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Preface to “Remote Sensed Data and 
Processing Methodologies for 3D Virtual 
Reconstruction and Visualization of 
Complex Architectures” 

The topic “Remote Sensed Data and Processing Methodologies for 3D Virtual 
Reconstruction and Visualization of Complex Architectures” is a growing subject that 
involves many different disciplines, such as architecture, cultural heritage, 
engineering, archaeology, and virtual reality. The increase is driven by the current 
availability of new sensors for remote acquisition along with open and big data 
sources. Despite availability and advances at sensor- and data-level, there is a 
need for reliable, affordable, and powerful methods and tools for realizing photo-
realistic, metric, re-usable, and semantic-aware 3D products. In this challenging 
and inspiring transition, the scientific community is putting great effort to design, 
research, develop and validate novel easy-to-use, ease-to-learn and low-cost 
frameworks for 3D modelling and further understanding of real environments. 

This book originates from the ISPRS/CIPA 3D-ARCH workshop “3D Virtual 
Reconstruction and Visualization of Complex Architectures” which was held in Ávila, 
Spain in February 2015. The workshop brought scientists, developers and 
advanced users in photogrammetry, computer vision, 3D modelling, and related 
topics to present and share their latest advancements and achievements. 

This book brings together 19 peer-reviewed contributions from various 
authors, including extended papers presented at the 3D-ARCH workshop, 
covering topics related to the 3D virtual reconstruction and visualization of 
complex scenarios. Due to the high transversality of 3D and intra-sectoral 
applications, the key topics addressed in the book are: aerial photogrammetry, 
especially focused on the low-altitude remote sensing images which take 
advantage of classical platforms, stressing the automated processing stages of data 
segmentation and dense point cloud generation; terrestrial photogrammetry, as a 
fundamental technique for architectural heritage documentation, with all latest 
improvements in the automated 3D reconstruction pipeline; multi-sensor fusion, 
as a solution for a broad spectrum of applications and solutions, encompassing 
pathological mapping, urban-scale analysis, and optimization of orthoimage 
generation, solar panel installation, and surveying of complex architectures;  
3D modelling, which covers the modelling procedures involved when using 
gaming sensors, while producing building information models (BIM), or for 
procedural building modelling; structural analysis, focused on reverse 
engineering and finite element modelling (FEM) for stability evaluation and 
conservation measures. 
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Multi-View Stereo Matching Based on
Self-Adaptive Patch and Image Grouping
for Multiple Unmanned Aerial
Vehicle Imagery
Xiongwu Xiao, Bingxuan Guo, Deren Li, Linhui Li, Nan Yang, Jianchen Liu,
Peng Zhang and Zhe Peng

Abstract: Robust and rapid image dense matching is the key to large-scale
three-dimensional (3D) reconstruction for multiple Unmanned Aerial Vehicle (UAV)
images. However, the following problems must be addressed: (1) the amount of
UAV image data is very large, but ordinary computer memory is limited; (2) the
patch-based multi-view stereo-matching algorithm (PMVS) does not work well for
narrow-baseline cases, and its computing efficiency is relatively low, and thus, it is
difficult to meet the UAV photogrammetry’s requirements of convenience and speed.
This paper proposes an Image-grouping and Self-Adaptive Patch-based Multi-View
Stereo-matching algorithm (IG-SAPMVS) for multiple UAV imagery. First, multiple
UAV images were grouped reasonably by a certain grouping strategy. Second, image
dense matching was performed in each group and included three processes. (1) Initial
feature-matching consists of two steps: The first was feature point detection and
matching, which made some improvements to PMVS, according to the characteristics
of UAV imagery. The second was edge point detection and matching, which aimed to
control matching propagation during the expansion process; (2) The second process
was matching propagation based on the self-adaptive patch. Initial patches were
built that were centered by the obtained 3D seed points, and these were repeatedly
expanded. The patches were prevented from crossing the discontinuous terrain
by using the edge constraint, and the extent size and shape of the patches could
automatically adapt to the terrain relief; (3) The third process was filtering the
erroneous matching points. Taken the overlap problem between each group of 3D
dense point clouds into account, the matching results were merged into a whole.
Experiments conducted on three sets of typical UAV images with different texture
features demonstrate that the proposed algorithm can address a large amount of
UAV image data almost without computer memory restrictions, and the processing
efficiency is significantly better than that of the PMVS algorithm and the matching
accuracy is equal to that of the state-of-the-art PMVS algorithm.

Reprinted from Remote Sens. Cite as: Xiao, X.; Guo, B.; Li, D.; Li, L.; Yang, N.; Liu, J.;
Zhang, P.; Peng, Z. Multi-View Stereo Matching Based on Self-Adaptive Patch and
Image Grouping for Multiple Unmanned Aerial Vehicle Imagery. Remote Sens. 2016,
8, 89.
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1. Introduction

The image sequences of UAV low-altitude photogrammetry are characterized
by large scale, high resolution and rich texture information, which make it suitable
for three-dimensional (3D) observation and its role as a primary source of fine 3D
data [1,2]. UAV photogrammetry systems consist of airborne sensors, airborne Global
Navigation Satellite Systems (GNSS) (for example, Global Positioning Systems, GPS)
and Inertial Navigation Systems (INS), flight control systems and other components,
which can provide aerial images and position and pose (POS) data [3,4]. As light and
small low-altitude remote sensing aircraft, UAVs offer advantages such as flexibility,
ease of operation, convenience, safety and reliability, and low costs [3,5,6]. They
can be widely used in many applications such as large-scale mapping [7], true
orthophoto generation [8], environmental surveying [9], archaeology and cultural
heritage [10], traffic monitoring [11], 3D city modeling [12], and especially emergency
response [13]; each field contributes to the rapid development of the technology and
offers extensive markets [2,14].

Reconstructing 3D models of objects based on large-scale and high-resolution
image sequences obtained by UAV low-altitude photogrammetry demands rapid
modeling speeds, high automaticity and low costs. These attributes rely upon the
technology in the digital photogrammetry and computer vision fields, and image
dense matching is exactly the key to this problem. However, because of their small
size, UAVs are vulnerable to airflow, resulting in instability in flight attitudes, which
leads to images with large tilt angles and irregular tilt directions [15,16]. Until
now, most UAV photogrammetry systems have used non-metric cameras, which
generate a large number of images with small picture formats, resulting in a small
base-to-height ratio [5]. The characteristics described above present many difficulties
and challenges for robust and rapid image matching. Thus, the research on and
implementation of UAV multi-view stereo-matching are of great practical significance
and scientific value.

The goal of the multi-view stereo is to reconstruct a complete 3D object model
from a collection of images taken from known camera viewpoints [17]. Over the
last decade, a number of high-quality algorithms have been developed, and the
state of the art is improving rapidly. According to [18], multi-view stereo algorithms
can be roughly categorized into four classes: (1) Voxel-based approaches [19–24]
require knowing a bounding box that contains the scene, and their accuracy is
limited by the resolution of the voxel grid. A simple example of this approach is
the graph cut algorithm [22,25,26], which transforms 3D reconstruction into finding
the minimum cut of the constructed graph; (2) Algorithms based on deformable
polygonal meshes [27–29] demand a good starting point—for example, a visual
hull model [30,31]—to initialize the corresponding optimization process, which
limits their applicability. The spacing curve [29] first extracts the outline of the
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object, establishing a rough visual hull, and then photo consistency constraints are
adopted to carve the visual hull and finally recover the surface model. Voxel-based
or polygonal mesh–based methods are often limited to object data sets (scene
data sets or crowd scene data sets are hard to handle), and they are not flexible;
(3) Approaches based on multiple depth maps [32–35] are more flexible, but the
depth maps tend to be noisy and highly redundant, leading to wasted computational
effort. Therefore, these algorithms typically require additional post-processing
steps to clean up and merge the depth maps [36]. The Semi-Global Matching
(SGM) algorithm [35] and its acceleration algorithms [37] are widely used in many
applications [38,39]. The study in [40] enhanced the SGM approach with the
capacity to search pixel correspondences using dynamic disparity search ranges, and
introduced a correspondence linking technique for disparity map fusion (disparity
maps are generated for each reference view and its two adjacent views) in a
sequence of images, which is most similar to [41]; (4) patch-based methods [42,43]
represent scene surfaces by collections of small patches (or surfels). They use
matching propagation to achieve dense matching. Typical algorithms include the
patch propagation algorithm [18], belief propagation algorithm [44], and triangle
constrained image matching propagation [45,46]. Patch-based matching in the
scene space is much more reasonable than rectangular window matching in the
image space [22,26,33] because it adds the surface normal and position information.
Furukawa [18] generates a sparse set of patches corresponding to the salient image
features, and then spreads the initial matches to nearby pixels and filters incorrect
matches to maintain surface accuracy and completeness. This algorithm can handle
a variety of data sets and allows outliers or obstacles in the images. Furthermore, it
does not require any assumption on the topology of an object or a scene and does
not need any initialization, for example a visual hull model, a bounding box, or
valid depth ranges that are required in most other competing approaches, but it can
take advantage of such information when available. The state-of-the-art algorithm
achieves extremely high performance on a great deal of MVS datasets [47] and is
suitable for large-scale high-resolution multi-view stereo [48], but does not work
well for narrow-baseline cases [18]. To improve the processing efficiency of PMVS,
Mingyao Ai [16] feeds the PMVS software with matched points (as seed points) to
obtain a dense point cloud.

This paper proposes a multi-view stereo-matching method for low-altitude UAV
data, which is characterized by a large number of images, a small base-to-height
ratio, large tilt angles and irregular tilt directions. The proposed method is based
on an image-grouping strategy and some control strategies suitable for UAV image
matching and a self-adaptive patch-matching propagation method. It is used to
improve upon the state-of-the-art PMVS algorithm in terms of the processing capacity
and efficiency. Practical applications indicate that the proposed method greatly
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improves processing capacity and efficiency, while the matching precision is equal to
that of the PMVS algorithm.

The paper is organized as follows. Section 2 describes the issues
and countermeasures for UAV image matching and the improved multi-view
stereo-matching method based on the PMVS algorithm for UAV data. In Section 3,
based on experiments using three typical sets of UAV data with different texture
features, the processing efficiency and matching accuracy of the proposed multi-view
stereo-matching method for UAV data are analyzed and discussed. Conclusions are
presented in the last section.

2. Methodology

2.1. The Issues and Countermeasures Related to UAV Image Matching

Because of the low flight altitude of UAVs, UAV images have high resolution
and rich features. However, we cannot avoid mismatching because of the impact of
deformation, occlusion, discontinuity and repetitive texture. For image deformation
problems, we can establish a general affine transformation model [18,49,50]. For
occlusion problems, because the occluded part of an image maybe visible in other
images, the multi-view redundancy matching strategy was generally used [18,50].
For discontinuity problems, local smooth constraints were introduced to match the
sparse texture areas, and edges were used to control smooth constraints [51]. For
repetitive texture problems, the epipolar constraint is a good choice. However, it is
ineffective for ambiguous matches when the texture and epipolar line have similar
directions. This paper used the matching method based on patch, which can solve
the problem.

2.2. PMVS Algorithm

We will briefly introduce the Patch-based Multi-View Stereo (PMVS)
algorithm [18]; then we will employ it and make improvements in the field of
UAV image dense matching. PMVS [18,52] is a multi-view stereo software that uses
a set of images as well as the camera parameters as inputs and then reconstructs
the 3D structure of an object or a scene that is visible in the images. The software
outputs both the 3D coordinate and the surface normal at each oriented point. The
algorithm consists of three procedures: (1) initial matching where sparse (3D) seed
points are generated; (2) expansion where the initial matches are spread to nearby
pixels and dense matches are obtained; (3) filtering where visibility constraints are
used to eliminate incorrect matches. After the first step (generating seed points), the
next two steps need to cycle three times.

First, use the Difference-of-Gaussian (DOG) [53] and Harris [54] operators to
detect blob and corner features. To ensure uniform coverage, lay over each image
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a regular grid of 32ˆ 32 pixel blocks and return as features the four local maxima
with the strongest responses in each block for each operator. Consider each image as
reference image R ppq in turn and other images that meet the geometric constraint
conditions as search images I ppq. For each feature f detected in R ppq, collect in
I ppq the set F of features f 1 of the same type (Harris or DOG) that lie within two
pixels from the corresponding epipolar lines in I ppq, and triangulate the 3D points
associated with the pairs

`

f , f 1
˘

. Sort these points in order of increasing distance
from the optical center of the corresponding camera. Initial a patch from these points
one by one and also initial corresponding image sets V ppq, V˚ ppq (images in V ppq
satisfy the angle constraint, and images in V˚ ppq satisfy the correlation coefficient
constraint). Then, use a conjugate-gradient method [55] to refine the center and
normal vector of the patch and update V ppq and V˚ ppq. If |V˚ ppq| ě 3, the patch
generation is deemed a success, and the patch is stored in the corresponding cells of
the visible images. To speed up the computation, once a patch has been reconstructed
and stored in a cell, all the features in the cell are removed and no longer used.

Second, repeat taking existing patches and generating new ones in nearby empty
spaces. The expansion is unnecessary if a patch has already been reconstructed there
or if there is segmentation information (depth discontinuity) when viewed from the
camera. The new patch’s normal vector is the same as that of the seed patch. The
new patch’s center is the intersection of the light through the neighborhood image
cell of the image point f and the seed patch plane. The rest is similar to the procedure
for generating the seed patch: Refine and verify the new patch, update V ppq and
V˚ ppq, and if |V˚ ppq| ě 3, accept the new patch as a success. The new patches are
also participating in the expansion as seed patches. The goal of the expansion step is
to reconstruct at least one patch in each image cell.

Third, remove erroneous patches using three filters that rely on visibility
consistency, a weak form of regularization, and clustering constraint.

2.3. The Design and Implementation of IG-SAPMVS

The proposed IG-SAPMVS mainly processes multiple UAV images with known
orientation elements and outputs a dense colored point cloud. First, given that
the number of images may be too large and considering the memory limit of
an ordinary computer, we need to group the images, which will be described in
Section 2.3.4. Then, we process each group in turn, which is partitioned into three
parts: (1) multi-view initial feature-matching; (2) matching propagation based on
the self-adaptive patch; and (3) filtering the erroneous matching points. Finally, we
need to merge the 3D point cloud results of all the groups into a whole, which will
be described in Section 2.3.5.
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2.3.1. Multi-View Initial Feature-Matching

This procedure had two steps: The first was feature point detection and
matching, which made some improvements to PMVS, according to the characteristics
of UAV imagery. The second was edge detection and matching, which aimed to
control matching propagation during the expansion process.

The proposed method followed PMVS by setting up regular grids on all of the
images, used Harris and DOG operators to detect feature points, and then matched
the feature points. For each matched feature point f in the reference image, when
finding candidate matching points on the corresponding epipolar line in the search
image, there is an improvement compared to PMVS. In general cases, the rough
ground elevation scope of the region photographed by UAV is known. Denoting
the rough ground elevation scope by pZmin, Zmaxq, there is a corresponding scope
denoted by pPmin, Pmaxq in the epipolar line of the search images; thus, we can simply
seek the corresponding image points in that scope. Taking into account that the
orientation elements of the reference image may not be very accurate, the search
range (the red box in Figure 1) was expanded to two pixels around the epipolar
line. Then, we calculated the correlation coefficient between each potential candidate
matching point in that scope and the matched feature point f . Because of the unstable
flight attitudes of the UAV, the image deformation is large. It is not advisable to use
the traditional correlation coefficient calculation method that assumes the relevant
window may be simply along the direction of the image. Thus, we designed the
relevant window along the direction of the epipolar line; that is to say, the edge of
the relevant window was parallel with the epipolar line (Figure 1).
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The potential candidate feature point whose correlation coefficient is greater
than γ1 (in this paper, we set γ1 to be 0.7) was used as candidate match point f 1

and added to set F. The set F was sorted according to the value of the correlation
coefficient from big to small, and then, the 3D points associated with the pairs

`

f , f 1
˘

were triangulated. According to [18], we considered these 3D points as potential
patch centers. Next, we refined and verified each patch candidate associated with the
potential patch center in turn according to the PMVS method. Finally, we obtained
the accurate 3D seed points with normal vectors.

Edge feature detection and matching, taking the method of Li Zhang [51] as a
reference, first used the Canny operator [56] to detect edge points on every image,
and then performed a match for the dominant points and well-distributed points on
the edges. The only difference was that after obtaining the 3D edge points using the
method of [51], we used the PMVS method to refine and verify each 3D edge point.

2.3.2. Matching Propagation Based on Self-Adaptive Patch

In PMVS, the 3D seed points are very sparse, and dense matching mainly
depends on the expansion step; moreover, it is time-consuming. However, such
speed makes it difficult to meet the requirements of real-time and convenient UAV
photogrammetry. Thus, this paper presented matching propagation based on the
self-adaptive patch method to improve processing efficiency. The basic concept was
to build initial patches centered by the 3D seed points that had already been obtained.
The extents and shapes of the patches could adapt to the terrain relief automatically:
When the surface was smooth, the size of the patch would become bigger to cover
the entire smooth area; if the terrain was very rough, the size of the patch would
become smaller to describe the details of the surface (Figure 2a). In Figure 2, different
sizes and shapes of patches are conformed to the different terrain features. There are
more spread points on the larger extent patches.
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Figure 2. (a) Self-adaptive patch; (b) Schematic diagram of self-adaptive patches
on the DSM.

The initial size of a patch must ensure that the projection of the patch onto the
reference image can cover the size of m2 ˆm2 square pixels (in this paper, m2 is also
denoted as the length of the patch, and the initial value of m2 is 3ˆ 7 “ 21, meaning
it is three times the initial patch size of PMVS). There was an affine transformation
between the patch and its projection onto the image, and the affine transformation
parameters could be determined by the center coordinate and normal vector of the
patch. Taking the projection of the patch onto the image as a relevant window,
the correlation coefficient between the reference image I0 and each search image Ij
donated by nccpI0, Ij, patchqwas calculated. Because UAV imagery is generally taken
by an ordinary non-metric digital camera, the imagery usually has three channels:
R, G, B. Thus, when calculating the correlation coefficient nccpI0, Ij, patchq, we made
full use of the information of the three channels. The formula is as follows:

nccpI0, Ij, patchq

“
m2

2
ř

i“1

pR0ris ´ Rave0qpRjris ´ Rave jq ` pG0ris ´ Gave0qpGjris ´ Gave jq ` pB0ris ´ Bave0qpBjris ´ Bave jq

σ0 ¨ σj

(1)

where

σ0 “

g

f

f

f

f

e

m2
2

ř

i“1
rpR0ris ´ Rave0q

2
` pG0ris ´ Gave0q

2
` pB0ris ´ Bave0q

2
s

m2 ˆ 3
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σj “

g

f

f

f

f

e

m2
2

ř

i“1
rpRjris ´ Rave jq

2
` pGjris ´ Gave jq

2
` pBjris ´ Bave jq

2
s

m2 ˆ 3

Rave0 “

m2
2

ř

i“1
R0ris

m22 Rave j “

m2
2

ř

i“1
Rjris

m22

Then, we computed the average value of the correlation coefficients as follows:

NCCpatch “
1
n

ÿ

n
j“1ncc

`

I0, Ij, patch
˘

(2)

where n is the number of search images.
If the NCCpatch is greater than the threshold γ2 pγ2 “ 0.8q, the surface area

covered by the patch is smooth and can be similarly treated as a plane, so that
some new 3D points (near the patch center) in the patch plane can be directly
generated. The normal vectors of the new 3D points are the same as the normal
vector n ppq of the patch. According to the properties of affine transformation, a
plane π through affine transformation becomes another plane π˚, and the affine
transformation parameters for each point on the plane π are the same [18,57]; thus,
we can compute the corresponding coordinates of the 3D new points in the patch by
using the center point coordinate c ppq and normal vector n ppq of this patch plane.
The calculation process is as follows:

(1) Calculate the xyz-plane coordinate system of the patch, that is the x-axis is
px ppx1, px2, px3q and the y-axis is py

`

py1, py2, py3
˘

, and the normal vector n ppq
of the patch is seen as the z-axis (Figure 3). The patch center p is considered
the origin of the xyz-plane coordinate system of the patch. The y-axis py is
the vector that is perpendicular to the normal vector n ppq and the Xc-axis of
the image space coordinate system; thus, py “ n ppq ˆ Xc. The x-axis px is the
vector that is perpendicular to the y-axis py and the normal vector n ppq; thus,
px “ py ˆ n ppq. Then, px and py are normalized to the unit vector.

(2) Calculate the ground resolution of the image as follows:

d “
dpc

fc ¨ cosθ
(3)

where dpc represents the distance between the patch center p and the projection
center of the image, fc represents the focal length, θ represents the angle between
the light through the patch center p and the normal vector n ppq of the patch,
and d actually represents the corresponding distance in the direction of n ppq
for one pixel in the image.
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(3) Suppose a new point’s plane coordinate in the patch plane coordinate system is
p∆x, ∆yq. The plane coordinates of the new points in the patch plane coordinate
system are as shown in Figure 4. To ensure matching accuracy, the spread size is

in the range of
ˆ

´
m2 ´ 1

4
,

m2 ´ 1
4

˙

(the patch size is m2 ˆm2) when the patch

center p is considered the origin of the patch plane coordinate system.
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(4) Calculate the XYZ-coordinate of the new point in the object space coordinate
system. Suppose a (3D) new point is P “ pXP, YP, ZPq and the patch center p is
pXc, Yc, Zcq. We calculate the XYZ-coordinate of the new point as follows:

P “ p` d ¨ ∆x ¨ px ` d ¨ ∆y ¨ py
¨

˚

˝

XP
YP
ZP

˛

‹

‚

“

¨

˚

˝

Xc

Yc

Zc

˛

‹

‚

` d ¨ ∆x ¨

¨

˚

˝

px1

px2

px3

˛

‹

‚

` d ¨ ∆y ¨

¨

˚

˝

py1

py2

py3

˛

‹

‚

(4)

After obtaining the XYZ-coordinate of a new point in the object space coordinate
system, the new point is projected onto the reference image and search images so
that we can obtain the corresponding image points.

As a result, new 3D points are spread by the 3D seed point, as shown in Figure 5.Remote Sens. 2016, 8, 89 10 of 32 
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In our method, the size and shape of the patch can self-adapt to the texture
feature: (1) For big and very smooth areas, the generated new 3D points will be
directly added to the seed point set, and the newly added seed points are also in
the original patch plane and they can spread further so that it enlarges the size of
the original patch. Thus, the shape formed by all the spread points in the original
patch would not be a regular square (Figure 2); (2) For discontinuous terrain, the
length of the patch m2 would be shortened to avoid crossing the edge, resulting in

a smaller spread size (the spread size is in the range of
ˆ

´
m2 ´ 1

4
,

m2 ´ 1
4

˙

) and a

smaller size of the patch (m2 ˆm2); (3) For a large relief terrain, the size and shape
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of the patch would be automatically shrunk from different directions, resulting in a
smaller spread size. For such cases, the generated new 3D points would be processed
following the method of PMVS. First, they are refined and verified one by one, and
then the 3D points that are successfully constructed are added to the 3D seed point
set. The newly added seed points are not in the original patch plane, and, thus, they
will not enlarge the size of the original patch.

2.3.3. The Strategy of Matching Propagation

In Self-Adaptive Patch-based Multi-View Stereo-matching (SAPMVS), the size
and shape of the patch should adapt to the texture feature: increasing the patch size
in smooth areas and decreasing the patch size in undulating terrain. In addition,
the patch should avoid crossing discontinuous terrain. The strategy of matching
propagation based on the self-adaptive patch is as follows (Figure 6):

(1) Get a 3D seed point from the initial feature-matching set SEED, and build
a patch by using that point as the patch center. The initial size of the patch
should ensure that the projection of the patch onto the reference image is of
size m2 ˆm2 square pixels. In this paper, m2 is also denoted as the length of
the patch, and the initial value of m2 is 21. However, if the set SEED becomes
empty, stop the whole matching propagation process.

(2) If the patch does not contain any edge points, go to step 3. Otherwise, adjust
the size and shape of the patch so that the edge (we used the edge points to
determine the edge) is not crossed. In Figure 7, the patch is partitioned into two
parts by an edge. We need to build a new patch from the part that contains the
center point. The center point of the new patch is unchanged, and the shape is
a square. One edge of the new patch is parallel to the edge. Thus, the length of
the patch m2 decreased and the shape also changed. Finally, go to step 3.

(3) Take the projection of the patch onto each of the images as the relevant window,
and use Equation (1) to calculate the correlation coefficient nccpI0, Ij, patchq
between the reference image and each search image. Then, use Equation (2) to
calculate the average value of the correlation coefficients NCCpatch.

(4) If NCCpatch ă γ2 pγ2 “ 0.8q, the size of the patch needs to be adjusted; thus, go
to step 5, or else generate some new 3D points near the patch center in the range

of
ˆ

´
m2 ´ 1

4
,

m2 ´ 1
4

˙

on the patch plane. Details are presented in Section 2.3.2.

Here, we need to judge whether another point has already been generated in
that place. The judging method is as follows: project the new point onto the
target image; if there is another point in the image pixel of the new point, give
up the newly generated point. Directly add the remaining new points to the set
SEED, and go to step 1.
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(5) From one direction (e.g., the right), shrink the patch once by two pixels and
calculate the NCCpatch in the meantime. If the value of NCCpatch is increased,
continue to shrink the size of the patch in the same direction; otherwise, change
the direction (e.g., left, up and down) to shrink the patch. The process above
continues until NCCpatch ą γ2. However, if the process continues until m2 “ 1,
go to step 1. After finishing the size and shape adjustment process, if the length
of the patch m2 is greater than λ pλ “ 14q pixels, go to step 4, or else go to step 6).

(6) Generate new 3D points near the patch center in the range of
ˆ

´
m2 ´ 1

4
,

m2 ´ 1
4

˙

on the patch plane (if
m2 ´ 1

4
ă 1, the scope becomes

p´1, 1q). Then, refine and verify them one by one. Add the points that are
constructed successfully to the set SEED, and go to step 1.

In the end, filter the incorrect points following the PMVS filtering method.

2.3.4. Image-Grouping

Generally, a UAV flight varies between one and three hours. The number of
images can reach from 1000 to 2000. It demands a high-performance computer and,
in particular, a memory with large capacity. Thus, we should divide the whole region
into small regions and process each separately. Finally, combine the matching result
of each image group into a whole point cloud. When we divide the whole region, we
must not only consider the memory constraint but also process more images at one
time. Suppose the number of images in each group is no more than nmax (the value
of nmax is related to the computer memory and the size of the image; in this paper,
nmax “ 6). The process for grouping images is as follows:

(1) Calculate the position and the size of the associated area (footprint) of every
image, that is the corresponding ground points’ XY-plane coordinates for the
four corner points of the image.

Firstly, compute the size of the footprint (the length and width of the ground
region) as follows:

width “ imgWidthˆ
H
fc

and length “ imgHeightˆ
H
fc

(5)

where imgWidth and imgHeight are the width and height of the image. H is the
flight height relative to the ground, and fc is the focal length of the image.

Then, compute the four XY-plane coordinates pXi, Yiq of the footprint as follows:

Xi “ cos pkappaq ˆ
width

2
´ sin pkappaq ˆ

length
2

` x0 , pi “ 1, 2, 3, 4q

Yi “ sin pkappaq ˆ
width

2
` cos pkappaq ˆ

length
2

` y0 , pi “ 1, 2, 3, 4q
(6)

15



where kappa is the rotation angle of the image, and px0, y0q is the coordinate of the
projection center.Remote Sens. 2016, 8, 89 12 of 32 
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(2) Compute the minimum enclosing rectangle of the entire photographed area
according to the footprints of all the images.

(3) Divide the minimum enclosing rectangle into N ˆ M blocks to ensure the
number of images that are completely within each block is no more than but
close to nmax (Figure 8). Compute the footprint of each block, and enlarge the
block. In Figure 8, the black dotted box represents the enlarged block, which is
denoted by bigBlock.
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(4) According to the footprint of every image and the footprint of every bigBlock,
take all the images belonging to one bigBlock as a group.

2.3.5. Group Matching and Merging the Results

Process each image group in turn using the proposed Self-Adaptive Patch-based
Multi-View Stereo-matching algorithm (SAPMVS). SAPMVS is partitioned into three
parts: (1) multi-view initial feature-matching, which is introduced in Section 2.3.1;
(2) matching propagation based on the self-adaptive patch, which is introduced in
Section 2.3.3; (3) filtering the erroneous matching points following the PMVS filtering
method. As a result, we obtain the group matching results.

Finally, we need to merge all group matching results into a whole. The merge
process is as follows: (1) Remove the redundant points in bigBlock; that is, retain
only the points in the block and abandon the points that exceed the extent of the
block; (2) Obtain the final point cloud of the entire photographed area by merging
the point clouds of every block.

To avoid gaps that appear on the edges of the blocks in the final result, in step
(1) we should preserve the (3D) edge points of each block and, in step (2) remove
the (3D) repetitive points at the block edges according to the corresponding image
points of those 3D points. If there is a corresponding image point that belongs to two
3D points, we preserve only one of the two 3D points (or refine and verify the 3D
repetitive points following the PMVS method).

3. Experiments and Results

3.1. Evaluation Index and Method

Currently, there is no unified approach to evaluating multiple image dense
matching algorithms. Usually, we can compare them in the following aspects [58]:
(1) accuracy, which indicates the degree of correct matching quantitatively;
(2) reliability, which represents the degree of precluding overall classification
error; (3) versatility, the ability to apply the algorithm to different image scenes;
(4) complexity, the cost of equipment and calculation.

In the field of computer vision, to evaluate the accuracy of a multi-view dense
matching algorithm, 3D reconstruction of the scene is carried out by means of the
dense matching algorithm, and then the 3D reconstruction model is compared with
the high-accuracy real surface model (real data are obtained by laser), and the
performance of the dense matching algorithm is evaluated in terms of accuracy
and completeness [17]. In the field of digital photogrammetry, we can use the
corresponding image points obtained by the multi-view stereo image matching to
obtain their corresponding object points by means of forward intersection, and we
can then generate the Digital Surface Model (DSM) and Digital Elevation Model
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(DEM). Therefore, we can evaluate the accuracy of DSM and DEM and thereby
evaluate the accuracy of the matching algorithm indirectly; the accuracy of the DEM
and DSM can be evaluated in relation to higher-precision reference data, such as
laser point cloud data and manual measurement control point data [46,51].

As the output result of our algorithm is the 3D point cloud and the
computational cost is large, we will evaluate our algorithm from three aspects:
visual inspection, quantitative description and complexity. Visual inspection ensures
that the shape of the 3D point cloud is consistent with the actual terrain. Quantitative
description is necessary to compare the 3D point cloud with the high-precision
reference data, such as laser point cloud data and artificial measurement control
point data. Complexity mainly refers to the requirements of devices and the cost
in time of computing. On the other hand, the main input data of our algorithm are
the images that have lens distortion removed [59–61] and their orientation elements,
while the accuracy of the orientation elements can directly affect the accuracy of the
imaging geometric model, which may lead to errors in the forward intersection.

3.2. Experiments and Analysis

To evaluate the performance of our multi-view stereo-matching algorithm for
multiple UAV imagery in a more in-depth and comprehensive way, we will use
three typical sets of UAV data with different texture features viewed from three
perspectives: visual inspection, quantitative description and complexity.

3.2.1. The Experimental Platform

The proposed algorithm is implemented in Visual C++ and a PC with Intel®

Core™ i7 CPU 920 2.67 GHz processors, 3.25 GB RAM, and Microsoft Windows
Xp Sp3 64.

3.2.2. The First Dataset: Northwest University Campus, China

This group of experiments uses UAV imagery data taken at the Northwest
University campus in Shaanxi, China, by a Cannon EOS 400D. The photography
flying height is 700 m, and the ground resolution of the imagery is approximately
0.166 m. The shooting lasted 40 min, and there are a total of 67 images. The specific
parameters of the photography can be seen in Table 1.

This set of data is provided by Xi’an Dadi Surveying and Mapping Corporation.
We used a commercial UAV photogrammetric processing software called GodWork,
which was developed by Wuhan University, to perform automatic aerotriangulation
to obtain the precise orientation elements of the images (we can also use the
structure-from-motion software “VisualSFM” by Changchang Wu [62,63] to estimate
the precise camera pose). The accuracy of aerotriangulation was as follows: the
value of the unit-weight mean square error (Sigma0) was 0.49 pixels, and the average
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residual of the image point was 0.23 pixels. Because the data had no manual control
point information, the bundle adjustment method and the orientation elements were
under freenet. Figure 9 is the tracking map of the 67 images under freenet. We used
GodWork software to remove the lens distortion of the 67 images. Table 2 shows part
of the corrected images’ external orientation elements.

Table 1. The parameters of the UAV photography in Northwest University.

Camera
Name

CCD Size
(mm ˆ mm)

Image
Resolution

(pixels ˆ pixels)

Pixel
Size
(µm)

Focal
Length
(mm)

Flying
Height

(m)

Ground
Resolution

(m)

Number of
Images

Canon
EOS
400D

22.16 ˆ 14.77 3888 ˆ 2592 5.7 24 700 0.166 67
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Table 2. The external orientation elements of a portion of the corrected images.

Image
Name X (m) Y (m) Z (m) ϕ (Degree) ω (Degree) κ (Degree)

IMG_0555 ´201.736 ´31.7532 ´1.35375 ´1.0234 ´0.44255 166.7002
IMG_0554 ´194.482 17.90618 ´1.22801 ´0.71193 ´0.1569 166.2114
IMG_0553 ´187.641 67.63342 ´0.87626 0.320481 ´0.03621 166.3385
IMG_0552 ´180.965 116.052 ´0.61774 0.518773 ´0.87317 166.7509
IMG_0551 ´174.434 166.2001 ´0.59227 0.454139 ´0.86679 167.2784
IMG_0550 ´168.264 214.3878 ´0.79246 ´0.57551 ´0.67894 167.5912
IMG_0549 ´162.096 265.1268 ´0.70428 ´1.08565 ´0.7456 167.166
IMG_0548 ´156.002 314.2426 ´0.53393 ´1.40444 ´0.84598 166.5402
IMG_0547 ´148.987 367.3003 ´0.30983 ´0.77136 ´0.86104 166.5097
IMG_0546 ´142.152 417.2658 ´0.04708 ´0.38776 ´0.89084 166.5219
IMG_0545 ´135.102 466.7365 0.507349 ´0.08542 ´0.09929 166.4838
IMG_0544 ´128.322 520.032 1.246216 ´0.2938 ´0.41415 166.7157
IMG_0543 ´121.833 569.8722 1.862483 ´0.20825 ´0.21687 167.1119
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First, we used the proposed UAV multiple image–grouping strategy to divide
this set of 67 images into 12 groups. The serial number of each image group is shown
in Table 3.

Table 3. Image-grouping result of the Northwest University data.

Group Image Number Corresponding Image Name Number of Images

0 0 1 2 3 4 5 IMG_1093~IMG_1089 6
1 6 7 8 9 10 11 IMG_ 1087~IMG_1082 6
2 12 13 14 15 IMG_1081~IMG_1078 4
3 16 17 18 19 20 21 IMG_0102~IMG_0107 6
4 22 23 24 25 26 27 IMG_0108~IMG_0113 6
5 28 29 30 31 32 IMG_0114~IMG_0118 5
6 33 34 35 36 37 38 IMG_0641~IMG_0646 6
7 39 40 41 42 43 44 IMG_0647~IMG_0652 6
8 45 46 47 48 49 50 IMG_0653~IMG_0658 6
9 51 52 53 54 55 56 IMG_0555~IMG_0550 6

10 57 58 59 60 61 62 IMG_0549~IMG_0544 6
11 63 64 65 66 IMG_0543~IMG_0540 4

After image-grouping, we used the proposed Self-Adaptive Patch-based
Multi-View Stereo-matching algorithm (SAPMVS) to address each image group,
and obtained the 3D dense point cloud data of each image group. Then, we merged
the 3D dense point clouds of each group; the merged 3D dense point cloud is shown
in Figure 10 (the small black areas in the figures are water). We found that the merged
3D dense point cloud has 8,526,192 points, and the point density is approximately
three points per square meter; thus, the ground resolution is approximately 0.3 m.Remote Sens. 2016, 8, 89 17 of 32 
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Figure 10. The merged 3D dense point cloud of Northwest University.
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Because of the lack of control point data or high-precision reference data in
the data set, such as the laser point cloud, we use the visual inspection method to
evaluate the results of the proposed algorithm, i.e., whether the shape of the 3D point
cloud is consistent with the actual terrain. We compared the 3D dense point cloud
and the corresponding corrected images that had the lens distortion removed, as
shown in Figure 11. By comparing the point clouds and images in Figure 11, it can be
seen that the 3D dense point clouds of the proposed algorithm accurately described
the terrain features of the Northwest University campus as well as the shape and
distribution of physical objects (such as roads and buildings).

  

Article 

  
(a) 

  
(b) 

Figure 11. Comparison of the same areas in the 3D dense point clouds and the corresponding images. 
(a) The building area; (b) the flat area. 
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Figure 11. Comparison of the same areas in the 3D dense point clouds and the
corresponding images. (a) The building area; (b) the flat area.

For further analysis of the accuracy and efficiency of the proposed algorithm, we
used the proposed IG-SAPMVS algorithm and PMVS algorithm [18,52], respectively,
to process this set of data, and recorded the processing time and the 3D point cloud
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results. Table 4 shows the statistics for these two algorithms with respect to the
processing time and the point number of 3D dense point clouds. Figure 12 shows the
final 3D dense point cloud results.
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From Table 4, it can be seen that the processing time of the proposed IG-SAPMVS
algorithm is approximately 0.5 times that of the PMVS algorithm; thus, the calculation
efficiency of the proposed IG-SAPMVS algorithm is significantly higher than that
of the PMVS algorithm. Because the terrain relief of the test area is not large and
there are many flat square grounds in the test area, the proposed Self-Adaptive
Patch-based Multi-View Stereo-matching algorithm (SAPMVS) can spread more
quickly than the PMVS algorithm in the matching propagation process. On the
other hand, based on Table 4, it can be seen that the point number of the 3D dense
point cloud by the proposed IG-SAPMVS algorithm is 1.15 times that of the PMVS
algorithm; Figure 12 illustrates that the 3D dense point cloud result of the proposed
IG-SAPMVS algorithm is almost the same as that of the PMVS algorithm based on
visual inspection. In general, the proposed IG-SAPMVS algorithm outperforms the
PMVS algorithm in computing efficiency and the quantity of 3D dense point clouds.

Table 4. Statistics for the proposed IG-SAPMVS algorithm and PMVS algorithm.

Algorithm RunTime
(h:min:s)

Point Cloud
Amount

Number of
Images

IG-SAPMVS 2:41:38 8526192 67
PMVS 4:8:30 7428720 67
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3.2.3. The Second Dataset: Remote Mountains

This group of experiments uses UAV imagery data of remote mountains
characterized by large relief, heavy vegetation and a small amount of physical
objects, such as roads and buildings, in China; they were also taken by a Cannon EOS
400D with a focus of 24 mm. The photography flying height is approximately 1900 m
and the ground resolution of the imagery is approximately 0.451 m. There are a total
of 125 images. Figure 13 is the GPS tracking map under the geodetic control network.
We also used GodWork software to remove the lens distortion of the 125 images.
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Figure 13. The GPS tracking map of the UAV images taken in remote mountains
under geodetic control network.

This set of data is also provided by Xi'an Dadi Surveying and Mapping
Corporation. Because of the low accuracy of the airborne GPS/IMU data, it
cannot meet the requirements of the proposed multi-view stereo-matching algorithm.
We used the commercial UAV photogrammetric processing software GodWork,
which was developed by Wuhan University, to perform automatic aerotriangulation
and obtain the images’ precise exterior orientation elements. The accuracy of
aerotriangulation was as follows: the value of the unit-weight mean square error
(Sigma0) was 0.77 pixels, and the average residual of the image point was 0.36 pixels.
Table 5 shows part of the corrected images’ external orientation elements.

First, we also used the UAV multiple image-grouping strategy to divide this
set of 125 images into 21 groups. After image-grouping, we used the proposed
Self-Adaptive Patch-based Multi-View Stereo-matching algorithm (SAPMVS) to
address each image group, and obtained the 3D dense point cloud data of each image
group. Then, we merged the 3D dense point clouds of each group, and the merged
3D dense point cloud is shown in Figure 14 (the small black areas in the figures are
water). We found that the merged 3D dense point cloud has 12,509,202 points, and
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the point density is approximately one point per square meter; thus, the ground
resolution is approximately 1 m.

Table 5. The external orientation elements of part of the corrected images
(the remote mountains).

Image
Name X (m) Y (m) Z (m) ϕ (Degree) ω (Degree) κ (Degree)

IMG_0250 453208.9 4312689 1926.36 4.251745 ´2.30691 10.23632
IMG_0251 453205.6 4312796 1926.462 2.852207 ´6.04494 10.94959
IMG_0252 453200.6 4312900 1921.71 0.681977 ´7.93856 11.60872
IMG_0253 453198.6 4313007 1920.499 ´0.01863 ´3.6135 8.714555
IMG_0254 453198.7 4313117 1915.972 3.277204 ´6.38877 8.599633
IMG_0255 453199.3 4313230 1910.448 6.64432 ´6.29777 8.965715
IMG_0256 453196.7 4313341 1904.105 3.33602 ´6.5811 10.72329
IMG_0257 453194.1 4313450 1903.386 1.594531 ´4.486 10.71933
IMG_0258 453192.8 4313559 1902.593 ´4.04339 ´5.57166 8.112464
IMG_0259 453194.9 4313667 1899.551 3.77633 ´2.96418 7.066141
IMG_0260 453198.2 4313776 1899.075 7.240338 ´5.29839 8.254281
IMG_0261 453196.6 4313882 1898.725 3.41796 ´1.02482 10.90049
IMG_0262 453193.1 4313986 1895.928 3.000324 ´5.9483 12.35882
IMG_0263 453185.4 4314095 1896.413 1.532879 ´4.00544 11.27756
IMG_0264 453184 4314196 1895.204 4.379199 ´2.4512 11.95034
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Figure 14. The merged 3D dense point cloud of the remote mountains. (a) The
plan view of the merged 3D dense point cloud; (b) The side views of the merged
3D point-cloud.

For further analysis of the accuracy and efficiency of the proposed algorithm, we
used the proposed IG-SAPMVS algorithm and PMVS algorithm [18,52], respectively,
to process this set of remote mountain data and recorded the processing time and
the 3D point cloud results. Table 6 shows the statistics of these two algorithms with
respect to the processing time and the point number of the 3D dense point clouds.
Figure 15 shows the final results of the 3D dense point cloud.

Table 6. The statistics of the proposed IG-SAPMVS algorithm and PMVS algorithm.

Algorithm RunTime (h:min:s) Point Cloud Amount Number of Images

IG-SAPMVS 4:36:5 12509202 125
PMVS 15:48:11 8953228 125

From Table 6, it can be seen that the processing time of the proposed IG-SAPMVS
algorithm is about one-third of that of the PMVS algorithm; thus, the efficiency of
the proposed IG-SAPMVS algorithm is significantly higher than that of the PMVS
algorithm. Obviously, even in the remote mountain field with complex terrain,
the proposed Self-Adaptive Patch-based Multi-View Stereo-matching algorithm
(SAPMVS) can spread more quickly than the PMVS algorithm in the matching
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propagation process. On the other hand, based on Table 6, it can be seen that the
point number of the 3D dense point cloud by the proposed IG-SAPMVS algorithm is
1.40 times that of the PMVS algorithm, and Figure 15 illustrates that the 3D dense
point cloud result of the proposed IG-SAPMVS algorithm is nearly the same as the
PMVS algorithm based on visual inspection. In general, the proposed IG-SAPMVS
algorithm significantly outperforms the PMVS algorithm in computing efficiency
and the quantity of 3D dense point clouds.
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Figure 15. Final 3D point cloud results of the remote mountains using IG-SAPMVS
(a) and PMVS (b).

3.2.4. The Third Dataset: Vaihingen, Germany

The third dataset was captured over Vaihingen, Germany, by the German Society
for Photogrammetry, Remote Sensing and Geoinformation (DGPF) [64]. It consists of
three test areas of various object classes (three yellow areas in Figure 16).

‚ Area 1 “Inner City”: This test area is situated in the center of the city of
Vaihingen. It is characterized by dense development consisting of historic
buildings with rather complex shapes, but there are also some trees (Figure 17a).

‚ Area 2 “High Riser”: This area is characterized by a few high-rise residential
buildings that are surrounded by trees (Figure 17b).

‚ Area 3 “Residential Area”: This is a purely residential area with small detached
houses (Figure 17c).
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Figure 17. The three test sites in Vaihingen. (a) a1-a8: the eight cut images of the
“Inner City” from the original images: 10030061.jpg, 10030062.jpg, 10040083.jpg,
10040084.jpg, 10050105.jpg, 10050106.jpg, 10250131.jpg, 10250132.jpg, respectively;
(b) b1-b4: the four cut images of the “High Riser” from the original images:
10040082.jpg, 10040083.jpg, 10050104.jpg, 10050105.jpg, respectively; (c) c1-c6: the
six cut images of the “Residential Area” from the original images: 10250134.jpg,
10250133.jpg, 10040083.jpg, 10040084.jpg, 10050105.jpg, 10050106.jpg, respectively.
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The data include high-resolution digital aerial images and orientation
parameters and airborne laser scanner data (available in [65]).

Digital Aerial Images and Orientation Parameters: The images are a part of
the Intergraph/ZI DMC block with 8 cm ground resolution [64]. Each area is visible
in multiple images from several strips. The orientation parameters are distributed
together with the images. The accuracy of aerotriangulation is as follows: the value
of unit-weight mean square error (Sigma0) is about 0.25 pixels. Table 7 shows the
external orientation elements of the images in the test region.

Airborne Laser Scanner Data: The test area was covered by 10 strips captured
with a Leica ALS50 system. Inside an individual strip, the average point density is
4 points {m2 [66]. The airborne laser scanner data of the test region are shown in
Figure 18.

Table 7. The external orientation elements of the experimental images
(Vaihingen data).

Image
Name X (m) Y (m) Z (m) ω

(Degree)
φ

(Degree)
κ

(Degree)

10030060.tif 496803.043 5420298.566 1163.983 2.50674 0.73802 199.32970
10030061.tif 497049.238 5420301.525 1163.806 2.05968 0.67409 199.23470
10030062.tif 497294.288 5420301.839 1163.759 1.97825 0.51201 198.84290
10030063.tif 497539.821 5420299.469 1164.423 1.40457 0.38326 198.88310
10040081.tif 496558.488 5419884.008 1181.985 ´0.87093 0.36520 ´199.20110
10040082.tif 496804.479 5419882.183 1183.373 ´0.26935 ´0.63812 ´198.97290
10040083.tif 497048.699 5419882.847 1184.616 0.34834 ´0.40178 ´199.44720
10040084.tif 497296.587 5419884.550 1185.010 0.81501 ´0.53024 ´199.35600
10040085.tif 497540.779 5419886.806 1184.876 1.38534 ´0.46333 ´199.85010
10050103.tif 496573.389 5419477.807 1161.431 ´0.48280 ´0.03105 ´0.23869
10050104.tif 496817.972 5419476.832 1161.406 ´0.65210 ´0.06311 ´0.17326
10050105.tif 497064.985 5419476.630 1159.940 ´0.74655 0.11683 ´0.09710
10050106.tif 497312.996 5419477.065 1158.888 ´0.53451 ´0.19025 ´0.13489
10050107.tif 497555.389 5419477.724 1158.655 ´0.55312 ´0.12844 ´0.13636
10250130.tif 497622.784 5420189.950 1180.494 0.09448 3.41227 ´101.14170
10250131.tif 497630.734 5419944.364 1181.015 0.61065 2.54420 ´97.84478
10250132.tif 497633.024 5419698.973 1179.964 1.27053 1.62793 ´97.23292
10250133.tif 497628.317 5419452.807 1179.237 0.90688 0.83308 ´98.72504
10250134.tif 497620.954 5419207.621 1178.201 0.17675 1.27920 ´101.86160
10250135.tif 497617.307 5418960.618 1176.629 0.22019 1.47729 ´101.55860

Because this dataset’s image pixel resolution (7680ˆ 13824 square pixels) is
large, it often exhausted the computer memory in the experiment when processing
the original images. In addition, the imaging of any of the three experimental areas
is only a small part of each image. Therefore, we can cut out the three experimental
areas in each of the original images separately (Figure 17). We used the proposed
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Self-Adaptive Patch-based Multi-View Stereo-matching algorithm (SAPMVS) to
address the three sets of cut images separately, and obtained the 3D dense point
cloud data of each dataset. The 3D dense point cloud data of each dataset are shown
in Figure 19. The statistics of the results by the proposed SAPMVS algorithm are
shown in Table 8.Remote Sens. 2016, 8, 89 24 of 32 

 

 

Figure 18. The airborne laser scanner data of the experimental region (Vaihingen). 

Because this dataset’s image pixel resolution ( 7680 13824×  square pixels) is large, it often 
exhausted the computer memory in the experiment when processing the original images. In 
addition, the imaging of any of the three experimental areas is only a small part of each image. 
Therefore, we can cut out the three experimental areas in each of the original images separately 
(Figure 17). We used the proposed Self-Adaptive Patch-based Multi-View Stereo-matching 
algorithm (SAPMVS) to address the three sets of cut images separately, and obtained the 3D 
dense point cloud data of each dataset. The 3D dense point cloud data of each dataset are shown 
in Figure 19. The statistics of the results by the proposed SAPMVS algorithm are shown in  
Table 8. 

(a) (b) (c) 

Figure 19. Final 3D point cloud results for the three sets of cut images. (a) Area 1: “Inner City”;  
(b) Area 2: “High Riser”; (c) Area 3: “Residential Area”. 

  

Figure 18. The airborne laser scanner data of the experimental region (Vaihingen).

Remote Sens. 2016, 8, 89 24 of 32 

 

 

Figure 18. The airborne laser scanner data of the experimental region (Vaihingen). 

Because this dataset’s image pixel resolution ( 7680 13824×  square pixels) is large, it often 
exhausted the computer memory in the experiment when processing the original images. In 
addition, the imaging of any of the three experimental areas is only a small part of each image. 
Therefore, we can cut out the three experimental areas in each of the original images separately 
(Figure 17). We used the proposed Self-Adaptive Patch-based Multi-View Stereo-matching 
algorithm (SAPMVS) to address the three sets of cut images separately, and obtained the 3D 
dense point cloud data of each dataset. The 3D dense point cloud data of each dataset are shown 
in Figure 19. The statistics of the results by the proposed SAPMVS algorithm are shown in  
Table 8. 

(a) (b) (c) 

Figure 19. Final 3D point cloud results for the three sets of cut images. (a) Area 1: “Inner City”;  
(b) Area 2: “High Riser”; (c) Area 3: “Residential Area”. 

  

Figure 19. Final 3D point cloud results for the three sets of cut images. (a) Area 1:
“Inner City”; (b) Area 2: “High Riser”; (c) Area 3: “Residential Area”.
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Table 8. The statistics for the results of the Vaihingen data by the proposed
SAPMVS algorithm.

Experiment Area
Number of Images

(Image Pixel
Resolution)

Point
Amount

Average
Distance

between Points

RunTime
(min:s)

Area 1: “Inner City” 8
(1200*1200) 253125 16 cm 11:33

Area 2: “High Riser” 4
(1200*1600) 220073 16 cm 6:30

Area 3: “Residential Area” 6
(1400*1300) 259637 16 cm 9:46

From Table 8 and Figure 19, it can be seen that the computational efficiency of
the proposed SAPMVS algorithm is high and the ground resolution of the obtained
3D dense point cloud is approximately 0.16 m.

To quantitatively describe the accuracy of the proposed algorithm, we can
compare the obtained 3D point cloud results by the PMVS and the proposed
algorithm with the high-precision airborne laser scanner data, respectively. The
specific evaluation method is performed as follows: For each 3D point of the obtained
point-cloud result that was assumed to be Pi pi P r1, nsq, we determine all the laser
points near the point Pi (the XY-plane distance between point Pi and the laser point
should be smaller than the threshold value d, which is related to the average point
density of the airborne laser scanner data, in our experiment d “ 0.25m) in the laser
point cloud data; we then calculate the average elevation Zai of these nearby laser
points as the reference elevation of the point Pi [36]. Finally, we compare the elevation
Zi of the point Pi with its reference elevation Zai and calculate the root mean square
error (RMSE) and the maximum error (Max) of the obtained 3D point cloud [67].
The calculation formulas are as follows:

RMSE “

g

f

f

f

e

n
ř

i“1
pZi ´ Zaiq

2

n
(7)

Max=max |Zi ´ Zai| , i P r1, ns (8)

where n represents the point number of the obtained 3D dense point cloud result. It
should be noted that using this method to evaluate the accuracy of the obtained 3D
dense point cloud has one drawback: At the edge or the fracture line, the value of
|Zi ´ Zai|may become a large value, which is inconsistent with the actual situation,
resulting in a pseudo-error. That is to say, if a 3D point Pi is on the edge (or at one
side of the edge) and the nearby laser points are located outside of the edge (or on the
other side of the edge), the value of |Zi ´ Zai|may become very large, but the large
error is not real (in fact, in that case, the maximum error Max is not meaningful). The
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quantitative evaluation results if we do not remove the pseudo-errors (from statistics,
the frequency of pseudo-errors is relatively small) are shown in Table 9.

Table 9. The quantitative evaluation accuracy of the obtained 3D dense point cloud
without removing pseudo-errors. (a) PMVS; (b) The proposed algorithm.

(a)

Experiment Area Checkpoint
Amount RMSE(m) Max(m) Percentage of

Errors within 1 m
Area 1: “Inner City” 245752 2.180527 20.410379 66.7%
Area 2: “High Riser” 213679 4.032463 30.742815 46.1%
Area 3: “Residential

Area” 252568 2.349705 18.903685 74.1%

(b)

Experiment Area Checkpoint
Amount RMSE(m) Max(m) Percentage of

Errors within 1 m

Area 1: “Inner City” 253125 2.164632 20.307628 66.8%
Area 2: “High Riser” 220073 3.950138 29.812880 46.4%
Area 3: “Residential

Area” 259637 2.328481 18.713413 74.2%

Because there are a certain number of pseudo-errors that may be very large,
when evaluating the accuracy of the obtained 3D dense point cloud, we mainly
focus on the percentage of errors within 1 m (for errors within 1 m, the vast majority
should be a true error; this has valuable reference meaning) and then the RMSE
value. However, the value of Max is a maximum pseudo-error and is not meaningful,
and if there is no such pseudo-error, the actual RMSE value will be much smaller.

Table 9a shows that the percentages of errors within 1 m by the PMVS algorithm
for the three experiment areas (“Area 1”, “Area 2”, and “Area 3”) are 66.7%, 46.1% and
74.1%, respectively, and the corresponding RMSE values are 2.180527 m, 4.032463 m
and 2.349705 m, respectively. Table 9b shows that the percentages of errors within
1 m by the proposed algorithm for the three experiment areas (“Area 1”, “Area
2”, and “Area 3”) are 66.8%, 46.4% and 74.2%, respectively, and the corresponding
RMSE values are 2.164632 m, 3.950138 m and 2.328481 m, respectively. It can be
seen that the accuracy of the proposed algorithm is slightly higher than that of the
PMVS algorithm for the three experiment areas. Additionally, it can be seen that the
matching accuracy from high to low is “Area 3”, “Area 1”, and “Area 2”. Such an
experimental result is reasonable because there are mainly low residential buildings
in “Area 3”, the buildings in “Area 1” are more complex, and the buildings in “Area
2” are very tall; thus, the matching difficulty is gradually increased.

To evaluate the actual accuracy of the PMVS and the proposed algorithm more
precisely, we need to delete some of the large pseudo-errors when calculating the
RMSE value. We can take a simple approach inspired by [68–71]: For “Area 3” and
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“Area 1”, if the value |Zi ´ Zai| of a 3D point is greater than the Elevation Error
Threshold 1 pEET1q, we consider the value of |Zi ´ Zai| as a pseudo-error and delete
the 3D point (do not use it as a checkpoint), while for “Area 2”, if the value |Zi ´ Zai|

of a 3D point is greater than the Elevation Error Threshold 2 pEET2q, we consider
the value of |Zi ´ Zai| as a pseudo-error and delete the 3D point (do not use it as a
checkpoint). The actual and more precise quantitative evaluation results of the two
algorithms are shown in Tables 10 and 11.

Table 10. The actual quantitative evaluation accuracy of the obtained 3D
dense-point cloud by removing the large pseudo-errors (EET1 “ 6m, EET2 “ 9m).
(a) PMVS; (b) The proposed method.

(a)

Experiment Area Point Amount Checkpoint
Amount RMSE(m) Percentage of

Errors within 1 m

Area 1: “Inner City” 245752 243179 1.312648 67.5%
Area 2: “High Riser” 213679 212151 3.402339 46.5%
Area 3: “Residential

Area” 252568 250463 1.587426 74.7%

(b)

Experiment Area Point Amount Checkpoint
Amount RMSE(m) Percentage of

Errors within 1 m

Area 1: “Inner City” 253125 250488 1.301095 67.5%
Area 2: “High Riser” 220073 218508 3.352631 46.7%
Area 3: “Residential

Area” 259637 257470 1.571167 74.8%

Table 10a shows that after we deleted the large pseudo-errors (EET1 “ 6m,
EET2 “ 9m), the RMSE values of the PMVS algorithm for the three experiment areas
(“Area 1”, “Area 2”, and “Area 3”) are 1.312648 m, 3.402339 m and 1.587426 m,
respectively. Table 10b shows that after we deleted the large pseudo-errors
(EET1 “ 6m, EET2 “ 9m), the RMSE values of the proposed algorithm for the
three experiment areas (“Area 1”, “Area 2”, and “Area 3”) are 1.301095 m, 3.352631 m
and 1.571167 m, respectively. It can be seen that the accuracy of the proposed
algorithm is almost equal to that of the PMVS algorithm for the three experiment
areas. In fact, the pseudo-errors that still remain act as a kind of constraint on the
precision of the two algorithms.

33



Table 11. The actual quantitative evaluation accuracy of the obtained 3D dense
point cloud by removing the pseudo-errors (EET1 “ 2m, EET2 “ 3m). (a) PMVS;
(b) The proposed method.

(a)

Experiment Area Point Amount Checkpoint
Amount RMSE (m) Percentage of

Errors within 1 m
Area 1: “Inner City” 245752 240826 0.880695 68.2%
Area 2: “High Riser” 213679 173487 1.351428 57.1%
Area 3: “Residential

Area” 252568 248728 0.898527 75.3%

(b)

Experiment Area Point Amount Checkpoint
Amount RMSE (m) Percentage of

Errors within 1 m

Area 1: “Inner City” 253125 248113 0.870425 68.1%
Area 2: “High Riser” 220073 178565 1.316283 57.2%
Area 3: “Residential

Area” 259637 255674 0.886161 75.3%

Table 11a shows that after we deleted almost all the pseudo-errors (EET1 “ 2m,
EET2 “ 3m), the RMSE values by the PMVS algorithm for the three experiment
areas (“Area 1”, “Area 2”, and “Area 3”) are 0.880695 m, 1.351428 m and 0.898527
m, respectively. Table 11b shows that after we deleted almost all the pseudo-errors
(EET1 “ 2m, EET2 “ 3m), the RMSE values by the proposed algorithm for the three
experiment areas (“Area 1”, “Area 2”, and “Area 3”) are 0.870425 m, 1.316283 m and
0.886161 m, respectively. It can be seen that the accuracy of the proposed algorithm
is almost equal to that of the PMVS algorithm for the three experiment areas. In fact,
because the building coverage of the three experimental regions is high, the overall
accuracy of the dense matching algorithm is bound to decrease. In addition, the
precision of the image orientation elements may act as a small type of constraint on
the precision of the proposed algorithm.

3.2.5. Discussion

Based on experiments on three typical sets of UAV data with different texture
features, the experimental conclusions are as follows:

(1) The proposed multi-view stereo-matching algorithm based on matching control
strategies suitable for multiple UAV imagery and the self-adaptive patch can
address the UAV image data with different texture features effectively. The
obtained dense point cloud has a realistic effect, and the precision is equal to
that of the PMVS algorithm.
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(2) Due to the image-grouping strategy, the proposed algorithm can handle a large
amount of data on a typical computer and is, to a large degree, not restricted by
the memory of the computer.

(3) The proposed matching propagation method based on the self-adaptive patch is
superior to that of the state-of-the-art PMVS algorithm in terms of the processing
efficiency, and has, to some extent, improved the accuracy of the multi-view
stereo-matching algorithm by the self-adaptive spread patch sizes according to
terrain relief, e.g., a small spread patch size for large relief terrain, and avoiding
crossing the terrain edge, i.e., the fracture line.

However, there are several limitations with respect to the proposed approach.
The following aspects should be addressed in future work:

(1) The accuracy and completeness of the proposed algorithm.

In cases of special UAV data characterized by serious terrain discontinuity or
other difficult conditions (low texture and so on), the accuracy and completeness of
the proposed algorithm is not very high [18]. It needs to be further optimized (for
example, after multi-view stereo-matching, we can post-process the 3D dense point
cloud to fill in possible holes and obtain a complete mesh model [18,72]).

(2) The accuracy evaluation method of the proposed algorithm.

In the experimental section, the quantitative description method for the precision
of the proposed algorithm may have certain shortcomings that act as constraints
on the evaluation precision of the proposed algorithm. We have implemented a
simple and effective solution; however, it can be replaced or further improved upon.
There are primarily two approaches that can help avoid the problem of pseudo-error
effectively: (1) First, the reference model was aligned to its image set using an iterative
optimization approach (an Iterative Closest Point alignment, ICP) that minimizes
the photo-consistency function between the reference mesh and the images. The
alignment parameters consist of a translation, rotation, and uniform scale. Second,
we compare the elevation between the dense point cloud obtained from the images
and the reference mesh obtained from the high precision laser points [17,73]; (2) We
can compare the elevation between the high precision Ground Control Points (GCPs)
and the DSM (volume or mesh) or DEM obtained from the dense point cloud for the
images [74–77].

4. Conclusions

Multi-view dense image-matching is a hot topic in the field of digital
photogrammetry and computer vision. In this paper, according to the characteristics
of UAV imagery, we proposed a multi-view stereo image-matching method for UAV
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images based on image-grouping and the self-adaptive patch. This algorithm mainly
processed multiple UAV images with the known orientation elements and could
output a colorful 3D dense point cloud. The main processing procedures were as
follows: First, the UAV images were divided into groups automatically. Then, each
image group was processed in turn, and the processing flow was partitioned into
three parts: (1) multi-view initial feature-matching; (2) matching propagation based
on the self-adaptive patch; and (3) filtering the erroneous matching points. Finally,
considering the overlap problem between groups, the matching results were merged
into a whole.

The innovations of this paper were as follows: (1) An image-grouping strategy
for multi-view UAV image-matching was designed; as a result, the proposed
algorithm can address a large number of UAV image data without the restriction
of computer memory; (2) According to the characteristics of UAV imagery, some
matching control strategies were proposed for multiple UAV image-matching, which
could improve the efficiency of the initial feature-matching process; (3) A new
matching propagation method was designed based on the self-adaptive patch. In the
matching propagation process, the sizes and shapes of the patches could adapt to the
terrain relief automatically, and the patches were prevented from crossing the terrain
edge, i.e., the fracture line. Compared with the matching propagation method of
the PMVS algorithm, the proposed self-adaptive patch-based matching propagation
method not only reduced computing time markedly, but also enhanced integrity to
some extent.

In sum, many practices indicate that the proposed method can address a
large amount of UAV image data with almost no computer memory restrictions
and significantly surpasses the PMVS algorithm in processing efficiency, while the
matching precision is equal to that of the PMVS algorithm.
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Multi-Class Simultaneous Adaptive
Segmentation and Quality Control of Point
Cloud Data
Ayman Habib and Yun-Jou Lin

Abstract: 3D modeling of a given site is an important activity for a wide range of
applications including urban planning, as-built mapping of industrial sites, heritage
documentation, military simulation, and outdoor/indoor analysis of airflow. Point
clouds, which could be either derived from passive or active imaging systems, are an
important source for 3D modeling. Such point clouds need to undergo a sequence
of data processing steps to derive the necessary information for the 3D modeling
process. Segmentation is usually the first step in the data processing chain. This paper
presents a region-growing multi-class simultaneous segmentation procedure, where
planar, pole-like, and rough regions are identified while considering the internal
characteristics (i.e., local point density/spacing and noise level) of the point cloud in
question. The segmentation starts with point cloud organization into a kd-tree data
structure and characterization process to estimate the local point density/spacing.
Then, proceeding from randomly-distributed seed points, a set of seed regions is
derived through distance-based region growing, which is followed by modeling of
such seed regions into planar and pole-like features. Starting from optimally-selected
seed regions, planar and pole-like features are then segmented. The paper also
introduces a list of hypothesized artifacts/problems that might take place during
the region-growing process. Finally, a quality control process is devised to detect,
quantify, and mitigate instances of partially/fully misclassified planar and pole-like
features. Experimental results from airborne and terrestrial laser scanning as well as
image-based point clouds are presented to illustrate the performance of the proposed
segmentation and quality control framework.

Reprinted from Remote Sens. Cite as: Habib, A.; Lin, Y.-J. Multi-Class Simultaneous
Adaptive Segmentation and Quality Control of Point Cloud Data. Remote Sens. 2016,
8, 104.

1. Introduction

Urban planning, heritage documentation, military simulation, airflow analysis,
transportation management, and Building Information Modeling (BIM) are among
the applications that need accurate 3D models of the sites in question. Optical
imaging and laser scanning systems are the two leading data acquisition modalities
for 3D model generation. Acquired images can be manipulated to produce a point
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cloud along the visible surface within the field of view of the camera stations. Laser
scanning systems, on the other hand, are capable of directly providing accurate
point clouds at high density. To allow for the derivation of semantic information,
image and laser-based point clouds need to undergo a sequence of data processing
steps to meet the demands of Digital Building Model—DBM—generation, urban
planning [1], as-built mapping of industrial sites, transportation infrastructure
systems [2], cultural heritage documentation [3], and change detection. Point cloud
segmentation according to pre-defined criteria is one of the initial steps in the data
processing chain. More specifically, the segmentation of planar, pole-like, and rough
regions from a given point cloud is quite important for ensuring the validity and
reliability of the generated 3D models.

As mentioned earlier, optical imagery and laser scanners are two major sources
for indirectly or directly deriving point clouds, which can meet the demands of the
intended 3D modeling applications. Electro-Optical (EO) sensors onboard space
borne, airborne, and terrestrial platforms are capable of acquiring imagery with
high resolution, which could be used for point cloud generation. Identification
of conjugate points in overlapping images is a key prerequisite for image-based
point cloud generation. Within the photogrammetric community, area-based and
feature-based matching techniques have been used [4]. Area-based image matching
is performed by comparing the gray values within a defined template in one image
to those within a larger search window in an overlapping image to identify the
location that exhibits the highest similarity. Pratt [5] proposed the Normalized
Cross-Correlation (NCC) measure, which compensates for local brightness and
contrast variations between the gray values within the template and search windows.
Feature-based matching, on the other hand, compares the attributes of extracted
features (e.g., points, lines, and regions) from overlapping images. Scale Invariant
Feature Transform (SIFT) detector and descriptor can be used to identify and provide
the attributes for key image points (Lowe, 2004). The SIFT descriptor can be then
used to identify conjugate point features in overlapping images. Alternatively, Canny
edge detection and linking can be used to derive linear features from imagery [6].
Then, Generalized Hough Transform can be used to identify conjugate points along
detected edges [7]. Area and feature-based image matching techniques are not
capable of providing dense point clouds, which are needed for 3D object modeling
(i.e., they are mainly used for automated recovery of image orientation). Recently
developed dense image matching techniques can generate point clouds that exhibit
high level of detail [8–10].

In contrast to imaging sensors, laser scanners can directly derive dense point
clouds. Depending on the used platform, a laser scanner can be categorized either
as an Airborne Laser Scanner (ALS), a Terrestrial Laser Scanner (TLS), or a Mobile
Terrestrial Laser Scanner (MTLS). TLS systems provide point clouds that are referred
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to the laser-unit coordinate system. For ALS and MTLS systems, the onboard direct
geo-referencing unit allows for the derivation of the point cloud coordinates relative
to a global reference frame (e.g., WGS84). ALS systems are used for collecting
relatively coarse-scale elevation data. Due to the pulse repetition rate, flying height,
and speed of available systems/platforms, the Local Point Density (LPD) within
ALS point clouds is lower, when compared with TLS and MTLS point clouds. The
point density within an ALS-based point cloud can range from 1 to 40 pts/m2 [11].
Such point density is suitable for Digital Terrain Model (DTM) generation [12,13] and
Digital Building Model (DBM) generation at a low level of detail [14,15]. However,
ALS cannot provide point clouds, which are useful for modeling building façades,
above-ground pole-like features such as light poles, and trees. As a result of their
proximity to the objects of interest, TLS and MTLS systems can deliver dense point
clouds for the extraction and accurate modeling of transportation corridors, building
façades, and trees/bushes. El-Halawany et al. [16] utilized MTLS point clouds
to identify ground/non-ground points and extract road curbs for transportation
management applications. TLS and MTLS point clouds have been also used for 3D
pipeline modeling, which is valuable for plant maintenance and operation [17,18]
and building façade modeling [19].

Point-cloud-based object modeling usually starts with a segmentation process
to categorize the data into subgroups that share similar characteristics. Segmentation
approaches can be generally classified as being either spatial or parameter domain.
For the spatial-domain approach, e.g., region-growing based segmentation, the
point cloud is segmented into subgroups according to the spatial proximity and
similarity of local attributes of its constituents [20]. More specifically, starting
from seed points/regions, the region-growing process augments neighboring points
using a pre-defined similarity measure. The spatial proximity and local attribute
determination depends on whether the point cloud is represented as raster, Triangular
Irregular Network (TIN), or un-structured set. Rottensteiner and Briese [21]
interpolated non-organized point clouds to generate a Digital Surface Model (DSM),
which is then used to detect building regions through height and region-growing
analysis of the DSM-based binary image. The region-growing process is terminated
whenever the Root Mean Square Error (RMSE) of a plane-fitting process exceeds a
pre-set threshold. Forlani et al. [22] used a region-growing process to segment raster
elevation data, where the height gradient between neighboring cells is used as the
stopping criterion. For TIN-based point clouds, the spatial neighborhood among
the generated triangles and the similarity of the respective surface normals have
been used for the segmentation process [23]. For non-organized point clouds, data
structuring approaches (e.g., Kd-trees or Octree data structures) are used to identify
local neighborhoods and derive the respective attributes [24,25]. Yang and Dong [26]
classified point clouds using Support Vector Machines (SVMs) into planar, linear, and
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spherical local neighborhoods. Then, region growing is implemented by checking
the similarity of derived attributes such as principal direction, normal vector, and
intensity. Region-growing segmentation approaches are usually preferred due to their
computational efficiency. However, their performance is quite sensitive to noise level
within the point cloud in question as well as the selected seed-points/regions [27–29].

For the parameter-domain approach, a feature vector is first defined for the
individual points using their local neighborhoods. Then, the feature vectors
are incorporated in an attribute space/accumulator array where peak-detection
techniques are used to identify clusters—i.e., points sharing similar feature vectors.
Filin and Pfeifer [30] used a slope-adaptive neighborhood to derive the local
surface normal for the individual points. Then, they defined a feature vector that
encompasses the position of the point and the normal vector to the tangent plane
at that point. Then, a mode-seeking algorithm is used to identify clusters in the
resulting attribute space [31]. Biosca and Lerma [32] utilized three attributes—namely,
normal distance to the fitted plane through a local neighborhood from a defined
origin, normal vector to the fitted plane, and normal distance between the point in
question and the fitted plane—to define a feature vector. Then, an unsupervised
fuzzy clustering approach is implemented to identify peaks in the attribute space.
Lari and Habib [29] introduced an approach where the individual points have been
classified as either belonging to planar or linear/cylindrical local neighborhoods
using Principal Component Analysis (PCA). Then, the attributes of the classified
features are stored in different accumulator arrays where peaks are identified
without the need for tessellating such array to detect planar and pole-like features.
Parameter-domain segmentation techniques do not depend on seed points. However,
the identification of peaks in the constructed attribute space is a time-consuming
process, whose complexity depends on the dimensionality of the involved feature
vector [27]. Moreover, spatially-disconnected segments that share the same
attributes will be erroneously grouped together. In general, existing spatial-domain
and parameter-domain segmentation techniques do not deal with simultaneous
segmentation of planar, pole-like, and rough regions in a given point cloud.

The outcome of a segmentation process usually suffers from some artifacts [33].
The traditional approach for Quality Control (QC) of the segmentation result is based
on having reference data, which is manually generated, and deriving correctness and
completeness measures [34,35]. The correctness measure evaluates the percentage
of correctly-segmented constituents of regions in a given class relative the total
size of that class in the segmentation outcome. The completeness measure, on
the other hand, represents the percentage of correctly-segmented constituents of
regions in a given class relative to the total size of that class in the reference
data. The reliance on reference data to evaluate the correctness and completeness
measures is a major disadvantage of such QC measures. Therefore, prior research has
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addressed the possibility of deriving QC measures that are not based on reference
data. More specifically, Belton, Nurunnabi et al., and Lari and Habib [36–38]
developed QC measures that make hypotheses regarding possible segmentation
problems, propose procedures for detecting instances of such problems, and develop
mitigation approaches to fix such problems without the need for having reference
data. Over-segmentation—where a single planar/pole-like feature is segmented into
more than one region, and under segmentation—where multiple planar/pole-like
features are segmented as one region are key segmentation problems that have been
considered by prior literature. More specifically, problems associated with planar and
pole-like feature segmentation are independently addressed. However, segmentation
problems arising from possible competition among neighboring planar and pole-like
features have not been addressed by prior research.

In this paper, we present a region-growing and quality-control framework for
the segmentation of planar, pole-like, and rough features. The main characteristics of
the proposed procedure are as follows:

1. Planar and varying-radii pole-like features are simultaneously segmented,
2. ALS, TLS, MTLS, and image-based point clouds can be manipulated by the

proposed segmentation procedure,
3. The region-growing process starts from optimally-selected seed regions to

reduce the sensitivity of the segmentation outcome to the choice of the
seed location,

4. The region-growing process considers variations in the local characteristics of
the point cloud (i.e., local point density/spacing and noise level),

5. The QC process considers possible competition among neighboring planar and
pole-like features for the same points,

6. The QC procedure considers possible artifacts arising from the sequence of the
region growing process, and

7. The QC process considers the possibility of having partially or fully
misclassified planar and pole-like features.

The paper starts with a presentation of the proposed segmentation and quality
control procedures. Then, comprehensive results from ALS, TLS, and image-based
point clouds are discussed to illustrate the feasibility of the proposed procedure.
Finally, the paper concludes with a summary of the main characteristics, as
well as the limitations of the proposed methodology/framework together with
recommendations for future research.

2. Proposed Methodology

As can be seen in Figure 1, the proposed methodology proceeds according
to the following steps: (1) structuring and characterization of the point cloud;
(2) distance-based region growing starting from randomly-selected seed points to
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define seed regions with pre-defined size; (3) PCA-based classification and feature
modeling of generated seed regions; (4) Sequential region-growing according to
the quality of fit between neighboring points and the fitted-model through the
constituents of the seed regions; (5) PCA-based classification, model-fitting, and
region growing of non-segmented points; (6) distance-based region growing for the
segmentation of rough points; and (7) quality control of the segmentation outcome.
The following subsections introduce the technical details of these steps.

Figure 1. Framework for the multi-class segmentation and quality
control procedure.

2.1. Simultaneous Segmentation of Planar and Pole-Like Features Starting from
Optimally-Selected Seed Regions

In this subsection, we introduce the conceptual basis and implementation details
for the first four steps of the processing framework in Figure 1 (i.e., data structuring
and characterization, establishing seed regions, PCA-based classification and
modeling of the seed regions, and sequential region-growing from optimally-selected
seed regions).

2.1.1. Data Structuring and Characterization

For non-organized point clouds, it is important to re-organize such data to
facilitate the identification of the nearest neighbor or nearest n-neighbors for a given
point. TIN, grid, voxel, Octree, and kd-tree data structures are possible alternatives
for facilitating the search within a non-organized point cloud [39–44]. In this research,
the kd-tree data structure is utilized for sorting and organizing a set of points since it
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leads to a balanced tree—i.e., a binary tree with the minimum depth—which improves
the efficiency of the neighborhood-search process. The kd-tree data structure is
established by recursive sequential subdivision of the three-dimensional space along
the X, Y, and Z directions starting with the one that has the longest extent. The
splitting plane is defined to be perpendicular to the direction in question and passes
through the point with the median coordinate along that direction. The 3D recursive
splitting proceeds until all the points are inserted in the kd-tree.

The outcome of any region-growing segmentation approach depends on
the search radius, which is used to identify neighboring points that satisfy a
predefined similarity criterion. This search radius should be based on the Local
Point Density/Spacing (LPD/LPS) for the point under consideration. For either
laser-based or image-based point clouds, the LPD/LPS will change depending on
the utilized sensor and/or platform as well as the sensor-to-object distance. For
image-based point clouds, the LPD/LPS can be also affected by object texture or
illumination conditions. Therefore, we need to estimate a unique LPD/LPS for every
point within the dataset in question. More specifically, for every point, we establish
a local neighborhood that contains a pre-specified number of points. As stated in
Lari and Habib [36], the evaluation of the LPD/LPS requires the identification of the
nature of the local surface at the vicinity of the query point (i.e., LPD/LPS evaluation
depends on whether the local surface is defined by a planar, thin linear, cylindrical,
or rough feature—please, refer to the reported statistics in Table 1). The number
of used points to define the local surface should be large enough to ensure that
the local surface is correctly identified for valid estimation of the LPD/LPS. In this
research, a total of 70 points have been used to define the local neighborhood for
a given point. Then, a PCA procedure is used to identify the nature of the defined
local neighborhood—i.e., determine whether it is part of a planar, pole-like, or rough
region [45]. Depending on the identified class, the corresponding LPD—pnts{m for
thin pole-like features, pnts{m2 for planar and cylindrical features, and pnts{m3 for
rough regions—and the corresponding LPS are estimated according to the established
measures in Lari and Habib [38].

2.1.2. Distance-Based Region Growing for the Derivation of Seed Regions

This step starts by forming a set of seed points that are randomly distributed
within the point cloud in question. Rather than directly defining seed regions,
which are centered at the randomly-established seed points, we define the seed
regions through a distance-based region growing. More specifically, starting
from a user-defined percentage of randomly-selected seed points, we perform
a distance-based region growing (i.e., the spatial closeness of the points to the
seed point in question as determined by the LPS is the only used criterion). The
distance-based region growing continues until pre-specified region size is attained.
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This approach for seed-region definition will ensure that the seed region is large
enough, while avoiding the risk of having the seed region comprised of points from
two or more different classes. Therefore, when dealing with different features that are
spatially close to each other, we ensure that the seed regions belong to the individual
objects as long as the spatial separation between those features is larger than the
LPS. Having larger seed regions that belong to individual objects will lead to better
identification of the respective models associated with those neighborhoods, which
in turn will increase the reliability of the segmentation procedure.

Table 1. LPD statistics for the different datasets.

ALS TLS1 TLS2 TLS3 DIM

Number of Points 812,980 170,296 201,846 455,167 230,434
Max. Planar LPD (pts/m2) 4.518 1549 324.54 73,443 404
Min. Planar LPD (pts/m2) 0.058 1.687 «0.000 17.351 1.234
Mean Planar LPD (pts/m2) 2.596 781 27.305 17,685 104
Max. Linear LPD (pts/m) 10.197 140 8.473 1,186 0
Min. Linear LPD (pts/m) 7.708 16.777 8.473 55.093 0
Mean Linear LPD (pts/m) 8.960 62.396 8.473 276 0

Max. Cylindrical LPD
(pts/m2) 3.204 2,423 999 34,337 375

Min. Cylindrical LPD
(pts/m2) 2.059 6.132 1.707 10.063 3.066

Mean Cylindrical LPD
(pts/m2) 2.990 313 41.216 6,055 46.045

Max. Rough LPD (pts/m3) 1.329 9,267 2,120 1,954,807 1217
Min. Rough LPD (pts/m3) 0.001 1.980 «0.000 11.688 0.053
Mean Rough LPD (pts/m3) 0.363 1818 26.238 230,796 145

2.1.3. PCA-Based Classification and Modeling of Seed Regions

Now that we defined the seed regions, we use PCA to identify whether
they belong to planar, pole-like, or rough neighborhoods. More specifically, the
relationships among the normalized Eigen values of the dispersion matrix of the
points within a seed region relative to its centroid are used to identify planar seed
regions (i.e., where two of the normalized Eigen values are significantly larger than
the third one), pole-like seed regions (i.e., where one of the normalized Eigen values
is significantly larger the other two), and rough seed regions (i.e., where the three
normalized Eigen values are of similar magnitude). For planar and pole-like seed
regions, a Least Squares Adjustment (LSA) model-fitting procedure is used to derive
the plane/pole-like parameters together with the quality of fit between the points
within the seed region and the defined model as represented by the respective
a-posteriori variance factor (this a-posteriori variance factor will be used as an
indication of the local noise level within the seed region). For a planar seed region,
the LSA estimates the three plane parameters—a, b, and c—using either Equation (1),
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(2), or (3) (the choice of the appropriate plane equation depends on the orientation of
the Eigen vector corresponding to the smallest Eigen value—i.e., the one defining the
normal to the plane)—refer to Figure 2. For a pole-like feature, the LSA estimates its
radius together with four parameters that define the coordinates of a point along the
axis and the axis orientation—p, q, a, and b—using either Equation (4), (5), or (6) (the
choice of the appropriate equation depends on the orientation of the Eigen vector
corresponding to the largest Eigen value—i.e., the one defining the axis orientation
of the pole-like feature)—refer to Figure 3. One should note that the variable t in
Equations (4)–(6), depends on the distance between the projection of any point onto
the axis of the pole-like feature and the utilized point along the axis—i.e., (p,q,0) for
the axis defined by Equation (4), (p,0,q) for the axis defined by Equation (5), or (0,p,q)
for the axis defined by Equation (6) (refer to Figure 3).

z “ ax` by` c (1)

y “ ax` bz` c (2)

x “ ay` bz` c (3)

x “ p` t a
y “ q` t b

z “ t
(4)

x “ p` t a
y “ t

z “ q` t b
(5)

x “ t
y “ p` t a
z “ q` t b

(6)

Figure 2. Representation scheme for 3D planar features; planes that are almost
parallel to the xy ´ plane (a); planes that are almost parallel to the xz ´ plane (b);
and planes that are almost parallel to the yz ´ plane (c).

50



Figure 3. Representation scheme for 3D pole-like features; pole-like features that
are almost parallel to the z ´ axis (a); pole-like features that are almost parallel to
the y ´ axis (b); and pole-like features that are almost parallel to the x ´ axis (c).

2.1.4. Region-Growing Starting from Optimally-Selected Seed Regions

In this research, the seed regions representing planar and pole-like features are
sorted according to an ascending order for the evaluated a-posteriori variance factor
in the previous step. One should note that such a-posteriori variance factor is an
indication of the normal distances between the points within the seed region and the
best-fitted model—i.e., it is an indication of the noise level in the dataset as well as
the compatibility of the physical surface and the underlying mathematical model.
Starting with the seed region that has the minimum a-posteriori variance factor,
a region-growing process is implemented while considering the spatial proximity
as defined by the LPS and the normal distance to the defined model through the
seed region as the similarity criteria. Throughout the region-growing process, the
model parameters and a-posteriori variance factor are sequentially updated. For
a given seed region, the growing process will proceed until no more points could
be added. The sequential region growing according to the established quality of
fit—i.e., a-posteriori variance factor—will ensure that seed regions showing better
fit to the planar or pole-like feature model are considered first. Thus, rather than
starting the region growing from randomly established seed points, we start the
growing from locations that exhibit good fit with the pre-defined models for planar
and pole-like features.

2.1.5. Sequential Segmentation of Non-Segmented Points and Rough Regions

Depending on the user-defined percentage of seed points, one should expect
that some points might not be segmented or considered since they are not within
the immediate vicinity of seed points that belong to the same class or they happen
to be at the neighborhood of rough seed regions. To consider such situations, we
implement a sequential region-growing process by going through the points within
the kd-tree data structure starting from its root and identifying the points that have
not been segmented/classified so far. Whenever a non-segmented/non-classified
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point within the kd-tree data structure is encountered, the following region-growing
procedure is implemented:

1. Starting from a non-segmented/non-classified point, a distance-based region
growing is implemented, according the established LPS, until a pre-defined
seed-region size is achieved.

2. For the established seed region, PCA is used to decide whether the seed region
represents planar, pole-like, or rough neighborhood. If the seed region is
deemed as being part of a planar or pole-like feature, the parameters of the
respective model are estimated through a LSA procedure.

3. A region-growing process is carried out using the LPS and quality of fit
with the established model in the previous step as the similarity measures.
Throughout the region-growing process, the model parameters and the
respective a-posteriori variance factor are sequentially updated.

4. Steps 1–3 are repeated until all the non-segmented/non-classified nodes within
the kd-tree data structure are considered.

The last step of the segmentation process, is grouping neighboring points that
belong to rough regions. This is carried out according to the following steps:

1. For the seed regions, which have been classified as being part of rough
neighborhoods during the first or the second stages of the segmentation procedure,
we conduct a distance-based region-growing of non-segmented points.

2. Finally, we inspect the kd-tree starting from its root node to identify non-segmented/
non-classified nodes, which are utilized as seed points for a distance-based
segmentation of rough regions.

At this stage, the constituents of a point cloud have been classified and
segmented into planar, pole-like, and rough segments. For planar and pole-like
features, we have also established the respective model parameters and a-posteriori
variance factor, which describes the average normal distance between the constituents
of a region and the best-fit model.

2.2. Quality Control of the Segmentation Outcome

In spite of the facts that, (1) the proposed region-growing segmentation strategy
has been designed to optimally-select seed regions that exhibit the best quality
of fit to the LSA-based planar/pole-like models; and (2) the region growing is
based on the established LPS for the individual points, one cannot guarantee that
the segmentation outcome will be perfect (i.e., the segmentation outcome might
still exhibit artifacts). For example, one should expect that segmented regions at
an earlier stage might invade segmented regions at a later stage. Additionally,
due to the location of the randomly-established seed points and the nature of the
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objects within the point cloud, there might be instances where seed regions are
wrongly classified (e.g., a portion of a planar feature is wrongly classified as a
pole-like feature or a set of contiguous pole-like features are identified as a planar
segment). As has been mentioned in the Introduction, prior research has dealt
with the detection and mitigation of over-segmentation and under-segmentation
problems. However, prior research does not consider potential artifacts that might
arise when simultaneously segmenting planar, pole-like, and rough regions. The
proposed quality control framework proceeds according to the following three
stages; namely, (1) developing a list of hypothesized artifacts/problems that might
take place during the segmentation process; (2) developing procedures for the
detection of instances of such artifacts/problems without the need for having
reference data; and (3) developing approaches to mitigate such problems whenever
detected. The following list provides a summary of hypothesized problems that
might take place within a multi-class simultaneous segmentation of planar and
pole-like features; Figure 4a–f is a schematic illustration of such problems—in
sub-figures a, b, c, e, and f classified planar regions are displayed in light blue
while classified pole-like features are displayed in light green:

1. Misclassified planar features: Depending on the LPD/LPS and pre-set size for
the seed regions, a pole-like feature might be wrongly classified as a planar
region. This situation might be manifested in one of the following scenarios:

a Single pole-like feature is wrongly classified as a planar region
(Figure 4a), and

b Multiple contiguous pole-like features are classified as a single planar
region (Figure 4b).

2. Misclassified linear features: depending on the location of the randomly-established
seed points, a portion of a planar region might be classified as a single pole-like
feature (Figure 4c).

3. Partially misclassified planar and pole-like features: Depending on the order of
the region growing process, segmented planar/pole-like features at the earlier
stage of the segmentation process might invade neighboring planar/pole-like
features. This situation might be manifested in one of the following scenarios:

a Earlier-segmented planar regions invade neighboring planar features
(Figure 4d),

b Earlier-segmented planar regions fully or partially invade neighboring
pole-like features (Figure 4e, where a planar region partially invade a
neighboring pole-like feature), and

c Earlier-segmented pole-like features invade neighboring planar features
(Figure 4f).
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Figure 4. Possible segmentation artifacts; misclassified planar features (a,b);
misclassified pole-like feature (c); partially misclassified planar features (d,e);
and partially misclassified pole-like feature (f)—planar and pole-like features are
displayed in light blue and light green, respectively, in subfigures (a), (b), (c), (e), (f).

The above problems can be categorized as follows: (1) Interclass competition
for neighboring points; (2) Intraclass competition for neighboring points; and
(3) Fully/partially-misclassified planar and pole-like features. To deal with such
segmentation problems, we introduce the following procedure to detect and mitigate
instances of such problems:

1. itial mitigation of interclass competition for neighboring points: A key problem
in region-growing segmentation is that derived regions at an early stage might
invade neighboring features of the same or different class, which are derived
at a later stage. In this QC category, we consider potential invasion among
features that belong to different classes. Specifically, for segmented features
in a given class (i.e., planar or pole-like features), features in the other classes
(including rough regions) will be considered as potential candidates that could
be incorporated into the constituent regions of the former class. For example,
the constituents of pole-like features and rough regions will be considered as
potential candidates that could be incorporated into planar features. In this case,
if a planar feature has potential candidates, which are spatially close as indicated
by the established LPS, and the normal distance between those potential
candidates and the LSA-based model through that planar feature is within
the respective a-posteriori variance factor, those potential candidates will be
incorporated into the planar feature in question. The same procedure is applied
for pole-like features, while considering planar and rough regions as potential
candidates. In this regard, the respective QC measure—QCinterclass competition—is
evaluated according to Equation (7), where nincorporated represents the number
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of incorporated points from other classes and npotential candidates represents the
number of potential candidates for this class. For that QC measure, lower
percentage indicates lower instances of points that have been incorporated from
other classes.

QCinterclass competition “ nincorporated{npotential candidates (7)

2. Mitigation of intraclass competition for neighboring points: This problem
takes place whenever a feature, which has been derived at the earlier stage
of the region growing, invades other features from the same class that have
been segmented at a later stage. One can argue that intraclass competition
for pole-like features is quite limited (this is mainly due to the narrow spread
of pole-like features across its axis). Therefore, for this QC measure, we only
consider intraclass completion for planar features (as can be seen in Figure 4d,
where the middle planar regions invade the left and right planar features with
the invading portions highlighted by red ellipses). Detection and mitigation
of such problem starts by deriving the inner and outer boundaries of the
segmented planar regions (Figure 5 illustrates an example of inner and outer
boundaries for a given segment). The inner and outer boundaries can be derived
using the minimum convex hull and inter-point-maximum-angle procedures
presented by Sampath and Shan [44] and Lari and Habib [45], respectively.
Then, for each of the planar regions, we check if some of their constituents are
located within the boundaries of neighboring regions and at the same time the
normal distances between such constituents and the fitted model through the
neighboring regions are within their respective a-posteriori variance factor. In
such a case, the individual points that satisfy these conditions are transformed
from the invading planar feature to the invaded one. For such QC category,
the respective measure is determined according to Equation (8), where ninvading
represents the number of invading planar points that have been transformed
from the invading to the invaded segments and nplane total represents the total
number of originally-segmented planar points. In this case, lower percentage
indicates lower instances of such problem.

QCintraclass competition “ ninvading{nplane total (8)

3. Single pole-like feature wrongly classified as a planar one: To detect such
instances (Figure 4a is a schematic illustration of such situation), we perform
PCA of the constituents of the individual planar features. For such segmentation
problem, the PCA-based normalized Eigen values will indicate 1-D spread
of such regions. Whenever such scenario is encountered, the LSA-based
parameters of the fitted cylinder through this feature together with the

55



respective a-posteriori variance factor are derived. The planar feature will
be reclassified as a pole-like one if the latter’s a-posteriori variance factor
is almost equivalent to the planar-based one. For this case, the respective
QC measure—QCreclassi f ied linear f eaure—is represented by Equation (9), where
nreclassi f ied lines is the number of points within reclassified linear features and
nplane total is the total number of points within the originally-segmented planar
features. In this case, lower percentage indicates fewer instances of such
a problem.

QCreclassi f ied linear f eatures “ nreclassi f ied lines{nplane total (9)

Figure 5. Inner and outer boundary derivation for the identification of intraclass
competition for neighboring points.

4. Mitigation of fully or partially misclassified pole-like features: For this problem
(as illustrated by Figure 4c,f), we identify pole-like features or portions of
pole-like features that are encompassed within neighboring planar features.
The process starts with identifying neighboring pole-like and planar features
where the axis of the pole-like feature is perpendicular to the planar-feature
normal. Then, the constituents of the pole-like feature are projected onto the
plane defined by the planar feature. Instances, where the pole-like feature is
encompassed—either fully or partially—within the planar feature, are identified
by slicing the pole-like feature in the across direction to its axis. For each of
the slices, we determine the closest planar point(s) that does (do) not belong
to the pole-like feature in question (e.g., point a in Figure 6a or points a and b
in Figure 6b). If the closest point(s) happen to be immediate neighbor(s) of
the constituents of that slice (as defined by the established LPS), then one can
suspect that the portion of the pole-like feature at the vicinity of that slice
might be encompassed within the neighboring planar region (i.e., that portion
of the pole-like feature might be invading the planar region). To confirm or
reject this suspicion, we evaluate the normal distances between the constituents
of the slice and the neighboring planar region. If these normal distances are
within the respective a-posteriori variance factor for the planar region, we
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confirm that the slice is encompassed within the planar region. Whenever the
pole-like feature is fully encompassed within the planar region (Figure 6a),
all the slices will have immediate neighbors from that planar region while
having minimal normal distances. Consequently, the entire pole-like feature
will be reassigned to the planar region. On the other hand, whenever the
linear feature is partially encompassed within the planar region, we identify the
slices where the closest neighbors to such slices are not immediate neighbors
(Figure 6b). The portion of the pole-like feature, which is defined by such
slices, will be retained while the other portion will be reassigned to the planar
region. The QC measure in this case is defined by Equation (10), where
nencompassed line points represents the number of points within the pole-like feature
that are encompassed within the planar feature and nline total is the total number
of points within the originally-segmented linear features. Lower percentage
indicates fewer instances of such problem.

QCpartially{ f ully misclassi f ied pole´like f eatures “ nencompassed line points{nline total (10)

Figure 6. Slicing and immediate-neighbors concept for the identification of
fully/partially misclassified pole-like features (a)/(b).

5. Mitigation of fully or partially misclassified planar features: The conceptual
basis of the implemented procedure to detect instances of such problem (as
illustrated by Figure 4b,e) is that whenever planar features are either fully
(Figure 4b) or partially (Figure 4e) misclassified, a significant portion of the
encompassing Minimum Bounding Rectangle (MBR) will not be occupied by
those features (refer to Figure 7a). In this regard, one should note that the MBR
denotes the smallest area rectangle that encompasses the identified boundary
of the planar region in question [46]. Therefore, to detect instances of such
problem, we start by defining the MBR for the individual planar regions. Then,
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we evaluate the ration between the area of the planar region in question and
the area of the encompassing MBR. Whenever this area is below a pre-defined
threshold, we suspect that the planar feature in question might contain pole-like
features, which will take the form of tentacles to the original planar region (as
can be seen in Figure 7a). To identify such features, we perform a 2D-linear
feature segmentation procedure, which is similar to the one proposed earlier
with the exception that it is conducted in 2D rather than 3D (i.e., the line
parameters would include slope, intercept, and width)—refer to Figure 7b.
More specifically, pre-defined percentage of seed points are established. Then,
a distance-based region growing is carried out to define seed regions with
pre-set size. A 2D-PCA and line fitting procedure is conducted to identify
seed regions that represent 2D lines. Those seed regions are then incorporated
within a region-growing process that considers both the spatial closeness of the
points and their normal distance to the fitted 2D lines. Following the 2D-line
segmentation, an over-segmentation quality control is carried out to identify
single linear features that have been identified as multiple ones. Moreover,
the conducted QC in the previous step is implemented to identify partially
misclassified linear features—i.e., the invading portion of the linear feature(s)
(refer to Figure 7c). The QC measure for such problem is evaluated according
to Equation (11), where nmisclassi f ied plane points represents the number of points
within the planar feature that belong to 2D lines and nplane total is the total
number of originally-segmented planar points. Lower percentage indicates
fewer instances of such problem.

QCpartially{ f ully misclassi f ied planar f eatures “ nmisclassi f ied plane points{nplane total (11)

Figure 7. Segmented planar feature—in light blue—and the encompassing
MBR—in red (a); segmented linear features—in green (b); and final segmentation
after the identification of partially-misclassified linear features (c).

3. Experimental Results

To illustrate the performance of the segmentation and quality control procedure,
this section provides the segmentation and quality control results using ALS, TLS,
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and image-based point clouds. The main objectives of the conducted experiments
are as follows:

1. Prove the feasibility of the proposed segmentation procedure in handling data
with significant variation in LPD/LPS as well as inherent noise level,

2. Prove the feasibility of the proposed segmentation procedure in handling
data with different distribution and concentration of planar, pole-like, and
rough regions,

3. Prove the capability of the proposed QC procedure in detecting and quantifying
instances of the hypothesized segmentation problems, and

4. Prove the capability of the proposed QC procedure in mitigating instances of
the hypothesized segmentation problems.

The following subsections provide the datasets description, segmentation
results, and the outcome of the quality control procedure.

3.1. Datasets Description

Airborne Laser Scanner Dataset—ALS: This dataset is captured by an Optech
ALTM 3100 over an urban area that includes planar roofs, roads, and trees/bushes.
The extent of the covered area is roughly 0.5 km ˆ 0.5 km. Figure 8a shows a
perspective view of the ALS point cloud, where the color is based on the height of
the different points.

First Terrestrial Laser Scanner Dataset—TLS1: This dataset is captured by a
FARO Focus3D X330 scanner. The effective scan distance for this scanner ranges
from 0.6 m up to 330 m. The ranging error is ˘2 mm. The scanner is positioned at
the vicinity of a building façade with planar and cylindrical features whose radii is
almost 0.6 m. The extent of the covered area is approximately 35 m ˆ 20 m ˆ 10 m.
Figure 8b illustrates the perspective view of this dataset with the colors derived from
the scanner-mounted camera.

Second Terrestrial Laser Scanner Dataset—TLS2: This dataset is captured by
Leica HDS 3000 scanner. The effective san distance for this unit ranges up to 300 m
with ˘6 mm position accuracy at 50 m. The covered area includes a planar building
façade, some light poles, and trees/bushes. The extent of the covered area is almost
250 m ˆ 200 m ˆ 26 m. A perspective view of this dataset is illustrated in Figure 8c.

Third Terrestrial Laser Scanner Dataset—TLS3: This dataset covers an electrical
substation and is captured by a FARO Focus3D X130 scanner. The effective scan
distance ranges from 0.6 m up to 130 m. The ranging error is ˘2 mm. The dataset
is mainly comprised of pole-like features with relatively small radii. The extent of
the covered area is roughly 12 m ˆ 10 m ˆ 6 m. A perspective view of this dataset is
provided in Figure 8d with the colors derived from the scanner-mounted camera.
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Figure 8. Perspective views of the point clouds from the ALS (a); TLS1 (b); TLS2
(c); TLS3 (d); and DIM (e) datasets.

Dense Image Matching Dataset—DIM: This dataset, which is shown in Figure 8e,
is derived from a block of 28 images captured by a GoPro 3 camera onboard a DJI
Phantom 2 UAV platform over a building with complex roof structure. The extent
of the covered area is approximately 100 m ˆ 130 m ˆ 17 m. A Structure from
Motion (SfM) approach developed by He and Habib [46] is adopted for automated
determination of the frame camera EOPs as well as sparse point cloud representing
the imaged area relative to an arbitrarily-defined local reference frame. Then, a
semi-global dense matching is used to derive a dense point cloud from the involved
images [9].

The processing framework starts with data structuring as well as deriving the
LPD/LPS for the point clouds in the different datasets. For LPD/LPS estimation,
the closest 70 points have been used. Ratios among the PCA-based Eigen values are
used to classify the local neighborhoods into planar, pole-like, and rough regions.
For Planar regions, the smallest normalized Eigen value should be less than 0.03,
while the ration between the other two should be larger than 0.6. For pole-like
neighborhoods, on the other hand, the largest normalized Eigen value should be
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larger than 0.7. The number of the involved points and the statistics of the LPD for
the different datasets are listed in Table 1, where one can observe the significant
variations in the derived LPD values.

3.2. Segmentation Results

This section provides the segmentation results for planar, pole-like, and rough
regions from the different datasets. Before discussing the segmentation results,
we introduce the different thresholds, the rationale for setting them up, and the
utilized numerical values. The proposed region-growing segmentation methodology
involves three thresholds: (1) Percentage of randomly-selected seed points relative
to the total number of available points within the dataset—For the above datasets,
this percentage is set to 10%. One should note that using larger percentage value
did not make a significant impact on the segmentation results; (2) Pre-set size of the
seed regions—This size should be set-up in a way to ensure that the seed region is
large enough for reliable estimation of the model parameters associated with that
region. For the conducted tests, the pre-set region size is set to 100; (3) Normal
distance threshold—In general, the normal distance threshold for the region-growing
process is based on the derived a-posteriori variance factor from the LSA parameter
estimation procedure. However, we set upper threshold values that depend on
the sensor specifications (i.e., the normal distance thresholds are not allowed to go
beyond these values). For the conducted experiments, the ALS-based region-growing
normal distance is set to 0.2 m. For the TLS and DIM datasets, the normal distance
threshold is set to 0.05 m. The proposed methodology is implemented in C#. The
experiments are conducted using a computer with 16 GB RAM and Intel(R) Core(TM)
i7-4790 CPU @3.60 GHz. The time performance of the proposed data structuring,
characterization, and segmentation is listed in Table 2.

Table 2. Time performance of the proposed segmentation.

ALS TLS1 TLS2 TLS3 DIM

Number of Points 812,980 170,296 201,846 455,167 230,434
Data Structuring and Characterization
(mm:ss) 08:15 01:48 02:02 06:57 02:34

Segmentation Time (mm:ss) 11:40 02:55 01:33 06:37 03:56
Total Time (mm:ss) 19:55 04:43 03:35 13:34 06:30

Figures 9 and 10 present the feature classification and segmentation results,
respectively. For the classification results in Figure 9, planar, pole-like, and rough
regions are shown in blue, green, and red, respectively. As can be seen in Figure 9,
ALS, TLS2, and DIM datasets are mainly comprised of planar and rough regions.
TLS1 and TLS3, on the other hand, mainly include planar and pole-like features,
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where large-radii pole-like features are present in TLS1 and the majority of TLS3 is
comprised of small-radii cylinders. In Figure 10, the segmented planar, pole-like,
and rough regions are shown in different colors. Visual inspection of the results in
Figure 10 indicates that a good segmentation has been achieved. To quantitatively
evaluate the quality of such segmentation, the previously-discussed QC measures
are used to denote the frequency of detected artifacts.

Figure 9. Perspective views of the classified point clouds for the ALS (a);
TLS1 (b); TLS2 (c); TLS3 (d); and DIM (e) datasets (planar, pole-like, and rough
regions are shown in blue, green, and red, respectively).
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Figure 10. Perspective views of the segmented point clouds for the ALS (a); TLS1
(b); TLS2 (c); TLS3 (d); and DIM (e) datasets (different segments are shown in
different colors).

3.3. Quality Control Outcome

The quality control procedure has been implemented according to the following
sequence: QC1) detection and mitigation of single pole-like features that have been
misclassified as planar ones, QC2) initial mitigation of interclass competition for
neighboring points, QC3) detection and mitigation of over-segmentation problems,
QC4) detection and mitigation of intraclass competition for neighboring points, QC5)
detection and mitigation of fully/partially misclassified pole-like features, and finally
QC6) detection and mitigation of fully/partially misclassified planar features. One
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should note that for QC3, the respective over-segmentation measure is evaluated as
the ration between the merged segments in a given class relative to the total number
of segments in that class. Figure 11, presents the segmentation results following these
QC procedures. For TLS1 and TLS3, segmentation results for planar and pole-like
features are presented separately since those datasets have significant portions that
pertain to such classes. Figure 12 illustrated examples of the detected/mitigated
problems through the different QC measures. More specifically, Figure 12a shows
portions of a cylindrical column, as highlighted by the red rectangle, that have
been originally classified as planar regions and after QC1, they have been correctly
reclassified as pole-like features. Figure 12b shows examples of points from other
classes, in red, that have been incorporated into planar and pole-like features, in
yellow, after implementing QC2. An example of corrected over-segmentation of
pole like features after QC3 is illustrated in Figure 12c (compare the segmentation
results in Figures 10b and 12c). Detection and mitigation of intraclass competition
for neighboring points after QC4 is shown in Figure 12d (refer to the highlighted
regions within the red rectangles before and after QC4). The results of mitigating
fully/partially misclassified linear regions after QC5 are shown in Figure 12e (refer to
the results after the over-segmentation in Figure 12c and those in Figure 12e, where
one can see the correct mitigation of partially-misclassified pole-like features). Finally,
Figure 12f shows an example of the segmentation results after applying QC6 that
identifies/corrects partially/fully misclassified planar features (compare the results
in Figures 10b and 12f). The proposed QC procedures provide quantitative measures
that indicate the frequency of the segmentation problems. Such quantitative measures
are presented in Table 3, where closer investigation reveals the following:

1. For TLS1 and TLS3, which include significant number of pole-like features, a
higher percentage of misclassified single pole-like features (QC1) is observed.
TLS1 has pole-like features with larger radii. Therefore, there is higher
probability that seed regions along cylindrical features with high point density
are misclassified as planar ones. For TLS3, misclassified pole-like features are
caused by having several thin beams in the dataset.

