We used ASTER and a MODIS-Aqua daily afternoon land-surface
temperature (LST) timeseries to recognize the zero curtain at the 1-km scale as a “proof of concept.”
Our regional mapping of the zero curtain over an area around the 7000 m high volcano Ojos del
Salado in Chile suggests that the zero curtain can be mapped over arid regions of the world. It also
indicates that surface heterogeneity, snow cover, and cloud cover can hinder the effectiveness of
our approach. To be of practical use in many areas, it may be helpful to reduce the topographic
and compositional heterogeneity in order to increase the LST accuracy. The necessary finer spatial
resolution to reduce these problems is provided by ASTER (90 m).

Keywords: land-surface temperature; zero curtain effect; MODIS; ASTER; permafrost; phase change

1. Introduction

Permafrost, defined as ground that stays below freezing for more than two years, is an integral
part of the cryosphere that is predicted to rapidly degrade under current warming climatic conditions
(e.g., [1,2]). A quarter of the land surface of the Earth is subject to permafrost-related processes [3] and
23–26% of the land area in the northern hemisphere is permafrost [4–6]. The loss of permafrost affects
the regional water balance and changes landscapes and ecosystems in cold regions. Erosion of soil due
to melting permafrost not only poses a significant uncertainty in infrastructure stability but may also
accelerate the release of carbon from the permafrost into the atmosphere [1,7].

Traditional mapping and monitoring techniques of permafrost are accurate but are presently
labor-intensive and rely on interpolating small numbers of locally measured data across large areas in
order to study regional-scale processes. Remote sensing addresses this difficulty by making spatially
dense measurements over vast regions. Previous remote sensing studies have inferred permafrost
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extent from the instantaneous zero isotherm at the land surface or from changes in the dielectric
marking the phase transition of liquid water to ice [8–10].

We propose to use land-surface temperature (LST) measured from space-borne thermal-infrared
(TIR) sensors to map patterns in the annual cycle of LST in order to ultimately detect freeze/thaw
surface dynamics. Previous studies demonstrated that in autumn or spring, the LST of moist/frozen
soils remains at ~0 ◦C while the phase transition between water and ice occurs. This period is a
well-known phenomenon called the “zero curtain” in permafrost studies (e.g., [11]) and its presence
can be used to distinguish seasonally freezing ground from freezing dry ground, in which there is no
zero curtain. The premise of our approach is that if the zero curtain lasts for several days, its presence
can potentially be recognized and mapped with time series of daily LST images.

Repetition of the zero curtain for two or more annual LST cycles can be used to identify candidate
permafrost pixels, and seasonal asymmetry in the duration of the zero curtain can likely be used
to distinguish seasonally frozen soil from permafrost. Putkonen [12] suggested from modeling,
substantially confirmed by Yi et al. [13], that the zero curtain should be present over near-surface
permafrost during freeze-up, but not during the thaw, and vice versa in seasonally frozen soil. Over
deep permafrost (~130 cm), de Pablo et al. [14] reported zero curtains in both seasons but shorter at the
end of the freezing season. Although the zero-curtain duration is affected by seasonal changes in soil
moisture and by the onset date of snow cover [13], this asymmetry should allow further winnowing of
candidate pixels.

This paper does not reach so far as to identify permafrost, but simply establishes that precursor
maps of the zero curtain are feasible to make with satellite-borne TIR imagers. We tested our approach
in an arid region of the Atacama Andes near the Ojos del Salado volcano, close to the border between
Chile and Argentina, where previous studies had documented the presence of frozen ground and
near-surface permafrost [15–18].

1.1. Zero Curtain in the Surface and Soil Temperatures

The occurrence of a zero curtain in the annual ground-temperature cycle is attributed to the
phase change of moisture in the soil due to the release of excess latent heat during the freezing and
thawing seasons (Figure 1). Because keeping soil near 0 ◦C for several days generally requires moisture
in the soil, the detection of the zero curtain implies the presence of soil moisture. Soil moisture
may be ephemeral or seasonal, but it may further imply the presence of buried ice-rich permafrost.
Putkonen [12] proposed that, in addition to the presence of moisture in the soil, the thermal gradient
in the soil must become 0 ◦C m−1 above the base of the active layer (depth of the thaw) for the zero
curtain to form. It follows that the timing of the zero curtain indicates the presence of permafrost.
During the thaw season, a high thermal gradient between the warming surface and the cold permafrost
effectively conducts heat through the soil without forming a zero curtain; during freeze-up, the cold
ground surface and the cold permafrost create a low thermal gradient, ensuring a condition at some
depth in the soil where the temperature is at or near 0 ◦C for a prolonged period (Figure 1B). In other
words, seasonally frozen ground not overlying permafrost may exhibit a zero curtain during the thaw,
whereas soil underlain by permafrost may exhibit a zero curtain only during freeze-up.
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Figure 1. The zero curtain. (A) Daily ground temperatures (2 PM local) measured at various depths
in the active layer above permafrost (location at 76.55414◦ N, 68.561680◦ W, 190 m asl) near Qaanaaq,
Greenland. During 2015, there was a prominent zero-curtain effect due to the phase transition of water
in the soil. During this time, the ground temperature was maintained at or near 0 ◦C at depths of
15 and 25 cm. Deeper than 30 cm the temperature never exceeded freezing, and near the immediate
surface (not shown) the ground temperatures were commonly variable due to solar heating of the
surface, complicating the effects of wind and cloudiness. This zero curtain was only observed from
September to early October, during freeze-up, but not during the spring thaw. Unpublished data from
R.S. Sletten. (B) Schematic from Putkonen [12] showing the modeled heat flow during freezing and
thawing seasons. During freeze-up (red squares), the soil temperatures at the 0.5–1 m depth quickly
reaches the freezing point, such that no heat diffusion upward (driven by the temperature gradient)
can occur. The zero curtain will be maintained until all water in the active layer freezes. During the
thaw (blue circles), the high thermal gradient in the soil ensures efficient heat flow and the soil will
consistently warm with no zero curtain.

Yi et al. [13] observed that the duration of the zero curtain revealed information about the
permafrost, specifically the depth of the active layer. The heat-flow plateau at ~0 ◦C shown schematically
in Figure 1B (from Putkonen [12]) would persist longer over thicker active layers but would break down
more rapidly over thin layers. Measuring and mapping the duration of the zero curtain, therefore,
would supply important information about the weather conditions, their change with altitude and
geographic position, and changes over time relevant to climate change.

Significant characteristics of the zero curtain may be measured by three parameters: (1) The
starting date of the zero curtain; (2) the duration of the zero curtain; and (3) seasonal asymmetry in the
duration. While the zero curtain itself indicates the presence of soil moisture, its starting date reveals
the beginning of the annual thaw and/or freeze-up and its change over the years may indicate the
changing nature of the climate and seasonal fluctuations of soil moisture. The duration of the zero
curtain may respond to the thermal regime of the soil and the presence of underlying permafrost and
the depth of the active layer.

The analysis of daily measurements of LST is less sensitive to measurement precision and cloud
cover than a single measurement of LST. The occurrence of the zero curtain in LST, regardless of
the seasons, strongly indicates the presence of moisture in the soil and provides an opportunity to
distinguish between dry and wet soil and map at a regional scale. Therefore, such a remote-sensing
approach may be appropriate for detecting and mapping ground ice at moderate (102–103 m) resolutions.

1.2. Remote Sensing and Numerical Modeling Studies of Permafrost

Most of the traditional permafrost studies rely on the recognition of landscape changes in the
field and extrapolating over large regions (e.g., [19]). Such field expeditions can be expensive and
prohibitive in remote regions. If the changes in the landscape are large enough to be seen with remotely
sensed data, the permafrost-related landscapes and their changes can be mapped at a regional scale.
For example, Nitze et al. [20] used visible/near-infrared Landsat imagery (30 m resolution) from 1999
to 2014 to quantify the expansion of thermokarst lakes and the increased slumping of frozen coastal
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areas due to melting of permafrost. Such studies are invaluable to document landscape changes in
permafrost areas but are not sufficient to explain the changes in the thermal regime of the soil.

Microwave sensors are sensitive to soil moisture and temperature (e.g., [21]), and exploiting the
fact that freezing changes the dielectric constant of moist soils, numerous studies of radar measurements
have been used to map the state of freeze and thaw in the soils (e.g., [22,23]). Such regional-scale
mapping approaches based on microwave sensors are useful to infer the changes in seasonally frozen
grounds. However, the existence of permafrost underlying the seasonally frozen ground has not been
inferred from just the dielectric constant or the state of freeze/thaw, and the resolution of the microwave
sensors (~6–60 km) can be a limiting factor to detect small changes in lateral extent of permafrost
areas. With the goal of mapping the depth of the active layer, Liu et al. [24] used interferometric
synthetic aperture radar (InSAR) to monitor surface deformation over permafrost. Because ice and
water have different densities, the ground surface settles during the thaw and the amount of surface
subsidence can be used to estimate the thickness of the active layer if the vertical distribution of
pore water within the soil is known. Wang et al. [25] used multi-temporal TerraSAR-X backscatter
intensity and interferometric coherence along with the relationship between vegetation cover and the
permafrost as the basis for classifying and mapping permafrost landscape features. Chen et al. [26]
proposed a method to estimate the active layer thickness using time-series P-band polarimetric
synthetic aperture radar (SAR) observations, achieving retrieval with errors <0.1 m in some cases.
Yi et al. [13] combined field observations, active layer thickness, and soil moisture maps derived
from low-frequency (L + P-band) airborne radar measurements, and global satellite environmental
observations to investigate the sensitivity of the active layer to recent climate trends.

Thermal infrared (TIR) sensors provide direct measurements of skin temperatures of land surfaces.
Widely used LST products are derived from the Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) onboard the Terra spacecraft, the Thematic Mapper (onboard Landsat), and from
the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard two satellites: Terra (with a
morning overpass) and Aqua (with an afternoon overpass). Terra, Landsat, and Aqua share a common
sun-synchronous orbit with different overpass times. Among the TIR imagers on these satellites, only
MODIS provides daily measurements of LST. Numerical modeling studies based on the empirical
relationship between the ground temperature and air temperature have taken advantage of the MODIS
LST products (e.g., [27–29]) to derive static maps of the spatial distribution of permafrost. Recently,
a numerical modeling study has combined the MODIS LST products with gridded air temperature
data to derive time-series maps of permafrost extent [5]. These dynamic maps of changes in permafrost
are important to assess the impact of a warming climate to the state of the permafrost. The approach
proposed in this article is a contribution toward creating temporally and spatially dynamic maps
of the quantified state of permafrost and seasonally frozen ground, complementary to the previous
regional-scale studies.

2. Materials and Methods

2.1. Remotely Sensed and Climate Data

MODIS provides daily LST products (MOD11A1 and MYD11A1) at 1-km spatial resolution using
TIR data measured from the Aqua and Terra platforms, respectively [30,31]. We used MYD11A1
(Aqua) daytime LST products from 2003 to 2017. The MODIS LST is estimated using the split-window
algorithm [32] with an estimated uncertainty of ~4.5 ◦C [33]. We compiled the daily MODIS LST
over the study area and converted the data for processing with MATLAB. Daily coverage is possible
using oblique views from adjacent overpasses. The local time for MODIS measurements in the LST
compilations, therefore, ranged from 1:10 to 2:50 PM.

We used an ASTER Surface Kinetic Temperature (AST_08; 90 m pixel−1) and visible/near-infrared
(VNIR) ASTER products (AST_L1B; 15 m pixel−1) to assess the variability of the land surface and the
related temperatures within a single MODIS pixel, and to check the distribution of snow. The ASTER
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products were derived from a scene acquired on 8 April, 21 August, 22 September, and 8 October of
2017 at 11:43 AM local time [34].

Air temperature variations over different altitudes were evaluated using the long-term (1981–2010)
monthly mean air temperature data from the Global Historical Climatology Network and Climate
Anomaly Monitoring System (GHCN CAMS; 0.5◦ pixel−1 [35]). These low-resolution air temperature
data were resampled at a 30 m pixel−1 resolution using the SRTM 1 arc-second DEM [36] and the
long-term (1981–2010) monthly mean lapse rate derived from the National Centers for Environmental
Prediction and the National Center for Atmospheric Research reanalysis data (NCEP/NCAR; 2.5◦
pixel−1 [37]). We followed the procedures described in [38] to resample the air temperature data to a
higher spatial resolution to see the fine spatial variations of air temperature.

2.2. “Threshold Window” Filtering Algorithm

We developed an algorithm in the MATLAB environment that analyzes the daily MODIS LST
during the first and second six months of the year at each pixel, and tests whether the daily LST satisfies
the following rules indicating the occurrence of a zero curtain:

(1) LST must be between −3.5 and 3.5 ◦C (defined below as the LST during a zero-curtain event, or
“zero-curtain LST”);

(2) The number of consecutive zero-curtain LSTs must be >3;
(3) The number of days with missing data between two identified zero-curtain LSTs must be <3; and
(4) The total number of zero-curtain LSTs must be >5.

In other words, we split the annual daily LST data into two halves, each containing the thaw or
freeze-up period. In each half, we counted the number days during which the −3.5 < LST < 3.5 ◦C.
We identified a zero curtain if the number of consecutive days with −3.5 < LST < 3.5 ◦C exceeded
five. At the end of the counting iteration for a pixel, the starting and end date for the zero curtain
were recorded, from which we calculated the difference, which we defined as the duration of the zero
curtain. Currently, no correction is made for snow cover. Our algorithm returns as output for every
pixel matrix for the zero-curtain duration and the starting dates for thawing and freezing seasons for
each year. The output matrix was converted back to georeferenced raster files using the same gridding
scheme and spatial resolution of MYD11A1 products. All maps and raster data produced from this
study are available in georeferenced TIFF files, as well as the detailed descriptions of the data, in the
online supplement to this article (Table S1).

2.3. Validation Sites

We chose three validation sites near the Ojos del Salado volcano in the Andes east of the Atacama
Desert in Chile (Figure 2). At least one 1-km2 area surrounding each study site is homogeneous in
terms of composition and small-scale roughness, topographically flat, and sparsely vegetated. Climate
data are given in Table 1. Only ~1% of the total surface area over the whole region including the
validation sites is covered with shrubs, grassland, water bodies, and permanent snowfields or glaciers
(supplementary Table S2). Two of the sites were chosen in areas that were previously found to have
periglacial features [39] and possibly permafrost [16,40]. However, intermittent or thin snow cover on
Ojos del Salado implies complicating factors due to increased soil moisture during the melt season and
the possibility of near-surface ground ice. The sites were chosen at different altitudes, ranging from
3815 to 4910 m asl, to assess the variability in the zero curtain at various altitudes. The lowest site
lacked periglacial features and was intended to act as control for the higher ones.
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✕

Figure 2. Maps showing the study area and the mean annual air temperature for 2018. The numbered
circles indicate the locations of validation sites where we measured subsurface ground temperatures.
The Chilean customs office is marked with an � symbol. The air temperatures were calculated from the
GHCN CAMPS long-term (1981–2010) monthly mean dataset of air temperature (0.5◦ pixel−1 [35]) and
were scaled to the resolution of SRTM DEM (30 m pixel−1) using the long-term (1981–2010) monthly
mean NCEP/NCAR reanalysis dataset of lapse rate (2.5◦ pixel−1 [37]). The background hillshade image
was constructed from 1 arcsec SRTM DEM (SRTMGL1).

Site #1 is located on one of the low-gradient (1◦) alluvial fans (~140 km2) emanating from the
rivers Quebrada Cienaga and Rio Lomas (Figure 2). These rivers form braided channels that lead to
Salar de Maricunga, but the channels remain dry most of the time. The surface of the fan is paved with
rhyodacitic/andesitic (cf. Baker et al. [41]) gravel 2–3 cm in diameter and 1 cm thick, overlying silty
sand. A few of the clasts are 3–5 cm in diameter and <2 cm thick. Site #2 is located on an alluvial fan
(~13 km2) below the volcanoes Nevado Tres Cruces. The surface of this fan is a low-gradient (~2◦)
rhyodacitic/andesitic/dacitic gravel pavement similar to Site #1, with gravel 2 cm in diameter and
1 cm thick. Site #3 (~1 km2) is on a steeper alluvial fan (~10%) in the Valle de Barrancas Blancas and
has the most complex surface in terms of composition (pyroclastic, rhyolitic, dacitic) and topography.
It is covered with gravel 3–5 cm in diameter and <3 cm thick. Some large wind-polished boulders
are scattered on the surface. Almost-parallel, shallow, dry channels ~20 cm deep dissect the surface.
Small grasses and flowers may cover the site in summer. At all three sites, the percent of the surface
covered by gravel was >90%. Photos showing the surface features at the validation sites are provided
in supplementary Figures S1–S7.
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Table 1. Validation sites, their locations, and local climate. Precipitation data are too low resolution to
show differences among the sites.

