
Recent Advances 
in Remote Sensing 
for Crop Growth 
Monitoring

Tao Cheng, Zhengwei Yang, Yoshio Inoue, Yan Zhu, Weixing Cao

www.mdpi.com/journal/remotesensing

Edited by

Printed Edition of the Special Issue Published in Remote Sensing

remote sensing  



Tao Cheng, Zhengwei Yang, Yoshio Inoue,  
Yan Zhu, Weixing Cao (Eds.) 
 

 
Recent Advances in  
Remote Sensing for  
Crop Growth Monitoring 
 
 
 
 
 
 
 
 
 
 

  



This book is a reprint of the Special Issue that appeared in the online, open access 
journal, Remote Sensing (ISSN 2072-4292) in 2015 (available at: 
http://www.mdpi.com/journal/remotesensing/special_issues/cropgrowth). 
 
 
Guest Editors 
Weixing Cao 
Tao Cheng 
Yan Zhu 
National Engineering and Technology Center for  
Information Agriculture (NETCIA),  
Nanjing Agricultural University 
China 
 
Zhengwei Yang 
USDA National Agricultural Statistics Service,  
Research and Development Division 
USA 
 
Yoshio Inoue 
National Institute for Agro-Environmental Sciences (NIAES) 
Japan 
 
Editorial Office   Publisher   Managing Editor 
MDPI AG   Shu-Kun Lin   Elvis Wang 
St. Alban-Anlage 66 
Basel, Switzerland 
 
1. Edition 2016 
 
MDPI • Basel • Beijing • Wuhan • Barcelona 
 
ISBN 978-3-03842-226-6 (Hbk)  ISBN 978-3-03842-227-3 (PDF) 
 
 
Articles in this volume are Open Access and distributed under the Creative Commons 
Attribution license (CC BY), which allows users to download, copy and build upon 
published articles even for commercial purposes, as long as the author and publisher are 
properly credited, which ensures maximum dissemination and a wider impact of our 
publications. The book taken as a whole is © 2016 MDPI, Basel, Switzerland, distributed 
under the terms and conditions of the Creative Commons by Attribution (CC BY-NC-ND) 
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).  

http://creativecommons.org/licenses/by-nc-nd/4.0/


 III  

 

Table of Contents 
List of Contributors .................................................................................................... VII 

About the Guest Editors ............................................................................................. XV 

Preface to “Recent Advances in Remote Sensing for Crop  
Growth Monitoring” ............................................................................................... XVII 

Feng Zhao, Yiqing Guo, Yanbo Huang, Wout Verhoef, Christiaan van der Tol, 
Bo Dai, Liangyun Liu, Huijie Zhao and Guang Liu 
Quantitative Estimation of Fluorescence Parameters for Crop Leaves with 
Bayesian Inversion 
Reprinted from: Remote Sens. 2015, 7(10), 14179–14199 
http://www.mdpi.com/2072-4292/7/10/14179 .............................................................. 1 

Xia Yao, Yu Huang, Guiyan Shang, Chen Zhou, Tao Cheng, Yongchao Tian, 
Weixing Cao and Yan Zhu 
Evaluation of Six Algorithms to Monitor Wheat Leaf Nitrogen Concentration 
Reprinted from: Remote Sens. 2015, 7(11), 14939–14966 
http://www.mdpi.com/2072-4292/7/11/14939 ............................................................ 25 

Shinya Tanaka, Kensuke Kawamura, Masayasu Maki, Yasunori Muramoto, 
Kazuaki Yoshida and Tsuyoshi Akiyama 
Spectral Index for Quantifying Leaf Area Index of Winter Wheat by Field 
Hyperspectral Measurements: A Case Study in Gifu Prefecture, Central Japan 
Reprinted from: Remote Sens. 2015, 7(5), 5329–5346 
http://www.mdpi.com/2072-4292/7/5/5329 ................................................................ 55 

Shanyu Huang, Yuxin Miao, Guangming Zhao, Fei Yuan, Xiaobo Ma, 
Chuanxiang Tan, Weifeng Yu, Martin L. Gnyp, Victoria I.S. Lenz-Wiedemann, 
Uwe Rascher and Georg Bareth 
Satellite Remote Sensing-Based In-Season Diagnosis of Rice Nitrogen Status in 
Northeast China 
Reprinted from: Remote Sens. 2015, 7(8), 10646–10667 
http://www.mdpi.com/2072-4292/7/8/10646 .............................................................. 75 

http://www.mdpi.com/search?authors=Feng%20Zhao&orcid=
http://www.mdpi.com/search?authors=Yiqing%20Guo&orcid=
http://www.mdpi.com/search?authors=Yanbo%20Huang&orcid=
http://www.mdpi.com/search?authors=Wout%20Verhoef&orcid=
http://www.mdpi.com/search?authors=Christiaan%20van%20der%20Tol&orcid=
http://www.mdpi.com/search?authors=Bo%20Dai&orcid=
http://www.mdpi.com/search?authors=Liangyun%20Liu&orcid=
http://www.mdpi.com/search?authors=Huijie%20Zhao&orcid=
http://www.mdpi.com/search?authors=Guang%20Liu&orcid=
http://www.mdpi.com/search?authors=Xia%20Yao&orcid=
http://www.mdpi.com/search?authors=Yu%20Huang&orcid=
http://www.mdpi.com/search?authors=Guiyan%20Shang&orcid=
http://www.mdpi.com/search?authors=Chen%20Zhou&orcid=
http://www.mdpi.com/search?authors=Tao%20Cheng&orcid=
http://www.mdpi.com/search?authors=Yongchao%20Tian&orcid=
http://www.mdpi.com/search?authors=Weixing%20Cao&orcid=
http://www.mdpi.com/search?authors=Yan%20Zhu&orcid=
http://www.mdpi.com/search?authors=Shinya%20Tanaka&orcid=
http://www.mdpi.com/search?authors=Kensuke%20Kawamura&orcid=
http://www.mdpi.com/search?authors=Masayasu%20Maki&orcid=
http://www.mdpi.com/search?authors=Yasunori%20Muramoto&orcid=
http://www.mdpi.com/search?authors=Kazuaki%20Yoshida&orcid=
http://www.mdpi.com/search?authors=Tsuyoshi%20Akiyama&orcid=
http://www.mdpi.com/search?authors=Shanyu%20Huang&orcid=
http://www.mdpi.com/search?authors=Yuxin%20Miao&orcid=
http://www.mdpi.com/search?authors=Guangming%20Zhao&orcid=
http://www.mdpi.com/search?authors=Fei%20Yuan&orcid=
http://www.mdpi.com/search?authors=Xiaobo%20Ma&orcid=
http://www.mdpi.com/search?authors=Chuanxiang%20Tan&orcid=
http://www.mdpi.com/search?authors=Weifeng%20Yu&orcid=
http://www.mdpi.com/search?authors=Martin%20L.%20Gnyp&orcid=
http://www.mdpi.com/search?authors=Victoria%20I.S.%20Lenz-Wiedemann&orcid=
http://www.mdpi.com/search?authors=Uwe%20Rascher&orcid=0000-0002-9993-4588
http://www.mdpi.com/search?authors=Georg%20Bareth&orcid=


 IV  

 

Jonathan Van Beek, Laurent Tits, Ben Somers, Tom Deckers, Wim Verjans, 
Dany Bylemans, Pieter Janssens and Pol Coppin 
Temporal Dependency of Yield and Quality Estimation through Spectral 
Vegetation Indices in Pear Orchards 
Reprinted from: Remote Sens. 2015, 7(8), 9886–9903 
http://www.mdpi.com/2072-4292/7/8/9886 ................................................................ 99 

Jong-Min Yeom and Hyun-Ok Kim 
Comparison of NDVIs from GOCI and MODIS Data towards Improved 
Assessment of Crop Temporal Dynamics in the Case of Paddy Rice 
Reprinted from: Remote Sens. 2015, 7(9), 11326–11343 
http://www.mdpi.com/2072-4292/7/9/11326 .............................................................118 

Yongjiu Guo, Ling Zhang, Yehui Qin, Yan Zhu, Weixing Cao and  
Yongchao Tian 
Exploring the Vertical Distribution of Structural Parameters and Light Radiation 
in Rice Canopies by the Coupling Model and Remote Sensing 
Reprinted from: Remote Sens. 2015, 7(5), 5203–5221 
http://www.mdpi.com/2072-4292/7/5/5203 ...............................................................138 

Mitsunori Ishihara, Yoshio Inoue, Keisuke Ono, Mariko Shimizu and  
Shoji Matsuura 
The Impact of Sunlight Conditions on the Consistency of Vegetation Indices in 
Croplands—Effective Usage of Vegetation Indices from Continuous  
Ground-Based Spectral Measurements 
Reprinted from: Remote Sens. 2015, 7(10), 14079–14098 
http://www.mdpi.com/2072-4292/7/10/14079 ...........................................................159 

Jingjing Shi and Jingfeng Huang 
Monitoring Spatio-Temporal Distribution of Rice Planting Area in the Yangtze 
River Delta Region Using MODIS Images 
Reprinted from: Remote Sens. 2015, 7(7), 8883–8905 
http://www.mdpi.com/2072-4292/7/7/8883 ...............................................................182 

  

http://www.mdpi.com/search?authors=Jonathan%20Van%20Beek&orcid=
http://www.mdpi.com/search?authors=Laurent%20Tits&orcid=
http://www.mdpi.com/search?authors=Ben%20Somers&orcid=
http://www.mdpi.com/search?authors=Tom%20Deckers&orcid=
http://www.mdpi.com/search?authors=Wim%20Verjans&orcid=
http://www.mdpi.com/search?authors=Dany%20Bylemans&orcid=
http://www.mdpi.com/search?authors=Pieter%20Janssens&orcid=0000-0001-7571-396X
http://www.mdpi.com/search?authors=Pol%20Coppin&orcid=
http://www.mdpi.com/search?authors=Jong-Min%20Yeom&orcid=
http://www.mdpi.com/search?authors=Hyun-Ok%20Kim&orcid=
http://www.mdpi.com/search?authors=Yongjiu%20Guo&orcid=
http://www.mdpi.com/search?authors=Ling%20Zhang&orcid=
http://www.mdpi.com/search?authors=Yehui%20Qin&orcid=
http://www.mdpi.com/search?authors=Yan%20Zhu&orcid=
http://www.mdpi.com/search?authors=Weixing%20Cao&orcid=
http://www.mdpi.com/search?authors=Yongchao%20Tian&orcid=
http://www.mdpi.com/search?authors=Mitsunori%20Ishihara&orcid=
http://www.mdpi.com/search?authors=Yoshio%20Inoue&orcid=
http://www.mdpi.com/search?authors=Keisuke%20Ono&orcid=
http://www.mdpi.com/search?authors=Mariko%20Shimizu&orcid=
http://www.mdpi.com/search?authors=Shoji%20Matsuura&orcid=
http://www.mdpi.com/search?authors=Jingjing%20Shi&orcid=
http://www.mdpi.com/search?authors=Jingfeng%20Huang&orcid=


 V  

 

Jing Wang, Jingfeng Huang, Kangyu Zhang, Xinxing Li, Bao She,  
Chuanwen Wei, Jian Gao and Xiaodong Song 
Rice Fields Mapping in Fragmented Area Using Multi-Temporal HJ-1A/B  
CCD Images 
Reprinted from: Remote Sens. 2015, 7(4), 3467–3488 
http://www.mdpi.com/2072-4292/7/4/3467 ...............................................................207 

Sofia Siachalou, Giorgos Mallinis and Maria Tsakiri-Strati 
A Hidden Markov Models Approach for Crop Classification: Linking Crop 
Phenology to Time Series of Multi-Sensor Remote Sensing Data 
Reprinted from: Remote Sens. 2015, 7(4), 3633–3650 
http://www.mdpi.com/2072-4292/7/4/3633 ...............................................................231 

Cheng Zhong, Cuizhen Wang and Changshan Wu 
MODIS-Based Fractional Crop Mapping in the U.S. Midwest with Spatially 
Constrained Phenological Mixture Analysis 
Reprinted from: Remote Sens. 2015, 7(1), 512–529 
http://www.mdpi.com/2072-4292/7/1/512 .................................................................252 

Pengyu Hao, Yulin Zhan, Li Wang, Zheng Niu and Muhammad Shakir 
Feature Selection of Time Series MODIS Data for Early Crop Classification Using 
Random Forest: A Case Study in Kansas, USA 
Reprinted from: Remote Sens. 2015, 7(5), 5347–5369 
http://www.mdpi.com/2072-4292/7/5/5347 ...............................................................272 

Paolo Villa, Daniela Stroppiana, Giacomo Fontanelli, Ramin Azar and  
Pietro Alessandro Brivio 
In-Season Mapping of Crop Type with Optical and X-Band SAR Data: A 
Classification Tree Approach Using Synoptic Seasonal Features 
Reprinted from: Remote Sens. 2015, 7(10), 12859–12886 
http://www.mdpi.com/2072-4292/7/10/12859 ...........................................................298 

  

http://www.mdpi.com/search?authors=Jing%20Wang&orcid=
http://www.mdpi.com/search?authors=Jingfeng%20Huang&orcid=
http://www.mdpi.com/search?authors=Kangyu%20Zhang&orcid=
http://www.mdpi.com/search?authors=Xinxing%20Li&orcid=
http://www.mdpi.com/search?authors=Bao%20She&orcid=
http://www.mdpi.com/search?authors=Chuanwen%20Wei&orcid=
http://www.mdpi.com/search?authors=Jian%20Gao&orcid=
http://www.mdpi.com/search?authors=Xiaodong%20Song&orcid=
http://www.mdpi.com/search?authors=Sofia%20Siachalou&orcid=
http://www.mdpi.com/search?authors=Giorgos%20Mallinis&orcid=0000-0001-7123-5358
http://www.mdpi.com/search?authors=Maria%20Tsakiri-Strati&orcid=
http://www.mdpi.com/search?authors=Cheng%20Zhong&orcid=
http://www.mdpi.com/search?authors=Cuizhen%20Wang&orcid=
http://www.mdpi.com/search?authors=Changshan%20Wu&orcid=
http://www.mdpi.com/search?authors=Pengyu%20Hao&orcid=0000-0003-3711-6157
http://www.mdpi.com/search?authors=Yulin%20Zhan&orcid=0000-0001-5771-4168
http://www.mdpi.com/search?authors=Li%20Wang&orcid=
http://www.mdpi.com/search?authors=Zheng%20Niu&orcid=
http://www.mdpi.com/search?authors=Muhammad%20Shakir&orcid=
http://www.mdpi.com/search?authors=Paolo%20Villa&orcid=
http://www.mdpi.com/search?authors=Daniela%20Stroppiana&orcid=
http://www.mdpi.com/search?authors=Giacomo%20Fontanelli&orcid=
http://www.mdpi.com/search?authors=Ramin%20Azar&orcid=
http://www.mdpi.com/search?authors=Pietro%20Alessandro%20Brivio&orcid=


 VI  

 

Mirco Boschetti, Andrew Nelson, Francesco Nutini, Giacinto Manfron,  
Lorenzo Busetto, Massimo Barbieri, Alice Laborte, Jeny Raviz, Francesco Holecz, 
Mary Rose O. Mabalay, Alfie P. Bacong and Eduardo Jimmy P. Quilang 
Rapid Assessment of Crop Status: An Application of MODIS and SAR Data to 
Rice Areas in Leyte, Philippines Affected by Typhoon Haiyan 
Reprinted from: Remote Sens. 2015, 7(6), 6535–6557 
http://www.mdpi.com/2072-4292/7/6/6535 ...............................................................328 

Ran Huang, Chao Zhang, Jianxi Huang, Dehai Zhu, Limin Wang and Jia Liu 
Mapping of Daily Mean Air Temperature in Agricultural Regions Using Daytime 
and Nighttime Land Surface Temperatures Derived from TERRA and AQUA 
MODIS Data 
Reprinted from: Remote Sens. 2015, 7(7), 8728–8756 
http://www.mdpi.com/2072-4292/7/7/8728 ...............................................................353 

  

http://www.mdpi.com/search?authors=Mirco%20Boschetti&orcid=
http://www.mdpi.com/search?authors=Andrew%20Nelson&orcid=
http://www.mdpi.com/search?authors=Francesco%20Nutini&orcid=
http://www.mdpi.com/search?authors=Giacinto%20Manfron&orcid=
http://www.mdpi.com/search?authors=Lorenzo%20Busetto&orcid=
http://www.mdpi.com/search?authors=Massimo%20Barbieri&orcid=
http://www.mdpi.com/search?authors=Alice%20Laborte&orcid=
http://www.mdpi.com/search?authors=Jeny%20Raviz&orcid=
http://www.mdpi.com/search?authors=Francesco%20Holecz&orcid=
http://www.mdpi.com/search?authors=Mary%20Rose%20O.%20Mabalay&orcid=
http://www.mdpi.com/search?authors=Alfie%20P.%20Bacong&orcid=
http://www.mdpi.com/search?authors=Eduardo%20Jimmy%20P.%20Quilang&orcid=
http://www.mdpi.com/search?authors=Ran%20Huang&orcid=
http://www.mdpi.com/search?authors=Chao%20Zhang&orcid=
http://www.mdpi.com/search?authors=Jianxi%20Huang&orcid=
http://www.mdpi.com/search?authors=Dehai%20Zhu&orcid=
http://www.mdpi.com/search?authors=Limin%20Wang&orcid=
http://www.mdpi.com/search?authors=Jia%20Liu&orcid=


 VII  

 

List of Contributors 
Tsuyoshi Akiyama River Basin Research Center, Gifu University, 1-1 Yanagido, 
Gifu 501-1193, Japan. 

Ramin Azar Institute for Electromagnetic Sensing of the Environment,  
National Research Council (IREA-CNR), via Bassini 15, Milan 20133, Italy. 

Alfie P. Bacong Philippine Rice Research Institute (PhilRice), Muñoz,  
Nueva Ecija 3119, Philippines. 

Massimo Barbieri Sarmap, Cascine di Barico 10, Purasca 6989, Switzerland. 

Georg Bareth International Center for Agro-Informatics and Sustainable 
Development, College of Resources and Environmental Sciences, China 
Agricultural University, Beijing 100083, China; Institute of Geography,  
University of Cologne, 50923 Cologne, Germany. 

Mirco Boschetti Institute for Electromagnetic Sensing of the Environment,  
Italian National Research Council, Via Bassini 15, Milan 20133, Italy. 

Pietro Alessandro Brivio Institute for Electromagnetic Sensing of the Environment, 
National Research Council (IREA-CNR), via Bassini 15, Milan 20133, Italy. 

Lorenzo Busetto Institute for Electromagnetic Sensing of the Environment, Italian 
National Research Council, Via Bassini 15, Milan 20133, Italy. 

Dany Bylemans KU Leuven, Department of Biosystems, Division of Crop 
Biotechnics, Willem de Croylaan 34, BE-3001 Leuven, Belgium;  
Pcfruit research station, Fruittuinweg 1, BE-3800 Sint-Truiden, Belgium. 

Weixing Cao National Engineering and Technology Center for Information 
Agriculture; Jiangsu Collaborative Innovation Center for Modern Crop 
Production; Jiangsu Key Laboratory for Information Agriculture, National 
Engineering and Technology Center for Information Agriculture, Nanjing 
Agricultural University, Nanjing 210095, China. 

Tao Cheng Jiangsu Collaborative Innovation Center for Modern Crop Production; 
Jiangsu Key Laboratory for Information Agriculture; National Engineering and 
Technology Center for Information Agriculture,  Nanjing Agricultural University, 
Nanjing 210095, China. 

Pol Coppin KU Leuven, Department of Biosystems, Division of Crop Biotechnics, 
Willem de Croylaan 34, BE-3001 Leuven, Belgium. 

Bo Dai School of Instrumentation Science and Opto-electronics Engineering, 
Beihang University, Beijing 100191, China. 

http://www.mdpi.com/search?authors=Tsuyoshi%20Akiyama&orcid=
http://www.mdpi.com/search?authors=Ramin%20Azar&orcid=
http://www.mdpi.com/search?authors=Alfie%20P.%20Bacong&orcid=
http://www.mdpi.com/search?authors=Massimo%20Barbieri&orcid=
http://www.mdpi.com/search?authors=Georg%20Bareth&orcid=
http://www.mdpi.com/search?authors=Mirco%20Boschetti&orcid=
http://www.mdpi.com/search?authors=Pietro%20Alessandro%20Brivio&orcid=
http://www.mdpi.com/search?authors=Lorenzo%20Busetto&orcid=
http://www.mdpi.com/search?authors=Dany%20Bylemans&orcid=
http://www.mdpi.com/search?authors=Weixing%20Cao&orcid=
http://www.mdpi.com/search?authors=Tao%20Cheng&orcid=
http://www.mdpi.com/search?authors=Pol%20Coppin&orcid=
http://www.mdpi.com/search?authors=Bo%20Dai&orcid=


 VIII  

 

Tom Deckers Pcfruit research station, Fruittuinweg 1, BE-3800 Sint-Truiden, 
Belgium. 

Giacomo Fontanelli Institute for Electromagnetic Sensing of the Environment, 
National Research Council (IREA-CNR), via Bassini 15, Milan 20133, Italy. 

Jian Gao Institute of Remote Sensing and Earth Sciences, Hangzhou Normal 
University, Hangzhou 311121, China. 

Martin L. Gnyp International Center for Agro-Informatics and Sustainable 
Development, College of Resources and Environmental Sciences, China 
Agricultural University, Beijing 100083, China; Research Centre Hanninghof,  
Yara International, 48249 Duelmen, Germany. 

Yiqing Guo School of Instrumentation Science and Opto-electronics Engineering, 
Beihang University, Beijing 100191, China. 

Yongjiu Guo Jiangsu Key Laboratory for Information Agriculture, National 
Engineering and Technology Center for Information Agriculture, Nanjing 
Agricultural University, Nanjing 210095, China. 

Pengyu Hao The State Key Laboratory of Remote Sensing Science,  
Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, 
Beijing 100101, China. 

Francesco Holecz Sarmap, Cascine di Barico 10, Purasca 6989, Switzerland. 

Jianxi Huang College of Information & Electrical Engineering, China Agricultural 
University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China;  
Key Laboratory of Agricultural Information Acquisition Technology, Ministry of 
Agriculture, Beijing 100083, China. 

Jingfeng Huang Institute of Remote Sensing and Information Application, 
Zhejiang University, Hangzhou 310058, China; Institute of Agricultural Remote 
Sensing & Information Application, Zhejiang University, Hangzhou 310058, China. 

Ran Huang College of Information & Electrical Engineering, China Agricultural 
University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China; Key 
Laboratory of Agricultural Information Acquisition Technology, Ministry of 
Agriculture, Beijing 100083, China. 

Shanyu Huang International Center for Agro-Informatics and Sustainable 
Development, College of Resources and Environmental Sciences, China 
Agricultural University, Beijing 100083, China; Institute of Geography, University 
of Cologne, 50923 Cologne, Germany. 

http://www.mdpi.com/search?authors=Tom%20Deckers&orcid=
http://www.mdpi.com/search?authors=Giacomo%20Fontanelli&orcid=
http://www.mdpi.com/search?authors=Jian%20Gao&orcid=
http://www.mdpi.com/search?authors=Martin%20L.%20Gnyp&orcid=
http://www.mdpi.com/search?authors=Yongjiu%20Guo&orcid=
http://www.mdpi.com/search?authors=Yiqing%20Guo&orcid=
http://www.mdpi.com/search?authors=Pengyu%20Hao&orcid=0000-0003-3711-6157
http://www.mdpi.com/search?authors=Francesco%20Holecz&orcid=
http://www.mdpi.com/search?authors=Yu%20Huang&orcid=
http://www.mdpi.com/search?authors=Jingfeng%20Huang&orcid=
http://www.mdpi.com/search?authors=Ran%20Huang&orcid=
http://www.mdpi.com/search?authors=Shanyu%20Huang&orcid=


 IX  

 

Yanbo Huang Department of Agriculture-Agricultural Research Service,  
Crop Production Systems Research Unit, 141 Experiment Station Road, Stoneville, 
MS 38776, USA. 

Yu Huang Jiangsu Key Laboratory for Information Agriculture; National 
Engineering and Technology Center for Information Agriculture, Nanjing 
Agricultural University, Nanjing 210095, China. 

Yoshio Inoue National Institute for Agro-Environmental Sciences (NIAES), 
Tsukuba, Ibaraki 305-8604, Japan. 

Mitsunori Ishihara National Institute for Agro-Environmental Sciences,  
3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604, Japan. 

Pieter Janssens Soil Service of Belgium, Willem de Croylaan 48, BE-3001 Leuven, 
Belgium. 

Kensuke Kawamura Graduate School for International Development and 
Cooperation, Hiroshima University, 1-5-1 Kagamiyama, Higashi-Hiroshima 739-
8529, Japan. 

Hyun-Ok Kim Earth Observation Research Team, Korea Aerospace Research 
Institute, 169-84 Gwahak-ro, Yuseong-Gu, Deajeon 305-806, Korea. 

Alice Laborte International Rice Research Institute (IRRI), Los Baños,  
Laguna 4031, Philippines. 

Victoria I.S. Lenz-Wiedemann International Center for Agro-Informatics and 
Sustainable Development, College of Resources and Environmental Sciences, 
China Agricultural University, Beijing 100083, China; Institute of Geography, 
University of Cologne, 50923 Cologne, Germany. 

Xinxing Li Institute of Remote Sensing and Information Application,  
Zhejiang University, Hangzhou 310058, China. 

Guang Liu Institute of Remote Sensing and Digital Earth, Chinese Academy of 
Sciences, No.9 Dengzhuang South Road, Haidian District, Beijing 100094, China. 

Jia Liu Institute of Agricultural Resources and Regional Planning, Chinese 
Academy of Agricultural Sciences/Key Laboratory of Resources Remote Sensing 
and Digital Agriculture, Ministry of Agriculture, Beijing 100081, China. 

Liangyun Liu Institute of Remote Sensing and Digital Earth, Chinese Academy of 
Sciences, No.9 Dengzhuang South Road, Haidian District, Beijing 100094, China. 

Xiaobo Ma International Center for Agro-Informatics and Sustainable 
Development, College of Resources and Environmental Sciences,  
China Agricultural University, Beijing 100083, China. 

http://www.mdpi.com/search?authors=Jianxi%20Huang&orcid=
http://www.mdpi.com/search?authors=Yanbo%20Huang&orcid=
http://www.mdpi.com/search?authors=Yoshio%20Inoue&orcid=
http://www.mdpi.com/search?authors=Mitsunori%20Ishihara&orcid=
http://www.mdpi.com/search?authors=Pieter%20Janssens&orcid=0000-0001-7571-396X
http://www.mdpi.com/search?authors=Kensuke%20Kawamura&orcid=
http://www.mdpi.com/search?authors=Hyun-Ok%20Kim&orcid=
http://www.mdpi.com/search?authors=Alice%20Laborte&orcid=
http://www.mdpi.com/search?authors=Victoria%20I.S.%20Lenz-Wiedemann&orcid=
http://www.mdpi.com/search?authors=Xinxing%20Li&orcid=
http://www.mdpi.com/search?authors=Guang%20Liu&orcid=
http://www.mdpi.com/search?authors=Jia%20Liu&orcid=
http://www.mdpi.com/search?authors=Liangyun%20Liu&orcid=


 X  

 

Mary Rose O. Mabalay Philippine Rice Research Institute (PhilRice), Muñoz, 
Nueva Ecija 3119, Philippines. 

Masayasu Maki Faculty of Engineering, Tohoku Institute of Technology, 35-1, 
YagiyamaKasumi-cho, Taihaku-ku, Sendai, Miyagi 982-8577, Japan. 

Giorgos Mallinis Laboratory of Forest Remote Sensing, School of Agricultural 
and Forestry Sciences, Democritus University of Thrace, Orestiada 68200, Greece. 

Giacinto Manfron Institute for Electromagnetic Sensing of the Environment, 
Italian National Research Council, Via Bassini 15, Milan 20133, Italy. 

Shoji Matsuura National Agriculture and Food Research Organization Institute of 
Livestock and Grassland Science, 768 Senbonmatsu, Nasushiobara,  
Tochigi 329-2793, Japan. 

Yuxin Miao International Center for Agro-Informatics and Sustainable 
Development, College of Resources and Environmental Sciences, China 
Agricultural University, Beijing 100083, China. 

Yasunori Muramoto Gifu Prefectural Agricultural Technology Center,  
729-1 Matamaru, Gifu 501-1152, Japan. 

Andrew Nelson International Rice Research Institute (IRRI), Los Baños,  
Laguna 4031, Philippines. 

Zheng Niu The State Key Laboratory of Remote Sensing Science,  
Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, 
Beijing 100101, China. 

Francesco Nutini Institute for Electromagnetic Sensing of the Environment, Italian 
National Research Council, Via Bassini 15, Milan 20133, Italy. 

Keisuke Ono National Institute for Agro-Environmental Sciences,  
3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604, Japan. 

Yehui Qin Jiangsu Key Laboratory for Information Agriculture,  
National Engineering and Technology Center for Information Agriculture, 
Nanjing Agricultural University, Nanjing 210095, China. 

Eduardo Jimmy P. Quilang Philippine Rice Research Institute (PhilRice), Muñoz, 
Nueva Ecija 3119, Philippines. 

Uwe Rascher International Center for Agro-Informatics and Sustainable 
Development, College of Resources and Environmental Sciences, China 
Agricultural University, Beijing 100083, China; Forschungszentrum Jülich, 
Institute of Bio-and Geosciences, IBG-2: Plant Sciences, D-52425 Jülich, Germany. 

http://www.mdpi.com/search?authors=Xiaobo%20Ma&orcid=
http://www.mdpi.com/search?authors=Mary%20Rose%20O.%20Mabalay&orcid=
http://www.mdpi.com/search?authors=Masayasu%20Maki&orcid=
http://www.mdpi.com/search?authors=Giorgos%20Mallinis&orcid=0000-0001-7123-5358
http://www.mdpi.com/search?authors=Giacinto%20Manfron&orcid=
http://www.mdpi.com/search?authors=Shoji%20Matsuura&orcid=
http://www.mdpi.com/search?authors=Yuxin%20Miao&orcid=
http://www.mdpi.com/search?authors=Yasunori%20Muramoto&orcid=
http://www.mdpi.com/search?authors=Andrew%20Nelson&orcid=
http://www.mdpi.com/search?authors=Zheng%20Niu&orcid=
http://www.mdpi.com/search?authors=Francesco%20Nutini&orcid=
http://www.mdpi.com/search?authors=Keisuke%20Ono&orcid=
http://www.mdpi.com/search?authors=Yehui%20Qin&orcid=
http://www.mdpi.com/search?authors=Eduardo%20Jimmy%20P.%20Quilang&orcid=


 XI  

 

Jeny Raviz International Rice Research Institute (IRRI), Los Baños,  
Laguna 4031, Philippines. 

Muhammad Shakir The State Key Laboratory of Remote Sensing Science, 
Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, 
Beijing 100101, China. 

Guiyan Shang Jiangsu Key Laboratory for Information Agriculture; National 
Engineering and Technology Center for Information Agriculture, Nanjing 
Agricultural University, Nanjing 210095, China. 

Bao She Institute of Remote Sensing and Information Application,  
Zhejiang University, Hangzhou 310058, China. 

Jingjing Shi Institute of Agricultural Remote Sensing & Information Application, 
Zhejiang University, Hangzhou 310058, China; School of Electronic and 
Information Engineering, Ningbo University of Technology, Ningbo 315016, 
China. 

Mariko Shimizu Graduate School of Agriculture, Hokkaido University, Kita 9, 
Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan; Civil Engineering Research 
Institute for Cold Region, National Research and Development Agency Public 
Works Research Institute, 3-1-43 Hiragishi Ichijo, Toyohira-ku, Sapporo,  
Hokkaido 062-8602, Japan. 

Sofia Siachalou Laboratory of Photogrammetry and Remote Sensing,  
School of Rural and Surveying Engineering, Aristotle University of Thessaloniki, 
Thessaloniki 54124, Greece. 

Ben Somers KU Leuven, Department of Earth and Environmental Sciences, 
Division of Forest, Nature and Landscape Research, Celestijnenlaan 200E,  
BE-3001 Leuven, Belgium. 

Xiaodong Song Institute of Remote Sensing and Information Application, 
Zhejiang University, Hangzhou 310058, China. 

Daniela Stroppiana Institute for Electromagnetic Sensing of the Environment, 
National Research Council (IREA-CNR), via Bassini 15, Milan 20133, Italy. 

Chuanxiang Tan International Center for Agro-Informatics and Sustainable 
Development, College of Resources and Environmental Sciences, China 
Agricultural University, Beijing 100083, China. 

Shinya Tanaka Department of Forest Management, Forestry and Forest Products 
Research Institute, 1 Matsunosato, Tsukuba, Ibaraki 305-8687, Japan. 

 

http://www.mdpi.com/search?authors=Uwe%20Rascher&orcid=0000-0002-9993-4588
http://www.mdpi.com/search?authors=Jeny%20Raviz&orcid=
http://www.mdpi.com/search?authors=Muhammad%20Shakir&orcid=
http://www.mdpi.com/search?authors=Guiyan%20Shang&orcid=
http://www.mdpi.com/search?authors=Bao%20She&orcid=
http://www.mdpi.com/search?authors=Jingjing%20Shi&orcid=
http://www.mdpi.com/search?authors=Mariko%20Shimizu&orcid=
http://www.mdpi.com/search?authors=Sofia%20Siachalou&orcid=
http://www.mdpi.com/search?authors=Ben%20Somers&orcid=
http://www.mdpi.com/search?authors=Xiaodong%20Song&orcid=
http://www.mdpi.com/search?authors=Daniela%20Stroppiana&orcid=
http://www.mdpi.com/search?authors=Chuanxiang%20Tan&orcid=


 XII  

 

Yongchao Tian Jiangsu Collaborative Innovation Center for Modern Crop 
Production; National Engineering and Technology Center for Information 
Agriculture; Jiangsu Key Laboratory for Information Agriculture, National 
Engineering and Technology Center for Information Agriculture, Nanjing 
Agricultural University, Nanjing 210095, China. 

Laurent Tits KU Leuven, Department of Biosystems, Division of Crop Biotechnics, 
Willem de Croylaan 34, BE-3001 Leuven, Belgium. 

Maria Tsakiri-Strati Laboratory of Photogrammetry and Remote Sensing, School 
of Rural and Surveying Engineering, Aristotle University of Thessaloniki, 
Thessaloniki 54124, Greece. 

Jonathan Van Beek KU Leuven, Department of Biosystems, Division of Crop 
Biotechnics, Willem de Croylaan 34, BE-3001 Leuven, Belgium. 

Christiaan van der Tol Faculty of Geo-Information Science and Earth Observation 
(ITC), University of Twente, P.O. Box 217, Enschede 7500 AE, The Netherlands. 

Wout Verhoef Faculty of Geo-Information Science and Earth Observation (ITC), 
University of Twente, P.O. Box 217, Enschede 7500 AE, The Netherlands, 

Wim Verjans Pcfruit research station, Fruittuinweg 1, BE-3800 Sint-Truiden, 
Belgium. 

Paolo Villa Institute for Electromagnetic Sensing of the Environment, National 
Research Council (IREA-CNR), via Bassini 15, Milan 20133, Italy. 

Cuizhen Wang Department of Geography, University of South Carolina,  
709 Bull St., Columbia, SC 29208, USA. 

Jing Wang Institute of Remote Sensing and Information Application, Zhejiang 
University, Hangzhou 310058, China. 

Li Wang The State Key Laboratory of Remote Sensing Science, Institute of Remote 
Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China. 

Limin Wang Institute of Agricultural Resources and Regional Planning, Chinese 
Academy of Agricultural Sciences/Key Laboratory of Resources Remote Sensing 
and Digital Agriculture, Ministry of Agriculture, Beijing 100081, China. 

Chuanwen Wei Institute of Remote Sensing and Information Application, 
Zhejiang University, Hangzhou 310058, China. 

Changshan Wu Department of Geography, University of Wisconsin-Milwaukee, 
Milwaukee, WI 53201, USA. 

Zhengwei Yang USDA National Agricultural Statistics Service, Research and 
Development Division, 3251 Old Iee Highway, Room 305, Fairfax, VA 22030, USA. 

http://www.mdpi.com/search?authors=Shinya%20Tanaka&orcid=
http://www.mdpi.com/search?authors=Yongchao%20Tian&orcid=
http://www.mdpi.com/search?authors=Laurent%20Tits&orcid=
http://www.mdpi.com/search?authors=Maria%20Tsakiri-Strati&orcid=
http://www.mdpi.com/search?authors=Jonathan%20Van%20Beek&orcid=
http://www.mdpi.com/search?authors=Christiaan%20van%20der%20Tol&orcid=
http://www.mdpi.com/search?authors=Wout%20Verhoef&orcid=
http://www.mdpi.com/search?authors=Wim%20Verjans&orcid=
http://www.mdpi.com/search?authors=Paolo%20Villa&orcid=
http://www.mdpi.com/search?authors=Cuizhen%20Wang&orcid=
http://www.mdpi.com/search?authors=Li%20Wang&orcid=
http://www.mdpi.com/search?authors=Limin%20Wang&orcid=
http://www.mdpi.com/search?authors=Jing%20Wang&orcid=
http://www.mdpi.com/search?authors=Chuanwen%20Wei&orcid=
http://www.mdpi.com/search?authors=Changshan%20Wu&orcid=


 XIII  

 

Xia Yao Jiangsu Collaborative Innovation Center for Modern Crop Production; 
Jiangsu Key Laboratory for Information Agriculture; National Engineering and 
Technology Center for Information Agriculture, Nanjing Agricultural University, 
Nanjing 210095, China. 

Jong-Min Yeom Earth Observation Research Team, Korea Aerospace Research 
Institute, 169-84 Gwahak-ro, Yuseong-Gu, Deajeon 305-806, Korea. 

Kazuaki Yoshida Gifu Region Agriculture and Forestry Office,  
5-14-53 YabutaMinami, Gifu 500-8384, Japan. 

Weifeng Yu International Center for Agro-Informatics and Sustainable 
Development, College of Resources and Environmental Sciences,  
China Agricultural University, Beijing 100083, China. 

Fei Yuan International Center for Agro-Informatics and Sustainable Development, 
College of Resources and Environmental Sciences, China Agricultural University, 
Beijing 100083, China; Department of Geography, Minnesota State University, 
Mankato, MN 56001, USA. 

Yulin Zhan The State Key Laboratory of Remote Sensing Science, Institute of 
Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, 
China. 

Chao Zhang College of Information & Electrical Engineering, China Agricultural 
University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China;  
Key Laboratory of Agricultural Information Acquisition Technology, Ministry of 
Agriculture, Beijing 100083, China. 

Kangyu Zhang Institute of Remote Sensing and Information Application, 
Zhejiang University, Hangzhou 310058, China. 

Ling Zhang Jiangsu Key Laboratory for Information Agriculture,  
National Engineering and Technology Center for Information Agriculture, 
Nanjing Agricultural University, Nanjing 210095, China. 

Feng Zhao School of Instrumentation Science and Opto-electronics Engineering, 
Beihang University, Beijing 100191, China. 

Guangming Zhao International Center for Agro-Informatics and Sustainable 
Development, College of Resources and Environmental Sciences,  
China Agricultural University, Beijing 100083, China. 

Huijie Zhao School of Instrumentation Science and Opto-electronics Engineering, 
Beihang University, Beijing 100191, China. 

Cheng Zhong Department of Geography, University of South Carolina,  
709 Bull St., Columbia, SC 29208, USA. 

http://www.mdpi.com/search?authors=Xia%20Yao&orcid=
http://www.mdpi.com/search?authors=Jong-Min%20Yeom&orcid=
http://www.mdpi.com/search?authors=Kazuaki%20Yoshida&orcid=
http://www.mdpi.com/search?authors=Weifeng%20Yu&orcid=
http://www.mdpi.com/search?authors=Fei%20Yuan&orcid=
http://www.mdpi.com/search?authors=Yulin%20Zhan&orcid=0000-0001-5771-4168
http://www.mdpi.com/search?authors=Ling%20Zhang&orcid=
http://www.mdpi.com/search?authors=Kangyu%20Zhang&orcid=
http://www.mdpi.com/search?authors=Chao%20Zhang&orcid=
http://www.mdpi.com/search?authors=Huijie%20Zhao&orcid=
http://www.mdpi.com/search?authors=Guangming%20Zhao&orcid=
http://www.mdpi.com/search?authors=Feng%20Zhao&orcid=


 XIV  

 

Chen Zhou Jiangsu Key Laboratory for Information Agriculture;  
National Engineering and Technology Center for Information Agriculture, 
Nanjing Agricultural University, Nanjing 210095, China. 

Dehai Zhu College of Information & Electrical Engineering, China Agricultural 
University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China;  
Key Laboratory of Agricultural Information Acquisition Technology, Ministry of 
Agriculture, Beijing 100083, China. 

Yan Zhu Jiangsu Collaborative Innovation Center for Modern Crop Production; 
National Engineering and Technology Center for Information Agriculture;  
Jiangsu Key Laboratory for Information Agriculture, National Engineering and 
Technology Center for Information Agriculture, Nanjing Agricultural University, 
Nanjing 210095, China. 

  

http://www.mdpi.com/search?authors=Cheng%20Zhong&orcid=
http://www.mdpi.com/search?authors=Chen%20Zhou&orcid=
http://www.mdpi.com/search?authors=Yan%20Zhu&orcid=
http://www.mdpi.com/search?authors=Dehai%20Zhu&orcid=


 XV  

 

About the Guest Editors 
Tao Cheng received his Ph.D. degree in Earth and Atmospheric Sciences from the 
University of Alberta, Edmonton, Canada in 2010. He is currently a Professor of 
agricultural remote sensing at Nanjing Agricultural University, Nanjing, China. 
From 2011 to 2013, he was a postdoctoral scholar in the Department of Land, Air 
and Water Resources at the University of California, Davis in the U.S. Dr. Cheng 
was appointed Jiangsu Distinguished Professor in 2014. He is a reviewer for 
Remote Sensing of Environment, Precision Agriculture, and many other international 
journals. He is a member of SPIE and IEEE Geoscience and Remote Sensing 
Society. His current research interests are in reflectance spectroscopy of 
vegetation, crop monitoring, unmanned aerial vehicle based remote sensing, and 
quantitative methods for vegetation characterization. 

Yan Zhu received her PhD degree from the Nanjing Agricultural University in 
2003. Currently, she is a full professor and the dean of College of Agriculture at 
NJAU. Prof. Zhu works mainly on information agriculture, specifically on crop 
modeling and crop monitoring. She has earned three National Second-Class 
Awards for Science and Technology Advancement and published about 250 papers, 
including over 70 papers in journals indexed by the Web of Science. Due to her 
outstanding achievements in the past few years, she was elected the “12 th Young 
Scientist Award of China” in 2011; “Leading Young Talents of China, Ministry of 
Science and Technology of China” in 2013; and “Youth Scholar of the Changjiang 
Scholars Program” in 2015. 

Weixing Cao received his PhD degree in crop physiology from Oregon State 
University in the U.S. in 1989 and then worked as a postdoctoral fellow and a 
research scientist at the University of Wisconsin. He has been a professor at 
Nanjing Agricultural University in China since 1994. He is currently the Director 
of the National Engineering and Technology Center for Information Agriculture 
(NETCIA), Vice President of the Crop Science Society of China, and Vice Governor 
of Jiangsu Province. Prof. Cao’s research interests are in the general fields of crop 
ecology and agro-informatics and he has accomplished outstanding achievements 
in the specific areas of crop growth modeling, growth monitoring, and precision 
management. Prof. Cao has earned three National Second-Class Awards for 
Science and Technology Advancement and the Achievement Award from the 
Crop Science Society of China. In addition, he was elected to the Distinguished 
Young Scholars by the National Science Foundation of China. 

  



 XVI  

 

Zhengwei Yang is an information technology specialist with the Research and 
Development Division, National Agricultural Statistics Service, the United States 
Department of Agriculture. He received a Ph.D. in Electrical Engineering from 
Drexel University, Philadelphia in 1997. Dr. Yang was a recipient of the 2011 
USDA Secretary’s Honor Award for Excellence, and the 2010 NASS Administrator’s 
Honor Award for Excellence. Dr. Yang's research interests include crop land 
cover, crop condition and growth monitoring and assessment, crop disaster 
monitoring and assessment, crop growth modeling and simulation, and geospatial 
application system design. Dr. Yang led the research and development of the web 
service, operational conterminous United States cropland crop cover geospatial 
information system—CropScape, and the operational crop vegetation condition 
monitoring geospatial information system—VegScape. He was one of the 
organizers of the First, Second and Third International Conferences on  
Agro-geoinformatics, and served as the chairman on the scientific committee. 

Yoshio Inoue is a research scientist at the National Institute for Agro-Environmental 
Sciences, Japan. He received his Ph.D. degree in plant ecophysiology from the 
Kyoto University in 1988. His research fields include: (1) Remote sensing, 
modeling and geospatial analysis of agro-ecosystem dynamics; (2) Wide area 
monitoring and assessment of agro-ecosystems based on remote sensing and 
geospatial information systems; and (3) Methodological study of remote and  
non-destructive sensing of plant eco-physiological information. He has been a 
Professor at the Graduate School of Life and Environmental Sciences, University 
of Tsukuba, from 1995. He is contributing to both domestic and international 
research communities as editor-in-chief, editor and/or reviewer for more than  
60 journals. 

  



 XVII  

 

Preface to “Recent Advances in Remote 
Sensing for Crop Growth Monitoring” 

Accurate and timely information on crop growth and conditions is critical for 
precision farming, crop management, crop yield estimation, crop disaster 
forecasting and mitigation, agricultural production planning, crop commodity 
trading, and food security decision support. Crop growth can be monitored with 
remotely sensed data acquired from various platforms including proximal 
devices, aircraft and satellites. While a large variety of studies focus on the crop 
growth parameters such as leaf nitrogen content and leaf area index, the 
community also shows huge interest in continuously monitoring crop spectral 
properties and large scale mapping of crop types and crop acreage. New 
analytical methods, instruments and applications for more accurate, reliable and 
efficient monitoring of crop conditions are continually reported in the literature. 

Crop growth cycles are essential for condition monitoring and often vary 
with different crop types. This has generated a lot of research interest on the use of 
remotely sensed data to monitor all major growth stages and on the development 
of robust algorithms for generalization across stages. Numerous studies have used 
crop phenological information for crop monitoring, from the direct use of multi-
temporal data to the addition of phenological metrics from time series data. To 
cope with the adverse effect of weather conditions, such as cloud cover and 
rainfall, on data acquisition, researchers have been working on integrating optical 
data with Synthetic Aperture Radar (SAR) data to avoid missing the observations 
at critical growth stages. 

This Special Issue was initiated at the International Symposium on Crop 
Growth Monitoring (ISCGM) held in Nanjing, China from September 13–16, 2014. 
It covers a selection of work reporting on recent advances in crop status 
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remotely sensed data. 
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Quantitative Estimation of Fluorescence
Parameters for Crop Leaves with
Bayesian Inversion
Feng Zhao, Yiqing Guo, Yanbo Huang, Wout Verhoef, Christiaan van der Tol,
Bo Dai, Liangyun Liu, Huijie Zhao and Guang Liu

Abstract: In this study, backward and forward fluorescence radiance within the
emission spectrum of 640–850 nm were measured for leaves of soybean, cotton,
peanut and wheat using a hyperspectral spectroradiometer coupled with an
integration sphere. Fluorescence parameters of crop leaves were retrieved from the
leaf hyperspectral measurements by inverting the FluorMODleaf model, a leaf-level
fluorescence model able to simulate chlorophyll fluorescence spectra for both sides
of leaves. This model is based on the widely used and validated PROSPECT
(leaf optical properties) model. Firstly, a sensitivity analysis of the FluorMODleaf
model was performed to identify and quantify influential parameters to assist the
strategy for the inversion. Implementation of the Extended Fourier Amplitude
Sensitivity Test (EFAST) method showed that the leaf chlorophyll content and the
fluorescence lifetimes of photosystem I (PSI) and photosystem II (PSII) were the
most sensitive parameters among all eight inputs of the FluorMODleaf model. Based
on results of sensitivity analysis, the FluorMODleaf model was inverted using the
leaf fluorescence spectra measured from both sides of crop leaves. In order to
achieve stable inversion results, the Bayesian inference theory was applied. The
relative absorption cross section of PSI and PSII and the fluorescence lifetimes
of PSI and PSII of the FluorMODleaf model were retrieved with the Bayesian
inversion approach. Results showed that the coefficient of determination (R2) and
root mean square error (RMSE) between the fluorescence signal reconstructed from
the inverted fluorescence parameters and measured in the experiment were 0.96 and
3.14 ˆ 10´6 W¨m´2¨ sr´1¨nm´1, respectively, for backward fluorescence, and 0.92
and 3.84 ˆ 10´6 W¨m´2¨ sr´1¨nm´1 for forward fluorescence. Based on results, the
inverted values of the fluorescence parameters were analyzed, and the potential of
this method was investigated.

Reprinted from Remote Sens. Cite as: Zhao, F.; Guo, Y.; Huang, Y.; Verhoef, W.;
van der Tol, C.; Dai, B.; Liu, L.; Zhao, H.; Liu, G. Quantitative Estimation of
Fluorescence Parameters for Crop Leaves with Bayesian Inversion. Remote Sens.
2015, 7, 14179–14199.
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1. Introduction

Chlorophyll fluorescence (ChlF) is considered a promising tool to effectively
assess photosynthetic rates of green plants [1] and to monitor stress conditions
of crops [2,3]. As a result, quantitative analysis of the ChlF signal using remote
sensing techniques has been conducted extensively in recent years [1,4], along
with development of leaf ChlF radiative transfer models that have improved
understanding of the interactions of sunlight with plant leaves [5–7].

Leaf ChlF radiative transfer models can be used to simulate leaf backward (the
emission direction opposite to the direction of the excitation light) and forward (the
emission direction same as the direction of the excitation light) ChlF spectra as a
function of the incident light, and the leaf biochemical and fluorescence parameters.
The FluorMOD project began in 2002 with a goal of developing an integrated
leaf-canopy fluorescence model [8]. As a subcomponent of the integrated model,
FluorMODleaf [6,8] is a leaf-level fluorescence model based on the PROSPECT
model [9,10] and can be used to calculate the radiative transfer of ChlF in plant leaves.
Besides the FluorMODleaf model, other leaf ChlF models were also developed.
For example, FLUSPECT [7] is another leaf ChlF radiative transfer model that is
also based on the PROSPECT model and uses fluorescence quantum efficiencies of
photosystem I (PSI) and photosystem II (PSII) as inputs. Computer-based Monte
Carlo methods were also developed to simulate the leaf-level ChlF signal [5].

The FluorMODleaf model has a total of eight input parameters [6]. Besides five
original parameters of the PROSPECT-5 model [9], i.e., leaf structure parameter N,
chlorophyll content Cab, carotenoid content Car, water content Cw, and dry matter
content Cm, three fluorescence parameters were newly introduced, i.e., the relative
absorption cross section of PSI and PSII, δ, and fluorescence lifetimes of PSI and
PSII, τI and τII. Definitions, units, and descriptions of the eight input parameters
of the FluorMODleaf model are illustrated in Table 1. Outputs of FluorMODleaf
model are the forward and backward apparent spectral fluorescence yield (ASFY),
besides leaf reflectance and transmittance. The FluorMODleaf model was evaluated
using experimental datasets, and good agreement between the model-simulated and
experimental data was shown [6]. However, the study on inversion of FluorMODleaf
was not reported.

The relative absorption cross section of PSI and PSII (δ) and fluorescence
lifetimes of PSI and PSII (τI and τII) are critical foliar parameters defining the
fluorescence emission properties of plant leaves. However, these fluorescence
parameters (1) are difficult to measure directly; (2) are species-dependent; and
(3) vary greatly under different environmental conditions [6]. Therefore, quantitative
retrieval of these fluorescence parameters from leaf hyperspectral fluorescence
data by inverting a physically-based ChlF radiative transfer model would be a
non-destructive and effective method to retrieve these parameters.
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Table 1. The definitions, units, and descriptions of the eight input parameters of
the FluorMODleaf model [6].

Parameter Definition Unit Description

N Leaf structure parameter -
Number of compact layers specifying
the average number of air/cell wall
interfaces within the mesophyll.

Cab Chlorophyll a+b content µg¨ cm´2 Mass of chlorophyll a+b per leaf area.

Car Total carotenoid content µg¨ cm´2 Mass of total carotenoid per leaf area.

Cw Water content g¨ cm´2 Mass of water per leaf area.

Cm Dry matter content g¨ cm´2 Mass of dry matter per leaf area.

δ
Relative absorption cross
section ratio -

The relative distribution of light
between the two photosystems, which
can be approximated by the product of
the PSII/PSI antenna size ratio.

τI
Fluorescence lifetimes of
photosystem I (PSI) ns

Average time the chlorophyll molecule
stays in its excited state before emitting
a photon from isolated PSI complexes.

τII
Fluorescence lifetimes of
photosystem II (PSII) ns

Average time the chlorophyll molecule
stays in its excited state before emitting
a photon from isolated PSII complexes.

Compared with the reflected and transmitted signals of leaves, leaf ChlF is very
weak. Therefore, in order to achieve stable inversion results, additional information
and inversion strategy should be used to improve the accuracy of the inverted
parameters. Bayesian inversion approach is a suitable alternative to impose a priori
information on the inversion process and has shown potential for the inversion
of remote sensing models [11]. By injecting reliable a priori information into the
inversion process, a more stable solution for the unknown parameters can be
achieved. As an effective way to alleviate ill-posed problems in the inversion process,
the Bayesian inversion approach has been used in studies for the retrieval of terrestrial
parameters from remote sensing data [12–14].

The objectives of this study were (1) to perform a sensitivity analysis of the
FluorMODleaf model in order to identify and quantify influential parameters; (2) to
retrieve the parameters of FluorMODleaf model using the experimental datasets.
Firstly, a sensitivity analysis of the FluorMODleaf model was performed using the
Extended Fourier Amplitude Sensitivity Test (EFAST) method. Based on sensitivity
analysis results, the FluorMODleaf model was inverted using the experimental
datasets acquired for four types of crop leaves. In order to achieve stable inversion
results, Bayesian theory was introduced into the inversion process. The relative
absorption cross section of PSI and PSII (δ) and fluorescence lifetimes of PSI and
PSII (τI and τII) were then estimated with the Bayesian inversion approach of the
FluorMODleaf model. Finally, the inversion results were validated and analyzed.
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2. Materials and Methods

2.1. Experimental Datasets

Datasets at leaf level for four crop leaves were used in this study, and two field
experiments were conducted. For each leaf, hyperspectral data and the biochemical
content were obtained. Two leaves (for wheat) or three (for soybean, cotton and
peanut) with similar color, height in the plant and physiological condition by visual
inspection were chosen as a group for measurement of reflectance, transmittance,
backward and forward fluorescence, and biochemical content. Then, data averages
from these two or three leaves were used as a group for subsequent inversion.

The first experiment was conducted for winter wheat (Triticum) at the Beijing
Academy of Agriculture and Forestry Sciences (39.942˝N, 116.277˝E) on 8 May 2014.
Eight green leaves were measured with a hyperspectral spectroradiometer coupled
with an integration sphere during 10:00–18:00 Beijing time.

The second experiment was conducted at the Huailai Remote Sensing Test Site
(40.349˝N, 115.785˝E), Chinese Academy of Sciences, which is located at Huailai
County, Hebei Province, China, during 15–19 September 2014. Three crops, soybean
(Glycine max), cotton (Gossypium) and peanut (Arachis hypogaea), were targeted in the
experiment. In the experiment, three leaves as a group were used for the experiment
every hour from 9:00–18:00 for soybean, 9:00–15:00 for cotton, and 9:00–17:00 for
peanut. Twenty-seven soybean leaves, 18 cotton leaves and 24 peanut leaves were
measured in the experiment. Leaves from different heights and physiological
conditions were measured in order to make the datasets more representative. Among
them, a group of three senescent leaves with brown color for peanut was measured
to compare with green leaves.

Similar to the measurement protocol of Zarco-Tejada et al. [15] and Zhang [16],
the leaf hyperspectral data were measured using a LI-COR 1800-12 system integrating
sphere apparatus (LI-COR Inc., Lincoln, NE, USA) coupled with an ASD FieldSpec
Pro spectroradiometer (ASD Inc., Boulder, CO, USA) and removable filter, as
shown in Figure 1. However, different from the protocol of using a long-pass
filter by Zarco-Tejada et al. [15], a short-pass filter was used instead in front of
the lamp in our experiment with irradiance longer than 640 nm being cut-off.
Therefore, the reflected/transmitted signal should be filtered out in wavelengths
longer than 640 nm, and the signal measured by the spectroradiometer within
the wavelength range of 640–850 nm would be composed mainly of the emitted
ChlF signal. The spectral data were measured in situ with leaves attaching to
their stems. The hyperspectral measurements were conducted under guidance
of the LI-COR integrating sphere manual [17]. The spectral resolution and spectral
sampling interval of the spectroradiometer are 3 nm and 1 nm, respectively. An
integration time of 1.09 s was used for all the measurements.
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It is worth noting that the radiance of the lamp in the experiment was very
low, compared with the solar radiance under natural conditions. Therefore, the
fluorescence radiance measured in this experiment would be lower than that
under natural conditions, because the magnitude of the fluorescence radiance is
proportional to the magnitude of the excitation radiance [8]. A typical radiance
distribution of the lamp with the short-pass filter is shown in Figure 2. Lamp’s
radiance passing through the filter is close to zero in the fluorescence emission
wavelengths (640–850 nm), except for the initial parts of the cut-off wavelengths
because of the instrument limit.
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Three measurements of leaf reflectance and backward fluorescence were
acquired by placing leaf sample as shown in Figure 1a: radiance of the leaf sample
(Lbls

on), reference standard (Lbrs
on), and dark current (Lbdc

on). Then, another three
measurements without the filter were acquired: radiance of the leaf sample (Lbls

off),
reference standard (Lbrs

off), and dark current (Lbdc
off). The reflectance (Rleaf) and

backward fluorescence radiance (Fb) of the leaf sample can be calculated as:

Rlea f “
Lbo f f

ls ´ Lbo f f
dc

Lbo f f
rs ´ Lbo f f

dc

¨ Rre f (1)

Fb “ pLbon
ls ´ Lbon

dc q ´ pLbon
rs ´ Lbon

dc q ¨ Rlea f (2)

where Rref is the reflectance of the reference standard. The first part of the right side
of the Equation (2) includes both mostly fluorescence emission by the leaf, and a
small residual radiance reflected by the leaf, because transmittance of the filter is not
exactly zero. The second part is added to correct the instrument limit.

To measure the transmittance and forward fluorescence, the leaf sample was
moved to the front of the lamp, as shown in Figure 1b. Similarly, three measurements
with the filter were acquired: radiance of the leaf sample (Lflson), reference standard
(Lfrs

on), and dark current (Lfdc
on). Then, another three measurements without the

filter were acquired: radiance of the leaf sample (Lflsoff), reference standard (Lfrs
off),

and dark current (Lfdc
off). The transmittance (Tleaf) and forward fluorescence radiance

(Ff) of the leaf sample can be calculated as:

Tlea f “
L f o f f

ls ´ L f o f f
dc

L f o f f
rs ´ L f o f f

dc

¨ Rre f (3)

Ff “ pL f on
ls ´ L f on

dc q ´ pL f on
rs ´ L f on

dc q ¨ Tlea f (4)

The output of the FluorMODleaf model is ASFY (in unit of nm´1), which is
defined as the ratio of the number of photons emitted by the leaf surface, per unit
spectral bandwidth, to the number of incident photons [6,8], and not the fluorescence
radiance measured in our experiment. Therefore, the output of the FluorMODleaf
model was converted from ASFY into fluorescence radiance in order to be consistent
with experimental data. The conversion was performed with the following formulae:

Fbpλemq “

ż 650

400

Llamp
onpλexq ¨ bmodpλex, λemq ¨ λex

λem
dλex (5)

Ff pλemq “

ż 650

400

Llamp
onpλexq ¨ fmodpλex, λemq ¨ λex

λem
dλex (6)
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where λex and λem represent the fluorescence excitation and emission wavelengths,
respectively; bmod and fmod are the backward and forward ASFYs simulated by
FluorMODleaf, respectively; Llamp

on is the radiance of the lamp with the filter
used in the integrating sphere apparatus; Fb and Ff are the backward and forward
fluorescence radiance calculated from the output of the FluorMODleaf model,
which are now directly comparable with the quantities calculated respectively by
Equations (2) and (4) in the experiment.

After the spectral measurements, the leaves were immediately cut from the
plants, placed into black plastic bags surrounded by ice lumps, and taken to
the laboratory for biochemical analysis. Chlorophyll a + b content (Cab, in unit
of µg/cm2), total carotenoid content (Car, in unit of µg/cm2), water content (Cw, in
unit of g/cm2), and dry matter content (Cm, in unit of g/cm2) were measured for
each leaf in the laboratory. Six leaf disks of 15 mm diameter were punched from each
leaf sample, chopped into small pieces, and then dropped into the vial with ethanol
solution and covered with aluminum foil. After 48 h in the dark environment, the
solution was used for measuring the chlorophyll content and carotenoid content
using a Shimadzu UV160U Spectrophotometer (Shimadzu Corp., Kyoto, Japan),
using the method described by Lichtenthaler and Buschmann [18]. In order to
measure the water and dry matter contents, the remaining portions of the leaves
were scanned to determine leaf area and weighed to measure their fresh weight.
They were then oven-dried at 80 ˝C for 48 h, and reweighed to determine dry weight.

2.2. Sensitivity Analysis

Sensitivity analysis investigates the response of a model to variations of its
input parameters by statistically calculating a limited, but representative number of
simulations [19,20]. The analysis has been shown to be effective to help make strategy
for the inversion of radiation transfer models [21]. Compared with the classic FAST
(Fourier Amplitude Sensitivity Test) method for the sensitivity analysis of the models,
which is only able to compute the first order sensitivity index, the Extended FAST
(EFAST) method proposed by Saltelli et al. [20] allows the simultaneous computation
of the first order and the total sensitivity indices for a given input parameter [21].
Therefore, in this study, the EFAST method was used for the sensitivity analysis of
the FluorMODleaf model. The first order sensitivity index gives the independent
effect of each parameter, while the total sensitivity index contains both independent
effect of each parameter and the interaction effects with the others.

In the sensitivity analysis test, ranges of N, Cab, Car, Cw, Cm, τI, τII, and
δ were defined as 1–2.5, 0.4–76.8 µg/cm2, 0–25.3 µg/cm2, 0.0044–0.0340 g/cm2,
0.0017–0.0331 g/cm2, 0.034–0.1 ns, 0.3–2.0 ns, and 1.0–2.4, respectively, based on a
previous study [6]. One thousand combinations of the parameters were randomly
selected from their ranges as the inputs. Then, for each combination of the input
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parameters, the spectra of the backward and forward fluorescence were simulated
by the FluorMODleaf model. All simulated fluorescence spectra combined with the
corresponding selected values of input parameters were used as input data for the
sensitivity analysis. Detailed procedure and formulae can be found in our previous
studies [21,22].

2.3. Inversion Procedure

The inversion procedure includes two steps. In the first step leaf structural
and biochemical parameters were inverted. Then, they were fixed at their inverted
values for the second step to retrieve the rest three fluorescence parameters. In each
step, an efficient global optimization algorithm based on simulated annealing, which
was constructed and used in our former study [21], was applied in the inversion
procedure to minimize the merit functions described below.

In the first step, the leaf structure parameter N was firstly inverted from the
measured data of leaf reflectance (ρleaf) and transmittance (τleaf) by minimizing the
following merit function Fn(N), which is defined in the near-infrared wavelengths
(λ) of 750–1300 where N is the most sensitive parameter among the input parameters
of the PROSPECT-5 model [22]:

FnpNq “
ř

λPr750,1300s

"

”

ρlea f pλq ´ ρsimupN, Cab, Car, Cw, Cm, λq
ı2
`

”

τlea f pλq ´ τsimupN, Cab, Car, Cw, Cm, λq
ı2
*

(7)

where ρsimu and τsimu are the leaf reflectance and transmittance simulated by the
FluorMODleaf model. During this step, the biochemical parameters, i.e., Cab, Car, Cw,
and Cm, were all maintained at their measured values.

Then, the other four parameters of the PROSPECT-5 model, including Cab,
Car, Cw, and Cm, were inverted by minimizing the following merit function
Fp(Cab,Car,Cw,Cm), with the leaf structure parameter N being maintained at its
inverted value obtained in the first step:

FppCab, Car, Cw, Cmq

“
ř

λPr400,2500s

"

”

ρlea f pλq ´ ρsimupN, Cab, Car, Cw, Cm, λq
ı2
`

”

τlea f pλq ´ τsimupN, Cab, Car, Cw, Cm, λq
ı2
*

(8)

The merit function is defined on the spectral region of the PROSPECT-5 model
(i.e., 400–2500 nm).

In the second step of the inversion procedure, the fluorescence parameters τI,
τII, and δ were retrieved from the measured leaf fluorescence spectra by minimizing
the following merit function Ff (τI,τII,δ), while the other parameters were all
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maintained at their inverted values obtained in the first step. The merit function
Ff (τI,τII,δ,N,Cab,Car) was constructed with the Bayesian inversion theory [11,23]:

F f pτI , τI I , δq � 1
2 pFbsimu � Fbmeasq

TCnb
�1pFbsimu � Fbmeasq

� 1
2 pFfsimu � Ffmeasq

TCn f
�1pFfsimu � Ffmeasq �

1
2 px� xprioriq

TCx
�1px� xprioriq

(9)

where Fbmeas and Ffmeas are the backward and forward fluorescence measured in
the experiment, respectively; Fbsimu and Ffsimu are the forward and backward
fluorescence calculated by the output of FluorMODleaf model, as shown in
Equations (5) and (6) respectively; Cnb and Cnf are the inaccuracy of model
simulations and the noise covariance matrices for the measurements of the backward
and forward fluorescence, respectively; x contains the unknown variables; xpriori is
the a priori guess of the unknown variables; and Cx is the covariance matrix of the a
priori variables. The expressions of these vectors and matrices are:

Fbmeas � r Fbmeaspλ1q Fbmeaspλ2q � � � Fbmeaspλ211q s
T

Ffmeas � r F fmeaspλ1q F fmeaspλ2q � � � F fmeaspλ211q s
T

Fbsimu � r FbsimupτI , τI I , δ, λ1q FbsimupτI , τI I , δ, λ2q � � � FbsimupτI , τI I , δ, λ211q s
T

Ffsimu � r F fsimupτI , τI I , δ, λ1q F fsimupτI , τI I , δ, λ2q � � � F fsimupτI , τI I , δ, λ211q s
T

Cnb � diag[ σbpλ1q
2 σbpλ2q

2 � � � σbpλ211q
2
s

Cn f � diag[ σ f pλ1q
2 σ f pλ2q

2 � � � σ f pλ211q
2
s

x � r τI τI I δ s
T

xpriori � r τI
priori τI I

priori δpriori s
T

Cx � diag[σpτIq
2σpτI Iq

2σpδq2s

where λ1, λ2, . . . , λ211 represent the wavelengths of 640 nm, 641 nm, . . . , 850 nm,
respectively. The τI, τII, and δ are the variables during the inversion process. The
τI

priori, τII
priori, and δpriori are the a priori guesses of τI, τII, and δ, respectively. The

σ(τI)2, σ(τII)2, and σ(δ)2 are the variances of the a priori guesses of τI, τII, and δ,
respectively. The σb and σf represent the measurement noise of backward and
forward fluorescence and uncertainty of model accuracy. The covariance matrices
of observation and model uncertainty (Cnb and Cnf) and of the a priori variables (Cx)
determine the respective weights from the measurements and a priori knowledge
to the cost function. However, their determinations are difficult and somewhat
subjective. Detailed discussion on this can be found in [14]. Here, the leaf fluorescence
measurements are considered high quality, especially for the spectral range of
670–800 nm. Therefore, higher weights for these leaf measurements are given than
those for a priori knowledge.
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The first and second terms of the merit function Ff (τI,τII,δ) in Equation (9) aim
to search for values for the unknown fluorescence parameters (τI, τII, and δ) that best
match the simulated backward and forward fluorescence to their correspondingly
measured ones, respectively. The third term of the merit function is to inject a priori
knowledge to the merit function. The a priori guesses of τI, τII, and δ (i.e., τI

priori,
τII

priori, and δpriori) were selected as the standard values of τI, τII, and δ given by
Pedrós et al. [6]. Variances of the a priori guesses of τI, τII, and δ (i.e., σ (τI)2, σ (τII)2,
and σ (δ)2) were estimated by assuming these parameters were uniformly distributed
within the variation ranges with the reference given in [6]. The a priori knowledge
assigned in this study for the unknown parameters is shown in Table 2.

Table 2. A priori knowledge for the relative absorption cross section of photosystem
I (PSI) and photosystem II (PSII) (δ), the fluorescence lifetimes of PSI and PSII (τI and
τII) with the reference given in [6] for the Bayesian inversion of the FluorMODleaf
model. The a priori knowledge is provided as the a priori guesses and the variances
of these a priori guesses.

Parameter τI τII δ

A priori guess 0.035 0.5 1
Variances of the a

priori guess 0.0833 0.3333 0.48

The results of the Bayesian inversion procedure contain both the posterior
estimates of the unknown parameters of τI, τII, and δ, which are obtained by
minimizing the merit function as defined in Equation (9), and the covariance matrix
of the posterior estimates, which contains the posterior variances of the inverted
values of the unknown parameters. The covariance matrix of the posterior estimates
is calculated as:

Cpost “ rhbpx
˚q

TCnb
´1hbpx

˚q ` h f px
˚q

TCn f
´1h f px

˚q `Cx
´1s

´1
(10)

where x* is a vector that contains the posterior estimates of the unknown parameters
of τI, τII, and δ; h(x*) is the Jacobian matrix for the FluorMODleaf model at the point
of x* and expressed as:

hbpx˚q “

»

—

—

—

—

—

—

—

–

BFbsimupλ1q
BτI

ˇ

ˇ

ˇ

τI“τ˚
I

BFbsimupλ2q
BτI

ˇ

ˇ

ˇ

τI“τ˚
I

...
BFbsimupλ211q

BτI

ˇ

ˇ

ˇ

τI“τ˚
I

BFbsimupλ1q
BτI I

ˇ

ˇ

ˇ

τI I“τ˚
I I

BFbsimupλ2q
BτI I

ˇ

ˇ

ˇ

τI I“τ˚
I I

...
BFbsimupλ211q

BτI I

ˇ

ˇ

ˇ

τI I“τ˚
I I

BFbsimupλ1q
Bδ

ˇ

ˇ

ˇ

δ“δ˚

BFbsimupλ2q
Bδ

ˇ

ˇ

ˇ

δ“δ˚

...
BFbsimupλ211q

Bδ

ˇ

ˇ

ˇ

δ“δ˚

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl
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h f px˚q “

»

—

—

—

—

—

—

—

–

BF fsimupλ1q
BτI

ˇ

ˇ

ˇ

τI“τ˚
I

BF fsimupλ2q
BτI

ˇ

ˇ

ˇ

τI“τ˚
I

...
BF fsimupλ211q

BτI

ˇ

ˇ

ˇ

τI“τ˚
I

BF fsimupλ1q
BτI I

ˇ

ˇ

ˇ

τI I“τ˚
I I

BF fsimupλ2q
BτI I

ˇ

ˇ

ˇ

τI I“τ˚
I I

...
BF fsimupλ211q

BτI I

ˇ

ˇ

ˇ

τI I“τ˚
I I

BF fsimupλ1q
Bδ

ˇ

ˇ

ˇ

δ“δ˚

BF fsimupλ2q
Bδ

ˇ

ˇ

ˇ

δ“δ˚

...
BF fsimupλ211q

Bδ

ˇ

ˇ

ˇ

δ“δ˚

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

The posterior standard deviations of the inverted parameters are contained in
the main diagonal of Cpost:

Cpost “

»

—

–

υ2
τI

υ2
12 υ2

13

υ2
21 υ2

τI I
υ2

23

υ2
31 υ2

32 υ2
δ

fi

ffi

fl

(11)

where vτI, vτII, and vδ are the posterior standard deviations of τI
*, τII

*, and δ,
respectively; and the other elements in Cpost are the covariance values between
each two inverted parameters.

The flow diagram of the inversion procedure is illustrated in Figure 3.
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3. Results and Discussion

3.1. Distributions of the Fluorescence Spectra

In Figure 4a, examples of the measured leaf radiance spectra of the sample with
and without the filter are shown for the measurement of backward fluorescence;
Figure 4b illustrates measurement of forward fluorescence. Corresponding measured
leaf fluorescence radiance is also shown in the inset using a finer scale.

In Figure 5, the curves show the mean fluorescence spectra measured in
the experiments for crop leaves, and the corresponding shaded areas represent
standard deviations of the measured spectra. For the backward fluorescence
spectra (Figure 5a,c), two peaks can be observed, with the left one being located
approximately at 690 nm and the right one at 740 nm; the right peak higher than the
left peak. For the forward fluorescence spectra (Figure 5b,d), the left peak is weak,
and almost unnoticeable for wheat leaves (Figure 5b). Highest contrasts between the
left and right peaks for both backward and forward fluorescence are observed for
soybean leaves (Figure 5c,d). Cotton (Figure 5a,b) and peanut (Figure 5c,d) leaves
show relatively lower magnitude of fluorescence, especially for the former. For
the peanut leaves (Figure 5c,d), higher variance for both backward and forward
fluorescence spectra can be observed. This higher variance was probably caused by
the inclusion of the spectra of senescent leaves, whose left peaks for both backward
and forward fluorescence are higher than the right peaks (not shown herein).

Generally, shapes of the fluorescence spectra and positions of left peak (occurs
in the range of 686–691 nm) and right peak (in the range of 739–743 nm) measured
in this study are consistent with the spectra measured by a specifically designed
equipment (FluoWat) to measure leaf fluorescence reported in other studies [24–26].
However, intensity of the lamp with the filter used in this study is much weaker
than that of FluoWat. Thus, values for fluorescence radiance measured here are
lower and not directly comparable with those by FluoWat. It can be observed that
fluorescence radiance is higher for backward measurements compared with forward
measurements for all four crop leaves because absorption and scattering effect are
stronger for the forward measurements [27].

It can also be seen that the fluorescence radiance at right peak is generally higher
than the one at left peak. This phenomenon is probably caused by the fact that most
leaves chosen in the experiment are green and healthy ones, whose fluorescence
emission around left peak subjects to strong re-absorption due to the overlap with
red region of chlorophyll absorption. This is especially evident for the forward
fluorescence spectra with relatively weaker left peaks, since emitted fluorescence
travels from the adaxial to the abaxial leaf side and experiences stronger re-absorption.
However for the senescent peanut leaves with low chlorophyll contents, as noted
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above, the left peaks are higher than the right peaks of both backward and forward
fluorescence spectra.
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Figure 4. Examples of the radiance spectra of the leaf sample with and without
the filter when measuring (a) backward fluorescence and (b) forward fluorescence.
Insets: distributions of measured leaf backward and forward fluorescence radiance
with the same unit but in finer scale.

The differences of peak distributions may also be caused by actual engagement
of two photosystems. The left peak originates mainly from PS II, while the right
peak originates from both PS I and PS II. Since factors from physiological drivers to
environmental drivers can trigger dynamic regulation of the two photosystems [8],
magnitudes of the two peaks will be changing accordingly. This reason may explain
why the distributions of backward and forward fluorescence between the peaks for
wheat leaves are slightly different from those by other three types of crop leaves.
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Figure 5. The mean fluorescence spectra measured in the experiments. (a) The backward 
fluorescence spectra for wheat and cotton leaves; (b) The forward fluorescence spectra for 
wheat and cotton leaves; (c) The backward fluorescence spectra for soybean and peanut 
leaves; (d) The forward fluorescence spectra for soybean and peanut leaves. The shaded 
portions represent standard deviation of the measured spectra. 

It can also be seen that the fluorescence radiance at right peak is generally higher than the one at left 
peak. This phenomenon is probably caused by the fact that most leaves chosen in the experiment are 
green and healthy ones, whose fluorescence emission around left peak subjects to strong re-absorption 
due to the overlap with red region of chlorophyll absorption. This is especially evident for the forward 
fluorescence spectra with relatively weaker left peaks, since emitted fluorescence travels from the 
adaxial to the abaxial leaf side and experiences stronger re-absorption. However for the senescent peanut 
leaves with low chlorophyll contents, as noted above, the left peaks are higher than the right peaks of 
both backward and forward fluorescence spectra. 

The differences of peak distributions may also be caused by actual engagement of two photosystems. 
The left peak originates mainly from PS II, while the right peak originates from both PS I and PS II. 

Figure 5. The mean fluorescence spectra measured in the experiments. (a) The
backward fluorescence spectra for wheat and cotton leaves; (b) The forward
fluorescence spectra for wheat and cotton leaves; (c) The backward fluorescence
spectra for soybean and peanut leaves; (d) The forward fluorescence spectra for
soybean and peanut leaves. The shaded portions represent standard deviation of
the measured spectra.

Removal of light with the cut-off filter of 640 nm is biasing the performance of
photosynthetic apparatus towards the PS II center, which may additionally affect
the peak distributions. Therefore, the noticeable differences in magnitude and subtle
distributions of fluorescence for different crops may result from differences in leaf
structure of species, pigment contents, and crop physiological conditions.
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3.2. Results of Sensitivity Analysis for the FluorMODleaf Model

Results of sensitivity analysis for the FluorMODleaf model are illustrated in
Figure 6. Figure 6a shows the first order sensitivity indices of the input parameters of
the FluorMODleaf model to the backward fluorescence. The total sensitivity indices
of the input parameters are similar to the first order sensitivity indices, and, therefore,
are not shown here. It shows that τI, τII, and Cab are the most sensitive parameters
among all eight input parameters. The τI is more sensitive in the near-infrared
region where the PSI contributes the major fluorescence emission, while the τII
is more sensitive in the red region where the PSII is the main photosystem that
emits fluorescence. The Cab is a sensitive parameter within the spectral range of
640–850 nm, because it not only has an absorption effect for the emitted ChlF, but it
also determines the excitation efficiency of leaves. The Car is also a relatively sensitive
parameter because it partially transfers the absorbed energy to chlorophylls for ChlF
emission [6].

For the first order sensitivity indices of the forward fluorescence (Figure 6b), τI,
τII, and Cab are still the most influential parameters. It can also be seen that the model
becomes relatively sensitive to leaf structural parameter N in the red region compared
with its sensitivity of the backward fluorescence. It is because the absorption effect
of the leaf biochemical contents (mainly the Cab and Car) can be indirectly affected by
the leaf thickness through the photon’s path length, and this effect is more obvious
for the forward fluorescence than for the backward fluorescence.

It was also found that the model is relatively insensitive to parameters Cw and
Cm with sensitivity indices lower than 0.05 in the wavelength region of 640–850 nm
for both the forward and backward fluorescence. This is because the absorption
effects of Cw and Cm are relatively insignificant within the ChlF emission region of
640–850 nm.

From the results of sensitivity analysis for FluoMODleaf model, it can be
observed that all three fluorescence parameters are relatively influential, although
the extents are different for different spectral bands. Thus, it is feasible to invert
these parameters from the leaf fluorescence measurements. Three other parameters,
Cab, Car, and N are also sensitive to the leaf fluorescence. However, as inversion
studies by using leaf reflectance and transmittance show [9,21], these parameters and
other two insensitive parameters, Cw and Cm, for FluorMODleaf, can be successfully
inverted by the PROSPECT model. Thus, two stages of inversion were employed:
in the first stage, five parameters, N, Cab, Car, Cw and Cm, were inverted by leaf
reflectance and transmittance, and they were fixed at these inverted values; in
the second stage, only three fluorescence parameters are changed to optimize the
cost function.
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Figure 6. The sensitivity analysis results of the FluorMODleaf model. (a) The first order 
sensitivity indices of the input parameters to the backward fluorescence; (b) The first order 
sensitivity indices of the input parameters to the forward fluorescence. 

3.3. Retrieval Results of the Leaf Biochemical Contents 

Figure 7 shows the results of the first step inversion for chlorophyll content (Cab), carotenoid content 
(Car), water content (Cw), and dry matter content (Cm) for four crops’ leaves. The dashed 1:1 line and the 
equation of regression line are also presented in the figures. It can be observed that retrieved values agree 
well with their corresponding measured values for Cab (Figure 7a), Car (Figure 7b) and Cm (Figure 7d). 
For Cw (Figure 7c), measured values are generally lower than the inverted ones, which is probably caused 
by the water loss during the later weighting process in the laboratory before oven-drying. It can be found 
that biochemical contents of peanut leaves cover relatively larger ranges, notably for a low value of Cab 
around 15 μg/cm2, which corresponds to the senescent leaves. The coefficient of determination (R2) and 
root mean square error (RMSE) between the retrieved and measured values are 0.90 and 3.38 μg/cm2, 
0.83 and 0.93 μg/cm2, 0.60 and 0.00379 g/cm2, and 0.61 and 0.00326 g/cm2, for Cab, Car, Cw, and Cm, 
respectively. This generally good agreement between retrieved and measured leaf biochemical contents, 
especially for the two sensitive parameters for fluorescence, Cab and Car, assists the second step inversion 
for the fluorescence parameters. 

Figure 6. The sensitivity analysis results of the FluorMODleaf model. (a) The
first order sensitivity indices of the input parameters to the backward fluorescence;
(b) The first order sensitivity indices of the input parameters to the forward fluorescence.

3.3. Retrieval Results of the Leaf Biochemical Contents

Figure 7 shows the results of the first step inversion for chlorophyll content
(Cab), carotenoid content (Car), water content (Cw), and dry matter content (Cm)
for four crops’ leaves. The dashed 1:1 line and the equation of regression line are
also presented in the figures. It can be observed that retrieved values agree well
with their corresponding measured values for Cab (Figure 7a), Car (Figure 7b) and
Cm (Figure 7d). For Cw (Figure 7c), measured values are generally lower than the
inverted ones, which is probably caused by the water loss during the later weighting
process in the laboratory before oven-drying. It can be found that biochemical
contents of peanut leaves cover relatively larger ranges, notably for a low value of
Cab around 15 µg/cm2, which corresponds to the senescent leaves. The coefficient
of determination (R2) and root mean square error (RMSE) between the retrieved
and measured values are 0.90 and 3.38 µg/cm2, 0.83 and 0.93 µg/cm2, 0.60 and
0.00379 g/cm2, and 0.61 and 0.00326 g/cm2, for Cab, Car, Cw, and Cm, respectively.
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This generally good agreement between retrieved and measured leaf biochemical
contents, especially for the two sensitive parameters for fluorescence, Cab and Car,
assists the second step inversion for the fluorescence parameters.Remote Sens. 2015, 7 14193 
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Figure 7. Scatter diagram of inverted and measured values of the chlorophyll content (a); 
carotenoid content (b); water content (c); and dry matter content (d) for four crop leaves. 
The coefficient of determination (R2) and root mean square error (RMSE) between the 
retrieved and measured values are also provided. 

3.4. Inversion Results of the Fluorescence Parameters 

The fluorescence parameters were retrieved from the leaf spectral measurements by the Bayesian 
inversion approach. Figure 8 shows the retrieved fluorescence lifetimes of PSI and PSII (τI and τII), the 
relative absorption cross section of PSI and PSII (δ), and their standard deviations by inverting the 
FluorMODleaf model for soybean, cotton, peanut and wheat leaves. It can be observed that τI is more 
stable for all four crop types, predominantly in the range of 0.05–0.15 ns. This relatively weak variation 
is consistent with the assumption that PSI fluorescence does not change with photochemistry, though 
may change with species [6]. However, for τII, larger variations within and between species are observed. 
τII for soybean is much larger than the other three crops. By comparing the distributions of fluorescence 
spectra of four crops (Figure 5), we can see that values in the red parts (around the left peak) of the leaf 
fluorescence spectra for soybean are more distinct and higher than those for other three crops. Since 
fluorescence emission in this spectral part mainly originates from PSII, higher values of τII, 
corresponding to higher contribution from PSII, are obtained. In the FluorMODleaf model, the relative 
absorption cross section ratio δ affects the fractions of contributions by PSI and PSII to the total 

Figure 7. Scatter diagram of inverted and measured values of the chlorophyll
content (a); carotenoid content (b); water content (c); and dry matter content (d) for
four crop leaves. The coefficient of determination (R2) and root mean square error
(RMSE) between the retrieved and measured values are also provided.

3.4. Inversion Results of the Fluorescence Parameters

The fluorescence parameters were retrieved from the leaf spectral measurements
by the Bayesian inversion approach. Figure 8 shows the retrieved fluorescence
lifetimes of PSI and PSII (τI and τII), the relative absorption cross section of PSI and
PSII (δ), and their standard deviations by inverting the FluorMODleaf model for
soybean, cotton, peanut and wheat leaves. It can be observed that τI is more stable for
all four crop types, predominantly in the range of 0.05–0.15 ns. This relatively weak
variation is consistent with the assumption that PSI fluorescence does not change
with photochemistry, though may change with species [6]. However, for τII, larger
variations within and between species are observed. τII for soybean is much larger
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than the other three crops. By comparing the distributions of fluorescence spectra of
four crops (Figure 5), we can see that values in the red parts (around the left peak) of
the leaf fluorescence spectra for soybean are more distinct and higher than those for
other three crops. Since fluorescence emission in this spectral part mainly originates
from PSII, higher values of τII, corresponding to higher contribution from PSII, are
obtained. In the FluorMODleaf model, the relative absorption cross section ratio
δ affects the fractions of contributions by PSI and PSII to the total fluorescence, with
lower value corresponding to larger contributions from PSI, and higher one to larger
contributions from PSII. For our measurements, most leaves show a higher right
peak than the left peak, except for some leaves with low chlorophyll contents. Thus,
for soybean with the more distinct contrast of fluorescence spectra and wheat with a
bit less extent, generally low δ values were obtained. For cotton and peanut leaves
with relatively weak contrast between the left and right peaks, δ values are generally
higher. For the senescent peanut leaves, inverted δ reaches 1.71. The inverted values
of δ here are generally lower than the values suggested by Pedrós et al. [6]. Besides,
the aforementioned features of measured fluorescence data, this difference may
also be caused by the different experimental setup and light source used in our
experiment. Another output of the Bayesian inversion with the inverted parameters
is their corresponding posterior standard deviations. These posterior standard
deviations are always lower than the standard deviations of the a priori guess, which
shows the reduction of uncertainty of model parameters during the inversion.
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Figure 8. The fluorescence lifetimes of PSI and PSII (τI and τII), the relative
absorption cross section of PSI and PSII (δ), and the standard deviations by inverting
the FluorMODleaf model for four crops’ leaves.

