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Preface to ”"Systems Analytics and Integration of Big
Omics Data”

The emergence and global utilization of high-throughput (HT) technologies, including deep
sequencing technologies (genomics) and mass spectrometry (proteomics, metabolomics, lipidomics),
has allowed geneticists, biologists, and biostatisticians to bridge the gap between genotype and
phenotype on a scale that was not previously possible.

Big data encompasses the collection of data sets derived from technologies. They are so large
and complex that their processing is impractical using traditional data processing applications.
Instead, challenges arise in collection: analysis, mining, sharing, transfer, visualization, archival and
integration of big data.

As observed with DNA microarray analysis pipelines over a decade ago, and more recently with
HT sequencing, better analytical tools are emerging primarily from open-source efforts, permitting
additional analyses and enhanced information mining from raw data sets compared to the tool kits
provided with the instruments themselves.

Administration and development strategies must take into account the ever-growing size of data,
the public accessibility of analyzed data, software deprecations, software upgrades, user interface
improvements, user account management, data archive, and security.

Against this backdrop, in this Special Issue we focused on the systems-level analysis of
omics data, recent developments in pathway and network biology algorithm development, and the
integration of omics data with clinical and biomedical data using machine learning.

As the Editor of this compilation, it is a privilege to have been associated with this publication.
I'am very grateful to those who have generously contributed material to this edition. I am appreciative
of my colleagues at the Medical University of South Carolina and Queen’s University Belfast over the
past six years for the many discussions that helped shape this compendium.

I thank my parents Maureen and Joe. Finally I thank my wife Patricia and daughter Elena for

their love and affection, continuing support and inspiration, and of course, their patience.

Gary Hardiman
Special Issue Editor
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A major technological shift in the research community in the past decade has been the adoption
of high throughput (HT) technologies to interrogate the genome, epigenome, transcriptome, and
proteome in a massively parallel fashion [1,2]. This has provided both unique discovery opportunities
and challenges for computational and quantitative scientists in predicting phenotypic outcomes.
‘Big Data’ encompasses the collection of data sets derived from technologies and so large and complex
that their processing is impractical using traditional data processing applications. Challenges arise in
collection, analysis, mining, sharing, transfer, visualization, archival and integration of Big Data.

Genotype is one of three key factors that determine the phenotype, including inherited factors
(DNA code), epigenetic factors (DNA methylation, histone modifications RNA-associated silencing)
and non-inherited environmental factors [3]. In this special issue, there is a focus on systems level
analysis of omics data, recent developments in pathway and network biology algorithm development,
and integration of omics data with clinical and biomedical data using machine learning. The role
of chromatin in genotype-phenotype is explored. Improvements to the Gene Ontology Resource to
Facilitate More Informative Analysis and Interpretation of Alzheimer’s Disease Data is covered.

One of the pressing challenges for integrative computational biology and statistical genetics is
predicting genotype-to-phenotype maps of organisms in the context of environmental influences. As
noted in the collection perspective by Lewis Frey, genotypes and phenotypes realized in Omics data
collections are linked through the various nuclear and cellular processes that convert encoded genotype
information into a macroscale manifestation of the organism phenotype [4]. The ability to identify the
key drivers of genotype to phenotype is challenging among the multitude of interacting molecules.
Frey makes a compelling argument for the application of artificial intelligence (AI) that can automate
computable phenotypes and integrate them with genotypes. Challenges need to be overcome namely
the rapid growth of data, the inaccessibility of data through issues with incompleteness, inaccuracies,
and heterogeneity and data silos.

A review article in this collection by Nuria Malats and colleagues explores the challenges that exist
with the integration of Omics and Non-Omics (OnO) Data [5]. At present few omics-based algorithms
that possess enough predictive ability are implemented in the clinic. Clinical/epidemiological data
describe most of the variation in health-related traits. Effective modeling of this with omics data is
urgently needed to increase the predictive ability of algorithms. Obstacles in OnO data integration
are the nature and heterogeneity of non-omics data, the relationship between OnO data termed
ascertainment bias, the presence of interactions, the fairness of the computational models, and the
presence of sub-phenotypes. Most data to date is focused on RNA expression data and studies have
incorporated non-omics data in a low-dimensionality manner. Integrative strategies typically adopt
one of three modeling methods: Independent, conditional, or joint modeling. Joint modeling, where
omics and non-omics data are modelled together in a supervised or unsupervised manner, are preferred
for integrating large-scale OnO data, as they account for the correlation structure between the two data
types. Additionally, they provide greater complexity than conditional or independent modeling [5].

Genes 2020, 11, 245; doi:10.3390/genes11030245 1 www.mdpi.com/journal/genes
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Data from different sources (e.g., genome, epigenome, transcriptome, proteome, metabolome)
tends to be analyzed in isolation using statistical and machine learning (ML) methods. Effective
data integration poses new computational challenges [6]. State-of-the-art ML-based approaches for
tackling five specific computational challenges associated with integrative analysis: namely the curse
of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues are reviewed
by Peipei Ping and colleagues. Anagha Joshi and colleagues review Genotype to Phenotype via
Chromatin [7]. They note that mapping mutations to causal genes and therapeutic targets to date has
been quite limited. The majority of disease-associated mutations lie in inter-genic regions. An emerging
trend is thus to focus on the epigenetic control of the disease to generate more complete functional
genomic maps. Recent studies unravelling the mechanistic understanding of epigenetic processes in
disease development and progression are reviewed [7].

This special issue presented new methodologies in the context of gene-environment, tissue-specific
gene expression and how external factors or host genetics impact the microbiome [8-10]. Wolf and
colleagues developed an analytical approach for identifying the main effects and interactions between
genetic and environmental factors linked to a disease outcome [8]. The method involves selection of
candidate genetic and/or environmental factors, utilization of a machine learning algorithm Logic Forest
to identify the salient effects and interactions in the disease, followed by confirmation of the association
between interactions identified by the algorithm using logistic regression. A case study examining
the association between SNPs and cigarette smoke exposure with risk of developing systemic lupus
erythematosus (SLE) is presented. This identified genetic and environmental risk factors, and potential
interactions between exposure to secondhand smoke as a child and genetic variation in the Integrin
alpha M (ITGAM) gene associated with increased risk of SLE [8].

Cai and colleagues exploited transcriptomic data from multiple tissues generated by the
Genotype-Tissue Expression (GTEx) project [10,11] and developed a new methodology that integrates
machine learning algorithms to identify genes widely expressed in human body tissues with
different expression signatures that can distinguish different tissue types. The approach allows
tissue classification via a 432 gene signature of quantitatively tissue-specific expression, suggesting
that these genes could also play important roles in tissue development and function [10].

Three notable dynamic interactions play a role in phenotypic outcome. The first, is the association
between the environment and the host; the second is that between the microbiome and host health or
disease state; and the third is the linkage between the environment and the microbiome. Owing to this
complexity the majority of observational and experimental study designs fail to fully assess the direct
causal roles of the microbiome. To address this Big Omics challenge, Alekseyenko and colleagues
developed a framework for multivariate omnibus distance mediation analysis (MODIMA). They
exploited the power of energy statistics, to facilitate analysis of multivariate exposure-mediator-response
triples [9].

An important resource for Big Omics data analysis is the Gene Ontology (GO, geneontology.org)
which is used when performing gene enrichment analysis. Ruth Lovering and colleagues at
University College London (UCL) describe improvements to the GO Resource to improve analysis
and interpretation of Alzheimer’s Disease data [12]. This project, funded by the Alzheimer’s Research
United Kingdom foundation and led by the UCL biocuration team, enhanced the GO resource by
developing new neurological GO terms, and annotating gene products associated with dementia.
Of the total 2055 annotations contributed for the prioritized gene products, 526 had associated proteins
and complexes with neurological GO terms. To ensure that these descriptive annotations could be
provided for Alzheimer’s-relevant gene products, over 70 new GO terms were created. This important
novel resource will benefit the scientific community and enhance the interpretation of dementia
data [12].

Functional enrichment analyses often result in long lists of biological terms associated to proteins
that can be difficult to digest and interpret. Fiero and colleagues addressed this Big Omics data
analysis challenge via the development of Network-based Visualization for Omics (NeVOmics).This
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tool provides a hypergeometric distribution test to compute significantly enriched biological terms.
It enables analysis of cluster distribution and relationship of proteins to biological processes and
pathways [13]. Even though databases such as the Cancer Cell Line Encyclopedia (CCLE), the
Cancer Therapeutics Response Portal (CTRP), and The Cancer Genome Atlas (TCGA) are available
it remains challenging for researchers to explore the relationship between drug response and the
underlying genomic features due data heterogeneity. Sung Min Ahn and colleagues address this
via the development of the Integrated Pharmacogenomic Database of Cancer Cell Lines and Tissues
(IPCT) [14]. The IPCT allows users to identify new linkages between drug responses and genomic
features. It also allows comparison of the genomic features of sensitive cell lines or small molecules
with the genomic features of tumor tissues.

30% of all genes in mammalian cells are predicted to be regulated by microRNA (miRNAs)
miRNAs. Da Silveira and Renaud and colleagues describe a new tool, “miRmapper”, which identifies
the most dominant miRNAs in a miRNA-mRNA network and recognizes similarities between miRNAs
based on commonly regulated mRNAs. The most relevant miRNAs are not necessarily those with the
greatest change in expression levels between healthy and diseased tissue. Differentially expressed
(DE) miRNAs that modulate a large number of messenger RNA (mRNA) transcripts ultimately have a
greater influence in determining phenotypic outcomes and are more important in a global biological
context than miRNAs that modulate just a few mRNA transcripts. Da Silveira and Renaud exploit this
concept to analyze data from a nonmetastatic and metastatic bladder cancer cell lines and demonstrated
that the most relevant miRNAs in a cellular context are not necessarily those with the greatest fold
change [15].

In summary, the emergence and global utilization of high throughput (HT) technologies, including
deep sequencing technologies (genomics) and mass spectrometry (proteomics, metabolomics, lipids),
has allowed geneticists, biologists, and biostatisticians to bridge the gap between genotype and
phenotype on a scale that was not possible previously. In this special issue integration strategies for
systems level analysis of Omics data, recent developments in gene ontology pathway and network
algorithm development are explored as is the integration of Omics data with clinical and biomedical data.

Funding: G.H. acknowledges support from NIH/NIDA 1U01DA045300-01A1, NIH/NIMHD 5U54MD010706-02
and start-up funding from Queens University Belfast.

Conflicts of Interest: The author declares no conflict of interest.
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Abstract: The integration of phenotypes and genotypes is at an unprecedented level and offers
new opportunities to establish deep phenotypes. There are a number of challenges to overcome,
specifically, accelerated growth of data, data silos, incompleteness, inaccuracies, and heterogeneity
within and across data sources. This perspective report discusses artificial intelligence (AI) approaches
that hold promise in addressing these challenges by automating computable phenotypes and
integrating them with genotypes. Collaborations between biomedical and Al researchers will be
highlighted in order to describe initial successes with an eye toward the future.

Keywords: artificial intelligence; genotype; phenotype; deep phenotype; data integration; genomics;
phenomics; precision medicine informatics

1. Introduction

Genotypes and phenotypes expressed in genomic and phenomic data are related through the
processes that converts molecular-scale genotype information into a macroscale manifestation of a
particular phenotype of an organism. Integrated multi-omic processes drive this metamorphosis
of genomic information stored in the nucleus of the cell. The ability to identify the drivers of this
transformation is elusive among the plethora of interacting components that obfuscate our view.
Through integrating data into knowledge networks and reasoning over them with artificial intelligence
(AI), we can more vividly clarify this transformation.

Alan Turing, in his seminal 1950 paper in the journal Mind [1], laid the foundation for the field
of Al through framing the task of building and testing machine intelligence using an imitation game,
where the machine imitates the interactions of an individual communicating with two players: an
adversary and an interrogator. Moreover, he conjectured that discussions about intelligent machines
would become commonplace by the end of the millennium through improved computational speed,
memory and algorithms.

Viewing Figure 1, the cost of computing in gigaflops has gone from tens of billions of dollars in
the 1960s to pennies today, with a similar pattern for a gigabyte of random access memory. Combined
with such improvements in computing and memory, Turing suggested two avenues of research in
algorithms to advance intelligent machines: abstract activity modeling, such as the game of chess;
and sensory perception approaches. The timeline in the lower half of Figure 1 is based on algorithmic
advances in Al as described in Buchanan'’s brief history of Al and is extended with deep learning [2,3].
The labeled events above the timeline in Figure 1 show milestones in abstract activity modeling using
predicate logic and knowledge representation approaches resulting in machines being able to imitate
and exceed human performance in the game of chess before the year 2000 [2,4,5]. Medical publications
related to AI, shown in Figure 1 (thin red dash-dot line) as cumulative counts of PubMed references,
have increased following the development of biomedical expert systems such as Mycin [6]. The labeled
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events below the timeline are those associated with perception approaches such as the perceptron, back
propagation, neural networks and deep learning [3,7,8]. Machines imitating and exceeding human
performance in the game of Go occurred in 2016 through a combination of both types of approaches:
deep learning and tree-based knowledge representation trained through reinforcement learning [9].

$1 Trillion 100000
$10 Billion
_——— 80000
< 5100 Million ;Z’:qzi;e;
3 itiond 60000 &
o $1iMillionT—— Megabase $ -g
e $10,000 40000 5
b $100 =
- $1] ——- Al PubMed (n) 20000
1¢ e 0
1950 1960 1970 1980 1990
Representation Chess Champion
Predicate Logic Reinforcement Learning
Turing Expert Systems‘
o oS 0-0—0 o 0—0
Perceptron Deep Learning
Back Propagation Deep Genome
Neural Networks Deep Phenome

Figure 1. The cost of technology in 2017 US dollars on a log10 scale is plotted in relation to the left
axis, and the cumulative number (n) of artificial intelligence (AI) publications in PubMed is plotted
in relation to the right axis across time up to and including 2017. The costs of three technologies
are compared: Compute, Memory and Megabase. Compute corresponds to the computing costs in
gigaflops (one billion floating point operations per second), memory corresponds to the cost of one
gigabyte of random access memory, and Megabase corresponds to the cost per megabase sequenced.
The cumulative number of PubMed Al-related publications was calculated from identical scripts run
for each year starting in 1950. The bottom timeline represents events in the history of Al beginning
with Turing’s 1950 publication of “Computing Machinery and Intelligence” and ending with deep
learning applied to biomedical phenomic data in 2018 (Supplementary File).

The concept of a learning machine was articulated by Turing in terms of evolution, with hereditary
material, mutations and natural selection being analogous to the structure of the machine, changes
to the machine and performance evaluation providing feedback to the machine at a faster rate than
natural selection [1]. In such a framework, machine learning constitutes performance improvement
on an evaluation task through the use of labeled data for supervised learning and unlabeled data in
unsupervised learning. The speed of reinforcing feedback using deep learning methods over large
memory representations of data has made the difference for improving performance on difficult tasks
such as object recognition, speech recognition, and playing the game of Go [3,9]. Learning algorithms
can miss the mark of the true target, due to the “curse of dimensionality” when too many features in
the data space result in overfitting of random variance in the data [10].

Deep learning approaches have managed to navigate the complex space of overfitting and
underfitting the data through the use of large amounts of sample and powerful learning algorithms [3].
Deep learning algorithms achieve this high performance through learning multiple layers of non-linear
features in the data. Different features are learned depending on initial conditions, making consistent
interpretation difficult [11]. The “black box” nature of deep learning approaches highlights differences
between the abstraction and perception approaches proposed by Turing to solve the imitation game [1].
The former has well formulated feature representations that are more easily interpreted, but can
underfit the data [10]. The latter is not biased to underfit the data, but lacks interpretability due
to highly complex features [3,11]. Biomedical research, with the need for biological interpretation,
will likely benefit from a hybrid of the two approaches in much the same way as AlphaGo identifies
solutions to the game of Go [9]. As can be seen in Figure 1, the solid black line represents the cost
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per megabase sequenced of genomic information, which went from thousands of dollars to pennies
at a faster rate than a gigabyte of random access memory dropped to a few dollars [12-14]. Having
inexpensive genomic data for building large repositories, that can be integrated and harnessed by these
data-hungry Al methods, will have a far-reaching impact on discovery in biomedical domains [15-17].
The expertise to integrate and analyze these data resides in both biomedical and Al researchers who
have an opportunity to drive a new wave of discovery through high-dimensional analysis of deep
genomes and deep phenomes [18-21].

An important emerging area is the field of Precision Medicine Informatics which takes on
the challenges of big data by integrating, in a knowledge network (i.e., a general high-level
conceptualization of knowledge represented as facts connected by relationships between facts),
multi-omic data on individuals to increase access and discover new knowledge based on a new
taxonomy of disease [22-24]. Biomedical layers of data at different scales are positioned to be integrated
in knowledge networks that can be computationally reasoned over to accelerate discoveries [22,24].
Ontologies can be used to formalize knowledge networks through the description of facts, concepts
and properties over which logical reasoning engines can be run to generate new facts or inconsistencies
implicit in the ontology [25]. Reasoning over knowledge networks can include Al approaches (e.g.,
Never Ending Learning) that go beyond function approximation methods to reason over a network of
documents through a set of Al modules and measure the consistency of the knowledge learned [26,27].

The gene ontology community has developed a knowledge network of molecular functions,
cellular components and biological processes [28]. Human phenotype ontology represents a knowledge
network of human disease phenotypes that provide a mechanism for connecting genomic and
phenomic medical data [29]. The community managing these ontologies is challenged by scalability
issues related to the manual curation of data given the exponential growth in genomic and medical
phenomic data. To mitigate these issues, AI methods are needed to automate deep phenotyping in
the electronic health record (EHR) by incorporating longitudinal data to improve predictive modeling
and integrate phenomic and genomic data [30]. The following will discuss specific examples of Al
applied to genomic and phenomic data and how they are making headway against the challenge of
exponentially expanding data sets and the goal of advancing scientific knowledge [20,21,31].

2. Genomics

The discovery of new treatments will be advanced through understanding the mechanisms by
which genomics drives the expression of disease. As indicated, the gene ontology community is
iteratively building a knowledge network that can inform biomedical research on the mechanisms
and processes that impact the expression of phenotypes [28,32]. The ontology is evaluated on how it
performs over time as the ontology is incrementally improved. This is achieved by adding sequences
that are annotated with protein function information. These sequences are being added to the system at
an exponential rate. However, the validation through experimental findings that confirm or invalidate
the protein function information in gene ontology is being added at a linear rate [32]. Thus, there is
a vast gap between the number of experimentally validated protein functions and the number of
sequences in gene ontology. To address this, there are community-wide evaluation approaches to assess
protein function predictions through competitions using a variety of approaches to predict protein
function, and to generate candidate predictions at a rate that matches sequence accumulation [28].
Findings on some of the challenges have shown that the use of AI methods, such as the multiple
data source k-nearest neighbor algorithm, combined with biological knowledge can give superior
results [32].

Al techniques have been used to extract information down to the level of binding properties
of genomic sequences that influence the transcriptional networks of cells. Specifically, deep
learning methodologies have been used to predict sequence specificity of DNA and RNA binding
proteins [20]. The Al approach scanned for motifs in DNA and RNA and identified binding protein
promoter sites that would change their binding properties based on variance in single nucleotide
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polymorphisms, deletions or insertions. The approach identified gain of function mutations or
loss of function mutations based on the changing binding affinity of the DNA sequence that the
mutations impacted. The deep learning approach is powerful in its ability to discover new knowledge
around regulatory processes and biological systems and identifying causal disease variants (i.e., those
disease variants that, when changed, change the binding affinities of key regulatory genes in disease
processes). The approach also worked on RNA-binding and integration of transcriptomic and genomic
analysis [20]. The scale and complexity of data and the techniques now available position Al to be
integral to the process of accelerating scientific discovery. The next step is to integrate genomic and
phenomic data at different scales.

3. Phenomics

Al combined with phenomics can improve disease state detection when the right criteria are used
to recognize the drivers. For example, deep learning has been used to identify histological markers
of metastatic breast cancer in lymph nodes that pathologists have difficulty identifying, particularly
under standard time constraints [31]. For this study, the deep learning algorithm was assessed via
an immunochemistry test that verifies whether metastatic cancer was in the tissue or not. The deep
learning algorithm performs at an area under the receiver operating characteristic (ROC) curve of
99% compared with 81% for the pathologists who were given about a minute per slide. A strength
of deep learning is the capacity to visually identify histopathology phenomics (i.e., phenotypes in
histology images) to improve classification of clinically relevant data. Since knowing that breast
cancer has metastasized to the lymph node is critical for treatment decisions, the adoption of such Al
technologies for decision support will enhance early detection and improve clinical decision making.
It also will improve automated phenotype identification from images that will make new genotype
and phenotype identification feasible.

Phenomics of EHR data can be developed from formal ontologies of the phenotype criteria.
They can also be developed using deep learning to automate phenotype construction for predictive
models that distinguish important categories of individuals [29,30]. Deep phenotyping with Al
approaches have demonstrated empirically that incorporating temporal information (e.g., lab values
over 24 h after hospital admission) into phenomic models improves accuracy of predicting mortality,
length of hospital stay and diagnosis at discharge [21]. In this example, deep learning technology
was applied to adult EHR data including both laboratory values and clinical notes on a timeline
of events prior to hospitalization and for at least 24 h after admission in order to predict their in
hospital mortality. The algorithm incorporated time stamped tokens of events in the EHR and used
them to improve predictions of mortality. The algorithms predicted in hospital mortality at 93 to 94%
area under the ROC curve compared with 91% for existing clinical predictive models [21]. Notably,
the analysis was undertaken without the need to harmonize data across multiple hospital centers.
The major strength of the Al deep learning approach is the incorporation of temporal information
while eliminating the need to curate the phenotype collection manually and harmonize the data
manually [21]. The work demonstrates the benefit of incorporate temporal information in patients’
phenotypes, through automated and efficient strategies that show utility in predicting the outcomes of
interest, and moves towards an individual focused knowledge network of precision medicine.

4. Conclusions

Over 60 years ago, Turing postulated that we would experience a change in perspective on
how learning machines are perceived. Breakthrough Al approaches have brought this to pass
and have expanded our ability to recognize drivers of phenotypes resulting from single nucleotide
variations, valid protein function mechanisms in biological systems, cancer disease states and deep
phenotypes automatically constructed from the EHR. Through combining and expanding on these
approaches in a collaborative effort, the biomedical community will accelerate discovery and improve
our understanding of mechanisms in the genomic and phenomic expression of disease.
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Abstract: Omics data integration is already a reality. However, few omics-based algorithms
show enough predictive ability to be implemented into clinics or public health domains.
Clinical/epidemiological data tend to explain most of the variation of health-related traits, and its joint
modeling with omics data is crucial to increase the algorithm’s predictive ability. Only a small number
of published studies performed a “real” integration of omics and non-omics (OnO) data, mainly to
predict cancer outcomes. Challenges in OnO data integration regard the nature and heterogeneity of
non-omics data, the possibility of integrating large-scale non-omics data with high-throughput omics
data, the relationship between OnO data (i.e., ascertainment bias), the presence of interactions,
the fairness of the models, and the presence of subphenotypes. These challenges demand the
development and application of new analysis strategies to integrate OnO data. In this contribution
we discuss different attempts of OnO data integration in clinical and epidemiological studies. Most of
the reviewed papers considered only one type of omics data set, mainly RNA expression data.
All selected papers incorporated non-omics data in a low-dimensionality fashion. The integrative
strategies used in the identified papers adopted three modeling methods: Independent, conditional,
and joint modeling. This review presents, discusses, and proposes integrative analytical strategies
towards OnO data integration.

Keywords: data integration; omics data; genomics; RNA expression; non-omics data; clinical data;
epidemiological data; challenges; integrative analytics; joint modeling

1. Introduction

Most health-related traits are complex in nature. They result from the interaction of multiple
internal features/alterations with multiple external conditions over a lifespan [1]. Understanding these
complex systems requires modeling exhaustive and appropriate data that characterizes in detail such
features and conditions.

Big data in the biomedical field may refer to different scenarios encompassing large numbers of
clinical (e-medical/e-health records, EMR/EHR) and epidemiological registries (hereinafter, non-omics
data), as well as large biomarker datasets characterizing biological features, such as genomics,
transcriptomics, proteomics, metabolomics, and metagenomics, among others. The latter type of data
are commonly named omics data. While non-omics data are usually obtained through a pre-elaborated
process done either by the subject when s/he reports on her/his life-style habits or symptoms, or by the
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physician/pathologist when s/he evaluates the characteristics of the disease or the tumor, omics data
are generated by high-throughput biotechnological platforms delivering hundreds of thousands of
raw (non-elaborated) variables. Recently, imaging-based high-throughput data is also generated and
named radiomics.

Omics data integration has been addressed in recent years by several important reviews [2—4],
and integrative efforts have been successfully conducted with already available examples of studies
that integrated > 2 different omics sets [5-7]. However, only a few of them resulted in omics-based
algorithms with enough, though still controversial, predictive ability to be implemented into clinics
or public health domains [8,9]. The relatively poor predictive ability of genomic data may partly be
explained by the large variation of health-related traits explained by non-omics data, such as clinical
and epidemiological variables [10]. Therefore, it is crucial to integrate omics and non-omics (OnO) data
in the same models. This provides the opportunity to get insights into biological systems of health and
disease. Unquestionably, this endeavor poses several challenges regarding data generation, capture,
curation, sharing, analysis, visualization, as well as information privacy and storage.

What does OnO data integration mean in the biomedical arena? While it certainly refers to the
inclusion and analysis of these two types of data in the same model/algorithm, several scenarios
can be contemplated according to the number of each considered data type. There is no doubt that
modeling > 1 omics data sets with > 1 non-omics variables falls under this integrative concept.
However, should we consider integration when one omics data set (i.e., genome) is jointly modelled
with only one non-omics variable (i.e., age or tumor stage)? In this scenario, the boundaries of the
integrative picture become blurred and the definition depends on the purpose of the analysis and
whether the inclusion of the non-omics variables aims only to control for a potential confounding effect
or whether its prediction ability is being assessed in combination with the omics data. As a onsequence
of this confusion, the benefit of models including OnO data, is still unclear. This supports the need for
a thorough dissection of the field to diagnose the challenges of the OnO data integrative endeavor and
to identify the analytical strategies to reduce the variability of the study results.