Site Location Altitude, m asl

Mean Annual Climate Parameters

Precipitation 1,
mm w.e.

Air Temperature 2,
◦C

Lapse Rate 3,
◦C km−1

#1 27◦02′54” S,
69◦04′52” W 3815 58 −0.8 5.5

#2 26◦57′31” S,
68◦49′09” W 4415 58 −3.1 5.5

#3 27◦00′09” S,
68◦42′55” W 4910 58 −5.0 6.3

1 All sites show the same precipitation due to 0.5◦ resolution of GPCC V7 data [42]; 2 [35]; 3 [37].

Surface features in the study region indicate periglacial processes and seasonal freeze and thaw.
For example, in the Valle de Barrancas Blancas (Figure 2), sorted and unsorted patterned ground,
surface extrusion due to cryoturbation, rock glaciers, cryoplanation surfaces, and slopes affected by
gelifluction have been observed by Buchroithner and Trombotto Liaudat [43]. Nagy et al. [16] measured
ground temperatures at six sites at different altitudes, ranging from 4200 to 6890 m asl, around Ojos del
Salado during 2012–2016 to show that the seasonal freezing front reaches depths of at least 35–60 cm at
these altitudes. Zero curtains were observed in both spring and autumn for two more weeks at all six
sites, except for the two highest sites, at 6750 and 6890 m asl, where the ground temperatures remained
below 0 ◦C for most of the year (see Section 2.4 below). On the basis of these measured ground
temperatures, Nagy et al. [16] concluded that permafrost likely exists above 5250 m asl. The likelihood
of permafrost at these altitudes is consistent with suggestions based on the mapping of permafrost
and periglacial landforms [39,44] and numerical modeling of air temperatures [40]. Nagy et al. [16]
concluded that it is unlikely for permafrost to exist below 4550 m asl.

2.4. In-Situ Measurements at Validation Sites

In November 2016, we installed TMC6-HC temperature sensors with an accuracy of ±0.25 ◦C
at each site to measure subsurface ground temperatures every hour at depths of 2, 10, 20, and 40 cm
(Figure 2; Table 1). The data from the thermometers were collected using HOBO® H-8 4-channel data
loggers. The near-surface sensor was for comparison to the MODIS LST data, averaged over 1 km2.
The deeper subsurface sensors were to evaluate the 2-cm temperature in terms of the diurnal cycle.
When we removed the probes (March 2018), we examined the soils. See soil descriptions at Site #1
(Table S3), at Site #2 (Table S4), and at Site #3 (Table S5) in the online Supplementary Materials.

3. Results

3.1. The Zero Curtain in the LST Data

The LST for the ~2 PM MODIS overflight of Ojos del Salado during the thawing season of 2017 is
shown for Site #2 in Figure 3. The plateau near 0 ◦C between June 20 and July 14 is the zero curtain.
2 PM is near the peak of the diurnal temperature cycle, and thin ice films forming at night will likely
not register then. The lack of LST records reflects the cloudy days.
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Figure 3. The LST time series for the thawing season, 2017, at Site #2. The zero-curtain (red data points)
followed a protracted period of cloudiness during which there were no LST measurements of the
ground surface.

MODIS LST images were consistently recorded for the three validation sites between 2003 and
2017. The seasonal temperature cycle is clearly visible in Figure 4, although the short zero curtains
are not evident at this compressed temporal scale. The persistence of low winter temperatures was
less at all three sites than the persistence of high summer temperatures. Gaps in the record are times
when clouds obscured the ground. The maximum temperatures ranged among sites from ~50 ◦C at
sites #1 and #2 to ~35 ◦C at Site #3. The minimum temperatures ranged much less, only rarely dipping
below 0◦C during the afternoon even at Site #3 (4910 m asl), 460 m above the altitude at permafrost
was thought possible by Nagy et al. [16]. The LST at the lowest site, Site #1, consistently stayed above
freezing for almost all years, consistent with the low probability of permafrost existence based on the
surface mapping and numerical modeling of air temperatures [39,40,44]. The highest site, Site #3, near
Barrancas Blancas shows consistent zero curtains during both freezing and thawing seasons.

 

Figure 4. MODIS land surface temperatures at 2 PM (local) from 2003 to 2017 for the three validation sites.

3.2. Occurrence of Zero Curtains in the Study Area

We analyzed 3393 pixels (87 × 39 km grid) with a 1-km spatial resolution in the study area for
each of the 15 years (2003–2017). Approximately 60% of the study area is located above 4550 m asl, the
altitude above which permafrost likely exists per Nagy et al. [16]. We produced two types of maps
for thawing and freezing seasons of the years 2003–2017 using the Threshold Window algorithm: (a)
Number of days with zero curtain (duration), and (b) starting date of the zero curtain. The number of
pixels with detected zero curtains (Figure 5) shows significant differences between the thawing and
freezing seasons. The area with zero curtains during the freezing season remained largely constant

217



Remote Sens. 2020, 12, 695

throughout the years. However, the area with zero curtain during the thaw has increased over the
years. A notable exception was during 2015, where the number of pixels with zero curtain during the
freezing season was anomalously high.

 
Figure 5. The number of pixels with zero curtain from 2003 to 2017. Out of the 3393 pixels analyzed for
the study area (87 × 39 grid) the number of pixels with zero curtain during the thawing seasons have
increased over time, while the values for the freezing seasons have remained approximately constant.
Note the exception in 2015, for which the number of pixels with zero curtain during freeze-up was not
plotted due to an anomalously high number of zero curtain pixels (1260).

Zero curtains were observed in ~5% to 40% of areas above 4550 m asl between 2003 and 2017.
In the majority of cases, the zero curtain was observed only during a single season. In each year,
except 2015, less than 50 pixels showed zero curtains in both seasons. In other words, there was very
little overlap between the areas with zero curtain detected only during freeze-up and the zero curtain
detected only in the thaw (supplementary Figure S8). During the thaw, the zero curtain was detected
largely in areas at low altitudes (e.g., Figure 6).

 
Figure 6. Number of days with zero curtains during the thaw season of 2017.

During freeze-up between 2003 and 2017, zero curtains were detected in late April to late May
(supplementary Figure S9). In the higher altitude areas, the zero curtain started earlier than at
lower altitudes, suggesting that the MODIS LST measurements reflect the temperature decrease with
increasing altitude. During the thaw, zero curtains were detected between late June and early October.
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Zero curtains during the thaw of 2003–2010 were detected mostly in August. However, after 2010,
zero curtains were detected earlier, during late June to the middle of July (e.g., Figure 7). These earlier
starting dates during the thaw seasons may reflect the recent warming trends in the air temperatures
over the Andes [45].

 
Figure 7. The starting day of the zero curtain, determined using the Threshold Window algorithm,
during the thaw season of 2017.

3.3. Comparison Between MODIS LST and In Situ Measured Ground Temperatures

The MODIS daytime LST is a measure of the ~2 PM skin temperature integrated over each 1 km2

pixel. The skin temperatures are subject to short-term fluctuations caused by gusts of wind and
the shadows of high-altitude clouds located over adjacent pixels. The km-scale skin temperature is
weighted by the temperatures of the gravel of the pavements on the fans, whereas the subsurface
temperature probes record the temperature of the soil beneath the pavement. Despite such different
representations of ground temperatures, the measurements of daily MODIS LST and subsurface
ground temperatures at the 2 cm depth in the three validation sites during 2017 agree well during the
warm seasons (Figure 8), demonstrating the robustness of MODIS LST measurements for monitoring
purposes. However, the correlation is less well established during the cold seasons. During 2017,
the ground temperatures at the three validations sites were consistent at all depths (2–40 cm) during
May–September, suggesting that the surface was covered with snow (see MODIS snow cover data,
MYD10A1 [46], in Figure 8). Both MODIS snow cover data and the in situ measurements of ground
temperatures at Site #3 show the fewest number of days with snow cover.

The MODIS LST at sites #1 and 2 show 15 days of sustained zero curtain during the thawing
season of 2017. However, during this time at both sites, the subsurface temperatures measured at 2 cm
were ~5–10 ◦C lower than the LST values. Only at Site #2 did the ground temperatures at the 40 cm
depth show a persistent zero curtain, during which time the MODIS LST appear to agree (Figure 8B).
We discuss in Section 4 below the complexities in the TIR remote sensing and their implications for the
MODIS LST data.
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Figure 8. Validation site temperatures at 2 PM. (A) Site #1. Between early June and mid-July, LSTs were
near freezing and the 2 cm temperatures were about the same as at 10 cm, by late September increasing
to 0 ◦C, later rising to match the LST. (B) Site #2. There was a late-June zero curtain in the LST. After the
thaw, the LST was lower than the 2 cm temperature. (C) Site #3. Subsurface zero curtains, but none in
the LST, occurred during both and freeze-up. The MODIS snow cover data is MYD10A1 [46].

4. Discussion

4.1. The MODIS LST Product

The basis for the detection of the zero curtain in this study is the MODIS LST product, of low
(1 km) spatial but high (daily) temporal resolution. The MODIS LST is constructed from MODIS bands
31 and 32 (10.78–11.28 and 11.77–12.27 μm) using a split-window algorithm that corrects the data
for atmospheric effects. Calculating LST from atmospherically corrected surface-emitted radiance
is sensitive to the thermal emissivity: An error of 0.01 at 11 μm (MODIS band 31) corresponds to a
temperature error of 0.6 K in the inversion of the Planck equation for the single wavelength. The default
surface type (and emissivity in MODIS band 31) is soil (0.97: [47]). Although the MODIS LST algorithm
assumes emissivity values for different surface types [48–50], only two are relevant in our validation
sites on gravel pavements: Rock and snow (band 31: ε = 0.98). Coincidentally, the dacitic and volcanic
pebbles composing the surfaces of the validation sites have the same emissivity at 11 μm used by
the MODIS LST algorithm for soil. Therefore, the composition of the geological surface is unlikely
to introduce temperature errors in the output images. MODIS snow-cover products (MOD10 and
MYD10) are integrated into MODIS LST so that the calculation uses the proper emissivities, whether
for the gravel surface or snow. Any discrepancy in LST due solely to the emissivities of the geologic
surface and snow cover would be too small to detect readily in the time histories of LST for the three
validation sites (Figure 4).

The cloud cover is detected and masked out in making the MODIS LST products [51] so that
only the unobscured ground surface is represented. However, the lack of daily LST data during the
seasonal thaw and freezing seasons may hinder the opportunities to detect the zero curtain occurrence.
The percentage of data loss due to clouds over the study region from 2003 and 2017 ranged from ~20%
to 60% in the mountainous areas. The percentage of data loss during March–September from 2003 to
2017 at the validation Site #1 ranged from 16% to 42% whereas at sites #2 and 3 it ranged from 27% to
56% (supplementary Table S6 and Figure S10).

The MODIS LST represents the dynamic balance between heating due to absorption of sunlight,
diffusion of heat into the soil, and cooling due to emitted thermal-infrared radiance. The ‘true’ kinetic
surface temperature, on the other hand, is susceptible to additional environmental changes, such as
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wind, evaporation, or condensation of water. These typically will make the LST more variable than the
subsurface measurements, which are buffered by a large mass of adjacent soil. During the zero curtain
times in 2017, the difference between the MODIS LST and the in situ ground temperatures at the 2 cm
depth ranged between 1 and 6 ◦C at the validation sites (Figure 8). Considering the accuracy of the
MODIS LST product of ~1 K [52] and the in situ ground temperatures, especially at the 2 cm depth,
were comparable for much of the year. Exceptions to this rule evident in Figure 8 are discussed below.

4.2. MODIS LST and Subsurface Temperature Profiles

Figure 8 compares the LST to the subsurface kinetic temperatures measured at the same time
at the three validation sites. Although the LST and subsurface soil temperatures differ significantly
depending on the type of vegetation covers (e.g., [22]), the surface at the validation sites remain barren
most of the time (e.g., Table S2). As expected, the temperature at the 2 cm depth generally tracks the
LST closely at all three sites, although it is lower by up to ~10 ◦C in summer. This may be due to the
phase lag as the solar heating wave slowly penetrates the ground. In winter, the 2-cm temperature
lowers to match the other subsurface values, but the afternoon LST rarely drops below zero.

Snow is highly reflective in the visible part of the spectrum (50–80%), yet 5% of the incoming solar
energy is transmitted through cover 10–20 cm thick [53]. In contrast, snow absorbs efficiently in the
thermal-infrared spectrum, such that the emitted radiation may originate only in the top 2 mm of the
snow surfaces [54,55]. The nearly isothermal character of the subsurface as shown in Figure 8A is likely
due to an insulating blanket of snow 10 cm or more in thickness, allowing the shallow subsurface
to lose heat to deeper soil even as the snow surface is heated by the sun. In the limit, the LST of
the snow cover could exceed the freezing point by at most a few ◦C, yet temperatures as high as
34 ◦C were recorded, even as the subsurface temperatures continued to decrease. This suggests that
numerous large, sun-heated cobbles protruded from the thinning snowpack or that unresolved patches
of snow-free ground had appeared but not over the subsurface sensors. By mid-October, the 2-cm
temperature values have risen to match the LST, likely as the snow melted.

At Site #2 (Figure 8B) from mid-July until late September, the LST was lower than the temperature
2 cm down. The MODIS snow product indicates that there was snow cover during this time.
This situation is the opposite of what occurred at the same season in Site #1. How could this happen,
and what does it imply for the detection by MODIS of a zero curtain?

A likely explanation is that the snow cover was a thin veneer, thick enough so that the thermal
infrared signal was radiated from its surface, unaffected by the ground beneath. On the other hand,
the veneer was thin enough (i.e., <10–20 cm) that the ground was heated by irradiance from the sun
at visible wavelengths. Thus, in mid-May, both the LST and the 2 cm temperature lowered to a few
degrees below zero as the first snowfall was recorded.

During the time the ground was snow-covered or obscured by cloud, no meaningful zero curtain
could be detected. This period included the likely freeze-up. By early June, the cloudiness cleared,
and the surface of the snow rose from −10 ◦C to zero as the sun heated and thinned the snow cover.
From mid-June to mid-July, the LST indicated a zero curtain. Thus, misleading zero curtains that
pertain to thawing snow can be returned by the “Threshold Window” filtering algorithm.

At the high-altitude Site #3 (Figure 8C), subsurface zero curtains (10, 20, and 40 cm depth) occurred
during both thaw (early May) and freeze-up (early October), but none occurred at the 2 cm depth or at
the surface, both of which were 20 ◦C or warmer. Furthermore, except for the temperatures at 2 cm, the
subsurface sites had similar temperatures throughout the winter, between the zero curtains. MODIS
reported no snow cover before June or after August, so that snow has no role in explaining these
relationships then. During the winter, however, on individual days, temperatures at both 2 cm and
the immediate surface dropped ~12 ◦C to near zero, an occurrence likely associated with ephemeral
snow cover. During the summer, temperatures at 20 and 40 cm remained close to each other while
temperatures at 10 cm rose to intermediate values between the temperatures at the deeper sensors and
the 2 cm depth. These observations likely resulted from solar warming of the surface. At Site #3, there
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was sufficient soil moisture to allow zero curtains at depth, but the circumstances precluded any at
the surface.

4.3. Effects of Scene Roughness

The alluvial fan surfaces at the validation sites were compositionally homogeneous and flat on a
coarse km scale. However, we noticed that local fine-scale topography was variable, ranging from dry
channels to small periglacial patterned grounds (supplementary Figures S1–S5). The manifestation
of topographical variation in the emitted radiance at the thermal infrared spectrum can be seen in
Figure 9, where subtle topographic features not discernible in the photograph can be resolved as bright
pixels in the FLIR image. Inclusion of these features in low-resolution pixels causes the histogram
of temperatures within those pixels to broaden. For example, the standard deviations within pixel
aggregations simulating lower-resolution data in the plain in Figure 9 range from about 0.2 K at 2 m
pixel−1 to 2.5 K at 380 m pixel−1. Topographic effects influencing the effective surface temperatures
at the ASTER or MODIS scales are not large enough to affect the analysis in this study significantly.
However, during the thaw, the radiance from unresolved patches of snow will mix with that from
adjacent bare soil to lower the effective daytime LST.