2. For interclass competition for neighboring points (QC2), airborne
datasets with predominance of planar features have higher percentage
of QCinterclass competition pplanarq—refer to the results for the ALS and DIM
datasets. On the other hand, QCinterclass competition ppole´ likeq has higher
percentages in datasets that have significant portions belonging to cylindrical
features (i.e., TLS1 and TLS3).

3. Due to inherent noise in the datasets as well as the strict normal
distance thresholds as defined by the derived a-posteriori variance factor,
over-segmentation problems (QC4) are present. In this regard, one should note
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that over-segmentation problems are easier to handle than under-segmentation
ones, which could arise from relaxed normal-distance thresholds.

4. Intraclass competition for neighboring points (QC4) are quite minimal. This is
evident by the reported low percentages for this category.

5. For partially/misclassified pole-like features, higher percentages of QC5 when
dealing with low number of points in such classes is not an indication of a major
issue in the segmentation procedure (e.g., QC5 for ALS and DIM where the
percentages of the points that belong to pole-like feature are almost 0% and
4%, respectively).

6. For partially/misclassified planar features, higher percentages of QC6 should
be expected when dealing with datasets that have pole-like features with large
radii or several interconnected linear features that are almost coplanar (this is
the case for TLS1 and TLS3, respectively).

Figure 11. Cont.
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Figure 11. Perspective views of the segmented point clouds after the quality control
procedure for the ALS–planar (a); DIM–planar (b); TLS1–planar (c); TLS1–pole-like (d);
TLS2–planar (e); TLS3–planar (f); and TLS3–pole-like (g) datasets—different segments
are shown in different colors.

Table 3. QC measures for the different datasets.

ALS TLS1 TLS2 TLS3 DIM

QC1
nreclassi f ied lines/

nplane total/
QCreclassi f ied linear f eaure

101/
716,628/
«0.000

5,439/
123,370/

0.044

402/
126,193/

0.003

25,484/
224,635/

0.113

71/
211,553/
«0.000

QC2
Planar

nincorporated/
npotential candidates/

QCinterclass competition

31,700/
96,453/
0.328

5,457/
52,365/
0.104

2,788/
76,055/
0.036

24,469/
256,016/

0.095

3,991/
18,952/
0.210

QC2
Pole-like

nincorporated/
npotential candidates/

QCinterclass competition

0/
812,879/

0

22,193/
123,042/

0.180

4,379/
194,014/

0.022

29,340/
208,937/

0.140

5,198/
227,486/

0.022

QC3
Planar

nmerged planar/
nsegmented planar/

QCover segmentation

618/
801/
0.771

23/
59/

0.389

278/
367/
0.757

8/
86/

0.093

163/
195/
0.835

QC3
Pole-like

nmerged linear/
nsegmented linear/

QCover segmentation

0/
4/
0

21/
113/
0.185

8/
144/
0.055

152/
430/
0.353

38/
55/
0.69

QC4
ninvading/

nplane total/
QCintraclass competition

21,690/
748,227/

0.028

857/
123,388/

0.006

4,521/
128,579/

0.035

5,427/
223,620/

0.024

3,381/
215,473/

0.015

QC5
nencompassed line points/

nline total/
QCmisclassi f ied pole´like

101/
101/

1

5,841/
69,447/
0.084

1,866/
12,211/
0.152

9,748/
275,570/

0.035

3,427/
8,146/
0.420

QC6
nmisclassi f ied planar/

nplane total/
QCmisclassi f ied planar

N/A
29,647/

123,388/
0.240

N/A
73,187/

223,620/
0.327

N/A

66



Figure 12. Cont.
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Figure 12. Examples of improved segmentation quality by the different QC
measures. (a) After QC1: reclassified pole-like features; (b) After QC2: Interclass
competition (planar and pole-like); (c) After QC3: Over-segmentation (pole-like);
(d) Before and after QC4: Intraclass competition (planar); (e) After QC5:
Misclassified pole-like; (f) After QC6: Misclassified planar.

4. Conclusions and Recommendations for Future Work

Segmentation of point clouds into planar, pole-like, and rough regions is the
first step in the data-processing chain for object modeling. This paper presents
a region-growing segmentation procedure that simultaneously identify planar,
pole-like, and rough features in point clouds while considering variations in LPS
and noise level. In addition to these characteristics, the proposed region-growing
segmentation starts from optimally-selected seed regions that are sorted according to
their quality of fit to the LSA-based parametric representation of pole-like and planar
regions. Given that segmentation artifacts cannot be avoided, a QC methodology is
introduced to consider possible problems arising from the sequential-segmentation
procedure (i.e., possible invasion of earlier-segmented regions to later-segmented
ones) and possible competition between the different segments for neighboring
points. The main advantages of the proposed QC procedure include: (1) It does
not need reference data; (2) It provides quantitative estimate of the frequency of
detected instances of hypothesized problems; and (3) It encompasses a mitigation
mechanism that eliminate instances of such problems. In summary, the proposed
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processing framework tries to optimize the segmentation procedure and at the same
time, potential artifacts are detected, quantified, and mitigated.

To illustrate the performance of the segmentation and quality control procedures,
we conducted experimental results using real datasets from airborne and terrestrial
laser scanners as well as image-based point clouds. The segmentation results have
been proven to be quite reliable while relying on few thresholds that could be easily
established. Moreover, the QC procedure has been successful in detecting and
eliminating possible problems that could be present in the segmentation results.

Future research will be focusing on establishing additional constraints to ensure
even more reliable selection of seed regions. In addition, color/intensity information
after accurate geometric and radiometric sensor calibration will be used to improve
the segmentation results. We will be also considering other segmentation problems
that could be mitigated through improved QC procedures. Finally, the outcome from
the segmentation and QC procedures will be used to make hypotheses regarding
the generated segments (e.g., building rooftops, building façades, light poles, road
surfaces, trees, and bushes).
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A Multi-View Dense Point Cloud
Generation Algorithm Based on
Low-Altitude Remote Sensing Images
Zhenfeng Shao, Nan Yang, Xiongwu Xiao, Lei Zhang and Zhe Peng

Abstract: This paper presents a novel multi-view dense point cloud generation
algorithm based on low-altitude remote sensing images. The proposed method
was designed to be especially effective in enhancing the density of point clouds
generated by Multi-View Stereo (MVS) algorithms. To overcome the limitations
of MVS and dense matching algorithms, an expanded patch was set up for each
point in the point cloud. Then, a patch-based Multiphoto Geometrically Constrained
Matching (MPGC) was employed to optimize points on the patch based on least
square adjustment, the space geometry relationship, and epipolar line constraint.
The major advantages of this approach are twofold: (1) compared with the MVS
method, the proposed algorithm can achieve denser three-dimensional (3D) point
cloud data; and (2) compared with the epipolar-based dense matching method,
the proposed method utilizes redundant measurements to weaken the influence
of occlusion and noise on matching results. Comparison studies and experimental
results have validated the accuracy of the proposed algorithm in low-altitude remote
sensing image dense point cloud generation.

Reprinted from Remote Sens. Cite as: Shao, Z.; Yang, N.; Xiao, X.; Zhang, L.; Peng, Z.
A Multi-View Dense Point Cloud Generation Algorithm Based on Low-Altitude
Remote Sensing Images. Remote Sens. 2016, 8, 381.

1. Introduction

With the development of laser scanning and image matching technology,
three-dimensional (3D) information has increasingly attracted researchers’ attention.
Applications of 3D information have extended from digital elevation model
(DEM) and digital surface model (DSM) generation to many other fields including
archeology [1,2], topographic monitoring [3,4], facial geometry and dynamic
capture [5,6], cultural heritage protection [7,8], forest and agriculture modeling [9,10],
and medical treatment [11]. Since laser scanning can produce highly accurate,
reliable, dense, and more integrated 3D point clouds of objects [12], it has been
utilized as the preferred technology for 3D modeling over the last two decades. In
recent years, with the significant progress of photogrammetry and computer vision
technology, image-based 3D reconstruction stands as a major competitor against
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laser scanning [13]. Compared with laser scanning, the advantages of image-based
3D reconstruction are that:

‚ Images can be accepted from any type of camera [14], including calibrated or
uncalibrated images, images taken from smartphones or tablets [15], images
captured from digital cameras or frames intercepted from video streams [16];

‚ It is low in cost;
‚ Point cloud data contains color information; and
‚ Theoretically, it may produce much denser point clouds [17].

In numerous photographic platforms, low-altitude remote sensing images have
been considered a popular data source for large-scale 3D modeling [18]. In addition to
sub-decimeter high-resolution imagery [19], a low-altitude remote sensing platform
also has several advantages including: flexibility, low cost, simplicity of operation,
and ease of maintenance [20].

This paper proposes a multi-view dense point cloud generation algorithm based
on low-altitude remote sensing images. The proposed method exploited Patch-based
Multi View Stereo (PMVS) [21] results as a seed point cloud. It took advantage of
pixels in image windows and object points on patches to expand the seed point
cloud. Then, it utilized multi-image projection relationships to improve the accuracy
of the point cloud. In summary, the purpose of this paper is a new approach that
takes advantage of redundant measurements of multi-images and generates a much
denser point cloud than MVS.

The remainder of the paper is structured as follows: related works are presented
and compared with each other in Section 2; in Section 3, the proposed method is
introduced in detail; in Section 4, experiments are conducted to verify the feasibility
of the proposed algorithm in terms of reliability and matching accuracy; and finally,
conclusions are stated in Section 5.

2. Related Works

The theory of stereo matching was first investigated in the early mid-1970s [22]
and underwent extensive development in the 1990s [17]. During those 10 years, a large
number of high accuracy matching applications and commercial photogrammetric
systems appeared for digital surface model (DSM) and digital terrain model (DTM)
generation from aerial images. In the last decade, image-based 3D reconstruction
approaches have been further advanced by recent developments in computer vision
and photogrammetry. Additionally, the data source of images has been extended
from satellite aerial images to generic photos, such as those taken on mobile photos.

74



2.1. Two-Frame Dense Matching in Photogrammetry

Since the advent of stereo matching, the derivation of ground object point
coordinates from corresponding image pixels has become one of the most key issues
in the domain of photogrammetry and remote sensing [23,24]. With the advances of
hardware and innovative image matching algorithms, photogrammetry-based 3D
modeling can deliver results in a reasonable amount of time. Some researchers have
focused on how to utilize photogrammetry technology to produce relatively sparse
seed points [25,26], while others have sought to take advantage of the corresponding
epipolar lines between two corresponding images to perform pixel-wise dense
matching [27–29]. In 2002, Scharstein and Szeliski [27] introduced a taxonomy
and evaluation of two-frame stereo dense matching algorithms, dividing it into four
primary steps:

‚ Matching cost computation;
‚ Cost (support) aggregation;
‚ Disparity computation/optimization; and
‚ Disparity refinement.

Based on the implementation employed in the cost (support) aggregation
step, dense matching can be divided into two categories: local algorithms and
global algorithms. Local algorithms connect the matching costs within a local
neighborhood and select the lowest matching cost as a disparity [30], that is “winner
takes all11. Global algorithms typically define a global energy function which includes
a data term and a smoothness term acting on the whole image instead of local cost
aggregations [31]. Since the local algorithm uses a part of the local neighborhood
for calculations, the processing speed of the local algorithm is faster, and due to the
global algorithms taking into account the whole image in processing, the matching
accuracy of the global algorithms is greater. Hirschmüller [32] employed Semi-Global
Matching (SGM) which integrates the advantages of local and global algorithms
and further improved the efficiency and accuracy of dense matching. Despite these
advantages, the two-frame method could not evade the key problem that without the
redundant measurements, two-frame dense matching was not robust to the noise and
occlusion, and the accuracy of the point cloud reconstructed by two-frame matching
is inferior to that of multi-view stereo [33].

2.2. Multi-View Stereo in Computer Vision

With the development of a number of different low-cost and open-source
software systems, the multi-view stereo method is becoming one of the most popular
subjects in computer vision. Multi-view stereo can use redundant information to
weaken the influence of occlusion and noise. From the Middlebury evaluation
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supplied by Seitz et al. [34], for a single object or small-scale sense reconstruction,
multi-view reconstruction can provide a first-rate result which is comparable to the
point cloud obtained from laser scanning. Since the Structure from Motion (SFM)
method makes it possible for disordered image calibration, multi-view stereo quickly
extends from photogrammetric images to generic photos, even those downloaded
from the Internet or captured from mobile phones [35]. Recently, the challenges of
multi-view stereo have focused on the following aspects:

‚ dynamic capture;
‚ 3D reconstruction from video streams; and
‚ 3D reconstruction for large-scale scenes.

For large-scale scene reconstruction, although there are plenty of efforts devoted
to making point cloud data denser and more accurate, the density and accuracy of
the result cannot substitute the laser scanning point cloud. Since low-altitude remote
sensing images have many advantages such as flying under the cloud, low cost and
fast response, etc., this article focuses on how to apply low-altitude remote sensing
images to reconstruct large-scale scenes.

3. Method

The proposed method can be divided into four steps: (1) a PMVS point cloud
generation; (2) patch-based point cloud expansion; (3) point cloud optimization; and
(4) an outliers filter. In this section, details of the proposed method are introduced.
The principle of this algorithm is illustrated in Figure 1. As shown in Figure 1, the
proposed method derives from a technique where growing regions start from a
set of seed points or patches [36]. The result of PMVS is a set of patches, and the
geometric significance of the patch is a local tangent plane of the object. The proposed
algorithm utilizes these results as seed points and takes advantage of projection rules
between image pixels and patches to segment the generated patches to expand denser
patches. Then, a patch-based Multiphoto Geometrically Constrained Matching
(MPGC) algorithm is used to optimize the expanded patches to obtain a more accurate
result. Finally, a density constraint [37] is employed to filter the outliers.
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Figure 1. Diagrammatic sketch of the multi-view dense point cloud generation
algorithm. (a) The result of the seed patch generated from PMVS; (b) The expanded
patch from the PMVS patch; (c) The optimized patch to improve accuracy.
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3.1. PMVS Point Cloud Generation

In recent years, many researchers have focused on using MVS to reconstruct
large-scale 3D scenes. PMVS is accepted as one of the most popular MVS algorithms
due to its accuracy and completeness [8]. By utilizing (1) initial feature matching;
(2) patch expansion; and (3) patch filtering, PMVS generates and propagates a
semi-dense set of patches [38]. In contrast to a feature-based algorithm, the seed
points generated by PMVS have three advantages:

‚ Much denser: seed points obtained in feature-based matching are expanded in
the second step of PMVS;

‚ Evenly distributed: the PMVS algorithm attempted to reconstruct at least one
patch in each image cell with β ˆ β pixels;

‚ More accurate: a Nelder-Mead method [39] was utilized in the PMVS algorithm
to refine each patch in the reconstruction model and filter outliers in the last step.

3.2. Patch-Based Point Cloud Expansion

The goal of the expansion step is to expand the seed patch and increase the
point cloud density. PMVS attempted to grow a patch starting from a seed matching
pixels, and expanding to the neighbor image cells in the visible images until each
corresponding image cell reconstructed at least one point. The proposed method
utilizes the projection rules to segment the patches into small pieces. Each piece
contains one center point, the seed point is growing on the patch and the point cloud
is denser.

The result of PMVS records each point in the point cloud with its coordinates
(Xc, Yc, Zc), color (R, G, B) and normal vector (a, b, c). By projecting the object point
P(Xc, Yc, Zc) on each image, the image point coordinate pi(xi, yi) (i is the image index)
is calculated. Since the distance between the image point and the origin of the image
coordinate system is shorter, the projection distortion is smaller, and the proposed
method supposes image I(R) as a reference image when the image I(R) is satisfied by:

b

xR2 ` yR2 ď

b

xi
2 ` yi

2pi “ 1, 2...n, i ‰ Rq (1)

Supposing (Xc, Yc, Zc) is the center of the patch, and (a, b, c) is the normal vector,
the local tangent plane (patch in PMVS) at P(Xc, Yc, Zc) is:

P : a pX´ Xcq ` b pY´Ycq ` c pZ´ Zcq “ 0 (2)

As illustrated in Figure 2a, the image point pi(xi, yi) is the center of the image
window, where the window size is µ ˆ µ pixels. By projecting the image window
onto the patch, µ ˆ µ object points are obtained. Theoretically, the density of the
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point cloud could expand µ ˆ µ times. The overall algorithm description for this
step is given in Figure 2b. The result patch P1 consists of the coordinates (X, Y, Z),
normal vector (a, b, c) and reference image index R.Remote Sens. 2016, 8, 381 2 of 16 

 

 

Figure 2. (a) Projection relationship between pixels (grids) in image window
and object points (dots) in patch; (b) Process of patch-based point cloud
expansion algorithm.

3.3. Patch-Based MPGC to Optimize the Point Cloud

PMVS utilized the projection relationship between the patch and the
corresponding images to build a function to find the optimal matching pixel:

f pz, α, βq “
1
n

n
ÿ

i“1

p1´ fiq (3)

In the function above, i is the index of the visible images (in PMVS, if patch
p is visible in image i, i is considered as a visible image of p); n is the number of
the visible images; fi is a function that denotes the Normalized Cross-correlation
Coefficient (NCC) between corresponding image windows which is obtained by the
patch projecting to the reference image (I0) and visible images (Ii);

fipz, α, βq “ NCCpI0, Iiq (4)
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z is the distance of the patch center moving along the ray; (α, β) are the direct angle
of the normal vector (a, b, c). The optimization process employed the Nelder-Mead
method [39] to calculate the minimum value of Function (3). From the result of the
calculation, the optimal patch (denoted by its center point P1 and normal vector
(a, b, c)) is obtained:

P1 “ P` z ¨ normp
Ñ

OPq (5)

a “ cos α cos β

b “ sin α cos β

c “ sin β

(6)

As with the optimization method in PMVS, the proposed method also introduces
a patch in the optimization step to obtain a better initial value of the optimization
function. In the 1990s, Baltsavias [40,41] introduced epipolar line constraints
(collinear equation) to Least Square Image Matching (LSM) [42,43] and proposed
an extremely useful application named Multi-photo Geometrically Constrained
Matching (MPGC). This approach simultaneously derives the accurate coordinates
of corresponding object points in the object space coordinate system during the
image matching process. It has been widely applied to refine matching results in
a three-dimensional reconstruction [25,26,44,45]. The proposed method utilizes a
modified MPGC algorithm to optimize the point cloud.

In the traditional LSM method, each pixel in the matching image window is
used to build an error equation:

v “ dh0i ` gi pxi, yiq ¨ dh1i ` h1i

´

Bgi
Bxi

dxi `
Bgi
Byi

dyi

¯

´ pg0 px0, y0q ´ h0i ´ h1i ¨ gi pxi, yiqq (7)

In the error equation above, v is the projection error; h0i and h1i are the radiation
distortion coefficients between the reference image and search image i. In the
experiments, the initial values of h0i and h1i are usually 0 and 1, respectively. Further,
dh0i and dh1i are corrections of parameter h0i and h1i; g0(x0, y0) is the pixel intensity
values in the image window of the reference image; gi(xi, yi) is the pixel intensity
values of image points (xi, yi) in the search image window; ( Bgi/ Bxi, Bgi/ Byi) is the
derivative values of pixel intensity in the x and y directions; (dxi, dyi) is the correction
values of the image points (xi, yi). Therefore, in a matching of the µ ˆ µ pixels image
window, the µ ˆ µ error equations can be listed; if µ ˆ µ is larger than the unknown,
using least square adjustment, the corresponding pixels (xi, yi) can be calculated.

MPGC applied epipolar line constraints to the LSM method, and the coordinates
of (xi, yi) can be denoted by the interior (xs, ys, f ) and exterior parameters (projection
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center S(Xs, Ys, Zs), rotation matrix (a1, a2, a3; b1, b2, b3; c1, c2, c3)) of image i and the
corresponding object point (X, Y, Z):

xi ´ xs “ ´ f a1pX´Xsq`b1pY´Ysq`c1pZ´Zsq
a3pX´Xsq`b3pY´Ysq`c3pZ´Zsq

yi ´ ys “ ´ f a2pX´Xsq`b2pY´Ysq`c2pZ´Zsq
a3pX´Xsq`b3pY´Ysq`c3pZ´Zsq

(8)

Applying the collinear Equation (8) to the LSM error Equation (7), the
optimal object point coordinate can be directly obtained during the process of least
square adjustment.

However, despite the fact that MPGC performs well in matching refinement,
how to select the initial matching window is still a challenge that has yet to be
overcome, because either the accuracy of the result or the efficiency of the process is
reliant on the quality of the initial value. The proposed method introduces the
patch to MPGC to refine the point cloud. By using the patch set obtained in
Section 3.2 as an initial value and projecting each patch onto the visible images
to get the initial matching image windows, these initial matching windows have two
superior qualities:

‚ All pixels which are located at the same place in the image matching window
between the reference and search images are approximate corresponding pixels.

‚ Normal vectors in PMVS results as initial normal vectors of the patch plane, by
projecting the patch points onto the images which can significantly decrease the
projection deformation.

As with PMVS, the optimization algorithm in the proposed method is based
on an individual patch, and each patch P1 is optimized separately in the following
steps: (1) a matching window is selected in reference image R; (2) the matching
window is projected onto the patch plane to calculate the corresponding object
points V(P1) on patch P1; (3) V(P1) is projected onto each image except image R
to obtain the corresponding points w(pi

1) on the search images; (4) if the matching
window w(pi

1) is located in the range of image I and the Normalized Cross-correlation
Coefficient (NCC) is larger than 0.6, then image i is collected into image set I(p1);
(5) an error equation is built for each corresponding point in the image window
between reference image R and search image set I(p1); (6) a least square adjustment is
applied to calculate the optimal solution. The overall algorithm description for this
step is illustrated in Figure 3.
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Figure 3. Process of point cloud optimization algorithm.

The proposed method uses this patch-based MPGC algorithm to optimize the
point cloud instead of the PMVS optimization method for the following reasons:

‚ Epipolar line constraint is the most strict constraint for a single-center projection,
especially when the camera parameters are known;

‚ Least square adjustment can utilize redundant pixels to decrease the influence
of the noise, and has a faster speed in the iterative convergence;

‚ Radiation distortion is taken into account.

3.4. Outliers Filter

To improve the accuracy and reduce the number of outliers in the point cloud,
an erroneous point filter step is a prerequisite. The proposed method makes use of
a density constraint [37] in the outliers filter step. A radius of one meter is used to
compute the local neighborhood of each point. If the number of neighbor points
around a center point is lower than a fixed threshold ε, the center point is considered
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as an outlier that should be removed. In the method of [37], ε was defined as half of
the average neighbor number.

4. Experiments and Discussion

4.1. Input Data Sets

In order to evaluate the performance of the proposed method, three sets of
low-altitude images were selected. Each image data set consists of five images. The
data sets were captured from Northwestern University (a university in Shaanxi
Province, China), Yangjiang (a city in Guangdong Province, China) and Hainan
(a province in China), respectively. The parameters of the cameras (parameters
of the K-matrix) were acquired from laboratory camera calibration and bundle
adjustment. Commercial low altitude photogrammetric processing software called
GodWork, which was developed by Wuhan University, was used to perform
automatic aero-triangulation to acquire external orientation elements (parameters of
the C-matrix and R-matrix) of the images. Detailed parameters of the input data sets
are provided in Tables 1–3 and the sample input images used in the experiments are
shown in Figure 4.

Table 1. The parameters of the photography from Northwest University (unmanned
aerial vehicle images).

Camera
Name

Area Size
(m ˆ m)

CCD Size
(mm)

Image Size
(pixel)

Pixel
Size
(µm)

Focal
Length
(mm)

Flying
Height

(m)

Ground
Resolution

(m)

Number
of Images

Canon EOS
400D 415.8 ˆ 339.5 22.16 ˆ 14.77 3888 ˆ 2592 5.7 24 600 0.118 5

Table 2. The parameters of the photography from Yangjiang (aerial image captured
at nadir).

Camera
Name

Area Size
(m ˆ m)

CCD Size
(mm)

Image Size
(pixel)

Pixel
Size
(µm)

Focal
Length
(mm)

Flying
Height

(m)

Ground
Resolution

(m)

Number
of Images

SWDC-5 417 ˆ 426 49.24 ˆ 36.47 8206 ˆ 6078 6 82 800 0.058 5

Table 3. The parameters of the photography from Hainan (unmanned aerial
vehicle images).

Camera
Name

Area Size
(m ˆ m)

CCD Size
(mm)

Image Size
(pixel)

Pixel
Size
(µm)

Focal
Length
(mm)

Flying
Height

(m)

Ground
Resolution

(m)

Number
of Images

Canon
EOS 5D 981.3 ˆ 1004.4 36 ˆ 24 5616 ˆ 3744 6.4 24 650 0.174 5
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In the expansion step, expanded patch size μ is the only parameter which has to be set up, 
because the PMVS algorithm attempts to reconstruct at least one patch in each image cell with β × β 
pixels, where μ is usually less than β. From 1 to β, the density of the point cloud result is increased. 
Taking into account visualization and running speed, our experiments project an image window 
with 17 × 17 pixels on the PMVS patch and one pixel as the project interval. The comparison 
experiments compared the point cloud reconstructed by PMVS, SURE, Pixel4D and the proposed 
method. Each input data set experimented in the four comparison methods is exactly the same 
(same images, same camera parameters and same image parameters). The reconstructed point 
cloud and details are shown in Figures 5–7. 

As illustrated in the figures, due to the proposed method’s utilization of the PMVS result as a 
seed patch, the completeness of the point cloud reconstructed by PMVS and that of the proposed 
method are almost same. The point cloud reconstructed by the Pix4D software program has a better 
completeness; the point cloud reconstructed by the SURE software program was the poorest. 
Although SURE failed in the reconstruction of images with complex texture (i.e., the Yangjiang and 
Hainan data sets), for relatively simple images (the Northwestern University data set) the density of 
the point cloud was extremely high. From the cut figures on the right of the figure cells, it can be 
seen that when compared with the other three methods, the point cloud generated by the proposed 
method is much denser and contains more details. For instance, much plainer silhouettes and roads 

Figure 4. Sample input images of all the data sets used in the experiments.
(a) Northwestern University; (b) Yangjiang; (c) Hainan.

4.2. Reconstructed Point Cloud

In the expansion step, expanded patch size µ is the only parameter which has to
be set up, because the PMVS algorithm attempts to reconstruct at least one patch in
each image cell with β ˆ β pixels, where µ is usually less than β. From 1 to β, the
density of the point cloud result is increased. Taking into account visualization and
running speed, our experiments project an image window with 17 ˆ 17 pixels on
the PMVS patch and one pixel as the project interval. The comparison experiments
compared the point cloud reconstructed by PMVS, SURE, Pixel4D and the proposed
method. Each input data set experimented in the four comparison methods is exactly
the same (same images, same camera parameters and same image parameters). The
reconstructed point cloud and details are shown in Figures 5–7.

As illustrated in the figures, due to the proposed method’s utilization of the
PMVS result as a seed patch, the completeness of the point cloud reconstructed
by PMVS and that of the proposed method are almost same. The point cloud
reconstructed by the Pix4D software program has a better completeness; the point
cloud reconstructed by the SURE software program was the poorest. Although
SURE failed in the reconstruction of images with complex texture (i.e., the Yangjiang
and Hainan data sets), for relatively simple images (the Northwestern University
data set) the density of the point cloud was extremely high. From the cut figures
on the right of the figure cells, it can be seen that when compared with the other
three methods, the point cloud generated by the proposed method is much denser
and contains more details. For instance, much plainer silhouettes and roads in
the Northwestern University point cloud, cars parked on the side of the basketball
court in the Yangjiang point cloud and much more meticulous roofs in the Hainan
point cloud data are extracted. Detailed information of the reconstructed result is
illustrated in Tables 4 and 5.
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Figure 5. Examples of reconstructed point cloud with Northwestern University images illustrated by 
software MeshLab. (a) Point cloud generated by PMVS; (b) Details of (a) in red; (c) Point cloud 
generated by SURE; (d) Details of (c) in red; (e) Point cloud generated by Pix4D; (f) Details of (e) in 
red; (g) Point cloud generated by proposed method; (h) Details of (g) in red. 

Figure 5. Examples of reconstructed point cloud with Northwestern University
images illustrated by software MeshLab. (a) Point cloud generated by PMVS;
(b) Details of (a) in red; (c) Point cloud generated by SURE; (d) Details of (c) in
red; (e) Point cloud generated by Pix4D; (f) Details of (e) in red; (g) Point cloud
generated by proposed method; (h) Details of (g) in red.
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Figure 6. Examples of reconstructed point cloud with Yangjiang images illustrated by software 
MeshLab. (a) Point cloud generated by PMVS; (b) Details of (a) in red; (c) Point cloud generated by 
SURE; (d) Details of (c) in red; (e) Point cloud generated by Pix4D; (f) Details of (e) in red; (g) Point 
cloud generated by proposed method; (h) Details of (g) in red. 

Figure 6. Examples of reconstructed point cloud with Yangjiang images illustrated
by software MeshLab. (a) Point cloud generated by PMVS; (b) Details of (a) in
red; (c) Point cloud generated by SURE; (d) Details of (c) in red; (e) Point cloud
generated by Pix4D; (f) Details of (e) in red; (g) Point cloud generated by proposed
method; (h) Details of (g) in red.
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Figure 7. Examples of reconstructed point cloud with Hainan images illustrated by software 
MeshLab. (a) Point cloud generated by PMVS; (b) Details of (a) in red; (c) Point cloud generated by 
SURE; (d) Details of (c) in red; (e) Point cloud generated by Pix4D; (f) Details of (e) in red; (g) Point 
cloud generated by proposed method; (h) Details of (g) in red. 

Figure 7. Examples of reconstructed point cloud with Hainan images illustrated
by software MeshLab. (a) Point cloud generated by PMVS; (b) Details of (a) in
red; (c) Point cloud generated by SURE; (d) Details of (c) in red; (e) Point cloud
generated by Pix4D; (f) Details of (e) in red; (g) Point cloud generated by proposed
method; (h) Details of (g) in red.
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Table 4. Performance of dense point cloud generated by the proposed method.

Study Area Seed Patch
Number

Expanded
Patch Size

Patch Number
(after Expand)

Patch Number
(after Filter)

Density
(patches/m2)

Times
(min)

Northwestern
University 107514 17 ˆ 17 (step: 2) 7890775 7802802 55.275 175

Yangjiang 324072 17 ˆ 17 (step: 2) 24369048 24003611 135.122 627
Hainan 178317 17 ˆ 17 (step: 2) 8481032 8474530 8.598 253

Table 5. Comparison of the point cloud performance.

Experimental Method
Northwestern University Yangjiang Hainan

Point
Number

Density
(points/m2)

Point
Number

Density
(points/m2)

Point
Number

Density
(points/m2)

PMVS 107514 0.762 324072 1.824 178317 0.181
SURE 2053708 14.410 638032 3.592 770993 0.782
Pix4D 525402 3.686 2126320 11.970 1123166 1.140

The proposed method 7802802 55.275 24003611 135.122 8474530 8.598

The third column in Table 4 represents the experiments which used a
17ˆ 17 image window, and each other pixel in the image window was projected onto
the patch. The computational times are recorded in the last column. All timings were
obtained on a PC with Intel Core(TM) i7 3.60 GHz processors, 8 GB RAM and a 1 TB
SCSI disk device for data storage, and the Microsoft Windows 7 operating system.
All the processes were performed offline. From the comparison experiment results
in Table 5, it can be noted that the proposed method achieves more than 40 times
denser points per m2 than PMVS and a more than eight times denser point cloud
per m2 than Pix4D. According to the image parameters and the reconstructed results,
it can be seen that the density of the point cloud depends on the ground resolution
of the input images. As long as the ground resolution is high enough, the proposed
method can obtain much denser point clouds than laser scanning [4], such as the
point cloud from Yangjiang.

4.3. Point Cloud Accuracy Evaluation

To evaluate the accuracy, each set of point clouds produced by the proposed
method were registered into the PMVS model. A relative Euclidean distance (error)
comparison between a point from the point cloud and the surface of the PMVS model
where this point is supposed to be located is measured.

The accuracy evaluation is based on the method raised by Dai et al. [46].
Supposing mj is the number of points, it should belong to the jth surface of the
PMVS model which is denoted as ajX + bjY + cjZ + dj = 0. The ith point coordinate in
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point set mj is denoted as (Xi
j, Yi

j, Zi
j); n is the number of surfaces. The average

error of the point cloud can be calculated as:

error “
1

řn
j“1 mj

n
ÿ

j“1

mj
ÿ

i“1

ˇ

ˇ

ˇ
ajX

j
i ` bjY

j
i ` cjZ

j
i ` dj

ˇ

ˇ

ˇ

b

a2
j ` b2

j ` c2
j

(9)

Note that if a point’s distance to the surface is far beyond the average value, it
will be deemed as an outlier and removed from the point cloud set. Details of the
accuracy evaluation are listed in Table 6.

Table 6. Evaluation of accuracy.

Study Area Point Cloud
Number

Outlier
Number

Outliers/Point
Cloud

Average
Error (m)

Northwestern University Campus 7802802 1780 2.281/104 0.332
Yangjiang region 24003611 919 3.827/105 0.166

Hainan urban district 8474530 8217 9.695/104 0.480

As illustrated in Table 6, it can be seen that the point clouds generated by the
proposed method achieved exceptional results. Specifically, the Yangjiang point
cloud data contains less than four outliers in 105 points, and the other two data sets
contains less than 10 outliers in 10,000 points. The average errors of the point cloud
data registered into the PMVS model are all less than 0.5 m. For 3D reconstruction
from low-altitude remote sensing images, the accuracy of the point cloud data is
reliable. From comparison experiments of image ground resolution and accuracy
between these three study areas, it can be noted that the study images which had
the highest ground resolution (Yangjiang region) had the most accurate point cloud.
With a decrease in ground resolution, the precision was also reduced. It should
be noted that parts of the images with weak texture do not be reconstruct well
under the proposed method (e.g., flat farmland in the Northwestern University data
sets) because feature or seed points to expand these regions are not found. In the
three data sets, topographic relief of the Northwestern University model (nearly
30 m) is lower than topographic relief of Yangjiang and Hainan models, which are
almost same (nearly 50 m). The Yangjiang point cloud achieved higher accuracy
than Northwestern University, which illustrates that, compared with the topographic
relief, the influence of the ground resolution and remote sensing platform stability
on the accuracy is greater.

5. Conclusions

In this study, a novel algorithm is presented for improving the density of point
clouds generated from low-altitude remote sensing images. The proposed algorithm
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builds an expanded patch for each point in a PMVS point cloud. The method
integrates the advantages of Multi-View Stereo and epipolar-based dense matching
methods and generates a denser point cloud with more details.

The matching results have illustrated that the proposed approach can achieve
a far denser point cloud than PMVS, and the matching accuracy of the proposed
method is reliable when using low-altitude remote sensing images. It is important
to note that the precision of the image orientation parameter can directly affect the
results of the PMVS seed and MPGC refining. Thus, the proposed approach is more
suitable for 3D reconstruction using calibrated images with high accuracy. From this
work, two potential areas of future research are proposed: (1) raise the efficiency of
image matching to extend this method to 3D reconstructions of larger scenes; and
(2) improve the PMVS result in areas with little or no texture.
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PMVS Patch-based Multi-View Stereo
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SFM Structure from Motion
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An Advanced Pre-Processing Pipeline to
Improve Automated Photogrammetric
Reconstructions of Architectural Scenes
Marco Gaiani, Fabio Remondino, Fabrizio I. Apollonio and Andrea Ballabeni

Abstract: Automated image-based 3D reconstruction methods are more and more
flooding our 3D modeling applications. Fully automated solutions give the
impression that from a sample of randomly acquired images we can derive quite
impressive visual 3D models. Although the level of automation is reaching very
high standards, image quality is a fundamental pre-requisite to produce successful
and photo-realistic 3D products, in particular when dealing with large datasets of
images. This article presents an efficient pipeline based on color enhancement, image
denoising, color-to-gray conversion and image content enrichment. The pipeline
stems from an analysis of various state-of-the-art algorithms and aims to adjust the
most promising methods, giving solutions to typical failure causes. The assessment
evaluation proves how an effective image pre-processing, which considers the entire
image dataset, can improve the automated orientation procedure and dense 3D point
cloud reconstruction, even in the case of poor texture scenarios.

Reprinted from Remote Sens. Cite as: Gaiani, M.; Remondino, F.; Apollonio, F.I.;
Ballabeni, A. An Advanced Pre-Processing Pipeline to Improve Automated
Photogrammetric Reconstructions of Architectural Scenes. Remote Sens. 2016, 8, 178.

1. Introduction

In the last years, the image-based pipeline for 3D reconstruction purposes has
received large interest leading to fully automated methodologies able to process
large image datasets and deliver 3D products with a level of detail and precision
variable according to the applications [1–3] (Figure 1). Certainly, the integration of
automated computer vision algorithms with reliable and precise photogrammetric
methods is nowadays producing successful (commercial and open) solutions (often
called Structure from Motion (SfM)) for automated 3D reconstructions from large
image datasets [4–6].

For terrestrial applications, the level of automation is reaching very high
standards and it is increasing the impression that few randomly acquired images
(or even found on the Internet) and a black-box tool (or mobile app) are sufficient
to produce a metrically precise 3D point cloud or textured 3D model. Such tools
are able to ingest and process large quantities of images almost always delivering
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an apparently successful solution, which is often a local minimum and not the fully
correct one (Figure 2). However, non-expert users might not be able to spot such
small errors or divergences in the bundle adjustment due to the fact that only a
message of successful image orientation is provided, without statistical analyses.
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Figure 2. Typical examples of SfM results where, despite a message of successful
image orientation and a very small re-projection error, there are some cameras
wrongly oriented. A non-expert user could only spot such errors with difficultly
and would proceed to the successive processing stages, negatively affecting the
final results.
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Motion blur, sensor noise and jpeg artifacts are just some of the possible
image problems that are negatively affecting automated 3D reconstruction methods.
These problems are then coupled with lack of texture scenarios, repeated patterns,
illumination changes, etc. Therefore, image pre-processing methods are fundamental
to improve the image quality for successful photogrammetric processing. Indeed, as
the image processing is fully automated, the quality of the input images, in terms
of radiometric quality as well as network geometry, is fundamental for a successful
3D reconstruction.

This paper presents an efficient image pre-processing methodology developed to
increase the processing performances of the two central steps of the photogrammetric
pipeline, i.e., image orientation and dense image matching. The main idea is to
minimize typical failure caused by Scale-Invariant Feature Transform (SIFT)-like
algorithms [7] due to changes in the illumination conditions or low contrast blobs
areas and to improve the performances of dense image matching methods [8]. The
methodology tries to: (i) increase the number of correct image correspondences,
particularly in textureless areas; (ii) track image features along the largest number of
images to increase the reliability of the computed 3D coordinates; (iii) correctly orient
the largest number of images; (iv) deliver sub-pixel accuracy at the end of the bundle
adjustment procedure; and (v) provide dense, complete and noise-free 3D point
clouds (Figure 3). The work investigated various state-of-the-art algorithms aiming
to adapt the most promising methods and give solutions at the aforementioned
specific problems, thus creating a powerful solution to radiometrically improve
the image quality of an image datasets. The developed procedure for image
pre-processing and enhancement consists of color balancing (Section 2), image
denoising (Section 3), color-to-gray conversion (Section 4) and image content
enrichment (Section 5). The pre-processing methodology could be really useful in the
architectural, built heritage and archaeological fields, where automated 3D modeling
procedures have become very common whereas skills in image acquisition and data
processing are often missing. Our methodology could even be embedded in different
types of processing scenarios, like completely automated web-based applications
(e.g., Autodesk ReCap and Arc 3D Webservice) or offline desktop-based applications
(e.g., Agisoft Photoscan, Photometrix iWitness, VisualSFM, and Pix4D Mapper).

The pipeline (Figure 4) is afterwards presented and evaluated using some
datasets of architectural scenarios.
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Figure 4. The proposed image pre-processing and enhancement pipeline.

Related Works

Image pre-processing is a set of methods used to increase the quality of images
for successive processing purposes [9]. The aim is thus to enhance some image
features important, e.g., for 3D reconstruction algorithms or to remove unwanted
disturbs or degradations in the image. A pre-processing can be a simple histogram’s
stretching or a more complex approach like denoising or filtering [10,11]. Image
pre-processing normally comprises enhancement (i.e., the improvement of the image
quality) and restoration (i.e., the removal of degraded areas). The former is more
subjective, whereas the latter is an objective process that involves the modeling
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of degradation (possibly from prior knowledge) and applying an inverse process
to recover the original signal. Image pre-processing is a fundamental task for
many successive tasks in applications like medical imaging [12], computer vision,
underwater photogrammetry [13] or 3D modeling [14].

Maini and Aggarwal [15] provide an overview of concepts and algorithms
commonly used for image enhancement. Stamos et al. [16] presents some metrics to
estimate the amount of blur in image sequence, based on color saturation, local
auto-correlation and gradient distribution. Feature tracking and camera poses
recovery methods in blurry image sequences can be improved using edgelets [17]
or blurring the previous frame in order to obtain a consistent tracking [18] or
deblurring a current frame with a blur kernel [19]. Guidi et al., [14] analyses how
image pre-processing with polarizing filters and HDR imaging may improve indoor
automated 3D reconstruction processes based on SfM methods. Verhoeven et al. [20]
investigated the use of different grayscale conversion algorithms to decolorize
color images as input for SfM software packages. Bellavia et al. [21] presented
an online pre-processing strategy to detect and discard bad frames in video
sequences. The method is based on the Double Window Adaptive Frame Selection
(DWAFS) algorithm which works on a simple gradient statistic (gradient magnitude
distribution). The percentile statistic of each frame is used to develop an adaptive
decision strategy based on a dangling sample window according to the time series of
the ongoing percentile values and the last best ones.

2. Color Balance and Exposure Equalization

Color balance is the global adjustment of the intensity of the (red, green,
and blue) colors in order to render them correctly. Color balance and exposure
equalization is a key step to ensure: (i) faithful color appearance of a digitized artifact;
and (ii) consistency of the color-to-gray conversion. This latter one (see Section 4) is
a fundamental step as all feature extraction and image matching algorithms works
using only the luminance channel. A correct color balance allows minimizing the
typical problem of incorrectly detected areas (e.g., different luminance value for
the same color and/or isoluminant colors) that strongly appear in case of surfaces
of the same color or colors with the same luminance value. Therefore, the color
balance procedure aims to produce radiometrically-calibrated images ensuring the
consistency of surface colors in all the images (i.e., as much as possible similar RGB
values for homologous pixels). Starting from captured RAW images, our workflow
includes (Section 2.2): exposure compensation, optical correction, sharpen, and
color balance.
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2.1. Color Spaces

The use of an appropriate color space to work and render images on screen
is fundamental.

sRGB, a standard RGB color space created cooperatively by HP and Microsoft
in 1996, is certainly the best choice as output color space for textures and to display
rendered 3D models for several reasons including:

‚ sRGB is the default color space for HTML, CSS, SMIL and other web standards;
‚ sRGB is consistent among different monitors or video-projectors; and
‚ sRGB is implemented in the OpenGL graphic libraries, used in many

rendering software.

However, the sRGB color space is very narrow and may produce loss of
information, mainly in the acquisition and processing phases. To avoid these
problems, a broader rendered color space is used, such as the Adobe-RGB (1998),
which represents an excellent compromise between the amount of colors that can be
codified and the possibility of displaying them on the screen. The use of Adobe-RGB
(1998) allows avoiding possible inaccuracies of the sRGB color space in shadows
(~25% luminance) as well as highlights (~75% luminance). Adobe-RGB (1998)
expands its advantages to areas of intense orange, yellow and magenta color. As the
sRGB is a “de facto” standard for consumer cameras storing images in JPEG format, it
is advisable to use the RAW format, which normally map to a rendered color space
as the Adobe-RGB or sRGB color space.

2.2. Proposed Approach

Between the two general approaches (color characterization vs. spectral
sensitivities based on color targets) [22] we adopted this last technique that uses a set
of differently colored samples measured with a spectrophotometer.

The most precise characterization for any given camera requires recording
its output for all possible stimuli and comparing it with separately measured
values for the same stimuli [23]. However, storage of such a quantity of data is
impractical, and, therefore, the response of the device is captured for only a limited
set of stimuli—normally for the acquisition conditions. The responses to these
representative stimuli can then be used to calibrate the device for input stimuli that
were not measured, finding the transformation between measured CIExyz values
and stored RGB values. To find this transformation, several techniques have been
developed, including look-up tables [24].

The method for evaluating and expressing color accuracy (“color
characterization”) includes a physical reference chart acquired under standard
conditions, a reference chart color space with the ideal data values for the chart, a
way to relate or convert the device color space to the reference chart color space and,
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finally, a way to measure and show errors in the device’s rendering of the reference
chart. The target GretagMacbeth ColourChecker [25] is employed during the image
acquisitions, considering the measurements of each patch as reported in Pascale [26].

A captured color image containing the GretagMacbeth ColourChecker is
neutralized, balanced and properly exposed. Using in-house software, an ICC
(International Color Consortium) profile—assigned together with the Adobe-RGB
(1998) color space of the RAW image—is generated. Before creating ICC profiles, a
standard gamma correction (γ = 2.2) is applied, converting all images to the camera’s
native linear color space, thus improving the quality of the profiles. A protocol is
developed to use the same calibration for groups of images with the same features
(i.e., orientation, exposure and framed surfaces) thus to maintain consistency in the
process and results.

The color accuracy is computed in terms of the mean camera chroma relative to
the mean ideal chroma in the CIE color metric (∆E*00) as defined in 2000 by CIE [27]:
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This formula is a new version of the original one (1976) and is more suitable for
our uses. It takes into consideration the problem of non-perceptual uniformity of the
colors for which ∆E*00 varies the weight of L* depending on where the brightness
range falls. Song and Luo [28] showed that the perceptible and acceptable color
differences in complex images presented on a CRT (Cathode Ray Tube) monitor are
approximately 2.2 and 4.5, respectively. In our case, the latter value was used as a
strict reference for accuracy, defined from perception tests on the results obtained
using this value.

Exposure error in f-stops was also evaluated on the plane of the target assumed
as one the main object captured in the image. The ∆E*00 and the exposure error
calculations was computed using Imatest Studio software version 3.9.

From an operational point of view, the preservation of color fidelity throughout
the image processing is ensured by:

‚ taking pictures in the most homogeneous operative conditions
(aperture/exposure direction and intensity of light);

‚ including ColourChecker target inside the photographed scenes in order to
correct the image radiometry;

‚ storing photos in RAW format; and
‚ using an appropriate color space from the beginning of the image processing.

An important and critical issue is the acquisition of the color target. In order
to maintain uniform lighting in an external environment, for each image, we need
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to consider: (i) surfaces illuminated and oriented as the ColourChecker and that
presents an angle of incidence with sunlight of approximately 20˝–45˝ or (ii) image
acquisitions performed with overcast sky. To minimize the light glare, that would
give unexpected results in the calibration process, the ColourChecker is normally
placed on a tripod with a dark background and orthogonal to the camera optical
axis. Finally, we verified that a ColourChecker image width of 500 to 1500 pixels is
sufficient for ∆E*00 analysis, as also suggested in the Imatest user guide.

3. Image Denoising

Image noise is defined in the ISO 15739 standard as “unwanted variations
in the response of an imaging system” [29]. It is formed when incoming light is
converted from photons to an electrical signal and originates from the camera sensor,
its sensitivity and the exposure time as well as by digital processing (or all these
factors together). Noise can appear in different ways:

‚ Fixed pattern noise (“hot” and “cold” pixels): It is due to sensor defects or long
time exposure, especially with high temperatures. Fixed pattern noise always
appears in the same position.

‚ Random noise: It includes intensity and color fluctuations above and below the
actual image intensity. They are always random at any exposure and more
influenced by ISO speed.

‚ Banding noise: It is caused by unstable voltage power and is characterized by
the straight band in frequency on the image. It is highly camera-dependent and
more visible at high ISO speed and in dark image. Brightening the image or
white balancing can increase the problem.

‚ Luminance noise (i.e., a variation in brightness): It is composed of noisy bright
pixels that give the image a grainy appearance. High-frequency noise is
prevalent in the luminance channel, which can range from fine grain to more
distinct speckle noise. This type of noise does not significantly affect the image
quality and can be left untreated or only minimally treated if needed.

‚ Chrominance noise (i.e., a variation in hue): It appears as clusters of colored
pixels, usually green and magenta. It occurs when the luminance is low due to
the inability of the sensor to differentiate color in low light levels. As a result,
errors in the way color is recorded are visible and hence the appearance of color
artifacts in the de-mosaicked image.

Starting from these considerations, the noise model can be approximated with
two components:

(a) A signal-independent Gaussian noise to compensate for the fixed pattern
noise (FPN).
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(b) A signal-dependent Poisson noise to compensate for the temporal (random)
noise, called Shot Noise.

A denoise processing basically attempts to eliminate—or at least minimize—these
two components.

Several denoising methods [30–32] deal directly with Poisson noise.
Wavelet-based denoising methods [33,34] adapt the transform threshold to the local
noise level of the Poisson process. Recent papers on the Anscombe transform by
Makitalo and Foi [35] and Foi [36], argue that, when combined with suitable forward
and inverse variance-stabilizing transformations (VST), algorithms designed for
homoscedastic Gaussian noise work just as well as ad-hoc algorithms based on
signal-dependent noise models. This explains why the noise is assumed to be
uniform, white and Gaussian, having previously applied a VST to the noisy image to
take into account the Poisson component.

An effective restoration of image signals will require methods that either model
the signal a-priori (i.e., Bayesian) or learn the underlying characteristics of the signal
from the given data (i.e., learning, non-parametric, or empirical Bayes’ methods).
Most recently, the latter approach has become very popular, mainly using patch-based
methods that exploit both local and non-local redundancies and “self-similarities” in
the images [24]. A patch-based algorithm denoises each pixel by using knowledge of
(a) the patch surrounding it and (b) the probability density of all existing patches.

Typical noise reduction software reduces the visibility of noise by smoothing
the image, while preserving its details. The classic methods estimate white
homoscedastic noise only, but they can be adapted easily to estimate signal- and
scale-dependent noise.

The main goals of image denoising algorithms are:

‚ perceptually flat regions should be as smooth as possible and noise should be
completely removed from these regions;

‚ image boundaries should be well preserved and not blurred;
‚ texture detail should not be lost;
‚ the global contrast should be preserved (i.e., the low-frequencies of denoised

and input images should be equal); and
‚ no artifacts should appear in the denoised image.

All these goals are appropriate also for our cases were we need not to remove
signal, nor distort blob shape and intensity areas to have efficient keypoint extraction
and image matching processing.

Numerous methods were developed to meet these goals, but they all rely on the
same basic method to eliminate noise: averaging. The concept of averaging is simple,
but determining which pixels to average is not.
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In summary:

‚ the noise model is different for each image;
‚ the noise is signal-dependent;
‚ the noise is scale-dependent; and
‚ the knowledge of each dependence is crucial to proper denoising of any given

image which is not raw, and for which the camera model is available.

To meet this challenge, four denoising principles are normally considered:

‚ transform thresholding (sparsity of patches in a fixed basis);
‚ sparse coding (sparsity on a learned dictionary);
‚ pixel averaging and block averaging (image self-similarity); and
‚ Bayesian patch-based methods (Gaussian patch model).

Each principle implies a model for the ideal noiseless image. The
current state-of-the-art denoising recipes are in fact a smart combination of all
these ingredients.

3.1. Evaluated Methods

We investigated different denoise algorithms, some commercial, namely:

‚ Imagenomic Noiseware [37,38]: It uses hierarchical noise reduction algorithms,
subdividing the image noise into two categories: luminance noise and color
noise, furthermore divided into frequencies ranging from very low to high.
The method includes detection of edges and processing at different spatial
frequencies, using the YCbCr color space. Noiseware presents good quality
results and it is easy to set-up.

‚ Adobe Camera RAW denoise [39]: Noise-reduction available in Camera Raw
6 with Process 2010 (in Section 6 simply called Adobe) uses a luminance
noise-reduction technique based on a wavelet algorithm that seeks to determine
extremely high-frequency noise and to separate it from high-frequency image
texture. The method is capable of denoising large noisy areas of an image as
well as to find and fix “outliers”, i.e., localized noisy areas. Unfortunately, the
method is a global filter and it needs a skilled manual intervention for each
image to set-up the right parameters.

‚ Non-Local Bayesian filter [40–42]: It is an improved patch-based variant of the
Non Local-means (NL-means) algorithm, a relatively simple generalization of
the Bilateral Filter. In the NL-Bayes algorithm, each patch is replaced by a
weighted mean of the most similar patches present in a neighborhood. To each
patch is associated a mean (which would be the result of NL-means), but also
a covariance matrix estimating the variability of the patch group. This allows
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computing an optimal (Bayesian minimal mean square error) estimate of each
noisy patch in the group, by a simple matrix inversion. The implementation
proceeds in two identical iterations, but the second iteration uses the denoised
image of the first iteration to estimate better the mean and covariance of the
patch models.

‚ Noise Clinic [43–46]: It is the conjunction of a noise estimation method and of
a denoising method. Noise estimation is with an extension of [47] method to
be able to estimate signal-dependent noise, followed by multiscale NL-Bayes
denoising method. The multiscale denoising follow these principles: (a) signal
dependent noise estimated at each scale; and (b) zoom down followed by
Anscombe transform to whiten the noise at each scale; denoising performed
at each scale, bottom-up (coarse to fine). Noise Clinic is implemented in DxO
Optics Pro with the name of Prime (Probabilistic Raw IMage Enhancement),
and it is useful for very noisy and high-ISO RAW images, or for photos taken
with an old camera that could not shoot good-quality images at ISO higher
than 1600 ISO.

‚ Color Block Matching 3D (CBM3D) filter [48]: A color variant of Block Matching
3D (BM3D) filter [49]. BM3D is a sliding-window denoising method extending
the Discrete Cosine Transform (DCT) [25] and NL-means algorithms. BM3D,
instead of adapting locally a basis or choosing from a large dictionary, uses a
fixed basis. The main difference from DCT denoising is that a set of similar
patches is used to form a 3D block, which is filtered by using a 3D transform,
hence the name “collaborative filtering”. The algorithm works in two stages:
“basic estimate” of the image and the creation of the final image, and with
four steps each stage: (a) finding the image patches similar to a given image
patch and grouping them in a three-dimensional block: (b) 3D linear transform
of the 3D block; (c) shrinkage of the transform spectrum coefficients; and
(d) inverse three-dimensional transformation. This second step mimics the
first step, with two differences. The first difference is that it compares the
filtered patches instead of the original patches. The second difference is that
the new 3D group is processed by an oracle Wiener filter, using coefficients
from the denoised image obtained at the first step to approximate the true
coefficients. The final aggregation step is identical to that of the first step.
CBM3D extends the multi-stage approach of BM3D via the YoUoVo color system.
CBM3D produces a basic estimate of the image, using the luminance data,
and delivers the denoised image performing a second stage on each of the
three color channels separately. This generalization of the BM3D is non-trivial
because authors do not apply the grayscale BM3D independently on the three
luminance-chrominance channels but they impose a grouping constraint on both
chrominance. The grouping constraint means that the grouping is done only
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once, in the luminance (which typically has a higher SNR than the chrominance),
and exactly the same grouping is reused for filtering both chrominance. The
constraint on the chrominance increases the stability of the grouping with respect
to noise. With this solution, the quality of denoised images is also excellent for
moderate noise levels.

3.2. Proposed Approach

Following the experiment results, an in-house method (named CBM3D-new) was
developed starting from the CBM3D approach [48]. For every image of a dataset, the
method automatically select the necessary parameters based on the type of camera,
ISO sensitivity and stored color profiles. In particular, the processing selection of
the latter one is based on image features and camera capabilities: dealing with
professional or prosumer setups, when source images are stored as RAW images or
in non-RAW formats characterized by a wide color space such as the Adobe-RGB
(1998), then opponent color space are chosen. When source images are stored in
JPG format using a relatively narrower color space, such as sRGB—the most used in
consumer cameras—then YCbCr color space is chosen.

The camera ISO is strictly related to the image noise. The sigma parameter,
i.e., the standard deviation of the noise, increases when the ISO increases, ranging
from lower values (σ = 1 for images shot at less than 100 ISO) to higher ones (σ = 10
for images shot at more than 800 ISO). ISO sensitivity similarly influences other
filtering parameters, such as the number of sliding step to process every image block
(ranging from 3 to 6), the length of the side of the search neighborhood for full-search
block-matching (ranging from 25 to 39) as well as the number of step forcing to
switch to neighborhood full-search (ranging from 1 to 36).

4. Color-to-Gray

Most of the algorithms involved in the image-based 3D reconstruction pipeline
(mainly feature extraction for tie points identification and dense image matching)
are conceptually designed to work on grayscale images (i.e., single-band images)
instead of the RGB triple. This is basically done to highly reduce the computational
complexity of the algorithms compared to the utilization of the three channels. Color
to grayscale conversion (or decolorization) can be seen as a dimensionality reduction
problem and it should not be underestimated, as there are many different properties
that need to be preserved. Over the past decades, different color-to-gray algorithms
have been developed to derive the best possible decolorized version of a color
image [20]. All of them focus on the reproduction of color images with grayscale
mediums, with the goal of: (i) a perceptual accuracy in terms of the fidelity of the
converted image; and (ii) a preservation of the color contrast and image structure
contained in the original color also in the final decolorized image. Nevertheless,
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these kinds of approaches are not designed to fulfill the needs of image matching
algorithms where local contrast preservation is crucial during the matching process.
This was also observed in Lowe [50] where the candidate key points with low contrast
are rejected in order to decrease the ambiguity of the matching process.

Color-to-gray conversion methods can be classified according to their
working space:

‚ Color Space (linear or non-linear): The CIE Y method is a widely used conversion,
based on the CIE 1931 XYZ color space. It takes the XYZ representation of the
image and uses Y as the grayscale value.

‚ Image Space (also called functional): Following Benedetti et al. [51], these methods
can be divided in three groups.

(a) Trivial methods: They are the most basic and simple ones, as they do
not take into account the spectral power distribution (SPD) of the color
channels. They lose a lot of image information as for every pixel they
discard two of the three color values, or discard one value averaging the
remaining ones, not taking into account any color properties. Despite this
loss, they are commonly used for their simplicity and speed. A typical
trivial method is the RGB Channel Filter that selects a channel between
R, G or B and uses this channel as the grayscale value (this method is
afterwards called GREEN2GRAY).

(b) Direct methods: The conversion is a linear function of the pixel’s color
values. Typically, this class of functions takes into account the spectrum
of different colors. The Naive Mean direct method takes the mean of the
color channels. With respect to trivial methods, it takes information from
every channel, though it does not consider the relative spectral power
distribution (SPD) of the RGB channels. The most popular of these
methods is RGB2GRAY that uses the NTSC CCIR (National Television
System Committee—Consultative Committee on International Radio)
601 luma weights, with the formula:

Y1 “ 0.2989R1 ` 0.5870G1 ` 0.1140B1 (2)

Other weights can be used, according to the users and software (e.g., Adobe
Photoshop uses these specific weights for the channels R, G, and B: 0.4, 0.4, 0.2).

(c) Chrominance direct methods: They are based on more advanced algorithms,
trying to mitigate the problem related to isoluminant colors. They
assign different grayscale values to isoluminant colors, altering the
luminance information and using the chrominance information. In
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order to increase or decrease the “correct” luminance to differentiate
isoluminant colors, these methods exploit a result from studies on human
color perception, known as the Helmholtz–Kohlrausch (H-K) effect [52].
The H-K effect states that the perceived lightness of a stimulus changes as
a function of the chroma. This phenomenon is predicted by a chromatic
lightness term that corrects the luminance based on the color’s chromatic
component and on starting color space. Chrominance direct methods can
be performed either locally [53,54] or globally [55]. Local methods make
pixels in the color image not processed in the same way and usually rely
on the local chrominance edges for enhancement. Global methods strive
to produce one mapping function for the whole image thus producing
same luminance for the same RGB triplets and high-speed conversion.

4.1. Evaluated Methods

We investigated different color-to-gray methods, namely:

‚ GREEN2GRAY: It is a trivial method working in Image Space where the
green channel is extracted from a RGB image and used to create the final
grayscale image.

‚ Matlab RGB2GRAY: It is a direct method implemented in Matlab and based on
the above mentioned weighted sum of the three separate channels.

‚ Decolorize [55]: The technique performs a global grayscale conversion by
expressing the grayscale as a continuous, image-dependent, piecewise linear
mapping of the primary RGB colors and their saturation. Their algorithm works
in the YPQ color opponent space and aims to perform a contrast enhancement
too. The color differences in this color space are projected onto the two
predominant chromatic contrast axes and are then added to the luminance
image. Unlike a principal component analysis, which optimizes the variability
of observations, a predominant component analysis optimizes the differences
between observations. The predominant chromatic axis aims to capture, with
a single chromatic coordinate, the color contrast information that is lost in
the luminance channel. The luminance channel Y is obtained with the NTSC
CCIR 601 luma weights. The method is very sensitive to the issue of gamma
compression with some risks of decrease of the quality of the results mainly in
light areas or dark areas where many features will be lost because the saturation
balancing interacts incorrectly with the outlier detection.

‚ Realtime [56–58]: This method is based on the consideration that in the human
visual system the relationship to the adjacent context plays a vital role to order
the different colors. Therefore, the method relaxes the color order constraint
and seeks better preservation of color contrast and significant enhancement
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of visual distinctiveness for edges. For color pairs without a clear order in
brightness, a bimodal distribution (i.e., a mixture of two Gaussians) is performed
to automatically find suitable orders with respect to the visual context in
optimization. This strategy enables automatically finding suitable grayscales
and preserves significant color changes. Practically the method uses a global
mapping scheme where all color pixels in the input are converted to grayscale
using the same mapping function (a finite multivariate polynomial function).
Therefore, two pixels with the same color will have the same grayscale. The
technique is today implemented in OpenCV 3.0. In order to achieve real-time
performance, a discrete searching optimization can be used.

‚ Adobe Photoshop.

To evaluate the performances of the aforementioned methods (Figure 5), we
applied the pixel-by-pixel difference method applying an offset of 127 levels of
brightness to better identify the differences. This technique is the most appropriate
to evaluate a method’s efficiency for machine readable process. The simple image
subtraction can rapidly provide visual results rather than using CIELAB ∆E*ab or
other perceptually-based image comparison methods.
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4.2. Proposed Approach

Based on the results achieved with the aforementioned methods, a new
decolorization technique, named Bruteforce Isoluminants Decrease (BID), was
developed. The aim of BID is to preserve the consistency between different images
considering the following requirements.

‚ Feature discriminability: The decolorization method should preserve the image
features discriminability in order to match them in as many images as possible.

‚ Chrominance awareness: The method should distinguish between
isoluminant colors.

‚ Global mapping: While the algorithm can use spatial information to determine
the mapping, the same color should be mapped to the same grayscale value for
every pixel in the image.

‚ Color consistency: The same color should be mapped to the same grayscale value
in every image of the dataset.

‚ Grayscale preservation: If a pixel in the color image is already achromatic, it should
maintain the same gray level in the grayscale image.

‚ Unsupervised algorithm: It should not need user tuning to work properly,
in particular for large datasets.

BID computes the statistical properties of the input dataset with the help
of a representative collection of image patches. Differently from the Multi-Image
Decolourize method [51], BID is a generalization of the Matlab RGB2GRAY algorithm,
which simultaneously takes in input and analyses the whole set of images that
need to be decolorized. BID has its foundation in the statistics of extreme-value
distributions of the considered images and presents a more flexible strategy, adapting
dynamically channel weights depending on specific input images, in order to find
the most appropriate weights for a given color image. BID preserves as much as
possible the amount of the conveyed information. The algorithm behind BID tries to
maximize the number of peaks obtained in the converted image and to distribute
as evenly as possible the amount of tones by evaluating the goodness of a fitting
distribution. To calculate the best rectangular fitting, we assumed a 0 slope regression
line. The general equation of the regression line is:

β “ y´mx (3)
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where β is equivalent to the average of the histogram points. After calculating
the average, the minimum error within all the calculated combinations of channel
mixings if sought. The error is calculated as a least squares error:

S “
n
ÿ

i“1

pyi ´ βq2 (4)

where yi are the actual points, while β is the best linear fitting of the histogram.
BID cyclically varies the amount of red, green and blue and for each variation
calculates the distribution of the resulting grayscale image and assesses the fitting
quality with respect to a rectangular distribution. Then, BID chooses the mixing that
maximizes the number of tones obtained in the converted image. Finally, similarly
to Song et al. [59], BID uses a measurement criterion to evaluate the decolorization
quality, i.e., the newly defined dominant color hypothesis.

Figure 6 reports an example of BID results with respect to Matlab RGB2GRAY
method. The main disadvantage of the developed method is the high computational
pre-processing time due to the sampled patches on each image of the dataset.Remote Sens. 2016, 8, 178 13 of 28 
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5. Image Content Enhancement with Wallis Filtering

Image contents play a fundamental role in many processing and feature
extraction methods. There are various enhancement algorithms to sharp and
increase the image quality [9,60–62]. For image-based 3D reconstruction purposes,
low-texture surface (such as plaster building facades) causes difficulties to
feature detection methods (such as the Difference-of-Gaussian (DoG) function)
and matching algorithms, leading to outliers and unsuccessful matching results.
Among the proposed methods to enhance image contents, the Wallis filter [11]
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showed very successful performances in the photogrammetric community [63–67].
Jazayeri et al. [68] tested the Wallis filter for different parameters to evaluate
its performances for interest point detection and description. Those results
demonstrated that an optimum range of values exists and depending on the
requirements of the user, but automatic value selection remains undetermined.

The filter is a digital image processing function that enhances the contrast levels
and flattens the different exposure to achieve similar brightness of gray level values.
The filter uses two parameters to control the enhancement’s amount, the contrast
expansion factor A and the brightness forcing factor B. The algorithm is adaptive and
adjusts pixel brightness values in local areas only, contrary to a global contrast filter,
which applies the same level of contrast throughout an entire image. The resulting
enhanced image contains greater detail in both low and high-level contrast regions
concurrently, ensuring that good local enhancement is achieved throughout the
entire image. The Wallis filter requires the user to accurately set a target mean and
standard deviation in order to locally adjust areas and match the user-specified
target values. Firstly, the filter divides the input image into neighboring square
blocks with a user-defined size (“window size”) in order to calculate local statistics.
Then, mean (M) and standard deviation (S) of the unfiltered image are calculated
for each individual block based on the gray values of the pixels and the resulting
value is assigned to the central cell of each block. The mean and standard deviation
values of all other cells in the block are calculated from this central cell by bilinear
interpolation. In this way, each individual pixel gets its own initial local mean and
standard deviation based on surrounding pixel values. The user-defined mean and
standard deviation values are then used to adjust the brightness and the contrast
of the input cells. The resulting enhanced image is thus a weighted combination
of the original and user-defined mean and standard deviation of the image. The
implementation of the filter of Wallis, given the aforementioned factor A and B, can
be summarized as follows:

‚ let S be the standard deviation for the input image;
‚ let M be the mean for the input image;
‚ for each (x,y) pixel in the image,
‚ calculate local mean m and standard deviation s using a NxN neighborhood;

and finally
‚ calculate the enhanced output image as

px, yq “ Sˆpinputpx, yq´mq{ps ` Aq ` M ˚ B ` mˆp1´Bq (5)

112



Characterization of Wallis Parameters

The quality of the Wallis filter procedure relies on two parameters: the contrast
expansion factor A and the brightness forcing factor B. The main difficulty when using the
Wallis filter is the correct selection of these parameters, in particular for large datasets,
where a unique value of A or B could lead to unsuitable enhanced images. Although
several authors reported parameters for successful projects, the filter is more an
“ad-hoc” recipe than an easily deployable system for an automatic photogrammetric
pipelines. To overcome this problem and following the achievement presented
in [69], a Wallis parameters characterization study was carried out to automatically
determine them. Three different datasets, each one composed of three images and
involving the majority of possible surveying case studies were used (Figure 7):

1. a cross vault characterized by smooth bright-colored plaster;
2. a building facade and porticoes with smooth plaster; and
3. a Venetian floor, with asphalt and porphyry cubes with a background

facade overexposed and an octagonal pillar in the foreground coated with
smooth plaster.
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Figure 7. Employed datasets (cross vault with plaster, building façade and Venetian
floor, respectively) to study the automatic selection of the Wallis filter parameters.

For every dataset, the images were enhanced using different Wallis parameters
and then matched to find homologues points using a calibrated version [7] of the SIFT
operator available in Vedaldi’s implementation [69]. This characterization procedure
delivered the following considerations.

1. The number of extracted tie points is inversely proportional to the value
of the parameter A, but the number of correct matches remains basically
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stable when varying A, which can then be set at high values to speed up
the computation (6–8).

2. Varying the user-specified standard deviation, the number of tie points and
correct matches increases substantially linearly up to a value of 100 and then
remains constant (Figure 8a).
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parameter values: (a) cross vault dataset—performance evaluation varying the
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the window size; and (c) cross vault dataset—performance evaluation varying
the mean.
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3. Sensor resolution and window size are linearly related and the increasing of the
window size beyond the optimal value does not involve any improvement in
either the number of positive matches and in the number of extracted tie points
(Figure 8b).

4. The mean presents optimal values between 100 and 150 with a decay afterwards
(Figure 8c).

Starting from these observations, a new implementation of the Wallis filter
was realized to select the optimal filter parameters and achieve the highest possible
ratio of corrected matches with respect to the number of extracted tie points. In
particular, the window size parameter is chosen according to the sensor resolution,
and presents a linear variation starting from the experimental best values of 41 for
a 14 MPixel sensor and 24 for a 10 MPixel sensor. According to our experimental
trials, the standard deviation was forcefully set to 60 and the mean to 127. The
Contrast Expansion Constant parameter (A) was set to 0.8 to increase the number of
detected interest points located in homogeneous and texture-less areas and, alongside,
to speed up the computation. The brightness forcing factor (B) according to the
experimental results, was set to 1 if the image mean was lower than 150, linearly
decreased otherwise, evaluating the entropy of the image.

Figure 9 shows the results of Wallis filtering: lower image contents are boosted,
whereas a better histogram is achieved.
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6. Assessment of the Proposed Methodology

The implemented pre-processing procedure was evaluated on various
image networks featuring different imaging configurations, textureless areas and
repeated pattern/features. The employed datasets try to verify the efficiency of
different techniques in different situations (scale variation, camera rotation, affine
transformations, etc.). The datasets contain convergent images, some orthogonal
camera rolls and a variety of situations emblematic of failure cases, i.e., 3D
scenes (non-coplanar) with homogeneous regions, distinctive edge boundaries
(e.g., buildings, windows, doors, cornices, arcades), repeated patterns (recurrent
architectural elements, bricks, etc.), textureless surfaces and illumination changes.
With respect to other evaluations where synthetic datasets, indoor scenarios, low
resolution images, flat objects or simple two-view matching procedures are used and
tested, such datasets are more varied with the aim of a complete and precise scene’s
3D reconstruction.

All algorithms are tested and applied to raw images, i.e., images as close as
possible to the direct camera output retaining only the basic in-camera processing:
black point subtraction, bad pixel removal, dark frame, bias subtraction and flat-field
correction, green channel equilibrium correction, and Bayer interpolation. The
datasets are processed with different image orientation software (Visual SFM,
Eos Photomodeler and Agisoft Photoscan), trying to keep a uniform number of
extracted key points and tie points. Then, dense point clouds are extracted with a
unique tool (nFrames SURE). The performances of the pre-processing strategies are
reported using:

(i) pairwise matching efficiency i.e., number of correct inlier matches after the
RANSAC (RANdom SAmple Consensus) phase normalized with all putative
correspondences (Section 6.1);

(ii) the statistical output of the bundle adjustment (Sections 6.2 and 6.3);
(iii) the number and density of points in the dense point cloud (Sections 6.2

and 6.3); and
(iv) an accuracy evaluation of the dense matching results (Section 6.2).

6.1. Dataset 1

The first dataset (four images acquired with a Nikon D3100, sensor size
23.1 ˆ 15.4 mm, 18 mm nominal focal length) shows part of Palazzo Albergati
(Bologna, Italy) characterized by repeated brick walls, stone cornices and a flat facade.
The camera was moved along the façade of the building, then tilted and rotated
(Figure 10). This set of images is used to evaluate the denoise and color-to-gray
techniques with respect to the tie points extraction procedure. The pairwise matching
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is assessed using three camera movements: (i) parallel with short baseline (a,b);
(ii) rotation of ca. 90˝ (a–d); and (iii) tilt of ca. 45˝ (b,c).
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Figure 10. The images used to assess the pairwise matching efficiency of the tie
point extraction procedure: parallel acquisitions with short baseline (a,b); tilt of ca.
45˝ (c) and rotation of ca. 90˝ (d).

Table 1 reports the computed pairwise matching efficiency after applying the
various denoising methods and color-to-gray techniques. The developed methods
(CBM3D-new and BID) demonstrate a better efficiency in the tie point extraction.

Table 1. Efficiency of each denoise and color-to-gray technique for the image pairs
of Dataset 1. Adobe method is Camera Raw 6 with Process 2010 (see Section 3.1).

Denoising Color-to-Gray

Parallel Rotate 90˝ Tilt 45˝ Parallel Rotate 90˝ Tilt 45˝

00-01 00-03 01-02 00-01 00-03 01-02

Adobe 0.982 0.812 0.5 Adobe 0.992 0.821 0.630
CBM3D 0.991 0.837 0.561 REALTIME 0.992 0.827 0.618
NLBayes 0.978 0.801 0.651 Decolourize 0.992 0.863 0.626

Noiseclinic 0.984 0.769 0.473 RGB2GRAY 0.980 0.690 0.329
IMAGENOMIC 0.980 0.690 0.329 GREEN2GRAY 0.992 0.786 0.640

Nodenoise 0.975 0.679 0.335 BID 0.993 0.825 0.676

6.2. Dataset 2

The second dataset (35 image acquired with a Nikon D3100, sensor size
23.1 ˆ 15.4 mm, 18 mm nominal focal length) concerns two spans of a three floors
building (6 ˆ 11 m) characterized by some arches, pillars, cross vaults and plastered
walls with uniform texture. The camera was moved along the porticoes, with some
closer shots of the columns (Figure 11). With this dataset we report how color
balancing and denoising methodologies help improving the bundle adjustment and
dense matching procedures. The accuracy evaluation of the dense matching results is
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done using a Terrestrial Laser Scanning (TLS) survey as reference (a Faro Focus3D was
employed). Three regions (Figure 12A1–A3) are identified and compared with the
photogrammetric dense clouds. The average image GSD (Ground Sample Distance)
in the three regions of interest is ca. 2 mm but the dense matching was carried
out using the second-level image pyramid, i.e., at a quarter of the original image
resolution. Therefore, in order to have a reference comparable to the dense matching
results, the range data are subsampled to a grid of 5 ˆ 5 mm.
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Figure 11. Dataset 2 (35 images)—two arches of a portico.

6.2.1. Color Balance Results

The results of the orientation and dense matching steps are reported in
Table 2. The color balancing procedure generally helps in increasing the number of
oriented images, except with PS where the dataset is entirely oriented at every run.
Furthermore, it helps in deriving denser point clouds.
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Table 2. Bundle adjustment (BA) results and dense matching improvement on
Dataset 2.

Not Enhanced Color Balanced

VisualSFM (VSFM)
Numb. oriented images 31 33

BA quality (px) 0.48 0.48

EOS Photomodeler (PM)
Numb. oriented images 31 33

BA reprojection error (px) 1.44 0.89

Agisoft Photoscan (PS)
Numb. oriented images 35 35

BA reprojection error (px) 0.51 0.54

Dense Matching (SURE)
# 3D points 1,259,795 1,626,267

6.2.2. Image Denoising Results

The denoising methods are coupled to Matlab RGB2GRAY and Wallis filtering
before running the automated orientation and matching procedures. The achieved
adjustment results, according to the different denoising methods, show that more
images can be oriented (Table 3) and denser point clouds can be retrieved (Table 4).
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Table 3. Bundle adjustment (BA) results for every denoising procedure on
Dataset 2. Adobe method is Camera Raw 6 with Process 2010 (see Section 3.1).
On such a small dataset, Photoscan seems to be quite robust even without any
pre-processing method.

No
Denoise Adobe CBM3D-New NL-Bayes Noise

Clinic Image Nomic

VisualSFM (VSFM)
Numb. oriented images 32 35 35 35 35 35

BA quality (px) 0.29 0.48 0.48 0.45 0.69 0.37

EOS PhotoModeler (PM)
Numb. oriented images 33 33 33 33 33 31

BA reprojection error (px) 0.89 0.84 0.83 0.86 0.87 0.88

Agisoft Photoscan (PS)
Numb. oriented images 35 35 35 35 35 35

BA reprojection error (px) 0.49 0.49 0.49 0.49 0.53 0.55

Table 4. Evaluation of the denoising procedures on the dense matching phase. The
ground truth is given by a TLS survey resampled to 5 ˆ 5 mm grid. The histograms
of the cloud-to-cloud point distribution errors are also reported.

No Denoise Adobe CBM3D-New NL-Bayes Noise Clinic Image Nomic

Numb. 3D points 998,995 1,308,768 1,456,024 1,456,561 1,428,996 1,346,559
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# 3D points 32.014 176,478 179,553 183,166 184,835 160,120

Std Dev
(mm) N/A 11.76 12.35 11.44 10.03 10.99
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6.2.3. Color-to-Gray Results

The color-to-gray conversion (coupled with the Wallis filtering) shows how
algorithms are differently affecting the BA procedure (Table 5) as well as the dense
matching results (Table 6). It can be generally noticed that the proposed BID method
allows retrieving a larger number of oriented images, a better re-projection errors
and denser point clouds.

Table 5. Bundle adjustment (BA) results of the various color-to-gray procedures on
Dataset 2.

GREEN2GRAYAdobe Realtime Decolourize RGB2GRAYBID

VisualSFM (VSFM)
Numb. oriented images 35 33 30 16 33 35

BA reprojection error (px) 0.55 0.42 0.37 0.38 0.35 0.58

EOS PhotoModeler (PM)
Numb. oriented images 35 33 33 28 32 35

BA reprojection error (px) 0.87 0.89 0.87 0.89 0.88 0.86

Agisoft Photoscan (PS)
Numb. oriented images 35 35 35 35 35 35

BA reprojection error (px) 0.52 0.53 0.54 0.54 0.52 0.51

6.3. Dataset 3

The last dataset (265 images acquired with a Nikon D3100, sensor size
23.1ˆ 15.4 mm, 18 mm nominal focal length) regards a three floors historical building
(19 m height ˆ 10 m width), characterized by arcades with four arches, columns,
cross vaults and plastered walls with uniform texture. The camera was moved along
the porticoes, with some closer shots of the columns and of the vaults (Figure 13). The
dataset is used to show how the various steps of the proposed pre-processing pipeline
positively influence the 3D reconstruction procedure. Table 7 reports the achieved
image orientation results without and with pre-processing. The developed methods
(CBM3D-new for the noise reduction and BID for the color-to-gray conversion) allow
orienting larger numbers of images.
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N/A

A2—33,868 pts # 3D points 32,619 12,853 15,264 N/A 6520 9950

Std Dev
(mm) 10.76 13.82 10.77 N/A 12.39 22.29

N/A

A3—120,222 pts # 3D points 162,563 153,281 163,246 N/A 152,923 157,837

Std Dev
(mm) 11.95 10.82 8.71 N/A 8.89 10.82

N/A

The dense matching procedure is then applied starting from the orientation
results achieved in Photoscan results (Table 8). In this case, it is also shown how an
appropriate pre-processing procedure allows deriving denser point clouds. The
point density distribution for the different dense clouds (named Local Density
Computation) was estimated. The density has been computed using a tool able
to count, for each 3D point of the cloud, the number of neighbors N (inside a sphere
of a radius R, fixed at 20 cm). The results of the Local Density Computation (shown
as color-coded maps and histograms) show that the successive combination of the
proposed pre-processing methods gradually achieve, beside an increasing amount of
3D points, a higher density and a more uniform distribution of points.
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Table 7. Result of the image orientation on Datasets 3 (265 images) without or with
various pre-processing methods.

No
Pre-Processing

No Color
Correction,

Only Wallis

Color Correction,
No Denoise,

RGB2GRAY, Wallis

CBM3D-New,
RGB2GRAY,

Wallis

CBM3D-New,
BID, Wallis

VisualSFM (VSFM)
Numb. oriented

images
90 218 214 232 249

(2nd run) (4th run) (4th run) (4th run) (1st run)
BA quality (px) 0.739 0.650 0.285 0.411 0.750

PhotoModeler Scanner (PM)
Numb. oriented

images 55 N/A 180 247 247

BA quality (px) 0.687 N/A 0.779 0.804 0.790

Agisoft Photoscan (PS)
Numb. oriented

images 262 264 265 265 265

BA quality (px) 0.695 0.696 0.689 0.687 0.679

Table 8. Results of dense matching on Dataset 3 without and with various
pre-processing methods. The Local Density Computation (radius: 20 cm) is also
reported. The color-code maps show the matched point distribution on the surveyed
scene. The histogram reports the number of neighbors (X-axis) versus the number of
matched points in the cloud (Y-axis).

No
Pre-Processing

No Color Correction,
Only Wallis

Color Correction, No Denoise,
RGB2GRAY, Wallis

CBM3D-New,
RGB2GRAY, Wallis

CBM3D-New,
BID, Wallis

Dense Matching (nFrames SURE)
# 3D points 7,086,643 13,741,089 14,248,488 14,770,940 18,266,571

Maps of the
number of
neighbors

Remote Sens. 2016, 8, 178 24 of 28 

 

The dense matching procedure is then applied starting from the orientation results achieved in 
Photoscan results (Table 8). In this case, it is also shown how an appropriate pre-processing 
procedure allows deriving denser point clouds. The point density distribution for the different dense 
clouds (named Local Density Computation) was estimated. The density has been computed using a 
tool able to count, for each 3D point of the cloud, the number of neighbors N (inside a sphere of a 
radius R, fixed at 20 cm). The results of the Local Density Computation (shown as color-coded maps 
and histograms) show that the successive combination of the proposed pre-processing methods 
gradually achieve, beside an increasing amount of 3D points, a higher density and a more uniform 
distribution of points. 

Table 8. Results of dense matching on Dataset 3 without and with various pre-processing methods. 
The Local Density Computation (radius: 20 cm) is also reported. The color-code maps show the 
matched point distribution on the surveyed scene. The histogram reports the number of neighbors 
(X-axis) versus the number of matched points in the cloud (Y-axis). 

 
No  

Pre-Processing 

No Color 
Correction, 

Only Wallis 

Color Correction, 
No Denoise, 

RGB2GRAY, Wallis 

CBM3D-New, 
RGB2GRAY, 

Wallis 

CBM3D-New, 
BID, Wallis 

Dense Matching (nFrames SURE)
# 3D points 7,086,643 13,741,089 14,248,488 14,770,940 18,266,571 

Maps of the 
number of 
neighbors 

   

Histograms of 
the number of 

neighbors   

7. Conclusions 

The paper reported a pre-processing methodology to improve the results of the automated 
photogrammetric pipeline for 3D scene reconstruction. The developed pipeline consists of color 
balancing, image denoising, color-to-gray conversion and image content enrichment. Two new 
methods for image denoising (CBM3D-new) and grayscale reduction (BID) were also presented. The 
pipeline was evaluated using some datasets of architectural scenarios and advantages were reported. 
From the results in Section 6, it is clear that the pre-processing procedure, which requires very limited 
processing time, generally positively influences the performances of the orientation and dense 
matching algorithms. The evaluation shows how the combination of the various methods is indeed 
helping in achieving complete orientation results, sometimes better BA re-projection errors (although 
it is not a real measure of better quality) and, above all, denser and complete 3D dense point clouds. 

As shown in the results, the best strategy implies applying a color enhancement, a denoise 
procedure based on the CBM3D-new method, the BID method for grayscale conversion and the Wallis 
filtering. This latter filtering seems to be fundamental also in the orientation procedure and not only 
when applying dense matching algorithms (as reported in the literature). 

The developed pre-processing method is quite flexible and features the following characteristics. 

• It is derived from many experiments and merging various state-of-the-art methods. 
• The setting parameters can be fixed reading the image metadata (EXIF header). 
• The denoising and grayscale conversion consider the entire dataset and they are not image-

dependent. 
• It is customized for improving the automated 3D reconstruction procedure. 
• It is not based only on perceptual criteria typically used in image enhancement algorithms. 
• It also gives advantages to the texture mapping phase. 
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automated photogrammetric pipeline for 3D scene reconstruction. The developed
pipeline consists of color balancing, image denoising, color-to-gray conversion and
image content enrichment. Two new methods for image denoising (CBM3D-new)
and grayscale reduction (BID) were also presented. The pipeline was evaluated using
some datasets of architectural scenarios and advantages were reported. From the
results in Section 6, it is clear that the pre-processing procedure, which requires
very limited processing time, generally positively influences the performances
of the orientation and dense matching algorithms. The evaluation shows how
the combination of the various methods is indeed helping in achieving complete
orientation results, sometimes better BA re-projection errors (although it is not a real
measure of better quality) and, above all, denser and complete 3D dense point clouds.

As shown in the results, the best strategy implies applying a color enhancement,
a denoise procedure based on the CBM3D-new method, the BID method for grayscale
conversion and the Wallis filtering. This latter filtering seems to be fundamental also
in the orientation procedure and not only when applying dense matching algorithms
(as reported in the literature).

The developed pre-processing method is quite flexible and features the
following characteristics.

‚ It is derived from many experiments and merging various state-of-the-
art methods.

‚ The setting parameters can be fixed reading the image metadata (EXIF header).
‚ The denoising and grayscale conversion consider the entire dataset and they are

not image-dependent.
‚ It is customized for improving the automated 3D reconstruction procedure.
‚ It is not based only on perceptual criteria typically used in image

enhancement algorithms.
‚ It also gives advantages to the texture mapping phase.

The presented research substantially improved our 3D reconstruction pipeline
and allows us to model large architectural scenarios for documentation, conservation
and communication purposes (Figure 14).
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Data Product Specification Proposal for
Architectural Heritage Documentation with
Photogrammetric Techniques: A Case Study
in Brazil
Mariana B. Campos, Antonio M. G. Tommaselli, Ivana Ivánová and
Roland Billen

Abstract: Photogrammetric documentation can provide a sound database for
the needs of architectural heritage preservation. However, the major part of
photogrammetric documentation production is not used for subsequent architectural
heritage projects, due to lack of knowledge of photogrammetric documentation
accuracy. In addition, there are only a few studies with rigorous analysis of the
requirements for photogrammetric documentation of architectural heritage. In
particular, requirements focusing on the geometry of the models generated by fully
digital photogrammetric processes are missing. Considering these needs, this paper
presents a procedure for architectural heritage documentation with photogrammetric
techniques based on a previous review of existing standards of architectural heritage
documentation. The data product specification proposed was elaborated conforming
to ISO 19131 recommendations. We present the procedure with two case studies in
the context of Brazilian architectural heritage documentation. Quality analysis of the
produced models were performed considering ISO 19157 elements, such as positional
accuracy, logical consistency and completeness, meeting the requirements. Our
results confirm that the proposed requirements for photogrammetric documentation
are viable.

Reprinted from Remote Sens. Cite as: Campos, M.B.; Tommaselli, A.M.G.;
Ivánová, I.; Billen, R. Data Product Specification Proposal for Architectural
Heritage Documentation with Photogrammetric Techniques: A Case Study in Brazil.
Remote Sens. 2015, 7, 13337–13359.

1. Introduction

Photogrammetric documentation of architectural heritage can be understood
as a non-subjective data record of the historical, physical and temporal features
of cultural monuments and buildings. This data record is a form of preservation
that represents a permanent record of the state of architectural heritage at a specific
time or period [1]. Photogrammetric documentation is composed of descriptive
information and graphic representation of the architectural heritage structure
developed with photogrammetric techniques. In our paper we call this data record
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‘a model’. Photogrammetry has become faster and more affordable with the advance
of digital cameras, the development of digital photogrammetric platforms and
automated solutions. Digital technology advantages reminded the Venice Charter
principles [2], promoting new approaches in photogrammetric documentation (e.g.,
3D reconstruction) and encouraging several projects and research in this domain [3].

Digital technology advantages in photogrammetric techniques do not always
guarantee accurate models. As discussed by Nocerino et al. [4], some digital methods
focus on fully automatic reconstruction and they are often not concerned with
the accuracy and reliability of the generated model, resulting in heritage models
mostly for visual applications, which causes a level of mistrust in the end users of
photogrammetric documentation.

The main objective of photogrammetric documentation is to support
architectural heritage preservation projects. However, due to lack of knowledge
about reliability in the accuracy of digital photogrammetric models, the application
of photogrammetric documentation for its main purpose is discouraged. All data
and products derived from these data (e.g., photogrammetric documentation) are
associated with a level of uncertainty. Description of data quality is necessary to help
users understand the level of uncertainty associated with the product and evaluate
whether the data product is fit for their use [5].

Selecting appropriate photogrammetric documentation to support architectural
heritage preservation projects is not easily done, in particular by non-specialists,
due to lack of understanding of standard terminologies and specifications in this
domain. A Data Product Specification (DPS) for photogrammetric documentation
can help with communication between data producers and users. Standardization
promotes technological, economic and societal benefits, preventing information loss
and providing knowledge transfer, quality improvement and effectiveness in data
production [6].

Data product specification is a precise technical description of the data product
in terms of the requirements that will enable the data product to be created, supplied
to and used by another party [7]. The data product discussed in this paper is restricted
to a set of points with three-dimensional coordinates, which enable architectural
heritage surface modeling. Photogrammetric techniques provide other products,
such as orthoimages and digital terrain model, which require different procedures.
These products will be not discussed in this paper.

Some DPS for photogrammetric documentation are recognized by the heritage
preservation community, including recommendations from the International
Committee for Documentation of Cultural Heritage (CIPA) [8]. However, these
specifications were elaborated before recent digital advances in photogrammetry
and in most cases they do not include essential requirements, such as data capture,
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data quality and metadata. Hence, there is a need to update photogrammetric
documentation requirements for architectural heritage.

The development of a DPS for photogrammetric documentation of architectural
heritage is a challenge due to the architectural uniqueness of heritage structures,
which makes standardization in the heritage documentation a complex task.

Motivated by the need for technical specification in photogrammetric
documentation of architectural heritage, and the importance of communication
between geomatics and heritage experts, in this paper we propose a procedure
for architectural heritage documentation with photogrammetric techniques based
on a review of existing architectural heritage documentation standards. The
recommendations are focused on geometric aspects of the data product. We
applied the suggested requirements in two case studies in the context of Brazilian
architectural heritage documentation, which exemplifies the proposed DPS usage.

2. Review of Digital Documentation Techniques for Architectural Heritage

The importance of a sound database for architectural heritage preservation
is well recognized at international level. Architectural heritage documentation
can be used to provide a permanent record of monuments and buildings, ensure
that the maintenance and conservation of the heritage is sensitive to changes in
architectural heritage structure and acquire knowledge about heritage values [9].
Patias and Santana [10] define the documentation as a combination of a data report
and a dossier of measured representations that can include a site plan, sections,
elevations, three-dimensional models, among other documentation data. Digital
heritage documentation is defined by Letellier [11] as a production and storage of
computerized digital information, measured drawings, photogrammetric records,
and other electronic data to form a cultural heritage record.

It is desirable that the documentation method be accurate, portable (due to
the accessibility problem in architectural heritage locations), flexible (because of the
variety of architectural heritage structures), low cost and with fast acquisition [12].
Digital technological advantages in survey and modeling help to achieve these
objectives, with the new possibilities of digital procedures, product and storage.

Survey can be performed by direct or indirect measurements. Direct
measurements (e.g., tape measure) demand contact with the structure, which, for
preservation reasons, is not recommended for architectural heritage survey. Indirect
measurement techniques are advantageous because no contact with the structure
is required. Examples of such techniques include topographic surveying [13],
photogrammetry [14], computer vision, such as Structure from Motion (SfM) [15],
laser scanning [16], range imaging [17,18], reconstruction with shape from structured
light [19,20] and multi-sensor integration [3]. These techniques have become faster
and more affordable with technological advantages. Andrés and Pozuelo [21]
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presented an overview of the evolution of indirect techniques for architectural
heritage documentation survey. In the same direction, other authors reviewed
methods for 3D digitalization of architectural heritage [22–24].

Classic surveying techniques, such as topographic mapping, provide high
accuracy measurements. However, these techniques can be lengthy and costly when
a massive acquisition is demanded due to the high level of detail required [23,25].
In this case, classic surveying is combined with other indirect measurement
techniques [26]. For instance, in complex architectural heritage modeling, a dense
point cloud is needed to complete the coarse model produced by the topographic
mapping technique. This combination is used in many architectural heritage
documentation projects, as shown by Giuliano [27] who combined photogrammetry
and classic survey to develop a model of the ruins of the mausoleum ‘Torre del
Ballerino’. Scherer and Lerma [28] presented a review of topographic equipment
development, from conventional total stations to photogrammetric scanning stations.

Among the indirect measurement techniques mentioned above, the most widely
used techniques for architectural heritage survey are photogrammetry and laser
scanning, especially for mapping large and complex monuments and buildings,
where there is hardly any alternative [8].

Photogrammetry was the first indirect measurement technique applied to
architectural heritage documentation [29]. Photogrammetric technique has numerous
advantages in architectural heritage documentation: it provides geometric and
radiometric information, produces a suitable level of details across the whole
façade-even with scale variations due to the different camera viewing angles-enables
high accuracy models (e.g., up to millimeter level), identifies borders, has fast results,
is low-cost and the photographs have documentation value [30]. However, loss of
information caused by occlusions and image acquisition only during daylight could
be some limitations of this technique, which could be circumvented, for instance, with
additional images and artificial illumination. More details about photogrammetry
advantages and limitations were discussed by Dallas [30].

Nowadays, terrestrial laser scanning systems are very popular for architectural
heritage documentation. The main advantage of laser scanning is the fast collection of
a large number of 3D coordinates of the cultural heritage structure. Nonetheless, the
high density of points can be a disadvantage, due to a complexity of data processing.

The architectural heritage model developed by photogrammetry can be as
accurate as the laser scanning models [31] and, compared to the model developed by
the laser scanning technique, has lower costs [32]. Furthermore, photogrammetry
provides object edges while laser scanning provides random point clouds, hindering
intuitive interpretation. Boehler and Marbs [32] presented a complete comparison
of photogrammetry and laser scanning, concluding that the techniques are
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complementary. As shown in several studies [33–36], the combination of these
techniques brings positive results for architectural heritage documentation.

After the architectural heritage survey, the numerical model obtained should
be converted to a geometric model. This process is known as reverse modeling [37].
Reverse modeling is a complex process that could be done using different modeling
techniques, as discussed below.

For years, the objective in graphic representations was to reduce the
three-dimensional surfaces to a two-dimensional representation, using projective
geometry principles. Advances in computer graphic techniques created a new
scenario with 3D possibilities for graphic representation of objects. With these
new possibilities, architectural heritage modeling for documentation can be
performed by several modeling methods [38], for example, surface-based methods
or volumetric methods. The most common modeling techniques used to generate
architectural heritage models are the Delaunay-based method [39], constructive solid
geometry (CSG) [40], boundary representation (B-REP) [41] and voxel-based object
reconstruction [42].

Choice of modeling method depends mainly on the complexity of the
architectural heritage model and the required accuracy. The CSG method, for
example, has an intuitive modeling process and is frequently applied for the
representation of simple objects. On other hand, this method has a limited set
of primitive operations that hinders the modeling of complex structures. The most
frequently used method for complex architectural heritage is the B-REP, based on
irregular mesh. Despite B-REP being computationally more complex than the CSG
method, it enables more detailed representation of the dense point cloud. More
details about computer graphic modeling methods were described by Watt [43]. A
discussion of the principles for computer-based visualization application in heritage
documentation was presented in the London charter, Section 2.1 [44].

3. Review of Existing Specifications

The purpose of the review of existing specifications for architectural heritage
documentation is to identify normative references for data product specification for
photogrammetric documentation of architectural heritage proposed in this paper.
In the first instance, we reviewed specifications with international significance,
accepted by the geomatics and heritage community. However, each country has
its own heritage preservation policy and legislation, requiring an adaptation of
international standards to the national scenario. Therefore, in a second instance
we analyzed specifications for the documentation of architectural heritage with
national significance.

In the 1980s, the International Committee of Architectural Photogrammetry
realized the need for reflection about photogrammetric documentation quality and
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elaborated the Advice and Suggestions for the furtherance of Optimum Practice in
Architectural Photogrammetry surveys (AS-OPAP) [8]. The main contribution of
this specification was the recommendations for final quality control of the model.
However, quality recommendations for photogrammetric processes, such as interior
and exterior orientation, are not part of CIPA’s recommendations. Quality control
during data creation enables to achieve the desired final quality of the model.

A decade later, Waldhaeusl and Ogleby [45] presented the 3ˆ3 rules for simple
photogrammetric documentation of architecture, structured in three geometric rules
(preparation of control information, multiple photographic all-around coverage and
taking stereopairs for stereo-restitution), three photographic rules (keeping the inner
geometry of the camera constant, selecting homogenous illumination and stable
camera format) and three organizational rules (making proper sketches, writing
proper protocols and making a final check). These guidelines were elaborated
before recent advances in digital photogrammetry, especially for cameras devices,
and updating them in line with rapid technological advancement is problematic.
The same problem was identified in the requirements presented by Buchanan
in Photographing Historic Buildings for the Record [46] that focus on analog
image acquisition.

Accuracy Standards for Digital Geospatial Data (ASPRS) [47], the ISO TC 211 for
geographic information [48], the International Heritage Documentation Standards
(IHDS) [49] and the Recording, Documentation and Information Management for
the Conservation of Heritage Places [11] are among the most recent international
specifications to be applied to architectural heritage documentation. The last
two specifications mentioned were supported by RecorDIM (Recording and
Documentation Information Management). The IHDS emphasize the difficulty of
international standardization for architectural heritage documentation requirements,
due to the architectural uniqueness of the structures, which requires the use of
various documentation techniques and shows the need for national specifications.

Historic American Building Survey (HABS) [50–52] presents a series of
requirements for historical reports production and photographic survey for USA
architectural heritage documentation. However, HABS specification does not provide
requirements for digital modeling, hindering digital products analysis, such as,
performing analysis of digital models considering analog requirements or the
reduction of 3D to 2D models because of analog storage.

Standards and Guidelines for the Conservation of Historic Places in Canada
(SGC) [53] present a set of recommendations for preservation, conservation and
documentation of Canadian heritage. SGC does not include techniques for data
surveying and this is a limitation for heritage documentation, since the quality of the
data depends directly on the techniques used to survey the data.
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Metric Survey Specification for Cultural Heritage (MSSCH) [54] contains
recommendations for photogrammetric and laser scanning procedures and data
quality analysis. However, it also has some problems with updating recommendations
for digital cameras.

A guideline for photogrammetric survey focusing on architectural heritage
applications can be found in “twelve tips for Metric Photography of Architectural
and Archaeological Cultural Heritage” by GIFLE [55]. However, this advice is not
intended for data processing and data quality analysis.

Finally, we note the Spanish recommendation of the Andalusian Institute:
Technical Recommendations for Geometric Documentation of Heritage Entities [56]
(Recomendaciones técnicas para la documentacion geométrica de entidades patrimoniales),
which discusses the techniques for geometric documentation of architectural heritage,
such as photogrammetry and laser scanning, and presents standards of data
acquisition and data delivery for both techniques. However, requirements for data
quality analysis are missing.

To date, Brazilian specifications for photogrammetric documentation of
architectural heritage do not exist. However, there are some related specifications
that were used as normative reference for the requirements for photogrammetric
documentation of architectural heritage proposed in this paper. These references
include specifications for graphical representation by the Brazilian Association of
Technical Standards (ABNT), Manual for Cultural Heritage Preservation Project [57]
(MCHPP) by the Brazilian Institute of Cultural Heritage (IPHAN) and Brazilian
specifications developed for geographical information by the National Cartography
Committee (CONCAR).

Besides the identification of international and national specifications related to
photogrammetric documentation of architectural heritage, it is necessary to verify
gaps in these specifications that affect their application for architectural heritage
documentation production.

For this purpose, one international specification (AS-OPAP) and two national
specifications (MSSCH and MCHPP) that have more requirements for heritage
documentation with photogrammetric techniques than the other identified
specifications were selected. The selected specifications were compared to ISO
19131:2007 Geographic information—Data product specification (ISO 19131) [7],
which provides guidelines for the development of geographical data product
specifications. The aim of this comparison was to analyze the completeness of
the most relevant specifications with respect to the international standard for
specification for a geographical data product. Table 1 shows the content suggested
by ISO 19131, and the presence (x) or absence ( ) of the same content in the three
selected specifications.

136



Among other ISO 19131 specification content elements, AS-OPAP, the CIPA’s
international specification contains sections on data quality control. AS-OPAP
presents 44% of the content. However, it misses information about the reference
system, data product delivery and metadata, which directly affect the use of the
model. At the national level, the content of the MSSCH is closer to ISO 19131
than MCHPP. MSSCH presents 72% of the content required by ISO while MCHPP
presents only 50%. It is relevant to evaluate which content is missing. In the MSSCH,
Abbreviations, Spatial schema and Data maintenance are omitted, which affect the
user less than the omission of Reference Systems, Data Quality, Metadata and Data
capture that are missing in MCHPP. Drawing from the results of this analysis, we
believe there is a need for a proper Brazilian specification for the photogrammetric
documentation of architectural heritage. We present our proposal for specification
for architectural heritage documentation with photogrammetric techniques in the
following section.

Table 1. Completeness analysis of Advice and Suggestions for the furtherance of
Optimum Practice in Architectural Photogrammetry surveys (AS-OPAP), Metric
Survey Specification for Cultural Heritage (MSSCH) and Manual for Cultural
Heritage Preservation Project (MCHPP) specifications.

Contents Sub Contents AS-OPAP MSSCH MCHPP

General information about the data X X X
Overview Terms and definitions X X

Abbreviations
Name and acronyms of the data

product
X X

Specification scope X X
Title X X X

Data product identification Abstract X X
Topic category X X

Geographical description X X
Data content Spatial schema

Reference Systems Spatial X
Temporal X

Data Quality X X
Data product delivery X X

Metadata X
Data capture X X

Data maintenance
Portrayal X X X

4. Data Product Specification

According to ISO 19131 a data product specification (DPS) can be defined as a
description of a dataset, operational procedures and additional information that will
provide information to users to create, supply and use this dataset [7].

ISO 19131 presents general recommendations for structure and content of
a data product specification, with requirements based on technical coherence
and relevance for geographic data product. These recommendations can be
adapted for the development of DPS for photogrammetric documentation, providing
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photogrammetric documentation requirements in conformity with ISO standards.
Consequently, datasets produced based on this specification will respect ISO
standards as well. We present in this section the content and the structure of a DPS
proposal for photogrammetric documentation of Brazilian architectural heritage,
based on ISO 19131.

4.1. Data Product Identification and Specification Scope

Table 2 shows the identification information of the data product, such as,
title, main theme, extent of the geographic area covered and the form of the
spatial representation [7]. The specification scope is presented in Table 3, which
is defined in terms of spatial or temporal extent, feature type, property value, spatial
representation and product hierarchy.

Table 2. Data Product Identification.

Information Description

Title Technical Specification for Photogrammetric Documentation of
Architectural Heritage

Alternative title ET/DOC-FOPARQ
Topic category Society (code 016) and structure (code 017) (as defined in ISO 19115 [58]).

Geographic description Country code BR [59]; Data type code 003 [58].

Spatial representation title Vector (code 001), text (code 003) and stereoscopic model (code 005).
Theses codes are defined in ISO 19115 [58].

Table 3. Specification Scope.

Information Description

Scope Identification

The Technical Specification for Photogrammetric Documentation
of Architectural Heritage (ET/DOC-FOPARQ) describes
requirements for documentation of Brazilian architectural
heritage with photogrammetric techniques and digital technology

Hierarchical level code 015-Model. This code is defined in ISO 19115 [58].
Hierarchical level name BCH/TCH-MB.

Scope description
This specification does not cover all Brazilian cultural heritage.
ET/DOC-FOPARQ includes the tangible cultural heritage limited
only for monuments and buildings.

Spatial extent National level

Temporal extent

This technical specification depends on the temporal extension of
the normative reference used to support this specification: ISO
19131 [7], MCHPP [56], ISO 19115 [58], ISO 19157 [60], NBR 6492
[61] and Geospatial Metadata Profile of Brazil [62]. Therefore,
ET/DOC-FOPARQ recommendations are valid until the
normative references are also valid.

Coverage Brazilian territory

4.2. Data Content and Structure

The diagram in Figure 1 shows the content and structure of photogrammetric
documentation of a Brazilian cultural heritage documentation model. In this
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case, the photogrammetric documentation is divided into two classes: Descriptive
information about architectural heritage based on ICOMOS recommendations [9],
and architectural heritage model generated by photogrammetry.

The architectural heritage model could be classified as class A or class B,
according to photogrammetric documentation purpose. Class A is comprised of
architectural heritage models which aim to support current and future projects
that require metric models. However, not all applications need metric models (e.g.,
illustrative promotion of architectural heritage for the population and visual projects).
The recommendation in the Section 4.3 to Section 4.5 depends on the architectural
heritage application (Class_code). In these cases, where the model of the architectural
heritage documentation is used only for visualization, the architectural heritage
model can be classified as Class B. The motivation for class B is to value the projects
that do not have metric purposes but are relevant for society as a preservation tool,
enabling architectural heritage disclosure to the population.