In this review, we focus on the integration of OnO data to investigate complex traits, including
disease risk and prognosis, according to the definition provided above. We first outline and examine
the challenges of integrating the two types of data, we then present the integrative analytical strategies
available, we describe the integrative attempts published in the literature, and we further propose
statistical methods to be used in the analysis of OnO integrative models before concluding.

2. Challenges in Integrating Omics and Non-Omics Data

In this section, we focus mainly on the challenges of OnO data integration which are primarily
related to the nature of both types of data and to the relationship between them, since much attention
has already been paid to the integration challenges of only-omics data in previous reviews [3,4].

2.1. Challenges Due to the Nature of Non-Omics Data

2.1.1. Non-Omics Data Are Complex and Heterogeneously and Subjectively Defined

There is an increasing awareness of the need for standards for non-omics data to integrate them
in both predictive and inference models. Epidemiological data are subject to a survey mode, survey
question standardization, and also context, which may influence data quality and comparability,
and ultimately, the contribution of these variables in the outcome prediction. Standards are yet to be
adopted in epidemiological data generated by different scientists or organizations through different
procedures (i.e., questionnaires) to provide uniformity and consistency in this type of data, which may
help scientists and data analysts to better use, share, and integrate them.

Clinical variables may also be affected by the complexity of their definition. A tumor stage,
for instance, results from a combination of pathology and imaging information. Regarding clinical
standardization, there are some initiatives as CDISC (Clinical Data Interchange Standards Consortium,
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http:/ /www.cdisc.org) that harmonizes definitions and develops standards across the clinical space
(i.e., the Study Data Tabulation Model (SDTM) and the Analysis Data Model (ADaM)) to enable
information systems’ interoperability to improve medical research and related areas of healthcare.

Another important challenge relates to the nature of the aforementioned types of non-omics data,
because they are subjective assessments that result from a complex elaboration process based on skills
and previous knowledge of the evaluator which may lead to reporting biases (i.e., grading/staging,
clinical decisions, or reporting past occupational exposures). In this regard, non-omics assessments
totally differ from omics variables that are completely homogeneous and standardized data within the
same data set. Integrating these different types of data poses challenges in the analytics strategy since
the transformation or weighting of data may be required.

2.1.2. Heterogeneity Across Non-Omics Data

The lack of uniformity of non-omics data, including qualitative and quantitative variables
measured with different scales even to characterize a unique trait/exposure, also limits their integration
in an OnO model to predict the outcome of interest and imposes both a conceptual challenge and
a hurdle in practical data analysis. Moreover, data transformation (i.e., integrating variables with
zero values) and data normalization procedures may be necessary prior to integration analysis,
to avoid getting biased parameter estimates when the normality assumption required by some methods
is violated.

2.1.3. Large Scale Non-Omics Data

To date, the inclusion of non-omics data into integrative prediction models has been at a low
dimension. However, the hype generated by so-called Big Data has also affected the healthcare
industry. The advent of Big Data in the clinical setting has increased by the availability of EHRs
(e-health records), unstructured medical text, and image data. These “large in scale, high in dimension”
non-omics data, along with the design of well-characterized large and longitudinal epidemiological
studies at an unprecedented scale, has led to the need for the integration of high dimension non-omics
data in models. The use of other digital data sources coming from different wearable devices, such
as smart watches, wristbands or wearable health equipment, are also expected to revolutionize
epidemiology. The availability of longitudinal data concerning vital signs or environmental variables
is expected to shed light on the knowledge of disease dynamics [11]. In addition to the high volume of
data, other challenges of using digital epidemiology data are related to the collection, mining, access
(i.e., limited and costly access), and data sharing (i.e., variability in definition/standardization of
variables and subjective filters applied to the raw data which are needed to analyze those data).

The high dimensionality in non-omics data also implies the presence of (1) correlation structure
between these variables, (2) large scale longitudinal data, (3) data sparseness (i.e., medications,
laboratory or diagnosis tests), and (4) data missingness, which in contrast to omics data, are not
independent on the participating individuals. In this regard, multi-dimensional approaches need
samples with all the OnO data measured in the same individuals. All of these aspects must be taken
into account in integration models.

Moreover, the advent of using EHRs will also be challenging in processing both objective and
subjective traits, as well as structured and unstructured data. Subjective traits were defined by Jette
as phenotypes that the “physician cannot assess directly with confidence and have to rely on patient
(i.e., pain, physical, social, and emotional function) [12]. On the contrary, objective outcomes are those
which the “physician can assess directly with confidence” [13]. Unstructured data, as the physician
notes, which are in many cases embedded within semi-structured EHR data, are the most frequent
data in the medical records. Although they have been mostly ignored, they are needed to understand
the whole of a patient, and it will be needed to process and utilize them.
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2.2. Challenges Due to the Relationship between Non-Omics and Omics Data

2.2.1. Ascertainment Bias

In a case-control design, the integration of OnO data may be affected by the presence of
ascertainment bias. In this type of epidemiological design, individuals are enriched for the risk factors of
the study. If omics data are generated on the basis of the subject’s exposure, ascertainment could induce
additional correlation between all OnO data [14]. It is known that omics profiles are not independent
of demographic factors [15]. For example, age and gender may be associated with DNA methylation
values [16,17]. In the clinical setting, genomic variables may be correlated with clinical variables due
to population stratification [18]. Furthermore, when survival is the outcome, an insufficient clinical
follow-up and the larger incompleteness affecting the clinical variables, in contrast to the completeness
of high-throughput molecular data, may bias the effect estimates of the remaining clinical variables
in a greater manner than their counterparts of omics variables. On the contrary, traits identified
from an observational resource, such as medical records, may also be subject to the presence of
ascertainment bias, since the probability that a particular phenotype is recorded is not uniform across
patients or diseases.

2.2.2. Interactions between Omics and Non-Omics Data

In order to understand the underlying mechanisms of the disease of interest, it is important
to consider the combined interactions between the factors included in the model, irrespectively of
their nature (omics vs. non-omics). The interaction between data types can be complex as well:
gene expression changes may imply phenotypic abnormalities, and this results in a more complex
relationship between molecular and clinical data.

2.3. Other Challenges

2.3.1. Fairness

According to Van de Geer, a fair model is a model where all variable blocks, each block
representing a set of variables sharing similar characteristics, contribute equally, in contrast to a model
dominated by only a few of the different sets [19]. In OnO integrative modeling, should each variable or
block contribute equally to the outcome? How can we prevent clinical variables from being penalized
when combined with a high-throughput dataset?

2.3.2. Presence of Subphenotypes

The consideration of heterogeneous phenotypes in the model may also add complexity to the
OnO model definition. However, ignoring the presence of subphenotypes may affect the performance
of the OnO model [20].

3. Integrative Analytical Strategies

The strategies for building hybrid models that contain both omics and non-omics data can be
classified as: Independent modelling, conditional modelling, and joint modelling (Figure 1). While the
joint modeling strategy is the most proper integrative approach, independent and conditional modeling
are also commonly used approaches to jointly model OnO data.

14



Genes 2019, 10, 238

OMICS data NON-OMICS data

=
%=| Clinico-pathological g Q Demographical
D W ®
*
I\ 22 ‘ T Epidemiclogical
ol B i

Genomics

CHALLENGES
OMICS and NON-OMICS data relationship NON-OMICS data
Correlation between both data types + lack of standardization
Interaction between both data types * High heterogeneity
Presence of sub-phenptypes * Largescale (ex. Medical Records, digital data)
Fairness +  High complexity

INTEGRATIVE ANALYTICAL STRATEGIES

Independent modelling Conditional modelling Joint modelling
[ omics | | NON-OMICS | | NON-OMICS | [ omics | NON-OMICS |
[omics +--»
[ Outcome | | Outcome ] | Outcome |

Figure 1. Classification of the strategies for building OnO models.

3.1. Independent Modeling Approach

This strategy, also known as late integration, implies that both the omics and the non-omics
data models are built independently [21]. The non-omics data model is built independently of the
omics variables by fitting a model that only includes clinical /epidemiological variables or already
well-established risk or prognostic score/factors identified and reported in previous efforts. In parallel,
the omics variables are selected by considering a model only including omics variables. Both modelling
processes typically require variable selection or dimension reduction. The independently selected
omics and non-omics variables are then combined in a final model. The predictive accuracy of the
combined model is compared with that of the non-omics data model.

Although independent modeling is the simplest integrative approach and, probably, the most
common strategy for combining OnO data, this approach cannot capture the correlation/interaction
structure of the datasets of different natures. To overcome this limitation, Nevins et al. [22] and
Pittman et al. [23] proposed tree-based approaches to combine clinical and molecular scores in such
a way possible interactions among OnO data are considered. Whether this approach is also applicable
to omics data should be elucidated. Another caveat of the independent modeling strategy is that the
predictive power of omics data tends to be overestimated since the trait is also used in the feature
selection process.

3.2. Conditional Modeling Approach

This strategy consists in first defining a clinical model with non-omics variables and second,
adding omics variables to the already built non-omics model. In other words, in the conditional
modelling approach, the selection of omics variables is performed by considering a model that
contains or adjusts for the previously selected clinical/epidemiological covariates. The key point
of this conditional modeling approach is to decide which omics variables should be added to the
clinical model. There are different ways to implement this strategy, the simplest one, though not
recommended, is univariate selection, where each omics variable is tested individually and added to
the clinical model if there is an increase in the prediction accuracy. As discussed in Bovelstad et al. [24],
univariate selection performs poorly, usually yielding worse predictions than the clinical model
approach. A more powerful strategy is to perform partial dimension reduction, which consists in
considering the joint model with all omics and clinical variables and applies a dimension reduction
process only to omics variables. One of such dimension reduction approach is least squares-partial
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least squares (LS-PLS) [25]. The major caveat of this method is that it suffers from convergence
problems, and its performance also depends on the level of collinearity between the two types of data.
Alternative approaches to LS-PLS, when the outcome is binary, are partial least square regression [26],
ridge regression [27], and LASSO [28] performing dimensionality reduction only on omics data [24].
Other approaches for time dependent variables are described in [29,30]. Binder et al. proposed
the algorithm CoxBoost which implements Cox penalized regression that allows some covariates
(clinical variables) to be unpenalized [29] and Li et al. applied partial dimension reduction of the
supergenes identified after estimating principal components with the omics variables, meanwhile
considering the clinical covariates [30]. A common drawback of all the above methods is that they are
computationally intensive.

3.3. Joint Modeling Approach

Under this strategy, omics and non-omics data are jointly modelled in a supervised or
unsupervised manner. While there is a growing body of articles on multi-marker and multi-omics data
integration [2,4,7,20,31,32], the literature that explicitly addresses how to integrate omics and non-omics
data in a joint modeling approach is scarce. Following Ritchie’s suggestion [3], we can further classify
the joint modeling approaches of OnO data into multi-staged (i.e., separate analysis of the associations
between the different data types and subsequently with the outcome of interest) and meta-dimensional
analyses (i.e., simultaneous analysis of the different data types). One of the first examples of
a meta-dimensional approach is the study by Sun et al. that performs concatenation-based integration
and joint variable selection of both OnO data using the i-relief algorithm [33]. Those classified as
meta-dimensional analyses were further classified into three groups as concatenation-based integration,
transformation-based integration, and model-based integration.

4. Attempts of OnO Data Integration in Clinical and Epidemiological Studies

We searched the PubMed electronic database using keywords to identify studies integrating OnO
data towards their association with or prediction of the trait of interest, as well as to evaluate their joint
classification performance. The search strategy included a combination of keywords related to omics,
non-omics, and data integration, for the period 1 December 2009 to 1 October 2018. The logic terms
used were: ((integration AND (risk OR score OR prediction OR prognosis) AND (epidemiological OR
clinical OR environmental OR exposure) AND (genomic OR GWAS OR genetic OR transcriptomics
OR proteomics OR metabolomics OR gene expression OR epigenomics OR epigenetic OR microbiome
OR metagenomics))).

The search strategy generated 1,634 records. In this review, we only considered those articles
integrating non-omics and high-throughput generated omics data sets in the modeling of the
disease/trait as defined in the Introduction. The search resulted in a total of 16 studies almost all
of them belonging to the cancer research area (see Table 1). We were first surprised by the small
number of published studies at present that performed a “true” integration of OnO data. Although
this contribution does not intend to be a systematic review, we consider that the identified papers
constitute a representative sample of the attempts done in the field up to date. Hereinafter, we describe
the objectives of the OnO integration, the outcomes and the OnO data types considered in the models,
as well as the integrative analytical strategies applied in the selected papers (Table 1).
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4.1. Study Objective

All selected papers aimed to evaluate the prediction performance of the OnO integrative models.

4.2. Study Outcome

Garali et al. identified OnO variables discriminating cases with spinocerebral ataxia from
controls [37]. Only two out the 16 selected studies integrated OnO data to predict the risk of skin [45],
and bladder [40] cancers. The rest of papers integrating OnO data analyzed cancer outcomes. Among
the cancers analyzed were breast [24,35,38,41,43,44], central nervous system [24,25,34], liver [36],
hematological [24], melanoma [39], bladder [20], kidney [42], and several cancers [46]. Six studies
integrated both data types to evaluate the ability to predict the survival time [24,35,36,42,43,46].
Four studies transformed the survival time into a binary outcome (i.e., survival at a given
time) [35,39,41,44]. Lopez de Maturana et al. [20] transformed each time to event into several binary
outcomes by accounting for censoring and time. Two studies analyzed the logarithm of survival time
also accounting for censoring [34,38] . And two studies assessed the treatment prediction response as
a categorical variable: Responders vs. non-responders [25,43].

4.3. Omics Data

Most of the papers only integrated one type of omics data [20,24,25,36,40,43-45]; five papers
integrated two omics data types [35,38,41-43]; and four papers integrated > 2 omics
data [34,36,39,46]. Gene expression data was the most commonly used high-dimensional omics
data [24,25,34-36,38,39,42-44,46] followed by copy number alterations (CNA) [25,34,35,38,41,46],
and SNPs [20,34,40,45,46]. Methylation data was considered by five selected papers [34,36,42,43,46] and
three studies integrated microRNA (miRNA) data [36,39,46]. Only Jayawardana et al. [39] integrated
protein expression data and Garali et al. [37] integrated 754 metabolite biomarkers in a predictive
model. In those studies that integrated > 1 omics data set, gene expression was the most informative
type in terms of prognostic utility [39,46], followed by microRNAs, and DNA methylation profiles [46].

4.4. Non-Omics Data

All the selected papers incorporated the non-omics data in a low-dimensionality fashion,
meaning that only a few variables were integrated in the models. Non-omics information was a quite
heterogeneous group of data formed by both categorical and continuous variables. The majority of
non-omics data were clinico-pathological variables, including treatment, tumor stage, tumor size,
lymph status, histological type, estrogen receptor status, progesterone receptor status or human
epidermal growth factor receptor (see Table 1 for further details). Specific tumor scales, such as
Breslow thickness and Clark’s level in melanoma [39] or classifications as Lauren classification in
stomach adenocarcinoma [46] or the international prognostic index in lymphoma [24] were also
used as non-omics clinico-pathological variables. Moreover, cancer subtype definition based on
gene-expression signatures as PAMS50 signature for breast cancer [42,43,46] as well as Mammaprint [46]
were also considered. Jayawardana et al. were the only ones integrating metabolic imaging obtained
by magnetic resonance spectroscopy, along with pons volume [39]. In addition, demographical
data as age, gender, ethnicity, or region were also considered. Smoking status was the only
epidemiological/life-style variable included in the risk models [40]. None of the papers considered
large scale clinical or epidemiological data in their models.

4.5. Integrative Analytical Strategies

The integrative strategies used in the identified papers adopted the three different modeling
methods described before (see Table 1): (1) Independent modeling, (2) conditional modeling, and
(3) joint modeling, which were implemented using one-step or two-step designs. The published
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studies applied these methods assuming low-dimensional non-omics data, while omics data were high
dimensional and required some variable selection, dimension reduction, or regularization process.

Examples applying the independent modeling approach are found in [36,39,42—44,46].
Thompson and Marsit [42], combined both multistage and meta-dimensional elements in
a Methylation-to-Expression Feature Model (M2EFM) by first defining a molecular score that combined
DNA methylation and gene expression and then performing a second regression to integrate clinical
variables in a prognostic model for clear cell kidney cancer. van Vliet et al. [44] determined the
optimal sets of features from each data type separately by using different classifiers such as the
nearest mean, the simple Bayes, the 3-Nearest-Neighbor, the support vector machine, and the Tree
Classifier. They then used these sets of features and all training samples in the final integrative
model. Jayawardana et al. [39] used multiple types of omics data (i.e., microRNA, mRNA and protein
expression) to integrate them with clinico-pathological variables also using an independent modeling
approach. Briefly, they selected an optimized set of omics features integrated as a molecular signature
of each data type (known as pre-validated vector) and then modelled them in combination with the
clinico-pathological data, creating a combined prognostic signature. Chaudhary et al. [36] applied
a transformation-based integration of multi-omics data independently from the clinical variables by
using a deep-learning approach to integrate RNA-seq, miRNA-seq, and DNA methylation data to
identify subgroups of hepatocellular carcinoma. Zhu et al. [46] did similarly, which led to substantially
improved prognostic performance over the use of clinical variables alone in half of the cancer types
examined. Particularly, they used the kernel-fusion Cox model as the multi-omics kernel learning
method for prognostic prediction. Their approach consisted of three steps: (1) They built a kernel
reflecting the similarity of the individuals based on each omics data including mRNA, miRNA, CNA,
methylation and mutational status; (2) they applied a kernel alignment approach to evaluate whether
the similarity matrix built using an omics data set aligned well with its counterpart defined by another
omics data type; and (3) they evaluated the prognostic performance of the molecular profile of each
individual, which was assumed to follow a multivariate normal distribution with mean zero and
(co)variance matrix K corresponding to a fused kernel. This resulted from the linear combination or
fusion of each omics similarity matrices (somatic mutation, mMRNA, miRNA, methylation, and copy
number profiles), along with the clinical prognostic score and the polygenic risk score based on odds
ratios reported in the literature. Through this way, prognosis-relevant signals from multiple pathways
and involving a large number of omics biomarkers became visible only when aggregated. Zhu et al.
applied, by far, the most comprehensive integrative approach [46].

Two studies applied the conditional modeling approach. Bazzoli and Lambert-Lacroix [25]
adopted it using a one-step approach. They adapted the Least Squares—Partial Least Squares (LS-PLS)
procedure to accommodate logistic regression hybrid models resulting into three different approaches:
LS-PLS-IRLS (where IRLS denotes Iteratively Reweighted Least Squares algorithm), R-LS-PLS, and
IR-LS-PLS differing in the way PLS is used in the classification context. The three approaches involved
the incorporation of PLS scores resulting from the application of PLS regression on omics data into
the OLS equations in an iterative way to obtain a one-step hybrid model accommodating OnO data.
Bovelstad et al. [24] proposed a Cox regression model including OnO variables and applying different
methods for dimensionality reduction only to omics data and found that the improvement of the OnO
model varied among diseases: Whereas large improvements were obtained when OnO model was
applied to diffuse large B-cell lymphoma (DLBCL) and neuroblastoma datasets, similar performance
was obtained using gene expression data only vs. the integrative model.

Joint modeling integration was the most commonly used approach by the identified studies.
Particularly, the majority of the studies applied the transformation-based meta-dimensional analysis,
which combined multiple data sets after transforming each data type into an intermediate form,
such as a graph or a kernel matrix. Three studies applied Bayesian Reproducing Kernel Hilbert spaces
regressions as a modeling framework able to incorporate clinical risk factors and high-dimensional
omics profiles [34,38,45], Gonzdlez-Reymundez et al. also assessed the interactions between OnO

22



Genes 2019, 10, 238

factors [38]. Seoane et al. proposed a multiple kernel learning strategy implementing feature selection
separately for each data type and by pathway membership [41]. Examples of the concatenation-based
integration meta-dimensional analyses are found in [20,24,35,40,44]. Boulesteix et al. [35] applied
the IPF-LASSO, a penalized regression method that allows different penalty terms to the different
layers of information, whereas Lépez de Maturana et al. [20,40] implemented a Bayesian LASSO
coupled threshold modeling with different priors imposed for OnO data. Bovelstad et al. [24] proposed
a Cox regression model including OnO variables and applying different methods for dimensionality
reduction only to omics data. Van Vliet et al. [44] applied five classifiers (nearest mean, the simple
Bayes, the 3-nearest-neighbor, the support vector machine, and the tree classifier) concatenating the
omics and clinical features.

In addition, Garali et al. implemented a regularized generalized canonical correlation analysis
(RGCCA) and a sparse generalized canonical correlation analysis (SGCCA) model-based integration
approaches, in which each data type is analyzed separately and then combined in a final integrative
model [37]. Rather than operating sequentially on parts of the measurements, this integrative approach
aims at summarizing the relevant information between and within blocks of variables. Particularly,
RGCCA incorporates a variable selection procedure and SGCCA allows both the extraction of
biomarkers and the reduction of the multiblock datasets into a few meaningful components.

4.6. OnO Data Integrative Models Performance

The performance of the models considered in the selected papers was retrieved, whenever
provided, and is displayed in Table 1. In general, the selected papers showed that the OnO data
integrative models perform better in terms of classification performance than the only-clinical/
epidemiological or only-omics model [24,25,34,38,39,41-44,46]. However, there were studies
reporting no/slight improvement in terms of classification performance of OnO data integrative
models [20,24,36,40,46]. The variability in terms of predictive improvement observed when
applying OnO modeling could depend on different factors, such as the outcome, the omics
and clinical/epidemiological variables, and the integrative method implemented. For example,
Bovelstad et al. [24] found that the improvement of OnO model varied among diseases: While large
model performance improvements were obtained when OnO data integration was applied to DLBCL
and neuroblastoma datasets, no gain in performance was observed when gene expression data was
integrated with clinic-pathological variables in the breast cancer dataset. Furthermore, the SNPs
performed poorly in the outcome prediction across cancer types [20,40,46].

5. Recommended Integration Strategies

As previously discussed, we distinguished three different strategies for building hybrid models
containing both omics and non-omics data: Independent modeling, conditional modeling, and joint
modeling. Selected papers have applied these approaches to the integration of low-dimensional
non-omics data and high dimensional omics data, which requires some variable selection,
dimensionality reduction or regularization process before or during their modeling. However, these
integrative modeling strategies also apply to high dimensional non-omics data, a scenario that is
becoming more frequent because of new technological advances that constantly increase our capacity
for obtaining additional information from many different sources (e.g., EHRs or wearable sensors).

Joint modeling approaches, where omics and non-omics data are jointly modelled in a supervised
or unsupervised manner, are those recommended to integrate both large-scale OnO data, because they
account for the correlation structure between the two data types and capture a larger complexity than
the conditional or independent modeling. The decision of which modeling strategy (multi-staged or
meta-dimensional) to follow should be done in accordance with the main objective of the analysis:
Association testing or risk prediction [47]. Multi-staged analysis that models the relationship between
the different layers of information will probably be preferable when the interest is to increase our
biological knowledge of the disease mechanisms. On the other hand, the meta-dimensional approach
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will be more suitable when the goal is to improve prediction or prognosis for personalized medicine
and modeling the mechanisms is not so relevant, although they are not exclusive for these purposes.
Concatenation-based integration combines the different data types into a joint data matrix and performs
a variable selection or dimension reduction to the whole data set. The concatenation approach cannot
ignore that the different data types are expected to have different relevance to the outcome and the
joint analysis should take this into account.

In addition to the methods used by the identified studies described previously, the following
modeling strategies could be considered in jointly modeling OnO data. The kernel-fusion Cox model
used in Zhu et al. [46] initially designed as multi-omics kernel learning method could be extended
to include also non-omics data in a kernel reflecting also the similarity between the profiles for each
multimodal data. iCluster and iCluster2 are examples of a model-based integration strategy and could
also accommodate non-omics variables [6,48]. Briefly, they perform a joint latent variable model-based
clustering method, where the latent component connects the different data specific models, inducing
dependencies across the different data types. Furthermore, deep-learning methods could also be
used in a model-based integrative approach [49,50]. Another machine learning approach, the tensor
factorization, allows the integration of multiple data modalities and supports dimensionality reduction
and identification of latent groups [51]. A tensor factorization is a multidimensional array where each
modality spans one axis and helps identifying group-wise interaction. Since it is an unsupervised
method, it may be used to identify phenotypes, as it has been done in the Multi-Ethnic Study of
Atherosclerosis (MESA) for discovering subgroups of heart failure patients. A drawback of this method
is the interpretability of the results.

6. Concluding Remarks

Disentangling a complex trait requires not only the understanding of its “complex” biological
system but also the combinatorial effects of other factors (i.e., host-related, environmental,
socio-economics, etc.). The integration of OnO data can lead to finding new risk factors of
a disease, propose better predictive models, distinguish patients with favorable response to treatment,
and therefore help in the future of personalized medicine [52]. Unfortunately, OnO data integrative
efforts are still scarce, although they are expected to become more frequent because of the advent of
Big Data in the medical field.

In general, integrating both molecular and clinical data results in better prognostic models than
either type alone as has been shown by several authors [39,43,44,46]. Possible explanations are that
individual classifiers collect associations with the outcome of interest and their redundancy leads
to a better prediction; that the clinical set of features adds some additional information which is
not captured by the omics data; and that relevant signals may come from multiple pathways and
involve a large number of omics biomarkers, the effect of which may be visible only when aggregated.
However, model improvement has not always been observed when OnO data is integrated [36,40].

In any case, exploring OnO data integration becomes a must in the biomedical field. It requires
method development, validation, and standardization. This review represents an endeavor towards
these aims by identifying the challenges that OnO data integration presents, as well as discussing and
proposing integrative analytical strategies. We hope it guides OnO data integrative efforts.
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Abstract: Recent developments in high-throughput technologies have accelerated the accumulation of
massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome,
metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using
statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical
data is key to new biomedical discoveries and advancements in precision medicine. However, data
integration poses new computational challenges as well as exacerbates the ones associated with
single-omics studies. Specialized computational approaches are required to effectively and efficiently
perform integrative analysis of biomedical data acquired from diverse modalities. In this review,
we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges
associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class
imbalance and scalability issues.