 
Figure 9. Validation Site #2 (26.9586◦ S and 68.8190◦ W, 4415 m asl) looking east over on a flat
homogeneous alluviated plain. (A) View from the ground; (B) FLIR thermal-infrared image taken
from the same spot and view angle. The images are about 6 km across at the foot of the mountain.
The resolution of the FLIR image ranges from ~2 cm pixel−1 in the foreground to ~15 m pixel−1 at the
foot of the mountain, ~12 km away.

4.4. Spatial Resolution and Radiance Mixing

Although the validation sites appear to be homogeneous from the standpoint of the MODIS
LST data, analysis of zero curtains elsewhere will encounter more complex surfaces and in any case
there may be seasonal patches of snow unresolved by MODIS. ASTER, at 90 m pixel−1, will produce
more unmixed (“pure”) pixels in complex terrain, and thus will produce more pixels in which reliable
assessments of the zero curtain can be made (Figure 10). Small seasonal snow patches provide one
example, important in this study, of temperature mixing that may be reduced with improved resolution.
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Figure 10. ASTER image pairs (VNIR and Surface Kinetic Temperature, AST08) for three dates in 2017.
On 21 August, a 1-km2 MODIS pixel indicated Site #1 to be snow-covered, which the 15-m pixel−1

ASTER VNIR image disagrees with. On 22 September, MODIS indicated both sites #2 and #3 to be
snow-free; ASTER shows them to be largely bare. On 8 October, MODIS indicates both sites #2 and #3
to be snow-free, which ASTER confirms. The MODIS snow classifications are binary (snow or no-snow).
Modal temperatures (11:43 AM local AST08) for snow-free pixels are 23–30 ◦C and 12 ◦C for largely
snow-covered pixels (22 September, SE corner Site #2). Even the lowest temperatures for snow cover or
partial cover were above zero, implying significant temperature mixing with sun-heated rocks rising
above the snow.

For this study, the temperature window in the Threshold Window filtering algorithm was set at
±3.5 ◦C to account for the MODIS LST accuracy of ~1 ◦C (1 σ), any variations in emissivity of different
types of rocks, and effects of local topographic features that cannot be resolved at the spatial resolution
of MODIS LST data. Many but not all mixed pixels of soil and snow will be filtered out with this setting.

Adjusting the size of the Threshold Window decreases or increases the number of data points to be
counted as part of a zero curtain, decreasing or increasing false negatives or false positives, but a better
approach might be to reduce the pixel size. For example, horizontal changes in the extent of permafrost
in Tibet Plateau can be estimated to ~460–920 m in 30 years after accounting for the maximum vertical
change of permafrost base during the same period (80 m [56,57]) and the average slope of the interior
of the plateau (~5–10◦ [58]). The threshold window algorithm cannot capture changes at such a 100 m
scale due to the relatively low resolution of the MODIS LST data. This limitation might be overcome
by using ASTER data, with its higher spatial resolution than MODIS, but repeat acquisitions of ASTER
images are too infrequent. A compromise may be possible with data fusion: Surface compositions can
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be mapped using the 15-m pixel−1 visible and 30-m pixel−1 near-infrared data while variations in
the surface emissivity can be resolved from the 90-m pixel−1 ASTER products (Figure 11). With this
information and the daily LST, it may be possible to generate the higher 90-m spatial resolution of the
ASTER surface temperature product using the STARFM algorithm [59]. Data fusion might also be used
with the high spatial but irregular and temporal resolution data of ECOSTRESS (Table 2). However, to
monitor subtle changes in permafrost extent in the future, we likely will need data with both high
spatial and high temporal resolution.

 
Figure 11. Effect of resolution. The heterogeneity in topographic and geologic features visible from
an ASTER 15-m VNIR image (left, AST_L1B_00304082017144319 (11:43 AM local): RGB = band 3
(0.81 μm), band 2 (0.66 μm), band 1 (0.56 μm)) are resolved less well in an ASTER 90-m Surface Kinetic
Temperature product (middle, AST_08_00304082017144319) produced from TIR bands (RGB=band
13 (10.6 μm), band 11 (9.1 μm), band 10 (8.3 μm)). Validation Site #2 (marked with +) was chosen on
an alluvial plain so that the variation of topography and surface composition under a single MODIS
pixel is minimal. An image of the ASTER Surface Kinetic Temperature image resampled to the 1-km
resolution of MODIS (left) shows significant mixing in high relief and compositionally varied sites (e.g.,
lower right part of the scene). Higher resolution is necessary for accurate estimations of LST.

Table 2. Comparison of thermal-infrared sensors.

Sensor
Resolution

Launch Date
Spatial Temporal

GOES Low (4 km) High (3 h) 1981

AVHRR (NOAA) Moderate (1 km) High (daily) 1979
MODIS Moderate (1 km) High (daily) 2000
ASTER High (90 m) Low (16 days) 2000

Thematic Mapper High (60 m) Low (16 days) 1982
ECOSTRESS 1 High (38 × 69 m) 1 h of science data day−1 2019

1 The ECOSTRESS products are in development and data are available only through “Early Adopters” program.

4.5. Seasonal Zero-Curtain Duration

Putkonen [12] stated that there is an asymmetry in the occurrence of the zero curtain during spring
and autumn over permafrost, where the zero curtain appears during freeze-up, and over seasonally
frozen ground, where the zero curtain appears during thaw. Figure 12 examines this asymmetry
both as a correlation between the duration of freeze-up and thaw and as a function of altitude in the
validation sites during 2015. Above ~5200 m asl, the zero-curtain duration of both freeze-up and thaw
is about the same; at lower altitude, the duration of freeze-up exceeds the duration of thaw~40%.
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Figure 12. The zero-curtain duration for all pixels in which zero curtains were detected during both
freeze-up and thaw. The zero curtain was only recognized for durations of five days or more. (A) Versus
altitude (2015 only). Two-season zero curtains were not detected below 4300 m asl due to warm
temperatures there. Above 5800 m asl, the ground was too cold for persistent thaws. At intermediate
altitudes, there was sufficient soil moisture for both near-surface freezing and thawing. (B) Zero-curtain
duration during freeze-up (red) and thaw (green) plotted against the corresponding years.

Is the weak asymmetry revealed in Figure 12A due to a systematic trend, or is it the result
of weather anomalies? In late March of 2015, before the general freeze-up, an extreme heat event
occurred in central and northern Chile followed by an anomalously high precipitation event (>20 mm
day−1 [60]). Compared to other years, this extreme weather event must have supplied enough moisture
to the soil to have resulted in the anomalously high number of pixels with zero curtains during both
freeze-up and thaw that year (Figure 12A), so the anomaly did not increase any apparent asymmetry.
During freeze-up, the zero curtain was detected in early April in high-altitude areas and in early June
in low-altitude areas. The zero curtain during this time persisted for about two weeks. Later in the
year, during the thaw, the zero curtain was detected only around early July with no contrast between
the high- and low-altitude areas. The anomalously high precipitation from the March event may have
been preserved in the soil over the winter and the increased soil moisture may have contributed to the
sustained zero curtain during the thaw of 2015.

The weather anomaly aside, Figure 12B shows that the in the study area the maximum duration of
the zero curtain during freeze-up, but not during thaw, may have increased erratically over the study
period. The increase during freeze-up suggests that changes in the zero curtain can be detected on the
decadal scale. The more constant and smaller number of zero curtain days during thaw indicates that
the results are not random and that there has been little change. Taken together, the data plotted in
Figure 12 suggest that there is little evidence at Ojos del Salado for the strong asymmetry predicted by
Putkonen [12] for the zero-curtain freeze-up/thaw duration over permafrost. It may be that summer,
but not winter, precipitation has been increasing in recent years but is not sufficient to carry over to the
thaw. In all, these results are encouraging for the use of the zero curtain in climate-change studies.

4.6. Potential for Quantified Mapping of Seasonally Frozen Ground and Permafrost

The occurrence of the zero curtain requires moisture in the soil and low temperatures. Therefore,
the identification of a zero curtain is a useful indicator of ice-rich frozen ground and possibly permafrost.
We identify the following four parameters for the zero curtain that can be quantified using the Threshold
Window algorithm: (a) Starting date, (b) duration, (c) seasonality, and (d) persistence over more than
two seasons. The changes in the starting date of a zero curtain over time may indicate changes in
the thermal regime of the soil due to changing environmental and climate conditions. According
to Putkonen [12], the thermal regime in the soil would be different depending on the existence of
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permafrost underneath, and the asymmetric seasonality of the zero curtain may indicate whether it
is due to seasonally frozen ground or the possible existence of permafrost. The intensity of freezing
or thawing may dictate the duration of zero curtain, the changes of which can be mapped over
time. On the basis of these parameters and the criteria for classifications of permafrost conditions
(e.g., [61]), it is possible that a quantitative map of permafrost extent and the depth of the active layer
can be estimated.

The probabilistic horizontal extent of permafrost based on the empirical relationship between
ground temperature and mean annual air temperature has been mapped (e.g., [40]). The detection of
permafrost using the Threshold Window algorithm, therefore, can validated using the probabilistic
maps of permafrost produced from climate and geomorphological data. Further, the depth of the
active layer can be estimated by numerically modeling heat diffusion into the ground using surface
temperatures estimated from ASTER or MODIS data as constraints. For example, a heat-transfer model
of soils that accounts for different estimates of moisture content [62,63] was run using MODIS LST
(8-day mean) as an initial condition and used to numerically construct the thermal profiles of soils in a
well-known permafrost region of Tibet (Figure 13; [64]). The ground temperatures calculated at various
depths over time allowed the depth to the zero isotherm to be estimated for 2002 and 2009, consistent
with the depths to the base of the active layer measured in the field [65]. Figure 13 shows that the depth
of the zero isotherm decreased about 20 cm over the 7-year period. The model suggests that there was
an extended period when −5 ◦C < LST <5 ◦C that may have been a zero curtain (intersection of the
dark blue color and the top of the plot) in April–May 2002, and that it was shorter in 2009. Similarly,
a zero curtain was predicted for October, and it too was shorter in 2009. Thus, this model suggests that
there may have been a zero curtain not just at freeze-up but also during the spring thaw, inconsistent
with Putkonen [12] (Figure 4). Further testing of the model will be necessary to resolve this issue.

 
Figure 13. The thermal profiles calculated using a heat-transfer model [62–64] for an ice-rich permafrost
region in the Fenghuo Shan site (34.69◦N and 92.89◦E, 4938 m asl) in Tibet. The white dashed lines
are the 0 ◦C isotherms that are used to determine the active-layer thickness. The modeled values are
consistent with in-situ measured changes in active-layer thickness from 1.4 to 1.9 m between 2002 and
2009 [65].

5. Summary and Conclusions

We proposed a new approach to detect the occurrence of the zero curtain in land-surface
temperature images, maintenance of the temperature at or near 0 ◦C due to the release of latent heat
from freezing or thawing moisture in the soil. We used a “Threshold Window” filtering algorithm to
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analyze daily MODIS land surface temperature (LST) data over a cold region of the Atacama Andes
in Chile, where periglacial features have been documented. Our results demonstrated that the zero
curtain could be consistently identified in the MODIS data. This demonstration opens the path to
identifying ice-rich permafrost using time series of LST images.

The duration, seasonality, and the starting time of the zero curtain for each year between
2003 and 2017 were mapped. We measured subsurface ground temperatures at depths of 2–40 cm
at three validation sites located at altitudes of 3815, 4415, and 4910 m asl in 2017. The in situ
observations of subsurface temperatures complemented the MODIS LST records and showed that,
with exceptions during the spring, the LST agreed within a few degrees with temperature at the 2 cm
depth. The subsurface temperature records showed clearly the presence of the zero curtain at depth,
out of phase with the zero curtain at the surface, and illustrated the effects of thinning snow cover
on the recovered zero curtain. Over the period of the study, the duration of the zero curtain during
the thaw and freeze-up seasons appeared to fluctuate, consistent with what might be expected from
annual changes in weather conditions. However, on Ojos del Salado, the zero curtains at freeze-up
tended to be longer than those at thaw, and also may have shown a tendency to lengthen over the
study period. We did not find convincing evidence of permafrost in our data or in the field, although
there was local evidence of segregation ice.

Our test sites were chosen to minimize vegetation cover that would interfere with satellite
measurement of the land-surface temperature, but in practical applications, vegetation cover and snow
may hinder the availability of remotely sensed LST for this approach. Small-scale variations in surface
composition and topographic conditions create different thermal components that are integrated over
large areas for products with moderate spatial resolution, such as MODIS LST. Thermal-infrared
sensors with higher spatial resolution, such as ASTER and ECOSTRESS, can be used to resolve the
100-m-scale horizontal changes in the extent of seasonally frozen ground and permafrost. Numerical
modeling of the thermal regime of the ground using these surface temperature records may be useful
to estimate the depth of thaw in ice-rich frozen grounds and permafrost.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/4/695/s1:
Figure S1: Surface features at Site #1, Figure S2: Surface features at Site #2, Figure S3: Platy structure and patterned
ground at Site #2, Figure S4: Frost cracks and platy structure in the soil at Site #2, Figure S5: Surface features at
Site #3, Figure S6: The ‘nieves penitentes’ near the Site #3, Figure S7: The nieves penitentes near Laguna Verde,
Figure S8: Maps of zero-curtain duration from 2003 to 2017, Figure S9: Maps of zero-curtain starting day from
2003 to 2017, Figure S10: Map of data loss due to clouds in 2017, Table S1: Details of raster data provided as
supplementary, 15 geotiff files for annual zero curtain duration, 15 geotiff files for annual zero curtain starting
time, Table S2: Annual land-cover classification estimated from MODIS over the study region, Table S3: Soil
descriptions at Site #1, Table S4: Soil descriptions at Site #2, Table S5: Soil descriptions at Site #3, Table S6: MODIS
LST data loss due to clouds from 2003 to 2017.

Author Contributions: Conceptualization, A.R.G., and J.B.; methods, J.B., A.R.G., and R.S.S.; validation, J.B.,
A.R.G., R.S.S.; data analysis, J.B.; field investigation, J.B., A.R.G., R.S.S., A.M., R.A., D.T.L.; writing—original draft
preparation, J.B.; writing—review and editing, all authors; visualization, J.B., A.M., L.L. All authors have read and
agreed to the published version of the manuscript.

Funding: Fieldwork was funded by the Quaternary Research Center, University of Washington. Partial funding
for J.B. was from the College of the Environment, University of Washington. Funding for A.R.G. was from the
Bear Fight Institute, NASA subcontract No. 1545008.

Acknowledgments: Thanks to Laura Gilson for downloading and the initial processing of the MODIS data.
The ASTER images used in this study are courtesy of NASA/METI, LP DAAC. The MODIS images are courtesy
of NASA/GSFC/SED/ESD/TISL/MODAPS, LP DAAC. We thank Sebastián Ruiz Pereira, Pontificia Universidad
Católica de Chile for the weather data, and two anonymous reviewers for helpful suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

227



Remote Sens. 2020, 12, 695

References

1. Schuur, E.A.G.; McGuire, A.D.; Schadel, C.; Grosse, G.; Harden, J.W.; Hayes, D.J.; Hugelius, G.; Koven, C.D.;
Kuhry, P.; Lawrence, D.M.; et al. Climate change and the permafrost carbon feedback. Nature 2015, 520,
171–179. [CrossRef]

2. Biskaborn, B.K.; Smith, S.L.; Noetzli, J.; Matthes, H.; Vieira, G.; Streletskiy, D.A.; Schoeneich, P.; Romanovsky, V.E.;
Lewkowicz, A.G.; Abramov, A.; et al. Permafrost is warming at a global scale. Nat. Commun. 2019, 10, 264.
[CrossRef]

3. French, H.M. The Periglacial Environment, 3rd ed.; John Wiley & Sons: Chichester, UK, 2007.
4. Smith, S.; Brown, J. Assessment of the Status of the Development of Standards for the Terrestrial Essential Climate

Variables—T7—Permafrost and Seasonally Frozen Ground; Global Terrestrial Observing System: Rome, Italy,
2009.