Although different leaves of the crops at different times in a day were
sampled in the measurement, the results show that the fluorescence parameters
are species-dependent and sensitive to biochemical contents and environmental
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factors. Because of the complexity of the relationship between fluorescence emission
and the plant physiology, it is difficult at this stage to quantitatively interpret
physiological meaning of these inverted fluorescence parameters. Further studies
with simultaneous measurement of photosynthetic functions and fluorescence
emission spectra are needed to better understand these parameters.

These fluorescence parameters are difficult to measure directly, and consequently
it is difficult to evaluate the inversion results through measurements. As an alternative,
the fluorescence spectra reconstructed from the inverted fluorescence parameters
and measured in the experiment, both with a step of 1 nm, were then compared.
The comparison results are shown in Figure 9a,b for leaf backward and forward
fluorescence, respectively. R2 and RMSE are 0.96 and 3.14ˆ 10´6 W¨m´2¨ sr´1¨nm´1,
respectively, for backward fluorescence, and 0.92 and 3.84ˆ 10´6 W¨m´2¨ sr´1¨nm´1

for forward fluorescence, which indicates a high accuracy of the inversion results. The
reconstructed and measured fluorescence radiances at two peaks (690 and 740 nm) are
also presented in the insets, which do not show systematic deviations between them.
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Figure 9. Comparison between the leaf fluorescence radiance spectra reconstructed from the 
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3.5. Potential and Limitations of Applying Model Inversion for the Retrieval of Leaf  
Fluorescence Parameters 

The ChlF signal can provide critical information about the growth status of plants, and therefore it 
has been used as an effective tool to monitor plant stress induced by air pollution [25,26], water  
deficit [28,29], herbicide treatment [2], and salt and drought [30]. Quantitative estimation of the 
fluorescence parameters for crop leaves would be of high importance in assessing the photosynthetic 
rates of green plants and monitoring the stress conditions of crops. In this study, the leaf-level 
FluorMODleaf model was inverted using the leaf fluorescence spectra measured in the experiments. 
Results indicate that, even though the ChlF signal is relatively weak, the fluorescence parameters can be 
reliably inverted by introducing two stages inversion and adopting the Bayesian-based inversion 
strategy. However, this conclusion comes from an indirect way: inverted fluorescence parameters are 
generally in the reasonable ranges, there are no high and systematic deviations between measured 
fluorescence and re-constructed fluorescence, and the posterior standard deviations are always lower 
than the standard deviations of the a priori guess. More experiments can be designed and conducted to 
further evaluate the inversion strategy and better investigate the potential of the inverted fluorescence 
parameters in crop stress detections and growth status monitoring. Moreover, for practical applications 
of remote sensing technique, canopy-level ChlF model can be simulated in order to interpret the canopy 
fluorescence signal from the airborne and space-borne observations. With the fast development of the 
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Figure 9. Comparison between the leaf fluorescence radiance spectra reconstructed
from the inverted fluorescence parameters and the leaf fluorescence radiance spectra
measured in the experiment for (a) backward and (b) forward fluorescence radiance.
Insets: Comparison between reconstructed and measured fluorescence radiances at
690 and 740 nm with the same unit.

3.5. Potential and Limitations of Applying Model Inversion for the Retrieval of Leaf
Fluorescence Parameters

The ChlF signal can provide critical information about the growth status of
plants, and therefore it has been used as an effective tool to monitor plant stress
induced by air pollution [25,26], water deficit [28,29], herbicide treatment [2], and
salt and drought [30]. Quantitative estimation of the fluorescence parameters for crop
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leaves would be of high importance in assessing the photosynthetic rates of green
plants and monitoring the stress conditions of crops. In this study, the leaf-level
FluorMODleaf model was inverted using the leaf fluorescence spectra measured
in the experiments. Results indicate that, even though the ChlF signal is relatively
weak, the fluorescence parameters can be reliably inverted by introducing two
stages inversion and adopting the Bayesian-based inversion strategy. However,
this conclusion comes from an indirect way: inverted fluorescence parameters are
generally in the reasonable ranges, there are no high and systematic deviations
between measured fluorescence and re-constructed fluorescence, and the posterior
standard deviations are always lower than the standard deviations of the a priori
guess. More experiments can be designed and conducted to further evaluate the
inversion strategy and better investigate the potential of the inverted fluorescence
parameters in crop stress detections and growth status monitoring. Moreover,
for practical applications of remote sensing technique, canopy-level ChlF model
can be simulated in order to interpret the canopy fluorescence signal from the
airborne and space-borne observations. With the fast development of the vegetative
canopy models based on the radiative transfer theory [8,31–33] and the computer
simulation methods [34], coupling the leaf-level ChlF model (e.g., FluorMODleaf)
with a canopy-level ChlF models can become a promising tool for the growth status
monitoring of crops in precision agriculture.

Indeed, the incident radiance between 640–700 nm can also excite fluorescence.
However, the processes to emit fluorescence and reflect (and transmit) the incident
radiation occur simultaneously, thus making the separation of the fluorescence
from the total radiation very challenging. In order to ensure that the entire leaf
fluorescence spectra of 640–850 nm could be obtained, the short-pass filter with
the cut-off wavelength of 640 nm was used in the experiment, which blocked the
lamp radiance between 640–700 nm and consequently the reflected and transmitted
radiance from the lamp. This experimental setup provides an effective and efficient
method to non-destructively obtain the leaf ChlF spectra. The intensity of the lamp
used in this study is weak enough to avoid the influence to the photosynthetic process
and induction of variable fluorescence. However, the removal of excitation radiation
from 640–700 may induce potential bias in the measured ChlF spectra, which needs
further investigation. In the future studies, filters with different cut-off wavelengths
can be used to measure leaf ChlF spectra to compare the inversion results.

4. Conclusions

Leaf ChlF is closely related to the photosynthetic conditions of green plants. In
this study, a sensitivity analysis of the FluorMODleaf model was performed using
the EFAST method. Based on the sensitivity analysis results, the FluorMODleaf
model was inverted using the experimental datasets. Bayesian theory was
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introduced to the inversion process aiming to achieve a stable inversion results.
Results showed that R2 and RMSE between the fluorescence simulated from the
inverted fluorescence parameters and measured in the experiment were 0.96 and
3.14ˆ 10´6 W¨m´2¨ sr´1¨nm´1, respectively, for backward fluorescence, and 0.92 and
3.84 ˆ 10´6 W¨m´2¨ sr´1¨nm´1 for forward fluorescence. Based on results, it can
be concluded that the Bayesian inversion approach can be used to retrieve the
fluorescence parameters of plant leaves by inverting the FluorMODleaf model. The
retrieved fluorescence parameters have the potential for agricultural applications.
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Evaluation of Six Algorithms to Monitor
Wheat Leaf Nitrogen Concentration
Xia Yao, Yu Huang, Guiyan Shang, Chen Zhou, Tao Cheng, Yongchao Tian,
Weixing Cao and Yan Zhu

Abstract: The rapid and non-destructive monitoring of the canopy leaf nitrogen
concentration (LNC) in crops is important for precise nitrogen (N) management.
Nowadays, there is an urgent need to identify next-generation bio-physical variable
retrieval algorithms that can be incorporated into an operational processing chain for
hyperspectral satellite missions. We assessed six retrieval algorithms for estimating
LNC from canopy reflectance of winter wheat in eight field experiments. These
experiments represented variations in the N application rates, planting densities,
ecological sites and cultivars and yielded a total of 821 samples from various places
in Jiangsu, China over nine consecutive years. Based on the reflectance spectra
and their first derivatives, six methods using different numbers of wavelengths
were applied to construct predictive models for estimating wheat LNC, including
continuum removal (CR), vegetation indices (VIs), stepwise multiple linear regression
(SMLR), partial least squares regression (PLSR), artificial neural networks (ANNs),
and support vector machines (SVMs). To assess the performance of these six methods,
we provided a systematic evaluation of the estimation accuracies using the six metrics
that were the coefficients of determination for the calibration (R2

C) and validation
(R2

V) sets, the root mean square errors of prediction (RMSEP) for the calibration
and validation sets, the ratio of prediction to deviation (RPD), the computational
efficiency (CE) and the complexity level (CL). The following results were obtained:
(1) For the VIs method, SAVI(R1200, R705) produced a more accurate estimation of the
LNC than other indices, with R2

C, R2
V, RMSEP, RPD and CE values of 0.844, 0.795,

0.384, 2.005 and 0.10 min, respectively; (2) For the SMLR, PLSR, ANNs and SVMs
methods, the SVMs using the first derivative canopy spectra (SVM-FDS) offered
the best accuracy in terms of R2

C, R2
V, RMSEP, RPD, and CE, at 0.96, 0.78, 0.37,

2.02, and 21.17, respectively; (3) The PLSR-FDS, ANN-OS and SVM-FDS methods
yield similar accuracies if the CE and CL are not considered, however, ANNs and
SVMs performed better on calibration set than the validation set which indicate that
we should take more caution with the two methods for over-fitting. Except PLS
method, the performance for most methods did not enhance when the spectrum
were operated by the first derivative. Moreover, the evaluation of the robustness
demonstrates that SVM method may be better suited than the other methods to cope
with potential confounding factors for most varieties, ecological site and growth
stage; (4) The prediction accuracy was found to be higher when more wavelengths
were used, though at the cost of a lower CE. The findings are of interest to the
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remote sensing community for the development of improved inversion schemes
for hyperspectral applications concerning other types of vegetation. The examples
provided in this paper may also serve to illustrate the advantages and shortcomings
of empirical hyperspectral models for mapping important vegetation biophysical
properties of other crops.

Reprinted from Remote Sens. Cite as: Yao, X.; Huang, Y.; Shang, G.; Zhou, C.;
Cheng, T.; Tian, Y.; Cao, W.; Zhu, Y. Evaluation of Six Algorithms to Monitor Wheat
Leaf Nitrogen Concentration. Remote Sens. 2015, 7, 14939–14966.

1. Introduction

In cereal crops, nitrogen (N) is the most important element for maintaining
growth status and enhancing grain yield [1]. Therefore, the real-time, nondestructive
and accurate monitoring of the nitrogen (N) concentration in crops has become
a key technique for timely diagnosis of problems, precise fertilization and
productivity estimation [2–10]. Remote sensing has been widely applied in recent
decades to determine the biophysical and chemical parameters of crops [2,11,12].
Many forthcoming hyperspectral satellite missions will be dedicated to land and
crop monitoring. Hence, there is an urgent need to identify next-generation
bio-geophysical variable retrieval algorithms that can be incorporated into an
operational processing chain.

Considerable progress has been made using multispectral and hyperspectral
data acquired from ground and aerial platforms to estimate the N concentration
of crops [8,13–19]. Existing reports indicate that in most previous work, the core
wavelengths have first been determined and then used to construct a sensitive
spectral index, as in the case of the continuum removal (CR) and the vegetation index
(VI) method. The CR method can be used to effectively isolate individual absorption
features of interest and estimate the chemical concentration in dried leaves [20–22].
However, one must determine the spectral range each time when the CR operation
is performed, which results in unstable performance in monitoring of the chemical
concentration of crops [23]. In addition to the CR method, various vegetation indices,
such as the Normalized Difference Vegetation Index (NDVI), the Ratio Vegetation
Index (RVI), the Soil-Adjusted Vegetation Index (SAVI), Modified Normalized
Difference (mND), and the Photochemical Reflectance Index (PRI), have been widely
used to characterize chemical concentration of plants because these indices have
simple forms and are easy to calculate [10,12,24–26]. However, most researchers
use only a limited number of wavelengths in specific spectral regions to calculate
these indices and have not exploited the full spectrum information in hyperspectral
data. In addition, many of these vegetation indices are strongly influenced by the
soil background, resulting in soil-dependent VI-biophysical relationships. Linear
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regression models are typically analyzed based on individual input variables of
the characteristic wavelength or vegetation index. Therefore, several researchers
have suggested that multivariable input parameters should be considered when
constructing such linear regressions.

Presently, the commercial instruments that are used to monitor crop N
concentrations, such as ASD [27] and hyperspectral imager, are not suitable for
future use on family farms or for individual users because of their high cost and
relatively complex operational procedures. A number of other portable devices,
such as the SPAD (650 and 940 nm) [28], can only work on a single leaf each time
and therefore cannot be applied to large populations of plants. The LNC models
that are currently developed with specific wavelengths on portable devices, such
as the GreenSeeker (656 and 770 nm) and the Crop Circle (450,550,650,670,730, and
760 nm) [29–31], may not be accurately transferrable among ecological sites and crop
varieties. For the development of instruments with lower manufacturing cost and
higher accuracy, it is unclear how many input variables should be used and which
type of regression algorithms offers the best stability and computational efficiency.

A comprehensive multivariable linear regression could be performed to
establish N predictive models for modern crop production. Several studies have
addressed various multivariate models, such as stepwise multiple linear regression
(SMLR) and partial least squares regression (PLSR) [5,16]. The SMLR is likely to
suffer from multicollinearity when applied to canopy hyperspectral data [32,33].
Grossman et al. [33] have found that the best wavelengths selected with SMLR might
not be related to the absorption characteristics of the compounds of interest and do
not produce consistent results between datasets. Hence, care should be taken when
using SMLR to select wavelengths and estimate N concentration. Alternatively, the
PLSR approach has been adopted to reduce the large number of measured collinear
spectral variables to a few non-correlated latent variables (LVs), thereby avoiding the
potential overfitting problems that are typically associated with SMLR [16,33].

A number of spectrometric studies have been undertaken concerning the
estimation of the N content of plants using CR, vegetation indices (VIs), SMLR
and PLSR [8,10–12,16,33,34]. These approaches use an inconsistent number of
wavelengths to estimate the N concentrations or estimate the chlorophyll status.
Apart from these linear regression methods, some recent studies have investigated
non-linear regression methods from the machine learning field such as artificial
neural networks (ANNs) and support vector machines (SVMs) [34,35].

To date, the performance, advantages and disadvantages of leaf nitrogen
concentration (LNC) estimation for wheat crops using ANN and SVM algorithms
remain unclear. Currently, the ANN method is widely used in remote sensing
to predict vegetation parameters and crop yields [6,34,35]. However, it inevitably
suffers from the overfitting problem. Fortunately, some researchers reported the
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SVM method resolves the problem of overfitting encountered when analyzing
high-dimensional data [36] and has been used to soil moisture [37], hourly typhoon
rainfall [38], long-lead stream flows [39], leaf area index, and leaf chlorophyll
density [40,41]. These studies have shown that the SVM approach is preferable
to the ANN approach for these applications because of its greater generalizability. In
addition to the conventional application, ANN and SVM methods should be assessed
in a comparative way in terms of their performance and potential for the estimation
of wheat LNC.

Currently, the first derivative is often used to decompose a mixed spectrum
and reduce the noise in the hyperspectral region [41,42]. Mauser and Bach [43]
have concluded that derivative spectral indices are very sensitive to LAI. Yoder
and Pettigrew-Crosby [4] have found that first-order derivative spectra are the best
predictors of the N and chlorophyll contents of big-leaf maples grown under different
fertilization treatments. Johnson and Billow [44] have examined Douglas fir needles
grown using various fertilization treatments and also found the first-order derivatives
of the fresh leaf spectra to be strongly correlated with the total N concentration. Many
studies have demonstrated the potential of derivative spectra for estimating chemical
concentrations of non-crop vegetation types. However, few studies have examined
the performance of first-order derivative spectra with respect to the LNC of fresh
wheat crop leaves.

To the best of our knowledge, no studies in the literature have provided an
evaluation of all these methods and their predictive equations for wheat LNC using
a large number of samples accumulated over nine consecutive years of field trial
experiments with a total of 821 wide representatively samples. Moreover, previous
evaluations have focused on the prediction accuracies and have not reported results
on computational efficiency and complex level, which may be a serious problem
when using hyperspectral imaging data. To address these research gaps, this study
presents the results of a comparative assessment of six retrieval methods applied to
in situ measurements acquired over eight years for seven varieties, four eco-sites, and
821 samples. The main objectives were (1) to evaluate the ability and performance of
various linear (CR, VIs, SMLR and PLSR) and nonlinear (ANNS and SVMS) regression
methods based on the original and first derivative spectra for LNC estimation; and
(2) to determine which method, input variable and model could estimate the LNC in
winter wheat with higher accuracy, better robustness, less time, and less complexity.

2. Materials and Methods

2.1. Design of Field Experiments

Eight field experiments were conducted over eight growing seasons, with
four located in Nanjing (32˝031N, 118˝421E), two in Rugao (32˝151N, 120˝381E),
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one in Hai’an (32˝321N, 120˝281E) and one in Yancheng (33˝291N, 120˝281E) in
Jiangsu Province of eastern China. The experimental variables included different N
fertilization rates and different cultivars of winter wheat. Each experiment consisted
of a randomized complete block design with three replications. For all treatments,
sufficient Ca(H2PO4)2 and KCl were applied (150 kg¨ha´1) prior to seeding. Crop
management followed local standard practices for wheat production. Additional
details regarding the experimental design are provided in Table 1.

Table 1. Details of the eight field experiments.

Experi-ment(Exp.) Year Ecological
Site

Wheat
Cultivar

N Application
Rates

(kg¨ ha´1)
Sampling Dates Number of

Samples
Data

Function

Exp. 1 04–05 Nanjing
Ningmai 9,
Yangmai 12,

Yumai 34
0, 75, 150, 225

19 March, 13/26
April, 3/6/12/24

May, 1 July
102 Validation

Exp. 2 05–06 Nanjing
Ningmai 9,
Yumai 34

Yangmai 12
0, 75, 150, 225

19 March, 13/26
April, 3/6/12/24

May, 1 July
110 Calibration

Exp. 3 06–07 Yancheng Yanmai 4110 0, 75, 150, 225
300 23 April, 17 May 103 Calibration

Exp. 4 07–08 Nanjing Ningmai 9 90, 180, 270 8/23 April, 17
May 88 Validation

Exp. 5 08–09 Rugao Yangmai 13 225, 275, 325 6/22 April, 6 May 120 Calibration

Exp. 6 09–10 Hai’an Ningmai 13 0, 75, 150, 225 6/22 April, 6 May 122 Calibration

Exp. 7 10–11 Nanjing Yangmai 18 150, 300 2/14/26 April,
5/17 May 93 Validation

Exp. 8 12–13 Rugao Yangmai 18,
Shengxuan 6 0, 100, 300 14/26 April, 3

May 83 Validation

2.2. Measurements of Hyperspectral Reflectance

All canopy spectral measurements were performed using an ASD FieldSpec
Pro FR2500 spectrometer (Analytical Spectral Devices, Boulder, CO, USA) [27].
This spectrometer was fitted with 25˝ field-of-view fiber optics operating in the
350–2500 nm spectral range with a sampling interval of 1.4 nm and spectral resolution
of 3 nm between 350 and 1050 nm, and of 2 nm and 10 nm, respectively, between 1050
and 2500 nm. The spectrometer was equipped with three separate holographic
diffraction gratings and three different detectors: VNIR (350–1000 nm), SWIR1
(1001–1800 nm), and SWIR2 (1801–2500 nm). Because the SWIR2 detector was
influenced by water vapor in the field tests, the spectral response in the visible
and near-infrared bands (350–1800 nm) was used to monitor the wheat LNC in
this study. The measurements were conducted 1 m above the wheat canopy with
a view diameter of 0.44 m under clear sky conditions between 10:00 a.m. and
2:00 p.m. (Beijing time). Measurements of vegetation irradiance were performed at
five sample sites in each plot. Each sample consisted of an average of three scans at
an optimized integration time. The resulting spectral file contained the continuous
spectral reflectance data collected in 1 nm steps in the band region of 350–2500 nm.
Panel irradiance measurements (two scans each) were performed before and after

29



each vegetation measurement. The smoothing procedure of Savitzky and Golay [31],
which uses a five-point moving window, was applied to preprocess the spectrum.
After smoothing, the first derivative was calculated to eliminate background effects
and reduce noise.

2.3. Determination of Leaf N Concentration

After each measurement of the canopy spectral reflectance, wheat plants from
a 0.25 m2 area (two 0.5 m rows) were collected from each plot to determine their
LNC values (%). For each sample, all green leaves were separated from the stems,
oven-dried at 70 ˝C to constant weight, and then weighed. The dried leaf samples
were ground, passed through a 1 mm screen, and stored in plastic bags for subsequent
chemical analysis. The total N concentration in the leaf tissues was determined using
the micro-Kjeldahl method.

2.4. Data Analysis

In this study, six different algorithms (CR, SI, SMLR, PLSR, ANN, and SVM)
were comparatively analyzed using MATLAB (2010b).

2.4.1. Continuum Removal (CR)

The CR method was first applied to isolate individual absorption features
of interest [21]. Based on the N-absorption characteristics, a local starting point
(550 nm) and ending point (750 nm) were selected for CR analysis in this study. The
selected region is primarily influenced by chlorophyll absorption, represented by an
exponential function [23] that is used for the retrieval of biochemical and biophysical
parameters [15,22,23]. Three CR parameters were used: (1) the band depth (BD);
(2) the band depth ratio (BDR) and (3) the normalized band depth index (NBDI) [23].
These three CR parameters were calculated using the methods of Curran [27] and
Mutanga [23,45].

2.4.2. Vegetation Indices (VIs)

Three types of vegetation indices, including the normalized difference vegetation
index (NDVI, (Rλ1 ´ Rλ2)/(Rλ1 + Rλ2)), ratio vegetation index (RVI, (Rλ1/Rλ2)), and
soil-adjusted vegetation index (SAVI, [1.5 * (Rλ1 ´ Rλ2)/(Rλ1 + Rλ2 ´ 0.5)]), were
calculated using the presented equations for all possible two-band combinations in
the full spectral range. Rλ1 and Rλ2 represent those spectral reflectances drawn from
the full spectral range.
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2.4.3. Stepwise Multiple Linear Regression (SMLR)

SMLR was first proposed by Chatterjee and Price [46]. Using SMLR to filter the
independent variables and construct regression models is a good approach to the
current problem. With y as the independent variable and x as the dependent variable,
the result is a linear relationship between the independent and dependent variables.
Then, the multiple linear regression models take the following form:

y “ b0 ` b1x1 ` b2x2 ` . . .` bkxk ` ε (1)

where b0 is a constant term, ε is a regression coefficient, and b1, b2, . . . , bk are bands.

2.4.4. Partial Least-Squares Regression (PLSR)

The PLSR approach is a new type of multivariate statistical analysis algorithm
that primarily considers a single dependent variable among the multiple variables of
the regression model. In addition, PLSR is more effective under conditions in which
the number of samples is fewer than the number of variables. Although the PLSR
method is similar to principal component regression (PCR), PLSR actually involves
decomposing both the spectra and the response variables simultaneously [47]. In this
study, the spectral data were mean-centered before analysis, and the number of latent
variables (LVs) was determined following the guidelines prescribed by Esbensen [48].
The optimal number of LVs was determined based on the relationship between the
percentage variance captured by the model and the number of latent variables. With
an increasing number of LVs, the percentage variance captured gradually changed,
and the value indicated the optimal number of LVs. The basic PLSR methodology
has been described in previous studies [46,49]. The objective of PLSR is to construct
a linear model as follows:

Y “ Xβ` ε (2)

where Y is a mean-centered vector of a dependent variable, X is a mean-centered
matrix of the independent variables, β is a matrix of regression coefficients, and ε is
a matrix of residuals.

2.4.5. Artificial Neural Networks (ANNs)

Multi-layer perceptron networks constitute one of the most widely used types of
neural networks in the remote sensing community [50]. A typical ANN is composed
of various layers (an input layer, an output layer, and several hidden layers), and
each layer contains a number of interconnected nodes and activation functions [7].
In this study, the optimum number of hidden layer nodes (HLNs) was determined
based on the minimum value of RMSEP, and gradient descent with momentum was
used to train the network using 5000 iterations.
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2.4.6. Support Vector Machines (SVMs)

The SVM technique is a universal theory of machine learning originally
developed by Vapnik and Cortes for pattern recognition and classification [51,52]. SVM
regression models can map low-dimensional nonlinear input to high-dimensional
linear output with good results. The SVM approach has many unique advantages
in pattern recognition for small samples as well as nonlinear and high-dimensional
cases. The kernel function is particularly important for SVM analysis. In this study,
the sigmoid tanh kernel was used for SVM analysis, with the equation shown below
(Equation (3)) [36]. The SVM parameters were selected based on the mean square
error (MSE). The parameters with the lowest MSE in the SVM regression were
considered the best.

K px, yq “ tanh pk px, zq ` vq , k ą 0, v ă 0 (3)

where k is a scalar and v is a displacement parameter.

2.4.7. Calibration and Validation

Six algorithms (CR, SI, SMLR, PLSR, ANN, and SVM) using different numbers
of wavelengths were applied to construct models for monitoring the wheat LNC. The
data from Exp. 2, 3, 5, and 6 were used as the calibration set because they contained a
wider range of representative data, including a higher number of samples of different
cultivars, more ecological sites and more growth stages. Exp. 1, 4, 7, and 8 were
used as the validation set (Table 2). The fitness was evaluated from a 1:1 plot of the
predicted and observed data.

Table 2. The statistical parameters of the calibration and validation sets for the
wheat leaf nitrogen content (LNC).

Dataset Number of
Samples Names of Cultivars Ecological

Sites
Minimum

(%)
Maximum

(%)
Mean

(%) SD CV

Calibration
(Exp. 2, 3, 5, 6) 456

Ningmai 9, Yumai 34,
Yangmai 12, Yanmai

4110, Yangmai 13,
Ningmai 13

Nanjing,
Yancheng,

Rugao,
Hai’an

Nanjing,
Rugao

0.45 4.52 2.66 0.98 0.37

Validation
(Exp. 1, 4, 7, 8) 366

Ningmai 9,
Yangmai 12,

Yumai 34,Yangmai 18,
Shengxuan 6

0.98 4.29 2.92 0.77 0.26

All data 822 All of the above 0.45 4.52 2.78 0.87 0.32

The performances of all models were evaluated based on several statistical
parameters, including the calibration R2 (R2

C), the root mean square error of
calibration (RMSEC; see Equation (4)), validation R2 (R2

V), and the root mean square
error of prediction (RMSEP). All calculations were performed using custom-written
MATLAB (2010b) scripts. Higher values of R2

C, R2
V, and PDP and lower values
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of RMSEC and RMSEP indicated higher precision and accuracy of the model.
The running time was calculated using MATLAB 10b, and the level of operating
complexity was determined based on the algorithm used to construct the model and
the number of wavelengths.

RMSEc “

g

f

f

e

n
ÿ

i“1

`

Yest,i ´Ymea,i
˘2
{n (4)

where Yest,i is the estimated LNCi, Ymea,i is the measured LNCi, and n is the number
of samples. RMSEP was also calculated using Equation (4).

The ratio of prediction to deviation (RPD) was calculated as follows:

RPD “
SD

RMSEP
(5)

where SD is the standard deviation. A value of RPD > 2.0 indicates a stable and
accurate predictive model, an RPD value between 1.4 and 2.0 indicates a fair model
that could be improved by more accurate prediction techniques, and a value of
RPD < 1.4 indicates poor predictive capacity [53].

3. Results

3.1. Changes in the Canopy Spectral Reflectance and Its Relationship with the LNC
for Wheat

The Yumai 34 cultivar at the various N rates used in Experiment 3 is used as
an example of the analysis of the spectral variations in Figure 1A. The results show
that the reflectance decreases in the visible region with increasing N concentration
because of the increased absorption of the pigments and increases in the near-infrared
region because of the effects of moisture and leaf structure. Further analysis of the
relationships between the LNC and the reflectance determined from the original and
first derivative canopy spectra was also performed (Figure 1B). A negative correlation
was found in the visible region (350–710 nm) for the original spectra, whereas a
positive correlation was observed in the near-infrared range (710–1410 nm), which
was regarded as a higher reflectance platform (R2 > 0.78, between 760 and 1100 nm).
The first derivative canopy spectrum exhibited a strong correlation throughout a
wavelength range that was similar to that of the original canopy spectrum but
contained more prominent peaks.
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Experiment 3; (B) Correlation of the LNC with the original and first derivative spectra. 
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3.2.1. CR with One Wavelength 

Figure 2A displays the original canopy spectrum, continuum line, and CR spectrum of Yumai 34 in 
the booting stage at an N rate of 150 kg/ha in Experiment 3. Figure 2B shows the correlation 
coefficients between the BD, BDR, and NBDI and the canopy LNC of the wheat. We found that the 
correlation coefficient between the BD and the canopy LNC exhibited a less distinct variation and that 
the correlation coefficients between the BDR and NBDI and the canopy LNC exhibited their lowest  
values between 550 and 750 nm. Figure 2B indicates that BD709, BDR713, and NBDI727 showed the 
highest correlations. 

Table 3 shows the values of the BDR, BD, and NBDI along with those of R2C, RMSEC, R2V, 
RMSEP, and RDP for the LNC model. The three CR parameters indicate a good slope value for the 1:1 
line and also require little running time. Among the three indices, BD709 was the most effective 
parameter because it yielded not only the highest precision on the calibration set but also had the 

Figure 1. (A) Canopy spectral reflectance under four N rates at booting for
Yumai 34 in Experiment 3; (B) Correlation of the LNC with the original and first
derivative spectra.

3.2. Models for Estimating the LNC Based on Six Algorithms Using Different Numbers
of Wavelengths

3.2.1. CR with One Wavelength

Figure 2A displays the original canopy spectrum, continuum line, and CR
spectrum of Yumai 34 in the booting stage at an N rate of 150 kg/ha in Experiment 3.
Figure 2B shows the correlation coefficients between the BD, BDR, and NBDI and
the canopy LNC of the wheat. We found that the correlation coefficient between the
BD and the canopy LNC exhibited a less distinct variation and that the correlation
coefficients between the BDR and NBDI and the canopy LNC exhibited their lowest
values between 550 and 750 nm. Figure 2B indicates that BD709, BDR713, and NBDI727

showed the highest correlations.
Table 3 shows the values of the BDR, BD, and NBDI along with those of R2

C,
RMSEC, R2

V, RMSEP, and RDP for the LNC model. The three CR parameters indicate
a good slope value for the 1:1 line and also require little running time. Among the
three indices, BD709 was the most effective parameter because it yielded not only
the highest precision on the calibration set but also had the highest accuracy on the
validation set. NBDI727 was the least effective parameter because of its poor stability.
Figure 3 shows a scatter diagram of the LNC values from the model obtained using
BD709 from the original canopy spectra.
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Figure 2. (A) The original spectrum, continuum line, and continuum-removed spectrum of 
Yumai 34 at the booting stage at an N rate of 150 kg/ha in Experiment 3. (B) Correlation 
coefficients between the band depth (BD), the band depth ratio (BDR), and the normalized 
band depth index (NBDI) and the LNC in the range of 550–750 nm.  

Table 3. The best-performing LNC models based on the continuum removal (CR) 
parameters for the calibration and validation sets. 

Band 
Range 

Input 
Parameter 

Calibration Validation 
Equation R2C RMSEC R2V RMSEP RPD CE (min) CL 

550–750 
BD709 y = 0.823 × e2.056x 0.78 0.46 0.78 0.42 1.84 0.07 min Low 

BDR713 y = 0.536 × e2.588x 0.78 0.48  0.74 0.45 1.72 0.08 min Low 
NBDI727 y = 9.147 × e2.51x 0.76 0.54  0.71 0.49 1.56 0.07 min Low 

Notes: BD: band depth; BDR, band depth ratio; NBDI: normalized band depth index. 

  

Figure 3. Calibration (A) and validation (B) of the model based on BD709 from the original 
canopy spectra. 

Figure 2. (A) The original spectrum, continuum line, and continuum-removed
spectrum of Yumai 34 at the booting stage at an N rate of 150 kg/ha in Experiment 3.
(B) Correlation coefficients between the band depth (BD), the band depth ratio
(BDR), and the normalized band depth index (NBDI) and the LNC in the range
of 550–750 nm.

Table 3. The best-performing LNC models based on the continuum removal (CR)
parameters for the calibration and validation sets.

Band
Range

Input
Parameter

Calibration Validation

Equation R2
C RMSEC R2

V RMSEP RPD CE (min) CL

550–750
BD709 y = 0.823 ˆ e2.056x 0.78 0.46 0.78 0.42 1.84 0.07 min Low

BDR713 y = 0.536 ˆ e2.588x 0.78 0.48 0.74 0.45 1.72 0.08 min Low
NBDI727 y = 9.147 ˆ e2.51x 0.76 0.54 0.71 0.49 1.56 0.07 min Low

Notes: BD: band depth; BDR, band depth ratio; NBDI: normalized band depth index.
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Figure 3. Calibration (A) and validation (B) of the model based on BD709 from the original 
canopy spectra. 

Figure 3. Calibration (A) and validation (B) of the model based on BD709 from the
original canopy spectra.
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3.2.2. VI with Two Wavelengths

Figure 4 shows the coefficients of determination (R2) of the linear regressions
between the LNC and the NDVI, RVI, and SAVI constructed from arbitrary two-band
combinations based on the original and first derivative canopy spectra. The maximum
R2

C values for the NDVI, RVI, and SAVI based on the original canopy spectra were
0.830, 0.828, and 0.844, respectively, and those based on the first derivative canopy
spectra were 0.858, 0.864, and 0.851, respectively. For the original spectra, the strongest
correlation (R2 > 0.75) between the arbitrary two-band combinations and the wheat
LNC was found in the visible and near-infrared ranges. For the first derivative canopy
spectra, the best band combination (R2 > 0.75) was in the visible range. In the contour
maps of the coefficient of determination (R2 > 0.5), more regions were identified
based on the original canopy spectra than were identified based on the first derivative
canopy spectra.
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soil-adjusted vegetation index (SAVI) and the canopy LNC based on the original and first 
derivative canopy spectra. 

Based on the statistical parameters of R2C, RMSEC, R2V, RMSEP, and RDP for the calibration and 
validation sets and the spectrum principle, we selected the optimal wavelength and spectral index  
(Table 4). Table 4 shows that three types of VIS yielded better precision for the first derivative canopy 
spectra than for the original canopy spectra in the calibration set. The optimal wavelengths selected 
based on the NDVI, RVI, and SAVI were very similar. For the original spectra, the performance of 
SAVI(R1200, R705) was significantly better than that of NDVI(R1340, R700), which was very similar to 
that of RVI(R700, R1335). For the first derivative canopy spectra, the optimal wavelength combinations 
were observed between 695 and 700 nm in the visible range. According to a comprehensive evaluation 

Figure 4. Contour maps of the coefficients of determination (R2 > 0.5) between the
normalized difference vegetation index (NDVI), ratio vegetation index (RVI), and
soil-adjusted vegetation index (SAVI) and the canopy LNC based on the original
and first derivative canopy spectra.

Based on the statistical parameters of R2
C, RMSEC, R2

V, RMSEP, and RDP
for the calibration and validation sets and the spectrum principle, we selected the
optimal wavelength and spectral index (Table 4). Table 4 shows that three types of VIS

yielded better precision for the first derivative canopy spectra than for the original
canopy spectra in the calibration set. The optimal wavelengths selected based on the
NDVI, RVI, and SAVI were very similar. For the original spectra, the performance
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of SAVI(R1200, R705) was significantly better than that of NDVI(R1340, R700), which
was very similar to that of RVI(R700, R1335). For the first derivative canopy spectra,
the optimal wavelength combinations were observed between 695 and 700 nm
in the visible range. According to a comprehensive evaluation of the calibration
and validation performance, the SAVI obtained using the original canopy spectra
performed best and exhibited good stability. In particular, the adjustable index
L(L = 0.5) for the SAVI yielded superior results for the reduction of soil noise. Figure 5
shows a scatter diagram of SAVI(R1200, R705) and the validation performance on the
original canopy spectra.

Table 4. The best-performing LNC models based on the vegetation indices (VIs)
for the calibration and validation sets.

VI λ1
(nm)

λ2
(nm)

Calibration Validation

Equation R2
C RMSEC R2

V RMSEP RPD CE
(min) CL

NDVI 1340 700 y = 5.58x ´ 0.02 0.83 0.39 0.76 0.41 1.86 0.11 Low
RVI 700 1335 y = ´5.63x + 4.69 0.83 0.39 0.76 0.40 1.95 0.10 Low

SAVI 1200 705 y = 8.72x + 0.10 0.84 0.38 0.80 0.38 2.01 0.10 Low
NDVI * 710 690 y = 3.59x + 1.38 0.86 0.36 0.72 0.51 1.53 0.11 Low
RVI * 700 695 y = 3.19x ´ 1.38 0.86 0.36 0.68 0.57 1.35 0.11 Low

SAVI * 710 695 y = 283.2x + 1.8 0.85 0.37 0.76 0.40 1.92 0.10 Low

Note: * vegetation indices calculated with the first derivatives of reflectance spectra.
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Figure 5. The relationship between SAVI(R1200, R705) and the wheat LNC (A); and the  
1:1 relationship between the measured LNC and those estimated values based on  
SAVI(R1200, R705) (B). 

3.2.3. SMLR with Multiple Wavelengths 

The wavelengths selected by SMLR were 384, 492, 695, 1339, and 1369 nm for the original canopy 
spectra and 508, 681, 722, 960, and 1264 nm for the first derivative canopy spectra. The R2C values for 
the SMLR-OS and SMLR-FDS models were 0.869 and 0.855, respectively. The values of the 
statistical parameters for calibration and validation (R2C, RMSEC, R2V, RMSEP, and RDP) and the 
wavelengths selected are summarized in Table 5. The results show that SMLR based on the original 
canopy spectra offered a higher accuracy in the monitoring of the wheat LNC (R2C = 0.869,  
RMSEC = 0.353, R2V = 0.778, RMSEP = 0.390, RDP = 1.974); however, no significant difference was 
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the 1:1 relationship between the measured LNC and those estimated values based
on SAVI(R1200, R705) (B).
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3.2.3. SMLR with Multiple Wavelengths

The wavelengths selected by SMLR were 384, 492, 695, 1339, and 1369 nm for
the original canopy spectra and 508, 681, 722, 960, and 1264 nm for the first derivative
canopy spectra. The R2

C values for the SMLR-OS and SMLR-FDS models were
0.869 and 0.855, respectively. The values of the statistical parameters for calibration
and validation (R2

C, RMSEC, R2
V, RMSEP, and RDP) and the wavelengths selected

are summarized in Table 5. The results show that SMLR based on the original canopy
spectra offered a higher accuracy in the monitoring of the wheat LNC (R2

C = 0.869,
RMSEC = 0.353, R2

V = 0.778, RMSEP = 0.390, RDP = 1.974); however, no significant
difference was observed between the SMLR-OS and SMLR-FDS models. These
two models could be expressed as follows:

SMLR-OS model:
y “ 1.941´ 92.315 ˚ b384 ` 122.732 ˚ b492´ 55.338 ˚ b695 ` 8.591 ˚ b1339´ 0.321 ˚ b1369 (6)

SMLR-FDS model:
y “ 2.189´ 980.699 ˚ bFD508´ 1034.799 ˚ bFD681 ` 303.223 ˚ bFD722`

195.538 ˚ bFD960 ` 451.419 ˚ bFD1264
(7)

where b and bFD represent the reflectance of the original and first derivative
wavelength spectra, e.g., b695 is the reflectance at 695 nm and bFD722 is the first
derivative reflectance at 722 nm.

Table 5. The best-performing LNC models based on stepwise multiple linear
regressions (SMLR) for the calibration and validation sets.

Model
Selected

Wavelengths (nm)
Calibration Validation

R2
c RMSEC R2

v RMSEP RDP CE (min) CL

SMLR-OS 695, 1339, 492, 384, 1369 0.87 0.35 0.78 0.39 1.97 32.15 Middle
SMLR-FDS 722, 681, 1264, 508, 960 0.86 0.37 0.76 0.39 1.95 33.16 Middle

Notes: OS: original canopy spectra; FDS: first derivative canopy spectra.

3.2.4. PLSR with All Wavelengths

Figure 6 shows the changes in the percentage variance captured with an
increasing number of latent variables (LVs) using the original and first derivative
canopy spectra. When the number of latent variables (LVs) was greater than five or
seven for the original or first derivative spectra, respectively, the percentage variance
captured by the model decreased only minimally. Therefore, we selected five and
seven latent variables (LVs) for the PLSR analyses based on the original and first
derivative canopy spectra, respectively.
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Figure 6. Changes in the variance explained by the latent variables (LVs) based on
the original and first derivative canopy spectra.

The results of the PLSR analyses are shown in Table 6. With all wavelengths
used as input variables, the PLSR analysis based on the first derivative canopy
spectra (FDS) demonstrated a higher estimation accuracy for the canopy LNC than
did the analysis based on the original canopy spectra for both the calibration and
validation sets, with statistical parameters of R2

C = 0.908, RMSEC = 0.298, R2
V = 0.815,

RMSEP = 0.385, and RDP = 2.000. Figure 7 shows the results of predicting the LNC for
winter wheat based on the calibration and validation sets using the PLSR-FDS model.

Table 6. The best-performing LNC models based on partial least-squares regression
(PLSR) for the calibration and validation sets.

Model Input Variables Calibration Validation

LVs R2
c RMSEC R2

v RMSEP RDP CE (min) CL

PLSR-OS all wavelengths 5 0.85 0.37 0.81 0.35 2.22 6.10 High
PLSR-FDS all wavelengths 7 0.91 0.30 0.815 0.39 2.00 5.50 High

Notes: OS: original canopy spectra; FDS: first derivative canopy spectra.

3.2.5. ANN with All Wavelengths

Figure 8 shows the changes in RMSEP as a function of the number of hidden
layer neurons (HLNs). The results indicate that the value of RMSEP is lowest when
the number of hidden neurons is equal to twelve. Therefore, we selected 12 as
the optimal number of HLNs for the ANN analyses based on the original and first
derivative canopy spectra.
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Table 7 shows the results of the ANN-based LNC models for both the calibration and validation 
sets. According to Table 7, when all wavelengths were used as input variables for the ANN analysis, 
the ANN-FDS model offered a higher estimation accuracy for LNC monitoring than did the ANN-OS 
model for the calibration set. However, for the validation set, the ANN-OS model exhibited higher 

Figure 7. The 1:1 relationship between the measured LNC and those estimated
values using the PLSR analysis on the first derivative canopy spectra (PLSR-FDS)
model for the calibration (A) and validation (B) sets.

Table 7 shows the results of the ANN-based LNC models for both the calibration
and validation sets. According to Table 7, when all wavelengths were used as input
variables for the ANN analysis, the ANN-FDS model offered a higher estimation
accuracy for LNC monitoring than did the ANN-OS model for the calibration set.
However, for the validation set, the ANN-OS model exhibited higher estimation
accuracy than the ANN-FDS model and the slope value for the ANN-OS model
was closer to 1 than that for the ANN-FDS model. Overall, the model based on
all wavelengths in the first derivative canopy spectra yielded the higher estimation
accuracy for the calibration set (R2

C = 0.987, RMSEC = 0.111), but for the validation set,
it exhibited the lower estimation accuracy (R2

V = 0.734, RMSEP = 0.512, RDP = 1.504).
The difference in performance between the calibration and validation sets indicates
that the ANN method appears to suffer from overfitting when many input variables
are used.

Table 7. The best-performing artificial neural networks (ANNs) -based LNC models
for the calibration and validation sets.

Inputs
Optimal Numbers

of Neurons Calibration Validation

Input Hidden Output R2
C RMSEC R2

V RMSEP RDP CE (min) CL

ANN-OS 1451 12 1 0.95 0.22 0.76 0.45 1.72 71.50 High
ANN-FDS 1451 12 1 0.99 0.18 0.73 0.51 1.50 67.20 High

ANN-PCA-OS 9 4 1 0.94 0.25 0.796 0.35 1.44 15.60 High
ANN-PCA-FDS 11 5 1 0.95 0.22 0.72 0.41 1.48 14.80 High

Note: OS: original canopy spectra; FDS: first derivative canopy spectra; ANN-PCA-OS
indicates that we used PCA to select the primary factor and then used the PCA-derived
factor to execute the ANN model.
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3.2.6. SVM with All Wavelengths 

Table 8 summarizes the performance of the SVM-based LNC models with different input variables. 
The results show that the SVM-based models using all wavelengths in the first derivative spectra 
demonstrated better performance on the calibration set; however, the SVM-OS model offered slightly 
better performance on the validation set, with slightly higher R2V and RDP values and a shorter 

Figure 8. Changes in RMSEP as a function of the number of hidden layer neurons
(HLNs) for the original and first derivative canopy spectra.

3.2.6. SVM with All Wavelengths

Table 8 summarizes the performance of the SVM-based LNC models with
different input variables. The results show that the SVM-based models using all
wavelengths in the first derivative spectra demonstrated better performance on the
calibration set; however, the SVM-OS model offered slightly better performance on
the validation set, with slightly higher R2V and RDP values and a shorter running
time. Figure 9 shows the 1:1 relationship between the measured LNC and those
estimated using the SVM-FDS model for the calibration and validation sets.

Table 8. The best-performing support vector machines (SVMs)-based LNC models
for the calibration and validation sets.

Model Input Variables Calibration Validation

R2
C RMSEC R2

V RMSEV RDP CE (min) CL

SVM-OS All wavelengths 0.96 0.21 0.80 0.38 2.05 20.34 High
SVM-FDS All wavelengths 0.96 0.19 0.78 0.37 2.02 21.17 High

ANN-PCA-OS 9PCA 0.94 0.20 0.67 0.47 1.64 5.64 High
ANN-PCA-FDS 11PCA 0.92 0.27 0.55 0.57 1.36 5.76 High

Notes: OS, original canopy spectra; FDS, first derivative canopy spectra.
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Figure 9. The 1:1 relationship between the measured LNC and those estimated using the 
SVM-FDS model for the calibration (A) and validation (B) sets. 
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We compared the robustness of the six algorithms based on the statistical parameters R2C, RMSEC, 
R2V, RMSEP, CE and CL (Table 9). The results show that with an increasing number of wavelengths, 
the value of R2C increased from 0.78 for BD709 to 0.96 for SVM-FDS. However, the value of R2V did 
not exhibit a similar increase. The CR algorithms used only one wavelength and demonstrated  
the poorest performance on both the calibration and validation sets, although they also required less 
running time and had lower complexity. The SAVI(R1200, R705) method required only two wavelengths 
and offered better performance on both the calibration and validation sets (R2C = 0.844,  
RMSEC = 0.384, R2V = 0.795, RMSEP = 0.384, RDP = 2.005, and running time = 0.10 min). The 
SMLR-OS method used five wavelengths, whereas the PLSR-FDS, ANN-OS and SVM-FDS methods 
used all available wavelengths. Although PLSR-FDS demonstrated the best R2V performance on the 
validation set, with a value of 0.82, the errors in calibration and validation sets were higher than those 
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3.3. Evaluation and Comparison of the Robustness of the Six Algorithms

We compared the robustness of the six algorithms based on the statistical
parameters R2

C, RMSEC, R2
V, RMSEP, CE and CL (Table 9). The results show that

with an increasing number of wavelengths, the value of R2
C increased from 0.78 for

BD709 to 0.96 for SVM-FDS. However, the value of R2
V did not exhibit a similar

increase. The CR algorithms used only one wavelength and demonstrated the poorest
performance on both the calibration and validation sets, although they also required
less running time and had lower complexity. The SAVI(R1200, R705) method required
only two wavelengths and offered better performance on both the calibration and
validation sets (R2

C = 0.844, RMSEC = 0.384, R2
V = 0.795, RMSEP = 0.384, RDP = 2.005,

and running time = 0.10 min). The SMLR-OS method used five wavelengths, whereas
the PLSR-FDS, ANN-OS and SVM-FDS methods used all available wavelengths.
Although PLSR-FDS demonstrated the best R2

V performance on the validation set,
with a value of 0.82, the errors in calibration and validation sets were higher than
those for SVM-FDS. Therefore, the SVM-based method yielded a higher prediction
accuracy than the other methods on the calibration set (R2

C = 0.961, RMSEC = 0.193,
R2

V = 0.776, RMSEP = 0.382, RDP = 2.016, and running time = 21.17 min). In
addition, we found that with an increasing number of wavelengths, the running
time increased; the BD709 method exhibited the shortest running time (0.07 min),
whereas the ANN-OS method required the longest running time (71.50 min), and
the operational complexity also correspondingly increased. With regard to the slope
of the 1:1 line, the SMLR-OS method yielded the smallest slope value, whereas the
BD709 method produced the greatest slope value. The SVM-FDS and SAVI(R1200,
R705) methods offered higher accuracy. However, SVM-FDS incurred a higher cost,
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as reflected in its use of multiple wavelengths, its higher complexity level, and its
longer running time.

Table 9. The robustness evaluation of the wheat LNC models based on the six
considered algorithms.

Method Wavelengths
(nm)

Calibration Validation

R2
C RMSEC R2

V RMSEP RDP CE (min) CL

BD709 709 0.78 0.46 0.78 0.42 1.84 0.07 Low
SAVI(R1200, R705) 1200, 705 0.84 0.38 0.80 0.38 2.01 0.10 Low

SMLR-OS 695,
1339,492,384,1369 0.87 0.35 0.78 0.39 1.97 33.16 Middle

PLSR-FDS All wavelengths 0.91 0.30 0.82 0.39 2.00 5.50 High
ANN-OS All wavelengths 0.95 0.22 0.76 0.45 1.72 71.50 High
SVM-FDS All wavelengths 0.96 0.19 0.78 0.37 2.02 21.17 High

We further categorized the samples using three grouping variables (variety,
ecological site, and growth stage) to compare the robustness of the optimal LNC
model algorithms (Table 10). The results show that the prediction accuracy was
always improved with an increasing number of wavelengths for each of the three
grouping variables. However, the CE and CL also substantially increased. The results
also show that the six algorithms were suitable and robust for the Ningmai 9 and
Shengxuan 6 varieties, with maximum R2

V values of 0.86 and 0.88, respectively,
and that the SVM-FDS algorithm offered the best overall performance, with a mean
R2

V value of 0.79 for all five varieties. However, a suitable algorithm could not be
found for the Yangmai 12 and Yumai 34 varieties, for which the R2

V values ranged
from 0.65 to 0.80. These results demonstrate that the Ningmai 9 variety represents a
generally adaptable variety and that the SVM-FDS method may be better suited than
the other methods to cope with potential confounding factors for most varieties. Of
the two ecological-site-based groups, Rugao yielded better results than did Nanjing
for all six algorithms, with R2

V values ranging from 0.80 to 0.90. The robustness of
the PLSR-FDS and SVM-FDS methods was particularly strong; these methods were
suitable for both ecological sites, with R2

V values of 0.85 and 0.84, respectively. For
the two growth-stage-based groups, the six algorithms all yielded better and more
stable results for the stage of heading and anthesis, with R2

V values ranging from
0.78 to 0.86. The statistical parameters indicated poorer performance in the stage of
jointing and booting.
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Table 10. Robustness of the LNC models based on the six algorithms when the
samples are categorized using three grouping variables (variety, ecological site, and
growth stage).

Grouping
Variable Algorithm Sub-Group

Validation
R2

V–RMSEP
R2

V RMSEP CE (min) CL

Variety

BD709

Ningmai 9 0.84 0.37 0.07 Low 0.47
Yangmai 12 0.73 0.38 0.07 Low 0.36

Yumai 34 0.80 0.28 0.07 Low 0.52
Yangmai 18 0.71 0.48 0.07 Low 0.23

Shengxuan 6 0.76 0.43 0.07 Low 0.33

SAVI(R1200, R705)

Ningmai 9 0.80 0.43 0.10 Low 0.37
Yangmai 12 0.75 0.41 0.10 Low 0.34

Yumai 34 0.75 0.36 0.10 Low 0.40
Yangmai 18 0.86 0.31 0.10 Low 0.55

Shengxuan 6 0.77 0.36 0.10 Low 0.41

SMLR-OS

Ningmai 9 0.83 0.47 16.23 Middle 0.36
Yangmai 12 0.67 0.40 15.21 Middle 0.27

Yumai 34 0.67 0.35 17.32 Middle 0.32
Yangmai 18 0.81 0.36 16.46 Middle 0.45

Shengxuan 6 0.77 0.38 15.35 Middle 0.39

PLSR-FDS

Ningmai 9 0.86 0.38 5.21 High 0.48
Yangmai 12 0.76 0.34 5.74 High 0.42

Yumai 34 0.67 0.32 5.32 High 0.35
Yangmai 18 0.81 0.36 5.21 High 0.45

Shengxuan 6 0.88 0.35 5.56 High 0.53

ANN-OS

Ningmai 9 0.85 0.44 65.23 High 0.41
Yangmai 12 0.78 0.44 64.32 High 0.34

Yumai 34 0.65 0.36 65.45 High 0.30
Yangmai 18 0.76 0.42 63.23 High 0.34

Shengxuan 6 0.77 0.55 62.89 High 0.22

SVM-FDS

Ningmai 9 0.84 0.40 19.21 High 0.44
Yangmai 12 0.79 0.36 18.32 High 0.43

Yumai 34 0.67 0.42 18.21 High 0.25
Yangmai 18 0.79 0.36 19.72 High 0.43

Shengxuan 6 0.87 0.35 19.32 High 0.52

Ecological site

BD709
Nanjing 0.76 0.42 0.08 Low 0.34
Rugao 0.80 0.41 0.08 Low 0.39

SAVI(R1200, R705) Nanjing 0.78 0.40 0.11 Low 0.38
Rugao 0.85 0.34 0.11 Low 0.51

SMLR-OS
Nanjing 0.77 0.42 28.22 Middle 0.35
Rugao 0.86 0.37 12.32 Middle 0.49

PLSR-FDS
Nanjing 0.80 0.38 5.86 High 0.42
Rugao 0.90 0.31 5.30 High 0.59

ANN-OS
Nanjing 0.76 0.45 68.21 High 0.31
Rugao 0.83 0.45 62.20 High 0.39

SVM-FDS
Nanjing 0.77 0.41 19.98 High 0.36
Rugao 0.90 0.33 18.32 High 0.57

Growth stage

BD709
Jointing, Booting 0.73 0.40 0.08 Low 0.33

Heading, Anthesis 0.78 0.42 0.08 Low 0.36

SAVI(R1200, R705) Jointing, Booting 0.75 0.37 0.11 Low 0.38
Heading, Anthesis 0.80 0.40 0.11 Low 0.40

SMLR-OS
Jointing, Booting 0.71 0.39 17.82 Middle 0.32

Heading, Anthesis 0.83 0.44 17.86 Middle 0.39

PLSR-FDS
Jointing, Booting 0.73 0.37 5.78 High 0.36

Heading, Anthesis 0.85 0.35 5.83 High 0.50

ANN-OS
Jointing, Booting 0.66 0.46 68.68 High 0.20

Heading, Anthesis 0.86 0.43 67.98 High 0.43

SVM-FDS
Jointing, Booting 0.75 0.36 18.79 High 0.39

Heading, Anthesis 0.85 0.49 18.89 High 0.36
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3.4. Performance Comparison of the Best Models Identified in the Present Study with
Previous Models

To determine whether the estimation models established in the present study
based on the SAVI and SVM approaches were comparable to previously reported
LNC models for wheat, all of the observed calibration and validation data considered
in the present study were used to compare the performance of these models with
those proposed in previous reports (Table 11, [54–57]). The results showed that the
SAVI and SVM models not only exhibited better performance on the calibration set,
with R2

C values of 0.844 and 0.961, respectively, but also offered higher prediction
accuracy on the validation set, with R2

V values of 0.795 and 0.776, respectively. In
addition, the RMSEC, RMSEP, and RPD values also demonstrated that the model
based on the SASI exhibited higher stability and reliability. Therefore, the SAVI
calculation is a potentially useful algorithm for monitoring wheat canopy LNC that
offers almost identically high levels of prediction accuracy, stability, and complexity
while requiring fewer wavelengths and less running time.

Table 11. Comparison of the SAVI(R1200, R705) and SVM approaches with previous
models for LNC estimation.

Method Equation Calibration Validation
Source

R2
C RMSEC R2

V RMSEP RPD

OSAVI 1.16*(R810 ´ R680)/ (R810´ R680 + 0.16) 0.74 0.49 0.66 0.73 1.06 Rondeaux et al. (1996) [54]
ND705 (R750 ´ R705)/(R750 + R705) 0.79 0.44 0.73 0.42 1.83 Gitelson et al. (1994) [55]

(R924 ´ R703 + 2*R423)/(R924 + R703 ´ 2*R423) 0.79 0.42 0.72 0.45 1.71 Wang et al. (2012) [56]
mND705 (R750 ´ R705)/(R750 + R705 ´ 2*R445) 0.80 0.43 0.74 0.41 1.90 Sims et al. (2002) [57]

SAVI 1.5*(R1200 ´ R705)/(R1200 + R705 ´ 0.5) 0.84 0.38 0.80 0.38 2.01 This paper
SVM - 0.96 0.19 0.78 0.37 2.02 This paper

4. Discussion

4.1. Wavelength Selection for the Six Algorithms

According to previous reports, the most informative feature bands may differ
in different crop types and experimental conditions. Therefore, the selection and
exploration of new key-wavebands is an important task in the field of the remote
sensing of vegetation and has been performed for a number of different cases [16].
Further investigations are needed to identify consistent feature bands with wider
applicability for the estimation of the N concentration in crops. In the present study,
all possible two-wavelength combinations of hyperspectral indices throughout the
entire spectral range of 350–1800 nm were considered in matrix form. Based on the
R2and RMSE values and the absorption principle, we found that the wavelengths
selected by the CR and VI methods were 690/695, 709/710, 700/705, 713/727,
1200, and 1335/1340 nm, which are predominantly located in the red-edge and
near-infrared regions, as noted in many previous studies [16,17,26,58,59]. The
selected wavelengths differed for the CR and VIs methods, perhaps because CR
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can be used to determine the absorbing positions of chlorophyll or carotenoids,
whereas for the VI-based approach, the much more sensitive wavelength of N can
be used because of the different calculation formulas for the two spectral indices.
These wavelengths are suitable for estimating the canopy LNC because they are less
sensitive to soil background and atmospheric effects and are strongly absorbed by
plant chlorophyll and carotenoids for photosynthetic production and thus can be
regarded as representative spectral wavelengths [60]. The corresponding spectral
indices (BD709, BDR713, NBDI727, NDVI (R1340, R700), SAVI(R1200, R705), and NDVI
(FD1340, FD700) were constructed for wheat LNC estimation, and these indices
demonstrated good performance. Thus, these key wavelengths and indices should
be regarded as new alternatives to the previously reported indicator wavelengths
used to monitor the LNC of crop plants.

For the PLSR, ANNs, and SVMs algorithms, we used all wavelengths in the
original and first derivative canopy spectra as input variables to select the best
bands and input variable to construct the multivariate linear model for canopy
LNC monitoring. When using the SMLR method, we chose five wavelengths from
the original and first derivative canopy spectra to predict the wheat LNC. The
selected wavelengths were 384, 492, 695, 1339, and 508 nm and 681, 722, 960, 1264
and 1369 nm, respectively. The wavelengths of 492 and 508 nm lie in the visible
range and are often strongly absorbed by plant chlorophyll and carotenoids in green
plants [42]. The wavelengths of 681, 695, and 722 nm lie in the red range and are
sensitive indicators of the LNC and chlorophyll [16,17,26,58,59]. The wavelengths
of 960, 1264, 1339, and 1369 nm are located in the shortwave infrared range and
are indicators of proteins [27]. Atzberger [60] has reported that a close relationship
exists between the N and chlorophyll concentrations as well as between the N and
protein concentrations. Therefore, many researchers have used these relationships to
monitor the LNC in crops based on crop canopy spectra [61].

4.2. The Reliability and Practicability of the Six Algorithms

The result indicated that the VIs are superior to the CR parameters for canopy
LNC monitoring because of their good precision, high stability, shorter running time
and lower level of operational complexity, similar to previous results [48]. Because
the noise had little chance to cancel out when only two bands were used for modeling.
Indeed, with this better index (SAVI(R1200, R705)) one band is still located on the
near-infrared (1200 nm), however, the second band is located at 720 nm, and thus in
the red-edge where the chlorophyll absorption is strongly reduced compared to the
red wavelength. This increases the sensitivity of the index and explains the relatively
good results obtained in this study. Another advantage for the VIs is that was used as
a baseline approach. The advantage of the VIS method is that it is easily implemented
in stand (image) processing software. However, using the VIs with only part of the
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available spectral information (i.e., two bands) resulted in a strong loss of predictive
power, and the classical NDVI easily saturated explaining the poor performance of
this widely used indicator.

For the SMLR, PLSR, ANNs, and SVMs methods, when all wavelengths were
used as input variables, these models showed higher precisions than that of the
SAVI(R1200, R705) model, which requires only two wavelengths, for LNC estimation
on the calibration set in the following order: SVM-FDS > ANN-FDS > PLSR-FDS >
SMLR-OS. However, their stability in terms of validation performance was generally
not as good, with an overall ranking of PLSR-FDS > SAVI(R1200, R705) > SVM-FDS =
SMLR-OS > ANN-FDS, which may have resulted from overfitting in the multiple
regression methods. The advantage for the PLSR, ANNs, and SVMs was not easily
saturated which explain the good performance, and demonstrates the potential of
chemometric techniques for mapping some important biophysical variable. However,
many software packages don’t yet include routines for calibrating and applying
those models.

Among the six algorithms, as the number of wavelengths increased, the value of
R2

C also increased on the calibration set. However, the value of R2
V on the validation

set did not increase, indicating that the stability of all algorithms was not good, which
is consistent with the results of a study by Qi [62]. In addition, the running times
exhibited an increasing trend with an increasing number of wavelengths, with the
BD method requiring the shortest and the ANN-based model requiring the longest
running time; a corresponding increase in operational complexity was also observed.
These results indicate that for the design of future portable spectrometer instruments
with low cost and high accuracy for LNC monitoring, the SAVI approach may be
the best choice. However, for the development of a software program executed by a
computer, the SVM-based algorithm is a better selection.

4.3. The Applicability of the Six Algorithms to Different Groups of Samples

It is well known that statistical models developed for specific applications
sometimes lack transferability to other sites with different vegetation or to other
types of image or acquisition conditions [60,61]. Additional disadvantages of
statistical models include the facts that they require a set of in situ data and that their
robustness depends on the properties of these datasets (i.e., the number, quality and
representativeness of the available reference samples), especially when extrapolated
to other varieties, ecological sites, and growth stages [10,12,15–17,20,25]. However,
statistical models offer certain advantages that promote their widespread use. For
example, several of the cited statistical models are easy to apply. In addition, suitable
software is often readily available [62–64]. This study was conducted on field
experimental data acquired over nine consecutive years that included seven varieties
of wheat, four eco-sites, and 455 samples in the calibration set and 366 samples in

47



the validation set, corresponding to different N levels and growth stages. Through
a systematic analysis, we compared the performance of the six algorithms. The
selected samples were highly representative, and the findings may be applicable to
other sites or similar crops, including the other crops.

The results presented here also indicate that the PLSR-FDS method and
especially the SVM-FDS method may be better suited than the other methods to
cope with potential confounding factors for most varieties. The SMLR-OS and
ANN-OS methods exhibited the worst performance, as indicated by the fact that they
yielded the lowest R2-RMSEP values and mid-to-high computational efficiency. In
the future, the newly developed algorithms should be adapted to the Yangmai 12
and Yumai 34 varieties, which mostly showed the worst performance for all of the
algorithms. Regarding to the differences among the six models at two ecological
sites, the Rugao location yielded better performance than did the Nanjing location.
This may have occurred because the data collected at the Nanjing sites contained
more noise produced by clouds than that from the Rugao sites. However, this
result should be confirmed in the future. The robustness of the PLSR-FDS method
was sufficiently strong that it displayed good performance for both ecological sites,
which is consistent with findings of previous studies conducted at various ecological
sites [16]. Previous researchers have reported that LNC models tend to yield varying
results at different growth stages, with better performance in the later growth
stage [65]. In this paper, the six algorithms also exhibited better and more stable
results in the later stage of growth than in the early stage. This may have occurred
because of the noise generated by the soil background exposed by the open canopy
during the early growth stage [14]. The relatively good LNC correlations that we
observed suggest that the SVM and SAVI methods could be applied across different
varieties, ecological sites and growth stages without extensive calibration.

5. Conclusions

In this study, we demonstrated the performance, advantages, shortcomings,
and robustness of six statistical modeling approaches for wheat canopy LNC. The
PLSR-FDS, ANN-OS and SVM-FDS methods yield similar accuracies with SVM-FDS
as the best if the CE and CL are not considered, however, ANNs and SVMs performed
better on calibration set than the validation set which indicate that we should
take more caution with the two methods for over-fitting. Except PLS method, the
performance for most methods did not enhance when the spectrum were operated
by the first derivative. The prediction accuracy was found to be higher when more
wavelengths were used, though at the cost of a lower CE. Moreover, the evaluation of
the robustness demonstrates that SVMs method may be better suited than the other
methods to cope with potential confounding factors for most varieties, ecological site
and growth stage. However, when the estimation accuracy, the CE, the number of
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wavelengths, and the CL of each model are systematically considered for the design
of hardware devices, the SAVI(R1200, R705) model is found to be the best option for
estimating the LNC in wheat. Although it might generally be preferable to make use
of the full spectral resolution, our study demonstrated that even with two spectral
bands, it is possible to (locally) obtain very good results. Hence, it remains to be
proven that the full wavelength spectrum contains substantially more information
than do narrow-band vegetation indices.

The current study focused on the six most widely used algorithms for the
considered task. The results of this study are of interest to the remote sensing
community for the development of improved inversion schemes for hyperspectral
applications concerning other types of vegetation using empirical models, such as
mapping important vegetation biophysical properties of other crops. The examples
provided in this paper may also serve as illustrations of the advantages and
disadvantages of empirical models. Although statistical models have been developed
and successfully applied across various growth stages, varieties and eco-sites, the use
of these methods is not always possible. Those methods in this paper established for
vegetation variable retrieval, which are frequently applied in terrestrial bio-physical
products, proving a high potential of hyperspectral measurement in the future.
Because our study was performed using a specific dataset, our findings necessarily
have certain limitations in applicability. In order to develop accurate, robust and fast
model with high reliability, practicability and applicability, the next step should be to
confirm these findings for a broader range of species and environments. A simulation
experiment based on synthetic spectra generated by physically-based radiative
transfer model will be conducted. Physical accuracy estimates are mandatory
and should be provided using comprehensive validation datasets collected on
more various sites and varieties. Except parametric regression and non-parametric
regression, the hybrid methods combine generic capability of physically-based
methods with flexible and computationally efficient methods should be tested. What
is more, the impact of feature selection and randomly generated noise should be
considered to study the stability of the developed statistical models to unfavorable
measuring conditions with different sites and varieties in the future. Additionally,
the theoretical uncertainties of the biophysical parameter products should be analysis
in the study. The associated uncertainty estimates also provide information on the
success of transporting a locally trained model to other sites and/or observation
conditions, which are not intended to replace true accuracy estimates, but instead
provide complementary information.
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Spectral Index for Quantifying Leaf Area
Index of Winter Wheat by Field
Hyperspectral Measurements: A Case Study
in Gifu Prefecture, Central Japan
Shinya Tanaka, Kensuke Kawamura, Masayasu Maki, Yasunori Muramoto,
Kazuaki Yoshida and Tsuyoshi Akiyama

Abstract: Timely and nondestructive monitoring of leaf area index (LAI) using
remote sensing techniques is crucial for precise and efficient management of
crops. In this paper, a new spectral index (SI) for estimating LAI of winter wheat
(Triticum aestivum L.) is proposed on the basis of field hyperspectral measurements. A
simple index based on the empirical relationships between LAIs and SIs of all available
two-waveband combinations from hyperspectral data is developed by considering the
difference between reflectance values at 760 and 739 nm (DSIR760–R739 = R760 – R739).
Among published and newly developed SIs, DSIR760–R739 exhibited a significant
and strong linear relationship with LAI and showed outstanding performance
in LAI assessments. The permissible bandwidths for broad-band DSIR760–R739

investigated using simulated reflectance were 5 nm for both 760 and 739 nm center
wavelengths. The results indicate that the linear regression model based on the
narrow-band and broad-band DSIR760–R739 is a simple but accurate method for timely
and nondestructive monitoring of LAI.

Reprinted from Remote Sens. Cite as: Tanaka, S.; Kawamura, K.; Maki, M.;
Muramoto, Y.; Yoshida, K.; Akiyama, T. Spectral Index for Quantifying Leaf Area
Index of Winter Wheat by Field Hyperspectral Measurements: A Case Study in Gifu
Prefecture, Central Japan. Remote Sens. 2015, 7, 5329–5346.

1. Introduction

In remote sensing, among all canopy variables, leaf area index (LAI) is identified
as a key biophysical parameter for crop growth diagnosis and pre-harvest grain yield
prediction [1,2], as well as having a key role in terrestrial ecosystem processes [3].
The green LAI, defined as the one-sided green leaf area per unit horizontal ground
area [4], is directly related to the growth status of crops [5] and largely influences the
spectral reflectance of vegetation canopies. Thus, for site-specific crop management,
it is crucial to be able to estimate LAI in a timely and nondestructive manner using
remote sensing, since the site-specific crop management requires both high-quality
crop production and the minimization of adverse environmental effects via better
fertilizer management [2,6–8].
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To date, empirical regression models based on the spectral indices (SIs) have
been widely used for estimating LAI in crop fields because SI is a simpler, more
convenient, and lesser restrictive approach than multivariate statistical techniques
or radiative transfer model inversions [6,9–11]. For example, the normalized
difference vegetation index (NDVI) [12] has been widely used in the assessment of
above-ground biomass (AGB) and LAI [2]. The modified soil-adjusted vegetation
index (MSAVI), optimized soil-adjusted vegetation index (OSAVI), and enhanced
vegetation index (EVI) were developed to minimize the effects of varying background
soil reflectance and atmospheric influences in measuring vegetation signal [13–16].
Gitelson [17] proposed the wide dynamic range vegetation index (WDRVI) to
accurately assess crop biomass and LAI under conditions of moderate to high AGB.
Recently, Viña et al. [10] found that chlorophyll indices (the red-edge chlorophyll
index [CIred-edge] and the green chlorophyll index [CIgreen]), devised for chlorophyll
assessment at the leaf scale [18], are more accurate for LAI assessments of maize
and soybean crops than for the above-mentioned SIs. These SI-based studies
have successfully predicted LAI at various spatial scales using commercially
available digital cameras, field spectroradiometers, or airborne and satellite-borne
sensors [8,11,19–24].

Winter wheat (Triticum aestivum L.) is one of the most important crops in
Japan and has been planted in more than 212,600 ha [25]. At the canopy scale,
previous research has reported that the LAI for wheat can be accurately estimated
by field spectral measurements [20,26,27]. However, SI-based empirical regression
models have often been growth-stage-specific or year-specific [9,21,28,29]. Therefore,
quantitative assessments of LAI remain uncertain. For example, Haboudane et al.
found useful SIs (e.g., the modified triangular vegetation index, MTVI2) for LAI
predictions of wheat, corn, and soybean based on simulated data using radiative
transfer models [20]. However, the response of MTVI2 of airborne hyperspectral
data with respect to LAI were different at maturity and senescence growth stages
compared with that at early and mid-growth stage for wheat because of the
dominance of the heads of the wheat plants and the increase in yellow and dry
leaves [20,30]. These results suggest that the use of datasets representing actual
canopy characteristics is important for development of new SIs.

Previous research demonstrated the suitability of hyperspectral remote sensing
for monitoring crop growth [31–33]. Particularly for LAI predictions, the saturation
problem of NDVI under moderate to high LAI conditions has been extensively
investigated by developing new SIs using hyperspectral data [34,35]. The advantage
of hyperspectral data is that it can be used for exploring useful SIs via various
waveband combinations. However, hyperspectral data are costly to collect.
Therefore, investigating the impact of new SI bandwidths on predictive accuracy is
important—from an economic standpoint—for designing sensors [36]. In addition,
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the large numbers of hyperspectral bands are redundant; selection of important bands
for crop monitoring is key to maximizing the efficiency of spectral data use [33].

The aim of this study was to identify simple and accurate SIs for LAI assessment
of winter wheat. We explored new SIs based on the empirical relationships between
the LAIs and SIs of all available two-waveband combinations. This exploration was
conducted using field datasets collected at several growth stages of winter wheat.
Then, the predictive ability and sensitivity of the newly developed and existing SIs
were evaluated. Finally, the impacts of new SI bandwidths were investigated using
simulated reflectance.

2. Materials

2.1. Experimental Site

Field experiments were conducted during two growing seasons in 2006
and 2007 at two experimental dried paddy fields of typical size in the Gifu
Prefectural Agricultural Technology Center (GPATC) in southern Gifu prefecture,
Japan (35˝26.61N, 136˝421E) (Figure 1). The mean annual temperature and annual
precipitation at GPATC in 2004 were 17.7 ˝C and 1903 mm, respectively [37].
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Figure 1. Location and photographs of the experimental site. (a) Location of
the experimental site; (b) Photograph of the winter wheat on 25 April 2006 (just
before heading); and (c) Photograph of the winter wheat on 2 June 2006 (10 days
before harvest).
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Two major wheat cultivars (cv. “Norin 61” and “Iwainodaichi”) were sown at
a 30 cm ridge width at an 80 kg¨ha´1 seeding rate (standard cultivation practice).
We then investigated the “Norin 61” in 2006 and the “Norin 61” and “Iwainodachi”
in 2007. The sowing and heading dates are summarized in Table 1. Wheat was
harvested between late May and early June in both the 2006 and 2007 seasons. In this
region, a rotational cropping system for rice, wheat, and soybean has been widely
adopted, and accordingly, wheat was seeded in the experimental fields after the
paddy rice had been harvested. Field measurements were performed in different
dried paddy fields at GPATC in 2006 and 2007.

Table 1. Sowing and heading dates of winter wheat in the experimental field.

Sowing Date/Heading Date Norin 61 (2006) Norin 61 (2007) Iwainodaichi (2007)

Sowing date 9 November 2005 7 November 2006

17 October 2006
27 October 2006

6 November 2006
16 November 2006

Heading date 29 April 2006 9 April 2007 2 April 2007

Source: [38,39].

2.2. Ground-Based Radiometric Measurements

Canopy reflectance measurements were performed for 10:00–15:00 LST (GMT+9)
under clear-sky conditions during the mid (stem extension growth stage) to late
(1–2 weeks before harvest) growing stages (Table 2). The canopy spectra were
measured using two portable hyperspectral spectroradiometers (ASD FieldSpec
Handheld [FSHH] or FieldSpec 3 [FS3]; Analytical Spectral Devices, Boulder, CO,
USA). The spectral range was 325–1075 nm for the FSHH and 350–2500 nm for
the FS3. For all measurements, the sensor heads were positioned to look vertically
downward, centered over the wheat hill, and were kept at a constant 1.3 m above
the ground with a commercially available tripod. The radiometers had a 25˝ field of
view, for a viewing area of 58 cm in diameter at the canopy level.

Using the FSHH, we recorded the upwelling radiance of the wheat canopies,
as well as that of the white Spectralon reflectance standard (Labsphere, Inc., North
Sutton, NH, USA) at ~15–30 min intervals to determine the canopy reflectance. For
the FS3 on 10 April 2007, the upwelling radiance of the white Spectralon reflectance
standard was used to calibrate the instrument at 15–30 min intervals, and then the
reflectance values of the wheat canopy were recorded. Finally, the spectral data
stored in a personal computer were resampled at 1 nm intervals and exported as
text files using computer software (RS2 for Windows; Analytical Spectral Devices,
Boulder, CO, USA).
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Table 2. Overview of the field spectral measurements.

Date n Measured Cultivar Growth Stage Spectroradiometer

4 Apr. 2006 15 Norin 61 Stem extension FSHH
7 Apr. 2006 5 Norin 61 Stem extension FSHH

17 Apr. 2006 15 Norin 61 Stem extension FSHH
24 Apr. 2006 15 Norin 61 Stem extension FSHH
21 May 2006 14 Norin 61 Maturing FSHH
24 May 2006 6 Norin 61 Maturing FSHH
10 Apr. 2007 9 Norin 61 Heading FS3
17 Apr. 2007 9 Iwainodaichi Anthesis FSHH

26 Apr. 2007 6 Norin 61 and
Iwainodaichi Grain filling FSHH

2.3. Determination of Field LAI Value

Agronomic survey was carried out on either the same day or the day following
the hyperspectral measurements. Above-ground plant samples were obtained by
cutting plants at the soil surface level in 50 cm lengths for one hill at each sampling
point where the ground-spectral measurements had been made. All plant samples
were transported to the laboratory immediately after sampling, where they were then
divided into green leaves, yellow leaves, stems, and panicles. The surface area of all
the green leaves was determined using a leaf area meter (LI-3100; Li-Cor Inc., Lincoln,
NE, USA). The LAI values for a unit ground area were determined by multiplying
with a conversion factor (6.67 for 50 cm length samples) in consideration of the ridge
width of wheat.

3. Methods

3.1. Contour-Map Approach for Exploring New Useful Spectral Indices

Previous studies used contour maps of the coefficient of determination (R2)
obtained by a linear regression analysis between agronomic variables and all possible
two-waveband combinations of reflectance values to explore useful SIs [6,26,37,40–43].
This procedure is inadequate when the relationship between the LAI and the SI
is nonlinear, and it cannot run with nonlinear fitting because of the requirement
for initial parameter values [26]. Conversely, this contour-map approach has the
advantage of providing an efficient selection of the optimal combination and width
for use in existing sensors and for designing future sensors [6,41], and its results can
easily be compared with those from other studies. Therefore, we used this approach
with formulae that take the difference (Difference Spectral Index; DSI), ratio (Ratio
Spectral Index; RSI), and normalized difference (Normalized Difference Spectral
Index; NDSI) of the reflectance values to generate new useful SIs for predicting the
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LAI. In this analysis, spectral ranges of <400 nm and >1000 nm were omitted due to
noise. The DSI, RSI, and NDSI are defined as follows:

DSIRi–Rj “ Ri ´Rj (1)

RSIRi–Rj “ Ri{Ri (2)

NDSIRi–Rj “ pRi ´Rjq{pRi `Rjq (3)

where Ri and Rj are the reflectance values at i and j nm. In this study, both the R2

value (highest-R2 criteria) and the root mean square error (RMSE) (minimum-RMSE
criteria) from the leave-one-out cross-validation (LOOCV) procedure were used to
explore useful SIs. The RMSE was calculated by the following formula:

RMSE “

c

1
n

ÿ

n
i“1 pyi ´ yiq

2 (4)

where yi and ŷi are the observed and predicted value of sample data i, respectively,
and n is the number of sample data. To compare the predictive ability of these three
new SIs, we selected nine other major and potentially useful SIs for LAI prediction:
NDVI, EVI, OSAVI, WDRVI, CIred-edge, CIgreen, MSAVI, MTVI1 and MTVI2 (Table 3).

Table 3. Existing spectral indices (SIs) used for comparison with the DSI, RSI,
and NDSI.

Spectral Index Formulation Reference

NDVI pR800 ´R670q { pR800 `R670q [12,20]
EVI 2.5 rpR800 ´R670q { pR800 ` 6R670 ´ 7.5R445qs [14]

OSAVI pR800 ´R670q { pR800 `R670 ` 0.16q [16]
WDRVI (α = 0.1) pαR800 ´R670q { pαR800 `R670q [17]

CIred-edge R800{R710 ´ 1 [10,18,44]
CIgreen R800{R550 ´ 1 [10,18]

MSAVI 0.5
„

2R800 ` 1´
b

p2R800 ` 1q2 ´ 8 pR800 ´R670q



[15,20]

MTVI1 1.2 r1.2 pR800 ´R550q ´ 2.5 pR670 ´R550qs [20]

MTVI2
1.5r1.2pR800´R550q´2.5pR670´R550qs
c

p2R800`1q2´
´

6R800´5
?

R670

¯

´0.5 [20]

3.2. Model Construction and Validation

For each SI, linear and non-linear regression models between SI and LAI were
constructed [10], and the two models were compared with the Akaike Information
Criterion (AIC; [45]) to select the better model.

Then, a bootstrap procedure similar to that in previous studies [46,47] was
performed to evaluate the predictive ability of the SIs. First, the data were divided
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into a calibration dataset (66.7%) and a validation dataset (33.3%) by stratified random
sampling (four stratums; 0 ď LAI < 1, 1 ď LAI < 2, 2 ď LAI < 3, and LAI ě 3) because
there was less data in the high LAI range. Next, the linear or nonlinear model for each
SI was fitted to the calibration dataset, and a set of best-fitted values was determined.
Finally, the validation dataset was bootstrapped 1000 times, and for each repetition,
the inverted linear or nonlinear model with the best-fitted parameters for each SI was
used to predict LAI for the validation subsamples. In this study, same calibration
dataset and bootstrapped samples in all SIs were used. To assess the predictive
accuracy, the RMSE was used.

For our sensitivity analysis, the noise equivalent (NE) ∆LAI [10,48] was used to
represent the sensitivity of the SI in detecting changes in LAI:

NELAI “ RMSEpSI vs. LAIq{rdpSIq{dpLAIqs (5)

where d(SI)/d(LAI) is the first derivative of the SI with respect to LAI, and the
RMSE(SI vs. LAI) is the RMSE of the SI versus LAI relationship. The NE∆LAI has the
advantage of allowing a direct comparison of different SIs [49].

All data handling and statistical analyses were performed using the R software
(version 2.15.0) [50] and the nonlinear fitting was made using the “nls” function in R.

3.3. Determination of Bandwidths for Broad-Band SI

To investigate the performance of new SI under different bandwidths (full width
at half maximum; FWHM), simulated reflectance (Rsim) was used. In accordance
with a previous study [36], the Rsim was simulated by Equation (6) with the Gaussian
response function (Equation (7)):

Rsim “

řλe
λs

Rλ f pλ, σq
řλe

λs
f pλ, σq

(6)

f pλ, σq “ exp

˜

´
pλ´ λcq

2

2σ2

¸

(7)

where λ is wavelength in the range of spectral response for simulated bandwidth,
λc is the central wavelength, and σ “ FWHM

2
?

2ln2
. Different bandwidths in the range

of 1–61 nm were simulated to investigate changes in predictive accuracy using the
RMSE values calculated by the bootstrap procedure described in the previous section.
The bandwidths for which the RMSE was not greater than 5% of the smallest RMSE
value (optimal1.05 criterion; e.g., [51]) were adopted as the permissible bandwidths
for economical sensor design [36].
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4. Results

4.1. Agronomic Data

Summary statistics of the field LAI values are shown in Table 4. The ranges
of LAI in the entire dataset were 0.3–5.5. These ranges were sufficiently broad to
evaluate the predictive ability of the SIs. Conversely, the ranges of LAI in each
dataset, i.e., dataset of the cv. “Norin 61” in 2006 and 2007 and the cv. “Iwainodaichi”
in 2007, were insufficient for analysis by year or cultivar. In addition, the 2007 data
was collected mainly at the specific growth stage (Table 2). For these reasons, all the
data were pooled and then used for statistical analysis.

Table 4. Summary statistics of the field LAI values.

Variable Statistic Entire
Dataset

Norin 61
(2006)

Norin 61
(2007)

Iwainodaichi
(2007)

LAI Average 1.7 1.4 2.7 2.3
Max 5.5 3.0 5.5 3.9
Min 0.3 0.3 1.4 0.7

Range 5.2 2.7 4.1 3.1
n 94 70 12 12

4.2. Contour Maps of R2 Value

Figure 2 shows contour maps of the R2 values from the linear regression analysis
between LAI and all possible two-waveband combinations of DSI, RSI, and NDSI,
respectively. Similar results were also obtained in the RMSE values (data not shown).
In DSI (Figure 2a), a higher R2 (>0.75) and smaller RMSE (<0.45) areas were found
at the combination of red-edge wavelengths (720–750 nm) and red-edge to NIR
wavelengths (740–840 nm). The maximum R2 value (0.860; p < 0.001) and minimum
RMSE value (0.345) were obtained by the difference of the reflectance values at
760 nm and 739 nm, i.e., DSIR760–R739. In RSI (Figure 2b), major R2 > 0.75 areas with
RMSE < 0.45 included a combination of those around 500 nm and 760 or 990 nm
wavelengths, 680 nm with red-edge to NIR wavelengths (735–930 nm, 960–1000 nm),
and 730–760 nm wavelengths. The maximum R2 value (0.785; p < 0.001) and
minimum RMSE value (0.428) were obtained by RSIR760–R730. In NDSI (Figure 2c),
a major R2 > 0.75 area with RMSE < 0.45 was found in region with a combination of
around 760 nm and 730 nm wavelengths. The maximum R2 (0.788; p < 0.001) and
minimum RMSE (0.425) values were obtained by NDSIR760–R730.
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Figure 2. Contour maps of the coefficient of determination (R2) between LAI and
(a) DSI; (b) RSI; and (c) NDSI. The crosses (x) indicate the points with the highest
R2 values.

Among the three contour maps, RSI showed R2 > 0.70 in a larger number
of combinations than the other SIs for estimating LAI. However, we obtained no
R2 > 0.80 with RSI. Overall, the DSIR760–R739 yielded the best R2 values with respect
to LAI (R2 = 0.860). Moreover, the best waveband-combination for DSI, RSI, and
NDSI that were determined by the minimum-RMSE criteria were coincident with
the results of the highest-R2 criteria. These results indicate that these three new SIs
are useful for LAI prediction; therefore, were further used in this study.

4.3. LAI Prediction and Validation

Figure 3 shows the relationships between LAIs and SIs. NDVI, EVI, OSAVI,
MSAVI and MTVI1 each exhibited an asymptotic relationship with LAI. In contrast,
the other SIs (i.e., WDRVI, CIred-edge, CIgreen, MTVI2, DSIR760–R739, RSIR760–R730,
and NDSIR760–R730) showed a more linear relationship with LAI. In particular,
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DSIR760–R739 had the most linear relationship with LAI. Based on the AIC, nonlinear
model was selected for all SIs except for DSIR760–R739.
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Figure 3. Relationships between LAI and (a) NDVI, (b) EVI, (c) OSAVI, (d) WDRVI,
(e) CIred-edge, (f) CIgreen, (g) MSAVI, (h) MTV1, (i) MTV2, (j) DSIR760–R739,
(k) RSIR760–R730, and (l) NDSIR760–R730. Open circles, filled circles, and crosses
indicate data from the cv. “Norin 61” in 2006, cv. “Norin 61” in 2007, and cv.
“Iwainodaichi” for 2007, respectively. Solid lines indicate the best-fitted lines.