Keywords: machine learning; multi-omics; data integration; curse of dimensionality; heterogeneous
data; missing data; class imbalance; scalability

1. Introduction

Technological advancements in high-throughput cell biology have enabled researchers to examine
the landscape of biomolecules (i.e., DNA, RNA, proteins, metabolites, etc.) associated with a phenotype
of interest. Next-generation sequencing technologies [1-3] have revolutionized the profiling of
DNA and messenger RNA (mRNA), allowing genomes and transcriptomes to be sequenced quickly
and economically. Mass spectrometry [4,5] allows us to efficiently identify and quantify proteins,
metabolites and lipids in cells, capturing underlying cellular variations in response to physiological
and pathological changes. Consequently, large-scale studies on the genome, the transcriptome, the
proteome, the metabolome, the lipidome, etc. have created a plethora of data associated with these
“-omes” also known as “omics” data. In this regard, machine learning (ML) algorithms [6-10] have
been developed to elucidate complex cellular mechanisms, identify molecular signatures, and predict
clinical outcomes from large biomedical datasets [11,12]. Traditionally, ML-based single-omics analyses
provide assorted perspectives on cellular processes with respect to a particular -ome [13-16]. However,
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isolated omics studies frequently fall short when identifying the cause of multifaceted diseases such
as cancer [17], cardiac diseases [18], diabetes [19], etc. This evidence suggests that an inclusive view
of cellular processes, constructed by integrating information within and across -omes, is required to
provide a comprehensive picture of the biological mechanisms [20].

ML-empowered integrative analysis has emerged as a key player in studies involving multiple
omics data [21-25]. By analyzing different omics layers together, ML-based integrative methods
provide a holistic view of biological processes, offer new mechanistic insights on the phenotype
of interest, and facilitate the advancements in precision medicine [26]. For example, Hoadley et al.
employed ML-based integrative clustering in a comprehensive study of twelve different types of cancer
which resulted in a new molecular taxonomy of diverse tumor types [21]. They integrated genomics,
epigenomics, transcriptomics, and proteomics data utilizing cluster-of-cluster-assignments (COCA) to
obtain clinically relevant sub-types. In [22], canonical correlation analysis (CCA) with dimensionality
reduction was employed for jointly analyzing microRNA (miRNA) and gene expression data. This
analysis provided insight into the mechanisms of head and neck squamous cell cancer and its response
to treatment via cetuximab. In another study, Arelaguet et al. [23] performed integrative analysis of
somatic mutations, RNA expression, and DNA methylation data associated with chronic lymphocytic
leukemia (CLL). This study identified new factors predictive of clinical outcome by employing a latent
variable modeling approach. To identify markers of body fat mass changes in obesity [24], proteomics
and metabolomics data were integrated to create a “transomic” dataset whose individual features went
through z-score transformation prior to independent component analysis (ICA). It was noted that a
combined transomics dataset better discriminates lean and obese subjects as compared to single-omics
data. For improving drug sensitivity in breast cancer, genomics, epigenomics, and proteomics, data
were integrated using a multiview multiple kernel learning (MKL) approach [25]. This study showed
that the predictive performance achieved by multiview learning was found to be better than that
obtained by any individual view, where a ‘view” describes a particular representation of the input data.

Integrative analysis of biomedical data with ML can be performed in a variety of ways. For
example, the simplest approach is to construct a large feature matrix by directly concatenating features
from different datasets [27]. Each feature may go through z-transformation for standardization across
all biological samples, followed by ML-based feature selection for molecular signature extraction and
biomarker identification. Another common integrative analysis approach is to transform data from
heterogenous sources into joint latent profiles. Latent (hidden) profiles are the transformations of
data that can capture hidden sources of variation. ML-based clustering is then performed in common
latent sub-space for the identification of clinically relevant patient sub-groups [28]. In addition, there
are ML-based frameworks that fuse data as a step toward building a model, e.g., multiple kernel
learning or network modelling approaches [25,29]. Notably, the accumulation of large biomedical
data and the inevitable benefits of studying multiple omics together present new challenges and
opportunities for developing novel computational approaches customized for integrative analysis. For
example, heterogeneous data with mixed variable types, and missing values in one or more omics
can substantially hinder the data integration and analysis. In addition, when integrating multiple
omics data, the dimensions of the dataset can grow into hundreds or thousands of variables, while
the number of observations or biological samples remains limited. This disparity is called the curse
of dimensionality or the p >> n problem, where p is the number of variables and # the number of
samples. Moreover, the rarity or class imbalance in the data can also lead to results that are biased or
less accurate. A class imbalance problem arises when rare events are analyzed and compared against
events that happen much more frequently, a common occurrence in omics datasets. Furthermore,
standard integrative frameworks may not be suitable for large-scale multi-omics analysis due to
computational and storage limitations.

Fortunately, advancements in the field of data science are constantly improving the precision of
biomedical research, and machine learning is well poised to enable seamless integration of molecular
and clinical data. In addition, deep learning architectures [30-32], which better recognize complex
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features through representation learning with multiple layers, can facilitate the integrative analysis by
effectively addressing the challenges discussed above. In this article, we review some of the integrative
computational approaches recently proposed for analyzing biomedical data from multiple sources.
Specifically, we discuss state-of-the-art ML approaches that can address five important challenges in
multi-omics integrative analysis: the curse of dimensionality, data heterogeneity, missing data, class
imbalance, and scalability issues.

2. Curse of Dimensionality

In the integrative analysis of multi-omics, the number of variables or features to study is
increased, but the number of samples is generally the same, since the measurements from multiple
platforms essentially belong to the same biological sample. For example, in the stratification of ovarian
cancer patients (samples) based on their DNA methylation, miRNA expression and gene expression
measurements (variables), the number of variables can be substantially higher than the number of
samples (thousands of variables measured on just few hundred patients) [33]. This is the so-called curse
of dimensionality or the p >> n problem in machine learning [25,34]. The increased dimensionality
in the number of variables, with the same sample size, makes most ML methods vulnerable to an
overfitting problem, i.e., highly accurate on training data but poor generalization on unseen test
data [33]. This is due to that fact that the same samples now cover a much smaller fraction of input
feature space [7]. The addition of more features may carry new information; however, the benefit
of new information can be outweighed by the curse of dimensionality. Dimensionality reduction
(DR) is commonly employed in omics studies as datasets from genomics, proteomics, transcriptomics,
medical imaging, and clinical trials are frequently faced with the p >> n problem. DR techniques are
employed either as feature extraction (FE) or feature selection (FS) [35,36]. Feature extraction projects
the data from high-dimensional space to lower dimensional space, while feature selection reduces the
dimensionality by identifying only a relevant subset of original features [34-36].

Feature extraction facilitates data visualization, data exploration, latent (hidden) factor profiling,
compression, etc. Principal component analysis (PCA), a popular FE method, reduces the
dimensionality of the data by orthogonally transforming the high-dimensional features to linearly
uncorrelated principal comments (PC). Given orthogonality constraints, the top PCs capture maximal
variance in the dataset. PCA in combination with clustering is an intuitive way for exploratory
data analysis (EDA), e.g., visualization of sub-groups in a molecular dataset which otherwise are
uninterpretable due to high dimensionality. Non-negative matrix factorization (NMF) is another FE
method that achieves dimensionality reduction by finding two non-negative matrices whose product
approximate the original non-negative matrix. Unlike PCA in which decomposition matrices have
both positive and negative values, the resulting matrices from NMF only have positive values; thus,
original data is represented only by additive combinations of latent variables. t-distributed stochastic
neighbor embedding (t-SNE) [37] is an FE algorithm increasingly applied for the visualization
of high-dimensional data. #-SNE is a nonlinear method and hence performs better when the
relationships in the data are not linear. The similarity between data points are used to construct joint
probability distributions in such a way that the divergence between joint probabilities in low-dimension
embedding and original high dimensions is minimal. Autoencoder, a building block of many deep
learning networks, can also be employed for nonlinear FE by restricting the number of hidden layer
nodes to less than the number of original input nodes [38,39].

Feature extraction approaches are typically used in unsupervised integrative analysis, i.e., when
response or group labels are unknown. ML-based FE can facilitate the discovery of disease specific
sub-groups in multi-omics studies. In recent years, many feature extraction methods have been
proposed for integrative omics exploratory analysis, with many of them based on PCA [40]. For
example, multi-omics factor analysis (MOFA) was proposed recently as a generalization of PCA to
multi-omics data to identify biomarkers in CLL [23]. Specifically, somatic mutations, DNA methylation
and RNA expression were profiled together with ex vivo drug responses and MOFA disentangled
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sources of systematic variation (latent factors) arising from disease heterogeneity based on the
multi-omics data. The latent factors identified by MOFA were shown to be predictive of clinical
outcomes. Joint and individual variation explained (JIVE) [41], another extension of PCA, was
proposed to identify individual and combined variations between miRNA and gene expression data
for the same set of 234 Glioblastoma Multiforme (GBM) tumor samples. JIVE is an integrative EDA
method that decomposes a dataset into a sum of three terms: two low-rank approximation terms, one
for capturing joint structure across data types and other for capturing structure individual to each data,
and a term for residual noise. In order to integrate protein and gene expression datasets from National
Cancer Institute (NCI)-60 cell-lines, the multiple co-inertia analysis (MCIA) [42] employed FE methods
like PCA on each data set separately to project them to similar (lower) dimensional space for EDA.
In MCIA, the diverse sets of variables were transformed to the same scale to easily combine genes and
proteins features, providing better biological pathway interpretation. Joint NMF [43] and intNMF [44]
performed integrated data exploration with gene expression, DNA methylation and miRNA expression
data to facilitate the identification of clinically distinct patient sub-groups by utilizing the NMF concept.
In addition, integrative-NMF (iNMF) [45] was able to identify the heterogenous and homogenous
factors across different types of data. Non-linear FE techniques including t-SNE and autoencoders
also play key roles in multi-omics studies. For example, +-SNE was employed to facilitate the
visualization and clustering in an integrated multi-omics study of transcriptional and epigenetic
states in the human adult brain [46], and the integration of single-cell transcriptomic data across
different conditions, technologies, and species [47]. In a precision oncology study of cancer cell lines
involving gene expression, copy number, mutation status and drug sensitivity data, the dimensionality
of the integrated data was effectively reduced by a deep autoencoder [48]. The autoencoder was able to
extract cellular state features that were highly predictive of drug sensitivity. Moreover, representation
learning [49] or the automatic extraction of meaningful representation of raw data (embeddings), which
makes predictive models much more accurate, was also considered for integrated analyses [50,51].
For example, representation learning was employed to generate node embeddings that consequently
produced informative edges in biological knowledge graphs [50]. Many life sciences databases
make their data available as Linked Data, i.e., data having biological entities and their connections
standardized with unique identifiers for better interoperability across resources. In [50], Linked
Data, biomedical ontologies and ontology-based annotations were integrated, facilitating functional
prediction and the predictions of protein—protein interaction (PPI), drug target relations, candidate
genes of diseases, etc. In another study [51], a Multi-view Factorization Autoencoder was proposed
for integrating multi-omics data with domain knowledge. This deep representation learning method
effectively tackled the p >> n problem in datasets, and learned feature embedding and patients
embedding simultaneously.

In biomedicine, ML-based feature selection methods are frequently applied to identify small
subsets of key molecules or molecular signatures [33,52-55]. FS methods are classified into three
main types:

(1) Filter methods,
(2) Wrapper methods,
(3) Embedded methods.

Filter methods are used to select a subset of relevant features independent of any model. Many
of the filter methods are univariate and provide statistical test scores for each feature-outcome
combination. Examples in this category include ANOVA, Pearson’s correlation, information gain
(IG), etc. In addition, maximal-relevance and minimal-redundancy (mRMR), correlation-based FS
(CFS) and ReliefF [56,57] are some advanced filter methods which consider feature combinations.
For example, mRMR identifies features which are most relevant to the outcome but are not highly
correlated among themselves [56]. Wrapper methods try to search for the best feature combination
by training a particular predictive model repeatedly for various feature subsets and keep aside the
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best or worst performing subsets. Therefore, wrapper methods provide the best performing feature
combination on that predictive model. Recursive feature elimination (RFE) [58], boruta [59], and
jackstraw [60] are popular wrapper methods that repeatedly construct a model (e.g., random forest)
and remove features with low weights. Whereas Boruta selects features with critically large variable
importance measures in Random Forest, the jackstraw methods identify statistically significant features
with respect to latent variables. Wrapper methods can be computationally expensive on a large dataset.
Embedded methods are in between filter and wrapper methods in terms of computational complexity.
These are the algorithms with built-in feature selection methods, i.e., they perform feature selection as
a step toward predictive model building. Least absolute shrinkage and selection operator (LASSO) is a
popular embedded FS method due to its simplicity. It is essentially a linear regression method with an
L1-penalty (regularization) which shrinks many of the coefficients to zero. The features with non-zero
coefficients in LASSO are considered relevant variables. However, when the features are correlated,
LASSO tends to randomly pick only one feature. Various modifications are proposed to circumvent this
problem, including stability selection [61-63] and elastic net [64]. Stability selection performs random
subsampling and constructs many models on these bootstrap samples. Elastic net strikes the balance
between L1 and L2-regularized regression penalty terms, with L1-penality preferring a parsimonious
model and L2-penality retaining some correlated features such as co-expressed molecules.

Feature selection is generally employed in supervised ML-based integrative analysis (response or
group labels are known) including classification and regression applications. In multi-omics studies,
FS are commonly employed on each omics dataset prior to integration as datasets are high-dimensional
and all the variables in individual datasets may not be informative [65-67]. This reduction in the
number of variables as a pre-processing step attenuates noise prior to integration [67-70]. In [71],
supervised feature selection for multi-omics data was proposed for Cox regression analysis that
identified more true signature genes in cancer prognosis. In [70], an mRMR-based feature selection
method was developed to identify epigenetic markers from cancer datasets using gene expression
and methylation data. The markers identified through this approach were most relevant and least
redundant in prostate carcinoma and leukemia datasets. mRMR was also employed to identify key
features in predicting ovarian cancer grade or patient survival using concatenation of genomic, imaging,
and proteomic data [72]. In [73], various FS methods including CFS, IG, ReliefF, fast clustering-based
feature selection algorithm (FAST) and support vector machine based on RFE (RFE-SVM) were
employed to identify features with the highest classification accuracy, in the identification of breast
cancer sub-types using protein, gene expression and methylation data. Wrapper and embedded
FS methods are multivariate, i.e., they can extract relationships among different features and hence
particularly suited to multi-omics studies. RFE is one of the commonly used wrapper FS algorithms in
biomedicine [52,53,58,74] and has been recently applied to integrative analysis [33]. In [69], mixOmics R
package incorporated L1-penalized embedded FS into various supervised omics-integration methods to
enable molecular signature extraction. In addition, L1-penality based regularization was implemented
in unsupervised integrated clustering [28,75], as well as in the integrated predictive modelling
framework to allow for genetic feature selection [76].

Figure 1 shows the taxonomy of ML-based approaches for dimensionality reduction.

33



Genes 2019, 10, 87

[ Curse of Dimensionality ]

Feature Feature

Extraction (FE)

Selection (FS)

+ h 4

Linear N Non-Linear Filter R Wrapper N Embedded )
Methods Methods Methods Methods Methods

* PCA + -SNE * mRMR « RFE-SVM + LASSO

*« MCIA + Autoencoders * ReliefF * Boruta » Elastic Net

« Joint NMF + Representation * CFS + Jackstraw « Stability

+ MOFA L Learning \ Information Gain L L Selection

Figure 1. Machine learning (ML) with curse of dimensionality. ML-based dimensionality reduction (DR)
approaches, for tackling the curse of dimensionality, can be classified into feature extraction (FE) and
feature selection (FS). FE methods project data from a high-dimensional space to a lower dimensional
space, while FS methods identify a small relevant subset of original features in order to reduce the
dimensionality. Principal component analysis (PCA), multi-omics factor analysis (MOFA), multiple
co-inertia analysis (MCIA), and joint non-negative matrix factorization (NMF) are some examples
of FE methods applied in integrative analysis. These FE approaches assume linear relationships
in the dataset. Nonlinear FE methods also exist including t-SNE, autoencoders, representation
learning, etc. ML-based FS is broadly divided into filter, wrapper and embedded methods. Filter
methods such as maximal-relevance and minimal-redundancy (mRMR), correlation-based FS (FCS),
ReliefF and Information Gain are employed as a pre-processing step before training any model, while
wrapper methods such as recursive feature elimination-support vector machine (RFE-SVM) and Boruta
incorporate a predictive model to judge the importance of features. Embedded methods which include
least absolute shrinkage and selection operator (LASSO), Elastic Net, stability selection, etc., perform
feature selection as part of the model building process.

3. Heterogenous Data

One of the biggest challenges in multi-omics integrated analysis is the heterogeneity of
data. Reasons for such heterogeneity include, but are not limited to, substantially different
number of variables, mismatched distributions and scaling, diverse data modalities, i.e., continuous
signals, discrete counts, intervals, ordered and unordered categorical, pathways, etc. For example,
Glioblastoma Multiforme is a highly aggressive type of brain cancer whose prognostic prediction can be
improved by considering multiple data types together [77], i.e., clinical data, gene expression, miRNA
expression, DNA methylation, and copy number alterations (CNA). However, integration of these
diverse data types in a single predictive model is challenging due to heterogeneities mentioned above.
In the case of naive data integration, i.e., by concatenating features from different data sources, decision
trees (DT) may work well with mixture of continuous and categorical variables. The decision rules in
DT are well interpretable, unlike most nonlinear models which are generally considered black-box.
In addition, DT has the inherent mechanism of ranking features based on their importance in decision
making. However, decision trees are known to suffer from the overfitting problem; consequently, an
ensemble of DTs or random forest (RF) [78] is preferred over DT.

Penalized linear models with L1/L2 regularization also minimize the risk of overfitting and
perform feature selection. Therefore, they are also attractive for feature concatenation-based integrative
analysis. For example, elastic net [64] was employed for multi-omics analysis in drug-response
prediction from the collection cancer cell line encyclopedia (CCLE) [79] encompassing 36 tumor types
with diverse variables including gene expression, copy number, mutation values, etc. All of these
variables were assembled into a matrix and each feature went through z-score transformation across
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all cell lines. As discussed in the previous section, being a penalized linear regression model, elastic
net can perform FS-based dimensionality reduction. However, the final list of key predictors obtained
using this model (and tree-based approaches) can be dominated by the variables from a dataset with
the largest number of variables. One way to overcome this problem is to perform block-scaling [80],
i.e., scaling each variable by the inverse of the number of variables in the corresponding data block.
Moreover, it was pointed out in [81] that the results obtained by elastic net with simultaneous analysis
of various molecular data types in drug-response studies (containing both continuous and binary
variables) are usually dominated by gene expression data (continuous variables). Consequently,
the TANDEM method [81] employed a two-stage FS approach where the first stage uses all the
binary variables, referred to as upstream data, and the second stage uses continuous gene expression
variables or the downstream data. The model selected by TANDEM was more interpretable by
preferentially focusing on upstream features while maintaining predictive power comparable to other
integrative methods.

Simple feature concatenation-based integration is not feasible in many scenarios because different
heterogeneities may be present in datasets and are not known a priori. Multiple kernel learning
(MKL) [82] has become a popular approach to integrate data by calculating individual kernel matrices
for each data type and fusing them into a global model. While kernel matrix encodes similarity between
samples, different data sources may have different notions of similarity. Therefore, in MKL, data
from each source has a separate kernel matrix. MKL [77] was successfully applied to GBM prognosis
from different data types including, gene expression, CNA, DNA methylation, etc., employing the
simpleMKL algorithm [83]. Similarly, Speicher et al. [84] integrated DNA methylation, gene and
miRNA expression profiles using MKL, and later performed unsupervised clustering to discover
cancer sub-types. Bayesian multitask MKL, the top performing algorithm, introduced as a result of a
collaborative effort between the NCI and the dialogue on reverse engineering assessment and methods
(DREAM) project [25], was applied to integrate data from different profiling sources including, CNA,
DNA methylation, gene expression, reverse phase protein array (RPPA), etc., for predicting drug
sensitivity in breast cancer cell lines. It employed a Gaussian kernel for real-valued data and the
Jaccard similarity coefficient for categorical data. The Multitask MKL algorithm integrated different
views from different data types by constructing a global similarity matrix as a weighted sum of the
view-specific kernel matrices, where kernel weights reflect the relevance of each view.

Network-based approaches for integrative analysis can also leverage the concept of similarity
fusion. Similarity network fusion (SNF) framework aggregated mRNA expression, DNA methylation
and miRNA expression data for cancer patients, and used networks as a basis for integration [29]. SNF
fused individual similarity networks obtained from different data sources to obtain single similarity
network that captures complementary information. It employed scaled exponential similarity kernel
in which Euclidean distance was used for continuous variables, chi-squared distance for discrete
variables, and agreement-based measure for binary variables. Recently, GloNetDRP [85] was proposed,
which built a heterogenous network using cell-line similarity networks from omics data of cell lines,
and drug similarity network by exploiting chemical similarity between drugs. Probabilistic graphical
models (PGMs) [86] are also a good candidate to integrate mixed data types [87]. For example, in a
study of long-term body weight change in the general population [88], a multi-omics partial correlation
network was constructed by first employing weighted correlation network analysis (WGCNA) [89]
on metabolomics and transcriptomics data separately, and then integrating them using Gaussian
graphical model (GGM) [90]. PAthway Recognition Algorithm using Data Integration on Genomic
Models (PARADIGM) [91], a factor graph-based PGM approach that was proposed to integrate copy
number and gene expression with curated pathway information from NCI, provides patient-specific
inference of genetic pathway activities. PARADIGM inferred cellular activities helped classify patients
into clinically relevant sub-groups. In [92], sparse graphical models were proposed for accurate
group-wise expression quantitative trait loci (eQTL) mapping, by capturing the joint effect of a set
of single-nucleotide polymorphisms (SNPs) on a set of genes. This approach used two types of
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hidden variables, one extracted set associations between SNPs and genes, and the other extracted
confounders. Recently, a Network-based Integration of Multi-omics Data (NetICS) [93] method was
proposed to prioritize cancer genes by integrating heterogenous multi-omics data into a directed
functional interaction network. This interaction network expresses the directionality of the interactions,
which is essential as it can explain how aberration events in one gene or miRNA can lead to expression
changes of its interaction partners in the network. In addition, heterogenous information networks
(HINSs) [94,95] which capture multi-level interactions in heterogenous datasets can play important
roles in integrative analysis of biomedical data. For example, HeteroMed [96], extracted latent low
dimensional embeddings form EHR data (comprising raw text, numeric, categorical formats) for
robust medical diagnosis. This method can potentially be extended to the integrative analysis of EHR
with other data types.

Another prominent integrative analysis approach involves transforming data from heterogenous
sources to latent sub-space, e.g., using PCA or NMF, then performing joint latent analysis or integrative
clustering [44,45,97]. This approach allows joint modeling, with a combination of distributions, to
include different variable types like continuous (Gaussian), binary (Bernoulli) and count (Poisson) [23].
An integrative clustering method iCluster [28], based on latent variable modelling, was proposed
to identify clinically relevant disease sub-types in latent sub-space from two cancer datasets; breast
cancer and lung cancer [28] as well from Glioblastoma dataset [75]. Instead of finding clusters of tumor
sub-types for each dataset separately and later manually integrating the results, iCluster allowed
automated integrated cluster assignment and performed dimensionality reduction simultaneously.
This was achieved by leveraging the connection between PCA, latent variable modelling and
LASSO-type penalty. Recently, iCluster was upgraded to iCluster+ to incorporate diverse data
modalities including, binary, categorical and continuous values such that somatic mutation, CNA and
gene expression were integrated and distinct tumor sub-groups were identified [75]. To achieve this
iCluster+ assumed different distribution for different data types, e.g., Poisson, normal linear, logistic,
multilogit, etc. Recently, the Scluster method had been shown to outperform iCluster and SNF methods
in identifying cancer sub-types by jointly analyzing mRNA expression, miRNA expression, and DNA
methylation data [97]. A latent factor-based clustering method referred to as mixed variable restricted
Boltzmann machine (MV-RBM) [98] was proposed to aggregate data from highly heterogenous
sources including demographics, diagnosis, pathologies and treatments in diabetes mellitus studies.
With MV-RBM, the datasets were aggregated into latent profiles (homogenous representation), and
these profiles facilitated the extraction of patient sub-groups by performing unsupervised affinity
propagation (AP) clustering [99]. This approach has the potential to be extended to multi-omics
integrative analysis.

Deep learning approaches have been getting attention from biomedical researchers to integrate
heterogenous data. Specifically, in [100], omics data from multiple sources (gene expression, miRNA
expression, and DNA methylation) were combined with clinical data to perform integrated clustering
based on multimodal deep belief networks (DBN) [101]. Multimodal DBN is a network of stacked
RBMs that seamlessly handles continuous and categorical data, and helps in discovering disease
sub-types in cancer patients. In addition to integrative clustering, this method can identify signature
genes and miRNAs that may play key roles in the pathogenesis of different cancer subtypes. In [32], a
deep learning-based method was proposed to predict cancer prognosis using CNA, DNA methylation,
gene expression, and somatic mutation data. This method is an extension of Clustering and PageRank
(CPR) algorithm [102] to address the heterogeneity in multi-omics cancer datasets. In [103], three
separate deep neural networks (DNN) were trained on gene expression, copy number and clinical
data, respectively, for prognosis prediction of human breast cancer. Later, score level fusion was
performed to get final multimodal deep network. Hepatocellular carcinoma (HCC) is the most
prevalent type of liver cancer in the U.S. and to better understand HCC heterogeneity among
patients using gene expression, miRNA expression, DNA methylation and clinical information, a
deep learning framework was proposed [104]. This framework employed an autoencoder to perform
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nonlinear FE on the heterogenous data, which resulted in the aggregation of genes that share similar
pathways. Autoencoder transformations led to the discovery of two liver cancer sub-types with
significant differences in survival. Recently, a Deep Neural Network Synergy model with Autoencoders
(AuDNNSsynergy) was proposed that integrated multi-omics with chemical structure data to accurately
predict drug combinations in cancer therapy [105]. This model utilized three autoencoders for gene
expression, copy number and mutation data. A deep neural network combined the output of three
autoencoders with physicochemical properties of drugs, predicting synergy value of given pair-wise
drug combination against specific cancer cell lines. Figure 2 lists diverse ML-based approaches
available for integrative analysis from heterogenous data.
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Figure 2. Machine learning with heterogenous data. ML algorithms can handle heterogenous data
in different ways. For naive feature concatenation-based data integration, tree-based methods (e.g.,
decision trees and random forest), and penalized linear models (e.g., elastic net and LASSO) can
be employed. A two-stage elastic net-based approach like TANDEM is useful if data sources with
continuous features (e.g., gene expression) dominate the data sources with binary features (e.g.,
mutation). Multiple kernel learning (MKL), a robust integrative analysis approach with heterogenous
data, employs different kernels or similarity functions for data from different sources and fuses
them into a global matrix. Bayesian multitask MKL and simpleMKL are notable examples in this
category. Network fusion methods such as similarity network fusion (SNF) employ similarity network
for each data type and fuse heterogenous networks. PAthway Recognition Algorithm using Data
Integration on Genomic Models (PARADIGM) can incorporate different heterogenous data including
gene expression, copy number and curated pathways. Network-based Integration of Multi-omics
Data (NetICS) integrates multi-omics data on a directed functional interaction network. Heterogenous
information networks like HetroMed can handle raw text, numeric, and categorical data in electronic
health records (EHRs) for medical diagnosis. Integrative methods including iCluster+, Scluster and
mixed variable restricted Boltzmann machine (MV-RBM) first transform data from heterogenous
sources into latent sub-space, and then perform clustering on the latent profiles. Deep learning
models such as improved Clustering and PageRank (CPR), Deep Neural Network Synergy model with
Autoencoders (AuDNNsynergy), multimodal deep belief networks (DBN) and deep neural networks
(DNN) have been employed to perform integrative analysis of heterogenous data by learning complex
features through data transformations at multiple layers.