5. Obu, J.; Westermann, S.; Bartsch, A.; Berdnikov, N.; Christiansen, H.H.; Dashtseren, A.; Delaloye, R.;
Elberling, B.; Etzelmüller, B.; Kholodov, A.; et al. Northern Hemisphere permafrost map based on TTOP
modelling for 2000–2016 at 1 km2 scale. Earth-Sci. Rev. 2019, 193, 299–316. [CrossRef]
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Abstract: Validation of emissivity (ε) retrievals from spaceborne thermal infrared (TIR) sensors
typically requires spatial extrapolations over several orders of magnitude for a comparison between
centimeter-scale laboratory ε measurements and the common decameter and lower resolution of
spaceborne TIR data. In the case of NASA’s Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) temperature and ε separation algorithm (TES), this extrapolation becomes
especially challenging because TES was originally designed for the geologic surface of Earth, which is
typically heterogeneous even at centimeter and decameter scales. Here, we used the airborne TIR
hyperspectral Mako sensor with its 2.2 m/pixel resolution, to bridge this scaling issue and robustly
link between ASTER TES 90 m/pixel emissivity retrievals and laboratory εmeasurements from the
Algodones dune field in southern California, USA. The experimental setup included: (i) Laboratory
XRD, grain size, and TIR spectral measurements; (ii) radiosonde launches at the time of the two Mako
overpasses for atmospheric corrections; (iii) ground-based thermal measurements for calibration,
and (iv) analyses of ASTER day and night ε retrievals from 21 different acquisitions. We show that
while cavity radiation leads to a 2% to 4% decrease in the effective emissivity contrast of fully resolved
scene elements (e.g., slipface slopes and interdune flats), spectral variability of the site when imaged
at 90 m/pixel is below 1%, because at this scale the dune field becomes an effectively homogeneous
mixture of the different dune elements. We also found that adsorption of atmospheric moisture to
grain surfaces during the predawn hours increased the effective ε of the dune surface by up to 0.04.
The accuracy of ASTER’s daytime emissivity retrievals using each of the three available atmospheric
correction protocols was better than 0.01 and within the target performance of ASTER’s standard
emissivity product. Nighttime emissivity retrievals had lower precision (<0.03) likely due to residual
atmospheric effects. The water vapor scaling (WVS) atmospheric correction protocol was required to
obtain accurate (<0.01) nighttime ASTER emissivity retrievals.

Keywords: ASTER; Mako; TES algorithm; temperature; emissivity; validation; Algodones

1. Introduction

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER, [1–4]) was
launched into a sun-synchronous orbit on 19 December 1999 onboard NASA’s Terra satellite. It includes

Remote Sens. 2020, 12, 815; doi:10.3390/rs12050815 www.mdpi.com/journal/remotesensing232



Remote Sens. 2020, 12, 815

a five band (8 to 12 μm) thermal infrared (TIR) scanner delivering 60 × 60 km radiance images with
90 m/pixel spatial resolution and with instrumental capability of 1 K accuracy and <0.3 K precision
(NEΔT300K). The temperature and emissivity (T/ε) separation algorithm “TES” developed for ASTER
TIR data [5] was designed to generate the standard land-surface products AST08 (T) and AST05 (ε)
for the geologic surface of Earth. TES builds on the relatively high contrast in ε spectra of geologic
surfaces for its T/ε separation approach and was not designed to recover the T or relatively low
contrast ε spectra of water or vegetation surfaces, for which ε is largely well known a priori (e.g., [6],
https://speclib.jpl.nasa.gov/). Before launch, AST08 and AST05 were estimated to have a nominal
predicted accuracy of ±1.5 K and precision of 0.015, respectively [5].

Validation tests of ASTER radiance data and its standard T and ε products have been conducted
over the years since launch, resulting in adjustments to the TES algorithm itself [7,8], as well as
improvements of the atmospheric correction procedures applied to the standard land-leaving radiance
product (AST09T) that is input into the TES algorithm [9]. Many validation studies focused on
water bodies [8,10] and vegetated or low contrast soil-mantled landscapes [11–13] that provide large
homogenous surfaces resolvable by ASTER. These validation studies have shown that the ASTER
radiance products are capable of recovering T for water bodies, for example, accurately and precisely.
The TES algorithm, however, performs less reliably over these surfaces, due in large measure to
the empirical regression between spectral contrast (measured as the εmaximim − εminimum difference,
or “MMD”) and minimum εwhich is at the heart of the algorithm originally designed for bare geologic
surfaces [5].

ASTER emissivity retrievals (i.e., AST05) were tested over bare geologic surfaces (e.g., [14,15]).
Hulley et al. [16] focused on several sand dune sites in North America to validate the North American
ASTER Land Surface Emissivity Database (NAALSED) [17], in addition to a set of global sand dune
sites to validate the ASTER Global Emissivity Dataset (GED) v3 [18]. They found an absolute mean
difference of 0.016 between ASTER ε retrievals (using TES +water vapor scaling) and representative
laboratory spectra from these sites. Sabol et al. [19] focused on bare basalt fields in Hawaii and
on the Railroad Valley playa surface in Nevada, USA, and found that the AST05 ε for these sites
again was generally within the predicted accuracy limitations of TES. However, their observations
of temporal changes in soil moisture and texture across the playa surface, as well as the natural
geologic variability in the composition and texture of the Hawaii basalt surfaces, highlighted the
inherent complications in the conventional validation approach of comparing “snapshot” ASTER TIR
measurements acquired at 90 m/pixel against centimeter-scale laboratory ε spectra of “representative”
field samples. This conventional validation approach is not designed to effectively account for sub-pixel
heterogeneity in the TIR properties of natural geologic surfaces. This common TIR heterogeneity
of geologic surfaces can arise from compositional variability, differential solar heating, or multiple
reflections between unresolved landscape elements [20].

Here, we address the fundamental scaling assumption in field-based validation experiments of
satellite TIR data, which in the case of testing TES ε retrievals requires a nearly four orders of magnitude
extrapolation to link between ASTER’s 90 m/pixel measurements and centimeter-scale laboratory TIR
spectra. We focus on the Algodones dune field in southern California (Figure 1) and use 2.2 m/pixel
hyperspectral thermal data (128 channels between 7.8 and 13.4 μm) acquired by the airborne Mako
imaging spectrometer [21,22] to bridge the spatial scale gap between laboratory spectra and the 90 m
scale of the AST05 standard ε product. Throughout this paper we use conventional abbreviations (e.g.,
west-southwest “WSW”) to indicate directions on the compass rose. Times are local Pacific Standard
Time (PST).
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Figure 1. Study site. (A) Google Earth image showing the study site (black box) located approximately
50 km SE of the Salton Sea within the Algodones dune field; (B) The Algodones study site near the
Osborne Lookout south of the Ben Hulse highway. Black star, location of photo in (C), elevation data
from the USGS National Elevation Dataset (NED); (C) SW view onto the Algodones study site south of
the Ben Hulse highway on the right.

2. Background

2.1. Remote-Sensing Instrumentation

The spaceborne ASTER scanner collects thermal-infrared images in five spectral channels (#10,
8.125–8.475μm; #11, 8.475–8.825μm; #12, 8.925–9.275μm; #13, 10.25–10.95μm; and #14, 10.95–11.65μm).
The Terra satellite, which hosts ASTER, is in a sun-synchronous polar orbit 705 km above the Earth’s
surface, crossing the equator at about 10:30 and 22:30 local time. Images are acquired on request during
the descending daytime overpass and also during the ascending nighttime overpass. Terra passes
overhead every 16 days. The image data are calibrated to radiance at the sensor and, then, corrected for
the effects of the atmosphere to produce a land-leaving radiance standard product (AST09T), which also
includes an image plane containing the calculated downwelling sky irradiance (e.g., [13]). The default
atmospheric correction is based on an interpolated National Center for Atmospheric Research/National
Centers for Environmental Prediction (NCAR/NCEP) atmosphere characterization adjusted for surface
elevation with a km-scale DEM. Optionally, a MODIS (Moderate Resolution Imaging Spectroradiometer,
also on Terra) water-vapor special product (MOD07) can be employed [23], or an ASTER-derived water
vapor scaling (WVS) can be used to adjust the nominal corrections [9]. WVS can improve the accuracy
of AST05 ε data by up to 0.03 under warm, humid atmospheric conditions [24].

Mako is an airborne hyperspectral thermal infrared whiskbroom imaging spectrometer with a
128 × 128 element sensor, designed and built by The Aerospace Corporation (El Segundo, California)
and operated from a Twin Otter aircraft [21,22]. It operates in the 7.8 to 13.4 μm spectral region
employing a cryogenically cooled grating-based spectrometer with a native spectral resolution of
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~4 cm−1 at 10 μm (0.04 μm per channel). The instantaneous field of view (IFOV) is 0.55 mrad, which
results in ~2 m GSD at a flight elevation of 3.8 km above ground. The nominal NEΔT300K of the Mako
data is 0.03 K. Mako whisks are 128 pixels wide, the number of whisks comprising an imaging session
being determined by the duration of the data-collection overpass. Imaging sessions with 160 whisks of
length 4.9 km were designed to incorporate both the Algodones dune field area-of-interest and the
adjacent environs. Visible-wavelength context images are co-collected with the thermal data.

2.2. The TES Algorithm

Surface T and the ε in each of the five ASTER TIR channels for each image pixel are the products of
the TES algorithm [5]. Inputs to TES are “land-leaving radiance” [25] and downwelling sky irradiance,
and both are in ASTER standard product AST09T. To convert land-leaving radiance to the land-emitted
component, the reflected sky irradiance must first be subtracted. To do this it is necessary to know the
reflectivity (ρ) of the land surface, but since ρ = 1− ε (Kirchhoff’s law, [26]), this requires that the ε be
first determined. However, this requirement is not met for most geologic surfaces, and therefore has to
also be dealt with in TES.

A fundamental hurdle in finding T and ε from remotely sensed land-emitted TIR data is that both
are unknowns in the Planck equation, which describes measured radiance R as:

Rλ = ελ
c1

πλ5 (e
c2(λT)−1 − 1)

−1
W m−1 sr−1 μm−1 (1)

where λ is wavelength, c1 and c2 are characteristic constants, and T is in K. TES makes use of two
observations to break this indeterminacy as follows: First, for most rocks, at λ > 10 μm ε ≈ 0.965;
and second, the minimum value of ε in the spectrum (εminimum), is related to the spectral contrast as
measured in the laboratory as the difference between εminimum and the maximum value of ε in the
spectrum (εmaximum). This first observation can be used in the “normalized emissivity method” (NEM)
to approximate T by inversion of Planck’s law, and then the normalized values of ε at other wavelengths
can be found since T is now estimated [27,28]. TES makes use of the normalized ε to calculate and,
then, subtract the downwelling sky irradiance, given the land-leaving radiance. Then, it essentially
uses the new spectral contrast to estimate εminimum, and hence a refined approximation of T (AST08),
and thus the ε data (AST05). Gillespie et al. [5] used 86 laboratory ε spectra to relate εminimum for each
to their spectral contrast. They gave the relation as a power law, later simplified by Sabol et al. [19] for
practical considerations to:

εminimum = 0.955− 0.8625 ∗MMD. (2)

The simplification was made to reduce the impact of measurement “noise” in the calculated
emissivity images for grey-body targets such as water and vegetation. For geological surfaces with
0.05 <MMD < 0.3 the difference in εmin between the linear and power-law versions of the equation
was less than 0.004.

2.3. Sources for Error in AST05

There are multiple sources of error in calculating AST05. Calibration coefficients are used to convert
data collected by ASTER to radiance change as the sensor sensitivities change and do not account
for electronic striping (e.g., [8]). Atmospheric correction is prone to error from several sources [25].
The atmosphere is characterized from distant radiosonde launches and must be interpolated to the
desired site and, then, adjusted for site elevation using a DEM (with 1 km resolution). The TES algorithm
itself can introduce error in its assumed εmaximum value and, especially, in its empirical regression
relating εminimum to ε contrast. Before launch, Gillespie et al. [5] considered that uncertainties from
these three main sources (radiance measurement, atmospheric characterization, and TES regression)
were all about the same magnitude, although more extreme examples were encountered later.
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In addition to these three sources of uncertainty in AST05, there are also possible “geological”
sources of uncertainty that are the focus of the present study. These “geological” sources relate to
radiance mixing in the 90 m ASTER pixels, and to multiple reflections among surface elements, which
would affect the recovered effective T and ε regardless of imaging resolution. It is worth recalling that
when Terra and its instruments were designed, 1 km resolution in the thermal infrared was regarded
as ”moderate” resolution, and ASTER with its 90 m data was regarded as the high-resolution “zoom
lens” for MODIS. However, the imaged surface is potentially heterogeneous at much finer scales,
and radiance mixing from diverse surface materials affects nearly all remote-sensing measurements
(e.g., [29]). Geological uncertainties include unresolved topographic facets that are differentially heated
or have different compositions and multiple reflections between facets, reducing the spectral contrast
and changing the surface temperature (e.g., [30,31]). In the presence of significant topographic structure,
these effects can be several percent and can present a challenge for robust validation of 90 m/pixel data
against centimeter-scale laboratory emissivity spectra.

3. Approach and Methods

We tested the performance of the TES algorithm and the AST05 standard product over bare
geologic terrain having high ε contrast, which is the type of surface TES was originally designed for.
We focused on a presumably compositionally homogenous sand dune site and used two Mako datasets
to quantitatively map and characterize this assumed homogeneity during daytime and nighttime with
2.2 m/pixel data, which allowed us to effectively bridge the spatial scale gap between centimeter-scale
laboratory ε spectra of surface samples and the native 90 m/pixel scale of AST05. To retrieve and
validate surface emissivities from the Mako data we employed: (i) laboratory analyses to characterize
the primary surface materials within the imaged scene, (ii) radiosonde launches at time of Mako
overpasses to drive atmospheric corrections; and (iii) ground-based thermal measurements at time of
Mako overpasses to validate the Mako T retrievals. The methodology for these experiments and the
validation of AST05 using Mako are described below.

The study site is a 1 km2 area within the 10× 70 km Algodones dune field in southern CA (Figure 1).
The dune field, which is located ~30 km southeast of the Salton Sea, strikes NW-SE and was previously
used for validating NASA’s North American Land Surface Emissivity Database (NAALSED) [16,32].
Within the 1 km2 study site we focused on a 270 × 270 m test area at an elevation above mean sea level
of 120 to 150 m just south of Rt. 78, the “Ben Hulse Highway” (Figure 1B,C). The primary physical scene
elements within the test area, which appears to be visually homogeneous, are ~10 m high dunes and
the interdune flats that occur between them. Herein, we further classify the dune elements into their
windward, crest, and slipface sections, as these experience different diurnal surface-temperature cycles
due to their different topographic slopes and azimuths. The windward and slipface slopes typically
dip ~NW and SE, respectively. The strongest winds in this region are northerly and westerly, and the
average annual temperatures ranges from 16.5 to 31 ◦C. Annual precipitation averages 83 mm and the
annual relative humidity averages 32%. Vegetation cover across the study site is <1%, mostly in the
low-lying interdune areas. The low vegetation cover is likely due to the instability of the dunes in the
frequent wind events, rather than low precipitation, as the dune field is surrounded by a shrub steppe.

3.1. Laboratory Analyses

The sand mineralogy was characterized at the Geological Survey of Israel with X-ray diffraction
(XRD) using a PANalytical X’Pert diffractometer. The XRD samples were ground using a porcelain
mortar and were measured by X-ray diffraction using CuKα radiation. Mineral phase identification was
performed using HighScore Plus® software based on the ICSD database. Mineral phase abundances
were based on the reference intensity ratio (RIR) method using in-house RIR values. Particle-size
distributions (PSDs) for the sand samples (Figure 2A) were measured at the Geological Survey of Israel
through laser diffraction using a Malvem Mastersizer MS-2000 (see [33] for detailed procedure).
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Laboratory reflectivity (ρ) spectra for surface materials (Figure 2B–F) were determined at the Jet
Propulsion Laboratory using a 520FT-IR Nicolet Fourier transform spectrometer with a Labsphere
RSA-N1-700D integrating sphere [6]. The Nicolet reflectivity measurements were converted to
emissivity according to ε = 1 − ρ, with a reported accuracy of ±0.002 (0.2%) [34].

 

Figure 2. Laboratory characterization of the Algodones site. (A) Particle-size distribution (PSD) of the
main scene elements. “d50” indicates the median value; (B) Nicolet emissivity spectra for the dune
elements; (C–F) Nicolet spectra for grain-size splits (in μm) of the same scene elements.