4.3. Reference System

The architectural heritage models can be associated with a local or spatial
reference system. Usage of a local reference system is suggested for Class A and Class
B models. Initial errors from GNSS (Global Navigation Satellite System) positioning
are thus avoided. Assuming that the architectural heritage model needs to be
geo-referenced, performing the whole photogrammetric process in a local reference
system is recommended and, at the end of the process, applying a transformation to
the desired spatial reference system, considering the error propagation involved in
this transformation.

4.4. Data Quality

ISO 19157 defines the principles for describing geographical data quality [60]
with six data quality elements: positional accuracy, logical consistency, completeness,
temporal quality, thematic accuracy and usability. Data quality information is
essential for evaluation of the product’s conformance to the product specification and
its fitness for use. It was considered, in this research, that only positional accuracy
(Class A), logical consistency (Class A and B) and completeness (Class A and B) are
applicable for photogrammetric documentation of architectural heritage.

4.4.1. Positional Accuracy

Positional accuracy of architectural heritage model developed with
photogrammetric techniques consists of analysis of two data quality sub-elements:
absolute positional accuracy and relative positional accuracy (only Class A, not
applicable for Class B). Absolute and relative accuracy give different insights
about the positional accuracy of architectural heritage model, such as accuracy
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of coordinates and local positional consistency, respectively. For instance, the case of
unacceptable absolute positional accuracy and acceptable relative positional accuracy
may indicate a systematic error in the architectural heritage model, which was
unnoticed earlier.
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Absolute positional accuracy can be evaluated considering how close the
measured value is to the “true” value (reference value), in other words, the accuracy
of the position of features within a spatial reference system [60]. Systematic and
random errors in the photogrammetric measurement determine the magnitude of the
absolute positional accuracy. The measure used for expressing the absolute positional
accuracy is the Root Mean Square Error (RMSE(a)), in which the errors are obtained
from the differences between the estimated coordinates and independent surveyed
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coordinates. For an architectural heritage model, it is necessary to establish an error
limit to determine whether the measured value is close enough to the value to be
accepted as true. If the calculated error in each component (X, Y and Z) of the absolute
positional accuracy is less than the error limit, we can accept the architectural heritage
model in terms of absolute positional accuracy.

The error limit of the absolute positional accuracy (εa) is based on the error
theory in photogrammetric process (measure errors, orientation errors and projection
errors) and the graphic error, which represent 0.3 mm in the graphic representation
scale (k) [8], as shown in Equation (1).

εa “ 0.3 mm ˆ p
1
k
q (1)

Relative positional accuracy is defined as the closeness of the relative positions
of the features in a data set to their respective positions accepted as true [60]. In the
same way as the absolute positional accuracy, it is necessary to establish an error limit
to relative positional accuracy (εr). Considering the photogrammetric process, an
acceptable error limit to relative accuracy is 0.2 mm in the graphic representation scale
(k) (Equation (2)). The calculated error of the relative positional accuracy (RMSE(b))
is obtained with the differences from the estimated distances between points on the
model and the same distances surveyed independently. If the calculated error is
less than the error limit, we can accept the architectural heritage model in terms of
relative positional accuracy.

εr “ 0.2 mm ˆ p
1
k
q (2)

In summary, if RMSE(a) < εa and RMSE(b) < εb, we can accept the architectural
heritage model in terms of positional accuracy as acceptable for class A.

4.4.2. Logical Consistency

Logical consistency is defined as the degree of agreement of data with the
dataset’s structure, attributes and relationships, respecting defined logical rules [60].
A data set can be analyzed in logical consistency considering conceptual consistency,
topological consistency, domain consistency and format consistency. The most
important data quality element for an architectural heritage model (class A and B)
developed with photogrammetric techniques is topological consistency (correctness
of the topological feature in a data set). Topological consistency analysis can detect
errors (e.g., overshoot, undershoot, overlap, gap and others) that could be interpreted
incorrectly as positional errors in the model, since these quality principles are
correlated. Figure 2 shows examples of topological errors. More details can be
found in ISO 19157 [60].
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According to ISO 2859-1 for sampling procedures for inspection by
attributes [63], the samples that follow data set conformity in an acceptance quality
limit (AQL) should be higher than 90%. Thus, it is suggested that 90% of the data set
(architectural heritage model, class A or B) should be consistent.
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4.4.3. Completeness

Completeness analysis consists of identifying the excess (commission) and
the absence (omission) of data (features, attributes and relationships) in a dataset
compared with its specification [60].

For architectural heritage models, exclude any excess information is suggested,
in other words, the commission should be 0%. The acceptable quality level for
omission is more permissive due to the limitations of photogrammetry technique
(e.g., data absence caused by occlusions). For this reason, we suggest the value 5%
of the total number of architectural heritage model features for omission to class
A and B.

4.5. Data Capture

It is not easy to achieve the acceptance quality limit for positional accuracy,
logical consistency and completeness, especially in architectural heritage survey.
Therefore, some precautions in data acquisition and data processing are required.
The following recommendations are guidelines based on the photogrammetric
process applied to architectural heritage survey, that aim to help users achieving the
acceptance quality limit for applicable quality elements in Class A or Class B. These
guidelines are divided into data acquisition, interior and exterior orientations and
feature restitution or modeling.
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Data acquisition recommendations to class A: (1) Ground Sample Distance
(GSD) [47] must be smaller than one third of the error limit for absolute positional
accuracy (GSD < εa /3). GSD depends on the sensor size, focal length, sensor-object
distance and image scale; (2) Interior Orientation Parameters (IOP) must be stable
in time gap between calibration and image acquisition. Focusing ring must be
mechanically locked and autofocus features must be turned off. Zoom lens should
be avoided even when it is locked to a fixed focal length. Cameras with automatic
stabilization mechanism should also be avoided or this feature needs to be turned off;
(3) Depending on the depth variation of the surveyed architectural heritage building,
the depth of field can be increased using a suitable f/stop, while maintaining
diffraction effects under the adopted circle of confusion (CoC); (4) A camera tripod
must be used to prevent the motion blur effect; (5) Multiple images of the architectural
heritage facade, preferably stereo pairs (normal case) complemented by oblique
orientations, must be captured [64]; (6) Whenever it is possible, occlusion of features
by natural and anthropic objects must be avoided; (7) Lossless image compression
formats should be used, to prevent loss of information (e.g., RAW or TIFF formats);
(8) It is recommended that photographs should be taken on a clear, cloudy day. This
condition reduces the high contrast caused by shadows and radiometric difference
between stereo pairs; (9) Control points and checkpoints for bundle triangulation and
checkpoints for modeling quality control should be acquired with accuracy of one
third of the error limit of the absolute positional accuracy; (10) Length and orientation
of the distances for relative accuracy analysis should be decided considering the
dimension and shape of the surveyed architectural heritage object. These distances
should be large enough to identify possible deformations in the model.

Interior orientation recommendations to Class A: (11) Standard deviation of the
estimated focal length should be less than 1 pixel; (12) Standard deviation of the
estimated principal point coordinates should be less than 1 pixel; (13) Evaluation of
the IOP’s significance [65] by comparing the parameter magnitude with its standard
deviation is recommended and verifying whether the effects of a particular parameter
in the image limits are less than the image measurement error; (14) Automatic and
semiautomatic methods for measurement of image points are suggested, for instance
using coded targets [66]. These methods enable subpixel precision; (15) Whenever
feasible, the use of 3D calibration field is recommended, especially when the
architectural heritage has significant variations in depth [67].

Exterior orientation recommendations to Class A: (16) Exterior Orientation
Parameters (EOP) should preferably be determined by indirect methods (image
bundle triangulation). Especially for large representation scales, direct methods
based on GNSS and inertial measurement unit (IMU) for EOP’s determination are
not yet compatible with the required accuracy for photogrammetric documentation of
architectural heritage applications. Furthermore, in the case of digital cameras, some
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adaptations for direct methods must be done, such as determining the nodal point
physically. (17) Image measurement of tie points, control points and checkpoints
should be automated or semi-automated [68–70], whenever possible. (18) RMSE of
the checkpoints after bundle adjustment should be less than two thirds of the error
limit for absolute positional accuracy. (19) A trend test, for example t-student test,
should be applied to assess bias in the estimated coordinates.

Modeling recommendations to class A: (20) The selected modeling technique
should consider the project requirements. The technique and applied software are
limited by level of detail, cost, accuracy, format and other requirements of the project.
An example is the classic process in photogrammetry, the restitution of features.
Considering the restitution, the use of the stereoscopic method is recommended
instead of the monoscopic method. The stereoscopic method allows visualization of
variations in depth, helping border identification.

Recommendations for class B are more flexible because this class of product
is derived mainly for visualization. Data acquisition can be done following
recommendations 1 to 8 for class A. For interior orientation recommendations 11
to 15 should be adopted, for exterior orientation recommendations 16 to 17, and
recommendation 20 should be followed for modeling.

4.6. Data Product Delivery

This section presents recommendations for layout of an architectural heritage
model and delivery format of photogrammetric documentation.

Layout should follow NBR 6492 [61] (recommendation for graphic
representation of architectural project), NBR 10068/87 (layout dimension) and
NBR 8403/84 (features of drawing lines) developed by the Brazilian Association of
Technical Standards (ABNT).

The data product delivery follows the recommendations from the Brazilian
institute of Cultural Heritage (IPHAN). These recommendations can be found in
the Manual for Cultural Heritage Preservation Project, which include specific scales,
paper format, layout content and delivery format (analog or digital).

4.7. Metadata

Metadata should follow the Geospatial Metadata Profile of Brazil (Perfil de
Metadados Geoespaciais do Brasil-Perfil MGB) [62], which is the national adoption of
the ISO 19115, the international standard for geospatial metadata [58].

5. Case Study: Presidente Prudente Railway Station—An Example of Class
a Product

Section 5 presents a case study to prove the applicability of the data product
specification for photogrammetric documentation of architectural heritage, focusing
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on data quality analysis for class A in 1:50 scale. The content and structure of this
chapter follow recommendations defined in Section 4 (ET/DOC-FOPARQ).

5.1. Descriptive Information of Presidente Prudente Railway Station

Nowadays, many 20th century monuments and buildings form part of
Brazilian Cultural Heritage, for example, the railway station in Presidente Prudente.
This construction is part of a set of buildings with historical and architectural
value to Presidente Prudente city, representing the beginning of the city’s
development. Because of the historical interest of Presidente Prudente Railway
Station, photogrammetric documentation to record the state of this architectural
heritage was required. Photogrammetric modeling of this cultural heritage monument
is challenging, because Presidente Prudente Railway Station has façades with
homogeneous texture and low level of details, which complicate the matching
between features. Furthermore, this building has dominant horizontal shape,
requiring a careful planning of the coverage to ensure suitable images geometry. Due
to these difficulties in the photogrammetric process, Presidente Prudente Railway
Station is an interesting example of the applicability of the data product specification
proposal for photogrammetric architectural documentation.

As previously discussed, photogrammetric documentation requires descriptive
information about architectural heritage and the architectural heritage model
generated by photogrammetry. Table 4 presents descriptive information records
of Presidente Prudente Railway Station.

5.2. Architectural Heritage Model Development (Class A)

5.2.1. Data Acquisition

A Nikon 3200 digital camera with tripod was used to acquire the case study
images (see its specifications in Table 5). A set of 20 images was acquired over the
12 stations.

First, the position of camera stations were planned, considering suitable base
distances approximately parallel to the heritage façade and ensuring 60% overlap
between images. On average, the camera stations was 19 meters away from the
façade, ensuring values of GSD ranging from 2 mm to 3 mm. GSD is less than one
third of the error limit for absolute positional accuracy for a 1:50 scale (5 mm), as
recommended in Section 4.5. Camera stations were then ground marked.

Next, a local reference system was realized. The position of the origin [0, 0, 0]
was defined close to the left corner of the façade and the axis was north oriented,
considering a calculated azimuth between the origin and one camera station
with known coordinates. Then, topographic methods, such as polygonal and
double-intersections, were used to determine the 3D coordinates of the camera
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stations, control points and checkpoints. The mean positional accuracy of the control
and checkpoints in the façade was estimated with error analyses, resulting in accuracy
values around 3 mm. As recommended in Section 4.5, the accuracy of control and
checkpoints was less than one third of the error limit for absolute positional accuracy
for a 1:50 scale (5 mm).

Table 4. Descriptive information records of Presidente Prudente Railway station.

Name Presidente Prudente Railway Station Identifier Code Not applicable

Date
Original building 1919;
First reconstruction 1926
Second reconstruction and current state 1944

Category code
Cat_code: 004

History
The railway station in Presidente Prudente is part of a set of buildings with historical and architectural
value to Presidente Prudente city, symbolizing the beginning of the city’s development.

Adress
St. JúlioTiezzi 220, Presidente Prudente, São Paulo, Brazil.
Geographic coordinates (22˝712311 W; 51˝2215611 S)

Usage
Original use—Railway station
Current use—seat of a governmental institution

Architectural style
The building of the Presidente Prudente railway station has features of the 1940s in Brazil, represented
specially by the geometric volumes arrangement. The building has Art Decó influence.

Protection status
PS_code: 003

Conservation status
Not applicable

Typology
Typo_code: 006

Photos (Source: Presidente Prudente municipal collection)
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Finally, distances to endpoints of 29 edges in the façade were collected in
an independent survey (tape measured) for the analysis of the relative positional
accuracy in the architectural heritage model. The collected edges were pre-selected
considering the dimension and shape of the surveyed architectural heritage
monument, the distribution in the façade and the image contrast (low or high),
which interfere with the quality of the restitution process. These distances, which
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vary in horizontal and vertical directions, between 0.5 to 3 meters, with an estimated
measured accuracy of 10 mm, enable evaluation of the relative positional accuracy
between stereoscopic models.

Table 5. Technical specifications for the camera model.

Camera Model Sensor Size Nominal Focal Length Image Dimension Pixel size

Nikon 3200 CMOS APS-C
(23.1 ˆ 15.4) 28 mm 6016 ˆ 4000 pixels

(24 megapixels) 0.0038 mm

5.2.2. Camera Calibration, Orientation and Object Modeling

A 3D terrestrial calibration field with coded targets in ARUCO style [71] was
used for the camera calibration process. As shown in Figure 3a, the targets were
regularly distributed in the calibration field (floor and walls) and the coordinates
of four corners for each target had previously been measured using topographic
and photogrammetric methods, with 3 mm accuracy used as control points. The
ARUCO target corners can be automatically located over the images [72]. In this case,
a set of 28 images was taken from four camera stations, providing 3600 observations
from 162 control points. The acquired images were horizontal and convergent, with
changes in position and rotation, minimizing linear dependency between the interior
and exterior orientation parameters.

The camera calibration was performed using the in-house-developed software,
Calibration with Multi-Cameras (CMC), in which the IOP were determined by bundle
adjustment with the Conrady-Brown lens distortion model [73]. Analysis of the IOP
significance was performed and it was concluded that affinity parameters are not
significant for this camera calibration case. Therefore, only the focal length (f ), the
principal point coordinates (x0, y0), the symmetric radial lens distortion coefficients
(k1, k2, k3) and the decentering lens distortion coefficients (p1, p2) were determined.

Table 6 presents the estimated interior orientation parameters and the
corresponding standard deviations. The standard deviation of the focal length was
determined with less than 1 pixel, as well as, the standard deviation of the principal
point coordinates—as recommended in Section 4.5. This result was achieved due to
subpixel target measurement techniques. A 3D terrestrial calibration field was used
because the architectural heritage under study, Presidente Prudente Railway Station,
has significant variations in depth.
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Table 6. Estimated interior orientation parameters and standard deviations.

IOP f (mm) x0 (mm) y0 (mm) k1 (mm´2)

Value 28.099 0.1038 ´0.0254 ´1.5398 ˆ 10´4

Standard
deviation 0.0018 0.0002 0.0002 1.51 ˆ 10´6

IOP k2 (mm´4) k3 (mm´6) p1 (mm´2) p2 (mm´2)

Value ´1.7623 ˆ 10´7 ´1.12 ˆ 10´10 ´5.68 ˆ 10´6 ´7.11 ˆ 10´6

Standard
deviation 2.060 ˆ 10´8 8.5 ˆ 10´11 3.5 ˆ 10´7 4.4 ˆ 10´7

The 20 images of the façade were acquired immediately after camera calibration
to avoid IOP changes. In the post-processing, these images were later resampled to
correct lens distortion and then bundle adjustment was performed using the Leica
Photogrammetry Suite (LPS).
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Raw images were post processed and resampled in the in-house-developed
software, known as P_retif. This resampling step was required because LPS software
presented some unexpected results with high distortion images (Figure 3b).

In the bundle adjustment, the camera station coordinates (camera position)
measured directly during topographic survey were used as initial parameters for the
coordinates of the camera perspective center (X0, Y0, Z0) with a constraint of 0.5 m for
standard deviation. Tie points were generated automatically with image matching
techniques, amounting to 232 points. A total of 11 control points with an accuracy of
3 mm, were manually measured in stereo model and transferred to neighbor images
by least-squares matching.
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The exterior orientation quality control was accomplished with 7 independent
checkpoints with the same characteristics of the control points. Table 7 shows
the resulting statistics: average, standard deviation and RMSE of the checkpoints’
coordinate discrepancies. A t-student trend test for the checkpoints was performed.
The trend analysis for 95% confidence level showed that the coordinate discrepancies
have no trend.

Table 7. Statistics of the discrepancies in checkpoint after bundle adjustment.

Statistics ∆Xt (m) ∆Yt (m) ∆Zt (m)

Average ´0.0003 ´0.00014 0.0011
Standard deviation 0.0012 0.0012 0.0030

RMSE 0.0012 0.0011 0.0030

The RMSE of the obtained discrepancies in checkpoints is less than two thirds
of the error limit to absolute accuracy in all coordinates (<10 mm). Considering that
the accuracy in the orientation estimation step is acceptable, it is possible to proceed
to the modeling step.

Presidente Prudente Railway Station façades have a simplified architecture,
with a low level of details, thus, the modeling method applied was the restitution of
features, a classic method in photogrammetry. The restitution process was developed
in a stereo environment (LPS PRO600 for MicroStation). Figure 4 presents the
architectural heritage model of the Presidente Prudente Railway Station. The data
quality assessment (absolute positional accuracy, relative positional accuracy, logical
consistency and completeness) of this architectural heritage model is presented in
Section 5.2.3.
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Presidente Prudente Railway Station façades have a simplified architecture, with a low level of 
details, thus, the modeling method applied was the restitution of features, a classic method in 
photogrammetry. The restitution process was developed in a stereo environment (LPS PRO600 for 
MicroStation). Figure 4 presents the architectural heritage model of the Presidente Prudente Railway 
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5.2.3. Data Quality Analysis

Absolute positional accuracy was analyzed considering seven checkpoints, well
distributed over the model and unique to this process (not the same checkpoints
used in the bundle adjustment). The checkpoints were also determined with 3 mm
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accuracy, using topographic methods. Table 8 presents the statistics, average,
standard deviation and RMSE of restitution checkpoint discrepancies. Figure 5
shows control points used in the bundle adjustment and checkpoints used in the
final model accuracy assessment with the corresponding resultant of residues in X
and Y coordinates.

Table 8. Average, standard deviation and RMSE of the discrepancies in the
restitution checkpoints.

Statistics ∆Xr (m) ∆Yr (m) ∆Zr (m)

Average 0.0021 0.0004 0.0064
Standard deviation 0.0039 0.0011 0.0129

RMSE(a) 0.0042 0.0011 0.0135

Notice that the RMSE of the checkpoints in X, Y and Z coordinates are less
than the error limit for absolute positional accuracy for a 1:50 scale (15 mm). We
conclude that the model of the Presidente Prudente Railway Station is adequate in
absolute positional accuracy (RMSE(a) < εa), thus the recommendations in Section 4.5
are applicable to achieve the proposed absolute positional accuracy. Furthermore,
a t-student trend analysis for 95% confidence level showed that the coordinate
discrepancies have no trend.
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Figure 5. Checkpoints distribution and residues.

The distances between endpoints of distinguishable features were measured in
the model of the Presidente Prudente Railway Station and compared to reference
values to evaluate relative positional accuracy. An analysis of the distances
showed that the acquired data follow a normal distribution, taking into account
the Anderson-Darling normality test with 95% confidence level (P-value 0.05), and
an obtained a p-value of 0.204. The error limit to relative accuracy for 1:50 scale
is 10 mm. Table 9 shows that the calculated error to relative accuracy (RMSE(b))
was acceptable.
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Table 9. Relative positional accuracy analysis for the Presidente Prudente Railway
Station model.

Number of Edges Average (m) Standard Deviation (m) RMSE(b) (m)

29 0.0001 0.010 0.010

However, it was observed that the RMSE(b) is close to the threshold, leading us
to believe the distances, collected for relative positional accuracy analysis during an
independent survey (tape measurements), had errors with a magnitude of 10 mm.
The acquisition of accurate reference values, such as distances and checkpoints, is a
major concern in an architectural heritage documentation project, where millimeter
accuracy is required, mainly because few survey techniques can reach this level of
accuracy at affordable cost.

The RMSE(a) < εa and the RMSE(b) < εb, thus we can accept the model of
the Presidente Prudente Railway Station as Class A product in terms of positional
accuracy. This case study shows the importance of quality analysis during the whole
photogrammetric process to achieve the required positional accuracy. It can be also
concluded that the proposed requirements for positional accuracy are feasible.

Nevertheless, to consider the model as Class A product, it is suggested that
logical consistency and completeness should also be evaluated (Section 4.4). The
logical consistency analysis was performed with the standards tools Quantum GIS
software offers [74]. The topological errors were automatically identified by the
software and corrected manually. The following errors were investigated: overlap,
overshoot, undershoot and gap. A set of 976 features compose the model of the
Presidente Prudente Railway Station. From the total of 976 valid features, there were
0 gaps, and 2 overlaps (0.2%). Sixty-four overshoots and undershoots (6.5%) were
identified. The identified errors were eliminated and were not identified again in a
new test. We therefore have reason to believe that there are no topological errors in
the final model.

Completeness is related to the project’s specification, thus the architectural
heritage features that will be represented in the model need to be defined during the
initial planning process. In this regard, a number of significant features were selected,
including the number of windows, doors, stairs, building borders, plumbing, window
details and others architectural details. Considering all the features specified, 3.52%
were not represented, mainly because of occlusions and borders of low resolution.
Commission has not been identified. The model of the Presidente Prudente Railway
Station is therefore admissible for an acceptance quality limit of 5% of the total
number of architectural heritage model features for omission and 0% of commission.

Positional accuracy, logical consistency and completeness were evaluated and
the acceptance quality limits for Class A in a 1:50 scale, in each of these data quality
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principles were achieved. The model of Presidente Prudente Railway Station can
therefore be classified as Class A product.

6. Case Study: Prudente de Morais Monument—An Example of Class B Product

The Prudente de Morais Monument, the original construction dating from
1944, is part of the architectural heritage complex that comprises the Presidente
Prudente Railway Station. The main purpose of this case study is to exemplify
models that fit into Class B products (non-metric models) in a scale 1:10. The
architectural heritage models classified as Class B products are used principally
for visualization, being applied, for example, in preliminary studies of architectural
heritage preservation projects.

Classification as Class A or B aims to specify the use of the models. The
difference between Class A and B is essentially in the architectural heritage model
development, defined by the positional accuracy requirement. The descriptive
information about architectural heritage follows the same structure for both classes
and they will not be presented in this section. The focus of this section is data quality
control for Class B.

The images were acquired with a calibrated low-cost Sony DSC-W520 camera
(4.7 mm nominal focal length), from different viewpoints and with 70% overlap
between images. The 3D model was processed in Autodesk 123D Catch software [75]
(desktop version) which is based on the structure from motion technique, followed
by mesh generation and rendering methods.

The application of this software was motivated by the increase in its use for
models of non-metric purposes, specially developed by non-experts. Furthermore,
this case study exemplifies the use of software with different levels of automation
than the software used for the Presidente Prudente Railway Station modeling.
Santagati, Inzerillo and Di Paola [76] presented a comparison between 3D models
generated with terrestrial LIDAR and 3D models obtained with 123D Catch,
concluding that on average, in most applications, positional accuracy has a
magnitude of 1 to 2 cm. With this is mind, six distances from the statue were collected
to verify the relative positional accuracy of the model. Table 10 presents the average,
standard deviation and RMSE of the differences between the estimated distances
between points on the model and independently surveyed distances. Figure 6 shows
the Prudente de Morais model with the distances measured in the model (in black)
and the corresponding reference value for these distances obtained in an independent
survey (in red).
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Table 10. Results of relative positional accuracy analysis for the Prudente de
Morais model.

Statistics Average Standard Deviation RMSE

(cm) 0.13 2.00 1.83

RMSE of the differences between the estimated distances between points on the
model and independently surveyed distances should be less than the error limit for
relative positional accuracy for a 1:10 scale (2 mm), as recommended in Section 4.4.1.
These results are not sufficient to support the photogrammetric documentation
project which needs high positional accuracy (Class A), showing the importance
of quality control in the photogrammetric process. However, there are several
solutions for reconstruction of 3D models based on structure from motion technique
that enables orientations and modeling control, such as PhotoModeler, PhotoScan,
VisualSfM, ARC3D, among others [76,77], which could be applied to Class A and B.

In Class B, the recommendations are more flexible for positional accuracy
analysis, since this proposed product category is intended mainly for visualization.
Nonetheless, analysis of the logical consistency and completeness for class B
are mandatory.

The logical consistency analysis assumes that, in this case, the modeling process
consists of generating a triangular mesh from a point cloud. This point cloud
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was obtained from the calculation of the homologous points coordinates. In the
mesh generation process, some parameters that ensure logical consistency of the
surface are considered, avoiding mistakes such as overlap, overshoot and undershoot.
Topological analysis using the Quantum GIS software [73] confirmed that these errors
were not identified in a resulting model. Invalid geometries were not identified
either. We therefore concluded that the model of the Prudente de Morais monument
is consistent.

The data product specification includes representation of the bust, represented
by 82,650 features in total. The major problem identified was a lack of definition in
the model borders. A set of 200 features were missing (0.26%), within the limit of
5% for omission. Excess features have been identified and excluded, resulting to 0%
of commission. The model of the Prudente de Morais monument can therefore be
considered complete, according to the specification (ET/DOC-FOPARQ).

Logical consistency and completeness were evaluated and the acceptance quality
limits for Class B in each of these data quality elements were achieved.

7. Conclusions

Architectural heritage should be passed to future generations in its historical
and cultural authenticity. Photogrammetric documentation is a feasible technique
for architectural heritage documentation and preservation. Nowadays, with
the availability of affordable digital equipment, there are an increasing number
of photogrammetric documentation initiatives. The development of a DPS for
photogrammetric documentation significantly contributes to data product reliability
and, consequently, to the preservation of heritage information. In this context,
motivated by the need of specifications for the photogrammetric documentation
of architectural heritage to approach geomatics and heritage experts and ensure
photogrammetric documentation application, this paper presented a procedure of
recommendations for photogrammetric documentation of architectural heritage,
based on Brazilian case study experience. The proposed data product specification
is a result of an analysis of existing specifications related to photogrammetric
documentation focused on architectural heritage, as well as, the main problems
in the photogrammetric documentation specifications that needed to be improved.
We proposed recommendations for photogrammetric documentation of architectural
heritage and tested these recommendations in case studies for photogrammetric
products of Class A and B.

In the case study of the railway station in Presidente Prudente, which is
an example of Class A product, we analyzed absolute and relative positional
accuracy, topological consistency, commission and omission. Acceptance quality
limits recommended in Class A for these elements, considering 1:50 scale, are 15 mm,
10 mm, 10%, 0% and 5%, respectively. RMSE of the checkpoints in X, Y and Z
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coordinates are within the error limit for absolute positional accuracy (4.2 mm, 1.1 mm
and 13.5 mm, respectively) and RMSE of the differences from the estimated distances
between points on the model and the same distances surveyed independently is
compatible with the error limit for relative positional accuracy (10 mm). Topological
errors were identified and eliminated, thus, there are no topological errors in the final
model (0%). Commission has not been found (0%) and the omission (3.52%) is within
the acceptance quality limit (5%).

In the case study of the Prudente de Morais statue, which is an example of a
Class B product, we evaluated topological consistency, commission and omission,
considering 10%, 0% and 5% as an acceptance quality limit, respectively. Topological
errors were not identified in the resulting model (0%). Excess of features have been
identified and excluded, resulting in 0% of commission. Considering all the features
specified, 0.26% were not represented, within the limit for omission. The results of
our case studies confirm that the proposed requirements are viable.

Our research contributes to the development of standards for photogrammetric
documentation and applied photogrammetric method in context of architectural
heritage. The advantages of the procedure presented are the application of
an international standard for data product specification adapted for digital
photogrammetry and the classification of the photogrammetric documentation model
in classes, which assists product reliability and application.

Future work includes update of DPS for photogrammetric documentation of
other types of tangible cultural heritage, which we did not discuss in this paper.
These types of objects, such as archaeological sites, require other techniques and
consequently other recommendations. Requirements (for all types of objects of
the architectural cultural heritage) about other data quality aspects (e.g., thematic
accuracy) will be evaluated for photogrammetric documentation application.
Moreover, requirements for the radiometric quality of acquired images and of a
resulting model, and procedures for the representation of texture of surfaces in the
digital model of the architectural heritage, should be analyzed.
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Scanning Photogrammetry for Measuring
Large Targets in Close Range
Shan Huang, Zuxun Zhang, Tao Ke, Min Tang and Xuan Xu

Abstract: In close-range photogrammetry, images are difficult to acquire and
organize primarily because of the limited field of view (FOV) of digital cameras when
long focal lenses are used to measure large targets. To overcome this problem, we
apply a scanning photography method that acquires images by rotating the camera in
both horizontal and vertical directions at one station. This approach not only enlarges
the FOV of each station but also ensures that all stations are distributed in order
without coverage gap. We also conduct a modified triangulation according to the
traits of the data overlapping among images from the same station to avoid matching
all images with one another. This algorithm synthesizes the images acquired from the
same station into synthetic images, which are then used to generate a free network.
Consequently, we solve the exterior orientation elements of each original camera
image in the free network and perform image matching among original images to
obtain tie points. Finally, all original images are combined in self-calibration bundle
adjustment with control points. The feasibility and precision of the proposed method
are validated by testing it on two fields using 300 and 600 mm lenses. The results
confirm that even with a small amount of control points, the developed scanning
photogrammetry can steadily achieve millimeter scale accuracy at distances ranging
from 40 m to 250 m.

Reprinted from Remote Sens. Cite as: Huang, S.; Zhang, Z.; Ke, T.; Tang, M.; Xu, X.
Scanning Photogrammetry for Measuring Large Targets in Close Range. Remote Sens.
2015, 7, 10042–10075.

1. Introduction

The development of electric sensors and image processing techniques has
contributed to the rapid growth of the application of photogrammetry. Since 2000,
photogrammetric mapping using digital photographic systems has become popular
because of the application of digital cameras [1–6]. Given their changeable focus
lens, various photography methods, and low cost, digital single-lens reflex cameras
(DSLRs) are widely applied in close-range measurement tasks [7–13]. The high
resolution of DSLRs is helpful for high-precision measurements. These advantages
suggest the need to develop photogrammetry systems that can help inexperienced
users accomplish close-range measurements well [11,12,14]. The size of a single
digital image sensor (e.g., charge-coupled device (CCD) detector) is limited. As
such, the field of view (FOV) of a digital image captured by this sensor is restricted
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compared with that of film image with the same focal length. Therefore, when digital
cameras with long focal lens are used for measurements, the limited intersection angle
decreases the measurement precision if a normal photography method is employed.
Oblique photography can ensure intersection angles and maintain high measurement
accuracy [8,15–18]. However, when the intersection angle increases, the parallax of
correspondences changes in a large range and may become discontinuous as the
occlusion occurs. Large intersection angles make image matching difficult, whereas
small ones result in low intersection precision. Therefore, in many measurement
methods, multi-view photography is applied to solve this contradiction [19–21].
Nonetheless, this technique introduces new problems, such as the difficult acquisition
of images in order, particularly in large measurement ranges. Likewise, organizing
images for data processing is complicated. There is a lot of work to be done to solve
these issues.

In aerial photogrammetry, several approaches for expanding the format of
cameras have been proposed (e.g., UltraCam and digital mapping cameras) to
facilitate the continuous acquisition of nadir images. These aerial cameras consist
of a specific number of fixed CCD detectors and employ a special software to
make the frames completely stitched into a whole image. The stitched images
are then used in traditional triangulation method. However, the portability of these
aerial cameras is crucial to fulfilling close-range measurements tasks. Therefore,
multi-view photography by one camera is a widely adopted alternative technique to
“normal” photography to ensure intersection angles and maintain high measurement
accuracy [8,15–18]. In this case, the approach of matching all images to one another
and certain improvements of the method are proposed to determine the relationship
among images for automatic image organization. To ensure measurement accuracy,
numerous ground control points are employed as in V-STARS [22] and ACION [23].
Nevertheless, these methods augment the complexity of data processing and
increase the workloads of field operation. Moreover, oblique photography is
generally implemented manually to control oblique angles, which usually result in
photographic gaps and weak intersection angles.

Cameras with novel design have also been proposed to address the problem
of the limited format of single frames. Scanning photography is the photography
approach in which the camera is controlled and rotated around one point to acquire
images in multiple rows and columns to enlarge the FOV of one station. The images
in numerous rows and columns are referred to as an image matrix. The core idea of
scanning photogrammetry is that the view of stations can alternatively be enlarged
given that the view of cameras is difficult to do so. This method is easier to exploit
than to expand the format by multiple CCD detectors. In this approach, camera
parameters, including focal length and pixel size of each projection, are kept constant
as well [24,25]. A3 Edge, a contemporary aerial mapping camera developed and
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introduced by VisionMap, is an example of commercially available cameras for
aerial photogrammetry. This camera takes images when it is rotated in a cross-track
direction to enlarge FOVs [24]. In close-range measurements, a surveying robot
carrying an image sensor and a theodolite or total station are typically applied,
allowing the immediate acquisition of the position and posture of images [26]. In
view of the limited image format used in surveying robots, theodolite scanning
photogrammetry is proposed by controlling the robot to rotate the camera and acquire
images in multiple rows and columns to enlarge the FOV of one station [27]. However,
the use of surveying robots for measurements is expensive. Zhang et al. [16,28,29]
proposed panning and multi-baseline photogrammetry to obtain rotating images
during measurements. This photography approach specifies the overlaps among
images, making it easy to organize images in order. Nevertheless, this technique is
operated by hand, and only experienced photographers can accomplish the work
well. L. Barazzetti et al. [30–32] generated gnomonic projective images from several
pinhole images acquired by rotation platform with long focal lens to reconstruct
a 3D model. This method provides a general network around the object using
central perspective images with normal focal lens and reconstructs “sharp” details
through gnomonic projections. Spherical panoramas have also been employed to
extract 3D information [25,33–35]. G. Fangi [33] captured panoramas with the use of
both normal and long focal lenses. The normal focal lens spherical panorama was
used to establish the station coordinates, whereas the long one was employed to
ensure accuracy.

In this study, we improve the solution of scanning photography. This method
allows stations to be distributed in order as that in aerial photogrammetry and
correspondingly allows standardized data to be acquired in close range. A photo
scanner consisting of a non-metric camera, a rotation platform, and a controller is
developed for convenient data acquisition without coverage gap. Once the operator
sets the required parameters and specifies the ground coverage of the station, this
machine can automatically control the camera to rotate in horizontal and vertical
directions and obtain images as designed overlaps.

Our scanning photogrammetry method is expected to extract 3D information
from long focal images immediately and robustly without the use of normal
focal images to provide the general network. Therefore, we propose a modified
triangulation according to the traits of data obtained by scanning photography.
This developed approach can directly achieve high-precision measurement results
regardless of the adopted focal lens (i.e., long or normal). Likewise, this approach
is similar to processing images acquired with multiple CCD detectors. The
main rationale underlying this technique is that the overlap between the ground
coverages of adjacent image matrices is known and larger than 60% based on station
distribution, whereas the overlap between stereo original images from different
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stations is unknown and may be less than 50%. Thus, the relative orientation should
be executed between the images synthesized from image matrices than among the
original images. We then generate a free network of synthetic images and solve the
exterior orientation elements of original images from elements of the former and
their relative rotation angles recorded by the scanner. Consequently, we determine
the overlap relationship among the original images. This method avoids identifying
the overlap relationship among images by matching all of them to one another, which
is a time-consuming approach. Finally, all of the original images are employed for
final bundle adjustment because the multi-directional images obtained by scanning
photography could affect the accuracy and robustness of the method. Considering
the unknown interior elements and instable distortion in using DSLRs, we apply
self-calibration bundle adjustment with control points to solve the interior elements
of the camera; this approach has been adopted by most researchers [13,20,36,37].

The proposed method is applied in two test fields to validate the feasibility
and precision of scanning photogrammetry. The experiments prove that scanning
photogrammetry organizes image data well when large scenes are measured using
long focal lens and achieves millimeter accuracy. Several comparative experiments
are also performed to analyze the factors that may affect measurement accuracy.

The rest of this paper is organized as follows. Following the Introduction,
Section 2 explains the theories of scanning photogrammetry. Section 3 evaluates the
performance of the scanning photogrammetry system with the use of real datasets
obtained with 300 and 600 mm lenses. Section 4 discusses the differences between our
scanning photogrammetry technique and previous ones, and analyzes the reasons
for the efficient measurement results. Finally, Section 5 presents the conclusions of
the study and cites recommendations for future research.

2. Proposed Scheme

The proposed scheme comprises four parts, namely, Section 2.1 scanning
photography, Section 2.2 station distribution, Section 2.3 scanning platform (photo
scanner), and Section 2.4 data processing.

2.1. Scanning Photography

As previously mentioned, the size of a single image sensor is limited, thereby
restricting the FOV of DSLRs when long focal lenses are used to yield comparatively
high ground resolution images. Therefore, scanning photography was developed.
This photography approach obtains sequences of images by rotating the camera
in both horizontal and vertical directions to enlarge the FOV of one station. This
technique is similar to VisionMap A3 camera, which acquires the flight sequences of
frames in a cross-track direction to provide wide angular coverage of the ground [24].
When used in close-range photogrammetry, the presented scanning photography
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further improves traditional photography by exposing camera frames in both
horizontal and vertical directions because the height of the camera is generally
difficult to change in a wide range when high targets are photographed. This
particular mechanism is similar to the concepts of “cross-track” and “along-track” in
aerial photography. Each image captured by the camera is called an original image,
and all original images taken at one station form an image matrix as displayed in
Figure 1.
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Figure 1. Illustration of image matrix at one station (The matrix contains 6 rows
and 10 columns).

In scanning photography, rotation angles are calculated based on the principle
that the relative rotation angles between two adjacent images in both directions
are equal. However, in our experiments, this approach is inadequate because the
images at the corners of image matrices may be covered by invalid areas as a result
of the central perspective when photographing. Figure 2 illustrates how this scenario
occurs. In this figure, points D, E, and S are in a horizontal plane, whereas points A,
B, C, D and E are in another plane that is perpendicular to the horizontal one. Point B
is in line AC, and ADKDE, BEKDE, SEKDE, and SEKBE. Angles =BSE and =ASD
are defined as β1 and β2, respectively. Therefore, β1 ą β2. Points A, B, C, D, and E
represent the center points of images A, B, C, D, and E, respectively. Image E is the
reference image in both horizontal and vertical directions and is named the “normal”
image. β1 denotes the vertical angle rotating from images E to B, and β2 depicts the
vertical angle rotating from images D to A. Correspondingly, when photos are taken
at the same height, the relative vertical rotation angle between the adjacent image
rows far away from the “normal” image is smaller than that between the image rows
near the “normal” image. Invalid coverages appear when the relative rotation angle
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in the vertical direction remains constant. This condition also applies to the rotation
angle in the horizontal direction.
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Figure 2. Rotation angles influenced as perspective projection.

In view of the abovementioned problem, we propose an improved means for
calculating rotation angles. Figure 3 presents how rotation angles are calculated
using this method. S is the perspective center. Horizontal rotation angle ranges from
α1 to α2, and vertical rotation angle varies from β1 to β2. f is the focal length, and
region W ˆ H is the ground coverage of the station projected to the focal plane of the
“normal” image. The rotation angle of each original image is determined based on the
designed overlaps in both directions. In Figure 3, the junctions of grids represent the
image centers, and the rays from the perspective center to the image center indicate
the principal rays of each image. The mechanism for calculating rotation angles is
cited below. By following these procedures, we can calculate the rotation angles of
images as in Equation (1).

(1) Obtain the range of rotation angles of a station. As mentioned above, horizontal
rotation angle ranges from α1 to α2, and vertical rotation angle varies between
β1 and β2 .

(2) Region W ˆ H can be calculated according to the angle range.
(3) Calculate the temporary horizontal and vertical distances between centers of

the adjacent images in the same row and column in image matrix as ∆Wtemp

and ∆Htemp, respectively. Accordingly, determine the row and column number
of image matrix as Nrow,Ncol , respectively.

(4) Recalculate the horizontal and vertical distances as ∆W and ∆H, respectively,
to divide the region equally into rows Nrow and columns Ncol .

(5) Determine the location of each image center on focal plane of the “normal”
images, and calculate the rotation angles of each image in both directions.

In our experiment, the absolute value of the horizontal and vertical rotation
angles is assumed to be less than 60˝. Figure 4 shows the horizontal and vertical
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rotation angles of original images in one image matrix; where the black solid
dots denote the centers of images. In particular, the figure demonstrates that the
relative rotation angle between adjacent images is decreased when the rotation angle
increases from the “zero position.” The improved results of scanning photography are
depicted in Figure 5. To ensure successful measurement, the overlap between any two
adjacent images in one image matrix should not be less than 30% in both directions.
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Figure 3. Calculation of rotation angles.

To limit image distortion, the horizontal rotation angle α should be in the range
of r´45˝, 45˝s, and the vertical rotation angle β should be within r´30˝, 30˝s.

∆Wtemp “ p1´ pxq ‚ f ‚ 2tan pφH{2q
∆Htemp “

`

1´ py
˘

‚ f ‚ 2tan pφV{2q
W1 “ f ‚ tanα1 W2 “ f ‚ tanα2 W “ W2 ´W1

H1 “

b

f 2 `W1
2 ‚ tanβ1 H2 “ H1 “

b

f 2 `W2
2 ‚ tanβ2 H “ H2 ´ H1

Ncol “ W{∆Wtemp Nrow “ H{∆Htemp

∆W “ W{Ncol ∆H “ H{Nrow

αrc “ tan´1 ppW1 ` c ‚ ∆Wq { f q

βrc “ tan´1
ˆ

pH1 ` r ‚ ∆Hq {
b

pW1 ` c ‚ ∆Wq2 ` f 2
˙

(1)

where f is the focal length; px and py are the known horizontal and vertical overlaps
between images in the image matrix, respectively; φH and φV are the horizontal
and vertical views of the camera, respectively; α1 and β1 are the horizontal and
vertical rotation angles of the image at the bottom left corner of the image matrix,
respectively; α2and β2 are the rotation angles of the image at the top right corner;
Wand H are the width and height of the projected region on the “normal” image,
respectively; ∆Wtemp denotes the temporary horizontal distance between centers
of the adjacent images in the same row in image matrix; ∆Htemp is the temporary
vertical distance between centers of the adjacent images in the same column; Nrow

and Ncol are the row and column numbers of the image matrix, respectively; ∆W
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represents the distance between adjacent image centers in the same row; ∆H is the
final distance between adjacent image centers in the same column; and αrc and βrc
depict the horizontal and vertical rotation angles of the image at row r and column c
in the image matrix, respectively.
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∆𝑊𝑡𝑒𝑚𝑝 = (1 − 𝑝𝑥) ∙ 𝑓 ∙ 2 tan(ϕ𝐻 2⁄ ) 

(1) 

∆𝐻𝑡𝑒𝑚𝑝 = (1 − 𝑝𝑦) ∙ 𝑓 ∙ 2 tan(ϕ𝑉 2⁄ ) 

𝑊1 = 𝑓 ∙ tan 𝛼1 𝑊2 = 𝑓 ∙ tan 𝛼2 𝑊 = 𝑊2 − 𝑊1 

𝐻1 = √𝑓2 + 𝑊1
2 ∙ tan β1 𝐻2 = 𝐻1 = √𝑓2 + 𝑊2

2 ∙ tan β2 𝐻 = 𝐻2 − 𝐻1 

𝑁𝑐𝑜𝑙 = ⌈𝑊 ∆𝑊𝑡𝑒𝑚𝑝⁄ ⌉ 𝑁𝑟𝑜𝑤 = ⌈𝐻 ∆𝐻𝑡𝑒𝑚𝑝⁄ ⌉  

∆𝑊 = 𝑊 𝑁𝑐𝑜𝑙⁄  ∆𝐻 = 𝐻 𝑁𝑟𝑜𝑤⁄   
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β𝑟𝑐 = tan−1 ((𝐻1 + 𝑟 ∙ ∆𝐻) √(𝑊1 + 𝑐 ∙ ∆𝑊)2 + 𝑓2⁄ ) 

where f is the focal length; 𝑝𝑥 and 𝑝𝑦 are the known horizontal and vertical overlaps between images in 
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Figure 4. Distribution of horizontal and vertical rotation angles; the focal length is 100 mm, and 
the camera format is 36 mm × 24 mm. The rotation angles of the image at the bottom left 
corner and top right corner of the image matrix are (−30°, −30°), and (30°, 30°), respectively. 
The set overlaps in horizontal and vertical directions are 80% and 60%, respectively. 
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Figure 4. Distribution of horizontal and vertical rotation angles; the focal length is
100 mm, and the camera format is 36 mmˆ 24 mm. The rotation angles of the image
at the bottom left corner and top right corner of the image matrix are p´30˝,´30˝q,
and p30˝, 30˝q, respectively. The set overlaps in horizontal and vertical directions
are 80% and 60%, respectively.
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Figure 5. Synthetic images from image matrices with rotation angles calculated in different 
approaches; (a) is the synthetic image from the image matrix acquired using the same 
approach in determining the relative rotation angle between adjacent images; (b) is the 
synthetic image from the image matrix acquired with the improved method introduced in 
this paper; (c) is the image at the top left corner of the image matrix presented in Figure 5a; 
(d) is the image at the top left corner of the image matrix presented in Figure 5b. 

2.2. Station Distribution 

To facilitate data acquisition and processing, our station distribution is set similar to the flight strip in 
aerial photogrammetry. The top view of this distribution is displayed in Figure 6, where the horizontal 
line denotes the measured target, the rectangles represent the stations, and the corresponding two solid 
lines stretching from the station to the object are the FOV of the station. 𝑆 denotes the length of the 
target, and D is the photographic distance (referred to as photo distance hereafter for brevity). For easy 
manipulation, the baseline denoted by 𝐵 between adjacent stations is designed the same, which is the 
same as aerial photogrammetry. Then, the operator will easily find out the location of the next station 
during data acquisition. To ensure the maximum utilization of images, the columns and rows of each 
station are varied because the FOV of each station is different. θ is the least FOV of stations determined 
by operators. 𝑁 represents the total number of stations, and 𝑀 is the given number of least stations from 
which any interest point on the target would be photographed. Figure 6a shows the station distribution 
when the target has a large width. In such a case, the distance from the first station to the last is the same 
as the width of the target. In our scanning photography mechanism, the FOV of stations ranges from 𝜃 
to 2θ according to the location of the station. Similarly, the largest intersection angle of the measured 
points ranges from θ  to  2θ . We limit θ  between 20°  and 45°  to maintain a good balance between 
measurement and matching precisions. Photo distance 𝐷 is determined according to the selected camera 
focus, required measurement precision, and scene environment. However, certain scenarios exist  
(e.g., Figure 6b) in which the target is extremely narrow such that the FOV of a station is greatly limited 
in the given photo distance. Figure 6b depicts the solution for this condition, ensuring the intersection 

Figure 5. Synthetic images from image matrices with rotation angles calculated in
different approaches; (a) is the synthetic image from the image matrix acquired
using the same approach in determining the relative rotation angle between
adjacent images; (b) is the synthetic image from the image matrix acquired with the
improved method introduced in this paper; (c) is the image at the top left corner of
the image matrix presented in Figure 5a; (d) is the image at the top left corner of
the image matrix presented in Figure 5b.
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2.2. Station Distribution

To facilitate data acquisition and processing, our station distribution is set
similar to the flight strip in aerial photogrammetry. The top view of this distribution
is displayed in Figure 6, where the horizontal line denotes the measured target, the
rectangles represent the stations, and the corresponding two solid lines stretching
from the station to the object are the FOV of the station. S denotes the length of the
target, and D is the photographic distance (referred to as photo distance hereafter
for brevity). For easy manipulation, the baseline denoted by B between adjacent
stations is designed the same, which is the same as aerial photogrammetry. Then, the
operator will easily find out the location of the next station during data acquisition.
To ensure the maximum utilization of images, the columns and rows of each station
are varied because the FOV of each station is different. θ is the least FOV of stations
determined by operators. N represents the total number of stations, and M is the
given number of least stations from which any interest point on the target would be
photographed. Figure 6a shows the station distribution when the target has a large
width. In such a case, the distance from the first station to the last is the same as the
width of the target. In our scanning photography mechanism, the FOV of stations
ranges from θ to 2θ according to the location of the station. Similarly, the largest
intersection angle of the measured points ranges from θ to 2θ. We limit θ between 20˝

and 45˝ to maintain a good balance between measurement and matching precisions.
Photo distance D is determined according to the selected camera focus, required
measurement precision, and scene environment. However, certain scenarios exist
(e.g., Figure 6b) in which the target is extremely narrow such that the FOV of a station
is greatly limited in the given photo distance. Figure 6b depicts the solution for
this condition, ensuring the intersection angle at measuring points. The distance
from the first station to the last is larger than the width of the target. As such, the
intersection angle at the measuring points is larger than θ, and the view angle of
stations can either be smaller or larger than θ. To maintain measurement precision,
every point on targets should be photographed from at least three stations. In other
words, M should be selected, but it should not be less than 3. Then, the overlap
between two adjacent stations is set above 67% to enable stereo photogrammetric
mapping. It is known that large overlap will result in small baseline. However, as in
Figure 6, our scanning photogrammetry is a kind of photogrammetry method using
multi-view images. Image correspondences of each tie point for bundle adjustment
are from multiple stations, which can form considerable intersection angle. Even
if the baseline of the adjacent stations is small, it will not affect the measurement
precision. Nevertheless, a small baseline will lead to consuming more time for data
obtainment and processing. Therefore, we advise the operators to determine the
parameter after balancing the data acquisition time and variation of the target in the
depth direction. These parameters are computed as in Equation (2).
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Btemp “ D ‚ tanθ{ pM´ 1q
N “

X

S{Btemp ` 0.5
\

` 1
#

i f N ě M, B “ S{ pN ´ 1q
i f N ă M, B “ D ‚ tanθ ‚ pM´ 1q , N “ M

(2)

where Btemp and B are the temporary and final baselines, respectively; D is the photo
distance θ; θ is the given least FOV of a station; S is the length of the target; M is the
given number of least stations from which any interest point on the target would be
acquired; and N is the total number of stations.

Stations should be distributed in adherence to the following rules:

(1) The first station should be aligned to the left edge of the target shown in
Figure 6a. However, when faced with the situation as in Figure 6b, the first
station should be located at the distance of pD ‚ tanθ´ Sq {2, away from the left
edge of the target.
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(2) The photo distances of every station are approximately equal when the variation
of the target in depth direction is not large. Otherwise, the stations should be
adjusted to the variation of the target in depth direction to maintain equal
photo distances.

(3) The length of the baselines should be the same.

After the location of the first station is identified, the location of the remaining
stations can be determined according to the abovementioned principles. As
demonstrated in Figure 6a, the horizontal coverage of the first, second, and third
stations ranges from points a to c, a to d, and a to e, respectively. Contrarily, the
fourth station covers points b to f. The remaining stations follow the same concept.
In Figure 6b, points a and b denote the beginning and end of the target, respectively,
and the horizontal coverage of each station begins from point a to b.

Since the height of the different parts of the target is variable, the vertical view
of each station is based on the height of the photography region. Given that a large
pitch angle leads to severe image distortion, the vertical rotation angle of each station
should be limited in the range of´30˝ to 30˝. In other words, when the target is
extremely high, the height of the instrument or the photo distance must be increased
to maintain the vertical view within range.

2.3. Photo Scanner

To guarantee image quality and measurement efficiency, we develop a photo
scanner for automatic data acquisition. This scanner shown in Figure 7 consists of
a non-metric camera, a rotation platform, a controller (e.g., PC or tablet PC with
Win7/8), and a lithium battery. The camera is mounted on the rotation platform
composed of a motor unit and transmission mechanism; this platform controls the
camera scanning across horizontal and vertical directions. Figure 7 indicates that the
rotation center of the platform is not the perspective center of the camera. However,
when the scanner is used for large engineering measurements, the offset values are
relatively tiny compared with photo distance. A module for determining rotation
angles is also integrated into the software to transmit data and control platform
rotation. The scanner automatically obtains the image once the camera parameters
(i.e., focus and image format), data storage path, horizontal and vertical overlaps
between images in each image matrix, and ground coverage of stations are inputted
into the software by the operators. For convenient measurement, the scanner is
designed to be mounted on a tripod for the total station, and the battery unit for the
rotation platform can be hung on the tripod. Thus, the developed photo scanner
can be carried and operated by only one person when conducting measurements,
providing great convenience.
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The mechanism for applying the developed scanner is as follows:

(1) The instrument is installed and placed at the proper position.
(2) The photographic plane is paralleled to the average plane of the needed

photographing region, and the rotation platform is leveled with the bubble on
the instrument base. This position of the camera is defined as the “zero posture”
in this station and is considered the origin of rotation angles in both horizontal
and vertical directions.

(3) The FOV of this station is specified, and the required parameters are inputted
into the controller.

(4) The number of rows and columns of the image matrix as well as the rotation
angles in horizontal and vertical directions for each image are computed,
and the signal is sent to manage the rotation and exposure of the camera
for automatic image acquisition.

Data can be stored by transferring images into the controller (e.g., PC or tablet
PC) and storing them in a compact flash card. In the second method, the images from
the camera are not required to be transmitted to the PC or tablet PC. As such, the
photo interval is shorter. During photographing, the controller enables a real-time
quick view of the captured images. At the same time, the rotation angles of each
captured image are stored in the controller as a log file, which can be used as auxiliary
information for data processing.
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2.4. Data Processing

In our proposed method, data are automatically processed once the user
specifies the data directory and required outputs. To achieve high accuracy and
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stable solution, all original images are used for bundle adjustment because redundant
observations are helpful in obtaining a robust solution, and information loss is
unavoidable during image synthesis. Considering that all original images are needed
for bundle adjustment, we employ modified triangulation to improve the efficiency
of data organization and processing. As previously noted, the core idea of modified
triangulation is that although the overlaps between original images from different
stations remain unknown, we can estimate the overlaps between coverages of image
matrices according to the station distribution. Thus, we use the images synthesized
from the image matrix to generate a free network. We then compute the initial exterior
elements of original images in this free network from the elements of synthetic images
and rotation angles of original images. After the matching relationships among the
original images from neighboring image matrices are identified according to the
matching results of the two corresponding synthetic images, image matching is
executed among original images to determine tie points. Self-calibration bundle
adjustment with control points is then performed. In establishing the initial exterior
parameters of original images, we assume that the perspective centers of original
images and their corresponding synthetic images are the same even though they are
actually different. The accurate exterior parameters of original images that vary from
those of the corresponding synthetic images can be obtained after bundle adjustment.
Figure 8 exhibits the flow of data processing. The processes of taking original images
with long focal lens into bundle adjustment are determined to be similar to that using
the VisionMap A3 system. Thus, this procedure is valid and can be used in both
aerial and close-range photogrammetry.

2.4.1. Synthetic Image

In practical measurements in scanning photography, the unknown overlaps
between stereo pairs of original images from different stations are not always large
enough for relative orientation. This condition therefore leads to an unstable relative
orientation among stereo pairs. Considering that the overlaps between station image
matrices are large enough for relative orientation, we apply a simplified method of
synthesizing image matrices for free network generation. In view of information
loss when original images are synthesized from image matrices, synthetic images
are not used for final bundle adjustment but are only used for computing the initial
exterior elements of original images. Although the camera is not rotated around
the perspective center, the offset values from its center to the center of rotation are
relatively tiny compared with the photo distance when performing large engineering
measurements using the developed photo scanner. Therefore, we simplify the model
by ignoring the offset values and projecting the image matrix to the focal plane of
the “normal” image to synthesize the image matrix. Figure 9 illustrates the image
synthesis model. For simplicity, only one row of the image matrix is graphed. The
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rotation angles of the images can be presented as pHi, Viq pi “ 1, 2, . . . , mq . Hi and Vi
are the horizontal and vertical angles, respectively, and m is the number of images in
the image matrix. The method used to generate a synthetic image is to re-project all
original images in the image matrix to the equivalent focal length plane with H “ 0
and V “ 0, as shown in Figure 9. Equation (3) is employed to obtain synthetic images
given that the scanner is designed to rotate first in the horizontal direction and then
in the vertical direction.
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where x and y denote the image coordinates in image i, x1 and y1 are the coordinates
in the synthetic image, and RHV

i is the rotation matrix from the synthetic image
to frame i.
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The synthesis method explained above is suitable only when the view of the
image matrix is not significantly large (ď 120˝).

2.4.2. Image Matching and Error Detection

In general, the parallax may change in a wide range and be volatile because of
occlusions in close-range image pairs. When the relative rotation angle is larger than
15˝, which commonly occurs in oblique photography, traditional image matching
is unsuitable. Alternatively, scale-invariant feature transform (SIFT) match can be
steadily applied in many cases when it involves an angle that is less than 50˝ [38].
Given that the SIFT features presented by 128-dimensional vectors are used for image
matching, a long computational time is needed when a large number of feature
points are involved. Thus, graphics processing unit (GPU) acceleration is employed.
Considering that the memory of GPUs is limited, we perform a block-matching
algorithm. In this algorithm, we simply use each block from one image to match
all of the blocks from another image. The block matching results are accepted only
when the number of correspondences is larger than the threshold.

Mismatching inevitably occurs in image matching methods. Thus, we
should pay attention to error detection. The outliers in SIFT point matches are
generally discarded with random sample consensus (RANSAC) for estimating model
parameters. In our scanning photography, two kinds of error detection can be used
after image matching, and the method to be applied is selected based on whether
the corresponding points are from the same station. For matching images from the
same station, the object coordinates of perspective centers are approximately equal.
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Therefore, the homography model [39] in Equation (4) is used as the estimation
model. The geometric distortions between images are severe when the matching
images are acquired from different stations, suggesting that transformation models
(e.g., affine and projective transforms) are no longer suitable for detecting matching
errors [40]. After performing several experiments, we adopt the quadric polynomial
model in Equation (5) to estimate geometric distortions. This model is the superior
choice in terms of computational time and measurement precision. The threshold
of residual for RANSAC should be relaxed because the interior elements of original
images are inaccurate, and the estimation model is not rigid.
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wherepx, yq and
`

x1, y1
˘

are the image coordinates on the left and right images in
an image pair, respectively, h1 ,h2, . . . ,h9 are elements of the homography matrix,
and h9 “ 1.

x1 “ a1x2 ` a2xy` a3y2 ` a4x` a5y` a6

y1 “ b1x2 ` b2xy` b3y2 ` b4x` b5y` b6
(5)

where a1,a2, . . . , a6, and b1, b2, . . . , b6 are quadric polynomial coefficients.

2.4.3. Modified Aerial Triangulation

The overlaps between synthetic images are known based on station distribution.
Therefore, these images, instead of the original ones, are more suitable for interpreting
epipolar geometry. The reason is that the overlaps among original images are
unknown before the pre-processing of image matching. Thus, we use synthetic
images in the triangulation of relative orientation and model connection to generate
a free network. In close-range photogrammetry, the initial elements of relative
orientation are crucial to achieving good solution in triangulation when intersection
angles are large. In this event, a stable algorithm of relative orientation is required.
Compared with other direct methods (e.g., 6-, 7-, and 8-point methods), the 5-point
method performs best in most cases [41]. For this reason, we apply the 5-point relative
orientation algorithm proposed by Stewenius [42] from the perspective of algebraic
geometry. This algorithm employs a Gröbner basis to easily explain the solution [42].
To improve precision, an iterative scheme for refining relative orientation is adopted
after the calculation of initial parameters. Each successive model is then connected
with one another similar to the case in aerial triangulation. Correspondingly, the free
network of synthetic images is established.

The free network provides the exterior orientation elements of synthetic images.
However, the exterior orientation elements of each original image are the required
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parameters for final bundle adjustment. Given that the changes are small among the
space coordinates of each original image perspective center in one image matrix, the
initial space coordinates of the original image are considered similar to those of their
corresponding synthetic image. Accordingly, we can solve the azimuth elements
of original images by decomposing the rotation matrix calculated with the azimuth
elements of synthetic images and rotation angles of original images as depicted in
Equation (6).

Rji “ Rj ‚ RHV
ji (6)

where Rji is the rotation matrix of image i in station j , Rj is the rotation matrix of
synthetic image j in the free network, and RHV

ji is the rotation matrix of relative
rotation angles from the synthetic image of station j to image i.

Before bundle adjustment with all original images, image matching should be
executed among original images to obtain the corresponding points as tie points
for bundle adjustment. Stereo matching is performed between the original images
from different stations as well as between the original images from the same station.
We find six images, namely, two from the same station and four from the next
station, which overlap with each original image to proceed with matching. For the
images from the same station, we chose the two images at the right of and below
the processing image in the image matrix. Meanwhile, for the images from the next
station, we chose four images with the highest overlapping rate with the image for
stereo matching. The overlapping rate is calculated according to the matching results
of the two corresponding synthetic images. Then, we tie all matching results together
and then use multi-image forward intersection to compute the space coordinates of
the tie points in the free network. As a result, the free network of original images is
established. Absolute orientation is performed to establish the relationship between
the space coordinate system of free network and the object space coordinate system
before bundle block adjustment. We then compute the exterior elements of original
images and space coordinates of tie points in the object space coordinate system.

In general, traditional bundle adjustment is the most mature approach because
the collinearity condition for all tie points (TPs) and ground control points (GCPs)
are satisfied simultaneously [43]. Considering the instability of intrinsic parameters
of non-metric cameras, we utilize the on-line self-calibration bundle adjustment with
control points to obtain the final result. In consideration of the camera intrinsic
parameters, radial distortion, and tangential distortion, the mathematical model of
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self-calibration bundle adjustment based on the collinearity equation is established
as in Equation (7) [44].
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where (x, y) is the image coordinate of a point in image i; rX, Y, Zsis the object
coordinate of the point;

“

XSi , YSi , YSi

‰

is the object coordinate of perspective center
of image i; a1,a2, a3, b1, b2, b3, c1, c2, and c3 are elements of the rotation matrix of
image i; f is the focal length; px0, y0q denotes the coordinate of the principal point of
image i; p∆x, ∆yq denotes the correction of the lens distortion; k1 and k2 are radial
distortion coefficients; and p1 and p2 are tangential distortion coefficients.

During bundle adjustment, we can establish several correspondence pairs for
each tie point, and the corresponding points can be either from the same station or
from different stations. The pairs from the different stations are characterized by large
intersection angles that are beneficial to the accuracy of depth direction, whereas
the pairs from the same station are characterized by very small intersection angles
that may lower accuracy. Thus, we consider the observations of image coordinates
of tie points as correlative rather than independent, and the correlation coefficient
is inversely proportional to the intersection angle. The weight of observations is
based on intersection angles as considered in bundle adjustment and the weight of
the ground points is set to 10 times the tie points. Iterative least squares adjustment
is exploited for solving the unknown parameters of original images. Finally, accurate
solutions are yielded for all images.

3. Experimental Results

3.1. Experimental Data

Scanning photogrammetry has been proposed mainly for acquiring data when
large targets are measured and for obtaining accurate measurements of large objects
at any focal length. Here, we emphasize in our experiments the application of
cameras with long focal lens. Our method has been proven effective in experiments
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involving measuring the flag platform of Wuhan University and the high slope of
Three Gorges Project permanent lock, as shown in Figure 10. The Cannon 5D Mark
II camera (format size: 5616 ˆ 3744, pixel size: 6.4 µm) is used for the tests. In
the experiments, reflectors for the total station are used as control points. Object
surfaces will cause reflectors to be attached unevenly because the surfaces may be
rough. We use plexiglass boards, which are thicker, as the baseplates of reflectors to
ensure that the reflectors attached to the object surfaces are even. Figure 10a shows
a quick view of the flag platform. The height, width, and depth of this area are
10, 35, and 12 m. As shown in the figure, there are stairways leading to the flag
platform from the playground, resulting in several layers in the measurement area,
which brings difficulty in data processing because of the discrete relief displacement.
Control points are measured by Sokkia SET1130R3 total station with 3 mm accuracy.
Figure 10b shows a quick view of the high slope of Three Gorges Project permanent
lock. The height, width, and depth of this region is 70, 150, and 70 m. Owing to the
special environment in this field, the best position for measurement is the opposite
side of the lock. The photo distance can reach up to 250 m. The Leica TCRA1201
R300 total station is used to measure control points with an accuracy of 2.9 mm.Remote Sens. 2015, 7 10058 

 

 

Figure 10. Quick view of test fields. ((a) flag platform of Wuhan University.; (b) high slope 
of Three Gorges Project permanent lock. The regions in the red rectangles show the 
measuring ranges.) 

3.2. Results of Synthetic Images 

Figure 11 illustrates the synthetic images of the two test fields. Figure 11a shows the synthetic image 
of one station for the field test of the flag platform with 300 mm focus lens, and the photo distance is 40 
m. Figure 11b shows the synthetic image of one station for test field of the high slope of Three Gorges 
Project permanent lock with 300 mm focus lens at a distance of 250 m. The method applied to yield 
synthetic images is described in Section 2.4.1. As shown, the invalid area in the synthetic images is 
slightly due to the use of the improved method. The performance is not that good, because no  
post-processes, such as unifying color or finding best seam lines, are executed. However, these factors 
do not have much influence on the matching of synthetic images.  

3.3. Results of Image Matching (Synthetic Images and Original Images) 

Three kinds of image matching exist in this process: one for synthetic images, one for original images 
from different stations, and one for original images from the same station. For synthetic images, every two 
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Figure 10. Quick view of test fields. ((a) flag platform of Wuhan University.; (b) high
slope of Three Gorges Project permanent lock. The regions in the red rectangles
show the measuring ranges.)
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3.2. Results of Synthetic Images

Figure 11 illustrates the synthetic images of the two test fields. Figure 11a shows
the synthetic image of one station for the field test of the flag platform with 300 mm
focus lens, and the photo distance is 40 m. Figure 11b shows the synthetic image
of one station for test field of the high slope of Three Gorges Project permanent
lock with 300 mm focus lens at a distance of 250 m. The method applied to yield
synthetic images is described in Section 2.4.1. As shown, the invalid area in the
synthetic images is slightly due to the use of the improved method. The performance
is not that good, because no post-processes, such as unifying color or finding best
seam lines, are executed. However, these factors do not have much influence on the
matching of synthetic images.

3.3. Results of Image Matching (Synthetic Images and Original Images)

Three kinds of image matching exist in this process: one for synthetic images,
one for original images from different stations, and one for original images from
the same station. For synthetic images, every two overlapping images is a stereo
pair. However, for original images, only two overlapping images from different
stations can form a stereo pair. Both stereo pairs and non-stereo pairs are needed to
be matched with the SIFT matching method. After SIFT matching is performed, error
detection methods are used to refine the matching results. Depending on whether
the image pair is a stereo pair or a non-stereo pair, RANSAC with estimation by
quadric polynomial or homography model is used for detecting errors.

Figures 12 and 13 show the results of matching and mismatching points in
synthetic images from two stations. The red crosses denote the detected correct
corresponding points, whereas the blue crosses denote the detected errors. The
detection model is a quadric polynomial model. The matching results of the original
images are shown in Figures 14–17. Image pairs in Figures 14 and 16 are stereo
pairs and are processed by quadric polynomial models. Meanwhile, image pairs in
Figures 15 and 17 are non-stereo pairs and are processed by homography models.
The results verify that these error detection methods are valid. Given that an amount
of feature points are extracted from the images showed in Figures 14 and 15, we
perform block-matching algorithm. Thus, matching errors clustering exists because
of the mechanism of our block-matching algorithm. However, our error detection
method can eliminate outliers efficiently.

180



Remote Sens. 2015, 7 10059 
 

Figures 12 and 13 show the results of matching and mismatching points in synthetic images from two 
stations. The red crosses denote the detected correct corresponding points, whereas the blue crosses 
denote the detected errors. The detection model is a quadric polynomial model. The matching results of 
the original images are shown in Figures 14–17. Image pairs in Figures 14 and 16 are stereo pairs and 
are processed by quadric polynomial models. Meanwhile, image pairs in Figures 15 and 17 are  
non-stereo pairs and are processed by homography models. The results verify that these error detection 
methods are valid. Given that an amount of feature points are extracted from the images showed in 
Figures 14 and 15, we perform block-matching algorithm. Thus, matching errors clustering exists 
because of the mechanism of our block-matching algorithm. However, our error detection method can 
eliminate outliers efficiently. 

 

Figure 11. Synthetic images: (a) synthetic image of one station for test field showed in  
Figure 10a; (b) synthetic image of one station for test field showed in Figure 10b. 

 

Figure 12. Synthetic images matching. (a,b) shows the matching results of synthetic images 
from the first and second station for test field in Figure 10a; (c,d) illustrates part of the results. 

Figure 11. Synthetic images: (a) synthetic image of one station for test field showed
in Figure 10a; (b) synthetic image of one station for test field showed in Figure 10b.

Remote Sens. 2015, 7 10059 
 

Figures 12 and 13 show the results of matching and mismatching points in synthetic images from two 
stations. The red crosses denote the detected correct corresponding points, whereas the blue crosses 
denote the detected errors. The detection model is a quadric polynomial model. The matching results of 
the original images are shown in Figures 14–17. Image pairs in Figures 14 and 16 are stereo pairs and 
are processed by quadric polynomial models. Meanwhile, image pairs in Figures 15 and 17 are  
non-stereo pairs and are processed by homography models. The results verify that these error detection 
methods are valid. Given that an amount of feature points are extracted from the images showed in 
Figures 14 and 15, we perform block-matching algorithm. Thus, matching errors clustering exists 
because of the mechanism of our block-matching algorithm. However, our error detection method can 
eliminate outliers efficiently. 

 

Figure 11. Synthetic images: (a) synthetic image of one station for test field showed in  
Figure 10a; (b) synthetic image of one station for test field showed in Figure 10b. 

 

Figure 12. Synthetic images matching. (a,b) shows the matching results of synthetic images 
from the first and second station for test field in Figure 10a; (c,d) illustrates part of the results. 

Figure 12. Synthetic images matching. (a,b) shows the matching results of synthetic
images from the first and second station for test field in Figure 10a; (c,d) illustrates
part of the results.

3.4. Results of Point Clouds

The free network of original images is generated after the correspondences
of original images are tied together. The generated point cloud is a mess, because
exterior parameters of images are not computed accurately and interior parameters
of the camera have not been calibrated at the moment. After self-calibration bundle
adjustment with control points, the point cloud will become regular and present
the sketchy model of the target. Figures 18 and 19 show the difference of the point
cloud of two test fields before and after self-calibration bundle adjustment with
control points.
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Figure 13. Synthetic images matching. (a,b) shows the matching results of synthetic images 
from the first and second station for test field in Figure 10b; (c,d) illustrates part of the results. 

 

Figure 14. Original images matching. (a,b) shows the matching results of images from the 
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the results. 
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Figure 14. Original images matching. (a,b) shows the matching results of images
from the adjacent stations as measuring the first field showed in Figure 10a;
(c,d) illustrates part of the results.
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Figure 15. Original images matching. (a,b) shows the matching results of adjacent images in 
the same row of one image matrix as measuring the first field showed in Figure 10a; (c,d) 
illustrates part of the results. 

 

Figure 16. Results of stereo images matching. (a,b) shows the matching results of images 
from the adjacent stations as measuring the second field showed in Figure 10b;  
(c,d) illustrates part of the results. 

Figure 15. Original images matching. (a,b) shows the matching results of adjacent
images in the same row of one image matrix as measuring the first field showed in
Figure 10a; (c,d) illustrates part of the results.
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Figure 16. Results of stereo images matching. (a,b) shows the matching results
of images from the adjacent stations as measuring the second field showed in
Figure 10b; (c,d) illustrates part of the results.
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Figure 17. Results of stereo images matching. (a,b) shows the matching results of adjacent 
images in the same row of one image matrix as measuring the second field showed in  
Figure 10b; (c,d) illustrates part of the results. 

3.4. Results of Point Clouds 
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accurately and interior parameters of the camera have not been calibrated at the moment. After self-
calibration bundle adjustment with control points, the point cloud will become regular and present the 
sketchy model of the target. Figures 18 and 19 show the difference of the point cloud of two test fields 
before and after self-calibration bundle adjustment with control points. 

3.5. Coordinate Residuals of Triangulation 

We conduct several groups of comparative experiments to evaluate the effects of different factors, 
such as photo distance, overlapping rate between original images in image matrices, given number of 
least stations (𝑀)from which any interest point on the target are acquired, set intersection angle(𝜃), and 
focal length, on the measurement accuracy in scanning photogrammetry. In the first test field of the flag 
platform, we analyze the effects of the four factors by using a camera with a 300 mm lens. In the second 
test field, the high slope at permanent lock of Three Gorges Project, two lenses with 300 and 600 mm 
lenses are used in evaluating the effects of focal length. 

Figure 17. Results of stereo images matching. (a,b) shows the matching results of
adjacent images in the same row of one image matrix as measuring the second field
showed in Figure 10b; (c,d) illustrates part of the results.

3.5. Coordinate Residuals of Triangulation

We conduct several groups of comparative experiments to evaluate the effects
of different factors, such as photo distance, overlapping rate between original images
in image matrices, given number of least stations pMqfrom which any interest
point on the target are acquired, set intersection anglepθq, and focal length, on the
measurement accuracy in scanning photogrammetry. In the first test field of the
flag platform, we analyze the effects of the four factors by using a camera with a
300 mm lens. In the second test field, the high slope at permanent lock of Three
Gorges Project, two lenses with 300 and 600 mm lenses are used in evaluating the
effects of focal length.

3.5.1. Comparison of Different Photo Distances

To evaluate the measurement accuracy from different photo distances when
using scanning photogrammetry, the images of the first test field are obtained from
40, 80, and 150 m, and the ground resolutions are 0.9, 1.7, and 3.2 mm, respectively.
Experiments are correspondingly named as cases I, II, and III. The horizontal and
vertical overlaps between original images in image matrices in the three cases are set
the same, 80% and 60%, respectively. We adjust the baseline of the stations to ensure
that the station numbers of the three experiments are equal; that is, the intersection
angles of the three experiments are different.
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Figure 18. Point clouds. (a,b) shows the point clouds before and after self-calibration bundle 
adjustment with control points in the experiment of the first field showed in Figure 10a. 

 

Figure 19. Point clouds. (a,b) shows the point clouds before and after bundle adjustment in 
the experiment of the second field showed in Figure 10b. 

  

Figure 18. Point clouds. (a,b) shows the point clouds before and after
self-calibration bundle adjustment with control points in the experiment of the
first field showed in Figure 10a.
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Figure 19. Point clouds. (a,b) shows the point clouds before and after bundle adjustment in 
the experiment of the second field showed in Figure 10b. 

  

Figure 19. Point clouds. (a,b) shows the point clouds before and after bundle
adjustment in the experiment of the second field showed in Figure 10b.

Table 1 displays the details of this experiment, and Figure 20 shows the error
vectors. To compare the influence of photo distances in scanning photogrammetry,
we choose 12 points as control points from 26 points distributed evenly in the test
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area, and the rest are check points. Owing to the angle existing between the average
plane of the measured target and the XY plane in the chosen object coordinates, the
distribution of control and check points on the right side of the picture is denser than
that on the left side of pictures. Moreover, as shown in Table 1, the mean intersection
angle of tie points is smaller than the set least intersection angle. The reason is that
many of the tie points only appear in two adjacent stations.

Table 1. Parameters and coordinate residuals of experiments for first test field at
different photo distances.

Cases I II II III III

Photo distance (m) 40 80 80 150 150
Focal length (mm) 300

Ground resolution (mm) 0.9 1.7 1.7 3.2 3.2
Total station number N 5

Give least intersection angle θ (˝) 26 35 35 35 35
Baseline (m) 8.8 14 14 26.3 26.3

Image amount 858 171 171 41 41
RMSE of image point residuals (pixel) 1/2 1/2 1/2 1/2 1/2

Mean intersection angle of tie points (˝) 23.7 18.5 18.5 18.1 18.1
Maximum intersection angle of tie points (˝) 43.2 37.6 36.4 35.8 35.6
Minimum intersection angle of tie points (˝) 4.2 4.4 4.8 6.3 6.5

Number of control points 12 12 10 12 8

Accuracy (mm)

X 1.2 1.8 1.6 1.5 1.5
Y 1.0 1.3 0.7 1.2 0.4
Z 1.1 2.2 2.7 2.5 2.9

XY 1.5 2.2 1.7 1.9 1.5
XYZ 1.9 3.1 3.2 3.1 3.3

Number of check points 14 14 16 14 18

Accuracy (mm)

X 2.0 2.1 2.4 2.5 2.5
Y 0.8 1.8 1.9 1.6 1.7
Z 1.0 2.5 2.5 2.8 2.7

XY 2.1 2.8 3.0 2.9 3.0
XYZ 2.3 3.7 3.9 4.0 4.1

As shown by the results in Table 1, scanning photogrammetry can achieve
high accuracy even when measurement is performed from different photo distances.
If ground sampling distance increases (which occurs if the photo distance also
increases), then the pixel becomes larger when projected on the object, and less detail
can be captured. As ground sampling distance increases, fine details become visible,
which improves measurement accuracy. In this experiment, the accuracy of the
control points measured by total station and the ground sampling distance are in the
same magnitude, and the accuracy of the control points measured by total station is
even larger than that of the ground sampling distance, thus causing the measurement
accuracy to not be proportional to the photo distance. At the same time, the accuracy
measured by the total station in the X-direction is the lowest. Therefore, in case I, the
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final measurement accuracy in the X-direction is lower than that in other directions
because of its dependence on the accuracy measured by the total station. To further
analyze the necessary amount of control points, we decrease the number of control
points to 10 and 8 in cases II and III, respectively. The measurement results in Table 1
reveal that necessary control points decrease when the photo distance increases,
which is related to the relief displacement of the target on images.Remote Sens. 2015, 7 10065 

 

 

Figure 20. Error vectors of control points and check points. (a) is the error vectors of points 
measured at a distance of 40 m; (b) and (c) denote error vectors of points measured at a photo 
distance of 80 m. (b) is the result with 12 control points, and (c) is 10 control points; (d) and 
(e) show error vectors at a photo distance of 150 m, and they are the results with 12 control 
points and eight control points, respectively. 

As shown by the results in Table 1, scanning photogrammetry can achieve high accuracy even when 
measurement is performed from different photo distances. If ground sampling distance increases (which 
occurs if the photo distance also increases), then the pixel becomes larger when projected on the object, 
and less detail can be captured. As ground sampling distance increases, fine details become visible, 
which improves measurement accuracy. In this experiment, the accuracy of the control points measured 
by total station and the ground sampling distance are in the same magnitude, and the accuracy of the 
control points measured by total station is even larger than that of the ground sampling distance, thus 
causing the measurement accuracy to not be proportional to the photo distance. At the same time, the 
accuracy measured by the total station in the X-direction is the lowest. Therefore, in case I, the final 

Figure 20. Error vectors of control points and check points. (a) is the error vectors
of points measured at a distance of 40 m; (b) and (c) denote error vectors of points
measured at a photo distance of 80 m. (b) is the result with 12 control points, and (c)
is 10 control points; (d) and (e) show error vectors at a photo distance of 150 m, and
they are the results with 12 control points and eight control points, respectively.
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3.5.2. Comparison of Different Overlaps between Images in Image Matrices

In data acquisition, the number of original images that should be taken at one
station is determined by the overlaps between images in image matrices. However,
more images will relate to additional time spent on data acquisition and processing.
Therefore, we prefer to minimize overlaps without affecting measurement accuracy.
To analyze the influence of the horizontal overlapping rate in the image matrix on
measurement accuracy, data with different horizontal overlaps (80%, 60%, and 30%)
are obtained in the flag platform at a photo distance of 40 m. The detailed parameters
and coordinate residuals of control and check points are shown in Table 2. Figure 21
displays the error vectors. The experiment results reveal that horizontal overlaps
in the image matrix affect measurement accuracy; that is, accuracy is lowered with
the reduction of horizontal overlap. However, the influence is insignificant. We can
deduce that the vertical overlap follows a similar way. Therefore, we can conclude
that when the required precision is met, the horizontal and vertical overlaps can be
decreased to improve the efficiency of data acquisition and processing. Meanwhile,
experience dictates that the overlapping rate cannot be less than 30% in both
directions to guarantee successive data processing.
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Figure 21. Error vectors of control points and check points. (a), (b), and (c) denote error 
vectors of points with horizontal overlap of 80%, 60%, and 30%, respectively. The 
coordinate residuals of check points in the experiments with image horizontal overlap 80%, 
60%, and 30%, respectively. 

Figure 21. Error vectors of control points and check points. (a), (b), and (c) denote
error vectors of points with horizontal overlap of 80%, 60%, and 30%, respectively.
The coordinate residuals of check points in the experiments with image horizontal
overlap 80%, 60%, and 30%, respectively.
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Table 2. Parameters and coordinate residuals of experiments for first test field at
different horizontal overlaps of image matrix.

Cases I II III

Photo distance (m) 40 40 40
overlap in horizontal direction 80% 60% 30%

overlap in vertical direction 60% 60% 60%
Focal length (mm) 300

Ground resolution (mm) 0.9
Total station number N 5

Give least intersection angle θ (˝) 26
Baseline (m) 8.8

Image amount 858 444 232
RMSE of image point residuals (pixel) 1/2 1/2 1/2

Mean intersection angle of tie points (˝) 23.7 23.4 22.5
Maximum intersection angle of tie points (˝) 43.2 43.2 43.0
Minimum intersection angle of tie points (˝) 4.2 5.6 2.4

Number of control points 12 12 12

Accuracy (mm)

X 1.2 1.5 1.6
Y 1.0 1.1 1.2
Z 1.1 1.5 1.6

XY 1.5 1.9 2.0
XYZ 1.9 2.4 2.6

Number of check points 14 14 14

Accuracy (mm)

X 2.0 2.0 1.9
Y 0.8 0.7 0.7
Z 1.0 1.4 1.8

XY 2.1 2.1 2.1
XYZ 2.3 2.5 2.7

3.5.3. Comparison of M

According to the station distribution in our scanning photogrammetry, the
baseline between stations decreases as the value of the given number of least stations
from which any interest point on the target would be photographed (M) increases.
A shorter baseline is known to be conducive to image matching; however, the
number of images in the project will be increased, which would require more time
for data acquisition and processing. To analyze the influence of M, we conduct two
experiments that measure the flag platform from three and five stations each at a
photo distance of 80 m. The parameters and coordinate residuals of control points
and check points are listed in Table 3. Figure 22 shows the error vectors of these
points. In this experiment, the relief is small from this photo distance, suggesting
that M rarely influences measurement accuracy. However, if the relief is large, M
should be increased. We recommend that the value of M should be no less than 3.
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Table 3. Parameters and coordinate residuals of experiments for first test field at
different values of M.

Cases I II

Photo distance (m) 80 80
overlap in horizontal direction 80% 80%

overlap in vertical direction 60% 60%
Focal length (mm) 300

Ground resolution (mm) 1.7
Total station number N 3 5

Give least intersection angle θ (˝) 35 35
Baseline(m) 28 14

Image amount 90 171
RMSE of image point residuals(pixel) 1/2 1/2

Mean intersection angle of tie points(˝) 25.2 18.5
Maximum intersection angle of tie points(˝) 36.3 36.4
Minimum intersection angle of tie points(˝) 3.4 4.8

Number of control points 10 10

Accuracy (mm)

X 1.6 1.6
Y 0.8 0.7
Z 2.6 2.7

XY 1.8 1.7
XYZ 3.2 3.2

Number of check points 16 16

Accuracy (mm)

X 2.4 2.4
Y 1.7 1.9
Z 2.5 2.5

XY 3.0 3.0
XYZ 3.9 3.9
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Figure 22. Error vectors of control points and check points. (a) and (b) denote error vectors 
of points in the experiments of obtaining images from three and five stations Coordinates 
residuals of check points in the experiments with M as 3 and 5, respectively. 

  

Figure 22. Error vectors of control points and check points. (a) and (b) denote
error vectors of points in the experiments of obtaining images from three and
five stations Coordinates residuals of check points in the experiments with M as
3 and 5, respectively.
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3.5.4. Comparison of Set Intersection Angle

In this part, experiments with different intersection angles are conducted. The
intersection angle is set to 26˝ and 35˝ in the two tests at a photo distance of 40 m.
According to the abovementioned rules of station distribution, the amounts of
total stations are 3 and 5, respectively. Table 4 lists the detailed parameters of
the experiments and the coordinate residuals. Figure 23 shows the error vectors. The
results unexpectedly demonstrate that a larger intersection angle corresponds to a
lower measurement accuracy. We speculate that the main cause of this situation is
increase in the photo distortion when the intersection angle is enlarged. Therefore,
a large intersection angle is not always better than a smaller intersection angle and
should be determined according to the relief displacement of the measuring target.

Table 4. Parameters and coordinate residuals of experiments for first test field at
different intersection angles.

Cases I II

Photo distance (m) 40 40
overlap in horizontal direction 80% 80%

overlap in vertical direction 60% 60%
Focal length (mm) 300

Ground resolution (mm) 0.9
Total station number N 5 3

Give least intersection angle θ (˝) 26 35
Baseline (m) 8.8 17.6

Image amount 858 738
RMSE of image point residuals (pixel) 1/2 1/2

Mean intersection angle of tie points (˝) 23.7 29.9
Maximum intersection angle of tie points (˝) 43.2 44.8
Minimum intersection angle of tie points (˝) 4.2 6.1

Number of control points 12 12

Accuracy (mm)

X 1.1 1.3
Y 1.0 1.1
Z 1.2 1.4

XY 1.4 1.7
XYZ 1.9 2.2

Number of check points 14 16

Accuracy (mm)

X 2.0 1.8
Y 0.8 0.8
Z 1.0 1.9

XY 2.1 2.0
XYZ 2.3 2.7
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Figure 23. Error vectors of control points and check points. (a) and (b) demonstrate error 
vectors of points in the experiments with designed intersection angle as 26°and 35°. 
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Ground sampling distance can be improved by increasing the focal length of the camera, which can be 
beneficial to measurement accuracy. In this part, two lenses with focus lenses of 300 mm and 600 mm are 
used for measuring the high slope in the second field (Figure 10b). The tests are named Cases I and II, 
respectively. Table 5 shows the detailed parameters of the experiments and the coordinate residuals, and 
Figure 24 illustrates the error vectors. The scene of the field is complex and thus can only be surveyed at 
a long distance of 250 m. A total of 14 control points are selected for orientation. Table 5 shows that our 
scanning photogrammetry can achieve high precision when a large target from a long distance is measured. 
This efficient measurement in Case II reveals that our method is valid and can apply telephoto lens to 
achieve high precision with a few control points. However, the residuals in case II is expected to improve 
much more than that in case I because the ground sampling distance in case II is improved to half of that 
in case I. However, the accuracy was not improved substantially because the accuracy was limited by the 
accuracy of the control points measured by the total station. Another reason is the systematic errors that 
cannot been corrected completely because the distortion in images obtained with telephoto lenses is 
complicated. Therefore, finding ways to solve this problem is the main concern of our future works. 

 

Figure 24. Error vectors of control points and check points. (a) and (b) demonstrate error 
vectors of points in the experiments with 300 and 600 mm focal lens. 

Figure 23. Error vectors of control points and check points. (a) and (b) demonstrate
error vectors of points in the experiments with designed intersection angle as
26˝and 35˝.

3.5.5. Comparison of Different Focuses

Ground sampling distance can be improved by increasing the focal length of the
camera, which can be beneficial to measurement accuracy. In this part, two lenses
with focus lenses of 300 mm and 600 mm are used for measuring the high slope in
the second field (Figure 10b). The tests are named Cases I and II, respectively. Table 5
shows the detailed parameters of the experiments and the coordinate residuals,
and Figure 24 illustrates the error vectors. The scene of the field is complex and
thus can only be surveyed at a long distance of 250 m. A total of 14 control points
are selected for orientation. Table 5 shows that our scanning photogrammetry can
achieve high precision when a large target from a long distance is measured. This
efficient measurement in Case II reveals that our method is valid and can apply
telephoto lens to achieve high precision with a few control points. However, the
residuals in case II is expected to improve much more than that in case I because the
ground sampling distance in case II is improved to half of that in case I. However,
the accuracy was not improved substantially because the accuracy was limited by
the accuracy of the control points measured by the total station. Another reason is
the systematic errors that cannot been corrected completely because the distortion in
images obtained with telephoto lenses is complicated. Therefore, finding ways to
solve this problem is the main concern of our future works.
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error vectors of points in the experiments with 300 and 600 mm focal lens.

Table 5. Parameters and coordinate residuals of experiments for second test field at
different focuses.

Cases I II

Photo distance (m) 250 250
overlap in horizontal direction 80% 60%

overlap in vertical direction 60% 40%
Focal length (mm) 300 600

Ground resolution (mm) 5.3 2.7
Total station number N 3 3

Give least intersection angle θ (˝) 30 30
Baselines (m) 55 55

Image amount 601 982
RMS of image point residuals (pixel) 2/5 1/2

Mean intersection angle of tie points(˝) 22.2 23.4
Maximum intersection angle of tie points(˝) 33.1 29.4
Minimum intersection angle of tie points(˝) 6.1 6.0

Number of control points 14 14

Accuracy(mm)

X 3.3 1.7
Y 3.3 1.6
Z 3.9 4.4

XY 4.6 2.3
XYZ 6.0 5.0

Number of check points 14 14

Accuracy (mm)

X 3.2 2.7
Y 4.0 3.2
Z 4.4 3.9

XY 5.1 4.2
XYZ 6.8 5.7
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4. Discussion

This paper uses scanning photography to solve the problem of data acquisition
and organization caused by the limited FOV of digital cameras when measuring large
targets with long focal lens. When cameras with long focal lens are used to measure
large targets, the ground coverage is small, resulting in the need to take lots of
images. If all these images are taken manually, then only experienced photographers
can accomplish the work well. Otherwise, coverage gaps will occur, especially
when applying multi-view photography to obtain images to maintain measurement
precision. Scanning photography combined with the isometric station distribution
proposed in this paper is designed to obtain images regularly, as in data acquisition
in aerial photogrammetry. Also, it is a kind of photogrammetry method using
multi-view images. After operators input the required parameters, the photo scanner
automatically obtains images, thus making it easy to acquire images without coverage
gap and to organize images for data processing. Moreover, the photo scanner can
record the rotation angle of each image when obtaining images, which can be used
in data processing as auxiliary information. A modified triangulation is conducted
according to the traits of the data acquired by scanning photography that the overlaps
among images from the same station are known, improving the efficiency and
stability of data processing. The modified triangulation can be considered as a kind
of global structure from motion (SFM) with auxiliary information.

Successfully used in aerial and close-range photogrammetry, scanning
photography is the approach of controlling the camera to rotate around one point
to acquire images to enlarge the field-view-of one station. Vision Map A3 system is
an example of scanning photography in aerial photogrammetry. The camera used
in this system consists of dual CCD detectors with two 300 mm lenses. As the
flight moves when obtaining images, the camera can only be controlled to rotate in
a cross-track direction, which provides a field-of-view of 104˝. In the along-track
direction, the field-of-view is enlarged by using dual CCDs. Traditional triangulation
with GPS information is utilized for data processing. After that, super large frames
synthesized from all pairs of original images of one sweep are generated for stereo
photogrammetric mapping [24]. In close-range, the platform for obtaining images is
static and always controls only one camera rotating in both horizontal and vertical
directions (the same as along-crack and cross-crack direction) to enlarge the field
of view. While, several systems take images both with normal and long focal
lenses in measurements; normal focal lens images are used to provide a general
network around the object, whereas the long focal lens images are employed to
ensure accuracy and reconstruct the ‘sharp’ details [30–33]. And, the relative angles
between adjacent images from one station are always the same in these systems.
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The differences of our scanning photogrammetry and the previous ones are
listed as follows:

(1) Difference in scanning photography

To avoid the situation when images at the corners of the image matrix are
covered by invalid areas (as in Figure 5), which results from central perspective when
photographing, the relative rotation angle between adjacent images decreases as
the rotation angle increases from the “zero position”, instead of staying the same in
the previous scanning photography. Considering our scanning photogrammetry is
used for measuring targets outside, which always allow only one side of the object
towards the camera, we recommend that the horizontal rotation angle should be
in the range of r´45˝, 45˝s, and that the vertical rotation angle should be within
r´30˝, 30˝s to limit image distortion. So that, our simplified synthesis method of
projecting the image matrix on a plane is enough to actually deliver the application.

(2) Difference in rotation platform

For easy data acquisition, the photo scanner is designed to obtain images
automatically. The weight of the long focal lens, particularly telephoto, may be
heavier than that of the camera body; hence, the center of rotation and the center
of camera are designed in different locations to enable the photo scanner to be
successfully used with telephoto, as shown in Figure 7. However, the offset values of
the two centers are small compared with the photo distance when large engineering
measurements are measured using this photo scanner. Thus, we ignore the offset
values when image matrices are synthesized.

(3) Difference in data processing

According to the mechanism of our scanning photography and station
distribution, the overlap between ground coverages of adjacent image matrices
is known and large enough for relative orientation, whereas the overlap between
original stereo images from adjacent stations are unknown and may be insufficient for
relative orientation. Therefore, we modify the traditional triangulation by utilizing
synthetic images to calculate the initial parameters for bundle adjustment. The offset
in X, Y, Z coordinates from the center of the camera to the center of rotation is very
small compared to the photo distance in most cases; here, we ignore the difference
when image matrices are synthesized. Then, a simplified approach is employed
for generating synthetic images, which do not need the surface model of the target.
Although model errors exist in the synthetic image, they do not have much influence
on the matching of synthetic images, especially when the photo distance is large.
After synthetic images are generated, they are used to generate a free network,
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and the initial exterior orientation parameters of the original images are calculated
accordingly. Original images are employed when bundle adjustment is performed
because perspective centers of each image from the same station are actually different
and multi-directional images will contribute to accuracy and robustness. The
accurate exterior parameters of the original images different from parameters of
the corresponding synthetic images can be obtained after bundle adjustment.

Two reasons that our scanning photogrammetry can effectively process images
with long focal length.

(1) The modified triangulation ensures the initial parameters are stable, which
benefits for the convergence of bundle adjustment.

(2) In consideration of the unstable intrinsic parameters of the non-metric cameras
with long focal lens, especially telephoto, the on-line self-calibration bundler
adjustment with control points is employed in our scanning photogrammetry.
We hold that the intrinsic parameters are constant during the short time of
data acquisition. Further, we fixed the focus of lens with a tape to avoid
small changes caused by vibration when the photo scanner moves. During
bundler adjustment, the weights of observations based on intersection angles
are considered to ensure its convergence.

However, the narrow field of view of long focal length can impact adversely on
the linear dependencies between the interior and exterior orientation parameters [45].
Although bundle adjustment convergences in the experiments, the results do not
meet expectations. The precision can be improved with proper calibration model. In
future works, we will research this aspect.

5. Conclusions

In this paper, scanning photogrammetry was employed to improve the efficiency
of large object measurement in close range. The limited format of digital cameras
prevents normal photography when large targets are measured with long focal
lens, which leads to low efficiency because of the difficult data acquisition and
organization when using oblique photography as a substitution. This method was
derived to acquire images in order as in traditional aerial photogrammetry, which
was easily conducted and could avoid coverage gaps. Therefore, we improved the
scanning photography, provided a design of station distribution, and developed the
corresponding data acquisition instrument to ensure image data were obtained in an
orderly way. Then, considering the traits of data acquired in our method, a modified
triangulation is performed by utilizing synthetic images from image matrices to
generate the free network to avoid matching all original images with one another
firstly; then, yielding a free network from original images according to the free
network from synthetic images; finally, executing self-calibration bundle adjustment
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with control points to calculate the final results. This modified triangulation method
highly improved the efficiency and stability of data processing when using long focal
lens for measurements. Also, the results of experiments confirmed that our method
could achieve high measurement precision with 300 and 600 mm lenses, when using
a small number of control points.

However, the following problems remain to be solved in future works.

(1) To apply our method to more kinds of targets, such as tunnels, we consider
projecting the image matrix on a cylinder or a sphere in future research.

(2) To enhance measurement accuracy, we will continue to work on dealing with
the image distortion using telephoto lens.

(3) In the next step, we will work towards calibration of the rotation platform to
give more precise initial parameters for bundle adjustment.
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Optimized 3D Street Scene Reconstruction
from Driving Recorder Images
Yongjun Zhang, Qian Li, Hongshu Lu, Xinyi Liu, Xu Huang, Chao Song,
Shan Huang and Jingyi Huang

Abstract: The paper presents an automatic region detection based method to
reconstruct street scenes from driving recorder images. The driving recorder in
this paper is a dashboard camera that collects images while the motor vehicle is
moving. An enormous number of moving vehicles are included in the collected
data because the typical recorders are often mounted in the front of moving vehicles
and face the forward direction, which can make matching points on vehicles and
guardrails unreliable. Believing that utilizing these image data can reduce street
scene reconstruction and updating costs because of their low price, wide use, and
extensive shooting coverage, we therefore proposed a new method, which is called
the Mask automatic detecting method, to improve the structure results from the motion
reconstruction. Note that we define vehicle and guardrail regions as “mask” in this
paper since the features on them should be masked out to avoid poor matches. After
removing the feature points in our new method, the camera poses and sparse 3D
points that are reconstructed with the remaining matches. Our contrast experiments
with the typical pipeline of structure from motion (SfM) reconstruction methods,
such as Photosynth and VisualSFM, demonstrated that the Mask decreased the
root-mean-square error (RMSE) of the pairwise matching results, which led to more
accurate recovering results from the camera-relative poses. Removing features
from the Mask also increased the accuracy of point clouds by nearly 30%–40% and
corrected the problems of the typical methods on repeatedly reconstructing several
buildings when there was only one target building.

Reprinted from Remote Sens. Cite as: Zhang, Y.; Li, Q.; Lu, H.; Liu, X.; Huang, X.;
Song, C.; Huang, S.; Huang, J. Optimized 3D Street Scene Reconstruction from
Driving Recorder Images. Remote Sens. 2015, 7, 9091–9119.

1. Introduction

Due to the increasing popularity of using reconstruction technologies, more
3D supports are needed. Researchers have proposed many methods to generate 3D
models. Building models from aerial images is a traditional method to reconstruct a
3D city. For example, Habib proposed a building reconstruction method from aerial
mapping by utilizing a low-cost digital camera [1]. Digital map, Light Detection and
Ranging (LIDAR) data, and video aerial image sequences have been used to build
models combined [2]. These methods can reconstruct the model of large-area cities
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at a high efficiency; however, the models reconstructed from aerial data always have
lacked detailed information, which constrains their further applications. In order to
reconstruct city models with rich details, the terrestrial data based reconstruction
also has been explored [3–5]; and street scenes have been reconstructed with imagery
taken from different view angles [3,4]. These images were captured by a moving
vehicle that carried a GPS/INS navigation system. Mobile LIDAR was used to
reconstruct buildings with progressively refined point clouds by incrementally
updating the data [5]. Even though mobile LIDAR can acquire 3D points quickly,
it clearly has some limitations. For example, the density of the point clouds can be
easily affected by the driving speeds, number of scanners, multiple returns, range to
target, etc. The advantages and disadvantages of mobile LIDAR and its abundant
applications in city reconstructions have been summarized [6]. The integrated
GPS/Inertial Navigation Systems (INS) navigation system and mobile LIDAR play
an important role in most classical city-scale reconstruction methods. However, in
urban areas, the accuracy of GPS/GNSS is sometimes limited by the presence of large
buildings. Although this limitation can be minimized by using Wi-Fi or telephone
connections, we cannot neglect the necessity of INS in the above methods that has
made city-scale reconstruction very expensive.

The urban area in China has grown rapidly in recent years, which has brought a
large number of tasks for road surveying. However, the development of 3D street
reconstruction is limited by the lack of mobile mapping equipment carrying stable
GPS/INS systems or mobile LIDAR in China. In order to address this issue, it is
crucial to be able to reconstruct sparse 3D street scenes without the assistance of
GPS/INS systems. The Structure from Motion (SfM) technique [7] was recently
used to reconstruct buildings from unstructured and unordered data sets without
GPS/INS information [8,9], and the results should be scaled and georeferenced into
object space coordinate systems. For example, the photo tourism system [10,11] is
one of the typical SfM methods which can recover 3D point clouds, camera-relative
positions, and orientations from either personal photo collections or Internet photos
that do not rely on a GPS/INS system or any other equipment to provide location,
orientation, or geometry. The image data used by the above typical SfM method
characteristically have less repetition and obvious objects in the foreground, which
allows processing by the typical SfM method have no additional steps.

With the heavier traffic density nowadays, especially more buses, taxis, and
private vehicles are equipped with driving recorders to avoid traffic accident disputes.
A driving recorder is a dashboard-mounted camera, which can collect images while
a vehicle is operating. Figure 1 shows a typical driving recorder and recorded image.
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Figure 1. Driving recorder and recorded image. (a) Photo of one type of driving
recorder obtained from the Internet. (b) Test data recorded by the driving recorder
in this paper.

More and more uses of driving recorders allow them to replace mobile mapping
equipment to collect images, reconstruct, and update street scene point clouds at a
lower cost yet in a shorter update time. Images of street views are typically captured
by driving recorders mounted in the front of a moving vehicle, facing the forward
direction along the street. Large quantities of vehicles are captured in the video
images. However, due to the relative motion among the vehicles and the repeating
patterns of guardrails, without the assistance of GPS/INS information, the matching
pairs of images of vehicles and guardrails may be outliers. These outliers often take
a dominant position, which cannot be removed by the epipolar constraint method
effectively, thereby causing the typical SfM process to fail. Hence, this paper mainly
focuses on detecting vehicles and guardrail regions, and then removing the feature
points on them to reduce the number and negative effects of the outliers present
in the driving recorder data. After removal, the remaining points can be used to
reconstruct the street scene.

In order to reduce the cost of reconstructing point clouds, the SfM method is
proposed in this paper to reconstruct the street scene based on driving recorder
images without GPS/INS information. However, we reconstruct the results only
in the relative coordinate system, rather than georeferencing it to the absolute
coordinates. This paper focuses on removing the feature points on the vehicle and
guardrail regions, which can improve the performance of the recovered camera-tracks
and the accuracy of the reconstructed sparse 3D points. Vehicle and guardrail
region automatic detection methods are proposed in Sections 2.1–2.4. The features
removing and reconstruction method is described in Section 2.5; and the improved
reconstruction effects are shown in Section 3 from the following three aspects:
Section 3.2 addresses the precision of pairwise orientation; Section 3.3 shows the
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camera poses recovering results, and the sparse 3D point clouds reconstructing
results are introduced in Section 3.4. The results and implications of this research
are discussed in Section 4; and the limitations of the proposed method and future
research directions are described in Section 5.

2. Methodology

The paper proposed guardrail and vehicle region detection methods, and
then masked feature points on guardrail and vehicle regions to improve the
reconstruction result. We propose to “mask” out the vehicle and guardrail regions
before reconstruction because guardrails have repeating patterns and vehicles move
between frames, which subsequently always produce outliers on the image of the
guardrail and vehicle regions. In this paper, the images of the vehicle and guardrail
regions are collectively called the Mask. The pipeline of 3D reconstruction that
utilizes driving recorder data is illustrated in Figure 2. We can first detect the SIFT [12]
feature points and the Mask in each image, and then we remove the features on the
Mask and match the remaining feature points between the pairs of images. Based on
the epipolar constraint [7], we will remove the outliers to further refine the results and
finally conduct an incremental SfM procedure [7] to recover the camera parameters
and sparse points.

Remote Sens. 2015, 7 9094 

 

 

The results and implications of this research are discussed in Section 4; and the limitations of the 

proposed method and future research directions are described in Section 5.  

2. Methodology 

The paper proposed guardrail and vehicle region detection methods, and then masked feature points 

on guardrail and vehicle regions to improve the reconstruction result. We propose to “mask” out the 

vehicle and guardrail regions before reconstruction because guardrails have repeating patterns and 

vehicles move between frames, which subsequently always produce outliers on the image of the 

guardrail and vehicle regions. In this paper, the images of the vehicle and guardrail regions are 

collectively called the Mask. The pipeline of 3D reconstruction that utilizes driving recorder data is 

illustrated in Figure 2. We can first detect the SIFT [12] feature points and the Mask in each image, and 

then we remove the features on the Mask and match the remaining feature points between the pairs of 

images. Based on the epipolar constraint [7], we will remove the outliers to further refine the results and 

finally conduct an incremental SfM procedure [7] to recover the camera parameters and  

sparse points. 

 

Figure 2. The pipeline of 3D reconstruction from driving recorder data. The grey frames 

show the typical SfM process. The two orange frames are the main improvement steps 

proposed in this paper. 
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1. Both the cameras and the objects are in motion, which changes the relative pose of the objects. 

Moreover, the appearance of vehicles varies significantly (e.g., color, size, and difference 

between back/front appearances). 

2. The environment of the scene (e.g., illumination and background) often changes, and events such 

as occlusions are common.  