4. Missing Data

Data acquired from high-throughput omics platforms are known to have missing observations due
to various reasons, such as low coverage of next-generation sequencing, low sensitivity in protein and
peptide detection, and faltered metabolite measurement by tandem mass spectrometry, etc. [106,107].
The problem of missing data is exacerbated in multi-omics studies as there can be more samples
with missing values [108]. For example, a CLL study involving simultaneous analysis of DNA
methylation, somatic mutation and gene expression measurements against drug response can have up
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to 40% of the biological samples with some but not all omics data, i.e., missing values in 40% of the
samples [23]. Given that the biological samples are the same, it is statistically plausible to infer missing
values in one omics from observed values and in other omics by exploiting any existing correlations
found through complete cases. Complete case refers to the samples with measurements available on
all variables under consideration [106,107,109,110]. Generally, most modern missing data methods
focus on item non-response case, i.e., when data is missing on some variables for some biological
samples [106,111,112]. Other cases include data missing on all variables for some biological samples,
known as unit non-response, and data missing on a variable for all samples, known as latent variable.
Missing data methods should be able to maximally utilize the available information, properly estimate
the uncertainty in missing values and minimize bias [113].

Most statistical approaches rely on certain assumptions to tackle the missing data problem [111].
Suppose data is missing on variable Y while another variable X is always observed. The strongest
assumption is that data is missing completely at random (MCAR), meaning that the probability of
missingness on Y does not depend on X as well as on Y itself. For example, in a clinical study, it may
be difficult to obtain a particular test result because the test itself is costly, hence it is only available
for 30% of the samples. For the remaining 70%, the data is MCAR. Note that, if data is MCAR,
the complete data subsample is just a random sample from the original target sample. The MCAR
assumption is required by conventional methods, which is frequently violated in practical applications.
However, most modern approaches work well with a weaker assumption of data missing at random
(MAR). MAR assumes the probability of missingness on Y does not depend on Y, after controlling
for the observed variable X, i.e., once dependence on X is adjusted, the probability of missingness
on Y does not depend on Y itself. Again, consider the clinical study example in which cholesterol
levels are missing for many subjects and the probability of missingness depends on subject’s sex, i.e.,
females may be less likely to report cholesterol levels than males. However, within each gender type,
subjects with higher cholesterol levels are neither more nor less likely to report than subjects with
lower cholesterol levels. We can say that the cholesterol level variable has data missing at random
because, after adjusting for subjects” gender, the missingness of the cholesterol level variable does not
depend on whether the cholesterol level is high or not. MCAR is a special case of MAR, i.e., if data
is missing completely at random then they are also missing at random. If the data is not missing at
random (NMAR) then the missing data mechanism has to be modelled [113,114], i.e., simultaneous
estimation of the scientific model and missing data mechanism is required.

The simplest approach to deal with missing data is a complete case analysis also known as listwise
deletion. Listwise deletion means that the entire sample is excluded from analysis if data is missing on
any variable for that sample. However, it may result in substantial information loss if the missing data
percentage is high. In addition to complete case analysis, traditional single imputation methods are
also very popular due to their ease of implementation. Any approach which estimates or guesses the
missing values is called imputation. Missing values on a variable can be imputed by replacing it with
a mean or median of the variable over all the available samples. Imputation based on regression or
conditional mean imputation trains any type of regression model for the variable with missing data
based on observed values. Subsequently, the model is used to generate predicted values for the cases
with missing data. The k-nearest neighbors approach is also commonly employed for imputation of
missing values.

In multi-omics studies, imputation based on k-nearest neighbors for profiles and genes
expression [76], autocorrelation with cubic interpolation for spectral analysis of time series molecular
data [115], fully conditional specification (FCS) for metabolite concentrations [88], etc., were employed
for one or more data types separately, prior to integration [33]. In [107], stochastic gradient boosted
trees (GBT) was employed to predict protein abundance for undetected proteins by exploiting the
nonlinear correlations between available transcriptomics and proteomics data [107,116]. A multi-omics
imputation method that considers correlations across microRNA, mRNA and DNA methylation data,
and iteratively performs self-imputations (with features from same omics data) and cross-imputations
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(with features from different omics data) was implemented by employing an ensemble regression
framework [110]. In general, it is recommended that any deterministic imputation should be done
multiple times to account for the uncertainty in imputed values [113,117]. Consequently, various
multiple imputation (MI) methods have been proposed [118-121]. In MI, instead of imputing single
value for each missing data point, multiple values are imputed, resulting in multiple completed
datasets rather than just one [122]. The observed values are the same in each dataset, but imputed
values are slightly different. This difference is generally achieved by making random draws from
error distribution of the regression model and adding those random draws to the values predicted
by that regression model. Moreover, instead of explicitly assuming that regression parameters are
true parameters and not estimates, these parameters can be randomly drawn from their posterior
distribution for each dataset separately [113,118-120]. MI is an attractive approach for missing data
because of its sound statistical properties and robustness established by extensive simulations.

Recently, a MI-based approach, referred to as MI for multiple factor analysis (MI-MFA), was
proposed for multi-omics data integration [123]. MI-MFA used hot-deck imputation, which is a
non-parametric method commonly used in big surveys due to its scalability to a large number of
variables with missing values. To perform hot-deck imputation, the missing value on a variable is
replaced with an observed value from a similar sample or donor. Some other popular iterative MI
methods include Markov-chain Monte Carlo (MCMC) [118], fully conditional specification, also known
as, sequential generalized regression or multivariate imputation by chained equation (MICE) [119]
and AMELIA II [120]. MCMC is a general method used in Bayesian statistics for various applications.
MCMC assumes a comprehensive joint distribution of all variables with missing data, generally
applied under multivariate normal assumption. A key feature of MCMC is that imputed values are
never used as the basis for predicting other missing values, i.e., imputations are only performed based
on observed data. Given all assumptions are met and enough iterations are run, MCMC is guaranteed
to converge to the correct posterior distribution for the imputed values. However, due to multivariate
assumption and having one comprehensive model for all of the variables, MCMC may not be preferred
for datasets with both quantitative and categorical variables. MICE, also an iterative algorithm like
MCMC, is preferred in mixed-type datasets which builds a separate regression model for each variable
depending on its type. MICE can also incorporate methods for imputing data that are not normally
distributed [121]. Unlike MCMC, MICE does not have any theoretical proof of convergence and it can
also be computationally much more expensive than MCMC. There is a risk of overfitting associated
with any data imputation technique, but MI methods are generally less prone to this problem than
single imputation methods [124]. However, most software packages available for MI methods assume
data is MAR. When data is NMAR, extra care must be taken in date imputation to avoid overfitting
and the introduction of bias in downstream analyses. Various plausible models should be tried, e.g.,
MI with pattern—mixture models [125]. This should be accompanied by sensitivity analysis to verify
the consistency of the results across models.

In addition to MI methods for missing data, there are several ways to get maximum likelihood
estimates with missing data based on multivariate assumption, including expectation—-minimization
(EM) and direct maximization of the likelihood or full information maximum likelihood [114,123].
Maximum likelihood is a general method commonly employed for parameter estimations in linear
models. Compared to MI, maximum likelihood approaches generally have more rigorous mathematical
proofs related to parameter estimation with missing data. Maximum likelihood chooses as parameter
estimates those values which maximize the likelihood function, given the observation, i.e., maximize
the probability of observing the data. The main disadvantage of maximum likelihood is that it is
restricted to the type of model you want to estimate, e.g., linear or logistic regression. To obtain
maximum likelihood with missing data, you need software that is specifically designed for the model
you want to estimate, which is not always available, whereas MI methods are more general and can
be employed in different types of analyses. There are many software packages that automatically
generate multiple imputed datasets and combine results from multiple linear regression analyses in
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programming software R including, jomo, mice, Amelia II, etc. [120,126]. Notably, most missing data
approaches exist only for linear analysis.

For nonlinear analysis with missing data, a two-stage MI and learning workflow based on
Gaussian mixture model (GMM) and extreme learning machine (ELM) is available [127]. In order to
include nonlinearity in MICE imputation, a random forest-based MICE algorithm was proposed for
epidemiological study of angina patients [128]. This method can accommodate nonlinearities in the
datasets and provide better parameter estimates, confidence intervals under MAR assumption. Deep
learning techniques were recently applied to handle missing data in biomedical datasets [129-132].
The success of many of these data imputation methods can be contributed to autoencoder-based
nonlinear FE. In [129], a multilayer autoencoder with dropout-based imputation on EHR datasets for
amyotrophic lateral sclerosis (ALS) clinical trials was shown to outperform popular MI techniques
including MICE. In addition, a denoising autoencoder (DAE)-based MI (MIDA) was also proposed
very recently [130]. MIDA outperformed MICE algorithm on multiple datasets from various domains
including bioinformatics.

Autolmpute [132], inspired by recommender systems (collaborative filtering) in information
retrieval, is an autoencoder-based method for single cell RNA-seq (scRNA-seq) gene expression
imputation. This method learns the distribution of scRNA-seq data and imputes the dropout
(i.e., missing) gene expressions accordingly. In scRNA-seq analysis with missing data, matrix
factorization-based imputation techniques are also popular in replacing the dropout with non-zeros
values. For example, adaptively-thresholded low-rank approximation (ALRA) [133] computed a
low-rank approximation of original matrix with missing data using singular value decomposition
(SVD), followed by a thresholding to ensure that the biological zeros are preserved and technical zeros
were imputed. SVD-based imputation techniques have traditionally been used in biomedical datasets
due to their simplicity and superior performance rather than simple mean imputation [134]. Recently,
the Sparse Recovery (SparRec) framework [135], also inspired by a low-rank matrix factorization
model, was proposed for genetic data imputation for genome-wide association study (GWAS). It is a
flexible imputation method that can be applied to large-scale meta-analysis, even without a reference
panel. Sequencing To Imputation Through Constructing Haplotypes (STITCH) [136] is another notable
imputation technique for quick and cost-effective genotyping from sequence data without reference
panel. The imputation in STITCH is based on hidden Markov model (HMM) and EM algorithms.

In multi-omics and clinical big data analytics for precision medicine, missing data is a challenging
problem [106,117] and conventional methods are prone to adding biases. Specialized integrative
methods, such as ensemble regression imputation [110], can perform integrative imputation by
combing the estimates from individual omics data itself as well as other omics. Similarly, MOFA [23]
can leverage information from multiple omics layers to accurately impute missing data in integrative
analysis. Specifically, it discovers latent factors by means of multi-omics FE and uses those factors to
impute missing data. In addition, recently proposed Late Fusion Incomplete Multi-View Clustering
(LE-IMVC) [137] is also attractive for multi-omics studies with missing data, where each data source
with missing values can be treated as an incomplete view. LE-IMVC employs a kernel matrix for
each view, and performs imputation and clustering simultaneously. To this end, modern statistical
and machine learning methods such as MI, maximum likelihood, matrix factorization, autoencoders
and integrative imputation methods can play key roles in facilitating integration of datasets with
different missingness patterns. Figure 3 summarizes statistical and machine learning based solutions
for handling missing data.
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Figure 3. Machine learning with missing data. Conventional single imputation methods for handling
missing data include replacement with mean or mode values, hot-deck imputation, regression
imputation, k-nearest neighbor, etc. Maximum Likelihood approaches including those based on an
expectation-minimization (EM) algorithm and Direct Maximization have attractive statistical properties
compared to the conventional methods that often result in biased parameter estimates. Multiple
imputation (MI) methods like Markov-chain Monte Carlo (MCMC) and multivariate imputation by
chained equation (MICE) are also statistically robust, compared to conventional single imputation
methods, as they take into account the uncertainty in the imputed values. MI for multiple factor
analysis (MI-MFA) tackles the missing data problem in multi-omics analysis by performing MI
based on hot-deck imputation. MI for nonlinear analysis can be performed using random forest
(RF) and extreme learning machine (ELM). Adaptively-thresholded low-rank approximation (ALRA),
singular value decomposition (SVD)-impute and SparRec methods employ matrix factorization for data
imputation. In addition, imputation methods based on autoencoder and deep learning like denoising
autoencoder-based MI (MIDA), Autolmpute and multilayer autoencoder (AE) have been proposed
for high-dimensional datasets with missing data. Recently, integrative imputation methods such as
ensemble regression imputation, multi-omics factor analysis (MOFA) and Late Fusion Incomplete
Multi-View Clustering (LF-IMVC) are also available.

5. Rarity and Class Imbalance

In omics studies, ML-based models are often faced with the rarity in the target class or the
class imbalance problem [12,138]. For example, a machine learning classifier trained to predict the
location of enhancer in the genome suffers from the class imbalance problem, i.e., the dataset has many
more negative samples (non-enhancer) compared to positive samples (enhancer) [12,139]. Similarly,
ML-based contact map prediction in a protein structure dataset also suffers from the imbalance
problem because of the sparseness of the contacts, i.e., of all possible amino acid pairs in a protein,
only about 2% are in contact [140]. Prediction of post-translation modifications (PTM) sites in a
protein sequence also encounters the same problem as occurrence of PTM is a sparse event [141],
i.e., most of the amino acid residues are not modified. Other examples of the imbalanced problem
in omics studies include prediction of protein-DNA binding residues from primary sequences [142],
miRNAs identification [143], mutations incidence prediction [144], DNA methylation status/sites
prediction [145,146], PPI sites prediction [147,148], identification of antimicrobial peptides (AMP)
functional types [149], etc. In addition, the class imbalance problem in clinical datasets is prevalent
due to the intrinsic imbalance in case-control pairing. Experimentally, it is often challenging and
costly to generate data from a treatment group as compared to a control group [150,151]. Biomedical
datasets belonging to the study of rare diseases or events are often severely imbalanced and most ML
algorithms are not appropriate in such cases [152-154].

Despite the pervasiveness of imbalance in class distribution in real-world datasets, most ML
classifiers including SVM, REF, and artificial neural networks (ANN) assume balance class distribution.
This assumption means that the number of samples from each group or class is approximately the
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same (all categories are equally represented) [152,153]. Therefore, these classifiers overestimate the
majority class and potentially ignore the minority class completely. Ironically, in most cases, minority
class is the target class, e.g., a rare disease sub-type. A classifier trained on a rare disease dataset
with 10,000 samples from the control group and 100 samples from the disease group can achieve
99% accuracy by predicting everything belonging to the majority class, without even detecting rare
disease [155]. To tackle this problem, ML methods which are aware of the skewness in data or class
imbalance learning (CIL) methods have been proposed. Broadly, CIL methods are divided into three
categories; data sampling, algorithm modification and ensemble learning. Data sampling methods
are frequently employed in biomedical domains because of its simplicity [145,147,149,156-158]. Data
sampling approaches tackle class imbalance by balancing the dataset prior to applying the ML classifier.
The majority class can be undersampled by removing some of the samples randomly, i.e., random
undersampling (RUS) or informatively using one-sided selection [159]. New minority class samples can
be synthetically created using the synthetic minority oversampling technique (SMOTE) [154]. Recently,
a combination of undersampling and oversampling is becoming popular to tackle the imbalance
problem more effectively, by overcoming the limitations associated with individual data sampling
approach [145,151].

Algorithm modification approaches modify the machine learning algorithm, while still using
the original imbalanced dataset. For example, cost-sensitive learning methods apply higher
misclassification weight (cost) to minority class samples compared to majority class samples.
Cost-sensitive weighting are frequently incorporated in SVM, ANN and boosting learning theory
to tackle class imbalance [160-162]. Cost-sensitive learning approaches such as SVM_Weight [160]
and WeightedELM (WELM) [163] are generally much more efficient than data sampling approaches,
and hence attractive for big datasets [152]. However, they require theoretical understanding of the
algorithm, as opposed to randomly undersampling the majority class [164]. Lastly, ensemble learning
methods generally achieve better generalization performance than data sampling and cost-sensitive
CIL methods [148,163,165,166]. In various clinical scenarios, it is a common practice to seek opinions
of multiple doctors who are experts in the field. The final decision, for a particular treatment, is
thus made by consulting a committee of experts and combining their opinions. In the context of ML,
ensemble learning systems play a similar role [167,168]. The majority class is divided into several
subsets (with or without replacement), each individual classifier in the ensemble is trained on all the
minority class sample and a subset of majority class, and a final decision is based on aggregating the
predictions from individual classifiers [139,142,148,163,167]. EasyEnsemble, Balanced Cascade, and
ensemble WELM are some examples of ensemble methods for CIL [163,167]. It is important to mention
that ensemble learning is a broad category of ML approaches that is not limited to class imbalance
learning applications. For example, it has also been employed in integrated frameworks proposed for
heterogenous and missing data [25,110].

Although many CIL methods exist for single omics studies, researchers have recently started
developing imbalance-aware integrated omics analytical frameworks [69,169-172]. In [170], extensive
simulations based on different integration algorithms and evaluation measures reveal that composite
association network, relevance vector machine (RVM) and Ada-boost RVM were less influenced by class
imbalance compared to other graph-based or kernel-based integration algorithms. A cross-organism
PPI predive modelling was proposed based on tree-augmented naive Bayes (TAN) classifier (TAN
relaxes the string independence assumption of NB) that integrated microarray expression and gene
ontology (GO) values [173]. PPI data is highly imbalanced since the number of interacting proteins is
much smaller than non-interacting protein pairs. Specifically, the imbalance ratio (IR) of non-interacting
to interacting protein pairs was around 20. Dividing the imbalance dataset into 20 balanced datasets
with the same positive samples produced better results as compared to imbalanced datasets. In [73],
equal-class data sampling was performed to reduce the effects of class imbalance in identifying breast
cancer sub-types through the integration of protein, methylation and gene expression data.
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A PPI prediction method based on RF was proposed which not only considered affinity
purification and mass spectrometry (APMS) data, but also various other indirect features including
mRNA co-expression, gene ontologies and homologous protein [174]. This method, referred to as
Spotlite, avoided the extreme imbalance in data, first by uniformly sampling the unknown interactions
so that the IR is 10. Then, during the training of RF classifier, weights of 10 and 1 were assigned to
known and unknown interaction classes, respectively. For automatic function prediction (APF), a
cost-sensitive network integration approach unbalance-aware network integration and prediction
of protein functions (UNIPred) [175] was proposed to integrate biological networks from different
data sources. UNIPred addressed the imbalance between annotated and un-annotated proteins by
building a consensus network from multiple protein networks derived from different omics data.
MNet [176] builds a composite network by integrating multiple functional networks constructed from
different proteomic sources to get a comprehensive view of proteins and predict their functions. The
protein function prediction is an imbalanced classification problem and MNet addressed this problem
by employing weighted functional labels (label represents distinct protein function), putting more
empbhasis on the labels that have fewer member proteins. A cost-sensitive SVM approach was proposed
for diagnosing pancreatic cancer by integrating miRNA and mRNA expression data [177]. The dataset
was imbalanced as there were 104 pancreatic ductal adenocarcinoma (PDAC) tissues and 17 benign
pancreatic tissues. Therefore, class specific weights in SVM for cancer and normal samples were set to
1 and 6.117647 (104/17), respectively. Using their integrated approach, they were able to identify 705
multi-markers for 27 miRNAs and 289 genes as promising potential biomarkers for pancreatic cancer.
The generalized simultaneous component analysis (GSCA) model, with GDP penalty, was proposed
recently for the integrative analysis of gene expression and CNA [178]. This method was found to be
more robust against class imbalance problem in CNA compared to iCluster+ method. In [179], authors
showed that a simple ensemble learning method can work as well as state-of-the-art data integration
methods such as kernel fusion. The ensemble comprised learners which were trained on different
views of data and the predictions were combined using weighted majority voting (WMYV). The weight
was determined using F-score that considered the imbalance between gene classes.

Apart from data sampling, algorithm modification and ensemble learning based methods, some
integration frameworks which perform model tuning based on CIL-specific evaluation measures
were proposed recently. Traditional evaluation measures like overall accuracy are not appropriate
for CIL [172]. The accuracy of the majority class (specificity) and the accuracy of the minority
class (sensitivity) should be measured in a balanced way. Therefore, geometric mean (Gmean) of
sensitivity and specificity is a commonly used evaluation measure for CIL [153]. Similarly, area
under precision-recall curve (auPRC) provides more unbiased evaluation compared to the area under
receiver operating characteristic (auROC). Matthews correlation coefficient (MCC) and F-scores also
take into account imbalance in class sizes. F-score, which incorporates precision and recall, is a
popular evaluation metric in information retrieval community [170]. MCC [14,145] considers true
positives, true negatives, false positives and false negatives in its formula. It can have a value
between —1 and 1; 1 means perfect prediction, 0 means random prediction and —1 means total
disagreement. Balanced error rate (BER) calculates the average proportion of incorrectly classified
samples in each class, weighted by the number of samples in each class. To address the imbalance
problem in multi-omics predictive modelling, BER was incorporated as an evaluation measure for
parameter tuning, through cross-validation, in data integration analysis for biomarker discovery
using latent components (Diablo) [69,171]. Diablo is a multi-omics integrative framework which can
identify biomarker panels that discriminate between different disease phenotypes. It transforms each
omics dataset into latent components, and maximizes the correlations between these components and
phenotype of interest. A novel neural network architecture incorporating cross-correlation between
different modalities (e.g., gene expression and DNA methylation) was proposed in [172] to classify
breast cancer patients. This method, referred to as super-layered neural network architecture (SNN),
utilized MCC and F-scores to account for the imbalance in class sizes. In general, most methods and
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evaluation measures for CIL are proposed for binary class problems, i.e., there are only two categories
in the dataset. However, multi-omics data analysis and hypothesis generation may involve more
than two classes [66], with a varying degree of imbalance among them [172]. For example, instead
of normal vs. disease samples, there can be different types or levels of diseases [72,157,163,172,180].
In recent years, researchers have started focusing on multi-class imbalance problems [152,163,181].
Fuzzy pattern random forest (FPRF) [181] employed multi-class version of F-score and Gmean for
robust feature selection in the integrative analysis of an imbalanced Leukemia dataset.

Due to the inherent sparsity in various omics phenomena, rare events in diseases of interest
and case-control imbalance in clinical studies, it is anticipated that integrated omics studies will
present new challenges in predictive modelling and provide opportunities for researchers to propose
specialized CIL algorithms. For example, beyond simple data sampling approaches, biomedical
researchers can explore ensemble and algorithmic modification methods that generally have better
theoretical foundations, natural scalability to multi-class classification, and lower risks of overfitting
and information loss than data sampling approaches. Figure 4 shows categorization of class imbalance
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Figure 4. Machine learning with class imbalance. Class imbalance learning (CIL) methods are broadly
classified into three types: data sampling, cost-sensitive learning and ensemble methods. Data
sampling approaches balance the class distribution by either undersampling the majority class (e.g.,
random under sampling (RUS)), oversampling the minority class (e.g., synthetic minority oversampling
technique (SMOTE)), or a combination of both (hybrid). Algorithm modification methods modify
the learning algorithm generally by cost-sensitive weighting (e.g., Mnet, unbalance-aware network
integration and prediction of protein functions (UNIPred), Spotlite and support vector machine
(SVM)_weight). Cost-sensitive learning assigns a higher misclassification cost to minority class
samples compared to majority class samples. Ensemble learning approaches like ensemble with
weighted majority voting, EasyEnsemble, Balanced Cascade, and ensemble weighted extreme learning
machine (WELM) train multiple classifiers, and aggregate their results to get the final output. Many
existing integrative methods tackle imbalance by tuning models based on imbalance-aware evaluation
measures. For example, data integration analysis for biomarker discovery using latent components
(Diablo), super-layered neural network architecture (SNN), fuzzy pattern random forest (FPRF), and
weighted majority voting (WMV) employ one or more CIL-specific evaluation measures like F-score,
balanced error rate (BER), geometric mean (Gmean), Matthews correlation coefficient (MCC), area
under precision-recall curve (auPRC), etc., instead of classification accuracy, to account for the bias
introduced by imbalance in the dataset.