3.2. Field-Based Temperature Measurements

Time-series of kinetic surface-temperatures for the dune scene elements at the test site during the
Mako overpasses were acquired using iButton DS1921G-F5# sensors (www.ibuttonlink.com) (±1 K
accuracy) at 5 min intervals (Figure 3). The sensors were emplaced 3 to 5 mm below the sand surface
approximately 12 h before the first overpass with the implied assumption that measured temperatures
at these depths can be used to approximate skin temperatures. In addition, ground-based thermal
images were acquired using a handheld FLIR T300 camera (www.flir.com) with an NEΔT of 0.05 K.
Processing and analysis of the FLIR images were carried out using the FLIR ResearcherIR software
package. The FLIR images were used to map temperature homogeneity of the landscape elements at
scales from centimeters to tens of meters, bridging the gap between the point measurements of kinetic
surface-temperatures with the iButton sensors and the 2.2 m/pixel scale of the Mako data.
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Figure 3. Ground temperature measurements. (A) Perspective view to the SE of the test site and
the locations where time-series surface temperature measurements were obtained (image, Google
Earth); (B) surface temperature time-series color coded according to scene elements shown in (A).
Windward slope 20◦ to NW, slipface 30◦ to east-southeast (ESE). Crest measurements were from the
north-facing facet of the crest; (C) a westward looking FLIR image taken during the day overpass time
overlain on a gray-level visible context image. The dune in the center is ~5 m high. A ~20 K range in
surface T is observed at sub-ASTER pixel scales (<90 m) due to surface topography; (D) north-looking
FLIR image taken during the day overpass overlain on a gray-level visible context image. Variability of
~2 K occurs at sub-Mako pixel scales (<2 m) due to small-scale ripples.

3.3. Remotely Sensed Data

3.3.1. Hyperspectral Airborne Imaging

The Mako datasets used in the present study were collected during two overpasses on 22 April 2015.
The first overpass was carried out at predawn at an elevation of 3.75 km above the surface and in an
east-southeast (ESE) flight path between 0543 and 0555. The second overpass was carried out between
1125 and 1130 at the same elevation and with a WSW flight trajectory. Processing, orthorectification
and analysis of the Mako data were performed using the ENVI 5.4 software package.

Mako at-sensor radiance data (RM) from the noon overpass appear to display more high-frequency
noise than that found in the predawn overpass (Figure 4). In-flight calibrations, which demonstrate
similar at-sensor measurement noise levels during both overpasses, suggest that effective high-frequency
atmospheric lines (e.g., CO2, CH4, N2O, H2O, and O3) are more likely responsible for this difference
between the predawn and noon radiance data. However, because H2O is the only atmospheric
component directly measured during both overpasses through the radiosonde launches (Figure 5),
atmospheric corrections for the other components were based on an assumed model atmosphere,
and thus cannot explicitly account for predawn and noon differences. To reduce the impact of these
uncompensated high-frequency changes in atmospheric effects we co-added the adjacent native
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full-resolution 128-channel noon data into 43 spectral channels. Although reducing spectral resolution,
this binning also reduced the noise level in the spectrally degraded noon data to match that of the
predawn overpass.

Figure 4. Mako radiance spectra. Average radiance from the 270 × 270 m test area. Spectral binning
was applied to reduce noise levels in the noon radiance data.

 
Figure 5. (A) Atmospheric profiles measured using radiosonde launches during the Mako overpasses;
(B,C) Mako NEM surface temperatures images. Bottom, temperature histograms for the 270 × 270 m
box in each image (blue, predawn and red, noon). Shaded ranges mark the T range measured on the
ground at time of overpasses (Figure 3). Temperature transect B-B’ is plotted in Figure 9.

3.3.2. Mako Atmospheric Corrections and Retrieval of Surface T and ε

Two radiosonde launches from the validation site were used to characterize atmospheric conditions
close in time to the two Mako overpasses (Figure 5A). The first launch was at 0535 and reached an
altitude of 12 km above sea level and the second was at 1135, reaching an altitude of 9 km above sea level.
Atmospheric profiles from these radiosonde data were used to drive MODTRAN-4 simulations to infer
atmospheric ground-to-Mako transmissivity (τ), up-welling path radiance (S↑), and down-welling sky
irradiance (S↓). Higher-level MODTRAN versions appear to have little effect at the spectral resolution
of ASTER. The model parameters τ, S↑, and S↓ were, then, used to calculate surface-emitted radiation
values (R), according to

R = RMτ
−1 − S↑τ−1 − ρS↓π−1 (3)
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where ρ = 1− ε is the (unknown) surface reflectivity. For each Mako overpass this calculation involved
a three-stage process as follows: (i) Application of atmospheric corrections for τ and S↑ to obtain
land-leaving radiance values (RL = RMτ−1 − S↑τ−1) for each image pixel; (ii) application of the NEM
algorithm [27,28] to RL to obtain a first approximation of ε in each of the Mako channels, assuming
a maximum emissivity value (εmax) of 0.985 (as determined from the laboratory spectra (Figure 2)
occurs in one of the Mako channels; and (iii) correction of RL using the value of ε found in step ii for
surface-reflected S↓ to obtain R in all Mako channels for each image pixel.

Ultimately, surface T and εwere retrieved from the Mako surface-emitted radiance (R) values in
the following two ways: (i) Re-application of the NEM algorithm (with εmaximum = 0.985) to R to obtain
final surface T estimates (Figure 5) as well as ε in all Mako channels at 2.2 m/pixel (“Mako NEM”)
(Figure 6), and (ii) application of the ASTER TES algorithm to Mako R values (“Mako TES”) (Figure 7).
For Mako TES, the Mako spectral channels were co-added to simulate the five ASTER TIR channels
spectrally and the Mako pixels were co-added to obtain 90 m/pixel data to simulate ASTER spatially.
T and five ASTER-like spectral channels of ε were retrieved using TES from the resampled Mako noon
radiance data (Figure 7).

3.3.3. AST05

Daytime and nighttime ASTER AST05 ε images from 21 dates between 2001 and 2018 were
downloaded from NASA’s “EarthData” website (https://search.earthdata.nasa.gov) after visual
evaluation for cloud cover and clarity (Table 1). Twelve daytime and nine nighttime acquisitions were
selected to represent cloud-free conditions during all seasons of the year. The AST05 products analyzed
were processed with the following three different atmospheric correction protocols: (i) The NCAR/NCEP
atmospheric correction protocol (“standard correction”), (ii) the NCAR/NCEP atmospheric correction
protocol using the WVS correction (“WVS correction”), and (iii) with the MODIS MOD07 [23]
atmospheric correction protocol. MOD07 corrections were available only for daytime images. The mean
ε values for the 3 × 3 pixel test area (Figures 6–8) west of the Osborne Lookout from each AST05 scene
are listed in Table 1.

4. Results

4.1. Laboratory Analyses

Quartz is the dominant mineral phase at the surface of the Algodones dunes [16]. The XRD
analyses we conducted for samples collected from surfaces of the four primary scene elements in the test
area confirm that all have a similar mineralogical composition of >70% quartz, 5% to 20% K-feldspar,
<5% plagioclase, and <5% calcite (by weight). The PSDs of the dune elements are also similar with
measured median (d50) values of 240, 232, and 190 μm for the dune crest, slipface, and interdune flat,
respectively (Figure 2A). Laboratory emissivity spectra reveal effectively overlapping spectra for all
four scene elements (Figure 2B). All the spectra are dominated by the “quartz doublet” Reststrahlen
bands at ~8.4 and 9.3 μm and the smaller quartz bands at 12.5 and 12.8 μm. Spectral measurements for
grain-size splits revealed that, as expected, the depth of the Reststrahlen bands consistently decreases
with decreasing grain size for all four scene elements (Figure 2C–F). Nonetheless, these prominent
grain-size effects do not translate to significant spectral variability among the scene elements when
measured as bulk “whole” samples. All the spectral measurements show an emissivity maximum of
0.985 at ~12.3 μm.
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Figure 6. Mako NEM emissivity retrievals. Dashed box in A–C marks a 270 × 270 m test area
equivalent to 9 ASTER pixels. (A) Google Earth image of the Algodones test site (top) and perspective
view (bottom); Mako spectra (B,C) sample locations are color-coded accordingly; (B) Top, predawn
2.2 m/pixel Mako NEM emissivity image (R,G,B = 11.3, 9.1, 8.3 μm). White box marks the extent of
enlarged area in the bottom right corner. Middle, Mako NEM emissivity retrievals for the primary
dune element. Bottom, average Mako predawn spectra from area of the dashed box (~12,500 Mako
pixels); (C) Top, Noon 2.2 m/pixel emissivity image (R,G,B = 11.3, 9.1, 8.3 μm). White box marks the
extent of enlarged area in the bottom right corner. Middle, Mako NEM emissivity retrievals using
binned radiance data (43 channels). Bottom, average Mako noon spectra from area of the dashed box
(43 channels, ~12,500 Mako pixels). For B and C each “scene element” spectrum represents the mean
of 32 Mako pixels. Standard deviation for all ”scene element” spectra falls close to the width of the
plotted line; (D) Left, spectral response functions for ASTER’s TIR channels (black) and atmospheric
transmissivity (t) for a “1976 US standard” MODTRAN atmosphere (grey). Middle and Right, Mako
NEM emissivities from B and C spectrally resampled to ASTER’s five TIR channels. Data are slightly
offset along the x-axis for clarity.
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Figure 7. Simulation of ASTER TES with Mako data. Left, Mako noon radiance image (R,G,B = 11.3,
9.1, 8.3 μm) at 2.2 m/pixel. Center, image on left resampled to 90 m/pixel. The area of the 9 ASTER-like
pixels examined in the right graph is within the black box. Right, mean emissivity values retrieved
using the ASTER TES algorithm and surface emitted Mako radiance convolved to ASTER TIR channels
and at 90 m/pixel resolution (“Mako TES”). Standard deviations fall within the symbols. Mako NEM
emissivity retrievals at full Mako resolution and spectrally resampled to ASTER are also plotted.

Figure 8. ASTER AST05 emissivity retrievals at Algodones. Left, AST05 90 m/pixel daytime image
(R,G,B = ASTER Channels 14, 12, and 10 acquired 5 October 2018). The 270 × 270 m test site marked by
white box. Right, AST05 emissivity retrievals for day and night data (Table 1). AST05 standard, WVS,
and MOD07 are slightly offset along the x-axis for clarity.

4.2. Field-Based Temperature Measurements

Surface temperature measurements were obtained for the four dune elements during the 16 h time
period between 21 and 22 April 2015 at 2000 and 1200, respectively (Figure 3). These measurements
revealed tightly clustered temperatures between 284 and 285 K during the predawn Mako overpass at
0545. After sunrise, surface temperatures for all scene elements steadily increased. Because this increase
in T occurred at different rates, which were effectively dictated by surface topography and surface-sun
geometry, the range and variability of T across the different surface elements also steadily increased
during the morning hours after sunrise. Wind-driven erosion around the iButton sensor on the directly
sunlit slipface facing 30◦ ESE resulted in termination of T measurements for this dune element at 0900,
when a range of 296–303 K was recorded among the dune elements. Extrapolation of the warming
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trend measured for the slipface suggests that surface temperatures during the noon overpass ranged
between 311 K (measured for a shaded N-facing part of the crest) and ~330 K (extrapolated for the
slipface) (Figure 3B). FLIR temperature images acquired during the day overpass support this ~20 K
temperature range between the different dune elements (Figure 3C). The FLIR images also show that
sub-meter T variability due to ripple morphology on the dune surfaces reached ~2 K during the noon
overpass (Figure 3D). FLIR imaging also illustrates the sharp discontinuity in surface T at the crest of
the dunes, where a 20 K “jump” in T can occur within 20 to 30 cm across the dune crest at noon. Sharp T
transitions at the dune crests such as these cannot be resolved even in the Mako 2.2 m/pixel images.

4.3. Remotely Sensed Data

4.3.1. Atmospheric Conditions during Mako Overpasses

Near-surface air temperatures recorded by the radiosonde during the predawn overpass ranged
between 288 and 289 K (Figure 5) and were 4 to 5 K higher than the predawn surface temperatures
(Figure 3). Relative humidity values during the predawn overpass ranged from 49% to 38% within
the lower 1 km of the atmosphere. During the noon overpass near-surface temperatures ranged
between 294 and 300 K and were up to 35 K lower than surface T’s on the warmest surface elements.
Noontime relative humidity steadily increased upwards from ~20% to ~50% within the lower 1 km of
the atmosphere.

4.3.2. Mako NEM Surface Temperatures

Predawn surface temperatures recovered from Mako within a 270 × 270 m test area near the
Osborne Lookout all fell between 281.5 and 285.8 K with an average of 283.3 ± 0.4 K (Figure 4).
This temperature range is in agreement with the ground measurements obtained at time of overpass for
the four scene elements, which ranged between 284 and 285 K (Figure 3). Surface temperatures within
the same 270 × 270 m test area recovered from the noon Mako overpass all fell between 311.2 and
335.6 K, with an average of 323.4 ± 4.1 K. These temperatures agreed with the ground measurements
obtained at time of overpass for the four scene elements, which ranged between 311 and 330 K.

4.3.3. Mako NEM Emissivity Retrievals

Dune crests are narrow features that are not all resolved by Mako, and therefore are omitted as
resolved scene elements in the Mako images. The mean predawn Mako NEM 128 channel spectra for
the other three resolved dune elements (32 pixels for each) all display the ”quartz doublet” Reststrahlen
bands at ~8.4 and 9.3μm and the smaller quartz bands at 12.5 and 12.8μm (Figure 6). The mean ε spectra
for slipfaces and interdune areas effectively overlap with each other throughout Mako’s 8 to 13 μm
spectral range. The mean windward spectrum effectively overlaps with the slipface and interdune
spectra outside the Reststrahlen bands and is ~0.01 lower within them. Accordingly, windward slopes
appear to have slightly greater spectral contrast than the other dune elements when imaged at predawn
with Mako. The predawn Mako NEM spectra for all the dune elements resemble their Nicolet spectra,
except between ~9.0 and 11.6 μm where the Mako spectra all plotted above the Nicolet spectrum by
up to 0.04 in some wavelengths. The average Mako NEM spectrum from the 270 × 270 m test area,
i.e., ~15,000 Mako 2.2 m pixels, plotted similarly as compared with the Nicolet spectra. The standard
deviation of the Mako NEM spectrum for the 270 × 270 m area from the mean is less than 0.005 except
within the Reststrahlen bands, where standard deviations reach 0.01.

Similar to the predawn spectra, the mean Mako noon NEM spectra for slipface and windward
slopes, as well as interdune flats, all display the Reststrahlen bands and the smaller quartz bands
at 12.5 and 12.8 μm (Figure 6). Slipface and interdune spectra effectively overlap with each other
throughout the 8 to 13 μm spectral range. The spectrum for windward slope effectively overlaps with
the spectra of the slipface and interdune areas outside the Reststrahlen bands and is up to 0.01 lower
within the Reststrahlen bands. Thus, as observed in the predawn Mako data, windward slopes appear
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to have slightly greater spectral contrast than the other dune elements. The noon Mako NEM spectra
for all dune elements effectively plot on the Nicolet ε spectrum of these dune elements except for the
spectral peak near 8.6 μm, between the Reststrahlen bands, where Mako NEM spectra are ~0.04 lower.
The average Mako NEM spectrum from the 270 × 270 m test area, i.e., ~15,000 Mako 2.2 m pixels,
correlates similarly with the Nicolet spectra. The standard deviation of the Mako NEM spectrum for
the 270 × 270 m test area from their mean is less than 0.005 except within the Reststrahlen bands, where
standard deviations are as large as 0.01.

Spectrally resampled to ASTER’s TIR channels predawn Mako ε for the slipface, windward,
and interdune scene elements consistently plot ~0.01 above the noon ε retrievals for these scene
elements (Figure 6D). In both the predawn and noon data, NEM emissivities for the windward slope
in ASTER Channels 10 to 12 plot ~0.01 below the retrieved emissivities for the slipface and interdune
areas. This offset in retrieved ε does not occur in ASTER Channels 13 and 14.