3. Guardrails are strip distributions on images, which make the detection of whole regions difficult. 

Figure 2. The pipeline of 3D reconstruction from driving recorder data. The
grey frames show the typical SfM process. The two orange frames are the main
improvement steps proposed in this paper.
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It is challenging to detect the Mask with object detection methods due to the
following difficulties:

1. Both the cameras and the objects are in motion, which changes the relative pose
of the objects. Moreover, the appearance of vehicles varies significantly (e.g.,
color, size, and difference between back/front appearances).

2. The environment of the scene (e.g., illumination and background) often changes,
and events such as occlusions are common.

3. Guardrails are strip distributions on images, which make the detection of whole
regions difficult.

Haar-like features [13,14] based on Adaboost classifiers [15] were used to
address the above challenges. With the help of classifiers, the front/back surfaces of
vehicle and some parts of guardrails are automatic detected within a few seconds. The
classifiers also could robust against the changing of light condition and environment.

In order to diminish the adverse impact of outliers on reconstruction, the Mask
requires detection as entirely as possible. Therefore, based on the typical vehicle
front/back surface detection method in Section 2.1, the design of the vehicle side
surfaces detection method and the blocked-vehicle detection method are described
in Sections 2.2 and Section 2.4, respectively. The blocked-vehicle is a vehicle moving
in the opposite direction partially overlapped by the guardrail. The guardrail region
detection method is introduced in Section 2.3, which is based on the Haar-like
classifiers and the position of the vanishing point. Finally, the Mask and the
reconstruction process are introduced in Section 2.5.

2.1. Vehicle Front/Back Surfaces Detection

As the system of vehicle back surface detection [16] by Haar-like feature-based
Adaboost classifier is described in details, we only summarize its main steps here.
Classifiers based on Haar-like features can detect objects with a similar appearance.
There is a big difference between the front and back surfaces of vehicles and buses;
therefore, four types of classifiers were trained to detect the front and back surfaces
of vehicles and buses, respectively.

The classifier was trained with sample data. After the initial training, the trained
classifier was used to independently detect vehicles. There are two types of samples,
positive and negative. A positive sample is a rectangular region cut from an image
that contains the target object, and a negative sample is a rectangular region without
the target object. Figure 3 shows the relation of the four classifier types and their
trained samples. Each classifier is trained with 1000–2000 positive samples and
at least 8000 negative samples. All the samples were manually compiled; and we
separated the images containing vehicles as positive samples and the remaining
images were used as negative samples. Although diverse samples can produce better
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classifier performance, a small amount of duplications are acceptable. Therefore, the
positive samples of the same vehicle cut from different images are effective samples,
and the samples from the same images with a slightly adjusted position are allowable
as well. Two samples can even be totally duplicated, which will have a minimal
adverse effect on the performance of the classifier when the number of samples
is large enough. After inputting the samples into the OpenCV 2.4.9 [17] training
procedure, the classifier can be trained with the default parameters automatically. A
cascade classifier is composed of many weak classifiers. Each classifier is trained by
adding features until the overall samples are correctly classified. This process can be
iterated up to construct a cascade of classification rules that can achieve the desired
classification ratios [16]. Adaboost classifier is more likely to overfit on small and
noisy training data. Too many iterative training processes may cause the overfitting
problem, too. Therefore, we need to control the maximum number of iteration in
the training processes. In OpenCV training procedure, there are some constraints
designed to avoid the overfitting problem. For example, the numStages parameter
limits the stage number of classifier, and the maxWeakCount parameter helps to limit
the count of trees. These parameters could prevent classifiers from the overfitting.
Besides these parameter-constraints, we can also use more training data to minimize
the possibility of overfitting.Remote Sens. 2015, 7 9096 

 

 

 

Figure 3. Example of samples and classifiers.  

A strong cascade classifier consists of a series of weak classifiers in the order of sparse to strict.  
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speed. When an image area is input into a strong cascade classifier, it is first detected by the initial sparse 
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Negative results (e.g., background regions of the image) therefore are quickly discarded so the classifier 

can spend more computational time on more promising object-like regions [13]. Most image areas 

without the target object can be easily identified and eliminated at the very beginning of the process with 

minimal effort. Therefore, a cascade classifier is able to enhance computational efficiency [18]. 

2.2. Vehicle Side-Surface Detection 

The side-surfaces of vehicles cannot be detected by feature-based classifiers since a vehicle’s 

appearance changes with the angle of view. Poor matching points on these regions inevitably have 

adverse effects on the reconstruction, especially the side-surfaces of large vehicles that are close to the 

survey vehicle.  

The side-surface region can be determined if the interior orientation parameters, the rough size of the 

vehicles, and the position of the front/back surfaces of vehicles on the images are known. However, most 

driving recorders do not contain accurate calibration parameters so we deduced the equations described 

in this section to compute the rough position of the vehicle side-surface region based on the position of 

the front/back-surfaces and the vanishing point in the image, the approximate height H of the recorder, 

the rough value of focal length f, and the pitch angle of recorder θ. The vanishing point used in this 

section was located using the [19,20] method and the position of the vehicle front/back-surface was 

detected with the method described in Section 2.1. The vanishing point is considered a point in the 

picture plane that is the intersection of a set of parallel lines in space on the picture plane. Although the 

vehicle side-surface detection method proposed in this section can only locate the approximate position 

of the vehicle side-surface, it is adequate for masking out the features on vehicles to improve the 

Figure 3. Example of samples and classifiers.

A strong cascade classifier consists of a series of weak classifiers in the order of
sparse to strict. A sparse classifier has few constraints and low classification accuracy
but a high computational speed; while a strict classifier has many constraints and
high classification accuracy but a low computational speed. When an image area is
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input into a strong cascade classifier, it is first detected by the initial sparse classifier.
Only a positive result from the previous classifier triggers the evaluation of the
next classifier. Negative results (e.g., background regions of the image) therefore
are quickly discarded so the classifier can spend more computational time on more
promising object-like regions [13]. Most image areas without the target object can be
easily identified and eliminated at the very beginning of the process with minimal
effort. Therefore, a cascade classifier is able to enhance computational efficiency [18].

2.2. Vehicle Side-Surface Detection

The side-surfaces of vehicles cannot be detected by feature-based classifiers
since a vehicle’s appearance changes with the angle of view. Poor matching points
on these regions inevitably have adverse effects on the reconstruction, especially the
side-surfaces of large vehicles that are close to the survey vehicle.

The side-surface region can be determined if the interior orientation parameters,
the rough size of the vehicles, and the position of the front/back surfaces of vehicles
on the images are known. However, most driving recorders do not contain accurate
calibration parameters so we deduced the equations described in this section to
compute the rough position of the vehicle side-surface region based on the position
of the front/back-surfaces and the vanishing point in the image, the approximate
height H of the recorder, the rough value of focal length f, and the pitch angle
of recorder θ. The vanishing point used in this section was located using the [19,20]
method and the position of the vehicle front/back-surface was detected with the
method described in Section 2.1. The vanishing point is considered a point in the
picture plane that is the intersection of a set of parallel lines in space on the picture
plane. Although the vehicle side-surface detection method proposed in this section
can only locate the approximate position of the vehicle side-surface, it is adequate
for masking out the features on vehicles to improve the reconstruction results. The
length of M”N” is the key step in the vehicle side-surface detection method. The
process of computing the length of M”N” is described below:
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reconstruction results. The length of M N  is the key step in the vehicle side-surface detection method. 

The process of computing the length of M N  is described below: 

 
(a) 

(b) (c) 

Figure 4. Photographic model of driving recorder. (a) Integrated photographic model of 

driving recorder. (b) Side view of model. (c) Partial enlargement of side view model. The 

oblique image plane is the driving recorder image plane. Point O is the projective center, and O′′ is the principal point on the driving recorder image plane. The focal length f is OO′′. Point O′ is the principal point on the virtual vertical image plane. Line OE is perpendicular to the 

ground. Point E is the intersection point of the ground and line OE. The plane  M′O′OOEF can be drawn perpendicular to both the image plane and the ground.  OM′ is 

perpendicular to M′J′ , and OM is perpendicular to MJ. Line LN is perpendicular to OE. MP 

is a vertical line for the ground, and P is the intersection point of line MP and line ON. Line M′′T is perpendicular to O′O . The angle between the oblique plane and the vertical plane is θ. Angles MON and  O′′ON′′  are α and β, respectively. 
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Figure 4. Photographic model of driving recorder. (a) Integrated photographic
model of driving recorder. (b) Side view of model. (c) Partial enlargement of side
view model. The oblique image plane is the driving recorder image plane. Point
O is the projective center, and O” is the principal point on the driving recorder
image plane. The focal length f is OO”. Point O1 is the principal point on the
virtual vertical image plane. Line OE is perpendicular to the ground. Point E is the
intersection point of the ground and line OE. The plane M1O1OOEF can be drawn
perpendicular to both the image plane and the ground. OM1 is perpendicular to
M1J1, and OM is perpendicular to MJ. Line LN is perpendicular to OE. MP is a
vertical line for the ground, and P is the intersection point of line MP and line ON.
Line M”T is perpendicular to O1O. The angle between the oblique plane and the
vertical plane is θ. Angles MON and O”ON” are α and β, respectively.

In Figure 4a, we suppose that the real length, height, and width of the vehicle are
LC, HC and WC, respectively. The width of the target on image K”J” is WP. H is the
height of projective center O to ground OE. Therefore, it can be seen that the length
of target MN is LC, the length of LE is HC and OL is H ´ HC. Figure 4a shows that
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triangle M”TO is similar to OLM and triangle K”J” O is similar to KJO. We therefore
can deduce the following equations from the triangle similarity theorem:

K”J”
KJ

“
OM”
OM

“
M”T
OL

(1)

So the length of M”T can be described with Equation (2):

M”T “
K2 J2 ¨OL

KJ
“

WP¨ pH´ HCq

WC
(2)

It can be seen from 4W OM1 in Figure 4c that, angle W O1M1 is θ, and the length
of WM” is equal to O1T in rectangle WM” TO1. Then, Equation (3) can be established
with the length of M”T in Equation (2):

WM” “ M2T¨ tanθ “
WP¨ pH´ HCq ¨ tanθ

WC
(3)

In Figure 4c, the length of M”T is equal to W O1 in rectangle WM” TO1, so the
length of M1O1 is equal to M”T add M1W. Then, Equation (4) can be established
based on 4 M1 WM”
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4 M1 O1O:

WM2
O1O

“
M1W
M1O1

“
M1W

M2T`M1W
(4)

Equation (5) is transformed from Equation (4), and the length of M1W is
expressed below:

M1W “
WM”¨M”T
O1O´WM”

“
WP

2¨ pH´ HCq
2
¨ sinθ

WC
2¨ f ´WP¨WC¨ pH´ HCq ¨ sinθ

(5)

Equation (6) is established from rectangle WM” TO1 in Figure 4c.

O1 M1 “ O1 W`M1 W “ M11 T`M1 W “

Wp¨ pH´ Hcq

Wc
`

WP
2¨ pH´ HCq

2
¨ sinθ

WC
2¨ f ´WP¨WC¨ pH´ HCq ¨ sinθ

(6)

In Figure 4a, since OM” is the height of triangle OK”J”, we can infer that:
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We know that, K”J” is WP, therefore with the calculations of M”T (Equation (2))
and O1M1 (Equation (6)), the length of K1J1 can be established from the transformation
of Equation (8):

K1J1 “
K2 J2 ¨O1M1

M”T
“ WP `

WP
2¨ pH´ HCq ¨ sinθ

WC¨ f ´WP¨ pH´ HCq ¨ sinθ
(9)

KJ and K1J1 are parallel; therefore, we can infer that triangle K1 M1O and triangle
KMO are similar triangles from Figure 4a. OM1 is the height of triangle K1 M1O and
OM is the height of triangle KMO. Meanwhile, OO1 and LN are parallel lines so
triangle M1OO1 is similar to triangle OML. Therefore, based on the triangle similarity
theorem, Equation (10) can be established:

K1J1
KJ

“
OM1
OM

“
OO1
LM

(10)

The length of OO1 is f{cosθ and KJ is WC so LM can be calculated based on
Equations (9) and (10):

LM “
OO1¨KJ

K1 J1
“

WC¨ f ´WP¨ pH´ HCq ¨ sinθ

WP¨ cosθ
(11)

In Figure 4b, Equation (12) can be established since triangle PMN is similar
to OLM:

MP
OL

“
MN
LN

“
MN

LM`MN
(12)

OL and MN are H ´ HC and LC, respectively. Then, MP can be described with
Equations (11) and (12)

MP “
OL¨MN

LM`MN
“

LC¨WP¨ pH´ HCq ¨ cosθ
WC¨ f ´WP¨ pH´ HCq ¨ sinθ` LC¨WP¨ cosθ

(13)

In order to compute the length of M”N”, we suppose that:

=M1ON
1

“ =MON “ α, =N”OO” “ β, =M1O1M” “ =O1OO” “ θ (14)

Based on cosine theorem, Equation (15) can be established:

cosα “
OP2 `OM2 ´MP2

2¨OP¨OM
(15)
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In Figure 4b, OG is equal to LM, and OL has the same length as GM in rectangle
OGML. The length of OL is H ´HC. Based on the Pythagoras theorem, Equations
(16) and (17) were deduced from 4OGP and 4OLM.

OP2 “ OG2 ` GP2 “ LM2 ` pOL´MPq2 “ LM2 ` pH´HC ´MPq2 (16)

OM2 “ OL2 ` LM2 “ pH´HCq
2
` LM2 (17)

Taking Equations (16) and (17) into Equation (15), angle α can be described
as follow:

α “ arccosp
LM2 ` pH´ HCq

2
´ pH´ HCq ¨MP

b

LM2 ` pH´ HC ´MPq2¨
b

pH´ HCq
2
` LM2

q (18)

In Figure 4b,c, =M1OO
1

“ =OML “ α`β` θ so in triangle OML:

tan pα`β` θq “
OL
LM

(19)

Equation (20) is the transformation of Equation (19), with OL= H´ HC:

β “ arctan
ˆ

H´ HC
LM

˙

´α´ θ (20)

Since OO” is perpendicular to O1 M1, the following equations can be established
based on thesine theorem in Figure 4c.

tan pα`βq “
O”M”
OO”

, tanβ “
O”N”
OO”

(21)

Based on Equation (21), since OO” is f, the following equation can be transformed:

M”N” “ O”M”´O”N” “ f¨ rtan pα`βq ´ tanβs (22)

Finally, the length of M”N” can be calculated by taking Equations (11), (13), (18),
and (20) into (22).

We have supposed that LC is the length of the vehicle. In Figure 5, M”N” on
line l is the projection length of LC, which can be computed by the Equation (22).
With the known positions of the vehicle front/back-surfaces, the vanishing point on
the image, the length of M”N”, and the rough regions of the vehicle side-surfaces
can be located with the following step.
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Based on Equation (21), since OO′′ is f, the following equation can be transformed: M N = O M − O N = f ∙ tan(α + β) − tanβ  (22)
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(a) (b) (c) 

Figure 5. (a) and (b) depictions of the box marking drawing method. (c) Example of box 

marking in an image. The principal point O  is the center point of the image, and the black 

rectangle KJAB is the vehicle back surface in the image plane, which are detected by the 

classifier described in Section 2.1. Point V is the vanishing point in the image. Line l is the 

perpendicular bisector of the image passing through principal point O . Line KM  is parallel 

to the x axis of the image and M  is the intersection point on l. Line N Q intersects lines 

VK and VJ at points Q and C, respectively. N Q is parallel with M K. Line QD intersects 

line VA at point D, and line DE intersects line VB at point E. Line QC and DE are parallel 

to the x axis and QD is parallel to the y axis of the image. 

With the computed length of M N  , the position of point N   is known, then point C, D, and E can 

be located with the rules described in Figure 5. Thereafter, the black bolded-line region QCJBAD on 
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Figure 5. (a) and (b) depictions of the box marking drawing method. (c) Example
of box marking in an image. The principal point O” is the center point of the image,
and the black rectangle KJAB is the vehicle back surface in the image plane, which
are detected by the classifier described in Section 2.1. Point V is the vanishing point
in the image. Line l is the perpendicular bisector of the image passing through
principal point O”. Line KM” is parallel to the x axis of the image and M” is the
intersection point on l. Line N”Q intersects lines VK and VJ at points Q and C,
respectively. N”Q is parallel with M”K. Line QD intersects line VA at point D, and
line DE intersects line VB at point E. Line QC and DE are parallel to the x axis and
QD is parallel to the y axis of the image.

With the computed length of M”N”, the position of point N” is known, then
point C, D, and E can be located with the rules described in Figure 5. Thereafter, the
black bolded-line region QCJBAD on Figure 5b can be determined. Based on the
shape of the black bolded-line region, we defined it as the “box marking”. The region
surrounded by the box marking will contain the front, back, and side-surfaces of the
vehicle generally. Therefore, according to the description below, the box markings of
vehicle side-surfaces can be fixed by M”N”.

Detecting vehicle side-surfaces by the box marking method has the advantage
of having a fast speed and reliable results, but it relies on parameters H, f, and θ.
These parameters can only be estimated crudely on driving recorders. Therefore, the
above method can only locate the approximate position of the vehicle side surface.
However, it is adequate for the method to reach the goal of eliminating features on
the Mask.

2.3. Guardrail Detection

The guardrail is an isolation strip mounted on the center line of the road
to separate vehicles running in opposite directions. It also can avoid pedestrian
arbitrarily crossing the road. The photos of guardrail are shown in Figures 6d
and 7c. There are two reasons for detecting and removing the guardrail regions.
The main reason is that, due to the repeating patterns of guardrails, they always
contribute to poor matches. Furthermore, the views of vehicles moving on the
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other side of the guardrail are always blocked by the guardrails. This shielding
makes vehicles undetectable by the vehicle classifiers. Therefore, in order to detect
the blocked-vehicle regions, it was necessary to locate the guardrail regions. The
blocked-vehicle regions detection method, which is described in Section 2.4, is based
on the guardrail detection method described below.

The guardrail regions are detected based on a specially-designed guardrail-classifier.
Except for changes in the training parameters, the guardrail-classifier training process
is similar to the vehicle training method, which is described in Section 2.1. In order to
detect an entire region of guardrails, a special guardrail-classifier was trained based
on OpenCV Object Detection Lib [17] with a nearly 0% missing object rate. The
price of a low missing rate, however, inevitably is an increase in the false detection
rate, which means that the classifier could detect thousands of results that included
not only the guardrails but also some background. In the training process, two
parameters, the Stages-Number and the desired Min-Hit-Rate of each stage, were
decreased. One parameter, the MinNeighbor [17] (a parameter specifying how many
neighbors each candidate rectangle should have to retain it), was set to 0 during the
detecting process.

The special-designed guardrail classifier detection results are shown in Figure 6a
as blue rectangles, and many of them are not guardrails. This is a side effect of
guaranteeing a low missing object rate, but uses of the statistical analysis method
can ensure that these false detections cannot influence the confirmation of the actual
guardrail regions in further steps. The vanishing point was fixed by the [19,20]
method, wherein a vanishing point is considered a point in the picture plane that is
the intersection of a set of parallel lines in space on the picture plane. The lines are
drawn from the vanishing point to each centre line of the rectangular regions at an
interval of 2˝. This drawing approach is shown in Figure 6b, and the drawing results
are shown in Figure 6c with red lines. Since the heights of the guardrails were fixed
and the models in the driving recorder were changed within a certain range, the
intersection angles between the guardrail top and bottom edges on the image often
changed from 10˝ to 15˝ as a general rule. An example of the intersection angles is
shown in Figure 6d.

Based on the red lines drawn results, we made a triangle region which included
an angle of 15˝ and a fixed vertex (the vanishing point). The threshold of 15˝ was
the maximum potential intersection angle between the top and bottom edges of the
guardrail. Then, we shifted the triangle region between 0˝ and 360˝ like Figure 7a.
During the shift, the number of red lines included in every triangle region was
counted. Then, we considered the triangle region that had the largest line numbers as
the guardrail region. Figure 7b shows the position of the triangle region that had the
largest line numbers, and Figure 7c shows the final detection results of the guardrail.
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Figure 6. Guardrails detection process. (a) Detection results of a specially-designed 

guardrail-classifier which could detect thousands of results, including not only correct 

guardrails but many wrong detection regions as well. (b) Example of how to draw the red 

lines from the vanishing point to the detection regions. (c) Results of red lines drawn from 

the vanishing point to each centre line of the rectangle regions at an interval of 2°. An 

example of a rectangle region’s centre line is shown in the bottom left corner of the (c); and 

(d) is an example of an intersection angle between the top and bottom edges of  

the guardrail. 

Figure 6. Guardrails detection process. (a) Detection results of a specially-designed
guardrail-classifier which could detect thousands of results, including not only
correct guardrails but many wrong detection regions as well. (b) Example of how
to draw the red lines from the vanishing point to the detection regions. (c) Results
of red lines drawn from the vanishing point to each centre line of the rectangle
regions at an interval of 2˝. An example of a rectangle region’s centre line is shown
in the bottom left corner of the (c); and (d) is an example of an intersection angle
between the top and bottom edges of the guardrail.
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Figure 7. Guardrail location method. (a) Example of four triangle regions which included 

the angle of 15° and the fixed vertex (the vanishing point). (b) Triangle region that had the 

largest line numbers. (c) Final detection results of guardrail location method. 

2.4. Blocked Vehicle Regions Detection 

Sometimes, the vehicles that are moving in opposite direction can be blocked by guardrails, which 

results in the vehicle image overlapping with the guardrail partially. These occlusions make the vehicles 

undetectable by the front surface classifiers that were trained as described in Section 2.1. In this case, in 

order to detect blocked-vehicle regions, we increased the threshold of the intersection angle to broaden 

the guardrail region in order for the blocked vehicles to be included. In Figure 8, the blue box markings 

show the vehicle detection results based on the methods described in Sections 2.1 and 2.2. Two vehicles 

are missing from the detection, which are indicated by the yellow arrows. The red triangle region is the 

broadened guardrail region with a 20° intersection angle. The missing detections are included by the 

broadened guardrail regions, which are shown in Figure 8. 

 

Figure 8. Blocked vehicles detection method (guardrail region broadening method). Two 

vehicles running in opposite directions are missed detection by the vehicle classifier, which 

are indicated by the yellow arrows. These missed detection vehicle regions are included in 

the broadened guardrail regions, which are shown as the red region. 

Figure 7. Guardrail location method. (a) Example of four triangle regions which
included the angle of 15˝ and the fixed vertex (the vanishing point). (b) Triangle
region that had the largest line numbers. (c) Final detection results of guardrail
location method.

2.4. Blocked Vehicle Regions Detection

Sometimes, the vehicles that are moving in opposite direction can be blocked
by guardrails, which results in the vehicle image overlapping with the guardrail
partially. These occlusions make the vehicles undetectable by the front surface
classifiers that were trained as described in Section 2.1. In this case, in order to
detect blocked-vehicle regions, we increased the threshold of the intersection angle
to broaden the guardrail region in order for the blocked vehicles to be included.
In Figure 8, the blue box markings show the vehicle detection results based on
the methods described in Sections 2.1 and 2.2. Two vehicles are missing from the
detection, which are indicated by the yellow arrows. The red triangle region is the
broadened guardrail region with a 20˝ intersection angle. The missing detections are
included by the broadened guardrail regions, which are shown in Figure 8.
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Figure 8. Blocked vehicles detection method (guardrail region broadening method). Two 

vehicles running in opposite directions are missed detection by the vehicle classifier, which 

are indicated by the yellow arrows. These missed detection vehicle regions are included in 

the broadened guardrail regions, which are shown as the red region. 

Figure 8. Blocked vehicles detection method (guardrail region broadening method).
Two vehicles running in opposite directions are missed detection by the vehicle
classifier, which are indicated by the yellow arrows. These missed detection vehicle
regions are included in the broadened guardrail regions, which are shown as
the red region.

2.5. Mask and Structure from Motion

In the SIFT matching algorithm, detecting the feature points on the images is
the first step, and the correspondences are then matched between the features. The
coordinates of the features were compared with the location of the Mask regions in
the image, and then the features located in the Mask were removed from the feature
point sets. An example of our removing results is shown in Figure 9. The Mask
was obtained by merging the regions detected in Sections 2.1–2.4. After removing
the SIFT feature points on the Mask, the remaining features were matched. Then,
the QDEGSAC [21] algorithm was used to robustly estimate a fundamental matrix
for each pair and the outliers were eliminated with a threshold of two pixels by
the epipolar constraint [7,22]. The QDEGSAC algorithm is a robust model with a
selection procedure that accounts for different types of camera motion and scene
degeneracies. QDEGSAC is as robust as RANSAC [23] (the most common technique
to deal with outliers in matches), even for (quasi-)degenerate data [21].

In a typical SfM reconstruction method, pairwise images are matched with the
SIFT algorithm without any added process. Then, the inlier matches are determined
by the epipolar constraint algorithm (similar to the QDEGSAC algorithm), and a
sparse point cloud is reconstructed with the inliers by the SfM algorithm. However,
in our method, during the pairwise matching process, the SIFT feature points on
the vehicle and guardrail regions are masked out before matching. The remaining
features are then matched by the SIFT algorithm. After the outliers were eliminated
by the epipolar constraint algorithm, the SfM reconstruction process proceeds with
the remaining matches.
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Figure 9. SIFT feature points removing results. (a) Original SIFT feature points set
on image. (b) Mask results, which show the masked out features on the vehicle and
guardrail regions.

Both in the typical method and our proposed method, the QDEGSAC algorithm
was used as an epipolar constraint algorithm to select the inliers, and the SfM
process was conducted in VisualSFM [24,25]. Visual SFM is a GUI application of the
incremental SfM system. It runs very fast by exploiting multi-core acceleration.
The features mask out process in our method is the only difference from the
typical method.

3. Experiment

3.1. Test Data and Platform

A driving recorder is a camera mounted on the dashboard of a vehicle that
can record images when the vehicle is moving. The SfM reconstruction method can
accept various image sizes from different types of recorders. We used 311 images
taken by five recorders on roundabout as testing data to demonstrate the improved
results with our method. We chose images taken on roundabout at large intervals
to increase the complexity of the testing data. The Storm Media Player was used to
extract images from videos. We manually extracted images with the intervals which
are described in Table 1. The characteristics of the testing data are described below:

1. The testing images were taken by five recorders mounted on four vehicles,
and the largest time interval between the two image sequences was nearly
three years.

2. A total of 125 images were extracted from videos recorded by driving recorders
1, 2, and 3.
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3. 186 images were recorded by recorders 4 and 5, which were mounted on the
same vehicle with identical exposure intervals.

4. Roundabout was crowded during the recording time so the survey vehicles
changed their lanes and speeds when necessary to move with the traffic.

5. The rest details of recorders and images are shown in Table 1.

Table 1. The characteristics of recorders and images.

Recorder NO Sensor Type Focus Style Image Size Image Extraction
Intervals

Recording
Date

1, 2, 3 Video Zoom Lens 1920 ˆ 1080 About 1 s 12/23/2014
4, 5 Camera Fixed Focus 800 ˆ 600 0.5 s 1/23/2012

We separated 311 images into sequences 1, 2, 3, 4, and 5 according to the recorder
that recorded them. The results are shown in Table 2.

Table 2. The composition of three sets.

Set
Number

Recorder
Number

Image
Number Attribute

1 4, 5 186 Stereo images taken by two cameras mounted on the
same vehicle with identical exposure intervals.

2 1, 2, 3, 4 218
The longest time interval between the two image
sequences was nearly three years, and the images
were two different sizes.

3 1, 2, 3, 4, 5 311

Three monocular and two stereo image sequences.
The longest time interval between the two image
sequences was nearly three years, and the images
were two different sizes.

We conducted all the following experiments on a PC with an Intel Core i7-3770
3.4 GHz CPU (8cores), 4 GB RAM, and an AMD Radeon HD 7000 series GPU. The
detection algorithm was implemented in a Visual C++ platform with the OpenCV
2.4.9 libraries. Training each vehicle classifier took nearly 75 h, and eight hours was
required for training the guardrail classifier. Although training the classifier was
a time-consuming process, the trained classifier could be used to detect vehicles
at a fast speed after one-off training. The detection speed was affected by the
number of targets. When running on the described PC, the average detecting time
was 0.15 s for each classifier on a 1600 ˆ 1200 pixel-sized image. In the following
section, we compare the performance between the typical SfM reconstruction method
and our method from three aspects: the precision of pairwise orientation, the
recovered camera tracks, and the reconstructed point clouds, which are described in
Sections 3.2–3.4, respectively.
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3.2. Precision of Pairwise Orientation

In the SfM system, the accuracy of the reconstructed point clouds is determined
by the quality of the correspondences. Hence, in this section, we evaluate and
compare the matching results of the typical method and our method by the
root-mean-square error (RMSE).

Based on the epipolar constraint, correspondences pi, p
1

i should be located on
the corresponding epipolar line li, l

1

i respectively (The epipolar line can be computed
with the algorithm proposed by D. Nister [26]). However p

1

i may deviate from
epipolar line l

1

i due to orientation errors. Thereafter, the RMSE is able to evaluate the
accuracy of the pairwise orientation with following equation.

RMSE “

d

d2
1 ` d2

2 ` ¨ ¨ ¨d
2
n

n
(23)

di in Equation (23) is the distance between point p
1

i and the epipolar line l
1

i . n is
the number of matches. The pixel size of CCD was 0.0044 mm; therefore millimeter
was used as the unit of RMSE.

The difference between the typical method and our method is that our
method masked out the feature points on vehicles and guardrails before proceeding
with matching. Then, in both the typical method and our method, the
correspondences with di greater than the threshold (two pixels) were eliminated by
the QDEGSAC algorithm [21] before inputting into Equation (23).

In order to demonstrate the improvement and robustness of our method, 666
image pairs of diverse street scenes were chosen randomly using the above image set.
The RMSE of the pairwise orientation results by the typical method and our method
are shown in Figure 10.

In Figure 10, the RMSEs in our method were less than in the typical method in
general. The abnormity in the image pairs (the RMSEs in our method were larger
than the typical method) for which we offer the following analysis. We found that
the abnormal pairs were usually shot at long-range distances (more than 200 m) with
little overlap, leading ultimately to a decrease in the number of accurate matches.
A large proportion of the outliers led to an orientation failure, which produced
abnormal RMSE results. In general, however, it can be concluded from Figure 10 that
the Mask effectively improved the matching accuracy.
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Figure 10. RMSEs of each image. The X-axis represents the serial number of the image 

pairs and the Y-axis represents the RMSEs, which are shown as millimeters. The blue and 

red lines show the RMSEs of the typical method and our method, respectively. The 

correspondences in our method were matched after removing the SIFT features on the Mask, 

and then the outliers were eliminated by the epipolar constraint (QDEGSAC) method. In the 

typical method, the correspondences were filtered only by the epipolar constraint 

(QDEGSAC) method. 

3.3. Camera Poses Recovering Results 

Figure 11 is an explanation of the reconstructed camera-pose-triangle in the following figures. The 

colored triangles represent the position of the recovered image/camera. Figures 12–14 shows the camera 

pose reconstruction results of three sets. The details and compositions of each set were described in 

Table 2. The difference between the typical method and our method is that the feature points on the 

Mask are removed before matching in our method. Since motor vehicles can only run in a smooth track, 

we were able to distinguish an unordered track as false reconstruction results easily.  
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Figure 11. Explanation of the reconstructed camera-pose-triangle and driving tracks. (a) 

Colored triangle represents the position of the recovered image and the camera projective 

center. The size of the triangle is followed by the size of the image data. (b) Red line 

represents the recovered vehicle driving tracks that carried recorder 1. The colored triangles 

are the reconstructed results that represent the position of the images taken by recorder 1.  

  

Figure 10. RMSEs of each image. The X-axis represents the serial number of the
image pairs and the Y-axis represents the RMSEs, which are shown as millimeters.
The blue and red lines show the RMSEs of the typical method and our method,
respectively. The correspondences in our method were matched after removing the
SIFT features on the Mask, and then the outliers were eliminated by the epipolar
constraint (QDEGSAC) method. In the typical method, the correspondences were
filtered only by the epipolar constraint (QDEGSAC) method.

3.3. Camera Poses Recovering Results

Figure 11 is an explanation of the reconstructed camera-pose-triangle in the
following figures. The colored triangles represent the position of the recovered
image/camera. Figures 12–14 shows the camera pose reconstruction results of three
sets. The details and compositions of each set were described in Table 2. The
difference between the typical method and our method is that the feature points on
the Mask are removed before matching in our method. Since motor vehicles can
only run in a smooth track, we were able to distinguish an unordered track as false
reconstruction results easily.
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Figure 11. Explanation of the reconstructed camera-pose-triangle and driving
tracks. (a) Colored triangle represents the position of the recovered image and
the camera projective center. The size of the triangle is followed by the size of the
image data. (b) Red line represents the recovered vehicle driving tracks that carried
recorder 1. The colored triangles are the reconstructed results that represent the
position of the images taken by recorder 1.
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Figure 12. The recovered image positions of Set 1. These images were taken by recorders 4 

and 5, which had the same exposure interval and were mounted on one vehicle. (a) and (b) 

are the recovered results from the same data with different methods. (a) depicts the 

reconstruction by the typical SfM method. The recovered images in the red rectangle of (a) 

are unordered obviously. (b) depicts the reconstruction by our method (features on vehicles 

and guardrails were masked out before matching and reconstruction). (c) is not a 

georeferenced result. We manually scaled the results of (b) and put it on the Google  

satellite map to help readers visualize the rough locations of the image sequences  

on roundabout.  

Figure 12. The recovered image positions of Set 1. These images were taken
by recorders 4 and 5, which had the same exposure interval and were mounted
on one vehicle. (a) and (b) are the recovered results from the same data with
different methods. (a) depicts the reconstruction by the typical SfM method. The
recovered images in the red rectangle of (a) are unordered obviously. (b) depicts the
reconstruction by our method (features on vehicles and guardrails were masked
out before matching and reconstruction). (c) is not a georeferenced result. We
manually scaled the results of (b) and put it on the Google satellite map to help
readers visualize the rough locations of the image sequences on roundabout.
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Figure 13. The recovered image positions of Set 2. These images were taken by recorders 1, 

2, 3, and 4 mounted on their respective vehicles. (a) Reconstruction by the typical SfM 

method. The recovered disordered images in the red rectangles of (a) were recorded by 

recorder 4. (b) is not a georeferenced result. We manually scaled the results of (a) and put it 

on the Google satellite map. Based on the enlargement in (a) and the visualized rough 

location in (b), it can be seen that they were reconstructed in the wrong place. (c) 

Reconstruction by our method (features on vehicles and guardrails were masked out before 

matching and reconstruction). The recovered triangles of recorder 4 are smaller than the 

others because the sizes of the images taken by recorder 4 were smaller than those of the 

other recorders, which is reflected in (c) by the different reconstructed sizes of the triangles. 

(a) and (c) are the recovered results from the same data using different methods. 

Figure 13. The recovered image positions of Set 2. These images were taken by
recorders 1, 2, 3, and 4 mounted on their respective vehicles. (a) Reconstruction
by the typical SfM method. The recovered disordered images in the red rectangles
of (a) were recorded by recorder 4. (b) is not a georeferenced result. We manually
scaled the results of (a) and put it on the Google satellite map. Based on the
enlargement in (a) and the visualized rough location in (b), it can be seen that they
were reconstructed in the wrong place. (c) Reconstruction by our method (features
on vehicles and guardrails were masked out before matching and reconstruction).
The recovered triangles of recorder 4 are smaller than the others because the sizes
of the images taken by recorder 4 were smaller than those of the other recorders,
which is reflected in (c) by the different reconstructed sizes of the triangles. (a) and
(c) are the recovered results from the same data using different methods.
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Figure 14. The recovered image positions of Set 3. These images were taken by recorders 

1–5. (a) and (b) are the recovered results from the same data with different methods; (a) was 

reconstructed by the typical SfM method and (b) was reconstructed by our method (features 

on vehicles and guardrails were masked out before matching and reconstruction). The 

images in red rectangles in (a) were recovered in chaos. (c) is not a georeferenced result. We 

manually scaled the recovery results of our method and put it on the Google satellite map to 

help readers visualize the rough locations of the image sequences on roundabout. 

Figure 14. The recovered image positions of Set 3. These images were taken
by recorders 1–5. (a) and (b) are the recovered results from the same data with
different methods; (a) was reconstructed by the typical SfM method and (b) was
reconstructed by our method (features on vehicles and guardrails were masked
out before matching and reconstruction). The images in red rectangles in (a) were
recovered in chaos. (c) is not a georeferenced result. We manually scaled the
recovery results of our method and put it on the Google satellite map to help
readers visualize the rough locations of the image sequences on roundabout.
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The contrast experiment results show that the recovery performance of our
method was better than the typical SfM method in each set. In contrast, the typical
method was unable to recover an entire track of cameras in each set while the camera
poses were recovered smoothly with our method.

We can infer from the above results that the typical method sometimes returns
unreliable recovery results, especially for multi-sensors’ data.

3.4. Sparse 3D Point Clouds Reconstruction Results

Sparse 3D point clouds can be reconstructed by the SfM algorithm with
VisualSFM and Photosynth [27]. Photosynth is a powerful set of tools designed
by Microsoft’s Live Labs. It builds on a structure-from-motion system for unordered
image collections, which is based on the Photo Tourism [10,11] research conducted
by the University of Washington and Microsoft Research [27]. The structure from
motion module in Photo Tourism comes from Bundler [10,11], which is one of the
most developed SfM systems. As a useful tool, Bundler has been widely used in many
point clouds reconstruction researches. This is the main reason why we chose the
Photosynth as the contrast experiment tool. Furthermore, the high-level automation
and widely using of Photosynth can also explain our choice. The reason why we
chose VisualSFM is that VisualSFM is a powerful SfM tool; it has a flexible interface
and stable performance. It is also frequently used in 3D reconstruction researches.

From the data all combined in Table 2, Set 3 is sufficient enough to cover the
results from Set 1 and 2. Besides, the data collected by Recorder 1–5 in different
image sizes had been lasting for as long as three years. Thus, Set 3 is able to contain
various data from different cameras, which means that it is more representative
than using Set 1 and 2 to evaluate the performance of reconstruction methods.
Therefore, the following experiments were used VisualSFM and Photosynth based
on the 311 images in Set 3. Figure 15 shows the model of main target buildings we
aimed to reconstruct. Figures 16 and 17 show the side and vertical views of the
results of the three methods, respectively.

The results in Figures 16 and 17 indicate that even the developed 3D
reconstruction tool Photosynth is not capable of dealing with driving recorder data
directly. However, the camera tracks and sparse point clouds were reconstructed
successfully using the mask out correspondences as inputs to run SfM.

224



Remote Sens. 2015, 7 9111 

 

 

The contrast experiment results show that the recovery performance of our method was better than 

the typical SfM method in each set. In contrast, the typical method was unable to recover an entire track 

of cameras in each set while the camera poses were recovered smoothly with our method. 

We can infer from the above results that the typical method sometimes returns unreliable recovery 

results, especially for multi-sensors’ data.  

3.4. Sparse 3D Point Clouds Reconstruction Results 

Sparse 3D point clouds can be reconstructed by the SfM algorithm with VisualSFM and  

Photosynth [27]. Photosynth is a powerful set of tools designed by Microsoft’s Live Labs. It builds on a 

structure-from-motion system for unordered image collections, which is based on the Photo  

Tourism [10,11] research conducted by the University of Washington and Microsoft Research [27]. The 

structure from motion module in Photo Tourism comes from Bundler [10,11], which is one of the most 

developed SfM systems. As a useful tool, Bundler has been widely used in many point clouds 

reconstruction researches. This is the main reason why we chose the Photosynth as the contrast 

experiment tool. Furthermore, the high-level automation and widely using of Photosynth can also explain 

our choice. The reason why we chose VisualSFM is that VisualSFM is a powerful SfM tool; it has a 

flexible interface and stable performance. It is also frequently used in 3D reconstruction researches. 

From the data all combined in Table 2, Set 3 is sufficient enough to cover the results from Set 1 and 2. 

Besides, the data collected by Recorder 1–5 in different image sizes had been lasting for as long as three 

years. Thus, Set 3 is able to contain various data from different cameras, which means that it is more 

representative than using Set 1 and 2 to evaluate the performance of reconstruction methods. Therefore, 

the following experiments were used VisualSFM and Photosynth based on the 311 images in Set 3. 

Figure 15 shows the model of main target buildings we aimed to reconstruct. Figures 16 and 17 show 

the side and vertical views of the results of the three methods, respectively.  

The results in Figures 16 and 17 indicate that even the developed 3D reconstruction tool Photosynth 

is not capable of dealing with driving recorder data directly. However, the camera tracks and sparse point 

clouds were reconstructed successfully using the mask out correspondences as inputs to run SfM. 

 
(a) 

Figure 15. Cont. 

  

Remote Sens. 2015, 7 9112 

 

 

(b) 

Figure 15. Main targets in the sparse point clouds reconstruction process. The two building 

models in (a) and (b) with red and yellow marks are the main reconstruction targets. (a) and 

(b) are the side and oblique bird’s-eye view of two buildings from Google Earth, respectively.  
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Figure 16. Side view of main target reconstruction results with sparse point clouds. Each 

result was reconstructed with the same data of 311 images in Set 3. (a) Sparse point clouds 

reconstructed by Photosynth without any added processing. The building on the left marked 

in red was repetitively reconstructed. (b) Sparse point clouds reconstructed by VisualSFM 

with the typical method. The building on the right could not be reconstructed and should be 

positioned inside the yellow box. (c) Sparse point clouds reconstructed by VisualSFM with 

our method. The details of the differences between the typical method and our method are 

described in Section 2.5 but can be summarized by saying that our method removed the 

features on the Mask and matched the remaining feature points before reconstruction. 
  

Figure 16. Side view of main target reconstruction results with sparse point clouds.
Each result was reconstructed with the same data of 311 images in Set 3. (a) Sparse
point clouds reconstructed by Photosynth without any added processing. The
building on the left marked in red was repetitively reconstructed. (b) Sparse point
clouds reconstructed by VisualSFM with the typical method. The building on the
right could not be reconstructed and should be positioned inside the yellow box.
(c) Sparse point clouds reconstructed by VisualSFM with our method. The details
of the differences between the typical method and our method are described in
Section 2.5 but can be summarized by saying that our method removed the features
on the Mask and matched the remaining feature points before reconstruction.
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Figure 17. Vertical view of main target reconstruction results with sparse point clouds. Each 

result was reconstructed by same data of 311 images in Set 3. (a) Sparse point clouds 

reconstructed by Photosynth without any added processing. The result is chaos. Expecting 

the repetition we experienced as shown in Figure 16, it can be clearly seen that not only was 

the left building repeatedly reconstructed, but the right building was as well. The repetitive 

reconstructions of the buildings are marked in red for the left building and the right building 

is in yellow. (b) Sparse point clouds reconstructed by VisualSFM with the typical method. 

The right building was missed which should be reconstructed inside the yellow mark. (c) 

Sparse point clouds reconstructed by VisualSFM with our method. The details between the 

typical method and our method are described in Section 2.5, which can be summarized by 

saying that we removed the features on the Mask and matched the remaining feature points 

before reconstruction. (d) shows a more intuitive result. It is not a georeferenced result. We 

manually scaled the sparse point clouds of our method and put it on the Google satellite map, 

which can help readers visualize the high level of overlapping between the point clouds and 

the map, the rough relative positions of the two buildings, and the position of recovered 

images in roundabout.  

Since the images recorded by a driving recorder have no GPS information, there is no other data 

available that can provide the absolute coordinates of the reconstructed point cloud. So in order to 

quantify the sparse point clouds, the plane fitting method is proposed below.  

Figure 17. Vertical view of main target reconstruction results with sparse point
clouds. Each result was reconstructed by same data of 311 images in Set 3. (a) Sparse
point clouds reconstructed by Photosynth without any added processing. The result
is chaos. Expecting the repetition we experienced as shown in Figure 16, it can
be clearly seen that not only was the left building repeatedly reconstructed, but
the right building was as well. The repetitive reconstructions of the buildings are
marked in red for the left building and the right building is in yellow. (b) Sparse
point clouds reconstructed by VisualSFM with the typical method. The right
building was missed which should be reconstructed inside the yellow mark.
(c) Sparse point clouds reconstructed by VisualSFM with our method. The details
between the typical method and our method are described in Section 2.5, which can
be summarized by saying that we removed the features on the Mask and matched
the remaining feature points before reconstruction. (d) shows a more intuitive
result. It is not a georeferenced result. We manually scaled the sparse point clouds
of our method and put it on the Google satellite map, which can help readers
visualize the high level of overlapping between the point clouds and the map, the
rough relative positions of the two buildings, and the position of recovered images
in roundabout.
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Since the images recorded by a driving recorder have no GPS information,
there is no other data available that can provide the absolute coordinates of the
reconstructed point cloud. So in order to quantify the sparse point clouds, the plane
fitting method is proposed below.Remote Sens. 2015, 7 9116 

 

 

(a) (b) 

(c) (d) 

Figure 18. The vertical view of the two planes. (a) shows the sparse point clouds 

reconstructed by VisualSFM with our method. The Plane 1 and 2 are target planes we fitted. 

(b) shows the position of the target wall-planes in Google Map. (c) shows the Plane 1 and 2 

in street view. (d) Example of plane fitted result in vertical view. The red line respects the 

vertical view of the plane fitted by wall points, and the blue lines are examples of the 

distances between the plane and points. 

As we know, the points on the same wall also should lie on the same plane in the point cloud. Based 

on that principle, the distance between the fitted plane and the reconstructed wall point can be used to 

confirm whether the reconstruction performed well. Planes 1 and 2 in Figure 18 are the planes we aimed 

to fit. We manually chose the reconstructed points belonging to the above walls to fit the Plane 1 and 2. 
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C and D are plane parameters that should be calculated by the Least Square method. 

Based on the computed plane, the distances between the fitted plane and each wall point were then 

calculated. The maximum distance, minimum distance and RMSE of distance in the typical method and 

our method are shown in Table 3 below. Since there is no GPS information or other data available that 

can provide the geographical reference, the results are compared in the relative coordinates. 

Figure 18. The vertical view of the two planes. (a) shows the sparse point clouds
reconstructed by VisualSFM with our method. The Plane 1 and 2 are target planes
we fitted. (b) shows the position of the target wall-planes in Google Map. (c) shows
the Plane 1 and 2 in street view. (d) Example of plane fitted result in vertical view.
The red line respects the vertical view of the plane fitted by wall points, and the
blue lines are examples of the distances between the plane and points.

As we know, the points on the same wall also should lie on the same plane
in the point cloud. Based on that principle, the distance between the fitted plane
and the reconstructed wall point can be used to confirm whether the reconstruction
performed well. Planes 1 and 2 in Figure 18 are the planes we aimed to fit. We
manually chose the reconstructed points belonging to the above walls to fit the
Plane 1 and 2. The fitting method is based on the Equation (24), the Plane Equation.
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According to the Least Square method, the equation of each plane was computed
with the coordinates of points.

Ax` By`Cz`D “ 0 (24)

The x, y and z are coordinates of points; they are in relative coordinate system.
In addition, the A, B, C and D are plane parameters that should be calculated by the
Least Square method.

Based on the computed plane, the distances between the fitted plane and each
wall point were then calculated. The maximum distance, minimum distance and
RMSE of distance in the typical method and our method are shown in Table 3
below. Since there is no GPS information or other data available that can provide the
geographical reference, the results are compared in the relative coordinates.

Table 3. The fitting results between the typical method and the proposed method.
The results are in relative coordinates system.

Plane NO.
Typical Method Proposed Method

RMSE Maximum Minimum RMSE Maximum Minimum

1 0.0047 0.0170 4.420ˆ 10´6 0.0031 0.0142 1.887ˆ 10´6

2 0.0171 0.0994 2.133ˆ 10´5 0.0095 0.0705 1.220ˆ 10´5

Table 3 shows the RMSE decreased by 30–40 percentages in proposed method
that indicated that the accuracies of reconstructed planes are improved in our
method. Based on the above results, it is clearly seen that masking out the features
from vehicles and guardrails can improve the reconstruction results. We also
found our method to be robust enough for driving recorder data sets composed
of different-sized images having nearly three years recovered intervals.

4. Discussion

This paper focused on sparse point cloud reconstruction with the features
removed on the Mask. The Mask is the region where features should be eliminated
before matching in order to avoid generating outliers. The Mask was first detected
from the unstructured and uncontrolled driving recorder data automatically. Then,
the feature points on Mask were eliminated before feature matching. Finally a SfM
procedure with the remaining correspondences was performed.

The advantage of using driving recorder data is that a driving recorder can
acquire city-scale street scenes less expensively. This low-cost data in larger quantities
can support reconstructing and updating sparse street point clouds in shorter update
periods of time. The improved reconstruction results are shown in Section 3 from
three aspects: the precision of pairwise orientation, the recovered camera tracks, and
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the reconstructed point clouds. In the contrast experiment presented in Section 3.4,
the right building was missing in the results of the typical SfM process [24,25] (shown
in Figures 16b and 17b), which was caused by the disordered camera poses’ recovered
results shown in Section 3.3, Figure 14a. We found that these disordered images
generally were crowded with a large number of moving vehicles, which led to
poor matches. It was also proven that the commercial software Photosynth [27],
which is based on the Photo Tourism [10,11] technology, was not able to provide
good performance with the driving recorder data. The reconstructed points indicate
obvious chaos, and the buildings were repeatedly reconstructed incorrectly. The
disordered point clouds were shown in Figures 16a and 17a in Section 3.4. The overall
quality of the point clouds is reflected in the comparison between the results shown
in Figures 16 and 17. Furthermore, there were no other data to provide the absolute
coordinates of the reconstructed point clouds so we qualified the point clouds with
the plane fitting results in Table 3 and the overlap between the point clouds and
Google satellite map in Figure 17d. In Figure 17d, the points are fitted with the map
generally, which reflects the high level of overlapping between the point clouds and
the map. The plane fitting results in Table 3 indicate that the reconstruction accuracy
of the proposed method is higher than the typical method based on the decreased
average distance between the fitted plane and the points.

The features mask method is based on one important factor: the SIFT algorithm
can generate a large number of features that densely cover the image over the full
range of scales and locations [12]. Approximately 1000–2000 correspondences can be
matched with the SIFT algorithm on one pair of driving recorder data which cover
more than 70% of the overlap. Generalized from ample experiments, the matching
points on the Mask took a 21% proportion of the total matching points. Therefore,
although the bad points on the Mask were removed, the remaining correspondences
were adequate to recover the camera poses and point clouds of the street scene.

Although redundant data theoretically can produce better reconstruction results,
a large number of data would adversely affect efficiency due to the fact that full
pairwise matching takes O

`

n2˘ time for n input images, which is why the Mask
method is used to improve the reconstruction results instead of simply increasing the
data sets. Detecting and removing the Mask regions with our methods proposed in
this paper only takes a few seconds in each image. The Mask results show that it can
improve the quality of the matches, which may lead to a higher level of efficiency
than the redundancy method.

The proposed reconstruction method is effective when the solution is scaled up.
It also relies on the scalability of the SfM method. One of the most difficult problems
of SfM is that it is time-intensive. There have been many relative research efforts
aimed at shortening the reconstruction time, such as the vocabulary tree [28] and the
Building Rome on a cloudless day [8]. The SfM method has been used to reconstruct
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an entire city with Internet photos. The paper aims to shorten the reconstruction
time by the parallelism and throughput [8]. Our method can be a supplement to
these methods, which means that, with the help of vocabulary tree and parallel
computing, it can reconstruct an entire city with ample driving recorder images.
Then, this method may replace mobile mapping technologies in some applications
like updating 3D street data that have been georeferenced or reconstructing city-scale
point clouds in relative coordinate systems.

The proposed method can reconstruct street scenes robustly with different-sized
images, taken on different roads or with different lighting conditions; however, the
images taken at night always contribute less to the reconstruction process. Obviously,
the matches decrease in night images since the difference in building textures between
day and night images are influenced by the city lighting. Similarly, lower quality will
lead to fewer correspondences, which may not cause fatal mistakes to reconstruction
but will increase the time consumed. Therefore if we ignore the efficiency and the
data set is big enough, there is no strict requirement for the quality of image data.

The proposed method has one limitation. Since the driving recorder is always
mounted to record traffic rather than buildings, the taller sections of nearby building
cannot be recorded, thereby generating sparse reconstructed points for them. In
general, three main innovations are presented in this paper:

1. We proposed a street scene reconstruction method from driving recorder data.
This new method makes full use of the massive amount of data produced
by driving recorders with shorter update time, which can reduce the costs of
recovering 3D sparse point clouds compared to mobile mapping equipment
carrying stable GPS/INS systems. In order to improve the recovery accuracy,
we analyzed and summarized the distribution regularities of the outliers from
the SIFT matching results through ample experiments.

2. Our work differs from the typical SfM approaches, in that, we eliminate the
feature points on the Mask before matching is undertaken. We also proved
through experiments that the relative orientation results and reconstruction
results improved after removing the feature points on the Mask.

3. We designed guardrail and vehicle side region detecting methods based on the
characteristics of the driving recorder data. The detection methods are based on
the trained Haar-like-feature cascade classifiers, the position of the vanishing
point, and some camera parameters.

5. Conclusions

This paper proposed a method to reconstruct street scenes with data from
driving recorders, which are widely used in private and public vehicles. This
low-cost method will be beneficial to reducing the cost and shortening the update
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time required for street scene reconstruction. However, using the unprocessed
driving recorder data was found to contribute to the failure of reconstruction due
to the large number of inevitable outliers on moving vehicles and guardrails with
repeating patterns.

Based on our analysis from numerous SIFT matching results, we then proposed
a method for removing the features on vehicle and guardrail regions, which is called
the Mask in this paper. In order to remove the feature points on the Mask, an
automatic detecting method was designed. As shown in Section 3, the proposed
method improved the results in three areas: the precision of the pairwise orientation,
the recovery performance of the camera poses, and the reconstruction results of the
point clouds.

Our work differs from typical SfM approaches in that we remove the features on
the Mask in order to improve the accuracy of the street scene reconstruction results
from driving recorder data. The proposed method can be improved in the following
areas, which will be the subjects of future research.

1. Reconstructing robust side surfaces in the vehicle detection method without
camera parameters.

2. Extracting the most appropriate images from driving recorder videos.
3. Reducing the number of images in the time-consuming matching step with

a reasonable strategy.
4. Increasing the density of reconstructed point clouds.
5. Detecting the blocked vehicles with more accuracy in a region.
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Multispectral Radiometric Analysis of
Façades to Detect Pathologies from Active
and Passive Remote Sensing
Susana Del Pozo, Jesús Herrero-Pascual, Beatriz Felipe-García,
David Hernández-López, Pablo Rodríguez-Gonzálvez and
Diego González-Aguilera

Abstract: This paper presents a radiometric study to recognize pathologies in façades
of historical buildings by using two different remote sensing technologies covering
part of the visible and very near infrared spectrum (530–905 nm). Building materials
deteriorate over the years due to different extrinsic and intrinsic agents, so assessing
these affections in a non-invasive way is crucial to help preserve them since in
many cases they are valuable and some have been declared monuments of cultural
interest. For the investigation, passive and active remote acquisition systems were
applied operating at different wavelengths. A 6-band Mini-MCA multispectral
camera (530–801 nm) and a FARO Focus3D terrestrial laser scanner (905 nm) were
used with the dual purpose of detecting different materials and damages on building
façades as well as determining which acquisition system and spectral range is more
suitable for this kind of studies. The laser scan points were used as base to create
orthoimages, the input of the two different classification processes performed. The set
of all orthoimages from both sensors was classified under supervision. Furthermore,
orthoimages from each individual sensor were automatically classified to compare
results from each sensor with the reference supervised classification. Higher overall
accuracy with the FARO Focus3D, 74.39%, was obtained with respect to the Mini
MCA6, 66.04%. Finally, after applying the radiometric calibration, a minimum
improvement of 24% in the image classification results was obtained in terms of
overall accuracy.

Reprinted from Remote Sens. Cite as: Del Pozo, S.; Herrero-Pascual, J.; Felipe-García, B.;
Hernández-López, D.; Rodríguez-Gonzálvez, P.; González-Aguilera, D. Multispectral
Radiometric Analysis of Façades to Detect Pathologies from Active and Passive
Remote Sensing. Remote Sens. 2016, 8, 80.

1. Introduction

Historical buildings and monuments are valuable constructions for the area
where they are placed. The degradation of their construction materials is caused
mainly by environmental factors such as pollution and meteorological conditions.
Specifically, the presence of water plays an important role in stone deterioration
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processes [1]. It accelerates the weathering processes contributing to dissolution and
frost/thaw cycles among others [2] allowing the formation of black crust on the rock
surface resulting in mechanical and chemical degradations of stones. For that reason
the use of non-contact and non-destructive technologies to study stone damages is
important for the preservation of buildings and for the choice of the best technique
for restoration [3,4].

Terrestrial laser scanners and multispectral digital cameras are two different
technologies that are suitable for these studies. They are non-destructive and
non-invasive sensors that allow researchers to acquire massive geometric and
radiometric information across the building with high accuracy and in a short
acquisition time. The geometrical information provided by laser scanner technology
has been successfully applied in a large number of fields such as archaeology [5], civil
engineering [6], geology [7] and geomorphological analysis [8]. On the other hand,
radiometric information, provided by the laser intensity data and the multispectral
digital cameras, is used less frequently. Even so, its high potential for classification
tasks and recognition of different materials has been demonstrated [9]. Nowadays,
in the literature, one can find works related to this issue ranging from methodologies
of radiometric calibration [10] to corrections of intensity values [9,11] including
applications of the intensity data [12]. Spectral classification methods are based on
the properties of the reflected radiation from each surface and the fact that each
specific material has wavelength dependent reflection characteristics. There are
many classification methods, which vary in complexity. These methods include hard
and soft classifiers, parametric and non-parametric methods and supervised and
unsupervised techniques [13]. There are several works related to the application of
these techniques to the identification of damage on building surfaces [14–18].

The main objective of this paper is the classification and mapping of pathologies
and materials of a historical building façade from reflectance values at different
wavelengths by combining intensity calibrated data from a FARO Focus3D laser
scanner and calibrated images from a 6-band Mini-MCA multispectral camera.
Additional goals were evaluating the degree of automation in the pathology detection
process of façades. To achieve these objectives, the paper is divided into the following
sections: Section 2 gives the details and specifications of the equipment employed
and thoroughly describes the methods employed in the workflow methodology.
Section 3 shows the classification maps and accuracy results for both unsupervised
and supervised classifications, closing with Section 4 which summarizes the main
conclusions and findings drawn from the study.

2. Material and Methods

The methodology developed to reach the objectives of the paper consists of
three main stages: the data acquisition, the pre-processing and the processing of
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data as is outlined in Figure 1. For the data acquisition, two sensors with different
operating principles were implemented: a passive multispectral camera and an active
terrestrial laser scanner. The pre-processing step involved data filtering and several
corrections applied to the spectral information to finally obtain data in reflectance
values. During the last step and taking advantage of the metrics from the scan points,
reflectance orthoimages were generated for both the multispectral images and the
laser intensity. These orthoimages were the input for two different classifications
processes: a clustering classification with data from each sensor and a supervised
classification with the set of all data from both sensors.
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2.1. Equipment

For the documentation of the façade, the following equipment was used: two
radiometrically calibrated sensors with different characteristics and data acquisition
principles, a passive multispectral camera and an active terrestrial laser scanner.
Figure 1 shows the main characteristics of them and the different stages of the
workflow followed in this research.

For the multispectral data acquisition, a calibrated lightweight Multiple Camera
Array (MCA-Tetracam) was employed. This low-cost sensor allows versatility in
data acquisition; however it requires the radiometric and geometric corrections to
ensure the quality of the results [19]. It includes a total of 6 individual sensors with
filters for the visible and near infrared spectrum data acquisition. More specifically,
the individual bands of 530, 672, 700, 742, 778 and 801 nm were used. The longest
wavelength was chosen taking into account that the multispectral sensor is not
externally cooled. In spite of its 1280 ˆ 1024 pixels of image resolution, the camera
has a radiometric resolution of 10 bits. The focal length of 9.6 mm and the pixel size
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of 5.2 µm yield a façade sample distance (FSD) of 5.4 mm for a distance of 10 m,
which should be taken into account for the pathology detection performance in small
elements. The main limitation of this camera is the field of view (38˝ ˆ 31˝), so
several captures were needed to keep the FSD.

The FARO Focus3D is a phase shift continuous wave terrestrial laser scanner
(TLS) operating at a wavelength of 905 nm. It is not common to use this kind of sensor
to perform radiometric studies but it guarantees a comprehensive data acquisition
whose results are not influenced by changes in light. This device measures distances
in a range of 0.60–120 m with a point measurement rate of 976,000 points per second.
It has an accuracy of 0.015˝ in normal lighting and reflectivity conditions and a
beam divergence of 0.19 mrad, equivalent to 19 mm per 100 m range. The field of
view covers 320˝ vertically and 360˝ horizontally with a 0.009˝ of angular resolution
and the returning intensity is recorded at 11 bits. This laser scanner includes, in
addition, a double compensator in the horizontal and vertical axis that can be used
as constraint for the scan alignment.

Additionally, a high resolution spectroradiometer (ASD FieldSpec3) (Figure 2)
was used as a remote detector of radiant intensity from the visible to the shortwave
infrared ranges (350 to 2500 nm with a maximum spectral resolution of 3 nm
and ˘1 nm wavelength accuracy) to validate the spectral results of the study [20].
Equipped with optical fiber cables, it measured reflectances from the different
materials and covers of the façade with a 25˝ field of view. Measures were made
by positioning the spectroradiometer gun (Figure 2a) as orthogonal as possible and
at a distance of approximately 10 cm from the sample, trying to cover a relatively
homogeneous area of the material.

Remote Sens. 2016, 8, 80 3 of 16 

 

2.1. Equipment 

For the documentation of the façade, the following equipment was used: two radiometrically 
calibrated sensors with different characteristics and data acquisition principles, a passive multispectral 
camera and an active terrestrial laser scanner. Figure 1 shows the main characteristics of them and 
the different stages of the workflow followed in this research. 

For the multispectral data acquisition, a calibrated lightweight Multiple Camera Array  
(MCA-Tetracam) was employed. This low-cost sensor allows versatility in data acquisition; however 
it requires the radiometric and geometric corrections to ensure the quality of the results [19].  
It includes a total of 6 individual sensors with filters for the visible and near infrared spectrum data 
acquisition. More specifically, the individual bands of 530, 672, 700, 742, 778 and 801 nm were used. 
The longest wavelength was chosen taking into account that the multispectral sensor is not externally 
cooled. In spite of its 1280 × 1024 pixels of image resolution, the camera has a radiometric resolution 
of 10 bits. The focal length of 9.6 mm and the pixel size of 5.2 µm yield a façade sample distance (FSD) 
of 5.4 mm for a distance of 10 m, which should be taken into account for the pathology detection 
performance in small elements. The main limitation of this camera is the field of view (38° × 31°), so 
several captures were needed to keep the FSD. 

The FARO Focus3D is a phase shift continuous wave terrestrial laser scanner (TLS) operating at 
a wavelength of 905 nm. It is not common to use this kind of sensor to perform radiometric studies 
but it guarantees a comprehensive data acquisition whose results are not influenced by changes in 
light.This device measures distances in a range of 0.60–120 m with a point measurement rate of 
976,000 points per second. It has an accuracy of 0.015° in normal lighting and reflectivity conditions 
and a beam divergence of 0.19 mrad, equivalent to 19 mm per 100 m range. The field of view covers 
320° vertically and 360° horizontally with a 0.009° of angular resolution and the returning intensity 
is recorded at 11 bits. This laser scanner includes, in addition, a double compensator in the horizontal 
and vertical axis that can be used as constraint for the scan alignment. 

Additionally, a high resolution spectroradiometer (ASD FieldSpec3) (Figure 2) was used as a 
remote detector of radiant intensity from the visible to the shortwave infrared ranges (350 to 2500 nm 
with a maximum spectral resolution of 3 nm and ±1 nm wavelength accuracy) to validate the spectral 
results of the study [20]. Equipped with optical fiber cables, it measured reflectances from the 
different materials and covers of the façade with a 25° field of view. Measures were made by 
positioning the spectroradiometer gun (Figure 2a) as orthogonal as possible and at a distance of 
approximately 10 cm from the sample, trying to cover a relatively homogeneous area of the material. 

 
Figure 2. ASD FieldSpec3 spectroradiometer collecting spectral radiation reflected from (a) the 
Spectralon target and (b) mortar between contiguous stones of the examined façade. 

2.2. Data Acquisition 

Since each material has a unique reflectance behavior depending of the wavelength, the presence 
of pathologies on façades, such as moisture, moss or efflorescence, is likely to be successfully detected 
by analyzing the reflected visible and very near infrared radiation from the façades in reflectance 
values instead of digital levels (output digital format of the device). That is why these two sensors 

Figure 2. ASD FieldSpec3 spectroradiometer collecting spectral radiation reflected
from (a) the Spectralon target and (b) mortar between contiguous stones of the
examined façade.

242



2.2. Data Acquisition

Since each material has a unique reflectance behavior depending of the
wavelength, the presence of pathologies on façades, such as moisture, moss or
efflorescence, is likely to be successfully detected by analyzing the reflected visible
and very near infrared radiation from the façades in reflectance values instead of
digital levels (output digital format of the device). That is why these two sensors
were radiometrically pre-calibrated and used to obtain orthoimages with surface
reflectance values instead of digital levels. Since reflectance, for the specific case of
a passive sensor, is a function of the solar incident radiance, a standard calibrated
reflection target (Spectralon, Labsphere) was required and placed on the façade
(Figure 2a), thus it appeared in every multispectral image to be able to calculate the
solar irradiance (E) of each capture moment.

Illumination is a crucial parameter for data acquisition with passive sensor,
particularly when several shot positions are required to cover the object of study.
For that reason and to ensure the greatest resolution, taking fewer photos as far as
possible was prioritized in this study. A total of 56 captures were collected with a
FSD of 5.4 mm for the worst case so that the standard calibrated reflection target
appeared in all of them.

On the other hand, the laser scanner data acquisition was designed so that the
effect of the laser beam incidence angle [21,22] was minimized. Intensity data at
11-bit resolution was collected at an average distance of 10 m through three scans
with scan area restrictions. Thus, 7 m of façade were covered for each of the scans
assuming a maximum incidence angle error of 5.6% regarding the maximum oblique
angle of incidence (19.29˝). In addition, scanning positions were selected according
to the different technical specifications of the scanner for an spatial resolution of
6 mm at the working distance. The laser network was adapted and filtered due to
the presence of obstacles that hinder a single station data acquisition.

2.3. Pre-Processing

Before the reflectance orthoimage generation some corrections to raw data were
applied to avoid error propagation in the radiometric calibration process. In this
section, these radiometric corrections and the final radiometric calibration were
described as well as the orthoimages generation process. Finally, the orthoimages
were classified to obtain maps of different pathologies and building materials.

2.3.1. Multispectral Images Corrections

Low-cost sensors, such as the Mini MCA6, are more likely to be affected by
different noise sources so that the actual value of radiation collected by them is
altered (Equation (1)) [23]. Specifically, the Mini MCA6 was affected by two different
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sources errors: a background noise and a vignetting effect [20]. Both errors were
studied under precise laboratory controlled conditions for each wavelength band.

The background noise is a systematic error caused by the sensor electronics
of the camera. It was analyzed in a completely dark room in the absence of light
determining the noise per band depending on the exposure time. For this study,
the maximum background error was for the 801-nm band and involved a 1.07%
increment of the actual digital level value. Regarding the vignetting effect [24], the
radial attenuation of the brightness was studied taking images of a white pattern
with uniform lighting conditions. Digital levels of each multispectral image were
corrected for these two effects through a script developed in Matlab to improve the
data quality before the radiometric calibration.

DLraw “ DLradiance ` pDLbn `DLvq (1)

where DLraw are the digital levels of the raw images, DLradiance are the digital levels
from the radiance component, DLbn are the digital levels from background noise and
DLv are the digital levels from the vignetting component.

2.3.2. Filtering and Alignment of the Point Clouds

The raw laser scanner data were filtered and segmented in order to remove
those points that were not part of the object of study (adjacent building, artificial
elements, trees, etc.). The individual point cloud alignment was done by a solid
rigid transformation by the use of external artificial targets (spheres). The spheres
were stationed in tripods at the plumb-line plane surveyed by the global navigation
satellite system (GNSS). The laser local coordinate system could be transformed to
a global coordinate system (UTM30N in ETRS89), allowing the geo-referencing of
the subsequent classification for a global analysis and interpretation. This proposed
workflow allowed a final relative precision of the coordinates of the artificial targets
of 0.01 m and an absolute error of 0.03 m after post-processing. As a result, a unique
point cloud in a local coordinate system with 11 mm precision (due to the error
propagation of inherent error sources of laser scanner [25] and the error associated to
the definition of the coordinate system) was generated.

2.3.3. Radiometric Calibrations

To perform the radiometric calibration of both sensors, auxiliary equipment
such as lambertian surfaces with known spectral behavior (Spectralon) and/or a
spectroradiometer are needed to solve the calibration. Thus, after the calibration
process images values, in the case of the camera, and points’ intensities, in the case
of the laser scanner, correspond to the radiation emitted by the surface expressed
in radiance or reflectance. The Mini MCA6 multispectral camera was calibrated in
a previous field campaign [20] through in situ spectroradiometer measurements of
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artificial surfaces, with known and unknown reflectance behavior (Spectralon and
polyvinyl chloride vinyl sheets respectively). Regarding the radiometric calibration
of the TLS, it was carried out in laboratory by using a Spectralon and in absence
of light.

The multispectral camera was calibrated by the radiance-based vicarious
method [26–28], being the transformation equation from raw images into images
with reflectances values Equation (2):

ρMCA “
c0λ ` c1λ ¨DL{Fvλ

Eλ
¨ π (2)

where c0λ and c1λ, offset and gain, are the calibration coefficients of each camera
band, Fvλ the shutter opening time factor and Eλ the solar irradiance at the ground
level. Table 1 summarizes the multispectral camera calibration coefficients and the
R2 determination coefficient achieved per band.

Table 1. Calibration coefficients of the Mini MCA6 per band.

Bands c0λ c1λ R2

530 nm 0.000264 0.057718 0.9816
672 nm ´0.000795 0.050005 0.9823
700 nm ´0.000861 0.041353 0.9820
742 nm ´0.001205 0.074335 0.9843
778 nm ´0.001510 0.047292 0.9846
801 nm ´0.000834 0.047656 0.9827

In order to obtain reflectance values directly from laser data, a reflectance-based
radiometric calibration [28] consisting of analyzing the distance-behavior of the
intensity data (Figure 3) was performed (Equation (3)).

ρFARO “ ea¨d ¨ b ¨ d2 ¨ ec1F¨DLF (3)

where a and b were the empirical coefficients related to the signal attenuation and
internal TLS conversion from the received power to the final digital levels, d the
distance between the laser scanner and the object, c1F the gain of the TLS and
DLF the raw intensity data in digital levels (11 bits). Please note that the empirical
coefficients were obtained by a laboratory study, since the TLS internal electronics
and intermediate signal processing is not disclosed.

In this case, a laboratory experiment from 5 to 36 m at one-meter intervals
provided enough information to study the FARO Focus3D internal behavior
(Figure 3). It was conducted in low-light conditions at a controlled temperature
of 20 ˝C to model and simulate the system behavior. By positioning a Spectralon at
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each distance increment, intensity data were acquired at a quarter of the maximum
resolution of the laser scanner (6 mm). The calibrated surface (Figure 2a) consists
of four panels of 12%, 25%, 50% and 99% reflectance and it was assembled on a
stable tripod to ensure its verticality. The raw intensity data from each reflectance
panel were obtained by averaging the intensity values of the points belonging to
each panel. The mean intensity value was plotted per panel and distance resulting in
the Figure 4.
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Figure 4. FARO Focus3D backscattered intensity behavior for the measurements
of the four Spectralon panels at 1 m distance increments related to the signal
attenuation (Equation (3)).

Figure 4 shows the signal attenuation of the FARO Focus 3D with distance
as well as the logarithmic model that the measurements follow for distances up
to 9 m. This particular behavior was noted in previous research works with
similar sensors [29] and it is explained by the lidar equation [30]. By knowing
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the calibrated reflectance values of each Spectralon panel for 905 nm, the wavelength
of the laser scanner, field measurements could be related with these reflectance
values at each studied distance. Being 0.992, 0.560, 0.287 and 0.139 the normalized
(0–1) reflectance values for the panel of 99%, 50%, 25% and 12% of reflectance
respectively. Figure 5 shows how these values relate at a 10 m distance, and follow an
exponential relationship which is shown in Equation (3). This distance was chosen
as a threshold since for lower distances the calibration model changes due to the
internal measurement system, involving alternative mathematical models.

As Figure 4 shows, the greater the distance the greater the intensity errors in
the measurements. This behavior is related to the decrease of the received power
due to the distance attenuation and signal scattering. Since the effective range
of the employed TLS is higher than the studied distance, this error only appears
significantly in the lower reflectance surface (12% panel).
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Based on the empirical study of the laser response, the attenuation of the
signal with the distance (Figure 4) and the logarithmic behavior of the sensor [29],
the relationship between digital levels and reflectances was finally approximated
according to the Equation (4).

ρFARO “ e0.214¨d ¨ 3.907 ¨ 10´7d2 ¨ e0.005415¨DLF (4)

This empirical equation can be applied only to objects at a distance over than 8 m
since as can be shown in Figure 4, the FARO Focus3D has a completely different
behavior for shorter distances.
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2.4. Processing

In this subsection reflectance products are joined to achieve the orthoimages at
each wavelength and they are finally classified to obtain maps of different building
materials and pathologies.

2.4.1. Orthoimages Generation

Once the final point cloud was filtered, aligned and calibrated, a triangulation
was applied to create the digital façade model (DFM). This step was required in order
to generate continue 2D products (in the form of true orthoimages) and carry out
the pathology detection by the classification process. For the DSM generation the
incremental triangulation Delaunay algorithm was applied [31]. The output was
refined to avoid artifact, meshing gaps, and other errors [32].

Orthoimages are highly demanded products that offer many benefits: metric
accuracy and radiometric information useful to analyze different information
quantitatively and qualitatively.

For the orthoimage generation, it was necessary to know the external orientation
of the images with respect to the coordinate system of the laser point cloud model.
For that purpose an average of 20 corresponding points between the point cloud
and images were manually established. The image projection was characterized
by a rigid transformation (rotation and translation) together with the internal
camera parameters.

Orthoimages were generated based on the anchor point method [33]. This
method consists of applying an affine transformation to each one of the planes
formed by the optimized triangular mesh, which was obtained from the point cloud
determined by the laser. Through the collinearity condition [34], the pixel coordinates
of the vertices of the mesh were calculated, and the mathematical model of the affine
transformation directly relates the pixel coordinates of the registered image and of
the orthoimage.

2.4.2. Orthoimages Classifications

In order to categorize the orthoimages in different informational classes
a previous automatic unsupervised classification and a posterior supervised
classification were performed. The unsupervised classification was based on the
Fuzzy K-means clustering algorithm where each observation can concurrently belong
to multiple clusters [35]. For a set of n multidimensional pixels, the automatic
management in l clusters iteratively minimizes the Equation (5) [36]:

Jm “

n
ÿ

i“1

λ
ÿ

l“1

um
i,l‖ xi´cl ‖2 ; 1 ď m ă 8 (5)
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where m represents any real number greater than 1, xi the i-th of d-dimensional
measured data, uil the degree of membership of xi in the cluster l, cl the d-dimensional
center of the cluster and ‖ ˚˚ ‖= Euclidean norm expressing the similarity between
any measured data and the center.

Fuzzy partitioning is carried out through an iterative optimization of the
objective function shown above, with the update of membership and the cluster
centers by Equation (6).

uil “
1

c
ř

k“1

„

‖ xi´cl ‖
‖ xi´ck ‖



2
m´ 1

; cl “

n
ř

i“1
um

il ¨ xi

n
ř

i“1
um

il

(6)

This iteration will stop when maxil

!
ˇ

ˇ

ˇ
uil
pk`1q ´ uil

pkq
ˇ

ˇ

ˇ

)

ă ε, where ε is the stop
criterion between 0 and 1 and k represents the iteration steps.

After this classification, a first approach of the spectral classes and different
construction materials was obtained. With a subsequently supervised classification
and applying the expert knowledge of some classes, the final results improved.
Furthermore, this supervised classification will serve as reference to discuss which
sensor is the ideal one for detecting materials and pathologies in façades.

In this case, a maximum likelihood (ML) classification algorithm [37] was
applied. The ML classifier quantitatively evaluates both the variance and covariance
of the category spectral response patterns when classifying an unknown pixel.
The resulting bell-shaped surfaces are called probability functions, and if the prior
distributions of this function are not known, then it is possible to assume that all
classes are equally probable. As a consequence, we can drop the probability in the
computation of the discriminant function F(g) (Equation (7)), and there is one such
function for each spectral category [38].

Fpgq “ ´ln
ˇ

ˇΣp
ˇ

ˇ´ pg´ µpq
TΣp

´1pg´ µpq (7)

where p is the p-th cluster, Σp is the variance-covariance matrix and µp represents the
class mean vector and g the observed pixel.

3. Experimental Results

The study area was the Shrine of San Segundo declared World Cultural Heritage
in 1923 [39] (Figure 6). This Romanesque shrine is located in the west of the city of
Ávila (Spain) and was built in the 12th century with unaltered grey granite plinths
and walls with the alternation of granite blocks with different alteration degrees. The
unaltered granite is mainly present in the blocks of low areas because of its high
compressive strength and resistance to water absorption.
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The field work was carried out on 27 July 2012 around the southern façade of
the church (Figure 6), the most interesting façade from a historical point of view
because it preserves the Romanesque main front. The five archivolts and capitals
are decorated with plant and animal motifs. A total of 3 stations for the case of
laser scanner were performed to cover the façade at a distance of 10 m (see Figure 6
right). The resolution of the data capture of the FARO Focus3D was a quarter of the
full resolution provided by the manufacturer, 6 mm at 10 m. Moreover, the façade
was photographed at the same distance with the Mini MCA6 multispectral camera
with a FSD of 5.4 mm. A selection of 9 multispectral images of the 56 (7 per station)
were used for the orthoimages generation. This selection was related with the most
suitable images regarding the area of study and the optimal sharpness and quality of
the set of images. The total volume of information generated amounted to 10.7 GB,
where the great part was due to the meshes and orthoimages generation projects.
Figure 7 shows the set of the 7 final orthoimages with a 6 mm FSD.
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3.1. Reflectance Orthoimages

In order to compare the discrimination capability of both technologies to
distinguish building materials and pathologies a first unsupervised classification
of the orthoimages belonging to each sensor was performed (Figures 8 and 9).
A final supervised classification with the complete set of 7 orthoimages was
carried out. For each informational class manually representative areas distributed
throughout the façade (between 5 and 10 polygons per class) were selected. This
last classification serves as a reference with which to compare each individual
unsupervised classification. The steps followed by the workflow are shown in
Figure 1.
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3.2. Orthoimages Classifications

Ten predefined clusters were used in each case for the unsupervised
classification algorithm. In all of them, the resulting map showed the existence
of affected areas. Post-analysis reduced the number of clusters. The number of
clusters decreased from 10 (initial clusters) to 5 thematic classes with real meaning:
(1) unaltered granite; (2) altered granite; (3) wood (door of the church); (4) areas
with moisture evidences (caused by capillarity or filtration water) and (5) mortar
between blocks.

It is noteworthy that results from Mini MCA6 are not fully satisfactory due to
large variability in lighting conditions during the data acquisition. As mentioned
at the beginning of Section 3, the fieldwork took place on 27 July 2012, with a 6-h
total acquisition time. Although radiometric calibration reduces the effects of the
lighting variability between different data acquisition time, passive sensors are really
sensitive to shady areas. These areas could be seen in Figure 7, specifically in the
orthoimages from the Mini MCA6, and also in the classification results of the entrance
area in Figure 8 (blue color). However, this is not the case for the active sensor, FARO
Focus3D, where the continuity of materials and pathologies is a remarkable aspect.

Comparing the results with a visual inspection, results correspond quite well to
reality for both types of existing granites (unaltered and altered) and wood by three
well differentiated clusters in all classification maps (Figures 8 and 9). Regarding
pathologies detection, it was not possible to draw final conclusions with these first
unsupervised classifications. However, this process served to perform a better
defined supervised classification.

With the aim of having a reference with which to compare both unsupervised
classification maps, a supervised classification of the full set of 7 orthoimages in
reflectance values was performed (Figure 10) taking into account the two existing
variants of granite, their pathologies derived primarily from moisture and the other
informational classes.

The best overall accuracy for the Fuzzy K-means unsupervised classifications
was 74.39%, achieved for the FARO Focus3D map in contrast with the 66.04%
accuracy for the Mini MCA6 map. This indicates that the best correlation between
the number of pixels correctly classified and the total number of pixels occurred for
this near infrared active sensor.

Table 2 contrasts the results of the supervised classification (based on training
areas) with the unsupervised classification for each sensor. The table shows the sum
of pixels belonging to each class for each of the classifications performed. The count
is expressed as a percentage of the total number of classified pixels (1,154,932 without
taking the background class into account).
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Table 2. Pixels computation belonging to each thematic class.

Class Reference Map Multispectral Map Laser Map

Unaltered granite 30.04% 28.53% 27.33%
Altered granite 42.60% 48.06% 47.27%

Wood 5.35% 5.67% 5.82%
Moisture 1.88% 4.74% 1.31%
Mortar 20.13% 13.00% 18.27%

In a quantitative analysis for the estimation of the two types of granite and wood,
results of both sensors are quite similar and really close to the reference map while
intensity data from laser scanner are the closest to the reference map results for the
estimation of moisture and mortar. Results show higher pixels classified as moisture
in the case of multispectral map (2.86% higher with respect to the reference map)
and few pixels classified as mortar (7.13% lower than the reference map) due mainly
to the altered granite count (whose spectral response has the greatest similarity).
Results from the laser sensor are quite similar, greater amount of altered granite by
reducing the unaltered granite and mortar detected classes. Note that the best results
for moisture detection are achieved with the FARO Focus3D, since humidity has a
major interference with this wavelength [40]. Since the pathological classes (moisture
and altered granite) are better recognized by the laser scanner and it is the most
comprehensive sensor with results closer to the reference, it can be concluded that
the active sensor has proven to be the best option to study and detect pathologies and
different construction materials for studies with high variability in light conditions
where passive sensors are greatly affected.
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To evaluate the separability between classes the transformed divergence
indicator [41], ranging from 0 to 2, was used as the most widely used quantitative
estimator for this purpose [42]. Table 3 shows the separability between the final
5 classes.

Table 3. Transformed divergence for the supervised classification.

Unaltered Granite Altered Granite Wood Moisture

Altered granite 1.87 - - -
Wood 2.00 2.00 - -

Moisture 1.99 1.99 2.00 -
Mortar 1.98 1.42 2.00 2.00

In general, a high separability was achieved for all 5 classes, highlighting the
good separability between the spectral signatures of the two granite types. The worst
results were for the mortar and the altered granite classes. This fact is explained by
two reasons: on the one hand, the façade sample distance (FSD) of the orthoimages
(11 mm in the worst case) was not enough to detect façade areas with smaller
thickness of mortar; and on the other, altered granite class presented the closest
spectral behavior regarding mortar. With respect to the moisture of the façade, it
appeared in lower areas of the shrine (capillarity rising damp) and in the buttress,
acting as a filter system for the water from the roof (filtration moisture). These areas
are built with unaltered granite blocks since lower areas need to support the loads of
the whole building (also in buttress). The radiometric misunderstanding between
moisture and unaltered granite did not occur in the case of altered granite since the
latter is part of the center of the façade, a low humidity area.

3.3. Accuracy Assessment

In order to assess the accuracy of the unsupervised classifications, the supervised
classification approach based on maximum likelihood algorithm served as reference.
Five classes and the seven bands available were considered in the classification
process. Accuracy results for the case of the Mini MCA6 multispectral camera and
the FARO Focus3D laser scanner were 66.04% and 74.39% respectively as mentioned
above, and according to the Cohen’s Kappa coefficient [43] the level of agreement
was 0.50 and 0.621 respectively (excluding the null class).

Furthermore, as mentioned in Section 2.1, an ASD FieldSpec3 spectroradiometer
was used to measure several samples of granite for a parallel study. Those measures,
in this study, have been used as reference and as a complement to the above analysis
to compare the spectral signatures of these construction materials with the discrete
reflectance results obtained from the Mini MCA6 and the FARO Focus3D (Figure 11).
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The spectral signatures and deviations of the two types of granite present in the
façade are plotted for the wavelength range covered by both sensors (530–905 nm).

In Figure 11, the graph continuous lines show at any wavelength the mean
value of the reflectances of unaltered and altered granite samples distributed along
the façade and measured with the spectroradiometer (a total of 6 and 7 samples of
granite, respectively). On the other hand, the colored areas represent the standard
deviation of that spectroradiometer measurements. Regarding the discrete values
of reflectance achieved with the sensors (discrete points) they result from the mean
reflectance value of the “unaltered granite” and “altered granite” classes for each
sensor’s wavelength of the supervised classification map. The “mortar” class was
not finally evaluated due to its variability in thickness along the façade and due to
the fact that the FSD achieved was in many areas greater than its thickness.Remote Sens. 2016, 8, 80 13 of 16 
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two factors; the first is that the camera is a passive sensor, so it is sensitive to changes in light 
conditions and shadow areas during data acquisition. The second error factor is caused by the slave 
image registration process, as has been mentioned above, due to the errors in the determination of 
baselines, angular misalignments and the internal parameters of the camera. Any error in those 

Figure 11. Spectral signatures of the two different types of granites, (a) unaltered
and (b) altered, measured with the ASD spectroradiometer for the wavelength
interval covered by the sensors used (Mini MCA6 and FARO Focus3D) where
points are obtained from the orthoimages in reflectance values.

It should be mentioned that a great fit of the reflectance values from both
sensors (discrete points) was achieved for both granite real spectral behaviors
(spectroradiometer measurements) with admissible standard deviations associated
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(lower than those associated with spectroradiometer measurements). For both
evaluated materials, the mean error was 0.007 (in the range 0–1), being the maximum
0.049 (in the range 0–1), which is better than the expected error for this vicarious
calibration technique (around 5%).

The confusion matrices for the assessment of both sensors are shown in Tables 4
and 5 where the main diagonal indicates the percentage of pixels that have been
correctly classify and the off-diagonal values represent misclassification. The
producer and user accuracies as well as the overall accuravy are given. Regarding the
moisture class, a significant performance improvement of the classifier is observed
for this class for the operating wavelength of the FARO Focus3D. In the case of the
mortar class, the Mini MCA6 do not bring good results mainly due to the errors
produced during the 6-band registration process. Finally, we mention that in the
case of the unaltered and altered granites, little variations were observed between
both sensors.

Table 4. Confusion matrix of the Mini MCA6 unsupervised classification.

Moisture Mortar Altered
Granite

Unaltered
Granite Wood User

Accuracy

Moisture 40.14% 25.40% 0.54% 33.92% 0.01% 40.14%
Mortar 0.06% 39.11% 59.53% 1.31% 0.00% 39.11%

Altered granite 3.79% 7.69% 73.86% 14.61% 0.05% 73.86%
Unaltered granite 6.56% 5.30% 16.39% 70.75% 1.01% 70.75%

Wood 0.00% 0.00% 0.00% 0.00% 100.00% 100.00%

Producer
accuracy 21.10% 57.71% 66.00% 74.28% 94.26%

Overall accuracy: 66.04%

Table 5. Confusion matrix of the FARO Focus3D unsupervised classification.

Moisture Mortar Altered
Granite

Unaltered
granite Wood User

Accuracy

Moisture 52.46% 1.04% 23.17% 19.81% 3.52% 52.46%
Mortar 0.00% 60.46% 37.36% 2.18% 0.00% 60.46%

Altered granite 0.05% 12.81% 78.29% 8.64% 0.20% 78.29%
Unaltered granite 0.29% 1.49% 21.70% 75.47% 1.04% 75.47%

Wood 0.48% 0.00% 0.00% 0.00% 99.52% 99.52%

Producer
accuracy 89.64% 68.32% 68.68% 83.62% 91.81%

Overall accuracy: 74.39%

To conclude, it should be highlight that the improvement in both the overall
accuracy and the Kappa coefficient is significant in the case of working with
radiometrically calibrated sensors as opposed to the use uncalibrated ones [17].
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The results for the Mini MCA6 have experienced a 24% improvement in terms
of overall accuracy and 23% regarding the Kappa coefficient. Furthermore, the
improvement from the use of the calibrated FARO Focus3D was of 29% and 35%
regarding the overall accuracy and Kappa coefficient, respectively. Results worsen in
the case of the Mini MCA6 due to two factors; the first is that the camera is a passive
sensor, so it is sensitive to changes in light conditions and shadow areas during data
acquisition. The second error factor is caused by the slave image registration process,
as has been mentioned above, due to the errors in the determination of baselines,
angular misalignments and the internal parameters of the camera. Any error in those
parameters is propagated into the final multispectral orthoimage, being worsened
for higher spatial resolutions, where the geometric pixel footprint in the object may
differ depending on the wavelength.

4. Conclusions

The work presented in this paper shows a comparison of the classification results
from the use of different radiometrically calibrated sensors to detect pathologies in
materials of historical buildings façades. By combining the use of two different
data acquisition techniques (active and passive), two sensors were examined:
a multispectral camera and a 3D laser scanner. The results show the different
radiometric responses of the ashlars of a church with different damages levels (mainly
moisture). The classification algorithms used for the classification processes were the
Fuzzy K-means and the maximum likelihood classification algorithms.

A complete description of the workflow followed is outlined describing the data
acquisition, pre-processing (including sensors radiometric calibrations), orthoimages
generation and the application of two classification algorithms to assess the final
results. Our results show that the most comprehensive sensor for which the best
results were obtained is the FARO Focus3D. This is possibly due to the advantage of
working in an active way with no need of external radiation. As a result, classification
maps were not affected by different lighting conditions during data acquisition.
Furthermore, geometric models of the study object can be derived thanks to its data
capture. With these models, physical pathologies (such as fissures, desquamations,
etc.) could be analyzed and both these damages and chemical pathologies could be
quantified. However, for the challenge of the registration of 6 wavelength bands, the
results from the Mini MCA6 were quite good. Considering all those issues and with
the experience of working with these sensors in previous studies, it is concluded that
the radiometric calibration of the sensors is crucial since it contributes to improving
the accuracy of the outcomes (a 35% Kappa coefficient improvement in the case of
the FARO Focus3D). Thus, a sensor combination with laser scanning as a primary
choice is the best solution for pathology detection and quantification. By adding the
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intensity information to visible or multispectral information, results of classification
improve in a quantitative and a qualitative way.

In future work, the use of a hyperspectral camera or another laser scanner
operating in the shortwave infrared as a complement of the sensors proposed will
improve the pathologies detection and the overall accuracy results since the spectral
resolution of the study would be increased. In addition, and for non-carved historical
buildings, the roughness of the façade would be calculated from the scan points in
order to have additional data of the materials so it can help in the discrimination
process. Finally, and regarding the data acquisition of passive sensors, constant
favorable climatic conditions will be planned so that the accuracy of its classification
results may be significantly improved.
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Large Scale Automatic Analysis and
Classification of Roof Surfaces for the
Installation of Solar Panels Using a
Multi-Sensor Aerial Platform
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Diego González-Aguilera

Abstract: A low-cost multi-sensor aerial platform, aerial trike, equipped with visible
and thermographic sensors is used for the acquisition of all the data needed for the
automatic analysis and classification of roof surfaces regarding their suitability to
harbor solar panels. The geometry of a georeferenced 3D point cloud generated from
visible images using photogrammetric and computer vision algorithms, and the
temperatures measured on thermographic images are decisive to evaluate the areas,
tilts, orientations and the existence of obstacles to locate the optimal zones inside each
roof surface for the installation of solar panels. This information is complemented
with the estimation of the solar irradiation received by each surface. This way, large
areas may be efficiently analyzed obtaining as final result the optimal locations for the
placement of solar panels as well as the information necessary (location, orientation,
tilt, area and solar irradiation) to estimate the productivity of a solar panel from its
technical characteristics.

Reprinted from Remote Sens. Cite as: López-Fernández, L.; Lagüela, S.; Picón, I.;
González-Aguilera, D. Large Scale Automatic Analysis and Classification of Roof
Surfaces for the Installation of Solar Panels Using a Multi-Sensor Aerial Platform.
Remote Sens. 2015, 7, 11226–11246.

1. Introduction

Several techniques have been applied so far for the calculation of the solar
incidence on roofs trying to find the most suitable roof surfaces for the installation of
solar panels with optimal performance without assessing the possible obstacles that
can prevent their installation. In most cases the analysis is done from Geographical
Information Systems (GIS) fed with low-resolution raster or vector cadastral data
sources [1–4], GML (Geography Markup Language) systems with simplified LOD
(Level Of Detail) [5] or topologically consistent 3D city models obtained through
the extrusion of building footprints to a stimated average building height [6]. These
techniques, that generally use simplified models and approximations of the positions
and orientations of the roofs, could imply errors in the calculation of the solar
incidence on the surfaces of the roofs and thus cause large variations in their
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productivity [7]. In order to avoid these limitations, we developed a methodology
able to identify the optimal location for the installation of solar panels [8] and the
estimation of their solar irradiation from a precise dataset obtained with a low cost
aerial platform equipped with RGB and thermographic cameras. The data processing
methodology is scalable to any other aerial data sources like LiDAR (Light Detection
and Ranging), acquired from piloted aerial vehicles or UAV’s (Unmanned Aerial
Vehicles). The use of geo-referenced 3D dense point clouds of roofs will allow
the performance of accurate analysis of areas, orientations and tilts of the roofs.
Furthermore, if these data are complemented with qualitative thermal information,
which provides direct knowledge about the relative temperature difference between
roofs and consequently about the influence of the solar radiation on them, the
removal of surfaces that could present ideal geometric conditions to install solar
panels will be possible. The thermal values recorded by the thermographic camera
cannot be considered as the rigorous temperature values of the object due to the
difficulty to perform an accurate emissivity correction on the measurement. However,
these values provide useful information for the detection of differences in solar
incidence over the object surface. For instance, those surfaces containing elements
that could prevent the installation of solar panels such as skylights or chimneys will
be automatically detected.

This work proposes and tests a methodology useful for the performance of the
automatic classification of roofs regarding their suitability to harbor solar panels,
the detection of the optimal location inside these surfaces and the estimation of the
solar irradiation received. The methodology consists on the processing of visible
and thermographic images acquired from a low-cost aerial trike equipped with a
multi-sensor platform (MUSAS, which stands for MUltiSpectral Airborne Sensors)
towards the generation of 3D point clouds of roofs.

The paper has been structured as follows: after this introduction, Section 2
includes a detailed explanation of the materials and methods used for data acquisition
and processing towards the automatic segmentation and classification of the roof
surfaces for the installation of solar panels. Section 3 is devoted to be an explanation
of the methodology presented through its application to an urban area selected as
case study; finally, Section 4 establishes the most relevant conclusions of the proposed
approach. The procedure is presented through its application to a real case study,
based on the classification of the roofs in a neighborhood in Ávila, located near the
center of Spain (coordinates 40˝38'27.6"N, 4˝41'27.8"W). The location of the case
study determines the restrictions applied for the installation of solar panels following
the Spanish Regulation for Construction [9].
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2. Materials and Methods

2.1. Equipment

2.1.1. Aerial Trike

The aerial trike is a driven low-cost aerial system equipped with a MUSAS
platform able to accommodate different types of remote sensors, from imaging
sensors (RGB and thermographic cameras) to navigation systems (GNSS/IMU). The
use of these kind of aerial vehicles shall be regulated by the local legislation on air
navigation as long as it does not conflict with the general air navigation law of the
DGAC (General Guidance of Civil Aviation). The aerial trike is an experimental
“Tandem Trike AIRGES” (Table 1), with a weight capacity up to 220 kg and flying
altitudes up to 300 m, which is the limit established by the current Spanish legislation
for this type of aerial vehicles [10]. The main advantages of this platform over the
usual driven aerial vehicles are its low cost, ease of use and the possibility of flying
below 300 m, consequently obtaining better GSD (Ground Sample Distance) with the
imaging sensors. This increase in the spatial resolution of the RGB images regarding
usual aerial photogrammetric flights allows the generation of dense point clouds,
as well as improves the use of thermographic images, given that the thermographic
sensor presents very limited resolution implying a high GSD that, for altitudes over
300 m could prevent the differentiation of characteristic elements of roofs. Regarding
UAV platforms, the aerial trike is able to transport greater weights, which implies
the possibility of using more and higher quality sensors with longer autonomy than
copter-type platforms. Thus, this aerial platform is used to obtain good quality
georeferenced images from a zenithal point of view, allowing for a better spatial
perception given the absence of obstacles between the camera and the object.

Sensors are supported by a specific gyro-stabilized platform (MUSAS) (Figure 1)
allowing for a full coverage of the study area with an appropriate GSD. This device
includes two servomotors arranged on the x and y axes to maintain the vertical
position of the camera along the flight path with precision. The servomotors are
controlled by an Arduino board, which incorporates an IMU with 6 degrees of
freedom: 3 accelerometers with a range of ˘ 3.6 G m/s2, a double-shaft gyroscope
(for pitch and roll control) and an additional gyroscope for yaw control (both
gyroscopes have a measurement range of ˘ 300˝/s). The navigation devices allow
the geolocation of each datum for the successive generation of geo-referenced point
clouds with real and thermographic texture.

Last, the software developed for the control of the device was based on
Quad1_mini V 20 software, with DCM (Direction Cosine Matrix) as the management
algorithm for the IMU [11].
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Table 1. Technical specifications of the manned aerial platform, aerial trike.

Parameter Value

Empty weight 110 kg
Maximum load 220 kg

Autonomy 3.5 h
Maximum speed 60 km/h

Motor Rotax 503
Tandem paraglide MACPARA Pasha 4
Emergency system Ballistic parachutes GRS 350

Gimbal Stabilized with 2 degrees of freedom (MUSAS)
Minimum sink rate 1.10

Maximum glide rate 8.60
Plant surface 42.23 m2

Projected area 37.80 m2

Wingspan 15.03 m
Plant elongation rate 5.35

Central string 3.51 m
Boxes 54 boxes

Zoom factor 100%
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2.1.2. RGB Camera

RGB cameras are used for the acquisition of images towards the reconstruction
of 3D point clouds as well as to provide visual information of the state of the roofs.
The visible camera selected for this work is a full frame reflex camera Canon 5D
mkII. This camera has a CMOS sensor which size is 36 ˆ 24 mm with a resolution of
21.1 megapixel and equipped with a 50 mm focal length lens. The size of the image
captured with this sensor is 21 MP with a pixel size of 6.4 µm.

The camera is calibrated prior acquisition in order to allow the correction of the
distortion and perspective effects from the data collected and the 3D reconstruction in
the photogrammetric process. The calibration of cameras working in the visible band
of the electromagnetic spectrum (Table 2) is performed through the acquisition of
multiple convergent images of a geometric pattern (known as calibration grid) with
different orientations of the camera. The adjustment of the rays ruling the position
of the camera and the image in each acquisition allows the determination of the
inner orientation parameters of the camera (focal length, format size, principal point,
radial lens distortion and decentering lens distortion). The camera calibration was
processed in the commercial software ImageMaster which performs the automatic
detection of the targets in each image and computes and adjusts the orientation
of each image, resulting in the computation of the internal calibration parameters
of the camera. Since the flight was performed at medium speed and low altitude,
there should not be any change in the “camera-lens” system caused by sudden
movements of the platform or major changes in the atmosphere. For this reason, the
camera calibrations performed in the laboratory have been considered as fixed for
both cameras.

Table 2. Interior orientation parameters of visible camera Canon 5D mkII, result of
its geometric calibration.

Parameter – Value

Focal length (mm) Value 50.1
Format size (mm) Value 34.819 ˆ 23.213

Principal point
displacement (mm)

X value ´0.21
Y value ´0.11

Radial lens distortion
K1 value (mm´2) 6.035546 ˆ 10´5

K2 value (mm´4) ´1.266639 ˆ 10´8

Decentering lens distortion P1 value (mm´1) 1.585075 ˆ 10´5

P2 value (mm´1) 6.541129 ˆ 10´5

Point marking residuals Overall RMSE (pixels) 0.244

2.1.3. Thermographic Camera

The thermographic camera selected for this study is the FLIR SC655. This
device has been specially developed for scientific applications. It allows the
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capture and recording of thermal variations (Figure 2) in real time, enabling the
measurement of heat dissipation or leakage. Its sensor is an Uncooled Focal Plane
Array (UFPA) 0.3 MP, capturing radiation with 7.5 to 13.0 µm wavelengths and
measuring temperatures in a range from ´20 ˝C to 60 ˝C. The Instant Field of View
(IFOV) of the camera is 0.69 mrad, and its Field of View (FOV) is 25˝ (Horizontal)
and 18.8˝ (Vertical) with the current lens of 25 mm focal length.
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Figure 2. Comparison between the products generated by the different used
imaging sensors. (Left) RGB image. (Right) Thermographic image with the thermal
values represented using a color map.

Thermographic cameras capture radiation in the infrared range of the spectrum,
in contrast to photographic cameras that work in the visible range. For this reason,
the geometric calibration (Table 3) of the camera is performed using a specially
designed calibration field, presented in [12], which is based on the capability of the
thermographic cameras for the detection of objects being at different temperatures
even if they are at the same temperature but with different emissivity values. This
calibration field consists on a wooden plate with black background (high emissivity)
on which foil targets are placed (low emissivity). In this case, the calibration
was processed in the commercial photogrammetric station Photomodeler Pro5©,
which not only computes the calibration parameters of the cameras in a procedure
analogous to the one previously explained for ImageMaster, but it also provides the
standard deviation of the calibration parameters as a value to test their quality.
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Table 3. Interior orientation parameters of thermographic camera FLIR SC655,
result of its geometric calibration.

Parameter – Value Std. Deviation

Focal length (mm) Value 25.063 0.022
Format size (mm) Value 10.874 ˆ 8.160 0.002

Principal point
displacement (mm)

X value ´0.174 0.022
Y value 0.024 0.026

Radial lens distortion
K1 value (mm´2) 5.281 ˆ 10´5 2.4 ˆ 10´5

K2 value (mm´4) 7.798 ˆ 10´7 6.1 ˆ 10´7

Decentering
lens distortion

P1 value (mm´1) 1.023 ˆ 10´4 1.2 ˆ 10´5

P2 value (mm´1) ´3.401 ˆ 10´5 1.3 ˆ 10´5

Point marking
residuals (pixels) Overall RMSE 0.173 –

2.2. Methodology

2.2.1. Flight Planning and Data Acquisition

Proper flight planning is important to optimize available resources, ensuring
a high quality of the images and minimizing capture time. The spatial information
required for the flight planning can be obtained free of charge from the National
Center of Geographic information in Spain (CNIG), from its National Aerial
Orthoimage Plan (PNOA, 2009) with a GSD of 0.25 m and a Digital Terrain Model
(DTM) with a 5 m grid resolution. The flight planning was carried out based on the
classical aerial photogrammetric principles [13] but adapted to the new algorithms
and structure from motion (SfM) strategies [14], ensuring image acquisition with
forward and side overlaps of 70% and 30%, respectively. Given the format difference
between the thermographic and RGB sensors, time between shots will be considered
independently in order to ensure these overlaps.

The gyro-stabilized platform ensures the theoretical geometric setup of a
photogrammetric aerial image capture in each shot, which stablishes that the optical
axis of the camera should be zenithal. The theoretical definition of scale in digital
aerial photogrammetry is related to the geometric resolution of the pixel size
projected over the ground (GSD). This parameter can be calculated by considering
the relationship between flight altitude over the ground, the GSD, the focal length
of the sensor and the pixel size (Equation (1)). Considering that the objective of
this study is not to identify small entities, and in order to allow the procedure to be
scalable to sparse 3D point clouds from other measurement systems, we fixed the
target GSD for the lower resolution sensor between 10 and 15 cm.

f
H
“

pixel size
GSD

(1)
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where f is the focal length of the sensor; H is the flight altitude over the ground and
GSD is the Ground Sample Distance.

Due to the lower resolution of the thermographic images, the flight planning is
performed according to the characteristics of this sensor (Figure 3), considering the
planning completely valid also for the RGB sensor.

In order to locate the solar incidence deficiencies over the objects under study in
the higher production time zone of the solar panels, the survey should be performed
when the Sun is located at the highest point of the solar path.

2.2.2. 3D Point Cloud Reconstruction

The image-based modelling technique based on the combination of
photogrammetry and computer vision algorithms allows the reconstruction of dense
3D point clouds. The absolute orientation (position and attitude) of each image
is known because the position of the imaging sensors is registered with respect
to the GNSS/IMU navigation devices of the aerial trike, and data acquisition is
synchronized with the navigation. For this reason, using these absolute orientation
as initial approximations, only an orientation refinement was required for the precise
geolocation of the images.

The orientation refinement process starts with the automatic extraction and
matching of image features through a SIFT [15] (Scale-Invariant Feature transform)
algorithm which provides effectiveness against other feature detection algorithms.
In addition, these features present optimal results for these type of aerial surveys
where scale variations are minimal and perspective effects are almost nonexistent
thanks to the gyro-stabilized platform. Next, taking as initial approximation the
external orientation parameters provided by the GNSS system and as fixed the
laboratory internal calibration parameters, an orientation refinement was performed
through a global bundle adjustment between all images by means of the collinearity
equations [16,17]. As a result, the spatial and angular geo-positioning of the RGB
sensor was computed enabling the dense point cloud generation. Next, a dense
matching method through the MicMac implementation [18] based on the semi global
matching technique (SGM) [19,20] allows the generation of a dense and scaled 3D
point cloud resulting from the determination of the 3D coordinates of each pixel.
This process was performed using the RGB images because their higher resolution
provides a 3D point cloud with higher point density than the point cloud generated
from thermographic images. Regarding computation effort, the last step is the most
expensive and time-consuming. All these photogrammetric tasks were performed
using the Photogrammetry Workbench (PW) [21].