6. Big Data Scalability

Machine learning algorithms build data driven models whose performance generally gets
better with the availability of more data. However, machine learning from big data acquired via
multiple high-throughput omics platforms may raise scalability challenges. Implementation of
multi-omics analytical workflows based on ML methods is increasingly becoming infeasible on a
single computer. However, with the advancement in optimization algorithms for big data, online
ML, parallelization of ML algorithms, and cloud computing, large-scale analysis can be performed
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efficiently on high-dimensional omics datasets. For example, a feed-forward neural network with
multiple hidden layers can now be trained to accurately differentiate non-coding RNA types, i.e.,
circular RNAs (cirRNAs) from long non-coding RNAs (IncRNAs) in just a few hours on a single
computer while the MKL method would take four days [182]. This is possible due to the development
of computationally efficient training algorithms for neural networks [183-185]. Biomedical researchers
can achieve large-scale machine learning by leveraging the computational approaches discussed below,
as shown in Figure 5.
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Figure 5. Large-scale machine learning. ML-based integrative analysis can be performed at large-scale
by utilizing computationally efficient algorithms proposed for big data, online training algorithms,
distributed data processing and computing frameworks, or cloud computing-based solutions. Efficient
computational approaches tailored for big data include non-iterative neural networks (e.g., extreme
learning machine (ELM) and random vector functional link (RVFL)), scalable multiple kernel learning
(MKL) methods (e.g., easyMKL and dual-layer kernel ELM (DKELM)), convex optimization for big
data, etc. Online machine learning algorithms including online sequential extreme learning machine
(OS-ELM), incremental decremental support vector machine (IDSVM), and online deep learning are
attractive for big data applications as they incrementally update the model with small chunks of data,
instead of loading entire data in memory and learning all at once. In addition, ML algorithms can now
be massively parallelized over a cluster of CPUs or graphics processing units (GPUs) using Spark’s
MLIib, Apache Mahout, and Google’s TensorFlow programming frameworks. Cloud computing-based
bioinformatics platforms including Galaxy Cloud, MetaboAnalyst, XCMS online, and Omics pipe
are useful resources for multi-omics exploratory data analysis (EDA) and ML. Moreover, machine
learning-as-a-service is being offered by leading commercial cloud service providers like Amazon,
Google, Microsoft and IBM, which can be utilized for implementing ML-based analytical pipelines in
large-scale multi-omics studies.

Various ML methods including ANN, SVM and DT estimate model parameters through
iterative procedures; thus, they may not be easily scalable to big data applications. In recent years,
there have been many efforts to optimize algorithms for training ML models efficiently on large
datasets [183,184,186,187]. For example, non-iterative training algorithms are becoming popular
for big data applications [187]. ANN can be trained in a single step without iterative tuning of
hidden node parameters, as opposed to a back-propagation (BP) algorithm which is time-consuming,
converges slowly, and can be stuck at local minima [183]. Non-iterative solutions for ANN include
extreme learning machine (ELM) [188], random vector functional link (RVFL) [189,190], liquid state
machine [191], echo state network [192], etc. In most of these methods, weights connecting input
layer to hidden layer are randomly assigned, and output weights connecting hidden layer to output
layer are determined analytically. Therefore, computational complexity of non-iterative methods is
much lower than traditional BP methods for ANN. Furthermore, a highly parallel implementation of
ELM for big data has been proposed by employing large-scale optimization [186]. Specifically, convex
optimization, a key competent in training many ML and statistical models, is being reinvented for
scalability and parallelism in the wake of big data [193]. Recently, methods based on ELM theory
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have been employed in single omics studies [163,182,194-197] and may be extended to multi-omics for
efficient integrative analyses. Moreover, scalable MKL methods like dual-layer kernel extreme learning
machine (DKELM) [198] and easyMKL [199] can be employed in multi-omics integrative analysis
since MKL, a popular approach for integrating multiple omics datasets, can be computationally very
expensive for large datasets.

Online algorithms are also useful in big data applications, especially when it is computationally
infeasible to train models on the entire dataset all at once [200]. They are extremely popular in data
stream analytics where the training samples arrive over time, e.g., in online prediction of glucose
concentration in Type I diabetes [201]. Instead of retraining the model with the entire dataset every
time new samples are received, online learning methods incrementally update the earlier learnt model
only with the new samples. Previously learnt samples need not be stored in memory. On the other
hand, batch ML algorithms would perform intensive training iterations over the entire dataset every
time new samples arrive. In addition, batch learning requires complete datasets to be available in
the memory prior to training, which may not be feasible in large-scale applications. Recursive least
squares, a sequential (online) implementation of least squares method, is the building block of many
online learning algorithms. For example, online sequential extreme learning machine (OS-ELM) [202]
is a family of algorithms based on recursive least squares formulation for online training of single
hidden layer feedforward networks (SLFNs). OS-ELM based algorithms can learn data one sample at
a time or as chunks of samples, and have been employed for nonlinear classification and regression
applications. Stochastic gradient decent (SGD), a variant of BP algorithm, is also a popular online
optimization algorithm for training ML models [203]. SVM-based online learning algorithms such as
incremental decremental SVM (IDSVM) and cost-sensitive learning-based online SVM [204,205] were
proposed to address scalability issues in big data applications. Recently, multi-layer or deep online
learning methods were proposed for better representation learning with high-dimensional datasets.
These deep learning approaches are memory efficient as entire datasets need not be stored in memory,
making them attractive for large-scale multi-omics analysis [206,207]. Online learning algorithms are
now available for common ML tasks such as classification, regression, feature extraction, clustering,
deep learning, etc.

Institutions can also leverage distributed implementations of ML algorithms, on a cluster of
computers, when standalone commodity PCs lack the computational power required to learn from
big data. For example, the MapReduce [208,209] programming framework provides a distributed
platform to process big data in a fault tolerant way and can facilitate the scalability of ML algorithms
on large biomedical datasets. Simply put, distributed frameworks like MapReduce and its open-source
implementation Hadoop [210] divide the training data into many subsets such that each subset is
processed by a single machine or slave. Slave machines perform operations in parallel and results are
combined by a centralized master server. MapReduce is a good candidate for scaling those learning
algorithms which can be expressed as computing sums of function of training data. Recently, a
clustering algorithm KAymeans for MIxed LArge data (KAMILA) [211] was implemented on very
large dataset using Hadoop [212]. KAMILA can be useful in multi-omics analysis since it was proposed
for mixed-type data (combination of continuous and categorical data) clustering. From the original
MapReduce framework, various computational platforms have arisen which are suitable for large-scale
ML, such as Apache Spark [213]. These cluster computing platforms efficiently perform multiple
iterations of matrix inversions and multiplications which are associated with many ML algorithms.
Spark’s MLIib [214] is a suite of scalable algorithms, providing distributed implementations of popular
ML methods including regression models, PCA, k-means clustering, DT, Naive Bayes, SVM, etc.
Another open-source project that allows distributed implementation of ML algorithms for big data
is Apache Mahout [215]. Mahout was successfully employed for scalable feature selection, data
sampling and classification in protein structure prediction problems [140]. In addition, Google’s
TensorFlow programming model [216] allows parallelism of deep leaning approaches [31] such as
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convolutional neural networks (CNN) and long short-term memory (LSTM) algorithms, by distributed
implementation on many CPUs or graphics processing units (GPUs) for large-scale analysis.

If memory and computational resources required for integrative analysis is beyond what is
available in the cluster of a research lab or institution, cloud computing is an attractive option. Galaxy
Cloud [217,218] allows users to run a private Galaxy installation on Amazon Web Services (AWS)
elastic compute cloud (EC2) with the same functionalities as the main site using a virtual machine
model. Omics pipe [219], an open source Python framework for automating multi-omics data analysis,
is also available as Amazon virtual machine. XCMS online [220] is a cloud-based metabolomics
data processing platform for predictive pathway analysis and enables multi-omics data analysis
by integrating gene and protein data with metabolic pathways. MetaboAnalyst [221] is another
cloud-based platform for integrative metabolomics analysis. It incorporates modules for multi-omics
data integration through knowledge-based network analysis and various ML-based clustering, feature
selection and classification algorithms. In addition to cloud-based bioinformatics platforms, machine
learning-as-a-service is being offered by leading commercial cloud service providers like Amazon,
Google, Microsoft and IBM. ML-as-a-service makes implementation of complex ML algorithms on
large-scale datasets convenient for biomedical researchers [222]. It is apparent that the future of
multi-omics integrative analysis is reliant on ML algorithms, and cloud-based solutions provide
feasible options to implement them at large-scale.

7. Conclusions and Future Perspectives

High-throughput omics technologies are generating large volumes of multi-omics data at an
unprecedented rate. Simultaneous analysis of data obtained from different platforms, for the same
biological specimen, captures a holistic view of the complex biological interactions. For single-omics
studies, traditional machine learning (ML) algorithms have been very successful in automatically
identifying complex patterns from big data. However, multi-omics integrative analysis poses new
computational challenges and amplifies the ones associated with single-omics studies. In this paper,
we focused on five computational problems frequently encountered in integrative multi-omics data
analysis, including the curse of dimensionality, data heterogeneity, missing data, rarity and class
imbalance, and scalability issues. We reviewed some novel ML-based approaches recently applied to
integrative analysis of multi-omics datasets, under each of the five problem categories. Furthermore,
we also discussed state-of-the-art computational methods which have the potential to address these
problems in multi-omics analysis. This article will help bioinformatics researchers in exploring modern
computational approaches to tackle evolving challenges in integrative analysis. It also bridges the gap
between problems in multi-omics integrative analysis, and novel machine learning approaches from the
computer science community as potential solutions to these problems. Although this article addressed
some key issues in integrative data analysis, there are other challenges that require attention in future
studies. For example, specialized ML-based approaches need to be developed for multi-omics analysis
in personalized medicine where cohort size can be very small (e.g., 100 patients or less) [223]. Moreover,
additional machine learning frameworks which leverage prior knowledge of biological networks to
integrate omics datasets should be proposed as they are vital for robust biomarker modelling [224-226].
In the integrative analysis of omics data and electronic health records (EHR) [227], or observational
data and biomedical literature, sophisticated text mining and natural language processing approaches
may play key roles to simultaneously handle structured and unstructured data [228-230]. However, the
privacy and security of patient data should be ensured when developing ML approaches with EHRs
and multi-omics. Integrative studies must comply with standards like Health Insurance Portability and
Accountability Act (HIPPA) and any prediction or outcome from ML analysis must not compromise
patient confidentiality. Collaborative studies can greatly benefit from privacy-preserving machine
learning frameworks as institutions can jointly train accurate ML models without sharing sensitive
patient data [231,232]. Finally, there is a need to benchmark ML methods for multi-omics analysis as
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numerous methods are available to solve the same problem. Although there are ongoing efforts to
benchmark machine learning algorithms [233], benchmarking specific to multi-omics is required.
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Abstract: Advances in sequencing technologies have enabled the exploration of the genetic basis
for several clinical disorders by allowing identification of causal mutations in rare genetic diseases.
Sequencing technology has also facilitated genome-wide association studies to gather single nucleotide
polymorphisms in common diseases including cancer and diabetes. Sequencing has therefore become
common in the clinic for both prognostics and diagnostics. The success in follow-up steps, i.e., mapping
mutations to causal genes and therapeutic targets to further the development of novel therapies,
has nevertheless been very limited. This is because most mutations associated with diseases lie in
inter-genic regions including the so-called regulatory genome. Additionally, no genetic causes are
apparent for many diseases including neurodegenerative disorders. A complementary approach
is therefore gaining interest, namely to focus on epigenetic control of the disease to generate more
complete functional genomic maps. To this end, several recent studies have generated large-scale
epigenetic datasets in a disease context to form a link between genotype and phenotype. We focus
DNA methylation and important histone marks, where recent advances have been made thanks
to technology improvements, cost effectiveness, and large meta-scale epigenome consortia efforts.
We summarize recent studies unravelling the mechanistic understanding of epigenetic processes in
disease development and progression. Moreover, we show how methodology advancements enable
causal relationships to be established, and we pinpoint the most important issues to be addressed by
future research.

Keywords: epigenetics; chromatin modification; sequencing; regulatory genomics; disease variants

1. Introduction
1.1. Definition of Epigenetics

The human body consists of hundreds of different tissues and cell types, each with its characteristic
well-defined function. For example, myosin is produced by muscle cells while hemoglobin is produced
by red blood cells to facilitate cell type specific functions. Despite the diversity of functional molecules
in an individual cell type, nearly all cell types in an organism contain the same genetic information or
genome. To explain how this diversity of cell types can be achieved from a single cell or zygote, Conrad
Waddington proposed the concept of “epigenesis” in 1956, where pluripotent cells have the “potential”
to generate all other cell types of restricted potential, in which they gradually lose this “potential”
during differentiation, famously depicted by the Waddington landscape [1]. This so-called potential
was later associated with a physical phenomenon, the methylation of DNA [2], which is a methyl
group added to position 5 on the cytosine ring. In mammals, it is mainly 5—C—phosphate—G—3'
dinucleotide (CpG) that is subjected to methylation. Originally, methylation was found to act as
a silencing mark. Accordingly, in embryonic stem cells, the majority of promoters have un-methylated
DNA, and some of them become methylated during differentiation, assisting the acquisition of their
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final cell identity [3]. Over the years, many other epigenetic and transcription control mechanisms
responsible for establishing unique gene expression profiles characteristic for different cell and
tissue types during embryonic development have been studied in detail [4,5]. Gene regulatory
elements receive and execute transcriptional signals, dependent on their epigenetic state and chromatin
accessibility, controlling the expression of key developmental factors [6]. Chromatin dynamics are
regulated through two main mechanisms: methylation of DNA and post-translational modifications of
histone tails [7] (Figure 1). Histone modifications include, among others, phosphorylation, acetylation,
methylation, and ubiquitylation, with methylation at specific residues as one of the most important
posttranslational modifications regulating nuclear function, including transcriptional regulation,
epigenetic inheritance, and maintenance of genome integrity [8]. Recently, it has become evident that
histone modifications act together and a term “histone code” was coined to refer to a scheme of gene
control exhibited by the complex interactions of histone modifications [9,10]. Accordingly, specific
functions can be associated to a group of histone modifications, such as H3K27ac and H3K4mel, and are
associated with enhancer regions. Several reviews written over the years focus on state-of-the-art
studies providing structure function associations of histone modifications and successive layers of
chromatin structure in mammalian genomes [11-13].
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Figure 1. Diagrammatic representation of epigenetic mechanisms namely DNA methylation and
chromatin modifications [14].

1.2. Broadening the Definition of Epigenetics

Epigenetics are widely understood as any mechanism by which heritable changes in gene
expression occur without changing the DNA sequence, but the precise definition has evolved over
the years. Apart from the above mechanisms, the role of non-coding RNAs (ncRNAs) is becoming
evident in epigenetic control (reviewed in [15]). In short, ncRNAs are transcribed from the genome
sequence without producing a functional protein, are highly cell type specific and regulate epigenetic
patterning by establishing epigenetic modifications (DNA methylation and chromatin modifications).
For example, Xist is an ncRNA expressed from the X chromosome that silences the other X chromosome
in females. Non-coding RNAs can function as a guide or tethers, and may be the molecules of choice
for epigenetic regulation of DNA methylation [16]. Some authors therefore now include ncRNAs in
their definition of epigenetics. Nevertheless, we will stick to the classical definition and discuss only
DNA methylation and chromatin modifications in this review.
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1.3. Epigenetic Mechanisms Regulate Gene Expression Using Environmental Cues

Epigenetic mechanisms are thought to act as a memory of a cell and might be the key process by
which the environment interacts with the genome [17]. DNA methylation plays a crucial role during
early development including active demethylation of paternal genome before the first cleavage and
subsequent demethylation of maternal genome [18]. Furthermore, environmental factors also affect
gene expression via epigenetic mechanisms during embryonic development, which can manifest into
adulthood or even old age. Cigarette smoking is an environmental factor, associated with dose- and
time-dependent changes in the DNA methylation signature, which manifests in gene and protein
expression leading to an increased vulnerability to other forms of complex illnesses [19,20]. Harmful
environmental factors need not be substances. Trauma and stress also influence gene expression
through epigenetic mechanisms, and furthermore these epigenetic modifications can be passed over
the generations [21].

2. Chromatin Modifications and the Genome Organization

2.1. Chromatin’s Structure Defines Its Function

To understand epigenetic control mechanisms, we will begin with the structure of chromatin.
DNA is wrapped around the core histone proteins, forming a structure named nucleosome (two copies
of H2A, H2B, H3, H4, and 147 base pairs (bps) of DNA around them). This is further compacted,
with the assistance of assembly and packaging related proteins, to form a higher-order chromatin
structure [22], with two distinct chromatin states “euchromatin” and “heterochromatin” (Figure 1).
A more open chromatin environment, euchromatin, is where the majority of active genes localize, while
heterochromatin is characterized by a more compact environment where inactive genes, non-coding
DNA and repeat elements reside [8]. Heterochromatin can be further separated into two groups,
facultative and constitutive. Facultative heterochromatin includes regions that consist of genes that
are highly differentially expressed during development. Constitutive heterochromatin on the other
hand is gene poor, rich in repeat elements, mainly found in centromeres and telomeres, and silenced
indefinitely [23]. These chromatin states are marked by distinct epigenetic factors [24] (Figure 1),
and in euchromatin, the histone modification density correlates with the density of TF binding
sites [25]. However, neither euchromatin nor heterochromatin is marked uniformly with epigenetic
and transcriptional signals. Chromatin is further organized into so-called topologically associated
domains (TADs), (first described by Dixon et al. (2012) [26]), regions spanning several hundred
kilobases. Topologically associated domains are organized hierarchically and are highly enriched for
insulating factor CCCTC-binding factor (CTCF) binding and histone marks at the boundaries [27].
Intra-chromosomal interactions are particularly enriched within TADs and accordingly genes within
a TAD show highly correlated gene expression. The chromatin structure allows manifestation of
genetic information in a cellular context, and mutations in chromatin organization genes lead to
developmental pathologies [28,29]. Understanding of cell type specific 3D genome organization is
therefore highly valuable in a disease context [30,31], where by disruption of TADs can result in
chromatin interaction changes leading to mis-regulation of oncogenic or tumor suppressor genes [32].

2.2. Chromatin Structure is Dynamic and Marked by Histone Modifications

The chromatin structure is organized with the help of DNA sequence and epigenetic modifications,
including histone modifications, and a cross-talk between them is potentially facilitated through histone
amino (N)-terminal tails interacting with neighboring nucleosomes [33]. Of various histone modifications,
the most well-studied types are methylation, acetylation, phosphorylation, and ubiquitination [8].
Histone modifications influence chromatin mainly in two ways. The first mode of the modifications
affects directly the structure of the chromatin over a long or short distance by the recruitment of
DNA binding proteins and chromatin remodelers affecting nucleosome location. Hence, nucleosome
removal could open the chromatin and a possible transcription factor binding motif could be revealed,
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or otherwise, newly recruited nucleosomes could conceal a binding motif, hindering transcriptional
machinery recruitment at the locus [34]. The second mode of histone modification is carried out by three
sets of enzymes named “writer”, “reader”, and “eraser”, based on the function of each enzyme related to
each histone modification. For example, COMPASS family members maintain H3K4m3 modification,
while polycomb family members maintain H3K27me3 modification. Both activating (H3K4me3) and
repressing (H3K27me3) modifications are indeed present simultaneously at promoters enriched for
developmental genes and have a distinct sequence signature [35]. Histone modifications also work

jointly with DNA methylation, for repression of gene loci [36].
3. Epigenetics in Disease Context

3.1. Genome-Wide Studies Are Not Enough

Monogenic diseases are caused by the malfunctioning of only a single gene. For example, fragile
x syndrome is caused by epigenetic changes in the FMR1 gene. The silenced promoter of FMR1 in
disease shows heterochromatin markers, including DNA hypermethylation and histone deacetylation.
This can be treated by pharmacological reactivation of gene transcription, particularly through the
use of DNA demethylating agents or inhibitors of histone deacetylases [37]. Unfortunately, the vast
majority of common diseases are not caused by mutations in a single gene, but rather by a large
number of single nucleotide variations (SNPs) spread throughout the genome. These diseases are
therefore called complex diseases. Complex diseases including cancer, diabetes, and neurodegenerative
disorders such as Alzheimer’s and Parkinson’s disease are common and therefore form a global health
burden. Though a large number of genetic variants have been identified (and will be identified) that
increase the risk for these diseases, most explain only a small fraction of risk. Moreover, despite the
fact that over 1000 genetic loci are associated with susceptibility to common diseases in human [38],
only a handful of these loci have resulted in the identification of causal genes or pathways for potential
therapeutic applications [39]. It is becoming clear that understanding of only genetic variation will
not be sufficient to get a complete understanding of disease, and the role of epigenetic alterations
in gene regulation is becoming evident in many diseases, including cancer. Understanding how
a genotype influences human health and disease now requires characterization of the epigenome
as well. For example, copy number aberrations of genes responsible for writing, reading, and removing
H3K9 methylation were identified in medulloblastoma, demonstrating that defective control of the
histone code contributes to the pathogenesis of medulloblastoma [40]. Large studies have therefore
been designed to unravel epigenetic malfunctionalities in diverse diseases (Table 1). It is important
to note that another major challenge in interpreting genome-wide data in a clinical context is the
fact that the vast majority of genetic and epigenetic modifications lie in non-coding genomic regions,
particularly [41] where the disease-associated variants in enhancers explain a greater proportion of the
disease heritability [42].

Table 1. A collection of epigenetic studies (excluding DNA methylation) in disease context including
the data type, number of samples, disease type, and publication reference.

Num. Data Type Disease Available data # of Samples Reference
1 ATAC-seq 23 cancer types Genotype, ATAC-seq, RNA-seq 410 [43]
2 ChIP-seq Prostate cancer H3K27ac, H3K4me3, H3K27me3 100 GSE120738
3 ChIP-seq Breast cancer H3K4mel, TFs - [44]
4 ChIP-seq Adenocarcinoma H3K27ac, H3K4me3, H3K4mel 94 [45]
5 ChIP-seq Acute myeloid leukemia H3K9me3 108 [46]
6 ChIP-seq Glioma Multiple - [47]
7 ChIP-on-chip Acute myeloid leukemia H3 73 48]
8 ChIP-on-chip Acute promyelocytic leukemia H3, H3K9me3, H3K4me3 372 [49]
9 ChIP-seq Acute myeloid leukemia H3K9me2 16 [50]
10 ChIP-seq Hepatocarcinoma Multiple 5 [51]
ATAC-seq, . -
11 ChlP-seq Colorectal cancer Multiple 4 [52]
FAIRE-seq, . =
12 ChIP-seq Ovarian cancer H3K27ac, H3K4mel 5 [53]
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3.2. Largescale Epigenetic Studies in Cancer

3.2.1. Epigenetic Mechanisms Are Major Drivers in Cancer

The studies exploring mutational landscapes of cancer have highlighted frequent mutations in
genes encoding chromatin-associated proteins. The exploration of functional mechanisms behind these
mutations have improved our understanding of oncogenic mechanisms at different levels of chromatin
organization and regulation (reviewed in Valencia et al. (2019) [54]). DNA methylation remains by
far the most studied epigenetic mechanism in cancer where inactivation of tumor-suppressor genes
occurs as a consequence of hypermethylation of the gene promoters. Numerous studies have identified
a broad range of genes silenced by DNA methylation in different cancer types [55]. Importantly,
different cancer subtypes show characteristic DNA methylation signatures [56], which can be translated
in clinical medicine by using hypermethylated promoters as biomarkers. Human pluripotent stem
cells were found to have more hypermethylated DNA than fibroblast cells [57]. Similarly, oncogenesis
is thought to modify the cell state into a stem or progenitor epigenetic state. In cancer, mutations in key
transcription factors lead to changes in DNA methylation, such that the number of genes with gene
expression changes explained by DNA methylation are 10-fold higher than those explained by genetic
mutations. Over 75% of DNA hypermethylated genes are marked by polycomb repressor components
forming bivalent chromatin [58]. Wang et al. [59] pointed to one molecular mechanism to explain the
role of MLL3 mutations in cancer pathogenesis by examining changes in histone modification and
gene expression after depletion of Polycomb or COMPASS family members. Next, they proposed
a potential therapeutic strategy for cancers harboring COMPASS mutations which will allow resetting
the epigenetically (Polycomb/COMPASS) balanced state of gene expression.

3.2.2. Epigenetic Mechanisms in Hematopoietic Malignancies and Their Therapeutic Implications

Epigenetic changes in cancer are possibly reversible making them precious targets for cancer therapy.
Indeed, DNA methylation biomarkers with diagnostic, prognostic, and predictive power are already
in clinical trials or in a clinical setting [60]. DNA methyltransferase inhibitors have been approved for
the treatment of several hematopoietic malignancies, including myelodysplastic syndromes, chronic
myelomonocytic leukemia, and acute myelogenous leukemia (AML) [61]. Other epigenetic regulatory
mechanisms also play a critical role in the pathogenesis of AML. Epigenome-wide analyses of histone
H3 acetylation identified that epigenetic silencing of PRDX2, a growth suppressor, contributed to
the malignant phenotype in AML [48]. A combination of the H3K9me3 signature with established
clinical prognostic markers outperformed prognosis prediction based on clinical parameters alone in
AML [46]. Epigenetic control is systematically studied in other hematopoietic malignancies as well.
For example, the translocation t (15;17) forming a chimeric PML-RAR« transcription factor is the
initiating event of acute promyelocytic leukemia. PML-RAR« regulates key cancer related genes
and pathways by inducing a repressed chromatin at its target genes [49]. The PML-RAR« binding
universally led to histone deacetylase (HDAC) recruitment, loss of histone H3 acetylation, and increased
H3K9me3. Accordingly, several anticancer drugs acting as inhibitors of HDAC or bromodomain and
extra-terminal proteins (BET) were designed, tested, and in clinical trial. The use of these inhibitors is not
limited to hematopoietic malignancies. The HDAC inhibitors have been used in glioblastomas, where
mutations in tumor suppressors such as IDH1 induce epigenetic changes that drive the development
of gliomas [47]. Both HDAC and BET inhibitors work synergistically, primarily by suppressing
super-enhancers, the regulatory regions driving cancer phenotype through epigenetic reprogramming.
Indeed, adenocarcinoma super-enhancers classified according to their somatic alteration status display
distinct epigenetic, transcriptional and pathway enrichments and are enriched in genetic risk SNPs
associated with cancer predisposition [45].
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3.2.3. Epigenetic Targets for Cancer Therapy

Unfortunately, the current cancer drugs targeting epigenetic mechanisms are unspecific and
can often have serious side effects. Understanding other epigenetic changes in cancer is therefore
highly urgent to open up avenues for new therapies. The pharmaceutical industry is therefore focused
on identifying new compounds that target the reader, writer, and eraser mechanisms of histone
modifications. To this end, functional genomics studies in disease are gaining pace. A recent large
study generated ATAC-seq data, a proxy for mapping genome-wide open chromatin, in over 400
tumors across 23 cancer types from The Cancer Genome Atlas project [43]. The authors further
identified enhancer—promoter interactions in different cancer types by integrating it with RNA-seq
data and validated some of their predictions through CRISPR-Cas9 assays [43].