4.3.4. TES Simulations Using Mako Data

The robust compatibility between Mako NEM surface temperatures and emissivities with the
“ground truth” measurements (Figures 5 and 6) indicates adequate atmospheric corrections and
robust calibration of at-sensor radiance values to land-emitted radiation values for both overpasses.
Here, we use these calibrated land-emitted radiation data to test the performance of the TES algorithm
for a real geologic surface and with real TIR data that were optimally corrected for atmospheric effects
(Figure 7). The mean of the noon Mako TES emissivities from the 270 × 270 m test area (nine ASTER-like
pixels) all plot consistently ~0.01 below Mako NEM mean ε for the same test area.

4.3.5. Accuracy of the AST05 Products

The validated Mako ε retrievals (Figure 6) were used to test the performance of the AST05 products
over the Algodones test site with the implicit assumption that the spectrum of the vegetation-free
dunes does not change significantly over time (e.g., [16,32]). For ASTER Channels 13 and 14, all the
AST05 emissivities for both night and day fell within ±0.005 of each other (i.e., precision) and within
±0.005 of Mako NEM (Table 1 and Figure 8). For Channels 10 to 12: (i) The means of nighttime
AST05 emissivities processed with the ”standard atmospheric” correction were 0.02 to 0.04 below Mako
with standard deviations of up to 0.035; (ii) the means of nighttime AST05 with “WVS” correction
were within 0.01 from Mako with standard deviations of up to 0.035; and (iii) the means of daytime
AST05 Channels 10 to 12 emissivities processed with “standard”, “WVS”, and “MOD07” correction all
cluster together within 0.01 below Mako with standard deviations of ~0.015.

5. Discussion

5.1. TIR Site Characterization at Sub-Mako Scales

5.1.1. Mineralogy and Grain-Size Effects

Nicolet ε spectra of the windward and slipface sections of the dunes and the interdune flats that
occur between them effectively overlay each other to within 0.005 throughout the 8 to 13 μm spectral
range (Figure 2). This spectral commonality reflects the relatively homogeneous quartz-dominated
sand mineralogy of these different dune elements as revealed with the XRD analyses. We should not
expect spectral differences over the Algodones test site due to mineralogical composition.

The Nicolet spectra demonstrate a dependency of ε on grain size. As the effective grain diameter
is increased from 45 to >250 μm in splits of sieved sand the spectral contrast of the sieved samples
increases (Figure 2). This is clearest for the Reststrahlen bands, which are noticeably deepened.
However, this pronounced grain-size effect does not translate into significant spectral variability among
the primary scene elements at Algodones because of their similar grain-size distributions (Figure 2A).
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At other dune fields, in which sorting is more heterogeneous, grain-size effects could lead to greater
spectral variability.

5.1.2. Anisothermal Effects

Spectral “checkerboard” mixing of scene elements having different temperatures will cause the
effective emissivity of the mixed region to differ from the spectrum of the components (e.g., [35]).
This is because the average of multiple Planck functions, each for a different temperature, is not itself
a Planck function, but it is assumed in ε retrieval that the radiance spectrum for a blackbody is one.
Model calculations for checkerboard mixing considering the T conditions observed on the ground at
Algodones (Figure 3) indicate that the magnitude of the distortion of the retrieved mixed ε spectrum,
even at noon, is <0.005, smaller than the predicted precision of AST05.

5.1.3. Multiple-Reflection Effects

The dunes are not topographically flat, and some scene elements are irradiating each other, leading
to reduction of spectral contrast. This “cavity-radiation” effect operates for both isothermal and
anisothermal surfaces. It raises effective ε selectively at wavelengths for which ε is low, and therefore
the reflectivity is high. As a result, the depth of the Reststrahlen bands of dune elements that experience
multiple reflection can become effectively reduced as compared with their depth in laboratory spectra
of the same sand. This cavity-radiation effect will vary from pixel to pixel as is dictated by the local
topographic setting and the time of day due to the local sun angle.

A simple “first reflection” model for the radiance Ri from the “interrogated” scene element i is
the radiance Re emitted from that element plus the radiance Rn from a neighboring element n that is
incident upon element i and reflected to the sensor. Both terms are given by Planck’s law, Equation (1),
in which R is a function of local scene emissivity ε and T.

Ri = Re(εi, Ti) + fn
1
π
(1− εi)Rn(εn, Tn) (4)

where fn is the fraction of the sky hemisphere subtended by element n and (1 − εi) is the reflectivity of
element i as given by Kirchhoff’s law (see Danilina et al. [30] for further details). For the observed
noon surface temperatures at Algodones (Figure 3) and the Nicolet spectra (Figure 2), and if f is ~5%,
this model predicts that cavity radiation could account for an ε increase of ~0.05 near the Reststrahlen
bands in the most extreme cases where element i is shaded and cool, and element n is warm.

5.2. Emissivity Retrievals with Mako

The hyperspectral resolution of Mako and its extended spectral range to 13 μm both facilitate the
core assumption of the NEM approach that a maximum emissivity value (εmax) actually occurs within
one of the spectral channels. In the specific case of Mako at Algodones we assigned an assumed εmax

value of 0.985, which was the maximum value consistently observed in the Nicolet spectra for all scene
elements. This εmax occurred at ~12.8 μm, within the spectral range of Mako (Figure 2).

5.2.1. Moisture Effects in Mako Day and Night Emissivity Retrievals at Algodones

Because the mineralogical composition of the dune elements is invariant, it is generally assumed
that the retrieved emissivities are too, if correctly determined. However, there is a consistent change in
the retrieved Mako NEM ε between the predawn and noon acquisitions as the predawn spectra for
all scene elements are up to 0.04 higher than the Nicolet spectra between ~9.0 and 11.6 μm, whereas
the noon emissivities are in good agreement with the Nicolet spectra throughout the spectral range
(Figure 6). The near isothermal conditions during the predawn acquisition (Figure 5) suggest that
the effects of checkerboard thermal mixing or multiple scattering (cavity radiation), discussed above,
are less likely to have a significant impact on the predawn emissivities. Furthermore, the spectral
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range of the observed increase in Mako NEM ε between ~9.0 and 11.6 μm is inconsistent with that
expected from cavity radiation, which should preferentially occur in spectral regions of low ε (high
ρ) such as the Reststrahlen bands near ~8.4 and 9.3 μm. Instead, the observed deviation of predawn
Mako NEM emissivities from the Nicolet spectra (Figure 6B) more closely resembles the ε increase
previously shown for sand dunes in the presence of soil moisture [36,37].

Moisture content in the Algodones dunes was not directly measured during the Mako overpasses.
However, the significantly higher near-surface atmospheric relative humidity values measured from
the radiosonde during the predawn vs. noon overpasses, i.e., ~50% vs. 20%, respectively (Figure 5),
suggest that more atmospheric moisture was adsorbed on grain surfaces during the predawn overpass
than at noon. Previously, soil moisture following rain events has been identified at Railroad Valley
(Nevada, USA) as a source of concern for TES validation (e.g., [19]), but dune fields have been thought
to have been more consistently dry. Spectrally resampled to ASTER’s TIR channels, we find that
this prominent day/night change in Mako emissivities at Algodones, which we attribute to increased
predawn atmospherically sourced adsorbed soil moisture, translates to an overall ε increase of ~0.01 to
0.02 in all ASTER channels during the predawn acquisition with little change to spectral shape or
contrast (Figure 6D). It could be that surface soil moisture should be measured as a routine part of TES
validation experiments.

5.2.2. Scaling Up from Lab to Mako Emissivities

Scaling up from laboratory measurements (Figure 2) to remotely sensed measurements at
2.2 m/pixel consistently increased effective emissivities near the Reststrahlen bands at ~8.4 and 9.3 μm
by ~0.01 for the slipface and interdune areas during both predawn and noon acquisitions (Figure 6).
This spectral behavior is consistent with multiple reflections between the steep slipfaces and the
adjacent interdune areas as compared with the lower-gradient windward faces for which f in Equation
(4) is lower and cavity radiation effects do not appear to be significant. Thus, the field setting is
fundamentally different than the laboratory setting in a way that influences ε, even if only at the
percent level for carefully chosen sites.

5.2.3. Spectral Variability of the Algodones Site Mapped with Mako

In Figure 9, we use the Mako NEM ε ratio between ASTER-like Channel 13 and ASTER-like
Channel 12, i.e., 10.7/9.1 μm, as a proxy for mapping the variability in spectral contrast among the
Algodones dune elements. This ε ratio is closer to unity for spectrally flatter spectra. Mako pixels
with a high fraction of vegetation cover (“vegetated pixels”) display lower spectral contrast than
vegetation-free pixels and are expressed as a distinct 10.7/9.1 μm ε ratio of ~1.17 in both the predawn
and noon overpasses (Figure 9D). Thus, the Mako data demonstrate that the sparse desert vegetation
seen in the high-resolution air photos of the Algodones Dunes is not a significant spectral element at
the landscape scale because “vegetated” Mako pixels do not show up in the image histograms.
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Figure 9. Surface heterogeneity mapped with Mako. (A) Perspective view (Google Earth) to the
NW onto the Algodones test site. Transect B-B’ is 300 m long and is color coded according to the
three primary dune elements: interdune (id, orange), slipface (sf, red), and windward (wd, black);
(B) predawn and daytime emissivity images (R,G,B = 11.3, 9.1, 8.3 μm) showing location of B-B’; (C) Top,
temperature variability along the B-B’ transect during the predawn and noon overpasses with sectors
of the transect color-shaded according to the dune elements. Bottom, Mako 10.7/9.1 emissivity ratio
(predawn and noon) along the B-B’ transect with sectors of the transect color-shaded according to the
scene elements; (D) emissivity ratio images between Mako 10.7 and 9.1 μm channels are used as a proxy
for mapping the depth of the Reststrahlen band for the predawn and noon overpasses. Top, Noon
vs. predawn average emissivity ratios for the scene elements (32 pixels per element). Min/max values
plotted as error bars. Dashed line marks the 1:1 line. Histograms for the emissivity ratio values within
the white box in the predawn and noon ratio images are plotted along their respective axes (~2500 pixels
in each box). Scene elements are projected onto the histograms through their respective colors.

Windward slopes have a 10.7/9.1 μm ε ratio value of 1.27 ± 0.01 as compared with slipface and
interdune areas that have distinctly lower ε ratio values of 1.25± 0.01 and appear to be more significantly
affected by cavity radiation effects (Figure 9C). This ~2% to 4% difference in spectral contrast is similar
to the predicted magnitude of cavity-radiation effects on natural geologic surfaces [31,38].

We expect that irradiation of a slope by warmer adjacent scene elements would result in greater
cavity-radiation effects (reduction of spectral contrast) than if the adjacent scene elements were cooler.
Yet the B-B’ transect demonstrates that although predawn isothermal conditions along the transect
break down to T heterogeneity of up to 15 K by noon, due to differential solar heating, the 10.7/9.1 μm
ε ratio for the different dune elements does not change significantly between the predawn and noon
overpasses (Figure 9C). In both predawn and noon Mako NEM ε images we find the same ~2% to 4%
difference between the 10.7/9.1 μm ε ratio for the windward slopes (1.27 ± 0.01) and for the slipface and
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interdune elements (1.25 ± 0.01) (Figure 9D). Thus, cavity-radiation effects in the Algodones Dunes
appear to be dominated by topographic roughness, and any effects of T heterogeneity are secondary.

Whereas Mako’s 2.2 m pixels are sufficient to spatially resolve the primary scene elements (i.e.,
windward and slipface slopes and interdune flats), ASTER’s 90 m pixels at Algodones are expected to
include effective mixtures between them. Figure 10 demonstrates that mixing between windward,
slipface, and interdune scene elements could fully account for the distribution of 10.7/9.1 μm ε ratio
values (1.257 ± 0.016) within the 270 × 270 m test area (9 ASTER pixels) we use below to test the
AST05 product. Examined at an order-of-magnitude larger area of ~2.5 × 2.5 km (Figure 10) the
10.7/9.1 μm ε ratio for the dune field remains similar with a mean of 1.251 ± 0.015 that can also be
explained as a mixture of the primary dune elements described above. As this spectral homogeneity to
within <1% scales up to moderate spatial resolutions, we suggest that the Algodones dune field can
also serve as a validation site for emissivity retrievals from other spaceborne multispectral thermal
sensors, such as ECOSTRESS (60 m/pixel) and MODIS (1 km/pixel).

 

Figure 10. Emissivity heterogeneity across the Algodones dune field near the Osborne Lookout.
Left, Mako 2.2 m/pixel emissivity noon image (R,G,B = 11.3, 9.1, 8.3 μm). Black box, same as histogram
area in Figure 8. Dashed box, area of dashed histogram on the right. Bold black box, 3 × 3 ASTER pixel
area from where AST05 emissivities were extracted (Figure 7). Pixel sizes for single MODIS, ASTER,
and ECOSTRESS thermal data are marked in white. Middle, Mako 2.2 m/pixel 10.7/9.1 μm emissivity
ratio noon image. Right, histograms for noon emissivity ratio values from within the small, medium,
and large areas outlined and color-coded accordingly in the emissivity contrast image. Small black box
~2500 Mako pixels, green box ~15,000 Mako pixels, and red polygon ~520,000 Mako pixels.

5.3. Testing the TES Algorithm with Mako

The Mako noon data for Algodones provide an opportunity to test the performance of the TES
algorithm over a natural geologic surface with high ε contrast using real TIR data optimally corrected
for atmospheric effects. For this test, we applied the TES algorithm to Mako calibrated land-emitted
radiance data (R) resampled to ASTER-like spectral and spatial resolutions (RAST) to obtain “Mako
TES” emissivities for ASTER’s five spectral channels and at 90 m/pixel (Figure 7). While displaying a
similar spectral shape, the Mako TES emissivities were consistently 0.01 below Mako NEM emissivities
in all channels. This offset in Mako TES emissivities is associated with the scatter about the TES εmin vs.
MMD regression, Equation (2), which was predicted to be one of the inherent sources of uncertainty in
TES. In addition, it appears that effective mixing between surface elements with temperatures ranging
between ~310 and ~340 K during the noon acquisition (Figure 5) did not impact TES retrievals.
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5.4. Validation of AST05

The mineralogy and PSD measurements, together with Nicolet spectra of the Algodones samples,
allowed us to hypothesize minimal compositional and spectral variability across the validation
site (Figure 2), as was previously assumed in earlier validation studies at Algodones (e.g., [16,32]).
With Mako we confirmed this hypothesis and determined that the natural heterogeneity in surface T
and variability in the effective ε of the primary scene elements at Algodones should not significantly
affect TES retrievals at ASTER’s spatial scale of 90 m/pixel, provided robust atmospheric corrections
are available (Figure 7).

The average daytime AST05 emissivities, for the Algodones 9 pixel (270 × 270 m) test area, were
all within the target performance of AST05 (±0.015) for all three atmospheric correction options that
were tested, i.e., NCAR/NCEP, WVS, and MOD07 (Figure 8). The AST05 predawn emissivities deviated
from the consistent behavior of daytime AST05. Whereas predawn Channels 13 and 14 retrievals
for the two available nighttime atmospheric correction methods, i.e., NCAR/NCEP and WVS, were
similar to those of the daytime retrievals (accuracy and precision of ~0.005) the repeatability in ASTER
Channels 10 to 12 was lower (Figure 8). The precision of AST05 processed with NCAR/NCEP standard
corrections was 0.035, 0.020, and 0.020 for channels 10, 11 and 12, respectively. The means were 0.04,
0.02 and 0.02 lower than Mako NEM for Channels 10, 11, and 12, respectively. The precision of the
AST05 nighttime products processed with the WVS correction option was similar, but their accuracy
was significantly better, as the means in Channels 10, 11, and 12 were 0.02, 0.005, and 0.005 lower than
Mako NEM, respectively. Therefore it appears that WVS atmospheric correction is the preferred option
for obtaining AST05 retrievals that meet the anticipated performance, except for Channel 10 retrievals
which remain slightly below the target accuracy even with the WVS correction.

Soil moisture increased predawn Mako NEM emissivities in all the ASTER-channel wavelengths
by 0.01 as compared with Mako NEM noontime emissivities for the 270 × 270 m dune area that was
used to validate the AST05 retrievals (Figure 6D). Yet, it appears that this soil-moisture effect did not
impact AST05 because AST05 retrievals in Channels 13 and 14 did not change and remained stable and
accurate in both day as well as night acquisitions (Figure 8). We suggest that the different overpass
times between ASTER night acquisitions (~2230) and the predawn Mako experiment (0535) can account
for the absence of the soil moisture effect in AST05 night retrievals at Algodones. As air and surface
temperatures typically decrease over the course of the night (e.g., Figure 3), the possibility of developing
suitable conditions for effective adsorption of atmospheric humidity into the soil increases as the night
progresses. Therefore, it appears that when spectrally significant adsorption of atmospheric humidity
occurs at Algodones, it typically happens after the time of ASTER’s overpass.