Last but not least, a dense 3D point cloud with thermographic information
was obtained for the case study. This thermographic mapping was obtained thanks
to the known baseline between both sensors which was previously calibrated in
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laboratory. In particular, this calibration consisted in solving the relative orientation
of the thermographic camera regarding the RGB camera through the simultaneous
visualization of a common pattern (the same used for the thermographic camera
calibration). After the identification of homologous entities between both sensors,
the calculation of the baseline (bx, by, bz) and the boresight (Rx, Ry, Rz) values
was performed.

2.2.3. Automatic Planes Segmentation

Once the 3D point cloud is generated from the RGB images and the
thermographic texture is applied, the following procedure is the segmentation
of the roofs. This is performed in different steps using the Point Cloud Library
(PCL) [22], open source and licensed under BSD (Berkeley Software Distribution)
terms, which includes a collection of state-of-the-art algorithms and tools useful for
3D processing, computer vision and robotic perception. First, ground and vegetation
are removed using a pass through filter with a Z coordinate restriction. A pass
through filter performs a simple filtering along a specified dimension removing the
elements that are either inside or outside a given range. In this case, the filter gets
the minimum Z value of the point cloud and removes all points with a Z value close
to the minimum Z. The distance threshold is established as a parameter set for the
user, being 5 m a recommendable value, established experimentally by the authors
after the segmentation of several point clouds. In addition, although the presence of
points belonging to the facades is minimal due to the vertical configuration of the
capture, a conditional filter based on the angle between the normal vector of each
point and the vertical axis is applied to remove these points. Then, the point cloud
including the roofs is segmented using a Euclidean cluster segmentation, providing
better and faster results for the subsequent extraction of the different planes of each
roof [23,24] by dividing the point cloud in individual roofs. This way, RANSAC
(Random Sample Consensus) algorithm [25] is applied to each roof individually for
the extraction of the composing planes.

Once each roof is clustered in different planes, and the coefficients that describe
each surface in a Cartesian coordinate system by the general equation of the plane
are known (Equation (2)), the geometric evaluation is performed, resulting in the
orientation and tilt values for each surface from which we can calculate the percentage
of solar energy productivity regarding the maximum productivity of the installed
solar panels.

Ax` By` Cz “ D (2)

where A, B and C are the components of the vector normal to the plane, whereas D is
the independent term.
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From the components A, B and C of the general equation of the plane that match
with the values of the unit vector normal to the plane, denoted as

Ñ
v (Equation (3)) we

can proceed to compute the orientation and tilt values for each roof. The orientation
of the surface requires the computation of the angle between the projection of vector
Ñ
v on the horizontal plane and the cartesian Y-axis (Equation (4)). The quadrant to
which the angle belongs, identified through the evaluation of the sign of A and B
components of the unit vector (Figure 3 left), will allow us to get the orientation angle
of the surface (Figure 3 right).

Ñ
v “ pA, B, Cq (3)

β “ arcTan
ˆ

A
B

˙

(4)

where
Ñ
v is the vector normal to the plane; β is the angle between the horizontal

projection of the normal vector and the cartesian Y-axis.Remote Sens. 2015, 7 11234 

 

 

Figure 3. (Left) Quadrant determination from the components of the vector normal to the 

plane. (Right) Absolute orientation of the roof, denoted as “Or”, from the angle between the 

projection of the vector on the horizontal plane and the cartesian Y-axis. 

The tilt of the surface is calculated by a simple trigonometric process in a right-angled triangle where 

the normal vector is considered the hypotenuse and its projection on the horizontal plane (Z = 0) and C 

value the adjacent and opposite legs respectively (Figure 4) (Equations (5–7)). 

 

Figure 4. Tilt angle from the values of the normal vector of the plane. 

 (5)

α  (6)

90° α (7)

where d is the module of the vector  projected on the horizontal plane (Z = 0); α is the angle between 

the horizontal plane and the normal vector of the surface; Tilt represents the tilt of the plane. 

2.2.4. Geometric Analysis and Classification 

Once the different planes of the roofs are detected and segmented, their areas, tilts and orientations 

are analyzed in order to perform their geometric classification. The roofs with an area smaller than 

required for the installation of solar panels and those with North orientation are discarded due to their 

inadequacy. The remaining roofs are classified in different groups according to their theoretical 

productivity as a function of their tilt and orientation, also taking into account the possibilities of either 

integrating the solar panels in the roof or installing them in configurable supports. The CTE (Technical 

Edification Code) sets the South orientation as the optimal position for these elements, with a tilt equal 

to the latitude where they are installed. However, the limits on the tilt can be computed according to the 

minimum efficiency allowed for the orientation of the surface using the method explained by the IDAE 

(Institute for Diversification and Saving of Energy) (Equations (8) and (9)) [9].  

Figure 3. (Left) Quadrant determination from the components of the vector normal
to the plane. (Right) Absolute orientation of the roof, denoted as “Or”, from
the angle between the projection of the vector on the horizontal plane and the
cartesian Y-axis.

The tilt of the surface is calculated by a simple trigonometric process in a
right-angled triangle where the normal vector is considered the hypotenuse and its
projection on the horizontal plane (Z = 0) and C value the adjacent and opposite legs
respectively (Figure 4) (Equations (5–7)).
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d “
a

A2 ` B2 (5)

α “ arcTan
ˆ

C
d

˙

(6)

Tilt “ 90˝ ´α (7)

where d is the module of the vector
Ñ
v projected on the horizontal plane (Z = 0);

α is the angle between the horizontal plane and the normal vector of the surface;
Tilt represents the tilt of the plane.

2.2.4. Geometric Analysis and Classification

Once the different planes of the roofs are detected and segmented, their areas,
tilts and orientations are analyzed in order to perform their geometric classification.
The roofs with an area smaller than required for the installation of solar panels and
those with North orientation are discarded due to their inadequacy. The remaining
roofs are classified in different groups according to their theoretical productivity
as a function of their tilt and orientation, also taking into account the possibilities
of either integrating the solar panels in the roof or installing them in configurable
supports. The CTE (Technical Edification Code) sets the South orientation as the
optimal position for these elements, with a tilt equal to the latitude where they are
installed. However, the limits on the tilt can be computed according to the minimum
efficiency allowed for the orientation of the surface using the method explained by the
IDAE (Institute for Diversification and Saving of Energy) (Equations (8) and (9)) [9].

If Tilt ą 15˝

Solar energy losses p%q “ 100¨
”

1.2¨ 10´4¨ pTilt´ϕ` 10q2 ` 3.5¨ 10´5¨Or2
ı

(8)

If Tilt ă 15˝

Solar energy losses p%q “ 100¨
”

1.2¨ 10´4¨ pTilt´ϕ` 10q2
ı

(9)

where Or is the Orientation of the plane and ϕ its latitude.
These limits allow the evaluation of the suitability of the surface under study

and the computation of the ideal geometry of the support platforms if needed,
taking into account that productivity losses cannot exceed the 20% if solar panels are
installed directly over the roofs, consequently keeping the angle of solar incidence
of the roof. However, productivity losses should be under 10% using the general
method which implies the installation of solar panels in supports to modify the angle
of solar incidence regarding the tilt of the roof.
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2.2.5. Thermographic Refinement of Surfaces

Once the geometric classification is performed, the thermographic data enables
the location of elements that constitute an obstacle for the installation of solar
panels in order to avoid protrusions or shadows that could reduce their productivity,
produced by both the elements of the roof surface and by nearby buildings. This
identification of obstacles allows the analysis to find the optimal location within
each roof. The existence of obstacles and anomalies in the roofs involves the
presence of different materials and surfaces with different emissivity values, so
the temperature detected by the thermographic images will be different even if the
solar radiation received was the same. In addition, the existence of obstacles that
prevent direct sunlight will be manifested by changes in the temperatures of the
roof surfaces. These facts allow the location of those surfaces of the roofs affected
by anomalies through the performance of a statistical study of the mean and the
standard deviation of temperatures. A point will be considered as an obstacle when
the difference between its temperature value and the mean temperature of the roof
is higher than the standard deviation of the temperatures of the surface that is
being analyzed. Considering the fact that the shadow produced by an obstacle will
move following the path of the Sun, a perimeter defined by the user around each
obstacle will be considered for further analysis. Although a self-occlusion analysis
would be appropriate for the determination of the perimeter, the performance of this
processing for each obstacle in large study areas would be a high computationally
demanding task. Experimental analysis performed by the authors establishes 0.5 m
as a recommendable value.

2.2.6. Location of the Most Suitable Zones

The existence of obstacles, detected by the thermographic refinement step,
prevents the installation of solar panels covering the whole surface of those roofs
classified by the geometric analysis as having the optimal geometry (orientation and
tilt) for this purpose. Therefore, the development of a procedure to locate the optimal
zones for panel installation inside optimal surfaces (Figure 5) is necessary. This task
is addressed by analyzing the spatial distribution of those 3D points belonging to the
optimal surfaces and not considered as obstacles. This approach is focused on four
steps individually applied to each surface. (i) Projection of the point cloud to the
horizontal plane in order to evaluate the surfaces in a 2D environment, simplifying
the process; (ii) Extraction of those points that describe the perimeter of the surface to
evaluate (concave hull); (iii) Computation of the largest empty rectangles (no concave
hull points inside); (iv) Re-projection of the largest empty rectangles to 3D. The
concave hull can be defined as a set of points that enclose a concave region and
define the perimeter of an unorganized set of points allowing any angle between
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consecutive edges. The area of the defined shape should be minimized without
distorting the appearance of the point cloud
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Figure 5. Procedure to locate optimal zones inside optimal surfaces. (Left)
3D surface selected (red rectangle) over the roof. (Right) From top to bottom:
(a) surface under evaluation, without obstacles, projected to the horizontal plane;
(b) concave hull that defines the perimeter of the surface; (c) largest empty
rectangles inside the concave hull and (d) evaluated surface inliers of the largest
empty rectangles re-projected to 3D.

The extraction of the points that describe the perimeter of the surface to evaluate
is performed through the computation of their concave hull using an implementation
of the “alpha shape” computational geometry approach based on the Delaunay
triangulation [26]. The computation of the largest empty rectangles is performed
through an iterative implementation presented in [27], restricting the orientation of
the edges of the rectangles to the same orientation of the evaluated surface and its
perpendicular vector on the horizontal plane. Finally, the largest empty rectangles
are re-projected to the 3D space obtaining the georeferenced location of the optimal
zones for the installation of solar panels in each roof, and their area.

2.2.7. Estimation of the Solar Irradiation

To introduce this section it will be useful to explain the differences between
the terms “solar irradiance” and “solar irradiation”. Solar irradiance describes the
instantaneous radiant flux per unit area that is being delivered to a surface, usually
expressed in W/m2. It varies depending on the location of the surface, time and
date, and atmospheric conditions, among other factors. Solar irradiation, also known
as insolation and typically expressed in kWh/m2/a, represents the amount of solar
energy that can be collected on a surface per unit of area within a given time (i.e., solar
irradiance integrated over time). The use of georeferenced point clouds at this point
is crucial given that solar irradiation is heavily influenced by day length and the
position of the Sun (solar ephemeris), obtaining very different results for different
locations on Earth. Solar irradiation may also significantly differ between building
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roofs in the same zone, depending on the orientation of the roof: a more favorable
angle of a surface to the Sun means better exposure and more solar energy. Two roof
surfaces of the same size at the same location but different orientations (azimuth)
and tilts, may drastically differ in their solar potential [28,29]. This solar irradiation
value, complemented with the area of the optimal surface obtained in the previous
step, allows the computation of the solar irradiation of a surface in kWh/a [6,30].
Therefore, we can say that solar irradiation on a roof surface is mainly derived of
four essential geographic parameters (area, tilt, azimuth and geographic location)
that may be defined as a function (Equation (10)):

I “
ż

prϕ, λs ,β, θ, A, rωsq (10)

where I is the solar irradiation on a roof; ϕ is the latitude; λ is the longitude;β is the
tilt of the surface; θ is the azimuth; A is the area and ω other components such as
cloud cover.

Solar irradiance can be decomposed into three components [31,32]: direct
irradiance, diffuse irradiance and reflected irradiance. These three components
are important and significantly influence the total irradiance [33], so they have
been analyzed separately in this approach. Direct and reflected irradiance and their
adjustment for a tilted and oriented surface have been calculated as described in [34].
The estimation of the diffuse solar irradiance is more complex and must be adjusted
to one of the several existing empirical models [35–37].

Therefore, solar irradiation can be estimated by integrating the solar irradiance
over a period of time (Equation (11))

I “
ÿ

end
i“startEi ` ∆ti (11)

where I is the solar irradiation; ∆ti is the length of the ith time interval and E is the
solar irradiance

The annual solar irradiation is calculated following the protocol used in the
Solar3DCity [5,38] that includes the modeling of “real-sky” conditions through the
integration of the historical EPW (Energy Plus Weather file format) weather data
downloaded from the nearest weather station [39]. Solar ephemerides are from
XEphem [40,41], which have been proven suitable for solar irradiation studies [42].
The computations use the empirical anisotropic irradiance model developed by [43],
which was implemented in the solpy library [44]. The annual solar irradiation is then
calculated for each roof surface by integrating the hourly irradiance values of the
entire year. The computation of solar irradiation values can be extrapolated for every
azimuth/tilt combination obtaining a function, usually called tilt-orientation-factors
(TOF), which can be represented in a 3D diagram. This TOF function can be
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considered an additional product, since it represents the optimal tilt and orientation
for a location, which is the main aim of several location-based studies [45,46].

3. Experimental Results

3.1. Study Case

The proposed methodology has been validated in a wide urban area in the city
of Avila (Latitude 40˝66'N, Longitude 4˝70'W), with an extension of 237,250 m2 in
a rectangular shape of 365 m ˆ 650 m, chosen due to the existence of roofs with
different geometric characteristics, which is an interesting characteristic for testing
the methodology.

Flight planning was performed considering the limitations of the thermographic
sensor (Figure 6). Time between shots, in order to ensure properly overlapping, was
stablished as 500 ms for the RGB sensor and 160 ms for the thermographic sensor,
both for a flight speed of 50 km/h. Due to the speed flight, it was necessary to
minimize the shutter opening time in order to avoid the motion blurring effect. This
requirement needed several tests to find the optimal ISO, aperture and shutter speed
configuration to ensure the correct exposure of the images minimizing the effect of
any external factor that might damage the survey. As result, 409 images for the RGB
sensor and 5312 images for the thermographic sensor were captured covering the
whole study area. The flight altitude over the ground selected was 160 m, resulting
on a GSD of 11 cm and 2 cm for the thermographic and RGB cameras, respectively.

The full resolution RGB images were processed according to the photogrammetric
and computer vision methodologies obtaining as result a point cloud of
24,858,863 points, implying an average resolution of 100 points/m2 («1 point/GSD).
The thermographic texture was projected over the point cloud obtaining a hybrid 3D
point cloud (Figure 7) with thermographic texture mapped over the points of the roofs.

The survey was designed in order to fulfill the conditions established by PNOA
(Spanish National Plan of Aerial Orthophotography) [47]. These conditions state
the required accuracy to the GSD value for the X, Y and Z point coordinates. In
order to check compliance with these requirements, a topographic GPS survey was
performed, consisting of 26 check points homogeneously distributed over the whole
study area (Figure 8).

This 3D point cloud with thermographic texture is the input of the algorithm
developed. In the first step, ground, vegetation and façade points are removed using
the pass through and conditional filters obtaining as result a point cloud of the roof
with 8,930,030 points.

The point cloud of the roofs with thermographic texture is introduced into the
segmentation process (Figure 9). The result of the Euclidean cluster segmentation is
the extraction of 37 roofs that have been automatically segmented into 168 planar
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surfaces by the RANSAC algorithm and evaluated and classified regarding their
geometrical suitability (location, area, orientation and tilt) for the installation of
solar panels.
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Figure 7. Hybrid 3D point cloud generated from images captured with the RGB camera 
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consecutive figures are remarked in red. 
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Figure 7. Hybrid 3D point cloud generated from images captured with the RGB
camera integrating thermographic texture mapped over the roofs. Areas shown in
detail in consecutive figures are remarked in red.
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the solar irradiation received by each optimal surface (Figure 12), quantifying an accumulated solar 

irradiation for the whole study area of 4.01 × 106 kWh/a. 

The geometric and irradiation results are represented individually for each roof (Table 4). The 

geometric results show the azimuth (°) and tilt (°) of each surface and the area (m2) of each optimal 
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results of each optimal location for the installation of solar panels inside each roof surface are represented 

consecutively. The results of each segmented surface are recorded showing the total calculation of area 

and solar irradiation of the optimal areas in the whole surface. 

Figure 9. (a) Result of the extraction of each roof using the Euclidean cluster
extraction algorithm. (b) Results of the extraction of each planar surface using
the RANSAC algorithm. (c) Details of the previous point cloud segmented and
classified by its suitability to install solar panels. (Green) Surfaces suitable to install
solar panels without supports. (Yellow) Surfaces suitable to install solar panels
using a support to modify the solar incidence angle. (Red) Surfaces not suitable for
the installation of solar panels.

The radiometry of the thermographic images mapped on the 3D point cloud
has been used as described in the methodology for the identification of possible
obstacles (Figure 10). These obstacles have been taken into account for the location of
the optimum zones for the installation of solar panels. This way, 67 zones (Figure 11)
have been classified as optimal for the installation of solar panels, covering an area
of 2230.77 m2. Finally, all these data have been complemented with the estimation
of the solar irradiation received by each optimal surface (Figure 12), quantifying an
accumulated solar irradiation for the whole study area of 4.01 ˆ 106 kWh/a.

The geometric and irradiation results are represented individually for each roof
(Table 4). The geometric results show the azimuth (˝) and tilt (˝) of each surface
and the area (m2) of each optimal location. The irradiation results show the yearly
solar irradiation for unit of area (kWh/m2/a), computed from the azimuth and tilt
values supported with the irradiation models and the atmospheric data, and the
yearly total solar irradiation (kWh/a) of each optimal surface from its area. The area
and the irradiation results of each optimal location for the installation of solar panels
inside each roof surface are represented consecutively. The results of each segmented
surface are recorded showing the total calculation of area and solar irradiation of the
optimal areas in the whole surface.
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Figure 10. Detail of the point cloud segmented and classified after the thermographic 

analysis. (Black) Points removed by the statistical thermographic analysis. (Grey) Perimeter 

defined by a distance parameter around the obstacles detected to assist the optimal location 

of solar panels. 

 

Figure 11. Georeferenced point cloud of the detail zones after the process. Optimal surfaces 

(rectangles) for the installation of solar panels are highlighted in blue. Roof ID’s are used in 

Table 4. 

Figure 10. Detail of the point cloud segmented and classified after the
thermographic analysis. (Black) Points removed by the statistical thermographic
analysis. (Grey) Perimeter defined by a distance parameter around the obstacles
detected to assist the optimal location of solar panels.
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Figure 11. Georeferenced point cloud of the detail zones after the process. Optimal
surfaces (rectangles) for the installation of solar panels are highlighted in blue. Roof
ID’s are used in Table 4.
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Figure 12. Tilt-orientation-factors (TOF) representation for Ávila (Spain) estimated by Solar 

3D city. 

Table 4. Example of the results after the processing of a roof of the dataset (roof and numbers 

in Figure 8). 

Surface Tilt (°) Azimuth (°) 
Yearly Solar Irradiation  
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Area of Optimal  

Location (m2) 

Yearly Total Solar  

Irradiation (kWh/a) 

1 19.3568 346.0080 1295.011 -- -- 

2 19.4968 165.6463 1824.290 103.066 188,023 

-- -- -- -- 99.026 180,652 

-- -- -- -- 18.197 33,196.8 

3 19.0947 156.1201 1651.910 22.938 37,891.8 

4 19.3133 76.2060 1523.485 -- -- 

5 19.2929 346.1950 1295.834 -- -- 

6 19.5358 166.1320 1824.914 140.417 256,249.0 

-- -- -- -- 110.023 200,782.0 

-- -- -- -- 41.781 76,245.8 

-- -- -- -- 25.003 45,628.7 

7 19.3667 156.0211 1652.508 38.410 63,472.9 

8 19.2102 76.2400 1524.167 -- -- 

Total results for optimal locations of surface 2 220.289 401,871.8 

Total results for optimal locations of surface 3 22.938 37,891.8 

Total results for optimal locations of surface 6 317.224 578,905.5 

Total results for optimal locations of surface 7 76.703 126,752.5 

Total results for optimal locations of the roof 637.154 1,145,421.6 

Those surfaces with North orientation have not been evaluated as not being candidates for the 

installation of solar panels by their geometry. For that reason, the “area of optimal location” and “yearly 

total solar irradiation” values of these surfaces are not available. 

Figure 12. Tilt-orientation-factors (TOF) representation for Ávila (Spain) estimated
by Solar 3D city.

Table 4. Example of the results after the processing of a roof of the dataset (roof
and numbers in Figure 8).

Surface Tilt (˝) Azimuth (˝)
Yearly Solar
Irradiation by
m2 (kWh/m2/a)

Area of Optimal
Location (m2)

Yearly Total
Solar Irradiation
(kWh/a)

1 19.3568 346.0080 1295.011 – –
2 19.4968 165.6463 1824.290 103.066 188,023
– – – – 99.026 180,652
– – – – 18.197 33,196.8
3 19.0947 156.1201 1651.910 22.938 37,891.8
4 19.3133 76.2060 1523.485 – –
5 19.2929 346.1950 1295.834 – –
6 19.5358 166.1320 1824.914 140.417 256,249.0
– – – – 110.023 200,782.0
– – – – 41.781 76,245.8
– – – – 25.003 45,628.7
7 19.3667 156.0211 1652.508 38.410 63,472.9
8 19.2102 76.2400 1524.167 – –

Total results for optimal locations of surface 2 220.289 401,871.8
Total results for optimal locations of surface 3 22.938 37,891.8
Total results for optimal locations of surface 6 317.224 578,905.5
Total results for optimal locations of surface 7 76.703 126,752.5
Total results for optimal locations of the roof 637.154 1,145,421.6

Those surfaces with North orientation have not been evaluated as not being
candidates for the installation of solar panels by their geometry. For that reason, the
“area of optimal location” and “yearly total solar irradiation” values of these surfaces
are not available.
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In order to evaluate the weaknesses and the reliability of the process, the roof
planar surfaces of the study area have been analysed by visual inspection. Through
this inspection 216 planar surfaces have been counted in the whole area under
study. The difference of 48 planes existing between the reality and the result of the
processing is distributed as follows. 42 planar surfaces have been correctly extracted
by the algorithm but their evaluation has been discarded due to their minimum
size that would make impossible the installation of solar panels. The 6 remaining
surfaces match with roofs where the angle between their planar surfaces is next to
180˝ (Figure 13). In this case, RANSAC algorithm is not able to segment the roof in
different planar surfaces obtaining as result of the interpolation a single horizontal
plane that does not match with the reality of the roof. Surfaces whose tilt comes close
to horizontal plane can be classified as non-optimal for installation of solar panels.
For these reasons, it could be considered that the proposed approach is efficient
enough for the location of the optimal zones to install solar panels, since it only
misses 2.8% of the number of roofs of interest.
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Figure 13. (a) Diagram of the RANSAC interpolation between two roof surfaces
with an intersection angle next to 180˝. (b) Top view of the evaluated roof. (c) Top
view of the RANSAC algorithm results.

However, it must be emphasized that this algorithm only allows the automatic
extraction of those surfaces which geometric approach can be interpreted and
represented by a plane. Both curve and complex surfaces, where the installation of
solar panels might be possible if complex support structures are used, are discarded.

3.2. Computing Efficiency Analysis

The machine used to perform the computation was a Microsoft Windows
8.1 workstation with 32 GB RAM, a 3.40 GHz Intel Core i5-3570K processor and
an Nvidia Quadro 2000 GPU. The 3D dense point cloud generation was the most
computationally demanding process investing a total of 13 h 20 min for the whole
data set.
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Regarding the algorithm developed for the automatic location of the best places
for the installation of solar panels and the estimation of their incident solar irradiation,
the execution time performed through a single thread algorithm was 26 min for
the whole study area. However, multithreading computation is available, which
would reduce the computation time proportionally to the number of concurrent
running threads.

4. Conclusions

This article presents a methodology for the automatic processing of 3D point
clouds with thermographic information for the automatic plane segmentation of
the roof surfaces and their classification according to their theoretical productivity
derived from their geometric characteristics (orientation, tilt and area). A refinement
according to the thermographic radiometry allows the location of anomalies
or obstacles that could prevent the installation of solar panels or reduce their
productivity. This way, the location of the optimal zones for the installation of
solar panels inside each surface is determined, avoiding obstacles detected in the
thermographic refinement and allow the computation of the solar irradiation received
on these zones. In particular, the hybrid product obtained provides complete
thermographic and metric information of the different roof surfaces, which enables
better detection, spatial location and interpretation of the suitability of each surface
to harbor solar panels than traditional methods. In addition, the high level of
automation of the procedure allows the evaluation of wide urban areas in a fast
and accurate way, without the need to consult the technical documentation of
each building.

The results of the application of the procedure are geo-referenced point clouds
of the surfaces of the roofs with their geometric information (area, tilt, orientation),
classified by their theoretical productivity regarding solar energy catchment. The
computation has considered those elements that could reduce the productivity of
the solar panels, as well as a perimeter zone potentially affected by the influence of
the obstacles along the day. What is more, the procedure calculates the optimal tilt
of the supports if they were necessary. In addition, results are combined in order
to locate the optimal zones to install the solar panels inside each roof surface and
complemented with the computation of the received solar irradiation. The latter,
together with the technical characteristics of the panels to install, make possible the
estimation of the productivity of the solar panels.

Thanks to that, the geometric information of the 3D point clouds has been
preserved during all processing steps, enabling the performance of measurements
directly on the point clouds of the segmented planes. As a result, the software
developed could be used as a decision-making tool for those issues related with

283



the dimension or type of solar panels that could be installed, calculating the actual
productivity of the selected components.

In addition, the methodology proposed is valid for processing datasets captured
with different airborne sensors such as LiDAR or any other RGB and thermographic
sensors transported by any manned or unmanned aerial vehicle. This fact, supported
with the existence of open access (public and free) LiDAR data [48] throughout the
national territory, provides to this methodology and the developed software a direct
applicability with minimum cost.

Regarding the efficiency of the approach developed, the methodology is
applicable to the processing of entire towns or cities. Even assuming that the entire
process of 3D reconstruction and the post-processing of point clouds for very large
areas could imply some days of processing, the time required to perform the in-situ
visual inspection (supported with technical documentation of the object) of large
areas by human operators to achieve a similar result is not viable. It should also be
noted that a human operator currently performs a subjective decision of the suitability
of a roof to harbor solar panels (without generation of metric products and objective
evaluation of obstacles). For this last reason, even in the case that a significant
number of operators is available to perform the in-situ inspection in a “reasonable”
period of time, the proposed approach is also an important breakthrough, especially
since only an aerial trike pilot and an expert operator are required to perform the
survey and to oversee the processing and analyze the results, respectively.

The main drawback of the methodology proposed is the possibility of finding
particular homogeneous surfaces on the roofs where either the photogrammetric
approach or the LiDAR measurement fails. These could lead to the appearance of
areas without points or too noisy that prevent the segmentation process.

This project opens new trends for future work both from a sensorial
and methodological point of view. Concerning the first, the evolution of
multimodal matching techniques which can be applied to the matching of RGB
and thermographic images would allow the automatic registration between both
data sets, avoiding the tedious manual identification of homologous points between
them, in those cases where the accurate positioning of both cameras is not possible.
From the methodological point of view, the integration of the Sun path enables the
most accurate determination of the location of the shadow zones that could reduce
the productivity of the solar panels. The procedure considers shadows produced both
by obstacles located on the same roof and by adjacent buildings. Improving the latter
through a self-occlusion analysis directly from the 3D geometric information, together
with the incorporation of the possible surrounding orography occlusion effects will
be the next milestone towards the increase of the reliability of the decision-making
processes using as input the processing results obtained from this methodology.
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Regarding the possibility to take advantage of the large amount of information
derived from this methodology, it would be interesting to advance in the automatic
generation of BIM (Building Information Modelling) and CIM (City Information
Modelling), using gbXML or CityGML languages, respectively, for the representation
of the 3D point cloud geometry of the segmented roofs and the inclusion of the
solar irradiation estimation. Progress toward these systems will allow to work with
lighter and more agile information that we can include as an additional layer on a
GIS enabling the integration of this information with other data sources (cadastral
information, demographic information, urban parameters, etc.) to perform urban
energy management tasks.
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A New Approach to the Generation of
Orthoimages of Cultural Heritage
Objects—Integrating TLS and Image Data
Jakub Stefan Markiewicz, Piotr Podlasiak and Dorota Zawieska

Abstract: This paper discusses the issue of automation of orthoimage generation
based on Terrestrial Laser Scanning (TLS) data and digital images. The following two
problems are discussed: automatic generation of projection planes based on TLS data,
and automatic orientation of digital images in relation to TLS data. The majority of
popular software applications use manual definitions of projection planes. However,
the authors propose an original software tool to address the first issue, which defines
important planes based on a TLS point cloud utilizing different algorithms (RANdom
SAmple Consensus–RANSAC, Hough transform, “region growing”). To address the
second task, the authors present a series of algorithms for automated digital image
orientation in relation to a point cloud. This is important in cases where scans and
images are acquired from different places and at different times. The algorithms
utilize Scale Invariant Feature Transform(SIFT) operators in order to find points that
correspond in reflectance intensity between coloure images (Red Green Blue—RGB)
and orthoimages, based on TLS data. The paper also presents a verification method
using SIFT and Speeded-Up Robust Features (SURF) operators. The research results
in an original tool and applied Computer Vision(CV) algorithms that improve the
process of orthoimage generation.

Reprinted from Remote Sens. Cite as: Markiewicz, J.S.; Podlasiak, P.; Zawieska, D.
A New Approach to the Generation of Orthoimages of Cultural Heritage
Objects—Integrating TLS and Image Data. Remote Sens. 2015, 7, 16963–16985.

1. Introduction

Developing geometric documentation is one of the most basic tasks in the
fields of conservation policy and management of cultural heritage objects. 3D
documentation is a prerequisite of conservation or restoration work on historical
objects and sites. Development of specific documentation such as high-resolution
orthoimages is necessary at all stages of conservation works.

Orthoimages are attractive for archaeological and architectural documentation,
as they offer a combination of geometric accuracy and visual quality [1], and can also
be applied to different measuring techniques.

Integration of Terrestrial Laser Scanning (TLS) and image-based data can lead
to better results [2,3]. Despite many advantages, the TLS technique also has a lot
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of limitations; for example,it is not possible to acquire sharp edges, poor quality or
reflective surfaces, etc. Another issue is caused by areas with obstacles or hidden
points. In this case, in order to fill in the blind spots, more stations are required.
Laser scanners are currently integrated with low-resolution cameras. In many cases,
it is recommended to use additional, high-resolution images in order to produce the
required orthoimages. However, in many cases of TLS data utilization, the additional
information is an intensity value, applied by conservators to evaluate the conditions
of the surfaces of given historical objects [4].

3D modelling systems have now also been dynamically developed; they are
based on digital images and utilize Computer Vision (CV) algorithms to automatically
create 3D models [5–9]. Tools which utilize the Structure from Motion (SfM) approach
are also being developed. CV algorithms allow for automatic creation of textured
3D surface models based on a sequence of images, without any prior knowledge
concerning objects or the camera. Developed software tools also allow generation of
orthoimages [5,7,10].

Integration of TLS and SfM technologies therefore becomes an alternative in
many works on complicated architectural objects [6,11]. Although new imaging
systems have been dynamically developed, many problems inherent in the integration
of TLS and digital images are still waiting to be solved [12]. The possibilities of using
digital technologies in the conservation process have been widely analysed. However,
solutions to automate the generation of cultural-heritage-object documentation are
still lacking. In many cases scanning data on cultural heritage objects exist already; it
is only necessary to acquire high-resolution orthoimages with the use of additional,
“free-hand” images.

The authors of this paper closely co-operate with the Museum of King John III’s
Palace in Wilanów in conservation works, as well as in other projects. Development
of metric documentation of complicated historical objects requires implementation
of an automated technological process. Based on this experience the orthoimage
generation process has been automated with the use of terrestrial laser-scanning data
and “arbitrary” high-resolution images.

2. Problem Statement

This paper focuses on generating orthoimages through automatic integration of
TLS data with “free-hand” images. In the past, many cultural heritage objects were
measured with the use of scanners without digital cameras; the results were point
cloud with intensity values (near infrared) and transformed to the orthoimages. Due
to the spectral range in which such an orthoimage is recorded, it seems to have a low
visual contrast. Therefore, it is necessary, in many cases, to supplement the data with
digital images in order to generate RGB orthoimages (in natural colours).
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When orthoimages are generated it is important to settle two basic issues:
accuracy, and resolution [13]. In this case integration of a TLS point cloud
and digital images improves the geometric and radiometric quality of generated
orthoimages [5–8,11,14,15].

Problems can also result from the nature of close-range measurements, i.e., the
proximity of objects of complex geometry [1]. Such difficulties have been widely
discussed in the context of “true-ortho” generation for architectural objects, where
orthoimages are the basic tool for documentation [16,17].

Many publications have demonstrated the role of TLS data in improving the
accuracy and automation level [16,18]. Unfortunately, software for full automatic
generation of orthoimages does not yet exist.

Modern terrestrial scanners are equipped with digital cameras of low resolution,
and measurements are performed from the same position. Thus, scans and images are
automatically integrated. However, in order to obtain RGB orthoimages of sufficient
quality, it is necessary to use images of higher resolution, acquired independently of
the scanner station [16]. Therefore, a separate issue concerns the integration of TLS
data with “free-hand” images of higher resolution [19,20].

It is necessary to create procedures of integration of a TLS point cloud and
“arbitrary” acquired images in order to generate a high-resolution orthoimage that
will improve the quality of the point clouds and resolution texture of 3D models.
Achieving geometric accuracy and visual quality is time consuming; the process
needs to be performed manually or semi-automatically.

The first experiments testing the presented approach were discussed in [18].
These initial experiments were performed using the unmodified Hough transform
for uncomplicated architectural objects, creating one plane of smaller depth.

The authors of this paper have developed original tools that automate the
process of RGB image generation.Experiments performed to this end are presented
in Figure 1.

The following issues are discussed in the paper:

‚ detection of horizontal and vertical planes from the so-called “raw point clouds”
with the use of the processed Hough transform;

‚ checking the accuracy of plane matching and setting the points buffer for
creation of the Digital Surface Model (DSM) of an object and the intensity image;

‚ DSM generation in the rectangular grid (GRID) form, and generation of intensity
orthoimages with a depth map;

‚ orientation of terrestrial images based on orthoimages with the assigned depth
map using the utilize Scale Invariant Feature Transform (SIFT) algorithm;

‚ quality control of matching images in relation to the point clouds/an orthoimage
with the depth map;
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‚ orthorectification and mosaicking of terrestrial images based on the previously
generated DSM;

‚ quality control of the coloure orthoimages (Red Green Blue—RGB) based on the
Speeded-Up Robust Features (SURF) algorithm and the intensity orthoimage.
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Figure 1. Diagram of the performed experiments. 
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3. Methodology 

Utilization of terrestrial laser-scanning data requires consideration of the specifics of data recording. 

3.1. Specifics of TLS Data 

Data are recorded in the polar system, R, ω, φ,which causes deformation of straight lines (Figure 2). 
The point cloud recorded by the scanner contains points located on different planes (on the floor, on 
the ceiling, and, as in the discussed case, on the walls); therefore, it is necessary to filter points 
located on the plane of interest (again, the wall in the discussed case). Due to different disturbances, 
points determined by the scanner are not directly located on the reflecting surface. As shown by 
Figure 3, the distance measurement error (the scanner produces data in the polar system) as well as 
the laser’s light incidence angle causes points to be located inside certain cuboids (not on the plane). 
The depth of these cuboids depends on the scanner’s technical specifications (wavelength, 

Figure 1. Diagram of the performed experiments.

3. Methodology

Utilization of terrestrial laser-scanning data requires consideration of the
specifics of data recording.

3.1. Specifics of TLS Data

Data are recorded in the polar system, R, ω, ϕ, which causes deformation of
straight lines (Figure 2). The point cloud recorded by the scanner contains points
located on different planes (on the floor, on the ceiling, and, as in the discussed
case, on the walls); therefore, it is necessary to filter points located on the plane of
interest (again, the wall in the discussed case). Due to different disturbances, points
determined by the scanner are not directly located on the reflecting surface. As
shown by Figure 3, the distance measurement error (the scanner produces data in the
polar system) as well as the laser’s light incidence angle causes points to be located
inside certain cuboids (not on the plane). The depth of these cuboids depends on
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the scanner’s technical specifications (wavelength, modulation type, spot diameter,
radiation power), as well as on the properties of the reflecting surface. Differences
can emerge from scanner type (different companies have differing amounts of
experience), as well as the surface structure: for example, Figure 3a shows a fabric,
whose threads could cause multiple reflections; on the other hand, and Figure 3b
shows a smoothly plastered and painted wall.
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Figure 2. Data acquired by the ZFS 5003 scanner: (a) an image of the reflectance level in the ω, φ 
polar system; (b) in the rectangular XZ (rotated) system; colour lines present successive rows and 
columns of source data. 

 
Figure 3. The “thickness” of the point cloud for data recorded by the (a) Z+F 5003 scanner for a wall 
covered with fabric and (b) by the Z+FS 5006 scanner for the painted wall. The yellow line presents 
the “row” of the scanner data (mm). 

Even in the case of explicit classification of points, the thickness of the cloud and noises can 
influence the plane determination. 

As can be seen, the properties of TLS point clouds require the use of methods resistant to gross 
errors. Three methods (with variants) were selected and tested: RANSAC, region-growing, and 
Hough transform. 

3.2. Plane Equations 

The plane equation in space can be described in different ways, but the general form of the 
equation is Equation (1): 

Figure 2. Data acquired by the ZFS 5003 scanner: (a) an image of the reflectance
level in the ω, ϕ polar system; (b) in the rectangular XZ (rotated) system; colour
lines present successive rows and columns of source data.
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Even in the case of explicit classification of points, the thickness of the cloud
and noises can influence the plane determination.

As can be seen, the properties of TLS point clouds require the use of methods
resistant to gross errors. Three methods (with variants) were selected and tested:
RANSAC, region-growing, and Hough transform.

3.2. Plane Equations

The plane equation in space can be described in different ways, but the general
form of the equation is Equation (1):

ax` by` cz` d “ 0 (1)

or, in the vector form: unit length normal vector
`

nx, ny, nz
˘

and r = distance
from origin.

The normal vectorcan be determined from Equation (2):

Ax` By` Cz` 1 “ 0 (2)

and the distance from origin from Equation (3):

nx “ cospϕqcospωq
ny “ cospϕqsinpωq
nz “ sinpϕq

(3)

where Xp, Yp, Zp are the coordinates of a point lying on the plane.
Since vertical and horizontal planes are important for the purposes of

documentation, the ranges of the permitted values of the coefficients in the above
equations may be limited. For horizontal planes (i.e., floors and ceilings) it can be
assumed that C « 0 or φ « ˘90˝, and for vertical planes (i.e., the walls) that A « 0
and B « 0 or φ « 0˝. The presented equations describe the infinite plane. In order
to utilize the results, it is necessary to limit the plane to a rectangular region and to
determine four corners.

3.3. Determination of a Plane

Three different methods of plane determination were analysed. Each analysis
searched for points located in the point cloud on (or close to) a plane. All algorithms
are greedy algorithms, i.e., they try to find the plane on which the most points are
located. When the plane is determined, points located on this plane are eliminated
and the operation is repeated for the remaining points. The process ends when
certain number of points have been “used”; for the discussed algorithms, this was
established a priori as 10% of the unclassified points.
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3.3.1. The RANSAC Method

The RANSAC method was first described in [21]. It is an iterative method of
estimation of parameters of a mathematical model, based on a set of observational
data including outliers. Its algorithm is non-deterministic—the results are correct
with a certain probability, which depends, among others, on the percentage of
incorrect values in the data file. Due to the randomness of the procedure the results
may differ slightly for successive algorithm iterations.

3.3.2. The Region-Growing Method

Region-growing methods consist of grouping points of certain, similar features.
In the discussed case, the normal vector to a plane could become such a feature. It
is not possible to determine the normal vector to an individual point; it needs
to be calculated for certain groups of neighbouring points. As a result of the
above-described noises the direction of the normal vector, determined only for three
points, may be practically arbitrary, but using more points enables the calculation of
an average. For each analysed point a certain number of neighbours are selected, the
local plane is determined and the vector perpendicular to that plane is considered as
the normal vector for the selected point. Two criteria for the selection of neighbours
are applied in practice: “N”—nearest points, or points included in a certain sphere
with a defined radius or a cube with a defined side length. Generally, it is not a trivial
task to find such points in an unordered point cloud [22].

3.3.3. The Hough Transform

The Hough transform is a technique applied in image analysis [23]. Initially,
it was designed to detect straight lines in a digital image. Later, the method was
generalized for the detection of shapes that could be analytically described, such
as circles [24,25]. The rule is based on the detection of objects from a given class
by a voting procedure. This procedure is performed on parameter spaces that
describe shapes; each point increases the counter (accumulator) value in the position
corresponding to parameters it could be related to. After processing of all image
points, the local maximum values in the parameter space describe the detected
probable parameters of shapes. In practice, it is necessary to quantify the parameter
values. In the simplest case of detection of straight lines, the line inclination angle ϕ
(0 ď ϕ < π) and the distance from the origin of the co-ordinate system r (the range
depends on the image diagonal) could be used, as presented in Figure 4.

295



Remote Sens. 2015, 7 page–page 

6 

3.3.3. The Hough Transform 

The Hough transform is a technique applied in image analysis [23]. Initially, it was designed to 
detect straight lines in a digital image. Later, the method was generalized for the detection of shapes 
that could be analytically described, such as circles [24,25]. The rule is based on the detection of 
objects from a given class by a voting procedure. This procedure is performed on parameter spaces 
that describe shapes; each point increases the counter (accumulator) value in the position 
corresponding to parameters it could be related to. After processing of all image points, the local 
maximum values in the parameter space describe the detected probable parameters of shapes. In 
practice, it is necessary to quantify the parameter values. In the simplest case of detection of straight 
lines, the line inclination angle φ (0 ≤ φ < π) and the distance from the origin of the co-ordinate 
system r (the range depends on the image diagonal) could be used, as presented in Figure 4. 

 

Figure 4.The image space (a) and the diagram (b) in the parameter space for an individual point. 

For each point P(x,y), all cells of the accumulator that fit Equation (4) will be increased by a unit. 
It should be noted that, for each image point, it is necessary to determine the r value for each φ from 
the assumed range (Figure 4). = +  (4) 
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by means of Equation (3), we can determine three parameters: r, φ and ω. Based on the angles φ  
(−π/2 ≤ φ < −π/2) and ω (0 ≤ ω < π), we must determine the r value for each point X, Y and Z from the 
TLS data (Equation (4)). The counters need to be similarly increased. In this case the parameter space 
is three-dimensional, which causes difficulties for graphical representation. For computer 
processing, this means utilization of a three-dimensional instead of a two-dimensional array. This 
obviously requires more memory and computation time (reflected in Table 1). 

Table 1. Comparison of different plane detection methods. 
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3.4. Automatic Generation of Intensity Orthoimages 

The hierarchical and ordered structure of data recorded is an advantage of acquisition by 
terrestrial laser scanning (Figure 2b). Such an approach, which is based on an assumed fixed 
scanning interval, explicitly defines the interpolation method that is applied for generation of the 
digital surface model (DSM) in the GRID form. Additionally, it allows us to recover the “missing 

Figure 4. The image space (a) and the diagram (b) in the parameter space for an
individual point.

For each point P(x,y), all cells of the accumulator that fit Equation (4) will be
increased by a unit. It should be noted that, for each image point, it is necessary to
determine the r value for each ϕ from the assumed range (Figure 4).

r “ xcos pϕq ` ysin pϕq (4)

The Hough transform can be generalized for other cases [21,25,26]. Using the
plane description by means of Equation (3), we can determine three parameters:
r, ϕ and ω. Based on the angles ϕ (´π/2 ď ϕ < ´π/2) and ω (0 ď ω < π),
we must determine the r value for each point X, Y and Z from the TLS data
(Equation (4)). The counters need to be similarly increased. In this case the parameter
space is three-dimensional, which causes difficulties for graphical representation.
For computer processing, this means utilization of a three-dimensional instead of
a two-dimensional array. This obviously requires more memory and computation
time (reflected in Table 1).

Table 1. Comparison of different plane detection methods.

Algorithm Sub-Sampling Computation Time (s) Main Wall Parameters Number of Points in
First Wall (% Total)First Wall Next ω (˝) ϕ (˝) R (m)

RANSAC 3D 1:20 395 50–100 101.6 0.57 3.65 37
RANSAC 2D 1:20 85 60 102.2 - 3.74 34

Region
growing 1:20 1000 - 100.6 0.99 3.44 30

Hough 2D - 15 10 102.0 - 3.70 33
Hough 3D - 820 100 102.0 1.01 3.72 34

3.4. Automatic Generation of Intensity Orthoimages

The hierarchical and ordered structure of data recorded is an advantage of
acquisition by terrestrial laser scanning (Figure 2b). Such an approach, which is
based on an assumed fixed scanning interval, explicitly defines the interpolation
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method that is applied for generation of the digital surface model (DSM) in the GRID
form. Additionally, it allows us to recover the “missing points” (i.e., those deleted in
the data filtration process) based on the nearest points. This is why the Triangular
Irregular Network (TIN) interpolation method would be unsuitable.

As a result, the orthoimages are obtained for use in further investigations into
automation of the orientation of terrestrial digital images (Figure 5a). Additionally,
depth is recorded for each orthoimage, as well as the intensity of the laser beam
reflection (Figure 5b).
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The SURF algorithm was developed in response to SIFT in order to allow reception of similar 
results within a shorter time. Like SIFT, it is independent of scale and rotation, due to the use of the 
Hessian matrix during computation. The use of an integrated image in the SURF algorithm allows 
simple approximation of the Hessian matrix determinant using a rectangular filter (not DoG as in 
the case of SIFT). This reduces the computational complexity [28]. 
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The objective of our experiments was to investigate the possibility of using “free-hand” terrestrial 
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built-in digital cameras that acquire images during scanning, these are characterized by low 
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In generating high-resolution orthoimages of cultural heritage objects, it is important to achieve 
high geometric and radiometric quality. For this reason, it is important to acquire “free-handed” 
images from positions different to those of the scanner stations. In the methodology proposed by the 
authors, orientation of images in relation to the point cloud is performed automatically, using the 
SIFT algorithm for the detector and the descriptor, which searches for tie points. 

Common problems that occur in the acquisition of images of complex architectural objects 
relate to the maintenance of the reproducibility of the focal length and the limited possibility of 
framing appropriate parts when using fixed-focal-length lenses. The original application, based on 
processed algorithms from the OpenCV library,was used for image orientation in relation to scans. 

Figure 5. (a) Intensity orthoimage—Ground Sample Distance (GSD) = 2 mm;
(b) map of depth.

3.5. Detection of Keypoints—SIFT and SURF

3.5.1. SIFT (Scale Invariant Feature Transform)

The SIFT algorithm allows for the detection (extraction) of characteristic points
(“keypoints”) in four main steps: scale-space extreme detection, keypoint localization,
orientation assignment, and keypoint description. In the first step, the Gaussian
difference function is used to detect potential characteristic points independently
of the orientation scale. Areas located using the Difference of Gaussian (DoG)
detector are described by the 128-dimensional vector, divided by the square root
of the total squares of its elements, in order to achieve the invariance of changes in
illumination [27].

3.5.2. SURF (Speeded-Up Robust Features)

The SURF algorithm was developed in response to SIFT in order to allow
reception of similar results within a shorter time. Like SIFT, it is independent of scale
and rotation, due to the use of the Hessian matrix during computation. The use of an
integrated image in the SURF algorithm allows simple approximation of the Hessian
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matrix determinant using a rectangular filter (not DoG as in the case of SIFT). This
reduces the computational complexity [28].

3.6. Orientation of Images in Relation to Intensity Orthoimages—SIFT

The objective of our experiments was to investigate the possibility of using
“free-hand” terrestrial images for orthorectification or colouring of a point cloud.
Although our scanners are equipped with built-in digital cameras that acquire images
during scanning, these are characterized by low resolution and geometric quality [29].

In generating high-resolution orthoimages of cultural heritage objects, it is
important to achieve high geometric and radiometric quality. For this reason, it is
important to acquire “free-handed” images from positions different to those of the
scanner stations. In the methodology proposed by the authors, orientation of images
in relation to the point cloud is performed automatically, using the SIFT algorithm
for the detector and the descriptor, which searches for tie points.

Common problems that occur in the acquisition of images of complex
architectural objects relate to the maintenance of the reproducibility of the focal length
and the limited possibility of framing appropriate parts when using fixed-focal-length
lenses. The original application, based on processed algorithms from the OpenCV
library,was used for image orientation in relation to scans. For determination of an
image’s exterior orientation elements, the perspective transformation algorithm was
used, implemented in the OpenCV library [13,30].

The camera calibration matrix [13,30] contains information on changes of
the camera focal length fx, fy, depending on the pixel dimension in the X and Y
directions and the co-ordinates of the position of the camera’s principal point (cx and
cy, respectively).

In order to determine the camera orientation parameters, the solvePnP function
is used, which requires the following input parameters:

‚ point co-ordinates on the image;
‚ point co-ordinates in the global system;
‚ selection of LM optimization as a minimization method. In this case the function

finds a position that minimizes reprojection error, the sum of squared distances
between the points of the image and of the projection [31].

Output parameters were matrices, which included information about exterior
orientation elements, i.e., the rotation matrix (rvec) and the translation vector (tvec).

The above approach requires knowledge of the camera calibration parameters
(interior orientation). Another solution is possible, known as DLT (Direct Linear
Transformation). Determined parameters include hidden parameters of interior and
exterior orientation [32,33].
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3.7. Terrestrial Images Orthorectification

A digital image is a faithful image of an object presented in the central
projection [13]. Unlike in an orthoimage, as the result of an orthogonal projection
(i.e., a map), distortion of a digital image results from height differences of the object
and the inclination of the image. In the theoretical approach, an orthoimage is an
image whose projection plane is parallel to the reference plane, and where all rays
are perpendicular to those two planes.

For the needs of the cultural heritage inventory, true orthophoto images are
created [13,34]. Transformation of information acquired in the central projection
for the orthogonal projection relies upon the processing of every pixel of the source
image into the orthoimage, using knowledge of exterior orientation elements and
the digital surface model. An image pixel would then be mathematically assigned to
the generated orthoimage pixel as a result of superposition. This projection may be
forward or backward [13]. In the case of forward projection, each subsequent pixel is
processed and its corresponding pixel on the orthoimage.

In the case of backward projection, for each orthoimage pixel, the location of
a corresponding pixels is found on the image.

4. Experiments

This section reports the experiments carried out on the influence of the quality
and resolution of the point cloud on the quality of final products (Figure 1).

4.1. Determination of a Plane

Several experiments were performed to find the best algorithm for
plane determination.

4.1.1. The RANSAC Method

The first experiments were performed with the use of Point Cloud Library
algorithms [22]. The object pcl::SACSegmentation<pcl::PointXYZ> was selected
from this library.After determination of appropriate data sources and parameters,
plane coefficients were determined to meet the criteria. Additionally, the list of
inliers was returned to allow a repeated search for successive planes with the use
of unused points (outliers). Practical attempts to apply procedures for the complete
source data, comprising 48 million points, proved that equipment resources did not
allow sufficiently fast data processing. Only after 1:20 resampling were 16 regions
obtained that corresponded to planes (see colours on Figure 6); some points remained
unclassified by any plane (presented in grey).

The maximum deviation from the plane was assumed to be 5 cm (computed
deviations are presented in Figure 6).This value was arbitrarily selected based on
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evaluation of the “depth” of the utilized point cloud (Figure 3). Points located further
than 5 cm from the theoretical plane therefore were not considered in the plane
determination, since these are either gross errors or belong to other objects, such as
the floor or the ceiling. Most of the pseudo-3D drawingwas performed using the
open-source 3D point cloud and the mesh-processing software CloudCompare [35].
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The presented figures permit us to observe that the algorithm tends to separate points into 
groups, although the ω angle values are similar. The distribution of distance values from the 
theoretical wall surface is close to normal (Figure 6); this allows us to conclude that the plane was 
correctly determined. 

Similar procedures can be found in the “openMVG” (open Multiple View Geometry)  
library [36,37]. These include Max-Consensus, RANSAC, and AC-RANSAC (model and precision 
estimation), which also allow testing of the 2D version (neglecting the Z co-ordinate). Similarity was 
found between the size of the problem and the obtained results (Figure 7). 

 
Figure 7. Planes detected by the 2D RANSACalgorithm: (a) Points on the same plane are marked 
with the same colour (the visible errors can be explained by inclusion of points on the floor and the 
ceiling); (b) The rectangles describe the first four detected planes; (c) Histogram of the deviation. 

4.1.2. Region Growing 

The PCL library contains functions used for the determination of normal vectors for point 
clouds within the defined environment. The first attempts were made for the 2 mm neighbouring 
area, resulting in a high dispersion of normal vectors. 

Due to the limitations of the equipment, it was necessary to perform 1:10 resampling and select 
the neighbourhood area as 10 mm in order to reduce the dispersion value. Figures 8 and 9 present 
the components of the normal vector to neighbouring points in the cloud. 

Figure 6. Planes detected by the PCL (RANSAC3D) algorithm: (a) Points on the
same planes are marked with the same colour; (b) The rectangles describe the first
four detected planes; (c) Histogram of the deviation.

The presented figures permit us to observe that the algorithm tends to separate
points into groups, although the ω angle values are similar. The distribution of
distance values from the theoretical wall surface is close to normal (Figure 6); this
allows us to conclude that the plane was correctly determined.

Similar procedures can be found in the “openMVG” (open Multiple
View Geometry) library [36,37]. These include Max-Consensus, RANSAC, and
AC-RANSAC (model and precision estimation), which also allow testing of the
2D version (neglecting the Z co-ordinate). Similarity was found between the size of
the problem and the obtained results (Figure 7).
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Figure 7. Planes detected by the 2D RANSACalgorithm: (a) Points on the same
plane are marked with the same colour (the visible errors can be explained by
inclusion of points on the floor and the ceiling); (b) The rectangles describe the first
four detected planes; (c) Histogram of the deviation.
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4.1.2. Region Growing

The PCL library contains functions used for the determination of normal vectors
for point clouds within the defined environment. The first attempts were made for
the 2 mm neighbouring area, resulting in a high dispersion of normal vectors.

Due to the limitations of the equipment, it was necessary to perform
1:10 resampling and select the neighbourhood area as 10 mm in order to reduce
the dispersion value. Figures 8 and 9 present the components of the normal vector to
neighbouring points in the cloud.Remote Sens. 2015, 7 page–page 
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Figure 8. Distribution of the deviation of the normal vector (Ny component), expressed in degrees, 
determined for the neighbourhood of 10 × 10 mm. Three maximum values are visible in the 
histogram; they correspond to the floor (in blue), the mirror above the fireplace (in yellow) and the 
wall (in red). It can be seen that the niche area of the door was not separated, although it is located at a 
different depth. 

 
Figure 9. Points for which the deviation of the Ny normal vector does not exceed 1 degree. 

4.1.3. The 2D Hough Transform 

The direct utilization of the Hough transform requires an image to be generated on a 2D plane, 
i.e., that the XY co-ordinates be quantified and the Z co-ordinate neglected. The first experiments 
proved that, the use of simple procedures from the OpenCV library [30,31],does not obtain 
satisfactory results. The image is disturbed by points on the floor and the ceiling, and therefore there 
are no clear maximum values (Figure 10b). Modification of this algorithm not by a unit, but by the 
number of cloud points that correspond to the given XY cell led to more promising results (Figure 10c) 
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Figure 8. Distribution of the deviation of the normal vector (Ny component),
expressed in degrees, determined for the neighbourhood of 10 ˆ 10 mm. Three
maximum values are visible in the histogram; they correspond to the floor (in blue),
the mirror above the fireplace (in yellow) and the wall (in red). It can be seen that the
niche area of the door was not separated, although it is located at a different depth.
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1 degree.

4.1.3. The 2D Hough Transform

The direct utilization of the Hough transform requires an image to be generated
on a 2D plane, i.e., that the XY co-ordinates be quantified and the Z co-ordinate
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neglected. The first experiments proved that, the use of simple procedures from the
OpenCV library [30,31],does not obtain satisfactory results. The image is disturbed
by points on the floor and the ceiling, and therefore there are no clear maximum
values (Figure 10b). Modification of this algorithm not by a unit, but by the number
of cloud points that correspond to the given XY cell led to more promising results
(Figure 10c) than were obtained using the Canny algorithm, as presented in our
previous paper [18].
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Figure 10. Example of 2D Hough transform: (a) The XY image—the brightness
corresponds to the number of points included in the individual cell; the cell size
has been assumed as 20 ˆ 20 mm; (b) The parameter space when the counter
is incremented by 1; (c) The parameter space when the counter is incremented
by the number of points in a cell (the original algorithm)—the visible maximum
corresponds to the direction of the wall; (d) The line corresponding to the maximum
value from the image in (c), marked on the XY image.

Successive directions are determined after elimination of utilized points, zeroing
of the counters, re-calculation of the parameter space, and selection of successive
maximum values (Figure 11).

In order to avoid quantification of XY co-ordinates, a new version of the software
application was developed that determines the image in the parameter space, directly
on the basis of real XY co-ordinates from the point cloud. However, since the image
must be quantified in the parameter space, it turns out to be practically identical
with the image presented in Figure 11, albeit with considerably longer computing
time—the value from Equation (4) must be determined for each of 48 million points,
and in the previous version for 212 ˆ 430 = 91,000 points only.
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Successive directions are determined after elimination of utilized points, zeroing of the counters, 
re-calculation of the parameter space, and selection of successive maximum values (Figure 11). 

 
Figure 11.Planes detected by the 2D Hough transform: (a) Points on the same plane are marked with 
the same colour (the visible errors can be explained by inclusion of points on the floor and the 
ceiling); (b) The rectangles describe the first three detected planes; (c) Histogram of the deviation. 

In order to avoid quantification of XY co-ordinates, a new version of the software application 
was developed that determines the image in the parameter space, directly on the basis of real XY  
co-ordinates from the point cloud. However, since the image must be quantified in the parameter 
space, it turns out to be practically identical with the image presented in Figure 11, albeit with 
considerably longer computing time—the value from Equation (4) must be determined for each of 48 
million points, and in the previous version for 212 × 430 = 91,000 points only. 

4.1.4. The 3D Hough Transform 

Utilization of the 3D version requires the software developed by the authors. The quantified 3D 
image is created based on the XYZ point co-ordinates (the cell size is assumed as 2 × 2 × 2 cm). Figure 12 
illustrates the cross-sections. 

 
Figure 12. Example cross-sections of the 3D image utilized in the 3D Hough transform (the 
brightness corresponds to the number of points included in an individual cell): (a) XY image; (b) XZ 
image; (c) YZ image. 

Then, the 3D image is generated in the parameter space by determining the r parameter as the 
ω, φ function and updating the counters by the number of points included in a corresponding XYZ 
cell. The angular resolution of 1 degree for r = 2 cm is assumed. As mentioned above,the parameter 
space is three-dimensional and its presentation on a plane is difficult. Figure 13 illustrates the 
parameter-space cross-sections. 

Figure 11. Planes detected by the 2D Hough transform: (a) Points on the same
plane are marked with the same colour (the visible errors can be explained by
inclusion of points on the floor and the ceiling); (b) The rectangles describe the first
three detected planes; (c) Histogram of the deviation.

4.1.4. The 3D Hough Transform

Utilization of the 3D version requires the software developed by the authors.
The quantified 3D image is created based on the XYZ point co-ordinates (the cell size
is assumed as 2 ˆ 2 ˆ 2 cm). Figure 12 illustrates the cross-sections.
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Figure 12. Example cross-sections of the 3D image utilized in the 3D Hough
transform (the brightness corresponds to the number of points included in an
individual cell): (a) XY image; (b) XZ image; (c) YZ image.

Then, the 3D image is generated in the parameter space by determining the r
parameter as theω, ϕ function and updating the counters by the number of points
included in a corresponding XYZ cell. The angular resolution of 1 degree for r = 2 cm
is assumed. As mentioned above,the parameter space is three-dimensional and
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its presentation on a plane is difficult. Figure 13 illustrates the parameter-space
cross-sections.Remote Sens. 2015, 7 page–page 
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Figure 13. Example cross-sections of the domain of 3D parameters determined by the 3D Hough 
transform. The first three drawings show sections in the ω-r plane for the different parameters: φ: (a) 
φ = 0°; (b) φ = 45°; (c) φ = 90°. The next three show sections in the φ-r plane for the different 
parameters ω: (d) ω = 0°; (e) ω = 45°; (f) ω = 90°. 

The search planes illustrated in Figure 14 are almost identical to those used with the 3D 
RANSAC method because the calculated parameters are very similar (see Table 1). 

 
Figure 14. Planes detected by the 3D Hough algorithm: (a) Points on the same plane are marked with 
the same colour; (b) The rectangles describe the first four detected planes; (c) Histogram of the deviation. 

Similarly to the 2D case, the algorithm utilizing the original XYZ values instead of 3D images 
was also tested. The calculation time was unacceptable; therefore the results of this case have not 
been presented in this paper. 

4.1.5. Results 

It can be observed that all the algorithms tend to divide points into groups, though ω values are 
similar (Table 1). In practice, the distribution of distance values from the theoretical surface of the 
wall is always close to normal, which allows us to consider the determined parameters as correct. 

Source data comprised 48 million points with an average density of 10 points per cubic cm. 
Calculations were performed using an i5 2.8 GHz, 8 GB RAM PC. The original software was used, 
with the exception of the case of 3D RANSAC. 

It can be seen that the computed plane normal vectors are similar. Significant differences in the 
values of R do not affect the further processing of orthoimages, as the projection is along the 
direction of R. The authors decided to use the 2D Hough algorithm because it gave the shortest 
computation time. Additionally, the 2D Hough algorithm not only detects planes but also allows 
similar planes to be connected that are not direct neighbours. Cultural heritage buildings have 
complicated structures and contain a lot of similar planes. Figure 15 shows an example of planes 
detected by the 2D Hough algorithm. 

Figure 13. Example cross-sections of the domain of 3D parameters determined
by the 3D Hough transform. The first three drawings show sections in the ω-r
plane for the different parameters: ϕ: (a) ϕ = 0˝; (b) ϕ = 45˝; (c) ϕ = 90˝. The next
three show sections in the ϕ-r plane for the different parameters ω: (d) ω = 0˝;
(e)ω = 45˝; (f)ω = 90˝.

The search planes illustrated in Figure 14 are almost identical to those used with
the 3D RANSAC method because the calculated parameters are very similar (see
Table 1).
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Figure 14. Planes detected by the 3D Hough algorithm: (a) Points on the same
plane are marked with the same colour; (b) The rectangles describe the first four
detected planes; (c) Histogram of the deviation.
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Similarly to the 2D case, the algorithm utilizing the original XYZ values instead
of 3D images was also tested. The calculation time was unacceptable; therefore the
results of this case have not been presented in this paper.

4.1.5. Results

It can be observed that all the algorithms tend to divide points into groups,
though ω values are similar (Table 1). In practice, the distribution of distance values
from the theoretical surface of the wall is always close to normal, which allows us to
consider the determined parameters as correct.

Source data comprised 48 million points with an average density of 10 points
per cubic cm. Calculations were performed using an i5 2.8 GHz, 8 GB RAM PC. The
original software was used, with the exception of the case of 3D RANSAC.

It can be seen that the computed plane normal vectors are similar. Significant
differences in the values of R do not affect the further processing of orthoimages, as
the projection is along the direction of R. The authors decided to use the 2D Hough
algorithm because it gave the shortest computation time. Additionally, the 2D Hough
algorithm not only detects planes but also allows similar planes to be connected that
are not direct neighbours. Cultural heritage buildings have complicated structures
and contain a lot of similar planes. Figure 15 shows an example of planes detected
by the 2D Hough algorithm.Remote Sens. 2015, 7 page–page 
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Figure 15. Results of 2D Hough algorithm for an object with many planes: (a) the raw point cloud; 
(b) detected points belonging to two different planes. 

4.2. Automatic Generation of Intensity Orthoimages 

The orthoimage generation process was performed automatically using the LupoScan software. A 
point cloud of 2 mm resolution was used. Thus, it was not possible to generate an orthoimage with a 
Ground Sample Distance (GSD) smaller than 2 mm. The following input parameters were assumed: 

• NN interpolation;  
• assumed deviation of automatically generated plane = 5 cm;  
• buffer of projected points = ±3 × 5 cm;  
• resolution of generated object = 3 mm. 

The resulting orthoimages (Figure 5a) were then used for further investigations concerning 
automation of terrestrial images. Additionally, depth information was recorded for each 
orthoimage, as well as information concerning the laser-beam reflectance intensity (Figure 5b). 

4.3. Orientation of Images in Relation to Intensity Orthoimages—SIFT 

Preliminary works were presented in [18]. This preliminary research was based on the 
utilization of two approaches to data orientation, with the use of cameras of determined interior 
orientation elements and images acquired with the use of a non-calibrated camera. The test site was 
the ruined castle in Iłża, which is characterized by relatively non-complicated surfaces whose shape 
could be considered as a plane. In the next stage, presented here, in order to test the methodology of 
the automatic generation of orthoimages some historical rooms at the Museum of King John III’s 
Palace in Wilanów were selected as test sites. These rooms are characterized by numerous decorative 
elements and sculptural details. The terrestrial image orientation process was carried out based on 
TLS data, according to the two different approaches: 

Variant I—the utilized image covered the entire area; the camera was calibrated in a test field; 
the exterior orientation elements were determined and considered further at the data processing 
stage (Figure 16a). 

Variant II—a group of images was acquired that covered the analysed area. The horizontal 
coverage of the images was 70% and the vertical coverage up to 50%. Self-calibration was performed 
and the interior parameters were considered in further data processing (Figure 16b). 

 
Figure 16. Examples of used images: (a) Variant I: one image covering the entire orthoimage area;  
(b) Variant II: part of multiple images covering the entire orthoimage area. 

Figure 15. Results of 2D Hough algorithm for an object with many planes: (a) the
raw point cloud; (b) detected points belonging to two different planes.

4.2. Automatic Generation of Intensity Orthoimages

The orthoimage generation process was performed automatically using the
LupoScan software. A point cloud of 2 mm resolution was used. Thus, it was not
possible to generate an orthoimage with a Ground Sample Distance (GSD) smaller
than 2 mm. The following input parameters were assumed:

‚ NN interpolation;
‚ assumed deviation of automatically generated plane = 5 cm;
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‚ buffer of projected points = ˘3 ˆ 5 cm;
‚ resolution of generated object = 3 mm.

The resulting orthoimages (Figure 5a) were then used for further investigations
concerning automation of terrestrial images. Additionally, depth information was
recorded for each orthoimage, as well as information concerning the laser-beam
reflectance intensity (Figure 5b).

4.3. Orientation of Images in Relation to Intensity Orthoimages—SIFT

Preliminary works were presented in [18]. This preliminary research was
based on the utilization of two approaches to data orientation, with the use of
cameras of determined interior orientation elements and images acquired with
the use of a non-calibrated camera. The test site was the ruined castle in Iłża,
which is characterized by relatively non-complicated surfaces whose shape could
be considered as a plane. In the next stage, presented here, in order to test the
methodology of the automatic generation of orthoimages some historical rooms at
the Museum of King John III’s Palace in Wilanów were selected as test sites. These
rooms are characterized by numerous decorative elements and sculptural details. The
terrestrial image orientation process was carried out based on TLS data, according to
the two different approaches:

Variant I—the utilized image covered the entire area; the camera was calibrated
in a test field; the exterior orientation elements were determined and considered
further at the data processing stage (Figure 16a).

Variant II—a group of images was acquired that covered the analysed area.
The horizontal coverage of the images was 70% and the vertical coverage up to
50%. Self-calibration was performed and the interior parameters were considered in
further data processing (Figure 16b).
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The images were processed in the following stages:

‚ SIFT keypoints detection on the image/images and the intensity orthoimage.

Use of this detector made it possible to detect evenly distributed keypoints,
which were used as tie (homologous) points in the next step.

‚ SIFT keypoints description and matching.

During the first step the gradient value and orientation for each keypoint was
calculated. In order to compare and match the described features, the “Best match”
function was used [36].

‚ Division of points into control and check points;
‚ Bundle adjustment.

Due to the different textures and constituent materials of cultural heritage
objects, incorrect distribution of tie points may occur. An automatic procedure was
developed for this eventuality, which may be applied for controlling the distribution
of points before the adjustment is performed. At the first stage the algorithm
divides images into four areas and checks whether the points are distributed
approximately evenly. If one group of points is 10 times greater than another, an
incorrect distribution is signalled. In the next step the algorithm checks whether the
number of points in each image quarter is smaller than two (i.e., eight points in the
entire image). If such a situation occurs, the process is terminated and the image is
not oriented. After this stage the adjustment using the least-square method is applied
(Gauss-Markov).

‚ Control of results

The obtained results were controlled based on “checkpoints”.

4.3.1. Detection of Tie Points with the Use of the SIFT Algorithm
(Authors’ Application)

The SIFT algorithm [27] was applied to search for and match tie points,
implemented in the OpenCV function library with default parameter values.
Generated orthoimages were geo-referenced and the depth was recorded; this not
only allowed the determination of field point co-ordinates in the orthoimage plane,
but also the addition of the third dimension. These data allowed observations to be
adjusted appropriately.

4.3.2. Orientation with the Use of Two Methods

Unfortunately, not all points that were automatically detected by the SIFT
algorithm were correctly matched [18]. The criterion for correct point qualification
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related to the difference between the co-ordinates of a point determined on an
image and the calculated value. The process was performed automatically using the
software developed by the authors. In order to set a filtering threshold a series of
empirical tests were performed.

Variant I

Eight single images of four walls were used for testing and analysis. This
approach allowed implementation of the orthorectification process without inclusion
of a mosaic step. The advantage of using the images in this way was the possibility
of eliminating the influence of texture repeatability on the number and quality of
detected homologous points (Figure 17).
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Figure 17. Example of utilized image with control points in green and points eliminated from the 
adjustment process in red; a yellow “o”—a check point. 

 
Figure 18. Histograms of control-and check-point deviation: (a) X direction in pixels—control; (b) Y 
direction in pixels—control; (c) X direction in pixels—check; (d) Y direction in pixels—check. 

All analyses were performed using the authors’ original software, based on the Matlab package. 
It is assumed in geodesy that least-square adjustment methods have Gaussian distribution [13]. 

This confirms that only random errors occur, without gross errors. The possibility of evaluating the 
correctness of the results based on the normal distribution is influenced by the oscillation of the 
majority of deviations close to zero (the expected value). The control-point histograms show proximity 
to normal distribution, but are characterized by left- and right-hand obliquity (Figure 18). The 
histograms are not shifted, which means that systematic errors do not exist. The obliquity may be 
considered as having been influenced by the terrestrial laser-scanner data. The distribution of the 
control points shows deviations in an interval of ±3 pixels, which corresponds to a range of ±3 mm. 

The check-point histograms also show an approximately normal distribution, where the majority of 
deviations are oscillating around zero. This confirms the lack of systematic errors. The deviations are 
in an interval of ±3.5 pixels, which corresponds to a range of ±3.5 mm. This image orientation 
accuracy is sufficient for orthoimage generation of GSD 3 mm. 

The applied intensity orthoimage (including the depth map) was characterized by a GSD of  
3 mm, and the image had a GSD of 1 mm. The obtained mean standard deviation for matching of a 
digital image was equal to approximately three pixels, which is equal to the size of the intensity 
orthoimage. Appendix 2 presents the extended statistical data. 

Variant II  

In the second variant, the group of images covering the entire wall was used for generation of 
the orthoimage. 

Due to the repetitive texture of the analysed object (decorated fabrics), the tie points were 
incorrectly detected by the algorithm. During the process of filtration about 67% of points were 
eliminated from further processing. Examples of images with tie points are presented in Figure 19. 

Figure 17. Example of utilized image with control points in green and points
eliminated from the adjustment process in red; a yellow “o”—a check point.

The proposed algorithm allows to detect about 2254 tie points but unfortunately,
about 11% of them was incorrect (Appendix 1).

In order to enable an accurate analysis of image matching based on control
points; deviations were also analysed. Due to the great number of tie points,
the decision was made to present the results in the form of histograms showing
deviations from the X and Y axes, respectively. Figure 18 shows four example
diagrams for one of the images.

All analyses were performed using the authors’ original software, based on the
Matlab package.

It is assumed in geodesy that least-square adjustment methods have Gaussian
distribution [13]. This confirms that only random errors occur, without gross errors.
The possibility of evaluating the correctness of the results based on the normal
distribution is influenced by the oscillation of the majority of deviations close to
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zero (the expected value). The control-point histograms show proximity to normal
distribution, but are characterized by left- and right-hand obliquity (Figure 18). The
histograms are not shifted, which means that systematic errors do not exist. The
obliquity may be considered as having been influenced by the terrestrial laser-scanner
data. The distribution of the control points shows deviations in an interval of
˘3 pixels, which corresponds to a range of ˘3 mm.
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This confirms that only random errors occur, without gross errors. The possibility of evaluating the 
correctness of the results based on the normal distribution is influenced by the oscillation of the 
majority of deviations close to zero (the expected value). The control-point histograms show proximity 
to normal distribution, but are characterized by left- and right-hand obliquity (Figure 18). The 
histograms are not shifted, which means that systematic errors do not exist. The obliquity may be 
considered as having been influenced by the terrestrial laser-scanner data. The distribution of the 
control points shows deviations in an interval of ±3 pixels, which corresponds to a range of ±3 mm. 

The check-point histograms also show an approximately normal distribution, where the majority of 
deviations are oscillating around zero. This confirms the lack of systematic errors. The deviations are 
in an interval of ±3.5 pixels, which corresponds to a range of ±3.5 mm. This image orientation 
accuracy is sufficient for orthoimage generation of GSD 3 mm. 

The applied intensity orthoimage (including the depth map) was characterized by a GSD of  
3 mm, and the image had a GSD of 1 mm. The obtained mean standard deviation for matching of a 
digital image was equal to approximately three pixels, which is equal to the size of the intensity 
orthoimage. Appendix 2 presents the extended statistical data. 

Variant II  

In the second variant, the group of images covering the entire wall was used for generation of 
the orthoimage. 

Due to the repetitive texture of the analysed object (decorated fabrics), the tie points were 
incorrectly detected by the algorithm. During the process of filtration about 67% of points were 
eliminated from further processing. Examples of images with tie points are presented in Figure 19. 

Figure 18. Histograms of control-and check-point deviation: (a) X direction in
pixels—control; (b) Y direction in pixels—control; (c) X direction in pixels—check;
(d) Y direction in pixels—check.

The check-point histograms also show an approximately normal distribution,
where the majority of deviations are oscillating around zero. This confirms the lack of
systematic errors. The deviations are in an interval of ˘3.5 pixels, which corresponds
to a range of ˘3.5 mm. This image orientation accuracy is sufficient for orthoimage
generation of GSD 3 mm.

The applied intensity orthoimage (including the depth map) was characterized
by a GSD of 3 mm, and the image had a GSD of 1 mm. The obtained mean standard
deviation for matching of a digital image was equal to approximately three pixels,
which is equal to the size of the intensity orthoimage. Appendix 2 presents the
extended statistical data.

Variant II

In the second variant, the group of images covering the entire wall was used for
generation of the orthoimage.

Due to the repetitive texture of the analysed object (decorated fabrics), the tie
points were incorrectly detected by the algorithm. During the process of filtration
about 67% of points were eliminated from further processing. Examples of images
with tie points are presented in Figure 19.

The analysed histograms show close-to-normal distribution, but are
characterized by left- and right-hand obliquity (Figure 20a,b). In the distribution of
control points, deviations are in the interval of ˘3.5 pixels, which corresponds to a
range of ˘3.5 mm. The check-points histogram (Figure 20c,d) shows that Gaussian
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distribution was not achieved, due insufficient samples. Intervals of deviation values
of between ´2 and 2.5 pixels for the X coordinate and ´2 and 5 pixels for the Y
coordinate were taken to define accurate measurements; however, the majority of
points oscillated between ´2.5 and 2.5 pixels.
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Figure 19. Distribution of points detected in the single image (from a group) and in the orthoimage: 
green “o”—control points; red “+”—wrong matched points; yellow “o”—check points. 

 
Figure 20. Histograms of control- and check-point deviations: (a) X direction in pixels-control; (b) Y 
direction in pixels control; (c) X direction in pixels-check; (d) Y direction in pixels-check. 

Due to an excessive number of points being eliminated during tie-point-detection control, the 
decision was made to superimpose masks on orthoimages in order to improve the quality and the 
number of points detected in the combination of images and orthoimages. The mask generation 
process was performed automatically. After initial orientation of an image covering a part of an 
orthoimage, the projections of image coordinates on the orthoimage plane were calculated. 
Generation of such a mask allows generation of a new orthoimage for re-orientation of images. 

Utilization of masks for tie-point detection improved the number of correctly detected points. 
The proposed algorithm allows to detect 690 tie points however about 19% of them was incorrect 
(Appendix 3). 

Matching-point deviations were analysed and the results presented in the form of histograms. 
Figure 21 presents examples of four diagrams. 

Figure 19. Distribution of points detected in the single image (from a group) and
in the orthoimage: green “o”—control points; red “+”—wrong matched points;
yellow “o”—check points.
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number of points detected in the combination of images and orthoimages. The mask generation 
process was performed automatically. After initial orientation of an image covering a part of an 
orthoimage, the projections of image coordinates on the orthoimage plane were calculated. 
Generation of such a mask allows generation of a new orthoimage for re-orientation of images. 

Utilization of masks for tie-point detection improved the number of correctly detected points. 
The proposed algorithm allows to detect 690 tie points however about 19% of them was incorrect 
(Appendix 3). 

Matching-point deviations were analysed and the results presented in the form of histograms. 
Figure 21 presents examples of four diagrams. 

Figure 20. Histograms of control- and check-point deviations: (a) X direction in
pixels-control; (b) Y direction in pixels control; (c) X direction in pixels-check; (d) Y
direction in pixels-check.

Due to an excessive number of points being eliminated during tie-point-detection
control, the decision was made to superimpose masks on orthoimages in order to
improve the quality and the number of points detected in the combination of images
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and orthoimages. The mask generation process was performed automatically. After
initial orientation of an image covering a part of an orthoimage, the projections of
image coordinates on the orthoimage plane were calculated. Generation of such a
mask allows generation of a new orthoimage for re-orientation of images.

Utilization of masks for tie-point detection improved the number of correctly
detected points. The proposed algorithm allows to detect 690 tie points however
about 19% of them was incorrect (Appendix 3).

Matching-point deviations were analysed and the results presented in the form
of histograms. Figure 21 presents examples of four diagrams.

Figure 21a,b shows that Gaussian distribution was not achieved. An interval
between ´2 and 2.5 pixels for the X coordinate and ´2 and 5 pixels for the Y
coordinate were taken as measures of accuracy; however, the majority of points
oscillated between ´5 and 5 pixels, corresponding to a range of ˘5 mm. In the case
of the check points (Figure 21c,d), deviations are around ˘5 pixels, corresponding to
a range ˘5 mm. Extended statistics are shown in Appendix 4.

The obtained maximum values of standard deviations for matching of a
digital image were equal to approximately four pixels, close to the size of the
intensity orthoimage.

These analyses present only the accuracy of image orientation in relation to
TLS data.
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Figure 21. Histograms of control- and check points deviations: (a) X direction in pixels-control; (b) Y 
direction in pixels-control; (c) X direction in pixels-check; (d) Y direction in pixels-check. 

4.3.3. Orientation Using 3D DLT Method 

Another method of orientation of images in relation to terrestrial laser-scanning data is the DLT 
(Figure 22). In order to test the efficiency of this method, several images covering the investigated 
area were analysed to assess the quality of the generated orthoimage close to the area borders. When 
the DLT method is applied it is not possible to directly utilize interior orientation elements obtained 
from calibration in particular distortion. Image orientation using the DLT method takes 11 
coefficients (or more when deformations are caused, for example, by distortion) into consideration. 
DLT is performed separately for each image; therefore, it is not possible to apply the camera 
calibration a priori; it is performed separately for each image. It is also impossible to determine DLT 
coefficients if all matching points are located on one plane, which is highly probable in the  
analysed cases. 

 
Figure 22. Example of utilized image with points used for orientation (control points, in green) and 
yellow “o”—check points. 

Figure 21. Histograms of control- and check points deviations: (a) X direction
in pixels-control; (b) Y direction in pixels-control; (c) X direction in pixels-check;
(d) Y direction in pixels-check.

4.3.3. Orientation Using 3D DLT Method

Another method of orientation of images in relation to terrestrial laser-scanning
data is the DLT (Figure 22). In order to test the efficiency of this method, several
images covering the investigated area were analysed to assess the quality of the
generated orthoimage close to the area borders. When the DLT method is applied
it is not possible to directly utilize interior orientation elements obtained from
calibration in particular distortion. Image orientation using the DLT method takes
11 coefficients (or more when deformations are caused, for example, by distortion)
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into consideration. DLT is performed separately for each image; therefore, it is not
possible to apply the camera calibration a priori; it is performed separately for each
image. It is also impossible to determine DLT coefficients if all matching points are
located on one plane, which is highly probable in the analysed cases.
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Figure 22. Example of utilized image with points used for orientation (control points, in green) and 
yellow “o”—check points. Figure 22. Example of utilized image with points used for orientation (control

points, in green) and yellow “o”—check points.

Control point deviations were also analysed, and the results presented as
histograms showing deviations from the X and Y axes, respectively (Figure 23).

Compared to the independent bundle method, the orientation results obtained
with the DLT method are characterized by significantly lower orientation accuracy
for control points. Obtained deviations for check points reach as high as 20 pixels
(GSD 3 mm).
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Compared to the independent bundle method, the orientation results obtained with the DLT 
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Figure23. Histograms of deviations of control and check points: (a) X direction in pixels-control;  
(b) Y direction in pixels-control; (c) X direction in pixels-check; (d) Y direction in pixels-check. 

4.4. RGB Orthoimages Generation and Inspection (SURF Algorithm) 

The process of generation of colour orthoimages was performed automatically using the LupoScan 
package. Due to the nature of the regular DSM, the backward projection based on interpolation of 
the radiometric values for all nodes of the network was applied. This avoided deformations of 
radiometric values and allowed colour to be maintained, as required in conservation analyses. 

The final orthoimage (after mosaicking) is shown in Figure 24 (Appendix 5). The red rectangle 
shows the places where two different images overlap. It can be seen that there are no parallaxes,only 
differences in colour. 

 
Figure 24. RGB orthoimage with marked overlaps and seam lines. 

In order to analyse the accuracy of the generated RGB orthoimage, it was compared with the 
intensity orthoimage (Table 2). 

  

Figure 23. Histograms of deviations of control and check points: (a) X direction in
pixels-control; (b) Y direction in pixels-control; (c) X direction in pixels-check; (d) Y
direction in pixels-check.
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4.4. RGB Orthoimages Generation and Inspection (SURF Algorithm)

The process of generation of colour orthoimages was performed automatically
using the LupoScan package. Due to the nature of the regular DSM, the backward
projection based on interpolation of the radiometric values for all nodes of the
network was applied. This avoided deformations of radiometric values and allowed
colour to be maintained, as required in conservation analyses.

The final orthoimage (after mosaicking) is shown in Figure 24 (Appendix 5).
The red rectangle shows the places where two different images overlap. It can be
seen that there are no parallaxes, only differences in colour.
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In order to analyse the accuracy of the generated RGB orthoimage, it was compared with the 
intensity orthoimage (Table 2). 

  

Figure 24. RGB orthoimage with marked overlaps and seam lines.

In order to analyse the accuracy of the generated RGB orthoimage, it was
compared with the intensity orthoimage (Table 2).
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Table 2. Deviation between check points on intensity orthoimages and RGB
orthoimages (GSD—3 mm).

Id RMSE >2 RMSE

X (mm) Y (mm) X (%) Y (%)

1 2.69 3.12 2.5 1.8
2 2.03 2.00 2.4 2.4
3 2.15 2.06 4.0 4.6
4 2.19 1.76 10.6 13.4

Figure 25 shows considerable displacements at the image borders. This results
from uneven distribution of automatically detected matching points and from
distortion, which has not been considered in the utilized 3D DLT method.
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considered in the utilized 3D DLT method. 

 
Figure 25. An RGB image with displacements resulting from inaccurately oriented images using the 
3D DLT method. 

In order to analyse the accuracy of the generated RGB orthoimage, it was compared with the 
intensity orthoimage. The obtained root mean square error (RMSE) values were: X—5.91 mm,  
Y—6.76 mm, Z—6.76 mm. For 28% of points, the deviation was larger than 2 RMS. 

5. Discussion 

The experiments proved that, depending on the scanner and the surface type of the analysed 
object, the “depth” of the cloud of points is often great; indeed, it can be greater than the scan 
resolution (see Section 3.1.). Therefore, the quality of the point cloud has an important influence on 
the correctness of the determined projection plane, the quality of the image generated in the 
intensity, and the accuracy of the orientation of terrestrial images. The present authors propose that 
every orthoimage generation process, particularly in relation to cultural heritage objects, should be 
preceded by an initial analysis of the geometric quality of the point cloud. In the experiments 
presented in this paper, original software applications were used. 

Five methods of detection of the projection plane of an orthoimage in the point cloud were 
tested (described in Section 4.1.). Each of the search methods produced similar results, but some 
turned out to be highly time consuming [23–25,30]. Based on the performed analyses, it can be stated 
that the fastest implementation of automatic detection of a plane is with the modified Hough 2D 
algorithm (Table 1). In order to verify the operations of particular methods, the original software 
application was developed in C++; this will be modified in further experiments. 

Figure 25. An RGB image with displacements resulting from inaccurately oriented
images using the 3D DLT method.

In order to analyse the accuracy of the generated RGB orthoimage, it was
compared with the intensity orthoimage. The obtained root mean square error
(RMSE) values were: X—5.91 mm, Y—6.76 mm, Z—6.76 mm. For 28% of points, the
deviation was larger than 2 RMS.

5. Discussion

The experiments proved that, depending on the scanner and the surface type of
the analysed object, the “depth” of the cloud of points is often great; indeed, it can be
greater than the scan resolution (see Section 3.1). Therefore, the quality of the point
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cloud has an important influence on the correctness of the determined projection
plane, the quality of the image generated in the intensity, and the accuracy of the
orientation of terrestrial images. The present authors propose that every orthoimage
generation process, particularly in relation to cultural heritage objects, should be
preceded by an initial analysis of the geometric quality of the point cloud. In the
experiments presented in this paper, original software applications were used.

Five methods of detection of the projection plane of an orthoimage in the point
cloud were tested (described in Section 4.1). Each of the search methods produced
similar results, but some turned out to be highly time consuming [23–25,30]. Based on
the performed analyses, it can be stated that the fastest implementation of automatic
detection of a plane is with the modified Hough 2D algorithm (Table 1). In order to
verify the operations of particular methods, the original software application was
developed in C++; this will be modified in further experiments.

Due to the fact that the orientation process of images requires searching for
homologous points, CV algorithms—the detector and descriptor SIFT—were used for
that purpose. The experiments were performed in two variants: in the first variant,
an individual image covering the entire investigated area was used, and in the
second variant a group of images covering the entire area (see Section 4.3.2). Matched
points were divided into two groups—control and check points—for orientation
and checking. For the first variant, a detailed accuracy analysis is presented in
Appendix 1; the maximum relative error is equal to 0.2%. For the second variant,
the solution utilized the entire intensity orthoimage and the mask that limits the
projected area. When the area is not limited by the mask, the points are incorrectly
matched by the SIFT descriptor (about 67% incorrectly matched points) [27]. Tests
were performed towards the automation of the process of defining the mask on
the intensity image. The basic version of the 3D DLT method used here involves
no interior orientation elements obtained from calibration. The accuracy of image
orientation is therefore lower in relation to TLS data than when the independent
bundle method is used, and generated images are characterized by considerable
displacements in the common overlap areas.

A detailed geometric inspection of obtained orthoimages was performed for
both variants. For this purpose, an independent CV algorithm—SURF—was applied.
The intensity orthoimage and the RGB orthoimage were compared (see Section 4.4).
The mean value of deviations was smaller than 2 pixels (GSD 3 mm).

6. Conclusions

The performed experiments proved that the orthoimage generation process
can be automated, starting with generation of the reference plane and ending with
automatic RGB orthoimage generation.
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The proposed original approach, based on the modified Hough transform,
allows us to considerably improve the process of searching for planes on entire scans,
without the necessity of dividing them. Thus, the split-up scan with automatically
generated planes simultaneously determines the number of orthoimages and the
maximum deviations from the plane, which define the range (in front of and
behind the plane) of points required for orthoimage generation. This new approach
accelerates the orthoimage generation process and eliminates scanning noises from
close-range scanners.

Utilization of orthoimages in the form of raster data, complemented by the third
dimension, allows the application of CV algorithms to search for homologous points
and perform spatial orientation of free-hand images. Such an approach eliminates
the necessity to measure the control points.

This approach is not limited to images acquired by cameras integrated with
scanners, which are characterized by lower geometric and radiometric quality.
The solution is particularly recommended for generation of photogrammetric
documentation of high resolution, when resolution and accuracy in the order of
individual millimetres are required.

In conclusion, this approach with original software allows more complete
automation of the generation of the high-resolution orthoimages used in the
documentation of cultural heritage objects.
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A Multi-Data Source and Multi-Sensor
Approach for the 3D Reconstruction and
Web Visualization of a Complex
Archaelogical Site: The Case Study of
“Tolmo De Minateda”
Jose Alberto Torres-Martínez, Marcello Seddaiu, Pablo Rodríguez-Gonzálvez,
David Hernández-López and Diego González-Aguilera

Abstract: The complexity of archaeological sites hinders creation of an integral model
using the current Geomatic techniques (i.e., aerial, close-range photogrammetry and
terrestrial laser scanner) individually. A multi-sensor approach is therefore proposed
as the optimal solution to provide a 3D reconstruction and visualization of these
complex sites. Sensor registration represents a riveting milestone when automation
is required and when aerial and terrestrial datasets must be integrated. To this end,
several problems must be solved: coordinate system definition, geo-referencing,
co-registration of point clouds, geometric and radiometric homogeneity, etc.
The proposed multi-data source and multi-sensor approach is applied to the study
case of the “Tolmo de Minateda” archaeological site. A total extension of 9 ha
is reconstructed, with an adapted level of detail, by an ultralight aerial platform
(paratrike), an unmanned aerial vehicle, a terrestrial laser scanner and terrestrial
photogrammetry. Finally, a mobile device (e.g., tablet or smartphone) has been used
to integrate, optimize and visualize all this information, providing added value to
archaeologists and heritage managers who want to use an efficient tool for their
works at the site, and even for non-expert users who just want to know more about
the archaeological settlement.

Reprinted from Remote Sens. Cite as: Torres-Martínez, J.A.; Seddaiu, M.;
Rodríguez-Gonzálvez, P.; Hernández-López, D.; González-Aguilera, D. A Multi-Data
Source and Multi-Sensor Approach for the 3D Reconstruction and Web Visualization
of a Complex Archaelogical Site: The Case Study of “Tolmo De Minateda”.
Remote Sens. 2016, 8, 550.

1. Introduction

Several techniques have been applied thus far for the 3D reconstruction
and visualization of archaeological settlements based on the use of close-range
photogrammetry [1,2], terrestrial laser scanner (TLS) [3,4] or unmanned aerial
vehicles (UAV) [5]. However, due to the inherent complexity of these sites, several
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problems arise when 3D reconstruction of these sites is mandatory and just one type
of geotechnology is applied. For instance, aerial photogrammetry exhibits problems
reconstructing vertical planes, common in archaeological sites, whereas terrestrial
laser scanners or terrestrial photogrammetry could provide good results. However,
these terrestrial techniques are subject to problems with horizontal surfaces or
elevated areas. Other authors have explored multi-data and multi-sensor approaches
to record and reconstruct complex archaeological sites. Recently in [6], the potential
of this type of hybrid approach is shown for the analysis and interpretation of 3D/4D
information applied to archaeological settlements. In order to guarantee geometric
and radiometric quality, a combination of TLS and terrestrial photogrammetry is
used and applied, enabling the monitoring of the settlement based on a volume
analysis. However, this approach has problems related to the recording of more
elevated areas. In order to solve this limitation, in [7], the authors use an aerial
multi-sensor approach for the 3D reconstruction and visualization of archaeological
settlements which provides a very good coverage of those elevated areas. The quality
and precision of the TLS and UAV registration has been outlined in [8] where authors
reconstruct the interior and exterior of the Church of Santa Barbara (Italy) after
the earthquake it suffered in 2012. Trying to overcome the main UAV limitations,
payload and autonomy, other authors have proved that low-cost manned platforms
such as the paratrike can be an efficient solution for the recording of large sites [9],
including archaeological sites [10], and allowing to put on board multiple sensors
such as thermographic or multispectral cameras [11]. In those cases where the
archeological site is complex and subterranean, other hybrid, dynamic and terrestrial
approaches could be interesting. Unfortunately, there are not many mobile laser
scanners, photogrammetric or hybrid systems for subterranean sites available in
the market [12,13], even less specific for the field of archaeological recording. Some
authors such as Canter et al. [14] have developed indoor mapping systems for the
generation of indoor cartography from accurate geospatial information. The main
advantage of these systems is that they integrate high-precision GNSS with advanced
inertial technology (accelerometers and gyroscopes) for the geo-referencing of the site
using measures from its exterior, apart from an Applanix POS system for positioning
and orientation that provides uninterrupted measurements of the true position,
roll, pitch and yaw of the vehicle moving indoors. Other authors have advanced
more sophisticated systems based on a wheeled mobile robot and a multi-sensor
global registration approach [15]. In particular, a geometric model to derive depth
information is proposed based on a registration of heterogeneous 3D data arising
from eight ultrasonic sonars, one TLS and three visual sensors.

It thus becomes clear that with the advances in multi-sensor and multi-data from
different sources, data integration has become as a valuable tool in archaeological
applications. The main objective of multi-sensor data integration is to register sensor
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data from different sources—with different characteristics, resolution, and quality in
order to provide more reliable, accurate, and useful information required for diverse
archaeological applications. In addition, this multi-data and multi-sensor integration
can be improved through 3D geographical information systems (3DGIS) together
with the final presentation of the products based on 3D Web.

The goal of this study is to propose a multi-data source and multi-sensor
workflow in order to obtain high quality archaeological products, contributing to
the robust interpretation of the observed objects/scenes and providing the basis
of effective planning and decision making, essential in archaeology. To this end,
terrestrial scans and images will be registered with aerial images acquired from
a paratrike and an unmanned aerial vehicle (UAV). The methodology employed
for data processing has been extensively tested by several authors. In [16], the
authors employed computer vision algorithms for image-based modelling from
aerial imagery and point cloud generation in urban environments, which are similar
to those used in this work.

To carry out studies of characterization, measurement and analysis of the
surface and the elements presented in the site, the geometrical information
(acquired with geomatic sensors) is combined with other available thematic data
such as photographs, sketches, restoration reports, schedules, etc. in a 3DGIS,
Geoweb3D® [17]. In this way, a description of the site through time is possible. Also,
the availability of the three-dimensional information of the settlement through the
Web using mobile devices provides added value for archaeologists and heritage
managers, simplifying the data acquisition, as well as its analysis in the field.
Moreover, the centralization of the information and its external storage means it
becomes available to different experts and organizations. Last but not least, the
knowledge of the settlement is open to the general public based on an easy-to-use
interface which integrates different 2D and 3D resources.

In this study, a specific simplification and optimization procedure was
implemented to visualize the different 3D products through the Web using mobile
devices and the Open Source library Cesium [18], developed by the company
Analytical Graphics, Inc. (AGI, Greenbelt, MD, USA) [19]. Other authors [20]
have developed similar works using their own system, SGIS3D, which uses VRML
(Virtual Reality Modeling Language) format. However, one of the main limitations
of this language is the mandatory use of plugins, as well as its lack of optimization
through the graphical processing unit (GPU), crucial in those steps related to
texture mapping. Another similar approach in the archaeological field is developed
by [21], who implements a spatial data infrastructure known as QuaeryArch3D and
applied it to the archaeological settlement of “Maya de Copan” in Honduras, a
UNESCO World Heritage Site. In this case, they use the Open Source PostgreSQL
and PostGIS for the integration and management of information in the database,
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whereas the 3D visualization is performed with Unity. However, one of the main
limitations of Unity is dealing with huge 3D models coming from the point clouds.
To overcome this problem, WebGL seems to provide an appropriate solution using
similar developments to those presented in [22] or developing a new approach
as the one presented in this paper. Furthermore, advancing a 3DGIS Web solution
requires using different simplification and optimization processes, as well as different
hierarchical (i.e., pyramidal) strategies for visualization which are not compatible
with the Unity engine.

This paper is organized as follows: after this introduction, in Section 2, the
different sensors employed and their characteristics are detailed. In Section 3,
the proposed multi-data source and multi-sensor approach is described, as well
as the simplification and optimization process. Experimental results are shown
and discussed in Section 4. Conclusions and future directions are given in
Section 5. Finally, two appendices are included; the first corresponding to the
abbreviations used in the paper, whereas the second encompasses the explanation of
the methodology employed for 3D Web visualization.

2. Materials

2.1. Paratrike

The main aerial platform employed to the documentation of the archaeological
site was a paratrike (Figure 1a). It is a low-cost aircraft with more flexibility than
conventional aircrafts, and more autonomy and payload capacity than the UAVs.
This last characteristic allows the possibility of boarding better sensors than the UAVs,
or even multiple sensors in a stabilized gimbal (MUSAS-MUltiSpectral Airborne
Sensors). In particular, a tandem trike AIRGES (Table 1) was used to map the whole
archaeological site following a vertical flight and using a full-frame reflex camera.

Table 1. Technical specifications of the paratrike.

Motor Rotax 503 Two-Stroke Motor

Trike Tandem Trike AIRGES
Tandem paraglide MAC PARA Pasha 4 Trike 39 ó 42
Emergency system Ballistic parachutes GRS 350

Weight 110 kg
Weight capability 165–250 Kg
Air velocity range 30–60 km/h

The use of the gyro-stabilized camera platform, MUSAS (Figure 1b), guarantees
the accurate orientation of the camera according to the flight planning by two
servomotors arranged on the x and y axes, controlled by an Arduino board, which
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incorporates an IMU with 6 degrees of freedom: three accelerometers, a double-shaft
gyroscope (for pitch and roll) and an additional gyroscope for yaw.

For the paratrike, a full-frame reflex camera, Canon 5D MkII, with a fixed focal
length to achieve a GSD of 3 cm, was used. This camera was also used for the
terrestrial photogrammetry and photorealistic texture mapping due to its better
image quality.

In contrast to the UAV platform which encloses an integrated navigation system
(GPS, IMU and barometric altimeter), the paratrike requires an external set of
sensors in order to provide navigation capabilities and thus fulfill photogrammetric
constraints for data acquisition. In particular, the planimetric position is provided
by a GPS antenna (Trimble Bullet III), installed in the camera platform close to the
optical centre of the camera, connected to a mono-frequency receiver Ublox EVK-6T-0.
This system yields an absolute precision of ˘9 m on the horizontal axis for 95% of
the time [23]. During data acquisition the pilot follows the planned photogrammetric
mission in a rugged table connected to the GPS system, where the real-time track is
contrasted with the planned flight. The final component in the navigation system,
the altimetry, which affects the GSD, is controlled by an altimetric barometer (DigiFly
VL100) with an absolute precision of ˘8 m. This solution is chosen instead of GPS
receiver, since the absolute altimetric GPS precision is just ˘15 m.
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2.2. Unmanned Aerial Vehicle

For the aerial photogrammetric acquisition in the “El Reguerón” site, the
paratrike platform was rejected due to the morphological characteristics of the
terrain and the height of flight required to reach the high spatial resolution (GSD
of 1 cm). The main drawback was the need to vary the flying height to keep the
same scale, due to the presence of high reliefs along the strips. As an additional
disadvantage, the walled constructions were occluded between walls of natural rock.
Therefore, in order to complete the archaeological site documentation, a UAV was
employed. Specifically, a Microdrone md4-200 (Table 2) was used (Figure 1c) to
map the most challenging area following vertical and oblique flights through use of
a compact camera.

In spite of the manoeuvrability provided by this UAV, it has a limited payload
required to employ a compact camera for the photogrammetric flight.

For the UAV, an ultra-compact camera, Canon IXUS 115 HS, was chosen allowing
a GSD of 1 cm.

Basically, the multi-data obtained by UAV and paratrike is geometrical, i.e.,
two point clouds with metric properties and texture information (RGB) which are
homogenized under a common reference system based on a network of control and
check points.

Table 2. Technical specifications of the Microdrone md4-200 platform.

UAV Weight 900 g

Payload up to 200 g
Size 54 cm between rotors

Flight time 10 to 20 min
Operating temperature ´10 to 50 ˝C

Max. height flight 500 m
Max. wind 5 m/s

2.3. Terrestrial Laser Scanner

In those complex zones, a phase shift terrestrial laser scanner, Faro Focus 3D,
was employed (Table 3).

According to the archaeological settlement characteristics and the TLS technical
specifications, laser stations were established in a network that guaranteed an average
spatial resolution of 5 mm for the whole scenario. The mean distance acquisition
was 15 m.
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Table 3. Technical specifications of the terrestrial laser scanner (TLS), Faro Focus 3D.

Model Faro Focus 3D

Principle Phase Shift
Wavelength 905 nm (Near infrared)

Field of view 360˝ H ˆ 320˝ V
Range std. deviation 2 mm at 25 m
Measurement range 0.19 mrad

Beam divergence 8 mm at 50 m
Scanning speed 976,000 points/s

2.4. Geo-Referencing System

The establishment of the mapping frame in the study area is performed with two
GNSS bi-frequency (L1, L2) receivers, Topcon manufacturer. The GNSS observation
method was real-time kinematic (RTK) getting a relative and absolute precision of
1 cm and 3 cm, respectively.

The coordinate reference system was comprised of the official coordinate system
established by Spanish law, a Compound Coordinate Reference System (CCRS)
integrated by horizontal CRS referred to ETRS89 geodetic reference system and UTM
Zone 30 mapping projection (EPSG: 25830), and vertical CRS with geoid´s origin
defined in Alicante (Spain) (EPSG: 5782). This mapping frame was materialized
by a GNSS surveyal using natural features for “El Reguerón” area, which could be
clearly identified on aerial images (e.g., corners of well-defined objects, small features
with excellent contrast, etc.). In this way, we avoid artificial targets appearing in
those more emblematic parts of the archaeological settlement. On the contrary and
due to the large extension area, artificial targets were used for the full recording of
the archaeological settlement (with the paratrike) in order to establish a network of
control and checkpoints.

3. Methodology

Given the complexity of the archaeological site and the archaeological
documentation requirements, the aerial and terrestrial data acquisition was planned
in order to provide an integral and integrated recording of the site.

All the data from the different sensors and plataforms were processed according
to the workflow outlined in Figure 2 and explained in the following subsections.
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Figure 2. Multi-sensor and multi-data source workflow for the 3D reconstruction
of complex archaeological sites.

3.1. Data Acquisition

Each technique (i.e., photogrammetry, laser scanning) requires different
procedures and protocols for data acquisition.
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In the case of aerial data acquisition, image projection centers and camera
attitude must be previously defined according to the classical photogrammetric
parameters. The flight planning was done using the in-house software, MFlip and
PFlip, for the UAV and paratrike flights, respectively [24]. The main difference
between both flights was the type of flight planning: for the paratrike, a standard
stereoscopic photogrammetric flight was undertaken (Figure 3a), whereas for the
case of UAV, oblique and vertical images were also considered. Therefore, data
acquisition was completely planned in order to get better results. In particular, for
the UAV, a script was prepared for an automatic photogrammetric flight; whereas
for the paratrike, the flight axis and flight height were planned and followed by the
pilot. Both flights were planned with higher overlaps in order to get better results
in the dense matching process and both flights were planned considering the relief
variation using a public digital terrain model (DTM) [24].
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Figure 3. Example of image footprints projected over terrain (white line) and the
different workspaces (red line). (a) Paratrike flight planned over the whole area
and (b) UAV flight planned over “El Reguerón” area.

The result shown in Figure 3b corresponds to the UAV flight planning, which
was complemented with oblique aerial images acquired manually. As can be seen
through the image footprints, the relief effects make it difficult to maintain a constant
GSD, so the data acquisition is complemented with terrestrial images. For its part,
the paratrike was used for the whole recording of the settlement due to the autonomy
and sensors limitations of the UAV.

For the “El Reguerón” area a more detailed flight with the UAV was designed
using the ultra-compact camera.

An important issue for the aerial data acquisition was the image sharpness,
which affects the final photogrammetric reconstruction. This issue is affected by
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the camera parameters (i.e., aperture, shutter time and sensibility), the platform
performance (i.e., flight speed and efficiency of the stabilized gimbal to absorb
the paratrike vibrations) and the scenario illumination conditions. The flight was
executed on a cloudy day to avoid shadows being projected, and the camera
sensibility and shutter time were set up for these conditions. The aperture and the
focal length were fixed constant to avoid variations in the internal camera parameters.