Subsequently, we compared the predictive ability of SIs for assessing LAI
by RMSEs obtained via the modified bootstrap procedure. Table 5 shows the
point-estimated mean values of RMSE and the 95% confidence intervals (95% CI).
Lower RMSE values (RMSE ď 0.457) were obtained from the three newly explored
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SIs (DSIR760–R739, RSIR760–R730, and NDSIR760–R730) than those from previously known
SIs (RMSE > 0.457). The linear predictive model based on DSIR760–R739 showed the
best performance (RMSE = 0.372; 0.280–0.487, 95% CI).

Table 5. Best-fitted parameters, point-estimated mean values of RMSE, and 95%
confidence intervals (CIs) of RMSE for narrow-band and broad-band SIs calculated
by a modified bootstrap procedure.

Spectral index Model a Best Fitted Parameter
RMSE 95% CI

Y0 a b

NDVI nonlinear 0.431 0.499 0.811 0.466 0.357–0.546
EVI nonlinear 0.183 0.589 0.574 0.656 0.535–0.847

OSAVI nonlinear 0.263 0.434 0.691 0.492 0.404–0.617
WDRVI nonlinear �0.674 1.300 0.409 0.487 0.378–0.566
CIred-edge nonlinear 0.242 3.770 0.252 0.516 0.404–0.605

CIgreen nonlinear 0.933 8.493 0.225 0.572 0.442–0.692
MSAVI nonlinear 0.174 0.633 0.475 0.582 0.469–0.753
MTVI1 nonlinear 0.165 0.545 0.555 0.824 0.622–1.046
MTVI2 nonlinear 0.144 0.753 0.474 0.541 0.434–0.687

DSIR760–R739 linear 0.003 0.017 NA 0.372 0.280–0.487
RSIR760–R730 nonlinear 1.071 0.994 0.165 0.457 0.371–0.551

NDSIR760–R730 nonlinear 0.039 0.300 0.224 0.455 0.368–0.553
Broad-band DSIR760–R739 linear 0.006 0.017 NA 0.390 0.302–0.477

a Inverted regression model, LAI � ln
�

1{p1� SI�Y0
a q

	
b , was used for nonlinear models, while

the model, LAI � SI�Y0
a , was used for the linear model in the LAI prediction.

On the basis of the sensitivity analysis, we found large differences in sensitivity
when LAI value exceeded 3.0 but only minor differences among SIs when LAI
values were below 3.0 (Figure 4). Overall, WDRVI, CIred-edge, CIgreen, DSIR760–R739,
RSIR760–R730, and NDSIR760–R730 showed higher sensitivities with respect to LAI
at moderate to high LAI values (3.0–5.5). DSIR760–R739, in particular, revealed the
highest sensitivity when LAI exceeded 1.5, indicating that it is effective in predicting
high LAI values.

On the basis of its high predictive ability, high sensitivity, and high degree of
linearity, we consider DSIR760–R739 to be the most useful SI for estimating LAI in
our dataset.

4.4. Impact of Bandwidths on Predictive Accuracy

The impact of bandwidths on predictive accuracy was investigated using
DSIR760–R739 with simulated reflectance Rsim. A best predictive accuracy was found to
be the narrow-band DSIR760–R739 (i.e., bandwidths are 1 nm for 760 and 739 nm center
wavelengths). The predictive accuracy decreased with increases in bandwidths, as
shown in Figure 5. The downward trends of predictive accuracy were different in
760 and 739 nm center wavelengths. When the bandwidth at the 760 nm center
wavelength was as narrow as 9 nm, the impact of increases in bandwidths was
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relatively small for the 739 nm center wavelength. Although increases in bandwidths
decreased predictive accuracy, the broad-band DSIR760–R739 (e.g., 15 nm for both
wavelengths) had higher predictive accuracy (i.e., RMSE < 0.455) than the existing SIs
listed in Table 5. The permissible bandwidths determined by the optimal1.05 criterion
were found to be 5 nm for 760 and 739 nm center wavelengths (Table 5).
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5. Discussion

Using the contour map approach, three SIs (DSIR760–R739, RSIR760–R730, and
NDSIR760–R730) were found to be closely related to LAI (Figure 2). In particular,
DSIR760–R739 was most significantly related to LAI (R2 = 0.860; RMSE = 0.345). As
shown in Figure 2, the wavelengths between 730 and 760 nm showed the most
important spectral signatures for LAI assessment. The red-edge-NIR wavelengths
are recognized as the most important spectral signatures for the assessment of
LAI and canopy chlorophyll content [52–55]. In general, because of the multiple
scattering of light in canopies, the reflectance values of the NIR wavelengths
increase as LAI increases [56,57]. First-derivative processing is well known to
be effective for enhancing the spectral signature from a target by removing noise.
Difference processing of two close wavelengths yields results similar to those of
the first-derivative processing. Therefore, we considered the spectral signature of
the NIR wavelengths, which are sensitive to changes in LAI, to be enhanced by
difference processing. As the canopy reflectance values of red-edge wavelengths are
closely related to canopy chlorophyll content [55], and canopy chlorophyll content
is strongly related to LAI [58,59], previous studies successfully predicted LAI by
using chlorophyll-related SIs such as CIred-edge [10,53]. According to such results,
another possible reason for the success of DSIR760–R739 for LAI prediction is the high
sensitivity of reflectance values at red-edge wavelengths (739 nm in this study) to
the canopy chlorophyll content.

The analyses revealed that NDVI, EVI, and OSAVI (normalized difference
indexing) are in a nonlinear relationship with LAI (Figure 3a–c) and are less
sensitive to changes in LAI at high LAI values (Figure 4). The main reason for
the low sensitivity of these SIs could be their normalized-difference processing; this
processing of the ρNIR and ρred values makes the SIs insensitive to variations in the
ρNIR when ρNIR >> ρred [17]. SIs that take normalized difference processing tend to
be insensitive to changes in LAI at high LAI values. In contrast, the WDRVI, a linear
transformation of the normalized difference of ρNIR and ρred, is more sensitive to
changes in LAI at moderate to high LAI values (Figure 4). Thus, introducing a weight
coefficient such as the WDRVI’s “α” is a simple and efficient approach to enhance
sensitivity to LAI under moderate to high LAI conditions. Although its sensitivity at
high LAI values was slightly inferior to that of DSIR760–R739, the WDRVI is useful for
LAI assessment.

We also confirmed the applicability of chlorophyll-related SIs (e.g., CIred-edge
and CIgreen) at the leaf scale for LAI assessment (Figure 3e,f and Figure 4). These
results are consistent with a previous study [10,53]. When a reflectance value at
760 nm is used as the ρNIR of CIred-edge, the CIred-edge becomes an index similar to
RSIR760–R730, which indicates higher predictive accuracy and sensitivity. Therefore,
CIred-edge, computed by the red-edge and the shortest part of the NIR wave region,
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is more useful for LAI assessment than SIs that use the longer part of the NIR
wave region. The CIred-edge has been successfully applied to LAI assessment of
maize, soybeans [10], and wheat crops [53]. Thus, we believe that the CIred-edge is
useful for LAI assessment regardless of crop type. Nevertheless, note that a high
spectral resolution was required to observe optimal wavelengths because the optimal
bandwidth of this SI was observed to be narrow, as shown in the RSI contour map
(Figure 2b).

Among the SIs tested in this study, DSIR760–R739 was the most linearly and closely
related SI to LAI and demonstrated the best performance for the ground-based
dataset. The advantage demonstrated by DSIR760–R739 was its higher sensitivity in
detecting changes in LAI at moderate to high LAI values (3.0–5.5). The ground-based
dataset was collected at multiple growth stages during the two-year experiment
(Table 3). In spite of the clear differences in ground and canopy conditions,
DSIR760–R739 could accurately predict the LAI.

In monitoring the crop nitrogen status of rice and wheat, Wang et al. [36]
reported that the relatively wide bandwidths (36, 15, and 21 nm for 924, 703, and
423 nm wavelengths, respectively) in their three broad-band vegetation index are
ideal for sensor design. However, our study found rapid decreases in predictive
accuracy, especially for the 760 nm center wavelength. The permissible bandwidths
for DSIR760–R739 determined by the optimal1.05 criterion were found to be 5 nm
at both the 760 nm and 739 nm center wavelengths. The result of this study is
consistent with previous studies showing that narrow-band SIs from hyperspectral
remote sensing are suitable for monitoring crop growth (e.g., [33,60]). However, even
though the bandwidths of DSIR760–R739 are wider (e.g., 15 nm for both wavelengths),
the predictive accuracy of the model was still higher than existing SIs (Figure 5).
Therefore, like the narrow-band DSIR760–R739, which is suitable for LAI assessment,
the broad-band DSIR760–R739 may also prove to be useful for LAI assessment.

Le Maire et al. [61] conducted a systematic study aimed at finding efficient
hyperspectral indices for the estimation of forest sun leaf chlorophyll content, sun
leaf mass per area, LAI, and leaf canopy biomass using radiative transfer models,
canopy reflectance data, and Hyperion images. They found a reliable index that
uses difference of reflectance value at 1725 and 970 nm (i.e., R1725 ´ R970). In the
spectral range that we tested, and in the form of normalized difference, they reported
that the combination of NIR and blue reflectance is the most useful spectral region
for LAI estimation. However, the results of the present study suggested that the
combination of NIR and blue reflectance are not useful for LAI assessment of winter
wheat. A possible reason for this significant difference is the difference in ranges
in LAI values because le Maire et al. estimated LAI in ranges >3.0 in their study.
Although this study was site-specific and did not include wavelengths longer than
1000 nm, the ranges of LAI in the datasets were 0.3–5.5, sufficiently broad to evaluate
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the predictive ability of SIs (Table 4). The DSIR760–R739 developed for the wide
ranges of LAI values in this study would therefore be reliable for LAI assessment of
wheat crops.

Similar to our study, some previous studies have reported that the
first-derivative reflectance of red-edge wavelengths or SIs using red-edge
wavelengths and wavelengths at 730–760 nm are closely related to the LAI of
paddy rice [40], wheat [26,53], and pasture biomass [35]. Another study suggested
that the first-derivative reflectance at 740 nm has high sensitivity to the difference
in LAI of paddy rice at the panicle-formation stage [6]. The results of further
studies investigating the spectral response of DSIR760–R739 for LAI assessment of
multiple crops or vegetation types would be interesting and significant to confirm
the robustness of the DSIR760–R739 predictive model because of the differing spectral
responses among crops [32,42,43]. For example, an analysis comparing wheat and
paddy rice, which are the two major gramineous crops that have relatively similar
canopy structures, would be very interesting and required to determine the suitability
of DSIR760–R739 for remotely assessing LAI. In addition, since all the ground datasets
in our study were pooled and then used for statistical analysis, this study could not
clarify the applicability of DSIR760–R739 for determining differences in wheat varieties
and fertilization. In the future, we will examine other fields with different wheat
varieties and fertilizer management techniques by using a larger dataset with a wider
range of LAI values.

6. Conclusions

To identify simple and accurate SIs for LAI assessment of winter wheat, this
study evaluated the predictive ability and sensitivity of several SIs with respect to
LAI assessment. Hyperspectral and ground data collected at the middle and late
growing stages were used to identify useful SIs in the present study.

During the study, three new SIs (DSIR760–R739, RSIR760–R730, and NDSIR760–R730)
were developed based on the empirical relationships between LAIs and SIs of all
available two-waveband combinations from hyperspectral data. Of the 12 SIs that
were tested, DSIR760–R739 was the most linearly and closely related to LAI and the
most sensitive to changes in LAI at moderate to high LAI conditions. The permissible
bandwidths for broad-band DSIR760–R739 were identified as 5 nm at both center
wavelengths. The narrow-band and broad-band DSIR760–R739 could be used for LAI
assessment with portable spectroradiometers, thus providing useful information
for farmers to conduct improved site-specific crop management and sustainable
agricultural decisions.

Since all the ground datasets in our study were pooled and then used for
statistical analysis, this study could not clarify the applicability of DSIR760–R739

for determining differences in wheat varieties and fertilization. In the future, we
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will examine other fields with different wheat varieties and fertilizer management
techniques by using a larger dataset with a wider range of LAI values. In addition, we
will also examine the response of the DSIR760–R739 for LAI assessments for multiple
crops or vegetation types to confirm the robustness of the predictive model based
on DSIR760–R739.
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Satellite Remote Sensing-Based In-Season
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Georg Bareth

Abstract: Rice farming in Northeast China is crucially important for China’s food
security and sustainable development. A key challenge is how to optimize nitrogen
(N) management to ensure high yield production while improving N use efficiency
and protecting the environment. Handheld chlorophyll meter (CM) and active
crop canopy sensors have been used to improve rice N management in this region.
However, these technologies are still time consuming for large-scale applications.
Satellite remote sensing provides a promising technology for large-scale crop growth
monitoring and precision management. The objective of this study was to evaluate
the potential of using FORMOSAT-2 satellite images to diagnose rice N status for
guiding topdressing N application at the stem elongation stage in Northeast China.
Five farmers’ fields (three in 2011 and two in 2012) were selected from the Qixing
Farm in Heilongjiang Province of Northeast China. FORMOSAT-2 satellite images
were collected in late June. Simultaneously, 92 field samples were collected and six
agronomic variables, including aboveground biomass, leaf area index (LAI), plant
N concentration (PNC), plant N uptake (PNU), CM readings and N nutrition index
(NNI) defined as the ratio of actual PNC and critical PNC, were determined. Based
on the FORMOSAT-2 imagery, a total of 50 vegetation indices (VIs) were computed
and correlated with the field-based agronomic variables. Results indicated that
45% of NNI variability could be explained using Ratio Vegetation Index 3 (RVI3)
directly across years. A more practical and promising approach was proposed by
using satellite remote sensing to estimate aboveground biomass and PNU at the
panicle initiation stage and then using these two variables to estimate NNI indirectly
(R2 = 0.52 across years). Further, the difference between the estimated PNU and the
critical PNU can be used to guide the topdressing N application rate adjustments.
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1. Introduction

Rice (Oryza sativa L.) is one of the most important crops in the world, and
more than two-thirds of China’s population relies on rice as the staple food [1].
Nitrogen (N) is an important element in chlorophyll constitution. Its supply rate
affects biomass production and yield to a large extent. Farmers tend to apply high
rates of N fertilizer in order to get a high yield. In the past 50 years, Chinese cereal
production increased by 3.2 times, mainly due to an increased input of synthetic
fertilizers, especially N fertilizer [2]. The agronomic efficiency of N fertilizer for
rice is only 11.7 kg¨kg´1 in China, much lower than those in developed countries
(20–25 kg¨kg´1) [3,4]. The over-application of N fertilizer increases the risks of
environmental pollution due to N loss into the surface water bodies, groundwater
or atmosphere, resulting in water eutrophication, increased nitrate content in the
groundwater and greenhouse gas emissions [5]. Precision N management strategies
are developed to improve fertilizer N use efficiency by matching the fertilizer N
input to crop N demand in proper time and space [6]. This requires the development
of technologies for real-time and site-specific diagnosis of crop N status in the field
for guiding the topdressing N applications [7].

Plant N concentration (PNC) and uptake (PNU) have been commonly used
as crop N status indicators. To improve crop N status diagnosis, the concept of
critical N concentration (Nc) has been proposed as the minimum PNC necessary
to achieve maximum aboveground biomass production [8,9]. Nc decreases with
increasing biomass. Their relationship can be described using a negative power
function, called the critical N dilution curve [10]. Thus, the Nc at any given biomass
value can be calculated by this dilution curve. The actual PNC (Na) can then be
compared to Nc, and their ratio is termed the N nutrition index (NNI). NNI is a
better indicator for diagnosing crop N status than PNC or PNU [10]. If Na is greater
than Nc (NNI > 1), this indicates an over-supply of N, while the opposite is true if
Na is smaller than Nc (NNI < 1) [10]. An NNI value of one indicates an optimal N
supply. The calculation of NNI requires destructive sampling and chemical analysis
to determine biomass and plant N concentration, which is time and cost consuming
and, thus, impractical for in-season site-specific N management across large areas.
Therefore, there is an increasing interest in using proximal and remote sensing
technologies to non-destructively estimate the crop NNI [10–13]. Several researchers
have successfully used chlorophyll meter (CM) data to estimate the NNI of wheat
(Triticum aestivum L.) [14–17] and maize (Zea mays L.) [18]. However, CM data are
point measurements at the leaf level and unsuitable for precision N management
across large areas [19].

Crop canopy sensors are more efficient and promising than leaf sensors for
monitoring crop N status across large fields [7,13]. Mistele and Schmidhalter [20]
used a passive hyperspectral canopy sensor to estimate NNI. They found that the
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red edge inflection point (REIP) could explain 95% of winter wheat NNI variability.
A passive hyperspectral canopy sensor was also applied to estimate maize NNI by
Chen et al. [21]. They reported that a model based on principal component analysis
and a back propagation artificial neural network approach performed the best by
explaining 81% of NNI variability. However, passive canopy sensors are constrained
by the time and cloud cover of the acquisition day. Such hyperspectral sensors
are also very expensive; therefore, they may be more suitable for research than for
on-farm applications.

Active optical crop canopy sensors, unlike passive sensors, have modulated
light emitting diodes that irradiate a plant canopy and measure a portion of the
reflected radiation, without relying on ambient sunlight [22]. They are not influenced
by environmental light conditions and do not need frequent calibrations. The
GreenSeeker active canopy sensor (Trimble Navigation Limited, Sunnyvale, CA,
USA) has a red (R) and near-infrared (NIR) band and provides two vegetation indices
(VIs), the Normalized Difference Vegetation Index (NDVI) and the Ratio Vegetation
Index (RVI). It was found that GreenSeeker NDVI and RVI explained 47% and 44%
of winter wheat NNI variability, respectively, across site years and growth stages [7].
The Crop Circle ACS 470 sensor (Holland Scientific, Inc., Lincoln, NE, USA) is a
configurable active crop canopy sensor with three wavebands. It was found that two
VIs calculated with the Crop Circle wavebands, the Green Re-normalized Difference
Vegetation Index (GRDVI) and the Modified Green Soil Adjusted Vegetation Index
(MGSAVI), were effective for estimating winter wheat NNI across site years and
growth stages (R2 = 0.77 ´ 0.78) [7]. For rice, the GreenSeeker sensor explained
25%–34% and 30%–31% of NNI variability at the stem elongation and heading stage,
respectively [13]. Using the Crop Circle ACS 470 sensor, four red edge-based indices,
including the Red Edge Soil Adjusted Vegetation Index (RESAVI), the Modified
RESAVI (MRESAVI), the Red Edge Difference Vegetation Index (REDVI) and the
Red Edge Re-normalized Difference Vegetation Index (RERDVI), performed equally
well for estimating rice NNI across growth stages (R2 = 0.76) [12]. Active crop
sensors have been mounted on fertilizer applicators, and on-the-go sensing and
variable rate N applications have been realized for maize and wheat, but not for rice,
considering the challenges for fertilizer application machines to enter paddy fields
flooded with water.

Aerial and satellite remote sensing is a promising technology to monitor crop
N status for large production fields [23]. Aerial hyperspectral remote sensing and
CM data were combined to diagnose maize N status using the N Sufficiency Index
(NSI) approach [19]. Cilia et al. [24] applied aerial hyperspectral sensing to estimate
maize NNI indirectly. They calculated the Modified Chlorophyll Absorption Ratio
Index/Modified Triangular Vegetation Index 2 (MCARI/MTVI2) and MTVI2 to
estimate maize PNC (R2 = 0.59) and biomass (R2 = 0.80), respectively. Then, they
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combined the predicted PNC and biomass maps to generate an NNI map, which
agreed well with the NNI obtained by destructive sampling and analysis (R2 = 0.70).
The improvements in spatial and temporal resolutions of satellite remote sensing
make it possible to monitor crop N status at key crop growth stages. Wu et al. [25]
compared QuickBird data with CM readings and petiole nitrate concentration. They
found that the QuickBird-VIs differed significantly for different N input treatments
at the late growing season. Yang et al. [26] found that the NDVI derived from
FORMOSAT-2 satellite imagery was highly correlated to the NDVI calculated
from a ground canopy reflectance sensor (R2 = 0.79). Darvishzadeh et al. [27]
used the inversion of the PROSAIL model with a lookup table approach and
multispectral satellite image data of ALOS AVNIR-2. The method explained 65% of
rice plant chlorophyll content variability with a low root mean square error (RMSE)
of 0.45 g¨m´2.

So far, little has been reported on rice NNI estimation using satellite remote
sensing. Therefore, the objective of this study was to evaluate the potential of using
FORMOSAT-2 satellite remote sensing to estimate rice NNI at a key growth stage for
guiding panicle N fertilizer application in Northeast China.

2. Materials and Methods

2.1. Study Site

The study site is located at the Qixing Farm in the Sanjiang Plain, Heilongjiang
Province, Northeast China. The Sanjiang Plain used to be a wild natural wetland
formed by the alluvia of three river systems—Heilong River, Songhua River and
Wusuli River. During the past 50 years, the natural wetland was reclaimed for
arable land, especially paddy rice fields. Due to the small population density in
this region, each farmer’s household has about a 20–30-ha cultivation area, making
it the leading large-scale farming region in China. The main soil type is Albic soil,
classified as Mollic Planosols in the FAO-UNESCO system, and typical Argialbolls in
the Soil Taxonomy [28]. This area has a typical cool-temperate sub-humid continental
monsoon climate. During the growing season (April–October), the average rainfall
is about 400 mm, which accounts for approximately 70% of yearly precipitation.
The mean annual temperature is about 2 ˝C [29]. The annual sunshine duration is
2300–2600 h, and the whole year frost-free period ranges from 120–140 days [30].

2.2. Field Information

This study was conducted to diagnose rice N status at a key growth stage to
guide panicle fertilizer application based on satellite images. For cold region rice,
the crucial period for panicle fertilizer topdressing is during the stem elongation
stage. Considering the time it takes for satellite image acquisition and processing,
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the best diagnosis stage is at panicle initiation, which is about 7–10 days before the
stem elongation stage [12,31,32]. Three farmers’ fields in 2011 and two in 2012 were
selected for this study. The cultivars and transplanting densities varied (Table 1). The
seedlings were prepared in greenhouses and then transplanted at the 3.1–3.5 leaf
stage into the fields.

The regional optimal N rate recommended by the local extension service was
around 100 kg¨ha´1. Field 1 (F1) was managed by an experienced farmer. The best
rice management practice of the region, supported by the Jiansanjiang Experiment
Station of the China Agricultural University, was applied for this field. Other fields
were managed by individual farmers following their own practices.

Table 1. Detailed information about the farmers’ fields selected for this study,
Heilongjiang Province, China, 2011–2012.

Field Year Number of
Samples

Area
(ha)

N Rate
(kg¨ ha´1) Variety Number

of Leaves
Transplanting

Date
Plant Density
(hills¨ m´2)

F1 2011 33 29.6 97.9 Kendao 6 12 17 May 2011 27
F2 2011 4 13.1 105.9 Longjing 26 11 20 May 2011 30
F3 2011 4 31.0 101.0 Kendao 6 12 12 May 2011 27
F4 2012 14 10.7 120.2 Longjing 31 11 16 May 2012 28
F5 2012 37 21.6 98.3 Longjing 31 11 20 May 2012 30

2.3. Remote Sensing Images and Preprocessing

For this study, we selected the FORMOSAT-2 satellite, which belongs to the
National Space Organization of Taiwan (NSPO). It runs on a Sun-synchronous
orbit with an orbit altitude of 891 km and collects images at the same local hour
with a constant observation angle for the same site [33]. The multispectral image
of FORMOSAT-2 covers four spectral band regions with a ground resolution of
8 m: blue (B) (450–520 nm), green (G) (520–600 nm), red (R) (630–690 nm) and
NIR (760–900 nm) [34]. One image scene covers an area of 24 km ˆ 24 km. The
panchromatic image with 2-m ground resolution is collected simultaneously. The
daily revisit interval makes FORMOSAT-2 one of the most suitable satellites for
precision agriculture applications. Images were obtained on 25 June 2011 and 26 June
2012. These two images were almost cloud-free, especially in the study area.

The images were geometrically corrected and radiometrically calibrated using
ENVI 4.8 (ENVI, Boulder, CO, USA). The radiometric calibration was performed
using the satellite calibration parameters in the following formula for each band:

L “ DN{a` L0 (1)

where L stands for radiance; DN is the abbreviation of digital number; a is the
absolute calibration coefficients, which is also called gain; and L0 stands for the offset.
After the linear transformation, the DN values were converted to radiance values in
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units of W¨m´2¨ sr´1¨µm´1. For geometric correction, high precision ground control
points were used. The rectification accuracy was less than 0.5 pixels (<4 m), which
was acceptable for this research.

2.4. Field Data Collection and Analysis

A total of 41 and 51 ground samples were collected in 2011 and 2012, respectively.
The samples were collected from sites representing different crop growth conditions
(N deficient, optimum and surplus conditions), based on visual observations. The
sampling dates were 25 June 2011, the same acquisition date as the satellite image, and
28 June 2012, two days after the FORMOSAT-2 image collection. At each sampling
site, a hand-held differential Trimble Ag332 GPS was used for geo-referencing.
Ground truth data included rice cultivar, plant density, tiller numbers and relative
chlorophyll concentration measured with the SPAD-502 instrument (Soil-Plant
Analysis Development Section, Minolta, Osaka, Japan). Twenty rice plants were
selected at each sampling site for CM measurements in the middle part of the top
second leaf for each individual plant. At each sampling site, the aboveground
biomass was collected destructively by clipping three hills (each hill consisting of
4–6 rice plants). These samples were taken to the laboratory and rinsed with water.
The roots were removed, and the samples were separated into leaves and stems. The
Leaf Area Index (LAI) was determined by the dry weight method as described by
Bei et al. [35]. All parts of the samples were put into the oven for deactivation of
enzymes at 105 ˝C for half an hour and then dried at 80 ˝C until constant weight.
After being weighted, the sub-samples were ground to particles smaller than 1 mm
and analyzed for N concentration using the Kjeldahl method [36,37].

For the NNI, the Nc was calculated by the following equations developed for
rice in this region according to Justes et al. [38], based on data from N rate experiments
conducted in this region from 2008–2013:

Nc “ 2.77W´0.34 (2)

where Nc is the critical N concentration (%) in the aboveground biomass and W is
the shoot dry weight expressed in t¨ha´1. For aboveground biomass larger than
1 t¨ha´1, the Nc was calculated by the above equation, otherwise the Nc was set
to 2.77%.

2.5. Data Analysis

Many spectral VIs have been developed to estimate plant biophysical variables,
such as chlorophyll concentration or content, LAI and biomass. However, many
of them use narrow bands based on the research results of proximal hyperspectral
sensing. In this study, the potential of using broad band satellite remote sensing
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images for estimating rice N status indicators was evaluated using the broad bands
of FORMOSAT-2 satellite images. A total of 50 VIs were evaluated (Table 2, [39–60]).
The software ENVI and ArcGIS 9 (ESRI, Redlands, CA, USA) were used to extract
the pixel values from the FORMOSAT-2 satellite images and to calculate the VIs for
corresponding sampling sites.

The regression analysis considered the 50 VIs and each of the 6 field-measured
agronomic variables separately. The correlation and regression analyses were
performed using SPSS V.20.0 (SPSS, Chicago, IL, USA). The RMSE and relative
error (RE) were also calculated to evaluate model performances.

Table 2. Vegetation indices evaluated in this study for estimating rice N status
indicators, Heilongjiang Province, China, 2011–2012.

Vegetation Index Formula Ref.

Two-band vegetation indices

Ratio Vegetation Index 1 (RVI1) NIR/B [39]

Ratio Vegetation Index 2 (RVI2) NIR/G [40]

Ratio Vegetation Index 3 (RVI3) NIR/R [39]

Difference Index1 (DVI1) NIR ´ B [39]

Difference Index2 (DVI2) NIR ´ G [39]

Difference Index3 (DVI3) NIR ´ R [39]

Normalized Difference Vegetation Index 1 (NDVI1) (NIR ´ R)/(NIR + R) [40]

Normalized Difference Vegetation Index 2 (NDVI2) (NIR ´ G)/(NIR + G) [41]

Normalized Difference Vegetation Index 3 (NDVI3) (NIR ´ B)/(NIR + B) [40]

Renormalized Difference Vegetation Index 1 (RDVI1) (NIR ´ B)/SQRT(NIR + B) [42]

Renormalized Difference Vegetation Index 2 (RDVI2) (NIR ´ G)/SQRT(NIR + G) [42]

Renormalized Difference Vegetation Index 3 (RDVI3) (NIR ´ R)/SQRT(NIR + R) [42]

Chlorophyll Index (CI) NIR/G ´ 1 [43]

Wide Dynamic Range Vegetation Index 1 (WDRVI1) (0.12 NIR ´ R)/(0.12¨NIR + R) [44]

Wide Dynamic Range Vegetation Index 2 (WDRVI2) (0.12 NIR ´ G)/(0.12¨NIR + G) [44]

Wide Dynamic Range Vegetation Index 3 (WDRVI3) (0.12 NIR ´ B)/(0.12¨NIR + B) [44]

Soil Adjusted Vegetation Index (SAVI) 1.5(NIR ´ R)/(NIR + R + 0.5) [45]

Green Soil Adjusted Vegetation Index (GSAVI) 1.5(NIR ´ G)/(NIR + G + 0.5) [45]

Blue Soil Adjusted Vegetation Index (BSAVI) 1.5(NIR ´ B)/(NIR + B + 0.5) [45]

Modified Simple Ratio (MSR) (NIR/R ´ 1)/SQRT(NIR/R + 1) [46]

Optimal Soil Adjusted Vegetation Index (OSAVI) (1 + 0.16)[(NIR ´ R)/(NIR + R + 0.16)] [47]

Green Optimal Soil Adjusted Vegetation Index (GOSAVI) (1 + 0.16)[(NIR ´ G)/(NIR + G + 0.16)] [47]

Blue Optimal Soil Adjusted Vegetation Index (BOSAVI) (1 + 0.16)[(NIR ´ B)/(NIR + B + 0.16)] [47]

Modified Soil Adjusted Vegetation Index (MSAVI) 0.5{2¨NIR + 1 ´ SQRT[(2¨NIR + 1)2 ´ 8(NIR ´ R)]} [48]

Modified Green Soil Adjusted Vegetation Index (MGSAVI1) 0.5{2¨NIR + 1 ´ SQRT[(2¨NIR + 1)2 ´ 8(NIR ´ G)]} [48]

Modified Blue Soil Adjusted Vegetation Index (MBSAVI) 0.5{2¨NIR + 1 ´ SQRT[(2¨NIR + 1)2 ´ 8(NIR ´ B)]} [48]

Three-band vegetation indices

Simple Ratio Vegetation Index (SR) R/G ˆ NIR [49]

Modified Normalized Difference Vegetation Index 1 (mNDVI1) (NIR ´ R + 2¨G)/(NIR + R ´ 2¨G) [50]

Modified Normalized Difference Vegetation Index 2 (mNDVI2) (NIR ´ R + 2¨B)/(NIR + R ´ 2¨B) [50]
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Table 2. Cont.

Vegetation Index Formula Ref.

New Modified Simple Ratio (mSR) (NIR ´ B)/(R ´ B) [51]

Visible Atmospherically-Resistant Index (VARI) (G ´ R)/(G + R ´ B) [52]

Structure Insensitive Pigment Index (SIPI) (NIR ´ B)/(NIR ´ R) [53]

Structure Insensitive Pigment Index 1 (SIPI1) (NIR ´ B)/(NIR ´ G) [53]

Normalized Different Index (NDI) (NIR ´ R)/(NIR ´ G) [49]

Plant Senescence Reflectance Index (PSRI) (R ´ B)/NIR [51]

Plant Senescence Reflectance Index 1 (PSRI1) (R ´ G)/NIR [51]

Modified Chlorophyll Absorption in Reflectance
Index (MCARI) [(NIR ´ R) ´ 0.2(R ´ G)] ˆ (NIR/R) [54]

Modified Chlorophyll Absorption in Reflectance
Index 1 (MCARI1) 1.2[2.5(NIR ´ R) ´ 1.3(NIR ´ G)] [55]

Modified Chlorophyll Absorption in Reflectance
Index 2 (MCARI2)

1.2[2.5(NIR ´ R) ´ 1.3(R ´ G)]/SQRT[(2¨NIR + 1)2

´ (6¨NIR ´ 5¨SQRT(R) ´ 0.5] [55]

Triangular Vegetation Index (TVI) 0.5[120(NIR ´ G) ´ 200(R ´ G)] [57]

Modified Triangular Vegetation Index 1 (MTVI1) 1.2[1.2(NIR ´ G) ´ 2.5(R ´ G)] [55]

Modified Triangular Vegetation Index 2 (MTVI2) 1.5[1.2(NIR ´ G) ´ 2.5(R ´ G)]/SQRT[(2¨NIR + 1)2

´ (6¨NIR ´ 5¨SQRT(R) ´ 0.5] [55]

Modified Triangular Vegetation Index 3 (MTVI3) 1.5[1.2(NIR ´ B) ´ 2.5(R ´ B)]/ SQRT[(2 NIR + 1)2

´ (6 NIR ´ 5 SQRT(R) ´ 0.5] [55]

Enhanced Vegetation Index (EVI) 2.5(NIR ´ R)/(1 + NIR + 6 R ´ 7.5 B) [58]

Transformed Chlorophyll Absorption in Reflectance
Index (TCARI) 3[(NIR ´ R) ´ 0.2(NIR ´ G)(NIR/R)] [56]

Triangular Chlorophyll Index (TCI) 1.2(NIR ´ G) ´ 5(R ´ G)(NIR/R)ˆ0.5 [59]

TCARI/OSAVI TCARI/OSAVI [56]

MCARI/MTVI2 MCARI/MTVI2 [60]

TCARI/MSAVI TCARI/MSAVI [56]

TCI/OSAVI TCI/OSAVI [59]

2.6. The Estimation of NNI

The rice NNI can be estimated directly and indirectly. The direct method is to use
the selected VI to estimate NNI directly based on the established relationships. The
indirect method is to first use the selected VIs to estimate rice biomass and PNU. With
the critical N dilution curve developed for rice in this region, the Nc can be derived
for each biomass value. The estimated biomass and Nc can then be used together to
calculate critical PNU (biomass ˆNc). The NNI can then be estimated using PNU
and critical PNU, because PNU/critical PNU equal (biomass ˆ Na)/(biomass ˆ Nc),
which can be further simplified to Na/Nc. Considering practical applications, we
classified the rice N status into three categories based on NNI values: deficient
N status (NNI < 0.95), optimal N status (NNI = 0.95–1.05) and surplus N status
(NNI > 1.05).
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The indirect method was used in this study to create NNI maps of selected
fields at the pixel-level. For irrigation purpose, each rice field was divided into many
smaller plots, which were also used as management units for fertilizer application.
Therefore, the pixel-level NNI values were averaged for each small plot to create
plot-level NNI maps using ArcGIS 9.

3. Results

3.1. Variability of Rice N Status Indicators

The variability of rice biomass, LAI and PNU (CV = 23%–28%) was consistently
larger than that of PNC, SPAD values and NNI (CV = 4%–14%) (Table 3). In
addition, larger variability of PNC and NNI was found in 2012 (CV = 11% and
14%, respectively) than in 2011 (CV = 5%). Likewise, the values of biomass, LAI and
PNU were significantly higher in 2012 than in 2011. The NNI ranged from 0.89–1.17
in 2011, with an average of 1.01. This indicated that in general, the N status of these
fields was optimal. In 2012, the NNI ranged from 0.83–1.50, with an average of 1.15,
revealing a surplus N status (Table 3).

An examination of each individual field indicated that the average PNC and
SPAD values were the highest in Filed 1 (F1), the biomass value was the lowest, while
the average NNI was optimal. In contrast, F4 had the lowest PNC, but the highest
average NNI and biomass, indicating a surplus N status (Table 4). These results
indicated the importance of using NNI for N status diagnosis, rather than PNC.

Table 3. Descriptive statistics of rice N status indicators for 2011 (41 field samples)
and 2012 (51 field samples), Heilongjiang Province, China.

Mean Minimum Maximum SD CV (%)

2011

Biomass (t¨ ha´1) 0.87 0.50 1.55 0.22 25
Leaf Area Index 0.84 0.52 1.51 0.20 23

Plant N concentration (%) 2.76 2.45 3.06 0.14 5
SPAD value 42.30 37.03 44.08 1.80 4

Plant N uptake (kg¨ ha´1) 23.86 12.97 43.25 5.80 24
Nitrogen Nutrition Index 1.01 0.89 1.17 0.05 5

2012

Biomass (t¨ ha´1) 2.91 1.45 4.68 0.79 27
Leaf Area Index 3.34 1.77 5.66 0.86 26

Plant N concentration (%) 2.24 1.75 2.77 0.25 11
SPAD Value 40.60 37.07 43.40 1.68 4

Plant N uptake (kg¨ ha´1) 65.00 30.11 114.9 17.93 28
Nitrogen Nutrition Index 1.15 0.83 1.50 0.16 14
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Table 4. Descriptive statistics of rice N status indicators for different fields,
Heilongjiang Province, China, 2011–2012. NNI stands for N Nutrition Index.

Field Biomass (t¨ ha´1) Plant N Concentration (%) SPAD Value NNI

F1 0.81 ˘ 0.16 2.77 ˘ 0.14 43.07 ˘ 0.62 1.00 ˘ 0.05
F2 1.27 ˘ 0.25 2.63 ˘ 0.14 37.89 ˘ 0.89 1.03 ˘ 0.10
F3 0.97 ˘ 0.17 2.62 ˘ 0.11 39.83 ˘ 0.65 1.00 ˘ 0.04
F4 3.89 ˘ 0.41 2.12 ˘ 0.28 40.90 ˘ 1.08 1.21 ˘ 0.16
F5 2.53 ˘ 0.53 2.29 ˘ 0.23 40.49 ˘ 1.85 1.13 ˘ 0.16

3.2. Vegetation Index Analysis

The performance of the VIs differed with N status indicators. The top 10 VIs for
estimating different N status indicators in each year are listed in Table 5.

Table 5. The top 10 coefficients of determination (R2) for the relationships between
vegetation indices based on the FORMOSAT-2 satellite images and rice N status
indicators in Heilongjiang Province, China, 2011–2012. Only significant R2 values
are listed.

Index 2011 2012 2011 + 2012 Index 2011 2012 2011 + 2012

Aboveground Biomass (t¨ ha´1) LAI

MCARI 0.67 ** 0.62 ** 0.90 ** MCARI 0.67 ** 0.58 ** 0.90 **
DVI3 0.65 ** 0.63 ** 0.90 ** DVI2 0.67 ** 0.58 ** 0.91 **
TVI 0.64 ** 0.64 ** 0.90 ** RVI3 0.65 ** 0.60 ** 0.90 **

RVI3 0.64 ** 0.63 ** 0.90 ** DVI3 0.65 ** 0.60 ** 0.91 **
MTVI1 0.63 ** 0.64 ** 0.90 ** RDVI2 0.65 ** 0.58 ** 0.90 **

MCARI1 0.63 ** 0.64 ** 0.90 ** WDRVI1 0.65 ** 0.60 ** 0.90 **
TCARI 0.63 ** 0.64 ** 0.89 ** MSR 0.65 ** 0.60 ** 0.90 **

WDRVI1 0.63 ** 0.64 ** 0.89 ** RDVI3 0.64 ** 0.60 ** 0.90 **
MSR 0.63 ** 0.64 ** 0.90 ** SAVI 0.63 ** 0.61 ** 0.88 **
SAVI 0.61 ** 0.64 ** 0.87 ** NDVI1 0.63 ** 0.61 ** 0.88 **

Plant N Concentration (%) SPAD Values

DVI4 0.55 ** TCI 0.27 ** 0.17 ** 0.13 **
RDVI4 0.53 ** PSRI 0.19 ** 0.10 **
NDVI4 0.49 ** MTVI2 0.18 ** 0.22 ** 0.16 **
RDVI2 0.49 ** TCARI 0.16 ** 0.22 ** 0.14 **
RVI4 0.49 ** MCARI2 0.15 * 0.23 ** 0.15 **

MGSAVI 0.48 ** WDRVI1 0.14 * 0.20 ** 0.12 **
NDVI2 0.48 ** MTVI3 0.10 * 0.25 ** 0.13 **

GOSAVI 0.48 ** TCARI/OSAVI 0.14 **
WDRVI2 0.47 ** EVI 0.14 **
mNDVI1 0.30 ** DVI 0.13* 0.19

Plant N Uptake (kg¨ ha´1) NNI

RVI3 0.66 ** 0.61 ** 0.87 ** RDVI1 0.18 ** 0.32 ** 0.41 **
TVI 0.66 ** 0.61 ** 0.87 ** DVI2 0.17 ** 0.33 ** 0.43 **

WDRVI1 0.66 ** 0.62 ** 0.87 ** RVI2 0.17 ** 0.33 ** 0.44 **
RDVI3 0.66 ** 0.62 ** 0.87 ** WDRVI2 0.16 ** 0.34 ** 0.43 **
TCARI 0.65 ** 0.63 ** 0.86 ** DVI3 0.16 ** 0.34 ** 0.43 **
MSR 0.65 ** 0.62 ** 0.87 ** RDVI2 0.16 ** 0.34 ** 0.42 **

MCARI1 0.65 ** 0.62 ** 0.87 ** RVI3 0.16 ** 0.34 ** 0.45 **
MTVI1 0.65 ** 0.62 ** 0.87 ** WDRVI1 0.15 * 0.35 ** 0.44 **
SAVI 0.64 ** 0.62 ** 0.85 ** RDVI3 0.15 * 0.35 ** 0.43 **

OSAVI 0.64 ** 0.62 ** 0.85 ** TVI 0.15 * 0.34 ** 0.44 **

** Correlation is significant at the 0.01 level; * Correlation is significant at the 0.05 level.
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For aboveground biomass, the top 10 VIs performed similarly in 2011
(R2 = 0.63–0.67) and 2012 (R2 = 0.63–0.64). This was also true for PNU for both
years. For LAI, the top 10 VIs performed slightly better in 2011 (R2 = 0.63–0.67) than
in 2012 (R2 = 0.58–0.60). Four VIs that are based on the combinations of NIR and red
bands, including Ratio Vegetation Index 3 (RVI3), Wide Dynamic Range Vegetation
Index 1 (WDRVI1), Soil Adjusted Vegetation Index (SAVI) and Modified Simple
Ratio (MSR), were consistently among the top 10 indices for biomass, PNU and LAI.
The MCARI index, based on the combination of NIR, red and green bands, had the
highest correlation with aboveground biomass (R2 = 0.67) and LAI (R2 = 0.67) in 2011.
Four VIs, which included MCARI1, Triangular Vegetation Index (TVI), Modified TVI1
(MTVI1) and Transformed Chlorophyll Absorption in Reflectance Index (TCARI),
were also among the top 10 indices for both aboveground biomass and PNU.

Lower correlations were found between the VIs and NNIs, with R2 of 0.15–0.18
in 2011 and 0.33–0.35 in 2012 for the 10 best models. None of the VIs was significantly
correlated with PNC in a specific year, although 30–55% of the PNC variability
was explained across the two years (Table 5). The relationships between VIs and
SPAD values were also weak, with R2 being 0.10–0.27 and 0.14–0.23 in 2011 and
2012, respectively.
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Figure 1 shows selected VI models with the best performance in estimating
rice aboveground biomass, LAI, PNU and NNI across years. The values for 2011
samples were all smaller than those of 2012. Most samples in 2011 had NNI values
close to optimum, and the variability was very small, with CV being only 5%. As a
result, a cluster was formed at the lower end of Figure 1d. This may explain why the
relationships between VIs and NNI were quite weak in 2011 (Table 5).

3.3. Nitrogen Status Diagnosis

According to the above results, an indirect NNI estimation method was used
in this study. The NNI values estimated this way were moderately correlated with
measured NNI across 2011 and 2012 (R2 = 0.52, RMSE = 0.10 and RE = 9.14%)
(Figure 2). By comparing the regression line to the 1:1 line in Figure 2, a systematic
bias can be identified in the regression model. In particular, when the observed NNI
was less than 1.08, the model overestimated the NNI, while the opposite was true
when the NNI was greater than 1.08.
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Figure 2. Relationship between observed and predicted NNI using
MCARI-estimated biomass and RVI3-estimated plant N uptake in 2011 and 2012,
Heilongjiang Province, China. The red line is the 1:1 line.

The NNI maps created using the indirect method for two farmers’ fields are
shown in Figure 3 as an example. Figure 3a,b shows the NNI maps at the pixel
level and the plot level, respectively. The first (Figure 3, left) is a well-managed field,
with 92% of the field being in the optimal N status category. In contrast, the second
field (Figure 3, right) had only 35% in the optimal N category and about 51% in the
deficient N category.

A more quantitative and preferable approach is to produce a PNU difference
map (∆PNU) by subtracting the critical PNU map from the predicted PNU map.
This ∆PNU map can not only tell us if the N status is deficient, optimal or surplus,
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but also the amount of deficiency or surplus. This further can be used to produce
a prescription map for topdressing N application rates (NR) at the stem elongation
stage. Specifically, the prescription map will be the planned topdressing panicle NR
map based on regional best management practice minus the ∆PNU map. Figure 4
displays a ∆PNU map of the second field shown in Figure 3. About 12% of the field
had an N surplus of over 5 kg¨ha´1, while 20% of the field had an N deficiency of
over 5 kg¨ha´1.
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Heilongjiang Province, China.

4. Discussion

4.1. Direct Estimation of NNI

Using satellite remote sensing to estimate rice plant NNI for diagnosing rice
N status and guiding in-season site-specific N management across large areas is
an attractive idea. How well can we estimate NNI directly using FORMOSAT-2
satellite data? The results of this study indicated that all of the top 10 VIs were
significantly correlated with NNI, explaining 18% and 35% of the NNI variability in
2011 and 2012, respectively. Across years, 45% of NNI variability was explained with
RVI3. This result is slightly better than what Yao et al. [13] found using the handheld
GreenSeeker NDVI and RVI, which explained 25% and 34% of rice NNI variability
at the stem elongation stage, respectively. It was found that the top 10 VIs obtained
with the three-band Crop Circle ACS 470 sensor explained 61%–69% of rice NNI
variability across the panicle initiation and stem elongation stages [12]. However, our
study only used data from the panicle initiation stage in 2011, which was expected
to be more influenced by the water background than the stem elongation stage. In
general, it is not satisfactory to use satellite images to directly estimate rice plant
NNI at this stage. At later stages when the rice plants reach canopy closure, this
approach may work better. However, it may then be too late for guiding in-season
N application.
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4.2. Indirect Estimation of NNI

An alternative approach is to use remote sensing to estimate key parameters
and indirectly estimate NNI. Cilia et al. [24] used aerial hyperspectral remote sensing
to estimate maize N concentration and biomass and then estimated NNI indirectly.
Our study indicated that biomass could be reliably estimated using satellite remote
sensing at the panicle initiation and stem elongation stages, with over 60% of its
variability being explained by the top 10 VIs in both 2011 and 2012. We selected
MCARI for further analysis. This index was initially developed for estimating leaf
chlorophyll variation, but it was also significantly related to LAI [54,55]. In this study,
the MCARI index was highly correlated with rice aboveground biomass and LAI
(R2 = 0.58–0.67). The results agree with those of Cao et al. [12], who also identified a
modified MCARI as the best index for estimating rice biomass (R2 = 0.79) and plant
N uptake (R2 = 0.83) across growth stages. The top 10 Crop Circle VIs in their study
explained 50%–54% of rice biomass variability across the panicle initiation and stem
elongation stages. Our results were comparable to the results (R2 = 0.68–0.69) of
Gnyp et al. [61] that were obtained with optimized narrow band RVI and NDVI for
estimating rice biomass at the stem elongation stage. However, estimating rice PNC
before canopy closure is a great challenge. We did not find any significant correlation
between VIs and rice PNC in this study. This was also stated by Yao et al. [13]. They
found that the GreenSeeker NDVI and RVI were not significantly correlated with
rice PNC at the stem elongation stage. Cao et al. [12] found that the three-band Crop
Circle ACS 470 sensor at best explained 33% of rice PNC across the panicle initiation
and stem elongation stages using the Red Edge Green Difference Vegetation Index
(REGDVI). Even with hyperspectral remote sensing, Yu et al. [62] only explained 39%
of rice PNC variability across the tillering and heading stages using the Optimized
Simple Ratio or Normalized Difference Index. Before canopy closure, soil and water
backgrounds in paddy rice fields can influence plant reflectance [63]. In addition,
plant biomass dominates canopy reflectance before the heading stage, making the
estimation of chlorophyll and N concentration at early growth stages difficult [20].
Therefore, the approach adopted by Cilia et al. [24] did not work for rice monitoring
at the panicle initiation and stem elongation stages in our study.

A practical approach is to use satellite remote sensing to estimate rice biomass
and PNU. From the estimated biomass and the critical N dilution curve, the critical
PNU can be determined, and NNI will be calculated using the estimated PNU and
the critical PNU. The results of this study supported this idea. Over 60% of rice PNU
variability was explained by RVI3 in both years. This was even better than the result
obtained with the GreenSeeker sensor for estimating rice PNU at the stem elongation
stage (R2 = 0.40–0.41) by Yao et al. [13] and similar to the results (R2 = 0.63–0.65)
obtained with the Crop Circle ACS 470 sensor for estimating rice PNU across the
panicle initiation and stem elongation stages by Cao et al. [12]. The estimated NNI
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obtained this way explained 52% of the measured NNI variability across 2011 and
2012, which was slightly better than the direct estimation of NNI using VIs obtained
from satellite images (R2 = 0.45).

4.3. Applications for Rice N Status Diagnosis and Topdressing N Recommendation

After the NNI map is generated, it is necessary to define the NNI thresholds for
N status diagnosis. The current thresholds (NNI < 1: deficient; NNI = 1: optimal;
NNI > 1: surplus) may need to be further refined for practical applications. For
example, the NNI values of 0.99 and 1.01 are very close to each other and are all quite
optimal, but they will be classified as deficient and surplus N status, respectively,
based on current thresholds. Cilia et al. [24] proposed to classify NNI into five classes
(NNIď 0.7, 0.7 < NNIď 0.9, 0.9 < NNIď 1.1, 1.1 < NNIď 1.3, NNI > 1.3) and regarded
NNI ď 0.9 as N deficient, 0.9 < NNI ď 1.1 as N optimal and NNI > 1.1 as N surplus.
Based on the rice N management situations in the study region, we proposed the
following thresholds for rice: NNI ď 0.95 as N deficient, 0.95 < NNI ď 1.05 as
N optimal and NNI > 1.05 as N surplus. These threshold values can be used to
delineate a field into three regions with different N nutritional status. The diagnosis
results shown in Figure 3 indicated that the first field (Figure 3 left) was well managed,
with the majority of the field having an optimal N status, while about 51% of the
second field (Figure 3, right) was deficient in N. These agreed quite well with the
two farmers’ management practices. However, these threshold values are empirical,
and more studies are needed to further test and refine these thresholds by relating
NNI to relative grain yield.

The NNI-based rice N status map can be used to guide in-season topdressing
N application. For the optimal N zone, 30 kg¨N¨ha´1 was recommended based on
the regional best N management practice. For the deficient N zone, 35 or 40 kg¨ha´1

can be recommended, and for the surplus N zone 25 or 20 kg¨ha´1. This approach
is commonly used in site-specific N management of rice based on CM diagnosis
developed by the International Rice Research Institute [64]. It is empirical, but very
practical for on-farm applications in small-scale farming areas of Asia. A more
quantitative approach is to produce a PNU difference map using the estimated PNU
map minus the critical PNU map. The recommended N topdressing application rate
can be determined using the regional optimum topdressing N application rate minus
the PNU difference. This approach is different from the variable rate N application
strategy proposed by Cilia et al. [24]. They first computed the average PNU from the
optimal NNI pixels and then used this average value together with the estimated
PNU to calculate the difference, and for N deficient pixels, the deficient amounts
were used as variable N application rates. For pixels with optimal and surplus N,
no N fertilizers were recommended. In our approach, we did not analyze the pixel
scale, because in rice farming, the field is divided into many small plots for irrigation
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purpose. These plots also serve as management units. We applied plot-average
NNI values to diagnose the rice N status of each plot. Our precision N management
strategy takes the regional optimal N rate as the initial total N rate, with 40% and
30% being applied as basal and tillering N fertilizers, respectively. For topdressing
N application at the stem elongation stage, 30% of the initial total N rate should be
applied if the N status is optimal. Otherwise, the topdressing N rates can be adjusted
based on deficient or surplus N amounts. Even if the N status is optimal at the stem
elongation stage, it only indicates the N status at that stage, which is more than
two months prior to harvest, and a certain amount of N fertilizers should still be
recommended to meet the N requirements from stem elongation to harvest.

4.4. Challenges and Future Research Needs

The proposed approach discussed above requires the satellite imagery to be
collected in a narrow time window, preferably one week before topdressing N
application at the stem elongation stage for rice in the study region. If the image
is collected too early, the diagnosis result may not match the true rice N status at
the stem elongation stage. In addition, rice plants will be too small, and the water
background will strongly influence the plant reflectance. If the image is collected too
close to the stem elongation stage, it may be too late to use the diagnosis result for
guiding the topdressing N application. Therefore, a satellite with a high temporal
resolution is required. The daily revisit time of the FORMOSAT-2 satellite makes it
ideal for this purpose. Its 8-m spatial resolution may be too coarse for small-scale
farming in other parts of China, such as in the North China Plain [65], but is good
enough for large-scale farming in the Sanjiang Plain of Northeast China.

It should be noted that there are 7–10 days between the panicle initiation and
stem elongation stages, and the rice plants are fast developing, so the rice biomass
and plant N uptake determined at the panicle initiation stage are smaller than the
values at the stem elongation stage. Studies are needed to determine the influence of
this difference on the recommended topdressing N application rates.

Year to year weather variability poses a challenge to use satellite remote sensing
for in-season rice N status diagnosis and guiding topdressing application. The
satellite imageries were collected at similar times in both years. However, the
temperature in 2012 was higher than 2011. The accumulated temperature from
transplanting date to the sampling date of 2012 was about 100 ˝C higher than that
in 2011. As a result, rice plants grew faster in 2012 and already reached the stem
elongation stage when the image was collected on 26 June 2012. This was reflected
by the larger biomass, LAI and plant N uptake values in 2012 than 2011 (Table 3).
Another factor to consider is that there are many cloudy and rainy days during the
growing season in many parts of the major rice planting regions, which can prevent us
from getting the needed satellite images within the narrow time window [13] in some
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years. Such uncertainty in year to year weather variability makes it very difficult to
collect the satellite images at the right time for guiding in-season N management.

To overcome this limitation, multi-temporal and dual-polarimetric TerraSAR-X
satellite data were evaluated for monitoring rice crop growth, and very promising
results were obtained for rice biomass estimation [66]. Low-altitude remote sensing
based on unmanned aerial vehicles (UAVs) may also be an alternative way for
diagnosing in-season rice N status and guiding variable rate N management [67–69].
Due to the quick turn-around time, UAV-based remote sensing images can be collected
1–2 days before the topdressing N application, and the diagnosis result will be more
representative. Nevertheless, due to the much smaller coverage and bigger data
volume of UAV images, they are still not very practical for regional studies over
large areas.

The FORMOSAT-2 satellite images only have four commonly-used wavebands
(B, G, R and NIR). Previous research indicated that red edge-based vegetation indices
performed better for estimating crop N status NNI than traditional red light-based
indices [7,12,70]. According to Li et al. [70], the red edge-based Canopy Chlorophyll
Content Index (CCCI) was reported to have the best performance among all of the
indices evaluated for estimating summer maize N concentration and uptake at V6,
V7 and V10–V12 stages, based on the simulation of Crop Circle ACS 470 active sensor,
RapidEye and WorldView 2 satellite images. It is necessary to evaluate the potential
improvements in estimating rice NNI using RapidEye and WorldView 2 satellite
images. Hyperspectral sensing has the potential to further improve the estimation of
crop NNI, as demonstrated in winter wheat [20] and summer maize [21], and more
studies are needed to explore the potential of hyperspectral sensing for monitoring
crop NNI.

In summary, the proposed satellite remote sensing approach can achieve
comparable performance as ground-based active canopy sensors for estimating
rice N status and is applicable to other rice planting regions. It is more efficient for
large area applications, but is more influenced by weather conditions, while active
canopy sensors are independent of environmental light conditions. It requires special
training to process satellite remote sensing data, while active canopy sensors are easy
to use, but are not suitable for large area applications. The UAV-based approach,
coupled with red edge-based indices and hyperspectral remote sensing, has the
potential to overcome the disadvantages of the ground active sensing and satellite
remote sensing approaches. Therefore, it deserves further studies.

5. Conclusions

This study evaluated the potential of using FORMOSAT-2 satellite images to
estimate rice NNI at the panicle initiation stage for guiding topdressing N application
at the stem elongation stage in Northeast China. Across years, 45% of NNI variability
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could be explained using the RVI3 index directly. On the other hand, the indirect
approach using FORMOSAT-2 images to estimate the aboveground biomass, PNU
and, consequently, NNI achieved slightly better results (R2 = 0.52 across years).
Moreover, the calculated difference between the estimated PNU and the critical PNU
based on the indirect method can be used to guide the topdressing N application
rate adjustments, which demonstrated that FORMOSAT-2 images have the potential
to estimate rice N status for guiding panicle N fertilizer applications in Northeast
China. However, more studies are needed to further evaluate and improve the
proposed method of in-season rice N status diagnosis and precision N management
strategy under different on-farm conditions using different types of satellite data.
The potential of UAV-based remote sensing, coupled with red edge-based indices and
hyperspectral sensors, for improving rice NNI monitoring also needs to be studied
in future research.
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Temporal Dependency of Yield and Quality
Estimation through Spectral Vegetation
Indices in Pear Orchards
Jonathan Van Beek, Laurent Tits, Ben Somers, Tom Deckers, Wim Verjans,
Dany Bylemans, Pieter Janssens and Pol Coppin

Abstract: Yield and quality estimations provide vital information to fruit growers,
yet require accurate monitoring throughout the growing season. To this end,
the temporal dependency of fruit yield and quality estimations through spectral
vegetation indices was investigated in irrigated and rainfed pear orchards. Both
orchards were monitored throughout three consecutive growing seasons, including
spectral measurements (i.e., hyperspectral canopy reflectance measurements) as well
as yield determination (i.e., total yield and number of fruits per tree) and quality
assessment (i.e., fruit firmness, total soluble solids and fruit color). The results
illustrated a clear association between spectral vegetation indices and both fruit yield
and fruit quality (|r| > 0.75; p < 0.001). However, the correlations between vegetation
indices and production variables varied throughout the growing season, depending
on the phenological stage of fruit development. In the irrigated orchard, index
values showed a strong association with production variables near time of harvest
(|r| > 0.6; p < 0.001), while in the rainfed orchard, index values acquired during
vegetative growth periods presented stronger correlations with fruit parameters
(|r| > 0.6; p < 0.001). The improved planning of remote sensing missions during
(rainfed orchards) and after (irrigated orchards) vegetative growth periods could
enable growers to more accurately predict production outcomes and improve the
production process.

Reprinted from Remote Sens. Cite as: Van Beek, J.; Tits, L.; Somers, B.; Deckers, T.;
Verjans, W.; Bylemans, D.; Janssens, P.; Coppin, P. Temporal Dependency of
Yield and Quality Estimation through Spectral Vegetation Indices in Pear Orchards.
Remote Sens. 2015, 7, 9886–9903.

1. Introduction

In capital-intensive horticultural cropping systems, estimating production or
the production potential is essential in scheduling management decisions (i.e., fruit
thinning, harvest, etc.). One of the difficulties, however, is the variable influence
of contributing factors on fruit yield and quality during different phenological
stages (review by [1]). For example, water deficiencies during Stage I or III of fruit
development—cell division and fruit thickening stage—will decrease yield, while a
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moderate deficiency during Stage II of fruit development—cell expansion—has no
effect on yield [2,3]. Traditional in situ measurements of production variables and
biophysical variables are time consuming and labor intensive. This results in limited
samples and repetitions, which are insufficient to account for the high spatial and
temporal variability within and between orchards [4,5]. It is yet well acknowledged
that remote sensing can provide non-destructive, time efficient and cost beneficial
alternatives for horticulture [6–8].

The application of remote sensing for crop yield estimation was mostly
developed for annual crops [9–11]. For perennials, the estimation of production
properties through remote sensing was previously investigated for different fruit
crops, such as citrus [12,13], apple [5,14], peach [15], olives [15] and grapevines [16].
In these studies, the focus lay mostly on the estimation of overall yield, as higher
yields were the main interest. In recent years, however, the focus in pear production
systems shifted more towards quality-related production characteristics, because of
the willingness to pay more for better quality fruit [17]. Although the research on
quality estimation was primarily done post-harvest through proximal sensing [18],
several studies have estimated qualitative traits through remote sensing imagery at
time of harvest [12,15,19] or during specific periods within the growing season [13,16].
However, these studies were mostly based on single-image acquisitions and did not
account for the variable nature of the growing season. Because the relationship
between spectral measurements and production variables could vary between
different phenological stages [13], the use of different vegetation indices during
different growing stages would be required [20]. To optimize the scheduling of
remote sensing missions and to monitor the production potential throughout the
growing season, the temporal profile of the association between spectral information
and production variables requires further investigation.

The primary goal of this study was to investigate the potential of remote sensing
technology for estimating both production quality and quantity in pear orchards. The
temporal variability of this relationship throughout the growing season—i.e., optimal
moments for yield and fruit quality monitoring—was explored for two orchards with
different management and irrigation setups.

2. Materials and Methods

2.1. Study Area

The irrigated orchard, planted with Conference pear trees (Pyrus communis
L. cv. “Conference”) on Quince C rootstock, was situated in Bierbeek, Belgium
(50˝49134.59”N, 4˝47142.83”E). The 2.5 m high trees were planted in a 3.5 by 1 meter
grid in 2000 and were trained in a V-system with four fruiting branches on one
central stem [21]. A side view of the irrigated orchard is shown in Figure 1A. The
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trees received 100% of the reference evapotranspiration (ETo) [22] throughout the
growing season, except during Stage II of fruit development, characterized mostly by
vegetative growth [3,23]. During this period, two irrigation treatments were applied.
More information on the irrigation treatment can be found in Van Beek et al. [24].
Four plots of four trees each were selected on fixed intervals (˘30 m) within four
rows and monitored throughout the 2011, 2012 and 2013 growing seasons (48 plots).
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Figure 1. Side view of V-shaped training system used in the irrigated orchard (A);
side view of Spindle bush system in the rainfed orchard (B); spectral measurement
setup (C); Top view of V-system in the irrigated orchard (D).

The non-irrigated or rainfed orchard, situated in Kerkom, Belgium
(50˝46124.25”N, 5˝09127.05”E), was planted with Conference pear trees on Quince
A rootstock in 2000. The 3.5 m high trees were planted in a 3.75 by 1.75 m grid and
trained in a Spindle bush system [21]. A side view of the rainfed orchard is shown
in Figure 1B. Two adjacent rows were selected and each row was divided into eight
plots of four trees. Root pruning was applied on one side of the stem in the beginning
of the growing season. This treatment was alternated between sides of the stem
for subsequent growing seasons. In each row, a root-pruned plot was alternated
with a non-treated plot. In 2011, only one row was monitored in the rainfed orchard
(40 plots).
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2.2. Ground Measurements

2.2.1. Fruit Yield and Quality

During the 2011, 2012 and 2013 growing seasons, harvest was carried out on
Day of Year (DOY) 230 (243), 249 (250) and 253 (261) in the irrigated orchard (rainfed
orchard), respectively. Total yield and number of fruits was determined on four trees
per plot and averaged.

Fruit quality was determined three months after harvest with storage at ´0.5 ˝C
in a cooling cell without controlled atmosphere. The green background color was
determined with a Konia Minolta chromameter through chroma and hue values at
the shadow side of the fruits (i.e., the side that faces away from the sun) [25]. Chroma
indicates the degree of departure from gray or white towards the pure color and is a
measure of brightness, while hue angle quantifies color from red–green (0˝–180˝).
Fruit firmness was measured with a penetrometer (0.5 cm2 cylinder) after removal of
the skin, while Total Soluble Solids (TSS, ˝brix) was determined with a hand-held
refractometer. All fruit quality variables were determined on 60 fruits per plot and
averaged per plot.

2.2.2. Spectral Measurements

Throughout the 2011, 2012 and 2013 growing seasons, canopy reflectance
measurements were collected on cloud-free days using a full range (350–2500 nm)
HR-1024 spectroradiometer (Spectra Vista Corporation, New York, NY, USA). The
canopy spectra were taken from an elevated position between the rows at an average
height of one meter above the top of the canopy (25˝ field of view). The experimental
setup is shown in Figure 1C. Within this field of view, some within-canopy shadow
and background will always be present (Figure 1D). However, all measurements
were taken after full canopy disclosure to negate fractional cover differences and to
minimize the effect of noise from shadow and/or background inclusion. Between
plots, instruments were calibrated with a Spectralon reference panel. For each plot,
5–8 sunlit canopy spectra were taken and averaged per plot. To minimize differences
with regards to solar geometry and illumination, all measurements were performed
within 1.5 h from local solar noon. All spectra were smoothed using a 2nd order
Savitsky-Golay filter with a window size of 21 nm [26].

2.2.3. Environmental Data

Daily precipitation (mm/day) and ETo (mm/day) were recorded and calculated
at monitoring stations located 10 and 5 km from the irrigated and rainfed orchard,
respectively (Portal of the Flemish Water managers, www.waterinfo.be (visited
on 27 February 2014)). Average daily amount of rain deficit (or surplus) was
calculated based on cumulative differences of precipitation and ETo [27,28]. To
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account for data gaps and measurement errors, the precipitation and ETo data from
both monitoring stations was averaged on a daily basis prior to the calculation of
cumulative available water.

2.3. Data Analysis

The spectral measurements (Section 2.2.2) were related to yield and quality
variables (Section 2.2.1) through vegetation indices. The vegetation indices were
chosen because of their proven relationship with water status and plant health in
various agricultural crops and orchards. Moreover, the vegetation indices were
associated either directly or indirectly with fruit yield and quality in horticultural
crops [12,13,15].

The Normalized Difference Water Index (NDWI; Equation (1)) [29], was applied
because of the association with canopy water status [29]. This resulted in a direct
correlation between canopy water status and production variables or an indirect
correlation between NDWI values and fruit yield and quality [12,16].

The Red-edge Normalized Difference Vegetation Index (ReNDVI; Equation (2)) [24],
a normalized difference ratio between the NIR (Near-Infrared; 770–895 nm) and
Red-edge (705–745 nm), was applied as it was previously related to water status (i.e., stem
water potential) and plant health in irrigated and rainfed pear orchards [24]. This
association could provide significant correlations with fruit yield and quality [1,22]. The
spectral bands used for ReNDVI were calculated based on the WorldView-2 spectral
response function [30,31], similar to [24].

The Photochemical Reflectance Index (PRI; Equation (3)) [32] was applied
because of the association with plant photosynthetic activity and water status and
the proven relationship with fruit yield and quality in horticulture [13,19,33].

NDWI “ pR860´R1240q{pR860 ` R1240q (1)

ReNDVI “ pRNear Infrared´RRed-edgeq{pRNear Infrared ` RRed-edgeq (2)

PRI “ pR531´R570q{pR531 ` R570q (3)

with Rx the reflectance at wavelength or band x.
The temporal variation of the correlation between spectral information and

production variables (Section 2.2.1) was investigated. The correlation was analyzed
at four key moments in the growing season coinciding with phenological stages of
fruit development as specified through the BBCH code (Biologische Bundesanstalt,
Bundessortenamt und CHemische Industrie) [34]. The considered phenological
stages were fruitlet stage (˘90 days before harvest or BBCH 71–72), end of fruit fall
(˘60 days before harvest or BBCH 73), fruit ripening (˘30 days before harvest or
BBCH 81) and harvest stage (BBCH 87). For each fruit development stage, the nearest
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spectral measurement was selected. Only measurements prior to harvest were used
because of the significant change of canopy reflectance after harvest. The strength
of correlation between vegetation indices and production variables was determined
with the Pearson correlation coefficient (r).

3. Results

3.1. Environmental Conditions

The gradient of cumulative rain deficit from 2011 to 2013 (Section 2.2.3), shown
in Figure 2, highlights the differences between the monitored growing seasons. Note
that in 2011, a dry spring (DOY 150–200) caused significant rain deficiencies, which
could have affected fruit cell division. Oppositely, in 2012 a wet spring and summer
caused rain surplus throughout the fruit cell division and vegetative growth period
(DOY 100–200 or 150–50 days before harvest). In 2013, a rain surplus was present until
100 days before harvest (DOY 150) or the beginning of Stage II of fruit development,
which is mostly associated with vegetative growth [3]. Subsequently, rain deficit
steadily decreased towards the harvest period. Overall, the yearly precipitation
was below the average precipitation of the last decade (i.e., 622 ˘ 100 mm) in 2011
(546 mm) and 2013 (572 mm). In 2012, the yearly precipitation (711 mm) was above
the 10-year-average.
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3.2. Fruit Yield and Fruit Quality 

An overview of the quantitative—total yield per tree and number of fruits per tree—and qualitative 
production variables—fruit firmness, total soluble solids, chroma and hue—is given in Table 1. 
Overall, the production in the irrigated orchard was more stable throughout the three growing seasons 
compared to the rainfed orchard. This was visible in the number of fruits per tree, the standard 
deviation of yield (kg/tree) and the relative differences between growing seasons. The rainfed orchard 
presented lower yields per tree in a dry season (2011; Figure 2), while the irrigated orchard had a more 
stable yield (i.e., number of fruits) and improved fruit quality. 

Figure 2. Cumulative rain deficit based on precipitation (mm/day) and ETo
(mm/day) from 2011 to 2013 (Section 2.2.3). Vertical dotted lines indicate the
approximate dates of full bloom, fruitlet stage (I), end of fruit fall (II), fruit ripening
(III) and harvest.
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3.2. Fruit Yield and Fruit Quality

An overview of the quantitative—total yield per tree and number of fruits
per tree—and qualitative production variables—fruit firmness, total soluble solids,
chroma and hue—is given in Table 1. Overall, the production in the irrigated orchard
was more stable throughout the three growing seasons compared to the rainfed
orchard. This was visible in the number of fruits per tree, the standard deviation of
yield (kg/tree) and the relative differences between growing seasons. The rainfed
orchard presented lower yields per tree in a dry season (2011; Figure 2), while
the irrigated orchard had a more stable yield (i.e., number of fruits) and improved
fruit quality.

Table 1. Overview of quantitative (i.e., total yield per tree and number of fruits per
tree) and qualitative production variables after storage (i.e., firmness, total soluble
solids (TSS), chroma and hue) in the irrigated and rainfed orchard for 2011–2013
(˘standard deviation). Values were averaged over 16 plots (eight plots in 2011 for
the rainfed orchard).

Location Year Total Yield
(kg/Tree)

Number of
Fruits per Tree

Firmness
(kg/0.5 cm2)

TSS
(˝Brix) Chroma (˝) Hue (˝)

Irrigated
Orchard

2011 28.4 (˘3.1) 159 (˘16) 5.7 (˘0.4) 11.7 (˘0.6) 41.5 (˘1.5) 111.0 (˘0.8)

2012 17.5 (˘3.0) 108 (˘27) 7.0 (˘0.2) 12.5 (˘0.4) 41.2 (˘0.6) 109.9 (˘0.4)

2013 19.1 (˘2.9) 140 (˘33) 7.3 (˘0.3) 13.1 (˘0.6) 38.3 (˘0.9) 109.1 (˘0.8)

Rainfed
Orchard

2011 15.1 (˘5.3) 90 (˘32) 5.8 (˘0.1) 13.2 (˘0.2) 40.6 (˘1.3) 108.1 (˘1.7)

2012 16.1 (˘2.9) 88 (˘18) 6.8 (˘0.3) 12.3 (˘0.3) 41.1 (˘0.7) 109.7 (˘0.4)

2013 24.6 (˘3.3) 170 (˘36) 6.7 (˘0.3) 12.9 (˘0.5) 38.1 (˘0.9) 107.7 (˘1.5)

3.3. Production versus Spectral Measurements

The temporal profile of the measured vegetation indices is shown in Figure 3.
Overall, the measured vegetation indices were less variable in the irrigated orchard
throughout the different growing seasons. This was visible through the smaller
standard deviations between measured plots and the smaller differences between
growing seasons.

The temporal change of the correlation between spectral information
(Section 2.3) and production variables (Section 2.2.1) was investigated at four
moments in the growing season (i.e., fruitlet stage, end of fruit fall, fruit ripening
and harvest). The results are presented in Table 2. The relationship between spectral
vegetation indices and a selection of production variables—providing a complete set
of vegetation indices, phenological stages and production variables—is highlighted
for the irrigated orchard in Figure 4 and for the rainfed orchard in Figure 5.

105



Remote Sens. 2015, 7 9892 
 

 

Table 1. Overview of quantitative (i.e., total yield per tree and number of fruits per tree)  
and qualitative production variables after storage (i.e., firmness, total soluble solids (TSS), 
chroma and hue) in the irrigated and rainfed orchard for 2011–2013 (±standard deviation). 
Values were averaged over 16 plots (eight plots in 2011 for the rainfed orchard). 

Location Year 
Total Yield 
(kg/Tree) 

Number of 
Fruits per Tree 

Firmness 
(kg/0.5 cm²) 

TSS (°Brix) Chroma (°) Hue (°) 

Irrigated 
Orchard 

2011 28.4 (±3.1) 159 (±16) 5.7 (±0.4) 11.7 (±0.6) 41.5 (±1.5) 111.0 (±0.8) 
2012 17.5 (±3.0) 108 (±27) 7.0 (±0.2) 12.5 (±0.4) 41.2 (±0.6) 109.9 (±0.4) 
2013 19.1 (±2.9) 140 (±33) 7.3 (±0.3) 13.1 (±0.6) 38.3 (±0.9) 109.1 (±0.8) 

Rainfed 
Orchard 

2011 15.1 (±5.3) 90 (±32) 5.8 (±0.1) 13.2 (±0.2) 40.6 (±1.3) 108.1 (±1.7) 
2012 16.1 (±2.9) 88 (±18) 6.8 (±0.3) 12.3 (±0.3) 41.1 (±0.7) 109.7 (±0.4) 
2013 24.6 (±3.3) 170 (±36) 6.7 (±0.3) 12.9 (±0.5) 38.1 (±0.9) 107.7 (±1.5) 

3.3. Production versus Spectral Measurements 

The temporal profile of the measured vegetation indices is shown in Figure 3. Overall, the measured 
vegetation indices were less variable in the irrigated orchard throughout the different growing seasons. 
This was visible through the smaller standard deviations between measured plots and the smaller 
differences between growing seasons. 
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Photochemical Reflectance Index (PRI; b) and the Red-edge Normalized Difference 
Vegetation Index (ReNDVI; c) for the irrigated orchard throughout each growing season 
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Figure 3. Profile of the Normalized Difference Water Index (NDWI; (a); the
Photochemical Reflectance Index (PRI; (b) and the Red-edge Normalized Difference
Vegetation Index (ReNDVI; (c) for the irrigated orchard throughout each growing
season and profile of NDWI (d), PRI (e) and ReNDVI (f) for the rainfed orchard
throughout each growing season. Bars represent the standard deviation between
all the measured plots and vertical dashed lines indicate approximate dates of
phenological stages of fruit development, namely fruitlet stage (I), end of fruit
fall (II), fruit ripening (III) and harvest.

In the irrigated orchard, the correlation between vegetation indices and
production variables was dependent on the phenological stage. Spectral indices were
associated to production variables in the beginning of the growing season (fruitlet
stage) and towards the harvest. For almost all production variables, a significant
drop was noticeable at the end of fruit fall (˘60 days before harvest) compared to
the rest of the growing season. This was illustrated between TSS and PRI values at
the end of fruit fall (Figure 4c) and during fruit ripening (Figure 4d). NDWI values
showed a positive correlation with production quantity (i.e., total yield and number
of fruits per tree) and a negative correlation with quality-related production variables
(i.e., firmness and TSS). Conversely, PRI and ReNDVI values displayed a negative
correlation with production quantity and a negative with production quality. This
was illustrated for both total yield (Figure 4a) and firmness (Figure 4b) combined with
NDWI values at harvest. Furthermore, spectral indicators for color characteristics
showed a similar gradient to quantity related variables, with a positive correlation
with NDWI values and a negative correlation with PRI and ReNDVI values.
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Table 2. Pearson correlation coefficient (r) values between production variables
(i.e., Total Yield, Number of fruits per tree, Fruit Firmness, Total Soluble
Solids (TSS), Chroma and Hue) and the Normalized Difference Water Index
(NDWI), the Photochemical Reflectance Index (PRI) and the Red-Edge Normalized
Difference Vegetation Index (ReNDVI) respectively, for the irrigated and rainfed
orchard throughout the growing season. The correlation was considered at four
phenological stages in fruit development, namely fruitlet stage (˘90 days before
harvest), end of fruit fall (˘60 days before harvest), fruit ripening (˘30 days
before harvest) and harvest. For each phenological stage the closest spectral
measurements prior to harvest was chosen. Symbols indicated significance of
correlation. Bold values point out correlations that are depicted in scatter plots in
the following paragraphs.

Total Yield (kg/tree) Number of Fruits per Tree

Phenological stage Fruitlet End of
fruit fall

Fruit
ripening Harvest Fruitlet End of

fruit fall
Fruit

ripening Harvest

Irrigated
Orchard

NDWI 0.56 ** 0.19 0.22 0.73** 0.53 ** 0.11 0.06 0.47 **
PRI ´0.70 ** ´0.02 ´0.41 ** ´0.50 ** ´0.33 * 0.01 ´0.05 ´0.49 **

ReNDVI 0.12 ´0.09 ´0.30 * ´0.37 ** 0.21 ´0.26 ´0.13 ´0.31 *

Rainfed
Orchard

NDWI 0.48 ** 0.12 0.59 ** 0.59 ** 0.43 ** 0.04 0.64 ** 0.64 **
PRI ´0.18 0.70 ** 0.28 0.28 ´0.31 * 0.67 ** 0.18 0.18

ReNDVI ´0.02 0.66 ** 0.65 ** 0.65 ** ´0.18 0.60 ** 0.56 ** 0.56 **
*Significance at p < 0.05 **Significance at p < 0.001

Firmness (kg/0.5 cm2) TSS (˝brix)

Phenological stage Fruitlet End of
fruit fall

Fruit
ripening Harvest Fruitlet End of

fruit fall
Fruit

ripening Harvest

Irrigated
Orchard

NDWI ´0.37 ** ´0.12 ´0.18 ´0.69 ** ´0.22 ´0.11 ´0.24 ´0.62 **
PRI 0.79 ** ´0.13 0.45 ** 0.25 0.53 ** ´0.06 0.59 ** 0.16

ReNDVI 0.06 ´0.21 0.21 0.24 ´0.22 ´0.21 0.26 0.24

Rainfed
Orchard

NDWI 0.23 0.07 ´0.25 ´0.25 ´0.02 0.04 0.59 ** 0.59 **
PRI 0.34 * ´0.01 0.21 0.21 ´0.63 ** 0.37 * ´0.13 ´0.13

ReNDVI 0.35 * 0.15 0.07 0.07 ´0.58 ** 0.23 0.31 0.31
*Significance at p < 0.05 **Significance at p < 0.001

Chroma (˝) Hue (˝)

Phenological stage Fruitlet End of
fruit fall

Fruit
ripening Harvest Fruitlet End of

fruit fall
Fruit

ripening Harvest

Irrigated
Orchard

NDWI ´0.25 ´0.07 0.03 0.29 * 0.23 0.12 0.35 * 0.60 **
PRI ´0.47 ** 0.18 ´0.55 ** 0.19 ´0.62 ** 0.14 ´0.55 ** ´0.15

ReNDVI 0.11 0.51 ** ´0.21 ´0.20 ´0.03 0.25 ´0.38 ** ´0.30 *

Rainfed
Orchard

NDWI ´0.44 ** ´0.44 ** ´0.66 ** ´0.66 ** ´0.19 ´0.09 ´0.53 ** ´0.53 **
PRI 0.53 ** ´0.71 ** ´0.26 ´0.26 0.59 ** ´0.53 ** 0.06 0.06

ReNDVI 0.40 * ´0.73 ** ´0.79 ** ´0.79 ** 0.58 ** ´0.45 ** ´0.35 ** ´0.35 *
*Significance at p < 0.05 **Significance at p < 0.001

Similar to the irrigated orchard, the correlation between vegetation indices and
production variables in the rainfed orchard was not constant throughout the growing
season. For PRI values, the end of fruit fall (˘60 days before harvest) showed
significantly higher correlations (r > 0.6; p < 0.001) with quantity-related production
variables compared to the rest of the growing season (Figure 5c). Similarly, ReNDVI
values at the end of fruit fall were significantly correlated with quantity-related
production variables (Figure 5f). Conversely to PRI values, the remainder of the
growing season also presented high correlation coefficients (r > 0.56; p < 0.001).
NDWI values were more related to both quantity and quality-related production
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variables towards the end of the growing season (|r| « 0.6; p < 0.001). This is
illustrated for TSS and NDWI values at fruitlet (Figure 5a) and fruit ripening stages
(Figure 5b).
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Figure 4. Scatter plots at various stages in the growing season between spectral vegetation 
indices, namely the Normalized Difference Water Index (NDWI; a,b), the Photochemical 
Reflectance Index (PRI; c,d) and the Red-edge Normalized Difference Vegetation Index 
(ReNDVI; e,f) and production variables, namely Fruit Firmness (a), Total Yield (b,f), Total 
Soluble Solids (TSS; c,d) and Chroma (e) in the irrigated orchard. All points were labeled 
for growing season. 

Similar to the irrigated orchard, the correlation between vegetation indices and production variables in 
the rainfed orchard was not constant throughout the growing season. For PRI values, the end of fruit fall 
(±60 days before harvest) showed significantly higher correlations (r > 0.6; p < 0.001) with  
quantity-related production variables compared to the rest of the growing season (Figure 5c).  
Similarly, ReNDVI values at the end of fruit fall were significantly correlated with quantity-related 
production variables (Figure 5f). Conversely to PRI values, the remainder of the growing season also 
presented high correlation coefficients (r > 0.56; p < 0.001). NDWI values were more related to both 
quantity and quality-related production variables towards the end of the growing season (|r| ≈ 0.6;  
p < 0.001). This is illustrated for TSS and NDWI values at fruitlet (Figure 5a) and fruit ripening  
stages (Figure 5b). 

In the rainfed orchard, spectral indices were more associated with color variables compared to 
firmness and TSS values. This is illustrated for PRI values at fruitlet stage and hue data  
(Figure 5d) and ReNDVI values at the end of fruit fall and chroma data (Figure 5e). However,  
in contrast with the irrigated orchard (Figure 4e), the correlation between spectral indices  
and color variables—chroma and hue—presented the reverse gradient compared to yield  
(Figure 5d,e). 

(f) (e) 

Figure 4. Scatter plots at various stages in the growing season between spectral
vegetation indices, namely the Normalized Difference Water Index (NDWI; a,b),
the Photochemical Reflectance Index (PRI; c,d) and the Red-edge Normalized
Difference Vegetation Index (ReNDVI; e,f) and production variables, namely Fruit
Firmness (a), Total Yield (b,f), Total Soluble Solids (TSS; c,d) and Chroma (e) in the
irrigated orchard. All points were labeled for growing season.
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In the rainfed orchard, spectral indices were more associated with color
variables compared to firmness and TSS values. This is illustrated for PRI values
at fruitlet stage and hue data (Figure 5d) and ReNDVI values at the end of fruit
fall and chroma data (Figure 5e). However, in contrast with the irrigated orchard
(Figure 4e), the correlation between spectral indices and color variables—chroma
and hue—presented the reverse gradient compared to yield (Figure 5d,e).Remote Sens. 2015, 7 9896 

 

 

  

  

  

Figure 5. Scatter plots at various stages in the growing season between spectral vegetation 
indices, namely the Normalized Difference Water Index (NDWI; a,b), the Photochemical 
Reflectance Index (PRI; c,d) and the Red-edge Normalized Difference Vegetation Index 
(ReNDVI; e,f) and production variables, namely Total Soluble Solids (TSS; a,b); Number 
of fruits per tree (c); Hue (d); Chroma (e) and Total Yield (f) in the rainfed orchard. All 
points were labeled for growing season. 

  

(f) (e) 

(d) (c) 

(b) (a) 

Figure 5. Scatter plots at various stages in the growing season between spectral
vegetation indices, namely the Normalized Difference Water Index (NDWI; a,b),
the Photochemical Reflectance Index (PRI; c,d) and the Red-edge Normalized
Difference Vegetation Index (ReNDVI; e,f) and production variables, namely Total
Soluble Solids (TSS; a,b); Number of fruits per tree (c); Hue (d); Chroma (e) and
Total Yield (f) in the rainfed orchard. All points were labeled for growing season.
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4. Discussion

4.1. Production versus Spectral Measurements

In general, Figure 2 and Table 1 illustrated the diversity of the growing
conditions during the study. In these diverse conditions, remote sensing information
was found to be associated with production variables and could provide agricultural
managers with a reliable estimation of quantitative (|r| > 0.6; p < 0.001) and
qualitative production variables (|r| > 0.7; p < 0.001) prior to harvest. Upon
comparison to previous studies, the r values between vegetation indices at harvest
and quantity-related production variables in this study were similar or higher. For
instance, |r| values between 0.3 and 0.7 (Table 2) compared to |r| values of 0.6
for water related indices in vineyards [16] and between 0.2 and 0.6 for PRI in citrus
orchards [13]. With regards to quality-related production variables, the association
with vegetation indices yielded comparable r values as other studies. An |r| value
of 0.41 was found between TSS and PRI values 45 days before harvest (i.e., between
end of fruit fall and fruit ripening) in citrus orchards [19]. In vineyards, TSS was
associated to water content related indices at harvest (|r| value of 0.5) [16]. Similarly
to Serrano et al. [16], this study showed that water related indices (i.e., NDWI), plant
health (i.e., ReNDVI) and plant photosynthetic activity indices (i.e., PRI) were related
to total yield per tree and to fruit quality (Table 2). However, the choice of vegetation
index was important, as the temporal dependence of these correlations was variable
for different vegetation indices and between orchards (Figures 4 and 5 and Table 2).