3.3. Largescale Epigenetic Studies in Other Diseases

The potential of epigenetic therapies for cancer treatment has influenced an increase in studies
investigating epigenetic control across a wide range of other diseases. Such efforts have generated
knowledge about the combinatorial effects of genetic mutations and epigenetics on the phenotype.
For example, the interaction of genetic variants and DNA methylation of the interleukin-4 receptor
gene increases the risk of asthma [62], and a genetic/epigenetic interaction in the reduced folate
carrier (RFC1) gene locus influence fetal predisposition to autism [63]. The study of epigenetic
mechanisms is highly relevant to some diseases. One of the major concerns of the aging world
population today are neurodegenerative disorders. There is no cure for many of the neuropathies and
the majority of the cases have no genetic basis. Many compounds function via epigenetic mechanisms,
and epidrugs (discussed above) developed for cancer treatment have been submitted to clinical
trials for the treatment of Alzheimer’s and Parkinson’s diseases [64]. For example, HDAC inhibitors
change the epigenetic state and expression of FXN in the neurodegenerative disease Friedreich ataxia,
making it highly effective in an in vitro disease model and also showing promising results in a patient
study [65]. In summary, understanding of epigenomic landscape of neurodegenerative and other
disorders will likely provide a possibility of early detection and intervention of pre-symptomatic
pathological events. This will allow development and implementation of novel strategies or treatments
to halt pathological progress. It is important to stress that it is the putative reversibility of epigenetic
aberrations that enables pharmacological interventions (epidrugs) as potential novel candidates for
successful treatments of multifactorial disorders [64].

4. Computational Approaches towards Epigenetic Data Analysis and Integration

4.1. Epigenetic Data Integration to Understand the “Epigenetic Code”

Several studies have connected specific combinations of histone modifications and DNA
methylation to the presence or absence of transcriptional activity and genomic functional elements.
For instance, H3K4me3 is highly enriched at the promoters of actively transcribed genes [25], H3K36me3
is found on the gene body of genes under transcription and high levels of H3K9me3 are associated with
facultative heterochromatin [23]. ChIP sequencing technology has allowed to generate a genome-wide
high-resolution map of the distribution and co-localization of histone marks. Large initiatives have
focused on unravelling the human epigenetic landscape. The Roadmap Epigenomics consortium has
collected 111 reference human epigenomes by profiling histone modification patterns, DNA accessibility,
DNA methylation, and RNA expression to define global maps of regulatory elements, regulatory
modules of coordinated activity, and their likely activators and repressors [41]. They further used
a method based on Hidden Markov Models (HMMs) to derive a minimal informative set of epigenetic
modifications for differentiating between cell types, tissues and development stages, as well as between
healthy and diseased cells. Increasingly, epigenetic data is generated in clinical settings, for a move
towards precision medicine. For example, Polak et al. [66] were able to pinpoint differences in the
mutational landscape between cancers based on their cell type of origin. In their work, a random
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forest based approach was used to predict mutation densities using 424 predictor variables. When gene
expression is available, together with DNA methylation levels and genotypes, one could construct
a network of interactions between these features, as introduced by Hou et al. [67]. Such an approach
is useful in prognosis of various cancers. This was also demonstrated by Zhu et al. [68], who tested
a kernel machine learning method on various omics data and clinical factors to predict prognosis in
14 cancer types. They found that the prognostic power of copy number and somatic mutations was
quite low compared to expression profiles. Moreover, they demonstrated that incorporating omics data
to predictions based on clinical variables can improve the results, as it may account for the absence of
unknown or unmeasured clinical features.

The Function of Epigenetic Modifications Still Remains Understudied

Sekhon et al. [69] integrated five different histone modification datasets to predict gene expression
levels with the use of deep neural networks. Hlady et al. [51] performed integrative analysis of multiple
epigenetic modifications in hepatic cancer to identify epigenetic driver loci, and further demonstrated
that two loci, COMT and FMO3, increase apoptosis and decrease cell viability in a liver-derived
cancer cell line. There is an effort to integrate more and more epigenetic phenomena in such studies,
but the large number of histone modifications possible at histone tails increases the combinatorial
complexity of the histone code. Furthermore, histone modifications or the histone status varies during
development [70]. The histone code is therefore complex and dynamic. More importantly, the causal
relationship between histone modifications and transcription activity has not yet been deciphered.
For example, H3K4mel is present at regulatory elements called enhancers, and is widely used to
predict enhancer elements [71]. However, whether H3K4mel controls or simply correlates with
enhancer activity and function has remained unclear. Recent studies suggest that H3K4mel might
fine-tune, rather than tightly control, enhancer activity and function [72].

4.2. Linking Epigenetic Mechanisms to Phenotypes: Epigenetic Epidemiology

4.2.1. More Data Equals More Challenges

The success of genome-wide association studies (GWAS) in identifying genetic loci associated with
common diseases have facilitated exploration of epigenetic loci associated with diseases, also known
as the epigenome-wide association studies (EWAS). Much focus in the EWAS-type analysis has been
on genome-wide DNA methylation studies, where a statistical framework is developed to identify
statistically significant association between the methylation level of each CpG site and the trait of
interest (reviewed in References [73,74]). However, as the technologies constantly improve to make
data from other epigenetic markers available, more and more researchers integrate this data, together
with genetic information to improve predictions and risk assessment [75-78]. The integration of data
from diverse sources is generally a daunting task. This challenge can be simplified with the help of new
experimental methods such as assay for transposase-accessible chromatin using sequencing (ATAC-seq)
allow for extracting information about different epigenetic phenomena from a single experiment [79].
Moreover, one can use existing databases that enable visualization of publicly available datasets,
sometimes also giving the possibility to overlay user’s data [80].

4.2.2. New Data Integration Opportunities

The most widely applied method in epigenetic epidemiology is to use a regression model to check
associations between variations in the data and the trait, as in standard epidemiology. This methodology is
used by various studies where principal components (PCs) [81], level of methylation [82,83], or association
score from EWAS analysis [84] are used to represent the variation. In order to facilitate the interpretation
of the results from such an analysis, one typically uses bioinformatics databases to search for possible
biological explanations for connections between the significant genomic regions and the trait of interest.
This can be done, for example, in the Cistrome database [85] that gathers published gene regulatory
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data, and enables interactive visual analysis. Another easy-to-use tool is HaploReg [86]. Although the
output is less intuitive, the database provides rich information about possible regulatory functions of
SNPs or genomic regions of interest. Having found a set of genes that contain differential epigenetic
modifications allows to perform a gene enrichment analysis, for example, with the help of LAGO (https://
go.princeton.edu/cgi-bin/LAGO), STRING [87] or Reactome [88]. Another interesting possibility is to infer
disease-gene connections by accounting for associations between different types of data, as implemented
in Hetionet [89]. This tool integrates around 30 different databases, creating a heterogeneous network
from information such as expression data, differential gene regulation, GWAS gene-trait associations,
drug banks, etc. The implementation of the database in a neo4j network service allows for a quick online
querying and visually appealing output that can inform on hidden connections between, for example,
influence of vitamin intake, genes, and a disease [90].

4.2.3. Epigenome-Wide Association Studies Analyses Are Informative Only about an Association and
Not Causality

In classical epidemiology Mendelian randomization (MR) is widely used to infer causality
whenever a standard randomized trial is impossible to perform. It is based on an assumption that
the underlying genotype is randomly assigned to each individual and is the cause of the measured
exposure (e.g., body mass index (BMI)), not vice versa. This method has been recently adapted to DNA
methylation data [91,92]. However, since DNA methylation can be both an inducer and the outcome of
the disease, MR with epigenetic data needs to be used with caution [93]. Nevertheless, the remarkably
simple idea behind the MR allows researchers to make very interesting claims, studying causality
between the epigenetic marks and a wide range of outcomes, from blood lipid levels [94] through
features such as physical aggression [95]. Used together with EWAS and GWAS analyses, MR gives us
the possibility to propose biomarker loci or targets for therapies for patients [82].

Many more methods have been developed recently to infer causality from epigenetic data.
For example, Howey et al. [96] fit a Bayesian network to the most significant findings from their
linear regression modeling to show the directions of influence between DNA methylation and blood
lipid levels. In another study, structural equation modeling (SEM) was used to search for the pathways
by which the genetic variants lead to a disease [97]. With this method, one can establish significant
interactions between all the different measurements (here, blood lipid levels, variant allele in the
chosen SNP, and methylation levels on the nearby CpGs) and importantly, the model predicts the
directionality of these interactions.

4.2.4. Causality Inference from Translational Studies

To test whether a change in the levels of epigenetic modifications is the cause or consequence of
a disease, one can conduct a translational study, following patients over a specific time. Such time-dependent
information can then be used to check whether a certain locus displays epigenetic changes, e.g.,, DNA
methylation, before or after a certain event; disease onset. Using this concept, a computational approach
GATE [98] has been implemented as a two-layer model, where one layer categorizes the spatial characteristics
of the chromatin, and the other layer focuses on transitions between different chromatin states. This allows to
create a model of transitions between different epigenetic states of a cell. Another recent method, ChromTime,
uses the raw signal from data generated by CHiP-seq and similar techniques to track temporal changes in the
peaks [99]. It not only detects diminishing or appearing peaks, but also asymmetrical changes in peak shapes.
The authors further demonstrate that ChromTime can be applied on ATAC-seq, CHiP-seq, and DNase-seq
data to infer on gene expression levels and TF binding.

4.3. Combining Levels of Epigenetic Marks within Genomic Regions

One of the important shortcomings of many methods is that they consider each epigenetic locus
independently of other loci to evaluate its significance for association with a certain trait. For example,
the majority of studies focus on methylation level of one CpG at a time even when they integrate it
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with several other data sources. Recent studies summarized methylation level within a region [81,83],
though this is not yet widely used despite the fact that changes in DNA methylation of only one CpG
site would likely not lead to big changes in TF binding affinity to this site, unless it is followed by
coordinated changes on neighboring CpG sites [100]. To this end, we developed a statistical framework
that integrates DNA methylation and genetic information to identify statistically significant interactions
between an SNP and methylation level within a group of neighboring CpGs [101]. The CpGs are
grouped based on whether the CpGs are assigned to a promoter, enhancer or a gene body; to facilitate
the downstream analysis for the biological interpretations.

The ultimate goal is to understand how genetic and epigenetic variations manifest in a phenotype
under certain environmental conditions (Figure 2). To this end, an ideal computational approach
would take into account the genotype and several epigenetic modifications at the same time, to explain
a phenotype or perhaps a proxy such as transcriptomic data. There is already a huge amount of
such data in the public domain, and tools and resources such as Omics Discovery Index web service
(https:/ /www.omicsdi.org/) to search for datasets. There is a need to take the advantage of this
enormous amount of data, test ideas, and to develop tools to maximize the information extraction
from the data.

From Genotype to phenotype — through chromatin
(a) (b) (©

Gene Environment interactions (Epi)gene Environment interactions Gene Environment interactions

Environmental Evigsmyeesil Environmental
factors faciom factors

s

Genetics — DNA sequence (SNP mutations)
Epigenetics — DNA methylation and histone modifications
Environmental factors — Nutrition, stress, toxins, pathogens ..

Figure 2. The figure depicts three likely scenarios where epigenetics might fit with from the
genotype to phenotype (gene expression) information flow: (a) epigenetic changes are downstream
of gene environment interactions and determine the phenotype; (b) genome sequence, environment,
and epigenetic modification work together to establish the phenotype; and (c) epigenetic landscape
and phenotype are both determined and established by gene—environment interactions. SNP: single
nucleotide variations.

5. Conclusions

5.1. Possible Scenarios Linking Epigenetics, Genetics, and Phenotype

Hundreds of human cell types have a unique gene expression signature despite sharing the
same genome sequence, largely due to tight control by epigenetic modifications of the non-coding
genome in a cell type specific manner. Epigenetic aberrations are thought to result in complex diseases
such as cancers. The vast majority of genetic variants found associated with common diseases by
genome-wide association studies are indeed located in the non-coding genome. Only in a very limited
number of cases such as for Crohn’s disease or rheumatoid arthritis, have these associations led to
the successful identification of causal genes with a potential of being therapeutic targets. However,
most disease-associated variants have no known biological context to disease, limiting their utility
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for prognosis or treatment. Human epidemiological studies provide evidence for prenatal and early
postnatal environmental factors influencing adult risk of developing various chronic diseases, such as
cancer, cardiovascular disease, diabetes, obesity, and behavioral disorders such as schizophrenia [17].
Some of these environmental factors can be linked directly to alterations of the epigenetic landscape
that affect gene regulation and finally the disease. Though the association is proven in many cases,
the chain of causality remains to be established. This leads to three possible scenarios of how epigenetic
mechanisms control genes and influence disease occurrence (Figure 2). The first scenario is where
environmental factors alter epigenetic modifications, which in turn alter the phenotype (Figure 2A).
This scenario is supported by mouse experiments where maternal methyl-donor supplementation
during pregnancy with folic acid, vitamin B12, choline, and betaine was shown to affect the phenotype
of the Avy (viable yellow agouti) offspring by directly altering the epigenome [102]. The second
possibility is that gene—environment interactions affect both epigenetic status and transcription read-out,
as their correlation does not imply causality (Figure 2B). Indeed, as most of the epigenetic modifications
are “lost” during the gametogenesis, this scenario is assumed to be true for many cases. Careful
research has nevertheless identified that at least some epigenetic modifications are passed on to the next
generation [103]. This leads to a third scenario where epigenetic modifications are not downstream of
but work together with gene environment interactions to result in a phenotype (Figure 2C). The relative
abundance of the three scenarios and the molecular mechanisms controlling them need to be understood.
Over the coming years, research should be focused not only on identifying epigenetic phenomena
affecting gene regulation to find epigenetic biomarkers for disease and environmental exposure, but also
on establishing the causal relationship between the three components (gene—environment, epigenetics,
and phenotype). Only by understanding causal relations can we develop new epigenetic interventions
to truly revolutionize medicine to move towards preventive medicine.

5.2. New Approaches and Technologies Must Aim on Establishing a Causal Link between Epigenetics and
Disease

The most important challenge in precision medicine is thus to link genetic variation within the
non-coding genome to candidate causal gene(s) or pathways for disease or other physiological phenotypes.
It is urgent not only to identify the regulatory regions but also the spatial organization of DNA to
understand how these regulatory regions interact to manifest into a phenotype. It is now accepted that
a large number of possible regulatory interactions are potentially pathogenic and might be unique to
tumors [43]. Although experimental techniques such as chromosome conformation capture (3C, 4C) [104]
combined with next generation sequencing (Hi-C) show a great promise [105,106], their time and cost
will limit the availability of comprehensive, experimentally verified 3D chromatin landscapes to a tiny
fraction of the hundreds of different human cell types in the foreseeable future. The development of
novel cost-effective high-throughput experimental methods is ongoing. Meanwhile, computational tools
to predict enhancer—promoter interactions will be essential to model the effects of non-coding genetic
variation on epigenetic modifications and downstream gene expression programs in human health and
disease. Though a regulatory region is associated to its proximal promoter, the integration of known
or putative enhancer promoter interactions in GWAS analysis has a potential to identify novel disease
associated genes and pathways [107]. This will require a significant leap beyond studies which have only
used correlations between epigenetic states of enhancers with promoter expression [108]. We have recently
performed preliminary work to establish causality using regulatory information [109]. More computational
approaches to systematically combine epigenetic information into causal network models are needed.

5.3. Epigenetic Studies and Therapies Have an Important Role in Shaping the Future of Medicine

Finally, segregating patients based on different factors into more coherent groups for better treatment
is the foundation of precision medicine, but many factors used to stratify patients have no known
functional mechanisms. For example, sexual differences in cancer risk and survival are well studied,
with males having an increased risk and poorer survival for most cancers [110]. The understanding
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of functional mechanisms behind these sex differences is gathering pace. For example, male breast
cancer is rare, poorly characterized and resistant to hormonal treatment. An integrative epigenetic and
transcriptomic analysis revealed a gender-selective and genomic location-specific hormone receptor
action associated with survival in male breast cancer [39]. Epigenetics therefore has a big role to play in
the foundations of the precision medicine.
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Abstract: Development and progression of many human diseases, such as systemic lupus
erythematosus (SLE), are hypothesized to result from interactions between genetic and environmental
factors. Current approaches to identify and evaluate interactions are limited, most often focusing on
main effects and two-way interactions. While higher order interactions associated with disease are
documented, they are difficult to detect since expanding the search space to all possible interactions of
p predictors means evaluating 27 — 1 terms. For example, data with 150 candidate predictors requires
considering over 10%° main effects and interactions. In this study, we present an analytical approach
involving selection of candidate single nucleotide polymorphisms (SNPs) and environmental and /or
clinical factors and use of Logic Forest to identify predictors of disease, including higher order
interactions, followed by confirmation of the association between those predictors and interactions
identified with disease outcome using logistic regression. We applied this approach to a study
investigating whether smoking and/or secondhand smoke exposure interacts with candidate SNPs
resulting in elevated risk of SLE. The approach identified both genetic and environmental risk factors,
with evidence suggesting potential interactions between exposure to secondhand smoke as a child
and genetic variation in the ITGAM gene associated with increased risk of SLE.

Keywords: candidate genes; gene—environment interactions; logic forest; systemic lupus erythematosus

1. Introduction

Many complex human diseases have been hypothesized to be the result of interactions between
genetic and environmental risk factors [1-9]. Research studies aimed at detecting potential gene
by environment (G XE) interactions as risk factors for human disease most often take one of two
approaches. The first approach, often applied in genome-wide association studies, evaluates all

Genes 2018, 9, 496; doi:10.3390/ genes9100496 75 www.mdpi.com/journal/genes



Genes 2018, 9, 496

two-way interactions. However, higher order interactions would not be detected using the this
approach since expanding the search space to include higher order interactions is prohibitively
laborious and computationally intensive, as evaluating all possible main effects and interactions
in a data set with p predictors would mean evaluating 2” — 1 terms [9,10]. A second approach is
to identify a set of candidate factors and/or interactions between these factors. The selection of the
“best” subset of genetic and environmental factors may be based on the marginal effects of each factor
passing a specific statistical significance threshold. In this case, only those factors that have a strong
marginal effect are selected for interaction screening, which will fail to identify those factors with
minimal marginal effects but strong interaction effects [2,8,9]. Alternatively, a subset of candidate
genetic and environmental factors may be selected a priori [10]. Selecting candidate single nucleotide
polymorphisms (SNPs) from genome wide data coupled with the environmental exposures provides
a sufficiently concise and targeted sample space to be thorough while computationally manageable.

Identification of candidate variants and exposures can be prioritized based on a priori
knowledge (e.g., reported association, biomedical data from databases, involvement in relevant
biological mechanisms or pathways) and can be facilitated through existing literature and databases.
If a suitable subset of candidate genes and environmental exposures can be identified, the analytical
approach to evaluate the possible interactions among these factors must be considered. Statistical
approaches such as case-only studies have been proposed to improve the efficiency of interaction
identification in such studies [11-13]. However, results from such designs may be misleading as
there is an assumption of independence between factors, which if violated can lead to erroneous
conclusions [12,14,15]. Additionally, such studies typically focus on two-way interactions as each
interaction is evaluated individually, which can be a limitation if seeking to identify interactions with
more than two terms [9,10,14,16]. For example, data with only 25 predictors still requires evaluating
over 107 terms (predictors) while data with 150 predictors would require evaluating over 10*° terms.
Machine learning methods such as artificial neural networks, support vector machines, and forest
approaches offer flexibility in modeling outcomes and can incorporate complex relationships such as
higher order interactions in modeling disease outcomes based on a large number of predictors [17-22].
However, analytic approaches should provide guidance for determining the subset of predictors and
predictor interactions from among a larger set that are most relevant for determining outcome. Both
random forest and Logic Forest provide quantitative importance measures for individual predictors
allowing them to be ranked according to their relative importance in determining an outcome [17,22].
However, predictor importance for each variable represents the marginal effect of a predictor and if
a set of predictors is associated with the outcome only through interactions effects, these marginal
importance measures may mask such interaction effects [23]. Unlike random forest, Logic Forest
also provides a quantitative measure of importance for interactions identified by the forest, which
is advantageous in complex disease settings where interactions among genetic and environmental
factors rather than main effects lead to disease. Despite the availability and usefulness of such tools,
they have been under utilized. An ideal approach would combine identification of candidate factors
based on prior knowledge with an efficient method for evaluating the space of possible interactions,
including higher order interactions, among these candidate factors.

In this paper, we present an analytic approach to evaluate main effects and interactions between
genetic and environmental factors associated with a disease outcome by coupling selection of relevant
genetic and environmental factors based on available literature and public databases with a machine
learning approach, Logic Forest. To illustrate this approach, we examine varying degrees of tobacco
smoke exposure as environmental factors, disease-associated SNPs as genetic factors, and their
individual and combined associations with the diagnosis of systemic lupus erythematosus (SLE)
in a cohort from the Sea Island Gullah population of South Carolina. The Gullah population is
a distinctive group of African Americans from the coastal Sea Islands of South Carolina and Georgia
who are descendants of enslaved Africans from the African Rice Coast [24]. On many plantations,
Africans vastly outnumbered Europeans, and the Gullah remained in the geographically isolated Sea
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Islands until recent times [24-26]. This population is unique in that they have low non-African genetic
admixture [25,26] and high ancestral homogeneity from their ancestral home, Sierra Leone [27-29],
offering a unique opportunity to study genetic and environmental disease risk factors. SLE is
a “prototype” autoimmune rheumatic disease with a well substantiated genetic etiology and many of
the SNPs identified as increasing the risk for SLE are in genes that enhance immune reactivity [30-38].
Additionally, given that the concordance rate between monozygotic twins only ranges between
24% and 35% [31], epigenetic or environmental factors are likely to have an important role in SLE
susceptibility. Known environmental triggers in SLE include ultraviolet (UV) light, silica dust, certain
infections, and smoking [39]. We apply our proposed approach to evaluate associations between risk
of SLE with genetic factors thought to amplify the inflammatory /immune response to tobacco smoke
exposure, which has been implicated in earlier research [40]. Results of the analysis found evidence of
both a main effect for smoke exposure and several interactions between genetic factors and smoke
exposure, demonstrating the applicability of our approach.

2. Materials and Methods

We present an analytical approach for identifying main effects and interactions between genetic
and environmental factors associated with a disease outcome. The approach involves selection of
candidate genetic and/or environmental factors, use of a machine learning algorithm to identify
important main effects and interactions in disease, followed by confirmation of the association between
interactions identified by the algorithm using logistic regression. To give this theoretical approach
context, it is applied to a study examining the association between SNPs and cigarette smoke exposure

with risk of developing SLE as shown in Figure 1.
129 GullahAA 125 Gullah AA
SLE cases healthy controls

Genotype ~200,000 SNPs using
Immunochip array [30]

—l—

‘ Literature search for Gene x Smoking Prioritize genes using CTD:

in rheumatic diseases 1. Relevance to tobacco smoke
2. SLE-tobacco inference network

Quality control of
selected SNPs

Identification of main effects and
interactions using Logic Forest

Odds ratio for all
interactions

Figure 1. Flowchart of the proposed analytic approach. AA: African American; SLE: Systemic lupus
erythematosus; CTD: Comparative Toxicogenomics Database, and SNP: Single nucleotide polymorphism.
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2.1. Study Subjects and Design

The Gullah population is a distinctive group of African Americans from the coastal Sea Islands of
South Carolina and Georgia they are descendants of enslaved Africans from the African Rice Coast [24]
and thus represent a unique population of African Americans, which, while not a genetic isolate,
is a more genetically homogeneous group relative to other African Americans [25-29,41]. Systemic
lupus erythematosus is also known to have a high disease load in African Americans relative to
Americans of European descent with an estimated prevalence in South Carolina of Z]W in African
American women; the prevalence in the Gullah is unknown, but it is believed to be similar [41].

The SLE study used a case control design, and subjects were selected from people participating
in the SLE in Gullah Health (SLEIGH) Study, which began recruitment in 2003 [42]. Systemic lupus
erythematosus cases fulfilled the 1997 American College of Rheumatology classification criteria for
“definite” SLE [43]. Race was self-reported and Gullah ancestry was self-identified as African American
(AA) Gullah from the Sea Island region of South Carolina, with all known grandparents being of
Gullah descent [42,44,45]. Unrelated non-SLE Gullah controls were also recruited by asking the cases
to “bring a friend” of the same gender and community to the screening visit. As described in our recent
manuscript [45], first-degree relatives were not considered for the analysis. These subjects received
a clinical examination by a rheumatologist to ensure they did not meet criteria for any inflammatory
rheumatologic disease before inclusion in the genetic studies as unaffected Gullah controls. This study
was approved by the Medical University of South Carolina Institutional Review Board (Pro#00021985,
approved 1/15/2013). All study participants provided written consent prior to study enrollment.

Genotypic data was available on 129 Gullah AA SLE cases and 125 AA unrelated controls
genotyped on the Immunochip genotyping array [45]. Tobacco smoke exposure, including both
secondhand smoke exposure as a child and current smoking status, was collected as a part of the
SLEIGH study protocol. At baseline, each subject was asked the following questions as part of an
in-person interview related to smoking: “Have you ever smoked cigarettes?” (If yes) “What was
the maximum daily amount (packs per day) smoked?” “What is the total number of years you
smoked?” “Are you currently smoking?” “If not, how many years since quitting?”. Participants were
also asked the following questions about secondhand smoke exposure: “Were you ever routinely
exposed to passive smoke as an adult (at work or in the home)?” “Were you ever exposed to passive
smoke as a child (before age 18)?”. From responses to these questions, four binary variables were
created for each case and control to indicate whether or not they (1) had ever been a smoker prior
to SLE diagnosis (for cases) or prior to their study visit (for controls), (2) were current smokers at
the time of SLE diagnosis (for cases) or at their baseline visit (for controls), (3) were ever regularly
exposed to secondhand smoke, and (4) were ever regularly exposed to secondhand smoke as a child
(<18 years old). Twenty participants were missing information on smoking and smoke exposure data
and were excluded for analysis.