As commented previously, the high vertical reliefs of the site and the level of
detail required in some areas (e.g., those constructive elements that integrate the
defensive system of the entrance, details of the walls, etc.) entailed that aerial images
were not suitable; terrestrial images were thus acquired with the full-frame reflex
camera. In addition, terrestrial laser scans were used in those complex areas where
photogrammetry could entail problems requiring a lot of images to enclose the whole
geometry or due to the presence of textureless objects or materials. A network of
13 TLS stations (Figure 4) was designed for an average distance of 15 m with an
average spatial resolution of 5 mm.Remote Sens. 2016, 8, 550 8 of 25 
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From Figure 4, it can be observed that two laser scanning campaigns were
planned for two different areas. The first campaign (orange colour) was designed
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for recording the existing constructions using six stations. The second campaign
(blue colour) was designed for recording the walls of “El Reguerón” and the adjacent
environment using seven stations.

3.2. Data Processing

Handling multiple sensors requires multi-data processing approaches that take
the point cloud as the basic unit. However, since all data must be integrated to
generate a single model, it is necessary to homogenize the information, establishing
filtering, simplification and optimization algorithms. Thus, the result obtained by
each method is the corresponding point cloud that will be registered, triangulated and
textured for generating a single 3D model with metric and radiometric capabilities.

3.2.1. TLS Filtering and Alignment

Data acquired with TLS were processed with commercial software FARO SCENE
5.4 [25]. The raw TLS scans were filtered removing noise and undesired information
which could affect the alignment process. Automatic filtering has been applied in
those more conflictive areas. Firstly, each scan was filtered according to a distance
threshold (20 m) in order to remove distant points. Afterwards, two specific filters
(intense-based filter and outlier filter) were applied. The former applies a reflectance
threshold to remove those points with the lowest intensity, whereas the latter analyses
the point and its environment (3 ˆ 3) using distances. For instance, if there is
a distance variation of 1 cm between the point and its neighbourhood for more
than the 50% of the neighbourhood, the point will be removed. These thresholds
should be tested adaptively by the user depending on the type and geometry of the
area. Finally, the more delicate areas (i.e., walls or vegetation) have been filtered
manually. For instance, vegetation between the blocks of the wall was identified and
removed manually.

Since artificial targets were not used, scan alignment was done by a solid rigid
transformation of an iterative closest point (ICP) technique [26]. This iterative process
was applied in pairwise stations, so the final a priori error was computed on the basis
of the number of stations and the technical specifications of the TLS (Table 4) reaching
1.3 cm for the assumption of two consecutive overlapping point clouds. The reference
system of the aligned TLS point cloud is defined through a local Cartesian system
corresponding to the first scan station with coordinates (300,000, 4,000,000, 1000).
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Table 4. Simplification and optimization results for “El Reguerón” area.

Simplified Simplified and
Optimized

Number of points 11,267,122 2,816,853
Number of triangles 22,532,754 5,635,313

Spatial resolution * (Min, Avg, Max) (60.5, 64.3, 69.1) mm (69.2, 81.1, 98.9) mm

* Confidence Interval = 1σ.

3.2.2. Photogrammetric Processing

The generation of the dense point cloud, from both aerial and terrestrial
images, was automatized through the Photogrammetry Workbench (PW) in-house
software [27], following a three step workflow: 1. Image registration; 2. Camera
orientation and 3. Dense matching.

The aerial images, coming from the paratrike and UAV, were processed to
generate a hybrid model, with a total of 293 images and two different cameras. The
dataset was checked to assure the sharpness of the images, which could be decreased
by the motion blur.

1. The feature extraction has been carried out by the ASIFT (Affine Scale-Invariant
Feature Transform) algorithm [28]. As its most remarkable improvement,
ASIFT includes the consideration of two additional parameters that control the
presence of images with different scales and rotations. In this manner, the ASIFT
algorithm can cope with images displaying a high scale and rotation difference,
common in oblique images. The result is an invariant algorithm that considers
the scale, rotation, and movement between images. The main contribution in the
adaptation of the ASIFT algorithm is its integration with robust strategies that
allow us to avoid erroneous correspondences. These strategies are the Euclidean
distance [29] and the Moisan-Stival ORSA (Optimized Random Sampling
Algorithm) [30]. This algorithm is a variant of Random Sample Consensus
(RANSAC) [31] with an adaptive criterion to filter erroneous correspondences
by the employment of the epipolar geometry constraints. Once the feature
points have been extracted and described, the final matching points are assessed
based on their spatial distribution on the CCD. An asymmetric distribution
(radial and angular) of matching points regarding the principal point will affect
the correct determination of internal camera parameters and also the image
orientation. Therefore, if the matching points do not cover an area more than
two-thirds of the CCD format, the user will be alerted in order to modify
the detector (ASIFT) and descriptor (SIFT) parameters. Through this quality
control we try to minimize problems associated with the weakness and common
deficiencies in the photogrammetric network geometry of both aerial flights
(UAV and paratrike).
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This result provides the next expression:

AF “

«

a b
c d

ff

“ HλR1pκqT1R2pvq “ λ

«

cosκ ´sinκ

sinκ cosκ

ff

¨

«

t 0
0 1

ff

¨

«

cosv ´sinv

sinv cosv

ff

(1)

where AF is the affinity transformation that contains scale, λ, rotation, κ, around the
optical axis (swing) and the perspective parameters that correspond to the inclination
of the camera optical axis, ϕ (tilt) or the vertical angle between optical axis and the
normal to the image plane; and v (axis), the horizontal angle between the optical
axis and the fixed vertical plan.

In order to accelerate the process, the overlapped aerial images were identified
by their approximate camera orientations provided by the navigation system. In
the case of terrestrial images, an all-to-all comparison was applied. This sub-step
is a time-consuming process which increases exponentially with the number of
images [32].

2. The multi-image protocol acquisition will require robust orientation procedures.
For this purpose, a combination between computer vision and photogrammetric
strategies was used. This combination is fed by the resulting keypoints extracted
previously. In a first step, an approximation of the external orientation of
the cameras was calculated following a fundamental matrix approach [33].
Later, these spatial (X,Y,Z) and angular (v-omega, ϕ-phi, and χ-kappa) positions
are refined by a bundle adjustment complemented with the collinearity
condition [34]. In this field, several open source tools have been developed
such as Bundler [35] and Apero [36]. For the present case study, both were
combined and integrated. In particular, a specific converter has been developed
for reading Bundler orientation files (*.out) and computing the three rotation
angles and three translation coordinates of the camera in Apero. In addition,
a coordinate system transformation has been implemented for passing from
the Bundler to the Apero coordinate system. It is remarkable that at the same
time, thanks to the reliability of the photogrammetric procedures used, it is
possible to integrate as unknowns several internal camera parameters (focal
length, principal point, and radial distortions). This possibility allows the use
of non-calibrated cameras and guarantees acceptable results. For the present
case study, a self-calibration strategy supported by a basic calibration model
which encloses five internal parameters (focal length, principal point, and two
radial distortion parameters) was used [37,38]. In order to provide metric
capabilities to the model, manual identification of ground control points (GCPs)
in the images were accomplished. Including these as an input in the bundle
adjustment, the model is oriented according to the global coordinate system.
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px´ x0q ` ∆x “ ´ f r11pX´SXq`r21pY´SYq`r31pZ´SZq
r13pX´SXq`r23pY´SYq`r33pZ´SZq

py´ y0q ` ∆y “ ´ f r12pX´SXq`r22pY´SYq`r32pZ´SZq
r13pX´SXq`r23pY´SYq`r33pZ´SZq

(2)

where x and y are the known image coordinates, Xi, Yi and Zi are the corresponding
known GCPs, rij are the unknown 3 ˆ 3 rotation matrix elements, SX, SY and SZ
represent the unknown camera position, f is the principal distance, x0 and y0 are the
principal point coordinates and ∆x and ∆y are the lens distortion parameters. These
internal camera parameters may be known or unknown by the user and thus are
introduced as equations or unknowns (self-calibration), respectively.

3. One of the greatest breakthroughs in recent photogrammetry has been
exploiting, from a geometric point of view, the image spatial resolution
(size in pixels). This has made it possible to obtain a 3D object point of
each of the image pixels. Different strategies have emerged in recent years,
such as the Semi-Global Matching (SGM) approach [39] that allows the 3D
reconstruction of the scene, in which an object point corresponds with a pixel
in the image. These strategies, fed by the external and internal orientations
and complemented by the epipolar geometry, are focused on the minimization
of an energy function [39]. However, besides the classical SGM algorithm
based on a stereo-matching strategy, multi-view approaches are incorporated
in order to increase the reliability of the 3D results and to better cope with
the case of complex archaeological sites (where the images are captured with
different sensors). Considering the two types of flights performed (UAV and
paratrike), two different multi-view algorithms were used. For the vertical
flight (paratrike), the multi-view MicMac algorithm [40] was used. Meanwhile,
for the oblique flight (UAV), the multi-view SURE algorithm [41] was used,
which allows a complete reconstruction of the scene. Both strategies consist
of minimizing an energy function throughout the eight basic directions that
a pixel can take (each 45˝). This function is composed of a function of cost,
M (the pixel correspondence cost), that reflects the degree of the similarity of
the pixels between two images, x and x’, together with the incorporation of
two restrictions, P1 and P2, to show the possible presence of gross errors in the
process of SGM. In addition, a third constraint has been added to the process of
SGM; it consists of the epipolar geometry derived from the photogrammetry,
and it can enclose the search space of each pixel in order to reduce the enormous
computational cost. In that case, it will generate a dense model with multiple
images, obtaining more optimal processing times.

EpDq “
ř

x

˜

M px, Dxq `
ř

x1PNx

P1T r|Dx ´Dx1 | “ 1s `
ř

x1PNx

P2T r|Dx ´Dx1 | ą 1s

¸

(3)
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where E(D) is an energy function that must be minimized on the basis of the disparity
(difference of correspondence) through the counterpart characteristics, the function
M (the pixel correspondence cost) evaluates the levels of similarity between the
pixel x and its counterpart x’ through its disparity Dx, while the terms P1 and P2

correspond with two restrictions that allow for avoiding gross errors in the dense
matching process for the disparity of 1 pixel or a larger number of them, respectively.

3.2.3. Data Fusion

Data fusion has been performed homogenizing the data provided for each
sensor and generating a common product, a point cloud, with metric properties’
multi-resolution and photorealistic texture. Concretely, in order to fuse data, both
flights (UAV and paratrike) were solved under a combined photogrammetric
bundle adjustment using common control points and two different cameras.
Through this combined bundle adjustment, a better and more homogeneous aerial
photogrammetric point cloud is obtained, avoiding errors that would be obtained and
propagated using a solid rigid transformation. In particular, the combined bundle
adjustment (UAV-uav and paratrike-pt) is solved through a least square adjustment
based on collinearity condition Equation (2), as follows:

x “ x
`

cpt, cuav, eopt i, eouav j, Xk
˘

y “ y
`

cpt, cuav, eopt i, eouav j , Xk
˘

(4)

where:

‚ cpt and cuav are the camera vectors used for paratrike and UAV, respectively,
and which include the internal camera parameters (principal point and focal
length) and lens distortion coefficients (radial-K, decentering-P and affinity
parameters-b). A total of ten unknowns were used for each camera vector,
c “ px0, y0, f , K1, K2, K3, P1, P2, b1,, b2q.

‚ eopt i and eouav j correspond with the six unknowns of the external orientation
for paratrike and UAV images, respectively. Being the external orientation vector,
eo “

`

Sx, Sy, Sz, ω, ϕ, χ
˘

.
‚ Xk represents the spatial coordinates vector (X,Y,Z) of the unknown

object points.

Therefore, the equation system is defined as follows:

Ax´K “ V (5)

where A corresponds with the design matrix based on collinearity equations and
linearized through a first-order Taylor series, K is the observations matrix, V is
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the residual vector and x is the unknown’s vector solved through a least squares
adjustment as follows:

x “
´

AT PA
¯´1

AT PK (6)

P is the weight matrix which corresponds with the inverse cofactor matrix of
the observations. The equation system is solved through a twofold step: first by
computing the exterior orientation parameters, eo, and then computing the object
points, Xk, that represent the point cloud.

Next, the remaining step is the registration of the aerial point clouds derived
from the different sensors under a global coordinate system. To this end, a GNSS
campaign of 3 h based on three permanent ERGNSS stations was performed in order
to provide precise coordinates to the GNSS base station used in the archaeological
settlement. GNSS observations were processed guaranteeing an absolute error of
3 cm. The RTK surveying of the GCPs allowed us to obtain the aerial point cloud
(i.e., coming from UAV and paratrike) under a global coordinate system (EPSG: 25830
and height EPSG: 5782), reaching a final relative precision of 1 cm.

Finally, regarding terrestrial laser scanner (TLS), the different scans were aligned
and then co-registered with the photogrammetric point cloud coming from UAV and
paratrike, using matching points defined manually as initial approximations. This
was carried out using each dataset of coordinates in its coordinate system, that is, the
local system in the case of the aligned TLS point cloud and the absolute system for
the photogrammetric point cloud, and then applying a variation of the ICP technique,
Least Squares Matching (LSM). A figure (Figure 5) to visually illustrate how this
fusion has been done is included. A is the function that represents the point cloud
coming from the aerial photogrammetry (UAV and paratrike) and B is the function
that represents the aligned TLS point cloud, the registration of both point clouds will
be obtained as follows:

Ai px, y, zq ´ ei px, y, zq “ Bj px, y, zq i, j “ 1, . . . , n , i ‰ j (7)

The equation that relates both models is a solid rigid transformation with seven
parameters:

»

—

–

XA
YA
ZA

fi

ffi

fl

“ R

»

—

–

XB
YB
ZB

fi

ffi

fl

`

»

—

–

Tx

Ty

Tz

fi

ffi

fl

(8)

where R represents the rotation matrix and T the translation vector. The
correspondence between both point clouds is obtained through a minimisation,
based on least squares adjustment, of the Euclidean distances between both point
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clouds. Since the rotation matrix is composed of non-linear functions, first-order
Taylor series were used for the linearization of the Equation (8) as follows:

´ei px, y, zq “ B0
j px, y, zq `

B0
j px,y,zq
Bxj

dxj `
B0

j px,y,zq
Byj

dyj `
B0

j px,y,zq
Bzj

dzj ´ A0
i px, y, zq

´
A0

i px,y,zq
Bxi

dxi ´
A0

i px,y,zq
Byi

dyi ´
A0

i px,y,zq
Bzi

dzi

(9)
where:

dx “ dtx ` a10dm` a11dω` a12dϕ` a13dκ

dy “ dty ` a20dm` a21dω` a22dϕ` a23dκ

dz “ dtz ` a30dm` a31dω` a32dϕ` a33dκ

(10)

Through an iterative process, the linear system ´e “ Ax ´ l is solved,
x being the unknown’s vector encompassing the transformation parameters
(dtx, dty, dtz, dm, dω, dϕ, dκ), whereas l is the observation vector enveloping
the discrepancies of Euclidean distances between both point clouds, and e is the
residual vector.
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Figure 5. An example of data fusion using Least Squares Matching (LSM) between
the laser (Left) and photogrammetric (Right) point clouds.

Figure 5 graphically outlines the process followed for data fusion. An example of
the aligned TLS point clouds for two scans of the wall (yellow and blue point clouds)
in a local coordinate system is outlined to the left side of the image. Subsequently,
the aligned TLS point clouds are fused with the photogrammetric point cloud in a
global coordinate system (green point cloud) by means of LSM.

3.2.4. Post-Processing

Once a metric and geo-referenced point cloud was generated, a mesh strategy
was applied to generate the digital surface model (DSM). In this case, the incremental
Delaunay triangulation algorithm was applied [42].
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To improve the model quality, break lines were incorporated as geometric
constraints. Break lines were manually restituted by the operator. Its use is relevant
for the accurate representation of significant slope changes, as well as for correctly
defining the defensive walls of the site.

In those cases where images come from different methodologies or acquisition
time, a radiometric adjustment was necessary to improve the final model
visualization and avoid abrupt radiometric changes in the texture.

Once the DSM was obtained, it was possible to generate a true orthoimage
from the oriented images. Since the multi-data source and multi-sensor approach
provide different DSM resolutions, it was possible to generate true orthoimages
with different spatial resolutions. For instance, a true orthoimage that depicts the
complete archaeological site was generated with a resolution of 10 cm; whereas a
2 cm spatial resolution was employed for the settlement entrance area in order to
appreciate the construction features.

3.2.5. Simplification and Optimization

Different simplification and optimization strategies were applied to the different
geomatics products (DSM and orthoimages) in order to access and analyse 2D
and 3D information through a Web service using mobile devices such as tablets
or smartphones. In particular, a pyramidal structure was generated for the Web
visualization of the 2D orthoimages and 3D models, including “El Reguerón” as the
area with the most resolution. The methodology used for simplifying the 3D models
is based on the strategy “smooth looking” [43] which consists in a straightforward
mesh generation procedure applying the Poisson algorithm [44] to the hybrid point
cloud. The mesh resolution is determined by the octree level, chosen according to
the user-defined spatial resolution. Unlike a direct mesh generation process, which
usually requires mesh editing operations such as filtering and refinement [45,46],
Poisson algorithm directly encloses a smoothing step and provides a continuous
geometry. This process could be controlled by some computation parameters as the
minimum number of sample points that should fall within a node of the resulting
octree. This parameter controls the loss of detail by the smoothing process. Although
a high number of sample points implies a decrease of the number of mesh vertices,
its geometry could be affected, being the final mesh mildly shrunk. For this reason,
and as the noise level of the hybrid point cloud is low, the threshold value was kept
low in order to avoid redundant smoothing processes. Then, a mesh optimization
strategy, based on reducing the final number of triangles through the “collapse” of
non-relevant areas without losing significant level of detail, is performed. For this
purpose, an iterative process is proposed where the mesh derived from the previous
procedure (smooth-looking) is “collapsed” by 5% of the total number of triangles
using the quadratic edge collapse algorithm [47]. The algorithm essentially removes
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edges by merging and regrouping nearby vertices. With the aim of minimising the
distortion of the surface geometry, it is necessary to establish a precision threshold
to stop the iterative process. So that, if the resulted mesh error against the original
input point cloud remains unchanged (with respect to the previous iteration), the
collapse process continues. An iterative procedure is required since the quadratic
edge collapse algorithm implementation does not allow decimation at fixed spatial
resolution. Although our approach is based on an edge-collapse algorithm for the
mesh optimisation, others approaches could be applied, such as the remeshing with
recursive resampling as shown in [48] based on the Marching Cubes algorithm [49].
However, this remeshing approach exhibits higher deviations from the original
model, up to 20 times higher than the quadratic edge collapse algorithm [48], and is
therefore inadequate for our final archaeological products.

Finally, a texture mapping of the simplified and optimised mesh was performed
using the commercial software Agisoft Photoscan®.

4. Experimental Results

4.1. Area of Study

The city of “Tolmo de Minateda” (Figure 6) was a strategic settlement of great
importance for several centuries, largely because of its peculiar topography and
geographical location. It is placed on a plateau hill of about 50 m of height, located at
the junction of the route from Complutum to Carthago Nova, one of the principal
Roman routes connecting the interior of the plateau with the southeast coast, and a
road connecting Castulo with Saetabis.
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The archaeological research from the last 30 years has highlighted the
importance of this site, revealing a history from the Middle Bronze Age, through
the Iberian era, the Roman period, and the Middle Ages to the twentieth century.
The Middle Age period provided most of the information by an important Visigoth
settlement located in the upper part of the “El Tolmo”, where an important Christian
basilica was found between houses and cemeteries.

One of the most interesting areas of the archaeological site is “El Reguerón”
(Figure 6), an area of natural drainage 12 m in width, with a main entrance at the top
of the hill where the city was located. In the settlement, an important fortification
system consisting of three walls of different chronology and architectural typologies
has been documented [51]. The oldest fortification is represented by the so-called
“embanked” wall and was built during the final phase of the Iberian period (4th´2nd
century B.C.). Currently, only the remains of a wall 6 m high and 10 m wide at the top,
embanked in the external front and built in irregular masonry work, was preserved
in the soil. During the archaeological excavation of this ancient wall, an earlier phase,
which dates back to the Middle Bronze Age, was discovered. The Iberian wall was
successively used as a retaining wall for a new fortification building during Roman
times when the “Tolmo de Minateda” probably received the title of municipality.

The last fortification found in “El Reguerón” comes from the period of peninsula
occupation by the Visigoths (5th–6th century A.D.). This wall is presented as a solid,
L-shaped bulwark that encloses the valley and flanks the main road access to the city.
It is here at this point that a monumental gate, probably formed by two solid towers
of blocks, was once located. Only partial remains have been preserved. The wall is
formed by a line of blocks with inscriptions and architectural elements from older
constructions (among which are examples from the Roman period).

The relevant archaeological stratification of this area with different structures
and building types requires of a multi-data source and multi-sensor approach that
allows us to properly record and classify archaeological surfaces, thereby establishing
an integration of topographic data with documents of archaeological excavations.

In order to fulfill the archaeological documentation requirements, the aerial
data gathering was performed with a paratrike which allows us to enclose the whole
extension of the archaeological site using a full-frame reflex camera, assisted by
a specific gyrostabilized platform (MUSAS-MUltiSpectral Airborne Sensors) with
a ground sample distance (GSD) of 3 cm. According to the GSD desired for the
whole archaeological site and considering the camera specifications, a maximum
flight height of 224 m was established. As a result, a total of 268 images along seven
strips (NW-SE direction) were required for guaranteeing a side overlap of >30% and
a forward overlap of >70%.

To record with higher spatial resolution the area of interest of the “El Regueron”
site (Figure 7), an UAV with an ultra-compact camera (Table 5) acquired the fortified
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walls with a GSD of 1 cm. Finally, 25 images and a flight height of 32 m guaranteed
the desired spatial resolution. The overlap parameters were the same.
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Table 5. Geo-referencing errors.

Check Points Discrepancies with 3D
Model Coordinates

X (m) Y (m) H (m) ∆X (m) ∆Y (m) ∆XY (m) ∆H (m)

621,321.452 4,259,638.120 448.672 0.005 0.001 0.005 ´0.013
621,375.933 4,259,646.226 454.775 ´0.009 0.004 0.009 0.032
621,416.258 4,259,667.686 463.661 0.007 ´0.011 0.013 0.030
621,419.022 4,259,658.232 464.618 0.001 0.008 0.008 0.046
621,345.185 4,259,659.272 454.267 0.002 0.018 0.006 0.024
621,321.298 4,259,660.311 452.106 ´0.010 ´0.026 0.028 0.036

In addition, to increase the level of detail in the fortification walls and thus
avoid the occlusions due to the effects of terrain relief (i.e., areas occluded or without
information in the model generated by aerial photogrammetry), a combination of
terrestrial photogrammetry and terrestrial laser scanner (TLS) was employed for
improving the final 3D hybrid model. As a result, a total of 36 terrestrial oblique
images and 13 TLS point clouds were acquired in order to avoid areas without
information, guaranteeing a subcentimeter resolution.

4.2. Workflow

The application of the multi-data source and multi-sensor fusion workflow was
tested in the study area of “Tolmo de Minateda,” which includes a total of 9 ha.

Firstly, the aerial images were processed by the automated photogrammetric
approach and the cameras were self-calibrated according to Section 3.2.2. As a result
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of this process, the raw reconstructed point cloud is obtained which contains 4,271,354
points, while the TLS integrated point cloud reaches up to 1,314,136 points. Secondly,
the geo-referencing of the 3D model was solved by the employment of 28 control
points homogeneously distributed across the site (but with higher density in the
interest area), while ten were used as checkpoints. Finally, the final multi-resolution
3D model after triangulation is obtained (Figure 8), encompassing the whole study
area with a spatial resolution of 3 cm. A total of 10,542,505 triangles were obtained.
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For the detailed area which integrates different data sources (i.e., terrestrial laser
scanner and photogrammetry), a spatial filtering of 0.5 cm was applied to avoid areas
with excessive point density caused by the different overlaps.
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By this multi-resolution approach, the final inspection of the archaeological
site could be adapted to any area, as illustrated with “El Reguerón”, where the
subcentimete resolution achieved for the walls and construction (Figure 9b) was
integrated with the rest of the archaeological site (Figure 9a). This multi-resolution
capability opens a range of possibilities for a spatial analysis, settlement
interpretation, pattern recognition, and the establishing of relationships among
the elements (sites, artefacts locations, etc.).Remote Sens. 2016, 8, 550 17 of 25 
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Figure 9. Multi-resolution model of “El Reguerón” area (a) and detail for the
wall (b).

In order to validate the final integration of the different data sources, a series of
checkpoints were used. The different error components are shown in Table 4. The
average vertical error (2.6 cm) was higher than the horizontal error (1.4 cm), as was
expected for the GNSS technique. An average precision of 3 cm for the 3D vector
error was obtained, which is statistical compatible with the expected a priori error of
3.1 cm composed by the model and GNSS check point errors.
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To manage more efficiently the available information of the archaeological
settlement, true orthoimages were generated as derived products (Figure 10), since
they combined the photorealistic texture with the metric properties in an easy-to-use
document for non-experts.

However, to allow a more complete interpretation and to make use of the
potential of the generated 3D product, an integration with a 3DGIS tool, GeoWeb3D,
was performed. In particular, the 3D geometry provided by the multi-sensor
approach has been integrated with 2D archaeological archives such as sketches,
pictures, part details, etc., thus enhancing the subsequent analysis and providing
problem solving and decision-making capabilities. Figure 11 shows the integration
of different historical events in the reconstructed 3D model.

The integration of 2D information and 3D models allows us to extract intangible
information that improves the analysis capabilities of the archaeological settlement.
For instance, Figure 11 integrates an archaeological sketch of defensive constructions
(2012) with the generated hybrid 3D model (2015). It should be noted that the
high accuracy and proportion of the sketch is a perfect coincidence of the main
homologous entities. However, some detached blocks belonging to the wall of the
3D model do not appear in the sketch. Analysing the position of blocks in the 3D
model, it seems that they were spread along the natural drainage bed of the Tolmo,
possibly suggesting that a runoff flow took place from the upper part of the Tolmo,
providing this current block distribution.
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Figure 10. True orthoimages of the whole settlement (a) and defensive area “El
Reguerón” (b).

Next, with the aim of showing the potential of analysing in situ the archaeological
settlement, “El Reguerón” was tested using a mobile device (smartphone). The
simplification and optimisation level was fixed considering different aspects: (i) the
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amount of 2D information which should be integrated; (ii) the minimum size of the
interest elements and (iii) the level of reduction. A minimum resolution of 10 cm was
established for the “El Reguerón” area.

1 

 

 
(a) 

 

(b) 

 Figure 11. Archaeological sketch (a) overlapped with the 3D model (b).

Looking to the smallest and most emblematic elements of “El Reguerón,”
it can be confirmed that these correspond to the blocks of the wall, which are
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bigger than the minimum resolution, meaning that they should be correctly
represented. Subsequently, an iterative optimization process of the mesh was
performed maintaining relevant information and stopping when the threshold of
resolution (10 cm) was surpassed. As we can see in Table 5, the simplified and
optimised models maintain the initial resolution (10 cm), with a level of reduction of
75% in comparison with the simplified model (without optimisation).

The simplification and optimisation procedures have removed 31,039,445 points
of the 33,856,298 initial points. However, in order to assess the final error of the
simplification and optimisation strategy, we have compared the simplified and
optimised model with the original point cloud, obtaining an average error of 0.2 mm
and a standard deviation of ˘22 mm.

As we can see in Figure 12, higher discrepancies are located in peripheral areas
due to the presence of vegetation with an irregular typology. Conversely, the walled
area exhibits minimum discrepancies always less than ˘5 mm.
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Figure 12. Analysis of discrepancies between the simplified-optimised 3D model
and the original point cloud (Left) and a detailed comparison over the walled
area (Right).

Finally, results were presented through the Web based on the Open Source
library Cesium. A specific template based on HTML language was prepared to show
the 3D models and additional information using external geospatial services such
as WMS, MapServer, Google Earth or Bing, among others. Thanks to the flexibility
and portability of the mobile devices, it was possible for the archaeologist to interact
directly with the platform at the field: recording data and adding new information
with corresponding attributes and descriptions. An example is outlined in Figure 13,
where the application is loaded in a smartphone BQ Aquaris E4.5 using Android 4.4.2
and Google Chrome 45. Results were incorporated to the archaeological information
system and the spatial data infrastructure of the archaeological cultural heritage of
Castilla La Mancha (ideARQ + SIA) [50].
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Additionally, the optimal value of points and triangles for the proper
management of 3D models in smartphones was examined. For this aim, three
levels of simplification were analysed using three, two and one million(s) triangles,
respectively. Afterwards, loading and operation times together with RAM were
monitored in order to see the best simplification level for a conventional smartphone.
Table 6 outlines the results obtained.
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Figure 13. “El Regueron” 3D model and its additional information loaded in
a smartphone (Base model from: © Analytical Graphics, Inc., © CGIAR-CSI,
Produced using Copernicus data and information funded by the European
Union—EU-DEM layers, © Commonwealth of Australia (Geoscience Australia)
2012) [19].

As we can see, with less than one million triangles, very good loading
and operation times (instantaneous) are obtained, as well as an affordable RAM
consumption for the majority of smartphones. Therefore, for optimal user experience
and navigation for each visualization level (defined in terms of spatial resolution; see
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Section 3.2.5), the maximum display area is cropped accordingly to this empirical
number of triangles.

Table 6. Times and resources required with lighter models using mobile devices.

Model Number of Points Number of Triangles

3M
1,408,636 2,816,156

Load Operation RAM consumption
10 s 2–4 s 2.39 GB

2M
986,150 1,971,309
Load Operation RAM consumption

8 s 1–3 s 2.24 GB

1M
493,198 985,653
Load Operation RAM consumption

3 s Instantaneous 1.79 GB

5. Conclusions

This paper presents a methodology based on a combination of multiple sensors,
platforms and techniques, which has been tested in a complex archaeological
site. As is shown in the experimental results, the automation provided by the
photogrammetric and laser techniques, along with the versatility of the aerial
platforms (paratrike and Unmanned Aerial Vehicle UAV), provide the suitability of
this methodology for complex archaeological sites.

The potential of ultralight aerial platforms (paratrike) is highlighted, due to its
payload and flight autonomy, which overpasses the UAVs capabilities. Regarding
the usual archaeological surveys, one of the main differential factors in this work has
been the integration of aerial images at different resolutions, terrestrial images and
terrestrial laser scans.

The generation of high resolution products based on photogrammetry requires
high computational costs. To this end, the presented algorithms, such as Affine
Scale Invariant Feature Transform ASIFT, have been developed to take advantage of
Graphical Processing Unit GPU capabilities, reduce time operations and consequently
improve workflow efficiency.

The management of the final models through a 3DGIS tool opens new
analysis capabilities for the archaeologist (e.g., analysis though time, archaeological
investigations, integration of historical and geometric models).

Finally, it has been demonstrated that through the simplification and
optimization strategies, complex hybrid 3D modes which enclose 2D information
can be flexibly shown through the Web and even embedded in smartphones. As a
result, we can interact directly with hybrid 3D models using mobile devices, allowing
the recording, storage and analysis of data in situ. The implemented methodology
to optimize the visualization and interaction of geomatics products has proven
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to be effective. However, it lacks a fully complete user interaction, since the final
navigation is constrained by the definition of the visualization level. To overcome this
limitation, a future work line is aimed to a more efficient visualization management
by the 3DGIS tool, avoiding the definition of level of visualization by the final user.

The technical case outlined in this paper could be of great interest for different
stakeholders:

‚ Researchers for the interpretation, spatial and temporal analysis of the
archeological settlement thanks to the integration capabilities and portability of
the system.

‚ Managers through the monitoring of the archaeological settlement through time,
the diffusion of the site using videos, documents, etc.

‚ Students who could exploit the didactical possibilities of the 3D inspection,
interaction and superposition of thematic information.

‚ General public allowing a flexible and enjoyable accessibility to the archaeological
settlement which complements and provides added value to a visit to an
historical site.

The data acquisition and processing methodologies from Geomatic science
broaden the possibilities of sensors, configurations and/or combination as future
perspectives. Concretely, the resolution of the external orientation of the images
directly, just using the integrated Global Navigation Satellites System GNSS/IMU
Inertial Measurement Unit of the aerial platform, would allow us to speed up the
field work and processing time. Furthermore, in order to obtain realistic textured
models and orthoimages, the use of techniques such BRDF (Bidirectional Reflectance
Distribution Function) to improve the radiometric parameters will be studied.
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Abbreviations

AGI Analytical Graphics, Inc.
ASIFT Affine Scale Invariant Feature Transform
BRDF Bidirectional Reflectance Distribution Function
CCRS Compound Coordinate Reference System
CRS Coordinate Reference System
DSM Digital Surface Model
DTM Digital Terrain Model
ETRS89 European Terrestrial Reference System 1989
EPSG European Petroleum Survey Group
GIS Geographical Information System
GNSS Global Navigation Satellites System
GPS Global Positioning System
GPU Graphical Processing Unit
GSD Ground Sample Distance
HTML HyperText Markup Language
ICP Iterative Closest Point
IMU Inertial Measurement Unit
LSM Least Squares Matching
MI Mutual Information
MUSAS MUltiSpectral Airborne Sensors
ORSA Optimized Random Sampling Algorithm
RAM Random Access Memory
RANSAC Random Sample Consensus
RTK Real-Time Kinematic
SGM Semi-Global Matching
SIFT Scale Invariant Feature Transform
TLS Terrestrial Laser Scanner
UAV Unmanned Aerial Vehicle
UTM Universal Transverse Mercator
VRML Virtual Reality Modeling Language
WMS Web Map Service

Appendix: 3D Web Visualization

The management of a 3D textured model is a key part of any spatial data
infrastructure. However, it requires an efficient visualization system to visualize
the geometric and semantic information. In spite of the mesh simplification and
optimization process mentioned in Section 3.2.5, it is possible to optimize the
visualization of 3D models in terms of WebGL framework Cesium. Some authors [52]
propose an approach based on a custom geometry loader implemented in the Cesium
APIs. By this approach any 3D element is rendered and handled by the Cesium
rendering code. However, these authors remark some drawbacks in terms of memory
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and performance. Another alternative is the employment of the GL Transmission
Format (glTF) proposed in [53] which allows directly loading the data to the WebGL
buffers. This format aims to be a standard for data exchange and rendering. Although
this glTF format is able to deliver an arbitrary number of mesh data buffers within
a single file, it completely lacks any mechanism for progressive data transmission.
Trying to overcome this limitation, new file formats are being developed [54]. The
basic idea would be to improve the data streaming by means of a Level of Detail
(LoD) visualization in order to reduce the number of WebGL draw calls.

Following this line, the implemented solution is based on the optimization of
visualization levels. For each user call, a specific 3D sub-model is loaded accordingly
to the user position, view orientation and zoom level. This is a trade-off between the
visualized area and the model resolution, keeping an optimal number of mesh
triangles for an easy navigation in terms of loading time and user experience.
The main drawback is that the final user navigation has to be constrained into
a set of positions to avoid the movement outside the active visualization level.
The generation of the 3D sub-models for visualization purposes implies a spatial
resolution simplification, where the visualization areas are extracted according to
the optimal number of triangles mentioned above. The 3D sub-models are created
in a discrete number of levels, where the minimum allowed resolution change is
established at 5%.
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Multi-Sensor As-Built Models of Complex
Industrial Architectures
Jean-François Hullo, Guillaume Thibault, Christian Boucheny, Fabien Dory and
Arnaud Mas

Abstract: In the context of increased maintenance operations and generational
renewal work, a nuclear owner and operator, like Electricité de France (EDF), is
invested in the scaling-up of tools and methods of “as-built virtual reality” for whole
buildings and large audiences. In this paper, we first present the state of the art of
scanning tools and methods used to represent a very complex architecture. Then, we
propose a methodology and assess it in a large experiment carried out on the most
complex building of a 1300-megawatt power plant, an 11-floor reactor building. We
also present several developments that made possible the acquisition, processing and
georeferencing of multiple data sources (1000+ 3D laser scans and RGB panoramic,
total-station surveying, 2D floor plans and the 3D reconstruction of CAD as-built
models). In addition, we introduce new concepts for user interaction with complex
architecture, elaborated during the development of an application that allows a
painless exploration of the whole dataset by professionals, unfamiliar with such data
types. Finally, we discuss the main feedback items from this large experiment, the
remaining issues for the generalization of such large-scale surveys and the future
technical and scientific challenges in the field of industrial “virtual reality”.

Reprinted from Remote Sens. Cite as: Hullo, J.-F.; Thibault, G.; Boucheny, C.;
Dory, F.; Mas, A. Multi-Sensor As-Built Models of Complex Industrial Architectures.
Remote Sens. 2015, 7, 16339–16362.

1. Introduction

1.1. Industrial Context

In order to fulfill the need for as-built datasets to help workers in complex
buildings in their daily jobs, large and multi-sensor surveys now have to be
considered at the whole building size. Unfortunately, many current tools (including
sensors, processing programs and visualization applications) have not been designed
for such large surveys of complex indoor facilities.

Until today, the major uses with as-built data in the industry are related to the
description of the actual shape of only a part of the facility, with its obstacles and free
spaces with centimeter accuracy, to help maintenance planning, handling, storage,
replacement or changing important components in that specific part of the plant;
see Figure 1. The next step in the field of 3D surveying of facilities consists both of
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scaling up the current state of the art, without compromising data quality, and in
dedicating as-built datasets to new users, who are not experts in CAD or terrestrial
laser scanner (TLS) data.
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Figure 1. Review of three breakthrough projects (1993–2014) of as-built
reconstruction from laser scanning data of industrial facilities at Electricité de
France (EDF) [1]: (a) first water tank (1993); (b) first turbine hall (2009); (c) first
reactor building (2014).

1.2. Contributions

The contributions of this paper, which is an enhanced and detailed version of [1],
are the following:

‚ The state of the art of tools and methods for the acquisition, processing and
georeferencing of as-built datasets dedicated to the specific conditions of
complex indoor facilities, Subsection 2.1 and Subsection 2.2;

‚ The proposition of a global method for multi-sensor acquisition and processing
to represent complex architecture, Subsection 2.3 and Figure 2;

‚ Settings, processes and feedback from a large-scale multi-sensor scanning survey
experiment on a whole 1300-megawatt nuclear reactor building (1000+ stations
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of both TLS and panoramic images) with a highlight of the role of the human
beings in the process, Section 3;

‚ A new interactive tool for pose estimation of panoramic images, Section 4;
‚ Recommendations and examples for developing dedicated applications for

virtual tours of complex architectures using multiple data types in order to
increase the value of the dataset and answer users’ requirements, Section 5;

‚ An overview of the remaining bottlenecks and challenges in view of the
generalization of large, dense, multi-sensor scanning surveys, Section 6.
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Figure 2. Global framework of as-built data production in the experiment. White
boxes are the initial data sources; grey boxes are intermediate data versions;
and black boxes are the datasets that composed the virtual replica of a complex
building. Orange outlines represent stronger control procedures in the data
production process.

2. State of the Art in 3D Surveying for the Industry

2.1. Scanning Industrial Interiors, a 20-Year-Old Challenge

As shown in Figure 3, power facilities are a specific subset of industrial
environments, in their shapes (congested, with a huge number of objects, whose
manufactured geometries correspond to a set of 3D primitives, like cylinders, boxes,
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etc.), their surfaces (objects sometimes very reflective or with very dark albedos)
and accessibility (on-site restricted access time, difficult temperature and vibration
conditions). The geometric complexity of these scenes led to the development of
dedicated acquisition and processing tools, such as terrestrial laser scanning in the
1990s [2], used very often since then, see Figure 1a. These methods have been used
until today to help maintenance workers, by providing a description of the geometry
of key areas of the facilities.

Unfortunately, and because of the specific nature of industrial environments,
many developments intended for the 3D laser scanning of non-industrial objects
have not solved all of the issues arising in the large-scale dense scanning survey of
whole industrial scenes with multiple floor heights. These main issues are the speed
of surveying (since the plant is only accessible a couple of weeks in the year), the
accuracy of the raw points for a large spectrum of albedos (with both mirror-like
and dark surfaces in the same scene), the accuracy of registration and referencing
(the 2.58σ global geometric tolerance is ˘2 cm) and, also, the productivity of 3D
reconstruction (up to 100.000 objects for one single building).
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Figure 3. Specific issues of a power facility: (a) rooms are often very congested;
(b) objects can be very dark and (c) stainless objects can be clean and then very
reflective; (d) often coexisting in one place.

In an industrial context, many users are not experienced users of laser scanner
or CAD data. Furthermore, geometry alone is not sufficient to meet all maintenance
needs and to represent all of the complexity of the architecture and the details of a
power plant. These observations lead to the following requirements for the tools and
methods used in these new standards in the production and use of as-built datasets
for the maintenance of facilities:

(1) Multi-sensor datasets that describe both the geometry and appearance of
a facility;

(2) Fast and accurate sensors, responsive to harsh albedos or very reflective surfaces;

358



(3) Automated pipelines for conversions and formatting;
(4) Large-scale efficient tools for registration and processing;
(5) User-friendly diagnostic tools to achieve high quality requirements on large

and complex datasets;
(6) Dedicated solutions for the intuitive exploration and use of multi-sensor datasets.

2.2. Requirement Engineering for As-Built Datasets of Complex Architectures

In order to represent a complex facility, the requirement engineering of several
jobs, through meetings and discussions, to estimate the optimal value of the dataset
produced, has led to the conclusion that the following data types must be produced
together; see Figure 4:

(1) Panoramic images, in order to be able to read each equipment tag that might be
visible up to 5 m from the main pathways in the facility, as well as to understand
the overall architecture of the building;

(2) Georeferenced terrestrial laser scans, in order to deliver local sub-centimeter
geometric accuracy on distance measurements, as well as global 3D locations
with less than 2 cm of deviation from the ground truth (2.58σ tolerance);

(3) 2D floor maps, with all elements relative to the structure of the building (walls,
floors, ladders, stairs, etc.), as well as landmarks to help pedestrians navigate
the plant;

(4) 3D, as-built CAD models with categories, to capture empty areas or open
walking spaces with less than 5 cm of error (2.58σ tolerance), as well as the
shape of the main equipment of the facility.

In order to match these requirements, one must define relevant specification
criteria for each type of data, as presented in Table 1.

Then, the tools and methods that might meet all of these criteria were selected
using the experience of survey teams that should submit sample datasets to prove
their expertise (from either previous surveys or small-scale experiments in similar
conditions). The initial estimates of costs and delays were extrapolated to the building
scale thanks to a deep analysis of these previous acquisitions.

Finally, to ensure the consistency of results for initial user needs, the dataset
was fully checked, using a Level 2 control procedure and then reworked until
quality standards were achieved. Finally, user feedback showed the validity of
such approaches.
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Figure 4. Four types of data are required to represent a power plant facility with
a high degree of confidence (geometry and appearance): panoramic images, laser
scans, floor maps and 3D CAD model.

Table 1. Criteria of a multi-sensor survey of a building with complex architecture.

Type of Data Criteria

Panoramic images completeness, location of stations, field of view, resolution
and noise level of digital images, white balance and high
dynamic range (HDR), naming, approximate poses, vertical
estimation and mapping

Georeferenced and
cleaned laser scans

completeness, location of stations, block structure of
sub-networks, targets for registration, reference targets for
georeferencing, field of view, resolution, signal and total
station traverse survey

2D floor maps completeness, geometry, naming and formatting
3D as-built CAD model completeness, categories of objects, type of shapes,

geometric accuracies by category, names and structure

2.3. State of the Art of Large-Scale Dense Scanning Surveys

Recent breakthroughs offer the prospect of large-scale and multi-sensor scanning
surveys that comply with the previously defined technical requirements and
tolerances, from acquisition and processing to data integration in dedicated software,
developed specifically for maintenance work in a power plant. As will be shown in
this section, new developments in data acquisition in the past five years have mainly
improved the speed rate, with almost no gain in accuracy. The real benefit for scaling
up dense scanning surveys consists of the improvement in data storage, visualization
and processing.
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2.3.1. Panorama Acquisition

Regarding panoramic image acquisition, current 360˝ video cameras allow fast
acquisition of equirectangular images; the state-of-the-art highest resolution panoramic
systems use 44 sensors to produce videos with a resolution of 9000 ˆ 2400 pixels at
a rate of 30 frames per second [3]. However, static tripod-mounted motorized heads
with full frame digital single lens cameras (DLSR) can generate higher resolutions
(gigapixels) panoramas, for example half a billion pixels in five minutes [4], with a
high automation rate in stitching. This resolution allows reading labels up to 5 m,
and the high dynamic range (HDR) rendering can deal with high contrast and poor
lightning conditions.

2.3.2. 3D Point Cloud Acquisition and Registration

Regarding 3D georeferenced point cloud acquisition, some noticeable
improvements have come from robotic and computer vision research programs on
fast 3D scanning indoors, such as range sensors [5], backpack scanning systems [6],
handheld [7] or mounted on mobile platforms in various shapes and sizes [8,9].
However, these systems, either for local precision [5–7] or global georeferencing
errors [9], deal mostly with decimeter accuracy. Moreover, many indoor localization
and mapping systems require planar objects and/or straight corridors to reduce drift
using elaborate algorithms, such as “iterate closest point + inertial measurement
unit + planar” proposed in [6]. For labyrinthine and crowded indoors, a fusion of
several techniques may be available in a few years, including indoor localization
systems based on inertial sensors (the state of the art may be found in the
EVAAL indoor positioning competition—Evaluating Ambient Assisted Living
Systems Through Competitive Benchmarking—won in 2015 by [10]), graph-SLAM
(simultaneous localization and mapping) sensor positioning [11], efficient loop
closure [12] and robust detection of features for geo-referencing [13].

Currently, phase-based terrestrial laser scanners are better sensors for small
distances, and acquisition rate and can for instance capture 50 million points of
mid-range measurements in approximately five minutes (<1 m–50 m). Regarding
local accuracy, errors in depth measurements are under 1 cm in that range on
most object surfaces [14]. However, the surfaces of some industrial objects do
not correspond to the calibration standard ranges (very short distances, low
albedos, high reflectance properties and low incidence angles), leading to significant
consumption of the error budget [15]. A proportion of these errors can be filtered
out automatically [16] (comet-tailed effect, outliers), although another proportion,
often quite considerable, can only be removed through manual segmentation
(multi-reflections on specular surfaces, in particular).

Regarding global accuracy, the fine registration of large laser scanner datasets is
an open and active research topic. For complex buildings, cloud-to-cloud automatic
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approaches, such as ICP and variants, cannot be used for several reasons. First, due to the
proximity of objects, a small relative change in scanner position induces strong differences
on point clouds. Thus, cloud-to-cloud constraints cannot, by definition, lead to accurate
and trustworthy results in complex scenes. Secondly, these approaches cannot take into
account datum constraints for data referencing without a great loss of automation. Finally,
these approaches are neither efficient nor robust for very large datasets (many hundreds
of stations) [17]. Currently, only target-based registration paired with a total station
survey for datum referencing allows the fine registration of hundreds of laser scans
(3σ =˘2 cm) on the scale of 10-floor buildings.

2.3.3. 3D CAD Reconstruction

Recent improvements in processing tools for 3D reconstructions from large
point clouds (tens of billions) have made possible the “as-built” reconstruction of
a full mock-up. First, the data storage cost has increased by a factor of 25 in the
last decade [18], while the data USB external transfer rate has increased by a factor
of 20 [19], and internal SSD now reaches 500 Mb/s. However, if dozens of laser
scans requires gigabytes, thousands of laser scans require terabytes. To improve both
file storage, versioning and processing, data structures have been developed [20]
and implemented in many commercial software. Other great improvements have
been made for visualizing and manipulating a billion point clouds, for example
using QuadTrees [21], such as implemented in the WebGL renderer PoTree [22],
with real-time shaders, like Eye Dome Lightning [23], also implemented in the open
source software CloudCompare.

Looking back, 3D CAD models have been used for planning maintenance
operations of industrial installations since the 1990s [2]. Depending on the
requirements, several formats can be used depending on the requirements of the
industry. In the architectural, engineering and construction (AEC) industry, building
information models (BIM) have recently attained widespread attention. These
BIM models can be really valuable when they are used in the whole lifecycle of
a building [24], from construction monitoring [25] to decommissioning [26], but are
used for new rather than for existing buildings [27]. In the power plant industry,
PDMS from Aveva has been a leading plant design model for more than 30 years [28].
For power plants designed before the 1980s, only 2D plans were created.

As detailed in [29], there is an obvious need for automated or semi-automated
methods for the production of as-built BIMs; the current process for creating
parametric BIM from a point cloud is largely a manual procedure, which is time
consuming and lacks quality controls. Indeed, primitive-based 3D CAD models can
still be reconstructed from point clouds with a better productivity than BIM [30],
and most objects of a power plant can be considered as a combination of primitive
geometries (due to a series effect of the design and part manufacturing process,
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except for molding large metal equipment). Though recent automatic algorithms for
primitive fitting perform better with increasing sampling resolution, they are still far
from a 2.58σ tolerance of detection and fitting [31]. To achieve centimeter accuracy
on more than 99% of the reconstructed objects, human interaction is required for
either initial segmentation or picking initial points for region growing. To assess this
accuracy, several tools must be used: visual inspection and a cloud to shape distance
computation. Finally, the primitive-based CAD models can also be displayed in the
usual rendering engines of virtual reality [32].

3. Experiment of a Multi-Sensor Survey in a 1300-MW Nuclear Reactor

3.1. Goals and Context of the Experiment

In the wake of several research projects that contributed to the development of
tools and methods for dense scanning [33], reconstruction [34] or registration [17]
and also tools for the visualization of complex datasets [23], EDF carried out the
first very large-scale experiment in the most complex building in a 1300-MW nuclear
power plant facility: a reactor building.

The goal was to assess the effective performance (quality, cost and speed) of
current tools and best practices through a major research project launched in 2013, in
order to make a decision on the generalization of the multi-sensor scanning of power
plants and highlight remaining bottlenecks to target lock ups. Another goal was to
maximize the benefits of this dataset to the company, especially by sharing it with as
many users as possible, to assist them in their daily work.

Therefore, to meet the needs of many maintenance procedures and operations,
a dense multi-sensor survey (total stations, laser scanning and panoramic RGB) was
carried out during the summer of 2013, using the technical specifications detailed
above; Subsection 2.2; see Figure 5.

3.2. A Level 2 Procedure for the Quality Control of Large Datasets

We mentioned several definitions of tolerances and quality requirements to reach
high-quality data production. In order to reach these requirements, it is necessary to
use specific procedures for the quality control of large, as-built datasets (laser scans,
RGB panoramic or 3D CAD models). These Level 2 procedures are a standard for
quality monitoring and for detecting non-conforming materials. Our experiment
demonstrated their usefulness. To enhance dataset quality, we therefore implemented
it in the following manner:

‚ Level 1: the data creator checks 100% of the dataset and documents it;
‚ Level 2: the project data manager performs spot checks both on areas of interest

and randomly on the whole dataset.
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Due to the significant number of human actions involved in the processes
and the size of the dataset, at least two iterations are generally needed to reach
quality levels.
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Figure 5. (a) Scale of the reactor in a power plant facility, a cylindrical building
with 11 floors; (b) 1000+ TLS stations and targets for referencing appear as a very
complex 3D network: green spheres are reference points; red spheres are TLS
stations; and blue lines are the sights of registration targets from TLS stations.

3.3. Description of the Data Acquisition

The reactor building, whose shape is cylindrical, consists of eleven floors with
additional floor heights in each of them. Moreover, the majority of the 100+ rooms in
the building is particularly congested, and many of them are only accessible through
ladders. Regarding the environmental conditions, exploring and scanning such
environments is constrained by poor lighting, access restrictions and congestion
due to the equipment and the civil works of the plant itself. During this specific
experiment, due to the many maintenance operations occurring in the shutdown
period, the building was exceptionally accessible for five weeks (35 days), but we
expect the available survey time to be reduced by 50% in the future (17 days). Key
numbers for the multi-sensor scanning survey are shown in Figure 6. The global
framework for data production is shown in Figure 2.
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Figure 6. Key numbers in the multi-sensor scanning survey of a nuclear reactor
building [1]; the main order of magnitude that may be highlighted is the number
of stations: more than 1000 stations (for more details, see [35]). The relative time
allocation is shown on the graph; CAD reconstruction is the main budget.

Discussion on on-site acquisition: As detailed in [35], this acquisition phase
demonstrated the feasibility of such surveys thanks to some specific evolutions and
developments of the tools and methods to take into account the up scaling. To
succeed, a large number of sensors and operators (five laser-scanning surveyors
with Leica HDS 6100 and Leica HDS 7000 and three photographers with Canon EOS
5D Mark III with motorized panoramic heads) is required. However, as mentioned
above, we expect to have only half the time to carry out the survey, i.e., in the future,
twice the number of sensors and operators will have to be sent to a site, creating
additional stress on current methodologies and synchronization between operators.

Discussion on processing TLS data: This experiment also underlined some
constraints on scaling up the current post-processing tools and methods in terms
of quality, time or cost (fine registration of large laser scanner datasets, quality
monitoring and validation tools, issues for formats, storage and data sharing).
To illustrate the complexity of the fine registration of laser scans in complex
architectures, we show in Figure 5a view of the 3D network used in the adjustment.
This experiment, mostly performed with a Leica Cyclone, underlined the lack of
robustness of weighted least squares in such large blocks and the need to work
with 3D topographic networks instead of 2.5D. Unfortunately, even state-of-the-art
registration tools implement a basic version of the least squares algorithm and lack
tools for blunder detection, error propagation and quality monitoring.

The main issues regarding the processing of TLS data are the following:

‚ Several tests on TLS sensors have shown that, even today, the scanning of dark
surfaces is not efficient, and the reflective surfaces lead to billions of erroneous
3D points that cannot be filtered by current firmware or software. These points
are certainly an issue for 3D reconstructions, but mostly for taking measurements
of so-called “bubble views” or station-based views where no feedback on the
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real position of 3D points is given. Our solution consisted of developing an
efficient interface to perform a manual segmentation of these outliers Figure 7.

‚ Without better algorithms for the fine referencing of TLS dataset and large
3D networks, the only way to comply with a global 2.58σ tolerance of 2 cm
accuracy overall, the dataset consists of creating sub-networks with fewer
than 200 stations, independently referenced to the external reference system.
This constraint implies thorough planning on site for placing and surveying
targets. Recent developments have shown that we can expect better results in
automation and quality by bundler snooping (moving targets) and the use of
robust estimation well known from geodesists [36].

Remote Sens. 2015, 7 11 

 

 

quality by bundler snooping (moving targets) and the use of robust estimation well known from 

geodesists [36]. 

 

Figure 7. An example of blunder removal in a 3D scan. Blue: 3D points filtered 

automatically. Red: 3D points manually segmented (the average segmentation time is 6.5 
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Figure 7. An example of blunder removal in a 3D scan. Blue: 3D points filtered
automatically. Red: 3D points manually segmented (the average segmentation time
is 6.5 minutes per station).

Discussion on processing panoramic images: The level of automation and the
quality of output using modern stitching software, such as the one we used, Kolor
AutoPanoPro, are very good. However, some issues still have to be addressed:

‚ When dealing with 450 Mpixel images of indoor scenes, the field of view of a
single picture is quite small and can lead to a lack of feature points when only
uniform objects, such as a painted wall, are visible in the picture. The Level
2 control procedure has led to the reopening of 20% of the panoramic stitches
for editing;

‚ Another recurrent error in panoramic images consists of estimating verticality,
based on the images. In congested environments, default settings can lead to
errors of up to 20˝ in that estimate. We recommend either the use of leveled
panoramic heads with custom settings for estimating the relative position of
unit images or the use of vertical definition tools through the software interface;
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‚ A major issue is the registration of the panoramic images on the external
reference frame; see Figure 8. As will be discussed later on, the fine registration
of panoramic images is valuable in assisting with the quality control of 3D
reconstructions and offers a better user experience when browsing the dataset.
We will address this issue later in this paper.

Discussion on restructuring and updating 2D floor maps: A global model of
the plant is key data for designing the structure of the dataset, unifying the names
of the objects and performing an analysis on it. By constructing a graph of the
various objects and their relationships (adjacency, verticality, inclusion, etc.), it makes
it possible to answer questions like “What are the panoramic images taken in the
rooms adjacent to a specific one?” or “Can I access a specific location in the building
without taking ladders?”

This entire graph database was built using structured 2D floor plans, updated
using the 3D dataset: walls, grounds, ladders, stairs and many others; cf. Figure 9a.
These as-built floor plans were then automatically processed to extract all of
the required information and to build a “topological graph”, describing several
properties of the installation (shape, location, names, types, navigation, access,
etc.), as well as rendering specific maps using style sheets. A previous example
of this kind of approach can be seen in [37]. This graph is then used in the software
applications that we developed, in order to answer queries on the semantic, geometric
or topological properties of the building and its components; cf. Figure 9b.
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Figure 8. Typical issues in panoramic images. A lack of texture can lead to glitches
in the final image (Left). The estimated vertical may have to be refined manually
because horizon estimation algorithms can fail up to 15˝ (Right).

Regarding the processing steps for the floor maps, the pipeline is as follows:

(1) Redraw existing floor maps in AutoCAD, following specific drawing rules and
using only two types of objects: polylines and blocks (manual);
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(2) Compare the 3D as-built model and panoramic images to floor plans in a specific
tool developed in Unity3D, to update them in AutoCAD (manual);

(3) Convert polygons of floor maps to Scalable Vector Graphics (SVG) files (automatic)
and export the blocks to XLS using EXTATTBE in AutoCAD (automatic);

(4) In a dedicated C# tool, instantiate a class model of objects of the building:

a For each floor:

i import SVG and XLS to instantiate a relational model of the
building (floors, ladders, walls, etc.), including controls to check
with respect to the drawing rules,

ii using a Clipper Library clipping algorithm [38] and threshold,
compute relations between objects, such as adjacency, inclusion, etc.

b For each pair of floors:

i Connect objects, such as elevators, ladders, stairs,
ii Using Clipper Library, compute vertical relationships between objects.

(5) Export the instantiated building model to a topological graph in XML, with
a description of the building model in XML Schema Definition (XSD).

Discussion on the 3D CAD reconstruction based on the TLS point cloud: A large
dataset of 40 billion 3D points was used to reconstruct an as-built 3D CAD model
of the facility (see Figure 10). The main part of the 3D reconstruction was produced
using Trimble RealWorks Version 8.x (80% of the final CAD model); some objects
from a pre-existing CAD model were adjusted in Dassault Systems SolidWorks, as
well as other equipment that could not be modeled as a combination of primitive
shapes (see Subsection 2.3.3). As illustrated in Figure 6, the 3D reconstruction was
the main line in the budget of the data production. In order to meet end users’ needs,
the quality levels of the 3D data produced had to be defined in accordance with their
intended uses: maintenance task planning (including the associated logistics: access,
scaffolds, handling areas), worker safety and virtual tour for low accessibility rooms
by inexperienced professionals.

The consequences of this multiplicity of needs led to a detailed specification for
3D reconstruction tasks depending on the object type among the 25 categories used:
fitting tolerances, naming and methods (cloud least-square fitting, region growing
cloud-shape fitting, cloud snapping and copies). The use of precisely georeferenced
panoramic RGB images was very valuable in the reconstruction process to help with
understanding complex areas.
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Figure 10. The dense data sources used for as-built reconstruction of the nuclear reactor 

building from point clouds: (a) 1025 panoramic images with 450 million of pixels, (b) 1085 

laser scans with 40 million 3D points, (c) 3D reconstruction of 25 types of objects with 

specific rules (fitting tolerances and naming encodings) and (d) as-built CAD model with 

100 rooms and 100,000 3D objects. 

Figure 9. 2D as-built floor maps (a) updated using the 3D as-built dataset, laser
scans and panoramic images; (b) An interactive Virtual Reality Modeling Language
(VRML) visualization of a semantic, geometric and topological representation of
the building, based on the as-built floor maps [1].
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Figure 10. The dense data sources used for as-built reconstruction of the nuclear
reactor building from point clouds: (a) 1025 panoramic images with 450 million of
pixels; (b) 1085 laser scans with 40 million 3D points; (c) 3D reconstruction of 25
types of objects with specific rules (fitting tolerances and naming encodings) and
(d) as-built CAD model with 100 rooms and 100,000 3D objects.

In order to deal with the huge amount of work and to reduce the time
of data delivery, the 3D CAD reconstruction had to be split and parallelized
by sectors and then allocated to half a dozen CAD operators for almost a year
(10 months). To achieve and certify the quality of the reconstructed as-built
model, a Level 2 check procedure was carried out by two independent operators
and led to further iterations and re-working (approximately 10% of the total
effort). This validation was performed using mesh-cloud distance computations,
by using software originally developed by EDF R&D and Telecom ParisTech
(CloudCompare [33]) and “out-of-core” technologies to display a maximum number
of points for the visual inspection in Trimble RealWorks 8.x, guided by the analysis
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of an SQL database storing the standard deviation of each reconstructed geometry
(~80,000 objects).

3.4. Summary of Tool Development during the Project

Many tools (hardware and software) were used to produce both the data and
end-user applications. Some of them were satisfactory, but many had to be improved
during the project.

Acquisition and stitching of RGB panoramic images: Canon EOS 5D cameras
with a Dr Clauss motorized head were used. For stitching, mapping and blending,
Kolor AutoPano was used, and XNview MP was very useful for batch conversions,
resampling and renaming. None of the tools were improved.

Acquisition and processing of the TLS dataset: Leica HDS 6000 and 7000 with
total stations were used. The Z+F software was used to convert and filter scans.
Specific settings were added to that software for improve the results. For registering
scans, Leica Cyclone was used. For manual segmentation, we had to add new features
in Trimble RealWorks, used to remove noise that could not be filtered out (mirrors).

Floor plan editing and processing: Floor plans were edited in AutoCAD, and a
specific tool had to be implemented in Unity3D to compare them to the as-built 3D
CAD model. All of the processing, converting and analysis steps required to create
the “topological graph” were made in a custom tool developed in C#, using Clipper
Library, based on a Vatti clipping algorithm [38].

3D as-built CAD reconstruction and conversions: For main walls and civils
works, Dassault Systems SolidWorks was used. For all of the other objects, Trimble
Realworks was used and had to be improved to increase productivity (shortcuts,
color palette, debugging fitting tools, etc.), as well as quality, by developing
a dedicated SQL plug-in to store metadata for each 3D object (“was the object
fitted or manually adjusted?”, “is the object a copy?”, etc.). For two-level control
procedures, Hexagon 3DReshaper and CloudCompare were used. CloudCompare
was specially enhanced for this project. In addition to the edition and conversion
features offered by SAP Visual Enterprise Authors, we developed advanced scripts
using Windows PowerShell.

4. Example of Specific Development to Reach Quality Expectations for
Referencing Panoramic Images Precisely

During acquisition, panoramic images were roughly located on a map and
oriented to the north. However, many usage examples have underlined the need
for estimated correct pose in these images (dataset navigation, 3D reconstruction
quality check through overlay, etc.). We propose several solutions, using either the
TLS dataset, the 2D floor maps or the 3D CAD reconstruction model.
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4.1. Camera Model for Panoramic Images

Using an equirectangular projection where the z axis of the reference frame is
aligned with the meridians of the panorama (see Figure 11), the spherical coordinates
of a pixel can be given using the following relations:

θ “
W ´ 2u

W
π P r´π, πr φ “

H ´ 2v
2H

π P
”

´
π

2
,

π

2
r (1)

If we represent these pixels on the surface of the sphere, the point mi = (xi, yi, zi)
can be calculated from its coordinates (θi, φi) using the following relations:

mi “ pcos pφq .cos pθq , cos pφq .sin pθq , sin pφqq (2)

The epipolar constraints between two images I1 and I2, with a relative pose
composed of a translation three-vector t and a 3 ˆ 3 rotation matrix R, are given for
a corresponding pair of points from the two images:

mT
2 Em1 “ 0 where E “ rtsˆ R is the essential matrix (3)

[t]ˆ is the anti-symmetric matrix induced by the vector product. The locus of
epipolar constraint transforms from lines (pinhole cameras) to circles in the case of
spherical panoramas.
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Figure 11. Spherical image and coordinate axes. 
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4.2. Pose Estimate Using Constraints between Image Pixels and 3D Points from Laser Scans

For the external pose estimate, i.e., the absolute pose of the panoramic image
in the global reference frame, we can use matching feature points between pixels
in the image and real world points (for example, from a 3D laser scan of a close
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station). Thus, the problem is the following, given points mi, the coordinates of the
corresponding pixels on the sphere, and Mi, the homogeneous coordinates of 3D:

aimi “ RMi ` t “ pR|tq

˜

Mi
1

¸

“ PMiphomogen.q where ai is a scale factor for each point i (4)

This can be turned to a linear system problem Ah = 0 as follows, where pj is the
j-th row of:

Ah “
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We solve this linear system by choosing h as the last column of V where A +
UDVT is the singular value decomposition of A. Taking the 12 entries of h, we obtain
Pest (estimated P), which differs from P by a scale factor k, that can be solved through:

k “
||Pest Mi||

a2i
(6)

we can choose k as the average value computed from n points.
In our case, panoramas are “vertical”, which simplifies the extraction of the only

non-zero rotation angle κ (using Tait–Bryan angles) and t values from P. Thus, to
solve pose estimation, we need a few reliable and well-distributed matching pairs.
This can be done manually or automatically using a feature point extraction algorithm
and more robust estimating schemes. However, achieving stable results in matching
and pose estimates for the whole dataset is tedious, and manual editing requires
a dedicated interface. In the next two sections, we propose interfaces for using either
2D maps or 3D as-built CAD models instead of feature point-based methods.

4.3. Partial Pose Estimate of Panoramic Images Using 2D Floor Maps

A user-oriented approach was implemented to get a first “independent” estimate
of parameters (tx, ty) and (κ) of a vertical panoramic image by using 2D floor
maps. Using a user interface with a synchronization of the panoramic view and its
position with the camera orientation on the 2D floor map, the procedure followed by
the operator is:
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(1) Move (tx, ty) panoramic using near and identifiable details of the floor maps by
estimating the ratio of distances (doors, holes in floors, etc.);

(2) Orient (κ) using far landmarks of the floor maps;
(3) Check at +90˝ and +180˝ and iterate the first two steps until the best estimate.

This method was applied to the entire dataset (1025 panoramic images), and 95%
of the images were moved or oriented (970); see Figure 12. The average processing
and control time for one panoramic image is 1 min 50 s.Remote Sens. 2015, 7 17 
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Figure 12. User interface of the partial pose estimation tool. The camera position,
orientation and field of view of the panoramic image are synchronized with the
floor map (Top). A central cross helps the sighting of landmarks; Key numbers of
the corrections using 2D maps (1025 images) (Bottom).
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4.4. Full Pose Estimate of Panoramic Images Using the 3D As-Built Dataset

Another user-oriented approach was developed to refine the whole pose
(including tz) of the panoramic images (tx, ty, tz) and (κ) given the hypothesis of
verticality (ω = 0, φ = 0). Using a user interface with a synchronization of the
panoramic view and its position with the camera orientation in the 3D model and
using switches for overlay and transparency, the procedure followed by the operator
consists of independently correcting the four parameters of the pose; see Figure 13:

(1) Move (tz) panoramic using landmarks of the 3D model that cross the equator of
the panoramic in the image (boxes, stairs, guardrail, etc.); front view;

(2) Align (κ) panoramic using parallel objects of the 3D model to any meridian of
the panoramic in the image (pipes, beams, etc.); zenith view;

(3) Move (tx, ty) panoramic using landmarks on the ceiling of the 3D model to align
them to the zenith of the image; zenith view;

(4) Check horizontally for any issue at +90˝ and +180˝ and iterate the first three
steps until the best estimate; an incorrect estimate of the vertical when mapping
the panorama is the main source of a poor estimate of the pose of the panoramic,
and such a panoramic should be corrected.

This method was applied to the entire dataset after the first estimate on 2D floor
maps (1025 panoramic images). During this process, we moved and oriented 100%
of the images (1025). The average processing and control time for one panoramic
image is 30 s for low corrections and 1 min 30 s–2 min for more difficult images.

4.5. Overall Feedback on the Experiment and Discussion on Future Large Scanning Surveys

Even for a company with over 20 years’ experience in the field of as-built
documentation, a multi-sensor and dense scanning survey on the scale of an entire
11-floor building remains a challenge, for which tools and methods have not yet
been designed.

In addition to the several recommendations and choices that were set out in
the previous paragraphs, our experiment highlighted some specific aspects of large
and multi-sensor scanning surveys in complex architectures. For these projects that
respond to the growing need for as-built data for professionals, we recommend:
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‚ specifying needs, requirements and constraints in detail. On the scale of
a building, every misunderstanding or fuzzy specification may have a severe
impact on costs, quality or durations;

‚ documenting every step in the process and performing quality monitoring from
the beginning, to help both fixing non-conforming data and enriching the dataset
for future use;

‚ parallelizing the tasks as much as possible (acquisition and post-processing);
when the data production time increases, the number of non-qualities
increases significantly.

Regarding remaining bottlenecks, we have mentioned several technical brakes
on the generalization of current tools and methods for large and complex buildings,
regarding raw data acquisition and processing. We have also discussed the three
areas of 3D reconstruction: costs, duration and quality. Since the real requirement
is the third one, the first two areas must be viewed as secondary in achieving the
dataset in industrial processes. The low level of automation and the low quality of
acquisition sensors and tools are the actual brakes on generalization. However, by
performing rigorous quality monitoring and control, each dataset can be produced
with a high degree of confidence. In such large projects, traceability is one of the keys
to quality management. The Figure 2 gives a global overview of the whole framework
of as-built data production; we can see that many steps are required, including
many tools and human interactions. As shown, also, many control procedures are
required to reach and certify a quality level. Indeed, the main drawback for achieving
expected quality levels is the difficult inter-validation of data sources. To perform
such a quality control policy, the dataset has to be merged, compared and visualized
altogether. Nevertheless, due to the limitations of current tools and formats, this
fusion and exhaustive checking of multi-source datasets remains very tedious.
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Figure 13. User interface and procedure for fully estimating the pose of panoramic
images in reference to a 3D model (Top); Equator, meridians and central dots
help with the alignment and correction of parameters. Zoom on specific details
(before/results) (Middle); Key numbers in the corrections using the 3D model
(1025 images) (Bottom).
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5. Developing New Software Applications to Increase the Value of the Dataset

In the previous sections, we have detailed the challenges in producing data
to represent a complex building. Due to that complexity and the intended uses,
multiple data types are required: high resolution panoramic RGB, laser scans, 3D
as-built CAD models and 2D floor plans. Once the dataset is complete, issues remain
for visualization and exploration, taking into account that users may not be familiar
with these various data types.

5.1. State of the Art of Multi-Data Visualization for Complex Architectures

By its nature, each data source represents only one aspect of the reality of the
plant and only meets some needs among many. The co-visualization of the multiple
data sources is therefore required to assist and help workers with finding answers
in their daily jobs. In recent years, several solutions have been proposed for the
problem of multi-source, as-built data visualization; see Figure 14:

‚ virtual tours with floor plans and panoramic RGB [39];
‚ navigation through several spherical laser views;
‚ navigation and path calculation in 3D environments, for instance in 3D video

games or 2.5D cartography services, such as Google Maps indoors.
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Figure 14. Examples of user interfaces that can be found today for virtual tours:
Leica TrueView, CSA VirtualTours, Kolor PanoTour, Faro WebShare.

However, none of these solutions integrates all of the data sources required
to represent some complex buildings, such as nuclear reactor buildings, and easily
navigate the large dataset. Indeed, apart from the constraints of technical integration,
the complexity of the plant itself is an issue for virtual navigation (multiple levels
with dozens of rooms and vertical junctions) and requires a specific interaction design
to handle it.

5.2. Rules for the Development of Virtual Tours of a Complex Building

Our first goal is to develop an application that can be of value to many
people working in nuclear plants, taking into account that the targeted building
is rarely accessible. Potential values include several scenarios. The first scenario
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consists of improving the productivity of maintenance operations through a virtual
preparation stage that takes into account the spatial constraints of the environment;
this requires the collaboration of different teams based on a shared representation
of the environment (e.g., mechanical workers defining their scaffolding needs). The
second scenario aims to improve accuracy and to reduce delays in engineering studies
to prepare for modifications and revamping to the plant, with reduced on-site time
for the teams. The third and last scenario consists of helping many recently-hired
workers to become familiar with their working environment more rapidly, through
dedicated training sessions, including tutoring courses.

These few scenarios illustrate the variety of user profiles that should be
considered for the common view, which we wish to design. Many of them are not
familiar with the handling of as-built datasets, and their use of the tool we developed
may be very occasional, which reinforces the need for user-friendly and simple
interfaces, as well as taking into account human perception in the design [40,41].

To address this problem, several principles have been selected for the
development of navigation interaction within our applications, developed using the
game engine Unity 3D. The first principle consists of the multi-view synchronization
across a multi-source dataset, with the possibility at any time of moving from one
view to another without losing user position/orientation (shared, unique position of
the user in the environment), as shown in Figure 15. The second principle consists of
the ability to explore the building in its horizontal and vertical dimensions (through
stairs and ladders, as well as trapdoors and removable slatted floors), which is
required by tasks, such as handling heavy equipment. The last principle consists of
developing all tools and functionalities in a project interface for a better user data
management: marks, snapshots, distance measurements with guidance instruction
and path computations.

For instance, we estimate that in the synchronized, multi-view experience,
spherical photographs need to be positioned in the virtual environment with a 2.58σ

tolerance of 50 cm and 5˝. This accuracy range seems sufficient to help users to focus
on their task, by not being disturbed by some inaccuracies in the transitions when
switching between views. Furthermore, the verticality of the panoramic images must
be known with an error below 3˝; otherwise, navigation becomes very uncomfortable.

In addition to the navigation features, we provide users with specific interactions
with the dataset. Each feature has been designed according to the users’ needs. To
implement them, we carried out several iterations with users to overcome technical
feasibility issues and create genuinely powerful and smart tools. Among these, we
can mention distance measurements on 3D CAD models (perpendicular to the normal
unit vectors, vertically constrained or free), annotations and snapshots in every data
view, interactive cutaways of walls and user data management and sharing. In all
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of these developments, a large amount of feedback has been collected in a quick
response development process to achieve optimum user benefit.
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Figure 15. Multi-source data exploration and navigation in a complex building:
visualization and station-based transitions of (a) panoramic images and (b) laser
scans; (c) 2D map view of all stations and synchronized mini-maps and
(d) first-person pedestrian navigation in the 3D model, including climbing ladders,
taking stairs and crouching.

5.3. A Framework for Taking Measurements on Laser Scans for Non-Expert Users

So-called “bubble views” of laser scans are often used to measure distances.
However, for non-familiar users, two main issues should be avoided. Firstly, errors in
range measurement (reflective surfaces, for instance) impact the distance value; hence,
many distance measurements should be checked more than once and interpreted
with caution, although most users ignore the typical error budget of a laser scan.
A manual segmentation process is highly recommended to remove as many noisy
points as possible, to comply with the definition of tolerances. Secondly, wrong picks
on edges can lead to wrong distance measurements, whereas in spherical view, no
feedback can be returned. To decrease the rate of wrong measurements, we have
developed a specific procedure, as detailed below.

To reduce the occurrence of false measurements in a laser scan, even after
removing outliers, we propose the following procedure (see Figure 16):

(1) choose a type of measurement from “almost horizontal”, “almost vertical”
and “oblique”

(2) pick two points in the laser scan to define the distance to be measured.

Ô If the picked segment is “consistent” with the type of measurement, then:
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(3) pick the two points in the laser scan again.

Ô If the measured distance is “similar” to the previous one:

(4) the measurement is displayed on the laser scan with centimeter accuracy; it can
be checked against the reconstructed 3D model.
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Figure 16. A procedure for improving the quality of distance measurement in
laser scans. The user must (a) choose between measurement types and (b) control
his/her own measurement by a double picking; then (c) check the result in “bubble
view” and finally (d) in the 3D model.

5.4. An Example of Advanced Technological Features Using a Georeferenced Dataset

The quality of the entire dataset allows the development of advanced features,
such as path overlay on panoramic images. Paths are computed on navmeshes,
using Autodesk GameWare, and can be overlaid in real-time on panoramic images;
see Figure 17.
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6. Conclusions and Future Work

The professional use of as-built models has recently increased significantly,
resulting in two major challenges: scaling up dense and multi-sensor scanning
surveys to a whole building and sharing this dataset with a very large audience.

In this paper, we reviewed the state of the art of scanning tools and methods
for industrial installations. Then, we proposed a global methodology for acquisition
and processing of multi-sensor datasets to represent complex architectures. To
face the lack of automation to reach high quality in modelling multi-floor plants,
we detailed the optimal contribution of human beings in the process. We then
assessed this methodology in a large-scale experiment of modelling the 11 floors of a
1300-megawatt nuclear reactor building. From the acquisition of 1000+ co-stations
(RGB panoramic and laser scans) to a 3D as-built reconstruction, the project has
involved many contributors for almost a year and a half. At every step, quality
requirements have put stress on tools and methods and led to the implementation of
Level 2 quality controls. We finally presented new tools that have been developed to
help many professionals in their daily jobs by allowing them to explore a complete
digital plant easily using different types of data.

We can summarize the contribution made by our work in three points:

‚ We assessed the feasibility, as well as underlined the current complexity of
tools and methods used in a multi-sensor scanning of industrial environments
(1000+ stations). Issues remain to reduce the effort in the production of
such models.
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‚ We have highlighted human beings’ contribution in the data production (from
interactive tools to quality management and control).

‚ We have shown how the value of such datasets can be increased by developing
multi-source data visualization and navigation applications in multi-floor
plants with recommendations for general principles applied to virtual tours of
complex architectures.

Based on these findings and experiments, future work is already planned, with
a view toward reducing the significance of the remaining issues:

‚ Improve data referencing procedures and algorithms to ensure confidence in
quality levels, across all of the datasets.

‚ Develop new tools for data cross-validation and consistency across a
multi-source dataset.

However, some serious bottlenecks seem farther removed from the current state
of the art:

‚ How could we significantly increase (benefit >50% of current cost) the
productivity of 3D as-built CAD (or BIM) models from very large point clouds
(hundreds of billions)?

‚ Which procedures and resources should be employed to update a large
multi-sensor dataset and detect errors or inconsistencies between two epochs?
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Fine Surveying and 3D Modeling Approach
for Wooden Ancient Architecture via
Multiple Laser Scanner Integration
Qingwu Hu, Shaohua Wang, Caiwu Fu, Mingyao Ai, Dengbo Yu
and Wende Wang

Abstract: A multiple terrestrial laser scanner (TLS) integration approach is proposed
for the fine surveying and 3D modeling of ancient wooden architecture in an ancient
building complex of Wudang Mountains, which is located in very steep surroundings
making it difficult to access. Three-level TLS with a scalable measurement distance
and accuracy is presented for data collection to compensate for data missed because of
mutual sheltering and scanning view limitations. A multi-scale data fusion approach
is proposed for data registration and filtering of the different scales and separated 3D
data. A point projection algorithm together with point cloud slice tools is designed
for fine surveying to generate all types of architecture maps, such as plan drawings,
facade drawings, section drawings, and doors and windows drawings. The section
drawings together with slicing point cloud are presented for the deformation analysis
of the building structure. Along with fine drawings and laser scanning data, the 3D
models of the ancient architecture components are built for digital management and
visualization. Results show that the proposed approach can achieve fine surveying
and 3D documentation of the ancient architecture within 3 mm accuracy. In addition,
the defects of scanning view and mutual sheltering can overcome to obtain the
complete and exact structure in detail.

Reprinted from Remote Sens. Cite as: Hu, Q.; Wang, S.; Fu, C.; Ai, M.; Yu, D.; Wang, W.
Fine Surveying and 3D Modeling Approach for Wooden Ancient Architecture via
Multiple Laser Scanner Integration. Remote Sens. 2016, 8, 270.

1. Introduction

The architecture of China is as old as its civilization. Together with European
and Arabian architecture, ancient Chinese architecture is an important component of
the world architectural system [1,2]. Since the Tang Dynasty, Chinese architecture has
significantly influenced the architectural styles of Korea, Vietnam, and Japan. Ancient
Chinese architecture mainly involved timberwork. Wooden posts, beams, lintels,
and joists make up the framework of a house [3,4]. The specialty of woodworking
requires the adoption of antisepsis methods, which eventually developed into the
respective architectural painting decorations of China. Colored glaze roofs, windows
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with exquisite applique designs, and beautiful flower patterns on wooden pillars
reflect the high level of craftsmanship and rich imagination.

Unlike other building construction materials, old wooden structures often do
not survive because they are vulnerable to weathering and fires and are naturally
subjected to rotting over time. Consequently, only a few examples of ancient wooden
architecture exist today [5–7]. YuZhen Palace, which was included in the World
Heritage List, was a famous ancient wooden architecture complex in Wudang
Mountain. It was built in 1417 to represent the Taoism culture. On 19 January 2003, a
fire turned YuZhen Palace into ashes. Chinese traditional ancient wooden architecture is
an important cultural heritage; thus, its protection, repair, maintenance, and restoration
is a significant challenge [8,9].

Fine surveying and mapping to generate 3D models of historical buildings by
obtaining all types of maps and drawings is an important task for digital protection
projects and continuous monitoring of ancient wooden architecture [1–12]. Fine
maps, drawings, and photorealistic models can provide high geometric accuracy
and detail of the architectural layout and structure. For the past two decades, total
station surveying and close-range photogrammetry were traditionally used for the
required data collection of historical buildings [13–16]. The 3D data collection based
on laser scanning has made great progress in the quick and reliable fine surveying and
3D documentation of heritage sites by obtaining millions of 3D points to effectively
generate a dense representation of the respective surface geometry [16,17].

Laser scanning techniques can create the 3D nature of archaeological objects
that vary in size and shape, ranging from something as small as a human molar to
objects as large as a building. Terrestrial laser scanning has been widely adopted in
archaeology site surveys and 3D documentation, particularly in projects dealing with
ancient architecture [18–21]. Several surveying and digital heritage projects focusing
on the use of laser scanning technologies for 3D modeling of heritage sites can be
seen in literature [22–28]. Recent studies on terrestrial laser scanning techniques
have achieved great progress in 3D archaeological documentation. However,
some limitations remain. The restrictions of scanning view and mutual sheltering
lead to data being missed in terms of structural details, particularly for complex
ancient architecture, thereby affecting the quality of the final 3D model [29,30].
Establishing proper approaches to TLS data collection and processing for the fine
surveying and 3D modeling of complex archeological sites is challenging and
valuable work, specifically in transforming these approaches from research to
generally accepted techniques.

The work presented in this paper aims to overcome the scanning view restriction
and mutual sheltering in difficult surveying surroundings to obtain fine surveying
and 3D documentation of Chinese wooden architecture through the combination
of different levels of terrestrial laser scanners. Three-level TLS with a scalable
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measurement distance and accuracy is presented for the data collection of the
architecture to solve the problems of fine surveying and 3D documentation of the
ancient building complex, which is constructed on the cliffs of Wudang Mountains. A
multi-scale data fusion approach is proposed for laser scanning data registration and
filtering. A laser scanning point projection algorithm together with point cloud slice
tools is designed for the fine surveying of the ancient architecture to generate all types
of architecture maps, such as plan drawings, facade drawings, section drawings, and
doors and windows drawings. The section drawings together with slicing point cloud
are presented for the deformation analysis of the building structure. The 3D models
of the ancient architecture components are built for digital management, research, and
visualization through fine drawings and laser scanning data.

2. Background

2.1. Liangyi Temple in Wudang Mountains

Wudang Mountains are located in Shiyan, Hubei Province in Central China
and are renowned for the practice of Tai Chi and Taoism. Liangyi Temple is the
Buddhist counterpart of the Shaolin Monastery, which is affiliated with Chinese
Chan Buddhism. A total of 53 ancient buildings and nine architectural sites were
constructed from the early Tang Dynasty to the Yuan, Ming, and Qing dynasties.
These structures are listed as World Heritage Sites because they include many Taoist
monasteries and secular buildings, all of which have a profound influence on Chinese
art and architecture.

The existing Liangyi Temple, which was built on the South Cliff during the
Yongle Period (1403–1424) and undertaken by Emperor Zhu Di in memory of his
parents, is one of the extremely precious official wooden buildings in Wudang
Mountains. It has maintained its original structure since its construction during
the Ming Dynasty. It is located in the middle of a cliff, as presented in Figure 1a,c.
The gate of Liangyi Temple is masterly built at its side by ancient designers, and its
external veranda extends straight to the Tianyi Zhenqing Stone Hall, which was built
during the Yuan Dynasty; its front Longtou Incense (as shown in Figure 1d), which
faces the Golden Dome, shows the superb idea of ancient Chinese craftsmen and
fully reflects the Taoist “Imitation of Nature” [31,32].

As shown in Figure 1, Liangyi Temple was built on a mountain cliff. It was
one of the important royal Taoist architectural complexes in Wudang Mountains.
The temple, which includes a gable and hip roof, a wooden structure, and a single
building, was the best preserved Ming Dynasty architecture in Wudang Mountains.
The construction of Liangyi Temple represents the outstanding achievement of
Chinese architectural technology and art, which has great historical, scientific, and
artistic value.
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2.2. Threats on Liangyi Temple 

As a world cultural heritage, Liangyi Temple faces huge challenges for its protection. Wudang 
Mountains are located in a subtropical monsoon climate zone. The mild and humid weather provides 
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2.2. Threats on Liangyi Temple

As a world cultural heritage, Liangyi Temple faces huge challenges for its
protection. Wudang Mountains are located in a subtropical monsoon climate zone.
The mild and humid weather provides a suitable living environment for white ants.
The wood components of Liangyi Temple have no resistance against moths. The
wooden columns serve as the load-bearing structure and are easily infested by white
ants, which cause structural deformation or collapse. Thus, the structure of the
building should be monitored to protect the wooden Liangyi Temple by preventing
its deformation. Another significant threat is fire. On 19 January 2003, a fire broke out

392



in Wudang Mountains, causing another wooden historical building, namely, Yuzhen
Palace, to burn to ashes [9,33,34]. The Longtou Incense in front of Liangyi Temple is
a fire source, and frequent Taoist activities with joss candles and electrical lightings
are potential fire risks. As an internationally renowned area of cultural heritage,
Wudang Mountains were visited by more than 3,689,000 tourists by the end of July
2015. The large number of visitors and narrow visiting places present another threat
to the building structure and body.

Given the aforementioned threats, the fine surveying, mapping, 3D
documentation, and modeling for the digital protection of the wooden Liangyi
Temple are necessary and valuable. The Chinese government started the “Compass
Plan” through fine surveying and 3D documentation projects to prevent accidents
with ancient architecture. Liangyi Temple was selected as a representation of ancient
wooden architecture.

2.3. Problems and Solution: Fine Surveying and 3D Documentation for Liangyi Temple

In previous literature, terrestrial laser scanning technologies are widely used for
the surveying and documentation of all types of archaeological sites, such as caves,
natural landscapes, buildings, and tombs. The basic principle of the laser scanner is
that it rapidly captures the shapes of objects through distance measurement at every
pointing direction with a rotation mirror. The object should be in the direction of
the laser point without any sheltering. Thus, scanning view restriction and mutual
sheltering, which can affect the quality of 3D data, are more serious factors than
weather and fogs [28,29]. Liangyi Temples only consist of two houses with an area
of less than 50 m2. Except for the statues and tables, the standing place is less than
20 m2 with no more than a 1 m corridor. The complicated setting and complex
building structure lead to the following problems in surveying and documentation
via laser scanning:

(1) Missed corner data: The small and narrow standing place requires many
stations of TLS, leading to serious missed 3D data with the restriction of scanning
view, as shown in Figure 2.

Figure 2 shows that the intersection of ceiling and cantilever causes blind
scanning of the two stations, and 3D data of the blind corner are missed. Numerous
close scans should be set up to collect the missed 3D data of the blind corner.

(2) Incomplete 3D data of the structure: As a Taoism worship site, Liangyi
Temple has many statues, tables, boxes, and ritual supplies. Mutual sheltering in
the small space also causes another kind of incomplete 3D data for the structure
measurement. Changing the scanning view or using a handheld laser scanner can
limit the missed 3D data for the detailed architecture structure surveying. A special
point cloud data processing approach should be designed to achieve precise structure
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surveying behind the sheltering objects with the adjacent 3D data, for example, the
slicing of point cloud from a different angle to intersect the corner.
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(3) Separated 3D data of the difficult scene: As introduced in Section 2.2,
Liangyi Temple was constructed on a cliff. Thus, collecting the whole 3D data
in one scene is impossible. The roof surface in the scene of the building and the inside
of the building from the roof of the building cannot be seen. The front and back sides
of the cliff have no space for TLS data collection. The only position from the gate to
obtain 3D data of the building with its roof is also restricted by the scanning view.
Thus, the whole scene of 3D data of the cliff terrain can only be collected from the
front side of the cliff, which should be at the other peak opposite to the cliff. The
3D data of the roof must be collected at the top of the building. Data registration
and fusion of the separated 3D data are other challenges for 3D documentation and
fine surveying.

The unique and steep location of Liangyi Temple with its complicated layout
and structure makes fine surveying and 3D documentation difficult using the current
terrestrial laser scanning technique. The scalable and difficult scene must use different
types of laser scanners to collect 3D data with minimal loss. Our solution is to
integrate long-distance TLS, middle-range laser scanner, and a handheld scanner.
The long-distance TLS (Riegl VZ 1000) will collect 3D data of the cliff terrain and
the whole building. The middle-range laser scanner (Faro Focus 3D) will cover the
building body and roof. The handheld scanner (Handyscan 3D) will be adopted for
the architectural components and the scattered blind corner. All these separated 3D
data should be registered well by their spatial relationship for further mapping and
3D modeling. The proposed idea is explained in Figure 3.
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Figure 3. Proposed idea for the fine mapping and 3D documentation of Liangyi Temple. Figure 3. Proposed idea for the fine mapping and 3D documentation of
Liangyi Temple.

The proposed idea for the fine mapping and 3D modeling of Liangyi Temple
includes data collection, 3D data registration and preprocessing, 3D data processing,
fine mapping, and 3D modeling. The rest of this paper is organized as follows.
Section 3 introduces the proposed idea in detail. Section 4 discusses the final results.
Finally, Section 5 presents the conclusions of the proposed approach and future work.

3. Methodology

The proposed approach defines an optimized terrestrial laser scanning flowchart
for the fine surveying and 3D documentation of Liangyi Temple when compared with
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the current method used for archaeological sites. Multiple laser scanner integration
also brings related data processing methods, which are presented in Sections 3.2–4.

3.1. 3D Data Collection Based on Multiple Laser Scanner Integration

The different types of terrestrial laser scanning were applied according to local
conditions. Differential GPS (DGPS) and total station were adopted to ensure the
orientation and registration of different 3D datasets in a common coordinate system
by measuring the ground control points (GCPs) and target points of TLS. The field
data collection workflow is shown in Figure 4.
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adopted to survey all these target points based on GCPs measured with DGPS-RTK. A final total of 
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were all transformed to WGS84 with 3D accuracies of 21.2 and 26.8 mm in the horizontal and vertical 
directions, respectively, after triangulation net adjustment. With the target points, we combined and 
registered the point clouds of the cliff terrain via Riegl and those of the building via Faro Focus 3D. 

(2) Data acquisition of multiple laser scanner integration 
Three types of laser scanners with different distance ranges (i.e., 1200 m with Riegl VZ 1000, 120 m 

with Faro Focus 3D, and 0.5 m with HandySCAN) were adopted for the 3D data acquisition in 

Figure 4. Workflow of field data collection.

(1) Control points and target point measurements
The GCPs were measured with DGPS in real-time kinematic mode (DGPS-RTK)

in the WGS84 coordinate system with respective 3D accuracies of 10 and 15 mm in
the horizontal and vertical directions after net adjustment. Three types of targets
were adopted for the laser scanning data registration. One was a retro-reflecting
circle provided by Riegl GmbH. The second was a reference sphere from Faro Focus
3D. The last one was a rectangle white–black cardboard. The target points with
reference sphere were used for point cloud registration station by station, and their
coordinates do not need to be measured. The target points with retro-reflecting circle
and rectangle white–black cardboard were used for the long-distance Riegl point
cloud registration together with the middle-distance point cloud from Faro Focus
3D. Thus, they needed absolute coordinates. Total station was adopted to survey
all these target points based on GCPs measured with DGPS-RTK. A final total of
five GCPs via DGPS-RTK and 35 target points were measured by the total station.
The target points were all transformed to WGS84 with 3D accuracies of 21.2 and
26.8 mm in the horizontal and vertical directions, respectively, after triangulation net
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adjustment. With the target points, we combined and registered the point clouds of
the cliff terrain via Riegl and those of the building via Faro Focus 3D.

(2) Data acquisition of multiple laser scanner integration
Three types of laser scanners with different distance ranges (i.e., 1200 m with

Riegl VZ 1000, 120 m with Faro Focus 3D, and 0.5 m with Handyscan) were adopted
for the 3D data acquisition in difficult environmental conditions. Equipment choices,
logistics, scanning stations, and environmental conditions must be considered in
survey planning to ensure the quality of 3D data. The whole survey plan included
three steps, and the complete data acquisition took 11 days of field work.

In the first step, the long-distance laser scanner with Riegl VZ 1000 was
positioned on the three sites opposite Liangyi Temple, as shown in Figure 5. These
sites have a platform and pedestrian steps that link to the Temple. The distance
between the platform and Liangyi Temple is less than 1000 m. In each station,
high-density scanning with the highest angle resolution of 0.0024˝ in both vertical
and horizontal scan lines was taken first in the specific sight view angle to Liangyi
Temple. Then, the fine and detailed scanning of the target point was taken point by
point after the targets were recognized automatically with RiSCAN PRO software.
Riegl VZ 1000 is composed of a high-performance long-range laser scanner with a
wide field of view and a calibrated digital camera firmly mounted on the scanning
head of the laser scanner. After 3D point cloud data acquisition, the system then
took images with the top-mounted camera in certain positions to obtain colorful
visual information of the cliff and building surface, as presented in Figure 5b. Each
station took one day of field work, including 3 h for density scanning, 1 hour for
target fine scanning, and 3 min for image capture. Scanning from the three stations
finally acquired the 3D data of the cliff terrain and the whole building with ground
sampled distances of 2 cm, as shown in Figure 5c.

In the second step, the middle-distance laser scanner with Faro Focus 3D was
presented to collect 3D data of the building body in detail. The building was
divided into five parts, namely, gate, corridor, attic, stair, and roof, and scanned
from 53 positions (Figure 6) during five days of field work. Each position had more
than five reference sphere targets, and no less than three targets that should be
scanned in the neighboring position. For the narrow space, where the positions
between stair and roof lacked target points, some feature points in the point cloud
of the long-distance scanner with Riegl VZ1000 were used as target points for data
registration. All these positions also collected 360˝ panoramic images with the
built-in camera to obtain the visible information.
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Figure 5. Long-distance laser scanner was used to acquire 3D data of the cliff
terrain, and the scanning stations were located throughout the whole building (a);
(b) scanning work scene on the platform; (c) 3D point cloud data with
color information.

In the last phase, the handheld laser scanner with Handyscan was adopted to
acquire 3D data of some important components of the building, such as Longtou
Incense, status, decoration of the building, horned beast, and Vatan on the roof
(shown in Figure 7). The windows with special engraving were also documented
with the handheld scanner. In this phase, another two days of field work were
taken to collect 3D data of some concealed regions in the corner and some missed
important components after we merged all the data of the previous steps and checked
the data quality.
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attic, stair, and roof, and scanned from 53 positions (Figure 6) during five days of field work. Each 
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scanned in the neighboring position. For the narrow space, where the positions between stair and 
roof lacked target points, some feature points in the point cloud of the long-distance scanner with 
Riegl VZ1000 were used as target points for data registration. All these positions also collected 360° 
panoramic images with the built-in camera to obtain the visible information.  

 

Figure 6. 3D data collection for the building. (a) Scanning for the gate; (b) scanning for the corridor; 
(c) scanning for the Longtou Incense; (d) scanning for the roof; (e) scanning for the statues; (f) point 
cloud of the whole building; (g) scanning for the attic. 

Figure 6. 3D data collection for the building. (a) Scanning for the gate; (b) scanning
for the corridor; (c) scanning for the Longtou Incense; (d) scanning for the roof;
(e) scanning for the statues; (f) point cloud of the whole building; (g) scanning for
the attic.
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Figure 7. 3D data collection for some components with the handheld scanner. (a) Small statue scanning; 
(b) rows of horned beast scanning; (c) large statue scanning; (d) corner horned beast scanning. 

Although the whole area of Liangyi Temple is very small, less than 50 m2, 11 days of field work 
was spent for 3D data acquisition with the three-level laser scanner. The total data volume was 
approximately 2 TB, including 83 positions of point cloud, 53 panoramic images with a resolution of 
1 cm, and 11 high-resolution images with a resolution of 5 mm. 

3.2. 3D Data Registration and Preprocessing 

The 3D data obtained from different laser scanners focused on different parts of Liangyi Temple. 
In accordance with our data collection plan, a combined registration approach based on different 
models in different software was presented for the 3D data registration, as shown in Figure 8. The 
foundation of 3D data registration is a unique WGS84 coordinate system. For the three-position 
dataset via Rigel VZ1000, we used RiSCAN PRO software for data registration. After directly adding 
WGS84 coordinates of the target points, all the points from three positions could be registered and 
geo-referenced in the WGS84 coordinate system. The 3D data registration of the building acquired 
with Faro Focus 3D included two steps. In the first step, 53 position data were registered through the 
reference sphere target points as indicated in the flowchart provided by Faro Scene software via an 
independent relative coordinate system. In the second step, the whole dataset was registered by the 

Figure 7. 3D data collection for some components with the handheld scanner. (a)
Small statue scanning; (b) rows of horned beast scanning; (c) large statue scanning;
(d) corner horned beast scanning.

Although the whole area of Liangyi Temple is very small, less than 50 m2,
11 days of field work was spent for 3D data acquisition with the three-level laser
scanner. The total data volume was approximately 2 TB, including 83 positions of
point cloud, 53 panoramic images with a resolution of 1 cm, and 11 high-resolution
images with a resolution of 5 mm.

3.2. 3D Data Registration and Preprocessing

The 3D data obtained from different laser scanners focused on different parts of
Liangyi Temple. In accordance with our data collection plan, a combined registration
approach based on different models in different software was presented for the
3D data registration, as shown in Figure 8. The foundation of 3D data registration
is a unique WGS84 coordinate system. For the three-position dataset via Rigel
VZ1000, we used RiSCAN PRO software for data registration. After directly adding
WGS84 coordinates of the target points, all the points from three positions could
be registered and geo-referenced in the WGS84 coordinate system. The 3D data
registration of the building acquired with Faro Focus 3D included two steps. In the
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first step, 53 position data were registered through the reference sphere target points
as indicated in the flowchart provided by Faro Scene software via an independent
relative coordinate system. In the second step, the whole dataset was registered by
the extracted target points for geo-referencing in the WGS 84 coordinate system. A
surface-based registration method developed by the chair of Photogrammetry and
Remote Sensing at ETH Zurich, called least squares 3D surface matching [35], was
applied to register the 3D data of the scattered point cloud datasets from Handyscan
by integrating the point cloud dataset of the components and the building with
a strict geometric constraint. After performing all the registration processes, the
absolute reference system for the 3D data was WGS84.
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Figure 8. 3D Data registration approach for the point cloud of a different scanner.

A globally registered point cloud with high accuracy was generated through
the proposed 3D data registration approach for further processing and application.
Before the data processing for the fine map drawing and modeling, some data
preprocesses were presented to remove the moving objects in the point cloud dataset
and filter out the noise points. The preprocessing of moving object removal was
implemented with Terrosolid software both semi-automatically and manually. For
the point cloud of the components, both noise points and data holes exist, as revealed
in Figure 9a,c. Geomagic Studio software was introduced for noise filtering and hole
repair to achieve a high-quality point cloud dataset. Figure 9d,e show the result of
one component dataset after filtering and repair.
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Figure 9. Noise filtering and data repair of the component point cloud: (a) original point cloud;  
(b) hole in detail; (c) result of noise filtering; (d) result after filtering and repairing; (e) result of data repair. 

3.3. Data Processing: Point Cloud Projection and Slicing 

The 3D data processing aims to achieve fine map drawing and 3D modeling with the registered 
point cloud. The complex architecture is composed of various geometric objects and is represented 
by three-view drawings in different planes. The main work of fine surveying aims to generate all 
types of three-view drawings and plane drawings of the geometric components of the building for 
use in 3D modeling of the architecture [36]. The projection and slicing of point cloud are usually 
adopted to simplify the data and highlight the geometric feature by drawing all these plane maps 
with a large volume of point cloud. In this section, point cloud projection and point cloud slicing 
approaches are proposed in detail for the fine surveying of complex architecture. 

(1) Point cloud projection 
The method of point cloud projection was first suggested for automatic building model 

reconstruction. Projection simulates the intuitive data handling of a user who tries to recognize the 
structure of a 3D point cloud by rotating it into specific projections [37,38]. In the specific projection, 
the geometric aspect, such as the building layout, can be formalized and structured. The projection 
can also simplify 3D data into the 2D place with minimal data volume. The fine drawing of Liangyi 
Temple benefits from point cloud projection because the arbitrary view can be defined with the 
drawing of a user. AutoCAD 2011 can support point cloud data. The point cloud data should be 
converted in the specific format of *. pcg to obtain a high-efficiency index before importing the point 
cloud data into AutoCAD 2011 software. Once the point cloud data are loaded via AutoCAD 2011, 
the point cloud can easily be handled with a user-defined projection. Figure 10 shows some typical 
point cloud projections of the building. The point cloud projection converts 3D data into 2D space. In 
the 2D space, the point cloud can be rendered as a gray image (as Figure 10a), in which the gray value 
is mapped as the linear model based on the distance from the point to the projection plane. All the 
three-view drawings of the building can be generated with point cloud projection. The vertical 
projection is used for the layout map. The side view projection can generate the gate map, while the 
front view projection is used for the face map of the building.  

(2) Point cloud slicing 
The slicing method for mass 3D point data to construct a CAD model is commonly used in 

reverse engineering technology. Slicing data are automatically or manually grouped from the 3D 
point dataset according to the single principle feature to recognize the border, which is useful for 
surface modeling of complex objects [39,40]. The slicing method of point cloud always combines with 
the projection approach, as shown in Figure 11. First, the cloud data are segmented into several layers 
by slicing the point cloud along a user-specified direction. Next, the sliced data points in each layer 
are projected onto an appropriate plane and then used to reconstruct geometric objects. 

Figure 9. Noise filtering and data repair of the component point cloud: (a) original
point cloud; (b) hole in detail; (c) result of noise filtering; (d) result after filtering
and repairing; (e) result of data repair.

3.3. Data Processing: Point Cloud Projection and Slicing

The 3D data processing aims to achieve fine map drawing and 3D modeling
with the registered point cloud. The complex architecture is composed of various
geometric objects and is represented by three-view drawings in different planes. The
main work of fine surveying aims to generate all types of three-view drawings and
plane drawings of the geometric components of the building for use in 3D modeling
of the architecture [36]. The projection and slicing of point cloud are usually adopted
to simplify the data and highlight the geometric feature by drawing all these plane
maps with a large volume of point cloud. In this section, point cloud projection
and point cloud slicing approaches are proposed in detail for the fine surveying of
complex architecture.

(1) Point cloud projection
The method of point cloud projection was first suggested for automatic building

model reconstruction. Projection simulates the intuitive data handling of a user
who tries to recognize the structure of a 3D point cloud by rotating it into specific
projections [37,38]. In the specific projection, the geometric aspect, such as the
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building layout, can be formalized and structured. The projection can also simplify
3D data into the 2D place with minimal data volume. The fine drawing of Liangyi
Temple benefits from point cloud projection because the arbitrary view can be defined
with the drawing of a user. AutoCAD 2011 can support point cloud data. The
point cloud data should be converted in the specific format of *. pcg to obtain a
high-efficiency index before importing the point cloud data into AutoCAD 2011
software. Once the point cloud data are loaded via AutoCAD 2011, the point cloud
can easily be handled with a user-defined projection. Figure 10 shows some typical
point cloud projections of the building. The point cloud projection converts 3D data
into 2D space. In the 2D space, the point cloud can be rendered as a gray image (as
Figure 10a), in which the gray value is mapped as the linear model based on the
distance from the point to the projection plane. All the three-view drawings of the
building can be generated with point cloud projection. The vertical projection is used
for the layout map. The side view projection can generate the gate map, while the
front view projection is used for the face map of the building.

(2) Point cloud slicing
The slicing method for mass 3D point data to construct a CAD model is

commonly used in reverse engineering technology. Slicing data are automatically
or manually grouped from the 3D point dataset according to the single principle
feature to recognize the border, which is useful for surface modeling of complex
objects [39,40]. The slicing method of point cloud always combines with the
projection approach, as shown in Figure 11. First, the cloud data are segmented
into several layers by slicing the point cloud along a user-specified direction. Next,
the sliced data points in each layer are projected onto an appropriate plane and then
used to reconstruct geometric objects.

The most important work for point cloud slicing is to determine the layer
thickness, which is sensitive to accuracy and shape extraction. A small layer thickness
leads to missed shape features, whereas a large layer thickness causes the shape
feature to submerge in the heavy point cloud data. Thus, layer thickness should
be defined as a different type of architectural component. The point cloud slicing
function is provided by Kubit software from Faro Company. Kubit is a point cloud
processing software that combines sophisticated measuring technologies with the
established CAD-functionality seamless integration into AutoCAD for surveying,
construction, and architecture. Kubit plug-in support can be used to define an
arbitrary direction and layer with a specific thickness, and thus obtain the slicing
data for the fine drawing of component. Figure 12 illustrates the fine surveying and
drawing results of some typical components, such as ridge tie beam, crescent beam,
hip rafter, and architrave, through the point cloud slicing method.
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Figure 10. Point cloud projection for the plane drawing of the building roof. (a) Point cloud projection; 
(b) plane drawing based on point cloud projection. 