The differences between the irrigated and rainfed orchard could be attributed to
the differences in water availability at critical stages in the growing season (Figure 2),
but could also be the result of differences in vigor for the different rootstocks [35]
and training systems. In the rainfed orchard, the relationships between vegetation
indices and production variables were more variable throughout the growing season.
The absence of irrigation during dry periods possibly increased the influence of
environmental conditions on TSS and fruit firmness (i.e., water availability [36],
amount of sunlight [37] and daily temperature [38]) and resulted in a variable
correlation throughout the growing season (Figure 5c,b). The correlation between
ReNDVI values and production variables was highly variable between both orchards
(Figures 4e and 5f). This might be caused by the underlying relationship with stem
water potential [24]. As a result of the deficit irrigation treatment in the irrigated
orchard, large stem water potential differences were maintained during the end of
fruit fall without significant fruit yield and fruit quality differences because of the
ability to irrigate in later stages of fruit development. In the rainfed orchard, the
potential stem water differences caused by the root pruning treatment would result
in increased water deficiency [39] which in turn led to decreased fruit yield and
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improved fruit quality [27]. A similar trend was also visible for PRI values because
of the association with stem water potential [40].

The correlation between vegetation indices and production variables was more
stable throughout the growing season in the irrigated orchard, because of the
possibility to irrigate during dry periods. This was also visible for the spectral
vegetation indices (Figure 3), which were more stable towards the end of the growing
season compared to the rainfed orchard. During the deficit irrigation period (« end
of fruit fall), large differences were achieved without significant fruit yield and fruit
quality differences because of the ability to irrigate in later stages of fruit development.
Therefore, the optimal period for remote sensing measurements in irrigated orchards
would be before or after the vegetative growth period (i.e., less than 30 days before
harvest; Figure 5a,b,d), as small spectral differences would not result in variable fruit
yield and quality in the vegetative growth period (Figure 5c). Measurements in the
rainfed orchard at the end of fruit fall—associated with minimized fruit growth and
more vegetative growth [3,23]—provided a good estimation of production quantity
through ReNDVI (r = 0.66; p < 0.001; Figure 5f) and PRI (r = 0.67; p < 0.001; Figure 5c).
Oppositely, water availability differences had a larger impact on the total production
towards the end of the growing season, which resulted in higher |r| values between
total yield and NDWI (r « 0.6; p < 0.001; Table 2).

4.2. Potential and Limitations

With the use of remote sensing, the estimation or prediction of production
and visualization of optimal monitoring periods could be determined (Table 2
and Figures 4 and 5). This would allow remote sensing to visualize the large
spatial variability (>20 kg/tree) [4,5] present within each orchard and optimize
and schedule management procedures—deficit irrigation [27], summer pruning [39],
root pruning [39], fruit thinning [41], fertigation [42] and harvest—throughout the
growing season to improve production quality and yield [7]. However, several
limitations remain with the use of remote sensing for the estimation of the orchards’
production potential.

Although the results indicated a good correlation between spectral
measurements and production variables, this relationship was dependent on the
growing season (Figures 4 and 5). This was the result of highly variable weather
conditions (Figure 2). Moreover, the alternate bearing tendency of some horticultural
crops could cause large differences in subsequent growing seasons [13]. In this
study, some alternate bearing was present (Table 1), especially in the rainfed
orchard. However, the effect was smaller compared to other studies [13] because
of the parthenocarpic tendency of Conference pears and the lack of return bloom
inhibition by seeds [43]. Larger time series could provide more stable estimations
of fruit yield and fruit quality because of the link between climatic differences and
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production potential. Moreover, larger time series would also provide information
on the reliability of remote sensing data during each phenological stage in the
growing season.

Conversely to annual crops [9–11], the significant correlations between
vegetation indices and production variables were not the result of a direct relation
between above ground biomass and crop yield [44]. The present season’s growing
conditions have a smaller impact compared to annual crops, as the amount of
fruit buds (i.e., production potential) is influenced by crop load [45] and the plants’
water status [27,39,46] of the previous growing season [1]. The correlation between
production variables and vegetation indices most likely stemmed from the association
with vegetative growth and the relationship between vegetative growth, water
status and production [14,47,48]. Trees with more vegetative growth produced less
flower buds (i.e., decreased number of fruits and total yields), as a result of the
considerable consumption of water from excessive vegetative growth [47]. The
spectral vegetation indices provided an overall indication of plant health—plant
vigor [24], water content [24,29,32], photosynthetic efficiency [32]—which in turn
was related to production variables. Because of the indirect nature of this relationship,
several periods within the growing season showed insignificant correlation between
vegetation indices and production variables (Figures 4a and 5a).

One of the difficulties with production estimation in orchards is the trade-off
between fruit yield and fruit quality [16,28,36,42,49]. This link between fruit quality
and quantity was also visible in the irrigated orchard (Table 1; Figure 4a,b; Figure 5e,f).
For PRI values, a positive correlation was present with fruit firmness and TSS and
a negative correlation was found with total yield, similarly to Serrano et al. [16].
Overall, a healthier tree in the irrigated orchard (i.e., higher PRI values) produced
better quality fruit, while increased water availability (i.e., higher NDWI values)
increased fruit yield. In the rainfed orchard, a healthier tree (i.e., higher PRI values)
and increased water availability (i.e., higher NDWI values) both led to the production
of more fruits with lower fruit quality (i.e., yellowing of fruit) [36].

In this study, the relationship between vegetation indices and production
variables was shown to differ between irrigated and rainfed orchards (Figures 4 and 5
and Table 2), as a result of water availability and rootstock differences [35]. Although
this might obstruct practical use of prediction models over larger areas, previous
studies in orchard crops could distinguish irrigated from rainfed orchards [50]. As a
result, the analysis could be adjusted based on these methodologies or through
cooperation with fruit growers. Ultimately, the production estimates from remote
sensing could only provide an indication of the production potential, as extreme
conditions or circumstances—storms, hail or bird damage—could damage the
crops. On the other hand, with the incorporation of environmental conditions
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into crop models, further improvement of horticultural production estimation and
management should be achievable.

5. Conclusions

Remote sensing provides an alternative to time consuming, labor intensive and
destructive in situ measurements required for yield and quality monitoring and
estimation. In this study, an irrigated and a rainfed orchard were monitored with
hyperspectral sensors through three subsequent growing seasons, demonstrating the
potential of spectral measurements for the prediction of quality—fruit firmness and
total soluble solids—and quantity-related production properties—total yield and
amount of fruits per tree—throughout the growing season.

The results illustrated an association between vegetation indices—the
Normalized Difference Water Index (NDWI), the Photochemical Reflectance Index
(PRI) and Red-edge Normalized Difference Vegetation Index (ReNDVI)—and both
fruit yield and fruit quality variables (|r| > 0.6; p < 0.001). However, the relationship
between spectral indicators and production variables was variable throughout the
growing season and between orchards. This temporal dependency demonstrated
the usefulness of remote sensing and the necessity of optimized scheduling and
interpretation of the results. In the rainfed orchard, NDWI values at harvest showed
a positive correlation with yield (r « 0.6; p < 0.001), while PRI and ReNDVI values at
the end of fruit fall (˘60 days before harvest) were strongly related to yield (r > 0.6;
p < 0.001). In the irrigated orchard, PRI values near harvest showed a positive
correlation with fruit firmness and TSS (r « 0.5; p < 0.001), while NDWI values
showed the reverse gradient (r « ´0.6; p < 0.001) and ReNDVI values showed no
significant correlation. At the end of fruit fall—characterized by vegetative growth
(˘ 60 days before harvest)—vegetation index values in the irrigated orchard were
not correlated with yield and fruit quality.

Despite diverse conditions, remote sensing technology was able to correlate
with production variables and could provide fruit growers with a reliable estimation
of their production quantity (|r| > 0.7; p < 0.001) and quality (|r| > 0.7; p < 0.001)
for several periods in the growing season. The results in this study highlighted
the necessity of the careful use and selection of vegetation indices and monitoring
times. Overall, these indices could enable managers to predict fruit yield and quality
several months prior to harvest, allowing for optimized scheduling of management
processes, such as deficit irrigation, hand thinning, fertigation and fruit harvest.
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Comparison of NDVIs from GOCI and
MODIS Data towards Improved Assessment
of Crop Temporal Dynamics in the Case of
Paddy Rice
Jong-Min Yeom and Hyun-Ok Kim

Abstract: The monitoring of crop development can benefit from the increased
frequency of observation provided by modern geostationary satellites. This paper
describes a four-year testing period from 2010 to 2014, during which satellite
images from the world's first Geostationary Ocean Color Imager (GOCI) were
used for spectral analyses of paddy rice in South Korea. A vegetation index was
calculated from GOCI data based on the bidirectional reflectance distribution function
(BRDF)-adjusted reflectance, which was then used to visually analyze the seasonal
crop dynamics. These vegetation indices were then compared with those calculated
using the Moderate-resolution Imaging Spectroradiometer (MODIS)-normalized
difference vegetation index (NDVI) based on Nadir BRDF-adjusted reflectance. The
results show clear advantages of GOCI, which provided four times better temporal
resolution than the combined MODIS sensors, interpreting subtle characteristics of
the vegetation development. Particularly in the rainy season, when data acquisition
under clear weather conditions was very limited, it was possible to find cloudless
pixels within the study sites by compiling GOCI images obtained from eight
acquisition periods per day, from which the vegetation index could be calculated. In
this study, ground spectral measurements from CROPSCAN were also compared
with satellite-based vegetation products, despite their different index magnitude,
according to systematic discrepancy, showing a similar crop development pattern
to the GOCI products. Consequently, we conclude that the very high temporal
resolution of GOCI is very beneficial for monitoring crop development, and has
potential for providing improved information on phenology.

Reprinted from Remote Sens. Cite as: Yeom, J.-M.; Kim, H.-O. Comparison of NDVIs
from GOCI and MODIS Data towards Improved Assessment of Crop Temporal
Dynamics in the Case of Paddy Rice. Remote Sens. 2015, 7, 11326–11343.

1. Introduction

Phenological changes in land surface vegetation, which are closely related to
boundary-layer atmospheric dynamics, have been increasingly seen as important
signals of year-to-year climate variations or even global environmental changes [1–4].
The time series of wide-field-of-view sensors such as the Advanced Very High
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Resolution Radiometer (AVHRR), Medium Resolution Imaging Spectrometer (MERIS),
Moderate-resolution Imaging Spectroradiometer (MODIS), and SPOT VEGETATION
have proven appropriate for phenology detection from multi-temporal vegetation
indices [5–10]. Particularly for crop monitoring, the MODIS multi-year time-series
analysis may make a significant contribution to providing temporal dynamics
on rice cropping systems, as well as determining the spatial distribution of rice
phenology [11–14]. Furthermore, the temporal information of crops from low resolution
satellite imagery is useful for mapping different vegetation and crop types [15], and
assessing yield and production [16].

When observing reflected solar spectral radiation from vegetation on the land
surface using an optical sensor, cloud cover can prevent the accurate collection of
surface physical characteristics. It is impossible to obtain surface spectral information
from optical satellites over a cloudy area because the wavelength of the reflected
solar spectrum cannot penetrate the cloudy area. Therefore, it is important to secure
timely surface information from optical sensors under severe weather conditions.
To overcome the limitations of polar orbiting reflective wavelength sensors for
interpreting vegetation development, various temporal smoothing techniques such
as Fourier harmonics, threshold methods, and curve-fitting methods have been
suggested to fill or smooth noise and sparse greenness observations from satellite
images [17–24]. Although these techniques are effective for dealing with sporadic
missing data, using them for long-term missing data during the cloudy monsoon
period of crop growth may produce detrimental results. Therefore, it is important to
use high-temporal-resolution satellite images to obtain meaningful information. The
combined MODIS observation characteristics from the Terra and Aqua satellites have
been optimized to estimate vegetation phenology under normal weather conditions.
However, during the monsoon rainy season (called Jang-Ma in Korea) between June
and August, the high level of cloud cover makes it difficult to acquire timely surface
information from MODIS observations.

The objective of this study was to calculate vegetation index profiles for two
points using data from the first Korean geostationary orbit satellite, the Geostationary
Ocean Color Imager (GOCI) launched successfully on 27 June 2010. GOCI was
designed to detect, monitor, and predict regional ocean phenomena around Korea
but is equipped with eight spectral bands (six visible, two near infrared). So, there is
great interest in its terrestrial application because of its high temporal resolution as
well as its vegetation-sensitive multispectral bands. The high temporal resolution
of GOCI allows for eight acquisitions of imagery during the daytime and it is four
times better than the MODIS observation system combining Terra and Aqua. The
frequent observation characteristics of GOCI are therefore expected to provide more
reliable information on crop temporal dynamics. We compared for two sample
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sites four-year GOCI data with corresponding MODIS image data to detect spectral
signals according to crop growth and development.

2. Materials and Methods

2.1. Study Area

In this study, two paddy rice areas were selected; one was located in
Kyehwa and corresponds to a GOCI pixel with coordinates of 35˝46137N and
126˝41103E (Figure 1b). The other was in Kimjae and corresponds to a GOCI
pixel with coordinates of 35˝44159N and 126˝52115E (Figure 1c). These paddy
areas were included in the monitoring site for the rice yield estimation by the
Korea Agricultural Research & Extension Services. The study site at Kimjae
represents the double cropping of barley and early maturing rice cultivars, and
the site in Kyehwa represents the most popular paddy rice agriculture with an
intermediate-late-maturing rice cultivar. The early maturing rice cultivars are
generally transplanted a little later than intermediate-late-maturing species, around
the middle of June, and harvested at the end of September or the beginning of October.
The intermediate-late rice cultivars are transplanted from the end of May until the
beginning of June and harvested around the middle of October. As these study sites
are relatively homogeneous, despite the small paddy units, the temporal dynamics
of different crops should be recognizable in the daily satellite image data analysis.

2.2. Satellite Data Used in the Present Study

We compared two sets of optical earth observation satellite data with the same
spatial resolution of 500 m; one was from a geostationary (GOCI) and the other from
a sun-synchronous satellite (MODIS). GOCI is limited to a 2500 ˆ 2500 km2 field of
view (FOV) centered with respect to the Korean Peninsula and its eight multispectral
bands cover visible and near-infrared (NIR) spectral wavelengths (Table 1). In
addition, its geometric accuracy is better than 0.4 pixels. The GOCI viewing zenith
angle (VZA) ranges from 32.38˝ to 63.74˝. The GOCI VZA for the study areas was
48.47 (Figure 1b) and 48.46 (Figure 1c). We used the fifth and eighth GOCI bands
for calculating the normalized difference vegetation index (NDVI). For comparison,
MODIS NDVI products were applied as a reference. This study analyzed the data
for the years 2011 to 2014.
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system combining Terra and Aqua. The frequent observation characteristics of GOCI are therefore 
expected to provide more reliable information on crop temporal dynamics. We compared for two 
sample sites four-year GOCI data with corresponding MODIS image data to detect spectral signals 
according to crop growth and development.  

2. Materials and Methods 

2.1. Study Area 

In this study, two paddy rice areas were selected; one was located in Kyehwa and corresponds to a 
GOCI pixel with coordinates of 35°46′37N and 126°41′03E (Figure 1b). The other was in Kimjae and 
corresponds to a GOCI pixel with coordinates of 35°44′59N and 126°52′15E (Figure 1c). These paddy 
areas were included in the monitoring site for the rice yield estimation by the Korea Agricultural 
Research & Extension Services. The study site at Kimjae represents the double cropping of barley and 
early maturing rice cultivars, and the site in Kyehwa represents the most popular paddy rice agriculture 
with an intermediate-late-maturing rice cultivar. The early maturing rice cultivars are generally 
transplanted a little later than intermediate-late-maturing species, around the middle of June, and 
harvested at the end of September or the beginning of October. The intermediate-late rice cultivars are 
transplanted from the end of May until the beginning of June and harvested around the middle of 
October. As these study sites are relatively homogeneous, despite the small paddy units, the temporal 
dynamics of different crops should be recognizable in the daily satellite image data analysis. 

 

Figure 1. Study area. (a) Red Green Blue (RGB) color composite image from the 
Geostationary Ocean Color Imager (GOCI) acquired on 1 April 2011. The red rectangles, 
(b) and (c), in (a) are shown in (b), and (c), respectively, giving detailed views using  
high-resolution RapidEye multispectral data obtained on 5 August 2011 (b), and 11 
October 2011 (c). The blue rectangles in (b), and (c) are geometrically matched with 
corresponding satellite observation pixels. 

Figure 1. Study area. (a) Red Green Blue (RGB) color composite image from
the Geostationary Ocean Color Imager (GOCI) acquired on 1 April 2011. The
red rectangles, (b) and (c), in (a) are shown in (b), and (c), respectively, giving
detailed views using high-resolution RapidEye multispectral data obtained on
5 August 2011 (b), and 11 October 2011 (c). The blue rectangles in (b), and (c) are
geometrically matched with corresponding satellite observation pixels.

Table 1. Detailed characteristics of the GOCI and MODIS sensors used for
estimating land-surface products.

Satellite Sensor Orbit Type Altitude Wavelength Spatial Resolution

GOCI Geo-synchronous �36,000 km

B1: 402–422 nm

Approximately
500 m over South

Korea area
(�390 m at nadir)

B2: 433–453 nm
B3: 480–500 nm
B4: 545–565 nm
B5: 650–670 nm
B6: 675–685 nm
B7: 735–755 nm
B8: 845–885 nm

MODIS Sun-synchronous �705 km

B1: 620–670 nm

500 m at nadir

B2: 841–876 nm
B3: 459–479 nm
B4: 545–565 nm

B5: 1230–1250 nm
B6: 1628–1652 nm
B7: 2105–2155 nm

Figure 2 shows the spectral response functions of MODIS (in blue) from MODIS
Characterization Support Team and GOCI (in red) from Korea Institute of Ocean
Science & Technology (KIOST); the straight and dashed lines in the two colors
shown correspond to red and NIR wavelengths, respectively. The spectral response
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functions (SRFs) shown in Figure 2 for the red and NIR frequencies were slightly
different because GOCI was designed to observe ocean products such as chlorophyll.
The GOCI visible red band SRF is narrower than that for MODIS because its original
band purpose was as a baseline for fluorescence, chlorophyll, and suspended
sediment. In this study, interpreting the effect of different SRFs was beyond the
scope of our research, requiring sensor calibration with atmospheric constituents
and ground spectral information for an accurate reading of the spectral vegetation
index from different sensors. We assumed the MODIS spectral bands as a reference
and compared them with GOCI land products to determine the feasibility of GOCI
land application.Remote Sens. 2015, 7 11330 
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2.3. Ground Measurements Using a Multispectral Radiometer

In this study, ground measurements were performed using the multispectral
radiometer (MSR) to evaluate satellite-based vegetation profiles for comparative
analysis. The CROPSCAN MSR16 used in this study was equipped with 16 spectral
sensor bands in the 450–1750 nm region. When measuring ground spectral
information on rice paddy with CROPSCAN, we observed three different points
within selected blue rectangle areas in Figure 1b and 1c, and then averaged the tree
points of spectral measurements to reflect spatial representation of chosen rice paddy.
The blue rectangles (500 ˆ 500 m) in Figure 1b,c are geometrically matched with
corresponding satellite observation pixels for comparison. Field measurements were
carried out from June to October 2014. To obtain the crop development characteristics
of the paddy rice, measurements were made on eight dates based on the cultivation
schedule, including transplantation and harvest. Table 2 lists paddy rice development
during the growing season over Kyehwa (Figure 1b) and Kimjae (Figure 1c).
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Table 2. Time-series photographs of paddy rice in the Kyehwa and Kimjae areas.

Date Kyehwa Kimjae Status

06/13
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Date Kyehwa Kimjae Status 

10/03 

  

Harvest 

2.4. Satellite Data Pre-Processing 

For the GOCI satellite image, further pre-processing, including conversion of digital numbers (DN) 
to radiance, cloud masking, and atmospheric correction, was performed to calculate surface 
reflectance. To undertake cloud masking, a threshold method was adopted [25]. The look-up table 
(LUT) from the Second Simulation of a Satellite Signal in the Solar Spectral (6S) atmospheric 
correction model was used for calculating the GOCI surface reflectance [26–28]. The 6S radiative 
transfer model is advantageous for atmospheric correction because it is flexible in applying particular 
regional characteristics (e.g., topography, land type, or atmospheric condition) and sensor properties 
(e.g., band width or spectral response function of each band) [29]. The LUT is preliminarily 
constructed to invert 6S radiative transfer model for calculating the surface reflectance. When 
simulating 6S modeling for GOCI, atmospheric products such as aerosol optical thickness, aerosol 
type, ozone, and water vapor were acquired from MODIS atmospheric products (MOD04, MOD05, 
and MOD07) from NASA’s Earth Observing System Data an Information System (EOSDIS). When 
using MODIS atmospheric products, which did not fully cover the GOCI observation times, we 
assumed that the daily variation in the atmospheric constituents from the MODIS atmospheric products 
was low. When comparing ground station particulate matter (PM2.5), we found that the overall root 
mean square error (RMSE) of the aerosol optical depth (AOD) was 0.123 [30]; it follows that the 
expected error in the surface reflectance using the MODIS daily AOD will be less than 3% in the 6S 
radiative transfer model. When MODIS products were unavailable (mainly due to cloud 
contamination), we substituted the aerosol optical thickness based on COMS MI [31] for the MODIS 
aerosol optical thickness. In this study, for the MODIS satellite image, the MODIS atmospheric 
corrected reflectance (MOD09GA, MYD09GA, collection 5) from NASA’s EOSDIS was used to 
estimate the normalized NDVI products. For geometric matching, we applied the nearest-neighbor 
method to the GOCI and MODIS data by resampling different projected images. Since reflectance 
measurements from satellite data are affected by the surface anisotropy, the semi-empirical 
bidirectional reflectance distribution function (BRDF) model was applied to normalize surface 
reflectance from GOCI and MODIS images. 

2.5. BRDF Modeling and Calculation of Vegetation Index 

We applied the BRDF model based on Ross-thick/Li-sparse reciprocal (RTLSR) kernels to estimate 
the normalized reflectance [32–34] and correct surface anisotropy effects. Surface reflectance data 
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2.4. Satellite Data Pre-Processing

For the GOCI satellite image, further pre-processing, including conversion of
digital numbers (DN) to radiance, cloud masking, and atmospheric correction, was
performed to calculate surface reflectance. To undertake cloud masking, a threshold
method was adopted [25]. The look-up table (LUT) from the Second Simulation
of a Satellite Signal in the Solar Spectral (6S) atmospheric correction model was
used for calculating the GOCI surface reflectance [26–28]. The 6S radiative transfer
model is advantageous for atmospheric correction because it is flexible in applying
particular regional characteristics (e.g., topography, land type, or atmospheric
condition) and sensor properties (e.g., band width or spectral response function of
each band) [29]. The LUT is preliminarily constructed to invert 6S radiative transfer
model for calculating the surface reflectance. When simulating 6S modeling for GOCI,
atmospheric products such as aerosol optical thickness, aerosol type, ozone, and
water vapor were acquired from MODIS atmospheric products (MOD04, MOD05,
and MOD07) from NASA’s Earth Observing System Data an Information System
(EOSDIS). When using MODIS atmospheric products, which did not fully cover the
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GOCI observation times, we assumed that the daily variation in the atmospheric
constituents from the MODIS atmospheric products was low. When comparing
ground station particulate matter (PM2.5), we found that the overall root mean
square error (RMSE) of the aerosol optical depth (AOD) was 0.123 [30]; it follows that
the expected error in the surface reflectance using the MODIS daily AOD will be less
than 3% in the 6S radiative transfer model. When MODIS products were unavailable
(mainly due to cloud contamination), we substituted the aerosol optical thickness
based on COMS MI [31] for the MODIS aerosol optical thickness. In this study, for the
MODIS satellite image, the MODIS atmospheric corrected reflectance (MOD09GA,
MYD09GA, collection 5) from NASA’s EOSDIS was used to estimate the normalized
NDVI products. For geometric matching, we applied the nearest-neighbor method
to the GOCI and MODIS data by resampling different projected images. Since
reflectance measurements from satellite data are affected by the surface anisotropy,
the semi-empirical bidirectional reflectance distribution function (BRDF) model was
applied to normalize surface reflectance from GOCI and MODIS images.

2.5. BRDF Modeling and Calculation of Vegetation Index

We applied the BRDF model based on Ross-thick/Li-sparse reciprocal (RTLSR)
kernels to estimate the normalized reflectance [32–34] and correct surface anisotropy
effects. Surface reflectance data from GOCI and MODIS were used in the BRDF model
to calculate the GOCI and MODIS BRDF-adjusted reflectance, respectively [35–37].
The BRDF model kernel coefficients were estimated independently for each gridded
pixel location using available cloud-cleared observations for a 16-day composite
period to estimate daily rolling products [34,35]. In other words, the cloud-free
surface reflectance during the 16-day composite period was assembled to simulate
the BRDF model, and then the estimated kernel coefficients were utilized to retrieve
the angle-adjusted reflectance. In this study, BRDF-adjusted reflectances from GOCI
and MODIS were estimated using a daily rolling strategy over a 16-day composite
period to interpret more subtle characteristics of the phenology [36,38]. The BAR
products, which were less sensitive to variations in the sun and viewing geometry,
were used to estimate daily NDVI products using the following equation:

NDVIBAR “
NIRBAR ´ redBAR
NIRBAR ` redBAR

(1)

where NDVIBAR is the vegetation index based on BRDF-adjusted surface reflectance,
and NIRBAR and redBAR represent the BRDF-corrected surface NIR and red
bands, respectively.

Lastly, the 10-day NDVI maximum value composite (MVC) is also estimated for
comparing the GOCI BAR NDVIs with the GOCI 10-day MVC NDVI. The 10-day
NDVI MVC method has been recommended in many cases to minimize the effect of
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cloud contamination on optical sensors [39] because the highest NDVI value during
the 10-day period is retained under the assumption that it represents the NDVI
value least affected by the presence of clouds, smoke, haze, snow, and ice during the
composite period.

3. Results and Discussion

3.1. Spectral Analysis of Crop Temporal Dynamics

The temporal changes in BAR NDVIs in the four-year GOCI data were compared
with those in the corresponding MODIS NBAR NDVIs data for two rice paddies,
shown in Figure 1b,c. As Figure 3 shows, the annual NDVI changes correspond well
with the crop development of the intermediate-late-maturing rice paddy (Figure 3a),
and early maturing rice paddy (Figure 3b).
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The quality of BRDF modeling for normalized reflectance is dependent on acquiring at least seven 
cloud-free observations of each gridded pixel during the 16-day composite period [36]. In Figure 3, the 
number of cloud-free observations for BRDF modeling is depicted in histograms (gray shows GOCI 
acquisition and black is MODIS) to ensure the full inversion BRDF parameters required for obtaining 
reliable surface estimations. If only one to six clear observations are available during the 16-day composite 
period, then angular sampling numbers of fewer than six were replaced with zero to clearly identify 
whether full inversion BRDF modeling was applicable. The results from the two study areas show that 
MODIS (black histogram) did not perform the full inversion with Equation (1) during the rainy season 
because MODIS from Terra and Aqua can only make two observations over a pixel location. In contrast, 
GOCI displays exhibited increasing NDVI values during the cloudy summer periods, which appear to be 

Figure 3. Year-to-year variation in crop seasonal dynamics using GOCI- and
MODIS-based vegetation indices. The open and solid circles show the GOCI BAR
NDVI and MODIS NBAR NDVI, respectively. The gray and black histograms show
the number of GOCI and MODIS angular samples, respectively. (a) Intermediate-
late-maturing rice paddy, and (b) Early maturing rice paddy. The four light gray
areas from middle June to middle August are rainy summer seasons in South Korea.
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For the intermediate-late-maturing rice paddy in Figure 3a, compared with the
NBAR NDVIs derived from MODIS (solid circles), the GOCI BAR NDVI (open circles)
better reflects the annual tendency with less scattering from general crop seasonal
dynamics. The advantages of the GOCI are particularly during the summer from June
to August, when the weather conditions are very changeable, and rain can persist
for long periods. Whereas MODIS resulted in intermittent NDVI values during the
long rainy periods (light gray areas in Figure 3) usually between middle June and
early August, GOCI provided increasing NDVI values, which appear reasonable
for the growing season of paddy rice. In addition, as shown in Figure 3a, the single
crop development patterns from the GOCI BAR NDVIs and MODIS NBAR NDVI
were similar, but exhibited more discontinuous crop signal transitions of MODIS
during the summer from June to August. For the early maturing rice paddy, double
cropping spectral patterns were detected (see Figure 3b) for both GOCI (open circles)
and MODIS (solid circles). Whereas the GOCI- and MODIS-based vegetation index
profiles show similar patterns under benign weather conditions with a high number
of angular samples, there is a clear difference between the GOCI- and MODIS-based
spectral dynamic patterns during the rainy summer and snowy winter season.

The quality of BRDF modeling for normalized reflectance is dependent on
acquiring at least seven cloud-free observations of each gridded pixel during the
16-day composite period [36]. In Figure 3, the number of cloud-free observations for
BRDF modeling is depicted in histograms (gray shows GOCI acquisition and black is
MODIS) to ensure the full inversion BRDF parameters required for obtaining reliable
surface estimations. If only one to six clear observations are available during the
16-day composite period, then angular sampling numbers of fewer than six were
replaced with zero to clearly identify whether full inversion BRDF modeling was
applicable. The results from the two study areas show that MODIS (black histogram)
did not perform the full inversion with Equation (1) during the rainy season because
MODIS from Terra and Aqua can only make two observations over a pixel location.
In contrast, GOCI displays exhibited increasing NDVI values during the cloudy
summer periods, which appear to be reasonable for the growing seasons (from July
to August) of crop areas. As GOCI offers eight multispectral images every day
during the daytime (from 9 a.m. to 4 p.m.), the intuitive multi-temporal NDVI can
be estimated from sufficient cloud-free observations despite the rainy season.

Given the steady margins of the absolute difference between MODIS NBAR
NDVIs and GOCI BAR NDVIs under benign weather condition shown in Figure 3,
Figure 4 makes one-to-one comparisons of the NDVI, NIR, and Red bands to identify
different characteristics of MODIS and GOCI. For both rice paddy areas, GOCI BAR
NDVI gave lower values than MODIS, implying that the different SRF of the red
band described in Figure 2 might cause the steady margin difference. In Figure 2,
NIR SRF had a similar function, but the red band of GOCI has a narrower SRF than
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MODIS. Therefore, we think that the BAR red band of GOCI gave higher reflectance
resulting in lower NDVI values in Figure 4. We inferred that the higher red band
RMSE between GOCI and MODIS would cause the higher NDVI RMSE due to SRF
different in Figure 4b.
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Figure 4. Scatterplots of the GOCI and MODIS vegetation products. The open circles 
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Figure 5 compares two NDVI datasets: one is the instantaneous NDVI measurement from 
atmospherically corrected reflectance (open circles), and the other is the equivalent processed BAR 
NDVI (solid circles) for the two crop areas. 

For the intermediate-late-maturing rice paddy, the BRDF-adjusted NDVI (solid circles) from GOCI 
(Figure 5a) and MODIS (Figure 5b) show annual spectral change that corresponds well to the 
development of vegetation. However, the instantaneous measurements of NDVI from both GOCI and 
MODIS (open circles) are scattered mostly with the BAR NDVI as the center because of BRDF effects 
and cloud contamination. For the early maturing rice paddy in Figure 5c,d, similar patterns are shown. 
In Figure 5, the maximum value of the instantaneous NDVI measurements among the daily values is 
described alongside the crop dynamics of the study area. 

Figure 4. Scatterplots of the GOCI and MODIS vegetation products. The open
circles show the BAR NDVI, and the solid and gray circles show the BAR NIR
and BAR Red bands, respectively. (a) Intermediate-late maturing rice paddy, and
(b) early intermediate-late maturing rice paddy.

Figure 5 compares two NDVI datasets: one is the instantaneous NDVI
measurement from atmospherically corrected reflectance (open circles), and the
other is the equivalent processed BAR NDVI (solid circles) for the two crop areas.

For the intermediate-late-maturing rice paddy, the BRDF-adjusted NDVI (solid
circles) from GOCI (Figure 5a) and MODIS (Figure 5b) show annual spectral change
that corresponds well to the development of vegetation. However, the instantaneous
measurements of NDVI from both GOCI and MODIS (open circles) are scattered
mostly with the BAR NDVI as the center because of BRDF effects and cloud
contamination. For the early maturing rice paddy in Figure 5c,d, similar patterns are
shown. In Figure 5, the maximum value of the instantaneous NDVI measurements
among the daily values is described alongside the crop dynamics of the study area.
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The four light gray areas from middle June to middle August are rainy summer seasons in 
South Korea. 
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Figures 6). The days used to represent these products were the center day of the time window; 
therefore, matched center data are used for comparison. As shown in Figure 6a, MVC values above 1 
were considered outliers, indicating that the MVC method could be used to reveal the limitations 
associated with minimizing the effect of cloud contamination. However, the crop temporal dynamics 
of the GOCI 10-day MVC NDVI (open gray circles) did not describe the general phenology pattern, 
which still remained scattered (Figure 6b). Although scatterplots of the 10-day MVC NDVI displayed 
better a crop seasonal dynamic pattern compared with the instantaneous measurement NDVI, it was 
still insufficient with regards to obtaining detailed crop growth and development information, such as 
the time required for the onset of green-up, the maximum rate of green-up, and time-integrated NDVI 
as a measure of net primary productivity. For the early maturing rice paddy area, similar characteristics 
are seen in Figures 6b. Figure 6b shows that the spectral features during the crop-growing season and 
agricultural off-season are captured in GOCI BAR NDVI, but the crop signal dynamics are not 
described in the GOCI 10-day MVC NDVI. 

Figure 5. Comparisons of the temporal NDVI variation derived from GOCI
and MODIS. The GOCI NDVI profiles for BAR (solid circles) and instantaneous
measurement of NDVI (open circles) over (a) intermediate-late maturing paddy rice,
and (b) early maturing paddy rice; MODIS NBAR (solid circles) and instantaneous
measurement of NDVI (open circles) profiles over (c) intermediate-late-maturing
paddy rice, and (d) early maturing paddy rice. The four light gray areas from
middle June to middle August are rainy summer seasons in South Korea.

In this study, we also compared the GOCI BAR NDVIs with the GOCI 10-day
MVC NDVI based on a daily rolling strategy to determine efficient methods for
interpreting intuitive crop dynamics (see Figure 6). The days used to represent
these products were the center day of the time window; therefore, matched center
data are used for comparison. As shown in Figure 6a, MVC values above 1 were
considered outliers, indicating that the MVC method could be used to reveal the
limitations associated with minimizing the effect of cloud contamination. However,
the crop temporal dynamics of the GOCI 10-day MVC NDVI (open gray circles)
did not describe the general phenology pattern, which still remained scattered
(Figure 6b). Although scatterplots of the 10-day MVC NDVI displayed better
a crop seasonal dynamic pattern compared with the instantaneous measurement
NDVI, it was still insufficient with regards to obtaining detailed crop growth and
development information, such as the time required for the onset of green-up, the
maximum rate of green-up, and time-integrated NDVI as a measure of net primary
productivity. For the early maturing rice paddy area, similar characteristics are seen
in Figure 6b. Figure 6b shows that the spectral features during the crop-growing
season and agricultural off-season are captured in GOCI BAR NDVI, but the crop
signal dynamics are not described in the GOCI 10-day MVC NDVI.
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Figure 6. Comparison of the BAR NDVI and 10-day MVC NDVI from GOCI. Temporal 
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intermediate-late-maturing paddy rice (a) and early paddy rice (b). The 4 number of light 
gray areas from middle June to middle August are rainy summer seasons in South Korea. 

Finally, we compared temporal BRDF-adjusted NDVIs from GOCI and MODIS with field 
measurement data from CROPSCAN gathered in 2014. Figure 7 shows the comparison of 
CROPSCAN measured NDVI, interpolated using the cubic spline function (triangle points for 
measurement and dashed line for interpolated values) and multi-temporal satellite-based NDVIs (open 
circles for GOCI; solid circles for MODIS) for intermediate-late-maturing rice paddy (Figure 7a) and 
early-maturing rice paddy (Figure 7b). The field measured NDVIs clearly exhibit higher values than 
the values based on satellite data values. This may be explained by considering that the  
CROPSCAN-measured NDVI values represent the coverage of rice planted on a paddy unit whereas 
the moderate spatial resolution satellite data-based NDVI values include other types of land cover, 
such as farm roads, vinyl greenhouses, and artificial structures, in its pixel. A comparison without 
considering the mixed land cover in the MODIS and GOCI data prevents exact validation of the crop 
temporal dynamics based on the satellite data. However, when interpreted visually, the GOCI BAR 

Figure 6. Comparison of the BAR NDVI and 10-day MVC NDVI from GOCI.
Temporal variation in BAR NDVI (solid circles) and 10-day MVC NDVI (open gray
circles) over intermediate-late-maturing paddy rice (a) and early paddy rice (b).
The 4 number of light gray areas from middle June to middle August are rainy
summer seasons in South Korea.

Finally, we compared temporal BRDF-adjusted NDVIs from GOCI and MODIS
with field measurement data from CROPSCAN gathered in 2014. Figure 7 shows
the comparison of CROPSCAN measured NDVI, interpolated using the cubic spline
function (triangle points for measurement and dashed line for interpolated values)
and multi-temporal satellite-based NDVIs (open circles for GOCI; solid circles for
MODIS) for intermediate-late-maturing rice paddy (Figure 7a) and early-maturing
rice paddy (Figure 7b). The field measured NDVIs clearly exhibit higher values than
the values based on satellite data values. This may be explained by considering
that the CROPSCAN-measured NDVI values represent the coverage of rice planted
on a paddy unit whereas the moderate spatial resolution satellite data-based NDVI
values include other types of land cover, such as farm roads, vinyl greenhouses, and
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artificial structures, in its pixel. A comparison without considering the mixed land
cover in the MODIS and GOCI data prevents exact validation of the crop temporal
dynamics based on the satellite data. However, when interpreted visually, the GOCI
BAR NDVI multispectral changes during the growing season appear to better match
with the crop development dynamics in the field than the MODIS data. GOCI has
similar vegetation trajectory patterns with a constant margin as the CROPSCAN
measurement, from date of maximum growth to senescence. However, BRDF
adjusted NDVI profiles appeared as shifted to the right side when comparing with
the CROPSCAN measurements. It would be caused by the 16-day composite method
for simulating BRDF model. BRDF adjusted NDVI might be less sensitive for real
time change due to temporal composite than ground measured NDVI representing
the immediate reaction of targets.
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Figure 7. Comparison of temporal BRDF-adjusted NDVI from GOCI (solid circles)
and MODIS (open circles) with CROPSCAN measurements (solid triangles) over
rice paddy with (a) intermediate-late maturing and (b) early-maturing rice cultivar
during 2014. The dashed line over scan measurements is interpolated NDVI using
the cubic spline function.
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3.2. Discussion

Our four-year GOCI BAR NDVI analysis showed the significant benefit of
high temporal resolution for monitoring crop development. However, there were a
number of limitations to this work. First, the wavelengths of the red and NIR bands
in GOCI and MODIS used for NDVI calculation differed slightly. In principle, for
interpreting the different SRFs effects, inter-calibration needs to be performed using
stable, homogenous, and less anisotropic natural targets [40]. However, the previous
studies revealed the difficulty to compare biophysical products even if derived from
the same sensor [41]. So, we performed the one-to-one comparison of the Red, NIR,
and NDVI products in order to complement the SRFs difference between GOCI and
MODIS and found that the different SRF of the red band might cause the steady
margin difference. The interesting fact in the one-to-one comparison was that the
BRDF adjusted reflectance showed mostly the less relations, while the NDVIs were
well correlated.

Second, there were only two sample sites, and each sample site corresponded
to one satellite image pixel. As the main purpose of our study is rapidly to test the
benefits of GOCI data with a very high temporal resolution for extracting reliable
crop temporal dynamics, we focused on selecting representative study sites instead
of quantitative number of study sites. We very carefully chose those two rice paddy
sample sites, which are homogeneous despite of small paddy units and covered by
the monitoring site for the rice yield estimation by Korea Agricultural Research &
Extension Services.

Third, for the comparison of the NDVI calculated using moderate-resolution
satellite data with the field measurements, it is necessary to consider the mixed-pixel
problem. Because the paddy units in South Korea are relatively very small, it is very
difficult to observe a non-mixed spectral value for rice paddies on the moderate
spatial resolution GOCI data. The challenges of insufficient spatial resolution were
also mentioned in many other studies [42].

4. Conclusion

We investigated the applicability of high-temporal-resolution GOCI satellite
data for monitoring crop development. We found that the high temporal resolution
of GOCI is advantageous for simulating full inversion BRDF modeling and detecting
crop temporal dynamics, which is useful in crop phenology analysis, particularly
during the rainy season. In general, GOCI and MODIS displayed similar temporal
variation in NDVI under benign weather conditions, because they can secure enough
cloud-free observations for full inversion BRDF modeling. During the monsoon
season, however, with its long periods of rain and many cloudy days, GOCI was
found to be more useful for extracting cloudless or less cloudy areas by arraying its
eight images to calculate representative daily data. We also found that the GOCI BAR
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NDVI was more useful for crop signal monitoring than the widely used MVC NDVI.
Lastly, we compared the multi-year NDVI profiles derived from GOCI and MODIS
data with field measurements and visually verified the similar crop development
patterns between satellite data and field measurement, despite of their different
index magnitude.

So, we could conclude that GOCI’s very high-temporal-resolution originally
desired for ocean color monitoring is also very applicable for terrestrial monitoring.
For the GOCI BAR NDVI, it would be useful to calculate the crop temporal dynamics
in greater detail, including the time required for the onset of green-up, maximum rate
of green-up, and time-integrated NDVI as a measure of net primary productivity.

We expect that stable vegetation profiles derived from high-temporal-resolution
GOCI data will be useful for analyzing crop phenology, as well as phonological
parameters reflecting the exact field conditions, which will be the subject of future
study. To ensure the GOCI application for land areas, the future study will
(1) expand the spatial coverage at a regional or continental scale to show the spatial
representativeness, (2) verify the spectral values derived from GOCI and MODIS
with ground based spectral measurements to model the real crop development, and
lastly (3) simulate the rice yield using GOCI BAR NDVIs and verify its applicability.
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Exploring the Vertical Distribution of
Structural Parameters and Light Radiation
in Rice Canopies by the Coupling Model
and Remote Sensing
Yongjiu Guo, Ling Zhang, Yehui Qin, Yan Zhu, Weixing Cao and Yongchao Tian

Abstract: Canopy structural parameters and light radiation are important for
evaluating the light use efficiency and grain yield of crops. Their spatial variation
within canopies and temporal variation over growth stages could be simulated
using dynamic models with strong application and predictability. Based on an
optimized canopy structure vertical distribution model and the Beer-Lambert law
combined with hyperspectral remote sensing (RS) technology, we established a new
dynamic model for simulating leaf area index (LAI), leaf angle (LA) distribution
and light radiation at different vertical heights and growth stages. The model
was validated by measuring LAI, LA and light radiation in different leaf layers
at different growth stages of two different types of rice (Oryza sativa L.), i.e., japonica
(Wuxiangjing14) and indica (Shanyou63). The results show that the simulated values
were in good agreement with the observed values, with an average RRMSE (relative
root mean squared error) between simulated and observed LAI and LA values of
14.75% and 21.78%, respectively. The RRMSE values for simulated photosynthetic
active radiation (PAR) transmittance and interception rates were 14.25% and
9.22% for Wuxiangjing14 and 15.71% and 4.40% for Shanyou63, respectively. In
addition, the corresponding RRMSE values for red (R), green (G) and blue (B)
radiation transmittance and interception rates were 16.34%, 15.96% and 15.36%
for Wuxiangjing14 and 5.75%, 8.23% and 5.03% for Shanyou63, respectively. The
results indicate that the model performed well for different rice cultivars and under
different cultivation conditions.

Reprinted from Remote Sens. Cite as: Guo, Y.; Zhang, L.; Qin, Y.; Zhu, Y.; Cao, W.;
Tian, Y. Exploring the Vertical Distribution of Structural Parameters and Light
Radiation in Rice Canopies by the Coupling Model and Remote Sensing. Remote Sens.
2015, 7, 5203–5221.

1. Introduction

Crop canopy structure depends on the crop’s genetic characteristics and its
physiological and biochemical processes, as well as its planting pattern and growth
status. As crop canopies represent an integrated photosynthetic and matter production
system, the structure of a crop canopy plays an important role in its function [1].
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Canopy structure, which is directly related to the ability of within-canopy light
interception, is the most important factor influencing light radiation distribution and
light use efficiency [2]. Leaf angle (LA) and leaf area index (LAI) distribution are
the principle factors that determine light radiance distribution and leaf physiological
characteristic in crop canopies [3,4]. Employing crop varieties with compact plant
types is beneficial for improving middle and bottom canopy light conditions, which
enhances light use efficiency. Developing quantitative models of crop canopy structure
is an important aspect of light energy use and balance research [5,6].

The simulation of canopy light distribution is based on the simulation of canopy
structure parameters, such as the number of leaves characterized by the LAI and the
distribution of leaves characterized by the leaf inclination angle. Since Monsi and
Saeki [7] first applied the Beer–Lambert law describing the random distribution of
light in a medium to predict light transmission in the plant canopy, many studies
have focused on modeling canopy light transmission in crops, such as wheat, rice,
maize and cotton [8–10]. The most classical approach is to utilize the extinction
coefficient (K) and cumulative LAI values to simulate vertical light distribution in
the crop canopy, when the larger LAI, the larger K under the same conditions and
the canopy intercepted more sunlight. K values are affected by many other factors,
such as structural parameters and solar elevation angle [11]. Some researchers
calculated extinction coefficients through the function of canopy projected area
(G) [12], while Nilson [13] and Ross [14] simulated the G function by determining
the probability density function of the leaf angle, which downplays the relationship
between canopy structure and K. Campbell [15] proposed a method that uses an
elliptic function to describe leaf angle probability density, while Verhoef [16] tried
to use a linear combination of trigonometric functions to describe the probability
density distribution of leaf angle. The rapid development of three dimensional (3D)
graphics technology and virtual simulation technology has led to the development
of a plant canopy radiation distribution model for accurate simulation within the 3D
space using irradiance and ray tracing techniques [17,18]. To date, few studies have
focused on the characteristics of radiation transfer in the canopy and on modeling
its spatial and temporal distribution. Several published studies have neglected the
inhomogeneity of crop canopy level distribution and the differences in different
wavelength radiation [8,10]. Moreover, the derivation of developing models is
particularly complicated, and it is difficult to obtain input parameters, especially
when simulating the intensity of radiation at different canopy heights. These
problems have restricted the simulation accuracy of crop canopy light distribution
and photosynthetic production [2]. In rice, two questions arise in this respect: first,
how can Lambert-Beer’s law be expanded to account for radiation at different canopy
heights of rice, and second, where do radiative transfer differences occur between
different wavelength radiations.
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To this end, dedicated experiments were established, which contained two rice
varieties of high yield with different morphologies and varied planting densities and
nitrogen rates. The objective of this study was to develop a novel dynamic model for
simulating the spatial and temporal distribution characteristics of LAI, LA and light
radiation by the coupling model and remote sensing. As a precise, nondestructive
and rapid method, hyperspectral remote sensing was used to estimate agronomic
parameters, such as LAI [11,19,20]. This anticipated outcome would help to improve
the understanding of yield formation and to identify key structural parameters for
rice breeding programs.

2. Materials and Methods

2.1. Experiments

Two rice (Oryza sativa L.) field experiments were conducted to test the
performance of the dynamic models developed in this study. These experiments
involved different cultivars, planting densities and nitrogen fertilization rates during
different years (Table 1), as described below.

Table 1. Treatment and sampling information. N1, Nitrogen Rate 1.

Experiment Year Site
Location Cultivar Nitrogen Rate

(kg¨ha´2)
Planting
Density

Sampling
Date

Planting
Data

1 2012
Rugao

120˝191E
32˝141N

Wuxiangjing14
(WXJ14, V1)
Shanyou63
(SY63, V2)

150 (N1)
250 (N2)
350 (N4)

22.2
plants/m2

(D1)
13.3

plants/m2

(D2)

7/22, 8/6,
8/19

8/30, 9/15,
9/24

6/18

2 2013
Rugao
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150 (N1)
300 (N3)
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8/30
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Experiment 1 was conducted in 2012 at the Rugao experiment station of the
national engineering and technology center for information agriculture, Nantong
city, China (120˝191E, 32˝141N). Two rice cultivars, japonica (Wuxiangjing14, V1,
with inclined leaves) and indica (Shanyou63, V2, with erect leaves), were sown on
18 May and transplanted on 18 June with row and plant spacings of 30 cm and 15 cm
(D1) and 50 cm and 15 cm (D2), respectively. The plot area was 42 m2, and the
plots were 7 m long and 6 m wide. Three nitrogen (N) fertilization rates (150 (N1),
250 (N2) and 350 (N4) kg N¨ha´1) were applied in the form of urea at a rate of 50% at
preplanting, 10% at tillering, 20% at panicle initiation and 20% at spikelet initiation.
For all treatments, 135 kg¨ha´1 P2O5 (as monocalcium phosphate (Ca(H2PO4)2))
and 190 kg¨ha´1 K2O (as KCl) were applied prior to transplanting. The experiment
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employed a two-way factorial arrangement of treatments within a randomized
complete block design with three replications.

Experiment 2 was conducted in 2013 using the same cultivars and location as
Experiment 1. The cultivars were sown on 19 May and transplanted on 21 June
with row and plant spacings of 30 cm and 15 cm (D1) and 50 cm and 15 cm (D2),
respectively. The plot area was 30 m2, with plots 6 m long and 5 m wide. Two N rates
(150 (N1) and 300 (N3) kg N¨ha´1) were applied in the form of urea at a rate of 40%
at preplanting, 10% at tillering, 20% at panicle initiation and 30% at spikelet initiation.
Phosphate and potassium fertilizers were applied as described for Experiment 1.

In these experiments, different N rates and application times in different
experiments were conducted according to basal soil fertility, the growth status of
rice and the weather during various growth periods. Pest management and other
management procedures follow.

2.2. Spectral Measurements of Canopy Leaves

Canopy reflectance values were acquired with A FieldSpec 3 (Analytical Spectral
Devices, Boulder, CO, USA). This instrument recorded reflectance between 350 and
1000 nm, with a sampling interval of 1.40 nm and a resolution of 3 nm, and reflectance
between 1000 and 2500 nm, with a sampling interval of 2 nm and a resolution of
10 nm. The spectroradiometer, with a 25˝ field of view (FOV), was positioned
1 m above the rice canopy. The radiance was measured at five positions within
each plot to cover the entire plot and to characterize variability. Three scans were
performed for each position and averaged to produce the final canopy spectra, and
the average of five positions was used as the measurement for the plot. All spectral
measurements were performed during cloud-free periods at midday (between 10:00
and 14:00). A white Spectralon reference panel (Labsphere, North Sutton, NH, USA)
was used under the same illumination conditions to convert the spectral radiance
measurements to reflectance.

2.3. Irradiance Measurements

The spectroradiometer (FieldSpec 3) and its cosine correctors were used to
measure the vertical downward and upward irradiance (W¨m´2¨nm´1) at three
different rice canopy observation depths (rice canopy depth was averaged and
divided into three layers; Figure 1). The irradiance was measured at five positions
within each plot. Three scans were performed for each position and averaged to
produce the final canopy irradiance, and the average of five positions was used as
the measurement for the plot. The transmittance and interception of each canopy
layer were calculated as follows [21]:
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Interception of the i-th layer:

Ii “

`

E0 Ó ´ E0 Ò ´ Ei Ó
˘

E0 Ó

Transmittance of the i-th layer:

Ti “
Ei Ó

E0 Ó

where E0 Ó is incident solar radiation of the top canopy (W¨m´2¨nm´1), E0 Ò is
reflected solar radiation of the top canopy (W¨m´2¨nm´1) and Ei Ó is incident solar
radiation of the i-th layer (W¨m´2¨nm´1).
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2.4. Determination of Agronomic Parameters

During the 2012 and 2013 growing seasons, repeated destructive samplings were
carried out in each plot. After each measurement of canopy spectra and irradiance,
three plants from each experimental plot were randomly selected to determine leaf
area and leaf angle. For each sample, the plants were equally divided into three
layers in the direction from the ground to the canopy top. The green leaves from each
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layer were separated from the stems and immediately scanned using an LI-3000A.
Then, the leaf area (L) of each layer was obtained, and the LAI for each layer and
each plot (the sum of different layers) was calculated. The LAI represents the product
of the number of plants per square area surveyed in a field and the L. The L of
10 randomly-selected rice stems from each experimental plot was measured using
an inclinometer, the leaf angle was averagely divided into 6 parts in the range of
0–90˝ in the natural state, and the curved leaves were divided into 3 parts for testing,
which recorded the horizontal as 0˝, measuring the leaf area of each leaf piece at the
same time.

2.5. Meteorological Data

Meteorological data were collected by an automatic meteorological station
(Dynamet, Bellevue, WA, USA) installed in the experimental field. The average
temperature (˝C) and photosynthetic active radiation energy (kW¨m´2) value per
hour were recorded.

2.6. Calculation

2.6.1. Growing Degree Day Calculation

GDD (growing degree days) values were calculated as follows [22]:

GDD “
ÿ

pTi ´ Tbq

where Ti is the average temperature throughout the experiment and Tb is the base
temperature, which is usually set to 12 ˝C for rice.

Fitting analysis of the test data was performed using SPSS and Origin statistics
software. Programming calculation and drawing were performed using MATLAB
7.11. Relative root mean square error (RRMSE) was used to calculate the fitness
between the estimated and observed values [23] and to evaluate the overall
performance of the model.

2.6.2. Spectral Index Calculation

In this study, three types of two-band indices were calculated: (1) normalized
difference index (ND); (2) simple ratio index (SR); and (3) difference index (DI). These
values were calculated using the original reflectance and the first derivative values
from all available two-waveband (λ1 and λ2) combinations in the 350–2500 nm region
to select the best two-band indices or the effective two-band combination regions for
model parameter estimating. SR, ND and DI values were calculated as follows [24]:

SR pRλ1, Rλ2q “
Rλ1

Rλ2
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ND pRλ1, Rλ2q “
|Rλ1 ´ Rλ2|

Rλ1 ` Rλ2

DI pRλ1, Rλ2q “ Rλ1 ´ Rλ2

2.6.3. Leaf Area Index Vertical Distribution Model

The logistic model can be used to simulate the vertical distribution of rice leaf
area index quite well, but it cannot be used to simulate dynamic changes in LAI
vertical distribution during different growth stages [25]. In this study, using the
canopy depth (h) parameter to modify the logistic model, a dynamic simulation
model of the downward accumulation leaf area index in rice was built. The model is
expressed as follows:

LAIphq “ LAI ´
LAI

1` bˆ e´c p1 ´ hq
(1)

where h is the relative depth of top-downward accumulation in the rice canopy
(whole canopy depth is set to 1, h ď 1), LAI is the leaf area index of the whole
canopy and b, c are two structural adjustment parameters. Different b and c values
represent different vertical structures, and greater b and c values mean less and more
proportions of leaves under rice canopy, respectively. Thus, a vertical distribution
dynamic model of rice canopy LAI was developed.

2.6.4. Leaf Angle Distribution Simulation Model

The leaf angle distribution function (LADF) is an important factor in describing
canopy structure. In the radiation transfer theory (RT), leaf inclination angles and
their distribution are key functions for solving RT problems in vegetative canopies.
The ellipsoidal function [15] is based on the assumption that the canopy leaf area has
inclination angles distributed parallel to the surface of a prolate or oblate ellipsoid.
This function is described as:

f pθq “
2pELADPq3sinθ

Λrcos2θ` pELADPq2sin2θs
2 (2)

where ELADP (the ellipsoidal leaf angle distribution parameter) is the ratio of the
horizontal semi-axis length (l) to the vertical semi-axis length (a) of an ellipsoid, i.e.,
ELADP = l/a, where θ is the leaf inclination angle and Λ is a parameter defined
by ELADP.

In this study, the canopy relative depth parameter h was added to the ellipsoid
function model. Assuming that the canopy of downward accumulation relative
depth h is an ellipsoid-structured layer, all values conform to the Campbell ellipsoid
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distribution function. We can calculate the horizontal semi-axis length (l) as

l ˆ
b

1´ p1´ hq2 using the elliptic equations and the vertical semi-axis length
(a) as a ¨ h; the ELADPh. The new ellipsoidal functions are written as follows:

ELADPh “
lh
ah
“

l ˆ
b

1´ p1´ hq2

a ¨ h
“

b

1´ p1´ hq2

h
¨ ELADP (3)

f pθq “
2pELADPhq

3sinθ

Λrcos2θ` pELADPhq
2sin2θs

2 (4)

When ELADP = 1, the ellipsoidal distribution becomes spherical, and Λ “ 2.
For vertical distributions, ELADPh < 1, and therefore:

Λ “ ELADPh `
sin´1ε

ε

with:

ε “

g

f

f

f

e1´

»

–

aˆ h

l ˆ
b

1´ p1´ hq2

fi

fl

2

Finally, when ELADPh > 1, the distribution is horizontal and:

Λ “ ELADPh `
lnp1` εq{p1´ εq
2 ¨ ε ¨ ELADPh

with:

ε “

g

f

f

f

e1´

»

–

l ˆ
b

1´ p1´ hq2

aˆ h

fi

fl

2

2.6.5. Rice Canopy Radiation Vertical Distribution Model

Nilson and Ross’s algorithm was employed, assuming uniform leaf azimuthal
distribution [13,14]. The extinction coefficient K is calculated from the mean
projection of unit leaf area on the plane perpendicular to the beam direction
as follows:

K “
G

cosφ
(5)

with:

G “
ż π

2

0
Apθ, φq f pθqdθ
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and:

Apθ, φq “

#

cosθcosφ θ` φ ď π
2

cosθcosφr1` 2
π ptanδ´ δqs θ` φ ą π

2

δ “ cos´1pcotθcotφq

Then, based on the Beer-Lambert law [7], the solar transmittance at the
top-downward relative depth h can be calculated using the canopy structure
parameters model and the extinction coefficient model; the equation is as follows:

Tpi,hq “ e´LAIphq ˆ Kpi,hq (6)

where T(i, h), k(i, h) is the transmittance and extinction coefficient of wavelength light i
at the top-downward relative depth h. LAI(h) is LAI at the top-downward relative
depth h.

Finally, the interception corresponding to transmittance is calculated as
follows [26]:

fAPAR “ 0.95ˆ p1´ e´K ˆ LAIq (7)

3. Results

3.1. Determination Partial Model Parameters Using RS and GDD

In the LAI vertical distribution model (Formula 1), LAI was estimated by
a hyperspectral vegetation index. The best two-band ND, SR and difference VIs
for estimating LAI is plotted in Figure 2. LAI had a linear relationship with
DI(R800, R750) and an exponential relation with ND(R930, R730) and SR(R730, R930). The
differential spectral index DI(R800, R750) could best predict the LAI values of different
rice varieties (japonica and indica) under different cultivation conditions (Figure 2).
Moreover, ELADP values (Equation (4)) under different experimental conditions
were estimated by using the measured canopy radiation transmission values and
a nonlinear least squares fitting method. The quantitative relationships between
ELADP and spectral indices (Figure 3) were also analyzed. The results show that the
parameter ELADP could be successfully estimated by the hyperspectral vegetation
index. However, different rice varieties had different optimal vegetation indices; the
differential index DI(R945, R915) and normalized differential index ND(R700, R525)
were used to develop corresponding monitoring models for ELADP estimation in
japonica and indica rice, respectively (Figure 3).
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Figure 2. Relationship between the canopy leaf area index and spectral index
in rice.

In addition, using data from two years of experiments to fit the LAI vertical
distribution model, b was found to have significant correlation with c (Figure 4A);
the parameters b and c could successfully be simulated by GDD (Figure 4). Canopy
structure changes over time, and different canopy structure corresponds to varied
b and c values; thus, the dynamic changes of the canopy structure can be calculated
by GDD values.
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Figure 3. Relationship between the ellipsoidal leaf angle distribution parameter
(ELADP) and the spectral index in rice. DI, difference index; ND, normalized
difference index.
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Figure 4. Relationship between rice canopy structure parameters b and c (A),
growing degree days (GDD) and b (B), c (C).

3.2. Radiation Transfer of Different Light Qualities (Wavelengths)

Green vegetable organs have selective absorption characteristics for solar
radiation. The quantitative relationship between the interception and transmission
of blue (B), green (G) and red (R) radiation and photosynthetic active radiation (PAR)
were analyzed based on the experimental data. The results show that good correlation
existed between these values despite the use of different rice varieties, cultivation
conditions and canopy heights (Figure 5). Thus, the radiation transmittance of
different wavelengths (light quality) at relative depth h of the rice canopy could be
calculated based on its relationship to PAR transmittance.

3.3. Validation of LAI Vertical Distribution Model

The LAI of different canopy height layers in different treatments and growth
stages was simulated using the developed vertical LAI distribution model based on
2012 and 2013 experimental conditions. The result show (Figure 6; 2013, for example)
that the simulated values closely matched the measured values and complied with
the laws of different cultivation treatments and different growth stages. The RRMSE
values derived from model simulation of the first, second and third layers of the rice
canopy were 20.81%, 14.89% and 15.21% in 2012 and 18.97%, 10.53% and 10.48% in
2013, respectively, which indicates that the model could successfully simulate LAI in
different rice canopy layers. The total mean RRMSE value of the model simulating
different canopy layers of rice LAI was 14.75%. Better simulation results could be
obtained under normal planting density conditions (RRMSE of 10.21%) than under
lower planting density conditions (RRMSE of 16.26%; Figure 7). Large deviation
existed between the simulated and measured LAI values in the group of V2D2 due to
the measurement errors for SY63 (indica rice) that was planted in large row spacing
and grew with inclined leaves. On the whole, this model is suitable for simulating
the spatial and temporal distribution characteristics of canopy LAI in rice.
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large row spacing and grew with inclined leaves. On the whole, this model is suitable for simulating the 

spatial and temporal distribution characteristics of canopy LAI in rice. 
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3.4. Simulation Analysis of Leaf Angle Distribution

The developed LA distribution function model was used to simulate LA at h
height within the rice canopy during different growth stages. The results show that
there were large differences in leaf angle distribution in the japonica versus indica
rice varieties at different growth stages; however, these varieties exhibited similar
patterns of spatial distribution of LA within the crop canopy. Overall, the leaf angles
at the top of the canopy were smaller than those in the lower canopy for both rice
varieties. For leaves in the upper part of the canopy, the LA values were within
20˝–50˝ for Wuxiangjing14 (japonica rice) and 20˝–40˝ for Shanyou63 (indica rice).
For leaves in the lower part of the canopy, the LA values were within 50˝–90˝ for
Wuxiangjing14 and 40˝–90˝ for Shanyou63 (Figure 8; N1D1 treatment in 2013, for
example). The RRMSE value for simulated rice canopy LA was 21.78%, which
indicates that the model developed in this study has a good prediction ability for rice
LA (Figure 9).

3.5. Validation of Rice Canopy Light Radiation Vertical Distribution Model

The transmittance and interception of two rice varieties under different growth
stages and treatment conditions (Figure 10) were simulated using the developed rice
canopy optical light radiation vertical distribution model, and the corresponding
measured values were used to validate the model. The results show that for the
two rice varieties examined, the simulated and measured values of transmittance
and optical radiation interception rates were consistent. Over the entire growth
period, the mean RRMSE values of rice canopy PAR transmittance and interception
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were 13.62% and 7.61% for Wuxiangjing14 and 18.69% and 3.61% for Shanyou63,
respectively. The average RRMSE values for different qualities of light radiation (R, G
and B) at different growth stages were 16.34%, 15.96% and 15.36% (transmittance)
and 5.75%, 8.23% and 5.03% (interception), respectively.

Remote Sens. 2015, 7 5214 

 

varieties exhibited similar patterns of spatial distribution of LA within the crop canopy. Overall, the leaf 

angles at the top of the canopy were smaller than those in the lower canopy for both rice varieties. For 

leaves in the upper part of the canopy, the LA values were within 20°–50° for Wuxiangjing14 (japonica 

rice) and 20°–40° for Shanyou63 (indica rice). For leaves in the lower part of the canopy, the LA values 

were within 50°–90° for Wuxiangjing14 and 40°–90° for Shanyou63 (Figure 8; N1D1 treatment in 2013, 

for example). The RRMSE value for simulated rice canopy LA was 21.78%, which indicates that the 

model developed in this study has a good prediction ability for rice LA (Figure 9). 

 

 

 

Figure 8. Frequency of leaf angle distribution of different canopy layers of rice at the 

jointing, booting and filling stage.  

Figure 8. Frequency of leaf angle distribution of different canopy layers of rice at
the jointing, booting and filling stage.

151



Remote Sens. 2015, 7 5215 

 

 

Figure 9. Comparison of simulated and measured leaf inclination angle distribution in the 

rice canopy. 

3.5. Validation of Rice Canopy Light Radiation Vertical Distribution Model 

The transmittance and interception of two rice varieties under different growth stages and treatment 

conditions (Figure 10) were simulated using the developed rice canopy optical light radiation vertical 

distribution model, and the corresponding measured values were used to validate the model. The results 

show that for the two rice varieties examined, the simulated and measured values of transmittance and 

optical radiation interception rates were consistent. Over the entire growth period, the mean RRMSE 

values of rice canopy PAR transmittance and interception were 13.62% and 7.61% for Wuxiangjing14 

and 18.69% and 3.61% for Shanyou63, respectively. The average RRMSE values for different qualities 

of light radiation (R, G and B) at different growth stages were 16.34%, 15.96% and 15.36% 

(transmittance) and 5.75%, 8.23% and 5.03% (interception), respectively. 

The simulation results for canopy layers at different heights show that PAR transmittance and 

interception changed quickly in the upper part of the rice canopy, exhibiting an approximately linear 

trend, which began to slow down when the relative depth (h) reached approximately 0.4. There was little 

change when the h reached 0.7 (Figure 11), which indicates that most of the solar radiation was absorbed 

by the top 70% of the rice canopy. Validation results using the measured optical radiation data from 

different canopy layers show that the average RRMSE values in the first, second and third layers of the 

rice canopy were 8.49%, 16.98% and 26.06% (PAR transmittance) and 10.88%, 4.39% and 4.76% (PAR 

interception), respectively. For radiation of different light qualities (R, G and B), the RRMSE values 

were 23.58%, 23.77% and 26.92% (transmittance) and 6.73%, 8.02% and 6.88% (interception), 

respectively (Figure 12). These results demonstrate that the model performed well in simulating the 

spatial and temporal distribution of optical radiation in the rice canopy. 

y = 0.8221x + 0.0327
R² = 0.9381

RRMSE=21.78%
n = 144

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8

S
im

ul
at

ed
 v

al
ue

Observed value

SY63

WXJ14

Figure 9. Comparison of simulated and measured leaf inclination angle distribution
in the rice canopy.

Remote Sens. 2015, 7 5216 

 

 

Figure 10. Comparison of simulated and observed radiation transmittance at different 

growth stages and under different nitrogen rates and planting densities for two rice varieties. 

V1, Wuxiangjing14; V2, Shanyou63. 

 
Figure 11. Comparison of simulated and observed radiation transmittance and interception 

in different relative canopy depths under different nitrogen rates and planting densities for 

two rice varieties, heading stage; V1, Wuxiangjing14; V2, Shanyou63. 

0

0.2

0.4

0.6

0.8

1

20 40 60 80 100

V2N1D2

0

0.2

0.4

0.6

0.8

1

20 40 60 80 100

V2N3D1

0

0.2

0.4

0.6

0.8

1

20 40 60 80 100

T
ra

ns
m

it
ta

nc
e 

an
d 

in
te

rc
ep

tio
n

Days after transplanting

V1N1D2

PAR-tra.-obs. RR-tra.-obs. BR-tra.-obs. GR-tra.-obs.
PAR-int.-obs. RR-int.-obs. BR-int.-obs. GR-int.-obs.
PAR-tra.-sim. RR-tra.-sim. BR-tra.-sim. GR-tra.-sim.
PAR-int.-sim. RR-int.-sim. BR-int.-sim. GR-int.-sim.

0

0.2

0.4

0.6

0.8

1

20 40 60 80 100

V1N3D1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

V2N1D2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

V2N3D1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

T
ra

ns
m

it
ta

nc
e 

an
d 

in
te

rc
ep

tio
n

Relative canopy  height

V1N1D2

PAR-tra.-obs. RR-tra.-obs. BR-tra.-obs. GR-tra.-obs.
PAR-int.-obs. RR-int.-obs. BR-int.-obs. GR-int.-obs.
PAR-tra.-sim. RR-tra.-sim. BR-tra.-sim. GR-tra.-sim.
PAR-int.-sim. RR-int.-sim. BR-int.-sim. GR-int.-sim.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

V1N3D1

Figure 10. Comparison of simulated and observed radiation transmittance at
different growth stages and under different nitrogen rates and planting densities
for two rice varieties. V1, Wuxiangjing14; V2, Shanyou63.
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The simulation results for canopy layers at different heights show that PAR
transmittance and interception changed quickly in the upper part of the rice canopy,
exhibiting an approximately linear trend, which began to slow down when the
relative depth (h) reached approximately 0.4. There was little change when the
h reached 0.7 (Figure 11), which indicates that most of the solar radiation was
absorbed by the top 70% of the rice canopy. Validation results using the measured
optical radiation data from different canopy layers show that the average RRMSE
values in the first, second and third layers of the rice canopy were 8.49%, 16.98%
and 26.06% (PAR transmittance) and 10.88%, 4.39% and 4.76% (PAR interception),
respectively. For radiation of different light qualities (R, G and B), the RRMSE
values were 23.58%, 23.77% and 26.92% (transmittance) and 6.73%, 8.02% and
6.88% (interception), respectively (Figure 12). These results demonstrate that the
model performed well in simulating the spatial and temporal distribution of optical
radiation in the rice canopy.
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Figure 12. Comparison of simulated and observed PAR transmittance and
interception values. (A) Transmittance and (B) interception.

4. Discussion

LAI and LA distributions greatly influence the absorption and transmission
of solar radiation in plant populations [27,28]. Hu et al. [27] simulated the canopy
structure index based on the plant-type factor, but the plant-type factor was difficult
to obtain, and its continuous changes throughout the growth period could not be
simulated. Crop LAI was successfully estimated by RS technology [20,29]. However,
it is difficult to invert crop LAI in the vertical direction using the RS method.
Therefore, in the current study, we estimated rice canopy LAI values in different
growth stages using hyperspectral vegetation indices, and we developed a canopy
LAI vertical distribution model based on the logistic equation, to which we added
the canopy depth factor h. In addition, the results of this study show that the model
adjustment parameters b and c could be successfully simulated by GDD. Thus, we
successfully performed dynamic simulation of rice canopy LAI in different canopy
layers and at different growth stages.

The Campbell ellipsoidal distribution function is the most commonly-used
function in the study of LA distribution simulation [15]. This model is highly
versatile for different plant vegetation types [12], but it cannot simulate the temporal
and spatial variation of vegetation canopy LA distribution [15]. In the study, the
Campbell ellipsoidal distribution function was improved to simulate the probability
of LA distribution at different canopy height levels using the canopy vertical
depth parameter h. Moreover, this study shows that rice canopy hyperspectral
vegetation indices ND(R700, R525) and DI (R945, R915) had good correlations with
the input parameter ELADP of the LA distribution model for both Shanyou63 and
Wuxiangjing14 rice; this input parameter was estimated by hyperspectral RS, which
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helped us obtain the model parameters. The results show that the model has good
descriptive and predictive value for modeling the spatial and temporal distribution
of rice canopy LA.

Mathematical functions and three-dimensional structures of computer
simulation modeling methods are commonly used to simulate the light radiation
distribution in the crop canopy [30–32]. The Beer-Lambert law proposed by Monsi
and Saeki [7] is one of the most popular classical models for simulating light radiation
distribution. Some studies have employed ray tracing techniques [33], radiosity [34]
and other methods to simulate canopy light distribution. These models can accurately
simulate light radiation intensity at any point within a canopy, but they require
huge amounts of calculations, and input parameters are also difficult to obtain,
which limits their application. Therefore, by combining the Beer-Lambert law and
the hyperspectral RS technique, we developed a dynamic model of the vertical
distribution of light in a rice canopy. This simplified model, with improved input
parameter acquisition, provided good simulations of light radiation transmission and
interception in canopy layers at different heights and growth stages. This model does
not require the input of various agronomic parameters that are difficult to obtain,
and it requires a small amount of computation and yields highly accurate results.
In addition, two rice varieties (japonica and indica) with compact and loose canopy
structures were studied in this paper. Different N treatments induced the significant
differences in LAI and LA. The good performance of the newly proposed model
suggested its strong applicability and predictability to simulate spatial and temporal
distribution characteristics of LAI, LA and light radiation in rice.

Crop canopy leaves have selective absorption characteristics for different
wavelengths of light radiation, and the transmittance and interception of different
wavelengths of light radiation in the crop canopy differ; R and B radiation exhibit the
minimum and maximum differences with PAR, respectively [35]. This observation
was confirmed in the current study. Previous studies have primarily focused on
PAR transport simulation and utilization efficiency, while studying the temporal and
spatial distribution of different wavelengths of light radiation and its simulation
models is necessary for improving radiation use efficiency in crop production [36].
Thus, we analyzed the relationships between different wavelengths of light (R, G, B)
radiation and PAR, and we simulated the radiation transmission characteristics of
different wavelengths of light radiation in canopy layers at different heights and at
different growth stages.

The vertical distribution of canopy LAI is uneven, and stems have a greater
impact on light radiation in the lower part of the canopy. The impact of the stem on
light transmission was not considered in the current model, which leads to relatively
low accuracy of simulation in the lower part of the canopy. Therefore, the stem factor
should be considered in further studies by separating LAI from the stem area index
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(SAI) [37]. In addition, the influence of the physiological and biochemical parameters
of rice leaves on differential light radiation transfer requires further study.

5. Conclusions

In this study, we developed a dynamic model of the vertical distribution of light
radiation in the rice canopy based on the Beer-Lambert law coupled with hyperspectral
RS technology. Based on the logistic equation and the Campbell ellipsoidal distribution
model, we introduced the canopy height parameter h, assuming that the canopy
of downward accumulation relative depth h is an ellipsoid-structured layer, and
combined RS inversion of model input parameters to develop LAI and LA vertical
distribution dynamic models. The extinction coefficients of photosynthetic active
radiation under different experimental conditions were simulated by the G function,
and then, the relationship between radiation transmission of PAR and different
wavelengths radiation (R, G, B) were quantified, which enabled us to simulate
the spatial and temporal distribution of different wavelengths’ radiation in the rice
canopy. This model represents a new tool for simulating crop canopy photosynthetic
production and light use efficiency and for evaluating the photosynthetic efficiency of
different rice plant types.
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The Impact of Sunlight Conditions on the
Consistency of Vegetation Indices in
Croplands—Effective Usage of Vegetation
Indices from Continuous Ground-Based
Spectral Measurements
Mitsunori Ishihara, Yoshio Inoue, Keisuke Ono, Mariko Shimizu and
Shoji Matsuura

Abstract: A ground-based network of spectral observations is useful for ecosystem
monitoring and validation of satellite data. However, these observations contain
inherent uncertainties due to the change of sunlight conditions. This study
investigated the impact of changing solar zenith angles and diffuse/direct light
conditions on the consistency of vegetation indices (normalized difference vegetation
index (NDVI) and green-red vegetation index (GRVI)) derived from ground-based
spectral measurements in three different types of cropland (paddy field, upland
field, cultivated grassland) in Japan. In general, the vegetation indices decreased
with decreasing solar zenith angle. This response was affected significantly by the
growth stage and diffuse/direct light conditions. The decreasing response of the
NDVI to the decreasing solar zenith angle was high during the middle growth stage
(0.4 < NDVI < 0.8). On the other hand, a similar response of the GRVI was evident
except in the early growth stage (GRVI < 0). The response of vegetation indices to
the solar zenith angle was evident under clear sky conditions but almost negligible
under cloudy sky conditions. At large solar zenith angles, neither the NDVI nor the
GRVI were affected by diffuse/direct light conditions in any growth stage. These
experimental results were supported well by the results of simulations based on a
physically-based canopy reflectance model (PROSAIL). Systematic selection of the
data from continuous diurnal spectral measurements in consideration of the solar
light conditions would be effective for accurate and consistent assessment of the
canopy structure and functioning.
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1. Introduction

Timely and large-scale observations of agroecosystems by remote sensing are
crucial for food and environment security [1–4]. In many agroecosystem applications,
high spatial and temporal resolutions are required at the same time. In particular,
in many Asian countries, high spatial resolution is critical because agricultural
fields are small and land use is mosaic. For example, high-spatial-resolution optical
satellites are used for mapping of the protein content and the full ripe stage of rice
in a large number of individual fields [5,6]. However, despite the constellation
of satellites, the probability of image acquisition at specific target periods is still
unsatisfactory for timely mapping. Low-spatial-resolution optical satellite sensors,
such as the Terra and Aqua Moderate Resolution Imaging Spectroradiometer
(MODIS), SPOT-VEGETATION (SPOT-VGT), and NOAA Advanced Very High
Resolution Radiometer (AVHRR), can make global and regional observations with
high temporal frequency, but their spatial resolutions range from 250 m to 1000 m.
On the other hand, high-spatial-resolution optical satellite sensors, such as SPOT,
RapidEye, and WorldView can observe the land surface with spatial resolutions of
2–15 m, but their temporal frequency is low. Additionally, medium-spatial-resolution
optical satellite sensors, such as HJ-1A/B, with spatial resolutions of 30 m can observe
the same position at temporal intervals of four days, but their spatial resolution is
insufficient for monitoring agricultural fields in many Asian countries [7].

Under these circumstances, a ground-based network of spectral measurements
would be important in ecosystem monitoring as an addition to synthetic aperture
radar (SAR) satellites and drone-based remote sensing to compensate for the
limitations of optical satellite sensors. SAR sensors have good potential for crop
monitoring because they are not affected by sky conditions [8–10]. Drone-based
remote sensors can play unique roles due to their timely and flexible operation and
super-high spatial resolution (~10 cm) [11,12]. A ground-based network of spectral
observations has proved to be useful for ecosystem monitoring and validation
of optical satellite data (EUROSPEC [13], Spectral Network (SpecNet) [14], and
Phenological Eyes Network (PEN) [15]). Ground-based sensors automatically acquire
spectral reflectance, in addition to CO2 flux, micrometeorological data, and digital
images, at high temporal resolution (~30 min) [15,16]. Such datasets can be used
to investigate the dynamic change of ecosystems in detail by making the most of
the high temporal resolution and continuous measurements. For assessment of
phenological changes, such as timing of leaf green-up and autumn coloring or crop
status in agroecosystems, such as protein content and water stress, spectral reflectance
or vegetation indices from optical satellite data can be validated directly using
ground-based spectral measurements. For example, Motohka et al. [17] reported that
phenological features observed in MODIS data were validated using ground-based
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spectral reflectance observations in a paddy field. Sakamoto et al. [18] proposed
a monitoring method for crop status based on ground-based digital camera images.

However, these ground-based spectral reflectance observations do not ensure
consistency due to the differences in the canopy structure, viewing geometry,
and illumination. These changes can be expressed by a bidirectional reflectance
distribution function (BRDF) [19], but determination of surface parameters for the
BRDF is not easy. The canopy structure can change drastically according to the
growth stage and vegetation type. The view zenith angle of ground-based sensors is
usually fixed at 0˝ (nadir observation), but the solar zenith angle changes with the
time of day and day of the year. Additionally, the diffuse/direct light ratio changes
with the daily weather conditions. While the ground-based spectral reflectances
are used for calibration or validation of satellite data [20,21], the changes caused by
diurnal and seasonal variation of canopy structures and light conditions are often
ignored. Cogliati et al. [22] reported that the normalized difference vegetation index
(NDVI) from continuous ground-based measurement showed some diurnal change
as affected by the photosynthetic photon flux density (PPFD). Rahman et al. [23]
reported that NDVI from ground-based observations was affected by the solar zenith
angle in a pasture site. However, this relation was examined using a dataset for a
full-cover pasture canopy only on two days under clear sky conditions during the
vegetative stage. Thus, a generalized relation throughout the growth season under
various light conditions and/or in different types of vegetation is necessary.

The objectives of this study are (1) to examine the diurnal and seasonal
fluctuations of vegetation indices derived from ground-based spectral measurements
for three different types of cropland (paddy field, upland field, cultivated grassland);
(2) to investigate the impact of changing solar zenith angles and diffuse/direct light
conditions on the consistency of vegetation indices; and (3) to propose efficient
usage of ground-based spectral data. In this study, we used the NDVI and green-red
vegetation index (GRVI) as vegetation indices because these indices are widely used
in remote sensing studies [20,24]. The NDVI has been used to estimate variations
in vegetation conditions [25,26]. The GRVI is a new vegetation index and has been
used to detect subtle vegetation changes (e.g., leaf fall due to a typhoon or mowing
of plants) or differences among ecosystem types [20,27].

2. Materials and Methods

2.1. Study Sites

The datasets were acquired in three types of cropland at different locations
in Japan: a paddy field in Mase, Tsukuba (36˝03'14.3"N/140˝01'36.9"E: rice, MSE),
an upland field in Shinhidaka (42˝24'41.4"N/142˝28'16.6"E: maize, SHD), and a
cultivated grassland in Nasushiobara (36˝54'54.3"N/139˝56'12.8"E: grass, NSS).
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The details of each site are shown in Table 1. All three sites belong to AsiaFlux
(http://asiaflux.net/), where fluxes of CO2, sensible heat, and latent heat, in addition
to basic micrometeorological and physiological data have been collected since 1999
at the rice site, 2007 at the maize site, and 2004 at the grass site [28–30].

Table 1. Details of the study sites.

Rice Maize Grass

Site code MSE SHD NSS

Position 36˝03'14.3"N,
140˝01'36.9"E

42˝24'41.4"N,
142˝28'16.6"E

36˝54'54.3"N,
139˝56'12.8"E

Elevation (m asl) 11 120–130 305

Mean annual air
temperature (˝C) 13.7 8.0 12.2

Mean annual
precipitation (mm) 1200 1290 1561

Vegetation type Paddy field Upland field Cultivated grassland

Dominant species Rice (Oryza sativa L.;
cultivar Koshihikari) Maize (Zea mays L.)

Orchardgrass (Dactylis
glomerata L.), Italian

lyegrass (Lolium
multiflorum Lam.)

Canopy height (m) 0–1.2 0–3.2 0–1.2

Annual maximum leaf
area index (m2¨ m´2) 5.0 NA NA

Height of sensor arm (m) 2.88 5.15 1.55

Data logger CR3000 CR23X CR23X

Observation year 2013 2013 2014

Growth stage

Transplanting:
DOY 122 (2 May)

Heading:
DOY 204 (23 Jul.)
Harvesting: DOY

249 (6 Sep.)

Budding:
DOY 150 (30 May)

Silking: Dot
208 (27 Jul.)

Harvesting: DOY
261 (18 Sep.)

Second Harvesting: DOY
178 (27 Jun.)

Third harvesting: DOY
239 (27 Aug.)

NA: not available.

2.2. Data and Analytical Methods

2.2.1. Multispectral Radiance Measurement

Measurements of multispectral radiation were obtained by using a four-channel
sensor (SKR1850, Skye Instruments Ltd, Llandrindod Wells, UK) at each study site in
2013 and 2014. The average center wavelength (average full width at half maximum
(FWHM)) of each spectral band for the three sites was 478.3 ˘ 1.5 (9.3 ˘ 0.2) nm
(blue), 549.0 ˘ 0.6 (9.7 ˘ 0.1) nm (green), 657.7 ˘ 0.6 (21.7 ˘ 0.1) nm (red), and
827.9 ˘ 0.6 (37.4 ˘ 0.1) nm (near infrared: NIR). The center wavelength and
bandwidth were slightly different among the three sites, but the standard deviations
for both the center wavelength and bandwidth were small enough to assume that the
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wavebands of all sensors were identical. A set of two sensors, one directed upwards
and the other downwards was attached to a horizontal arm to measure the spectral
irradiance of incident light and the radiance of reflected light. The field of view
(FOV) of the sensors was 180˝ in the upward direction with a removable diffusing
cosine correction head, and 25˝ in the downward direction. The height of the sensor
arms was 2.88 m at the rice site, 5.15 m at the maize site, and 1.55 m at the grass site
above the ground (Table 1). All measurements from individual spectral channels
were recorded by a data logger (CR3000 (rice site) and CR23X (maize and grass sites),
Campbell Scientific, USA) at an interval of 10 min throughout the seasons. We used
the spectral data from 09:00 to 16:00 local time for the period of the day of the year
(DOY) 130 (May 10)–DOY 230 (August 18), in 2013 at the rice and maize sites, and
the same period in 2014 at the grass site.

2.2.2. Vegetation Indices Based on Ground-Based Spectral Measurements

The NDVI and the GRVI were calculated from the ground-based radiometer
data. The NDVI and the GRVI are defined as follows [20,24]:

NDVI “ pρNIR´ ρredq { pρNIR ` ρredq (1)

GRVI “ pρgreen´ ρredq { pρgreen ` ρredq (2)

where ρNIR, ρred and ρgreen are the reflectance factors in the NIR, red, and green
regions, respectively. The sensor with the removable diffusing cosine correction head
for incident light was calibrated for irradiance by a National Physical Laboratory
UK reference standard lamp. However, the sensor for reflected light did not have
an absolute calibration [13]. Therefore, instead of calculating the reflectance for
each channel directly, the NDVI and the GRVI were determined from the following
equations using the incident and reflected light intensity in each spectral band:

NDVI “ rpZ1ˆRNIR { INIRq´ pRred { Iredqs { rpZ1ˆRNIR { INIRq ` pRred { Iredqs (3)

GRVI “ rpZ2ˆRgreen { Igreenq´ pRredˆ Iredqs { rpZ2ˆRgreen { Igreenq ` pRred { Iredqs (4)

where Z1 is the sensitivity ratio of reflected NIR to red light; Z2 is the sensitivity
ratio of green to red light; RNIR, Rred, and Rgreen are the reflected readings in the
NIR, red, and green regions (nano ampere: nA), respectively; and INIR, Ired, and
Igreen are the incident (µmol¨m´2¨ s´1) readings for the NIR, red, and green regions,
respectively [31,32]. We used only the vegetation indices in the range from ´1 to 1 to
exclude abnormal data that were presumably caused by insufficient irradiance, rain,
birds, insects, etc.