The differences between AST05 day and AST05 night retrievals occur mainly in Channels 10 to
12, whereas Channel 13 and 14 emissivities are stable (Figure 8). Coincidently, the spectral range
of ASTER Channels 10 to 12 is where both cavity radiation as well as atmospheric effects would be
expected to impact AST05 retrievals more significantly. The former because of the lower ε values
of the Algodones sand at these wavelengths (Figure 2), which would account for a more prominent
cavity radiation effect (Equation (4)), and the latter because of the larger atmospheric contributions at
these wavelengths (Figure 6D), which have to be accurately corrected for. However, as Mako NEM
retrievals reveal an invariant 2% to 4% cavity radiation effect in both the predawn and noon overpasses
(Figure 9C,D) we suggest that residual atmospheric effects lead to the somewhat degraded performance
of AST05 nighttime retrievals. We also find that this problem with AST05 retrievals is most pronounced
in Channel 10, which has been previously identified as the ASTER TIR channel most impacted by
atmospheric effects (e.g., [39]).

6. Conclusions

This paper focused on testing the performance of the ASTER TES algorithm and the AST05 product
over the Algodones dunes, which provide a natural geologic surface of high ε contrast that is the
type of surface that the TES algorithm was designed for. Mako hyperspectral data with 2.2 m/pixel
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resolution allowed us to constrain the magnitude of the inherent uncertainty associated with validation
of remotely sensed thermal data acquired at 90 m/pixel against centimeter-scale laboratory spectra.
Our main findings are as follows:

• Laboratory emissivity spectra for the Algodones sand revealed pronounced grain-size effects on
the depth of the Reststrahlen band absorption (Figure 2). Using Mako’s 2.2 m/pixel resolution
to resolve the primary scene elements in the dune field we were able to demonstrate that this
spectral dependency on grain size does not translate into significant emissivity variability at Mako
and ASTER scales (Figures 6 and 9) because grain-size distribution is roughly uniform across the
dune field. However, at other dune fields, in which sorting is more heterogeneous, grain-size
effects could lead to significant spectral variability.

• Predawn (0535) and noontime (1135) Mako overpasses conducted six hours apart revealed an
effective ε increase of up to ~0.04 during the predawn acquisition (Figure 6), which is most likely
associated with adsorption of atmospherically sourced soil moisture. Within ASTER’s TIR spectral
channels, the increase in effective ε amounted to only ~0.01, which is, coincidentally, about the
magnitude of the inaccuracy predicted for ASTER TES emissivity retrievals [5]. However, this
soil-moisture effect did not seem to impact AST05 nighttime retrievals at Algodones. We suggest
that this is because spectrally significant adsorption of atmospheric moisture at Algodones can
happen later in the night after ASTER’s overpass time (~2230 local). The significance of soil
moisture following rainfall events was previously recognized as an important factor to consider
in TIR remote sensing (cf. [19,36]). Our results highlight the similar impact of atmospherically
sourced adsorbed soil moisture on remote TIR measurements.

• Spectral emissivity contrast measured with Mako for fully resolved landscape elements, such
as dune slipface slopes and interdune flats, was 2% to 4% lower than the spectral emissivity
contrast measured in the lab for sand samples from these landscape elements (Figures 6 and 9).
This magnitude of spectral differences is similar to the predicted magnitude of “cavity-radiation”
effects on natural geologic surfaces [31,38]. Surface temperature heterogeneity did not impact
emissivity retrievals at Algodones.

• The Mako 2.2 m/pixel emissivity maps (Figure 10) reveal that spectral variability within the
Algodones validation site when imaged at 90 m/pixel is below 1% because the dune surface at this
scale is an effective mixture of the different dune elements. At Algodones, ε retrievals at 90 m/pixel
can be directly compared with laboratory centimeter-scale spectra of sand collected in the field
after Mako was used to confirm that spectral effects of surface heterogeneity in mineralogy, grain
size, moisture, vegetation, and cavity radiation all together were below ~0.01. The Algodones site
can also be used to validate other TIR sensors such as ECOSTRESS and MODIS.

• The accuracy and precision of daytime AST05 emissivity retrievals using each of the three available
atmospheric correction protocols, i.e., NCAR/NCEP, WVS, and MOD07, is better than 0.01 at
Algodones (Figure 8), and therefore meets the target performance of the ASTER’s standard
emissivity product. Nighttime AST05 emissivities in Channels 10 to 12 display lower precision
(<0.03) likely due to residual atmospheric effects. WVS atmospheric correction was required to
obtain accurate (<0.01) nighttime AST05 retrievals at Algodones.
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Abstract: A waterbody detection technique is an essential part of a digital elevation model (DEM)
generation to delineate land–water boundaries and set flattened elevations. This paper describes
the technical methodology for improving the initial tile-based waterbody data that are created
during production of the Advanced Spaceborne Thermal Emission and Reflection radiometer
(ASTER) GDEM, because without improvement such tile-based waterbodies data are not suitable
for incorporating into the new ASTER GDEM Version 3. Waterbodies are classified into three
categories: sea, lake, and river. For sea-waterbodies, the effect of sea ice is removed to better
delineate sea shorelines in high latitude areas: sea ice prevents accurate delineation of sea shorelines.
For lake-waterbodies, the major part of the processing is to set the unique elevation value for each
lake using a mosaic image that covers the entire lake area. Rivers present a unique challenge, because
their elevations gradually step down from upstream to downstream. Initially, visual inspection is
required to separate rivers from lakes. A stepwise elevation assignment, with a step of one meter,
is carried out by manual or automated methods, depending on the situation. The ASTER global
water database (GWBD) product consists of a global set of 1◦ latitude-by-1◦ longitude tiles containing
water body attribute and elevation data files in geographic latitude and longitude coordinates and
with one arc second posting. Each tile contains 3601-by-3601 data points. All improved waterbody
elevation data are incorporated into the ASTER GDEM to reflect the improved results.

Keywords: ASTER instrument; stereo; digital elevation model; global database; optical sensor;
water body detection

1. Introduction

The Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) is an advanced
multispectral imaging sensor that was launched on board the Terra spacecraft in December, 1999 [1,2].
ASTER has an along-track stereoscopic viewing capability in its visible and near-infrared (VNIR) bands
at 15-m spatial resolution with a base-to-height ratio of 0.6. Because of ASTER’s excellent satellite
ephemeris and instrument parameters [3–6], this along-track stereoscopic viewing capability makes it
possible to generate excellent digital elevation model (DEM) data products from ASTER data without
referring to ground control points (GCPs) for individual scenes [5].

After nearly a decade of ASTER data acquisition, sufficient cloud-free data had been acquired
such that it was possible to create a global DEM from ASTER data (ASTER GDEM). Versions 1 and
2 of the ASTER GDEM, based on 1.2 and 1.5 million scene-based ASTER DEMs, respectively, were
released jointly by the Ministry of Economy, Trade, and Industry (METI) of Japan and the U.S. National
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Aeronautics and Space Administration (NASA) in 2009 and 2011 [6]. ASTER GDEM Version 3, which
was derived from about 1.9 million scene-based DEMs, will be released to the public sometime in 2018.

Waterbody detection is an essential part of DEM generation, because image matching is not
directly possible for waterbodies. For ASTER GDEM Version 2, waterbody detection included a
methodology for separating land water bodies from the rest of the land surface and then assigning
them a flattened elevation value [5,6]. The methodology applied was valid only for waterbodies
contained in the same 1◦ latitude-by-1◦ longitude tile area. Lakes that cross tile boundaries and are
situated in two adjacent 1◦ latitude-by-1◦ longitude tiles may have slightly different elevations in
the two adjacent tiles. Another shortcoming of the ASTER GDEM Version 2 approach to waterbody
detection and correction was that river elevations did not uniformly step-down from upstream to
downstream. No global water data base was released to the public with ASTER GDEM Version 2.

In recent years, many attempts have been made to create global waterbody databases because of
their importance in studying global biogeochemical cycles [7–14]. Such databases still have
shortcomings related to nonglobal coverage, spatial resolution, and public availability. Although
the Shuttle Radar Topography Mission (SRTM) Waterbody Data product (SWBD) satisfies spatial
resolution and public availability requirements, the coverage is not global. Rather, data from that
mission were collected only between 56◦ south 60◦ north latitudes. ASTER data and the ASTER GDEM
cover land surface areas between 83◦ south 83◦ north latitudes, an important attribute in the generation
of a global waterbody database. This paper describes the methodology applied in the production and
improvement of a global water database (GWBD) from ASTER data (ASTER GWBD).

In spite of its shortcomings, the SWBD was still useful in the creation of the ASTER GWBD.
The SWBD’s ESRI Shapefile format was converted to a raster format for comparison with ASTER
GWBD. Another dataset useful in creating the ASTER GWBD was the GeoCover2000 [15], which was
produced from Landsat 7 data. The original GeoCover2000 dataset, covering the Earth with 14.25 m
spatial resolution and UTM coordinates, was converted to the same spatial resolution and coordinates
as the ASTER GWBD i.e., to geographic latitude/longitude coordinates with 1 arcsecond postings,
and 1◦ latitude-by-1◦ longitude tile size. This conversion facilitates accurate comparison with the
ASTER GWBD.

ASTER GWBD generation consists of two parts: separation of waterbodies from land areas and
classification of detected waterbodies into three categories: sea, river, and lake. The separation process
was carried out during scene-based DEM generation using an algorithm described in our previous
paper [5]. However, many aspects of ASTER GWBD generation and enhancement required manual
intervention, including visual feature identification. Such work was accomplished using our support
tool which utilizes ‘region of interest’ (roi) and ‘masking’ functions of ‘ENVI’ image analysis software
by Harris Geospatial Solutions.

As mentioned previously, the tile-based water body data are generated from the scene-based
waterbody data simultaneously with ASTER GDEM generation, but they were not publicly released
as ASTER GWBD with ASTER GDEM Version 2 because of the imperfections previously noted.
The new ASTER GWBD was developed in conjunction with ASTER GDEM Version 3 to incorporate
the improved water body data into ASTER GDEM Version 3. Important improvements were made to
the ASTER GWBD:

(1) Waterbodies are classified into three categories: sea, lake, and river waterbodies based on
their features.

(2) Sea-waterbodies have zero elevation.
(3) Lake-waterbodies have flattened (uniform) elevations.
(4) River-waterbody elevations step down monotonically from upstream to downstream.
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This paper describes how these improvements to the ASTER GWBD were accomplished. The new
ASTER GWBD product consists of a global set of 1◦ latitude-by-1◦ longitude tiles that contain water
body attribute and elevation data files in geographic latitude and longitude coordinates and with one
arc-second postings. Consequently, each tile contains 3601-by-3601 data points, including one common
column and one common row with its neighboring tiles. Section 2 describes the basic configuration the
GWBD product. Section 3 describes the processing algorithm for sea-waterbody. The major part of the
algorithm is zero elevation setting and sea ice removal. Section 4 describes the processing algorithm
for lake-waterbodies. The major part of the algorithm is the unique elevation value regardless of the
size. Section 5 describes the processing algorithm for river-waterbodies. The major of the algorithm
is step down elevation from upstream to downstream. Section 6 describes the processing algorithm
how to incorporate the improved waterbody elevation data into GDEM to reflect the improved results.
In addition to ASTER GDEM V3, the improved ASTER GWBD also will be released to public sometime
in 2018.

2. Basic Configuration

Figure 1 shows the ASTER GWBD folder structure, and Table 1 shows data format. Each tile
is composed of an attribute file and a DEM file. The attribute file distinguish a type of waterbody;
sea-waterbody (attribute 1), river-waterbody (attribute 2), and lake-waterbody (attribute 3). The DEM
file shows zero elevation for sea-waterbody, one unique (flattened) elevation for lake-waterbody,
and stepwise elevation with a step of one meter for river elevation.

Figure 1. Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) global water
database (GWBD) folder structure.

Table 1. Data format.

Tile Size 3601 × 3601 (1 degree by 1 degree)

Posting 1 arc-second

Geographic coordinates Geographic latitude and longitude

Geotiff, 8 bits for attribute
Output format Attribute DN values: 1 for sea, 2 for river, 3 for lake, and 0 for land

Geotiff, signed 16 bits, and 1 m/DN for dem files

Special DN values Referenced to the WGS84/EGM96 geoid

Coverage North 83 degree to south 83 degree

3. Sea-Waterbody

In order to set the elevation of sea-waterbodies to zero, they first must be separated from inland
lakes and rivers. This separation was carried out for scene-based DEM generation using the global
sea-waterbody database that was created using GTOPO30 [5,16]. If the sea-waterbody area is larger
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than 80% of the sea-waterbody GTOPO30 database, this area is identified as a sea-waterbody. The 80%
criterion was adopted to compensate for the inaccuracy of the database. The land–sea interface
(sea shoreline) is determined during ASTER GDEM generation by calculating the ratio of the number of
stacked-sea-waterbody data to the total number of stacked-pixel data. If the ratio is larger than 0.5,
the pixel is assigned as a part of the sea waterbody. Otherwise, the pixel is considered to be land.
The 50% criterion was adopted in consideration of tidal effects to present an average delineation [6].

In high latitude areas, another obstacle to accurate delineation of the sea shoreline is the presence of
sea ice, whose effects must be removed if sea shorelines are to be accurately delineated in the ASTER
GWBD and GDEM. Target areas for sea ice removal were selected using the global coarse mosaic image
that was generated from original ASTER GDEM data. A sea ice removal process was carried out for
the following high latitude target areas.

(1) Latitudes of 60 degrees north and further north areas
(2) Latitudes of 60 degrees south and further south areas
(3) Extreme south of Greenland
(4) Hudson Bay
(5) James Bay
(6) Ungava Bay
(7) Sea of Okhotsk
(8) Bering Sea
(9) Patagonia area

Figure 2 shows the algorithm flow for sea ice removal. It is difficult to delineate sea ice that occurs
near sea shorelines using DEM data alone, because sea ice elevations frequently are similar to land
elevations near the sea shoreline. Most sea ice exhibits elevations lower than 30 m, but land topography
near sea shorelines often does not exceed 30 m, thus the possibility for confusion. Consequently, sea ice
removal for the ASTER GWDB utilized ancillary data wherever useful data exist. Two such useful
datasets were (1) the Canadian Digital Elevation Data (CDED) [17], which covers all of Canada with
postings every 3 arc-seconds for latitude and every 3, 6, or 12 arc-seconds for longitude, depending on
latitude and (2) Alaska Digital Elevation Data [18] that covers the State of Alaska with postings
every 2 arc-seconds of latitude and longitude. The processing steps employed in sea ice removal are
summarized as follows.

(1) Generate a 2◦ latitude-by-2◦ longitude tile mosaic from unimproved Version 3 ASTER GDEM data.
(2) If the mosaic area includes any sea shoreline, continue the processing.
(3) If ancillary reference data exist in the mosaic area, delineate by comparing the mosaic data

with the reference data by visual identification under the support tool. If reference data are not
available, delineate by using brightness contrast under the support tool. In this case, the baseline
technique is to designate all areas less than 30 m as sea ice, and then exclude land areas from the
sea ice areas by comparing to Google Earth and GeoCover images and/or by visual judgments,
as necessary and possible.

(4) The improved sea-waterbody data were incorporated into the ASTER GWBD.
(5) Repeat step (1) to step (4) for all sea ice removal target areas.

Figure 3 presents typical results from the sea ice removal process. Several examples are shown of
original and corrected DEM images. Most, but not all, of the gray scale image areas shown in each first
image of Figure 3 represent sea ice with elevations lower than 30 m. Some, however, are land areas
that had to be identified and retained by manual intervention.
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Figure 2. Algorithm flow for sea ice removal.

 
(a) (b) 

(c) (d) 

Figure 3. Cont.
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(e) (f) 

Figure 3. Typical examples of original and corrected DEM images before and after sea ice removal.
(a) Queen Elizabeth Island; (b) Alaska facing Chukchi Sea; (c) Svalbard; (d) Severnaya Zemlya Islands;
(e) Antarctic Peninsula; (f) Ross Island.