The most important work for point cloud slicing is to determine the layer thickness, which is 
sensitive to accuracy and shape extraction. A small layer thickness leads to missed shape features, 
whereas a large layer thickness causes the shape feature to submerge in the heavy point cloud data. 
Thus, layer thickness should be defined as a different type of architectural component. The point 
cloud slicing function is provided by Kubit software from Faro Company. Kubit is a point cloud 
processing software that combines sophisticated measuring technologies with the established CAD-
functionality seamless integration into AutoCAD for surveying, construction, and architecture. Kubit 
plug-in support can be used to define an arbitrary direction and layer with a specific thickness, and 

Figure 10. Point cloud projection for the plane drawing of the building roof.
(a) Point cloud projection; (b) plane drawing based on point cloud projection.
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thus obtain the slicing data for the fine drawing of component. Figure 12 illustrates the fine surveying 
and drawing results of some typical components, such as ridge tie beam, crescent beam, hip rafter, 
and architrave, through the point cloud slicing method. 

 

Figure 11. Point cloud slicing and projection. 

 

Figure 12. Fine drawings of typical components: (a) ridge tie beam; (b) crescent beam; (c) hip rafter, 
(d) architrave. 

3.4. 3D Modeling 

The 3D modeling of architecture has two levels. One is reality-based 3D modeling, and the other 
is reconstructive 3D modeling [41]. Reality-based modeling uses registered point clouds to generate 
high-resolution polygons based on 3D triangulation, called a polygonal model. The polygonal model 
can be directly rendered as a 3D scene, which can also map the image as visible information. Reality-
based modeling presents several topological errors, which are caused by residual errors that survived 
the cleaning phase, and a huge numbers of holes, which are related to the shadow effects of the 

Figure 11. Point cloud slicing and projection.
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Figure 12. Fine drawings of typical components: (a) ridge tie beam; (b) crescent
beam; (c) hip rafter; (d) architrave.

3.4. 3D Modeling

The 3D modeling of architecture has two levels. One is reality-based 3D
modeling, and the other is reconstructive 3D modeling [41]. Reality-based modeling
uses registered point clouds to generate high-resolution polygons based on 3D
triangulation, called a polygonal model. The polygonal model can be directly
rendered as a 3D scene, which can also map the image as visible information.
Reality-based modeling presents several topological errors, which are caused by
residual errors that survived the cleaning phase, and a huge numbers of holes,
which are related to the shadow effects of the complex geometry. A limitation
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exists for the 3D representation of the complex architecture, particularly the internal
composition [42,43]. Thus, we use reality-based modeling to represent the attached
historical relics in Liangyi Temple, such as the famous Longtou Incense and Taoism
statues shown in Figure 13. The procedure of reality-based polygon modeling and
rendering is partly shown in Figure 9 together with the preprocessing for these types
of components via Handyscan.
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Figure 13. Reality-based 3D modeling of historical relics. (a) 3D model of horned beast; (b) 3D model 
of statue; (c) 3D model of sculpture; (d) texture-mapped 3D model of Longtou Incense; (e) texture-
mapped 3D model of horned beast. 

Compared with reality-based modeling, reconstructive 3D modeling aims to structure the 
architectural elements. It is also object oriented along with topological information, which can be 
spatially indexed for further query, highlighting, and selection. All these properties are very important 
for architectural management and reconstruction in the digital architecture preservation projection. 

Reconstructive 3D modeling starts from the fine surveying drawings in Section 3.3, which 
contain the geometrical information in reality-based models of both single buildings and historical 
relics in the whole aligned scene. The three-view drawings, such as plan drawings, facade drawings, 

Figure 13. Reality-based 3D modeling of historical relics. (a) 3D model of horned
beast; (b) 3D model of statue; (c) 3D model of sculpture; (d) texture-mapped 3D
model of Longtou Incense; (e) texture-mapped 3D model of horned beast.

Compared with reality-based modeling, reconstructive 3D modeling aims to
structure the architectural elements. It is also object oriented along with topological
information, which can be spatially indexed for further query, highlighting, and
selection. All these properties are very important for architectural management and
reconstruction in the digital architecture preservation projection.

406



Reconstructive 3D modeling starts from the fine surveying drawings in
Section 3.3, which contain the geometrical information in reality-based models of
both single buildings and historical relics in the whole aligned scene. The three-view
drawings, such as plan drawings, facade drawings, and section drawings, are
adopted for the 3D modeling of the building in AutoCAD 2011 software, as shown
in Figure 14. The accurate building footprints, height of architectural elements, and
positioning of the relics are determined according to their actual configuration in
the 3D reconstruction phase. The 3D models of the architectural components are
also generated from their fine drawings and objective geometrical constraints in
AutoCAD 2011, as presented in Figure 14e,f. Texture mapping is also implemented
in AutoCAD 2011 with high-resolution images from the field data collection.
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Figure 14. Reconstructive 3D modeling of the architecture. (a) Plan drawing of the building;  
(b) section drawing of the building; (c) facade drawing of the building; (d) reconstructive 3D model 
of the building; (e) architectural component modeling; (f) reconstructive 3D model of the component. 

We also use the approach introduced by Gabriele to ensure the quality of 3D modeling by double 
checking the 3D model of the complex architecture [44]. First, the reality-based digital model is used 
to check the coherence of each reconstructive step. The digital reconstructed models are continuously 
compared with the reality-based models to verify possible incoherencies introduced during the 
reconstruction procedure. Second, the high-resolution images, including the 360 panoramic images 
from the field data collection together with the architectural archaeologist, are introduced to check 
the ancient architecture structure. These architectural structure checks include the architectural 
structure, architecture with decorations, relics in the architecture, and final texturized architecture.  

4. Results and Discussions 

4.1. Results and Analysis 

The proposed approach aims to maintain and achieve the digital preservation of the wooden 
architecture of Liangyi Temple through fine surveying and 3D modeling. We introduce the final 

Figure 14. Reconstructive 3D modeling of the architecture. (a) Plan drawing of the
building; (b) section drawing of the building; (c) facade drawing of the building;
(d) reconstructive 3D model of the building; (e) architectural component modeling;
(f) reconstructive 3D model of the component.
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We also use the approach introduced by Gabriele to ensure the quality of
3D modeling by double checking the 3D model of the complex architecture [44].
First, the reality-based digital model is used to check the coherence of each
reconstructive step. The digital reconstructed models are continuously compared
with the reality-based models to verify possible incoherencies introduced during
the reconstruction procedure. Second, the high-resolution images, including the
360 panoramic images from the field data collection together with the architectural
archaeologist, are introduced to check the ancient architecture structure. These
architectural structure checks include the architectural structure, architecture with
decorations, relics in the architecture, and final texturized architecture.

4. Results and Discussions

4.1. Results and Analysis

The proposed approach aims to maintain and achieve the digital preservation of
the wooden architecture of Liangyi Temple through fine surveying and 3D modeling.
We introduce the final results, which include three parts: (1) fine drawings; (2) 3D
models; and (3) deformation analysis of the architectural structure.

(1) Fine drawings of Liangyi Temple and accuracy analysis
A total of 148 drawings of Liangyi Temple are obtained from the multiple TLS

integration point cloud data. The fine drawings include a series of scale maps.
The details of these drawings are shown Table 1. Figure 15 shows some typical
fine drawings of Liangyi Temple; these drawings are the foundation of the digital
reconstruction and preservation of Liangyi Temple.

Table 1. Fine drawings of Liangyi Temple.

Type Components Description Map Scale Number

Plane drawing building two floors 1:50, 1:100 3
Facade drawing building front and side views 1:50 2
Section drawing building cross and vertical sections 1:50 9

Detail design bracket set four corners 1:10, 1:20 8
Bottom view beam hall and corridor 1:50 2

Detail design components

entablature, column base, hip rafter,
architrave, tile end, inverted V-shaped
brace, camel hump-shaped support,

partition door

1:5
1:10
1:20

124
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Figure 15. Fine drawings of Liangyi Temple. (a) Plane drawings (layout); (b) facade drawings; (c) 
section drawings; (d) window drawings and bracket set drawings. 

According to the fine surveying technique requirements of the wooden architecture, each 
component has a large-scale drawing from the point cloud with precise geometric size. We randomly 
select some components of the building to evaluate the accuracy of the fine surveying results with 
the proposed approach in this study by measuring the geometric parameters with a ruler or a total 
station. These parameters were compared with the geometric size from the fine drawings. The 
accuracy result is reported in Table 2. 

Table 2. Accuracy of fine surveying with the proposed approach. 

Components Type View Measurement a

(mm) 
Measurement b 

(mm) 
Error
(mm)

Narrow tie beam under ridged purlin Length Left 122 119 −3 
wide tie beam under ridged purlin Width Left 168 169 1 
narrow tie beam under south Quan Length Left 211 212 1 

wide tie beam under south Quan Width Left 76 78 2 
narrow tie beam under north Quan Length Left 205 204 −1 

wide tie beam under north Quan Width Left 178 183 5 
inverted V-shaped brace Width Left 143 142 −1 
inverted V-shaped brace Thickness Plane 77 81 4 
bracing of crescent beam Length Plane 301 302 1 
bracing of crescent beam Width Plane 256 258 2 

bracing of hip rafter Length Plane 213 213 0 
bracing of hip rafter Width Plane 275 274 −1 

door of front hall Width Back 3585 3588 3 
crossbar of front hall door Width Back 113 111 −2 

main door Width Front 2835 2838 3 
right side of the second door Width Front 164 162 −2 

bottom side of the second door Height Front 193 195 2 
height of the wall Height Back 795 798 3 

window Width Back 2862 2863 1 
half of window Width Back 894 891 −3 

baluster Width Back 1265 1263 −2 
inside baluster Width Back 1078 1076 −2 

Mean square error (MSE) 2.3 
a measurement result by ruler or total station(mm); b measurement result from point cloud. 

As Table 2 indicates, the accuracy of the proposed approach reaches 2.3 mm in MSE, which can 
meet the fine surveying requirement of the ancient wooden architecture. These fine drawings can be 
used to reconstruct the architecture and obtain the 3D model for digital architecture documentation. 

Figure 15. Fine drawings of Liangyi Temple. (a) Plane drawings (layout); (b) facade
drawings; (c) section drawings; (d) window drawings and bracket set drawings.

According to the fine surveying technique requirements of the wooden
architecture, each component has a large-scale drawing from the point cloud with
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precise geometric size. We randomly select some components of the building to
evaluate the accuracy of the fine surveying results with the proposed approach in
this study by measuring the geometric parameters with a ruler or a total station.
These parameters were compared with the geometric size from the fine drawings.
The accuracy result is reported in Table 2.

Table 2. Accuracy of fine surveying with the proposed approach.

Components Type View Measurement
a (mm)

Measurement
b (mm)

Error
(mm)

Narrow tie beam under ridged purlin Length Left 122 119 ´3
wide tie beam under ridged purlin Width Left 168 169 1
narrow tie beam under south Quan Length Left 211 212 1

wide tie beam under south Quan Width Left 76 78 2
narrow tie beam under north Quan Length Left 205 204 ´1

wide tie beam under north Quan Width Left 178 183 5
inverted V-shaped brace Width Left 143 142 ´1
inverted V-shaped brace Thickness Plane 77 81 4
bracing of crescent beam Length Plane 301 302 1
bracing of crescent beam Width Plane 256 258 2

bracing of hip rafter Length Plane 213 213 0
bracing of hip rafter Width Plane 275 274 ´1

door of front hall Width Back 3585 3588 3
crossbar of front hall door Width Back 113 111 ´2

main door Width Front 2835 2838 3
right side of the second door Width Front 164 162 ´2

bottom side of the second door Height Front 193 195 2
height of the wall Height Back 795 798 3

window Width Back 2862 2863 1
half of window Width Back 894 891 ´3

baluster Width Back 1265 1263 ´2
inside baluster Width Back 1078 1076 ´2

Mean square error (MSE) 2.3
a measurement result by ruler or total station(mm); b measurement result from
point cloud.

As Table 2 indicates, the accuracy of the proposed approach reaches 2.3 mm
in MSE, which can meet the fine surveying requirement of the ancient wooden
architecture. These fine drawings can be used to reconstruct the architecture and
obtain the 3D model for digital architecture documentation.

(2) 3D models of Liangyi Temple
The majority of 3D models of Liangyi Temple are 3D reconstructive-based

models. After texture mapping and 3D rendering of the high-resolution images,
we can obtain the true 3D representation and documentation of Liangyi Temple
(as displayed in Figure 16). The environment of the cliff terrain is finally generated
based on the reality-based scene. The 3D models of vegetation are also added to the
true Digital Terrain Model (DTM) to build a panoramic view of the true surroundings
on a sphere, resulting in the final reconstructive panoramic view shown in Figure 17.
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Figure 16. Reconstructive 3D model of Liangyi Temple. (a) Rendered with gray image; (b) rendered 
with texture mapping. 

Figure 17a shows the front view of Liangyi Temple, which adds the surrounding 3D models of 
terrain and vegetables. Figure 17b shows the top view of the entire wooden architecture. The camera 
viewpoint roams and turns around the temple to help obtain a bird’s-eye view of Liangyi Temple. 
Figure 17c shows the roaming scene of the panoramic view in the reconstructed temple, in which the 
corridor and hall have been passed through for a detailed observation. 

Figure 16. Reconstructive 3D model of Liangyi Temple. (a) Rendered with gray
image; (b) rendered with texture mapping.

Figure 17a shows the front view of Liangyi Temple, which adds the surrounding
3D models of terrain and vegetables. Figure 17b shows the top view of the entire
wooden architecture. The camera viewpoint roams and turns around the temple to
help obtain a bird’s-eye view of Liangyi Temple. Figure 17c shows the roaming scene
of the panoramic view in the reconstructed temple, in which the corridor and hall
have been passed through for a detailed observation.
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Figure 17. 3D scene of Liangyi Temple. (a) Front panoramic view; (b) top view; (c) inner view: corridor 
and hall. 

(3) Deformation analysis of the architectural structure  
The fine surveying of Liangyi Temple has another important goal, which is to determine and 

measure structural deformation for further monitoring and preservation projects. The proposed 
multiple TLS integration approach provides a well-registered global point cloud that can be used for 
the deformation analysis. We can obtain the slicing section in the column bases where structural 
deformation tends to occur through the slicing and projection method of the point cloud. Figure 18 
shows one section of the building. The crooked column base is illustrated in the drawings of this 
section (Figure 18a). 

Figure 17. 3D scene of Liangyi Temple. (a) Front panoramic view; (b) top view;
(c) inner view: corridor and hall.

(3) Deformation analysis of the architectural structure
The fine surveying of Liangyi Temple has another important goal, which

is to determine and measure structural deformation for further monitoring and
preservation projects. The proposed multiple TLS integration approach provides a
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well-registered global point cloud that can be used for the deformation analysis. We
can obtain the slicing section in the column bases where structural deformation tends
to occur through the slicing and projection method of the point cloud. Figure 18
shows one section of the building. The crooked column base is illustrated in the
drawings of this section (Figure 18a).

Figure 18 shows that the wooden column base is sloped at the top, which may be
caused by the extrusion of the cliff. The crooked column can be observed clearly from
the section point cloud by slicing. The section drawing is measured from the sliced
point cloud. The maximized crooked gap of the column base at the top is 102.1 mm.
This gap is a very large displacement between the roof and the building foundation
and threatens the integrity of the entire architecture. The deformation analysis results
are given to the Heritage Management Department of Wudang Mountains for further
maintenance and monitoring.
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Figure 18. Deformation analysis of the column base. (a) Crooked column on the
section drawing; (b) crooked direction of Liangyi Temple.
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4.2. Discussions

As previously stated, our proposed approach aims to use multiple level
terrestrial laser scanner integration for the fine surveying and 3D modeling of
complex architecture in a steep and difficult environment. Although the proposed
approach attempts to make up for the restrictions of mutual sheltering and reduce
missed corner data, some objects in the multiple cross parts remain; these objects
cannot be determined by the geometric relationship among the neighboring objects.
The complex structure of the architecture with complicated elements requires both
architectural knowledge and archaeological experience for the fine surveying and 3D
modeling with the proposed slicing and projection method of 3D point clouds. In the
3D modeling with the point cloud and fine drawings, architectural and archaeological
knowledge is also very important to the quality and accuracy of the 3D model of the
architecture. All these factors are important for the reconstruction and preservation of
the architecture. Hence, technical scientists and archaeologists should work together
in laser scanning to conduct interdisciplinary research for digital ancient architecture
projects [45].

The specific location terrain and climate environment of Liangyi Temple threaten
the survival of this wooden architecture. Although we present a deformation analysis
method based on the 3D point cloud, many destructive insect pests, such as the
aforementioned white ants that often appear in this district, threaten the wooden
components. The white ants can hurt the wooden component from the inside,
which is the main factor behind the crooked column bases. Laser scanning can
only measure the geometric deformation of the architectural structure. Microwave
and X-ray technology together with high-density geometric shape measurement
approaches via laser scanning have great potential in this field [46–48].

5. Conclusions

The work presented in this study is intended to be a valuable aid for the digital
reconstruction, visualization, and preservation of ancient wooden architecture. A
multiple level terrestrial laser scanning integration approach is proposed for complex
architecture in steep terrain surroundings. The data processing approach with point
cloud from a three-level terrestrial laser scanner is proven to be effective for fine
surveying and 3D modeling. Liangyi Temple in the Wudang Tourism architecture
complex is taken as a typical wooden ancient architecture to realize fine surveying
and 3D documentation via the proposed approach. A total of 148 drawings of the
architecture and 3D models with high-resolution texture are obtained. All these
results are useful for the digital reconstruction, visualization, and preservation of the
architecture. We also find a structural deformation in Liangyi Temple, which should
be a subject of long-term monitoring for architectural heritage, having more than
600 years of history, in further preservation and maintenance projects. Along with
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future development, combining microwave and laser scanning technology for full
3D modeling of the wooden components is significant for both the surface shape and
the inside structure, such as the hole infected by insect pests.
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Frescoed Vaults: Accuracy Controlled
Simplified Methodology for Planar
Development of Three-Dimensional
Textured Models
Marco Giorgio Bevilacqua, Gabriella Caroti, Isabel Martínez-Espejo Zaragoza
and Andrea Piemonte

Abstract: In the field of documentation and preservation of cultural heritage, there
is keen interest in 3D metric viewing and rendering of architecture for both formal
appearance and color. On the other hand, operative steps of restoration interventions
still require full-scale, 2D metric surface representations. The transition from 3D to
2D representation, with the related geometric transformations, has not yet been fully
formalized for planar development of frescoed vaults. Methodologies proposed so far
on this subject provide transitioning from point cloud models to ideal mathematical
surfaces and projecting textures using software tools. The methodology used
for geometry and texture development in the present work does not require any
dedicated software. The different processing steps can be individually checked for
any error introduced, which can be then quantified. A direct accuracy check of
the planar development of the frescoed surface has been carried out by qualified
restorers, yielding a result of 3 mm. The proposed methodology, although requiring
further studies to improve automation of the different processing steps, allowed
extracting 2D drafts fully usable by operators restoring the vault frescoes.

Reprinted from Remote Sens. Cite as: Bevilacqua, M.G.; Caroti, G.; Zaragoza, I.M.-E.;
Piemonte, A. Frescoed Vaults: Accuracy Controlled Simplified Methodology for
Planar Development of Three-Dimensional Textured Models. Remote Sens. 2016,
8, 239.

1. Introduction

Planar development of more or less complex curved surfaces, also possibly
decorated, is of great interest for experts working in the field of documentation
and preservation of cultural heritage. The scientific community has addressed the
problem in a rigorous way, with both analytical [1] and digital [2–6] methodologies.
These investigations have led to the development of software applications that have
only partially automated the procedures required for planar development of curved
surfaces. Studies carried out by the authors have not found as yet any commercial
tool allowing automated and controlled development of geometry and texture.
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The goal of this research was to study a simplified methodology enabling both
planar development of geometry and texture of frescoed vaults (surveyed with
geomatics techniques) and checking of the errors related to the different operating
steps. In particular, this methodology has been developed in the case of the “a schifo”
vault typology [7,8] and does not provide any kind of cartographic projection. It uses
very common commercial software and includes some processing steps requiring
user operation.

2. State of the Art

3D photorealistic environments allow engineers, historians and restorers to
research, investigate, and simulate outcomes of restoration projects before these are
executed. For all these aspects, 3D-textured metric modeling is currently the most
sought after tool for cognitive evaluation and operating approach in the field of
cultural heritage [9]. Creation of a 3D-textured model includes three steps: geometry
modeling, parameterization and texture creation.

2.1. Geometry Survey

Laser scanning is a well-established surveying methodology, whose output is
readily usable for representing historical and architectural heritage [10–17]. Accuracy
and resolution attainable in comparatively short times (last-generation scanners for
architectural surveys can acquire millions of points per second with sub-centimeter
accuracy) are the main strengths of these systems although prices are still quite high.

The new approach to softcopy photogrammetry realized by Structure from
Motion (SfM) and MVS (Multi-View Stereo) algorithms generates very dense 3D
color point clouds quite similar in size to those produced from laser scanning
surveys [18–23]. However, even if software evolution in this field is very fast and
performance is good in terms of processing time, and the amount of manageable
data and obtainable precisions are gradually improving, these procedures may not
always be considered reliable. In fact, matching algorithms can be very sensitive
to recording and illumination differences and not reliable in poorly textured or
homogeneous regions. This can result in noisy point clouds and/or difficulties
in feature extraction [24]. These matching algorithms could suffer from variable
precision, strongly dependent on the pattern present on surveyed objects, as well
as the difficulty of having control of the achievable accuracy at the geometric and
morphological levels [20,25].

2.2. Texture Mapping

In large-scale 3-D models used as supporting documentation in restoration
works, textures are not a mere aesthetic complement. In fact, besides supporting
construction, material and chromatic studies, they also act as metric surveying tools,

420



providing, once applied to the models, a guideline for measurements. Therefore,
if textures have to meet these requirements, their positioning accuracy must be
consistent with the scale used, besides having the necessary chromatic precision [26].

Many laser scanners have built-in cameras, whose relative orientation is
calibrated by the manufacturer, which allow direct true coloring of point clouds.
These textures are characterized by a high geometric accuracy, but the systems used
for the photographic takes usually do not achieve good results in terms of resolution
and color fidelity [27].

Simplified, realistic-looking models may not suffice for restorers, who require
rigorous texture mapping for both morphology and color information. In these cases,
it is essential to resort to a dedicated photographic campaign, performed with high
quality cameras as regards optics, sensor size and image post-processing.

In the case of SfM software, the creation of models and textures is almost
contextual, and the procedure usually involves self-calibration of the camera, which
also takes account of characteristic distortion parameters. In these models, although
textures usually have good photographic quality, it is necessary to check the overall
morphological reliability.

2.3. Vault Development

Commercial and open-source software currently available are capable to render
architectures in 3D as regards formal appearance and color. On the other hand,
operative steps of restoration interventions still require large-scale, 2D metric surface
representations. The transition from 3D to 2D representation, with the related
geometric transformations, has not yet been fully formalized and still features open
issues, e.g., in the case of planar development of frescoed vaults [28]. Methodologies
proposed so far on this subject provide transitioning from point cloud models to
known mathematical surfaces (developed on plane, or not), and afterwards seeking
an ideal representation of the actual surface, losing some architectural and building
details in this process [29–33]. To the best knowledge of the authors, modeling and
reverse engineering software commonly used do not have dedicated tools that enable
automatic development of geometry and textures. Moreover, the tools that only
partially solve the problem do not take account of the introduced deformations.

3. Materials and Methods

In order to achieve planar development of frescoed vaults, textured 3D models
of the vaults are required. These should feature good geometric accuracy to identify
the ideal geometric root that best fits the actual vault. Textures associated with the
models will have good radiometric quality and true colors, and will also faithfully
reproduce position and dimension of any fresco detail.
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3.1. The Case Study

The object of this investigation is a vault in Palazzo Roncioni (Pisa, Italy). Its
entire surface is covered by a XVIII century fresco, painted by Tuscan painter G.B.
Tempesti, which has over time undergone extensive damage (cracks, plaster gaps,
etc.). Currently, the vault is the subject of safety and restoration work. A laser
scanning survey of the vault has been performed with the pulse shift-based laser
scanner Leica Geosystems C10 ScanStation, with a point cloud density of about
70 pts/cm2 on average. Use of a phase-based laser scanner would have allowed for
more accurate results at short distances and therefore less noisy reference data. The
photogrammetric survey was performed with a Nikon D700 SLR camera (f = 20 mm
lens) at about 4.5 m range, ensuring a roughly 2-mm pixel covering on the vault
surface. It has been subjected to image processing via SfM algorithms, granting
an overlap ě70%.

3.2. 3D Modeling and Texturing

A separate 3D TIN model has been built by means of each surveying
methodology. Both models have been rigorously registered in the same reference
system due to the extrapolation, from the colored point cloud, of the coordinates
of 12 Ground Control Points (GCPs). These have been chosen as easily identifiable
fresco details, spread evenly across the entire vault, and have been used in the
processes of scaling and rototranslation of the photogrammetric model.

The model obtained via laser scanning survey, henceforth referred to as
“model LASER” (Figure 1c), features homogenous geometric precision and a high
enough resolution to show elements in the sub-centimeter range (cracks, plaster
displacements, etc.). As regards textures, images collected via the on-board camera
(single image 17˝ ˆ 17˝, 1920ˆ 1920 pixel) do not grant adequate radiometric quality.
The model obtained by means of SfM/MVS methodology, henceforth referred to as
“model SfM/MVS”, features uneven geometric precision, mostly in the areas where
radiometric uniformity reduces the performance of the SfM algorithms (Figure 1b).
On the other hand, it has been obtained by a photographic campaign executed with
a high quality camera, so that despite some local errors in detail rendering, image
orientation is substantially fit to the needs of the application, as detailed later. A
new textured model (“model SfM/LASER”) has been generated via SfM software
from the geometry of model LASER and the images orientated for creation of model
SfM/MVS (Figure 1a).

Model SfM/LASER is the best result for geometry and texture quality, starting
from collected data. As regards processing time, this texturing process definitely has
lower requirements than single image orientation based on GCPs [26].
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3.3. Vault Development

Point clouds, either collected by laser scanning (Cloud LASER) or obtained by
photogrammetry (Cloud SfM/MVS), have been framed in a single reference system.
The X- and Y-axes lie in the speculated vault impost plan, which is not horizontal
(axes origin in a corner, X-axis on the long side and Y-axis on the short side) and
the Z-axis completes the orthogonal triplet. In order to proceed with the 2D vault
development, the 3D model has been analyzed.

3.3.1. Analysis and Preliminary Processing of Laser Data

In order to define the geometric components that constitute the vault, a dense
contour (step = 2 cm) representation of model LASER has been generated according
the three coordinate planes (Figure 2).
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The study of this contour representation (Figure 3) has allowed identification
of nine discontinuity directions that divide the vault in 6 areas, each featuring its
own section profiles with almost constant radius: areas 2, 4 and 6, close to the vault
impost, have greater section profile radii than those in the upper part of the vault
(areas 1, 3 and 5). Separation between the lower and upper parts of the vault is
located at about one third of the vault height above the impost plane.Remote Sens. 2016, 8, 239 5 of 16 
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“a schifo” type. This includes a lower portion, similar to a section of a pavilion vault, and an upper 
one, named “specchio” (mirror), which features so wide a curvature to appear almost planar. This 
vault type has been widely used in architecture since Renaissance exactly in the case of fresco 
decorations. 

Once the hypotheses about the building type of the vault have been substantiated, the values of 
the geometric parameters (axis and radius) of the elementary cylindrical surfaces that best fit the 
point clouds of each of the six areas detected were computed by means of approximation algorithms. 

As an example, approximation by cylindrical surfaces of the long side (Figure 4) yielded the 
following results (Table 1). 
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Figure 3. Discontinuity directions and vault areas (bottom view).

The interpretation of these results suggested that the vault could be generated
from the combination of several elements belonging to different cylindrical surfaces,
and could be part of the “a schifo” type. This includes a lower portion, similar to
a section of a pavilion vault, and an upper one, named “specchio” (mirror), which
features so wide a curvature to appear almost planar. This vault type has been widely
used in architecture since Renaissance exactly in the case of fresco decorations.

Once the hypotheses about the building type of the vault have been
substantiated, the values of the geometric parameters (axis and radius) of the
elementary cylindrical surfaces that best fit the point clouds of each of the six areas
detected were computed by means of approximation algorithms.

As an example, approximation by cylindrical surfaces of the long side (Figure 4)
yielded the following results (Table 1).
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Figure 4. Approximation by cylindrical surface.

Table 1. Approximation by cylindrical surface—radius.

Area 1 Area 2

Radius (m) 7.349 5.280
STDV (m) 0.007 0.008

Analysis of Standard Deviation (STDV) should take in account that the vault
does not actually show neat transitions between contiguous cylindrical surfaces,
but rather the curvature radius changes gradually. In fact, the higher values of
the difference between ideal and actual surfaces are found in these transition areas
(Figure 5).

Remote Sens. 2016, 8, 239 6 of 16 

 

Table 1. Approximation by cylindrical surface—radius. 

 Area 1 Area 2
Radius (m) 7.349 5.280 
STDV (m) 0.007 0.008 

Analysis of Standard Deviation (STDV) should take in account that the vault does not actually 
show neat transitions between contiguous cylindrical surfaces, but rather the curvature radius 
changes gradually. In fact, the higher values of the difference between ideal and actual surfaces are 
found in these transition areas (Figure 5). 

 
Figure 5. Actual 3D model—Cylindrical surface error. 

3.3.2. Analysis of the Development Methodology 

In order to achieve a planar development of vault geometry and texture using well known and 
easily available software tools, a methodology using model representation by contours, rather than 
by ideal shapes such as cylinders, has been investigated and applied to this case study. 

For this purpose, just the contour lines lying in the XY coordinate plane have been used in a 
CAD environment, with a 20-cm step (Figure 6). 

 

Figure 6. 20-cm step contour lines model. 

Figure 5. Actual 3D model—Cylindrical surface error.

425



3.3.2. Analysis of the Development Methodology

In order to achieve a planar development of vault geometry and texture
using well known and easily available software tools, a methodology using model
representation by contours, rather than by ideal shapes such as cylinders, has been
investigated and applied to this case study.

For this purpose, just the contour lines lying in the XY coordinate plane have
been used in a CAD environment, with a 20-cm step (Figure 6).
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It has been assumed that vault sections between adjacent contours were planar.
Contours have been assumed as connections between adjacent planes. In order
to appraise the error introduced by this assumption, an orthogonal section of the
interpolating cylinders has been checked. In the most unfavorable situation (Figure 7),
the difference between the section arc Equation (1) and the related chord Equation (2),
bounded by two adjacent contours, has been computed.

xAB “ β¨R (1)

AB “ 2¨R¨ sin pβ{2q (2)
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On an arc length = 1.718 m, the maximum difference was 3 mm, with a
sub-millimeter relative error. This approximation has been deemed acceptable. For
the planar development of the XY contour lines model with a 20-cm step (the same
used to detect the different portions of the vault), the crown of the vault has been
outlined in CAD at 1:1 scale (line AB in Figure 8).
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Subsequent contour lines have been separately developed by trilateration for
each surface of the vault. Assuming the extremes of the previous contour as fixed
points, the extremes of the next contour have been plotted. Figure 8 shows how
planar geometric development of the actual vault lacks the regular course found in
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the development of an ideal surface constituted just by portions of cylinder with
parallel axes.

Sections defined by ZX (blue lines) and ZY (red lines) planes have then been
superimposed on the development of the XY sections (green lines).

Besides geometric vault development, sections are also required as a reference
for correct texture placement on the developed model.

In order to apply textures to the developed geometric model, the following
methodology has been chosen.

For each surface, eight directions have been identified to set orthogonal views of
3D model SfM/LASER. These directions are orthogonal to the axis of the theoretical
cylinders and, starting from the horizontal view, tilted by 15˝ relative to the
previous view.

For each viewing direction, images of the model of vault portion bounded by
a 15˝ cylindrical arc have been collected. These are an orthogonal projection of the
vault texture on an orthogonal plane relative to the viewing direction [34]. Fresco
elements projected in this way are obviously deformed.

Accepting the simplification that the vault is represented by the surfaces of
the interpolating cylinders, it is possible to quantify this deformation. As for the
orthogonal projection on a plane tangent to the cylinder, there is no deformation
along parallel directions relative to the tangency line, while deformation is highest
along orthogonal directions. Linear deformation module (ml) at the extremes of the
orthogonally projected area is defined by Equation (3).

ml “
AB1
xAB

“
2¨R¨ sin pβ{2q

R¨β
(3)

In the projection used, deformation is highest in the furthest point relative to
the tangency line (for breadth = 15˝, distance is about 1 m), where ml = 0.9970 and
deformation = 3 mm (Figure 9).
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In accordance with the operators dealing with the restoration of the fresco, this
deformation has been deemed acceptable.

Each orthogonal view of model SfM/LASER has been performed in two
configurations and saved in two separate image files. Configuration 1 provided
for superimposing the section lines to the model (Figure 10a). Configuration 2
viewed the model with just the high quality texture applied (Figure 10b).Remote Sens. 2016, 8, 239 9 of 16 
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• Image pairs and the geometric vault development frame (Figure 8) have been imported in the 
same photo editing software environment. 

• A single block has been created with both images, so that any transformation applied to any one 
image was similarly applied to the other. 

• The layer containing the image with just the texture has been turned off, leaving visible just the 
image with the section lines. 

• The image has been scaled and moved on the geometric frame, assuming the section lines 
obtained with XZ and YZ planes (vertical lines in Figure 10) as reference. 

As proof of the small deformation of the images, it has been noticed that after scaling the image 
in the direction of the axis of the interpolating cylinders for a single projection direction, it aligns with 
images derived from other projection directions at less than the computed deformation (Figure 11). 

 
Figure 11. Superimposition of orthogonal view on sections model development. 

Figure 10. (a) Orthogonal view with section lines; (b) Orthogonal view with high
quality texture.

The following processing steps have therefore been run for each image pair:

‚ Image pairs and the geometric vault development frame (Figure 8) have been
imported in the same photo editing software environment.

‚ A single block has been created with both images, so that any transformation
applied to any one image was similarly applied to the other.

‚ The layer containing the image with just the texture has been turned off, leaving
visible just the image with the section lines.

‚ The image has been scaled and moved on the geometric frame, assuming
the section lines obtained with XZ and YZ planes (vertical lines in Figure 10)
as reference.

As proof of the small deformation of the images, it has been noticed that after
scaling the image in the direction of the axis of the interpolating cylinders for a single
projection direction, it aligns with images derived from other projection directions at
less than the computed deformation (Figure 11).
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4. Results and Discussion

In order to validate the methodology used, results must be checked for both
geometric precision of the different models obtained and precision of placement,
dimension and shape of the applied textures. Finally, the quality of the planar
development of the vault was assessed (Figure 12).
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4.1. Assessment of Model Geometrical Accuracy

The laser scanning colored point cloud model (Cloud LASER) can be assumed
as the absolute geometric reference in this application. It has very high point density,
and allows extraction of coordinates of features for both geometry (cracks, gaps, etc.)
and painting (boundary lines, color transitions, etc.) with a sub-centimeter resolution.

Standard deviation obtained by comparing Cloud LASER with Model LASER is
1 mm, with peaks in the 3 mm range. These results highlight that the transition from
point cloud to surface model entails a small decay of geometric precision.

A second check has been performed comparing Cloud LASER with Cloud
SfM/MVS; the standard deviation averaged at 3 mm, with peaks of about 6 mm.

Finally, Cloud LASER has been compared against Model SfM/MVS; the
standard deviation was 3 mm on average, peaking at about 10 mm.

These results show that image orientation in SfM is substantially accurate and
confirm the mean reprojection error involved with orientating each image via SfM
to be 0.70 pixel with an average of 9000 tie points per image. On the other hand,
maximum deviation values are in the range of 7–10 mm and refer to cracks and
plaster collapse borders. Figures 13–17 show an overview of the fresco and some
details on local deviations.Remote Sens. 2016, 8, 239 11 of 16 

 

 
Figure 13. Regions checked for deviations between cloud LASER and model SfM/MVS. 

 
Figure 14. Region A: total plaster collapse borders. 

 

Figure 15. Region B: total plaster collapse borders. 
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model SfM/MVS.

Taking into account all these cases, greater deviations are found when surveyed
surfaces are orthogonal to the vault. SfM/MVS methodology does not correctly
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represent the transitions typical of deep cracks and delamination. This result is in the
authors’ opinion due to the fact that these surface regions are acquired by inclined
views with different inclinations and sometimes with the camera axis parallel to
the surface. This fact, reported in the literature, leads to worse performance of the
matching algorithms [24].
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Hence, the overall accuracy of the SfM-derived model is good (3 mm), but shows
some flaws precisely in the regions of most interest to restorers. This processing
methodology, on the other hand, has the advantage of significantly lower resource
requirements: manual intervention is limited to inputting the support points to orient
and scale the model.
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Figure 17. Region D: crack in the topmost region of the vault.

These considerations on geometric precision led to the choice of Model
SfM/LASER as a starting model for vault development.

4.2. Texture Dimension and Positioning Accuracy Assessment

After geometric accuracy of the models has been checked, texturing precision
has also been monitored. For this purpose, the coordinates of 36 Control Points (CPs)
have been extracted by Cloud LASER. These coordinates have been firstly compared
with those obtained by digitizing the points on the images and obtaining their 3D
position in Cloud SfM/MVS (Figure 18). The comparison provided the statistics
displayed in Table 2.
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Figure 18. CPs on the vault.

Table 2. CP coordinates comparison Cloud LASER—Cloud SfM/MVS.

X Y Z

mean (m) 0.000 0.000 0.000
max (m) 0.005 0.005 0.010

STDV (m) 0.002 0.003 0.004

Note: The values are in line with the geometric comparison between point clouds LASER
and SfM/MVS.

Subsequently, the same points have been digitized directly on Model
SfM/LASER. A comparison with the reference CP coordinates yielded the results
displayed in Table 3.

Table 3. CP coordinates comparison Cloud LASER—Model SfM/LASER.

X Y Z

mean (m) 0.000 0.000 0.000
max (m) 0.019 0.023 0.026

STDV (m) 0.007 0.007 0.008

This comparison shows that precision checks on texture yielded a slightly worse
result relative to those on geometry. Such an outcome was predictable, assuming
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the addition of errors for geometry with those for image orientation and texture
projection, as well as those for direct CP collimation on Model SfM/LASER.

4.3. Vault Development Accuracy Assessment

Besides the 3D comparison between Model SfM/LASER and Cloud LASER,
planar development has also been validated at actual scale. Some portions of
the image, representing the vault development, have been printed at 1:1 scale
on A0 tracing paper. Subsequently, restorers checked the prints directly with
the represented fresco portions (Figure 19), noticing the accordance of shapes and
dimension of the checked portions in line with the deformations already expected
and accepted in the processing steps. On the same tracing paper sheet, restorers have
drafted the outlines of the actual fresco paintings; the resulting accuracy is 3 mm.Remote Sens. 2016, 8, 239 14 of 16 
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Figure 19. Development accuracy assessment at 1:1 scale.

5. Conclusions

The methodology discussed has proposed a simplified solution for the problem
of a metrically correct planar representation of a frescoed “a schifo” vault. The
processing steps shown can be carried out even by relatively inexperienced users
and do not require specific software.

A peculiar feature of this methodology is the creation of collages of several
orthogonal views of the textured 3-D model, thanks to geometrical references provided
by the section lines of the model. These lines are visible in the three-dimensional
model, its geometric development and on the images used for the collage.

The methodology proposed for modeling, texturing and planar development
was verified by both calculating the theoretical error introduced by the single
processing step and by comparing the final products with a reference survey and
then directly with the surveyed object.
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The theoretical development accuracy is 3 mm. The comparison between the
laser scanner model textured with oriented images through SFM and the original
laser scanning point cloud yielded a 3-mm accuracy. Finally, the direct verification
of the development of the model confirmed an accuracy of 3 mm, which allowed
drafts to be obtained that are fully usable by restorers for 3D fresco reconstruction on
a vaulted surface.

In particular, these are most useful for faithful reconstruction of the geometry
in damaged fresco portions, for which a photographic documentation suitable for
3-D modeling is available.

The same methodology can also be applied to domes and vaults of different
types. The authors are currently planning further testing on barrel and pavilion
vaults and on elliptical and spherical domes.

The present research will be prosecuted with the aim of automating the different
processing steps, particularly as regards monitoring of deformations and errors
introduced in the final representation.

Further interest also lies in investigating differences between developments
obtained by extracting contours by actual surfaces or by approximating them to
ideal surfaces.
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Assessment and Calibration of a RGB-D
Camera (Kinect v2 Sensor) Towards a
Potential Use for Close-Range 3D Modeling
Elise Lachat, Hélène Macher, Tania Landes and Pierre Grussenmeyer

Abstract: In the last decade, RGB-D cameras - also called range imaging cameras -
have known a permanent evolution. Because of their limited cost and their ability
to measure distances at a high frame rate, such sensors are especially appreciated
for applications in robotics or computer vision. The Kinect v1 (Microsoft) release
in November 2010 promoted the use of RGB-D cameras, so that a second version
of the sensor arrived on the market in July 2014. Since it is possible to obtain point
clouds of an observed scene with a high frequency, one could imagine applying
this type of sensors to answer to the need for 3D acquisition. However, due to the
technology involved, some questions have to be considered such as, for example,
the suitability and accuracy of RGB-D cameras for close range 3D modeling. In that
way, the quality of the acquired data represents a major axis. In this paper, the use of
a recent Kinect v2 sensor to reconstruct small objects in three dimensions has been
investigated. To achieve this goal, a survey of the sensor characteristics as well as
a calibration approach are relevant. After an accuracy assessment of the produced
models, the benefits and drawbacks of Kinect v2 compared to the first version of the
sensor and then to photogrammetry are discussed.

Reprinted from Remote Sens. Cite as: Lachat, E.; Macher, H.; Landes, T.; Grussenmeyer, P.
Assessment and Calibration of a RGB-D Camera (Kinect v2 Sensor) Towards a
Potential Use for Close-Range 3D Modeling. Remote Sens. 2015, 7, 13070–13093.

1. Introduction

Saving three-dimensional information about geometry of objects or scenes tends
to be increasingly applied in the conventional workflow for documentation and
analysis, of cultural heritage and archaeological objects or sites, for example. In
this particular field of study, the needs in terms of restoration, conservation, digital
documentation, reconstruction or museum exhibitions can be mentioned [1,2]. The
digitization process is nowadays greatly simplified thanks to several techniques
available that provide 3D data [3]. In the case of large spaces or objects, terrestrial
laser scanners (TLS) are preferred because this technology allows collecting a large
amount of accurate data very quickly. While trying to reduce costs and working
on smaller pieces, on the contrary, digital cameras are commonly used. They have
the advantage of being rather easy to use, through image-based 3D reconstruction
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techniques [4]. Besides, both methodologies can also be merged in order to overcome
their respective limitations and to provide more complete models [5,6].

In this context, regarding some aspects like price or computation time, RGB-D
cameras offer new possibilities for the modeling of complex structures, such as
indoor environments [7]. Indeed, these sensors enable acquiring a scene in real-time
with its corresponding colorimetric information. Among them, the Kinect sensor
developed by Microsoft in 2010 and the Asus Xtion Pro in 2011, based on the
PrimeSense technology [8,9], have encountered a great success in developer and
scientific communities. Since July 2014, a second version of Microsoft’s Kinect sensor
has been available, based on another measurement technique. Such range imaging
devices make use of optical properties, and are referred to as active sensors since they
use their own light source for the active illumination of the scene. However, whereas
Kinect v1 was based on active triangulation through the projection of structured
light (speckle pattern), Kinect v2 sensor has been designed as a time-of-flight (ToF)
camera [10]. Thanks to this technology, a depth measurement to the nearest objects is
provided for every single pixel of the acquired depth maps. To illustrate this change
of distance measurement principle, Figure 1 offers an overview of non-contact 3D
measuring methods.
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A more detailed taxonomy of active vision techniques can be found in [11].

In the following sections, an overview of application fields and calibration
methods related to range imaging devices is presented. Then, characteristics of the
recent Kinect v2 sensor are summarized, through a set of investigations carried out
according to different aspects. The specific calibration process is also reported, in
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order to analyse its influence on the metric performances of the camera. Once all
these parameters are known, the question of close range 3D modeling approaches can
be addressed. To make a conclusion on the ability of Kinect v2 to provide reliable 3D
models, the accuracy of the produced data has to be assessed. Considering not only
the accuracy obtained but also the computation time or ease of use of the proposed
methodology, finally a discussion about improvements and possible use of the sensor
is reported.

2. Related Works

Because of their attractiveness and imaging capacities, lots of works have been
dedicated to RGB-D cameras during the last decade. The aim of this section is to
outline the state-of-the-art related to this technology, considering aspects such as
fields of application, calibration methods or metrological approaches.

2.1. Fields of Application of RGB-D Cameras

A wide range of applications can be explored while considering RGB-D cameras.
The main advantages are the cost, which is low for most of them compared to
laser scanners, but also their high portability which enables a use on board of
mobile platforms. Moreover, due to a powerful combination of 3D and colorimetric
information as well as a high framerate, RGB-D cameras represent an attractive sensor
well-suited for applications notably in the robotic field. Simultaneous localization and
mapping (SLAM) tasks [12] or dense 3D mapping of indoor environments [13,14] are
good examples of this problematic. Besides, industrial applications can be mentioned
for real-time change detections [15] or for detections on automotive systems [16].
Some forensics studies are also reported, for crime scene documentation [17].

The Kinect sensors marketed by Microsoft are motion sensing devices, initially
designed for gaming and entertainment purposes. They enable a contactless
interaction between the user and a games console by gesturing. Since the release of the
Kinect v1 sensor in 2010, lots of studies involving the device in alternative applications
have been released. The capacities of localization [18] and SLAM systems [19] with
Kinect devices have also been investigated. Moreover, pose recognition and estimation
of human body [20] or hand articulations [21,22] have been considered. To answer to
the need for 3D printing, [23] suggests the design of a scanning system based on a
Kinect-type consumer-grade 3D camera. Finally, with the more recent Kinect v2 sensor,
applications for face tracking [24], coastal mapping [25] or cyclical deformations
analysis [26] appear in the literature.

2.2. Towards 3D Modeling of Objects with a RGB-D Camera

The creation of 3D models represents a common and interesting solution for the
documentation and visualization of heritage and archaeological materials. Because
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of its remarkable results and its affordability, the probably most used technique by
the archaeological community remains photogrammetry. However, the emergence
in the past decades of active scanning devices to acquire close-range 3D models has
provided new possibilities [27]. Given their characteristics, RGB-D cameras belong to
the most recent generation of sensors that could be investigated for such applications.
The original use of Kinect v1 device has already been modified for the creation of a
hand-held 3D scanner [28] or for a virtual reality project [29]. Since the sensor can
also provide 3D information in the form of point clouds, the geometrical quality
of data acquired on small objects such as a statue [30], or on bigger scenes such as
archaeological walls [31] has also been assessed. More recently, the use of a Kinect
v2 sensor with the Kinect Fusion tool [32] has shown good results for the direct
reconstruction of 3D meshes [33].

2.3. Error Sources and Calibration Methods

The main problem while working with ToF cameras is due to the fact that the
measurements realized are distorted by several phenomena. For guarantying the
reliability of the acquired point clouds, especially for an accurate 3D modeling
purpose, a prior removal of these distortions must be carried out. To do that,
a good knowledge of the multiple error sources that affect the measurements is
useful. A description of these sources of measuring errors is summarized in [34,35].
Considering especially the Kinect gaming sensors, analysis of related error sources
are reported for example in [36,37].

First of all, a systematic depth-related deformation, also depicted as systematic
wiggling error by some authors [38] can be reported. This deformation is partially
due to inhomogeneities within the modulation process of the optical beam, which
is not perfectly sinusoidal. Lots of works have been devoted to the understanding
of this particular error. As a matter of fact, calibration of time-of-flight sensors was
a major issue in many studies in the last decade. Most of the time, the introduced
approaches are based either on Look-Up Tables [39] to store and interpolate the
related deviations, or on curve approximation with B-splines [38] to model the
distance deviations. In other methods of curve approximation, polynomials have
been used [40] to fit the deviations. These models require a smaller number of
initial values than B-splines, but are also less representative of the actual deviations.
Whatever the method, the aim of this calibration step is the storage of depth residuals
as a function of the measured distance.

Since object reflectivity varies with the range and can also cause a distance
shift depending on the distance to the observed object, an intensity-related (or
amplitude-related) error must be mentioned. Specific calibration steps for its
correction have been investigated, for example on a PMD time-of-flight camera [41].
Furthermore, the depth calibration needs to be extended to the whole sensor array,
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because a time delay of the signal propagation is observed as a function of the
pixel position on the sensor array. A per-pixel distance calibration [42] can be
considered. Besides, [39] suggests the computation of a Fixed Pattern Noise (FPN)
matrix containing an individual deviation value for each pixel, that allows the
diminution of the global surface deformations. Sometimes, this global correction
is performed together with the wiggling error correction, by considering in the
same mathematical model the depth-related error and the location of the pixel on the
array [40]. Finally, some non-systematic depth deformations which rather correspond
to noise are also reported. One should notice the existence of denoising and filtering
methods for their reduction [43], as well as methods related to the multiple returns
issue [44].

3. Survey of Kinect v2 Specifications

Since Kinect v2 is initially a motion sensing device produced to be used with
a gaming console, it seems obvious that the measurements provided by it will be
affected by some unavoidable error sources. Indeed, the environment in which the
acquisitions are performed has an influence (e.g., temperature, brightness, humidity),
as well as the characteristics of the observed object (reflectivity or texture, among
others). Once the camera is on its tripod, the user intervention is limited to choosing
settings (time interval, types of output data), and therefore, the automation level
seems to be relatively high. However, errors can occur due to the internal workings
of the sensor itself.

To quantify the accuracy of the acquired data, a good knowledge of these
potential sources of errors is required. For the Kinect v1, some of these aspects have
been investigated, such as pre-heating time [9], or the influence of radiometry and
ambient light [45]. Because of the change of the distance measurement principle in
the Kinect v2, the phenomena observed with this new sensor might be different. In
spite of this change, it is important to investigate their influence on the produced
data. After a review of the way the sensor works and the data it provides, a few
experimentations are presented in this section. They deal with pre-heating time,
noise reduction, and some environment or object-related criteria.

3.1. Sensor Characteristics and Data Acquisition

Kinect v2 sensor is composed of two cameras, namely a RGB and an infrared
(IR) camera. The active illumination of the observed scene is insured by three IR
projectors. Some features of the sensor are summarized in Table 1. For example,
given the specifications, at 2 m range a pixel size of 5 mm can be obtained.

As mentioned on the Microsoft website [46], the Kinect v2 sensor is based on
ToF principle. Even though time-of-flight range imaging is a quite recent technology,
many books deal with its principles and its applications [47–50]. The basic principle
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is as follows: knowing the speed of light, the distance to be measured is proportional
to the time needed by the active illumination source to travel from emitter to
target. Thus, matricial ToF cameras enable the acquisition of a distance-to-object
measurement, for each pixel of its output data. It should be noted that, unlike
other ToF cameras, it is impossible to act on the modulation frequency or within the
integration time of the input parameters of the Kinect v2 sensor.

Table 1. Technical features of Kinect v2 sensor.

Infrared (IR) camera resolution 512 ˆ 424 pixels
RGB camera resolution 1920 ˆ 1080 pixels

Field of view 70 ˆ 60 degrees
Framerate 30 frames per second

Operative measuring range from 0.5 to 4.5 m
Object pixel size (GSD) between 1.4 mm (@ 0.5 m range) and 12 mm (@ 4.5 m range)

As shown in Figure 2, three different output streams arise from the two lenses
of the Kinect v2 device: infrared data and depthmaps come from one lens and
have the same resolution. The depthmaps are 2D images 16 bits encoded in which
measurement information is stored for each pixel. The color images of higher
resolution come from the second lens. The point cloud is calculated thanks to
the depthmap, because of the distance measurements it contains. From depth
values stored in the pixel matrix, two possible ways can be considered to infer
3D coordinates from the 2D data. Either a mapping function provided by the
SDK (Software Development Kit) is applied between depth and camera space,
or self-implemented solutions can be used applying the perspective projection
relationships. The result is a list of (X, Y, Z) coordinates that can be displayed
as a point cloud.

If colorimetric information is required, a transformation of the color frame
has to be performed because of its higher resolution compared to the depthmap.
This transformation is achieved based on a mapping function from the SDK, which
enables to map the corresponding color to a corresponding pixel in depth space.
The three dimensional coordinates coming from the depthmap are combined with
the corresponding color information (as RGB values) and constitute a colorized
point cloud.
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Figure 2. Schematic representation of the output data of Kinect v2 and summary of
point cloud computation.

3.2. Pre-Heating Time and Noise Reduction

The first study involved the necessary pre-heating time. Indeed, as shown
in [9,51], some RGB-D sensors need a time delay before providing reliable range
measurements. In order to determine this time delay which is necessary for the Kinect
v2 to reach constant measurement, the sensor was placed parallel to a white planar
wall at a range of about 1.36 m. Three hundred and sixty depthmaps were recorded
during one and a half hours, which is one depthmap recorded each 15 seconds.
An area of 10 ˆ 10 pixels corresponding to the maximal intensities in IR data was
then selected in each recorded depthmap. Indeed, the sensor is not placed perfectly
parallel to the wall, thus it cannot be assumed that the shortest measured distances are
located at the center of the depthmaps. Mean measured distances can be calculated
and represented as a function of the operating time. The distance varies from 5 mm
up to 30 minutes and becomes then almost constant, around 1 mm. It can be noticed
that the sensor’s cooling fan starts after 20 minutes. For future tests, the pre-heating
time of 30 minutes will be respected even if the distance variation is quite low. This
experiment is related in [52].

Secondly, the principle of averaging several depthmaps has also been
investigated in order to reduce the measurement noise inherent to the sensor and its

446



technology [45]. With this process, the influence of the frame number on the final
measurement precision is studied. For this purpose, the sensor was placed in front
of a planar wall, at a distance of 1.15 m. To investigate the influence of the frames
averaging, different sizes of samples have been considered. Figure 3a,b presents the
standard deviation computed for each pixel on datasets of respectively 10 successive
frames and 100 successive frames. The standard deviation values obtained with
10 frames are lower than 1 cm, except on the corners. Considering the averaging of
100 successive frames, these values are not lower, but a smoothing effect is observed
especially on the corners. The variation of the standard deviations along a horizontal
line of pixels in the middle of the frame (see red line) is presented in Figure 3c, where
the case of 10 frames and 100 frames are plotted together. Regarding this graph it
is clearly visible that there is no gain in terms of precision when more frames are
averaged, because the mean standard deviation values are almost the same in both
cases. Only the variations of the standard deviations are reduced for the higher
number of frames. The smoothing effect observed while increasing the number
of frames appears through the diminution of the peaks in Figure 3c, expressing a
reduction of the noise. In conclusion, the use of a larger sample does not really
enhance the precision but it makes it more uniform. That is why for the future
acquisitions, datasets of about 10–50 frames will be considered. Besides, similar
results obtained for the case of real scenes are reported in [52].

3.3. Influences of the Environment and Acquired Scene

The previous section described phenomena which are rather related to the sensor
itself. However, some characteristics of the environment in which the acquisitions
are realized also have an influence on the measured distances.

3.3.1. Color and Texture of the Observed Items

The effects of different materials on intensity as well as on distance
measurements have first been assessed using samples characterized by different
reflectivities and roughness. The sensor was placed parallel to a board with samples.
It appears that reflective as well as dark materials stand out among all the samples.
Indeed, very reflective as well as very dark surfaces display intensity values which
are lower than for other samples. In the depthmaps, this phenomenon results in
measured distances which are larger than expected. The more important effect is
observed for a compact disk, i.e., a highly reflective material. For this sample, distance
measurements vary up to 6 cm in an inhomogeneous way. Always considering very
reflective materials, experiments performed on mirror surfaces have confirmed the
previous findings with measurement deviations that can reach up to 15 cm.
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Figure 3. Visualization of color-coded standard deviation calculated for each pixel
over (a) 10 successive frames, and (b) 100 successive frames; (c) Observation of
standard deviations along a line of pixels (see red line) in the set of 10 frames
(orange) and 100 frames (blue).

To complete these investigations, observations have been realized on a
checkerboard of grey levels inspired from [38] (Figure 4). As illustrated in Figure 4b,
the displayed intensity increases with the brightness of the patterns. Intensity values
displayed by black squares are almost six times lower than the ones displayed by
white squares (2000 against 12,000). Besides, considering the values stored in the
depthmaps (Figure 4c), one can conclude that the lower the intensities are, the longer
the measured distances are. Deviations of the distance up to 1.2 cm are observed for
the black patterns. As mentioned in Subsection 2.3, the reduction of intensity-related
errors can be considered in a specific calibration process described in [41] for a
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PMD ToF camera. This correction technique is not discussed here. Considering the
modeling approach developed in Section 5 of this paper, the reconstructed object
does not show significant color changes. Hence, in that case this error source does
not really affect the measurements and is safely negligible.Remote Sens. 2015, 7 13078 
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Figure 4. (a) Checkerboard of grey levels inspired from [38], (b) intensity values 

measured on this checkerboard, and (c) corresponding 3D representation of distance 

measurements variations (in mm). 
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Because the previous Kinect device was not suited for sunny outdoor acquisitions, the influence of 

the brightness conditions on the measurements realized with a Kinect v2 was finally studied. Some 

applications of the sensor could require a proved efficiency in outdoor conditions. Hence, acquisitions 

were performed with the sensor during a sunny day. The observed scene composed of a table and a 

squared object is presented on Figure 5a, as well as the resulting point cloud on Figure 5b. It appears 

that parts of the scene are missing, such as the table stands. As a matter of fact, about 35,000 points are 

visible on this point cloud over the 217,088 maximal points of a single point cloud, which is about 

20%. Regarding Figure 5c which represents the entire point cloud, about 2% of “flying pixels” (in red 

on Figure 5c) are included in the total number of points. 

Despite a clear lack of points to depict the whole scene, the results show that the sensor is able to work 

during a sunny day provided that the light does not directly illuminate the sensor. Indeed, strong 

backlighting conditions cause the sensor’s disconnections from the computer. Two phenomena summarize 

the previous observations: the number of “flying pixels” is clearly visible particularly on the edges of the 

sensor field of view, and the number of acquired points decreases when the light intensity raises. 

Figure 4. (a) Checkerboard of grey levels inspired from [38], (b) intensity values
measured on this checkerboard, and (c) corresponding 3D representation of distance
measurements variations (in mm).

3.3.2. Behavior in High Brightness Conditions

Because the previous Kinect device was not suited for sunny outdoor
acquisitions, the influence of the brightness conditions on the measurements realized
with a Kinect v2 was finally studied. Some applications of the sensor could require a
proved efficiency in outdoor conditions. Hence, acquisitions were performed with
the sensor during a sunny day. The observed scene composed of a table and a squared
object is presented on Figure 5a, as well as the resulting point cloud on Figure 5b.
It appears that parts of the scene are missing, such as the table stands. As a matter
of fact, about 35,000 points are visible on this point cloud over the 217,088 maximal
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points of a single point cloud, which is about 20%. Regarding Figure 5c which
represents the entire point cloud, about 2% of “flying pixels” (in red on Figure 5c)
are included in the total number of points.Remote Sens. 2015, 7 13079 
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Figure 5. Outdoor acquisitions: (a) Picture of the observed scene; (b) Corresponding
point cloud acquired with the sensor, (c) and the same entire point cloud in a profile
view (scene in a black rectangle) without removal of the “flying pixels” (red).

Despite a clear lack of points to depict the whole scene, the results show that
the sensor is able to work during a sunny day provided that the light does not
directly illuminate the sensor. Indeed, strong backlighting conditions cause the
sensor’s disconnections from the computer. Two phenomena summarize the previous
observations: the number of “flying pixels” is clearly visible particularly on the edges
of the sensor field of view, and the number of acquired points decreases when the
light intensity raises.

4. Calibration Method

A major drawback of 3D ToF cameras is the significant number of errors that can
influence the acquired data. These errors, which affect both the overall performances
of the system and its metrological performances, were emphasized in the related
work section as well as in the section related to the survey of the sensor.

This section deals essentially with the assessment and the correction of the
systematic distance measurement errors. To do that, a calibration method divided
into several steps is proposed. Considering the fact that range imaging cameras
combine two technologies, two types of calibrations have to be considered. Firstly,
the geometric calibration of the lens is performed in order to correct its geometric
distortions. Secondly, a depth calibration is suggested in order to assess and correct
depth-related errors.
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4.1. Geometric Calibration

Since lenses are involved in the Kinect device acquisitions, geometric distortions as
reported with DSLR cameras can be observed. For the first version of the Kinect sensor,
some computer vision based calibration algorithms have been developed [53,54].
Unfortunately, these algorithms have not yet been adapted for the Kinect v2 sensor.
Nevertheless, it appears in lots of works, e.g., [55], that time-of-flight cameras can be
geometrically calibrated with standard methods.

As for common 2D sensors, several images of a planar checkerboard have been
taken under different points of view. It is worth noting that the infrared data have
been used to handle this geometric calibration, because depth and infrared output
streams result from the same lens. To determine the necessary intrinsic parameters,
our dataset was treated with the “Camera Calibration Toolbox” proposed by [56]
under the Matlab software. In this tool, the Brown distortion model is implemented.
This model is largely used for photogrammetric applications because of its efficiency.
The “Camera Calibration Toolbox” allows the determination of radial as well as
tangential distortion parameters, and also internal parameters such as focal length
and principal point coordinates.

With this technique applied, one should underline the fact that changing or
removing some of the images causes the computed results to vary by a few pixels.
This phenomenon is only due to the low sensor resolution. As a matter of fact, the
best calibration results are obtained regarding the lower uncertainties calculated on
the parameters. An overview of results obtained for these parameters is available
in [52], as well as in [57]. The direct integration of the distortion coefficients into
our point clouds computation algorithm allows the obtainment of a calibrated three
dimensional dataset, which is no longer affected by the actual distortions of the
initial depthmap.

4.2. Depth Calibration

As mentioned in Section 2.3, errors related to the measurement principle
systematically affect the distances stored in the depth images. Accordingly, a
depth-related calibration model needs to be defined to correct the measured distances
and thus enhance the quality of the acquired data. This step is particularly significant
since the aim of this study is to produce 3D models in an as accurate as possible
way. After a description of the method that has been set up for this purpose, the
processing of the data and the results that they provide are analyzed in this section.

4.2.1. Experimental Setup

A common way to assess the distance inhomogeneity consists on positioning
the camera parallel to a white planar wall at different well-known ranges. In our
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study, the wall has been surveyed beforehand with a terrestrial laser scanner (FARO
Focus3D, precision 2 mm). The standard deviation computed on plane adjustment
in the TLS point cloud is 0.5 mm. It allows confirming the reference wall planarity
assuming that the TLS provides higher accuracy than the investigated sensor.
After that, a line has been implanted perpendicularly to the wall by tachometry.
Conventional approaches make use of track lines [39,42] to control the reference
distances between plane and sensor, or rather try to estimate the camera position with
respect to the reference plane through a prior calibration of an additional combined
CCD camera [38,40]. In our experimental setup, marks have been determined by
tachometry along the previously implanted line at predetermined ranges. They
represent stations from which the acquisitions are realized with the Kinect sensor
placed on a static tripod. A picture of the setup is shown in Figure 6a.

Stations have been implanted at 0.8 m range from the reference wall, and then
from a 1 m up to 6 m range every 25 cm (Figure 6b). In this way, the sensor is
progressively moved away from the plane, while covering the whole operating range
of the camera. To limit the influence of noise, at each sensor position, 50 successive
depthmaps of the wall have been acquired with intervals of one second. Finally, to
insure the parallelism between sensor and wall and thus to avoid the addition of a
possible rotation effect, the distances have been surveyed by tachometry at each new
position, using small prisms at the two sensor extremities.Remote Sens. 2015, 7 13081 
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Figure 6. (a) Picture of the experimental setup with the observed area in dotted lines;  

(b) Global schema of the acquisition protocol. 

4.2.2. Data Analysis 

The results obtained led us to consider two steps of depth calibration. First, deviations of 

measurements for a small central patch of the frames are assessed through B-spline fitting as suggested 

in [42]. Secondly, the deformations extended to the whole sensor array are investigated, in order to 

highlight the need of a potential per-pixel correction. 

First of all, a central matrix of 10 × 10 pixels is considered in the input images acquired during the 

experiment. This enables to compute mean measured distances from the sensor for each position. 

Then, the deviations between real and measured distances are plotted on a graph as a function of the 

range. Each of the 50 deviations obtained from the 50 depthmaps acquired per station is represented as 

a point. As depicted in Figure 7a, a B-spline function is estimated within these values. Since the sensor 

was accurately placed on the tripod with respect to its fixing screw, a systematic offset occurs on raw 

measurements because the reference point for the measurement does not correspond to the optical 

center of the lens. The influence of this offset corresponding to the constant distance between fixing 

point and lens (approximately 2 cm) is removed on this graph. It appears that the distortions for the 

averaged central area vary from −1.5 cm to 7 mm, which is rather low regarding the technology 

investigated. At 4.5 m range, a substantial variation is observed. Under 4.5 m range, the deviations are 

rather included within an interval of variation of almost 1 cm (from −1.5 cm to 7 mm). 

Since a set of 50 successive depthmaps is acquired for each position of the sensor, a standard 

deviation can also be computed over each sample. Figure 7b presents a separate graph showing the 

evolution of the computed standard deviations as a function of the range. As it can be seen, the 

standard deviation increases with the range. This means that the scattering of the measurements 

increases around the mean estimated distance when the sensor moves away from the scene. Moreover, 

for the nearest range (0.8 m), the standard deviation reported stands out among all other positions. As a 

matter of fact, measurements realized at the minimal announced range of 0.5 m would probably be still 

less precise. Since a clear degradation with depth is showed, it makes sense to bring a correction. 

Figure 6. (a) Picture of the experimental setup with the observed area in dotted
lines; (b) Global schema of the acquisition protocol.

4.2.2. Data Analysis

The results obtained led us to consider two steps of depth calibration. First,
deviations of measurements for a small central patch of the frames are assessed
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through B-spline fitting as suggested in [42]. Secondly, the deformations extended to
the whole sensor array are investigated, in order to highlight the need of a potential
per-pixel correction.

First of all, a central matrix of 10 ˆ 10 pixels is considered in the input images
acquired during the experiment. This enables to compute mean measured distances
from the sensor for each position. Then, the deviations between real and measured
distances are plotted on a graph as a function of the range. Each of the 50 deviations
obtained from the 50 depthmaps acquired per station is represented as a point. As
depicted in Figure 7a, a B-spline function is estimated within these values. Since
the sensor was accurately placed on the tripod with respect to its fixing screw, a
systematic offset occurs on raw measurements because the reference point for the
measurement does not correspond to the optical center of the lens. The influence
of this offset corresponding to the constant distance between fixing point and lens
(approximately 2 cm) is removed on this graph. It appears that the distortions for the
averaged central area vary from ´1.5 cm to 7 mm, which is rather low regarding the
technology investigated. At 4.5 m range, a substantial variation is observed. Under
4.5 m range, the deviations are rather included within an interval of variation of
almost 1 cm (from ´1.5 cm to 7 mm).

Since a set of 50 successive depthmaps is acquired for each position of the sensor,
a standard deviation can also be computed over each sample. Figure 7b presents
a separate graph showing the evolution of the computed standard deviations as a
function of the range. As it can be seen, the standard deviation increases with the
range. This means that the scattering of the measurements increases around the
mean estimated distance when the sensor moves away from the scene. Moreover, for
the nearest range (0.8 m), the standard deviation reported stands out among all other
positions. As a matter of fact, measurements realized at the minimal announced
range of 0.5 m would probably be still less precise. Since a clear degradation with
depth is showed, it makes sense to bring a correction.

4.2.3. Survey of Local Deformations on the Whole Sensor Array

The second part of our depth calibration approach consists of extending the
deformations analysis to the whole sensor array. For this purpose, only the first
10 datasets acquired on the planar wall corresponding to the first 10 positions from 0.8
to 3 m are considered. It appears that the corresponding point clouds are not planar,
but rather exhibits a curved shape. On these 10 successive point clouds, planes have
been fitted by means of least-squares adjustment. To realize a proper adjustment in
the Kinect point clouds, some outlying points corresponding to null values in the
depthmaps have to be previously removed. Then, the Euclidean distances between
a point cloud and its corresponding plane are calculated. It provides a matrix of
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residuals, in which for each pixel the deviation of the actual measured distance with
respect to the adjusted plane is stored.Remote Sens. 2015, 7 13082 
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Figure 7. (a) Deviations (in cm) between true distances and measured distances, as a 

function of the range (m). (b) Evolution of the standard deviation (in mm) calculated over 

each sample of 50 measurements, as a function of the range (m). 

4.2.3. Survey of Local Deformations on the Whole Sensor Array 

The second part of our depth calibration approach consists of extending the deformations analysis to 

the whole sensor array. For this purpose, only the first 10 datasets acquired on the planar wall 

corresponding to the first 10 positions from 0.8 to 3 m are considered. It appears that the corresponding 

point clouds are not planar, but rather exhibits a curved shape. On these 10 successive point clouds, 

planes have been fitted by means of least-squares adjustment. To realize a proper adjustment in the 

Kinect point clouds, some outlying points corresponding to null values in the depthmaps have to be 

previously removed. Then, the Euclidean distances between a point cloud and its corresponding plane 

are calculated. It provides a matrix of residuals, in which for each pixel the deviation of the actual 

measured distance with respect to the adjusted plane is stored. 

Figure 7. (a) Deviations (in cm) between true distances and measured distances,
as a function of the range (m). (b) Evolution of the standard deviation (in mm)
calculated over each sample of 50 measurements, as a function of the range (m).

Figure 8 shows the residuals with respect to the plane at 1 m range. The residuals
have been computed and represented in the form of a point cloud (in red), in which a
surface is interpolated (here color-coded). First, it appears that the residuals are more
important at sensor boundaries and especially on the corners. As known from the
literature, these radial effects increase with the distance between sensor and target.
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In our case, the residuals can reach about 1 centimeter up to tens of centimeters in
the corners at 3 m range.

Remote Sens. 2015, 7 13083 
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To define an adapted correction, the parameters of the interpolated surfaces previously mentioned 

are stored. The chosen surface model is polynomial, in order to keep a convenient computation time 

for the correction step. This post-processing step consists of delivering signed corrections interpolated 

from the residuals surfaces computed at each range. Thus, to correct each pixel of the depthmap, given 

the distance value it contains, a residual value will be interpolated considering the nearest ranges. In 

that way, a correction matrix is computed, that needs to be added to the initial depthmap as a  

per-pixel correction. 

4.3. Influence of Corrections 

All the corrections related to depth calibration are part of post-processing carried out on the 

depthmaps. In order to visualize the influence of the computed correction on the systematic distance 

measurement error, the dataset consisting of measurements realized on a planar wall at known ranges 

is used. To apply the calibration, an adjustment of the errors model in the form of a spline previously 

determined is required. Indeed, knowing the curve parameters and the distance measured allows 

inferring the correction values applied to the measurements. For the analysis, a central patch of 10 × 10 

pixels on the corrected data is considered as before. The remaining deviations between real and 

corrected distances are shown in Figure 9a. It appears that the average deviations are reduced to zero 

through this calibration. These good results can also be explained by the fact that the dataset 

investigated is the one used to determine the correction parameters. However, it enables validating the 

model. At the same time, the standard deviations computed over the 50 corrected measurements per 

Figure 8. Point cloud of residuals (mm) in red, at 0.8 m, together with the surface
(color-coded) fitting the residuals.

To define an adapted correction, the parameters of the interpolated surfaces
previously mentioned are stored. The chosen surface model is polynomial, in order
to keep a convenient computation time for the correction step. This post-processing
step consists of delivering signed corrections interpolated from the residuals surfaces
computed at each range. Thus, to correct each pixel of the depthmap, given the
distance value it contains, a residual value will be interpolated considering the
nearest ranges. In that way, a correction matrix is computed, that needs to be added
to the initial depthmap as a per-pixel correction.

4.3. Influence of Corrections

All the corrections related to depth calibration are part of post-processing
carried out on the depthmaps. In order to visualize the influence of the computed
correction on the systematic distance measurement error, the dataset consisting of
measurements realized on a planar wall at known ranges is used. To apply the
calibration, an adjustment of the errors model in the form of a spline previously
determined is required. Indeed, knowing the curve parameters and the distance
measured allows inferring the correction values applied to the measurements. For
the analysis, a central patch of 10 ˆ 10 pixels on the corrected data is considered
as before. The remaining deviations between real and corrected distances are
shown in Figure 9a. It appears that the average deviations are reduced to zero
through this calibration. These good results can also be explained by the fact that
the dataset investigated is the one used to determine the correction parameters.
However, it enables validating the model. At the same time, the standard deviations
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computed over the 50 corrected measurements per station are almost the same or
have slightly decreased compared to the initial data. They confirm the increase of
the scattering of the measurements when the range raises, but they look promising
for the investigated device.

Remote Sens. 2015, 7 13084 
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Figure 9. (a) Remaining deviations (in mm) between real and corrected distances, as a 

function of the range (m); Colorized representation of the residuals (in mm) with respect to 

a fitted plane (range: 1.25 m), (b) before correction and (c) after correction of  

local deformations. 

Considering the correction extended to the whole sensor array, the approach used is based on surface 

approximation within the residual values calculated with respect to a plane. These residuals are visible on 

a colorized representation for the initial data (Figure 9b) and after correction of the local deformations 

(Figure 9c) with the method proposed beforehand. A 1.25 m range is considered in the figures. Whereas 

before correction the residuals have negative values in a circular central area and can reach more than 1 

cm on the corners, they are reduced to some millimeters after correction. The residuals on the corners are 

also much less significant, so that a positive impact of the second step of the calibration is noticed. For 

the 10 ranges considered for this correction, the residuals are always reduced after calibration. This is 

also true for the standard deviation calculated on plane fitting residuals. For the ranges considered, the 

Figure 9. (a) Remaining deviations (in mm) between real and corrected distances,
as a function of the range (m); Colorized representation of the residuals (in mm)
with respect to a fitted plane (range: 1.25 m), (b) before correction and (c) after
correction of local deformations.

Considering the correction extended to the whole sensor array, the approach
used is based on surface approximation within the residual values calculated with
respect to a plane. These residuals are visible on a colorized representation for the
initial data (Figure 9b) and after correction of the local deformations (Figure 9c)
with the method proposed beforehand. A 1.25 m range is considered in the figures.
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Whereas before correction the residuals have negative values in a circular central area
and can reach more than 1 cm on the corners, they are reduced to some millimeters
after correction. The residuals on the corners are also much less significant, so that
a positive impact of the second step of the calibration is noticed. For the 10 ranges
considered for this correction, the residuals are always reduced after calibration.
This is also true for the standard deviation calculated on plane fitting residuals.
For the ranges considered, the standard deviations vary from about 2–5 mm before
correction, and from about 1–3 mm after correction. Nevertheless, a less significant
effect is observed at 2.25 m range. In addition, these corrections are time-consuming
due to the local processing of each pixel.

Consequently, depending on the accuracy required by the applications, the need
for a depth calibration must be discussed. Indeed, the user could decide to use only
the measurements provided by a limited central area of the sensor, regarding the
fact that fewer deformations affect the middle of the sensor array. However, the
works presented in the following section of this paper have all been realized with
calibrated data.

5. Experimental Approach for 3D Modeling with Kinect v2

To perform a three-dimensional reconstruction of an object or a scene with the
Kinect sensor, several ways can be considered for the alignment and the merge of
the raw data coming from the sensor. Among them, the SDK provided by Microsoft
offers a tool called “Kinect Fusion” [32] to answer to a possible use of the Kinect
sensor as a 3D scanning device. In the literature, many works have shown the
potential of Kinect v1 for modeling purposes. In [30], a standard deviation of about
1 mm is reached for the 3D reconstruction of a small statue. A precision in the order
of magnitude of some millimeters is also reported in [58] for spheres and planes
adjustment using acquisitions from a Kinect v1 sensor. Because of the technical
differences between first and second version of Kinect, an improvement in terms of
precision can be expected.

Regarding the calibration results obtained in this article, a priori error lower
than 5 mm can be assumed for acquisitions realized at ranges smaller than 4 m. Even
if a sub-millimetric precision can be offered by laser scanner or photogrammetry
techniques for 3D reconstruction of small objects, it is interesting to test the Kinect v2
sensor for similar applications. In this section, a reconstruction approach with this
device is discussed after the presentation of the object under study. This will lead to
a qualitative assessment of the models produced.

5.1. Object under Study and Reference Data

The object under study is a fragment of a sandstone balustrade of about
40 ˆ 20 centimeters, coming from the Strasbourg Cathedral Notre-Dame (France). As
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shown in Figure 10a, it presents almost a symmetric geometry and flat faces, except
on its extremities.Remote Sens. 2015, 7 13086 
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Figure 10. (a) Object under study (a sandstone balustrade fragment); and
(b) reference mesh realized after acquisition with a measuring arm.

A measuring arm from FARO (FARO ScanArm) was used to generate a ground
truth dataset of the fragment. It provides a very high metric quality thanks to its
sub-millimetric accuracy (0.04 mm according to the specifications). Such a device
is often used for metrological purposes, but because of its cost, its bad portability
and its fragility, other devices are often preferred in many missions. In this study,
the dataset obtained with the measuring arm constitutes a reference and will be
used to assess the quality of the model created with the Kinect v2 sensor. The
reference point cloud of the fragment contains about 5 million points after a spatial
resampling of 0.1 mm. Based on this point cloud, a meshed model was created using
the commercial software 3D Reshaper (Technodigit). The resulting mesh is composed
of about 250,000 faces (Figure 10b).

5.2. Reconstruction Approach

In the following subsections, the experimental workflow used to reconstruct the
object under study with a Kinect v2 sensor is described. Once the data have been
acquired, the produced point clouds need to be registered before the final creation of
a meshed model.
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5.2.1. Data Acquisition and Registration

First of all, a set of data of the balustrade fragment has been acquired with the
Kinect v2 sensor. The way used to carry out the acquisitions is rather inspired by
the common workflow set up in image-based reconstruction methods. A circular
network composed of acquisitions from eight different viewpoints was performed
around the object under study. An overlap of about 80% on the object was reported
between two successive range images. In order to overcome the deformations
affecting the measurement on the borders of the sensor, the object was located in
the central part of the sensor. As shown in Figure 10a, flat targets were also placed
around the object during the acquisitions for the point clouds’ registration to be done
in a post processing step. The sensor was placed at about 1 m of the object. Indeed,
the results of depth calibration presented in the previous section emphasize the fact
that considering scene observation at a range from 1–4 m, the global depth-related
deformations are smaller. At the chosen range, it is possible to capture the whole
object within each range image, as well as a sufficient number of flat targets for the
future registration. At this range, the related spatial resolution of the object is about
2–6 mm, depending on the shapes encountered.

The survey of the sensor specifications in Section 3.2 also shows that the frame
averaging allows a reduction of the measurement noise inherent to the sensor. Thus,
10 successive acquisitions were realized at the framerate of 0.5 s for each viewpoint.
Based on raw data, the averaging of the depth images acquired for each viewpoint
as well as the computation of individual point clouds from these depth images are
performed. Then, a target-based registration was performed by extracting the target
centers manually. A spatial resolution between 2 and 4 mm is reported on the ground
where the targets are located. This method based on target selection provides an
overall registration error of about 2 cm, even with a refinement of the registration
using the ICP method. This is high regarding the requirements for 3D modeling and
the dimensions of the fragment, especially since the more adverse effect appears in
the center of the frames where the object is located.

Thus, another method has been considered for point clouds registration. The
workflow applied is summarized in Figure 11. The first step consists in the
colorization of the point clouds with the infrared data provided by the sensor. This
allows removing the ground under the object in the point clouds, through filtering.
Moreover, noise reduction has been performed depending on the point of view. Then,
homologous points have been selected directly on the object on pair-wise successive
point clouds. It appears that this method is more reliable than the previous one.
Indeed, after a registration refinement, the residual registration error between two
successive point clouds varies from 2–4 mm. This operation has been repeated to
register the eight individual point clouds which are counted to be between 13,000
and 14,000 points each. These better results are due to the fact that the common
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points chosen directly on the object are hence located close to the center of the point
cloud. The use of targets directly on the object could be considered.
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5.2.2. Creation of a Meshed Model

The complete point cloud of the balustrade fragment, as well as the mesh based
on it and created through the 3D Reshaper software, are presented in Figure 11. Noise
remains in the obtained complete point cloud and is hard to remove without losing
geometric information. Consequently, the creation of the mesh is time-consuming.
Indeed, several parameters can be empirically set during the mesh creation, which
have a substantial influence on the resulting mesh. They can provide, for example, a
good visual smoothed result but with a loss of details. Because of the low quality of
the initial point cloud, even the processing steps’ order might influence the resulting
mesh obtained following this methodology.

As depicted in Figure 11, the geometry of the final mesh suffers from several
faults compared to the real fragment. Its metric accuracy will be assessed in the next
Subsection. There is obviously a correlation between the deformations observed
on the final mesh and error sources related to the raw data themselves. First of all,
border effects can be observed along the line of sight of the sensor and constitute
noise. A second problem is related to deformations of the geometry linked to the
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viewpoint. Among all error sources, these two problems which were detailed in [33]
obviously contribute to the low visual quality of the mesh performed.

5.3. Accuracy Assessment

In order to assess the accuracy of the Kinect-based model, the reference mesh
previously presented was used in order to make a series of comparisons between
them. The reference point cloud obtained by the measuring arm offers a very high
density of points which is almost 15 times larger than the density of the point cloud
obtained with the Kinect v2. This high point density variation may be an issue for the
cloud-to-cloud comparison algorithms, resulting in a loss of efficiency in the distance
computation. Additionally, considering meshes, a loss of geometric quality or a data
simplification due to mesh creation can occur. Comparisons between different kinds
of data were therefore carried out.

The complete point cloud of the balustrade fragment and its corresponding
mesh derived from Kinect raw data were compared to the reference mesh. Figure 12a
presents the results of the cloud-mesh comparison and Figure 12b presents the results
of the comparison between meshes. The deviations between datasets are color-coded,
and projected on the computed data. Despite a possible bias due to the triangulation
method applied during the mesh creation, for both methods the results look similar.

In both comparisons, a mean deviation of about 2 mm is reported for almost
40% of the models, and a standard deviation of about 2.5 mm is observed.
Besides, maximal deviations of about 1.5 cm are reached. They correspond to
local deformations affecting the model and are particularly high on the borders
of the object. These deformations of at least 1 cm provide to the object false shapes,
especially for the edges on the upper part of the object, or on its extremities.

Regarding the calibration results (Figure 7a), for the used range an a priori error
in the order of magnitude of 5 mm can be assumed. It appears that 90% of the
deviations are lower than the a priori error. Thus, the final error of about 2 mm on a
large part of the model is more than acceptable for the device under study. It looks
promising since a lot of improvements in the processing chain can be considered.
Nevertheless, the remaining deviations in the order of magnitude of one centimeter
still represent a significant percentage of the global size of the object. Besides, the
visual rendering suffers from many deformations and the model is too far from the
real shape of the object. This might be detrimental to archeological interpretation.

461



Remote Sens. 2015, 7 13089 

 

 
(a) 

 
(b) 
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5.4. Kinect Fusion Tool

A first version of Kinect Fusion tool was already proposed for the first version
of the device, and it has been adapted and directly added to the SDK of Kinect v2.
It allows creating automatically accurate meshes of objects with a visual rendering
close to reality. It is mainly based on an Iterative Closest Point (ICP) algorithm [59], a
well-known algorithm in the field of computer vision.

In [58], the benefits of using Kinect Fusion tool compared to individual scans
of a Kinect v1 are exposed in terms of accuracy and precision. For example, at 2 m
range a precision of about 1 mm on sphere estimation is reached thanks to Kinect
Fusion, whereas the precision is larger than 7 mm with the sensor alone. Despite
the common use of this 3D reconstruction tool for Kinect sensors due to their good
results, the major drawback of this tool is the “black box” effect related to the use
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of the standalone version available in the SDK, for which the algorithms are not
available. Indeed, the user can only change a few settings but do not really manage all
processing steps that are carried out on the raw data. However, improvements of the
workflow applied in Kinect Fusion are possible through open source implementations
and libraries. This was, for example, already tested with Kinect v1 in [60], where
they suggest adding calibration results and estimated exterior parameters to the
implementation. The deviations in the models produced are reduced compared to
the initial Kinect Fusion models.

In [33], the Kinect Fusion tool associated with the Kinect v2 sensor was used in
its standalone version to scan another architectonic fragment. After a cloud-mesh
comparison with a reference model, a standard deviation of 1.4 mm and a mean
deviation of 1.1 mm were reported for the Kinect Fusion model. Since this fragment
was more complex than the one investigated in this article, this led us to conclude
about the satisfactory precision provided by Kinect Fusion. Moreover, the aim of
this article was rather to analyze a more experimental methodology; that is why the
Kinect Fusion tool will not be further investigated here.

6. Discussion

This section aims at analyzing the results obtained for the 3D model creation
with the Kinect v2 sensor. Not only will the previously assessed accuracy be
commented on, but rather the characteristics of the experimental reconstruction
method will presented along with potential improvements. First of all, some
differences between Kinect v1 and the v2 investigated in this article will be discussed.

6.1. Differences between Kinect v1 and v2

The Kinect v2 sensor presents several technical benefits compared to the first
version. First of all, it offers a larger horizontal as well as vertical field of view.
According to this criterion and to the change of depth sensing technology, the point
clouds obtained present a better resolution. Moreover, the point clouds produced by
Kinect v1 sensor show striped irregularities, which is not the case with the second
version. Then, the resolution of color images are increased. To summarize these
technical features, specifications of both Kinect versions can be found in the form
of tables in previous contributions as for example [24] or [37]. Finally, as depicted
in Section 3.3.2, outdoor acquisitions can be envisaged since Kinect v2 seems to be
much less sensitive to daylight.

Considering now the accuracy of the data captured by both versions of the
sensor, a metrological comparison between Kinect v1 and Kinect v2 carried out in [37]
is examined. The assessment of data acquired on a same artefact shows that accuracy
and precision are better with Kinect v2. There is also less influence of the range on
the decrease in precision for Kinect v2 measurements. Data performed for other
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applications as 3D reconstruction also confirm the benefits of the second version
compared to the first one. In the field of people tracking, for example, it is shown
in [61] that the tracking is 20% more accurate with Kinect v2 and it is also possible in
outdoor environments. It appears that Kinect v2 is generally better in many cases.
However, Kinect v1 and v2 both suffer from a limited accuracy on edges.

6.2. RGB-D Camera as an Alternative to Photogrammetry?

Since a 3D reconstruction method for close-range objects with Kinect v2 has been
presented in this paper, it seems interesting to compare it to a more common approach.
For this purpose, [33] presents models obtained on the same archaeological material
through DSLR camera pictures acquisition and use of an image-based modeling
solution. With a mean deviation smaller than 1 mm and very local small deviations,
photogrammetry obviously provides a high level of detail on very accurate models.
As expected, the results obtained in Section 5 of this paper are clearly still far from
achieving such accuracy. Nevertheless, regarding the initial use of the Kinect v2
device, the accuracy cannot constitute a unique comparison point. To extend the
comparison to further considerations, other characteristics should be investigated.
Table 2 offers a comparative overview between both mentioned methodologies.
Not only the accuracy reached has been taken into account, but also criteria such
as acquisition and computation times, or cost, have been considered in order to
underline the benefits and drawbacks of each strategy.

Table 2. Comparative overview of some criteria for the image-based and for the
Kinect-based 3D reconstruction methods.

Photogrammetry (DSLR Camera) Kinect v2 (Registration Method)

Cost low to medium low

Portability good good, but requires USB 3 and external
electricity supply

Object size from small objects to entire
rooms or buildings rather limited to objects

Indoor/outdoor indoor + outdoor mainly indoor

Ease-of-use rather easy, needs care for
photographs acquisition

needs some practice, for
registration especially

Processing time some hours all in all long, because of manual treatments

Accuracy very high, up to sub-millimetric
(depends on the camera) «1 cm, to be improved

Whereas the cost is comparable for the digital camera and the Kinect sensor, it
seems that the photogrammetric survey remains easier to apply than the method
considered in Section 5. This is also true in terms of portability because of the
external electricity supply still required by the Kinect sensor. Besides, the more
experimental method consisting of registration of Kinect point clouds remains
very time-consuming for a final lower accuracy. Indeed, it appeared that in the
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meshes presented in the previous section that a lot of details were not at all or badly
represented, which is associated with a loss of geometrical information. These results
tend to confirm the higher efficiency of image-based reconstruction methods when
accurate 3D models are required, regardless of the object size.

6.3. Suggested Improvements

Regarding the results obtained for the mesh creation in Section 5.3, it is obvious
that the Kinect sensor presents technical constraints which are actually problematic
for 3D modeling applications. Nevertheless, improvements in the reconstruction
method are necessary in order to enhance the metrical quality of the models produced.
Since there is no unique approach for aligning and merging Kinect raw data in
order to get a three-dimensional reconstruction of a scene, several solutions can be
considered. An approach would be to use the colorimetric information produced by
the camera [31]. In the methodology developed in the abovementioned contribution,
SURF algorithm [62] was used for the localization and matching of keypoints on color
images obtained from a Kinect v1 device. After that, a first alignment is provided,
which can be refined by using the ICP principle. This idea of combining the RGB
information as a complement to frame-to-frame alignment based on 3D point clouds
helps overcoming the reduced accuracy of the depth data.

Other open issues related to the considered acquisition process and registration
method have to be investigated. Indeed, it has been shown in [33] that some
geometric deformations are directly related to the acquisition viewpoints. As a
matter of fact, the choice of a network of eight circular acquisitions realized in the
proposed experiment is questionable. The presence of almost one more zenithal
view could perhaps influence the final result. Besides, depending on the geometry
of the object observed, the idea of performing stripes rather than circular networks
should also modify the result. Regarding the registration methodology carried out,
its process was very long because of the manual tasks required. A higher automation
of the registration could result in a reduction in processing time, but also a removal of
potential user handling influences. Moreover, the pair-wise alignment of successive
point clouds presents the problem of error propagation, so that a global adjustment
could be considered to minimize the global error. Another approach to consider
would be to apply weights to the points selected for the registration, as a function
of the incident angle of the point clouds they belong to. This would confer more
importance to more reliable measurements, probably enhancing at the same time the
quality of the registration.

7. Conclusions

This article offers an overview of a set of experiments realized with a RGB-D
camera, in order to assess its potential for close-range 3D modeling applications.
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The sensor studied is a low-cost motion sensing device from Microsoft, namely the
Kinect v2. The main idea was to investigate its measurement performance in terms
of accuracy, as well as its capacity to be used for a particular metrological task. To
do that, experiments for raw data enhancement and a calibration approach were
presented. An experimental method for 3D reconstruction with Kinect was also
described, with its related issues.

Several tests contributed to highlighting errors arising from the environment
and the properties of the captured scene, as well as errors related to the sensor itself.
As reported in many contributions dealing with RGB-D cameras, a pre-heating time
has to be considered to obtain constant measurements. It has been estimated that
almost 30 minutes is needed with the Kinect v2 sensor. Then, acquiring a tenth of
successive depthmaps from a single viewpoint enables reducing the measurement
noise through temporal averaging of the measured distances. Besides, it appeared
that the color and reflectivity of the items have a great influence, both on the intensity
images and on the distance measurements provided by the camera. Considering
outdoor efficiency, the achieved results look promising.

Geometric as well as depth calibrations have been performed. Whereas the
geometric lens distortions can be computed with a standard method also used for
DSLR cameras, depth calibration requires further studies. A systematic depth-related
error reported for range imaging devices was first reduced. The remaining
deviations of some millimeters after calibration are very satisfactory. Finally, the
local deformations which appear especially on the sensor array boundaries were
reduced. This quite time-consuming step does not really enhance the measurements
observed for the central area of the sensor array. Nevertheless, it was applied for the
acquisitions dedicated to 3D modeling.

An experimental methodology for 3D reconstruction of an archaeological
fragment was finally reported. Based on a mainly manual workflow from point cloud
registration to mesh creation, it was proved to be very time-consuming. Besides,
regarding the accuracy achieved while using the same sensor with the automatic
tool Kinect Fusion, the models presented in Section 5 are obviously highly correlated
to that explored in this paper. As a matter of fact, even if their accuracy in an
order of magnitude of 1 cm is rather satisfactory, many improvements could be
considered. For example, an acquisition process including more zenithal views could
enable reducing the influence of deformations related to grazing angles. Adding
colorimetric information is also a possible improvement, as well as more automation
during the registration process.

Regarding the small price difference between RGB-D cameras and
photogrammetric survey, as well as the wide range of robust software available
for photogrammetry, as expected this second solution remains the easiest and most
accurate method for 3D modeling issues. However, one should underline that the
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use of a Kinect sensor for this purpose was a real challenge. However, the technology
of RGB-D camera looks promising for many other applications, once the major
limitations in terms of geometric performances have been addressed. This kind of
devices seems to have a bright future, and this can be confirmed when considering,
for example, the Project Tango [63] developed by Google. A smartphone or a tablet
including a range imaging camera is used to reconstruct a scene in real-time, so
that it looks attractive, easy and fast. Similarly, the Structure Sensor [64] offers a 3D
scanning solution with a tablet, based on structured light projection and detection
similarly to the first Kinect version. Since data quality assessment is still an open
issue in such projects, acquisitions performed with such innovative techniques will
no doubt be the focus of future contributions.
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Automatic Geometry Generation from
Point Clouds for BIM
Charles Thomson and Jan Boehm

Abstract: The need for better 3D documentation of the built environment has come
to the fore in recent years, led primarily by city modelling at the large scale and
Building Information Modelling (BIM) at the smaller scale. Automation is seen as
desirable as it removes the time-consuming and therefore costly amount of human
intervention in the process of model generation. BIM is the focus of this paper as
not only is there a commercial need, as will be shown by the number of commercial
solutions, but also wide research interest due to the aspiration of automated 3D
models from both Geomatics and Computer Science communities. The aim is to
go beyond the current labour-intensive tracing of the point cloud to an automated
process that produces geometry that is both open and more verifiable. This work
investigates what can be achieved today with automation through both literature
review and by proposing a novel point cloud processing process. We present an
automated workflow for the generation of BIM data from 3D point clouds. We also
present quality indicators for reconstructed geometry elements and a framework in
which to assess the quality of the reconstructed geometry against a reference.

Reprinted from Remote Sens. Cite as: Thomson, C.; Boehm, J. Automatic Geometry
Generation from Point Clouds for BIM. Remote Sens. 2015, 7, 11753–11773.

1. Introduction

The main techniques for capturing 3D data about the built environment from
terrestrial platforms are through laser scanning or total station measurements. The
latter being the predominant method for building surveys where a predetermined
set of point measurements are taken of features from which 2D CAD plans are
produced. Terrestrial laser scanning has been the technology of choice for the 3D
capture of complex structures that are not easily measured with the sparse but
targeted point collection from a total station since the technology was commercialised
around 2000. This includes architectural façades with very detailed elements and
refineries or plant rooms where the nature of the environment to be measured makes
traditional workflows inefficient. This is particularly exemplified in the increased
use of freeform architecture by prominent architects such as Frank Gehry and Zaha
Hadid [1] where laser scanning presents the most viable option for timely data
capture of complex forms.

Building Information Modelling (BIM) is the digital data flow surrounding the
lifecycle of an asset or element of the built environment, instigated to provide better

472



information management to aid with decision making. As a process, BIM has been
gaining global acceptance across the Architecture, Engineering, Construction, and
Operations (AECO) community for improving information sharing about built assets.
A key component of this is a data-rich object-based 3D parametric model that holds
both geometric and semantic information. By creating a single accessible repository
of data, then other tools can be utilised to extract useful information about the asset
for various purposes.

Although BIM has been extensively studied from the new build process, it is in
retrofit where it is likely to provide the greatest impact. In the UK alone, at least half of
all construction by cost is on existing assets [2]. With the need to achieve international
environmental targets and construction being one of the largest contributors of CO2

emissions in the UK, sustainable retrofit is only going to become more relevant. This
is supported by the estimate of the UK Green Building Council that of total building
stock in the UK, the majority will still exist in 2050 [3]. Therefore, many existing
buildings will need to be made more environmentally efficient if the Government is
to reach its sustainability targets.

With the introduction of BIM and the data-rich 3D parametric object model at its
heart, laser scanning has come to the fore as the primary means of data capture. This
has been aided by both the US and UK Governments advising that laser scanning
should be the capture method of choice for geometry [4,5]. However, little thought
has been given about how to integrate this in to the BIM process due to the change in
the nature of the information requirements of a BIM model and uncertainty over level
of detail or information that should be provided by a Geomatic Land Surveyor. It has
been proposed that a point cloud represents an important lowest level of detail base
(stylised as LoD 0) from which more information rich abstractions can be generated
representing higher levels of detail [6].

Traditional surveying with scanning currently does not result in a product that
is optimal for the process of BIM due to the historical use of non-parametric CAD
software to create survey plans. Therefore, a process shift is required in workflows
and modelling procedures of the stakeholders who do this work to align themselves
with this. The shorthand name given to the survey process of capture to model is
Scan to BIM. Technically Scan to BIM as a phrase is wrongly formed as the end result
is not BIM as usually understood, i.e. the process, but a 3D parametric object model
that aids the process at its current level of development.

Even though, from a BIM perspective, creating parametric 3D building
models from scan data appears new, it actually extends back to the early days
of commercialised terrestrial laser scanning systems creating parameterised surface
representations from segmented point clouds [7] and goes back further than this
in the aerial domain for external parametric reconstruction [8,9]. A system of note
from the close-range photogrammetry domain is Hazmap; originally developed
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to facilitate the capture and parametric modelling of complex nuclear plants in
the 1990s [10]. Hazmap consisted of a panoramic imaging system using calibrated
cameras attached to a robotic total station. This would capture 60 images per setup
and use a full bundle adjustment together with total station measurements for scale
to localise the sensor setup positions. After capture, the system made use of a plant
design and management system (PDMS) interface that allowed the user to take
measurements in the panoramic imagery and export them via a macro to the PDMS
where the plant geometry could be modelled using a library of parametric elements.

One of the earliest pieces of research with a workflow that would be recognised
today as scan to BIM is in [11]. Their key conclusion was to consider what tolerance
is acceptable both in surveying and modelling as assuming orthogonality is rarely
true in retrofit but may be desirable to simplify the modelling process.

1.1. Standards for Modelling

The survey accuracy requirement set by the Royal Institution of Chartered
Surveyors (RICS) was for 4cm accuracy for building detail design at a drawing
resolution of 20 cm [12]. However, in a 3D modelling context, drawing resolution
now seems less relevant and so in 2014 an updated guidance note was published
splitting accuracy into plan and height with measured building surveys banded
between ˘4–25 mm depending on job specification [13]. We choose the RICS over
other guidelines such as those for the survey of historic buildings, as our work focuses
more on the modelling of contemporary buildings where RICS is more relevant.

Before this updated guidance, a UK survey specification for a BIM context did
not exist. Therefore, survey companies took it upon themselves to create in-house
guides. The most comprehensive of these is by Plowman Craven who freely released
their specification, focused around the parametric building modeller Revit, and
documenting what they as a company will deliver in terms of the geometric model [14].

One of the immediate impressions of this document is the number of caveats
that it contains with respect to the geometry and how the model deviates from reality.
This is partially due to the reliance on Revit and the orthogonal design constraints that
this encourages, meaning that representing unusual deviations that exist in as-built
documentation have to be accounted for in this way; unless very time consuming
(and therefore expensive) bespoke modelling is performed. This experience is borne
out by literature where the tedium of modelling unique components [11] and the
unsuitability of current BIM software to represent irregular geometry such as walls
out of plumb [15] are recognised. However Plowman Craven, as outlined in their
specification above, do make use of the availability of rich semantic detail to add
quality information about deviations from the point cloud to the modelled elements.
In the medium to long term, the establishment of the point cloud as a fundamental
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data model is likely to happen as models and the data they are derived from start to
exist more extensively together in a BIM environment.

Larsen et al. [15] endorses this view and considers that the increased integration
of point clouds into BIM software makes post processing redundant. However, they
then contradict this by envisaging that a surveyor provides a "registered, cleaned and
geo-referenced point cloud". By post processing, Larsen et al. appear to be referring
to the modelling process and see the filtering and interpretation of data to be obsolete
with the point cloud a "mould" that other professions in the lifecycle can make use of
as necessary.

1.2. Current State of the Art

Automated modelling is seen as desirable commercially to reduce time and
therefore cost and make scanning a more viable proposition for a range of tasks in
the lifecycle, such as daily construction change detection [16,17].

Generally, digital modelling is carried out to provide a representation or
simulation of an entity that does not exist in reality. However for existing buildings,
the goal is to model entities as they exist in reality. Currently the process is very
much a manual one and recognised by many as being time-consuming, tedious,
subjective and requiring skill [11,18]. The general manual process as in creating 2D
CAD plans, from point clouds requires the operator to use the cloud as a guide in a
BIM tool to effectively trace around the geometry, requiring a high knowledge input
to interpret the scene as well as add the rich semantic information that really makes
BIM a valuable process.

The orthogonal constraints present in many BIM design tools limit the modelling
that can be achieved without intense operator input. Depending on the type
and use of the model this is not necessarily a disadvantage. In many cases a
geometric representation is not required to have very tight tolerances [7]. This
further emphasises the need to define fitness for purpose and we have given some
examples of UK standards and specifications above.

1.2.1. Research

Both Computer Science and Geomatics are investigating the automated
reconstruction of geometry from point clouds, especially as interior modelling
has risen in prominence with the shift to BIM requiring rich parametric models.
Geomatics has a track record in this with reconstruction from facades, pipework and
from aerial LIDAR data as in [19,20]. An early review of methods is given by [21].

The ideas and approaches taken to aiding the problem of geometry
reconstruction have mainly come from computer science. This community uses
parametric modelling as a paradigm mainly implemented for invented or stylised
representations of the externals of buildings using techniques such as procedural
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modelling and grammars, i.e. algorithms to generate the model [22]. This rule-based
approach to automating the modelling process can fit well to the parametric models
that are intrinsically rule driven; [23] presents this approach. Rules can also be
represented by shape grammars as shown by [24].

The focus of computer science on BIM has mainly been on algorithms to speed
the modelling of geometry from point clouds, as well as applying other vision
techniques from robotics for scene understanding. This is all related to automating
the understanding of the environment, which is an important prerequisite for
providing robots with autonomy [25].

In terms of the reconstruction of building elements, the focus has been on
computational geometry algorithms to extract the 3D representation of building
elements through segmentation, including surface normal approaches [26], plane
sweeping [27] and region growing [28]. Segmentation of range measurement data
is a long established method (initially from computer vision for image processing)
for classifying data with the same characteristics together. An example of this is
Hoover et al. [29],which brought together the different approaches to this topic
that were being pursued at the time and presented a method for evaluating these
segmentation algorithms.

Existing work that has shown promising results towards automating the
reconstruction process of geometry include [30,31], however these do not result
in a parametric object-based model as used in BIM but in a 3D CAD model that
needs to be remodelled manually, a point made by Volk et. al. [32] who provide an
extensive review of the area.

However Nagel et al. [33] points out that the full automatic reconstruction of
building models has been a topic of research for many groups over the last 25 years
with little success to date. They suggest the problem is with the high reconstruction
demands due to four issues: definition of a target structure that covers all variations
of building, the complexity of input data, ambiguities and errors in the data, and the
reduction of the search space during interpretation.

1.2.2. Commercial

Given the above statement about achieving full automation, there are a few
commercial pieces of software that have emerged in recent years and could be
described as semi-automated. To the best of the authors’ knowledge all these tools
rely on Autodesk Revit for the geometry generation. Below the prominent packages
are summarised.

The first is by ClearEdge3D who provides solutions for plant and MEP object
detection alongside a building-focused package called Edgewise Building. This
classifies the point cloud into surfaces that share coplanar points, with the operator
picking floor and ceiling planes to constrain the search for walls [34]. Once found,
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this geometry can be bought into Revit via a plugin to construct the parametric
object-based geometry. In its wall detection, Edgewise uses the scan locations to aid
geometric reasoning; a constraint it forces by only allowing file-per-scan point clouds
for processing.

The other main solution is Scan to BIM from IMAGINiT Technologies, which is
perhaps the most successful solution in terms of deliverable [35]. This is a plugin to
Revit and therefore relies on much of the functionality of Revit to handle most tasks
(including loading the point cloud and geometry library) and essentially just adds
some detection and fitting algorithms along with a few other tools for scan handling.
The main function is wall fitting whereby the user picks three points to define the
wall plane from which a region growing algorithm detects the extents. The user then
sets a tolerance and selects which parametric wall type element in the Revit model
should be used. There is also the option of fitting a mass wall, which is a useful way
of modelling a wall face that is not perfectly plumb and orthogonal. The downside to
this plugin is that it only handles definition by one surface meaning that one side of
a wall has to be relied upon to model the entire volume, unless one fitted a mass wall
from each surface and did a Boolean function to merge the two solids appropriately.

Kubit, now owned by Faro, and Pointcab both provide tools that aid the manual
process of tracing the points in Autodesk software but do not, as of this time,
automate the geometry production [36,37]. Autodesk itself did trial its own Revit
module for automated building element creation from scan data, which it shared
with users through its Autodesk Labs preview portal. However, this module is no
longer available and it remains to be seen if this will ever be integrated into future
production editions of Revit.