The solar zenith angle was calculated based on the geolocation of each site
and the time of the spectral measurements. To investigate the influence of the
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diffuse/direct light conditions, we selected “clear sky” days and “cloudy sky” days
by using the intensity and diurnal change of the global solar radiation measured by
a pyranometer (rice and grass sites) and photosynthetically-active radiation (PAR)
measured by a PAR sensor (maize site). A clear sky day was defined as a day with
high radiation values and a smooth diurnal curve (see some examples in Figure 2).
The PAR was proportional to the solar radiation and the ratio of PAR (µmol¨m´2¨ s´1)
to solar radiation (W¨m´2) was 1.863. In contrast, a cloudy sky day was defined as
a day with low incident radiation values throughout the daytime. We used these
vegetation indices on the clear and cloudy sky days to analyze the effects of the solar
zenith angle and diffuse/direct light conditions. The proportion of clear sky days
was 19% at the rice site, 14% at the maize site, and 9% at the grass site.

2.2.3. A Radiative Transfer Model for Simulating Vegetation Indices

We used the PROSAIL radiative transfer model to simulate the influence of the
solar zenith angle and diffuse/direct light condition on the vegetation indices [33].
The PROSAIL model is a combination of the canopy reflectance model SAIL [34,35]
and the leaf reflectance model PROSPECT [36]. The model can simulate the canopy
bidirectional reflectance in the 400–2500 nm wavelength region at 1 nm resolution
under various biophysical conditions and/or measurement configurations. In this
study, model parameters for the actual canopies in each experiment were not
determined, so we used typical parameter values from the literature for the maize
canopies, as shown in Table 2 [12,37,38]. Therefore, we assumed that the general
relations between solar zenith angle, diffuse/direct light conditions (the ratio of diffuse
light to total radiation), and leaf area index (LAI) could be investigated properly by
simulations with these typical parameters.

Table 2. List of input parameters for the PROSAIL model.

Parameter Value

Chlorophyll a and b content (Cab) 40
Carotenoid content (Car) 12.3

Brown pigment content (Cbrown) 0
Leaf water content (Cw) 0.015

Leaf dry matter content (Cm) 0.0055
Structure coefficient (N) 1.5

Leaf angle distribution (LIDF) Spherical
Leaf area index (LAI) 0.1, 0.5, 1, 2, 3, 4, 5

Solar zenith angle (tts) 20, 30, 40, 50, 60
Observer zenith angle (tto) 0

Azimuth (psi) 0
Soil reflectance properties (psoil) 0.7
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3. Results

3.1. The Effects of Solar Zenith Angle on Diurnal and Seasonal Change of Vegetation Indices

Figure 1 shows a time series of the NDVI and the GRVI with the same solar
zenith angle, i.e., 20˝, 30˝, 40˝, 50˝, and 60˝, during the growing season. These
data were extracted from the diurnal data so that the individual data had a similar
solar zenith angle. Accordingly, the time of day for the individual data varied from
morning (9:00 local time) to afternoon (16:00 local time). At the rice site (MSE), the
dates for transplanting, heading, and harvesting were DOY 122 (2 May), DOY 204
(23 July), and DOY 249 (6 September), respectively (Table 1). At the maize site (SHD),
the dates for budding, silking, and harvesting were DOY 150 (30 May), DOY 208
(27 July), and DOY 261 (18 September), respectively (Table 1). At the grass site (NSS),
regular renovation of the grassland was conducted in 2012, and the second and
third harvesting were on DOY 178 (27 June) and DOY 239 (27 August), respectively
(Table 1). Overall, both the NDVI and the GRVI increased with plant growth at
all sites. After reaching the maximum level, the NDVI remained nearly constant,
whereas the GRVI gradually decreased. Most importantly, the difference in solar
zenith angle caused some systematic changes in the seasonal pattern of both the
NDVI and the GRVI. The influence of the solar zenith angle was slightly larger for
the GRVI than for the NDVI.

Figure 2 shows the distinctive diurnal change of the NDVI, the GRVI and the
solar radiation at the rice site. These figures show some selected days under clear
and cloudy sky conditions during the early growth stage (NDVI < 0.4), middle
growth stage (NDVI: 0.4–0.8), and late growth stage (NDVI > 0.8). Under clear sky
conditions, both the NDVI and the GRVI showed significant diurnal changes during
the middle and the late growth stages (Figure 2c,e), whereas the diurnal change was
small during the early growth stage (Figure 2a). The NDVI and the GRVI showed
minimum values from 11:00 to 12:00, when the solar radiation reached a maximum
during the middle and late growth stages. The precipitous decrease of the NDVI
and the GRVI showed around solar noon. On the other hand, under cloudy sky
conditions, neither the NDVI nor the GRVI showed significant diurnal changes in
spite of changes in the solar radiation throughout the growing season (Figure 2b,d,f).
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Figure 2. Distinctive diurnal changes of the NDVI and the GRVI under clear sky 
conditions (left) and cloudy sky conditions (right) at the rice site. Solar noon is between 
11:36 and 11:45 local time. (a) DOY: 137; (b) 140; (c) 155; (d) 162; (e) 192; (f) 194. 

Figure 3 shows the dependence of the NDVI and the GRVI on the solar zenith angle for selected 
days during the growing season. In this figure, data points are shown for sets of two days (clear and 
cloudy sky conditions) with almost the same crop conditions, in order to determine the effects of the 
diffuse/direct light conditions. The open symbols show the days under clear sky conditions and the 
closed symbols show the days under cloudy sky conditions. Overall, the NDVI was not affected by the 
solar zenith angle under cloudy sky conditions throughout the growing season. However, under clear 
sky conditions, the NDVI decreased significantly with decreasing solar zenith angle during the middle 
growth stage (NDVI: 0.4–0.8), whereas, even under clear sky conditions, the influence of the solar 
zenith angle on the NDVI was not clear during the early and late growth stages (NDVI < 0.4 and 
NDVI > 0.8). On the other hand, the GRVI decreased with decreasing solar zenith angle under clear 

Figure 2. Distinctive diurnal changes of the NDVI and the GRVI under clear sky
conditions (left) and cloudy sky conditions (right) at the rice site. Solar noon
is between 11:36 and 11:45 local time. (a) DOY: 137; (b) 140; (c) 155; (d) 162;
(e) 192; (f) 194.

Figure 3 shows the dependence of the NDVI and the GRVI on the solar zenith
angle for selected days during the growing season. In this figure, data points are
shown for sets of two days (clear and cloudy sky conditions) with almost the same
crop conditions, in order to determine the effects of the diffuse/direct light conditions.
The open symbols show the days under clear sky conditions and the closed symbols
show the days under cloudy sky conditions. Overall, the NDVI was not affected
by the solar zenith angle under cloudy sky conditions throughout the growing
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season. However, under clear sky conditions, the NDVI decreased significantly
with decreasing solar zenith angle during the middle growth stage (NDVI: 0.4–0.8),
whereas, even under clear sky conditions, the influence of the solar zenith angle on
the NDVI was not clear during the early and late growth stages (NDVI < 0.4 and
NDVI > 0.8). On the other hand, the GRVI decreased with decreasing solar zenith
angle under clear sky conditions after the middle growth stage (GRVI > 0), whereas it
was not affected by the solar zenith angle under either clear or cloudy sky conditions
during the early growth stage (GRVI < 0). These responses of the vegetation indices
to the change in solar zenith angle were much more significant at the rice site than at
the other sites. In particular, on DOY 155, the NDVI decreased by more than 0.2 in
response to a 25˝ decrease in solar zenith angle at the rice site. Meanwhile, there were
some fluctuations in NDVI and the GRVI with the change of the solar zenith angle.
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Figure 3. Relation between the NDVI (left), GRVI (right), and the solar zenith
angles on selected days during the growing season at the rice (a,b), maize (c,d)
and grass (e,f) sites. Open symbols show the days under clear sky conditions and
closed symbols show the days under cloudy sky conditions.
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Table 3 shows the statistical coefficients for the linear regression between the
vegetation indices and the solar zenith angle on the selected days used in Figure 3.
The coefficient of determination for linear regression was high under clear sky
conditions. Under cloudy sky conditions, the variation of the vegetation indices with
changing the solar zenith angle was small, and linear relationship was not significant.
The slope of linear regression between NDVI and solar zenith angle varied in a range
from 0.0019 to 0.0050 under clear sky conditions during the middle growth stage
(NDVI: 0.4–0.8) except DOY 151 at the maize site. On the other hand, the slope of
linear regression between GRVI and solar zenith angle varied in a range from 0.0018
to 0.0054 under clear sky conditions after the middle growth stage (GRVI > 0). The
mean slope of the regression lines for NDVI was 0.0042 at the rice site, 0.0012 at the
maize site, and 0.0029 at the grass site, respectively. Similarly, the mean slope of the
regression lines for GRVI was 0.0034 at the rice site, 0.0025 at the maize site, and
0.0021 at the grass site, respectively. All slopes of both NDVI and GRVI under cloudy
sky conditions were less than 0.001 except DOY 157 at rice site in NDVI and DOY192
at grass site in GRVI.

Table 3. The statistical coefficients for the linear regression between the vegetation
indices and the solar zenith angle on the selected days during the growing season
at the rice, maize, and grass site. The days under clear sky conditions is highlighted
by gray color.

(a) NDVI

Rice Maize Grass

DOY Slope Intercept R2 DOY Slope Intercept R2 DOY Slope Intercept R2

137 0.0005 0.140 0.111 146 0.0009 0.357 0.799 182 0.0029 0.426 0.855
140 ´0.00003 0.176 0.003 145 0.0002 0.371 0.295 181 0.0003 0.524 0.092
155 0.0050 0.274 0.847 151 0.0005 0.530 0.869 189 0.0029 0.585 0.775
157 0.0015 0.455 0.642 153 ´0.0003 0.590 0.215 187 0.0004 0.634 0.207
159 0.0034 0.449 0.829 183 0.0019 0.686 0.987 193 0.0012 0.766 0.798
162 0.0001 0.669 0.047 179 ´0.0001 0.772 0.102 192 0.0006 0.789 0.219
192 0.0019 0.844 0.856 201 0.0008 0.916 0.707 207 0.0008 0.865 0.897
194 0.0003 0.903 0.364 203 ´0.00007 0.950 0.161 203 0.0007 0.867 0.831

(b) GRVI

Rice Maize Grass

DOY Slope Intercept R2 DOY Slope Intercept R2 DOY Slope Intercept R2

137 0.0004 ´0.109 0.072 146 0.0005 ´0.370 0.609 182 0.0016 ´0.105 0.636
140 0.0003 ´0.041 0.173 145 0.0006 ´0.378 0.290 181 ´0.0001 ´0.039 0.002
155 0.0028 0.065 0.831 151 0.0007 ´0.207 0.628 189 0.0031 0.010 0.603
157 0.0010 0.154 0.680 153 0.0005 ´0.126 0.072 187 0.0003 0.076 0.014
159 0.0020 0.159 0.863 183 0.0018 0.023 0.921 193 0.0019 0.233 0.651
162 0.00004 0.269 0.019 179 0.0006 0.123 0.097 192 0.0014 0.272 0.242
192 0.0054 0.270 0.912 201 0.0032 0.204 0.749 207 0.0014 0.346 0.470
194 0.0004 0.438 0.115 203 0.0001 0.337 0.004 203 0.0013 0.371 0.412

3.2. Vegetation Indices Simulated Using the Radiative Transfer Model

Figure 4 shows the reflectance values simulated by the PROSAIL model for
a range of solar zenith angles (10˝, 20˝, 30˝, 40˝, 50˝, 60˝) under different LAI (0.1, 0.5,
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1, 2, 3, 4, 5). For all solar zenith angles, the reflectance decreased with increasing
LAI in the visible to red-edge range (400–750 nm). In contrast, in the red-edge to
NIR range (750–1000 nm), the reflectance increased consistently. The response of
the reflectance to the solar zenith angle was weak for low LAI values (~0.1), but the
reflectance in the visible range for higher LAI (0.5–5) showed a decreasing trend
with increasing solar zenith angle. The reflectance in the NIR region for LAI values
of 0.5–4 showed a decreasing trend for solar zenith angles from 10 to 40˝, but an
increasing trend from 40 to 60˝. The reflectance of the NIR for the high LAI (5)
showed a decreasing trend in the order of solar zenith angle in the full range of
10 to 60˝. In summary, the spectral response to the change in solar zenith angle was
largest in the red band (657.7 nm), followed by the green (549.0 nm), and the NIR
(827.9 nm) bands.

Figure 5 shows the relations between the vegetation indices and the solar zenith
angle simulated by the PROSAIL model for a range of solar zenith angles (10˝, 20˝,
30˝, 40˝, 50˝, 60˝) and LAI values (0.1, 0.5, 1, 2, 3, 4, 5). The NDVI decreased with
decreasing solar zenith angle for all LAI values. Nevertheless, the response of the
NDVI to the change in solar zenith angle was negligible for low and high LAI values.
The response of the GRVI to solar zenith angle was similar to that of the NDVI.
However, the response of the GRVI for high LAI values was much clearer than that
of the NDVI, whereas the response for a low LAI value (0.1) was almost negligible as
in the case of the NDVI.

Figure 6 shows the relations between the simulated vegetation indices and the
solar zenith angles for different diffuse light ratios (40%, 60%, 80%, 100%). Under
100% diffuse light conditions, neither the NDVI nor the GRVI changed with changing
solar zenith angle, irrespective of the LAI values. However, for lower diffuse light
ratios (clear sky conditions), a response of the vegetation indices to the solar zenith
angle was evident. Both the NDVI and the GRVI decreased with decreasing solar
zenith angle. These responses were clearer at the middle LAI values, but were
negligible for low and high LAI values in the case of the NDVI and for low LAI
values in the case of the GRVI.
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4. Discussion

4.1. Influence of the Solar Zenith Angle on the Change in Vegetation Indices

The values of the vegetation indices for a vegetation canopy fluctuated in
response to the solar zenith angle. The values were not consistent even during a
day due to the change in solar radiation and solar zenith angle (Figures 1 and 2).
The precipitous decrease of the NDVI and the GRVI around solar noon may be
attributable to the hot spot phenomenon [39]. In general, the vegetation indices
decreased with decreasing solar zenith angle (Figure 3). This response was affected
significantly by the growth stage and diffuse/direct light conditions. The decreasing
response of the NDVI to decreasing solar zenith angle was high during the middle
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growth stage (0.4 < NDVI < 0.8). The decrease ratio of NDVI by decreasing solar
zenith angle was in the range from 0.0019 to 0.0050 under clear sky conditions in this
growth stage and the NDVI value decreased within the range from 0.0057 to 0.15 with
decreasing solar zenith angle from 50 to 20 (Table 3). On the other hand, a similar
response of the GRVI was evident, except for the early growth stage (GRVI < 0). The
decrease in ratio of the GRVI by the decreasing solar zenith angle was from the range
of 0.0018 to 0.0054 under clear sky conditions in this growth stage and the GRVI
value decreased within the range from 0.0054 to 0.162 with decreasing solar zenith
angle from 50 to 20. The response of the vegetation indices to the solar zenith angle
was also affected by the diffuse/direct light conditions. The change in the vegetation
indices in response to the solar zenith angle was evident under clear sky conditions
but almost negligible in cloudy sky conditions. Under cloudy sky conditions, the
variation of the vegetation indices by change of the solar zenith angle was small,
and the clear linear relationship was not found. A part of the fluctuations of NDVI
and the GRVI observed in Figure 3 would be attributable to the interaction of solar
azimuth angle with crop row orientation, although the other parts might have been
caused by other environmental factors such as rain and birds [1].

Rahman et al. [23] reported that the NDVI determined by ground-based
observations decreased with decreasing solar zenith angle at a pasture site. These
results indicated a similar tendency to those obtained in the present study. However,
the previous study used a dataset for only two days under conditions of vegetation
cover and did not show results throughout the growth season. Furthermore, because
the observation of radiation was conducted only under clear sky conditions, the
relations between the NDVI and the solar zenith angle were not investigated under
cloudy sky conditions. In this study, we compared the influences of various growth
stages and diffuse/direct light conditions on vegetation indices by using continuous
ground-based measurements.

These experimental results were well supported by the results of simulations
based on the physically-based canopy reflectance model (PROSAIL) (Figures 5 and 6).
First, the effect of the growth stage (as represented by LAI) on the sensitivity of the
NDVI and the GRVI to the solar zenith angle was assessed quantitatively. The results
agreed well with the experimental results, in which the sensitivity of the NDVI to LAI
was evident during the middle growth stage but low during the early and late growth
stages. The sensitivity of the GRVI was similar to that of the NDVI, but negligible
only during the early growth stage. Second, the simulation results concerning the
effect of light conditions (ratio of diffuse light) on the sensitivity of the NDVI and
the GRVI to the solar zenith angle also agreed well with the experimental results.
The response of the NDVI and the GRVI to the difference in solar zenith angle was
evident under clear sky conditions (less diffuse light), but negligible under cloudy
sky conditions, irrespective of the growth stage (LAI). Nevertheless, the sensitivity
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of these responses was significant during the middle growth stage, but weak during
the early and late growth stages for the NDVI and during the early growth stage
for the GRVI.

The relation between the vegetation indices and the solar zenith angle was
caused by the response of the reflectance to the solar zenith angle (Figure 4).
In general, the canopy reflectance is affected by view/illumination geometry as
well as the canopy structure and optical properties of leaves and soils [1,33,34].
The variations in solar zenith angle alter both the optical thickness of a canopy
and the illuminated components of vegetation/background [40]. In most crop
canopies, the canopy reflectance is determined mainly by the soil reflectance in
small LAI conditions (~1) and by the vegetation reflectance in large LAI conditions
(4~). Accordingly, the response of canopy reflectance to the solar zenith angle is
determined by the interactive effects of the canopy structure (LAI and leaf angle
distribution) in the direction of sun-beam as well as the BRDF of soil surface.
Similarly, the small influence of solar zenith angle under diffuse light is explained by
the isotropic illumination conditions, i.e., stability of the optical thickness and the
illuminated components.

4.2. Response of Vegetation Indices to Solar Zenith Angle and Diffuse/Direct Light
Conditions in Different Vegetation Types

The overall relation between the vegetation indices and the solar zenith angles
was similar for all three vegetation types. However, their responses were affected
by the differences in canopy structure and the growth pattern for each vegetation
type. The vegetation indices decreased with decreasing solar zenith angle for all
vegetation types, but the sensitivity of the response was somewhat different across
the three crops (Figure 3 and Table 3). In particular, the sensitivity of the response
was much higher for the paddy field than for the other types. For the paddy field,
the decrease in the NDVI was remarkable for solar zenith angles smaller than 30˝. In
contrast, the reduction rate for the GRVI with decreasing solar zenith angle was not
affected by the vegetation type.

The relation between the NDVI and the solar zenith angle in the simulation was
similar to the experimental results for upland field and cultivated grassland, whereas
the experimental results for the paddy field showed a higher response than the
simulation results (Figures 5 and 6). This difference may be attributable to the unique
ground surface condition in paddy fields. The soil surface of paddy fields is under
flooded conditions during the majority of the growing period. All selected days used
in Figure 3 were under flooded conditions. Under such conditions, radiation in the
NIR region is absorbed by the background water, and so the reflectance in the NIR
region would be decreased [41]. Especially during the early growth stage when the
rice canopy is not closed, the effects of the water surface on the reflectance in the

174



NIR region can be more significant than in other growth stages. Accordingly, under
these conditions, the reflectance in the NIR region decreases when the solar zenith
angle is small, whereas the reflected radiation would increase for high solar zenith
angles. Our experimental and simulation results suggest that the higher sensitivity
of vegetation indices to the solar zenith angle in paddy fields would be caused by
the unique flooded conditions beneath the rice plants.

On the other hand, the relation between the NDVI and the solar zenith angle in
upland field and cultivated grassland was slightly different from that for the paddy
field. In cultivated grassland, the decrease in the NDVI was not significant for small
solar zenith angles. A grass canopy usually closes earlier than row crops, such as rice
and maize, because of the broadcast sowing method. This may be the reason why
the relation between the NDVI and the solar zenith angle for cultivated grassland
was less sensitive than that for the other vegetation types. The relation between the
NDVI and the solar zenith angle for the maize canopy was also less sensitive than
that for the paddy field because of the difference of background surface condition
(upland or flooded). The vegetation indices were also affected by the soil surface
condition when the vegetation cover was small [40]. The soil-adjusted vegetation
index (SAVI) have been used to minimize the effects of soil background [40]. Note
that the relation between the NDVI and the solar zenith angle was affected to some
extent by the background surface conditions and differences in canopy structure.

4.3. Effective Usage of Vegetation Indices Derived from Continuous Ground-Based
Spectral Measurement

Ground-based spectral observations can provide detailed and accurate
information on the dynamic change in structure and/or function of vegetation based
on high temporal resolution data. In addition, these ground-based measurements
can be used for absolute calibration of satellite or airborne images. However, these
data are affected by the solar zenith angle and diffuse/direct light conditions at
the time of measurement. Therefore, we have to take account of such fluctuations
in the analysis of continuous measurements on the ground. However, in previous
studies, instantaneous or mean values at a specified time were often used throughout
the season [20,21]. In such practices, the effects of diurnal and seasonal changes
of the solar zenith angle are ignored, so the actual vegetation parameters would
not be estimated properly. To reduce these influences, it is desirable to use data
obtained under identical measurement conditions for the solar zenith angle and
the diffuse/direct light. In general, the number of usable data is restricted to
satisfy such measurement conditions. According to our results (Figures 3 and 6),
for larger solar zenith angles, the vegetation indices are not significantly affected by
the diffuse/direct light conditions and growth stage. For example, for a solar zenith
angle of 60˝, neither the NDVI nor the GRVI are affected by the diffuse/direct light
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conditions in any growth stage. Therefore, our results suggest that using the selected
data at the solar zenith angle of 60˝ would be effective for accurate assessment of the
canopy structure and function based on continuous diurnal spectral measurements.

In Figure 3, we investigated the influence of solar zenith angle on vegetation
indices based on the ground-based measurements on typical clear- and cloudy-sky
days. However, in general, the distribution and optical thickness of clouds in the sky
vary during a day or a season depending on the weather conditions. Therefore, we
have examined similar relationships as in Figure 3 using the data on the other type of
days, i.e., those with some fluctuations between clear- and cloudy-sky conditions in a
day. The result suggested that the effect of solar zenith angle on the vegetation indices
under such days varied within the variation range of the two typical conditions
depending on the diffuse/direct light ratio. These fluctuations are explained mainly
by the change of the diffuse/direct light ratio as investigated in our simulation study
(Figure 6). Accordingly, the possible influences of sky conditions (diffuse/direct light
ratio) on the relationship between vegetation indices and solar zenith angle can be
assessed by using instantaneous measurements of incident light obtained by spectral
radiometers, pyranometers, or PAR sensors.

Ground-based spectral measurements are also used for validation of satellite
observations [17,42]. In the case that the satellite data are validated by synchronized
ground-based measurements, the solar zenith angle and the diffuse/direct light
conditions are basically the same for the ground-based and the satellite observations.
However, the viewing angle of satellites does not always agree with the ground-based
sensors because the view zenith angle is usually fixed at 0˝ (nadir observation) for
the ground-based sensors. Therefore, similar to the fluctuations caused by the solar
zenith angle, the influence of this difference in viewing angle has to be considered
because the vegetation indices would be affected by it [43].

In a wide range of experimental studies in the field, spectral data are measured
periodically using a portable spectro-radiometer at some intervals, and it is assumed
that the effect of the solar zenith angle is small [44,45]. These observations are usually
observed midday under clear sky conditions. When the observation dates are close
to each other, the difference in solar zenith angle can be negligible. However, when
the observation dates are different to some extent, the solar zenith angles may not
be comparable. Rahman et al. [23] proposed a method to correct the influence of
the solar zenith angle on the NDVI by using the relation between the NDVI and
the solar zenith angle. However, the applicability of the method may be limited
because the data used was from a narrow and specific period. In addition, the relation
between the vegetation indices and the solar zenith angle is affected by the growth
stage and vegetation type (Figure 3). The continuous spectral measurement allows
the selection of some preferable data from the diurnal data for specific purposes,
although measurements are taken for a fixed point in the field. Generally, field
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measurements using a portable spectro-radiometer allow us to acquire the spatial
average of spectral measurements over a range of different targets. Nevertheless,
data acquisition at the same solar zenith angle would be useful to improve the
seasonal consistency of vegetation indices. If multiple measurements at different
times of day (different solar zenith angles) can be made, the observation data can be
corrected to be more consistent based on the relation between the solar zenith angle
and the vegetation indices.

5. Conclusions

In this study, we investigated the impact of the changing solar zenith angle and
diffuse/direct light conditions on the consistency of vegetation indices (NDVI and
GRVI) derived from ground-based spectral measurements in three kinds of croplands
(paddy field, upland field, cultivated grassland). The vegetation indices showed
some systematic changes in response to the solar zenith angle, the ratio of diffuse
light, and the growth stage.

Our comprehensive analysis revealed the general effects of the growth stage
and light conditions on the diurnal and seasonal fluctuations of vegetation indices.
In general, the vegetation indices decrease with decreasing solar zenith angle. This
response can be affected significantly by the growth stage and diffuse/direct light
conditions. The decreasing response of the NDVI to decreasing solar zenith angle is
high during the middle growth stage (0.4 < NDVI < 0.8). On the other hand, a similar
response of the GRVI is evident, except for the early growth stage (GRVI < 0). The
change in vegetation indices in response to the solar zenith angle is evident under
clear sky conditions, but almost negligible under cloudy sky conditions irrespective
of the growth stage. Furthermore, for larger solar zenith angles, the vegetation indices
are not significantly affected by the diffuse/direct light conditions and growth stage.
These experimental results are well supported by the simulation results based on
a physically-based canopy reflectance model (PROSAIL). Basically, the vegetation
indices decrease with decreasing solar zenith angle for all vegetation types, but the
sensitivity of the response is somewhat different for the three crops. In particular, the
sensitivity of the response is much higher for the paddy field than for the other types,
and this could be attributable to the uniquely flooded conditions in paddy fields.

Systematic selection of data from continuous diurnal spectral measurements
in consideration of the solar light conditions would be effective for accurate and
consistent assessment of canopy structure and function. Necessary corrections for
the influences of sky conditions on the relationship between vegetation indices and
solar zenith angle can be made by using instantaneous measurements of incident
light obtained by spectral radiometers, pyranometers, or PAR sensors. These results
would provide useful insights into the consistency of vegetation indices obtained by
various sensors and platforms.
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Monitoring Spatio-Temporal Distribution of
Rice Planting Area in the Yangtze River
Delta Region Using MODIS Images
Jingjing Shi and Jingfeng Huang

Abstract: A large-area map of the spatial distribution of rice is important for grain
yield estimations, water management and an understanding of the biogeochemical
cycling of carbon and nitrogen. In this paper, we developed the Normalized Weighted
Difference Water Index (NWDWI) for identifying the unique characteristics of rice
during the flooding and transplanting period. With the aid of the ASTER Global
Digital Elevation Model and the phenological data observed at agrometeorological
stations, the spatial distributions of single cropping rice and double cropping early
and late rice in the Yangtze River Delta region were generated using the NWDWI and
time-series Enhanced Vegetation Index data derived from MODIS/Terra data during
the 2000–2010 period. The accuracy of the MODIS-derived rice planting area was
validated against agricultural census data at the county level. The spatial accuracy
was also tested based on a land use map and Landsat ETM+ data. The decision
coefficients for county-level early and late rice were 0.560 and 0.619, respectively.
The MODIS-derived area of late rice exhibited higher consistency with the census
data during the 2000–2010 period. The algorithm could detect and monitor rice fields
with different cropping patterns at the same site and is useful for generating spatial
datasets of rice on a regional scale.

Reprinted from Remote Sens. Cite as: Shi, J.; Huang, J. Monitoring Spatio-Temporal
Distribution of Rice Planting Area in the Yangtze River Delta Region Using
MODIS Images. Remote Sens. 2015, 7, 8883–8905.

1. Introduction

Paddy rice fields provide essential food for more than half of the population
of the entire world [1]. Rice is widely cultivated in Asian countries, especially
China. Recent FAO (Food and Agricultural Organization) estimates indicate that
to satisfy the projected demand of the year 2050, global agricultural production
must increase 60 percent above the level of 2005–2007 [2]. Large-area assessments
of potential food production regions and their impact on biogeochemical cycling
require the acquisition of the best possible information on the distribution of paddy
rice fields [3].

The official statistical data on rice sowing areas have been generated based
on ground sample surveys and extrapolated to the provincial and national scales.
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Large-scale census data cannot provide accurate spatial distributions of paddy rice,
and a time lag is present in the datasets. Huke developed Asian rice datasets using
agricultural statistical datasets collected at the sub-country level [4]. Leff et al.
generated a global rice map at a spatial resolution of five arcminutes as part of
a global cropland product using satellite-derived land cover data and agricultural
census data [5]. Frolking et al. generated 0.5˝-resolution maps of the distribution of
rice agriculture in mainland China using a combination of county-scale agricultural
census data and land cover maps derived from Landsat images collected during the
1995–1996 period [3]. A thematic land use map of China at a scale of 1:100,000 was
generated via the visual interpretation of Landsat TM (Thematic Mapper) data [6].
A classification system of 25 land use categories, including paddy rice, was used in
this work. The land use map was converted to 1-km gridded data. However, more
updated datasets of annual rice distribution with finer resolution are needed at the
regional scale.

Approximately half of the cropland in China is multi-cropped each year, and this
land has a significant influence on the biogeochemical cycling of carbon and nitrogen.
To date, many studies have been conducted to map paddy rice using fine-resolution
satellite images, such as Landsat MSS, TM, ETM+ and NOAA/AVHRR images, by
applying image classification procedures, but few of these studies have provided
detailed information regarding the locations of multi-cropping [7–10]. Furthermore,
because of the fine resolution of these images, it is difficult to obtain more
comprehensive images covering an entire region simultaneously over a large area.
Rice distribution maps have also been produced via multi-temporal analysis of
NOAA/AVHRR and SPOT4/VEGETATION data with a resolution of ~1 km, which
is rather coarse for rice mapping [11–13].

The Moderate-Resolution Imaging Spectroradiometer (MODIS) aboard the Terra
and Aqua satellites, with its advantages of a high revisit period, moderate spatial
resolution, wide field of view (FOV) and free access, has been applied for paddy
rice mapping. Decision tree algorithms and spectral matching techniques were
used to map rice-growing areas using temporal MODIS data [14,15]. A MODIS
time-series analysis of spectral indices was found to be more useful for monitoring the
phenological variations of paddy rice over a long period [16,17]. A paddy rice field is
typically prepared by flooding a few days before the rice seedlings are transplanted.
The wet growing season is regarded as a unique and significant characteristic of
rice compared with other crops [18]. Thus, the flooding period is recognized as the
best phase for rice identification. Spectral indices and bands that are sensitive to
water and green vegetation are needed for monitoring the flooding and transplanting
period of rice crops. These spectral indices are always calculated using two or more
spectral bands to enhance the contrast between target and background and to reduce
the effects of the atmosphere and solar illumination geometry. The Normalized
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Difference Vegetation Index (NDVI), developed using the red and near-infrared
bands, is correlated with the Leaf Area Index and chlorophyll content and has
been widely used for crop yield estimations and the detection of changes in land
use/cover [19,20]. The Enhanced Vegetation Index (EVI) was proposed because of the
saturation of the NDVI in high-biomass regions to adjust for residual atmospheric
contamination and background reflectance [21,22]. The infrared range is useful
for estimating the water content of vegetation and in discriminating water from
land. The Normalized Difference Water Index (NDWI) was developed using the
reflectance in the near-infrared and green bands to enhance the detection of water
features while eliminating soil and terrestrial vegetation features [23]. The modified
NDWI (MNDWI) substitutes the near-infrared band with a middle-infrared band,
such as Band 5 of Landsat TM, to efficiently enhance open-water signals and suppress
or remove the signals from built-up land, as well as vegetation and soil [24]. However,
because the reflectance of rice pixels during the flooding and transplanting stage is
a mixture of water and vegetation, the sensitivity of the spectral index to flooding
features should be further improved for rice mapping. The Land Surface Water
Index (LSWI), which was formulated by combining the red and shortwave infrared
channels of MODIS, has been used for the identification of rice pixels [25]. However,
the threshold between the LSWI and the EVI was determined by considering local
practices and rice cropping systems. Qiu et al. proposed a method for mapping rice
planting areas by considering the vegetation phenology and surface water variations.
The ratios of the changes in amplitude of the LSWI to the two-band Enhanced
Vegetation Index 2 (EVI2) during the period from the tillering to the heading stage
were used as one indicator to discriminate rice from non-rice fields [26]. Mosleh
and Hassan developed a method for mapping “Boro” rice in Bangladesh using the
MODIS-derived 16-day composite NDVI at a spatial resolution of 250 m [27]. The
ISODATA clustering and the formulation of the mathematical model were the key
procedures of this algorithm.

The objectives of the present study are to: (1) develop a Normalized Weighted
Difference Water Index for identifying the flooding period of paddy rice fields;
(2) map the early, single cropping and double cropping late rice distributions of the
Yangtze River Delta region in the 2000–2010 period; and (3) validate the results using
land use maps, Landsat ETM+ data and agricultural statistical data.

2. Study Area and Data

2.1. Study Area

The study area is the Yangtze River Delta region, which is one of the major
rice-producing areas in China and spans three provinces (Figure 1). This region
extends from 118˝5015”E to 134˝46126”E in longitude and from 38˝43115”N to
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53˝33139”N in latitude, with a territory of 2.1 ˆ 105 km2. The climate of the
Yangtze River Delta is humid subtropical and is largely controlled by the East Asian
monsoon [28]. Rice is the major food crop in the study area, with a high level of
production and a wide distribution. The cropping system in Jiangsu Province and
Shanghai City consists essentially of one crop of rice and another crop of winter
wheat or oil rape, whereas single and double rice cropping systems are the two major
planting patterns in Zhejiang Province.Remote Sens. 2015, 7 8886 
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Figure 1. Location and ASTER Global Digital Elevation Model (GDEM) of the
study area.

2.2. Data Acquisition

2.2.1. Field Data

Field experiments can yield accurate data under controlled conditions. A field
experiment was conducted at the Experimental Farm of Zhejiang University,
Hangzhou, Zhejiang Province, from June to October in 2004. Two rice cultivars
(i.e., Xieyou 9308 and Xiushui 110) were planted in 18 plots with three different
nitrogen fertilization treatments: 0, 140 and 240 kg/ha. Each treatment was repeated
three times. Rice seedlings were transplanted into the field on 8 July 2004, and the

185



canopy reached full closure in August. The rice canopy reflectance of each plot
was acquired using an Analytical Spectral Devices (ASD) Field Spec Pro Full Range
(350–2500 nm) spectroradiometer on 20 July, 8 August, 28 August, 22 September,
5 October and 27 October. At each plot, 10 reflectance measurements were acquired
with a nadir view of 25˝ from a height of 1.0 m above the rice. The spectrum of each
plot was recorded as the average of the 10 measurements.

2.2.2. Satellite Data

The MODIS sensor records data in 36 spectral bands and products at spatial
resolutions of 250 m, 500 m and 1000 m. In this study, MODIS/Terra eight-day
composite surface reflectance products (MOD09A1) were chosen for the mapping of
rice planting regions.

The eight-day composite surface reflectance products were routinely processed
for atmospheric and radiometric correction for the effects of aerosols and cirrus
clouds, as well as to select the best observation and the lowest value in the blue
band for each pixel over the eight-day period [29]. Three tiles (h27v05, h27v06
and h28v06) for the 2000–2010 period were acquired from the project website
(https://lpdaac.usgs.gov/). The downloaded MODIS data were then mosaicked
and reprojected to Albers equal-area conic projection using the MODIS Reprojection
Tool (MRT).

A Landsat ETM+ image acquired on 13 May 2000 (path/row: 118/41)
was downloaded from the International Scientific Data Service Platform
(http://datamirror.csdb.cn/). The region spanned by the image covers the main
rice-producing zones in Wenzhou City. According to the phenological data recorded
at the local agricultural meteorological station, rice seedlings were generally
transplanted into the fields in early May. Radiometric calibration was applied to
the Landsat ETM+ image. The fast line-of-sight atmospheric analysis of spectral
hypercubes (FLAASH) model was selected for atmospheric correction. The Landsat
ETM+ image was resized to a 90 km ˆ 90 km subset and reprojected to the Albers
equal-area conic projection.

In addition, ASTER Global Digital Elevation Model (GDEM) data covering the
study area were freely obtained from the Earth Remote Sensing Data Analysis Center
of Japan (http://gdem.ersdac.jspacesystems.or.jp/).

2.2.3. Ancillary Data

A digital administrative map of China was obtained from the National
Fundamental Geographic Information System. A land use map of Wenzhou City
in 2005 was obtained from the Land and Resources Bureau of Wenzhou City. The
annual sowing areas of paddy rice for each county in the study area during the
2000–2010 period were provided by the bureau of statistics.

186



3. Methodology

3.1. Spectral Characteristics of Rice during the Flooding and Transplanting Period

Canopy reflectance data collected in the field at a spectral resolution of 1 nm
were used to simulate the reflectance in the first seven bands of the MODIS sensor
(ρMOD) based on its spectral response function (Figure 2). The reflectance in the
near-infrared and shortwave infrared wavelength bands was very low, whereas the
reflectance in the visible bands (Bands 1, 3 and 4) was greater than in other growth
periods. During the transplanting period, the water in the rice field was found to
absorb most of the incident radiant flux, especially in the shortwave infrared region.
It was also observed that the reflectance in Band 6 was lower than that in Band 4
(green band). With an increase in the tiller number and leaf area index, the reflectance
in the visible bands decreased on 8 August 2004; however, the reflectance in the
near-infrared and shortwave infrared bands increased significantly. The reflectance
in Band 6 became higher than that in Band 4. In the previous literature, many
water indices have been developed using the visible and infrared bands [23–25].
The green spectral range is highly sensitive to the Chl-a concentration over a wide
range of variation and, thus, is helpful for the remote sensing of vegetation [30]. The
near-infrared and shortwave infrared regions are the best wavelength regions for
discriminating land from water. Because 1 of the 20 detectors in Terra MODIS Band
5 is noisy, there are stripes in the image. Band 6 was selected as the band sensitive to
water, and Band 4 was used as the band sensitive to the presence of green seedlings.

Xu proposed the MNDWI (Equation (1)) to enhance the features of open water
in remotely-sensed imagery [24]. Water pixels will have positive values of this index;
however, pixels corresponding to flooded rice fields, built-up land and vegetation
will have negative values. To enhance the features of rice pixels in the transplanting
stage, we introduced a weight in the green band. Thus, we developed a Normalized
Weighted Difference Water Index (NWDWI) based on the MNDWI. The ρband4 and
ρband6 values described in Equation (2) denote the reflectances in MODIS Bands 4
and 6, respectively. A threshold of zero was applied to the NWDWI to separate
flooded rice pixels from vegetation pixels. As shown in Equation (3), the values of
the Ratio Vegetation Index (RVI) during different rice growth periods were calculated
using the ρMOD values of Bands 6 and 4. Figure 3 shows that the RVI was the lowest
during the transplanting stage and reached its peak at the heading stage, after which
the RVI slowly deceased.

MNDWI=
ρgreen ´ ρMIR

ρgreen+ρMIR
(1)

NWDWI=
ρband6 ´ a ¨ ρband4
ρband6+a ¨ ρband4

(2)
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RVI=
ρband6
ρband4

(3)
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Figure 3. Statistical analysis of the Ratio Vegetation Index (RVI) throughout the
entire growth cycle of a rice paddy in the field.

The acquisition date of the ETM+ image was consistent with the flooding and
transplanting date for rice in Wenzhou, Zhejiang Province. Figure 4 is a false-color
composite image of the ETM+ data. The paddy rice binary map was obtained from
the ETM+ image using the maximum likelihood method and then degraded to the
same resolution as the MODIS data using the pixel aggregate method. Because
the overpass time of Landsat 7 is close to that of Terra, the aggregated rice map
could be used as ground-truth data for validation. The MOD09A1 data (day of year:
2000129) were used to validate the performance of the NWDWI. When a = 1, flooded
rice field and vegetation pixels both had positive NWDWI values. When a = 1.5,
54.8% of the rice pixels had negative values, and 21.2% of the negative pixels in the
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MODIS-derived NWDWI image were labeled as rice pixels in the reference map.
When a = 2, approximately 91.4% of the rice pixels had negative NWDWI values, and
24.7% of the negative pixels in the MODIS-derived NWDWI image were labeled as
rice pixels in the reference map. The results of a simple density slice classification for
the NWDWI (a = 2) demonstrated its ability to discriminate water pixels (Figure 5). In
the ocean areas, the pixels had the lowest NWDWI values, whereas in the non-water
areas, the pixels had positive values. In a comparison with the rice map derived
from the ETM+ image, the omitted rice pixels were mainly distributed at the edges
of the rice fields because of the mixed-pixel phenomenon and the uncertainty of edge
pixels near large tracts of rice fields. When a = 2.5, approximately 98.5% of the rice
pixels had negative NWDWI values. However, there were only 18.1% of pixels with
negative values in the NWDWI image labeled as rice pixels in the reference map.
Many of the forest, shrub and bare land pixels had negative value, as well as flooded
rice pixels. Figure 3 also shows that the RVI was greater than 2 from the tillering
stage to the harvest stage. Therefore, when a = 2, NWDWI ď0 can be used to identify
possible flooded rice pixels. Figure 5 also indicates that built-up pixels and pixels
corresponding to natural water bodies also had low NWDWI values, which should
allow them to be distinguished from rice pixels.
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Figure 5. Spatial Normalized Weighted Difference Water Index (NWDWI)
distribution of the MODIS image.

3.2. Reconstruction of the Spectral Index Profile

Although the 8-day composite surface reflectance data were routinely processed,
some pixels were still affected by clouds. The pixels with Band 3 reflectances of
greater than 10% were labeled as cloud pixels and removed as abnormal data [16].
Cloud masks for each MOD09A1 image were generated individually. Cloud-free data
are important requirements for the operational monitoring of rice distributions using
optical sensors [31]. To fill in the gaps in the EVI and NWDWI time series caused by
clouds, the conditional temporal interpolation method was used in this study [32].
Compared with wavelet analysis and the Savitzky–Golay filter, the advantage of this
method is its ability to retain the values of good pixels and repair the bad ones using
valid pixels in the previous and subsequent images. If a pixel was contaminated in
all three adjacent images, it was removed for further analysis.

3.3. Algorithm for Mapping Rice Planting Areas Using Time Series MODIS Data

The Yangtze River Delta region can be separated into two zones: one is
the single rice planting area, including Jiangsu and Shanghai, and the other is
Zhejiang Province [33]. In hilly regions, the elevation and slope are considered
to be two important geographical factors for improving the accuracy and stability of
classification in rice mapping [34]. In the study area, rice is grown in regions with
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elevations of less than 800 m and slopes of less than 10˝; thus, the elevation and slope
were used to exclude non-paddy rice regions.

According to the rice growth calendar for the period of 2000–2010 collected from
agrometeorological stations, the transplanting stages for early rice, single cropping
rice and double cropping late rice occurred in late April–early May, mid-June–early
July and mid-to-late July, respectively. The MODIS data corresponding to the
transplanting periods were used to identify flooded rice pixels using the NWDWI to
reduce the interference of other wetland plants or crops with short-term precipitation.

The time series of spectral indices are essential for analyzing the annual
variability of vegetation activityFigure 6 shows the seasonal EVI and NWDWI
profiles of various types of land cover in 2005. Figure 6a–c shows the seasonal
spectral index profiles of three major cropping systems in the Yangtze River Delta
region. It is obvious that the NWDWI decreased significantly when a pixel was
labeled as a cloud pixel. The time series of the EVI and NWDWI revealed the growth
stages of the crops. When the rice seedlings were transplanted into the field, the
NWDWI was less than zero, because the reflectance of the rice pixels was dominated
by water. However, the seasonal NWDWIs of rain-fed crops maintained consistently
positive values. Forests in the study area exhibited high EVI and NWDWI values
throughout the entire growth period (Figure 6e). Natural water and built-up pixels
could be distinguished by their long periods of consistently low NWDWI and EVI
values. In the study area, 40 single cropping rice samples and 35 double cropping rice
samples were selected to perform a decision tree classification algorithm for mapping
the planting areas of early, single cropping and double cropping late rice. For early
rice, a pixel with a negative NWDWI and EVI <0.26 was labeled as a potential rice
pixel during the transplanting stage. According to the characteristics of the growth
period of early rice, the maximum EVI throughout the entire growth period was
greater than 0.35, and the EVI decreased below 0.35 in the eleventh 8-day period after
that identified as the transplanting stage. Because of the longer growth period of
single cropping rice, the EVI decreased to less than 0.35 in the fifteenth 8-day period
after the rice seedlings were transplanted. Late rice was transplanted to the same
field after the early rice was harvested. If a pixel had NWDWI <0.05 and EVI <0.35,
it was recognized as a transplanted rice pixel. The maximum EVI throughout the
entire growth period was higher than 0.35, and in the twelfth 8-day period after the
transplanting stage, the EVI decreased below 0.35. Natural water bodies and built-up
pixels could be excluded by removing pixels with an EVI that was less than 0.3 for
fourteen consecutive 8-day periods between April and September. Figure 7 shows
the decision tree for the mapping of single cropping, early and double cropping late
rice planting areas. Finally, the spatial distribution maps of early, single cropping
and double cropping late rice were generated.
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Figure 6. Spectral index time series corresponding to various types of land cover at the test 
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Figure 7. Flow chart for the extraction of rice planting regions.  

Figure 6. Spectral index time series corresponding to various types of land cover at
the test sites in 2005: (a) winter wheat and single cropping rice, (b) winter wheat and
rain-fed crops, (c) early and late rice, (d) lakes, (e) forests and (f) built-up regions.
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3.4. Accuracy Assessment

The classification results for the Landsat ETM+ imagery at the studied site were
used as the reference rice map for validation. An error confusion matrix was applied
to evaluate the agreement of the MODIS-derived rice map with the reference rice
map. The commission error, omission error, user’s accuracy and producer’s accuracy
were calculated as follows:

Commission error (%) =
Ncommit

NMODIS
ˆ 100% (4)

User1s accuracy p%q “ 100´ commission error (5)

Omission error (%) =
Nomit

NETM
ˆ 100% (6)

Producer1s accuracy p%q “ 100´ omission error (7)

Here, Ncommit and Nomit represent the numbers of committed and omitted rice
pixels, respectively, in the MODIS-derived result, and NMODIS and NETM represent
the numbers of rice pixels in the MODIS-derived map and the aggregated reference
rice map, respectively.

The error matrix was analyzed at the pixel level. Furthermore, because of the
edge effects originating from the spatial aggregation of the ETM+ data and the
geometric mismatch between the ETM+ and MODIS data, the error matrix was
calculated using a 3 ˆ 3 moving window [35].
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4. Results and Discussion

4.1. Spatial and Temporal Distribution of Rice Planting Areas in the Yangtze River
Delta Region

The spatial distributions of early, single cropping and double cropping late rice
planting areas in the Yangtze River Delta region from 2000 to 2010 were generated
using the presented algorithm, and the results are shown in Figures 8–10. As
shown in Figure 8, single cropping rice was mainly distributed in Jiangsu, Shanghai,
Hangzhou-Jiaxing-Huzhou plain, Jinhua-Quzhou basin, Ningbo-Shaoxing plain
and the coastal plain of southeastern Zhejiang Province. Double cropping rice was
mainly distributed in the Jinhua-Quzhou basin, Ningbo-Shaoxing plain and coastal
plain of southeastern Zhejiang Province (Figures 9 and 10). The complexity of the
terrain posed a considerable challenge in the extraction of scattered rice fields using
MODIS 500-m data because of the mixed-pixel phenomenon. The rice fields were
scattered throughout hilly regions, and most of them were distributed along rivers
or in terraced planting regions.
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Figure 8. Spatio-temporal distribution of single cropping rice in the Yangtze River Delta 

region during the period of 2000–2010. 

 

Figure 8. Spatio-temporal distribution of single cropping rice in the Yangtze River
Delta region during the period of 2000–2010.

The total planting area of early rice decreased from one year to the next from 2000
to 2003 and then remained stable afterward. Single cropping rice began to be planted
instead of double cropping rice in some areas of the Yangtze River Delta region.
Figure 10 shows that the early rice area decreased significantly in Ningbo-Shaoxing
plain and Jinhua-Quzhou basin. The results reveal the change in the cropping systems
used in the Yangtze River Delta region over the studied decade.
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Figure 9. Spatio-temporal distribution of early rice in the Yangtze River Delta region 

during the period of 2000–2010. 
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region during the period of 2000–2010.
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Figure 10. Spatio-temporal distribution of double cropping late rice in the Yangtze River 

Delta region during the period of 2000–2010. 

4.2. Comparison of the Estimated Paddy Rice Planting Areas with Agricultural Census Data 

It is a time-consuming and labor-intensive task to implement a large-scale regional survey of rice 

planting region and to obtain an annual spatial map of the study region. Agricultural census data were 

used as reference data to test the accuracy and stability of our algorithm. Table 1 presents a 

Figure 10. Spatio-temporal distribution of double cropping late rice in the Yangtze
River Delta region during the period of 2000–2010.
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4.2. Comparison of the Estimated Paddy Rice Planting Areas with Agricultural
Census Data

It is a time-consuming and labor-intensive task to implement a large-scale
regional survey of rice planting region and to obtain an annual spatial map of
the study region. Agricultural census data were used as reference data to test the
accuracy and stability of our algorithm. Table 1 presents a comparison of the annual
total paddy planting areas derived from MODIS and agricultural census data in
the Yangtze River Delta region. The absolute errors of the extracted annual total
rice areas were less than 15%, except for 2007 and 2010. The MODIS-derived single
cropping rice areas were underestimated in 2007 and 2010. The relative error was
highest in 2007. The rice planting areas in this year were severely underestimated,
especially those in the south of Jiangsu Province, Shanghai City and the north of
Zhejiang Province. In 2010, underestimation mainly occurred in northern Nantong
City, Taizhou, western Wuxi, northeastern Suzhou and central-southern Zhejiang.
In these regions, the cloud occurrence frequency was greater than 60% during the
transplanting stage of single cropping rice. Cloud cover during the rainy season may
obscure optical observations. The existence of clouds and cloud shadows can result
in abnormal changes in the spectral index. Continuous cloud contamination during
the transplanting period was the major cause of the underestimation. Although
eight-day composite surface reflectance products were generated by selecting the
date within the eight-day window with the clearest atmospheric conditions for each
pixel, the effects of cloud contamination cannot be neglected. In this study, the
conditional temporal interpolation method was applied to reconstruct invalid pixels
contaminated by clouds, but if three consecutive eight-day composite data points
were all invalid during the flooding and transplanting period of the rice crop, that
pixel was eliminated from further analysis. Radar images are a potential alternative
means of rice mapping in these regions, especially during the rainy season, because
they are independent on the time of day and unimpaired by weather conditions.

Furthermore, county-level validation of the rice planting area extraction results
was performed. Because of the different standards for agricultural census data
collected at the county level, single cropping rice and double cropping late rice
were combined and treated simply as late rice for the comparison. The comparison
results for early and late rice are shown in Figure 11. The solid line in the plot is
the 1:1 line. The points in the plot are clustered near the 1:1 line, indicating that the
MODIS-derived area of early rice is well correlated with the agricultural census data
at the county level. The decision coefficients (R2) for early rice and late rice are 0.560
and 0.619, respectively. The MODIS-derived area of late rice demonstrates a higher
consistency with the census data during the 2000–2010 period, and the extracted
early-rice area exhibits greater bias than that of late rice.
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Table 1. Comparison of rice planting areas derived using the MODIS algorithm
and from the agricultural census data.

Year Census Data (kha) * RiceMOD (kha) Relative Error (%)

2000 3928.50 3882.06 ´11.8
2001 3476.30 3753.93 7.99
2002 3239.83 3472.60 7.18
2003 2842.23 3161.56 11.24
2004 3285.70 3576.88 8.86
2005 3409.26 3609.66 5.88
2006 3439.45 3638.51 5.79
2007 3338.49 2140.38 ´35.89
2008 3359.37 2893.90 ´13.86
2009 3335.40 3546.10 6.32
2010 3309.10 2636.50 ´20.33

* RiceMOD denotes the rice planting area derived from MODIS.
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Figure 11. Correlation between areas of (a) early rice and (b) late rice derived using the 

MODIS algorithm and from the census data at the county level for the 2000–2010 period. 
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Figure 11. Correlation between areas of (a) early rice and (b) late rice derived
using the MODIS algorithm and from the census data at the county level for the
2000–2010 period.

The topography in Zhejiang Province is very complicated, including plains,
hills and mountains. Xu and Wang studied regionalization for rice yield estimation
in Zhejiang Province by considering the local rice cropping systems, agroclimates,
landforms, surface feature structures and rice yield levels. The county borders
were treated as the region boundaries in the regionalization [36]. According to the
regionalization map, the MODIS-derived early-rice area was close to that indicated
by the census data in counties dominated by plains, but a large error was still
observed in counties that grew less rice (Figure 12). The MODIS-derived late-rice
area in counties dominated by plains was very close to that indicated by the census
data. The Jinhua-Quzhou basin, located in central Zhejiang Province, is the major
rice-producing region in the study area. The planting areas of early and late rice
derived from the MODIS data were underestimated in the counties located in the
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Jinhua-Quzhou basin region (Figure 13). The results were unsatisfactory because
of the influence of the terrain on the land surface reflectance. In counties located
in mountainous and hilly regions, the MODIS-derived areas of early and late rice
were underestimated to different extents (Figure 14). The rice planting areas derived
using the MODIS algorithm were severely underestimated in counties located in
mountainous and hilly regions, where the rice fields were typically fragmentary
and smaller than a MODIS pixel. Because the spatial resolution of the MODIS data
used in the study was 500 m, it was unfeasible to recognize a pixel with a low
abundance of rice as a rice pixel. The rice fields were not successfully identified in
regions with complicated topographies. However, the MODIS-derived results are
still useful for developing large-scale, timely and relatively accurate spatial datasets
of paddy rice fields, especially in plain regions, and for providing vital information
for yield estimation, growth monitoring, water management and greenhouse gas
emission estimation.Remote Sens. 2015, 7 8900 

 

 

y = 1.276x + 0.537
R² = 0.770

0

10

20

30

40

0 10 20 30 40

E
st

im
at

ed
 a

re
a(

K
ha

)

Statistical area(Kha)

Early rice

 

y = 0.981x + 2.244
R² = 0.568

0

50

100

150

200

0 50 100 150 200

E
st

im
at

ed
 a

re
a(

K
ha

)

Statistical area(Kha)

Late rice

  

Figure 12. Comparison of MODIS-derived areas with census data in counties dominated 

by plains in the 2000–2010 period. 

y = 0.477x - 0.232
R² = 0.317

0

10

20

30

0 10 20 30

E
st

im
at

ed
 a

re
a(

K
ha

)

Statistical data(Kha)

Early rice

 

y = 0.650x - 2.592
R² = 0.411

0

10

20

30

40

0 10 20 30 40

E
st

im
at

ed
 a

re
aK

ha
)

Statistical area(Kha)

Late rice

 

Figure 13. Comparison of MODIS-derived areas with census data in counties located in 

the Jinhua-Quzhou basin in the 2000–2010 period. 
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Figure 14. Comparison of MODIS-derived areas with census data in counties located in 

mountainous and hilly regions in the 2000–2010 period. 

Figure 12. Comparison of MODIS-derived areas with census data in counties
dominated by plains in the 2000–2010 period.
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Figure 13. Comparison of MODIS-derived areas with census data in counties
located in the Jinhua-Quzhou basin in the 2000–2010 period.
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Figure 13. Comparison of MODIS-derived areas with census data in counties located in 

the Jinhua-Quzhou basin in the 2000–2010 period. 
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Figure 14. Comparison of MODIS-derived areas with census data in counties located in 

mountainous and hilly regions in the 2000–2010 period. 
Figure 14. Comparison of MODIS-derived areas with census data in counties
located in mountainous and hilly regions in the 2000–2010 period.

4.3. Spatial Comparison of Extracted Paddy Rice Planting Areas

In addition to the accuracy of the total estimated area, the spatial matching of
the MODIS-derived results is also very important for practical applications. Table 2
summarizes the accuracy assessment of the MODIS-derived rice results. At the pixel
level, the commission and omission errors were 26.30% and 22.67%, respectively. The
user’s and producer’s accuracies were 73.70% and 77.33%, respectively. It is difficult
to co-register Landsat ETM+ imagery with MODIS data because of the extremely
large difference in spatial resolution between the two datasets. The pixels at the edges
of discriminated rice pixels can give rise to considerable error when the accuracy
validation is conducted for individual pixels.

Table 2. Accuracy assessment of MODIS-derived results at the studied sites.

Level Commission
Error (%)

User’s
Accuracy (%)

Omission
Error (%)

Producer’s
Accuracy (%)

Pixel level 26.30 73.70 22.67 77.33
3 ˆ 3 window 3.23 96.77 0.04 99.96

Therefore, the commission and omission errors for moving windows of
3 ˆ 3 pixels were also calculated. If a pixel were identified as a rice pixel in the
MODIS-derived result, but the eight pixels surrounding it were all labeled as non-rice
pixels in the aggregated reference rice map, we considered it to be a committed pixel.
If a pixel were labeled as a rice pixel in the aggregated rice map, but no pixels
in the moving 3 ˆ 3 pixel window surrounding it were identified as rice in the
MODIS-derived result, it was considered to be an omitted pixel. In this analysis, the
user’s and producer’s accuracies were found to be 96.77% and 99.96%, respectively.

Although an irrigated paddy indicated in the land use map may be used not
only for planting paddy rice, but also for planting aquatic plants, such as reeds and
lotus roots, any MODIS-derived rice region should be located in an irrigated paddy.

201



Therefore, a pixel was considered to be misclassified if it was a MODIS-derived rice
pixel located in a non-irrigated paddy region. The irrigated paddy regions in the
land use map of Wenzhou City for 2005 were extracted for the validation of the
spatial matching of the results derived using the MODIS algorithm. In Figure 15a, it
is seen that the majority of irrigated paddies were concentrated in the eastern coastal
region, especially in Yueqing, Rui’an, Pingyang and Cangnan, and that the total area
of irrigated paddies in Wenzhou City in 2005 was 109.7 kha. The two maps shown in
Figure 15 were overlaid to examine the agreement between them. The number of
pixels extracted using the MODIS algorithm was 4309, 88.95% of which were located
in irrigated paddy regions. As indicated by the spatial matching analysis at the
county level, the accuracy was lowest in counties with less than 5 kha (Table 3).
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derived from MODIS (b) for Wenzhou City in 2005.

Table 3. Consistency analysis of MODIS-derived rice pixels with irrigated paddies
in Wenzhou City, 2005.

City
Number of Rice
Pixels Located in
Irrigated Paddies

Number of
RiceMOD *

Overlap
Proportion (%)

Area of
Irrigated

Paddies (kha)

Area of
RiceMOD (km2)

Yueqing 832 888 93.69 21.38 19.06
Pingyang 586 625 93.76 16.50 13.42
Wencheng 55 93 59.14 3.51 2.00

Yongjia 178 238 74.79 7.99 5.11
Taishun 5 53 9.43 0.66 1.14
Dongtou 3 52 5.77 0.06 1.12
Wenzhou 371 440 84.32 12.44 9.44

Rui’an 810 878 92.26 25.08 18.85
Cangnan 993 1042 95.30 22.10 22.37

Total 3833 4309 88.95 109.70 92.50

* RiceMOD denotes the rice pixels derived from MODIS.
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5. Conclusions

In this study, the NWDWI was proposed to enhance the signal of flooding
regions in remotely-sensed images. The algorithm for the identification of flooded
pixels was evaluated based on spectral data measured in the field, as well as ETM+
and MODIS data. Built-up regions and natural watersheds could be readily separated
using the NWDWI and EVI. The spatial distribution maps of rice with different
cropping patterns (i.e., early rice, single cropping rice and double cropping late
rice) in the period of 2000–2010 were generated using a decision tree classification
algorithm. The accuracy of the extracted annual total rice area was greater than
85%, except for 2007 and 2010, for which it was poorer, because of the large areas of
cloud masking during the transplanting period. The identified rice areas were also
validated at the county level. The MODIS-derived area of late rice demonstrated a
higher consistency with the census data during the period of 2000–2010. The user’s
and producer’s accuracies for moving windows of 3ˆ 3 pixels were both greater than
95%. The algorithm also revealed the interannual variations in single and double
cropping rice in the Yangtze River Delta region.

However, there were several factors that may have affected the accuracy of
the results, such as cloud contamination, spatial resolution and topography. The
accuracy was not satisfactory in counties with complex terrain. The value of a in the
formula for the NWDWI used in this study was determined by field experimental
data and the ETM+ image and was appropriate for discriminating rice pixels at a
spatial resolution of 500 m during the transplanting stage. The higher value of a
in NWDWI could lead to misclassifying numbers of non-rice pixels as rice pixels.
Otherwise, rice pixels could be omitted by using a lower value of a in NWDWI. The
developed algorithm was found to be unsuitable for use in regions with continuous
rainy weather.

Despite the uncertainties in this algorithm, MODIS data are a suitable choice
for generating rice distribution maps at large scales, which are useful for long-term
grain yield estimations and the detection of changes in land use/cover change. The
application of Aqua/MODIS data in combination with Terra/MODIS data could
improve the accuracy of our algorithm.
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Rice Fields Mapping in Fragmented Area
Using Multi-Temporal HJ-1A/B CCD Images
Jing Wang, Jingfeng Huang, Kangyu Zhang, Xinxing Li, Bao She,
Chuanwen Wei, Jian Gao and Xiaodong Song

Abstract: Rice is one of the most important crops in the world; meanwhile, the
rice field is also an important contributor to greenhouse gas methane emission.
Therefore, it is important to get an accurate estimation of rice acreage for both food
production and climate change related studies. The eastern plain region is one
of the major single-cropped rice (SCR) growing areas in China. Subjected to the
topography and intensified human activities, the rice fields are generally fragmented
and irregular. How remote sensing can meet this challenge to accurately estimate
the acreage of the rice in this region using medium-resolution imagery is the topic
of this study. In this study, the applicability of the Chinese HJ-1A/B satellites and a
two-band enhanced vegetation index (EVI2) was investigated. Field campaigns were
carried out during the rice growing season and ground-truth data were collected
for classification accuracy assessments in 2012. A stepwise classification strategy
utilizing the EVI2 signatures during key phenology stages, i.e., the transplanting
and the vegetative to reproductive transition phases, of the SCR was proposed,
and the overall classification accuracy was 91.7%. The influence of the mixed pixel
and boundary effects to classification accuracy was also investigated. This work
demonstrates that the Chinese HJ-1A/B data are suitable data source to estimating
SCR cropping area under complex land cover composition.

Reprinted from Remote Sens. Cite as: Wang, J.; Huang, J.; Zhang, K.; Li, X.;
She, B.; Wei, C.; Gao, J.; Song, X. Rice Fields Mapping in Fragmented Area Using
Multi-Temporal HJ-1A/B CCD Images. Remote Sens. 2015, 7, 3467–3488.

1. Introduction

Rice is one of the most important crops in the world and provides the main
source of energy for more than half of the world population [1]. Additionally, the
seasonally flooded rice fields contribute about 5%–19% of total global methane
emission, an important greenhouse gas source, to the atmosphere [2,3]. China
produced about one third of the world’s rice on about one fifth of the world’s paddy
rice land [4]. During the past two decades, the arable land in China declined at a
speed of 0.25 million hectares per year [5]. The trend was more obvious in the eastern
plain region of China, where intensified human activities have changed the land use
and land cover (LULC) patterns dramatically in the last decades. This region has
long been one of the major rice growing areas in China, and the cultivar is dominated
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by the single-cropped rice (SCR). From the food safety, ecological and policy making
points of view, a timely and efficient monitoring and mapping of rice cropping area
is critical [6,7]. Conventionally, the local government usually estimates the cropping
area of rice by field survey; however, it is time-consuming and costly. As a powerful
alternative, remote sensing has proved its effectiveness in estimating rice cropping
areas from regional to global scales [8–10].

In the literature, many different kinds of optical remote sensing data, e.g.,
the Advanced Very High Resolution Radiometer (AVHRR), Moderate Resolution
Imaging Spectroradiometer (MODIS), SPOT VEGETATION and Landsat-MSS, and
techniques have been applied in rice cropping area estimating practices [7,8,11–13].
The data mentioned above have demonstrated advantages in rice monitoring at
regional to global scales due to wide range of coverage and relative long data
archiving. However, coarse resolution satellite data is not suitable for precise
rice crop mapping in the eastern plain region of China because the rice fields
in this region are relatively small, irregular, and fragmented by well-developed
roads and dense water networks, and generally mixed with other land cover types.
As a consequence, the mixed-pixel problem is prominent and induces temporal
uncertainty in discriminating the spectral signatures of rice and the other land cover
types [6].

Middle to high spatial resolution satellite data, e.g., Landsat TM/ETM+/OLI,
SPOT and China Brazil Earth Resources Satellite (CBERS), are promising in capturing
small patches of crop fields [14,15]. However, the cost and relatively long revisit
cycles partially offset their advantages in spatial resolution. Specifically, the cloud
cover during monsoon season, which is partially overlapped with the major growing
season of the SCR, makes it more difficult to obtain qualified remote sensing
imageries [16,17]. For applications where the rice phenology information is critically
needed, the satellite data with acceptable spatial resolution and more frequent revisit
cycle should be more desirable.

The small sun-synchronous satellites for environment and disaster monitoring
and forecasting (HJ-1A/B) of China were launched in 2008. HJ-1A/B satellites
have a spatial resolution of 30 m and a revisit cycle of four days (the revisit cycle
of the constellation is 2 days), with imaging swath of 700 km. The CCD camera
onboard HJ-1A/B includes four bands, i.e., blue, green, red and near-infrared, and
the spectral range is 0.43–0.90 µm. HJ-1A/B CCD data have been applied in rice
area estimation [18,19] and yield prediction [20]. In this study, however, it is our
interest to explore the potential of using HJ-1A/B data to extract small, irregular SCR
growing area in the eastern plain region of China, where the mixed-pixel problem
is serious as mentioned above. Specifically, it is our interest to take advantage of
its high revisit feature of the HJ-1A/B data to capture the key phenology spectral
signatures of the SCR to facilitate the classification.
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The unique physical feature of rice fields and the phenology of the SCR may
provide valuable information for remote sensing classification. The rice grows on
flooded soils, and the rice fields are a mixture of rice plant and open water during
the transplanting and early period of the growing season [21]. As new leaves and
tillers emerged, there is an accelerated increase in canopy height and leaf area of the
rice. About 50 to 60 days after transplanting, the rice canopy would cover most of
the surface area [22], but the leaf area is still increased till the heading stage. After
that, the leaf area of rice starts to decease and the leaf color turns to yellow until
the ripening and harvest stages. By using time series remote sensing images, the
combined field and phenology features of rice, which differentiate the rice field from
the other land cover types, may increase the classification accuracy.

To minimize the interference of external environmental factors, various
vegetation indices (VIs) are commonly used in practice [23–25]. For example,
the well-recognized normalized difference vegetation index (NDVI) [26] has been
testified to be closely correlated with leaf area, biomass, percent ground cover and
crop productivity [27–30]. Due to the saturation effect, however, NDVI may fail
to capture the difference in well-vegetated areas, compared with the enhanced
vegetation index (EVI) [31]. In practice, the time series signatures of NDVI and EVI
derived from the MODIS and SPOT data had been used to map the area, species
(single, early, and late), and key phenologies of rice [13,18,32]. Recently, a novel VI,
i.e., the 2-band EVI (EVI2), has been proposed and testified to be comparable with
the traditional EVI, and more importantly, it may achieve greater consistencies across
sensors because only 2 bands are involved, as compared with 3 bands in EVI [33,34].

In addition to the data used, it is of critical importance to select appropriate
classification method to properly mapping the rice fields. It is our interest to compare
the classification efficiencies of the commonly used parametric and nonparametric
classification algorithms, i.e., the maximum likelihood classifier (MLC) and support
vector machines (SVM), with a two-step classification method proposed in this study
and specifically designed to classify the rice fields from the other land cover types.
The MLC is one of the most commonly used classification techniques [35–37]. It is
a parametric classification algorithm with the assumption that the class signatures
are normally distributed. The SVM is a nonparametric classifier, which projects the
training data in the input space into a high dimensional space using a kernel function
where the classes are linearly separable [38]. The SVMs have no limitation about
the probability distribution forms of the class signature, but its performance largely
depends on the kernel used, the parameter choice for the specific kernel, and the
method used to generate the SVM [39–41].

Our study aimed to investigate the capability of EVI2 in SCR growth monitoring,
and to test the feasibility of using HJ-1A/B CCD data to estimate the SCR growing
area in the eastern plain region of China. For this purpose, we proposed a simple
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but effective classification method, which makes use of the time series HJ-1A/B
imageries and the specific signatures of EVI2 (including its 1st derivative) at key
phenology stages of the SCR. An extensive field campaign was carried out for
verification simultaneously. We compared the effectiveness of this method with the
parametric and nonparametric classification algorithms, namely MLC and SVM. We
also discussed the influence of the mixed-pixel which was typical in the study area
and may affect the classification accuracy.

2. Data and Methods

2.1. Study Area

Deqing County lies in the west of Hangjiahu Plain, with mean annual
temperature ranging between 13 ˝C and 16 ˝C and annual precipitation of 1379 mm
(Figure 1). The plain areas mainly distribute at the eastern Deqing, with the altitudes
ranging from 4 m along the Beijing-Hangzhou Grand Canal to 721 m on the Tianmu
Mountains. Deqing County is part of the SCR growing region in the water network
area of north Zhejiang [42], where countless lakes, ponds and winding rivers scattered
throughout this region, with the addition of well-developed road networks, leading
to fragmented patches of irregular crop land plots. Deqing has a total area of 936 km2,
and the SCR area in Deqing accounts for more than 91% of the major crop areas
according to the statistical data of local agriculture department. The SCR fields
mainly concentrate in the eastern regions of Deqing with average elevation less
than 20 m.
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2.2. Field Campaigns

To facilitate the remote sensing classification and verification, a continuous
field campaign was carried out to record the phenologies of the SCR. Additionally,
five field sites named A to E were also selected at the east of Deqing County. All
the sites were larger than 1 km2, and were surveyed using a handheld GPS receiver
(Trimble Juno-SB). For each land cover patch, the boundary and the corresponding
land cover type were recorded. The land cover types were classified as rice, trees,
water bodies, economic crops and other nonvegetated areas. The vector format
maps of the five field sites in 2012 were shown in Figure 2. These maps were then
reclassified into SCR and non-rice area and converted into raster format at 30 m
resolution as ground-truth data for accuracy assessment.Remote Sens. 2015, 7 3471 
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Figure 2. Vector maps and geo-locations of the five field sites.

2.3. Remote Sensing Data

HJ-1A/B data from 17 May to 5 December 2012 over the study area were
collected for time-series VI analysis and downloaded from the China Center for
Resources Satellite Data and Application. The sensor characteristics are presented
in Table 1. Total 14 HJ-1A/B images with cloud cover less than 10% during the key
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phenology periods of SCR were selected for the following classification procedures
(Table 2).

Table 1. Technical specification of HJ-1-A/B CCD and ZY1-02C P/MS sensors.

Satellite Payload Band No. Spectral
Range (µm)

Nadir Spatial
Resolution (m)

Swath
Width (km)

Repetition
Cycle (day)

HJ-1A/B Multispectral
CCD camera

1 0.43–0.52 30
360 (700
for two) 4

2 0.52–0.60 30
3 0.63–0.69 30
4 0.76–0.90 30

ZY1-02C P/MS
camera

1 0.51–0.85 5

60 3–5
2 0.52–0.59 10
3 0.63–0.69 10
4 0.77–0.89 10

Table 2. Dates of the selected HJ-1A/B CCD images, field campaigns, and the
corresponding SCR phenology stages.

NO. Satellite Date Field Campaign Date Phenology Stage

1 HJ-1B 2012/05/17 / Fallow
2 HJ-1B 2012/05/28 / Site preparation
3 HJ-1A 2012/06/29 2012/06/29 Sowing-transplanting
4 HJ-1B 2012/07/05 / Vegetative stage
5 HJ-1B 2012/07/19 2012/07/20 Vegetative stage (tillering)
6 HJ-1A 2012/07/29 2012/07/30 Vegetative stage (maximum tiller number)
7 HJ-1A 2012/08/17 2012/08/15 Reproductive stage (ear differentiation)
8 HJ-1B 2012/09/02 2012/08/31 Reproductive stage (heading)
9 HJ-1B 2012/09/18 2012/09/16 Reproductive stage (panicle initiation and flowering)

10 HJ-1B 2012/09/29 2012/09/25 Reproductive stage
11 HJ-1B 2012/10/10 2012/10/13 Ripening stage (grain filling)
12 HJ-1A 2012/10/23 2012/10/27 Ripening stage (milk)
13 HJ-1B 2012/11/06 / Ripening stage
14 HJ-1A 2012/11/19 2012/11/18 Harvest/fallow

To assist the selection of training samples for classification, the Chinese
Resource-1 02C satellite (ZY1-02C), which provides multispectral and panchromatic
images at 10 m and 5 m spatial resolutions, respectively, was used as an auxiliary
data source (Table 1). The multispectral and panchromatic images of ZY1-02C were
fused to facilitate location identity in field campaigns and visual interpretation.

All the HJ 1-A/B and ZY1-02C images were geometrically corrected using the
Second National Soil Survey Vector Map (scale 1:10,000), and the Root Mean Square
Error (RMS error) was less than one pixel (30 m). Additionally, the radiometric
calibration and atmospheric correction of the HJ 1-A/B CCD data were performed,
respectively. Figure 3 showed the images of HJ-1A/B CCD and ZY1-02C of field site
B at different phenology stages of the SCR.

The remote sensing classification system (five land cover types) was same as the
one used in the field campaign. The training samples were randomly located and
visually interpreted from the ZY1-02C fused image (5 m in spatial resolution). The
class separability of the training data set was analyzed using the Jeffries-Matusita
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(J-M) distance metric between classes [43,44]. A larger J-M distance indicates more
distinct distributions between two classes. The training data were modified if the
J-M distance was close to 2 between rice and the other land cover types [45,46]. The
final set of training samples were 800 pixels in total. There were 354 training pixels
for rice, 92 training pixels for trees, 195 training pixels for water bodies, 76 training
pixels for economic crops and 83 training pixels for other nonvegetated areas. The
vector data of the 5 field sites were rasterized into 30 m resolution as ground-truth
data for accuracy assessment.Remote Sens. 2015, 7 3473 
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Figure 3. HJ-1A/B CCD and ZY1-02C false color images of the field site B at
different phenology stages of the SCR: (a) to (c) were acquired from HJ-1A/B on
29 June (sowing-transplanting stage), 29 July (vegetative stage), and 2 September
(reproductive stage) 2012, respectively; and (d) ZY1-02C on 19 February 2012.
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2.4. Classification Methods

2.4.1. Characteristics of EVI2 Time-Series Data during SCR Growing Periods

EVI2 may achieve greater consistencies across sensors because only 2 bands are
involved. EVI2 is defined as follows [33]:

EVI2 “ 2.5ˆ
ρnir ´ ρred

ρnir ` 2.4ˆ ρred ` 1
(1)

where ρnir and ρred are estimated surface reflectance values for near-infrared and
visible red bands (HJ-1A/B CCD bands 4 and 3, respectively).

Since there are nearly always disturbances in optical remote sensing applications
caused by unfavorable atmospheric conditions and sun zenith angle changes in year
around and show up as undesirable noise [47,48], noise reduction is necessary before
further analysis. In this study, we used the Savitzky-Golay (S-G) filters to smooth the
EVI2 time-series data. The S-G filters are suitable to smooth the irregular spacing
data points, e.g., the time-series HJ-1A/B CCD data used in this study [49]. The
S-G filters apply an iterative weighted moving average filter to time series data,
with weighting given as a polynomial of a particular degree [50,51], which can be
summarized as:

gi “

řnR
n“´nL cn fi`n

n
(2)

where fi represents original value at data point i; gi is the smoothed value; n is the
width of the moving window to perform filtering; nL and nR corresponding to the
left and right edges of the signal component. For a specific uneven time-series data in
a moving window, cn is not a constant but a polynomial fitting function, depending
on the user’s preference. The fitting function can be defined as quadratic polynomial
for a specific fi:

cnptq “ c1 ` c2t` c3t2 (3)

where t corresponds to the day of year in EVI2 time-series.
The S-G filter was implemented using IDL 8.0 programming language to

perform an image-based EVI2 time-series filtering for the HJ-1A/B CCD data from
17 May to 5 December 2012 in the study area. In this way, the time-series EVI2
curves of the five land cover types could be used to identify the most critical stages
to distinguish between different land cover types.

2.4.2. Single-Cropped Rice Classification Method

In this study, we proposed a classification method which is based on the
assumption that the probability distribution functions (PDFs) of the land cover
types follow normal distributions [52,53]. For this purpose, we tested the samples’
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probability distributions of the five land cover types using the Quantile-Quantile Plot
(Q-Q Plot) [54], and it showed that normal distribution assumption was acceptable.

Using the training data set, the mean (µ) and standard deviation (σ) of each land
cover type can be obtained, and then we can define the normal distribution function
for each land cover type using these two parameters. To properly differentiate one
specific land cover type from the others, it is crucial to minimize the overlaps between
the target and the neighboring normal PDFs. For two land cover types L1 and L2,
assuming L1~N(µ1, σ1

2) and L2~N(µ2, σ2
2), then the intersection between L1 and L2

should be as follows [55]:

x “
σ1µ2 ` σ2µ1

σ1 ` σ2
(4)

where if x is out of [µ ´ 2σ, µ + 2σ] (hereafter µ(σ) can be µ1(σ1) or µ2(σ2) either),
the two classes can be assumed distinguishable; if x is out of [µ ´ σ, µ + σ] but within
[µ ´ 2σ, µ + 2σ], the two classes are mildly overlapped; if x is within [µ ´ σ, µ + σ],
then the two classes are seriously overlapped. Generally, the two classes can be
thought separable if x is out of [µ ´ σ, µ + σ].

Instead of using the whole growing period dataset, only key phenology stages
images (during which the SCR are most differentiable from the other land cover
types as explained later) were investigated in SCR field extraction. We used both
of EVI2 and its 1st derivative, calculated by three consecutive images, to minimize
the probability of mis-classification. For EVI2, we selected the image on 29 June
2012 (transplanting stage), whilst the spectral characteristic of the SCR was similar
to water but not to the other land cover types, especially the trees. In addition, we
made use of the quick change rate of EVI2, i.e., the 1st derivative of SCR during
the vegetative stages (here we used the image on 29 July 2012) to gather further
information to refine the classification results [56,57].

2.4.3. Parametric and Nonparametric Classification Algorithms

The MLC assumes that the class signatures are normally distributed and
calculates the probabilities of a given pixel belonging to each class. The pixel is
assigned to the class with the highest probability [58]. The SVM classifier is a
kernel-based machine learning technique; it separates the classes with a decision
surface which maximizes the margin between the classes. The success of the SVM
depends on how well the process is trained. In this study, a well-known radial basis
function (RBF) kernel was used in the SVM [19,38,41].

We applied the MLC and SVM using the same training samples and parameters
for each classifier. The multi-temporal HJ-1 CCD data, i.e., six scenes from 2012/06/29
to 2012/09/02 during SCR transplanting to early reproductive stages, were used.
The six reflectance/EVI2 imageries were composited and classified using the MLC
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and SVM separately, and the results were compared with the method proposed in
Section 2.4.2.

2.4.4. Classification Accuracy Assessment

To assess classification accuracy, the ground-truth data (30 m resolution) were
used. The ground-truth pixel numbers for field site A to E were 2842, 3078, 3186,
3248, and 2350, respectively. The proposed classification results were compared with
the local agricultural statistic data in 2012. The user’s and producer’s accuracies,
overall accuracy and Kappa statistic were also used to evaluate the SCR classification
accuracy among the proposed method and the traditional methods, i.e., MLC
and SVM.

2.5. Influence of the Mixed-Pixel

To analyze the relationship between the land cover structure (or fragmentation)
and classification accuracy, we calculated the landscape metrics, i.e., class area
(CA), percent of landscape (%LAND), patch density (PD), mean patch size (MPS),
area-weighted mean shape index (AWMSI), and mean nearest-neighbor distance
(MNN), for each ground-truth site at class level using FRAGSTATS to quantify its
structure property [59]. Among the landscape metrics used here, CA is a measure of
how much of the landscape is composed of a particular land cover type; %LAND
is the percent of each land cover type; PD is the number of patches on a per unit
area; MPS is the average area of patches for a certain class; AWMSI measures the
area-weighted average patch shape; and MNN measures the mean average nearest
distance among patches in a class. The landscape indices, e.g., PD, MPS, AWMSI and
MNN, can be used to represent the fragmentation of land cover for a specific field
site. The larger the values of PD, AWMSI and MNN, the more fragmented the site
was; and vice versa for MPS.

To evaluate the influence of the land cover composition of a specific pixel on the
classification accuracy, the vector maps of the five ground-truth sites were further
divided into cells of size 30 m ˆ 30 m using the gridlines derived from the HJ CCD
images (only the SCR fields were kept and the other land cover types were taken as
background). We calculated the area proportion of SCR in each cell, and divided the
cells, in which the SCR area were greater than zero, into three grades, i.e., 75%–100%,
50%–75%, and <50%, according to the SCR area proportion. For each grade in per
site, the proportion of cells, which were classified as rice field in the HJ CCD images,
to the total cell number in that specific grade was calculated. We further calculated
the number of misclassified pixels, i.e., the commission and omission errors, and
analyzed the corresponding spatial distribution of the misclassified pixels. For a
specific pixel, the commission error means that the pixel’s SCR area proportion is
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less than 50% but is classified as rice field; while the omission error means that the
pixel contains more than 50% SCR area but is classified as the other land cover types.

3. Results

3.1. Time-Series EVI2 Characteristics

The temporal dynamics of time-series EVI2 of the SCR processed by S-G filters
and the other land cover types calculated from HJ-1A/B images were shown in
Figures 4 and 5. The EVI2 of water bodies varied slightly over the growing season of
SCR in the range of 0.07–0.14. During the transplanting and early part of the SCR
growing period, rice fields were flooded and its spectral signature was similar to that
of the water bodies. Not surprisingly, the EVI2 value of rice fields was very close to
water bodies but obviously lower than that of trees and economic crops on June 29
(DOY = 181, about 10 days after transplanting in 2012). After transplanting, the EVI2
of SCR increased rapidly and maximized at about 0.6 between the ear differentiation
and early heading stages, about 75 days after transplanting. Caused by the etiolation
and senescence of the SCR leaves, the EVI2 started to decrease after the heading
period till harvest.

The EVI2 values of the other nonvegetated areas, including residential areas,
roads and bare land, were similar with less fluctuation but relatively higher compared
with water bodies. The trees class had relatively high EVI2 values around 0.30 to 0.47.
The economic crops were generally planted during a similar period as the SCR were
transplanted, but usually have a longer life cycle and relativly small changing rate of
EVI2 compared with SCR, especially during the vegetative stages of SCR. During the
transplanting period, the water like spectral characteristic of the SCR made its EVI2
signature a little lower than the economic crops.
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3.2. Classification Thresholds

The normal distributions of EVI2 on 29 June 2012 and its first derivative on
29 July 2012 of the five land cover types were shown in Figure 6. During the
transplanting stage, the rice fields were flooded and the PDF of EVI2 of the SCR was
close to that of the water bodies, and it also mixed with the nonvegetated areas and
economic crops classes. Therefore, except the trees, which were mildly separable
with respect to the economic crops but highly distinguishable from the other classes,
the EVI2 signature of SCR was seriously overlapped with the other three land cover
types (Figure 6a). Obviously, it is insufficient to identify the SCR just using images in
the transplanting period.
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Figure 6. Normal distributions of the five land cover types: (a) EVI2 on 29 June
2012; and (b) the 1st derivative of EVI2 on 29 July 2012.
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During the vegetative stages of the SCR, there was a quick increase of EVI2
due to the formation of additional tillers (Figure 4), while the increase rates of the
economic crops and trees were not as steep as SCR. The other two land cover types
didn’t show obvious changes during this period. In this situation, the 1st derivative
of EVI2 based on the image on 29 July 2012, when the maximum tiller number had
arrived, demonstrated that the rice fields could be confidently distinguished from the
water bodies and the other nonvegetated areas (Figure 6b). As shown in Figure 6a,
the rice fields class was distinguishable from the trees using EVI2 signatures during
the transplanting stage, and it is mildly separable from the economic crops class.
By using Equation (4), one pixel could be classified as rice field if its EVI2 value on
29 June 2012 equal or less than 0.24, whilst its 1st derivative of EVI2 on 29 July 2012
was equal or greater than 0.010.

3.3. Classification Accuracy Assessment

Based on the coupling thresholds of EVI2 and its 1st derivative of the SCR,
during the key phenology stages, i.e., the transplanting and the vegetative to
reproductive transition phases, the rice fields in Deqing County was classified
using HJ-1A/B data in 2012 (Figure 7). The classified rice fields, with an area of
about 94.0 km2, mainly concentrated in the eastern plain region of the study area
with altitudes around 4 m. According to the statistical data of the local agriculture
department in 2012, the total acreage of the SCR was 86.4 km2, so the relative
classification accuracy was about 91.2%.
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We compared the classification accuracies of the 5 ground-truth sites (Table 3).
The overall classification accuracy and Kappa coefficient for all the sites were 91.68%
and 0.79, respectively. For each site, the producer’s and user’s accuracies of rice,
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overall classification accuracy and Kappa coefficient are listed in Table 3, in which
the site D had the highest user’s accuracy and overall classification accuracy (86.31%
and 94.21%, respectively), followed by site E, with user’s accuracy of 83.42% and
overall accuracy of 93.40%. All the ground-truth sites had producer’s accuracies
higher than 90.72% (site C). The accuracy assessment demonstrated a satisfactory
result of the proposed classification method.