2.2. Prioritization of SNPs

2.2.1. Gene Selection

We searched the literature for reports of interactions between genetic variation and tobacco
smoke in SLE and related rheumatic diseases. We identified genes with reported interactions
with tobacco smoke in SLE (NAT2) [40] and rheumatoid arthritis (HLA-DRBI shared epitope [46],
PTPN22 [47], and HMOX1 [48]). In addition to these candidate genes from the literature, we also
used information compiled in the Comparative Toxicogenomics Database (CTD) [49], a database that
contains curated scientific data describing relationships between chemicals/drugs, genes/proteins,
diseases, phenotypes, pathways, and interaction modules. We used the CTD to prioritize genes relevant
to tobacco smoke (APOE, NFE2L2, IL6 and CXCL8) and genes in an inference network between tobacco
smoke and SLE (IRF5, ITGAM and ITGAX; IL6 is also part of this network).
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2.2.2. Genotypic Dataset and Quality Control

Genotypic data on 129 Gullah AA SLE cases and 125 AA controls genotyped on the Immunochip
array was subject to the following quality control (QC) filters: exclusion of individuals with missing
genotypes, markers that did not statistically conform to Hardy-Weinberg Equilibrium (HWE)
(at p < 0.001) in controls, markers with missing data, and markers with minor allele frequency
(MAF) < 0.05. We used all the SNPs that met these QC thresholds in a region including +5 kb
around each gene. Most promoters are located within 1 kb of the transcription start site , a 5 kb
flanking region around a gene is a common and reasonable choice. For the four genes with previously
reported interactions with tobacco smoke (NAT2, HLA-DRB1, PTPN22 and HMOX), we searched
the 1000 Genomes and HapMap Projects for SNPs that tag the reported alleles (as defined by an
r-squared > 0.4 in the YRI (Yoruba in Ibadan, Nigeria) population) that might have been genotyped
and met QC in our dataset. Populations of African ancestry have decreased linkage disequilibrium
(LD) and a rapid decay of LD with distance genome-wide relative to populations of European ancestry
[45]. A threshold of r-squared > 0.4 is thus reasonable to identify proxy SNPs in our population. Finally,
the genotypic cluster plots for each SNP were visually inspected, and SNPs with poor or questionable
plots (without clear cluster separation) were excluded. After applying these QC filters, the following
were available for further analyses: NAT2 (4 SNPs), HLA-DRB1 (6 SNPs), APOE (2 SNPs), IL6 (17 SNPs),
CXCLS8 (1 SNP), IRF5 (20 SNPs), ITGAM (67 SNPs), and ITGAX (31 SNPs). Genotype frequencies for
each of the SNPs discussed in the manuscript are listed in Supplemental Table S1. Thirty participants
failed to meet quality control parameters and were excluded from the analysis.

2.3. Identification of Important Main Effects and Interactions

The primary goal of the SLE study was to identify potential gene x gene and gene X environment
interactions associated with risk of SLE among the Gullah population. We used a binary classification
algorithm to identify main effects and interactions among the candidate SNPs and smoke exposure for
classifying individuals according to SLE status.

2.3.1. Logic Forest

Logic Forest (LF) is a machine learning algorithm designed to identify interactions among binary
variables (for example, SNPs or smoking status) and quantify the importance of potential predictors
and predictor interactions identified in the forest in terms of correctly classifying disease status [22].
Logic Forest does not require a priori specification of interactions as it iteratively evaluates the space
of all possible interactions to identify the subset of interactions best able to classify disease status.
The LF algorithm and methods for calculating LF model misclassification rate and predictor interaction
importance have been previously described by [22] and detailed description of the algorithm can be
found there. For completeness, we provide details of the algorithm here. Given data W = {X,y}
where X = (x1,x,.. .,xp)/ is an n x p matrix of binary predictors and y = (y1,¥2,...,yx) is a
binary vector indicating disease status for i = 1,2,...,n subjects, an LF model consists of a collection
of B logic regression trees constructed from B bootstrap samples from data W and is denoted as
LF(W,B) = {T%,T?,...,TB} = {T"}. A single logic regression tree, T?, represents the predictors and
predictor interactions, referred to as “prime implicants”, identified for the b-th bootstrap sample as
being associated with having SLE. Trees in an LF model are allowed to grow up to maximum size
of eight leaves. Thus, trees in the forest can explore interactions of up to eight variables. Figure 2
shows an example logic regression tree with three prime implicants identified as associated with SLE:
(1) exposure to passive smoking as a child and having at least one copy of the major allele of rs2359661
(A) in ITGAM,; (2) having two copies of the minor allele of rs4632147 (T) in ITGAX; and (3) having
two copies of the minor allele of rs11761199 (G) in IRF5. When all predictor variables are categorical
(e.g., SNPs), an interaction between two variables occurs when specific conditions for both variables
must be met to confer additional risk of disease. For example, the first prime implicant for Figure 2
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suggests that additional risk for SLE from having at least one copy of the major allele of rs4632147
occurs only if the subject also had passive smoke exposure as a child. For tree Tj in the forest, subjects
are predicted to have disease if they meet any of the conditions defined by the tree.

OR

OR rs11761199

AND rs462147

PassiveSmkChild rs2359661

Figure 2. Example of a logic regression tree. White boxes represent the predictor, in the case of SNPs,
the recessive effect of the minor allele, and black boxes represent the complement of that predictor
(e.g., for a SNP, this means the dominant effect of the major allele). There are three independent
predictors/predictor interactions identified within the tree: (1) exposure to passive smoking as a child
and having at least one copy of the major allele of 12359661 (A) in ITGAM; (2) having two copies of
the minor allele of rs4632147 (T) in ITGAX; and (3) having two copies of the minor allele of rs11761199
(G) in IRF5.

Predictions for the LF model of B trees is determined by the proportion of trees that predict the
subject to have SLE. Each tree T? in the LF has an associated out-of-bag (OOB) dataset, OOB (Tb>,
comprised of those observations left out of the b-th bootstrap sample that can be used for an unbiased
estimate of the model’s prediction error (similar to internal bootstrap validation). The LF OOB

prediction for observation y; is determined by Equation (1) where I (Wz- € OOB (Tb >) is the indicator
of the i-th observations membership in OOB (Tb> .

Y b (Tb,x‘) I (W' € 00B (Tb)>
ooB (‘{Tb} ) = O, lfth 1 .éle I (zWi ! O,OB o s N
, otherwise.

Accordingly, the LF OOB misclassification rate is

MCOOB ({Tb}’ ,X) Z <yz OOB ({Tb} ))2 o)

Logic Forest also provides two quantitative measures of importance for all prime implicants
identified in the forest. The first measure evaluates the change in classification error for each tree in
the forest before and after permutation of the data. The misclassification rate for tree T? is

g (vi =08 (TP ® (W, € 00B (T
MCOOB (Tb,y,x) - 1( Z?_lg(wie)zjolg(ﬂ)) ( )) 3)

Let X() be the matrix of predictors with X ;j randomly permuted, where X; can be an individual
predictor or more generally a prime implicant. The importance of prime implicant X; is

Vh (X %bé [ MCOOB (Tb,y,X(j>) — MCOOB (Tb,y, x)} . @)
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Values for Equation (4) range from -1 to 1 with positive values indicating a positive association
between response y and prime implicant X;. The second measure of prime implicant importance is
the frequency with which the prime implicant occurs across trees in the forest and can be calculated
according to Equation (5)

B
VL (X)) = %;;11 <Xj € Tb) , ®)

where [ (X]- eTt ) is an indicator of prime implicant X;’s inclusion in tree Tb. Permutation p-values
for importance measures for each prime implicant X; can be calculated by randomly permuting the
outcome many times and fitting LF models to the data with the permuted outcome. The permutation
p-value is the proportion of times LF models fitted to data with the outcome permuted yield an
importance score for prime implicant X; as large as or larger than the importance score from the
original model.

For analysis of the SLE study, three LF models including 200 logic regression trees each were fit
using (1) the recessive effect of the minor allele for each SNP (i.e., subjects have two copies of the minor
allele); (2) the dominant effect of the minor allele for each SNP (i.e., subjects having at least one copy
of the minor allele); and (3) the genotypic model with two indicators for of the number of copies of
the minor allele (with 0 being a reference group). Demographic and environmental variables, namely
gender, passive smoke exposure as a child, passive smoke exposure as an adult, and smoking status as
an adult were also considered in each model. Permutation p-values for prime implicants identified
by LF models were calculated based on 500 LF models fitted to the data with SLE case-control status
randomly permuted. All analyses were conducted in R v. 3.2.5 using the LogicForest package [50,51].

2.3.2. Validation of Main Effects and Interactions

To further validate the association between prime implicants identified by the LF and response
y, logistic regression models were also constructed to estimate odds ratios associated with each risk
factor (i.e., main effects and interactions) identified using the LF approach.

3. Results

Twenty subjects were missing information on childhood and/or adult smoke exposure and
30 additional subjects had missing genotype information, thus the final study population included
204 participants with both genetic and environmental exposure data available, 100 of whom were
diagnosed with SLE. There was no notable difference in sex or case/control status between subjects
included in the final population compared to those who were excluded (data not shown). Participants
included in the study were on average four years older than participants that were excluded (p = 0.042).
A majority of the study participants were female (85.8%), consistent with the historical gender
distribution for the disease. Participant demographic characteristics for cases and unrelated controls
are shown in Table 1.

Table 1. Participant characteristics by SLE status.

Control SLE

Characteristic (1 = 104) (1 = 100) p-Value *
Age (Mean = Std Dev) 426 £11.7 38.6+134 0.022
Female (1, %) 87 (83.6) 88 (88.0) 0.491
Passive Smoke Exposure as a Child (1, %) 28 (26.9) 41 (41.0) 0.048
Passive Smoke Exposure as an Adult (11, %) 18 (17.3) 20 (20.0) 0.754
Ever Smoker (1, %) 24 (23.1) 24 (24.0) 1.000
Current Smoker (11, %) 13 (12.5) 17 (17.0) 0.478

* p-values reported in the table for the association with SLE status are based on a two-sample t-test for age
and chi-square test for all categorical variables.
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The results from the LF model that included the recessive effect of the minor allele and the
environmental and demographic variables are presented, since the gene—environment interactions
identified in this model showed the strongest relationship with SLE status. Logic Forest identified
426 unique prime implicants across the 200 trees in the model. Figure 3 is a plot of the number of trees
in the model that include each predictor by the normalized importance scores for each predictor. Points
shown in red represent those predictors that have the largest combination of predictor frequency and
importance score. As seen in Figure 3, the LF model identified passive smoke exposure as a child
as the most important predictor of SLE status (permutation p < 0.01). The SNPs rs11770589 (IRF5),
1rs58408589 (ITGAX), rs67898294 (ITGAX), rs11761199 (IRF5), and rs7190807 (ITGAM) had both a high
predictor importance score and occurred frequently in the LF model (permutation p < 0.01 for all).
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Figure 3. Predictor frequency by normalized predictor importance score for all predictors in the Logic
Forest (LF) model. Points highlighted in red represent the predictors that have the largest combination
of frequency and importance score.

Figure 4 shows the number of trees in the model that include each prime implicant by the
normalized importance scores for all prime implicants that were identified in the forest. The most
important and most frequent prime implicants identified in the forest were the main effects for
passive smoke exposure as a child (permutation p = 0.008) and the following SNPs: rs4632147
(ITGAX), rs11761199 (IRF5), rs11770589 (IRF5), and rs58408589 (ITGAX) (permutation p = 0.006,
0.01, 0.01, and 0.028, respectively).
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Figure 4. Interaction frequency by normalized interaction importance score for all interactions
identified in the LF model. Points highlighted in red represent the interactions that have the largest
combination of frequency and importance score. Points in green represent additional interaction terms
identified in the forest that include passive smoke exposure as a child with at least one SNP.

There are three additional interaction terms that were ranked as highly important and occurred
with some regularity that included SNPs in the ITGAM gene and passive smoke exposure as a child
(permutation p < 0.002 for all three interactions). The points in Figure 4 highlighted in red represent
the interactions that have the largest combination of frequency and importance score. Points in green
represent interaction terms identified in the forest that include passive smoke exposure as a child
with at least one SNP. Passive smoke exposure as a child occurred in 88 of the 200 trees, and in 27 of
those instances it occurred as a main effect. In the remaining 61 instances, it occurred as an interaction
with different SNPs. Although the main goal of this analysis is to identify potential gene-gene and
gene-environment interactions; for completeness, we also examined the ability of the LF model to
discriminate SLE cases from controls. The estimated prediction error rate for the final LF model is 43%,
with an area under the receiver operating characteristic (ROC) curve of 0.54 (ROC curve for the final
model is shown in Supplemental Figure S1).

The Logic Forest model identified four main effects and three interactions as the most important
predictors in for determining SLE status based on the importance score. Separate logistic regression
models for these seven predictors that had the largest importance scores from the LF model were fit by
including an indicator variable for whether or not the subject had the combination of exposures in the
interaction. Table 2 shows the odds ratios and associated p-values for these logistic regression models.
The LF model included indicators for the recessive effect of the minor allele; however, if the model
found an interaction with the complement of a recessive effect, this is equivalent to the interaction
term including at least one copy of the major allele (i.e., dominant effect of the major allele as noted in
the last three interactions shown in Table 2). These results generally agree with the results from the LF
model in that a majority of the prime implicants reported in the table have a statistically significant
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association with being SLE positive. The only exception is rs11770589 in the IRF5 gene, which has a
p-value from the logistic regression model of 0.18.

Table 2. Odds ratios with 95% confidence intervals (CI) from a series of logistic regression models.
The implied reference category for each odds ratio is the complement of the effect defined in the
first column.

Effect Gene  Odds Ratio (95% CI)  Unadjusted p-Value
Passive Smoke Exposure as Child (PSC) 1.88 (1.01, 3.55) 0.039
2 copies of the minor allele of rs4632147 (T) ITGAX 3.09 (1.09,10.1) 0.023
2 copies of the minor allele of rs58408589 (C) ITGAX 2.96 (1.23,7.75) 0.011
2 copies of the minor allele of rs11761199 (G) IRF5 7.69 (1.01, 352) 0.033
2 copies of the minor allele of rs11770589 (A) IRF5 1.65 (0.81, 3.42) 0.179
PSC & > 1 copy of the major allele of rs2359661 (A)  ITGAM 2.28 (1.18,4.48) 0.009
PSC & > 1 copy of the major allele of rs7190807 (G) ITGAM 246 (1.25,4.92) 0.005
PSC & > 1 copy of the major allele of rs6565227 (T)  ITGAM 2.37(1.23, 4.66) 0.006

4. Discussion

In this study, we demonstrate the utility of the proposed analytical approach to examine main
effects and interactions between 148 SNPs, gender, and four different types of smoke exposure in a
well-characterized cohort of Gullah African Americans participating in the SLEIGH study. There are
several key take-home points from the analysis of the SLE study. The LF model found strong
evidence for an association between SLE status and passive smoke exposure as a child. Logic forest
also consistently identified SNPs associated with SLE, including rs58408589, rs67898294, rs7190807,
rs4632147, rs11770589, and rs11761199 (in the IRF5, ITGAM, and ITGAX genes). Finally, although
passive smoke exposure as a child was clearly identified as a main effect (i.e., an independent risk
factor), there was also evidence to suggest that it may also be involved in weak to moderate interactions
with SNPs on the ITGAM gene (Table 2).

There are alternative statistical methods that one might consider for evaluating potential
gene x gene or gene X environment interactions for SLE. For example, logistic regression is a traditional
approach that could be used for such analyses. However, in order to evaluate the association between
SLE and all potential two-way interactions involving the 153 predictors in our data set, one would
need to examine (123) = 11, 628 logistic regression models; potential three-way interactions would
be even more cumbersome, as there would be almost 600,000 of them. Nonparametric decision tree
methods are easily interpretable and have flexibility to identify interactions among predictors [52,53].
However, decision tree models may be unstable, in that small changes in the data can result in
very different models [17,52,54,55]. Ensemble models, a collection of decision trees developed using
bootstrap samples or weighted samples of a dataset improve model stability and prediction accuracy
compared to single tree approaches [17,22,55-58]. Random forest (RF) and Logic Forest (LF) are
ensemble extensions of two decision tree methods [17,22]. Both methods also provide a quantitative
measure of the relative importance of predictors used in the model. However, LF has an additional
advantage over RF in that it also has a quantitative importance measure for interactions found in the
forest, rather than just individual predictors, making it ideal for identifying potential gene X gene and
gene X environment interactions in SLE development.

Our findings from the SLE study are not the first to demonstrate that certain SNPs may
interact with environmental exposures, such as smoking, in a way that increases the risk of
developing SLE. In a Japanese cohort, investigators found significant evidence of increased risk of SLE
associated with smoking, highest among those with polymorphisms in the NAT2 gene influencing
metabolic enzymes involved in reactive oxygen species production [40]. They identified a possible
gene x environment interaction, where smokers with the slow acetylator genotype of NAT2 were found
to have a higher risk of SLE (Odds Ratio = 6.44, 95% CI = 3.07-13.52) when compared to non-smokers
with the rapid acetylator genotype of NAT2. Our study was the first to find passive smoke exposure as
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a child (childhood exposure to secondhand smoke) to be a significant risk factor for SLE. The main
effect of childhood smoke exposure and the interactions between several SNPs on the ITGAM gene
were also significant in univariate logistic regression models of SLE status. Additionally, two SNPs on
the ITGAX gene and two SNPs on the IRF5 gene were also identified by the LF model, though only
three of the four SNPs were also significant in subsequent logistic regression models. Logic Forest
does not assume linearity in the logit link between predictors and outcome as logistic regression does,
which may explain the discrepancies in significance of rs11770589 on the ITGAX gene.

Given the exploratory nature of these analyses and the limited sample size of our study
population, replication would greatly improve the credibility of the associations identified in this
study. Unfortunately, there are no large scale genetic studies of SLE (or of any related autoimmune
disorder) in African Americans. Furthermore, the population selected for this study (Gullah African
Americans) was chosen for their documented high genetic homogeneity [42,45] and a replication
cohort of genetically similar individuals does not exist. Thus, the associations reported would need
to be validated in a future study. Additional potential limitations of this study include recall bias
and reliance on self-report to ascertain the individuals” smoking and exposure status. These findings
should be considered as part of the “discovery” or “hypothesis generating” process of understanding
whether and how smoke exposure may interact with certain genes and should not be construed as
definitive proof. A detailed understanding of the mechanisms underlying SLE pathogenesis will
continue to require large databases of study subjects, with well-characterized environmental exposures
and genetic information. Machine learning algorithms, such as Logic Forest, will inevitably be required
to help sort through the ever expanding combination of potential risk factors for disease.

5. Conclusions

This study illustrates the utility of a novel approach to identify interactions between genetic
and environmental risk factors for disease. The complexity of many human diseases, which likely
result from interactions between genetic and environmental factors, emphasizes the importance of
evaluating such interactions when examining disease etiology. The challenge for such studies is
the number of possible interactions in data with even a modest number of individual predictors.
For example, in the SLE study presented here, there are 21> — 1 = 5.7 x 10% possible interactions.
The approach presented here combines candidate gene selection and a machine learning method for
identification and quantification of the relative importance of interactions from among all possible
interactions in determining disease state, followed by confirmation of the association between those
predictors/interactions with disease outcome. Applying this approach to a study examining genetic
and environmental factors in SLE identified childhood exposure to secondhand smoke (PSC) as an
independent effect and interactions between PSC and SNPs on ITGAM, providing additional evidence
that SLE is a disease with a complex etiology and is the first study to find childhood exposure to
secondhand smoke to be a significant risk factor for SLE.

Supplementary Materials: The following are available online at http://www.mdpi.com /2073-4425/9/10/496/s1,
Figure S1: Receiver operating characteristic (ROC) curve for LF model of SLE status including the recessive effect
of the minor allele for all SNPS, gender, passive smoke exposure as a child and as an adult, and smoking status,
Table S1: Genotype frequencies for each of the SNPs discussed in the Results, Discussion, and Conclusions.
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Abstract: Many important exposure-response relationships, such as diet and weight, can be influenced
by intermediates, such as the gut microbiome. Understanding the role of these intermediates,
the mediators, is important in refining cause—effect theories and discovering additional medical
interventions (e.g., probiotics, prebiotics). Mediation analysis has been at the heart of behavioral
health research, rapidly gaining popularity with the biomedical sciences in the last decade. A specific
analytic challenge is being able to incorporate an entire ‘omics assay as a mediator. To address this
challenge, we propose a hypothesis testing framework for multivariate omnibus distance mediation
analysis (MODIMA). We use the power of energy statistics, such as partial distance correlation,
to allow for analysis of multivariate exposure-mediator-response triples. Our simulation results
demonstrate the favorable statistical properties of our approach relative to the available alternatives.
Finally, we demonstrate the application of the proposed methods in two previously published
microbiome datasets. Our framework adds a new tool to the toolbox of approaches to the integration
of ‘omics big data.

Keywords: multivariate analysis; multivariate causal mediation; distance correlation; direct effect;
indirect effect; causal inference

1. Introduction

Natural biological phenomena are often explained using statistical methods by means of isolating
the individual contexts of the phenomenon itself by establishing associations. For example, obesity,
among other factors, maybe related to changes in nutrition or stress. Although these explanations fail
to present a full account of the original observed phenomenon or capture the entirety of such complex
dynamics, they aid in our understanding of the cause—effect relationships, especially when a plausible
causal directionality can be established (e.g., increase in calorie consumption is plausibly causal to
weight gain, and not the other way around). The next level of complexity is afforded by incorporating
additional mechanisms arising from one or more other intermediate factors. In order to properly
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understand the mechanisms involved, we must understand the extent to which the exposure of interest
(calorie intake) directly affects an outcome (weight gain) and the extent to which the exposure indirectly
affects the outcome through intermediate factors (e.g., gut microbiome) [1-4]. Mediation analysis
is at the heart of many human behavior studies and is quickly gaining traction in the biomedical
research arena. With the explosion growth of the ‘omics, we see the development of new analysis and
tools that provide access to the integration of new knowledge and their applications as mediators of
treatment—effect relationships.

Microbiome research has advanced significantly in the last decade with the rise of computational
power, next-generation sequencing, and data analytics [5,6]. Naturally arising have been translational
investigations assessing the interplay of human-host microbial communities with various health
and diseases states [7-9], yet a notable challenge remains of understanding the extent to which and
mechanisms by which such interactions take place. Three notable interactions comprise this dynamic
relationship: first, the association between the environment and the host; second, the association
between the microbiome and host health or disease; and third, the association between the environment
and the microbiome. Because of this complexity, most available observational and experimental
study designs are unable to properly assess direct causal roles of the microbiome, and, in many
cases, alternative interpretations are plausible. We have seen a growing volume of evidence linking
microbiome and human disease such as that of obesity, inflammatory bowel disease, and colorectal
cancer [10,11]. Similarly, we have seen the relationship between environmental factors and the
microbiome [12]. Now, we believe it is important to assess how outside environmental factors or host
genetic characteristics affect the microbiome and, together with changes of microbiome composition,
influence human health and disease. Accordingly, there is an urgent need for statistical methods that
establish and isolate the mediation role of microbes in these complex dynamics.

Formal approaches to the assessment of mediation effects are primarily based on the work by
Baron and Kenny [13] using the product of coefficients. The single mediator model (SMM) describes
the relationship between exposure (X), response (Y), and a mediator (M), each of which are univariate
random variables. SMM posits that the relationship between those can be described in terms of linear
regressions, that capture the effect of the exposure on the response:

Y =i +yX+e, (1)
the effect of the exposure on the mediator:
M= i3 +aX+ ¢, ()
and the effect of both on the response:
Y = ip+y'X+BM+ ey 3

The downside of the conceptual simplicity of the linear regression-based framework is the lack of
a convenient test that could allow for the evaluation of the hypotheses about the presence of mediation
without the need to estimate the regression coefficients. To this end, Boca et al. [14] have provided a
mediation testing framework that casts the regression equations in terms of correlations and partial
correlations. They further propose a multiple testing framework for the evaluation of the hypotheses
related to the presence of multiple mediators. However, the omnibus mediation hypothesis still lacks
an acceptable simple solution. Furthermore, no current approach allows for multivariate exposures
and responses.

Microbiome analytics must take into account the multivariate nature of such data, and thus often
use distance-based approaches. In these cases, power and type I error characteristics are often directly
related to the chosen distance metric. Some proposed methods such as the work of Zhao et al. [15]
utilize multiple distance and dissimilarity metrics in a regression-based association testing framework.
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As another example, Tang et al. [6] assessed true association by using multiple distances simultaneously
and by allowing the flexible adjustment of confounders through computing residuals by regression of
the covariates on confounders. As we have seen in published reviews, limitations exist to proposed
methods upon the application to ‘omics data [16]. One such case is microbiome data, which are
high-dimensional, under-sampled, compositional, and over-dispersed; nonetheless, we would like to
be able to explain their role as a mediator just like a univariate mediator would. Within this article, we
present a framework for multivariate distance mediation analysis that is suitable to such data.

In this article, we present a framework for testing multivariate distance mediation to allow for
multivariate exposures, responses, and mediators. We build our test on the mediation approach
published by Boca et al. [14] and extend it to high-dimensional data via distance-based methodologies.
We present simulation results on the robustness and sensitivity of the proposed methods and further
make comparisons with other proposed approaches, such as permutation-based testing by Boca
et al. [14] and sample-wise distance matrices by Zhang et al. [17]. Lastly, we analyze two real
datasets to demonstrate the power of the proposed methods and their application to high-dimensional
microbiome data.

2. Materials and Methods

2.1. Availability and Implementation

Supplementary materials include reference implementation of the methods, simulation studies,
and application examples and are freely available at https://github.com/alekseyenko/MODIMA.

2.2. Testing for Mediation

The testing framework developed by Boca et al. [14] expresses the relationships captured in the
SMM linear regressions in terms of Pearson correlations. Thus, for a significant effect of the exposure
on the response to exist, the correlation between the two has to be non-zero, p(X, Y) > 0. Furthermore,
if the relationship is in fact mediated by M, both the correlation between exposure and the mediator
and the conditional correlation of the mediator and the response, given the exposure, should be
non-zero [13], p(X, M) > 0 and p(rM‘X, ry|X) > 0, respectively. Here, ryyx and ry|x denote the residuals
of the conditional correlation on regression of X on M and X on Y, respectively. These observations
give rise to the following test statistic:

S(X,M,Y) = p(X, M) p(rmx, rix), @

which is capable of capturing the presence of mediation in a hypothesis testing framework. Boca et
al. [14] evaluate the significance of this test statistic using permutation testing.