4. Lake-Waterbody

The main goal of lake-waterbody anomaly correction is to set the unique elevation value for each
lake regardless of size. The lake grouping is needed because processing algorithm depends on the
size of waterbodies. Lake-waterbodies are classified into three groups based on their size. Group1
lakes have sizes larger than a scene-based DEM with 61.5 km in cross-track and 63 km in along-track
directions. Table 2 lists seven lakes that belong to group1. Group2 lakes are lakes that are larger than
a 2◦ latitude-by-2◦ longitude tiles mosaic image of ASTER GWBD and that do not belong to group1
lakes. Table 3b lists lakes belonging to group2. Group3 lakes are all lakes that do not belong to group1
or group2. Group3 lakes are expressed within a 2◦ latitude-by-2◦ longitude tiles mosaic image of
ASTER GWBD data. The processing algorithm applied to any given lake depends on the waterbody
group of that lake.

4.1. Processing Algorithm for Group1 Lake Waterbodies

Group1 lakes all lie between 60◦N latitude and 56◦S latitude, so errors in the input ASTER
GWBD covering these seven lakes can be corrected by replacing ASTER GWBD attributes with SWBD
attributes. Figure 4 shows the algorithm flow for group1 lake anomaly correction. The process is
carried out as follows.

(1) Input original ASTER GWBD and SWBD.
(2) Select one of the seven group1 lakes for correction.
(3) Generate mosaic image data from both the input ASTER GWBD and the SWBD that cover the

total area of the selected group1 lake.
(4) Copy the selected group1 lake SWBD attributes to the corresponding ASTER GWBD

attribute nuarea.
(5) Assign the nominal elevation value in Table 2 to the selected group1 lake.
(6) Decompose the ASTER GWBD mosaic image data into individual tiles.
(7) Incorporate the improved tiles into original input ASTER GWBD.
(8) If uncorrected group1 lakes remain, repeat Step (2) to Step (7).
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Table 2. Group1 lakes.

Name Location
ASTER GWBD SWBD
Elevation (m) Area (kmˆ2) Elevation (m) Area (kmˆ2)

Superior USA, Canada 179 81,482 179 81,330
Michigan, Huron USA, Canada 175 118,659 175 118,490
Erie USA, Canada 172 25,957 172 25,906
Ontario USA, Canada 73 19,359 73 19,304
Victoria Kenya, Tanzania, Uganda 1133 67,540 1134 67,455
Bikal Russia 456 32,212 449 32,021
Caspian Russia etc. −28 397,547 −29 377,244

 

Figure 4. Algorithm flow for group1 lake anomaly correction.

4.2. Processing Algorithm for Group2 Lake Waterbodies

Group2 lake elevations were calculated using unimproved ASTER GDEM V3 data. The corrected
elevation values for group2 lakes are reported in Table 3b and compared with corresponding SWBD
lake elevation values, where available. Figure 5 shows the algorithm flow for correcting group2 lake
elevations. The process is carried out as follows.

(1) Input original ASTER GWBD and ASTER GDEM.
(2) Select one of the group2 lakes for correction.
(3) Generate mosaic image data from both the unimproved input ASTER GWBD and unimproved

ASTER GDEM that cover the total area of the selected group2 lake.
(4) Calculate the elevation value of the selected lake surface by averaging perimeter elevations from

the input ASTER GDEM data, using only the 10% of perimeter values that fall between 45% and
55% of the perimeter elevations in ascending order from the bottom to top, since the perimeter
elevations have the random errors, and the center value is close to real value without the random
errors. The parameter 10% is empirically selected.

(5) Decompose ASTER GWBD mosaic image data into individual tiles.
(6) Incorporate the improved tiles into original input ASTER GWBD.
(7) If uncorrected group2 lakes remain, repeat Step (2) to Step (6).
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Table 3a. Group2 lakes.

Name Location
ASTER GWBD SWBD

Elevation (m) Area (kmˆ2) Elevation (m) Area (kmˆ2)

Great Bear Canada 154 30,586 - -
Great Slave Canada 157 26,965 - -
Winnipeg Canada 215 24,396 215 24,370
Manitoba Canada 237 4553 245 4578
Winnipegosis Canada 250 5089 251 5157
Cedar Canada 250 2553 253 2573
Nipigon Canada 259 4464 258 4480
Athabasca Canada 209 7697 207 7689
Reindeer Canada 335 5258 335 5469
Nettiling Canada 24 4744 - -
Amadjuak Canada 99 2813 - -
Churchill,
Peter·Pond Canada 413 1626 415 1796

Kinbasket Canada 745 361 729 324
Great Salt USA 1276 4434 1282 2770
Nicaragua Nicaragua 34 7896 31 7868
Titicaca Bolivia, Peru 3811 7654 3815 7549
Vanern Sweden 41 5475 44 5459
Vattern Sweden 95 1866 88 1870
Peipsi Estonia, Russia 25 3497 28 3514
Onega Russia 33 9784 - -

Table 3b. Group2 lakes.

Name Location
ASTER GWBD SWBD
Elevation (m) Area (kmˆ2) Elevation (m) Area (kmˆ2)

Ladoga Russia 3 17,688 4 -
Aral Sea North Russia etc. 37 3147 39 3031
Aral Sea South Russia etc. 26 18,333 29 23,743
Yssyk-kol Kyrgyuzstan 1603 6224 1601 6217
Balkhash Kazakhstan 337 17,341 338 17,053
Volta Ghana 75 6329 75 6140
Turkana Kenya, Ethiopia 348 7490 361 7512
Tanganyika Tanzania etc. 773 32,971 767 62,971

Malawi Tanzaniaf, Malawi
Mozambique 476 29,688 476 29,653

Kariba Zambia, Zimbabwe 482 5287 487 5349
Bratsk1 Russia 293 4600 291 4831
Bratsk2 Russia 392 1798 391 1850
Krasnoyarskoye Russia 236 1920 223 1678
Vilyuy Russia 234 2072 - -
Svetogorskaye Russia 83 497 - -
Hantalka Russia 48 2235 - -
Khantaiskoe Russia 57 1007 - -
Keta Russia 77 461 - -
Dyupkun Russia 102 240 - -
Taymyr Russia 5 4829 - -
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Figure 5. Algorithm flow for group2 lake elevation anomaly correction.

4.3. Processing Algorithm for Group3 Lake Waterbodies

As mentioned previously, group3 lakes are expressed in 2◦ latitude-by-2◦ longitude tiles mosaics of
ASTER GWBD and GDEM data created from 1◦ latitude-by-1◦ longitude tiles. Almost all lakes belong
to group3. Most lakes within the original 1◦ latitude-by-1◦ longitude tiles were corrected during
ASTER GDEM generation. However, some lakes may extend across adjacent tiles, regardless of the
size. Thus, the lake elevations may be slightly different for the same lake connected through a tile
boundary, such that they still exhibit plural elevations in the 2◦ latitude-by-2◦ longitude tiles mosaics.
This type of anomaly must be corrected, so these lakes have one unique (flattened) elevation. Figure 6
shows the algorithm flow for group3 lakes anomaly correction. The process is carried out as follows.

(1) Input the unimproved Version 3 ASTER GWBD and ASTER GDEM.
(2) Generate a 2◦ latitude-by-2◦ longitude tiles mosaic image data from both the input ASTER GWBD

and the ASTER GDEM.
(3) If any lake in the mosaic area has plural elevations, go to next step to calculate the unique

elevation for each abnormal lake. Otherwise, return to previous Step (2) to generate the next
mosaic image data.

(4) Calculate the unique elevation value for each abnormal lake with plural elevations by averaging
the perimeter elevation data. For averaging, use only the data between 45% and 55% from the
bottom in ascending order by the same reason as the group2 lakes.

(5) Decompose ASTER GWBD mosaic image data into individual tiles.
(6) Incorporate the improved tiles into the original input ASTER GWBD.
(7) Repeat Step (2) to Step (6) for all land areas between latitudes 83◦N and 83◦S.
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Figure 6. Algorithm flow for group3 lake anomaly correction.

5. River-Waterbody

River elevations are not constant, but rather gradually become lower from upstream to
downstream. In order to assign rivers proper declining elevations, they first must be separated
from lakes. Unfortunately, there is no automated way to achieve such separation. Consequently,
in the initial stage of waterbody detection and assignment of elevation, all inland waterbodies are
treated as lakes with a constant elevation value for each tile [5,6]. The separation must be carried
out by visual identification for each tile using the support tool. After separating rivers from lakes,
river elevations are assigned stepwise elevations with a step of one meter. The stepwise elevation
assignment is carried out by a manual or automated method, depending on the situation using the
support program. In case of waterfall, one meter step is changed to proper gap elevation. The locations
of the waterfalls can be easily identified from Google Earth image.

5.1. Basic Algorithm Flow for River Stepwise Elevation

Figure 7 shows the basic algorithm flow for determining river stepwise elevations. The process
involves selecting a series of reference points along the course of a river and assigning those reference
points unique elevations based on perimeter elevation values or based on SWBD data, where available.
Reference point elevations must always step down (decrease) from upstream to downstream, and they
must always be lower than their perimeter elevations. The process is carried out as follows.
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(1) Input original ASTER GWBD and ASTER GDEM.
(2) Generate one of 2◦ latitude-by-2◦ longitude tiles mosaic image data from both the unimproved

input ASTER GWBD and the ASTER GDEM.
(3) Manually separate rivers from lakes, if any rivers exist.
(4) Designate all existing rivers as nominal attribute 2.
(5) Select river reference points from which stepwise elevations between adjacent reference points

will be calculated by manual or automated editing, depending on the situation. Set reference
point elevations based on perimeter data or SWBD data.

(6) Temporarily designate river reference points as attribute 5.
(7) Apply manual or automated editing to calculate stepwise elevations between adjacent reference

points, using the support program.
(8) Decompose ASTER GWBD mosaic image data into individual tiles.
(9) Incorporate improved tiles into original input ASTER GWBD.
(10) Change temporary attribute 5 to formal river attribute 2.
(11) Repeat Step (2) to Step (10) for all land areas between latitudes 83◦N and 83◦S.

 

Figure 7. Basic algorithm flow for river stepwise elevation editing.

5.2. Manual Stepwise Elevation Editing

Figure 8 shows one example of manual stepwise elevation editing process. The process is very
simple, and is usually used in cases where the elevation difference between adjacent reference points is
equal to or less than 16 m, although this criterion can be flexibly changed depending on the situation.
The process is carried out as follows.
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(1) Original river image for stepwise elevation editing is first masked for each elevation value as
shown in Figure 8b using the support tool. The elevation difference is roughly allocated in equal
distance between adjacent reference points.

(2) The attribute image area for each elevation value is selected by logical and operation for each
masked area and attribute 2 area.

Figure 8c shows the final color density slice elevation image.

Figure 8. One example of manual editing process for river stepwise elevation.

5.3. Automated Stepwise Elevation Editing

Figure 9 shows one example of the automated stepwise elevation editing process, which utilizes
double-line cell strings to define stepwise river segments with decreasing elevations from upstream
to downstream. Elevations for the stepwise river segments are calculated from the perimeter river
bank elevations, as defined in the ASTER GDEM. Borderlines between connecting river segments
are automatically defined and then adjusted to achieve the shortest path length between opposing
shorelines. The process is carried out as follows.

(1) Assign the river area between adjacent reference points as temporary attribute 4 to designate the
automated stepwise elevation editing area, including the start point (Figure 9a).

(2) Create double-line cell strings for the attribute 4 river segment from perimeter lines along the left
and right river banks (Figure 9b). The perimeter string for the island in the river is excluded from
the double-line cell strings, as shown in Figure 9b.

(3) Number each cell-string boundary line adjacent to the river from one reference point with the
lowest elevation to the other reference points with the highest elevation. The starting minimum
number is zero. The total numbers on the left bank side and right bank side may be slightly
different, because the two banks of the river do not have exactly the same shoreline distance
between reference points.
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(4) Allocate consecutive cell string numbers for each one-meter step to calculate the borders at
both bank sides and define the stepwise river segments. Tentative borderlines on the river are
connecting lines between two positions (AB and CD lines) at left and right banks as shown in
Figure 10.

(5) Rotate all border lines to have the shortest path lengths, since the borderlines with the shortest
lengths are virtually at right angles to the river flow directions.

(6) Assign the corresponding elevation values to all river sections between adjacent borders.

 

Figure 9. One example of automated editing process for river stepwise elevation.

Figure 10. Stepwise river elevation border line rotation to find shortest length.

Figure 9c shows the final color density slice image of the newly defined stepwise river segments.
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6. Incorporation of Waterbody Data into GDEM

ASTER GWBD folders include two files: an attribute file and a DEM file, as shown in Figure 1.
The improved waterbody elevation data, based on previous sections, are described in the DEM files,
and must be incorporated into ASTER GDEM to reflect the improved results. At the same time,
it is essential to keep the consistency between waterbodies and their perimeter elevation values.
The perimeter elevations must be higher than the waterbody elevation. Figure 11 shows the algorithm
flow to incorporate ASTER GWBD data into ASTER GDEM. The process is carried out as follows.

(1) Input original Version 3 ASTER GDEM and the now improved ASTER GWBD.
(2) Select one ASTER GWBD tile and the corresponding original ASTER GDEM tile.
(3) Copy the waterbody elevation data into the original ASTER GDEM tile.
(4) Edit the land elevations along sea shorelines such that those are equal to or higher than one meter.
(5) Edit the perimeter elevations for all lakes in the tile such that those are at least one meter higher

than the lake elevation values.
(6) Edit the perimeter elevations for all one-meter steps of rivers in the tile such that those are at least

one meter higher than the elevations of the one-meter step area.
(7) Repeat Step (2) to Step (6) for all ASTER GWBD tiles.

Typical examples of the final improved results are shown in Figures 12–14. These shaded-relief
images clearly show that all sea and lake waterbodies are completely flattened regardless of their sizes.
For river-waterbodies, each stepwise elevation area is flattened, as shown in Figure 14.

Figure 11. Algorithm flow to incorporate ASTER GWBD.
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(a) (b) 

Figure 12. Final improved images of Great Lakes. (a) Attribute image of Great Lakes green denotes
lake, red denotes river; (b) Shaded-relief elevation image of Great Lakes.

(a) (b) 

Figure 13. Final improved images of Great Slave Lake. (a) Attribute image of Great Slave Lake green
denotes lake, red denotes river; (b) Shaded-relief elevation image of Great Slave Lake.

(a) (b) 

Figure 14. Final improved images of Coronation Gulf area. (a) Attribute image of Coronation Gulf area,
blue denotes sea, red denotes river, green denotes lake; (b) Shaded-relief elevation image of Coronation
Gulf area.

7. Summary

A waterbody detection technique is an essential part of DEM generation to delineate land–water
boundaries and to set flattened elevations. This paper described the technical methodology for
improving the initial tile-based waterbody data that are created during generation of the ASTER

269



Remote Sens. 2018, 10, 1860

GDEM, but which are not suitable for incorporating into new ASTER GDEM Version 3. Waterbodies
are classified into three categories: sea, lake, and river.

Sea-waterbodies were separated from inland waterbodies, and their elevations were set to zero.
The effects of sea ice were removed to better delineate sea shorelines in high latitude areas, because sea
ice prevents accurate delineation of sea shorelines. This process was enhanced by reference to ancillary
data, specifically Google Earth and GeoCover images.

Lake waterbodies are classified into three groups based on size. Group1 lakes are much larger
than scene DEMs, which thus do not include enough land area to define the lake or calculate its
elevation. For Group1 lakes the corresponding SWBD attribute image was used to define the ASTER
GWBD area, and the nominal elevation value was used to assign the lake elevation. Group2 lakes have
a size larger than a 2◦ latitude-by-2◦ longitude tiles mosaic image of ASTER GDEM data and do not
belong to group1 lakes. Group3 lakes are all other lakes. For group2 and group3 lakes, the elevation
for each lake was calculated from the perimeter elevation data using the mosaic image that covers
entire area of the lake.

River elevations are not constant but gradually decline from upstream to downstream. Rivers
were separated from lakes by visual inspection, because there is no automated way to discriminate
between rivers and lakes. A stepwise elevation assignment was carried out for rivers using manual or
automated methods, depending on the situation under support program.

All improved waterbody elevation data were incorporated into the ASTER GDEM Version 3 to
reflect the improved results. At the same time, the waterbody perimeter elevations were edited such
that those were at least one meter higher than the waterbody elevation.
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