Table 3. Classification accuracies and Kappa coefficients of the five ground-truth
sites for SCR. The last column corresponded to that if all sites were treated as
a whole.

Classification Accuracy A B C D E All

Producer’s accuracy (%) 95.43 94.12 90.72 94.98 95.67 94.35
User’s accuracy (%) 75.1 77.29 69.17 86.31 83.42 78.70
Overall accuracy (%) 92.43 90.68 91.93 94.21 93.40 91.68

Kappa coefficient 0.76 0.75 0.71 0.85 0.83 0.79

3.4. Comparison of Classification Methods

The classification accuracy of the proposed method used in this study
outperformed the MLCs and SVMs (Tables 4 and 5). By using EVI2 instead of the
reflectance data, the MLC-EVI2 and SVM-EVI2 improved the classification accuracies
to certain extent, but not significant, compared with their counterparts, respectively.
The MLCs and SVMs also showed better classification accuracies in site D and site E.
While site C had a lower classification result compared with the other four field sites.

Table 4. Classification accuracies and Kappa coefficients of the five ground-truth
sites for SCR using MLC and SVM methods. The last column is the corresponding
results if all sites were treated as a whole.

Classification
Methods Classification Accuracy A B C D E All

MLC-EVI2

Producer’s accuracy (%) 67.77 70.77 60.68 77.01 70.69 62.41
User’s accuracy (%) 67.08 63.83 61.43 73.25 73.68 60.58
Overall accuracy (%) 88.85 85.10 84.03 89.17 87.81 84.88

Kappa coefficient 0.71 0.68 0.68 0.60 0.74 0.65

MLC-Reflectance

Producer’s accuracy (%) 68.60 66.48 52.97 79.93 70.27 62.55
User’s accuracy (%) 65.23 61.21 56.15 69.49 70.27 57.52
Overall accuracy (%) 88.42 83.74 81.54 88.58 86.72 83.83

Kappa coefficient 0.70 0.63 0.64 0.70 0.72 0.65

SVM-EVI2

Producer’s accuracy (%) 82.23 83.38 60.05 83.76 81.07 73.97
User’s accuracy (%) 50.90 52.43 50.90 59.14 61.16 54.33
Overall accuracy (%) 83.46 80.17 76.96 85.37 85.34 81.09

Kappa coefficient 0.63 0.62 0.57 0.55 0.69 0.61

SVM-Reflectance

Producer’s accuracy (%) 84.30 85.82 60.96 85.40 79.10 74.80
User’s accuracy (%) 50.00 51.63 51.51 58.40 63.87 52.87
Overall accuracy (%) 82.97 78.23 76.35 84.78 84.27 80.00

Kappa coefficient 0.63 0.59 0.56 0.55 0.61 0.57
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Table 5. Landscape indices of the five land cover types in the ground-truth sites.

Site Class CA (ha) %LAND PD MPS (ha) AWMSI MNN (m)

A

Rice 50.08 25.78 1.56 0.64 1.73 27.41
Trees 44.99 23.16 2.20 0.45 2.83 19.45
Water bodies 69.12 35.58 1.22 0.82 2.54 18.03
Economic crops 2.32 1.19 6.89 0.15 1.40 126.17
Other nonvegetated areas 27.77 14.29 4.83 0.21 7.76 30.91

B

Rice 60.85 30.25 1.25 0.80 2.11 21.90
Trees 56.73 28.20 1.73 0.58 3.23 21.38
Water bodies 48.12 23.92 1.41 0.71 3.86 20.32
Economic crops 3.75 1.86 5.33 0.19 5.67 80.80
Other nonvegetated areas 31.72 15.77 4.48 0.22 4.55 17.64

C

Rice 40.50 19.66 1.31 0.76 1.57 22.14
Trees 45.47 22.07 1.83 0.55 2.56 15.98
Water bodies 74.08 35.95 0.90 1.11 2.10 20.15
Economic crops 7.55 3.67 2.25 0.44 1.34 92.04
Other nonvegetated areas 38.44 18.66 4.63 0.22 7.34 21.30

D

Rice 70.31 36.03 0.95 1.05 1.25 13.85
Trees 32.12 16.46 1.96 0.51 2.20 13.24
Water bodies 62.61 32.08 1.15 0.87 1.94 7.00
Economic crops 5.95 3.05 15.12 0.07 4.38 21.55
Other nonvegetated areas 24.15 12.38 8.49 0.12 18.53 13.50

E

Rice 55.62 31.15 1.11 0.90 1.40 13.64
Trees 41.63 23.32 2.45 0.41 1.97 14.60
Water bodies 43.74 24.50 0.78 1.29 2.60 22.36
Economic crops 5.88 3.29 5.44 0.18 1.58 65.06
Other nonvegetated areas 31.67 17.74 5.27 0.19 8.29 19.73

3.5. Influence of the Mixed-Pixel

In the five ground-truth sites (Table 5), the average area percentage of water
bodies was the highest among the 5 land cover types (larger than 0.71 in five field
sites), followed by rice and trees (larger than 0.64 and 0.41, respectively). About
36.03% area of site D was rice, compared with the smallest proportion of 19.66% in
site C. The site D had the smallest trees area proportion of 16.46%. The economic
crops had the smallest area, and its average patch size in site D was only 0.07 ha,
smaller than the area of one pixel of HJ-1 CCD image (30 m ˆ 30 m); the high values
of MNN also indicated the highly scattered status of the economic crops (see also
Figure 2), and economic crops had the largest value of MNN of the five categories for
five field sites. The other nonvegetated areas had the highest AWMSI (except site B),
reflecting the complex shape of the road system. The fragmentation statuses of rice,
indicated by PD, AWMSI and MNN, of sites D and E were the lowest compared with
sites A–C; while the site D and E had the highest MPS. The sites D and E had less
fragmented degrees compared with site C, while sites A and B had intermediate level
of fragmentation statuses of rice.

Figure 8 showed the ratios of the pixels which were classified as rice field in
the HJ CCD images to the total pixel number (ground-truth data, pixels in which
the area proportion of rice field is greater than 50%) in each grade for sites A–E. It
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is obvious that the recognition ratio increased as the area proportion of rice field in
pixel ascending, i.e., the grade 75%–100% had the highest classification accuracy. The
site D and E had the highest recognition ratio in each grade, while site C the lowest.
This result also demonstrated the difficulties in classification in fragmented areas
where the mixed-pixel problems were more serious.

More than 69.03% commission pixels concentrated at the boundaries, while at
least 63.89% omission pixels lay on the boundaries; that is, most of the misclassified
pixels concentrated at the boundaries of the rice fields (Table 6 and Figure 9). The
omission pixel numbers of sites D–E were 40 and 36 respectively, obviously less
than sites A–C (65, 70 and 80 respectively). The misclassification error was largely
determined by the commission error. As shown in Figure 9, the commission error
pixels (red color) were more than the omission ones (blue color).Remote Sens. 2015, 7 3481 
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Table 6. Statistics of the pixel numbers in classification for sites A–E. The boundary
pixels are the pixels which contain certain area of rice field and interface with the
other land cover types; the commission pixels represent pixels in which the rice
field area proportion is less than <50%, but is misclassified as rice field; and the
omission pixels are pixels in which the rice field area proportion is great than 50%
but is wrongly classified as the other land cover types.

Statistics of Classification A B C D E

Rice pixel number 779 995 678 942 742
Boundary pixel number 476 594 433 542 369

Commission pixel number 150 217 155 144 119
Commission pixels on boundary 122 169 107 101 91

Omission pixel number 65 70 80 44 36
Omission pixels on boundary 47 57 53 40 23

Classification error(%) 1 27.60 28.84 34.66 19.96 20.89

Note: 1 The classification error is calculated as (omission number + commission
number)/rice pixel number.
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4. Discussion

It is generally acknowledged that using a single-temporal image to well
discriminate a specific kind of crop at various phenology stages from the other
vegetation (or land cover types) is an enormous challenge [19,60,61]. However, using
the spectral characteristics (or vegetation indices) determined by the key phenologies
of a specific crop species, i.e., multi-temporal remote sensing imageries, is a promising
way to improve the classification accuracy [62,63]. To effectively discriminate the rice
field in eastern plain region of China, where the rice field is generally fragmented
and irregular due to the topography and widely distributed water bodies and road
networks, a specifically designed stepwise remote sensing classification strategy was
applied in this study.

The time-series EVI2 data for the major land cover types in the study area were
built from the HJ-1 A/B CCD imageries and the S-G filters was applied to smooth the
EVI2 time-series. With the reference field campaign data, the EVI2 showed efficient
discriminating capability in capturing the spectral differences between SCR and
the other land cover types during the key SCR phenology stages (Figure 5). It is
prominent that the EVI2 of SCR increased rapidly during the transplanting and ear
differentiation (including early heading) stages, and the temporal resolution of HJ-1
A/B CCD data was testified to be suitable to capture these features. The stepwise
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classification algorithm proposed in this study can be seen as an exemplar of the
decision tree classification category, and it outperformed the parametric (MLC) and
nonparametric (SVM) classification algorithms, respectively (Tables 3 and 4). By
using EVI2 instead of the reflectance data, the classification accuracies improved to
certain extents for both of MLC and SVM. The results also implied that by treating
the satellite-derived vegetation classification information hierarchically, the mixtures
among spectral feature spaces can be effectively alleviated. For MLC and SVM, total
six scenes during SCR transplanting to early reproductive stages (from 2012/06/29
to 2012/09/02) were used, including the transplanting, vegetative to reproductive
transition phases. However, it is noteworthy that time-series EVI2 of SCR during this
period increased rapidly and intersected with the EVI2s of all the other land cover
types, except water bodies (Figure 5). Therefore, the classification accuracies of MLC
and SVM should unavoidably be decreased, because both of the methods treated the
spectral signatures contained in the six scenes collectively.

The influence of the mixed-pixel is a primary concern in remote sensing
classification practices. We used five ground-truth sites as an example and analyzed
the relationship between the purity of pixels (measured as the area proportion of rice
field in a specific cell) and the corresponding recognition ratios. The mixed-pixel
analysis showed that the recognition ratio was positively correlated with the rice
field area proportion at each ground-truth site (Table 5 and Figure 8). The sites D and
E showed the best recognition ratio of SCR among the five ground-truth sites, and it
is in accordance with the fragmentation statuses indicated by the landscape indices
(Table 5). It is not unexpectedly that as the area proportion of rice field increased in
each cell, the possibility of misclassification decreased consequently, especially for
the grade of 75%–100% (refer in particular to rice field).

As large part of the classification error can be attributed to the influence of
mixed-pixels where the area proportion of rice field was less than 75%, and most
of the mixed-pixels concentrated at the boundaries of the rice fields (Table 6 and
Figure 9). We further analyzed the classification error caused by the commission
and omission errors due to the mixed-pixels and boundary effects, respectively.
The results showed that the ratio of the edge pixels to the total rice pixel number
correlated with the fragmentation states of each site, i.e., the number of the edge
pixel was positively correlated with land fragmentation states of each site due to the
increased rice field perimeter. As a consequence, the classification errors of sites D–E
were less than sites A–C as shown in Table 6. For rice fields, the misclassification
caused by the commission errors was more common, compared with the omission
errors (i.e., cells in which rice field area was less than 50% but was classified as rice
field, see Figure 8).

However, it should be noted that due to the existence of spatial autocorrelation,
the classification accuracy reported in this study may be overestimated [64]. Spatial
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autocorrelation might be present due to large pixel size [65] or points sampled
in close proximity [66]. To avoid the artificially increased classification accuracy
caused by the random cross-validation using autocorrelated dataset, more than one
permanent training/test dataset should be utilized in accuracy assessment [64]. In
this study, five ground-truth sites with different land cover percentages were selected
for classification accuracy assessment, however the authors acknowledged that the
autocorrelation may still unavoidable and quantitative evaluation of its influence
is still a challenge. Further studies should be focused on field data collection, with
subsampling and cross-validation like k-fold method [64] to improve the classification
accuracy assessment.

The extrapolation of the findings in this study must be cautious due to various
changes in the environmental factors (e.g., dry or wet) and vegetation status in
different regions and years. The aim of this study was to provide a general
methodology in the classification of single-cropped rice. However, when applying it
to another region or year, the VI thresholds, which are used to distinguish different
land cover types, must be decided according to the specific time series satellite
images, i.e., the VI thresholds and the timestamps (according to the key phenologies)
are variable.

5. Conclusions

In this study, we applied a simple but robust stepwise algorithm to estimate the
single cropped rice (SCR) growing area in irregular and fragmented regions. The
multi-temporal HJ-1A/B images and specific signatures of EVI2 at the key phenology
stages, i.e., the transplanting and the vegetative to reproductive transition phases,
of the SCR were used to classify the rice fields from the other land use types with
satisfactory results, compared with the traditional MLC and SVM methods. Due
to the fragmented land use composition in the study area, we also assessed the
influence of mixed-pixel quantified by using the landscape indices and it showed
that the classification accuracy ratio of rice field was positively correlated with
its compactness. We showed that by making full use of the key phenological
information, and under the support of high-temporal resolution remote sensing
data, e.g., HJ-1A/B, the SCR can be mapped at a relative high confidence. The crucial
point in the proposed method was the construction of high-quality time-series VI
curves, which were then used to identify the key phenology stages to differentiate
different land cover types. However, due to the variation of environmental factors
and the corresponding changes of vegetation status, due care should be taken when
extrapolating the results to other regions or periods. Additionally, we noted that
the influence of spatial autocorrelation should also be taken into consideration in
classification accuracy evaluation in further study.
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A Hidden Markov Models Approach for
Crop Classification: Linking Crop
Phenology to Time Series of Multi-Sensor
Remote Sensing Data
Sofia Siachalou, Giorgos Mallinis and Maria Tsakiri-Strati

Abstract: Vegetation monitoring and mapping based on multi-temporal imagery
has recently received much attention due to the plethora of medium-high spatial
resolution satellites and the improved classification accuracies attained compared
to uni-temporal approaches. Efficient image processing strategies are needed to
exploit the phenological information present in temporal image sequences and to
limit data redundancy and computational complexity. Within this framework, we
implement the theory of Hidden Markov Models in crop classification, based on
the time-series analysis of phenological states, inferred by a sequence of remote
sensing observations. More specifically, we model the dynamics of vegetation over
an agricultural area of Greece, characterized by spatio-temporal heterogeneity and
small-sized fields, using RapidEye and Landsat ETM+ imagery. In addition, the
classification performance of image sequences with variable spatial and temporal
characteristics is evaluated and compared. The classification model considering
one RapidEye and four pan-sharpened Landsat ETM+ images was found superior,
resulting in a conditional kappa from 0.77 to 0.94 per class and an overall accuracy
of 89.7%. The results highlight the potential of the method for operational crop
mapping in Euro-Mediterranean areas and provide some hints for optimal image
acquisition windows regarding major crop types in Greece.

Reprinted from Remote Sens. Cite as: Siachalou, S.; Mallinis, G.; Tsakiri-Strati, M.
A Hidden Markov Models Approach for Crop Classification: Linking Crop
Phenology to Time Series of Multi-Sensor Remote Sensing Data. Remote Sens. 2015, 7,
3633–3650.

1. Introduction

The problem of ensuring food security for an increasing population is currently
one of the main concerns globally. To solve economic and social issues resulting from
current and predicted food shortage, one billion hectares of new cropland would
be required in order to meet the demand for food by 2050 [1]. However, taking
into consideration environmental restrictions, the potential to expand cropland
at the expense of other lands, such as forests or rangelands, is limited [2]. The
challenge for agronomists, farmers and their allied partners is to produce humanity’s
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food in an ecologically sustainable manner, through socially accepted production
systems [3]. These trends suggest an increasing demand for dependable and accurate
agricultural monitoring to ensure sustainable crop production and investigation of
land management practices [4].

Within this framework, spatially explicit cropland information, such as cropland
extent and crop type, is crucial to sustain agriculture and preserve natural resources.
A basic prerequisite for the implementation of a land-management strategy is
the development of up-to-date Land Use/Land Cover (LULC) databases over
agricultural landscapes. Indeed, LULC data, regarding the spatial distribution of
crop types, is considered as key information from a geostrategic point of view. The
research community is moving towards providing and timely agricultural maps at
national or global level of detail [5].

Over the past decade satellite images offer a valuable source of information
concerning the monitoring of the Earth’s surface in fine spectral and spatial scales.
Satellite based earth observation has been used to map crop types under a variety
of environmental conditions, providing synoptic coverage of fields in several
spectral regions, smooth integration with existing geographical databases under
a cost-effective and time-saving approach than traditional statistical surveys [6].
Through these studies, remote sensing techniques have proven to be cost-effective in
widespread agricultural lands in Africa, America, Europe and Australia.

Monitoring and mapping vegetation involves investigating vegetation
dynamics, such as phenological states and the seasonal growth of crop types. Spectral
behavior of agricultural parcels is constantly changing; different crop types may
be at a certain instant in the same phenological state, depicting similar spectral
attributes, but diverge remarkably in another instant. Classification of parcels
based on single-date images, even if they are acquired at critical growth states,
cannot offer reliable results in the case of crops with similar growing cycle. As a
result, the significance of classification based on multi-temporal images has been
well-recognized and especially regarding vegetation mapping, the usage of seasonal
imagery is vital [5,7–12].

Low resolution images with high revisit frequency have been processed on
the continental and global scale, providing consistent information at high temporal
resolution while covering large areas at low costs [13]. However, because of sub-pixel
heterogeneity, the spatial resolution of the imagery may result in significant errors in
the estimated crop areas [14,15].

At the regional level, crop area estimations have been significantly improved
since the introduction of the MODIS sensor with 250 meter ground resolution [13].
MODIS offered unprecedented capabilities for large-area LULC mapping by
providing global coverage, half-day revisit capacity and intermediate spatial
resolution. Several studies have already demonstrated successfully the potential of
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these data for detailed LULC mapping in an agricultural setting [15], especially for
areas where the typical field size is large [5,16].

Multi-spectral, medium-high resolution images, acquired mainly by Landsat
Thematic Mapper/Enhanced Thematic Mapper Plus (TM/ETM+), SPOT and
RapidEye [17–20], have been used for regional to local scale crop mapping, either
on mono-temporal basis or under a multi-temporal perspective, accounting for
small sized fields or heterogeneous crop patterns. To solve the issue of high
within-class variability originating from various agronomic practices, the synergy of
multi-temporal optical and Synthetic Aperture Radar (SAR) data has also been
proposed; the increased set of multi-temporal imagery enables the continuous
monitoring of all stages of vegetation development [21]. While multi-temporal
data of medium-to-high resolution offers high potential for crop discrimination in
fine-structured agricultural landscapes, integration of the temporal information in
the classification process is not trivial. Precise annual mapping of crops, through an
approach that could be used routinely over large areas, remains challenging [22,23].

Although a variety of algorithms has been employed in crop mapping studies,
including among others, the minimum distance, Mahalanobis distance, maximum
likelihood, spectral angle mapper and support vector machines, an approach
integrating phenological models in the classification process has been given little
attention so far. Through phenology, remote sensing observations and biophysical
changes during vegetation’s growth can be linked statistically in order to discriminate
crop types. A possible way of incorporating knowledge of phenology into the
classification process lies on the adoption of the stochastic Hidden Markov Models
(HMMs). HMMs allow the simulation of crop dynamics, exploiting the spectral
information of their phenological states and their relations. In this regard, a common
assumption is made that the vegetation signal and the different phenological states
are considered random variables [24]. The correlation of phenological states is
described by different transition state probabilities in each crop model. As far as
the different cultivation practices, the algorithm reckons the possibility of temporal
variation in the phenological cycle. Different growing states of the same crop type
per image can be introduced instead of using a generalized crop model. These
states correspond to different spectral attributes and are used jointly to define each
model. This is the basic advantage of HMMs compared to other techniques that
produce simulations of average seasonal phenology [25] and may fail to account for
a restrained or accelerated phenological progress.

Previous work has tested the application of HMMs in Landsat time series
to classify mountain vegetation in Norway [26] and arable land in Brazil [27], in
MODIS-NDVI time series covering cultivated areas of the United States [28] and
NDVI data derived from the Advanced Very High Resolution Radiometer (AVHRR)
over the West African savanna [24]. In all the aforementioned studies, the low and

233



medium resolution images have been reported to be adequate for the classification
of large-sized agricultural holdings. However, Mediterranean regions that are
characterized by distinct environmental and climate settings, high spatio-temporal
ecological heterogeneity [29,30], variety of crop types and high fragmentation of
farming lands [23,31], require a different approach.

The main aim of this study is the development of a robust crop mapping
technique adopting the theory of Markov chains and phenological models, over
a Euro-Mediterranean agricultural area. Specifically, this work proposes a crop
classification approach that integrates high and medium resolution remote sensing
images in order to monitor constant variations in the ecological process of the
cropping systems. A pixel-based methodology was selected, instead of using the
segment-based approach proposed by [27], to avoid errors produced by segmentation
algorithms. The per-segment approach applied to small-sized crop parcels, found
over Euro-Mediterranean areas, may have the disadvantage of falsely including
within field-crop objects small non-vegetated classes (i.e., roads, canals) leading to an
overestimation of the total vegetated area [32].

In particular, the objectives of the study are: (1) the identification of different
crop types using a sequence of four seasonal multispectral Landsat ETM+ and
a RapidEye image, processed simultaneously through Hidden Markov Models,
(2) the assessment of the impact on the accuracy of a pan-sharpening procedure
applied to the lower resolution Landsat ETM+ imagery and (3) the investigation
of the role of the temporal resolution and extent of the image sequence used, in
relation to the phenological cycle of each crop type. The multi-sensor and multi-
temporal approach is motivated by the acknowledgment of the potential of coarser
spatial resolution data to cover large geographic extends, the demands of complex
territories and the growing interest in exploiting multi-scale data synergistically [4].
Furthermore, the definition of optimal temporal acquisition windows is considered
vital by several crop mapping studies [8,11,18,33] while it can improve classification
accuracy significantly.

2. Study Area

The research site is an irrigated agricultural area, near the city of Thessaloniki,
Greece. The study area is dominated by rice and cotton while maize, sugar beet,
wheat and alfalfa are planted to a smaller extent. The cropping calendar (planting
and harvesting dates) of the area’s crop types is presented in Figure 1.

Rice, cotton, maize and sugar beet are summer crops and those fields are
characterized by dense vegetation during summer months. Wheat is harvested before
June and is a spring crop. Rice, cotton, maize, sugar beet and wheat are considered
annual crops and have a 12-months cycle. Alfalfa on the other hand can have
3–4 cuttings and flowerings per year, usually between May and September. Thus,
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the cropping pattern of the study area can be considered heterogeneous regarding
the dates of planting, emergence, and harvesting. The majority of the parcels are
rectangular but small sized. Despite the applied land consolidation the size of the
parcels ranges from 0.006 to 10 ha. The terrain across the study area is relatively flat.
The average annual temperature of the study area is 15.8 �C. The area is characterized
by modest annual rainfall, averaging 441 mm/y.
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Figure 1. Idealized cropping calendar of the main crop types grown in the
study area.

3. Materials and Methods

3.1. Outline of the Methodology

Originally, the Landsat ETM+ images were registered to the higher resolution
RapidEye image, which has been georeferenced using ground control points
(GCPs) identified over VHR orthophotographs (Figure 2) in the same geodetic
system with the vector dataset representing field entities of the area (Land Parcel
Identification System-LPIS). LPIS was visually corrected for small inconsistencies.
The multispectral ETM+ images were pan-sharpened using the panchromatic band
and the High Pass Filter (HPF) algorithm. Four synthetic images were produced
with a spatial resolution of 15 meters. Nine different classifications experiments
were applied on image sequences with variable spatial and temporal characteristics.
A common set of training data, derived from the LPIS, was used to estimate the
parameters of the crop models. For each HMM, we calculated the probability that the
specific set of temporal observations corresponded to a class. Each pixel is assigned
to the class whose crop-model emits the maximum probability. The results of the
classification tests were evaluated in terms of overall accuracy and kappa coefficients.
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3.2. Satellite Data and Preprocessing

Imagery acquired from sensors with different spectral, spatial and radiometric
characteristics was used in the analysis. More specifically, the multispectral
(excluding the thermal bands) and panchromatic components of four Landsat ETM+
images (184/32) and one multispectral RapidEye image, all acquired on different
dates of 2010 (Figures 3 and 4), were employed in this study (Table 1).

Table 1. Description of the satellite data used in the study. *: blue; G: green; R: red;
NIR: near-infrared; SWIR: shortwave-infrared bands.

Time
Step Sensor Date of

Acquisition

Spatial
Resolution
Multi/Pan

Radiometric
Resolution

Spectral Bands
*

t1 Landsat ETM+ 07/05/2010 30/15 m 8-bit B, G, R, NIR,
SWIR1, SWIR2

t2 Landsat ETM+ 08/06/2010 30/15 m 8-bit B, G, R, NIR,
SWIR1, SWIR2

t3 RapidEye 05/08/2010 5 m 16-bit R, G, B, Red
edge, NIR

t4 Landsat ETM+ 27/08/2010 30/15 m 8-bit B, G, R, NIR,
SWIR1, SWIR2

t5 Landsat ETM+ 30/10/2010 30/15 m 8-bit B, G, R, NIR,
SWIR1, SWIR2
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Figure 3. The set of images used included four Landsat ETM+ images (image t1,
image t2, image t4, image t5) illustrated in false-color composite (R: NIR, G:Red,
B:Green) and one Rapideye image (image t3) in false-color composite (R: NIR,
G:Red, B:Green).
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Landsat ETM + sensor launched in April 1999 has a spatial resolution of
30 meters for the six reflective bands, 60 meters for the thermal band, and 15 meters
for the panchromatic (pan) band. On 31 May 2003, the ETM+ Scan Line Corrector
(SLC) failed causing the scanning pattern to exhibit wedge-shaped, scan-to-scan
gaps, which are most pronounced along the edge of the scene. The scans give
near-contiguous coverage of the surface scanned below the satellite in the center of
the image (approximately 22 km wide).

RapidEye is a constellation of 5 multispectral satellite sensors launched in
August 2008 with a primary focus on agricultural applications. The RapidEye sensor
has a multispectral push broom imager with a spatial resolution of 6.25 meters.
It captures data in five spectral bands covering visible–infrared part of the
electromagnetic spectrum: blue (440–550 nm), green (520–590 nm), red (630–685 nm),
red edge (690–730 nm), and near infrared (760–850 nm). In our study, we used the
RapidEye (Level 3A) in which radiometric, sensor, and geometric correction have
been applied and resampled to a 5 meters spatial resolution. We georeferenced
the RapidEye imagery to the Greek Geodetic Reference System 1987, using ground
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control points, identified on natural color orthoimages with 50 cm spatial resolution
acquired on 2007. Between 20 and 30 ground control points were used to co-register
the Landsat scenes to the RapidEye imagery, with a Root Mean Square error (RMS)
of less than a pixel. We did not apply any atmospheric correction or radiometric
normalization since the adopted classification approach does not employ any direct
comparison of pixel DN values between the temporal sequences of images. Instead,
the classification scheme assigns pixels to crop classes, according to their similarity
of states within each image separately and in a subsequent step the temporal images
are linked using statistical relationships. In this context, atmospheric correction was
not considered a prerequisite [32].

The same geographic subset was identified on every Landsat imagery, with
no effective clouds or sensor defects, such as the “SLC-off problem”, covering
approximately 7500 ha of cultivated area (1760 by 1710 RapidEye pixels). Additionally,
regarding the Landsat images, the panchromatic images were merged with the
multispectral ones, using the High Pass Filter (HPF) algorithm and four synthetic
images were produced with a spatial resolution of 15 meters [21]. Finally, in order to
achieve spatial correspondence for each pixel, all Landsat ETM+ images (original and
pan-sharpened) were re-sampled to 5 meters, using a nearest-neighbor algorithm to
match the spatial resolution the RapidEye image (Figure 3).

3.3. Reference Data

The Land Parcel Identification System (LPIS) is a fundamental part of the
Integrated Administration and Control system that has been developed and adopted
in 1992 by the EU as the spatial component for the implementation and supporting
of the Common Agricultural Policy (CAP) and land management across Europe [34].
The main functions of the LPIS are localization, identification and quantification of
agricultural land via very detailed geospatial data, in order to spatially represent the
activities of farmers on their land and facilitate the geographical identification of the
agricultural parcels declared annually to receive funding [35].

Although the regulatory requirements for the LPIS are uniform across the EU
sector, the particular implementations are subject to member states. The Greek
GIS-based LPIS integrates information about the crop type, the acreage of a parcel,
the identity of the farmer and relates it to a vector layer comprised of the declared
parcels. Since the information of this database is gathered from the declaration of
the farmers it cannot be considered flawless. In this respect, an expert from “Greek
Payment Authority of Common Agricultural Policy Aid Schemes of the Ministry of
Rural Development and Food” visually examined and corrected the parcels’ crop
type and boundaries manually, taking into account the cropping calendar of the
study area and the spectral- temporal profile of each parcel. The detailed delineation
of the boundaries was guided mainly by the high resolution RapidEye image. In
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total, 3319 declared parcels were found in the study area. A set of 55 parcels was
used as training data and the rest was used during the accuracy assessment of
the classification.

3.4. Description of the Proposed HMMs Classification Algorithm

The temporal evolution of vegetation can be described effectively by the
state-oriented approach of Hidden Markov Models (HMMs). Each cultivated parcel
has a dynamic behavior that depends on cropping phenology, climatic conditions,
drought, water irrigation and chemical nutrients (Figure 5).
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parcels of the same crops can have distinct spectral properties. This can be also observed in 
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Figure 5. Temporal sequence of images t1, t2 and t3 covering the same area
containing parcels cultivated by various crop types (1 = maize, 2 = rice, 3 = wheat,
4 = alfalfa and 5 = sugarcane). It is indicated that the different phenological states of
crops at each time step impose significant variance in the between-class separability.

Furthermore, neighboring parcels of the same crop type, over the same time step,
may be at different states of growth due to varying agronomic practices; different
planting or harvesting dates and fertilizers can accelerate or restrain the phenological
progress (Figure 6).

Given that each parcel changes constantly from state to state (Figure 5) and
that each state cannot be directly linked to a remote sensing measurement but to a
probability distribution of observations, an HMM can be used to simulate the cycle of
vegetation based on statistical relations. In this case, an HMM is a doubly embedded
stochastic process comprised by two chains: the external chain of the remote sensing
observations and the internal chain of states, which are unknown [24] (Figure 7).
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Figure 6. Different subsets of satellite images t3 and t4 containing parcels with
various crop types (1 = cotton, 2 = alfalfa and 3 = maize). In the left subset it can be
observed that certain parcels of cotton and alfalfa may resemble according to their
phenological state, while other parcels of the same crops can have distinct spectral
properties. This can be also observed in the right subset referring to maize fields
with different spectral characteristics.
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In this study, a crop classification algorithm, based on Markov-chain analysis,
was designed and implemented using Matlab®. Accordingly, a model was built
describing the phenological states during the dates of the study for each crop type.
The sequence of observations consisted of a set of remote sensing measurements
O = {Ot1 ,..., Otn}, where t = {t1 ,..., tn} are the acquisition dates of the images. The
hidden states correspond to the different phenological states S = {S1 ,..., Sm} of each
crop type and Q = {qt1,..., qtn} is the fixed sequence of hidden states. During the
acquisition of the satellite data, the identified states of the parcels in the study area
were: S1, no vegetation or beginning of emergence, S2, medium vegetation or growth
state, S3, dense vegetation or flowering and S4, dry vegetation or harvesting state.

An HMM is characterized by the following elements:

I The state transition probability matrix A, where ai,j(t) = P[qt = Sj |qt-1 = Si],
denotes the transition probability from state Si to state Sj at time t. The
emission probability matrix B, defines the probability that Ot is emitted
by state Sj, i.e., bj(Ot) = P[Ot | qt = Sj ]. In order to estimate the symbol
probability distributions B, a multivariate Gaussian distribution is assumed
for the observed spectral data. The mean vector µi and the covariance matrix°

i were calculated by the training data for each crop type, for each state and
for every image by the equation,

bi pOtq �
1c

p2πqd |Σi

���exp

�
�
pOt � µiq

T Σ�1
i pOt � µiq

2

�
(1)

II The initial probability πi is the probability of being in state Si at time t1, i.e.,
πi = P[qt1 = Si]. The parameters A, B and πi were estimated by the set of
training data. The set of training samples was selected and defined according
to our knowledge of local agronomic practices and the cropping calendar of
the district. To ensure classification success, all classes need to be described
by representative training samples. The samples define the different states
of crop types according to their different spectral attributes. The set of the
training data was evenly distributed in the study area, located in homogenous
fields and not in boundary mixed pixels. It should also be noted that in each
image, fields of the same crop type may be in different states; usually a state
before or a state after (Figure 7). Judging by the cropping calendar and the
dates of the used images, not all transitions between states are possible in this
case study. Once we have estimated the parameters A, B, πi of each model λ
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and given the sequence of observations O for each pixel, the probability that
the sequence O was generated by these models λ is defined by:

P
�
q1 � Si, . . . , qt � Sj, O1, . . . , Ot|λ

�
� P

�
O1, . . . , Ot |q1 � Si, . . . , qt � Sj

�
�

P
�
q1 � Si, . . . , qt � Sj |λ

�
� πq1

�
t¹

l�2

aqt�1, qt
plq �

t¹
l�1

bqt
pOlq

(2)

Detailed mathematical explanation of HMMs has been reported in previous
studies [24,36] which propose the implementation of the Forward algorithm to
simplify computations of Equation (2).

In this study, five models were built (one for each crop class), and five
measurements of probability were estimated for each pixel (Equation (2)). Let us
consider a temporal spectral sequence of pixel x belonging to lm, the most probable
crop, where L = {l1,..., lk} is the set of possible crop classes. For each pixel x, the most
likely crop-class is determined by the following rule:

x P λm when λm � argmax
�
P
�
q1� Si,. . . , qt� Sj, O1,. . . , Ot|λm

� �
(3)

Finally, nine different HMM models were developed in order to evaluate the
role of the temporal resolution and extent of the image sequence used, in relation
to the phenological cycle of each crop type, as well as to assess the utility of the
pan-sharpening procedure in terms of classification accuracy (Table 2).

Table 2. Selections of different images included in the evaluation of our
proposed methodology.

Imagery Employed
Rationale of the Classification Experimentt1 t2 t4 t5 t1 t2 t4 t5 t3

Original ETM+ Pan-Sharpened ETM+ RapidEye

HMM-1 X X X X X Assessment of the HMMs approach
HMM-2 X X X X X Influence of pan-sharpening
HMM-3 X X X X Influence of spatial resolution-RapidEye
HMM-4 X X X Influence of temporal extent and resolution
HMM-5 X X X Influence of temporal extent and resolution
HMM-6 X X X Influence of temporal extent and resolution
HMM-7 X X Influence of temporal extent and resolution
HMM-8 X X Influence of temporal extent and resolution
HMM-9 X X Influence of temporal extent and resolution

3.5. Accuracy Assessment

Each classification test was evaluated in terms of overall accuracy (OA) and
Kappa coefficient, by comparing the reference data with the classified images, pixel
by pixel. Overall accuracy represents the proportion of the correctly classified pixels
relative to the total number of validation pixels. Kappa coefficient takes into account
all the elements of the error matrix and is a measure of the proportional improvement
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by the classifier over a purely random assignment to classes [37]. Despite the fact that
both the OA and Kappa coefficient measure the agreement between the classified map
and the reference data, Kappa is often considered a better indicator of classification
performance because it excludes chance agreement [38]. Finally, the conditional
Kappa coefficient was used for assessing the agreement for the individual crop
categories of the maps.

4. Results and Discussion

The results of the accuracy assessment of the classification tests are presented in
Table 3 including overall accuracy, overall kappa coefficient and kappa coefficient of
each class and are further discussed in the following sections.

Table 3. Overall accuracy, overall kappa coefficient and the kappa coefficient of
each class for all experiments according to the selected images.

HMM-1 HMM-2 HMM-3 HMM-4 HMM-5 HMM-6 HMM-7 HMM-8 HMM-9

Overall Accuracy 84.7% 89.7% 88.5% 87.5% 90.5% 92.5% 75.9% 76.0% 91.1%
Overall Kappa coefficient 0.774 0.843 0.825 0.811 0.852 0.881 0.658 0.655 0.859

Conditional
Kappa
Coefficient

Cotton 0.662 0.770 0.743 0.722 0.823 0.894 0.504 0.570 0.871
Rice 0.911 0.882 0.875 0.848 0.924 0.907 0.730 0.640 0.898
Sugar beet 0.954 0.936 0.934 0.930 0.922 0.906 0.875 0.854 0.900
Alfalfa 0.789 0.852 0.897 0.795 0.606 0.788 0.694 0.858 0.883
Maize 0.742 0.861 0.831 0.859 0.867 0.805 0.834 0.641 0.702
Wheat 0.930 0.916 0.869 0.953 0.659 0.690 0.895 0.705 0.681

4.1. Multitemporal Classification Using the Original ETM+ and RapidEye Imagery

It has been observed [6] that the spatial resolution of the imagery should be
at or below the size of the fields. Nevertheless, detailed information provided by
high resolution images does not meet the requirements for temporal availability and
cost-effective processing framework. When lower resolution sensors are selected,
the accuracy of the classification is affected by the mixed pixel problem. For this
reason, we explored the processing of time series of high and medium resolution
images simultaneously. In the first classification experiment (HMM-1), considering
one RapidEye and the original multispectral Landsat ETM+ images (Table 2), the
classification model achieved an overall accuracy of 84.7% and an overall Kappa
coefficient of 0.774. The conditional kappa coefficients ranging from 0.662 to 0.954,
suggest that the spectral information was adequate for discriminating the majority
of the crop types.

4.2. Multitemporal Classification Using the Pan-Sharpened ETM+ and RapidEye Imagery

In order to evaluate the contribution of the pan-sharpening of the Landsat
ETM+ images in the improvement of the classification process, the developed HMM
was tested using the synthetic ETM+ bands along with the multispectral RapidEye
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imagery (HMM-2). As the spatial resolution of the Landsat ETM+ images increased,
the performance of the classification model improved, reaching 89.7% in overall
accuracy and 0.843 in overall kappa coefficient (which corresponds to an increase of
5% and 0.069 respectively).
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Figure 8. Visual assessment of the classification results obtained from experiment
HMM-1 considering the original ETM+ and RapidEye images (a) and from
experiment HMM-2 considering the pan-sharpened ETM+ and RapidEye images (b).
HMM-1 experiment resulted to more extended classification errors along the
parcel’s borderline (c) and the respective classification errors (d) compared to lower
classification confidence (e) and confidence score (f) obtained from experiment
HMM-2.

Regarding the conditional kappa coefficients of individual crops, the highest
increase of ~0.110 is observed for “cotton” and “maize” classes, which presented
the lowest discrimination ability in the previous classification experiment (HMM-1).
This sharp increase can be attributed to the shape of the respective crop fields,
being more elongated and narrow compared to the other crop fields of the area.
The spatial explicit assessment of the classification errors distribution resulting
from the HMM-1 and HMM-2 maps (Figure 8), verifies the contribution of the
pan-sharpening procedure in the improvement of the classification result. Differences
are observed along the boundaries of the different crop fields with a larger proportion
of misclassified area found along the borderline of the fields in the case of the
original dataset (HMM-1). In addition, the confidence score derived by the computed
probabilities of the HMMs and the corresponding confidence images (Figure 8) prove
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that a larger proportion of each agriculture field is classified with higher confidence
in the case of the HMM-2 model.

4.3. Multitemporal Classification Using the Pan-Sharpened ETM+ Imagery

To quantify the contribution of the RapidEye image in the classification scheme
the third classification experiment (HMM-3) included only the pan-sharpened
Landsat ETM+ images. The overall accuracy of this experiment was 88.5% while
the overall kappa coefficient was 0.825. Compared to the results obtained from the
previous experiment, integrating the RapidEye imagery, a decrease in both accuracy
metrics is evident (1.2% in OA and 0.018 in Kappa values); this can be attributed to
the information content inherent to the higher spatial resolution RapidEye imagery.

Parcels not being wide enough to be mapped in a 15 meter resolution may be
distinguished in a RapidEye image of 5 meters pixel size. Thus, the RapidEye image
actually adds information involving narrow parcels and boundary pixels that cannot
be viewed in a Landsat ETM+ scene. Comparison of the individual class results
obtained by classification experiments HMM-2 and HMM-3 indicates that the lowest
differences exist for the conditional kappa coefficient of class “sugar beet”. This
relates to the fact that these crop fields within the study area, have a mean size of 1.28
ha. Their relatively large size allows satisfactory discrimination despite the coarse
spatial resolution of the pan-sharpened ETM+ bands.

4.4. Multitemporal Classification Considering Different Temporal Extents

One of our objectives was to assess classification accuracy obtained by
decreasing the number of images used in our classification model. Usually five
images per year are used to perform multi- temporal classification in agriculture
applications [12]. During classification experiments of HMM-4 to HMM-9, the
number of images employed in the model decreases, but the resulting overall
accuracy does not decrease proportionally. The selection of different temporal
images affects the discrimination of certain crop types. By using three images
(HMM-4, HMM-5 and HMM-6) instead of five, the conditional kappa coefficient
of each summer crop remains relatively high (above 0.722). As a matter of fact, in
HMM-6, where the three selected images were all acquired during summer, the
corresponding summer crops attain the highest accuracy values ranging between
0.805 and 0.907. When using just three or two images neither the overall accuracy
nor the overall kappa coefficient necessarily decrease, but certain individual crop
accuracies fall below average. In the cases of the classification experiments HMM-5,
HMM-6 and HMM-9, which do not incorporate the ETM+ image acquired on May
(t1), the overall accuracy increases, ranging between 90.5% and 92.5% with an overall
kappa coefficient between 0.852 and 0.881. However, these classification experiments
perform poorly for class “wheat” because it is an “early crop”. This implies that
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only in the early May image (t1) “wheat” fields appear vegetated. In fact, the kappa
coefficient of “wheat” drops at 0.659–0.690, while it reaches values of 0.869–0.953 in
all other tests. As for class “alfalfa”, it has been already stated that it has a different
phenological cycle, depending on the varied dates of the cuttings. This crop type
does not have a seasonal pattern like the other crops because the state of “emergence”
can be repeated 3–4 times per year and even neighboring fields can differ spectrally.
For this crop type at least 4 images are required to reach a stable classification result,
as indicated by the classification results.

Comparison of all the classification experiments, suggests that HMM-2
involving four pan-sharpened ETM+ and one RapidEye images, provided the best
results, as far as crop-specific accuracies are concerned. It ranges between 0.770
and 0.936, whereas in other tests it falls below 0.60. The visual assessment of the
classification errors and the confidence images, verifies the findings of the accuracy
assessment, and highlights the importance of the spatial information inserted into
this model through the pan-sharpening procedure for improving the classification of
the borderline pixels. The pan-sharpening procedure also improved classification of
pixels located within narrow fields by better preserving their spectral attributes. Even
though, the computed measures of 89.7% in the overall accuracy and 0.843 in the
overall kappa coefficient are not the highest, all accuracies per class reach satisfactory
levels. Similar performance metrics were reached in [27] and [18], where five images
were sufficient to reach an overall accuracy of 85%–89%. The further decrease in
the number of images had a significant impact deteriorating the average accuracy
per class. As far as the kappa coefficients are concerned, the highest values are
observed on class “sugar beet” and class “wheat” (0.936 and 0.916 respectively). This
is due to the size of the sugar beet parcels which can be monitored by the Landsat
ETM+ scenes. The high accuracy of “wheat” is justified by its different phenology
compared to the rest of the crop types. The poorest results were obtained for class
“cotton” (0.77 in the kappa index), which was confused with the other “summer
crops” due to its high internal spectral variability, resulting from the different farming
practices applied. Apart from errors related to sub-pixel heterogeneity, classification
errors related to whole field misallocation might arise (Figure 8). This kind of
errors stem from various agronomic practices (i.e., different dates of planting and
harvesting, usage of herbicides and fertilizers, etc.). This is a common problem in
crop mapping studies [21] and could be resolved with the insertion of additional
images representing more adequately high within-class variability.

In conclusion, the results suggest optimal dates of scenes according to which
crop types are to be examined. It should be noted that deciding on the optimal
number and dates of scenes depends on the study area, the number of classes and the
variety of cropping systems. In [11] it was proposed that four scenes were adequate
for the classification of six crop classes in Japan, while in [32] 2–3 multi-date images
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were used to discriminate seven classes including “grassland” in the Netherlands. In
this paper, by selecting 3–5 scenes the overall accuracy ranges between 87.5% and
92.5%, the overall kappa coefficient between 0.811 and 0.881 and the least conditional
kappa coefficient is about 0.60. However, reducing the number of images to two, led
to an overall accuracy and overall kappa coefficient of about 75% and 0.65 respectively
and a conditional kappa index of 0.50 which are considered moderate. Yet, if we need
to constrain to using only two multi-date images we should choose a combination of
May and August to account for both “winter” and “summer” cropping systems.

5. Conclusions

In this study, the classification approach was directed to meet the needs of a
Mediterranean agricultural area. The approach integrated the following ideas: (a) the
theory of HMMs to describe the dynamics of vegetation, (b) the combination of
multi-sensor data and (c) the implementation of image enhancement techniques.

The challenge of crop mapping stems from the variety of cropping systems,
distinct climate settings and cultivation practices. By using Hidden Markov Models
we were able to set a dynamic model per crop type to represent the biophysical
processes of agricultural land. Due to the high fragmentation of the land a
multi-resolution approach was introduced. Experimental results demonstrated that
the integration of even one very high resolution image and pan-sharpening of the
set of Landsat images improved the overall classification accuracy by 1.2% and 5%
respectively. Spatial explicit classification errors demonstrated that our methodology
succeeded in mapping even small-sized fields enhancing classification even on
the boundaries of different crop fields. It is worth mentioning that our approach
can incorporate and process different satellite data without the implementation
of atmospheric correction because the covariance matrix and the mean vector are
computed by the samples for each image separately.

However, an evident shortcoming is that models cannot be directly transferred
to another year or a different region. This can be attributed to two factors: the
inter-annual variation of climate conditions and the heterogeneity of cropping
patterns of distinct territories. Even within similar agricultural areas, crops may
grow in a different rate depending on the soil or irrigation system. To this end,
the algorithm can be extended to integrate weather information and improve the
estimation of the transition probabilities. Another drawback is that ground reference
data are required each year and over the specific study area to train the classifier. In
this paper, to avoid time consuming and costly on-the-field visits, we proposed the
use of the ancillary crop maps.

Depending on the application and the investigated crop types, different sets of
temporal images may be used. If we are interested in mapping only “summer” or
“winter” crops a set of only two images may provide adequate classification results.
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However, it has been shown that for more complex agricultural landscapes a robust
classification scheme requires at least 4–5 images to achieve a kappa index per class
above 0.70.

The increased availability of imagery by recent and up-coming satellite missions
(i.e., Landsat-8 and Sentinel-2) will offer a more dense set of observations and will
broaden the mapping capabilities of the proposed technique. Additionally, further
research may explore the integration of vegetation indices (VIs) to examine the impact
on the classification performance. Considering the computational complexity of the
algorithm, a reduction in the dimension of the input data by using VIs will improve
the efficiency of the processing. In the future, classification errors could be eliminated
by extending the model to incorporate contextual knowledge and accounting for
possible interactions of neighboring pixels.
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MODIS-Based Fractional Crop Mapping in
the U.S. Midwest with Spatially
Constrained Phenological Mixture Analysis
Cheng Zhong, Cuizhen Wang and Changshan Wu

Abstract: Since the 2000s, bioenergy land use has been rapidly expanded in U.S.
agricultural lands. Monitoring this change with limited acquisition of remote
sensing imagery is difficult because of the similar spectral properties of crops. While
phenology-assisted crop mapping is promising, relying on frequently observed
images, the accuracies are often low, with mixed pixels in coarse-resolution imagery.
In this paper, we used the eight-day, 500 m MODIS products (MOD09A1) to test the
feasibility of crop unmixing in the U.S. Midwest, an important bioenergy land use
region. With all MODIS images acquired in 2007, the 46-point Normalized Difference
Vegetation Index (NDVI) time series was extracted in the study region. Assuming the
phenological pattern at a pixel is a linear mixture of all crops in this pixel, a spatially
constrained phenological mixture analysis (SPMA) was performed to extract crop
percent covers with endmembers selected in a dynamic local neighborhood. The
SPMA results matched well with the USDA crop data layers (CDL) at pixel level and
the Crop Census records at county level. This study revealed more spatial details of
energy crops that could better assist bioenergy decision-making in the Midwest.

Reprinted from Remote Sens. Cite as: Zhong, C.; Wang, C.; Wu, C. MODIS-Based
Fractional Crop Mapping in the U.S. Midwest with Spatially Constrained
Phenological Mixture Analysis. Remote Sens. 2015, 7, 512–529.

1. Introduction

The Midwest is one of the major agricultural regions in the United States. In 2007,
the Midwestern states had a market value of over $76 billion for crops (corn, soybean,
wheat, and forage grass) and livestock [1]. Currently corn grain is still the most
commonly utilized feedstock for ethanol [2]. With increased biofuel demand, food
security and environmental contamination from intensified corn cropping become
major concerns in this region [3]. Perennial native prairie grasses are recognized as
promising alternative energy crops for cellulosic feedstock [4]. The USDA National
Agricultural Statistics Service (NASS) publishes annual cropland data layer (CDL)
products, in which annual crops are classified from satellite images at 30–56 m
resolutions [5]. Perennial crops, however, are not examined in these products. To
assist with sustainable bioenergy land use, there is a need for accurate mapping of
energy crops in this important agricultural region.
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Remote sensing has been proven to be an effective tool of regional and global
agricultural monitoring. Aside from the U.S. CDL products from medium-resolution
imagery, global cropland extents and irrigated areas have been extracted from
frequently observed, coarse-resolution data [6,7]. A comprehensive review was
presented in [8] about studies of global croplands and their water use with remote
sensing and non-remote sensing approaches by the world’s leading researchers. Yet,
even with high spatial-resolution imagery, mapping of individual crop types is often
limited to large fields with homogeneous structures [9]. In complex agricultural
areas with a diversity of crops, different crops often have similar spectra during
the growing season. It is thus difficult to delineate crops using regular binary
classifiers [10]. For satellite images at coarse resolutions, the mixed-pixel problem
also results in uncertainties in crop delineation.

In the temporal domain, seasonal variations of the normalized difference
vegetation index (NDVI) are closely related to phenological features such as the onset
dates of green-up, peak growth, and senescence along vegetation development [11].
Phenology of annual crops is associated with their planting dates and development
cycles in growing seasons. For example, corn is usually planted 1–2 weeks earlier
than soybeans, but both have similar growth cycles along the season. Winter
wheat is planted in winter and primarily grows in early spring. Spring wheat
has a narrow growth cycle due to cold weather in the north. For perennial crops,
cool-season grass (CSG) starts its growth in early spring and reaches peak growth
in May, while warm-season grass (WSG) starts in later spring and has delayed
Peak dates [12]. In addition, CSG turns to dormancy in hot, dry summers and
has a second growth peak in the fall, while WSG remains green in summer. These
phenological differences provide important information for crop mapping with
repeated satellite observations [13–15]. Relying on these unique phenological
features, multi-temporal, medium-resolution satellite imagery has been used for
national mapping products such as the annual CDL maps [4] and the National
Land Cover Databases (NLCD) [16] in the conterminous United States. Due to
the tremendous amount of such satellite scenes needed in these products, the
classification processes are time-consuming and labor-/cost-intensive. Moreover,
limited by their coarse revisit cycles (e.g., 16-day interval for Landsat) and frequent
contamination from cloud cover in the growing season, it is often difficult to extract
stable phenological features from these data series for regional mapping processes.

The Moderate Resolution Imaging Spectroradiometer (MODIS) satellite product
has been available since 2000. Its capabilities for daily observation and global
coverage allow for efficient monitoring of seasonal crop development in large
regions [17] and operational cropland estimation [18]. Algorithms using MODIS time
series to derive phenological parameters have also been developed for crop mapping
and monitoring its interannual dynamics [12,15]. At 250–1000 m resolution, a MODIS
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pixel often covers multiple crop fields on the ground. It reduces the accuracies of
crop mapping, and smaller crop clusters are often lost with conventional binary
classification approaches [15]. This may severely affect regional crop analysis that
relies on the accuracies of crop delineation [19].

Spectral mixture analysis (SMA) has been widely used to extract sub-pixel
information of land covers based on their spectral differences [20–22]. Recently,
some efforts were made to extract sub-pixel land covers with crop phenology from
MODIS time series [23,24], the so-called phenological mixture analysis (PMA). Both
methods share the same principle, i.e., the SMA approaches improve the spatial
resolutions with spectral signature of crops, while the PMA approaches perform the
same process with their temporal signatures. However, two major challenges remain:
(1) appropriate selection of endmembers [20,25]; and (2) identifying the correct
signatures that characterize crops. Differences in spectral or temporal signatures
of the same class (endmember variability) may significantly affect the accuracies of
sub-pixel land cover fractions [21,25]. To reduce these in-class differences, Deng and
Wu [22] developed a spatially adaptive spectral mixture analysis, in which spatial
patterns were used to overcome the endmember variability in extracting sub-pixel
impervious surfaces in urban lands. The idea of spatial adjustment could also be
employed in crop unmixing and regional crop mapping.

This study aims to combine the phenology-based mapping and unmixing
approaches to extract in-pixel fractional crop covers in the Midwest using MODIS
time series in 2007. A spatially constrained PMA (SPMA) approach was developed to
overcome the challenges in regular unmixing processes. The results were validated
with the 56-m CDL products in the region. The extracted crop planting acreages
were also compared with the county-level Crop Census records in the same year.
Findings in this study provide spatially detailed information about bioenergy land
use in the Midwest.

2. Materials and Methods

2.1. Study Area and Data Sets

The U.S. Midwest is composed of 12 states across the central United States
(Figure 1). Topography gradually changes from the arid highlands in the west to
gently rolling hills and semi-humid flat lands along the west-east gradient. Prairies
cover most of the Great Plains in the western states, while cultivated lands dominate
other states across the region—the so-called Corn Belt. Agriculture is the largest
driver of local economies in the Midwest, accounting for billions of dollars’ worth
of exports of grain and livestock production [1]. Corn/soybean shift planting is the
common cropping pattern. The extended area grows winter wheat in southern states
and spring wheat in the north. The warm-season prairie grasses grow natively across
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the tallgrass prairie, covering two-thirds of the Midwest [2]. Although more than
90% of tallgrass prairie lands have been cultivated since the European settlement
in the 1830s, WSG remains in prairie remnants and is often mixed with introduced,
highly productive CSG species in pasturelands.

Accompanying the increased corn ethanol production, expansion of corn
planting areas has been recorded in national Crop Census records surveyed by USDA
NASS. In 2007, corn acreage reached its historical record (after 1944) of 93.6 million
acres, as high as 19% up from 2006 [1]. Ten of the 12 Midwestern states (except
Missouri and Minnesota) are marked among the nation’s top 10 states for ethanol
production capacity [26]. Although cellulosic technology is still in its early stage, crop
residuals and prairie native grasses are treated as a promising alternative biofuel
feedstock in the Midwest [2,5].
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Figure 1. The study area of the Midwest and an example MODIS NDVI composite
in 2007 (Day-of-Year 137/177/105 as B/G/R).

The 8-day, 500-m MODIS surface reflectance products (MOD09A1) in 2007
are the primary satellite data in this study. The Midwest can be almost fully
covered by four MODIS tiles. For each MODIS tile, all MOD09A1 scenes in 2007
were downloaded from the Land Processes Distributed Active Archive Center and
re-projected to the North America Datum 1983. NDVI was then extracted from the
red and near infrared spectral bands of each MODIS scene, mosaicked and clipped
to the Midwest region, and stacked to 46-scene NDVI time series. The time series
was finally smoothed with a five-point median filter followed by the Savitzky-Golay
filtering method [2,27]. The example NDVI composite in Figure 1 demonstrates the
clustering patters of crops in the Midwest. The 250-m MODIS NDVI products such as
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MOD13Q1 [14] were not used in this study because of their longer temporal intervals
(16-day). As revealed in previous studies [2], at such temporal resolution the subtle
biophysical differences in critical growing stages are often lost.

The CDL products were downloaded from USDA NASS [28]. In 2007 the CDL
maps were classified from the Indian RESOURCESAT-1 Advanced Wide Field Sensor
(AWiFS) imagery acquired in the growing season, with generally 85%–95% accuracies
for major crop-specific land cover categories [4]. At 56-m resolution, they could serve
as the reference for crop classification in this study. To simplify the process, only corn,
soybean, winter wheat, spring wheat fields, and perennial lands were considered in
this study. Other crops and non-crop covers were blacked out from the CDL map.
Additionally, the NASS county-level Crop Census records were downloaded and
used as a secondary data source for crop planting acreages.

Training data of annual crops (corn, soybean, winter wheat, and spring wheat)
were selected from the 2007 CDL map. A layer covering the four annual crops
was extracted from the raw CDL map and aggregated to 500 m cell size with the
following process. In a given 500-m cell, the percentage of each crop was calculated
as the ratio of the number of CDL pixels of this crop to the total CDL pixels in the
500 ˆ 500 m2 square. Therefore, the re-processed 500 m CDL data actually contained
the percent cover layers of the four annual crops. In the percent cover layer of each
crop, subsets of 5 ˆ 5 pure cells (100%) were extracted and their central locations
were collected as ground truth sample points. To reduce errors induced from CDL
classification, NDVI time series of these samples were individually examined based
on a crop’s specific phenological patterns in accordance with crop calendars. A total
of 172 sample points for corn, 96 for soybean, 103 for spring wheat, and 100 for
winter wheat were randomly collected as their training samples (Figure 2).

For perennial crops, the WSG and CSG distributions were not available in
any public agricultural databases. In this study, their ground truth samples were
extracted from a previously published grass abundance map of plant function types
(PFT) in the Great Plains [15], in which a phenology-assisted decision tree was
developed to identify different PFT (C3 and C4) grasses in two floristic regions
(shortgrass and tallgrass) with yearly MODIS NDVI time series in 2000–2009. The
overall classification accuracies reached about 22%. At a given pixel with 10 years’
classification results, abundance of a grass type was approximated by the frequency
of its occurrence of a grass type in 10 years (in percent). The C3 grass was actually
the CSG while C4 was WSG of our study here. Considering geographic differences
in both PFT and floristic regions of the Great Plains, we randomly extracted pure
(>80%) samples of four grass types: shortgrass CSG (132), shortgrass WSG (143),
tallgrass CSG (182), and tallgrass WSG (188). Only four Midwestern states (ND, SD,
NE, and KS) are covered in the Great Plains and, therefore, sample points of these
grass types were clustered in the west of the study region (Figure 2).
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Figure 2. Training data sets of the eight crops in the study area. CSG and WSG
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tallgrass and shortgrass floristic regions. The inset is the 2007 CDL map of
the region.

2.2. Methodology

2.2.1. NDVI Time Series and Crop Phenology

For each crop, the NDVI values of all training samples were averaged at each
time interval. The averaged NDVI time series in Figure 3a reflects the crop’s general
growth cycle and phenological characteristics. Corn was planted slightly earlier
than soybeans and had similar growth cycles throughout the season. Winter wheat
had the earliest growth in spring. Spring wheat had the narrowest growth cycle.
Perennial grasses had much longer growing season than annual crops. Tall grasses
always had higher NDVI values than short grasses. These unique phenological
features were useful in delineating these crop types.

The phenological curves in Figure 3a may vary at different geographical locations.
It is commonly recognized that crop phenology relies on local environmental
conditions. As an apparent phenomenon, for example, a crop’s planting or greenness
onset dates in the north could be a few weeks later than those in the south. The
Midwest covers 15˝ in latitude across the region. The shift of crop phenology in
such a huge region could be dramatic, which leads to considerable phenological
variability in the crop. Figure 3b demonstrates the phenological variability of corn
by displaying the 95% envelopes of its NDVI variation at each interval. Variations in
critical growing stages such as start of growth and senescence (the NDVI variation
along the slopes) are much larger than other stages. The average variation for
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each crop could be simply calculated as the mean of the 46 standard deviations of
NDVI along the year. In Table 1, the average variation reaches 5–10 (in the unit of
NDVIˆ 100) for the eight crops. Tallgrass crops had higher average variation because
of their heterogeneous growth conditions. The average variation of winter wheat
was even higher than 10 due to the dramatic difference of winter conditions in such
a large region. The “stddev” in the table is the standard deviation of the 46 standard
deviations of NDVI along the year. Its large values indicated large dynamics of the
variability in different growing periods along the year. Therefore, it is not suitable to
assign the globally averaged phenological curves in Figure 3a as crop endmembers
in the unmixing process. Here we established a spatially constrained rule to reduce
these uncertainties.
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Table 1. Descriptive statistics of the 46 standard deviations of the eight crops.

Crops Corn Soybean Spring
Wheat

Winter
Wheat

Short
CSG

Short
WSG

Tall
CSG

Tall
WSG

mean 5.47 6.56 6.17 10.4 4.70 3.79 7.31 6.61
stddev * 3.13 2.64 2.14 2.94 1.28 1.79 3.40 2.49

* stddev denotes the standard deviation.

2.2.2. Spatially Constrained Phenological Mixture Analysis (SPMA)

The phenological curves in Figure 3a are not always distinctive in all MODIS
pixels. At coarse resolution, a pixel often covers multiple crops on the ground. Its
NDVI time series is thus a combination of multiple phenological curves. Following
the logic of linear spectral mixture analysis, we assumed that the NDVI of a mixed
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pixel was a linearly weighted contribution from multiple crops in the pixel. It can be
written as:

Ri “

N
ÿ

i“1

rijxj ` εi

with
N
ÿ

j“1

xj “ 1 and 0 ď xj ď 1

(1)

where Ri is the NDVI value at time i of the mixed pixel (1ď i ď 46), rij is the NDVI of
endmember j at time i. xj is the fractional cover of endmember j, and N is the number
of endmembers (N ď 8 in this study). εj is the error term at each time.

Endmember selection is a challenge to all unmixing methods. In a mixed
pixel, non-representative endmembers result in dramatic classification errors. In
this study, phenological variation of crops (as shown in Figure 3b) at different
geographic locations cannot be ignored in such a large region. Here we developed
a spatially constrained rule to optimize the endmember selection process. The
basic hypothesis of the approach is that crop growth and distribution are spatially
constrained to environmentally similar conditions. For the same crop type, plants
growing nearby share similar water, soil, weather conditions, and management
activities, and therefore have more similar phenological curves than those planted
farther apart. Past studies have shown that crops have their own clustering patterns
across the Midwest. For example, winter wheat is most common in southern states
such as Kansas while spring wheat only grows in northern states such as North
Dakota and South Dakota, and short grasses are only available in the arid and cold
uplands in western states. Therefore, it is reasonable to assume that the phenological
curves of a crop growing in a local cluster do not vary much.

Under this hypothesis, pure pixels of a crop from a spatial neighborhood
are selected and their averaged phenological curve serves as its endmember
in Equation (1). Scanning method is commonly employed to find objects in
neighborhoods [21]. When dealing with huge area and relatively less pure pixels
in this study, however, it becomes time-consuming and unreliable. Here the spatial
distance between any given pixel and the training data set is employed to find the
nearest pure pixels. To be computationally efficient in this large region, we used the
absolute distance to substitute the Euclidean distance:

Dxy “ |xi ´ yi| `
ˇ

ˇxj ´ yj
ˇ

ˇ (2)

To initiate the process, at a given pixel the nearest 10 pure pixels (from training
data) were set as an empirical threshold of spatial constraints. If a crop had multiple
pure pixels in this constraint, its phenological curve was averaged and used in
Equation (1). The threshold 10 was determined here based on our repeated tests
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to balance the accuracy and computation efficiency. When the threshold was too
small, the phenological curves of crops were less representative and resulted in large
confusion in mixed pixels. When the threshold was set larger (>10), the process
became time-consuming and small clusters of a crop were omitted due to its limited
pure pixels in the neighborhood. Also, the CDL map in Figure 2 (inset) demonstrates
the clustering patterns of annual crops. To better identify these small crop clusters,
it was reasonable to assume that at least three crops grow in a local area (e.g., corn,
soybean, and CSG grass in the Corn Belt). However, in Figure 2 pure pixels of crops
at 500 ˆ 500 m2 cell size are not randomly distributed all over the Midwest. In cases
where pure pixels of fewer than three crops can be found in this constraint, the search
moves to the nearest 20 pure pixels, and so on. It should be noted that the method
heavily relied on the distribution of pure pixels. Pure pixels of grasses were clustered
in the west of the region (Figure 2) because their training data were only available
in four Midwestern states (ND, SD, NE, and KS). Of the CDL products, tallgrass
still commonly grows in pasturelands of other states. Therefore, we always used
the nearest five pure pixels of tallgrass (WSG or CSG) in the search, although the
distance could be larger than 20 pixels.

2.2.3. Accuracy Assessment

Validation samples of annual crops were re-processed from the 2007 CDL
product in the study region. For a given crop, a number of sample points were
randomly selected on the aggregated CDL percent cover layers (500 m cell size).
At any point, percent cover of a crop was the average of a 3 ˆ 3 local window
centered at this point. One hundred fifty random samples were selected for corn
and soybeans and 50 samples for spring wheat and winter wheat, respectively. As
shown in Figure 2 (inset), the growth of wheat is clustered in the Midwest, with
spring wheat in the northern states (ND and SD) and winter wheat in the southern
states (especially KS). Their distributions are much lower than for corn and soybeans.
Therefore, we selected a smaller size of validation samples for each crop. Validation
samples of perennial grasses were randomly extracted from the ranked (at a 10%
interval) grass abundance map published by [15]. One hundred fifty random samples
were selected for tall grasses, and 50 samples for short grasses, similarly. To be
comparable, we grouped the SPMA-extracted results of each perennial crop into the
corresponding ranks. Finally, the SPMA-extracted results were also averaged in a
3 ˆ 3 local window centered at each sample point.

With these validation samples, two common indicators were used to assess the
accuracies of the SPMA-extracted crop percent covers by assuming the CDL outputs
as references. The root mean square error (RMSE) quantifies the relative errors of
the SPMA abundance at the pixel level, while the systematic error (SE) indicates
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an overall tendency of upward or downward estimation bias [29]. These accuracy
metrics can be calculated as:

RMSE “

g

f

f

f

e

N
ř

i“1
pri ´ xiq

2

N
(3)

SE “

N
ř

i“1
pri ´ xiq

N
(4)

where xi is the SPMA-extracted crop percent cover at sample i, ri is the corresponding
percent cover from the CDL-summarized reference, and N is the total number
of samples.

Crop planting acreages can be summarized at the county level from the
SPMA-extracted percent covers. To assess their accuracies by assuming the Crop
Census records as references, we used a mean relative area error (MRAE) to reduce
the size effects of different counties:

MRAE “
N
ÿ

i“1

pri ´ xiq

ri
{N (5)

where xi is the SPMA-extracted crop area (in acres) in county i, ri is the surveyed
crop area from the NASS Crop Census records, and N is the total number of counties
in the Midwest.

3. Results and Discussion

3.1. SPMA-Extracted Crop Percent Covers

The SPMA approach calculated the percent covers of all crops. Assigning the
pixel to a crop that has the largest cover, crop distributions in the Midwest were
extracted from MODIS time series (Figure 4). The general patterns agreed with the
CDL product, showing the apparent corn and soybean domination in the Corn Belt,
spring wheat in the north, and winter wheat in the south. Grasses dominated the
western states. The native prairie remnants identified in [15], such as the Flint Hills
(tallgrass prairie) in KS and Sand Hills (tallgrass/shortgrass mixed-grass prairie) in
NE, were also extracted in the figure.

In the percent cover maps, corn (Figure 5a) was the primary crop of the region
and was mainly distributed in Iowa, Illinois, Indiana, southern Minnesota, and
eastern Nebraska. The predominant distribution of corn in 2007 was consistent
with the Crop Census records that corn planting areas reached a historical record
in this year. Soybeans (Figure 5b) grew in the same area but had less coverage
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than corn. Most corn and soybean pixels were a mixture of each other because of
their shift planting patterns, commonly observed in the Midwest. Spring wheat
(Figure 5c) was clustered in North Dakota, South Dakota, and Minnesota, adapting
to the cold weather in this area. Winter wheat (Figure 5d) was primarily clustered in
Kansas, with expanded planting areas in Nebraska and South Dakota. Their spatially
different clustering patterns revealed the climatic impacts on crop planting, and
supported the spatial constraint strategy in this study.
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Figure 4. The SPMA-extracted dominant crop distributions in the Midwest. Figure 4. The SPMA-extracted dominant crop distributions in the Midwest.

Shortgrass in the west of the region extended from the shortgrass prairie in the
Great Plains. Cool-season shortgrass (Figure 5e) dominated in the Black Hills along
the west edge of South Dakota, adapting to the cold, upland climates. Warm-season
shortgrass (Figure 5f) mainly grew in the Sand Hills, Nebraska, a typical mixed-grass
prairie and the largest unplowed prairie remnant in the United States. Cool-season
tallgrass (Figure 5g) distributes all over the Midwest because it has been commonly
planted as a productive forage species in pasturelands across the region. Their
percent covers varied, in mixed conditions with grasses in western states and annual
crop fields (especially corn and soybeans) in eastern states. Warm-season tallgrass
(Figure 5g) was native to the tallgrass prairie in the central United States. Today
it is mostly observed in prairie remnants in the south (e.g., the Flint Hills in KS
and the Sand Hills in NE) and upland mixed-grass grazing prairies in the north.
Compared with binary classifications, the percent cover maps in Figure 5 present
more quantitative information about crop distribution, and improve the level of
detail in coarse-resolution images.
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percent covers were generally higher than the CDL-summarized references. Tallgrass may be 
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Table 2. Accuracy assessment of validation samples. 

Types Corn Soybean 
Spring 
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SE –0.096 –0.099 –0.152 –0.081 –0.124 –0.016 0.049 0.059 

Student’s t 21.84 21.30 15.08 11.52 8.97 6.54 8.37 7.52 
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Figure 5. The SPMA-extracted percent cover distributions of the eight crops: corn
(a), soybean (b), spring wheat (c), winter wheat (d), cool-season shortgrass (e),
warm-season shortgrass (f), cool-season tallgrass (g), and warm-season tallgrass (h).
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3.2. Comparison with References at Pixel Level

The SPMA-extracted crop percent covers were compared with the references
from the CDL-summarized crop covers and published grass covers at sampled
validation points. Table 2 lists the two accuracy measures for each crop. The RMSE
values of all crops reached 14%–20%. When absolute errors were considered, all
crops except tallgrass had negative SE values, indicating that the SPMA-extracted
percent covers were generally higher than the CDL-summarized references. Tallgrass
may be misclassified as corn and soybeans in the Corn Belt if there is a lack of training
samples (pure pixels).

Table 2. Accuracy assessment of validation samples.

Types Corn Soybean Spring
Wheat

Winter
Wheat

Short
CSG

Short
WSG

Tall
CSG

Tall
WSG

RMSE 0.163 0.162 0.195 0.160 0.187 0.165 0.136 0.156
SE –0.096 –0.099 –0.152 –0.081 –0.124 –0.016 0.049 0.059

Student’s t 21.84 21.30 15.08 11.52 8.97 6.54 8.37 7.52

When percent covers at all validation samples were considered (Figure 6),
the Pearson’s correlation coefficients (r) in the scatterplots ranged from 0.706 to
0.860 for these crops, suggesting fair agreement between the SPMA-extracted and
CDL-summarized percent covers. The relationships were statistically significant
(p < 0.001) under the Student’s t test (degree of freedom = 149 for corn, soybeans,
and tall grasses, and 49 for other crops). Table 2 also lists the Student’s t values
of the test for all crops. Although all tests were significant, perennial crops had
smaller t values than annual crops, which may be attributed to the uncertainties
when their samples were extracted from the coarse-resolution grass abundance
maps [15]. For annual crops (Figure 6(a–d)), the SPMA could effectively extract
their percent covers in the lower end. In the higher end, however, the SPMA results
turned out to be overestimated, because other crops (e.g., alfalfa, sorghum) and small
plots of non-crop land covers were not considered in this study. For this reason, the
correlation line was lower than the diagonal line in each plot. For perennial crops
(Figure 6(e–h)), the references were from the ranked grass cover maps extracted from
the MODIS time series. The points were more scattered in their scatterplots, but the
RMSE reached similar values to those of annual crops.
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3.3. Comparison with Crop Census Records at County Level 
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Figure 7. The county-level comparison between the Crop Census records (X-axis) and the 

SPMA-extracted planting areas of corn (a) and soybeans (b). 

In Figure 7, the county-level comparison had a Pearson’s r of 0.946 for corn and 0.955 for soybeans, 

indicating high agreement between the SPMA results and the census records. The mean relative area 

errors (MRAE) reduced the uncertainties from county sizes and were quite low for both crops. For 

counties with corn planting areas higher than 300 k acres (Figure 7a), the SPMA estimations became 

much higher than those in the census records. For soybeans (Figure 7b), a majority of counties had their 

SPMA estimations higher than the census records, which resulted in a negative MRAE value of −0.065. 

(g) tall CSG (h) tall WSG 

Figure 6. The scatterplots between the SPMA-extracted percent covers (X-axis) and
references (Y-axis) for the eight crops: corn (a), soybean (b), spring wheat (c), winter
wheat (d), cool-season shortgrass (e), warm-season shortgrass (f), cool-season
tallgrass (g), and warm-season tallgrass (h).
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3.3. Comparison with Crop Census Records at County Level

As the primary crops in the Midwest, corn and soybeans maintained good
records of planting areas from the county-level NASS Crop Census data in 2007. To
be comparable with these records, the pixel-level SPMA results were summarized
into county-level crop planting acreages. The census records in a total of 1046 counties
were extracted in the Midwest. Only corn and soybeans were compared. Other crops
were not examined because spring wheat and winter wheat only grew in limited
counties in the region. The warm-season and cool-season grasses were not specifically
recorded in the census data.
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Figure 7. The county-level comparison between the Crop Census records (X-axis)
and the SPMA-extracted planting areas of corn (a) and soybeans (b).

In Figure 7, the county-level comparison had a Pearson’s r of 0.946 for corn and
0.955 for soybeans, indicating high agreement between the SPMA results and the
census records. The mean relative area errors (MRAE) reduced the uncertainties
from county sizes and were quite low for both crops. For counties with corn planting
areas higher than 300 k acres (Figure 7a), the SPMA estimations became much higher
than those in the census records. For soybeans (Figure 7b), a majority of counties had
their SPMA estimations higher than the census records, which resulted in a negative
MRAE value of ´0.065. Figure 7 agrees with the Crop Census and CDL products
that soybean planting areas were lower than corn in most counties. When compared
all over the region, the SPMA approach in this study extracted a similar range of the
total corn planting area (93.99%) as the census records (Table 3). Soybean planting
area was overestimated, and reached 116.91% of the census records.
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Table 3. Accuracy assessment at county level.

Types
County Level Region-Level (Midwest)

MRAE r SPMA Results
(Million Acres)

NASS Census
(Million Acres)

Ratio
(SPMA/Census)

Corn 0.088 0.946 72.297 76.921 93.99%
Soybean ´0.065 0.955 61.616 52.702 116.91%

Regional agricultural monitoring requires large-area coverage of remotely
sensed data and standardized image analysis. While the USDA CDL products are
published annually and provide high-quality crop maps in the conterminous United
States, the process involves a huge amount of medium-resolution satellite images
and repeated classification and validation algorithms for individual states [4]. It is
time-consuming and labor-intensive, and thus cannot meet the requirement of quick
responses for regional or global studies. Coarse-resolution satellite sensors such as
MODIS have the ability to make daily observations all over the globe. Although not
suitable for crop mapping with individual scenes, time series of these data effectively
reveal crop development throughout a growing season. In our recent study [30], the
same set of MODIS time series was input to a Support Vector Machine (SVM) classifier
to extract major crop types, especially bioenergy crops including corn and perennial
native grass. The classification, however, was binary without considering the in-pixel
mixed growth of crops. Although relatively high accuracies (~90%) were achieved
using large CDL clusters as validation source, dominant crops were apparently
overestimated at an expense of omission of small crop clusters in local areas. In
comparison, this study addressed the mixed pixel problem in crop delineation. Our
study extracted percent covers of major crops using an unmixing algorithm based
on their unique phenological curves. While crop phenology may vary at different
geographical locations, the spatially constrained endmember selection reduces these
uncertainties by only considering endmembers in the local neighborhood. The
randomly selected small-size CDL clusters (3 ˆ 3 of the aggregated 500 m cells)
provided a more explicit spatial representation of the validation source. An overall
RMSE range of 14%–20% for all crops in the Midwest indicates the feasibility of
our SPMA approach for fractional crop mapping with MODIS time series in major
agricultural regions.

One advantage of our approach is the computation efficiency for regional
mapping. With only four MODIS tiles covering the Midwest region, computation
time of our study is significantly improved in comparison with hundreds of Landsat
tiles in the same region that were processed in national products. The recent
publications about data fusion between these multi-resolution images [31] may bring
in further opportunities to improve the classification accuracies with multi-source
satellite time series. Also, the 8-day, 250-m MODIS products (MOD09Q1 and
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MYD09Q1) have become available in recent years. At finer resolution than the
500-m imagery that we used in this study, these new datasets could have better
SPMA results for regional crop mapping. One concern about the phenology-based
analysis in this study rises from the uncertainties when only one-year satellite data
were applied. The NDVI time series fairly reflects crop development cycles along the
growing season. Its temporal variation, however, is highly influenced by seasonal
weather conditions that vary year to year. It is less of a concern for annual crops in
this study because our ground truth samples were extracted from CDL products in
the same year. In areas where real-time truth data were not available (e.g., perennial
grasses in this study), large uncertainties could be introduced during the endmember
selection process of our SPMA approach. As our further research, multi-year time
series will be explored to investigate these challenges, and to examine land use
change in the long run.

Agricultural land use patterns are changing all over the world. With advanced
biofuel demand, for example, corn planting expansion, environmental contamination,
corn grain price increase, and food shortages are of increasing concern to sustainable
agriculture in the U.S. Midwest. In our recent research [30], we performed
phenology-assisted binary classifications of the MODIS time series in 2006–2008 to
explore the corn boom in 2007, the year with the historical record for corn expansion.
Multi-year satellite time series effectively identified this type of bioenergy land use
change. By taking advantage of multi-crops in mixed pixels, fractional mapping
conducted in this study provides more quantitative information for rapid assessment
of crop planting areas, crop production, and land use conversion.

4. Conclusions

This study developed a spatially constrained phenology-assisted unmixing
(SPMA) approach to extracting crop percent covers in the U.S. Midwest using
MODIS time series in 2007. The NDVI time series of a pixel was assumed to be
a linear combination of phenological curves from multiple crops in the pixel, and
endmembers in a dynamic local neighborhood were selected in the unmixing process.
The resulted spatial distributions of major crops agreed with the CDL products at
randomly selected validation points, reaching an overall RMSE range of 14%–20%
for all crops. The planting areas of major crops (corn and soybeans) also fit well with
county-level Crop Census records in the region, although soybeans were slightly
overestimated and corn underestimated in comparison with census data. In corn-
and soybean-dominated counties (>300 k acres), the extracted acreages of both
crops were higher than census data. With crop percent covers, the SPMA results
verified the hypothesis of the spatial constraint and presented more spatial details
of crop distributions from coarse-resolution satellite imagery. The SPMA approach
developed in this study shows great potential for regional crop monitoring in U.S.
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agricultural lands. With multi-year satellite time series involved, it could provide
spatially explicit information about the rapid growth of bioenergy land use for
decision-making at a regional scale.
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Feature Selection of Time Series MODIS
Data for Early Crop Classification Using
Random Forest: A Case Study in
Kansas, USA
Pengyu Hao, Yulin Zhan, Li Wang, Zheng Niu and Muhammad Shakir

Abstract: Currently, accurate information on crop area coverage is vital for food
security and industry, and there is strong demand for timely crop mapping. In
this study, we used MODIS time series data to investigate the effect of the time
series length on crop mapping. Eight time series with different lengths (ranging
from one month to eight months) were tested. For each time series, we first
used the Random Forest (RF) algorithm to calculate the importance score for all
features (including multi-spectral data, Normalized Difference Vegetation Index
(NDVI), Normalized Difference Water Index (NDWI), and phenological metrics).
Subsequently, an extension of the Jeffries–Matusita (JM) distance was used to measure
class separability for each time series. Finally, the RF algorithm was used to classify
crop types, and the classification accuracy and certainty were used to analyze the
influence of the time series length and the number of features on classification
performance; the features were added one by one based on their importance scores.
Results indicated that when the time series was longer than five months, the top
ten features remained stable. These features were mainly in July and August. In
addition, the NDVI features contributed the majority of the most significant features
for crop mapping. The NDWI and data from multi-spectral bands also contributed
to improving crop mapping. On the other hand, separability, classification accuracy,
and certainty increased with the number of features used and the time series length,
although these values quickly reached saturation. Five months was the optimal
time series length, as longer time series provided no further improvement in the
classification performance. This result shows that relatively short time series have
the potential to identify crops accurately, which allows for early crop mapping over
large areas.

Reprinted from Remote Sens. Cite as: Hao, P.; Zhan, Y.; Wang, L.; Niu, Z.; Shakir, M.
Feature Selection of Time Series MODIS Data for Early Crop Classification Using
Random Forest: A Case Study in Kansas, USA. Remote Sens. 2015, 7, 5347–5369.

1. Introduction

Crop-type information is important for food security, and the demand for
accurate crop maps is increasing in society and in the plant industry [1–3]. In addition,
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crop maps can be incorporated into a range of environmental models to improve
understanding of the overall agricultural response to environmental issues [4,5].
Remote sensing data have shown potential for mapping crop distributions at both
regional and local scales [4,6,7], and substantial efforts have been made toward
monitoring agricultural land and accurately assessing crop acreage [8,9].

Multi-temporal remote sensing data can be used to describe the vegetation
conditions over different periods, and have been widely employed to produce crop
distribution maps [10–13]. Images of several key periods, such as the “initial spring
green-up phase” and the “late senescence phase” are sufficient for accurate crop
mapping [14–16]. In addition, Hao et al. [17] merged Landsat and Huan Jing (HJ)
data, which have similar spatial resolution to Landsat and higher temporal resolution,
to obtain an image time series with relatively high temporal resolution, and increase
the possibility of acquiring images in the optimal periods for crop identification. The
timeline is an important consideration for crop classification because obtaining an
early classification result benefits both decision makers and the private sector [18].
Zhou et al. [19] found that reducing the time series length had little influence on
the average accuracy of land cover classification, except for a slight increase in the
classification variance when different training samples were used. However, few
studies have determined the effect of time series length on crop-type mapping.

Apart from multi-spectral time series data, several vegetation indices (VIs)
and phenological metrics derived from VI time series have been used to enrich the
information available for vegetation mapping and monitoring [20–23]. However,
using all these features involves a large volume of data, which may increase
computation times with little improvement in accuracy [24]. To solve the problems
associated with large volumes of data, various feature selection methods have
been employed [4,24–26]. Most previous studies have focused on the effects
of feature-space size reduction on classification accuracy and certainty, but the
contributions of different features remain unclear.

The majority of the statistical measures used to assess land-cover classification
accuracy are based on the confusion matrix [27]. The information contained in
this matrix is a location-independent pattern of misclassification, which can only
provide a generally accurate measurement for the user [26]. Classification certainty
can be defined as a quantitative measure of doubt regarding a specific single
class assignment [28]. Additionally, several newly proposed classifiers, such as
Support Vector Machine (SVM), Random Forest (RF), and C5.0, provide a soft output
(a probability for each class), and this information is used to derive the certainty for
each pixel [4,29,30]. In contrast to accuracy measures, pixel-based certainty measures
allow spatial representation of the map quality, and provide a better understanding
of location error in classification [24,26].
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The objectives of this research were to use the MODIS reflectance product on
a regional scale to analyze (1) the effect of time series lengths on crop classification,
(2) the importance of multi-spectral band data and indices (NDVI and NDWI) at
different time series lengths, and (3) the influence of the number of features on crop
identification. The cropland data layer (CDL) data at a spatial resolution of 30 m
was used as ground reference data [31]. In addition, both classification accuracy and
certainty were utilized to better understand the quality of the crop mapping.

2. Study Area and Datasets

2.1. Study Area

This study was conducted in the State of Kansas (37˝N–40˝N, 94˝W–102˝W) in
the U.S. Central Great Plains (Figure 1). Kansas is a state dominated by agriculture
with 46.9% (10.0 million ha) of its total area dedicated to crop production [32].
The major crop types are alfalfa, corn, sorghum, soybeans, and winter wheat [33].
Although each crop has a well-defined crop calendar and unique seasonal growth
pattern, the growth situation varies throughout the state. On one hand, the state
has a significant east-west precipitation gradient that has a strong influence on
crop growth. For example, western Kansas receives on average 460–510 mm of
precipitation per year, whereas eastern Kansas receives 890–1020 mm [16]. Therefore,
eastern Kansas receives adequate precipitation, and corn and soybeans are the two
primary crops grown in this part of the state. However, semiarid western Kansas
commonly experiences drought events; as a result, drought-tolerant crops, such
as winter wheat and sorghum, are widely planted. In addition, water-requiring
crops, such as alfalfa, corn, and soybean require irrigation from aquifers. Another
complicating factor is that planting times for many crops in Kansas differ by more
than one month “along a general southeast (earliest) to northwest (latest)” trend [34].
For example, the recommended planting date for corn is 25 March to 25 April for
southeast Kansas, but 20 April to 20 May for northwest Kansas. Moreover, the size of
fields varies across the state. According to [32], western Kansas has “large individual
fields (sizes commonly range from 65 to 245 ha)” while the fields in eastern Kansas
are small (less than 65 ha) and the cropland areas are fragmented.