2.3. Motivation for Using Energy Statistics, dCor and pdCor

Székely and Rizzo introduced a series of non-parametric tests of covariance and correlation based
on energy statistics, the theoretical understanding that observations are governed by a statistical
potential “energy” which is zero if and only if the underlying statistical null hypothesis is true [18].
In this context, assessments and relationships of objects are made by first calculating corresponding
distances of objects and all hypothesis testing and inferences are made based on these initial distances.
This allows us to compare objects against each other using their relative distance and without any
knowledge about their size or other properties. In this publication, we make use of distance correlation,
dCor [19], and partial distance correlation, pdCor [20], which are available in R package energy [21].

The dCor test of multivariate independence, based on the corresponding sample distance
covariance dCov, has unique properties of measuring dependence. The definitions of these parallel
those of the classical Pearson product moment correlation p with the major difference being that the
centered product moment transformation is applied to the distance matrices rather than data vectors.
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This test of independence can be easily applied in arbitrary dimensions—not necessarily equal—and
without assumptions such as normality in the product-moment correlation counterpart. The dCov
and dCor have been shown to be more powerful than the parametric counterparts, especially for
nonlinear dependence structures. The practicality of applying a test and measure of dependence in
high dimensions that is not only easy to apply, but also easy and intuitive to interpret, is invaluable.

The Pearson partial correlation which measures the partial correlation in vectors x and y, controlling
for z, is described with the following partial correlation coefficient:

r(x,y;z) = r(x,y) = r(x,z)r(y, z) .

- \/l - 1'(9c,z)2 \/l —r(x, y)z,

where 7(x, y) is the Pearson sample correlation and x, y, and z are one-dimensional data vectors. As
an extension of the Pearson partial correlation and, in much the same way, Székely and Rizzo [20]
introduced partial distance correlation pdCor:

RY(X,Y) - R'(X,Z)R(Y, Z)
\/1 —R*(X,2)* \/1 —R(X,Y)?

where R*(X,Y), R*(X,Z), and R*(Y,Z) denote the bias corrected distance correlation. We suggest a
review of Szeékely and Rizzo, 2007 [22], 2013 [23], and 2014 [20] for a theoretical basis and deeper
understanding of the methods.

pdCor(X,Y;Z) =

, ©)

2.4. Multivariate Omnibus Distance Mediation Analysis Statistic

In modeling relationships between multivariate variables, we must be able to express the
relationship between those in terms similar to the Pearson correlations and partial correlations.
To do so, we use distance correlation and partial distance correlation statistics that are capable of
capturing relationships between vector-valued random variables. These statistics naturally flow
from the definition of Pearson correlation by allowing a distance metric (such as Euclidean distance,
or specialized distances for microbiome data) to serve as a sufficient statistic for the dependence
relationship within each random vector. Using these, the multivariate omnibus distance mediation
analysis (MODIMA) test statistic is as follows:

Sa(dx(X),dn(M),dy(Y)) = dCor(dx(X), dy(M))pdCor(dx(Y),du(M)|dy (X)), @)

where d(.) are appropriate pairwise distance matrices computed from the potentially multivariate
observations of exposure, X, mediator, M, and response, Y.

For a more intuitive understanding of the MODIMA method, consider the illustration in Figure 1.
Suppose our data consists of n observations for p, exposure, p,, mediator, and p, response variables.
The test statistic is obtained by first calculating the 1 X n distance matrices from just the exposure,
dx(X), just the mediator, dj(M), and just the response, dy(Y), variables. Note that the distance (or
dissimilarity) metric can potentially be different for each of these, as appropriate given the nature of
these variables. The distance matrices are then used to compute the distance correlation between the
exposure and mediator and the partial correlation between the mediator and the response, given the
exposure. These two quantities are then multiplied together to obtain the test statistic in Equation (7).
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n data points for p, exposure, p,, mediator, and p,, response variables
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Figure 1. Visual description of the multivariate omnibus distance mediation analysis (MODIMA) test
statistic. First, the n x n distance matrices are calculated from just the exposure, dx (X), just the mediator,
dp(M), and just the response, dy(Y), variables. Using these pairwise matrices, distance correlation
(dCor) of the exposure-mediator and partial distance correlation (pdCor) of mediator-response are
calculated using R package energy [21]. Product of dCor and pdCor results in MODIMA test statistic.

2.5. MODIMA Permutation Testing

The permutation testing approach for the MODIMA method follows that of Boca et al. [14].
In short, to obtain the empirical distribution of the MODIMA test statistic S; under the null hypothesis,
either the relationship between the exposure and mediator, or the conditional relationship between the
response and the mediator has to be scrambled. Thus, if the magnitude of the first is smaller than that
of the second, we permute the rows and columns of the dx(X) matrix and re-compute the test statistic
S4(i). Conversely, a permutation of the response distance matrix dx (Y) is performed to re-compute the
test statistic if its partial correlation with the mediator is greater. The p-value of the observed S is
obtained as the frequency with which the permuted statistic exceeds the observed in g permutations,
P= % Z?:l 1(S; < S4(i)). Permutation testing is generally a powerful way to simulate from the null
distribution; however, it is often hard to compute estimates of extremely small p-values. Although not
implemented in this version of MODIMA, solutions exist to estimate small p-values based on fitting
extreme value distributions to the permuted test statistics (e.g., application of Pareto distribution to
permutation testing [24]). Reference R language implementation of the MODIMA test is available at
https://github.com/Alekseyenko/MODIMA.

2.6. Empirical Evaluation Simulation

Single mediator. To assess statistical properties of the proposed omnibus method and compare it to
existing methods, we simulated data where exposure, X, mediator, M, and response, Y, were normally
distributed and followed the linear model formalism of the single mediator model (Figure 2). In this case,
we varied the parameters «, 8, and y as follows: o = {0, 0.25, 0.5, 0.75, 1}, p = {0, 0.25, 0.5, 0.75, 1},
and y = {0, 0.1, 0.25, 0.5}. Under each combination of parameters, we simulated datasets with a
varying number of observations, n = {20, 50, 100, 150, 200}. To ensure unit variance, the standard
deviations of X, M, and Y were fixed at SDx »;, y = 1. Euclidean distance was used to compute
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the distance matrices. For each combination of parameters, we generated 1000 datasets for a total of
250,000 datasets. Each dataset was analyzed using our reference implementation of MODIMA as well
as previous methods proposed by Sampson [14] and Chen [17].

M
p(X, M)a B P x, Ty x)

y
X > Y
p(X.,Y)

Figure 2. Linear model parameterization of the single mediator model showing exposure, X, mediator,

M, and response, Y, and the appropriate correlation and conditional correlation coefficients.

Multiple mediators. In the presence of multiple mediators, we simulated data where exposure, X,
and response, Y, were normally distributed and parameters «, , andy were set just as described in
the single mediator case. Here, the standard deviation of X, SDx = 1 and that of ¥, SDy = 0.01 and
Euclidean distances were computed on each. M was generated using a mixture of two datasets (saliva
and tonsils) from the National Institutes of Health (NIH) Human Microbiome Project [25] sourced
through R package HMP [26]. Saliva and tonsil datasets contain abundance data consisting of 21 taxa on
24 subjects. A proportion of used data from each dataset was determined as a function of a parameter
and sample size. The abundance data were used to compute the parameter of the Dirichlet-multinomial
distribution [27] modeling over-dispersion and used to generate random Dirichlet-multinomial samples
for each iteration of the simulation. Additionally, rooted trees with 21 tips were generated using R
package ape [28] and used for the computation of the tree-based weighted UniFrac [29] distance of the
mediator. Non-tree-based distance methods of Jensen-Shannon divergence (JSD) [30] and Bray were
computed for the mediators using R package phyloseq [31] and vegan [32], respectively. Parameters
a, B, and y were set in a similar fashion to the single mediator simulation and sample sizes were set to
n = {20, 50, 100, 150}.

Details of the simulation are available as a knitted R Markdown file at https://github.com/
Alekseyenko/MODIMA.

3. Results

3.1. Empirical Evaluation of MODIMA

The simulation results comprise the sample size-dependent type I error rates and power as a
fraction of rejected null hypotheses at a significance threshold of 0.05 for each test (Figures 3 and 4).
In the case of the single mediator, when the null hypothesis is true (Figure 3A), the association of
the exposure with the mediator (o« = 0) or the effect of the mediator on the response (f = 0) are
absent. A test properly controlling type I error rate is expected to have a fraction of rejections equal
to the nominal error rate (0.05, in this case). In the cases of § = 0, as « and vy are increased, we
observe inflation of this type I error rate for MODIMA; however, Sampson [14] and Chen [17] methods
often display overly conservative type I error rates. This effect has been previously described [20]
and is related to the fact that zero partial distance correlation does not correspond to conditional
independence. We review this point further in the Discussion section. Our proposed method is able to
demonstrate equal or better power (Figure 3B), often increasing power with the increase of mediating
effect. Within a few selected parameters, all three methods performed equally. Notably, the MedTest
method often shows the least power and does not perform well when the association of the mediator
with the exposure is much higher than the association of the mediator with the response (Figure 3B,
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a = 1 column). In fact, that appears to be the most challenging condition for all approaches to make
the necessary rejections. Our approach maintains the best performance in that instance.

Simulated single mediator, Euclidean distances
Gamma Method
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Figure 3. Simulated single mediator results. (A) Type I error and (B) power are estimated by simulation
at varying «, 8,7, and sample size. Comparison between the approach proposed here and other
methods proposed by Sampson (MultiMed) [14] and Chen (MedTest) [17] is portrayed using red, blue,
and green, respectively. Point shapes portray the various degrees of X — Y relationship, y. Horizontal
black lines in (A) represent 0.05 type I error rate commonly used.

In the case of the many mediators, we generated mixtures of microbiome data to be used as
mediators. We computed distance metrics of Bray, Jensen-Shannon divergence (JSD), and UniFrac
and present the latter here in Figure 4. The former two can be found as part of our supplementary
data. When the null hypothesis is true (Figure 4A), both MODIMA and MedTest are able to maintain
rejection rates. The behavior of MODIMA to inflate the rejection rates under § = 0 observed in the
single mediator case is no longer present in the multiple mediator simulation case. Power curves
(Figure 4B) show MODIMA excelling under certain scenarios, whereas MedTest displays better power
in others. Overall, MODIMA excels under scenarios where the X-Y relationship noted by y is smaller or,
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in other words, relatively small to no direct relationship between the exposure and outcome. Under the
smaller sample sizes, we often see MODIMA performing slightly better.

Simulated microbiome mixture, weighted UniFrac distances
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Figure 4. Simulated microbiome mixture results. (A) Type I error and (B) power are estimated by
simulation at varying «, 8,7, and sample size. Shown here are the weighted UniFrac [29] distance
metrics computed on microbiome matrices. Comparison between the approach proposed here and
Chen (MedTest) [17] is portrayed using red and green, respectively. Point shapes portray the various
degrees of X — Y relationship, y. Horizontal black lines in (A) represent 0.05 type I error rate commonly
used. Simulated microbiome mixture results using other distance measures are provided in Figures S1
and S2, Supplementary Materials.

We next demonstrate the application of MODIMA in two empirical examples.

3.2. Application Example 1: Microbiome-Mediated Responses to Subtherapeutic Antibiotic Treatment
Influencing Body Fat

Antibiotics have undoubtedly provided remarkable public health benefits in the last century.
During that same time span, we see a marked increase in antibiotics use across many populations [33].
Furthermore, we see the largest use of antibacterial agents within the animal farming industry, often
exclusively used in low doses to stimulate weight gain in farm animals [34]. There is growing concern
about the effects from the long-term use of antibiotics and antibacterial agents [35,36]. Here, we build
on the evidence on phenotypic and microbial responses to early-life subtherapeutic antibiotic treatment
using murine models expanding on findings presented by Cho et al. [37].

In each experiment, each study group (control or antibiotic(s)) was composed of ten mice. The mice
were allowed ad libitum access to food and water and fed standard laboratory chow. Beginning on day
28 of life, mice were given water or water containing one of the following antibiotic regimens: penicillin
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VK, vancomycin, penicillin VK plus vancomycin, and chlortetracycline, each at doses equivalent to 1 ug
antibiotic per g body weight. On a weekly basis, mice were weighed three times, food intake measured,
and fecal pellets collected. Dual energy X-ray absorptiometry (DEXA) and a 7 Tesla MRI system were
used to collect animal fat composition, lean body mass, percent body fat, and bone mineral density.
The IDEAL Dixon method based on chemical shift properties was used to separate MRI images into fat
and lean tissue [38]. Weight values were calculated from MRI-determined fat percent to validate scale
weight. The microbiome composition was established by sequencing of the v3 region of the 165 rRNA
gene using 454-FLX Titanium chemistry (Roche, Bradford, CT, USA). Preprocessing was performed
using QIIME pipeline [39] at a 97% similarity threshold.

A total of 96 samples (50 cecal and 46 fecal) across 50 animals were used for all downstream
analysis, resulting in 6547 unique taxa. Four antibiotic regimens of penicillin n = 10, vancomycin
n = 10, penicillin plus vancomycin n = 10, and chlortetracycline n = 10 were used for comparison with
controls 1 = 10. For each subject, cecal and fecal microbiome data were available.

Jensen—Shannon divergence (JSD) distances were computed for microbiota (mediator) and
Euclidean distances for antibiotic use (exposure) as well as percent fat (outcome). The mediating
relationship of the combined cecal and fecal microbial composition between antibiotic intake and
percent fat resulted in a MODIMA statistic of 0.002 (p = 0.99). Assessing the relationship of antibiotic
use and percent fat, we see a bias-corrected distance correlation (bcdCor) estimate of 0.173. Likewise,
we see dCor estimates of microbiota (cecal and fecal combined) to antibiotic use and percent fat to be
0.113 and 0.000. Partial distance correlation (pdCor) between the relationship of antibiotic use, percent
fat, and microbiota (cecal and fecal JSD) is calculated to be 0.021 (p = 0.46).

Fecal and cecal samples were also analyzed separately. We observe MODIMA statistics of 0.008
(p = 0.81) and 0.007 (p = 0.72) for fecal (Figure 5) and cecal (Figure S3, Supplementary Materials)
samples, respectively. Using the provided estimates, we see that variable pairs do show mild distance
correlation for both fecal and cecal (Additional Files 1 at https://github.com/alekseyenko/MODIMA).
Partial distance correlation computations remain negligible, 0.026 (p = 0.57) and 0.018 (p = 0.59) for
fecal and cecal samples, respectively, and these total effects can be seen in Figure 5C,D and Figure
S3C,D (Supplementary Materials at https://github.com/alekseyenko/MODIMA)).

Further antibiotic-specific comparisons are made between individual antibiotic therapies and
control. Most notable changes are seen when cecal and fecal are assessed individually with a specific
antibiotic treatment. An assessment of cecal and fecal microbiome mediation of the penicillin versus
control exposure results in MODIMA statistics of 0.019 (p = 0.28) and 0.034 (p = 0.09), respectively.
Partial distance correlations are observed to be 0.023 and 0.110 for cecal and fecal. For fecal specifically,
although mild correlation is present, and when assessed for mediation using MODIMA, effects are not
detectable. Comparison of chlortetracycline and control using samples from fecal microbiome revealed
the largest and only statistically significant mediation, with MODIMA statistic of 0.141 (p = 0.016).
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Figure 5. Empirical example 1, fecal microbiome-mediated responses to antibiotic treatment. (A) shows
association of antibiotic treatment and percent bodyfat; (B) shows percent body fat was significantly
increased in all antibiotic groups with the exception of vancomycin; p-values are noted by symbols **,
*, and ns corresponding to p < 0.01, < 0.05, and not significant, respectively; association of antibiotic
treatment with microbiota PCo axes 1 and 2, as well as Welch statistic and p-value suitable for analysis
of microbiome data, W; [40]; (C) and (D) show, respectively, the lack of association between microbiota
and body fat using PCo axes 1 and 2, removing any effect of antibiotic treatment.

Data and analysis for this application are available at https://github.com/Alekseyenko/MODIMA.

3.3. Application Example 2: Microbiome-Mediated Responses to Dietary Fiber Intake Influencing Body Mass
Index (BMI)

A growing body of evidence suggests that diet influences the compositional diversity of gut
bacteria [8]. We also see an association between changes in gut bacteria diversity and human health,
such as obesity [41]. Through a study of diet and 16S ribosomal DNA (rDNA) fecal samples, Wu et al.
(2011) reported that long-term diet was strongly associated with enterotype clustering [42]; here, we
briefly describe their methods. Healthy human subjects (1n = 98) were enrolled in a cross-sectional
study where long-term diet information was collected using self-reported questionnaires assessing
usual dietary composition over the preceding year. Diet information was subsequently converted to a
list of 214 nutrient categories and their corresponding intake amounts. Stool samples were collected,
frozen immediately (-80 °C), processed using MoBio PowerSoil kits, amplified V1-V2 region primers
targeting bacterial 16S genes, and sequenced using 454/Roche. Sequences were denoised using QIIME
pipeline [39] following default settings. Other demographic information including body mass index
(BMI) was collected upon enrollment. Weighted and unweighted UniFrac distances for microbial
communities were calculated and used for downstream analyses.
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Wau et al. [42] previously reported a strong inverse association between body fat intake and
microbial taxa (Spearman p = —0.68, p < 0.0001). These same microbial taxa were observed to be
associated with BMI (PERMANOVA, unweighted p = 0.001, weighted p = 0.145). Here, we assessed
the influence of dietary fiber intake on BMI mediated by microbiota. The correlation of percent
fiber intake (exposure) and BMI (response) is small yet significant (Figure 6A), and fiber intake and
microbiota (mediator) is small and approaching statistical significance (Figure 6B). Mediator-response
relationships (total effects) are modeled in Figure 6C,D using first and second principal coordinates and
residuals of exposure-response. Zhang et al. [17] applied their omnibus mediation method MedTest
using multiple distance metrics to assess this mediation and showed a permutation-based p-value of
0.0309. Furthermore, mediation by individual taxa at different ranks was assessed. Zhang et al. [17]
observed three ranks to be significant: family Lachnospiraceae (p = 0.0129), genus Lachnospira of
the family Lachnospiraceae (p = 0.0430), and family Ruminococcaceae (p = 0.0468). We applied our
proposed distance mediation analysis methods to this dataset and present our findings.

Exposure «» Response Exposure «» Mediator
dietary fiber intake «» body mass index dietary fiber intake «» Microbiome PCo 1

R=-0231, p=0022 . R=-0.18, p=0075

40 . L.

0.0

PCo 1 (11.4% variability)

0.005 0.010 0.015 0.020 0.025 0.005 0.010 0.015 0.020 0.025
% calorie from fiber % calorie from fiber

(Mediator «» Response) | Exposure (Mediator «» Response) | Exposure
(microbiome «» body mass index) | dietary fiber intake (microbiome «» body mass index) | dietary fiber intake

R=0.125, p=0.221 . R =0.136, p=0.183

0.0

PCo 1(10.4% variability

)
~
PCo 2 (7.9% variability

0.4

30 30
resid BMI ~ fiber resid BMI ~ fiber

Figure 6. Empirical example 2, microbiome-mediated responses of body mass index (BMI) to dietary
fiber intake. (A) shows association of fiber intake with outcome of BMI; (B) shows association of fiber
intake with microbiota PCo axis 1, PCo axis 2 results can be seen in Figure 54, Supplementary Materials;
(C and D) demonstrate, respectively, the lack of association between microbiota and BMI using PCo
axes 1 and 2, removing any effect of dietary fiber intake. Pearson correlation coefficients and p-values
are shown in red.

Distance metrics of Jensen-Shannon divergence (JSD), Bray—Curtis, Jaccard, and UniFrac
(unweighted, weighted, and generalized) were computed using distance function in R package
phyloseq (version 1.26.1) [31], vegdist function in R package vegan (version 2.5.4) [32], and GUniFrac
function in R package GUniFrac (version 1.1) [43], respectively, following similar methodologies
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as presented by Zhang et al. [17]. Distance correlation (dCor) estimates between pairs of exposure,
mediator, and response showed no evidence of correlation using any of the distance metrics (data not
presented here but are available as Additional Files 2 at https://github.com/Alekseyenko/MODIMA).
In a likewise fashion, the partial distance correlation estimate between fiber intake, microbiome, and
BMI was not indicative of any correlation (estimate using JSD applied to mediator = 0.029, p = 0.04).
MODIMA was applied using various distance metrics. Table 1 summarizes the results for MODIMA
p-values for each distance metric as well as Bonferroni-adjusted test. As shown, we see that only the
Jaccard metric shows a significant p-value at « of 0.05, with Bray—Curtis and unweighted UniFrac
distances approaching the significance threshold. We further observe MODIMA resulting in lower
p-values than MedTest in single-distance mediation tests with the exception of Jaccard.

Table 1. MODIMA and MedTest p-values for various distance metrics.

Jensen-Shannon Bray—Curtis Jaccard UniFrac WUniFrac  GUniFrac  Bonferroni
MODIMA 0.1074 0.0974 0.0321 0.0706 04645 02543 0.1926
p-value
MedTest [17] 05423 05568 0.0082 0.0901 0.7859 05768 0.0492
p-value

To further assess potentially mediating taxa within this dataset, we sliced the released phylogenetic
rooted tree using library phytools (version 0.6.60) [44], beginning at root (slice 0.01) to the height of 1 at
0.01 increments. Each of these slices resulted in subtree clades that were used for comparison testing.
Each arbitrary slice resulted in clades that held taxa unique to them. We saw that, aside from a handful
of the clades within certain slices, no mediation was observed with MedTest. This suggests that, if
present, the mediation effect of the microbiota on the fiber intake and BMI relationship is likely small
enough to be undetectable within the given sample size.

Data and analysis for this application are available at https://github.com/Alekseyenko/MODIMA.

4. Discussion

In this article, we developed a framework for multivariate omnibus distance mediation analysis
(MODIMA). Although the proposed methods have wide applications to various data types, we
specifically showed their robustness in high-dimensional settings by applying them to novel and
previously published microbiome data. In simulations, we showed that our method to detect mediation
under various scenarios is more powerful than previously published work. Simulations showed that
MODIMA holds empirical type I error rates at the desired nominal significance level under the multiple
mediator case.

Clearly, any analysis based on distances should not blindly and thoughtlessly pick the metric to
be used. Ideally, the structure of the data and the analyst’s intuition about the problem should guide
the selection of an appropriate measure. A universally best distance measure may not exist for all
problems and different data may result in different best performing distances, in terms of sensitivity
and specificity. For example, although very popular and used in many studies, weighted UniFrac
distance failed to result in a rejection in application example 2. This does not imply that this distance is
universally bad. Its performance in combination with that of unweighted UniFrac is possibly telling us
that beyond the phylogenetic signal the relative abundances are not informative of the mediation that
may or may not exist in the data. A limitation of our method relative to MedTest is that MODIMA
works on a specific distance metric rather than pooling analyses from multiple metrics. A future
improvement to the method should incorporate the ability to use multiple distances. In the interim, a
test-and-adjust approach can be used with MODIMA with multiple distances.

With regard to empirical power as the exposure-mediator and mediator-outcome effects are
increased, MODIMA displayed increasing empirical power characteristics relative to other methods.
We further see that there was increased power as sample size increased from 20 to 200, a typical
expectation. It should be noted that most ‘omics investigations operate on the lower end of that
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sample size spectrum; therefore, the ability to correctly detect differences under small sample scenarios
is important.

In both of our empirical examples, although the mediating effect of the microbiota was plausible,
we failed to detect the mediation. This is unsurprising for datasets of such small size and relatively
small total effect of the exposure on the response (e.g., dCor = 14-17% for antibiotics—percent body fat
and dCor = 9% for fiber-BMI). The microbiome in dietary fiber effect on the body mass index example
demonstrates a discrepancy observed between our method and an alternative approach. Through
additional analyses, we demonstrate that either the effect is again too small to be detected in a dataset
of this size, or that it may be absent altogether.

Our application of the distance correlation and partial distance correlation metrics to the problem
of modeling distance mediation illustrates somewhat unintuitive notions relating dependence and
correlation in the context of causal analyses. First, the absence of partial correlation does not
automatically imply the absence of partial dependence. The equivalence of partial correlation and
conditional dependence is only true for a multivariate normal family of distributions. Furthermore,
distance correlation methods demonstrate non-zero partial correlation (even asymptotically) in certain
scenarios with conditionally independent univariate normal variables [20]. Specifically, as is relevant
to the mediation analysis, consider X is a standard normal random variable and M and Y are each an
independent linear combination of X and another standard normal variate. In that case, pdCor(M,
Y | X) > 0, indicating the presence of partial distance correlation. This suggests that the notion of
conditional dependence captured by partial distance correlation is different from that intuitively
expected. Székely and Rizzo [20] suggest that partial distance correlation implies that there exists a
pair of U-equivalent random variables that are in fact conditionally independent. The extent to which
a lack of correspondence between conditional independence and zero partial distance correlation is a
problem with multivariate data is unknown at the moment. However, it is easy to see via simulation
that adding additional mediators uncorrelated to the exposure will decrease the population values of
pdCor, which in finite sample size results in fewer rejections and thus less inflated type I errors. This is
demonstrated in our multiple mediator simulations, where adding a moderate number of mediators
results in better type I error control in simulation under the null hypothesis (Figure 4A).

Another potential pitfall of multivariate mediation analysis pertains to the interpretations of
significant mediation results. Consider, for example, a scenario where X is a true cause for both Y
and M1, while independent of M2, which is a true cause of Y. Although no univariate mediation
relationships exist under this scenario, multivariately M = (M1, M2) is not conditionally independent of
Y, given X and multivariate (distance) mediation does exist. This suggests that, whenever multivariate
distance mediation is established, further interpretations of this relationship must be treated with
caution in order not to attribute this relationship to any individual univariate marginals of the X, M, Y
triple, but to treat this relationship as existing in the joint distribution.

Omnibus mediation analysis with ‘omics-sized mediators is the first step towards enabling
top-down approaches in genomic data. As opposed to the more widely used methods that integrate the
univariate signals of individual measurements of microbes, gene expression, or genetic variants, the
top-down approach starts with the collective effect of those and prunes the individual measurements
down to a small set of most important ones. The significance of this approach is that top-down thinking
allows for capturing effects, such as epistasis and otherwise complexly intertwined relationships.
We envision that future versions of the omnibus mediation approach of this paper and of alternative
approaches will allow to assign importance to components in addition to assessing the overall effect of
the entire collection.

Supplementary Materials: Supplementary materials include source code for methods, simulation studies, and
application examples and are freely available at https://github.com/Alekseyenko/MODIMA.
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