2.2. MODIS Data and Derived Phenological Variables

A 30-date time series of 8-day composite MODIS 500-m reflectance data
(MOD09A1), spanning 7 April to 25 November, 2013 was created for Kansas. Data
were required from four MODIS tiles (h09v04, h09v05, h10v04, and h10v05) for
statewide coverage. The tiled MODIS data were acquired from the Land Processes
Distributed Active Archive Center (LP-DAAC) [35], reprojected from the Sinusoidal
to UTM projection (WGS 84 zone 14N), and subset over Kansas for each composite
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period and then sequentially stacked to produce the time series dataset. Two
additional indices, the Normalized Difference Vegetation Index (NDVI) and the
Normalized Difference Water Index (NDWI), were derived from the time series of
MODIS reflectance data using Equations (1) and (2) [36]:

NDVI “
ρ pB2q ´ ρ pB1q
ρ pB2q ` ρ pB1q

(1)

NDWI “
ρ pB2q ´ ρ pB5q
ρ pB2q ` ρ pB5q

(2)

where ρ pB1q, ρ pB2q, and ρ pB5q are the reflectance values of MODIS bands 1, 2, and 5,
respectively. Each variable has the same length as the MODIS reflectance time series.
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Figure 1. Study area and distribution of ground reference samples.

Land surface phenological metrics represent stages of plant growth or
development that occurs during a growing season, and several phenological
characters can be identified using multi-temporal remote sensing data [37]. In
this research, nine unique annual phenology metrics were employed for crop
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classification. The metrics included start-of-season time (SOST), start-of-season
NDVI (SOSN), end-of-season time (EOST), end-of-season NDVI (EOSN), maximum
NDVI (MaxN), maximum NDVI time (MAXT), duration of season (DOS), amplitude
of NDVI (AON), and seasonal time-integrated NDVI (TIN) [38]. These metrics were
derived from250-m weekly eMODIS NDVI using a curve derivative method [4]. This
method employed a delayed moving average (DMA), in which predicted values
were based on previous observations along a time-series NDVI curve. Smoothed
NDVI data values were compared to a moving average of the previous observations
to identify departures from an established trend. For example, if smoothed NDVI
values became larger than those predicted by the DMA, this departure point was
labeled as the start of the growing season (SOS) [38]. All available annual 250-m
phenology metrics for 2013 were obtained from [38] and then resampled to a spatial
resolution of 500-m [38]. The variables used in this research are shown in Table 1.

Table 1. Groups of input variables for classification. Notes: The wavelengths of the
reflectance bands are c. 620–670 nm (B1), c. 841–876 nm (B2), c. 459–479 nm (B3),
c. 545–565 nm (B4), c. 1230–1250 nm (B5), c. 1628–1652 nm (B6), and c. 2105–2155 nm (B7).

Group Name Number of Variables
in the Group Denotation of Variables

Reflectance 210 (30 images ˆ7 bands) BxDy, x = 1,2, . . . 7, y = 1,2, . . . 30
Indices (NDVI and NDWI) 60 (30 image ˆ 2 bands) NDVI_Dy, NDWI_Dy, y = 1,2, . . . 30

Phenological metrics 9 SOST, SOSN, EOST, EOSN, MaxN,
MaxT, DOS, AON, TIN

2.3. Reference Dataset

The crop-type reference data used in this study were obtained from the
National Agricultural Statistics Service (NASS) Cropland Data Layers (CDL) for
2013 [31]. Table 2 shows the classification accuracy of CDL in Kansas ordered by
areal proportion. The bold-font crops were selected as reference crops in this study
because both producer’s and user’s accuracies were higher than 85%, and the areal
proportions of these crops were more than 1% [39]. To obtain pure pixels on 500-m
spatial resolution MODIS images, we first obtained the MODIS pixel grid from the
MODIS image and then calculated the fraction for every crop in each MODIS pixel
using CDL data. If one crop filled more than 80% of a MODIS pixel, we defined that
pixel as a “pure” pixel and used it as a reference pixel. In this procedure, we selected
80% as the threshold because it provided a balance between pixel quality and sample
number. A higher threshold (such as 90%) might increase the purity of the pixel,
but the sample number would drop substantially because the spatial resolution was
500-m in this study. Conversely, a lower threshold (such as 70%) could increase the
pixel number, but would lead to more sample pixels of low purity. We then extracted
the time series quality assessment of the MODIS 500-m reflectance product using
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the reference pixels. If there were more than 25 “corrected products produced at
ideal quality in all bands” periods in a reference pixel [40], the pixel was retained.
Otherwise, the pixel was removed from the reference dataset. For the remaining
pixels, the reflectance for low-quality periods (if the quality of a pixel is not ‘ideal
quality’, we define it as ‘low-quality’) was replaced by the average reflectance of the
previous and following periods. Subsequently, the reference pixels were randomly
divided into two parts: training samples and validation samples. The numbers of
these samples are shown in Table 3, and their distributions are shown in Figure 1.

Table 2. 2013 Kansas cropland data layer statewide agricultural accuracy.

Crop Type CDL Code Producer’s Accuracy User’s Accuracy Areal Proportions

Winter Wheat 24 94.37% 94.45% 38.33%
Corn 1 93.21% 93.6% 16.99%

Soybeans 5 92.97% 92.97% 13.66%
Sorghum 4 89.32% 89.27% 11.25%

Fallow/Idle Cropland 61 87.47% 87.81% 11.02%
(Double Crop) Winter

Wheat/Soybeans 26 85.9% 85.25% 3.00%

Other Hay/Non Alfalfa 37 56.07% 90.39% 2.85%
Alfalfa 36 85.95% 91.21% 1.95%

(Double Crop) Winter
Wheat/Sorghum 236 36.64% 65.03% 0.37%

Canola 31 78.22% 90.75% 0.12%
Rye 27 37.55% 76.76% 0.11%
Oats 28 37.63% 72.27% 0.10%

Table 3. Number of training and validation samples.

Crop Type Training Validation

Alfalfa 562 561
Corn 1441 1441

Sorghum 847 847
Soybean 1005 1006
Wheat 1665 1664

Wheat-soybean 437 437
Total 5957 5956

3. Method

The overall methodology used in this study is presented in Figure 2. First, we
extracted time series multi-spectral band data and indices (NDVI and NDWI) from
the MOD09 product and phenological metrics from eMODIS phenological data using
the ground reference data. We then exploited the Random Forest (RF) algorithm
to calculate an importance score for all available features containing multi-spectral,
NDVI, NDWI, and phenological metrics for each time series length using the training
samples. To simplify the analysis, we used one month as the unit of the time-series
period (Table A1 in Appendix 6). Therefore, the time series length varied from one
month to eight months. Then, an extension of the Jeffries–Matusita (JM) distance was
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used to calculate the separability among all crops. Furthermore, the RF algorithm
was used to classify crop types and obtain a probability output for each crop. The
classification accuracy and certainty were then obtained to measure the classification
performance. When calculating the extension of the JM distance and classifying crop
types, features were added one by one based on the importance score acquired from
the RF algorithm for each time series length.

3.1. Random Forest

The classification algorithm employed for this research was the Random Forest
(RF) algorithm. The RF algorithm is an ensemble machine learning technique
that combines multiple trees [30]. Each tree is constructed using two-thirds of
the original cases. Then, the remaining one-third of cases is employed to generate
a test classification, with an error referred to as the “out-of-bag error” (OOB error).
Subsequently, the model output is determined by the majority vote of the classifier
ensemble [26]. Two free parameters can be optimized in the RF algorithm: the
number of trees (ntree) and the number of features to split the nodes (mtry). The
advantages of the RF algorithm, such as the relatively high efficiency with large
datasets, the probability output for each class, and the generated OOB error (an
internal unbiased estimate of the generalization error) make it suitable for remote
sensing applications [41]. In this research, both the feature importance score and
crop classification were obtained using the RandomForest package for R [42]. The
ntree parameter was set to a relatively high value of 1000 to allow convergence of
the OOB error statistic, and mtry was set to the square root of the total number
of input features [43]. Additionally, the decreased accuracy (i.e., the difference in
prediction accuracy before and after permutation of the variable of interest)was used
to measure the importance of the features. As for classification, the RF algorithm
allowed quantification of the prediction probability at the pixel level, together with
the class label. The probability p(i) of a pixel being classified as class i was defined as

p piq “
ki

k
(3)

where k was the total number of trees involved in the classification process, and ki

was the number of trees classifying the pixel as cover type i [26].
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3.2. Extension of the Jeffries–Matusita Distance

In this study, we used the JM distance to measure the separability for each
pair of crops, because previous research had shown that JM distance can provide a
more accurate separability indicator than other distance measures, such as Euclidean
distance or divergence [14,44]. The JM distance between a pair of class-specific
functions was given by:

JM
`

ci, cj
˘

“

ż

x

ˆ

b

p px |ci q ´

b

p
`

x
ˇ

ˇcj
˘

˙2
dx (4)

where x denoted a span of VI time series values, and ci and cj (lowercase c) denoted
the two crop classes under consideration. Under normality assumptions, Equation (4)
was reduced to M “ 2

`

1´ e´B˘, where

B “
1
8

´

µi ´ µj
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ˆ

Ci `Cj
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ˇ
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ˇ
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ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

˛

‚ (5)

and Ci and Cj (uppercase C) were the covariance matrices of classes i and j,
respectively. Additionally, |Ci| and

ˇ

ˇCj
ˇ

ˇ were the determinants of Ci and Cj,
respectively. The JM distance ranged from 0 to 2, with a high value indicating
a high level of separability between the two classes [45].
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When considering the separability of multiple classes, different classes were
given different weights to account for the different sample sizes of each class. The
extension of the JM distance (JBh) was used for this purpose. JBh was calculated
from Equation (6) based on Bhattacharyya bounds, and it gave greater importance to
classes with high a priori probabilities in the selection process [46]:

JBh “

N
ÿ

i“1

N
ÿ

jąi

b

ppwiq ˆ ppwjq ˆ JM2pi, jq (6)

where N was the number of classes, and ppwiq and ppwjqwere the a priori probabilities
of classes i and j, respectively, which were calculated using the combination of
training samples in Table 3.

3.3. Accuracy and Certainty Measures

A series of accuracy metrics were employed to evaluate the classification
accuracy. First, overall accuracy (OA), producer’s accuracy (PA), and user’s accuracy
(UA) were used for the hard results (class labels) [27]. For the probability result,
a soft answer was provided by the random forest algorithm in the form of a vector
containing probability estimates belonging to each class:

p pxq “
 

p1 pxq , ¨ ¨ ¨ , pk pxq , ¨ ¨ ¨ , pK pxq , k “ 1, 2, ¨ ¨ ¨ , K
(

(7)

where pk pxq was the probability that x belongs to class k, and K was the number
of classes. In this study, the probability vector was first sorted in descending order.
Then, we used the specificity measure to calculate the certainty, as in Equation (8) [47]:

C pxq “
K´1
ÿ

k“1

`

p̂k pxq ´ p̂k`1 pxq
˘

(8)

The advantage of the specificity measure is that it applies all the information
in the probability vector. The certainty of a pixel is equal to 1 if the maximum
probability in its probability vector is 1. On the other hand, if the all the classes have
the same probability (p̂k pxq “ 1{K), the certainty of the pixel is 0.

4. Results

4.1. Importance of Features for Crop Mapping

An analysis of the ten most informative features for each time series length
was shown in Figure 3. The selected features varied among the different time series
lengths. During April and May (Figure 3a,b), the most important features were
mainly multi-spectral bands data. However, the selection of these features may not
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have a phenological component because most summer crops were immature, and
the standard deviations of the importance scores from 20 model runs were relatively
high (higher than 1.5 in most cases). NDVI and NDWI were selected when the time
series length was longer than three months (Figure 3c). In Figure 3d,e, the time series
lengths were one month longer than in Figure 3c,d, and several features unique to
the additional months (such as the features in July for Figure 3d and August for
Figure 3e) were selected as the most important features. However, in Figure 3f–h,
the time series were longer than five months, but no features from the extra months
were found to be among the most important.
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Figure 3. Mean relative feature importance of the ten most important features for
each time series length. Error bars indicate the standard deviation of the variable
score for 20 model runs. In addition, “B1–B7” in the feature names indicates the
number of the MODIS band; “D1–D30”’ indicates the acquisition date: (a) D1–D3
in April, (b) D1–D7 for April to May, (c) D1–D11 for April to June, (d) D1–D15 for
April to July, (e) D1–D19 for April to August, (f) D1–D22 for April to September,
(g) D1–D26 for April to October, (h) D1–D30 for April to November, and (i) D1–D30
and phenological metrics. The underlined features indicate that these features were
among the ten most important features in the previous shorter time series.
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When both NDVI and NDWI were selected in the top ten features, NDVI
obtained a higher importance score than NDWI (Figure 3c); moreover, when the time
series was longer than five months, more NDVI features were selected for the top
ten important features. Furthermore, the phenological features were not among the
features selected as most important when combining phenological information with
multi-spectral metrics, vegetation indices, and water indices metrics (Figure 3i).

The importance score of the selected features decreased with the augmentation
of the time series length. Figure 3a showed that the importance scores of the most
important features were nearly 60, but the scores were around 20 for the most
important features selected from the eight-month time series (Figure 3h). This was
because the importance score was measured by the difference in prediction accuracy
before and after permutations of the feature. Therefore, the importance score reduced
when more features were employed to build the RF model.

4.2. Class Separability

Month-by-month JM distances in Kansas are shown in Figure 4, and the time
series for different crops are shown in Figure 5. Winter wheat was highly separable
from the summer crops (JM distance larger than 1.5). During the early growing
season (April and May), wheat had a relatively high vegetation fraction but the
summer crops had not yet been sown. Then, in summer (July and August), the wheat
had been harvested and the summer crops had developed (Figure 5). In October
and November, wheat was sown again and the summer crops were harvested. As
for winter wheat and the double crop wheat-soybean, the JM distance was high
(larger than 1.5) in August because the soybean had developed during this period.
Among the three summer crops, sorghum and soybean had high separability in
June (JM distance larger than 1.5) and September because of their different rates
of emergence and senescence. Corn was highly separable from sorghum because
of its earlier planting and emergence (corn is mostly sown in May and emerges
in early June, whereas sorghum is planted in June). Additionally, the JM distance
between corn and soybean was lower than 1.0 throughout the growing season
because of the similar planting, reproduction, and harvest periods (Figure 5). Alfalfa
had a relatively high JM distance (larger than 1.2) from the other crops throughout
almost the entire growing season, except when compared with several summer
crops, such as corn, sorghum, and soybean, during June and August (JM distance
around 1). The relatively low separability in this period was mainly because of the
fact that the summer crops had developed and the separability between alfalfa and
these summer crops was relatively low (Figure 5). At the beginning of the growing
season (during April and May), soybean was the least separable crop compared
to alfalfa; this result is unexpected because alfalfa and wheat are well developed
during this time, whereas soybean is not developed [16]. Thus, soybean should
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have a better separability than wheat. There are two possible explanations for this
unexpected outcome: (1) the misclassification of CDL data in Kansas and (2) the
use of mixed pixels as training samples. Firstly, the producer’s accuracy for alfalfa
was 85.95% (Table 1), which indicated that several other crops were mislabeled as
alfalfa. Additionally, the average NDVI of alfalfa in this period was substantially
lower than values found in [16]. On the other hand, the misclassification also led
to the relatively high standard deviation of alfalfa NDVI profiles (Figure 5). As
for the second reason, both alfalfa and soybean had relatively small field sizes,
which resulted in more mixed pixels with higher NDVI profile variations (standard
deviations larger than 0.1). Thus, the lower alfalfa NDVI and the higher standard
deviation of the two crops contributed to the unexpected low separability between
alfalfa and soybean during April and May.
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Figure 4. JM distance values for all crop pair comparisons in each month using
training samples from Kansas.

Figure 6 showed the relationship between the JM distance of crop pair
comparisons and the time series length. The figure showed that the JM distance
increased with the time series length. For example, alfalfa had a relatively high JM
distance when the time series was two months, and the JM distances between alfalfa
and other crops then increased until the time series reached five months (when JM
distances were 2). For winter wheat, when the time series length was three months,
the JM distance between wheat and other summer crops was almost 2. In addition,
the JM distance among the three summer crops increased substantial when the time
series length was shorter than four months. Beyond four months, further increases
in the time series did not meaningfully increase the JM distance. However, the JM
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distance between corn and soybean was still low (lower than 1). Furthermore, wheat
and wheat-soybean demonstrated good separability when the time series length was
longer than five months.
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Figure 6. JM distance values for all crop pair comparisons with different time series
lengths using training samples from Kansas.

Figure 7 showed the relationship between the number of features used and JBH

(extension of the JM) distance. The maximum JBH increased substantially when the
time series length was shorter than five months (April–August). For example, the
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maximum JBH was 5.67 when only images from April were employed but increased
to 6.61 when the time series length was two months. However, with the additional
inclusion of images from October and November and the phenological metrics, the
separability did not increase substantially. When images from April to September
were used, the JBH was 8.43, and when images from all eight months were used, JBH

increased only slightly to 8.6. In addition, the separability increased substantial when
a few features were used for each time series, but did not increase substantial when
more features were employed. For example, JBH increased from 2.2 to 7.2 when the
number of features increased from 1 to 24 for the April–August time series, but only
increased to 8.4 when all 171 features in this period were used.
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Figure 7. JBH obtained from training samples using the different input features
suggested by the RF importance scores for different time series lengths.

4.3. Classification Accuracy

The influence of the time series length and the number of features on the
classification accuracy was shown in Figure 8. For each time series, the overall
classification accuracy increased with the number of features used for classification
until a saturation point was reached, after which the accuracy did not increase further.
For example, the overall accuracy increased to a saturation point at 14 features
(72.18%) and 23 features (88.56%) for the April and the April–November time series,
respectively. Among the different time series lengths, combinations of only one or
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two months could not achieve a classification accuracy of more than 80%. For the
April time series, the maximum overall accuracy was 72.77%; and when the time
series length increased to two months (April–May), the maximum overall accuracy
was 77.83%. When the time series was longer than five months, the overall accuracy
also reached a saturation point. The maximum overall accuracy increased from
88.45% to just 88.81% when the time series length was increased from five months
(April–August) to six months (April–September).
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Figure 8. Overall accuracy (%) of validation samples found from the RF algorithm
using the different input features suggested by the importance score for different
time series lengths. Only the average overall accuracy is shown in this figure
because the standard deviation of the 10–model run is approximately 0.1%. The
dotted line shows the saturation point for each time series length.

The producer’s and user’s accuracies achieved from the different time series are
shown in Table 4. When the time series was short (one month or two months), wheat
had relatively high producer’s and user’s accuracies (PA = 96.75% and UA = 88.03%),
while both producer’s and user’s accuracies for other crops were less than 70%
in most cases. In addition, the accuracies increased with the time series length
and remained stable when the time series was longer than five months, which was
consistent with the trend of the overall accuracy. Among all the crop types, wheat had
the highest classification accuracy (UA = 95.58% and PA = 95.39%) for the five-month
time series. Alfalfa had high UA (92.13%) but relatively low PA (85.56%). Although
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the accuracies were relatively low compared with those for the other crops, the
three summer crops were distinguishable because all PA and UA values were above
80%, which was consistent with the separability of these three crops discussed in
Section 4.2.

Table 4. Producer’s and user’s accuracies obtained from the different time series
for each crop.

Alfalfa Corn Sorghum Soybean Wheat Wheat-Soybean

PA/UA PA/UA PA/UA PA/UA PA/UA PA/UA

April 62.2%/75.9% 70.0%/63.1% 55.5%/67.2% 65.7%/61.3% 96.8%/88.0% 56.1%/84.2%
April ~ May 71.3%/87.3% 79.3%/66.4% 62.6%/74.5% 66.5%/70.9% 97.8%/88.9% 58.4%/87.3%
April ~ June 75.4%/92.4% 83.9%/78.5% 79.8%/81.8% 75.8%/74.8% 99.1%/91.3% 61.1%/87.5%
April ~ July 81.3%/92.5% 86.1%/82.0% 82.3%/84.0% 78.8%/78.7% 99.6%/93.6% 70.3%/89.8%

April ~ August 85.6%/92.1% 86.0%/83.2% 83.7%/87.1% 81.8%/80.2% 99.6%/95.4% 76.9%/91.1%
April ~ September 85.4%/92.3% 85.8%/83.4% 84.1%/87.3% 82.1%/79.7% 99.5%/96.6% 80.8%/90.8%

April ~ October 85.2%/92.1% 86.4%/83.6% 83.9%/87.5% 82.1%/79.9% 99.5%/96.7% 81.0%/90.5%
April ~ November 85.7%/93.0% 85.7%/84.5% 84.5%/87.1% 82.8%/79.8% 99.4%/96.7% 81.0%/91.0%

Add Phe 85.6%/93.3% 85.9%/84.2% 84.2%/87.5% 83.2%/79.6% 99.5%/96.5% 81.0%/91.1%

4.4. Classification Certainty

The influences of the time series length and the number of features on the
average classification certainty are shown in Figure 9. When only one feature
was used for classification, the classification certainty was relatively high (nearly
0.9 in most cases) with a low classification accuracy (less than 60%). Then, the
certainty decreased substantially until reaching a minimum. After this point, the
certainty began to increase until it reached a saturation point, and then remained
generally stable at, for example, nine features (certainty = 0.68) and 21 features
(certainty = 0.81) for the April and April–August time series, respectively. Similarly,
the stable classification certainties increased with augmentation of the time series
length. Additionally, when the time series was longer than five months, the certainty
did not continue to increase. For example, from the three-month (April–June) to
the four-month (April–July) time series, the stable certainty increased from 0.71
to 0.78; whereas from the five-month time series (April–August) to the six-month
(April–September) series, stable certainty remained unchanged (0.81).

The distributions of certainty for correctly and wrongly classified validation
samples are shown in Figure 10. For the correctly labeled samples, certainty was
mainly in the range [0.8, 1]; for the wrongly labeled samples, certainty was mainly
in the range [0.4, 0.8]. In addition, when the time series was relatively short, the
certainty of several correctly classified samples was low. For example, in the April
time series, the certainties of nearly 20% of the correctly labeled samples were in
the range [0.4, 0.6], and the certainties of only about 30% of the correctly labeled
samples were in the range [0.8, 1]. However, when the time series was longer than
five months, more than 60% of the validation samples were correctly labeled with
high certainty (between [0.8, 1]).
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Figure 9. Classification certainty of validation samples derived from the RF
algorithm using the different input features suggested by the importance score for
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Figure 10. Frequency distributions of classification certainties for correctly and
wrongly classified validation samples.

288



5. Discussion

In this study, image time series of different lengths were used to identify crop
types, and all three measurements (crop separability, classification accuracy, and
certainty) showed that the five-month time series has the potential to classify the
crops in the study area accurately, and that longer time series cannot improve the
classification result. However, the crop types determine the optimal time series length.
In Kansas, the dominant crops are wheat, alfalfa, corn, sorghum, and soybean. The
winter crop, wheat, is separable from all the other crops when the time series length
is only one month; alfalfa also shows high separability during the early growing
season, when the summer crops have not yet developed. For the three summer crops,
corn, sorghum, and soybean, the time periods of different emergence rate contribute
most substantially to the high separability.

Previous studies have shown that rather than using the entire growing
season, images of several optimal time periods can achieve high classification
accuracy [14,17]. Additionally, according to [16], the most separable time periods for
the summer crops in Kansas are during the initial spring green-up phase and/or the
late senescence phase in June and early October, respectively. Although the short
time series in this research (such as the April–August time series) cover only a part
of the optimal time periods for crop identification, they still have the potential to
correctly classify crops. More importantly, the earlier classification using these short
periods makes the crop map more valuable.

For each time series, separability, classification accuracy, and certainty can be
achieved using a portion of the features similar to using all the features available
for that time series. Low et al [24] sorted features by their RF importance score and
used SVM to detect the relationship between classification accuracy and the number
of features exploited. The accuracy reached a peak when a fraction of the available
features was employed, and the accuracy declined substantially with the addition
of other features. The same situation has been observed in SVM classification using
hyper-spectral data [48]. In the presented research, the RF algorithm was employed
to classify the crop types, and the classification accuracy and certainty remained
stable when additional features were used, which is also consistent with the findings
of [24] that the RF algorithm was less affected by the number of features than SVM.

In this study, we calculated all month-by-month crop pair comparisons using
both multi-spectral data and indices (NDVI and NDWI). Compared with previous
research using only NDVI and EVI time series [16], the separability of crop pairs
in this research is relatively high. For example, the JM distance between corn and
sorghum was more than 1 in July. This relatively high separability is because of
several factors. First, the temporal unit in this research is one month, with three
or four time periods in each month. However, the separability analysis of [16] is
based on the 16-day NDVI and EVI, and the temporal unit is the single time period.
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Second, in addition to NDVI, both multi-spectral data and NDWI were included
in this research. Although NDVI features comprised the majority of the top ten
features selected for time series longer than five months, several multi-spectral and
NDWI features, such as NDWI_D12 and B6D19 (Figure 3), were also selected as key
features, and these features increased the separability when identifying crops over
short time series.

The phenological metrics features were not selected for the top ten features for
crop identification (Figure 3), which indicates that phenological metrics may not
classify crops as good as the other features. This is mainly because of phenological
character variations in crop development schedules due to local weather conditions
and farm management. For example, the recommended planting date for corn varies
by nearly one month from southeast to northwest Kansas. Another complicating
factor is that the phenological metrics are sensitive to the signal noise introduced
by pre-crop vegetation. This pre-crop vegetation mainly consists of weeds and
“volunteer crops” (in particular, winter wheat), and can lead to a misleading early
estimation of the green-up onset of the crops. As a result, estimates for several
phenological metrics, such as SOST, SOSN, and DOS, are prone to errors and
inconsistencies [49]. Moreover, several other phenological features, such as EOST,
EOSN, and DOS, can only be acquired after harvest, which may delay the completion
of the crop map.

When using short time series to identify the crops, both the classification
accuracy and certainty were low (Figure 10), and even several correctly classified
samples had low certainty (between 0.4 and 0.6). This was because of the low
separability among the different crops when the length of the time series was one
or two months (Figure 5). The classification certainty increased with the time series
length, but several correctly labeled validation samples still had low classification
certainty (between 0.4 and 0.6). Figure 11 shows the average probability of validation
samples for each crop type within different certainty ranges. For corn samples, the
low certainty samples have high probability for soybean and sorghum. Similarly, the
sorghum samples with low certainty also have relatively high probabilities for corn
and soybean, which is consistent with the low JM distance among these three crops
(Figure 4). Generally, low separability leads to low classification certainty.

CDL data were used as ground reference data in this research, which may
introduce some uncertainty regarding our conclusions. Some misclassification of
CDL data may lead to variations in a crop’s features (such as the NDVI time series),
and the underestimation of the separability between several crops (such as alfalfa
and soybean during April and May). Another complication is that the use of CDL
as ground reference data may lead to overly optimistic classification accuracies in
this research. This is because both MODIS and Landsat (the basis for CDL) data
are dependent on similar local atmospheric and ground conditions. The reflectance
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from the two sensors may therefore correlate to some extent during the crop-growing
season. As a result, the reported accuracy of this research is likely overstated to some
degree. Additionally, we defined 80% as the threshold for a ‘pure’ pixel to increase
the number of reference samples, but the relatively heterogeneous pixels may be a
limiting factor for this research.
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6. Conclusion

In this study, we investigated the influence of the time series length on crop
identification using 8-day composite MODIS 500-m reflectance data (MOD09A1) in
Kansas, USA, with CDL data as ground reference data. The main conclusions are
as follows.

1. The augmentation of the time series length can improve crop classification
because the separability among different crops, the classification accuracy, and
the certainty are increased. In addition, the five-month time series (April to
August) was the optimal time series for identifying crops in Kansas because
longer time series cannot improve the classification performance (accuracy and
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certainty). The result also indicated that rather than the entire growing season,
relatively short time series have the potential to accurately classify crops.

2. For each time series used in this research, additional features improved the
classification, as measured by higher separability, classification accuracy, and
certainty. Additionally, a portion of these features (such as the first 23 features
during the April–November time series) was sufficient to classify the crops
accurately, and adding more features after this point had no significant positive
effect on crop identification.

3. Among the features used in this research, NDVI was the most important feature,
as shown by the fact that NDVI features comprised the majority of the top ten
features during the eight-month time series (April–November). In addition,
the water content index (NDWI) and multi-spectral band data also contributed
to distinguishing between the crop types. The phenological metrics features
had a relatively low importance and were not selected as the most important
features. Moreover, several phenological features, such as EOST and EOSN, can
only be obtained after harvest and therefore, cannot contribute to early crop
identification using short time series.

4. The RF algorithm was used in this research to calculate the importance score,
classify the crops, and obtain the classification certainty. When the time series
was longer than five months, little change was seen among the top ten features.
In addition, the classification accuracy and certainty remained stable when
additional features were employed. These results indicate that the RF algorithm
is a suitable algorithm for selecting features and classifying crops using a large
volume of data.

In this research, we investigated the potential of using multiple features,
including NDVI, NDWI, and multi-spectral band data, to classify crops in short
time series, which could contribute to early crop mapping over a large area. After
all, crop separability and optimal crop discriminating periods are determined by
the crop type. Therefore, more work is needed to evaluate the contributions of
different features to identifying specific crops using relatively short time series in
other study areas.

292



Appendix

Table A1. Relationship between dates and months in this research.

Month Time Period
in This Study Date Flag Corresponding Day

of Year (DOY) Date

April
1 097 097–104 7 April–14 April
2 105 105–112 15 April–22 April
3 113 113–120 23 April–30 April

May

4 121 121–128 1 May–8 May
5 129 129–136 9 May–16 May
6 137 137–144 17 May–24 May
7 145 145–152 25 May–1 June

June 8 153 153–160 2 June–9 June
9 161 161–168 10 June–17 June

10 169 169–176 18 June–25 June
11 177 177–184 26 June–3 July

July

12 185 185–192 4 July–11 July
13 193 193–200 12 July–19 July
14 201 201–208 20 July–27 July
15 209 209–216 28 July–4 August

August

16 217 217–224 5 August–12 August
17 225 225–232 13 August–20 August
18 233 233–240 21 August–28 August
19 241 241–248 29 August–5 September

September
20 249 249–256 6 September–13 September
21 257 257–264 14 September–21 September
22 265 265–272 22 September–29 September

October

23 273 273–280 30 September–7 October
24 281 281–288 8 October–15 October
25 289 289–296 16 October–23 October
26 297 297–304 24 October–31 October

November

27 305 305–312 1 November–8 November
28 313 313–320 9 November–16 November
29 321 321–328 17 November–24 November
30 329 329–337 25 November–2 December
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In-Season Mapping of Crop Type with
Optical and X-Band SAR Data:
A Classification Tree Approach Using
Synoptic Seasonal Features
Paolo Villa, Daniela Stroppiana, Giacomo Fontanelli, Ramin Azar and
Pietro Alessandro Brivio

Abstract: The work focuses on developing a classification tree approach for in-season
crop mapping during early summer, by integrating optical (Landsat 8 OLI) and
X-band SAR (COSMO-SkyMed) data acquired over a test site in Northern Italy. The
approach is based on a classification tree scheme fed with a set of synoptic seasonal
features (minimum, maximum and average, computed over the multi-temporal
datasets) derived from vegetation and soil condition proxies for optical (three
spectral indices) and X-band SAR (backscatter) data. Best performing input features
were selected based on crop type separability and preliminary classification tests.
The final outputs are crop maps identifying seven crop types, delivered during
the early growing season (mid-July). Validation was carried out for two seasons
(2013 and 2014), achieving overall accuracy greater than 86%. Results highlighted
the contribution of the X-band backscatter (σ˝) in improving mapping accuracy and
promoting the transferability of the algorithm over a different year, when compared
to using only optical features.

Reprinted from Remote Sens.. Cite as: Villa, P.; Stroppiana, D.; Fontanelli, G.; Azar, R.;
Brivio, P.A. In-Season Mapping of Crop Type with Optical and X-Band SAR Data: A
Classification Tree Approach Using Synoptic Seasonal Features. Remote Sens. 2015, 7,
12859–12886.

1. Introduction

The increasing demand for information on crop acreage for agricultural
monitoring in support of private and public decision makers requires the production
of reliable crop maps [1,2]. Up-to-date information on agricultural land use is
necessary for crop planning and management: e.g., for estimating biomass and
yield, analyzing agronomic practices, assessing soil productivity, monitoring crop
phenology and stress. Earth Observation (EO) techniques have been widely exploited
in agriculture and agronomy for the advantages offered when compared to in situ and
statistical surveys: frequency of acquisitions, synoptic view, and multi-dimensional
content. Satellite remote sensing also constitutes the only source of consistent
historical data for long-term analysis over large areas, e.g., for the identification
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of anomalous conditions in vegetation development driven by climatic variability [3].
Moreover, EO data are available already during the growing season, whereas
official statistics on crop acreages are often provided at the end of the season or
later, thus being not useful for supporting in-season crop management. Since crop
productivity quickly responds to unfavorable growing conditions, timeliness in
delivering information on crop status is an important operational requirement [4,5],
e.g., for mitigating the impact of crop stress conditions, especially for summer crops,
which are prone to water stress in the dry summer months [6,7].

EO satellite data have been used for agricultural monitoring since the launch
of the Landsat-1 system in the early 1970s and their potential for distinguishing
different crops has been shown across various environmental conditions, and with
many different data sources and methodologies, e.g., in [8,9]. The Landsat archive
constitutes the longest record of multi-spectral data available at medium spatial
resolution, and has been used for crop mapping purposes at regional scale [10–12],
using either spectral response and/or vegetation indices [13–16]. The opening of the
Landsat archives in 2008 has pushed forward the implementation of data analysis
and image classification techniques based on multi-temporal features and time series
analysis [17]. Multi-temporal analysis techniques have been applied as well to coarser
resolution data such as NOAA-AVHRR [18] and NASA-MODIS data [1,19], taking
advantage of high revisit time for these sensors [20]. Other satellite data too, with
spectral and spatial features similar to Landsat, have been used for crop mapping
achieving satisfactory results, e.g., IRS LISS data [21,22].

Data acquired by Synthetic Aperture Radar (SAR) active sensors have also
been exploited for crop mapping and monitoring, especially during the last two
decades. C-band data have been used for mapping rice [23–26], wheat [27], and
multiple crops [28–32]. L-band data have been used too, although with generally
poorer performance [33,34]. More recently, with the launch of the TerraSAR-X and
COSMO-SkyMed satellites, the use of X-band SAR data has largely expanded, mainly
thanks to the higher spatial and temporal resolutions and theoretical flexibility
of these platforms [35,36]. Concerning X-band SAR data, different polarimetric
configurations have been tested for crop mapping, from vertical-based, e.g., in [37],
to horizontal-based polarization, e.g., in [38]; comparative studies using multiple
polarizations have been carried out as well, e.g., in [39]. However, to our knowledge
no agreement has been reached so far on the best polarization configuration for
crop mapping.

The integration of SAR and optical sensors for agricultural applications is a
recent topic, aiming at reducing the impact of optical and SAR specific limitations
(i.e., dependence on solar and clear sky conditions for the former, and on signal noise
and stability for the latter). SAR and optical data integration takes advantage of their
complementarity in terms of sensitivity to vegetation and soil characteristics [40–42]:
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plant biomass, soil moisture and surface texture for SAR, spectral response of
canopy-background system and photosynthetic features for optical sensors [31,32,43].
Successful integration examples are the work of Michelson et al. [44], and more
recently some large scale studies using multi-source data from RADARSAT-1, Envisat
ASAR, SPOT and Landsat sensors [29,37,45,46]. The algorithms used for land cover
mapping with both optical and SAR data range from maximum likelihood [46] and
neural network ensembles [46,47] for crop classification, to maximum likelihood with
iterated conditional modes [48] and Random Forest [49] for regional and urban land
cover targets, up to fuzzy scores aggregation for burned area mapping [50]. With
the advent of new generation satellites, e.g., Landsat 8, Sentinel-2, WorldView-3, as
well as COSMO-SkyMed, TerraSAR-X, RADARSAT-2, and Sentinel-1, crop mapping
applications can be more timely and reliable, in particular during the early growth
stages, and the operational use of such techniques will be promoted.

This paper describes a classification tree approach for in-season crop mapping,
which exploits features derived from multi-temporal optical, Landsat 8 Operational
Land Imager (OLI), and X-band SAR, COSMO-SkyMed, data for producing reliable
in-season crop maps over temperate areas. The proposed approach builds on the
analysis of separability between different crops to identify the best performing proxy
combinations and synoptic seasonal features as crop mapping inputs. Classification
tree approaches can handle input features of different types and derived from
different sources, and are directly interpretable and adaptable, being structured as a
set of simple rules [51–53]. These characteristics make classification tree approaches
both efficient and effective, especially for delivering mapping algorithms which are
to be used in operational contexts.

The main objective is to define a classification tree approach for producing a crop
map early in the summer season, i.e., around mid-July [54], to support agricultural
management in Northern Italy. Spectral features for the winter and summer crop
seasons (named synoptic seasonal features) are extracted from the temporal profiles
of a set of proxies derived from optical and SAR data. Different proxies were used,
sensitive to vegetation and soil conditions and able to characterize the dynamics
of different crop types throughout the growing season: Spectral Indices (SIs) from
optical data and/or backscatter and interferometric coherence information from
X-band SAR data. Most of the literature using multi-temporal information for crop
mapping focus on the use of temporal profiles of spectral indices derived from optical
data [55–58], and only recently some authors successfully included SAR backscatter
profiles for rice mapping [59,60]. The novelty of our work are the use of synoptic
seasonal features integrating optical and SAR data, and the delivery of crop type
mapping already during the early stage of growth; eventually, the transferability to
a growing season different from the one used for developing the approach is tested.
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2. Materials

2.1. Study Area

The study area is located in Lombardy region, northern Italy (Figure 1); it
lies south of Milan and it is bordered by the Po river. The area, covering around
1100 Km2, is mostly flat and intensively cultivated. Climate is continental, with
annual temperature changes between January and July up to 20 ˝C and average
precipitations of 850 mm/year. The most economically valuable crop types cultivated
in Lombardy are (in per cent of total cropland area): maize (38.5%), temporary and
permanent meadows used for forages (34.1%), rice (10.1%), winter cereals (wheat
and barley, 7.5%), soybean and other legumes (2.7%), and vegetables (1.4%) [61].
The two major crop seasons run from October to June and from April to October
for winter and summer crops, respectively. Barley is the prevailing winter crop,
typically flowering in April-May and harvested in May-June. The main summer
crops, covering most of the cropland area and consuming most of irrigation resources,
are maize and rice. Maize, sown between April and early May, reaches the peak
of the vegetative phase in July and is harvested from the end of August through
September. Maize is often also sown in double cropping practices for fresh forages
or silage, after meadows or winter cereals, in integrated crop-livestock systems.
Rice is usually sown later than maize, from the second half of April to late May,
reaching the flowering stage in late July or early August, and it is harvested from
late September onwards.

2.2. Satellite Data

The remotely sensed dataset is composed of 13 COSMO-SkyMed (CSK) and
14 Landsat 8 OLI images covering the spring/summer seasons of the years 2013
(18 April–23 July) and 2014 (05 April–19 July), as shown in Table 1. CSK data have
been consistently acquired by the same satellite of the COSMO SkyMed constellation
(CSK 1) in single polarization (HH) and interferometric mode. CSK dataset of both
years is acquired from the same flight track and with constant orbital configuration.
This configuration allowed us to exploit the dataset not only for X-band intensity
calculation, but also for extracting repeat-pass interferometric coherence, with
absolute values of perpendicular baselines ranging from 190 to 479 m for 2013 CSK
dataset, and from 363 to 1020 m for 2014 CSK dataset.
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Figure 1. The study area in Northern Italy and an overview of the optical
and SAR data coverage: (a) Landsat 8 OLI, path 194-rows 28-29 (03 July 2014,
RGB = 543), (b) Landsat 8 OLI, path 193-rows 28-29 (10 June 2014, RGB = 543),
(c) COSMO-SkyMed-1 (10 July 2014, Product processed under a license of the Italian
Space Agency (ASI); Original COSMO-SkyMed Product - ©ASI - (2013)).

Table 1. The X-band SAR and optical satellite acquisitions divided into the
development (2013) and the transferability dataset (2014).

Dataset
SAR Data (COSMO SkyMed-1) Optical Data (Landsat 8 OLI)

Date DOY Date DOY WRS-2 (path/rows)

2013

18-04 108 13-05 133 194/28-29
04-05 124 07-06 158 193/28-29
20-05 140 14-06 165 194/28-29
05-06 156 23-06 174 193/28-29
21-06 172 30-06 181 194/28-29
07-07 188 16-07 197 194/28-29
23-07 204

2014

05-04 95 14-04 104 194/28-29
21-04 111 23-04 113 193/28-29
07-05 127 09-05 129 193/28-29
23-05 143 25-05 145 193/28-29
08-06 159 01-06 152 194/28-29
10-07 191 10-06 161 193/28-29

03-07 184 194/28-29
19-07 200 194/28-29
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The CSK product was acquired as StripMap HIMAGE in Single Look Complex
(SLC) format, HH polarization, descending pass, with look angle of 24.1 degrees.
The OLI dataset was collected by taking advantage of two overlapping WRS-2
paths (193 and 194, rows 28-29) that guarantees a theoretical revisiting frequency of
7–9 days over the study area. Landsat 8 OLI scenes were retained only when overall
cloud cover was less than 10%.

2.3. Reference Data

Three thematic levels of crop types were considered for covering the variability
of crops cultivated in the study area: a detailed level (level 2—Lev2), an intermediate
level (level 1—Lev1), and a generic level (level 0—Lev0), as summarized in Table 2.
Lev2 is composed of 12 classes: early maize (Ma1), medium maize (Ma2), late maize
(Ma3), early rice (R1), late rice (R2), dry seeded rice (R3), early soybean (Sb1), late soybean
(Sb2), winter crop (WC), double crop (i.e., winter crop followed by a summer crop;
DC), forages (i.e., permanent and temporary meadows used as fodder; Fo), and
forestry-woodland (either natural or man-made; F-W). Lev1 groups the subclasses of
maize, rice and soybean crops into three mono-type classes: maize (Ma), rice (R), and
soybean (Sb), thus delivering a total of 7 crop cover classes (Ma, R, Sb, WC, DC, Fo,
F-W). Indeed, Lev1 classes represent the target crop types for operational use of the
early crop map, but since some Lev1 classes showed multimodal SIs temporal profiles
due to different sowing dates of various cultivars (e.g., long and short cycle maize),
we split some summer crop classes into different sub-classes in order to effectively
calculating class separability, thus composing Lev2 classes. Finally, Lev0 was derived
by further aggregating summer crop types (Ma, R, Sb) into a unique summer crop (SC)
class, leading to a total of 5 land cover classes (SC, WC, DC, Fo, F-W).

For building the reference dataset to be used for crop type classification
implementation, a set of 570 crop fields (almost 9000 pixels), belonging to 12 different
crop classes, have been identified for the 2013 spring-summer season based on
the Annual Agricultural Land Use Map of Lombardy region (Carta Uso Agricolo
Annuale, CUAA); this map is produced and distributed by the “Ente Regionale per i
Servizi all’Agricoltura e alle Foreste” (i.e., the regional agency for agriculture and forest
services of the Lombardy regional government) on an annual basis and relies on
farmers’ declarations as the primary source of information [62].
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Table 2. Composition of the reference sample for 2013 development set, including
training and validation sub-samples.

Lev2 Lev1 Lev0

Crop Class Training
px/fields

Validation
px/fields Crop Class Training

px/fields
Validation
px/fields Crop Class Training

px/fields
Validation
px/fields

Ma1 maize (early
seeding) 881/34 520/17

Ma maize 2233/96 1173/48

SC
summer crop

(generic) 5439/260 2794/130Ma2
maize

(medium
seeding)

771/36 378/18

Ma3 maize (late
seeding) 581/26 275/13

R1 rice (early
seeding) 628/34 335/17

R rice 2296/112 1066/56

R2 rice (late
seeding) 962/44 431/22

R3 rice (dry
seeding) 706/34 300/17

Sb1
soybean

(early
seeding)

462/26 319/13
Sb soybean 910/52 561/26

Sb2 soybean (late
seeding) 448/26 242/13

WC winter crop 782/30 344/15 WC winter crop 782/30 344/15 WC winter crop 782/30 344/15

DC double crop 1007/34 443/17 DC double crop 1007/34 443/17 DC double crop 1007/34 443/17

Fo
forages

(artificial
grassland)

447/22 212/11 Fo
forages

(artificial
grassland)

447/22 212/11 Fo
forages

(artificial
grassland)

447/22 212/11

F-W forestry-woodland 1118/34 530/17 F-W forestry-woodland 1118/34 530/17 F-W forestry-woodland 1118/34 530/17

The crop categories of the CUAA legend are not consistent with crop classes
defined on the basis of spectral response from remotely sensed data. For example,
the CUAA crop category “maize” includes both single and double crop cultivations,
which are characterized by different temporal profiles of the Spectral Indices derived
from OLI data, thus leading to two distinct classes. Furthermore, the CUAA category
“forages” includes all crops cultivated for animal consumption, i.e., some winter
cereals, fodder and managed grasslands (alfalfa and similar), which are grown and
mowed several times per season. Finally, no official figures are provided for the
accuracy of the CUAA product. Therefore, the CUAA 2013 map was not used as
direct reference data source, but it was used as base information for extracting sample
fields, which have been confirmed by visual assessment of high resolution satellite
photos covering part of the study area (acquired on 22 March and 10 August 2013,
from Google Earth), in situ observations for a limited number of fields (survey along
main roads using camera and GPS) and interpretation of multi-temporal profiles
of optical scenes (i.e., for extracting Lev2 subclasses from Lev1 by assessing season
timing of EVI peak, and for delineating double cropped fields).The reference dataset
for 2013 growing season is described in Table 2, including the number of fields
sampled for each class and level. The sampling was done on the basis of random
selection of spatially distributed points from CUAA 2013 map within each crop
class, followed by checking for correct class labelling consistently with semantic
crop classes included into our target legend. Finally, a subdivision of the reference
set was made on a per-field basis, with 2/3 of the fields used for training and 1/3
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used for validation (see Table 2). This procedure allowed the attribution of crop
type labels consistent with target crop classes in 2013 season, and it is used together
with the satellite development set. For 2014 season, a validation set was constructed
starting from CUAA 2014 map and using the same checking procedure described for
2013 reference set. 2014 validation set is composed of a total of 3759 pixels, with class
cardinality ranging from 289 to 753 pixels, and it is consistently used for assessing
mapping accuracy derived from satellite transferability set.

The satellite and reference data have been divided into two separate datasets:
(i) a development set, used for best input feature selection, training of the
classification algorithm and accuracy assessment (i.e., for developing the crop
mapping approach), made of the satellite data from the year 2013 (7 CSK, 6 OLI) and
the training and validation samples extracted and checked from CUAA 2013 (Table 2)
and (ii) a transferability set, used for validation of the crop mapping approach
implemented for a different growing season (i.e., testing the transferability of the
approach), composed of the satellite data acquired in 2014 (6 CSK, 8 OLI) and the
validation sample extracted and checked from CUAA 2014.

3. Methods

3.1. Satellite Data Pre-Processing

Landsat 8 OLI data [63] were converted to surface reflectance through
atmospheric correction, performed with Atmospheric/Topographic CORrection
for Satellite Imagery (ATCOR) [64]. Multi-temporal SIs have already demonstrated
their efficacy in capturing cropland characteristics [54,65]. For our approach, three SIs
were derived as proxies of crop conditions from optical data: Enhanced Vegetation
Index (EVI, Equation (1)), Normalized Difference Flood Index (NDFI, Equation (2)),
and Red Green Ratio Index (RGRI, Equation (3)).

EVI “ 2
ρNIR(b5OLI) ´ ρRED(b4OLI)

ρNIR(b5OLI) ` 6ρRED(b4OLI) ´ 7.5ρBLUE(b2OLI) ` 1
(1)

NDFI “
ρRED(b4OLI) ´ ρSWIR(b7OLI)

ρRED(b4OLI) ` ρSWIR(b7OLI)
(2)

RGRI “
ρGREEN(b3OLI)

ρRED(b4OLI)
(3)

EVI was developed as an enhanced version of NDVI, including correction for
background and atmospheric disturbances; the spectral bands of near infrared (NIR)
and visible red (RED) are supplemented by information from the visible blue (BLUE)
band, by using optimal weighting [66]. EVI provides information about vegetation
vigor, linked to biomass and fractional cover. As a complement to EVI, we included
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NDFI, which is an index developed for the detection of surface water in flooded
rice areas; NDFI, originally introduced as NDFI2 or NDSIB2B7 [67], is the normalized
difference of the RED and the short wave (SWIR, 2.1–2.2 µm) spectral bands. NDFI
provides information about soil moisture and flooding conditions, especially relevant
for paddy rice fields. The ratio of the RED and GREEN reflectance values (RGRI) was
included due to its sensitivity to photosynthetic efficiency and leaf pigments [68].

Figure 2 shows EVI (a) and NDFI (b) multi-temporal profiles extracted from
the 2014 OLI dataset (covering the whole growing season: 16 March–23 October),
together with acquisition dates of CSK and OLI for the development dataset (2013);
the grey bar highlights the temporal range adopted as early crop map production
deadline (mid-July). The profiles qualitatively well describe the cycles of the major
winter and summer crops of the study area, thus promoting the SIs selected as
suitable candidates for monitoring crop dynamics during the season.

CSK images were pre-processed with MAPscape-RICE software [59] for (i)
mosaicking single frames into slant range continuous strips and (ii) co-registration
of images using orbital information and automatic spatial matching based
on cross-correlation.

Two different proxies of crop conditions were derived from CSK data:
X-band backscattering coefficient sigma nought (σ˝), related to plant biomass and
morphology and soil conditions (moisture and roughness), already used for crop
mapping by Fontanelli et al. [69], and repeat-pass interferometric coherence (γ),
related to the evolution of surface scattering properties of canopy/background
system (plant height and density) during the season [70,71]. The σ˝ was derived
through three processing steps: (a) multi-temporal speckle filtering according to the
approach developed by De Grandi et al. [59,60,72], to balance differences in reflectivity
between images at different times, (b) geocoding and radiometric calibration, using a
Digital Elevation Model (SRTM DEM, at 90m equivalent ground resolution) and the
radar equation, in which scattering area, antenna gain patterns and range spread loss
were considered, and finally (c) normalization on local incidence angle, according
to the cosine law. The interferometric coherence γ maps were produced using the
complex data of image pairs of consecutive acquisitions [73], with a temporal baseline
of 16 days (32 days for the 08 June–10 July 2014 pair). The multi-temporal σ˝ and
γ maps were finally geocoded to UTM 32N WGS84 and spatially resampled to the
same spatial resolution of L8 OLI images (30 m), by aggregating the average value of
10 ˆ 10 pixels at the original resolution of 3 m.

3.2. Multi-Temporal Proxies Test

In order to capture the distinct seasonal patterns of different crops, we divided
the multi-temporal dataset into two periods: (i) from April to the beginning of June,
when winter crops are harvested; and (ii) from May-June, when summer crops
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emergence starts, to mid-July. Synoptic seasonal features over the two periods were
computed for EVI, RGRI, σ˝ and γ. For NDFI, only pre-summer features were
derived, being it related to flooding in rice cultivation. Seasonal proxies used for
the development set (2013) are summarized in Table 3. Each seasonal proxy is made
a series of values corresponding to dates falling into the Day Of Year (DOY) range
representative of winter crop and early summer crop seasons.
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Figure 2. EVI (a) and NDFI (b) multi-temporal profiles extracted from the 2014
OLI dataset for major crops in Lombardy study site (covering the whole growing
season from winter crop stem elongation phase to summer crops harvesting:
March to October). Satellite acquisition dates of OLI and CSK images used for the
development set (2013) are superimposed on the graphs. Grey color box represent
the target temporal range for producing the early in-season crop map (i.e., mid-July).

Table 3. Optical and X-band SAR seasonal proxies for the 2013 development set.
EVIW = EVI in winter crop growing season; EVIS = EVI in early summer crop
growing season; RGRIW = RGRI in winter crop growing season; RGRIS= RGRI
in early summer crop growing season; NDFI = NDFI before summer crop peak;
σ˝

W = X-band HH backscatter in winter crop growing season; σ˝
S = X-band HH

backscatter in early summer crop growing season; γW = interferometric coherence
in winter crop growing season; γS = interferometric coherence in early summer
crop growing season.

Seasonal
Proxy

DOY Range
(2013 Dataset) Crop Vegetation and Soil Characteristics Connected

EVIW 133–165 EVI during winter crop peak season (May–June)
EVIS 174–197 EVI during early summer crop growth season (June–July)

RGRIW 133–165 RGRI during winter crop peak season (May–June)
RGRIS 174–197 RGRI during early summer crop growth season (June–July)
NDFI 133–197 NDFI before summer crop peak (May–July)
σ˝

W 108–156 X-band backscattering coefficient during winter crop peak season (May–June)
σ˝

S 172–204 X-band backscattering coefficient during early summer crop growth season (June–July)
γW 108–156 repeat-pass interferometric coherence during winter crop peak season (May–June)
γS 172–204 repeat-pass interferometric coherence during early summer crop growth season (June–July)
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For each proxy, the following synoptic seasonal features were extracted for
the winter and summer periods: minimum value over the seasonal range (min),
maximum value over the seasonal range (max), mean value over the seasonal
range (ave), standard deviation over the seasonal range (std) (Figure 3), and the
asymmetry index of the seasonal proxy scores histogram, or skewness (ske), not
included in Figure 3.
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Figure 3. An example of synoptic seasonal features (min, max, ave, std) extracted
for the winter and summer periods from EVI 2014 multitemporal profiles (April to
mid-July) over winter wheat (red) and maize (yellow) sample fields.

3.3. In-Season Crop Type Classification

The classification scheme and the input features were selected to satisfy as
much as possible crop mapping pre-operational requirements, thus (i) providing a
product with high thematic mapping accuracy; (ii) being transferable to different
years and (iii) building on rules both simple and interpretable, even to those who
are non-experts in pattern recognition and remote sensing. Given these constraints,
we implemented a rule-based classification tree, which grants both flexibility and
robustness, and support the use of multi-source data [51–53]. The scheme is
implemented using the Classification and regression Tree (CT) algorithm, in the
extension of J48 java routine, programmed in WEKA 3.6 [74]. J48 CT routine is shaped
on C4.5 [75] and consists of a recursive algorithm, that generates a classification tree
through iterative partitioning of the feature space by using the information gain
(computed from the entropy function) of each attribute for a set of cases [76]. Each
node in a tree is associated to a set of two or more cases. The attribute with the highest
information gain is selected for each node, and the optimal threshold for continuous
attributes is computed. For avoiding too complicated tree structures and over-fitting,
embedded pruning capabilities are implemented into J48 CT algorithm, according
to a given confidence level. For our J48 CT implementation we allowed only binary
splits for each node, and used online pruning, with confidence factor of 0.25 and

308



sub-tree raising option. For dealing with possible over-fitting and minimizing the
tree size, we set the minimum number of classified instances per each final node
equal to 200, which is approximately half of the size of the smallest Lev1 crop
class in the training dataset (forages, 447 pixels, see Table 2). CT outputs a set of
hierarchical rules with optimized decision boundaries in form of thresholds, which
can be straightforwardly implemented for image classification. An additional output
of CT is the assessment of class attribution error for each tree node, which is a useful
metric for ex-post tree re-structuring, in case of high accumulation of misclassified
instances in some branches.

The performance of the CT schemes implemented was tested with different
combination of proxies and features, by computing the confusion matrix and derived
accuracy metrics [77]. During this phase, results achieved with the CT approach
were compared to the ones achieved by Random Forest (RF) classification [78],
which is currently acknowledged as the upper limit reachable using state of the art
classification tree algorithms and multi-source data [79–81].

3.4. Selection of Input Features

Descriptive statistics were extracted for each Lev2 class and different synoptic
seasonal features combinations: (i) σ˝ features; (ii) σ˝ and γ features; (iii) EVI features;
(iv) EVI and NDFI features; (v) EVI, NDFI and RGRI features; (vi) EVI, NDFI, RGRI,
and σ˝ features; (vii) EVI, NDFI, RGRI, σ˝ and γ features. Lev2 class-by-class
separability was computed for these combinations using the Jeffries-Matusita
Distance (J-MDIST) [82], and aggregated as per-class separability by averaging all
possible pairings comprising a specific class. As a rule of the thumb, good separability
is generally set at J-MDIST higher than 1.9 [83]. Lev2 classes used for extracting
class-by-class separability were further summarized into average class separability
scores at Lev1. The best performing combinations of seasonal proxies were then
selected by maximizing separability, with J-MDIST~2. Following the selection of best
proxy combinations, the feasibility of reducing the synoptic seasonal features input
set was assessed based on the overall performance of preliminary crop classification
tests using CT and RF, with three different sets of features: (i) minimum, maximum,
mean, standard deviation, and skewness (min-max-ave-std-ske); (ii) minimum,
maximum, and mean (min-max-ave); and(iii) minimum and maximum (min-max).
The rationale behind this choice is to assess the effect in terms of mapping accuracy,
when discarding features mostly affected by year-to-year variability of satellite image
frequency: i.e., we first excluded standard deviation and skewness, and then the
average, which in case of few scenes available can be more biased than extreme
values (min-max).

At the end of the test phase, we retained the input set (i.e., the combinations of
proxies and synoptic seasonal features) that granted as much reduction as possible
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in the number of features, granting the lowest difference of overall accuracy between
CT and RF results, at Lev1.

3.5. Validation

The CT scheme derived for the selected input set was applied and validated over
2013 and 2014 seasonal data, development and transferability sets, by calculating
confusion matrices and derived metrics: Overall accuracy (OA), Kappa coefficient
of agreement (κ) and per-class Commission (CE) and Omission (OE) Errors [77].
Validation was carried out on samples independent from the training set, with
per-class cardinality either proportional to the one of the training set (case t), or of
actual cropland cover calculated from CUAA reference information (case r). Crop
mapping performance was assessed at two thematic levels: Lev1, and Lev0.

An overview of the whole methodological approach described in Section 3 is
given in Figure 4.
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4. Results and Discussion

4.1. Selection of Synoptic Seasonal Features

Since the separability scores for Lev2 classes were generally not high enough
for expecting good performance in early mapping, Lev1 (i.e., 7 crop classes) was
chosen as the target level for our crop mapping approach. Class separability scores
aggregated at Lev1 (Table 4) show some interesting response to the different input
proxy combinations (derived from optical and/or X-band SAR data).

Using only X-band SAR information, J-MDIST increases consistently for all
classes when adding γ to σ˝: from +0.041 for better separated classes (rice and forages),
to +0.150 and up to +0.204 for crop classes difficult to separate using only σ˝ (maize,
soybean, and double crop). Using optical proxies, a slighter but consistent increment in
J-MDIST (0.037 to 0.053) is observed by adding NDFI to EVI for summer crops (maize,
rice, and soybean). Further addition of RGRI brings a small, yet consistent, increment
in J-MDIST (0.009 to 0.023) over summer crops. As regards separability achieved
by using optical and SAR proxies together, an increment is observed adding σ˝ to
the full optical feature set; since separability is already close to the maximum value
(J-MDIST~2) the increment is lower for maize and soybean classes (+0.007 to +0.010).
No significant increment (+0.000 to +0.002) is granted by further adding γ.

Based on separability scores shown in Table 4, we kept only the best
performing combinations in terms of overall separability (minimum JMDIST > 1.98):
EVI+NDFI+RGRI (ERN, J-MDIST > 1.983) and EVI+NDFI+RGRI+σ˝ (ERN+s,
J-MDIST > 1.997). Since the scores achieved using EVI+NDFI+RGRI+σ˝ and
EVI+NDFI+RGRI+σ˝+γ synoptic features are not significantly different, we decided to
discard the combination including γ to keep the feature set as simple as possible. These
two combinations were used as input for the classification approach development.

Table 4. Mean J-MDIST for each crop type class at Lev1, as a function of the
combination of OLI and SAR proxies. Maximum separability corresponds to
J-MDIST = 2.

Crop Type
(Lev1)

Combination of Seasonal Proxies Used

σ˝ σ˝+γ EVI EVI+NDFI EVI+NDFI+RGRI EVI+NDFI+RGRI+σ˝ EVI+NDFI+RGRI+σ˝+γ

Maize 1.781 1.944 1.928 1.973 1.988 1.998 1.999
Rice 1.936 1.977 1.951 1.988 1.997 2.000 2.000

Soybean 1.784 1.934 1.907 1.960 1.983 1.997 1.999
Winter crop 1.921 1.988 1.998 1.999 1.999 2.000 2.000
Double crop 1.755 1.959 1.998 1.999 1.999 2.000 2.000

Forages 1.949 1.990 1.999 2.000 2.000 2.000 2.000
Forestry-woodland 1.927 1.990 1.999 2.000 2.000 2.000 2.000

Table 5 shows OA of preliminary crop classification tests using synoptic seasonal
features extracted from ERN and ERN+s combinations at Lev1 and Lev0 as input
for CT, with RF scores as reference. Results achieved with the complete features
set (min-max-ave-std-ske) show that: (i) at Lev1, OA achieved with CT increases
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from 85.3% (ERN) to 89.0% (ERN+s), with a gap towards RF of 5.8%–8.9%; (ii) at
Lev0, very high OA is scored by CT (96.7–97.8%), reducing the gap towards RF
to 1.3%–2.5%. Reducing the input features to min-max-ave set did not produce a
sensible decrement in OA, with maximum decrement in OA of´0.8% across different
proxy combinations and thematic levels, while increments in OA for CT are observed
using ERN: +1.2% (at Lev0) and +1.7% (at Lev1). Further reducing input features to
min-max did not significantly change OA at Lev0, but a decrement up to 2.1% was
observed for Lev1.

Figure 5 shows per-class omission and commission errors (OE and CE) at Lev1
for CT and RF. When the min-max-ave set is used, no significant increase of per-class
errors is observed, compared to the use of a full set of features (min-max-ave-std-ske;
Figure 5b–e). Instead, the use of min-max-ave set and CT fed with optical only
features (ERN) contributes to a reduction of OE for forages (25%, Figure 5b), and of
CE for forestry-woodland (9%, Figure 5e). When the input feature set is further reduced
to min-max (Figure 5c–f), higher errors for double crop (+11% OE, +5% CE), and some
overestimation of winter crop (+8% CE) are observed. The best performing synoptic
seasonal feature set was therefore identified as min-max-ave, which was therefore
selected as best option input for early crop mapping.
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Figure 6 shows the two CT schemes implemented using the J48 algorithm for to the 2013 training 

dataset with the min-max-ave synoptic seasonal feature set, applied to the ERN (CTmin-max-ave(ERN), 

Figure 6a) and ERN+s (CTmin-max-ave(ERN+s), Figure 6b).  

The CT scheme developed using only optical features (CTmin-max-ave(ERN)) shows the first split of tree 

nodes based on winter season RGRI maximum (RGRIW
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vegetated in May-June (right side) from non-vegetated ones (left side), thus distinguishing summer crops 

Figure 5. Per-class omission (OE) and commission (CE) errors for Lev1 classes
achieved by CT with ERN and ERN+s proxies and different synoptic seasonal
feature sets: (a) OE with min-max-ave-std-ske; (b) OE with min-max-ave; (c) OE
with min-max; (d) CE with min-max-ave-std-ske; (e) CE with min-max-ave;
(f) CE with min-max. Ma = maize; R = rice; Sb = soybean; WC = winter crop;
DC = double crop; Fo = forages; F-W = forestry-woodland; ERN = EVI+NDFI+RGRI;
ERN = EVI+NDFI+RGRI+σ˝ = ERN+s. Results achievable using RF are shown
as reference.
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Table 5. Overall Accuracy (OA) for CT at Lev1 and Lev0, using ERN and ERN+s
proxy combinations and min-max-ave-std-ske, min-max-ave and min-max seasonal
features. ERN = EVI+NDFI+RGRI; ERN = EVI+NDFI+RGRI+σ˝ = ERN+s. Results
achievable using RF are shown as reference.

OA ERN ERN+s

Method Level min-max-ave-std-ske min-max-ave min-max min-max-ave-std-ske min-max-ave min-max

CT
Lev1 85.3% 87.0% 84.8% 89.0% 88.7% 86.9%
Lev0 96.7% 97.9% 96.4% 97.8% 97.8% 96.2%

RF
(reference)

Lev1 94.2% 93.4% 93.9% 94.8% 94.6% 93.8%
Lev0 99.2% 99.2% 99.1% 99.1% 99.3% 99.0%

4.2. In-Season Crop Type Classification

Figure 6 shows the two CT schemes implemented using the J48 algorithm for to
the 2013 training dataset with the min-max-ave synoptic seasonal feature set, applied
to the ERN (CTmin-max-ave(ERN), Figure 6a) and ERN+s (CTmin-max-ave(ERN+s),
Figure 6b).

The CT scheme developed using only optical features (CTmin-max-ave(ERN))
shows the first split of tree nodes based on winter season RGRI maximum
(RGRIW

max ě 1.361), separating pixels which are vegetated in May-June (right side)
from non-vegetated ones (left side), thus distinguishing summer crops from winter
crops, double crops and other agricultural land cover. The tree branches on the
right side of Figure 6a further split winter and double crops from non-sown land
covers (forages, forestry-woodland) based on two combinations of EVI mean in early
summer (EVIS

ave), since the latter classes show high green fractional cover already
during spring, when summer crops are not yet sown. All these nodes show crop
type attribution errors lower than 2.4%, except for winter crop class (9.6% cumulated
node error). Left branches in Figure 6a are populated by summer crop classes,
characterized by low RGRIW

max. Below these branches, the main splits are based
on NDFI maximum (>0.089) to separate flooded rice fields (very accurate, with
node error of 0.1%), and EVI maximum in winter-spring season (EVIW

max > 0.298)
to identify early-cycle crops (mostly maize). Crop type detection in lower level
branches are due to a combination of EVI and RGRI features from both winter-spring
and early summer features, and are meant to separate a mixture of rice, maize and
soybean; these branches are characterized by cumulative node error above 20% (high
misclassification rate).
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Figure 6. Classification tree schemes implemented using: (a) OLI data
only, min-max-ave(ERN) input set, and (b) integrated OLI and CSK data,
min-max-ave(ERN+s) input set. Ma = maize; R = rice; Sb = soybean; WC = winter
crop; DC = double crop; Fo = forages; F-W = forestry-woodland.

The classification scheme developed using integrated optical and X-band
SAR features (CTmin-max-ave(ERN+s)) shows a main split for RGRIW

max ě 1.361,
consistently with CTmin-max-ave(ERN). The branches on the right side highlight the
contribution of X-band minimum backscatter in early summer for the discrimination
of forages from forestry-woodland (σ˝

S
min > 0.055). In the left branches, the

major rice class (flooded rice) is first identified based on maximum NDFI (as in
CTmin-max-ave(ERN)) while maize or rice pixels showing very high X-band backscatter
in early summer (σ˝

S
max > 0.682) are separated from a mixture of rice, maize and

soybean. This mixture of summer crops is further untangled by a combination of
winter season EVI, mean summer backscatter and RGRI peak scores. As previously
noted for Figure 6a scheme, these leftmost branches are characterized by high class
attribution errors (>20%). Figure 7 shows the in-season early crop maps produced
using CTmin-max-ave(ERN+s) scheme applied to the 2013 and 2014 datasets.

4.3. Validation

Table 6 summarizes accuracy metrics (OA and κ) for the crop maps shown in
Figure 7 and computed for two different validation sets, with crop class cardinality
proportional to either the training set (case t), or the actual cropland coverage of the
area calculated from CUAA (case r). For 2013, the accuracy scores retrieved using the
two sets are highly consistent, with case r giving slightly higher scores. OA achieved
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at Lev1 with 2013 ERN+s dataset, peaking at 91.8% over case r set (κ = 0.897), are
1.7% higher than when using only optical data (ERN). At Lev0, the performance of
ERN and ERN+s data are nearly the same, with OA (κ) around 98% (0.960) for both
case r and case t validation sets.

Table 6. OA and κ computed for crop maps derived with the CT schemes of Figure 6
applied to the development (2013) and transferability (2014) sets, with ERN and
ERN+s input features. case r = class distribution proportional to real case crop
acreage (%); case t = same class distribution of training set; ERN = EVI+NDFI+RGRI;
ERN+s = EVI+NDFI+RGRI+σ˝.

Level
Input Features 2013 Dataset 2014 Dataset

Validation Set ERN ERN+s ERN ERN+s

OA
Lev1

case t 87.0% 88.7% - -
case r 90.1% 91.8% 66.9% 86.6%

Lev0
case t 97.9% 97.8% - -
case r 98.2% 98.2% 85.6% 92.4%

κ
Lev1

case t 0.839 0.860 - -
case r 0.875 0.897 0.572 0.826

Lev0
case t 0.960 0.959 - -
case r 0.968 0.968 0.740 0.861

Classification performance over the transferability set (2014) shows very good
accuracy scores at Lev0, yet lower than for 2013: OA = 85.6% (κ = 0.740) using optical
features and OA = 92.4% (κ = 0.861) using optical and σ˝ features. An increment
of 6.8% in OA is achieved at Lev0 by integrating σ˝ for 2014, while for 2013 no
enhancement was observed. At Lev1, less consistent results are observed: using ERN
input an OA = 66.9% was reached, 23.2% lower than 2013 results, while when ERN+s
input are used, a rebound of +19.7% in OA is achieved, reaching 86.6% (κ = 0.826).
This result highlights the significant contribution of X-band SAR backscattering
in terms of transferability of the approach, i.e., when the classification scheme is
applied to a seasonal dataset different from the one used for algorithm development.
The additional information brought by X-band SAR increases the robustness of the
mapping approach at Lev1.

Per-class errors were analyzed at Lev1, providing some insights into the
disaggregation of global accuracy results (Figure 8 and Table 7). Using the 2013
validation dataset (case r), depicted in light and dark green bars of Figure 8 and
in the two upper matrices of Table 7, OE and CE are consistently lower than 25%
for all classes, with the exception of soybean (OE = 25.3%–40.7%, CE = 50.7%–55.0%,
with either ERN or ERN+s input), which is mainly misclassified as maize. For the
soybean class, the use of X-band σ˝ results in a OE reduction of 15.4%, due to less
confusion with other summer crops, and in a CE reduction of 4.3%, due to less
confusion with rice; a reduction of 4.9% CE for rice is also registered using ERN+s
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input, while errors over other crop types are stable. The best performances, with
class errors not exceeding 10% and balanced between omission and commission,
are achieved for maize (OE = 9.3%, CE = 10.6%), rice (OE = 9.3%, CE = 1.6%), forages
(OE = 0.1%, CE = 0.5%), and forestry-woodland (OE = 0.6%, CE = 0.1%). Tendencies to
overestimation for winter crop (CE = 16.8%) and to underestimation for double crop
(OE = 23.7%) are observed, due to mutual confusion between these two classes.Remote Sens. 2015, 7 12875 
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Figure 8. Class omission (OE) (a) and commission (CE) (b) errors at Lev1
for CTmin-max-ave approach implemented over development (year 2013) and
transferability (year 2014) sets using different input features (ERN and ERN+s).
Ma = maize; R = rice; Sb = soybean; WC = winter crop; DC = double
crop; Fo = forages; F-W = forestry-woodland; ERN = EVI+NDFI+RGRI;
ERN = EVI+NDFI+RGRI+σ˝ = ERN+s.
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Table 7. Confusion matrices of early in-season crop maps produced using the
CT scheme implemented over development (2013) and transferability (2014) sets,
with ERN and ERN+s input features. Figures are expressed in hectares [ha].
ERN = EVI+NDFI+RGRI; ERN = EVI+NDFI+RGRI+σ˝ = ERN+s.

Reference Dataset

Maize Rice Soybean Winter
crop

Double
Crop Forages Forestry-woodland

Development
Set

CTmin-max-ave
(ERN) 2013

Maize 95.6 8.6 14.6 0.0 0.5 0.0 0.1
Rice 4.3 85.1 6.2 0.0 0.0 0.0 0.0
Soybean 5.7 2.3 29.7 0.0 0.0 0.0 0.0
Winter crop 0.0 0.0 0.0 29.1 7.7 0.0 0.0
Double Crop 0.0 0.0 0.0 0.0 28.3 0.0 0.0
Forages 0.0 0.0 0.0 0.0 0.0 19.1 0.0
Forestry-woodland 0.0 0.0 0.0 0.0 0.0 0.0 47.4

CTmin-max-ave
(ERN+s) 2013

Maize 95.8 8.6 12.4 0.0 0.0 0.0 0.1
Rice 0.4 87.4 4.2 0.0 0.0 0.0 0.0
Soybean 9.5 0.0 33.8 0.0 0.4 0.0 0.0
Winter crop 0.0 0.0 0.0 29.1 7.7 0.0 0.0
Double Crop 0.0 0.0 0.0 0.0 28.4 0.0 0.0
Forages 0.0 0.0 0.0 0.0 0.0 19.1 0.3
Forestry-woodland 0.0 0.0 0.0 0.0 0.0 0.0 47.2

Transferability
Set

CTmin-max-ave
(ERN) 2014

Maize 61.0 26.8 8.6 0.0 2.5 0.0 0.1
Rice 6.6 41.0 30.2 0.0 0.0 0.0 0.0
Soybean 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Winter crop 0.0 0.0 0.0 14.6 0.0 0.0 0.0
Double Crop 0.0 0.0 0.0 19.9 27.6 0.5 0.0
Forages 0.0 0.0 0.0 0.0 8.9 24.2 34.7
Forestry-woodland 0.0 0.0 0.0 0.0 1.4 0.0 29.8

CTmin-max-ave
(ERN+s) 2014

Maize 62.8 0.0 13.3 0.0 0.0 0.0 0.0
Rice 4.8 67.8 25.2 0.0 0.0 0.0 0.1
Soybean 0.0 0.0 0.3 0.0 2.3 0.0 0.0
Winter crop 0.0 0.0 0.0 14.6 0.0 0.0 0.0
Double Crop 0.0 0.0 0.0 19.9 28.1 0.5 0.0
Forages 0.0 0.0 0.0 0.0 5.3 22.4 0.1
Forestry-woodland 0.0 0.0 0.0 3.4 3.2 0.0 64.4

When the CTmin-max-ave scheme is applied to 2014 data (transferability set) in
case r (Figure 8, light and dark orange bars, Table 7, two lower confusion matrices),
some different patterns emerge: both CE and OE are greater than 2013 over most of
the classes. A remarkable case is represented by soybean, with OE = 100.0%, meaning
that this class is not represented in the classified pixels belonging to 2014 validation
set. These pixels are mistakenly classified as rice (78%) and maize (22%). Other major
discrepancies between 2013 and 2014 per-class accuracy occur for winter crop and
double crop classes: for the former, the 2014 crop map is strongly underestimating
(OE = 58%), while for the latter the rather conservative 2013 performance (CE = 0%)
is not repeated for 2014 (CE > 40%, OE > 30%). The overestimation of winter crop
is due to confusion with double crop, while the errors observed for double crop come
from misclassification not only with winter crop, but also with forages. This could be
due to the timing of 2014 acquisition dates, which less effectively capture the single
and double crop dynamics compared to 2013 data. The high OE for forestry-woodland
(56%) is instead due to class confusion with forages.

The integration of σ˝ for the 2014 dataset (ERN+s) results in very small changes
of OE for soybean, winter crop and double crop, while it brings an improvement for
maize (OE = 7.0%, CE = 4.9%), rice (OE = 0.2%, CE = 12.4%), forages (OE = 14.9%,
CE = 20.0%), and forestry-woodland (OE = 0.3%, CE = 11.7%); this is mainly due to the
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reduced confusion between rice and maize and between forages and forestry-woodland.
Still, per-class performances using ERN+s over 2014 are generally worse than for
2013, especially over crop classes more sensitive to the seasonal climatic conditions
(e.g., double crop and soybean, usually sown late in summer season in Lombardy and
thus prone to meteorological fluctuations). A different behavior is shown by rice, with
a slight overestimation of class extent for 2014 dataset (<OE, >CE), compared to 2013
results. In summary, CTmin-max-ave performance using ERN+s input is better than
with ERN for most of the crop types at Lev1 and outputs acceptable class accuracies
ranging from 62.8% for double crop, to >90% for forestry-woodland (94.0%), rice (93.8%),
and maize (94.6%). Important misclassification errors are observed for soybean class
across the inter-annual dataset.

4.4. Error Reduction Strategy

Since Lev1 map assessment showed some misclassification for summer crop
classes (especially on 2014 dataset), we tested an expert-based ex-post pruning
of the CTmin-max-ave scheme, implemented by restructuring the set of rules for
branches with higher class attribution cumulated error (>20%). The rationale is
to test the performance of a classifier which reduces the overall classification error
at the expenses of the detail of the thematic level. This way, we generate a crop
map which is only partially at Lev1 detail (see Table 7 for Lev1 areal coverage
percentage), by grouping summer crops, which are in the left branches of the schemes
shown in Figure 6 together into a generic crop type label (generic summer crop, SCg)
(Figure 9). These re-structured crop mapping schemes, implemented for both ERN
and ERN+s are respectively named: CT’min-max-ave(ERN), shown in Figure 9a, and
CT’min-max-ave(ERN+s) scheme, shown in Figure 9b.

Validation was carried out using the same validation sets used for assessing
CTmin-max-ave results, by excluding the areas labelled as SCg, which are classified now
at Lev0. As a consequence, CT’min-max-ave early crop maps do not cover the whole
study area at Lev1 and some of the cropland is mapped at Lev0. Table 8 summarizes
accuracy metrics of the CT’min-max-ave scheme calculated for two validation datasets:
case t and case r. The Lev1 classified coverage ranges from a minimum of 84%
(obtained for the ERN 2013 map), to a maximum of 94% of the total study site
cropland area (for the ERN 2014 map). As expected, the global accuracy scores
achieved with the ex-post pruned schemes are higher than the ones derived with
the original CTmin-max-ave schemes: OA (κ) increases by 4.6–4.7% (0.047–0.062) for
the year 2013 and by 3.7% (0.051–0.053) for the year 2014. As observed for the
original scheme, the best performance for CT’min-max-ave is still achieved over the
development set (2013), with OA~95% (κ~0.94). For the transferability set (2014), OA
decreases to 70.6% using ERN input, but still a strong rebound of +19.7% (up to 90.3%)

318



is achieved by adding X-band σ˝ (ERN+s set), with κ increasing from 0.625 to 0.877;
the positive contribution of CSK based information for 2014 dataset is thus confirmed.
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Figure 9. CT’min-max-ave classification tree schemes for: (a) ERN, and (b) ERN+s
input dataset. Ma = maize; R = rice; SCg = summer crop (generic); WC = winter
crop; DC = double crop; Fo = forages; F-W = forestry-woodland.

Table 8. Accuracy performance at Lev1 assessed using the CT’min-max-ave scheme
(excluding the generic summer crop class), with either ERN or ERN+s input dataset,
expressed in terms of OA and κ. The cropland area percentage classified at Lev1 is
included. case r = validation set with class distribution proportional to real case
crop acreage percent coverage; case t = validation set with class distribution same
as training set; ERN = EVI+NDFI+RGRI; ERN = EVI+NDFI+RGRI+σ˝ = ERN+s.

Validation Set
Input Features

2013 Dataset 2014 Dataset

ERN ERN+s ERN ERN+s

OA
case t 95.0% 95.5% - -
case r 94.8% 95.4% 70.6% 90.3%

κ
case t 0.939 0.945 - -
case r 0.937 0.944 0.625 0.877

Lev1 coverage 88% 84% 94% 90%

Per-class error analysis (Figure 10) shows that the re-structured schemes provide
an improvement only to CE of the summer crop classes, maize and rice (being soybean
excluded as target here) with a significant reduction for rice CE (4.4%) over 2014 using
ERN+s input set. In summary, the CT’min-max-ave showed slight but consistently better
performance of the original scheme, and could be adopted as error reduction strategy
when the proposed crop mapping approach is applied to different conditions; this
would lead to a crop map with different thematic levels: Lev1, i.e., distinguishing the
majority of rice and maize fields , and Lev0.
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Figure 10. Class error at Lev1 for the CT’min-max-ave scheme over development (2013) and 

transferability (2014) sets, using different input features (ERN and ERN+s): (a) OE, (b) CE. 
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Figure 10. Class error at Lev1 for the CT’min-max-ave scheme over development
(2013) and transferability (2014) sets, using different input features (ERN and
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ERN = EVI+NDFI+RGRI; ERN = EVI+NDFI+RGRI+σ˝ = ERN+s.

5. Conclusions

This study describes a classification tree approach for in-season crop mapping
over Northern Italy during the early summer season (mid-July) from the integration
of optical (Landsat 8 OLI) and X-band SAR (COSMO-SkyMed) synoptic seasonal
features. A rule-based approach offers the advantage of being interpretable
through rules/conditions applied to input features, which are representative of
crop conditions and development. Results described could be applied to Northern
Italy and, with minimal check and tuning by local experts, also to areas with
similar environmental and agricultural characteristics (i.e., European temperate to
Mediterranean areas).

Key findings and conclusions relevant for crop mapping applications are
listed below:

‚ The proposed approach produces early in-season (mid-July) crop type maps
at two levels of thematic detail with the greatest accuracy obtained when both
optical and SAR features (ERN+s set) are used as input: overall accuracy is
91.8% for the 2013 season and 86.6% for the 2014 season;

‚ Best performing input features for effectively distinguishing 7 crop types (maize,
rice, soybean, winter crop, double crop, forages, forestry-woodland) can be extracted
from synoptic seasonal features calculated for winter and summer crops and
derived from two combinations of remote sensing proxies for vegetation and
soil conditions: i) EVI, NDFI and RGRI from OLI data (ERN set), and ii) the
integration of OLI-derived proxies with CSK backscattering (ERN+s set).

‚ The contribution of X-band σ˝ (HH polarization) is relevant for promoting
the transferability of the approach over a season (2014) different from the one
used for developing the classification rules, with an increment of 19.7% in OA
compared to crop maps produced using only optical input features;
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‚ The integration of CSK σ˝ reduces class errors (omission and commission)
especially for crop types characterized by more seasonally stable agronomic
patterns (i.e., maize, rice, forages, forestry-woodland);

‚ Expert-based tuning and ex-post pruning are key assets when dealing with
operational monitoring and can be used as error reduction strategy, delivering
a modified early crop mapping scheme with hybrid thematic level output, and
higher overall accuracy (90.3% using ERN+s input for 2014 season);

‚ In the framework of agriculture management, the achieved overall accuracy
at mid-July is considered satisfactory given the fact that the information on
crops is provided early during the growing season as management requires, i.e.,
2–3 months before end of season and harvesting;

‚ The proposed the approach is interpretable and flexible enough for being
exploited for mapping crops at different levels of detail and possibly exploiting
different input data with similar spectral bands (e.g., Sentinel-2 MSI).
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Rapid Assessment of Crop Status:
An Application of MODIS and SAR Data to
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Abstract: Asian countries strongly depend on rice production for food security. The
major rice-growing season (June to October) is highly exposed to the risk of tropical
storm related damage. Unbiased and transparent approaches to assess the risk of
rice crop damage are essential to support mitigation and disaster response strategies
in the region. This study describes and demonstrates a method for rapid, pre-event
crop status assessment. The ex-post test case is Typhoon Haiyan and its impact on
the rice crop in Leyte Province in the Philippines. A synthetic aperture radar (SAR)
derived rice area map was used to delineate the area at risk while crop status at
the moment of typhoon landfall was estimated from specific time series analysis of
Moderate Resolution Imaging Spectroradiometer (MODIS) data. A spatially explicit
indicator of risk of standing crop loss was calculated as the time between estimated
heading date and typhoon occurrence. Results of the analysis of pre- and post-event
SAR images showed that 6500 ha were flooded in northeastern Leyte. This area was
also the region most at risk to storm related crop damage due to late establishment of
rice. Estimates highlight that about 700 ha of rice (71% of which was in northeastern
Leyte) had not reached maturity at the time of the typhoon event and a further
8400 ha (84% of which was in northeastern Leyte) were likely to be not yet harvested.
We demonstrated that the proposed approach can provide pre-event, in-season
information on the status of rice and other field crops and the risk of damage posed
by tropical storms.
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Bacong, A.P.; Quilang, E.J.P. Rapid Assessment of Crop Status: An Application
of MODIS and SAR Data to Rice Areas in Leyte, Philippines Affected by
Typhoon Haiyan. Remote Sens. 2015, 7, 6535–6557.
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1. Introduction

1.1. Rice Crops in Asia and Their Exposure to Tropical Storms

Rice is the only staple crop suited to humid, high rainfall environments. Rice is
predominantly grown in regions and seasons in Asia that are highly prone to extreme
weather events such as tropical storms (called Typhoons in the northwestern Pacific
ocean; Tropical Cyclones in the Indian, southwest Pacific and southern Atlantic
oceans, and; Hurricanes in the northern Atlantic and northern Pacific oceans).

Figure 1 shows the approximate area occupied by standing rice crops in Asia
for every month of the year, based on crop calendars [1] and national statistics [2].
About 70% of the region’s rice is grown in the monsoon season from June to October,
reaching a peak of almost 100 million hectares in August [1]. The same figure also
shows the average monthly frequency of tropical storms in the Western Pacific
between 1959 and 2011 [3]. There is a striking correlation suggesting that the main
rice crop season in Asia is highly exposed to the risk of storm-related damage.
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Figure 1. Monthly rice area (M ha) in Asia vs. average number of tropical storms
per month in the western Pacific between 1959 and 2011.

Cyclones make landfall in eastern India, Bangladesh and Myanmar, while
typhoons affect the Philippines, Vietnam, southern and eastern China, Taiwan and
Japan. Specifically, the most vulnerable areas are the insular region of Southeast Asia
and the coastal areas of mainland Asian countries (although severe storms can affect
inland areas too) since significant amounts of rice are produced in floodplains, deltas
and other low lying areas in coastal regions. Storm related crop losses in the main
growing season can have significant negative impacts on rice production, imports,
exports, and prices. Inevitably, these have a disproportionately high impact on the
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more vulnerable sectors of society, which depend on rice for a substantial proportion
of their income (producers) and calories (consumers).

1.2. Typhoon Haiyan and Its Impact in Philippines

The Philippines in particular is affected by an average of 20 tropical storms every
year, some of which develop into devastating typhoons. Typhoon Haiyan (also called
Typhoon Yolanda in the Philippines) developed into a category five ‘super-typhoon’
shortly before it made landfall on the eastern Visayas on the 8 November 2013. The
eye of the typhoon passed directly over Leyte and its capital city of Tacloban as
the typhoon moved from the Western Pacific across the Philippines and then into
the South China Sea by the 9 November. The resulting devastation from sustained
winds of up to 230 km/h, widespread flooding and the 5–6 m storm surge were well
documented in the following weeks and months.

From official reports, casualties in the country reached over 6000 with over
1000 still missing two months after the typhoon [4]. More than 3.4 million families
were affected, with nearly a million displaced in 44 provinces in the country. Of
the total casualties in the country, 86% were from the province of Leyte. Total
cost of damages was estimated at 39.8 Billion (B) Pesos (0.9B USD) and nearly
one-fourth were damages to crops including rice and corn. In Leyte, cost of damages
to agriculture and infrastructure was estimated at 6.8B Pesos (154M USD) with
1.4B Pesos (32M USD) of damage to rice and corn crops in the province.

1.3. Assessing the Risk of Crop Damage and Actual Crop Damage from Tropical Storms

Tropical storms can affect thousands of hectares of crop at any time during the
main rice-growing season. Mitigation and disaster response strategies related to
food security require pre- and post-event information on the likely impact and actual
impact on crops in the path of a tropical storm.

Accurate information pre-event can assist decision-makers to take appropriate
actions to safeguard recently harvested crops or to advance the harvest period
so that crops are removed from the field in time. Pre-event assessments would
need to be part of routine crop information collection procedures and may not be
a high priority for local agricultural officers with many competing demands on
their resources. Accurate information post-event can help to assess damages more
accurately and determine appropriate compensation, as this is directly linked to
inputs and investments such as seeds, fertilizers and labor which will vary depending
on the crop stage at time of loss. Post-event assessments can be challenging if access
to the area is limited or dangerous. Furthermore, there are often conflicting reports
from different agencies and media outlets and there can be pressure for local offices
to inflate damage reports to secure greater emergency assistance.
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Thus, there is a need to provide unbiased and timely estimates of crop status
with sufficient lead-time for agencies and governments to act upon this information.
There are several examples of the use of remote sensing to provide such information,
which we briefly review below. We focus on examples and applications in Asia
related to flooding from extreme or prolonged rainfall, storm surges or tsunamis—all
of which can result in submergence related damages to crops.

1.4. Remote Sensing as a Source of Unbiased and Timely Information on Crop and
Vegetation Status

Affected areas can be identified and damages from floods or tropical storms can
be evaluated using multi-temporal satellite imagery (both optical and radar), analysis
of ancillary spatial data and ground based reporting [5]. Also, non-authoritative data,
such as volunteered geographical data (sourced from online video, photos and social
media streams etc.) and crowd sourced data (e.g., voluntary photo interpretation of
aerial images), have been used to provide additional information that is integrated
with authoritative data (from agencies mandated to collect such information), in
order to perform flood impact assessments [6].

There are several examples of the use of remote sensing and spatial data to assess
post-event impact [7–9]. Chau et al., [9] assessed the potential impacts of extreme
floods on agriculture in Vietnam by overlaying historical flood inundation maps
(produced from flood depth markers recorded for each past flood event) and land
use maps. This form of assessment results in risk maps that evaluate the potential
impact on natural resources, which, in turn, aids planning activities. However, when
an extreme event occurs, it is also important to have a rapid—and if possible a
pre-event—estimation of actual agricultural area and actual crop growth stages that
would complement such risk maps.

Geospatial and remote sensing based damage assessments have been used in
post-tsunami impact assessments (e.g., [10,11]). On 26 December 2004, earthquakes
in the Indian Ocean triggered massive waves that caused vast destruction of many
coastal areas in the region [12]. This well documented and tragic event massively
impacted coastal areas on both sides of the Indian Ocean, from Indonesia to Sri
Lanka, and resulted in significant loss of lives, damaged coastal infrastructure and
flooding. Some of these impacts were documented through geospatial information.
Specific examples include the use of high-resolution imagery (IKONOS satellite
datasets) to map changes in vegetation near Aceh, Indonesia, immediately after
the event [13], mapping of coastal vegetation changes in Phang Nga province,
Thailand [14,15] and assessments of the protection potential of mangrove vegetation
cover along the west coast of Thailand [16]. ASTER/Landsat imagery has been
used to estimate tsunami-damaged areas [12] and to map and assess vegetation
changes—using vegetation indices such as the Normalized Difference Vegetation
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Index (NDVI)—due to short-term [11] and long-term tsunami effects [17]. These
studies are extremely useful for estimating the damages to natural resources. They
can support rehabilitation, help to prioritize interventions and draw attention to the
impact of these events in a visually compelling and quantitative manner. However,
the direct and rapid evaluation of the crop losses incurred in the current season was
not the aim of these studies.

In response to Typhoon Haiyan, the Food and Agriculture Organization (FAO)
collected and published available information on the impact of the typhoon on
the Philippines. A map with an assessment of the damages was provided in their
report [18], but this did not include an assessment of the crop condition at the time
of the event.

All of the above approaches are reactive and take place post-event. Figure 2
shows the general timeframe of post-event remote sensing assessments. Once an
event occurs, pre-event information on land cover and archives of earth observation
(EO) imagery are compared to EO images acquired post-event, any changes are
detected and summarized through spatial analysis.
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Figure 2. The timeline of post-event remote sensing assessments.

As outlined in Section 1.3 there is a need to complement this approach with
a more proactive approach to crop information to assess the risk of damage before the
event takes place. Our aim in this study is to develop and demonstrate a methodology
that can provide near real time information on the likely impact of a specific event.

1.5. A Remote Sensing-based Proposal for a Proactive Approach on Rice Crop
Status Assessment

There are two conditions that need to be met to deliver such near real time
information [19]. First, there must be a high spatial resolution rice crop area map
of the location and season at risk. Second, there must be a suitable source of timely,
high temporal resolution remote sensing information that can be analyzed to provide
accurate information on the current rice crop status within that mapped area [20,21].
Availability of these two complementary layers of remote sensing information can be
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exploited to derive spatially explicit estimates of crop status. This information can be
related to the predicted or observed date of a tropical storm event, for immediate
damage mitigation strategies or post-event damage estimation. Alternatively, it
can be used to assess the frequency of exposure to storms at different crop growth
stages and hence develop longer term mitigation strategies such as growing shorter
duration varieties, choosing earlier/later planting windows, or adopting alternative
crop rotations/land use.

Figure 3 shows the general timeframe of this pre-event (proactive) approach
combined with a post-event (reactive) approach. As in Figure 2, a crop map (or land
cover map), a pre-event image and a post event image are acquired and analyzed
reactively to assess the actual damage after the event. The proactive information
comes from the crop map and continual analysis of high temporal information on the
crop status, analyzed before the event to assess the risk of damage to the standing
crop. The two approaches are complementary.
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Figure 3. A combined proactive and reactive remote sensing approach to evaluate
the risk of crop losses and the actual crop losses due to flooding from tropical storms.

In this study, we propose a proactive crop status assessment method that can
provide near real time information on the likely impact of a specific event. We
apply ex-post in parallel with a reactive damage assessment for the case of Typhoon
Haiyan and its impact on the rice growing areas of Leyte province, Philippines.
We first describe the study site, our data (Section 2) and methodology (Section 3).
The results section (Section 4) assesses the derived remotely sensed information
on crop status/growth stage at the time of the event and compares these estimates
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to available field data. Finally, we discuss the significance of the results and the
potentials of the proposed approach within the framework of planned operational
satellite missions.

2. Study Site and Data

2.1. Leyte Province and Its Rice Production Systems

Leyte is a province in the eastern part of the Visayas island group of the
Philippines. The study site is the northern part of Leyte, which was the most strongly
affected by Typhoon Haiyan. Figure 4 shows the study site, the typhoon track and
rice cultivated area during the 2013 wet season (July to December) (from [22]). The
source and generation of the rice area map are described in Section 3.Remote Sens. 2015, 7 6541 
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Figure 4. Northeastern part of Leyte Province. Wet season rice area in green, track
of typhoon Haiyan in blue, municipal boundaries in black. Inset map shows the
location of Leyte in the Philippines.

Leyte has a tropical climate with regular rainfall through the year. Poverty
incidence is high (31% in 2012 [23]). Rice is cultivated on the east and west coasts of
the island, while the hilly central area is occupied mainly by forests. The total rice
area in the province in 2012 was 133000 hectares, 65% of which is irrigated [24]. Most
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farmers establish their crop by transplanting 21-day old seedlings. Popular varieties
include NSIC Rc-222, NSIC Rc-238 and NSIC Rc-216, which are inbred varieties with
durations ranging from 110 to 114 days.

Rice is grown in two distinct seasons per year and here we focus on the main or
wet season. The transplanting window for the wet season in this region spans several
months with farmers establishing their crop anytime between May and August,
though the peak transplanting month is June. Such a large range in transplanting
dates over a small area reinforces the need for a method that can provide spatial
and temporal information on crop status. Since the dominant varieties mature
in approximately four months, harvesting takes place between September and
December, peaking in October and November.

2.2. Remote Sensing Data

Two sources of Earth Observation (EO) data were used to perform the analysis
(Table 1). Very High Resolution (VHR, 3 m) synthetic aperture radar (SAR) data were
used to map (i) rice cultivated areas in the 2013 wet season and (ii) post-typhoon
flooded areas, while multi-temporal Moderate Resolution (MR, 250 m) optical data
were used to assess crop seasonality and crop growth stage at the time of the
typhoon event.

Table 1. EO data exploited in the analysis.

Location Northwest Leyte Northeast Leyte Northeast Leyte Leyte

Purpose Rice area map Rice area map Flooded area detection Rice crop status
Satellite or
instrument

Cosmo-SkyMed
(CSK 1, 3 and 4)

Cosmo-SkyMed
(CSK 1 and 4)

Cosmo-SkyMed
(CSK 1 and 2) Terra and Aqua

Sensor mode Stripmap Stripmap Stripmap MODIS

Product SLC SLC SLC MOD13Q1 and
MYD13Q1

Band X (3.12 cm) X (3.12 cm) X (3.12 cm)
Red (620–670 nm),
NIR (841–876 nm),
Blue (459–479 nm)

Resolution (m) 3 3 3 250
Swath (km) 40ˆ 40 40ˆ 40 40ˆ 40 40ˆ 40 1200ˆ 1200

Scene center 11.18˝N
124.56˝E

11.11˝N
124.89˝E

11.11˝N
124.89˝E

11.08˝N
124.93˝E

14.9˝ N
129.41˝ E

Polarization HH HH HH HH -
Look Right Right Right Right -
Orbit Descending Descending Descending Descending Descending

Incidence angle 48 46 46 54 -
Cycle (days) 16 16 - - 16 (8)

Start day 12 May 2013 15 May 2013 20 September 2013 8 November 2013 6 December 2012
End day 24 September 2013 20 September 2013 11 November 2013 16 November 2013 11 December 2013
Images 9 10 2 2 70

Cultivated rice area of the 2013 wet season was produced by analyzing
multi-temporal Cosmo-SkyMed (CSK) data acquired every 16 days from 15 May to
20 September 2013, as described in [22].

Flooded area was analyzed only for northeast Leyte because it was the area
where the typhoon first made landfall and was expected to be the area most heavily
affected by the typhoon. Where possible, flood assessments should rely on identical
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sources of pre- and post-event imagery, but a rapid post-event image depends on the
orbit frequency of the satellite. Fortunately, most SAR platforms have the ability to
change the viewing angle to allow nearby orbits to observe the required area. We
acquired flood assessment post-event CSK image with the same acquisition geometry
as the May–September data stack on 11 November 2013 and two CSK images with a
different viewing angle on 8 and 16 November 2013. Footprints of the SAR data are
provided in the supplementary materials (Supplementary Figure S1).

We used the MOD13Q1 (Terra satellite) and MYD13Q1 (Aqua satellite) 250 m
resolution vegetation indices products available for Leyte from December 2012 to
December 2013. These data are free to download from the USGS Land Processes
Distributed Active Archive Centre (LP DAAC) [25]. For both sensors, these data are
provided as 16-day composites with an 8 days nominal shift (Terra 16-day composites
start at the day of the year (DOY) 001, while the Aqua compositing period starts at
DOY 009). MOD/MYD13Q1 products are developed using the Constrained View
Angle-Maximum value Composite (CV-MVC). Seventy composites (35 each for
MOD13Q1 and MYD13Q1 products) were downloaded to analyze the entire 2013
crop year, and used to create a synthetic 8-day time series exploiting the nominal
composite date to create a temporal series [26].

2.3. Field Data and Additional Spatial Information

Ground data were available as described in [22]. These data were specifically
acquired to support the analysis of Very High Resolution SAR data. Field
observations were performed throughout the 2013 wet season in 40 paddy fields
in northwest and northeast Leyte (20 parcels within each CSK footprint) across
eight municipalities. These fields were selected, with the farmers’ consent, prior
to the start of the rice growing season and the SAR image acquisition schedule.
Observations were conducted on (or as close as possible to) the image acquisition
date, using a standardized protocol. Observations included latitude and longitude
from handheld GPS receivers, descriptions and photos of the status of the field, plant
height, water depth, weather conditions and crop growth stage. At the end of the
season, farmers were also interviewed to collect information on the rice variety, water
source, crop management and establishment practices, and inputs such as pesticides
and fertilizers. A total of 400 field observations were made through the season.

A further 184 validation points were collected in the same footprints for rice
map accuracy assessment as described in [22].

Administrative municipal boundaries used in aggregating results were obtained
from the Global Administrative Areas Database (GADM) [27].
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3. Methods

We first describe the analysis and derived information from the proactive
assessment and briefly describe the same for the reactive assessment although there
are common inputs used in both.

3.1. Proactive Assessment of Rice Crop Status and Risk of Damage

The proactive assessment describes the pre-event status of the crop using
processed MODIS time series data to estimate key rice crop stages within a predefined
rice crop mask derived from SAR data (see Sections 3.1.1 and 3.1.4 for the crop mask).
The SAR data and MODIS time series data were processed as follows.

3.1.1. Rice Crop Mask from SAR Data

A fully automated processing chain was developed to convert the multi-temporal
space-borne SAR Single Look Complex (SLC) data into terrain-geocoded σ0 values.
Then, a multi-temporal σ0 rule-based rice detection algorithm was applied to the time
series using thresholds derived from 40 in-season monitoring locations within the
two SAR footprints where monitoring took place. A confusion matrix was used to
estimate the classification accuracy of the rice maps based on observed field data
from 184 locations in rice and non-rice areas. The resulting maps show the detected
rice area for the 2013 wet season and were estimated to have a classification accuracy
of 87% for the northeastern footprint and 89% for the northwestern footprint. The
two rice maps were mosaicked into one. Further details on the methodology and
accuracy of the rice area maps can be found in [22]. The rice area was summarized
per municipality.

3.1.2. MODIS Data Pre-Processing

Boschetti et al. [20] demonstrated that it is possible to identify the dates of
crop establishment (transplanting or direct seeding) and heading (maximum plant
development at the end of vegetative period) from time series analysis of moderate
resolution EO data [20,21,28]. However, the time series data needs to be smoothed
before this information can be extracted.

The synthetic 8-day time series of Terra and Aqua HDF files (See Section 0)
were used to extract the necessary information to build a time series of vegetation
indices and to evaluate the residual rate of noise (mainly due to residual cloud
contamination) that still affected the observation after compositing. In particular, the
Enhanced Vegetation Index (EVI; MOD/MYD13Q1 HDF layer 2; [29]), VI Quality
information (HDF layer 3), the blue reflectance band (HDF layer 6) and the Pixel
Reliability flags data (HDF layer 12) were extracted and analyzed.
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EVI time series were smoothed following a two-step approach. The first step
involved the detection and cleaning of outliers (i.e., anomalous ‘spikes’) in the raw EVI
profile following the approach proposed in the TIMESAT algorithm [30]. The checked
EVI time series were then smoothed using a weighted Savitzky-Golay filter [31] with
weights assigned on the basis of data quality. This algorithm allows data smoothing
without forcing a given mathematical function (e.g., Gaussian or logistic curves) to fit
the data time series thus reducing artifacts creation [31,32]. Data quality was derived
from analysis of MODIS quality indicators (Pixel Reliability and VI Usefulness derived
from HDF layers 12 and 3, respectively), complemented with blue reflectance data
as proposed by other authors [33] (see Supplementary Table S2 for details). For each
acquisition date (t), pixels (i) were classified as Clean, Contaminated or Cloudy. The
Savitzky-Golay filter was then applied, using a symmetrical smoothing window
of ˘ 3 periods, a 2nd order polynomial fitting function, and weighting EVI values of
the different dates by associating them with different expected measurements errors
(Clean εi

t “ 0.02; Contaminated εi
t “ 0.11; Cloudy εi

t “ 0.3q.

3.1.3. Phenological Metric Extraction from Smoothed MODIS Times Series Data

Following Boschetti et al. [20], a rule based method was implemented to identify
the occurrence of the main phenological stages from the smoothed EVI time series.
We first calculated and analyzed the derivative of the smoothed signal in order
to identify all the points of local (relative) minima and local (relative) maxima.
Following Manfron et al. [21], these minima and maxima were then evaluated with
agronomically based criteria to identify which ones correspond to the transplanting
and heading dates, respectively.

The transplanting dates were assumed to correspond to the local minima
followed by a rapid and strong increase of the EVI smoothed signal (a sequence of
at least three positive derivative points in a temporal window of five composites).
The heading dates were assumed to correspond to the absolute maxima of the curve
satisfying the following criteria:

i) located between 56 and 120 days after the estimated transplanting date, based
on known durations of vegetative stages of rice crops grown in this area
and season;

ii) showing an EVI value greater than 0.4; and
iii) followed by a rapid reduction of EVI (a decrease of 1/3 of max-EVI value within

40 days) following [21].

3.1.4. Spatial and Statistical Analysis of the Phenology Metrics

Several steps were taken to ensure that the crop status information extracted
from the phenological metrics was both robust and representative.
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Firstly, phenological analysis was performed only on MODIS pixels identified as
rice by the SAR rice crop mask. The “detection rate” of the algorithm was analyzed
for each municipality by comparing the total number of 250 m “rice pixels”, derived
resampling the high resolution SAR map, with the number of pixels for which the
algorithm estimated the transplanting and heading dates. The phenological stages
estimated from the MODIS time series were compared to crop stage information
from the field. Due to the small dimension of the fields, which were selected for
the analysis of VHR SAR data [22], it was not possible to perform a direct field
to pixel comparison. Instead, transplanting and heading dates from MODIS were
summarized at municipal level and their statistical distributions were compared
against the distribution of field observed dates.

Secondly, we identified and removed unreliable estimates. We calculated the
confidence intervals of the average heading occurrence in each municipality using a
bootstrapping method for non-normally distributed data [34]. Municipalities where
half the width of the confidence interval was greater than 8 days (i.e., corresponding
to the MODIS composite time span) exhibited phenological estimates with high
variance due to a noisy and scattered sample and were discarded from the analysis.
Additionally, any municipality with 10 or fewer pixels with heading estimates was
also discarded from the analysis.

3.1.5. Indicator of Risk of Standing Rice Crop Loss from a Typhoon

The final step in the proactive assessment estimates the risk of standing rice crop
loss from a typhoon with an indicator that identifies which areas of Leyte were more
likely to have been impacted by the typhoon. The time span (∆doy, in days) between
the estimated heading date and the typhoon occurrence was calculated for each
pixel. Since harvesting can only start at the end of the ripening phase, which in the
tropics occurs 30 to 40 days after heading [35], areas characterized by rice crop with
a detected heading close to the typhoon event (∆doy of 30–50 days) were considered
to be at risk of rice production loss due to the typhoon. The average number of days
between heading and typhoon Haiyan was summarized per municipality.

Not all MODIS pixels in the rice area will meet the criteria in Section 3.1.2 for
phenological metric extraction. Thus, to estimate the total rice area potentially subject
to production loss, we multiplied the area of MODIS pixels with a given ∆doy value
by the MODIS detection rate, for each possible ∆doy (Equation (1)).

Srice

´

∆doy

¯

“ SM

´

∆doy

¯

ˆDR “ NM

´

∆doy

¯

ˆ Spixel ˆDR (1)

where Srice

´

∆doy

¯

is the estimate of total rice area with a given ∆doy, SM

´

∆doy

¯

is the area of MODIS pixels with a given ∆doy (computed as the product of the
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number of pixels NM

´

∆doy

¯

by the surface of a MODIS pixel), and DR is the MODIS
detection rate.

The rice area potentially subject to production loss was summarized
per municipality.

3.2. Reactive Assessment of Rice Crop Damage

The reactive damage estimate is based on a simple spatial analysis of pixels
classified as rice (Section 3.1.1) and as being flooded due to the typhoon. The flood
detection relies on change detection applied to SAR images pre- and post-event.
The relevant images for flood mapping are: 8 and 11 November (flooded images);
and 16 November and 20 September (reference or non-flooded images). Because
the scenes on 8 and 16 November were acquired with a different geometry, they
were filtered using the single-date Gamma distribution entropy maximum a-posteriori
method (a different method to the filtering used for the multi-date time series in [22]
but all other processing to derive terrain geocoded and calibrated images were
as in [22].

Flooded areas were detected with a rule-based classifier applied to the
backscatter (or σ˝) pixel values in the terrain geocoded and calibrated images.

1. σ0 value for the flooded date (i.e., 11 or 8 November) is less than ´13 dB; this
value is associated with surface water for X-band, HH data at this incidence
angle as described in [22].

2. σ0 ratio between the reference or non-flooded images and the corresponding
flooded acquisitions, is larger than 2.0; this represents a strong backscatter
decrease over a short period of time that is not consistent with normal rice crop
practices in this region and season.

The flood damaged rice area was summarized per municipality.

4. Results and Discussion

We focus on the results of the proactive approach but place the results in context
with the flooded rice area estimates from the reactive approach. We split the results
into four sections. We first visually demonstrate the results of the phenological
stage detection algorithm using two exemplar pixels in the study area. This is
followed by an assessment of the representativeness of the detection across the entire
study area. We then assess the accuracy of the detection by comparing the detected
phenological stages against field observations. Finally, we estimate the standing rice
crop area at risk of damage from typhoon related flooding and relate this to the flood
affected area.
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4.1. Example Rice Crop Phenological Stages from MODIS Time Series Data

Figure 5 shows an example for one pixel in Kananga municipality in Northwest
Leyte (Figure 5a) and Pastrana municipality in Northeast Leyte (Figure 5b). The
figure shows the 8-day raw EVI data (thin gray line), the effect of the smoothing
process (green line), the date of landfall of the typhoon (blue diamond), the detection
of transplanting date (red point), and the heading occurrence (dark-green point).
The temporal profile extracted in Kananga (Figure 5a detected two seasons. In
particular, the wet season, the one closer to the typhoon event, shows a rice crop
establishment with transplanting at the beginning of June (DOY 153) and a peak EVI
(i.e., heading [20]) in late July (DOY 209). On the other hand, the time series analyzed
in Pastrana. Figure 5b clearly shows a delayed crop establishment in the wet season
with rice transplanting in late July (DOY 201) and a crop peak in late September
(DOY 265). The preceding dry season (from January to May) was not detected as rice
due to an anomalous and slow decreasing senescence period that does not match
with the expected rice behavior and time series analysis criteria [21])
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detection rate varied between 8% and 57%, and was found to be greater than 10% in the majority of the 

municipalities analyzed (21 out of 29). The detection rate is generally lower in areas characterized by 

low rice presence where the rice growing areas are more fragmented (low resolution bias) [36]. 

Figure 6 is a scatterplot of the number of rice pixels per municipality at 250 m resolution rescaled 

from the SAR derived rice map and the number of MODIS detected pixels per municipality. Figure 6 
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Figure 5. Time series analysis of EVI for a pixel located in the municipality of
Kananga (a); 11˝9.8751N 124˝30.6311E) and Pastrana (b); 11˝14.3751N 124˝51.3031E)
showing differences in planting dates during the wet season. The graphs show raw
(thin black line) and smoothed EVI (green line); detected transplanting date (red
point), heading occurrence (green point) and the typhoon Haiyan (blue diamond)
together with their date of occurrence in DOY. Y-axis is EVI [–] and X-axis is
time in DOY.
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4.2. Analysis of Detection Rate

The phenological detection algorithm estimated the transplanting and heading
dates for about 1700 MODIS pixels; more than 30% of the 250 m pixels in the SAR
rice area. Across the study site the detection rate varied between 8% and 57%, and
was found to be greater than 10% in the majority of the municipalities analyzed
(21 out of 29). The detection rate is generally lower in areas characterized by low rice
presence where the rice growing areas are more fragmented (low resolution bias) [36].

Figure 6 is a scatterplot of the number of rice pixels per municipality at 250 m
resolution rescaled from the SAR derived rice map and the number of MODIS
detected pixels per municipality. Figure 6 shows that the method provided automatic
phenological estimation for a number of MODIS pixels that is proportional to the
rice area in each analyzed administrative unit.Remote Sens. 2015, 7 6548 
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Figure 6. The relationship between the number of MODIS pixels where rice
phenological dates were retrieved and the corresponding SAR derived rice area
resampled at MODIS resolution in each municipality.

4.3. Analysis of Transplanting and Heading Date Accuracy

Eleven municipalities with small areas planted to rice and less than 10 MODIS
pixel detections were excluded. The 18 retained municipalities account for 89% of
the total rice cultivated area in the 2013 wet season and are uniformly distributed
over the study area.

The box plots in Figure 7 show the estimated transplanting dates (a) and heading
dates (b) derived from MODIS data for the main rice growing municipalities in Leyte.
Box plots in the graph are colored in light and dark grey to highlight northwestern
and northeastern municipalities, respectively, with the average longitude of the

342



municipality increasing from left to right. The red dashed horizontal lines indicate
the average transplanting and heading dates for the entire study area. Field data
acquired in eight of the municipalities are also reported as colored points. Red points
report the exact date recorded by ground observations. Blue points are cases where
field observations did not explicitly provide the heading and the date was estimated
based on crop growth stages observed across several field observations days through
the season.

Remote Sens. 2015, 7 6549 

 

 

field observations. In Figure 7b it is clear that satellite estimates of heading date show a better agreement 

with field observations confirming that the detection of peak of season date from time series analysis is 

more robust than that of crop establishment [20]. Figure 7b shows the same longitudinal trend identified 

in Figure 7a, with heading dates in northeastern municipalities occurring around 20 days later than in 

northwestern ones. 
 

 
(a) 

 
(b) 

Figure 7. Box plots of the transplanting (a) and heading (b) dates in 18 municipalities for 

the 2013 wet season as derived from MODIS data. Red and blue points refer to observed and 

estimated field dates, respectively. Red dotted line represents the average value for the entire 

study area. Municipalities are reported from west (Tabango) to east (Dulag). 

Not all monitored fields in northeast Leyte had reached the heading stage by the last in-season field 

visit (24 September 2013). This is also reflected in the farmer declarations of harvesting, whereby  

10 out of 20 monitored fields in the northeastern footprint were not harvested before the typhoon event 

(See Supplementary Figure S1 and Table S1). 

Figure 7. Box plots of the transplanting (a) and heading (b) dates in 18 municipalities
for the 2013 wet season as derived from MODIS data. Red and blue points refer
to observed and estimated field dates, respectively. Red dotted line represents
the average value for the entire study area. Municipalities are reported from west
(Tabango) to east (Dulag).
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A point in pixel validation of MODIS estimated dates was not possible due to
the small size of the fields with respect to MODIS spatial resolution. Instead, field
observations are reported in this figure as a qualitative reference for the evaluation of
the capability of the remote sensing method to identify crop establishment variability
in time and space for a wide area.

Figure 7a shows how the method is able to identify variation in the timing of
crop establishment within and among municipalities. Estimated dates were within
reasonable agreement with field observations. Satellite estimates for transplanting
fall in the expected range of dates for the study area: between May and August
(DOY 120–240) with a mean value (red dotted line) in June (DOY 170). The
estimates in the northwest municipalities (Kananga, Matag-Ob and Ormoc City)
have earlier estimated transplanting dates (DOY 150–175) than those in the northeast
(DOY 180–200), which is confirmed by field observations. In Figure 7b it is clear that
satellite estimates of heading date show a better agreement with field observations
confirming that the detection of peak of season date from time series analysis is more
robust than that of crop establishment [20]. Figure 7b shows the same longitudinal
trend identified in Figure 7a, with heading dates in northeastern municipalities
occurring around 20 days later than in northwestern ones.

Not all monitored fields in northeast Leyte had reached the heading stage by
the last in-season field visit (24 September 2013). This is also reflected in the farmer
declarations of harvesting, whereby 10 out of 20 monitored fields in the northeastern
footprint were not harvested before the typhoon event (See Supplementary Figure S1
and Table S1).

This qualitative assessment confirms that this approach can highlight
spatial differences in agricultural practices (late and early cultivation) and plant
development (variety crop cycle).

4.4. Standing Crop Area at Risk

Figure 8 provides a synthesis of the remote sensing and spatial analyses
conducted in northern Leyte for the 2013 wet season.

Figure 8a,b show the high resolution rice map and flooding map from SAR,
respectively, which are the basis of the accurate rice area estimation and typhoon
damage estimation. Figure 8c,d show the same data aggregated to municipal area
totals. Figure 8d shows that about 6500 ha were flooded and that Tanauan was the
most affected municipality (1545 ha, or 24% of the total flooded area) followed by
Alangalang (938 ha, or 14% of the total flooded area).

Figure 8e shows the MODIS derived heading date and Figure 8f shows the
difference in days between heading date and the day typhoon Haiyan made landfall
in Leyte (8 November). Figure 8g,h are the same data averaged to municipal level.
Gray municipalities indicate areas with no rice according to the SAR rice area map or
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municipalities excluded from the analysis because the criteria for selection of robust
phenological estimation were not satisfied (see Section 3.1.4). Figure 8e,g provide a
spatial confirmation of the results in Figure 7; rice transplanting took place later in
northeastern Leyte (DOY 161–225) than in northwestern Leyte (DOY 137–201) by an
average of 24 days, a substantial duration relative to the maturity of the dominant
rice varieties (110–114 days). The effect of this late transplanting in the northeast is
highlighted in Figures 8f and 8h, where there are fewer days between heading and
the typhoon than in the northwest. On average MODIS estimated heading dates in
the northeastern municipalities occurred less than 50 days before the typhoon struck.
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Figure 8. (a) Rice cultivated area from SAR; (b) flooded area from SAR; (c) rice area per 

municipality; (d) flooded area per municipality; (e) heading dates from MODIS; (f) days 
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Figure 8. (a) Rice cultivated area from SAR; (b) flooded area from SAR; (c) rice area
per municipality; (d) flooded area per municipality; (e) heading dates from MODIS;
(f) days between heading and typhoon Haiyan per MODIS pixel; (g) averaged
MODIS heading dates per municipality; and (h) average number of days between
heading and typhoon Haiyan.

Overall, the panels in Figure 8 show that rice grown in northeastern Leyte was
most affected by flooding due to typhoon Haiyan and at the same time those rice
areas were less advanced in the rice season, thus exposing more of the standing crop
to typhoon related damage.

Figure 9 shows the rice cultivated area grouped as a function of the time between
the MODIS estimated heading date and the typhoon date (see Section 3.1.5). We
identified two critical periods: from Typhoon (T) to T minus 30 days (T-30), where
rice in the field was not yet mature, and from T minus 30 to T minus 50 days (T-50),
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where harvesting activities were probably not yet performed according to common
practices in the area.
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Figure 9. Distribution of rice area by time span ∆doy´ in days) between the MODIS
estimated heading date and the typhoon occurrence in Leyte for the 2013 wet
season. Northwestern and northeastern rice areas are reported in panels (a) and (b),
respectively. Panel (c) provides the results for the entire study area. Vertical dashed
lines are 30 (brown) and 50 (yellow) days before the typhoon date (red line).

Figure 9a,b highlight that the distribution of potentially affected areas is not
homogeneous between northeast and northwest Leyte. For northwest Leyte, only
1% of the rice cultivated area (corresponding to about 200 ha) was estimated not to
have reached maturity at the time of the typhoon event and only 10% (corresponding
to about 1400 ha) were probably not yet harvested. Conversely in northeast Leyte,
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about 4% of the rice cultivated area (corresponding to about 500 ha) was estimated
not to have reached maturity and about 59% (corresponding to about 7000 ha) was
estimated not to have been harvested yet.

The analysis highlights a much higher exposure of standing rice crop in
northeastern Leyte to typhoon Haiyan. Conversely, rice production in northwestern
Leyte was much less affected. This kind of assessment can provide valuable
information for mitigation and disaster response strategies. Moreover, it could be used
as an important (although ‘qualitative’) basis in the analysis of crop damage reports
coming from the different parts of the province. One caveat is that the assessment is
a conservative evaluation of potential production loss, due to the exclusion of some
administrative units for which no reliable MODIS estimation was available.

4.5. A Proposal for an Operational Monitoring System

Rice is the most important food security crop in Asia and the major rice-growing
season is particularly prone to tropical storm related losses that are likely to
increase in intensity and frequency in a changing climate. Unbiased and transparent
approaches to crop damage assessments are essential to reduce moral hazard and to
guide appropriate investments that mitigate risk and respond to disasters. The results
of this ex-post analysis suggest that it is feasible to provide near real time information
about crop status before a tropical storm event. The fundamental aspects of the
proposed system are (i) the existence of a reliable seasonal crop map; and (ii) the
availability of methods able to handle hyper-temporal optical data to derive periodic
crop status information. A robust proactive operational system should be able to
provide crop status information regularly at specific time steps by analyzing the
continuous change of temporal signal as soon as a new image is provided (e.g., [37]).
The new generation of operational SAR and optical satellite mission, such as the
European Sentinel program, will contribute to the necessary EO data flow to support
the proposed approach. At the time of writing, the first operational Sentinel-1 SAR
images are already being provided to users, while the MODIS platform, and new
PROBA-V and the foreseen Sentinel-3 satellites are the best option to perform near
real time agricultural monitoring and derivation of crop status condition.

5. Conclusions

This research is a contribution to literature on crop damage assessments from
natural disasters. Our innovation has been the development of a proactive assessment
of the risk of damage that exploit the synergy of different satellite sensors: all weather
capacity of very high resolution SAR sensor are fundamental to properly map rice
crop in tropical area and hypertemporal information from moderate resolution
optical sensor are the only way to perform an operation crop seasonal monitoring to
retrieve reliable phenological and crop practices information on large areas.
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We have demonstrated a method that:

i) Can provide automatic phenological estimation using vegetation index time
series derived from MODIS for a representative sample of MODIS pixels.

ii) Is conservative yet captures rice crop status information on an area that is
proportional to the rice area.

iii) Can highlight spatial differences in agricultural practices and plant development.
iv) Can be used to monitor the crop in-season and provide timely information on

rice crop status.

Our test case confirmed that northeastern Leyte was identified as the region
most at risk to storm related damage to the standing rice crop due to the confluence
of a late established rice crop in the part of the province most affected by the typhoon.

This approach can provide unbiased and transparent pre-event information that
is complementary to post-event damage assessments that characterize the majority
of previous studies. Ongoing and new satellite platforms can provide the required
information on seasonal rice crop area, cropping calendars, crop status and area
affected by typhoon related damage.
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Mapping of Daily Mean Air Temperature in
Agricultural Regions Using Daytime and
Nighttime Land Surface Temperatures
Derived from TERRA and AQUA
MODIS Data
Ran Huang, Chao Zhang, Jianxi Huang, Dehai Zhu, Limin Wang and Jia Liu

Abstract: Air temperature is one of the most important factors in crop growth
monitoring and simulation. In the present study, we estimated and mapped daily
mean air temperature using daytime and nighttime land surface temperatures (LSTs)
derived from TERRA and AQUA MODIS data. Linear regression models were
calibrated using LSTs from 2003 to 2011 and validated using LST data from 2012 to
2013, combined with meteorological station data. The results show that these models
can provide a robust estimation of measured daily mean air temperature and that
models that only accounted for meteorological data from rural regions performed
best. Daily mean air temperature maps were generated from each of four MODIS
LST products and merged using different strategies that combined the four MODIS
products in different orders when data from one product was unavailable for a pixel.
The annual average spatial coverage increased from 20.28% to 55.46% in 2012 and
28.31% to 44.92% in 2013.The root-mean-square and mean absolute errors (RMSE
and MAE) for the optimal image merging strategy were 2.41 and 1.84, respectively.
Compared with the least-effective strategy, the RMSE and MAE decreased by 17.2%
and 17.8%, respectively. The interpolation algorithm uses the available pixels from
images with consecutive dates in a sliding-window mode. The most appropriate
window size was selected based on the absolute spatial bias in the study area. With
an optimal window size of 33 ˆ 33 pixels, this approach increased data coverage by
up to 76.99% in 2012 and 89.67% in 2013.

Reprinted from Remote Sens. Cite as: Huang, R.; Zhang, C.; Huang, J.; Zhu, D.;
Wang, L.; Liu, J. Mapping of Daily Mean Air Temperature in Agricultural Regions
Using Daytime and Nighttime Land Surface Temperatures Derived from TERRA and
AQUA MODIS Data. Remote Sens. 2015, 7, 8728–8756.

1. Introduction

Air temperature is an important parameter of the climate system and useful
for a wide range of agriculture applications, including crop growth simulation [1,2],
yield prediction [3,4], estimation of heat accumulation during the growing season [5],
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assessment of high-temperature damage [6], evaluation of crop freeze injury [7,8],
and crop insect development prediction [9]. Currently, near-surface temperature
data is collected by meteorological stations, and although such measurements offer
the advantage of high accuracy and temporal resolution, their spatial resolution may
be low and they may not adequately represent surface temperatures in areas with
rugged or heterogeneous surfaces [10].These limitations can bias estimates of the
spatial distribution of air temperature, even when researchers use advanced spatial
interpolation methods [11].With the development of remote sensing technology, it
has become possible to use thermal images from satellites to obtain land surface
temperatures (LSTs) over wide areas, and this data can be used to instantaneously
estimate spatially contiguous air temperatures [12–15]. By combining remote sensing
data with meteorological station data, it becomes possible to upscale point data from
meteorological stations to create meso-scale maps of the distribution of LSTs.

The advent of the Advanced Very High Resolution Radiometer (AVHRR) sensors
on board the NOAA satellites series in the 1970s provided an opportunity to estimate
air temperatures by means of remote sensing [16–21]. In 1999 and 2002, the Moderate
Resolution Imaging Spectroradiometer (MODIS) sensor was launched as a payload
on the TERRA and AQUA satellites. MODIS improved upon the performance of
AVHRR by providing both higher spatial resolution and greater spectral resolution,
and therefore represents an excellent sensor for monitoring the temporal and spatial
variation of air temperatures over large areas [22,23]. Colombi et al. [24] explored
the feasibility of the estimation of instantaneous air temperature measured at the
corresponding time of satellite overpass using MODIS LST product (MOD11_L2),
and used this data to estimate the daily mean air temperature in the Italian
Alps. Vancutsem et al. [10] found that the MODIS nighttime products provided
a good estimation of daily minimum air temperature over different ecosystems
in Africa using the AQUA 8-day nighttime LST (MYD11A2), but that developing
robust retrieval methods for daily maximum temperature using the TERRA 8-day
daytime LST product (MOD11A2) will require further study. Zhang et al. [6]
demonstrated that night-time LST was the optimal factor for estimating daily
minimum, maximum and mean air temperatures in China. Benali et al. [25] noted
that the integration of MODIS TERRA and AQUA data has great potential for air
temperature estimation. Tomlinson et al. [12] compared the nighttime LST from
MODIS with ground-measured air temperature across a conurbation and found
that the measured air temperature was always greater than the MODIS-derived
LST. Hachem et al. [26] found that the mean daily LST was more strongly correlated
with near-surface air temperature in an area with continuous permafrost when
the TERRA/AQUA MODIS data were combined than when these values were
considered separately (TERRA or AQUA, daytime or nighttime). Zhu et al. [13]
showed that daily maximum and minimum air temperatures could be retrieved

354



effectively from MODIS LST products by using temperature-vegetation index method
in the Xiangride River basin of the northern Tibetan Plateau. However, cloud
contamination of satellite thermal images makes it challenging to apply estimation
models to map spatially continuous daily mean air temperatures on a regional
scale using LST datasets as predictors, which is an important goal for agricultural
applications. Few studies have focused on merging daily mean air temperatures
estimated by daytime and nighttime LST products derived from TERRA/AQUA
MODIS to increase the spatial coverage. There have been even fewer studies of
creating a map of daily mean air temperature with wide spatial coverage using
advanced gap-filling techniques. Therefore, it is necessary to develop a model for
estimation of daily mean air temperature using LST datasets. One promising option
would be to merge four daily LST products (nighttime and daytime data from both
TERRA and AQUA) and apply gap-filling techniques to produce spatially continuous
maps of daily mean air temperature, especially in rural areas.

The main objective of the present paper was to develop a systematic method
to create spatially continuous maps of daily mean air temperature by merging
daytime and nighttime TERRA/AQUA MODIS LST products and using gap-filling
techniques. Specifically, we first developed, calibrated and validated estimation
models of daily mean air temperature (TA) using TERRA and AQUA MODIS LST
data for China’s Shaanxi province. Next, we tested the possible combinations of four
MODIS datasets: daily mean air temperature estimated from the TERRA daytime
LST (TATD), daily mean air temperature estimated from the TERRA nighttime LST
(TATN), daily mean air temperature estimated from AQUA daytime LST (TAAD), and
daily mean air temperature estimated from AQUA nighttime LST (TAAN). We used
data from 2003 to 2011 in this analysis, then used 2012 and 2013 datasets to identify
the optimal combination. Finally, we developed a merging strategy to fill spatial gaps
created by cloud-contaminated pixels by using spatially and temporally adjacent
data to create spatially continuous maps of daily mean air temperature.

2. Materials and Methods

2.1. Study Area and Ground Observation Data

The study area is located in central China’s Shaanxi Province, and covered
205,800 km2 (Figure 1). Shaanxi extends from 31˝421N to 39˝351N and from 105˝291E
to 111˝151E. This represents a distance of 880 km from north to south and 160 to
490 km from west to east. The area includes three distinct natural regions: the
mountainous southern region (Qinling), the Wei River valley (the Guanzhong plains),
and the northern upland Loess plateau.

Shaanxi has a continental monsoon climate, but the climate varies widely due to
its large span in latitude and altitude. The northern parts, including the Loess
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Plateau, have either a cold arid or cold semi-arid climate. The middle area in
the Guanzhong plains is mostly warm and semi-arid and the southern portion
lies in the humid subtropical zone. Due to the influence of the monsoon climate,
Shaanxi has a hot summer and cold winter. The annual mean air temperature
ranges between 8 ˝C and 16 ˝C, with January mean air temperatures ranging from
´11 ˝C to 3.5 ˝C and July mean air temperatures ranging from 21 ˝C to 28 ˝C. The
annual precipitation range between 500 and 1000 mm in the southern mountain area,
between 500 and 640 mm in the Wei River valley, and is only about 250 mm on the
Loess Plateau. The daily mean air temperature (TA) data from 23 meteorological
stations belonging to the Shaanxi Provincial Meteorological Bureau were downloaded
from the China Meteorological Data Sharing Service System [27]. Based on the
MODIS Land Cover Type product (MCD12Q1) in 2012, the land cover in Shaanxi
includes mixed forest (38.65%), cropland (28.23%), grassland (26.71%), deciduous
broadleaf forest (4.72%), urban and built-up area (0.85%), and other land use types
(water, evergreen needle-leaf forest, evergreen broadleaf forest, deciduous needle-leaf
forest, closed shrub-lands, open shrub-lands, savannas, permanent wetland, and
barren or sparsely vegetated areas). There is no snow and ice in the study region.
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2.2. Daytime and Nighttime MODIS LST Data

To provide more comprehensive support for studies of the Earth, the U.S.
National Aeronautics and Space Administration (NASA) developed its earth
observation system (EOS) program in the 1990s. The TERRA (EOS-AM) and AQUA
(EOS-PM) satellites were specifically designed to support this program. The TERRA
satellite was launched in December 1999 and the AQUA satellite was launched in
May 2002. TERRA descends past the equator at about 10:30 AM and ascends at
about 10:30 PM; in contrast, AQUA passes in the opposite directions over the equator
at around 1:30 AM and 1:30 PM, respectively. The MODIS sensors on board the
TERRA and AQUA satellites have 36 spectral channels that cover the electromagnetic
spectrum from 0.4 µm to 14 µm with a viewing swath width of 2330 km [28], and
their orbital parameters provide global coverage for 1 to 2 days.

We used two MODIS LST products (Collection 5) in this study: (i) the MOD11A1
daily Land Surface Temperature & Emissivity product derived from MODIS on board
the TERRA satellite and its corresponding information from quality control (QC);
and (ii) the MYD11A1 daily Land Surface Temperature & Emissivity product derived
from MODIS onboard the AQUA satellite and its corresponding information from
QC. The MODIS LST is generated using a split-window algorithm [29,30] with two
thermal infrared bands: band 31 (10.78 to 11.28 µm) and band 32 (11.77 to 12.27 µm).
The MOD11A1 from TERRA and the MYD11A1 from AQUA are created in tiles that
contain 1200 rows by 1200 columns for each tile at approximately 1-km resolution.
The MODIS Cloud Mask algorithm, which is based on a series of visible and infrared
threshold tests, is used to determine the confidence of the satellite’s view of the
Earth’s surface, because clouds often obscure parts or even the entirety of the satellite
images. The LST data will not be available for a location if clouds are present [31].
These data can be downloaded from the Land Processes Distributed Active Archive
Center [32].

2.3. Preprocessing of the MODIS LST Data

The MODIS LST products are created in tiles with 1-km resolution and their
accuracy has been assessed and found to be satisfactory using several ground
reference and validation efforts [29,30]. In the present study, the MODIS LST products
were preprocessed to build valid LST maps of Shaanxi Province. First, we used
the MODIS Reprojection Tool to extract the corresponding bands (LST_Day_1km,
QC_Day, LST_Night_1km, QC_Night) from MOD11A1 and MYD11A1. Next, we
created a mosaic of two tiles of LST products (h26v05 and h27v05) that covered
the study area and reprojected the geographic coordinates to use the Albert Conic
Equal Area projection (SD1 = 25, SD2 = 47, CM = 105). Using an Interactive Data
Language (IDL) program, we clipped the re-projected MODIS LST datasets using
the boundary polygon that defined the study area. The valid LST values were stored
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for subsequent processing only when the QC values equaled zero. In the final step,
we converted the LST values in the satellite products from Kelvin to Celsius values
using the following formula:

C “ 0.02 T´ 273.15 (1)

where C is Celsius temperature (˝C), T is the absolute temperature (in Kelvins), and
0.02 is a scale factor that converts the scientific data sets values to real LST values
in Kelvin degrees [30]. Table 1 summarizes the key terms used in this study and
their descriptions.

Table 1. Descriptions of the key terminology used in this study.

Terms Description

LST (˝C) land surface temperature derived from the remotely sensed data
LSTTD (˝C) Daytime LST derived from the TERRA MODIS data
LSTTN (˝C) Night-time LST derived from the TERRA MODIS data
LSTAD (˝C) Daytime LST derived from the AQUA MODIS data
LSTAN (˝C) Night-time LST derived from the AQUA MODIS data

TA (˝C) Daily mean air temperature observed at the meteorological stations
TATD (˝C) Daily mean air temperature estimated using LSTTD
TATN (˝C) Daily mean air temperature estimated using LSTTN
TAAD (˝C) Daily mean air temperature estimated using LSTAD
TAAN (˝C) Daily mean air temperature estimated using LSTAN

2.4. Calibration and Validation of the Estimation Models for Daily Mean Air Temperature

In previous studies, linear regression has been the most common method used
to infer daily mean air temperature (TA) directly from satellite thermal infrared
data [33–37]. Therefore, we used linear regression to estimate the daily mean air
temperature from the MODIS LST data:

TA “ a LST ` b (2)

where a and b are regression coefficients estimated by means of ordinary least-squares
regression. TA for specific date t is calculated as:

TAt “
TAt´1,20 ` TAt,2 ` TAt,8 ` TAt,14

4
(3)

where TAt is the daily mean air temperature on date t. TAt–1,20is the air temperature
at 8 PM on date t-1. TAt,2, TAt,8, and TAt,14 are the air temperatures at 2 AM, 8 AM,
and 2PM on date t respectively. Therefore, the LST derived from MODIS data at
8 PM on date t-1 (LSTt–1,20) was used to estimate the daily mean air temperature
on date t (TAt).
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The daytime and nighttime LST derived from the TERRA MODIS data (LSTTD

and LSTTN) and from the AQUA MODIS data (LSTAD and LSTAN) can be used as
independent variables. This offers the possibility of four types of estimation model
for daily mean air temperature on a clear day. This will greatly increase the potential
data coverage and estimation accuracy.

The first type of model was constructed using year-round daily mean air
temperatures from the 23 meteorological stations. Because previous studies have
shown that the relationships between daily mean air temperature and LST may
change seasonally [24,38,39], we created a second type of model based on the use
of separate temperature data for spring (March, April, and May), summer (June,
July, and August), fall (September, October, and November), and winter (December,
January, and February). Because air temperatures in urban areas are higher than
those in rural and agricultural areas by an average of 2 to 5 ˝C and because the
urban structure influences air temperatures and the relationship between LST and
vegetation cover [40], we built a third type of model that reduces the effect of this
phenomenon by using only seasonal data from meteorological stations in agricultural
region. This reduced the total number of stations that provided data from 23 to 14
for our study area including 14 meteorological stations in rural areas (Changwu,
Dingbian, Fengxiang, Foping, Wuqi, Hengshan, Jinghe, Lueyang, Luochuan, Shiquan,
Suide, Wugong, Yaoxian and Zhen’an).

To avoid problems with autocorrelation, we divided the available data from
2003 to 2013 into two parts: we used data from 2003 to 2011 to calibrate the estimation
models, and then used data from 2012 and 2013 to validate the calibrated models. We
evaluated the models’ performance using the coefficient of determination (R2), the
root-mean-square error (RMSE), the mean absolute error (MAE), and the bias [25].
These parameters were calculated as follows:

R2 “

řn
t“1

`

TAest,t ´ TAob
˘2

řn
t“1

`

TAob,t ´ TAob
˘2 (4)

RMSE “

g

f

f

e

1
n

n
ÿ

t“1

`

TAob,t ´ TAest,t
˘2 (5)

MAE “
1
n

n
ÿ

t“1

ˇ

ˇTAob,t ´ TAest,t
ˇ

ˇ (6)
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1
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t“1

pTAob,t ´ TAest,tq (7)
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where TAob,t is the daily mean air temperature observed at a meteorological station on
date t, TAest,t is the estimated daily mean air temperature from the MODIS LSTs at that
station on date t, n is the number of observations at that station, and TAob is the mean

of the observed daily mean air temperatures at that station (TAob “
1
n

n
ř

t“1
TAob,t).

3. Results and Discussion

We generated the estimation models for daily mean air temperature based on
the year-round LST data (Model I), the seasonal LST data (Model II), and the seasonal
LST data for rural areas (Model III).

3.1. Calibration and Validation of the Estimation Models Using MODIS LSTs

3.1.1. Model I: The Estimation Models of Daily Mean Air Temperature Using
Year-Round LST Data

Figure 2 shows the relationships between daily mean air temperatures (TA)
based on data from all meteorological stations and the LSTs derived from the TERRA
and AQUA MODIS products. The results show that TA was lower than daytime
LST but higher than nighttime LST derived from both satellites. This is because
the land surface is the source of heat for air near the surface, and absorbs solar
radiation during the daytime and releases that heat at night through long-wave
radiation. Differences between TA and LST would be accentuated by heat absorption
during the insolation period. Therefore, the differences between TA and LST derived
from AQUA MODIS (with an overpass at 1:50 PM local time) are greater than those
derived from TERRA MODIS (with an overpass at 10:50 AM local time) during
the daytime.

Figure 2 also shows a clear linear relationship between TA and the MODIS LSTs.
Therefore, we used linear regression to establish the estimation models for TA as a
function of the MODIS LST. The model fit was good (R2 > 0.77, p < 0.001), with low
errors (RMSE < 4.2 and biases < 0.001) for all models. When nighttime LSTs were
used as estimators instead of daytime LSTs, the R2 improved to values greater than
0.86. This means that LSTTD or LSTAD can explain at least 77% of the variance in TA,
whereas LSTTN or LSTAN can explain at least 86% of the variance. In addition, the
RMSEs for the regression equations based on nighttime LSTs as estimators were at
least 20% smaller than those using daytime LSTs as estimators. This means that the
night-time LSTs are better estimators of TA than the daytime LSTs. These results are
consistent with other studies conducted in various regions [6,10,41].
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Figure 2. The relationship between observed TA at the 23 meteorological stations
and the daytime and nighttime MODIS LSTs (2003 to 2011). The diagonal line from
the origin represents the relationship TA = LST; the shorter lines represent the linear
regression lines.

There were differences between the AQUA and TERRA night point clouds.
These point clouds are from measured and estimated data at the Huashan station.
Huashan, located about 120 km east of Xi’an, is one of China’s Five Great Mountains.
The highest point is the South Peak (Huashan station) at 2154.9 m. The complicated
interlinks between ambient TA and LST can be explained by the balance between
incoming shortwave radiation, incoming and outgoing long wave radiation, the
surface albedo, the ground heat flux, and the sensible and latent heat fluxes. As
a general rule, the land surface cools rapidly during the night to yield a negative
LST´TA difference, and the longer after sunset, the bigger the difference. Therefore,
the intercept of the equation between TA and LSTAN (7.3256) is greater than the
intercept of the equation for the relationship between TA and LSTTN (5.5517) because
the average overpass time for AQUA at night (1:50 AM) is later than that of TERRA
at night (10:50 PM) for our study area. This is similar to the results of Shamir and
Georgakakos’ [8]. However, TA is lower at the Huashan station because atmospheric
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temperature decreases with increasing altitude. Thus, the scatter plot between TA
and LSTAN at Huashan station differs from that at the other stations and is closer to
the line for TA = LSTAN. Therefore, LSTTN is a better predictor of TA than LSTAN in
this context.

3.1.2. Model II: Estimation of Daily Mean Air Temperature Using Seasonal LST Data

Table 2 presents the linear regression equations for the relationship between TA
and LST based on separate data for the spring, summer, fall, and winter. As in the
case of Model I, all models were statistically significant (p < 0.001), but the nighttime
LSTs were better estimators of TA than the daytime LSTs. The biases for all models
were less than 0.04. We found that the RMSE values for the model estimates during
the summer were equivalent to or slightly better than those in the other seasons.
RMSE ď 2.7 for the summer estimation models, versus RMSEs ď 4.4, 3.2, and 3.1
for models in the spring, fall, and winter, respectively. The lowest R2 and RMSE
occurred during the summer. However, the diurnal temperature variation differs
between the land surface and the air above it.

Compared with the RMSEs of estimation models based on year-round data
(i.e., Model I), using seasonal LSTTD, LSTTN, LSTAD, and LSTAN as the independent
variables (Figure 2) improved the model’s performance greatly in the summer, fall,
and winter (Table 2). The RMSE of the estimation model for TA was 4.2 when
year-round LSTTD was used as estimator, versus 2.6, 3.2, and 3.0, respectively, for
the summer, fall, and winter models. The corresponding RMSEs for the LSTTN

model were 1.9 (summer), 1.9 (fall), and 2.2 (winter), and were less than the RMSE
for the year-round data (2.5) The RMSE for the model based on year-round LSTAD

was 4.2 and was greater than those of the models for summer (2.6), fall (3.2), and
winter (3.1). With the LSTAN models, the RMSEs for models in the summer (2.7),
fall (2.8), and winter (2.7) were less than the RMSE (3.3) with the year-round data.
The models for spring had estimation power similar to that of the models using the
year-round data.

3.1.3. Model III: Estimation of Daily Mean Air Temperature for Agricultural Regions
Using Seasonal LST Data

In the past few decades, with the accelerating rate of urbanization in China, the
increasing amount of buildings, public squares, and roads in Shaanxi Province has
decreased the amount of green space, water, and other natural surfaces. The surface
thermodynamic properties differ greatly between urban and rural land. Buildings
and artificial pavement represent the dominant urban surface, and because their
materials have a high thermal conductivity, they absorb more of the incident solar
radiation. This can cause greater atmospheric warming than would occur over
natural surfaces such as vegetation, creating what is known as the “urban heat
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island” effect. As a result of urbanization, the urban temperature has therefore
risen steadily [39]. In summer, when the surface temperature of grass lawns is
32 ˝C, cement roads may have a surface temperature of up to 57 ˝C, and asphalt
surface temperatures may rise as high as 63 ˝C [42]. These high-temperature surfaces
become a huge heat source for the surrounding atmosphere. High concentrations of
air pollutants and increasing levels of aerosol particles also retain this heat by acting
to some extent as insulators that trap outgoing radiation [43]. Kawashima et al. [44]
pointed out that LSTs generally determine the variations of the surrounding air
temperature. Therefore, the relationship between TA and LST derived from satellite
data for urban environments will be quite different from that in rural regions. To
enhance the estimation accuracy of TA for rural areas, we repeated our analysis after
excluding data from urban stations and mountainous area.

Table 2. Estimation models for daily mean air temperature (TA) in the spring,
summer, fall, and winter using the MODIS-derived land surface temperatures
(LSTs) as the independent variable.

Independent
Variable Season Model II R2 RMSE bias N

LSTTD

Spring TATD = 0. 529LSTTD + 1.185 0.4390 4.4 0.0002 3698
Summer TATD = 0.232LSTTD + 15.73 0.2280 2.6 0.0237 3007

Fall TATD = 0.8149LSTTD ´ 4.5194 0.7487 3.2 0.0168 3256
Winter TATD = 0.8542LSTTD ´ 6.0169 0.6620 3.0 0.0007 1589

LSTTN

Spring TATN = 0.8626LSTTN + 7.7517 0.8241 2.5 0.0051 4213
Summer TATN =0.7113LSTTN + 10.503 0.6355 1.9 0.0082 3525

Fall TATN = 0.9039LSTTN + 4.7326 0.9015 1.9 0.0071 3654
Winter TATN = 0.8714LSTTN + 4.0055 0.879 2.2 ´0.0011 2073

LSTAD

Spring TAAD = 0.512LSTAD ´ 0.044 0.4070 4.2 0.0169 3473
Summer TAAD = 0.239LSTAD +14.86 0.2530 2.6 0.0338 2545

Fall TAAD = 0.784LSTAD ´ 6.012 0.7370 3.2 0.0180 3186
Winter TAAD = 0.716LSTAD ´ 7.752 0.6400 3.1 0.0048 1570

LSTAN

Spring TAAN = 0.801LSTAN + 9.198 0.6710 3.3 0.0014 4095
Summer TAAN = 0.567LSTAN + 13.57 0.3941 2.7 0.0130 2971

Fall TAAN = 0.817LSTAN + 6.532 0.7620 2.8 0.0041 3134
Winter TAAN = 0.795LSTAN + 4.924 0.8250 2.7 ´0.0057 1553

Table 3 presents the TA estimation models based on the data from meteorological
stations in rural regions in each season and the corresponding LSTs. There was
generally a strong and statistically significant positive linear relationship between
TA and the LSTs derived from the TERRA or AQUA MODIS products during both
the daytime and nighttime. Estimates of TA improved (lower RMSE; Model III
in Table 3) compared to those that included data from urban areas (Model II in
Table 2) when using LSTAN or LSTAD as the independent variable. The RMSEs of
Model III with LSTAN as the estimator were 2.3 (spring), 1.9 (summer), 1.9 (fall),
and 2.3 (winter), which were less than the corresponding values of 3.3 (spring),
2.7 (summer), 2.8 (fall), and 2.7 (winter) for Model II. The RMSEs of Model III using
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LSTAD as the estimator were 4.0 (spring), 2.4 (summer), 3.0 (fall), and 3.0 (winter),
versus RMSEs of 4.2 (spring), 2.6 (summer), 3.2 (fall), and 3.1 (winter) with Model
II. With LSTTD or LSTTN as the estimator, Model III produced results similar to
Model II. The RMSEs of Model III using LSTTN as the estimator were 2.5 (spring),
1.9 (summer), 1.7 (fall), and 2.2 (winter), versus 2.5 (spring), 1.9 (summer), 1.9 (fall),
and 2.2 (winter) using Model II. The RMSEs of Model III using LSTTD as the
estimator were 4.2 (spring), 2.7 (summer), 3.4 (fall), and 2.9 (winter), versus RMSEs of
4.4 (spring), 2.6 (summer), 3.2 (fall), and 3.0 (winter) using Model II.

Table 3. The seasonal estimation models for daily mean air temperature (TA) based
on the corresponding land surface temperature (LST) data from meteorological
stations in rural regions (i.e., Model III).

Independent
Variable Season Model III R2 RMSE bias N

LSTTD

Spring TATD= 0.602LSTTD ´ 0.223 0.4860 4.2 0.0184 2460
Summer TATD = 0.238LSTTD + 15.52 0.2370 2.7 0.0260 2426

Fall TATD = 0.801LSTTD ´ 4.224 0.7250 3.4 0.0010 2657
Winter TATD = 0.844LSTTD ´ 5.819 0.6770 2.9 0.0047 1360

LSTTN

Spring TATN = 0.864LSTTN + 7.772 0.8249 2.5 0.0002 3300
Summer TATN = 0.7215LSTTN + 10.279 0.6317 1.9 0.0195 2811

Fall TATN = 0.9223LSTTN + 4.5128 0.9140 1.7 0.0032 2869
Winter TATN = 0.8868LSTTN + 4.1513 0.8744 2.2 ´0.0032 1575

LSTAD

Spring TA AD = 0.519LSTAD ´ 0.134 0.4560 4.0 0.0099 2253
Summer TA AD = 0.249LSTAD + 14.50 0.2330 2.4 0.0307 1656

Fall TA AD = 0.848LSTAD ´ 6.987 0.7650 3.0 0.0057 2107
Winter TA AD = 0.737LSTAD ´ 7.824 0.6430 3.0 0.0011 1304

LSTAN

Spring TAAN = 0.886LSTAN + 9.105 0.8120 2.3 0.0024 2412
Summer TAAN = 0.666LSTAN + 12.29 0.6520 1.9 0.0086 1926

Fall TAAN = 0.918LSTAN + 6.228 0.8770 1.9 0.0019 1908
Winter TAAN = 0.865LSTAN + 5.610 0.8760 2.3 ´0.0049 810

3.1.4. Validation of the Estimation Models for Daily Mean Air Temperature

We validated the estimation models for TA using data from 2012 and 2013 at
all available meteorological stations for models I and II, and data only from rural
meteorological stations for model III. Figure 3 shows the relationship between the
TA estimated using Model I, Model II, and Model III with the MODIS daytime and
nighttime LSTs as independent variables and the TA measured at the meteorological
stations. Most of the points were distributed around the line TA = LST. This indicates
a good agreement between the estimated and measured TA. Model III tended to be
more accurate than models I and II (Table 4).

Table 4 shows that Model III performed best. Model III generally had the highest
coefficient of determination and lowest RMSE and MAE, or values comparable to
those in the other models. Pairwise tests showed that the TA values estimated by
Model III differed significantly (p < 0.01) from those estimated using Model I when
LSTTD, LSTAD, or LSTAN was used as the estimator, but not for the model with LSTTN
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as the estimator (Table 5). The TA estimated by Model III differed significantly from
that of Model II when LSTAD and LSTAN were used as the estimator (p < 0.05); for
the TERRA datasets, the difference was not significant. In addition, Model II differed
significantly from Model I (p < 0.01) only when the daytime LST data were used.Remote Sens. 2015, 7 8739 

 

 

 

Figure 3. Relationships between the estimated and measured daily mean air temperature 
(TA) based on daytime (D) and nighttime (N) data for the three models (I = all data,  
II = seasonal data, III = seasonal data from rural stations). Table 4 provides statistical data 
on the results of each linear regression. 

Figure 3. Relationships between the estimated and measured daily mean air
temperature (TA) based on daytime (D) and nighttime (N) data for the three models
(I = all data, II = seasonal data, III = seasonal data from rural stations). Table 4
provides statistical data on the results of each linear regression.
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Table 4. Validation of the estimated daily mean air temperature (TA) predicted
using land surface temperature (LST) data from meteorological stations for the
three models in 2012 and 2013.

Independent MODEL I MODEL II MODEL III

Variable R2 RMSE MAE Bias R2 RMSE MAE Bias R2 RMSE MAE Bias

LSTTD 0.7791 4.3 3.38 0.2345 0.8622 3.4 2.66 ´0.3462 0.867 3.4 2.7 0.4096
LSTTN 0.8941 2.9 2.20 0.7119 0.9176 2.6 1.87 ´0.7445 0.9516 2.0 1.56 ´0.6007
LSTAD 0.795 4.1 3.27 ´0.1203 0.8649 3.3 2.62 0.2830 0.887 3.2 2.52 0.3737
LSTAN 0.8633 3.2 2.32 0.2886 0.8919 2.8 2.01 0.2572 0.94 2.0 1.54 0.3467

Table 5. Significant test between the different estimation values of daily mean air
temperature using the three model types with the MODIS LSTs as the predictor.

Pairwise Test Result (p level)

Model III/Model I Model III/Model II Model II/Model I

LSTTD 0.0000 0.0933 0.0022
LSTTN 0.1795 0.0513 0.2021
LSTAD 0.0000 0.0106 0.0001
LSTAN 0.0093 0.0109 0.4708

3.2. Optimal Strategies for Merging Images of Daily Mean Air Temperature Estimated
from LSTs

We created maps of TA values for each day from 2003 to 2013. We obtained a
maximum of four TA images on each clear day (i.e., the daytime and nighttime LSTs
from the TERRA and AQUA MODIS products). However, because of cloud cover,
one or more of these datasets was often unavailable for certain parts of the study area,
and the resulting map of estimated TA suffered from gaps. Figures 4 and 5 present the
proportion of the data available for each pixel in the study area based on the daytime
and nighttime TERRA and AQUA MODIS LSTs in 2012 and 2013, respectively. Most
of the pixels in the study area had availability values of less than 50%. For example,
Figure 6 shows that on 21 June 2012, the available data amounted to only 18.40,
40.81, 51.04, and 24.29% of the pixels for TATN, TAAN, TATD, and TAAD, respectively.
Fortunately, the available data from the different MODIS products both overlap and
complement each other, which makes it possible to merge the data to increase data
availability for the study area. Figure 7 provides examples of merged TA data for
21 June 2012. The available data coverage in the merged image totaled 75.58%, which
represents an increase of 57.18, 34.77, 24.54, and 51.29 percentage points compared
with the coverage based only on TATN, TAAN, TATD, and TAAD, respectively.

Table 4 shows that the RMSEs using Model III were 3.4, 2.0, 3.2, and 2.0 when
using LSTTD, LSTTN, LSTAD, and LSTAN as the estimator, respectively, and the
corresponding MAEs were 2.70, 1.56, 2.52, and 1.54. This means that combining
the different TA images calculated using the different LST products will result in a
different accuracy. Table 6 shows the possible strategies for combining TA images.
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In strategy 1, for instance, the TATN image was the initial basis for the merged data.
When the TATN value was missing, it was replaced by the TAAN value. If both TATN

and TAAN were missing, they were replaced by the TAAD value. When all three were
missing, they were replaced by the TATD value. The values in Table 6 were calculated
independently for each grid cell throughout the study area.Remote Sens. 2015, 7 8741 

 

 

 

Figure 4. Percentages of available data for daily mean air temperature (TA) in 2012 based 
on daytime and nighttime TERRA and AQUA MODIS land surface temperatures (LSTs). 

Figure 4. Percentages of available data for daily mean air temperature (TA) in
2012 based on daytime and nighttime TERRA and AQUA MODIS land surface
temperatures (LSTs).
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Figure 5. Percentages of available data for daily mean air temperature (TA) in 2013 based 
on daytime and nighttime TERRA and AQUA MODIS land surface temperatures (LSTs). 
Figure 5. Percentages of available data for daily mean air temperature (TA) in
2013 based on daytime and nighttime TERRA and AQUA MODIS land surface
temperatures (LSTs).
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Figure 6. Daily mean air temperature (TA) estimated using the daytime and nighttime land 
surface temperatures (LSTs) from the TERRA and AQUA MODIS products for 21 June 2012. 
Figure 6. Daily mean air temperature (TA) estimated using the daytime and
nighttime land surface temperatures (LSTs) from the TERRA and AQUA MODIS
products for 21 June 2012.
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Figure 7. Merged image using the daily mean air temperatures (TAs) estimated using the 
daytime and nighttime land surface temperatures (LSTs) from the TERRA and AQUA 
MODIS products for 21 June 2012. 

Based on results in Table 6, we found that R2 varies between 0.9073 and 0.9383, the RMSEs range 
from 2.41 to 2.91, MAE change from 1.84 to 2.24, and bias varies between −0.5049 and −0.3421. The 
merged results had a higher R2 and a lower RMSE and MAE if TATN and TAAN were used as the first two 
merged images (strategies 1, 2, 7, and 8). The prediction ability was high in each case, with R2 > 0.93, RMSE 
≤ 2.43, and MAE ≤ 1.87 in all cases. In contrast, if we used TATD and TAAD as the first two merged 
images (strategies 17, 18, 23, and 24), R2 decreased (to values <0.92) and RMSE and MAE increased 
(to values ≥ 2.76 and 2.11, respectively). This is because the R2 between TA and nighttime LSTs was 
stronger than those between TA and daytime LSTs (Section 3.1). The estimation models based on nighttime 
LSTs had lower RMSEs and MAEs. The optimal combination of TA images was provided by Strategy 2; 
although Strategy 18 produced similar results, the R2 value was higher for Strategy 2. Therefore, we 
chose Strategy 2 as the optimal combination of the four TA images. 

Figure 7. Merged image using the daily mean air temperatures (TAs) estimated
using the daytime and nighttime land surface temperatures (LSTs) from the TERRA
and AQUA MODIS products for 21 June 2012.

Based on results in Table 6, we found that R2 varies between 0.9073 and 0.9383,
the RMSEs range from 2.41 to 2.91, MAE change from 1.84 to 2.24, and bias varies
between´0.5049 and´0.3421. The merged results had a higher R2 and a lower RMSE
and MAE if TATN and TAAN were used as the first two merged images (strategies 1, 2,
7, and 8). The prediction ability was high in each case, with R2 > 0.93, RMSE ď 2.43,
and MAE ď 1.87 in all cases. In contrast, if we used TATD and TAAD as the first
two merged images (strategies 17, 18, 23, and 24), R2 decreased (to values <0.92) and
RMSE and MAE increased (to values ě 2.76 and 2.11, respectively). This is because
the R2 between TA and nighttime LSTs was stronger than those between TA and
daytime LSTs (Section 3.1). The estimation models based on nighttime LSTs had
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lower RMSEs and MAEs. The optimal combination of TA images was provided by
Strategy 2; although Strategy 18 produced similar results, the R2 value was higher
for Strategy 2. Therefore, we chose Strategy 2 as the optimal combination of the four
TA images.

Table 6. Possible image merging strategies to create maps of daily mean air
temperature (TA) using the TERRA and AQUA MODIS land surface temperatures
(LSTs) and their accuracy using the validation datasets from 2012 to 2013.

Strategy Base
Image

Second
Image

Third
Image

Fourth
Image R2 RMSE MAE bias

1 TATN TAAN TAAD TATD 0.9381 2.42 1.84 ´0.4549
2 TATN TAAN TATD TAAD 0.9383 2.41 1.84 ´0.4190
3 TATN TAAD TAAN TATD 0.9352 2.48 1.90 ´0.5033
4 TATN TAAD TATD TAAN 0.9338 2.51 1.92 ´0.5049
5 TATN TATD TAAN TAAD 0.9361 2.45 1.87 ´0.4215
6 TATN TATD TAAD TAAN 0.9341 2.49 1.91 ´0.4541
7 TAAN TATN TAAD TATD 0.9367 2.43 1.87 ´0.4501
8 TAAN TATN TATD TAAD 0.9369 2.42 1.87 ´0.4141
9 TAAN TAAD TATN TATD 0.9299 2.54 1.94 ´0.3851
10 TAAN TAAD TATD TATN 0.9253 2.63 2.00 ´0.4348
11 TAAN TATD TATN TAAD 0.9281 2.57 1.96 ´0.4073
12 TAAN TATD TAAD TATN 0.9250 2.62 2.00 ´0.3756
13 TAAD TAAN TATN TATD 0.9170 2.76 2.13 ´0.4245
14 TAAD TAAN TATD TATN 0.9124 2.84 2.19 ´0.4743
15 TAAD TATN TAAN TATD 0.9190 2.74 2.10 ´0.4443
16 TAAD TATN TATD TAAN 0.9124 2.84 2.19 ´0.4743
17 TAAD TATD TATN TAAN 0.9097 2.89 2.22 ´0.4794
18 TAAD TATD TAAN TATN 0.9079 2.91 2.24 ´0.4647
19 TATD TAAN TATN TAAD 0.9167 2.76 2.11 ´0.3739
20 TATD TAAN TAAD TATN 0.9136 2.81 2.15 ´0.3421
21 TATD TATN TAAN TAAD 0.9183 2.74 2.09 ´0.3769
22 TATD TATN TAAD TAAN 0.9162 2.78 2.13 ´0.4095
23 TATD TAAD TAAN TATN 0.9073 2.91 2.24 ´0.3562
24 TATD TAAD TATN TAAN 0.9091 2.89 2.22 ´0.3709

The LSTs from MODIS TERRA and AQUA are retrieved only under clear-sky
conditions. LSTs under cloudy conditions would differ from those obtained under
a clear sky. In contrast, TA is available irrespective of cloud conditions. It is
therefore important to analyze the influence of clouds on the estimation of TA.
Table 7 summarizes the difference between the measured and estimated TA under
four different cases of cloud conditions. In Case 1, pixels from all four datasets are
cloud-free. In Case 2, pixels from three of the four datasets are cloud-free. In Case 3,
pixels from two of the four datasets are cloud-free. In Case 4, pixels from only
one of the four datasets are cloud-free. Case 5 means that pixels are contaminated
with clouds in all four LST products, so LST is instead estimated by means of
interpolation between adjacent pixels (we will describe the interpolation method
in Section 3.3). In Case 2, Case 3 and Case 4, missing pixels due to cloudiness in
different datasets were filled with corresponding cloud-free pixels in another dataset
which means that TA could have been overestimated (i.e., because LST would be
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lower as a result of the shade created by clouds). In Case 5, missing pixels were
interpolated from surrounding cloud-free pixels, leading to a positive bias. The bias
also varied seasonally. In winter, as the vegetation coverage is lower, bare soil and
built structures receive more solar radiation, which causes a slightly higher bias
when daytime LST is merged into the map. In summer, vegetation and water reduce
the temperature difference during the daytime and nighttime. The results show no
obvious relationship among the four cases because the LSTs from the MODIS Terra
and Aqua have already been filtered to eliminate cloud cover using the QC data.
Under these circumstances, the data merging method proposed in this study has no
consistent bias that must be adjusted to account for cloudiness.

Table 7. Bias between measured and estimated daily mean air temperature (TA)
under different cloud conditions for the merged data from four MODIS datasets
using data from 2012 and 2013. Cases: 1 = pixels from all four datasets are cloud-free;
2 = pixels from three of the four datasets are cloud-free; 3 = pixels from two of the
four datasets are cloud-free; 4 = pixels from one of the four datasets are cloud-free;
5 = pixels are contaminated with clouds in all four datasets and must be estimated
by means of interpolation of data from adjacent pixels.

Case Whole Year Spring Summer Autumn Winter

1 ´0.4837 ´0.8475 ´0.3088 ´0.3207 ´0.2039
2 ´0.6341 ´0.3766 ´1.0319 ´0.4779 ´0.7821
3 ´0.3775 ´0.2540 ´0.6404 ´0.0127 ´1.0149
4 ´0.3979 ´0.0953 ´0.4046 ´0.4798 ´0.7197
5 0.0646 ´0.1483 ´0.1535 0.4003 0.3944

3.3. Temporal and Spatial Fusion of Daily Mean Air Temperature Using Time Series Images

Figure 8 demonstrates the spatial distribution of data availability for each pixel
using data for the whole year in 2012 and 2013. The merged image greatly improved
the spatial coverage by the available data. Table 8 presents the annual data availability
percentages for the TA images throughout the study area for the merged images
and for images derived from daytime and nighttime TERRA and AQUA MODIS
LSTs in 2012 and 2013. The results show that the merged image greatly improved
the spatial coverage by the available data, reaching values of 55.46% in 2012 and
44.92% in 2013. But the percentages of available data were 22.08%, 17.94%, 22.48%,
and 18.65% for TATN, TAAN, TATD, and TAAD images in 2012. They were 28.85%,
25.23%, 31.30%, and 27.84%, respectively, in 2013. The available data in the merged
images therefore increased by 33.38, 37.52, 32.98, and 36.81 percentage points in
2012 and by 16.07, 19.69, 13.62, and 17.08 percentage points in 2013 compared with
the corresponding TATN, TAAN, TATD, and TAAD images. However, given the fact
that data for an average of half of the pixels were unavailable even after merging
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the images, it is clearly necessary to obtain fuller spatial coverage to improve the
accuracy of estimation of TA.Remote Sens. 2015, 7 8747 

 

 

 

Figure 8. Percentages of data availability for daily mean air temperature (TA) in 2012 and 
2013 for merged images based on the validation dataset. 

Table 8. Percentages of the daily mean air temperature (TA) images for the merged dataset 
(all four MODIS LST products combined using strategy 2 in Table 6) and for images derived 
from daytime and nighttime TERRA and AQUA MODIS LSTs in 2012 and 2013. 
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2013 44.92 28.85 16.07 25.23 19.69 31.30 13.62 27.84 17.08 

Ideally, the TA for crop growth monitoring and model simulation should take advantage of complete 
datasets. In reality, noise and missing pixels create gaps in the data that must be filled somehow. Aiming 
to achieve improved accuracy of TA will require efforts to reduce the loss of data and fill gaps, thereby 
providing better coverage of the whole study region. The daily mean temperature images before the date 
of the estimation are obtained if their data are available. These images carry important information for 
the TA estimation for the present day. We therefore proposed a method to fill gaps in the data based on 
the assumption that atmospheric conditions would be uniform within a relatively small window surrounding 

Figure 8. Percentages of data availability for daily mean air temperature (TA) in
2012 and 2013 for merged images based on the validation dataset.

Table 8. Percentages of the daily mean air temperature (TA) images for the merged
dataset (all four MODIS LST products combined using strategy 2 in Table 6) and
for images derived from daytime and nighttime TERRA and AQUA MODIS LSTs
in 2012 and 2013.

Data Availability (%for Coverage, Percentage Points for Increase)

Year
Merged
coverage

TATN TAAN TATD TAAD

coverage increase coverage increase coverage increase coverage increase

2012 55.46 22.08 33.38 17.94 37.52 22.48 32.98 18.65 36.81
2013 44.92 28.85 16.07 25.23 19.69 31.30 13.62 27.84 17.08
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Ideally, the TA for crop growth monitoring and model simulation should take
advantage of complete datasets. In reality, noise and missing pixels create gaps in
the data that must be filled somehow. Aiming to achieve improved accuracy of TA
will require efforts to reduce the loss of data and fill gaps, thereby providing better
coverage of the whole study region. The daily mean temperature images before
the date of the estimation are obtained if their data are available. These images
carry important information for the TA estimation for the present day. We therefore
proposed a method to fill gaps in the data based on the assumption that atmospheric
conditions would be uniform within a relatively small window surrounding a pixel
for which data is missing. This means that the TA difference of a target pixel between
data t and data t-1 is equal to the mean TA difference of surrounding pixels between
data t and data t-1. To minimize the uncertainty in the error introduced by cloudiness
and gaps between swaths, we exploited a possible strategy based on finding the
optimal window size by extending the process into a larger geographic area. The
optimum window size was obtained from statistical analysis of the difference
between TA estimated from the MODIS LST and TA measured by the meteorological
stations. Figure 9 displays the change in the quality of the estimate as a function
of the window size used for the spatial filling. Figure 10 illustrates this estimation
procedure (using a window size of 9 ˆ 9 pixels as an example). The R2 increased
with increasing window size. In the contrast, RMSE, MAE, and bias decreased with
increasing window size. The magnitude of the bias reached its minimum at a window
size of 33 ˆ 33 pixels. We therefore used a grid of 33 ˆ 33 pixels centered on the pixel
with missing data in our subsequent analysis. The mean difference in TA among
these pixels is calculated as follows:

TA “
1
N

j`4
ÿ

j“i´4

i`4
ÿ

i“i´4

´

TAt
i, j ´ TAt´1

i, j

¯

(8)

where TA is the mean TA difference among the pixels with available data both at the
date of estimation (i.e., at time t) and the date before the estimation (i.e., at time t–1).
N is the number of pixels with available TA values both at the date of estimation and
the date before estimation. TAt

i, j and TAt´1
i, j are the TA values for the pixel in line i

and column j of the image at times t and t–1.
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Figure 9. Analysis the optimal size (pixels) of the window used for the spatial filling method 
illustrated in Figure 10. 

!

Figure 10. Flowchart for calculation of missing pixel values caused by cloud cover and other 
problems using the merged images from the day before the estimation date The red square 
represents the pixel for which TA will be calculated based on data from the previous day. 

Figure 9. Analysis the optimal size (pixels) of the window used for the spatial
filling method illustrated in Figure 10.
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Figure 10. Flowchart for calculation of missing pixel values caused by cloud cover and other 
problems using the merged images from the day before the estimation date The red square 
represents the pixel for which TA will be calculated based on data from the previous day. 

Figure 10. Flowchart for calculation of missing pixel values caused by cloud cover
and other problems using the merged images from the day before the estimation
date The red square represents the pixel for which TA will be calculated based on
data from the previous day.
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TAt
i, j can be estimated as follows:

TAt
i, j “ TAt´1

i, j ` TA (9)

We used this approach to generate a time series of filled pixels using data for the
whole year derived from the 14 rural meteorological stations in both 2012 and 2013.
Figure 11 shows the resulting relationship between the estimated and measured TA.
Overall, the approach produced good results: a strong and statistically significant
relationship (R2 = 0.8971) with a low MAE (2.35) for data from all seasons. Using
the filled dataset increased data coverage to 78.23% and 86.02% in 2012 and 2013,
respectively. The model showed a seasonal pattern of error. In summer, the R2 was
relatively poor and the distribution of the data was more concentrated than in other
seasons which led to a lower RMSE. In turn, the higher LST increased turbulence in
the atmospheric boundary layer, thereby affecting heat transfer from the land surface
into the ambient air and subsequently to the upper atmosphere. In contrast, the land
surface receives less solar radiation in winter, thereby weakening turbulence. The
retrieval of TA is simpler at night because solar radiation does not affect the thermal
infrared signal. Figure 12 demonstrates the day-to-day variation of the measured and
estimated daily mean air temperature in 2012 and 2013 at the 14 rural meteorological
stations. Judging from the similarity of the measured and estimated air temperatures
(i.e., the difference was small and centered on 0 ˝C), the estimation model generally
showed good agreement with the measured TA and was able to reflect the annual
pattern of TA fluctuation. We found no systematically positive or negative biases
between the estimated and measured values (Figures 11 and 12).
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Figure 11. Relationships between the estimated and measured daily mean air temperature 
(TA) for whole-year data and for data from the spring, summer, fall, and winter. 

Figure 11. Relationships between the estimated and measured daily mean air
temperature (TA) for whole-year data and for data from the spring, summer, fall,
and winter.
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Figure 12. Annual variation in the measured and estimated daily mean air temperature (TA) 
in 2012 and 2013 based on the data from the 14 rural meteorological stations. 

 

Figure 12. Annual variation in the measured and estimated daily mean air temperature
(TA) in 2012 and 2013 based on the data from the 14 rural meteorological stations.
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4. Conclusions

If clouds are present at a given location, then LST data will not be available. In
this paper, we describe a systematic method for filling such gaps in the data based
on spatial and temporal data fusion techniques. The first step in this method was
to find the optimal strategy for merging images of daily mean air temperature (TA)
estimated from daytime and nighttime TERRA and AQUA LST data. The second step
was to select the optimal spatial window size to use in interpolation and gap-filling
based on estimated TA from the previous day. This process generates high spatial and
temporal coverage for the study area. The calibration results showed that the annual
average spatial coverage could be improved significantly. Using this approach, the
proportion of the pixels with available data increases from 20.28% to 76.99% in 2012
and 28.31% to 89.67% in 2013.

The relationship between TA from the meteorological stations and LSTs derived
from the daytime and nighttime TERRA and AQUA MODIS LST data was strong
and significant. The nighttime LSTs from TERRA and AQUA MODIS provided
a better TA estimator than the daytime LSTs. By comparing different strategies for
merging the four TA images calculated using the daytime and nighttime TERRA and
AQUA MODIS LST data in different orders, we found an optimal merging strategy
(Table 6, Strategy 2). That is, TATN was used as the initial image, followed by the
TAAN value if the TATN value was missing; if both were missing, the TATD value was
used, and if all three were missing, the TAAD value was used. This strategy greatly
increased the spatial coverage, and achieved the highest R2 and lowest RMSE and
MAE among the 24 possible merging strategies. Since this method depends on the
availability of TERRA and AQUA daytime and nighttime data, it is of the greatest
value under conditions of partial or short-lived cloud cover.

The validation results demonstrate that the data availability was only 55.46% in
2012 and 44.92% in 2013 after the first processing step. Therefore, more effort should
be made to increase the spatial coverage of the available data. The relative proximity
of air temperature difference between the estimated date and the previous days near
the estimated pixels provides an opportunity to predict the missing data, most of
which resulted from cloud contamination. The second step was to determine the
difference in TA between the estimation date and previous days for every pixel within
a selected window size. Adding the mean differences for these pixels to the value for
the center pixel from the previous day replaces the missing data. Our analysis found
an optimal window size of 33 ˆ 33 pixels. The spatial coverage increased to 76.99%
in 2012 and 89.67% in 2013.

The TA values obtained using this method can be employed as input data in crop
growth simulation models to monitor the crop growth, predict the timing of crop
development stages and forecast the crop yield at the regional scale [45]. Combined
with indicators of a potential agricultural disaster such as extreme temperature, these
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data can improve the ability to predict the development and spatial distribution of
damage caused by cold [5,46], freezing [7] or high temperatures [6]. In addition,
the growth degree days (GDD), an important indicator for the cropping system in a
region, can be calculated with high spatial-temporal daily mean air temperature data.

Additional research should be carried out to test other strategies for filling in
data gaps, such as accounting for the effects of solar declination and vegetation
indices on TA, and to validate the mapping method. In our future research, we hope
to improve TA estimates based on LSTs by considering the influence of local variables
such as land use or cover types, soil moisture, snow cover, frozen ground, regional
microclimatic conditions, terrain characteristics, and local landscape features on
the relationship between TA and LST [8,16,47,48]. We believe that the estimation
accuracy of TA will be improved by improving both the mapping strategy and the
estimation model.
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