2. Proposed Method

In the following, we describe our methods to automate the identification of
geometric objects from point clouds and vice versa. We concentrate on the major
room bounding entities, i.e., walls. Other more detailed geometric objects such as
windows and doors are not currently considered.

2.1. Overview

Two methods are presented in this paper, one to automatically reconstruct
basic Industry Foundation Classes (IFC) geometry from point clouds and another
to classify a point cloud given an existing IFC model. The former consists of three
main components:

(1) Reading the data into memory for processing
(2) Segmentation of the dominant horizontal and vertical planes
(3) Construct the IFC geometry
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While the latter consists of two:

(1) Reading the IFC objects bounding boxes from the file
(2) Use the bounding boxes to segment the point cloud by object

By using E57 for the scans and IFC for the intelligent BIM geometry, this work
is kept format agnostic, as these are widely accepted open interchange formats,
unlike the commercial solutions which overly rely on Autodesk Revit for their
geometry creation. IFC was developed out of the open CAD format STEP, and
uses the EXPRESS schemata to form an interoperable format for information about
buildings. This format is actively developed as a recognised open international
standard for BIM data: ISO 16739 [38]. Within IFC, building components are stored as
instances of objects that contain data about themselves. This data includes geometric
descriptions (position relative to building, geometry of object) and semantic ones
(description, type, relation with other objects) [39].

This work makes use of two open source libraries as a base from which the
routine presented has been built up. The first is the Point Cloud Library (PCL) version
1.7.0, which provides a number of data handling and processing algorithms for point
cloud data [40]. The second is the eXtensible Building Information Modelling (xBIM)
toolkit version 2.4.1.28, which provides the ability to read, write and view IFC files
compliant with the IFC2x3 TC1 standard [41].

2.2. Point Cloud to IFC

2.2.1. Reading In

Loading the point cloud data into memory is the first step in the process. To keep
with the non-proprietary, interoperable nature of BIM the E57 format was decided as
the input format of choice to support. The LIBE57 library version 1.1.312 provided
the necessary reader to interpret the E57 file format [42] and some code was written
to transfer the E57 data into the PCL point cloud data structure. In this case, only the
geometry was needed so only the coordinates were taken into the structure.

2.2.2. Plane Model Segmentation

With the data loaded in, the processing can begin. Firstly the major horizontal
planes are detected as these likely represent the floor and ceiling components
and then the vertical planes which likely represent walls (Figure 1b,c). The plane
detection for both cases is done with the PCL implementation of RANSAC (RANdom
SAmple Consensus) [43] due to the speed and established nature. The algorithm is
constrained to accept only planes whose normal coefficient is within a three degree
deviation from parallel to the Z-axis (up) for horizontal planes and perpendicular to
Z for vertical planes. Also a distance threshold was set for the maximum distance of
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the points to the plane to accept as part of the model. Choosing this value is related
to the noise level of the data from the instrument that was used for capture. As a
result, the stopping criteria for each RANSAC run is when a plane is found with 99%
confidence consisting of the most inliers within tolerance. This is an opportunistic
or “greedy” approach, based on the assumption that the largest amount of points
that most probably fit a plane will be the building element. This approach can lead
to errors especially where the plane is more ambiguous, but is fast and simple to
implement. Recent developments could improve this such as Monszpart et al. [44],
which provides a formulation that allows less dominant planes to not become lost in
certain scenes.
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The downside to extracting points that conform to a planar model using RANSAC alone is that the 
algorithm extracts all of the points within tolerance across the whole plane model, irrelevant of 
whether they form part of a contiguous plane. Therefore a Euclidean Clustering step [45] was 
introduced after the RANSAC to separate the contiguous elements out, as it could not be assumed that 

Figure 1. Flowchart of Point Cloud to IFC algorithm steps. (a) Load Point Cloud;
(b) Segment the Floor and Ceiling Planes; (c) Segment the Walls and split them
with Euclidean Clustering; (d) Build IFC Geometry from Point Cloud segments;
(e) (Optional) Spatial reasoning to clean up erroneous geometry; (f) Write the IFC
data to an IFC file.

The downside to extracting points that conform to a planar model using
RANSAC alone is that the algorithm extracts all of the points within tolerance
across the whole plane model, irrelevant of whether they form part of a contiguous
plane. Therefore a Euclidean Clustering step [45] was introduced after the RANSAC
to separate the contiguous elements out, as it could not be assumed that two
building elements that shared planar coefficients but were separate in the point cloud
represented the same element (Figure 1c). Euclidean Clustering separates the point
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data into sets based on their distance to each other up to a defined tolerance. Along
with this, a constraint or condition was applied to preserve planarity, preventing
points that lay on the plane but formed part of a differently oriented surface from
being included. The constraint manifested as the dot product between the normal
ranges of each point added to the clusters had to be close to parallel. Accepted
clusters to extract are chosen based on the amount of points assigned to the cluster
as a percentage of the total data set.

With the relevant points that represent dominant planes extracted, the requisite
dimensions needed for IFC geometry construction could be measured. This meant
extracting a boundary for the slabs and a length and height extent for the walls; the
reasons for this are provided in the next section.

Once all clusters are extracted, further information for each is collected. For each
slab’s cluster, the points are projected onto the RANSAC-derived plane. The convex
hull in the planar projection is calculated to give the coordinates of the boundary.
The two corner points that describe the maximum extent of the cluster are computed
to describe the wall (Figure 2). This finds the extent well along the X/Y direction
(blue points of Figure 2), but the height of the wall cannot be guaranteed to be found
by this method. This situation is illustrated in Figure 2, because parts of the wall can
extend further than the places of maximum and minimum height. To counter this,
the minimum and maximum Z coordinates (height) were sought by sorting all the
coordinates and returning both the lowest and the highest values. By using these Z
values, an overall wall extent can be defined (black points of Figure 2).
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2.2.3. IFC Generation

Each IFC object can be represented a few different ways (swept solid, brep, etc.)
To create the IFC, the geometry of the elements needs to be constructing using
certain dimensions. In this work the IFC object chosen for wall representation is
IfcWallStandardCase, which handles all walls that are described by a vertically
extruded footprint. The slab representation chosen is IfcSlab, defined similarly to the
walls by extruding a 2D perimeter of coordinates vertically down by a value [46].

We start by creating an initializing an empty model into which the IFC objects
can be added. Each object is created from the information extracted previously
by the segmentation code detailed in the last section. First the slabs are added by
providing a boundary, extrusion depth or thickness and the level in Z at which he
slab is extruded from. The walls are represented by their object dimensions (length,
width, height) and a placement coordinate and rotation (bearing) of that footprint in
the global coordinate system. As the usefulness of BIM is as much about the semantic
information alongside the geometry, mean and standard deviation information on
the RANSAC plane fits is added as a set of properties to the geometry of walls
and slabs.

2.2.4. Spatial Reasoning

An optional step of geometric reasoning can be added to the IFC generation
process to clean up the reconstructed geometry (Figure 1e). This implements some
rules or assumptions about the reconstructed elements to change or remove them
from the model. The following rules have been implemented and can be customized
by user-defined thresholds.

‚ Reject small walls: Planes that are too small in length or occupy too little of
the height between floor and ceiling levels are removed from the model. For
the experiments described here we chose 100 mm as the minimum length and
1/3 of the floor to ceiling distance as the minimum height.

‚ Extend large walls: Large planes which do not extend fully from floor to ceiling
are automatically extended so their lowest height is at floor level and highest is
at ceiling level. For the experiments we chose walls that are greater than 1m in
length or occupy 2/3 of the height between floor and ceiling levels.

‚ Merge close planes with similar normal: Planes that have parallel normals and
within an offset distance from each other are merged into one wall of overall
thickness being the distance between the planes. If a plane pair is not found
a default value of 100 mm thickness is used. For the experiments we chose a
distance threshold of 300 mm. This currently relies on user input but a database
of priors that would be expected in the building would streamline this.
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Once successfully created with or without geometric reasoning applied the walls
and slabs can be stored to the model and saved as an IFC file. Figure 3 shows an
example of the resultant geometry that is obtained through both processes. This file
can then be viewed in any IFC viewer or BIM design tools such as Autodesk Revit.

2.3. IFC to Point Cloud

The process described in the previous section of generating the geometry can,
in effect, be reversed and the model used to extract elements out of the point cloud
within a tolerance. In so doing, these segments of the point cloud can be classified
and assessed for their quality of representation in the model based on the underlying
point cloud data that occupies that geometric space. This process could easily be the
start of a facilitation process towards 4D change detection as a project evolves on site
against a scheduled design model for that time epoch.Remote Sens. 2015, 7 11762 

 

 

 

Figure 3. Example of corridor reconstruction without (blue) and with (red) spatial 
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Figure 3. Example of corridor reconstruction without (blue) and with (red) spatial
reasoning applied.

2.3.1. Reading the IFC

We start by loading the IFC file into memory. Then, for each IFC object that is
required, the coordinates of an object-oriented bounding box are extracted as the
return geometry. A user specified tolerance can be added to take account of errors
and generalisations made during modelling, thus enlarging the bounding boxes by
that amount.

2.3.2. Classifying the Point Cloud

Once the bounding boxes are known, we can then extract the points within each
box and colour them by type. This is performed with a 3D convex hull of the box
which is then used to filter the dataset. Then, each segment can be written into the
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same E57 file as separate “scans” within the structure, each named after the IFC
object they represent (Figure 4).
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3. Findings

3.1. Data

The following is a brief outline of the data used to test the methods developed
in this paper. A fuller description for the dataset that forms a benchmark for indoor
modelling can be found in [47]. The dataset is freely available to download at:
http://indoor-bench.github.io/indoor-bench. The datasets used are both sections of
the Chadwick Building at UCL, each captured with state of the art methods of static
and mobile laser scanning and accompanied by a manually created IFC model. This
represents a typical historical building in London that has had several retrofits over
the years to provide various spaces for the changing nature of activities within the
UCL department housed inside.

3.1.1. Basic Corridor

This first area is a long repetitive corridor section from the second floor of
the building. It roughly measures 1.4 m wide by 13 m long with a floor to ceiling
height of 3 m. The scene features doors off to offices at regular intervals and modern
fluorescent strip lights standing proud of the ceiling as can be seen in Figure 5, along
with the data captured with each instrument.
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Figure 5. Image of corridor (left) and resulting point cloud data collected with
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3.1.2. Cluttered Office

The second indoor environment is a standard office from the modern retrofitted
mezzanine floor of the Chadwick Building. It roughly measures 5 m by 3 m with
floor to ceiling height of 2.8 m at its highest point. The environment contains many
items of clutter, which occlude the structural geometry of the room including filing
cabinets, air conditioning unit, shelving, chairs and desks as illustrated in Figure 6,
along with the data captured with each instrument.Remote Sens. 2015, 7 11764 
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𝑑 = √(𝑥1 − 𝑥2)
2+(𝑦1 − 𝑦2)

2 (1) 

 the area formed by the absolute difference in magnitude of the wall in width and length 
𝐴 = |𝑙𝑒𝑛𝑔𝑡ℎ1 − 𝑙𝑒𝑛𝑔𝑡ℎ2| ∗ |𝑤𝑖𝑑𝑡ℎ1 − 𝑤𝑖𝑑𝑡ℎ2| (2) 

 and the Sine of the angular difference 
∆= sin(𝛼1 − 𝛼2) (3) 

The distance d and the area A are normalised by dividing them by the maximum value. The quality 
metric is then computed by a weighted sum of the three normalised values  

𝑞 =∑𝑤1 ∗ �̅� + 𝑤2 ∗ �̅� + 𝑤3 ∗ ∆ (4) 

Figure 6. Image of office (left) and point cloud data collected with a Viametris
Indoor Mobile Mapping System (top right) and Faro Focus 3D S (bottom right).
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3.2. Results

The data outlined in the previous section was fed into the point cloud to IFC
algorithm described earlier in this paper and the results are presented here. The
results from this process are split into those that are qualitative and can be observed
in relation to the reference human-made model and more quantitative results that put
figures to the deviations seen in the form of a quality metric that acts as a discrepancy
measure between reference and test datasets.

3.2.1. Quality Metric

To compare the reconstructed geometry to the reference model the following is
performed. For each wall in the reference model, the reconstructed test wall with
the nearest centroid in 2D is transformed into the local coordinate space (as plotted
in Figure 7) of the reference that then can be measured for geometric deviation in
relation to this coordinate space.

This quality metric is composed of three criteria:

‚ the Euclidean distance offset between reference (indicated by subscript 1) and
automated (indicated by subscript 2) wall centroids

d “
b

px1 ´ x2q
2
` py1 ´ y2q

2 (1)

‚ the area formed by the absolute difference in magnitude of the wall in width
and length

A “ |length1 ´ length2| ˚ |width1 ´width2| (2)

‚ and the Sine of the angular difference

∆ “ sin pα1 ´ α2q (3)

The distance d and the area A are normalised by dividing them by the maximum
value. The quality metric is then computed by a weighted sum of the three
normalised values

q “
ÿ

w1 ˚ d`w2 ˚ A`w3 ˚ ∆ (4)

In other words, these values from formulas 1, 2, and 3 represent the quality of the
global placement, the object construction and the angular discrepancy, respectively.
All of these values indicate a better quality detection and therefore success of the
fit when they tend to 0. The metric is a weighted sum where we currently choose
all the weights wi to be 1/3 to keep the metric within the range 0-1. A value under
0.1 of this measure can be generally considered as very good. An alternative measure
that gives similar relative results to this quality metric is the Hausdorff Distance.
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However, the ability to categorise the fit in our quality sum value by looking at the
magnitude of the three components allows greater understanding and finer control
through weighting than the measure provided by a Hausdorff Distance. The angular
difference, for instance, could be more heavily weighted so that smaller angular
changes have a greater impact on the final measure.

An example for the quality calculation using data comparing one of the corridor
walls to the automatically extracted wall from static scan data is shown in Table 1 for
a wall that is considered good by the quality metric and one that is considered almost
ten times worse. To illustrate why these fits provide the quality values that they do,
the wall geometries are plotted in Figure 7. The fit for wall 4, has been successfully
recovered from both scan datasets looking at the plotted data, leading to good quality
values, whereas wall 15 has a worse quality value by an order of magnitude as it is
wrong in length by almost 2 m as illustrated in the plot. The value is low overall as
its angular discrepancy is small against the reference, unlike wall 15 from the mobile
data where the size and angle of the wall is wrong (Figure 7b) producing a larger
quality value.
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Delta 
Centroid X 

(mm) 

Delta 
Centroid Y 
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Angular 
Difference 

(Deg) 

Delta Wall 
Length 
(mm) 

Delta Wall 
Width 
(mm) 

Quality 
Metric 

Wall 4 102.9 5.8 179.9 209.6 249.6 0.029 
Wall 15 944.6 38.3 177.3 1935.7 153.8 0.233 
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Figure 7. Plots of boundary placement of manual and automatically created geometry from 
the static scan data for (a) wall 4 and (b) wall 15 of the corridor dataset. 

3.2.2. Point Cloud to IFC—Corridor 

The majority of the space-bounding walls have been reconstructed as shown by Figure 8, with the 
central wall seeming to have the best construction from both static and mobile scan data. This is borne 
out by the quality measure (Figure 9) where this central wall (wall 4) scored the best. However, this 
wall does have a 200 mm over-extension in its reconstruction, representing an error of 2.3% of total 
length. This is due to extraneous noise outside the main wall affecting the maximum segment 
measurement for wall length extent as in Figure 10.  

As edges are inferred as being the edge of the detected plane, then extraneous points from clutter or 
“split pixels” can affect the size of the recovered wall in the clustering stage as described above. Overall, 
the static scan data has allowed more walls to be recovered with greater confidence than the mobile data 
where the greater noise present in the data has created some ambiguity with multiple wall fits. 
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geometry from the static scan data for (a) wall 4 and (b) wall 15 of the corridor dataset.
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Table 1. Example of data from a wall comparison with quality metric for a well
(wall 4) and poorly (wall 15) reconstructed case of the corridor dataset against the
static scan derived geometry.

Delta Centroid
X (mm)

Delta Centroid
Y (mm)

Angular
Difference (Deg)

Delta Wall
Length (mm)

Delta Wall
Width (mm)

Quality
Metric

Wall 4 102.9 5.8 179.9 209.6 249.6 0.029
Wall 15 944.6 38.3 177.3 1935.7 153.8 0.233

3.2.2. Point Cloud to IFC—Corridor

The majority of the space-bounding walls have been reconstructed as shown by
Figure 8, with the central wall seeming to have the best construction from both static
and mobile scan data. This is borne out by the quality measure (Figure 9) where
this central wall (wall 4) scored the best. However, this wall does have a 200 mm
over-extension in its reconstruction, representing an error of 2.3% of total length. This
is due to extraneous noise outside the main wall affecting the maximum segment
measurement for wall length extent as in Figure 10.

As edges are inferred as being the edge of the detected plane, then extraneous
points from clutter or “split pixels” can affect the size of the recovered wall in the
clustering stage as described above. Overall, the static scan data has allowed more
walls to be recovered with greater confidence than the mobile data where the greater
noise present in the data has created some ambiguity with multiple wall fits.

The spatial reasoning also appears to have been largely successful as all of
the walls reconstructed from the static and a majority from the mobile data are
actually walls in the reference with good approximations of width. The one wall
from the mobile data that is incorrect runs along the Southeast edge of the plan view
in Figure 8 and is caused by a planar façade to a long lectern that is geometrically
close to a wall in planarity and point density. Figure 8 also shows that some of the
walls detected from the static data have their normal pointing in the wrong direction
leading to the wall lying on the wrong side of the wall surface found. This is a
problem that is prevalent in almost every wall without a second side as there is
no easy way to interpret the correct sidedness just from the geometry alone. This
could be improved with geometric reasoning whereby the scan location is taken into
account allowing ray casting to the points to attribute viewshed per location and
therefore more robust normal prediction.

Table 2 provides some statistics about the walls that were well reconstructed
from both sources of data. Length has generally been overestimated from both sets
of data for the reasons described earlier with Figure 10. In the two components that
are related to the walls’ width (delta of the centroid in Y and wall width itself) there
is little difference between each dataset. This is to be hoped for, as the width/Y
placement in local coordinates is dependent on the RANSAC plane found from the
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data. The error in wall width stems from the inability to estimate the wall width for
two of the walls as only one side was scanned.Remote Sens. 2015, 7 11767 

 

 

 

Figure 8. Extracted walls (red) of the corridor from the static (green) and mobile (blue) 
point cloud data overlaid on the human-generated model (grey/white). 

Table 2 provides some statistics about the walls that were well reconstructed from both sources of data. 
Length has generally been overestimated from both sets of data for the reasons described earlier with 
Figure 10. In the two components that are related to the walls’ width (delta of the centroid in Y and wall 
width itself) there is little difference between each dataset. This is to be hoped for, as the width/Y 
placement in local coordinates is dependent on the RANSAC plane found from the data. The error in wall 
width stems from the inability to estimate the wall width for two of the walls as only one side was scanned. 

Figure 8. Extracted walls (red) of the corridor from the static (green) and mobile
(blue) point cloud data overlaid on the human-generated model (grey/white).

Table 2. Statistics for the accuracy of the same reconstructed corridor walls
considered good quality from both datasets (walls 3, 4 and 7) against the reference.

Statistics for
Good Quality
Corridor Walls

Delta Centroid
in X RMS

(mm)

Delta Centroid
in Y RMS

(mm)

Angular
Difference

RMS (Deg.)

Delta Wall
Length RMS

(mm)

Delta Wall
Width RMS

(mm)

Static Scan Data 180 43 0.20 371 186
Mobile Scan Data 256 45 0.50 401 186
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Figure 10. Noise that caused over-extension from the static corridor scan data
shown against reference wall.

3.2.3. Point Cloud to IFC—Office

The main bounding walls of the office have been reconstructed with varying
degrees of success. To aid with the description, starting at the wall with the door
(Figure 11), the wall numbers going clockwise are 5, 4, 6, and 3. Walls 1 and 2 in the
reference model are small height walls from the ceiling and floor respectively and
can be seen at the end of the room above and below the window in Figure 6.

The geometry for walls 3 and 4, which have both sides captured in the static data,
seems fairly good with an over-estimation of thickness due to the clutter present on
those walls of the office. Wall 6 in the same data is well placed but with no backside
scan data its width is incorrect, whereas in wall 5 the open door and chairs close to
the outside face of the wall have affected the reconstruction. The extraneous walls
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from the clutter have survived due to their size being above the small wall limit, so
the desk and filing cabinets are considered by the reasoning as partial walls, which is
too simplistic, although correct for the first wall parallel to the window. A change to
the algorithm to take the space of the room into account, e.g., maximum bounded
area, may be a quick way to remove these surviving “walls” from clutter.
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The mobile scan data does not have the second side to most of the walls in the
data meaning that the thicknesses could not be estimated; the exception being wall 5
where the same problems that affected the static data reconstruction appear here.
However, fewer of the elements of clutter have been turned into extraneous walls,
probably due to the lower resolution of the objects and higher noise level of the
mobile point cloud. The fact that the door has led to a plane being successfully fitted
through the whole office would suggest that the threshold values for the Euclidean
Clustering were too high for data from this sensor.

The chart of the static quality scores shows a fairly even level of quality with
wall 3 being “best”; Figure 11 shows it as the wall with the least incorrect estimation
in both width and length so seems valid. By looking at the results of the quality
metric in Figure 12, the patchiness of the reconstruction can be seen. The figure
for the mobile data shows a gross error for wall 4, which has depressed the quality
values for walls 5 and 6 more than their visual placement would imply would be
acceptable as such a good quality fit.
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Figure 12. Charts of calculated reconstruction quality for each wall in the reference
human-created model of the office against the automated geometry from the two
scan datasets.

Looking at the statistical data for the reconstruction of bounding walls that were
not failed reconstructions as shown in Table 3, the trend is much the same as the data
from the corridor test. The wall width RMS values are similar between datasets with
the length having quite large RMS values from the mobile scan data. The width is
for similar reasons highlighted in the same section for the corridor data, namely the
inability to guess a wall thickness given one wall side captured. The length errors
in this set appear mainly down to clutter and manifest more on one side of the wall
from the mobile reconstruction as the centroid mean X coordinate is much larger. In
addition, the higher noise from the mobile scanners tied with the greater clutter in
the scene has increased the ambiguity in the detection leading to increased errors.
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Table 3. Statistics for the accuracy of three of the main four bounding office walls
from both datasets (walls 3, 5 and 6) against the reference model; wall 4 is ignored
for the gross error from the mobile data detection as seen in Figure 12.

Statistics for
Good Quality
Office Walls

Delta Centroid
in X RMS

(mm)

Delta Centroid
in Y RMS

(mm)

Angular
Difference

RMS (Deg.)

Delta Wall
Length RMS

(mm)

Delta Wall
Width RMS

(mm)

Static Scan Data 159 101 0.47 539 204
Mobile Scan

Data 378 100 0.45 602 206

4. Conclusions

The work presented in this paper has shown the applicability and limits to full
automated reconstruction of object-based “intelligent” BIM geometry from point
clouds in a format agnostic way. There has been partial success towards the aim of
fully automatic reconstruction, especially where the environment is simple and not
cluttered. Where both sides of a wall are present, the reconstruction has tended to
be more reliable from both data sources. However, clutter, as is usual in the indoor
environment, does have an effect. This was shown by the planar model presented
here being supported by dense wall hosted or connected elements such as shelving or
filing cabinets. A way to detect this data through more involved scene understanding
would help. A method of doing this may be to take the intensity return or colour
data present in the scans into account.

Clutter in the environment also has another effect and that is to hide or shadow
the building features that need to be constructed. This is mitigated to a degree in the
field by good survey design, but point clouds generated by imaging systems will, by
their nature, suffer from occlusions somewhere in the dataset. This is something the
routine presented here is affected by and unable to overcome in its current state e.g.,
if an alcove is hidden by an open door.

Computing power is an inherent problem when handling point cloud datasets
and the approach presented here exacerbates it by relying on RAM for fast access to
the whole dataset for processing. Downsampling is usually performed to keep the
data manageable and could be applied in this case for very large datasets, however
cloud computing presents a tangible opportunity to reduce the effect of this limitation
by providing a scalable amount of computing power per process.

The data capture method does not seem to have a large bearing on the success
of reconstruction except in the cluttered scene where the reduced resolution and
more even sampling of the clutter objects in the mobile scan seems to prevent
as many extraneous planes surviving the spatial reasoning step and affecting the
geometry construction.

The question of what represents a good and bad reconstruction is crucial for
comparisons and benchmarking. To provide a way of quantifying this, a quality
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measure has been developed based on the placement, size and angular discrepancies
in relation to a reference model. This is not only useful for scoring automatically
reconstructed geometry but could also prove useful when comparing an as-built
model from scans against a base design model for verification throughout the
construction phase of a project.

The logic required to make decisions about whether a certain geometry
configuration is feasible already exists in commercial packages for design model
verification (e.g., Solibri Model Checker [48]). It could easily be envisaged that this
set of existing rules could be applied to automated models, as they are currently used
to assess human-generated ones for building regulation infringements.

In terms of the scan-to-BIM workflow this work could be seen as a supplement
to the semi-automatic construction of the bounding structural features of a building.
For survey purposes the attribution of fit data is useful for quality assurance. Other
stakeholders may require other semantic information that can be added to the IFC
geometry created by this process or swapped out with more specific elements if
required. Irregular and complex shapes require a more involved process and it will
depend on fitness for purpose as to whether the recovery of an exact geometric
description is worthwhile. Heritage and construction cases would tend to require
this whereas simulation and operational management phases of BIM would accept
a geometric generalisation.

Overall, the quality measure works well but the normalisation against a
maximum value from the data means that the results from two different comparisons
are not directly comparable, something that could be changed by setting the
maximum limit to a threshold value after which values are set to 1.

Point clouds are now the basis for a large amount of 3D modelling of existing
conditions and their importance has never been greater. However the complexity of
effort to generate information for the BIM process is significant. Pure automation
is currently not at a stage to be viable as the varied, cluttered nature of the indoor
environment means that, currently, human intuition still triumphs over computerised
methods alone. Ultimately the work presented in this paper is still best practically
seen as an aid to a human user who can edit, accept or reject the geometry recovered
by the algorithm in a semi-automated process.

Further Work

To continue this work, it would be beneficial to test the routine on larger datasets,
such as one floor or many floors of a building as that would be a truer test of the
algorithms main application. Further development of the process to take an IFC and
classify a point cloud from it would help reverse the idea of a point cloud as being
geometrically rich but information poor, bringing more value to the point cloud
as a dataset.
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Certain steps of the algorithm can also be refined. Generally refining the
algorithm so that it is not so influenced by clutter would be beneficial. Linked to that
is adding topological links so that walls that are close together can be joined, then
logical building rules could be better applied (e.g., about bounded room volumes)
and it would help to mitigate any incorrect determination of length from noise.
The quality measure could also be refined by investigating weighting the three
components differently or thresholding the normalisation so that a quality value
from one comparison is equal to the same value from another set of data.
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A Survey of Algorithmic Shapes
Ulrich Krispel, Christoph Schinko and Torsten Ullrich

Abstract: In the context of computer-aided design, computer graphics and geometry
processing, the idea of generative modeling is to allow the generation of highly
complex objects based on a set of formal construction rules. Using these construction
rules, a shape is described by a sequence of processing steps, rather than just by
the result of all applied operations: shape design becomes rule design. Due to
its very general nature, this approach can be applied to any domain and to any
shape representation that provides a set of generating functions. The aim of this
survey is to give an overview of the concepts and techniques of procedural and
generative modeling, as well as their applications with a special focus on archeology
and architecture.

Reprinted from Remote Sens. Cite as: Krispel, U.; Schinko, C.; Ullrich, T. A Survey of
Algorithmic Shapes. Remote Sens. 2015, 7, 12763–12792.

1. Introduction

In the context of computer-aided design (CAD) and shape description, the
digital creation of a shape is called modeling. The most common representation of a
shape is a composition of elementary objects. However, a shape can also be described
by its generating process. In this case, the description is called a generative model.
A generative model does not describe a shape by the parts it consists of, but by the
operations and steps needed to be performed in order to create it; i.e., a generative
model is an algorithm. Its implementation is an algorithmic description written in a
programming language. Depending on the used software engineering paradigm, a
generative model may also be called a procedural model or a functional model, if the
algorithm is implemented in a procedural way, respectively functionally.

For many purposes in CAD, the mightiness of a Turing-complete programming
language may lead to potential problems, such as the halting problem. In order
to avoid these problems, CAD frameworks often offer a language that is not
Turing-complete; i.e., the set of language features is reduced to parametric modeling.

In generative modeling, the object is not just the end result of applied operations,
as this paradigm describes a shape by a sequence of processing steps. The result is
a paradigm shift from shape design to rule design. This general approach can be
applied to many domains.
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1.1. Ruler and Compass

Geometry from the days of the ancient Greeks placed great emphasis on
problems of constructing various geometric figures using only a ruler without
markings (to draw lines) and a compass (to draw circles). Ruler-and-compass
constructions are based on EUCLID’s axioms [1] using points, lines and circles
that have already been constructed. The resulting geometric primitives together
with the ruler-and-compass constructions are the first algorithmic descriptions of
generative models. EUCLID’s Elements is probably the most successful textbook ever
written. It still influences modern curricula of mathematics [2]. As the history of
geometry [3,4] is not within the scope of article, this article jumps directly to modern
uses of generative modeling techniques.

The long history of geometric constructions [6] is also reflected in the history
of civil engineering and architecture [7]. Gothic architecture, especially window
tracery, exhibits a good example of these constructions. Their complexity is
achieved by combining only a few basic geometric patterns. SVEN HAVEMANN

and DIETER W. FELLNER show how constructions of prototypic Gothic windows
can be formalized using generative modeling techniques [8]. By combining modular
construction rules, it is possible that complex configurations can be obtained
from elementary constructions. The different combinations of specific parametric
features can be grouped together, leading to the concept of styles. A differentiation
between basic shape and appearance allows, for example, the creation of ornamental
decoration, as seen in Figure 1 [5]. This leads to an extremely compact representation
for a whole class of shapes [9].

Figure 1. Compass-and-ruler operations have long been used in interactive
procedural modeling. This Gothic window construction was created in the
framework presented by WOLFGANG THALLER et al. using direct manipulation
without any code or graph editing [5].
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1.2. Natural Patterns

In today’s procedural modeling systems, scripting languages and grammars
are often used to create a set of rules to achieve a description of an object or pattern.
Early systems based on grammars were Lindenmayer systems, short L-systems,
named after ARISTID LINDENMAYER [10]. They were successfully used for modeling
plants [11] or fractal structures [12]. Given a set of string rewriting rules, complex
strings are created by applying these rules to simpler strings. Starting with an initial
string, the predefined set of rules form a new, possibly larger string. In order to use
L-systems to model geometry, an interpretation of the generated strings is necessary.

The modeling power of L-systems was limited to creating fractals and plant-like
branching structures. This limitation led to the introduction of parametric L-systems.
The idea is to associate numerical parameters with L-system symbols to address
continuous phenomena, which were not covered satisfactorily by L-systems alone.

In combination with additional 3D modeling techniques, Lindenmayer systems
can be used to generate complex geometry. ROBERT F. TOBLER et al. introduce a
combination of subdivision surfaces, fractal surfaces and parametrized L-systems
to create models of natural phenomena [13,14]. Different combinations can be used
at each level of resolution. Since the whole description of such multi-resolution
models is procedural, their representation is very compact and can be exploited
by level-of-detai renderers.

This trade-off between data storage and computation time can be found in
various fields of computer graphics, e.g., the tessellation of curved surfaces specified
by a few control points directly on the GPU. The result is low storage costs, allowing
the generation of complex models only when needed, while also reducing memory
transfer overheads. Although L-systems are parallel rewriting systems, derivation
through rewriting leads to very uneven workloads. Since the interpretation of an
L-system is an inherently serial process, they are not straightforwardly applicable
to parallel processing. In 2010, MARKUS LIPP et al. presented a solution to this
algorithmic challenge [15].

2. Languages and Grammars

Scripting languages have been designed for a special purpose, e.g., for client-side
scripting in a web browser. Nowadays, scripting languages are used for many
different applications. JavaScript, for example, is used to animate 2D and 3D graphics
in the Virtual Reality Modeling Language (VRML) [16] and Extensible 3D (X3D) [17]
files. It checks user forms in PDF files [18], controls game engines [19], configures
applications, defines 3D shapes [20] and performs many more tasks. According to
JOHN K. OUSTERHOUT, scripting languages use a higher level of abstraction compared
to system programming languages, as they are often typeless and interpreted to
emphasize the rapid application development purpose [21]. System programming
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languages, on the other hand, are designed for creating algorithms and data structures
based on low-level data types and memory operations. Consequently, graphics
libraries [22], shaders [23] and scene graph systems [24,25] are usually written in
C/C++ dialects [26], whereas procedural modeling frameworks incorporate scripting
languages, such as Lua, JavaScript, etc.

2.1. Language Processing and Compiler Construction

For the evaluation of procedural descriptions, typically techniques used for the
description of formal languages and compiler construction are used [27]. There is a
wide range of different concepts of languages to describe a shape, including all kinds
of linguistic concepts [28]. The main categories to describe a shape are:

• rule-based: using substitutions and substitution rules to generate complex
structures out of simple starting structures [29–32];

• imperative and scripting-based: using a scripting engine and techniques from
predominant programming languages [20,33,34] or;
• GUI and dataflow-based: using new graphical user interfaces (GUI) and

intelligent GUIs to detect structures in modeling tasks, which can be mapped
onto formal descriptions [35,36].

The general principles of formal descriptions and compiler construction are the
same in all cases: independent of ahead-of-time compilation, just-in-time compilation
or interpretation [37]. In the first stage of the compilation process, the input source
code is passed to the lexer and parser. The first step here is to convert a sequence of
characters into a sequence of tokens, which is done by special grammar rules forming
the lexical analysis. Typically, only a limited number of characters is allowed for an
identifier: all characters A–Z, a–z, digits 0–9 and the underscore _ are allowed with
the condition that an identifier must not begin with a digit or an underscore. The
lexer rules are embedded in another set of rules: the parser rules. They evaluate the
resulting sequence of tokens to determine their grammatical structure. The complete
grammar is of a hierarchical structure and consists of rules for analyzing all possible
statements and expressions that can be formed in the language, thus forming the
syntactic analysis.

For each available language construct, a set of rules ensures syntactic correctness
and incorporates mechanisms to report possible syntactic errors and warnings. These
rules are also used to create the intermediate abstract syntax tree (AST) structure that
is a representation of the input source code to be used for the next stage: semantic
analysis. Once all statements and expressions of the input source code are collected
in the AST, a tree walker checks their semantic relationships for errors and warnings.
After performing all compile-time checks, a translator uses the AST to generate
platform-specific files, possibly involving other intermediate structures.
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As mentioned in the Introduction, the first procedural modeling systems were
L-systems. Later on, L-systems were used in combination with shape grammars to
model cities. YOGI PARISH and PASCAL MÜLLER presented a system that generates
a street map enriched with geometry for buildings using a number of image maps as
input [38]. The resulting framework called CityEngine is a modeling environment
for the shape grammar Computational Geometry Algorithm (CGA) Shape. MARKUS

LIPP et al. presented another modeling approach based on CGA Shape following
the notation of PASCAL MÜLLER [31,35]. It enables more direct local control of
the underlying grammar by introducing visual editing. Principles of semantic and
geometric selection are combined, as well as functionality to store local changes
persistently over global modifications.

SVEN HAVEMANN takes a different approach to generative modeling. He
proposes a stack-based language called the Generative Modeling Language
(GML) [33]. The postfix notation of the language is very similar to that of Adobe
Postscript. High-level shape operations are created by using low-level shape
functionality. A number of applications are based on the GML platform, because
it is easily extensible and offers an integrated visualization engine. Current efforts
in the context of the GML are devoted to directly creating interactive generative
visualizations for the web.

Generative modeling inherits the methodologies of 3D modeling and
programming [39], which lead to drawbacks in usability and productivity. The
need to learn and use a programming language is a significant inhibition threshold,
especially for non-computer scientists. The choice of the scripting language has a
huge influence on the usability and effectiveness of procedural modeling. Processing
is a good example of how an interactive, easy to use, yet powerful development
environment can open up new user groups. It had been initially created to serve as a
software sketchbook and to teach students fundamentals of computer programming.
It quickly developed into a tool that is used for creating visual arts [40].

Processing is a Java-like interpreter offering new graphics and utility functions
together with some usability simplifications. The large community behind the
tool produced libraries to facilitate computer vision, data visualization, music,
networking and electronics. The success of Processing is based on two factors: the
simplicity of the programming language and the interactive experience. Instant
feedback of the scripting environments allows the user to program via “trial
and error”.

2.2. Scripting Languages for Generative Modeling

There are many different programming paradigms in software development that
are also used in the field of generative modeling, where some paradigms emerged to
be useful for specific domains.
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Imperative: Many generative models are described using classical programming
paradigms: a programming language is used to generate a specific object,
possibly using a library that utilizes some sort of geometry representation and
operations to perform changes. Any modeling software that is scriptable by an
imperative language or provides some sort of API falls into this category.

Dataflow based: A generative description can be represented by a directed graph of
the data flowing between operations. This graph representation also allows
for a graphical representation; visual programming languages (VPLs) allow
one to create a program by linking and modifying visual elements. Many VPLs
are based on the dataflow paradigm. Examples in the domain of generative
modeling are the Grasshopper3D (online) plug-in for the Rhinoceros3D (online)
modeling suite, or the work of GUSTOVA PATOW et al. built on top of the
procedural modeler Houdini (online) [41].

Rule-based systems: Another different representation for generative modeling is
rule-based systems. These systems provide a declarative description of the
construction behavior of a model by a set of rules. An example are L-systems,
as described in the Introduction. Furthermore, the seminal work of GEORGE

STINY and JAMES GIPS introduced shape grammars, as a formal description
of capturing the design of paintings and sculptures [42]. Similar to formal
grammars, shape grammars are based on rule replacement.

2.3. Shape Grammars

A shape grammar consists of shape rules and a generation engine that selects
and processes rules. A shape rule defines how an existing shape can be transformed.
The work of PETER WONKA et al. applied the concepts of shape grammars to derive
a system for generative modeling of architectural models [43]. This system uses
a combination of a spatial grammar system (split grammar) to control the spatial
design and a control grammar, which distributes the design ideas spatially (e.g., set
different attributes for the first floor of a building). Both of these grammars consist
of rules with attributes that steer the derivation process. The grammar consists of
two types of rules: split and convert. The split rule is a partition operation, which
replaces a shape by an arrangement of smaller shapes that fit in the boundary of the
original shape. The convert rule replaces a shape by a different shape that also fits in
the boundary of the original shape.

This system has further been extended by the work of PASCAL MÜLLER et al.,
which introduced a component split to extend the split paradigm to arbitrary 3d
meshes, as well as occlusion queries and snap lines to model non-local influences
of rules [31]. For example, two wall segments that intersect each other should not
produce windows, such that the window of one wall coincides with the other wall;
therefore, occlusion queries are used to decide if a window should be placed or not.
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JEAN-EUDES MARVIE et al. have shown that the derivation of a split grammar,
starting from an initial shape, yields a tree structure, which suggests that the
derivation can be sped up by a parallel implementation [44]. Parallel generation is
especially useful in an urban context, with scenes with high complexity and detail.
The work of LARS KRECKLAU et al. used GPU-accelerated generation in the context
of generating and rendering highly detailed building facades [45]; the work of
ZHENGZHENG KUANG et al. proposes a memory-efficient procedural representation
of urban buildings for real-time visualization [46].

With more advanced shape grammar systems, the non-local influences are
a problem because they introduce dependencies between arbitrary nodes of the
derivation tree. Recent work by MARKUS STEINBERGER et al. shows how to overcome
this problem in a GPU implementation [47]. Furthermore, the same authors presented
methods to interactively generate and render only the visible part of a procedural
scene using procedural occlusion culling and the level of detail [48].

2.4. Tools and Environments

A selection of commonly-used tools and programming environments for
generative modeling is listed in the Tables 1 and 2.

Table 1. Overview of generative/procedural 3D modeling tools and
approaches (Part 1).

Tool Name Application Domain Programming Category Environment

Blender Scripting general purpose modeling python scripting open source modeling software blender

CGAL, The Computational
Geometry Algorithms
Library[49]

general purpose modeling C++ CGAL open source project

CityEngine [31] urban modeling CGA shape commercial integrated development
environment CityEngine

Generalized Grammar G2 [30] scientific python scripting commercial modeling software Houdini

Generative Modeling
Language (GML) [33]

CAD postscript dialect proprietary, integrated development
environment for polygonal and
subdivision modeling

Grasshopper 3D visual arts, rapid
prototyping, architecture

visual programming based on
dataflow graphs, Microsoft .NET
family of languages

commercial modeling software
Rhinoceros3D

HyperFun [50] scientific specialized high-level
programming language

proprietary geometry kernel FRep
(Function Representation)

Maya Scripting general purpose modeling Maya Embedded Language (MEL)
and python scripting

commercial modeling
software Autodesk Maya

OpenSCAD CAD OpenSCAD language open source, based on CGAL
geometry kernel

PLaSM scientific python scripting, Function
Level scripting

integrated development
environment Xplode

Processing visual arts, rapid prototyping Java dialect open source, integrated development
environment Processing
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Table 2. Overview on generative/procedural 3D modeling tools and approaches
(Part 2).

Tool Name Application Domain Programming Category Environment

PythonOCC general purpose modeling
and CAD

python scripting Open CASCADE Technology

Revit Scripting architecture Microsoft .NET family
of languages

commercial modeling
software Autodesk Revit

siteplan [51] rapid
prototyping, architecture

interactive
GUI-based modeler

open source, integrated
development
environment siteplan

SketchUp Scripting architecture, urban modeling
and CAD

Ruby scripting commercial modeling
software SketchUp

Skyline Engine [41] urban modeling visual programming
based on dataflow
graphs,
python scripting

commercial modeling
software Houdini

speedtree plants/trees interactive GUI-based
modeler, SDK for C++

standalone modeler and
integration into various
game engines

Terragen landscape modeling interactive
GUI-based modeler

free and commercial,
integrated development
environment Terragen

XFrog [11] plants/trees interactive GUI-based
modeler

integrated development
environment, standalone and
plugins for Maya
and Cinema4D

3. Modeling by Programming

3D objects consisting of organized structures and repetitive forms are well suited
for procedural descriptions, e.g., by the combination of building blocks or by using
shape grammars.

3.1. Building Blocks and Elementary Data Structures

Creating shapes with elementary data structures requires the definition of
modeling operations. Depending on the underlying representation, certain modeling
operations are difficult or impossible to implement. The selection of operations for
these data structures are manifold and can be grouped as follows:

• Instantiations are operations for creating new shapes.
• Binary creations are operations involving two shapes, such as constructive

solid geometry (CSG) operations.
• Deformations and manipulations stand for all deforming and modifying

operations, like morphing or displacing.

Building blocks can also be regarded as modeling operations. When creating an
algorithmic description of a shape, an important task is to identify inherent properties
and repetitive forms. These properties must be accounted for in the structure of the
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description. Identified subparts or repetitive forms are best mapped to functions in
order to be reusable. However, the true power of an algorithmic description becomes
obvious when parameters are introduced for these functions. Even if only used
to position a subpart at a different location. From that point on, the algorithmic
description no longer stands for a single object, but for a whole object family.

3.2. Architectural Modeling with Procedural Extrusions

This method utilizes the paradigm of footprint extrusion to automatically derive
geometry from a coarse description. The inputs to this system are polygons whose
segments can be associated with an extrusion profile polygon. The system utilizes
the weighted straight skeleton method [52] to calculate the resulting geometry.

The growing demand for new building models for virtual worlds, games and
movies, makes the easy and fast creation of modifiable models more and more
important [53]. Nevertheless, 3D modeling of buildings can be a tedious task due
to their sometimes complex geometry [54]. For historic buildings, especially the
roofs can be challenging. JOHANNES EDELSBRUNNER et al. present a new method of
combining simple building solids to form more complex buildings and give emphasis
to the blending of roof faces [55]. Their method can be integrated in common
pipelines for procedural modeling of buildings and extends their expressiveness
compared to existing methods.

3.3. Deformation-Aware Shape Grammars

Generative models based on shape and split grammar systems often exhibit
planar structures. This is the case because these systems are based on planar
primitives and planar splits. There are many geometric tools available in modeling
software to transform planar objects into curved ones, e.g., free-form deformation [56].
Applying such a transformation as a post-processing step might yield undesirable
results. For example, if a planar facade of a building is bent into a curved shape, the
windows inside the facade will have a curved surface, as well. Another possibly
unwanted property arises when an object is deformed by scaling: the windows on a
facade would have different appearances.

RENÉ ZMUGG et al. introduced deformation-aware shape grammars, which
integrate deformation information into grammar rules [57]. The system still uses
established methods utilizing planar primitives and splits; however, measurements
that determine the available space for rules are performed in deformed space. In this
way, deformed splits can be carried out, and the deformation can be baked at any
point to allow for straight splits in deformed geometry.
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3.4. Procedural Shape Modeling

The effectiveness of procedural shape modeling can be demonstrated with the
mass customization of consumer products [58]. A generative description composed
of a few well-defined procedures can generate a large variety of shapes. Furthermore,
it covers most of the design space defined by an existing collection of designs; in this
case, wedding rings.

The basic shape of most rings can be defined using a profile polygon, the
angular step size defined by the number of supporting profiles to be placed around
the ring’s center, the radius and a vertex transformation function. A ring’s design
variations are decomposed into a set of transformation functions. Each function
transforms selected parts of the profile in a certain way. Effects can be combined by
calling a sequence of different transformations. The creation of the basic shape is
separated from optional steps to create engravings, change materials or add gems.
Engravings are implemented as per-vertex displacements (to maintain the option
for 3D-printing) and can be applied on quadrilateral parts of the ring’s mesh using
half-edges to specify position and spatial extent.

Materials, like gold, silver and platinum, are used for wedding rings. Their
surfaces can be treated with various finishing techniques, like polishing, brushing or
hammering. In order to account for these effects, a per-pixel shading model is used
featuring anisotropic highlights. By using a cube map, visually appealing reflections
are created, and predefined surface finishes can be applied using normal mapping
techniques. Procedural gem instances can also be placed on the ring.

Figure 2. The presented generative description is able to produce a large variety
of wedding rings. Features, like engravings, recesses, different materials, unusual
forms and gems, can be created and customized.

The presented approach is used in a hardware-accelerated server-side rendering
framework [59], which has been included in an online system called REx by
Johann Kaiser. It offers an intuitive web interface for configuring and visualizing
wedding rings.

This work demonstrates the efficiency of procedural shape modeling for the
mass customization of wedding rings. The presented generative description is able
to produce a large variety of wedding rings. Figure 2 shows a few results of the
parametric toolkit.
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3.5. Variance Analysis

The analysis and the visualization of the differences of similar objects is
important in many research areas: scan alignment, nominal/actual value comparison
and surface reconstruction, to name a few. In computer graphics, for example,
differences of surfaces are used to validate reconstruction and fitting results of
laser scanned surfaces. Scanned representations are used for documentation, as
well as analysis of ancient objects, revealing the smallest changes and damage.
Analyzing and documentation tasks are also important in the context of engineering
and manufacturing to check the quality of productions.

CHRISTOPH SCHINKO et al. contribute a comparison of a reference/nominal
surface with an actual, laser-scanned dataset [60]. The reference surface is a
procedural model whose accuracy and systematics describe the semantic properties
of an object, whereas the laser-scanned object is a real-world dataset without any
additional semantic information. The first step of the process is to register a
generative model (including its free parameters) to a laser scan. Then, the difference
between the generative model and the laser scan is stored in a texture, which can be
applied to all instances of the same shape family.

A generative model represents an ideal object rather than a real one. The
combination of noisy 3D data with an ideal description enhances the range of
potential applications. This bridge between both the generative and the explicit
geometry description is very important: it combines the accuracy and systematics
of generative models with the realism and the irregularity of real-world data, as
pointed out by DAVID ARNOLD [61]. Once the procedural description is registered
to a real-world artifact, we can use the fitted procedural model to modify a 3D shape.
In this way, we can design both low-level details and high-level shape parameters at
the same time.

3.6. Semantic Modeling

In the context of digital libraries, semantic metadata play an important role.
They provide semantic information that is vital for digital library services: indexing,
archival and retrieval. Depending on the field of application, metadata can be
classified according to the following criteria [62]:

Data type: The data type of the object can be of any elementary data structure (e.g.
polygons, non-uniform rational b-splines (NURBS), subdivision surfaces, etc.).

Scale of semantic information: This property describes whether metadata are added
for the entire dataset or only for a sub-part of the object.

Type of semantic information: The type of metadata can be descriptive (describing the
content), administrative (providing information regarding creation, storing,
provenance, etc.) or structural (describing the hierarchical structure).
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Type of creation: The creation of the semantic information for an object can be done
manually (by a domain expert) or automatically (e.g., using a generative
description).

Data organization: The two basic concepts of storing metadata are storing the
information within the original object (e.g., Exchangeable Image File Format
(Exif) data for images) or storing it separately (e.g., using a database).

Information comprehensiveness: The comprehensiveness of the semantic information
can be declared varying from low to high in any gradation.

Many concepts for encoding semantic information can be applied to 3D
data. Despite the large number of 3D data formats, only a few are standardized,
non-proprietary and support semantic markup [63]:

Collada The XML-based Collada format is an ISO standard and allows storing
metadata, like title, author, revision, etc., not only on a global scale, but also
for parts of the scene [64]. This file format can be found in Google Warehouse
where metadata are, for example, used for geo-referencing objects.

IGES Initial Graphics Exchange Specification (IGES), an American National
Standards Institute (ANSI) standard since 1980, allows the definition of
annotations, including dimensioning data, as well as labels and notes [65]. This
file format is used as a vendor-neutral exchange format among CAD systems.

JT The Jupiter Tesselation (JT) file format has been an ISO standard since
2012 and is used for product visualization and data exchange in CAD
systems [66]. Annotations in the form of attributes and properties, as well
as filters are supported by this format. It is accompanied by the XML-based
format for product lifecycle management (PLMXML) to represent product
structure hierarchy.

PDF 3D PDF 3D is an ISO standard and allows one to store annotations separated
from the 3D data, even allowing annotating of the annotations [67]. An
advantage is that the viewer application is widely spread, and PDF documents
are the quasi standard for textual documents.

STEP The standard for the exchange of product model data (STEP) has been
an ISO standard since 1994 divided into different parts, data models and
environments [68]. The current Application Protocol 242 supports product data
and non-geometrical metadata.

X3D The X3D file format is an XML-based ISO standard for representing 3D
computer graphics [69]. It supports a number of different metadata nodes,
providing arrays of strongly typed data.

While a standard has advantages for accessibility, long-term archival and many
other aspects, it does not solve inherent problems; i.e., due to the persistent naming
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problem, a modification of the 3D model can break the integrity of the semantic
information. Any change of the geometry can cause the referenced part of the model
to no longer exist or be changed. Nevertheless, there are many examples for semantic
modeling in various contexts [70–75].

4. Inverse Modeling

The full potential of the generative techniques is revealed when the inverse
problem is solved; i.e., what is the best generative description of one or several given
instances of an object class? This problem can be interpreted in different ways. The
simplest way is to create a generative model out of a given 3D object and to store it
in a geometry definition file format. Obviously, this is not the desired result, as the
generative model can only represent a single object, not a family of objects.

4.1. Parsing Shape Grammars

Shape grammars can be used to describe the design space of a class of
buildings/facades. An interesting question in this context is: given a set of rules and
measurements of a building, typically photographs or range scans, which application
of rules yields the measurements? Here, the applied rules can also be seen as a parse
tree of a given input.

The work of HAYKO RIEMENSCHNEIDER et al. [76] utilizes shape grammars to
enhance the results of a machine learning classifier that is pre-trained to classify pixels
of an orthophoto of a facade into categories, like windows, walls, doors and sky. The
system applies techniques from formal language parsing to parse a two-dimensional
split grammar consisting of horizontal and vertical splits, as well as repetition and
symmetry operations. For the reduction of the search space, an irregular grid is
derived from the classifications, and the parsing algorithm is applied to yield the
most probable application of rules that yields a classification label per grid cell. These
parse trees can easily be converted into procedural models.

FUZHANG WU et al. also address the problem of how to generate a meaningful
split grammar explaining a given facade layout [77]. Given a segmented facade
image, the system uses an approximate dynamic programming framework to
evaluate if a grammar is a meaningful description. However, the work does not
contribute to the problem of facade image segmentation.

4.2. Model Synthesis

PAUL MERELL and DINESH MANOCHA present an approach that, given an
object (i.e., a mesh) and constraints, derives a locally-similar object [78,79]. This
method is related to texture synthesis. It computes a set of acceptable states, according
to several types of constraints, and constructs parallel planes that correspond to the
face orientations of the input model. The intersections of these planes yield possible
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vertex positions in the output model. Acceptable states are assigned to a vertex,
while incompatible states are removed in its neighborhood. The system terminates if
every vertex has been assigned a state.

4.3. Inverse Procedural Modeling of Trees

The method proposed by ONDREJ STAVA et al. estimates the parameters of a
stochastic tree model, given polygonal input tree models [80]. This is done in such a
way that the stochastic model produces trees similar to the input. The parameters
are estimated using Markov chain Monte Carlo (MCMC) optimization techniques. A
statistical growth model consisting of 24 geometrical and environmental parameters
is used. The authors propose a similarity measure between the statistical model
and a given input mesh that consists of three parts: shape distance, measuring the
overall shape discrepancy, geometric distance, reflecting the statistics of the geometry
of its branches, and structural distance, encoding the cost of transforming a graph
representation of the statistical tree model into a graph representation of the input
tree model. The MCMC method has also been applied by other methods to find
parameters of a statistical generative model [81–83].

4.4. Parameter Fitting and Shape Recognition

TORSTEN ULLRICH and DIETER W. FELLNER presented an approach that uses
generative modeling techniques to describe a class of objects and to identify objects
in real-world data, e.g., laser scans [84]. A point cloud P and a generative model M
are the input datasets of the algorithm. It answers the questions:

1. can the point cloud be described by the generative model, and if so,
2. what are the input parameters x0, such that M(x0) is a good description of P.

A hierarchical optimization routine based on fuzzy geometry and a
differentiating compiler are used. The complete generative model description
M(x1, . . . , xk) (including all possibly called subroutines) is differentiated with respect
to the input parameters. This differentiating compiler offers the possibility to use
gradient-based optimization routines in the first place. Without partial derivatives,
many numerical optimization routines cannot be used at all or in a limited way.

5. Architecture, Engineering and Design

5.1. Generative Architectural Design

The usage of generative modeling techniques in architecture is not limited to
buildings of the past [85,86]. Over the last few decades, architects have used a
new class of design tools that support generative design. Generative modeling
software extends the design abilities of architects and may even help to reduce costs
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by harnessing computing power in new ways. Computers, of course, have long been
used to capture and implement the design ideas of architects by means of CAD and
3D modeling. Generative design actually helps architects design by using computers
to extend human abilities [87].

An impressive example is the Helix Bridge in Singapore (see Figure 3). The
280-m bridge is made up of three 65-m spans and two 45-m end spans. The major
and minor helices, which spiral in opposite directions, have overall diameters of
10.8 m and 9.4 m, respectively. The outer helix is formed from six tubes, which
are set equidistant from one another, whereas the inner helix consists of five tubes.
The bridge design is the product of inseparable collaboration between architects
(Cox Architecture and Architects 61) and civil engineers (Arup Consultant). For its
280-m length, the dual helix structure of the bridge utilizes five-times less steel than
a conventional box girder bridge. This fact enabled the client to direct the structure
to be constructed entirely of stainless steel for its longevity.

Figure 3. The Helix Bridge is a pedestrian bridge in the Marina Bay area in
Singapore. Its generative design has been optimized numerically. Furthermore,
the bridge was fully modeled in order to visualize its form and geometrical
compatibility, as well as to visualize the pedestrian experience on the bridge.

Another example of generative, architectural design has been presented by
TORSTEN ULLRICH et al. [88]. They interpret a generative script as a function, which
is nested into an objective function. Thus, the script’s parameters can be optimized
according to an objective. They demonstrate this approach using architectural
examples: each generative script creates a building with several free parameters. The
objective function is an energy efficiency simulation that approximates a building’s
annual energy consumption. Consequently, the nested objective function reads
a set of building parameters and returns the energy needs for the corresponding
building. This nested function is passed to a minimization and optimization process.
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The outcome is the best building (within the family of buildings described by its
script) concerning energy efficiency. The contribution is a new way of modeling:
the generative approach separates design and engineering. The complete design is
encoded in a script, and the script ensures that all parameter combinations (within a
fixed range) generate a valid design. Then, the design can be optimized numerically.

The adjustment of architectural forms to local and specific conditions is
a fundamental study. When discussing energy consumption and solar power
harnessing in buildings, important aspects have to be taken into account, e.g., the
relation between a building form and its energy behavior and the local weather
conditions on an all-year basis. Several studies were published so far trying to
answer these questions. “Form follows energy” has become an omnipresent dogma
in architecture, but its realization is difficult. The manual analysis of the various
relations between form, volume and energy consumption has to face many, not only
numerical, problems.

The new approach by TORSTEN ULLRICH et al. [88] for architectural design is
opening the door to new possibilities for the user. It relieves the user from additional,
interdisciplinary burdens: the designer can concentrate on the design, while the civil
engineer can focus on engineering aspects. This new approach based on procedural
modeling can be used in many different fields of product design.

5.2. Engineering Design

The research area of computational design synthesis (CDS) is concerned with
the automation of synthesis activities in design [89]. Computer systems are used
to generate design candidates for a specific task. For example, the work of
MICHAEL J. PUGLIESE et al. [90] investigated the possibility to capture brand
specifics using a shape grammar. A more recent synthesis approach presented by
FOREST FLAGER et al. is concerned with the sizing optimization of steel structures [91].
For an extensive overview of this topic, the authors refer to the work of AMARESH

CHAKRABARTI et al. [92].
Each design process that involves repetitive tasks is perfectly suited for a

generative approach. Engineering processes can be classified into repetitive and
creative processes. In contrast to creative processes, repetitive ones consist of
nearly identical tasks and are therefore independent of creative decisions. This
is a precondition for modeling them in a system of rules, as is shown in this practical
example [93]: Liebherr manufactures and sells an extensive range of products,
including different kinds of cranes. Each crane has to be partially or fully engineered
to the needs of the customer. Nevertheless, the design process of ascent assemblies is
based on repetitive tasks that are described by a set of invariant rules. These rules
have been modeled and stored by Liebherr. The integration into the existing CAD
pipeline now allows a construction engineer to create ascent assemblies only by
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determining the defining parameters and filling out the corresponding input fields
in a user interface. Using the procedural approach, the efforts of engineering ascent
assemblies have been reduced to 10%.

5.3. Urban Modeling

In the context of urban modeling, procedural systems can be used to cover
different levels of detail, as has been shown in a survey for urban reconstruction by
PRZEMYSLAW MUSIALKSI et al. [94]. On a coarse scale, the procedural paradigm is
applicable to the generation of terrain, e.g., using methods based on hydrology, as
presented by JEAN-DAVID GÉNEVAUX [95], or for the inexpensive reconstruction of
the landscape surrounding a road, as presented by CARLOS ANDÚJAR et al. [96].

Such systems have also been used for the generation of roads. ERIC GALIN et al.
present an algorithm that generates roads on terrain [97]. JAN BENES et al. present a
model for growing procedural road networks in and close to cities [98]. The work of
MARKUS LIPP et al. is concerned with interactive modeling of entire city layouts [99]
using procedural methods. An overview of modeling the appearance and behavior
of urban spaces is given by CARLOS A. VANEGAS et al. [100].

Within the scale of a building, PAUL MERELL et al. present a method for
automatic creation of residential building layouts; FAN BAO et al. formulate a
constrained optimization to characterize good building layouts and a method to
let a user explore the space of good building layouts [101]. Procedural systems
are also used in the context of facade modeling: PRZEMYSLAW MUSIALSKI et al.
present an interactive framework for modeling building facades from images [102].
FAN BAO et al. show a technique to create procedural facade variations from a single
layout [103]. MICHAEL SCHWARZ et al. present an approach for designing exterior
lighting for buildings with complex constraints [104]. When it comes down to the
interior of a building, PAUL MERELL et al. present an automatic method for furniture
placement following interior design guidelines [105].

5.4. Building Information Modeling

Procedural modeling can also be helpful in the context of building information
modeling (BIM), the new paradigm of today’s building industry [106]. The American
National Building Information Model Standard (NBIMS-US) project committee
defines BIM as “a digital representation of physical and functional characteristics
of a facility. A BIM is a shared knowledge resource for information about a facility
forming a reliable basis for decisions during its life cycle; defined as existing from
earliest conception to demolition” [107]. Other definitions are summarized in
a literature review by ABBASNEJAD and MOUD, who conclude that a generally
accepted comprehensive definition of BIM has not been established yet, and different
stakeholders (architects, builders, owners, etc.) have mixed expectations towards
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BIM [108]. In contrast to established computer-aided design (CAD), a building
information model does not just store the geometry of a building, but includes
semantic data about the functions of the buildings and its elements. Furthermore,
BIM is intended to be used throughout the building’s life cycle, containing
information for planning, design, construction, operation and maintenance. That is, a
model is not only used by architects, contractors and suppliers, but by all kinds other
users, e.g., government agencies, owners, real estate agents, facility managers, etc.

EASTMAN et al. help to understand BIM by describing examples that are not
BIM technology. As already mentioned, models without object attributes, but only
3D data, are not considered BIM. Furthermore, models composed of multiple 2D
drawings that have to be combined or models that do not automatically reflect
changes made in one view in other views are not building information models.
Moreover, EASTMAN et al. consider parametric object capabilities as essential for
BIM. Parametric objects in BIM can include rules to automatically modify associated
objects (e.g., a wall is changed when a door is placed in it) and for ensuring feasibility
(e.g., regarding size and manufacturability) [109]. Such intelligent objects are similar
to the idea of generative modeling, where a 3D object is described by the operations
necessary to generate the object, rather than the result of these operations [110,111].

One use-case is documenting a building “as-built BIM” [112], to aid, amongst
others, in the application scenarios of restoration, documentation and maintenance.
Such a model is built from measured data, which is typically acquired by terrestrial
laser scanning (TLS) or image-based approaches (photogrammetry or structure
from motion techniques), which yields point positions in 3D. From these point
clouds, a mesh can be created using 3D surface reconstruction techniques, e.g.,
Poisson surface reconstruction [113]. Furthermore, the surface appearance has to be
acquired [114]. In the case of building interiors, the generation of orthographic images
can be used for surface color representation and the retrieval of additional semantic
information [115]. Such semantic relationships have to be acquired and represented
within the model [116]; see also the foregoing section about semantic enrichment.
A recent example of the usage of parametric elements for the reconstruction and
documentation of complex architecture is the case of a reactor building, as shown by
JEAN-FRANÇOIS HULLO et al. [117].

For historic building information modeling (HBIM), procedural methods have
been used to aid the reconstruction and documentation process. CONOR DORE et al.
applied a shape grammar approach to model classical building facades for
HBIM [118] and reconstructed the Four Courts, a historic classical building in Dublin
City [119] using rule-based modeling in ArchiCAD. Another recent example of
creating a HBIM model with rich semantics from terrestrial laser scanning data has
been shown by RAMONA QUATTRINI et al. in the case study of the Church of Santa
Maria at Portonovo [120] using Autodesk Revit.
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In the context of functional building information modeling (FBIM), generative
techniques can be used to semantically filter a CAD dataset of a building. A
major future challenge in the building industry is to reduce primary energy use
of buildings. Hence, energy performance simulation becomes an increasingly
important topic. Accurate, yet efficient simulation depends on simple building
models. Most of the required data can be found in BIMs. However, typical BIM
data contains a lot of irrelevant data, in particular geometric representations, which
are too detailed for energy performance simulation. Using generative modeling
techniques, DANIEL LADENHAUF et al. [121,122] show an approach of geometry
simplification subject to semantic and functional groups. These simplified models
are sufficiently accurate for energy calculations and small enough so that they do not
flood simulation software with unnecessary details. As these semantically-filtered
models are generated automatically, they simplify the design process significantly
and offer an energy calculation, even at early design stages.

6. Archeology and Cultural Heritage

The increasing number of (3D) documents makes digital library services become
more and more important. A digital library provides markup, indexing and retrieval
services based on available metadata. In a simple case, metadata are of the Dublin
Core type: title, creator/author, time of creation, etc [123]. This is insufficient for
large collections of 3D objects, because of their versatility and rich structure.

6.1. Semantic Enrichment

Scanned models are used in raw data collections, for documentation archival,
virtual reconstruction, historical data analysis and for high-quality visualization
for dissemination purposes [124]. Navigation and browsing through the geometric
models should be possible on the semantic level; this requires higher level semantic
information. The need for semantic information becomes immediately clear in the
context of electronic data exchange, storage and retrieval [125,126]. The problem of
3D semantic enrichment is closely related to the shape description problem [127]:

How to describe a shape and its structure
on a higher, more abstract level?

The traditional way of classifying objects, pursued both in mathematics and,
in a less formal manner, in dictionaries, is to define a class of objects by listing their
distinctive properties. This approach is hardly realizable, because of the fact that
definitions cannot be self-contained. They depend on other definitions, which leads
to circular dependencies that cannot be resolved automatically by strict reasoning,
but rely on intuitive understanding at some point.
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An alternative, non-recursive approach for describing shape uses examples.
Each entry in a picture dictionary is illustrated with a photo or a drawing. This
approach is widely used, for example, in biology for plant taxonomy. It avoids listing
an exhaustive list of required properties for each entry. However, it requires some
notion of similarity, simply because the decision of whether object x belongs to class
A or B requires measuring the closeness of x to the exemplars a ∈ A, respectively
b ∈ B. This decision can be reached by a classifier using statistics and machine
learning [128,129]. A survey on content-based 3D object retrieval is provided by
BENJAMIN BUSTOS et al. [130]. Statistical approaches clearly have their strength
in discriminating object classes. However, feature-based object detection, e.g., of
rectangular shapes, does not yield object parameters: the width and height of a
detected rectangle must typically be computed separately.

To describe a shape and its construction process, its inner structure must
be known. Structural decomposition is well in line with human perception. In
general, shapes are recognized and coded mentally in terms of relevant parts
and their spatial configuration or structure [131]. One idea to operationalize this
concept was proposed, among others, by MASAKI HILAGA et al., who introduce the
Multiresolution Reeb Graph, to represent the skeletal and topological structure of a
3D shape at various levels of resolution [132]. Structure recognition is a very active
branch in the field of geometry processing. The detection of shape regularities [133],
self-similarities [134] and symmetries [135,136] is important to understand a 3D
shape. To summarize, structural decomposition proceeds by postulating that a certain
type of general regularity or structure exists in a class of shapes. This approach clearly
comes to its limits when very specific structures are to be detected, i.e., complicated
constructions with many parameter interdependencies.

A possibility to describe a shape is realized by the generative modeling
paradigm [29,137]. The key idea is to encode a shape with a sequence of
shape-generating operations and not just with a list of low-level geometric primitives.
In its practical consequence, every shape needs to be represented by a program, i.e.,
encoded in some form of programming language, shape grammar [31], modeling
language [33] or modeling script [138].

The implementation of the “definition by algorithm” approach is based on a
scripting language [84]: Each class of objects is represented by one algorithm M.
Furthermore, each described object is a set of high-level parameters x, which
reproduces the object, if an interpreter evaluates M(x). As this kind of modeling
resembles programming rather than “designing”, it is obvious to use software
engineering techniques, such as versioning and annotations. In this way, model
M may contain a human-readable description of the object class it represents.

In contrast to other related techniques using fitting algorithms, such as “Creating
Generative Models from Range Images” by RAVI RAMAMOORTHI and JAMES ARVO,
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the approach by TORSTEN ULLRICH can classify data semantically [139,140].
Although RAVI RAMAMOORTHI and JAMES ARVO also use generative models to
fit point clouds, they modify the generative description during the fitting process.
As a consequence, the optimization can be performed locally with a computational
complexity that is significantly reduced. However, starting with the same generative
description to fit a spoon as well as a banana does not allow one to generate or
preserve semantic data.

An example illustrates this process. The generative model to describe a vase
takes 13 parameters: R(rx, ry, rz) is the base reference point of the vase in 3D and
T(tx, ty, tz) is its top-most point. The points R and T define an axis of rotational
symmetry. The remaining seven parameters define the distances d0, . . . , d6 of
equally-distributed Bézier vertices to the axis of rotation (see Figure 4). The resulting
2D Bézier curve defines a surface of revolution: the generative vase.

R(rx, ry, rz)

T(tx, ty, tz)

d0

d1

d2

d3

d4

d5

d6

Figure 4. The vase on the left-hand side is a digitized artifact of the “Museum
Eggenberg” collection. It consists of 364,774 vertices and 727,898 triangles. The
example of a procedural shape on the right-hand side takes two points R and T in
3D and distance values, which define the control vertices of a Bézier curve.

6.2. Cultural Heritage

The huge volume of cultural objects is a challenge, even for the most ambitious
plans for digitization campaigns [141]. The fact that probably 90 percent of museum
collections are in storage and not accessible to the public is almost demanding for
digitization and public accessibility. However, the digitization alone is only part of a
larger process that begins at a field excavation and does not end with the presentation
in museum exhibitions. Secondary exploitation, database access and sustainable
long-time archiving of digitized artifacts is also part of the process [142]. A very
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important aspect is the choice of the 3D format used during this process [143,144].
However, the availability of large quantities of cultural heritage data will enable new
methods for analysis and new applications [145].

The presented modeling system by CHRISTOPH SCHINKO et al. is restricted
to techniques to meet sustainability conditions. By using JavaScript, the inhibition
threshold to use a programming language is reduced, resulting in a beginner-friendly
tool with a high degree of usability [111]. RENÉ BERNDT et al. present a system
for the production of three-dimensional interactive illustrations in the domain of
medieval castles [146]. A special focus is on creating generic modeling tools that
increase the usability with a unified 3D user interface.

One of the advantages of procedural modeling techniques is the included
expert knowledge within an object description [84]. Classification schemes used
in architecture, archeology and other domains can be mapped to procedures [147].
When a procedural object description is available, only the type and instantiation
parameters have to be identified in order to create an object [148] (see Figure 5).
It is then also possible to use the fitted procedural model to modify existing 3D
shapes [149].

Figure 5. Gothic architecture is defined by strict rules with its characteristics. The
generative description of Gothic cathedrals encodes these building blocks and
the rules on how to combine them. These building blocks have been created by
MICHAEL CURRY, http://www.thingiverse.com/thing:2030.

Another use-case is the creation of several building hypotheses in the context
of historic analysis, as shown by ERICA CALOGERO et al. [150] in a case study
that investigated different hypothesis for parts of the Louvre. Furthermore, MARIE

SALDAÑA et al. carried out a similar approach for parts of the city of Rome [151].
Both works were carried out using the Esri CityEngine.
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7. Open Research Questions

According to DIETER W. FELLNER and SVEN HAVEMANN, several research
challenges have to be met: from the classification of shape representations via generic,
stable and detailed 3D markup to 3D query operations [125,152–154].

A particularly important problem occurs in the context of internal structure
organization and interfaces. Within a composition of modeling functions, where each
function is attached via its parameters to topological entities defined in previous
states of the model, referenced entities must be named in a persistent way in order
to be able to reevaluate the model in a consistent manner. In particular, when a
reevaluation leads to topological modifications, references between entities used
during the design process are frequently reevaluated in an erroneous way, giving
results different from those expected. This problem is known as the “persistent
naming problem” [155].
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Photogrammetric, Geometrical, and
Numerical Strategies to Evaluate Initial and
Current Conditions in Historical
Constructions: A Test Case in the Church of
San Lorenzo (Zamora, Spain)
Luis Javier Sánchez-Aparicio, Alberto Villarino, Jesús García-Gago and
Diego González-Aguilera

Abstract: Identifying and quantifying the potential causes of damages to a
construction and evaluating its current stability have become an imperative task
in today’s world. However, the existence of variables, unknown conditions and
a complex geometry hinder such work, by hampering the numerical results that
simulate its behavior. Of the mentioned variables, the following can be highlighted:
(i) the lack of historical information; (ii) the mechanical properties of the material;
(iii) the initial geometry and (iv) the interaction with other structures. Within the
field of remote sensors, the laser scanner and photogrammetric systems have become
especially valuable for construction analysis. Such sensors are capable of providing
highly accurate and dense geometrical data with which to assess a building’s
condition. It is also remarkable, that the latter provide valuable radiometric data
with which to identify the properties of the materials, and also evaluate and monitor
crack patterns. Motivated by this, the present article investigates the potential offered
by the combined use of photogrammetric techniques (DIC and SfM), as well as
geometrical (NURBs and Hausdorff distance) and numerical strategies (FEM) to
assess the origin of the damage (through an estimation of the initial conditions)
and give an evaluation of the current stability (considering the deformation and
the damage).

Reprinted from Remote Sens. Cite as: Sánchez-Aparicio, L.J.; Villarino, A.;
García-Gago, J.; González-Aguilera, D. Photogrammetric, Geometrical, and Numerical
Strategies to Evaluate Initial and Current Conditions in Historical Constructions:
A Test Case in the Church of San Lorenzo (Zamora, Spain). Remote Sens. 2016, 8, 60.

1. Introduction

The conservation of built heritage is today considered a fundamental aspect of
modern society. Their artistic, cultural, and intrinsic value make these constructions
extremely important. Complementary to this, the lack of the building‘s own
mechanical values and the characteristic behavior of its masonry, the complex
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interaction between components, and the lack of documentation, make the analysis
of such constructions remarkably difficult. Currently, and derived from these
considerations, numerous regulations propose the integration of different approaches
among which are [1]: (i) the study of the construction’s history; (ii) inspection;
(iii) monitoring; and (iv) structural analysis.

Regarding the numerical calculations, the static graphic [2] and limit analyses [3]
traditionally provided the necessary tools to study the stability and bearing capacity
of historical structures [4]. However, such numerical strategies have among their
drawbacks the difficulty to evaluate damages [1].

In contrast with these models, the Finite Element Method (FEM) has been
widely used for the evaluation of historical buildings at different levels; from
complex and large constructions through macromodelling techniques [5], to the
use of micromodelling strategies [6], where the units are independently discretized,
or homogenized [7]. However, the large number of involved variables, as well as
interaction with other structures, conditions the results.

It is in the field of built constructions where remote sensors and especially
photogrammetric and laser scanner systems have proven great worth for their
analysis [3,8–10]. These sensors are able to provide accurate and dense geometric
and radiometric values with which to assess these buildings, as well as obtaining
the data through non-intrusive means. Despite this, the data they provide (in form
of dense and accurate point clouds) is largely untapped, since it is only used for the
construction of simplified CAD models [10].

On one hand, the present article introduces two novel robustness parameters
(based on geometrical components) in order to increase their applicability, obtained
from the symmetrical Hausdorff distance [11]. These parameters, called Global
Hausdorff metric (GHms) and Local Hausdorff metric (LHms), help ascertain whether
the variables or simulated conditions improve or worsen the numerical results, in
comparison with the real deformation provided by the photogrammetric and laser
scanner systems.

On the other hand, the article introduces a methodology based on a Non-Uniform
Rational B-Splines (NURBs) modelling strategy, with the purpose of providing an
accurate geometrical model (with the current deformation and damage) for the
evaluation of the current stability of the construction. This strategy is able to take
advantage of the properties provided by the Structure from Motion products: (i) density;
(ii) accuracy; and (iii) photorealistic texture, within a numerical environment.

In order to confirm the feasibility of the proposed geometrical strategies (GHms,
LHms and NURBs modelling), they are applied to a case study: the dome of
the church of San Lorenzo in Sejas de Aliste (Zamora, Spain). This construction,
built in brick masonry, has suffered severe structural damages, shown through
significant deformation, cracking and plastic hinges that reduce its bearing capacity.
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It seems necessary to perform a structural evaluation in order to design efficient
restoration actions.

The article is organized as follows: Section 1 consists of an introduction and brief
state of the art, Section 2 describes the different image-based techniques that were
employed; Section 3 is made up of the description of the construction, the current
deformation, damage, and the numerical aspect through the FEM; Section 4 describes
two robustness indices based on geometrical discrepancies, a manual calibration
of the model and a complementary strategy to evaluate the current stability of the
construction (considering the complex geometry and the presented cracking); and
finally, Section 5 shows the conclusions.

2. Image Based Approaches: Digital Image Correlation and Structure
from Motion

The great diversity of approaches today, along with their flexibility, place
image-based procedures as a suitable solution for the analysis of constructions [3,9,12],
materials [13,14], and pathologies [8].

The different methodologies that comprise this approach, particularly in
the field of numerical evaluation of constructions, highlight: (i) Digital Image
Correlation (DIC); and (ii) image-based modelling procedures. While the former
provides mechanical data of materials and constructive solutions (in the form of
displacement and strains), the latter allows the definition of a dense, accurate, and
photorealistic geometrical model of the construction. Their combination provides
relevant information for the numerical analysis of the structure.

2.1. 2D Digital Image Correlation

A wide variety of methodologies has been developed and used to study
material and union behavior. Some of these are [14,15]: (i) Moiré interferometry;
(ii) Holography interferometry; (iii) Shearography; and (iv) Digital Image Correlation.

These methodologies prove to have important advantages, compared to
traditional methods based on strain gauges or LVDT’s (Linear Variable Differential
Transformer) such as their non-invasiveness and their full-field data information. In
comparison, traditional methods provide only local information and require direct
contact with the tested material. Within this wide range of techniques, the use of
Digital Image Correlation (DIC) stands out.

To characterize the materials used in the dome, various compression tests
were performed separately on each material (three in each material) during the
experimental campaign that was carried out. Considering the procedure defined
by [16], an extra specification, such as the mortar joint material (made by gympsum
mortar), was considered.
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In order to verify the flexibility and accuracy of the shown method, one standard
sensor was used for both the DIC and the SfM: a digital reflex camera Canon
500D. However, in contrast to the image-based modelling strategy, DIC requires
the preparation of the analyzed specimen, following the approach defined by [16]:
(i) MIG (Mean Intensity Gradient) evaluation [17] of the speckle pattern; (ii) camera
pose estimation [18]; and (iv) camera calibration [19].

Once the specimen has been correctly pre-processed, different images were
captured during the test (Figure 1). Also, concerning the test setup, a large focal
distance and working distance were used in order to minimize the geometrical
distortion, out of plane displacements (approximation to a telecentric lens
system) [20], depth of field, and light conditions.

Remote Sens. 2016, 8, 60 3 of 21 

 

2.1. 2D Digital Image Correlation 

A wide variety of methodologies has been developed and used to study material and union 
behavior. Some of these are [14,15]: (i) Moiré interferometry; (ii) Holography interferometry; (iii) 
Shearography; and (iv) Digital Image Correlation. 

These methodologies prove to have important advantages, compared to traditional methods 
based on strain gauges or LVDT’s (Linear Variable Differential Transformer) such as their 
non-invasiveness and their full-field data information. In comparison, traditional methods provide 
only local information and require direct contact with the tested material. Within this wide range of 
techniques, the use of Digital Image Correlation (DIC) stands out. 

To characterize the materials used in the dome, various compression tests were performed 
separately on each material (three in each material) during the experimental campaign that was 
carried out. Considering the procedure defined by [16], an extra specification, such as the mortar 
joint material (made by gympsum mortar), was considered. 

In order to verify the flexibility and accuracy of the shown method, one standard sensor was 
used for both the DIC and the SfM: a digital reflex camera Canon 500D. However, in contrast to the 
image-based modelling strategy, DIC requires the preparation of the analyzed specimen, following 
the approach defined by [16]: (i) MIG (Mean Intensity Gradient) evaluation [17] of the speckle 
pattern; (ii) camera pose estimation [18]; and (iv) camera calibration [19]. 

Once the specimen has been correctly pre-processed, different images were captured during the 
test (Figure 1). Also, concerning the test setup, a large focal distance and working distance were used 
in order to minimize the geometrical distortion, out of plane displacements (approximation to a 
telecentric lens system) [20], depth of field, and light conditions. 

 
Figure 1. (a) Detail view of the brick and speckle pattern applied during the Digital Image 
Correlation (DIC) test; (b) Histogram of the speckle pattern. 

The basic principle of DIC is the tracking (or matching) of the different areas of the images 
which were captured during the test (before and after deformation occurs), called subsets. As an 
initial approximation of this tracking, a correlation coefficient (generally the Zero Normalized Cross 

Figure 1. (a) Detail view of the brick and speckle pattern applied during the Digital
Image Correlation (DIC) test; (b) Histogram of the speckle pattern.

The basic principle of DIC is the tracking (or matching) of the different areas
of the images which were captured during the test (before and after deformation
occurs), called subsets. As an initial approximation of this tracking, a correlation
coefficient (generally the Zero Normalized Cross Correlation) [20] is used. Later, this
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initial approximation is optimized by the use of a non-linear strategy (such as the
Inverse Compositional Gauss Newton method) [20] which allows the evaluation
of the displacement suffered by the subset along the different captured images
(Figure 2) [16].
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Complemented to this optimization process an interpolation process (based on
splines) is used with the aim of obtain sub-pixel accuracy [20]. Considering multiple
subsets in the image, their analysis can provide a full-field displacement. Later,
the strains suffered by the specimen during the test, which allow the evaluation of
its mechanical properties, can be obtained by a direct relationship between the
obtained displacement on the measurement point and the initial length of the
virtual extensometers [16]. A total of three virtual extensometers were placed
on the ROI: (i) A-A’ and B-B’ in the longitudinal direction; and (ii) C-C’ in the
transversal direction.

Concerning accuracy, there are different studies [15,21,22] that endorse the
DIC’s precision for the assessment of the material’s mechanical properties. For a
standard test configuration, the accuracy may range from values of 0.01–0.04 pixels.
Considering a conservative threshold at 0.1 pixels, and an acceptable accuracy for
the test of 0.01 mm (from which the critical pixel size is set at 0.1 mm), the test’s
configuration is shown in (Table 1).

Table 1. Summary of the different properties set during the Digital Image
Correlation (DIC) test carried out with a Canon EOS 500D and a macrolens system
70–300 mm.

Values Adopted during the Digital
Image Correlation (DIC) Test

Aperture 7.1
Focal length (mm) 200

Working distance (mm) 2700
Pixel size (mm) 0.063

Acquisition frequency (Hz) 0.33

Once the stress-strain curve has been obtained (by a relationship between the
stress applied by the compression press and the strains obtained by DIC) (Figure 3b),
it is possible to extract the mechanical properties of the materials as follows (Table 2):
(i) the Young Modulus was considered as the ratio between one third of the maximum
force achieved and the mean strain provided by the longitudinal extensometers (A-A’
and B-B’); (ii) for the Poisson ratio, the relationship between the strains provided by
the longitudinal extensometers and those obtained by the transversal extensometer
(C-C’) was taken into account; and (iii) the compression strength was considered as
the maximum pressure supported by the specimen.
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Figure 3. Results after the experimental campaign (2D DIC). (a) Deformation
measurement, expressed in pixels, between two captures and positioning of
the virtual extensometers; (b) Stress-strain curve obtained with the virtual
extensometer A-A’.

Table 2. Mechanical properties obtained by the performed DIC test.

Mechanical Properties Obtained by the DIC Test

Clay brick Gypsum mortar
E (GPa) 3.10 ˘ 0.30 1.15 ˘ 0.06

ν (-) 0.22 ˘ 0.05 0.23 ˘ 0.02
fc (MPa) 7.80 ˘ 0.90 2.12 ˘ 0.10

To assess the accuracy of the previously mentioned procedure, a comparative
study was carried out, between the strain rate applied by the compression press
(with an average value of ´1.77 ˆ 10´6 s´1), and the one obtained by the different
performed DIC tests and the different virtual extensometers used (with an average
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value of ´1.93 ˆ 10´6 s´1). The results obtained demonstrate the accuracy and
suitability of the applied configuration and algorithms, with an estimated precision
of 0.056 pixels (which correspond to an approximate value of 3.53 µm). This value
proves to be lower than the previously shown critical value.

2.2. Image-Based Modelling: Structure from Motion

In recent years the image-based modelling strategy, called Structure from
Motion (SfM), has positioned itself as an attractive alternative to laser scanning
systems. Its flexibility—as it can be integrated into different types of platforms (e.g.,
UAV [9])—low-cost, and qualities of the point cloud (high density, photorealistic
texture, and accuracy) place the solution at a vantage position in the evaluation of
historical buildings [23].

This technique integrates within its operating structure the advantages of
computer vision (automation and flexibility) and photogrammetry (accuracy and
reliability) [23] to obtain high density three dimensional models whose accuracy can
compete with those of the laser scanner system [24,25].

For this case study, a standard SfM strategy is applied, comprising the following
stages: (i) automatic extraction and keypoint matching by applying the Affine-Scale
Invariant Feature Transform (ASIFT) algorithm [26]; (ii) automatic hierarchical
orientation of images; and (iii) dense model generation through the MicMac algorithm.
For further details on this methodology see [12]. Concerning the photogrammetric
network a convergent protocol was used, combining a total of 32 cameras with
high overlap (around 90%) and throwing a mean GSD (Ground Sample Distance) of
1.61 mm. Complementary to these, different circular targets (along the lower part of
the pendentive) were used to scale the model (this measurement were taken by a total
station using a radiation approach).

As a result of the implementation of the above-mentioned methodology it
is possible to obtain a dense and photorealistic texture point cloud (Figure 4a).
Afterwards, applying CAD conversion techniques (meshing, surface parameterization,
extrusions, revolutions, etc.), or even generating true-ortho-images, increase further
the applicability of the obtained product. More precisely, they help to accurately build
CAD models suitable for subsequent numerical simulations, as well as complementary
products, which analyze patterns of deformation and cracking for the pathological
characterization of the structure [9] (Figure 4b).

Concerning the total error, associated with this point cloud, a quadratic error
propagation was used Equation (1). Into this approach, two sources were considered:
(i) the error coming from the bundle adjustment of the photogrammetric network;
and (ii) the error corresponding to the scaling process Equation (2).

εt “
b

εp2 ` εs2 (1)
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εs “
a

2εi
2 ` εm2 (2)

where εt represents the total error; εs the scale error; εp the error associated with the

photogrammetric network; εi the origin error stablished as
?

2 ˚ p
pixelsize

γ
q, where γ

is the subpixel accuracy of the target detection algorithm (estimated in 0.5); and εm

the error associated with the total station.
As a result a budget error of εt = 4.38 mm was obtained (with values of εP = 3.22

mm, εi = 1.14 mm, εm = 2.50 mm, and εs = 2.97 mm).
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the most damaged section through the texture model.

3. Structural Evaluation of San Lorenzo’s Dome

3.1. San Lorenzo Church

The church is built with irregular masonry walls (slabs of slate) fixed with lime
mortar and at the corners finished with granite masonry. The parish church of San
Lorenzo in Sejas de Aliste is located in the region of Aliste, Zamora province (Spain),
32 m long and 17 m wide, it belongs to the family of temples with transept crossing,
Latin cross-shaped floor plan, and transept and nave at different heights (Figure 5).

The transept crossing is the most representative element of this temple. Its
importance in the building is highlighted in the interior through the semi-elliptical
dome that shelters the whole crossing. Its eight ribs marked with bands stand
out. The transept is highlighted in the outside as well, covering the dome with a
hipped roof that rises above the nave and transept height. This roof is built with
a pavilion-shaped chestnut-timber framing, with regularly placed rafters that lean on
the main beams and bear the load of the roof, made up of curved tiles and wooden
roof boards (Figure 6a). Overall stability is obtained by use of tie beams at the top of
the bearing walls, which collect the loads of the rafters and the hip rafters or main
beams. Angle-ties, placed at 45˝ in each corner under the hip rafters prevent the
transversal deformation of the tie beams (Figure 6a).
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Concerning the dome, the construction has an estimated diameter of 6.72 m and
a total height (measured from the pendentive) of 2.63 m. This structure was built
with traditional tile brick and gypsum mortar, reaching a total thickness of 5.00 cm.
It resembles, from a construction point of view, a Catalan vault (Figure 6b). It is also
worth mentioning the presence of an infill (basically composed of a mixture of sand,
clay and fragments of bricks with a medium compaction) at the support of the dome.
This infill reaches a total height of 0.75 m and an average thickness of 0.65 m, and its
presence contributes to the stability of the construction.

3.2. Present Damage and Deformation

The characterization of both, deformations and cracking patterns, is key to
understanding the structure in terms of stability and safety. The high density,
accuracy, and photorealistic texture of the point cloud obtained by the proposed
methodology (Section 2.2) can address this task foregoing any need of physical
contact with the structure. Through evaluation of the obtained product, it is possible
to obtain a hypothesis for the origin of the damage.

It is worth noting that there is widespread damage in the area enclosed by three
ribs (corresponding to the southern part of the dome). This area has two main cracks,
in the parallel direction, which are interconnected through the presence of two plastic
hinges. At its maximum, there is a deflection of 19.70 cm (compared to the initial
estimated model) (Figure 7).

These structural pathologies seem to be related to the presence of assymetric
loads acting on part of the dome’s shell (Figure 7a). More specifically the current
damages, which are located under the south wing, can be attributed to a failure of
the timber structure.

On one hand, the evaluation of photogrammetric products (which are the result
of the previously defined SfM strategy) allows an estimation of the possible causes
of the dome’s damage. However, it is required to have numerical strategies to
verify these assumptions and assess the current state of the construction. For the
present case study, and considering the hypothesis of failure of the timber structure
several numerical analyses were performed: (i) numerical evaluation of the timber
structure for the worst load case: snow; (ii) evaluation of the dome’s stability under
self-weight; and (iii) numerical evaluation of the interaction timber-dome as a result
of a timber failure.

Previous investigations carried out by [16], verified the stability of the timber
structure for the most adverse load case: the presence of snow. Yielding a maximum
deflection of 2.35 cm, it proves to be insufficient in order to interact with the dome.
Considering these results, it is possible to conclude that the interaction between the
cover and the dome seems to be linked with the presence of pathological agents
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(mainly moisture and biological organisms) which reduce the bearing capacity of the
timber structure until it fails and rests on the dome.Remote Sens. 2016, 8, 60 9 of 21 
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estimated using the formulas displayed in [28], setting the initial Young modulus at 2.54 GPa. 
However, further visual inspections showed the presence of an erratic masonry with low overlap 
between units. In accordance with this, a reduction of the initial Young modulus was considered for 

Figure 7. Results of the visual inspection over the different photogrammetric
products: (a) Surface comparison between the initial proposed model and the most
deformed one estimated by the SfM point cloud; (b) Damage inspection in the
orthophoto, in green the main observed cracks, in blue the secondary cracks, in
yellow the material removal.

3.3. Numerical Simulation of the Initial State of the Dome: Self-Weight and South
Wing Support

Understanding the degradation mechanisms present in the construction requires
a geometrical model of its initial state, a material characterization, as well as
its boundary conditions, and load assessment. According to these, several
numerical simulations (through non-linear static analysis) were performed in order to
understand the causes and the construction’s initial conditions. Several improvements,
regarding the geometric and mechanical aspects, are introduced in comparison to the
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previous investigations performed by [16]: (i) consideration and modelization of the
infill-dome interaction; and (ii) account of gypsum as union material.

Regarding the mechanical aspect, a macromodelling strategy of the masonry was
followed. This technique blends the bricks, mortar joints as well as the brick-mortar
interface into one continuum assuming homogeneous material properties (Table 3).
Also, the recommendations exposed by reference [6,27] were considered. An initial
estimation of the masonry’s Young modulus was estimated using the formulas
displayed in [28], setting the initial Young modulus at 2.54 GPa. However, further
visual inspections showed the presence of an erratic masonry with low overlap
between units. In accordance with this, a reduction of the initial Young modulus was
considered for subsequent simulations (half of the initial estimated), yielding a final
value of 1.22 GPa, analogous to those used in similar studies [7,29].

Table 3. Mechanical properties adopted for the macromodelling of the masonry.

Mechanical Properties for the Masonry Structure

Em (GPa) Young Modulus 1.22
δm (kg/m3) Density 1800.00

νm (-) Poisson coefficient 0.25
ft,m (MPa) Tensile strength 0.16
fc,m (MPa) Compressive strength 1.60
dt,m (mm) Ductility index in tensile 0.093
dc,m (mm) Ductility index in compression 1.6

βc,m (-) Shear retention 0.2

For the numerical simulation of the infill, a Morh-Coulomb failure criterion
was considered, with its mechanical properties set according to the visual inspection
(medium compaction) and the recommendations shown by [7,29,30] (Table 4).

Table 4. Mechanical properties adopted for the infill simulation.

Infill Mechanical Properties

Ei (GPa) Infill Young Modulus 0.80
δi (kg/m3) Infill density 1800.00

G (GPa) Infill shear modulus Ei/2
fi (MPa) Cut-off tension 0.02
Φi (deg) Infill friction angle 39
ci (MPa) Infill cohesion 1 ˆ fi

Concerning the load (for the numerical evaluation of the interaction between
timber structure and the dome), a value of 8000 N was considered, resulting from
the combination of different loads: (i) 650 N/m2 for the arabic tiles and wooden
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board; and (ii) 400 N/m2 for the snow load. Finally, the numerical model (for both
simulations), had a total of 46,181 high order solid elements (CTE30) [31] (Figure 8a).Remote Sens. 2016, 8, 60 11 of 21 
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(dH(X,Y) ≠ dH(Y,X)). For that reason, the symmetrical Hausdorff distance dSH Equation (5) is used as 

Figure 8. (a) Isometric view of the mesh and the control points (nodes) used for the
numerical simulations; (b) First principal stress distribution, expressed in N/mm2

for the self-weight case; (c) First principal stress distribution, expressed in N/mm2,
for the numerical model which considers the asymmetric load.

It is possible to observe that in the absence of external loads acting on the dome,
the structure seems to be stable under its own weight (Figure 8b). In spite of this,
considering the support of the south wing (roof tile, boards, and rafters), the dome
begins to present damage (cracking) and its deformation tendency (Figure 8c) seems
to be similar to the one shown in the photogrammetric model (Figure 7a).

However, in terms of deformation, considering for this purpose six control nodes
along the damage area (Figure 8a), the model exhibits high rigidity. This suggests
that the initial mechanical conditions are inadequate to reproduce the damage and
deformation presented in the dome (Table 5).

The high discrepancies shown in the previous numerical simulation suggest the
need for an optimization of the mechanical properties. However, performing such
an optimization requires inevitably having robustness indices to quantify the level of
improvement/worsening introduced by the different variable’s variations.
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Table 5. Comparison between the obtained and expected displacement of the
control nodes in the numerical model (initial considerations).

Control Node Displacement
Obtained (mm)

Displacement
Expected (mm)

54 1.95 148.00
20256 0.48 46.00

56 1.57 198.00
21125 0.54 52.00

443 2.12 196.00
64123 0.57 25.00

Exploiting the advantages offered by the SfM or laser scanner systems, two novel
robustness parameters (based on geometric discrepancies) are proposed: (i) a global
parameter, based on the similarity between the numerical and real model; and (ii) a
local index which provides data about the geometrical variations introduced by the
new variables considered in different areas of the construction.

4. SfM, NURBS Modelling, Global and Local Hausdorff Metrics: Geometrical
Strategies to Improve the Knowledge about the Initial and Current State of
the Constructions

4.1. Global and Local Hausdorff Metrics as Geometric Accuracy Indices

The Hausdorff distance or Hausdorff metric is used in a wide range of fields,
such as point cloud [32] and meshes [33] comparison, object recognition [34], and
image comparison and matching [35]. This metric proves to be a robust strategy for
the similarity evaluation of two compact and non-empty sub-sets within a metric
space. It is formulated as follows Equations (3) and (4):

dpy, Xq “ minxPX ||y´ x ||2 (3)

dHpY, Xq “ maxyPYdpy, Xq (4)

where ||.||2 stands for the Euclidean norm; min the minimum value (distance);
max the maximum distance; X and Y are the two compact sub-sets defined by the
numerical and photogrammetric nodes; and x and y the considered points inside
these sub-sets.

It is worth mentioning that, considering the previously defined concept of
Hausdorff distance, the value of the norm does not have a symmetrical nature; it
is therefore different in each direction (dH(X,Y) ‰ dH(Y,X)). For that reason, the
symmetrical Hausdorff distance dSH Equation (5) is used as metric comparison to
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avoid potential errors of geometrical similarity. This way a more robust solution is
provided for geometry comparison.

dSHi “ max tdHpy, Xq, dHpx, Yqu (5)

where dSHi is the symmetrical Hausdorff distance; of sub-set i, between models
(numerical and photogrammetric); and x and y are two points that respectively
belong to sub-sets X and Y.

On the other hand, understanding the global structural behavior of the analyzed
construction inevitably requires several numerical analyses in order to adapt
the simulated behavior to the real one. It is necessary to take into account the
consideration that new conditions or new values of variables may worsen or improve
the global and/or local result of the structure. It is therefore possible to define, out of
the previously shown comparison metric Equation (3), two novel geometrical indices
of robustness that represent improvements or worsening in the new numerical
simulations in comparison to a reference model, considering the different variations
of the variables or conditions: Global Hausdorff metric Equation (6); and Local
Hausdorff metric Equation (7).

GHms “

¨

˚

˚

˝

n
ř

i“1
dSHpiq ´

n
ř

i“1
dSHbpiq

n
ř

i“1
dSHbpiq

˛

‹

‹

‚

ˆ 100 (6)

LHmspiq “
dSHpiq

dSHre f piq
(7)

where GHms represent the Global Hausdorff metric index and LHms the Local
Hausdorff metric index, dSHpiq the symmetrical Hausdorff distance to cluster i
considered for the model; dSHb(i) the symmetrical Hausdorff distance for cluster i of
the base model (the model that results from the geometrical discrepancies between the
initial model and the photogrammetric one); and dSHre f (i) the symmetrical Hausdorff
distance from cluster i to the reference one (which may be the base model).

On one hand, GHms is able to provide a global value, expressed in percentage,
for the improvement/worsening of the numerical simulation model in comparison
to the model that was considered as base model. On the other hand, LHms provides a
comparison of the variations between the numerical model and the reference model
at a local level (values lower than one indicates a local improvement and values
higher than one, a worsening).

For this case study, the reference model was considered to be the base model,
obtained by the application of Equation (3) between the photogrammetric model and
the non-deformed numerical model (Figure 9).
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distance (dSH) (expressed in m) for the base model.

Finally, and considering GHms and LHms as the robustness indexes, a manual
calibration was carried out, according to the established lower and upper bounds
(Table 6) (Figure 10). According to [36], which provides a range of mechanical
properties for historical masonry constructions, the upper and lower bounds were
established with a safety factor of 1.35, since nowadays only visual inspection and
geometrical survey are available (without an extensive experimental campaign).

Table 6. Parameters and variables considered during the manual calibration stage.

Variable Initial
Value

Upper
Bound

Lower
Bound

Update
Value

ft,j (MPa) Masonry tensile strength 0.16 0.20 0.05 0.13
Ei (GPa) Infill Young Modulus 0.80 1.00 0.05 0.50
Em (GPa) Masonry Young Modulus 1.22 0.89 1.33 0.90

β (-) Shear retention factor 0.20 0.01 0.20 0.15

Noteworthy is the presence of a red area (Figure 10). The said phenomenon
is associated with the presence of an offset in the spatial distribution of the plastic
hinge in comparison to the photogrammetric one. Considering the results provided
by the GHms and LHms indices (Figure 10b) (Table 7), a mild improvement in
the geometrical similarity between the photogrammetric and numerical model
(Figure 9b) is observable compared with the initial conditions (Figure 10a) and
previous studies carried out on the dome [16] (presence of an infill, independent
oculus, and manual calibration of the mechanical properties).
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On one hand, the obtained numerical results, with a value of GHms of 7.40%, are insufficient to 
study the current stability of the dome based on an initial state model. The discrepancies, derived 
from the large number of currently unknown variables, call for the use of additional sensors as well 
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On the other hand, the causes of the current damage and deformation correspond to the initial 
one: a local failure of the timber structure (south wing) could be the cause of pathological agents 
acting on the wood (moisture and biological agents). 

Figure 10. (a) First principal stress distribution, expressed in N/mm2 of the
updated model; (b) Geometrical accuracy, in terms of Local Hausdorff metric (LHms)
of the updated model; in green, values where the geometrical model improves the
results, in orange values where no improvements are carried out and in red, areas
where the updated numerical model displays worse behavior.

On one hand, the obtained numerical results, with a value of GHms of 7.40%, are
insufficient to study the current stability of the dome based on an initial state model.
The discrepancies, derived from the large number of currently unknown variables,
call for the use of additional sensors as well as additional experimental campaigns
(in laboratory and in field tests).

On the other hand, the causes of the current damage and deformation
correspond to the initial one: a local failure of the timber structure (south wing)
could be the cause of pathological agents acting on the wood (moisture and
biological agents).

In order to understand the current stability of the construction it is required
to evaluate it with the actual deformation and damage (cracks). Motivated by this,
and given the geometrical and radiometric properties provided by the SfM systems,
a geometric strategy is defined below.
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Table 7. Comparison between expected and predicted displacement of the
considered control nodes.

Control Node Displacement
Obtained (mm)

Displacement
Expected (mm)

54 16.56 148.00
20256 22.80 46.00

56 26.10 198.00
21125 31.52 52.00

443 46.19 196.00
64123 38.92 25.00

4.2. Analysis of the Current Stability of the Construction Based on a SfM and
NURBs Approach

It should be stressed that the structural evaluation of historical constructions
not only implies the assessment of the damage’s causes, but also requires a thorough
understanding of the current stability (considering the actual deformation and
damage), in order to take efficient restoration actions on the construction and to
predict its integrity in case of different events (e.g., earthquakes). With the aim of
improving the knowledge of the current stability, with respect to previous studies
(Section 3.3 and [16]), a new approach is needed.

Although the point clouds obtained by the previously defined SfM approach,
rich in geometric (density and accuracy) and radiometric (photorealistic texture)
features, accurately represent the actual state of the construction, it is required to
have additional strategies capable of exporting these properties into a numerical
environment. The resulting mesh (triangulation of the SfM point cloud) has
significant shortcomings to be considered as a suitable CAD/CAM model. Among
its deficiencies, the following stand out [37]: (i) High density/resolution, which
implies a large number of triangles and (ii) inadequate shapes.

Under the said framework, a methodology able to exploit these features based
on the Non-Uniform Rational B-Splines (NURBs) and enhanced by the integration of
structural pathologies (such as cracks and lack of material) is proposed. It follows
the workflow shown below (Figure 11).

Considering the point cloud as the starting point, this product is firstly meshed
by a standard Delaunay triangulation. Usually, these meshes present a non-manifold
structure, which implies a low quality product with non-natural triangles which
hinder the NURBs’ generation. In order to minimize this drawback we use a
topological reconstruction, which generates a maniflod mesh, based on the approach
defined by [38].
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the construction.

Once the mesh has been correctly defined, a region clustering (boundary
contours) was carried out, comprising two critical stages. In a first stage the boundary
vertex (limits of the construction, lack of material and the absence of an oculus piece)
of the mesh are extracted. Later, in a second stage, the cracks are integrated into
these boundary contours, through a projection of the observed crack path on the SfM
point cloud, as established [9].

After that, a correct representation of these regions by means of NURBS patches
is required. For this purpose and in order to build a regular base on which to correctly
estimate the parameters of the different regions, a quadrilaterization of the mesh
is carried out. This procedure is based on the combination of Morse theory and
Spectral mesh analysis according to [37]. This methodology guarantees a complete
quadrilateral description of the mesh, with a C1 (tangential continuity) between
neighboring patches, ensuring a continuity along the edges.

Since the construction’s surface needs to be fitted using different NURBs regions
(quadrilaterial patches), a regularization process of these regions is necessary. This
procedure comprises several steps [37]: (i) selection of one random border in
the considered path and its opposite; (ii) border’s regularization using B-Splines
with a lambda density; and (iii) matching between points by means of the Fast
Marching Method.
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Finally, the points obtained by the regularization procedure are used as control
points to fit each quadrilateral path to a NURBs’ surface. It is worth mentioning,
that, in construction elements such as arches, vaults or domes, the acquisition
of its extrados (as a point cloud) is not possible in most of the cases, due to the
presence of several setbacks (e.g., presence of infill, poor lighting conditions or lack
of accessibility). Therefore, this previously shown strategy restricted the analysis of
such constructions with the membrane theory (Mindlin-Reissner or Kirchhoff-Love
theories). These theories limit the geometry of the numerical model’s different
elements to a minimum recommended size of ten times the construction’s thickness.
It implies as well the waste of the geometrical potentialities offered by the previously
shown methodology.

Based on what is remarked above, a complementary strategy is proposed;
able to estimate the construction’s extrados based on its intrados geometry. This
methodology is made up of the following stages: (i) decorative elements removal;
(ii) normal estimation of the points by means of eigenvalue analysis of the covariance
matrix [39]; (iii) translation of each point along the normal direction (with a value
equivalent to the construction’s thickness); (iv) point cloud meshing based on the
Poisson approach and (v) projection of the cracks along its orthogonal direction. As
a result, an accurate geometrical model of the construction is obtained with which to
evaluate its actual stability (Figure 12).

Regarding the numerical aspect, and for the present case study, an incremental
static non-linear FEM was carried out [40]. The material properties and the modelling
strategy remain the same as those estimated for the initial model (considering the
most appropriate ones) in Section 3.3, including a discrete model of the cracks.

For the present case study, this cracking is modelled considering the residual
transversal stiffness (shear strength) through Equation (8). Concerning the normal
stiffness, only a contribution in compression was considered, dismissing any
contribution to the tensile regime according to Equation (9) (Table 8).

Kt,c “
GbGm

hmpGb ´ Gmq
βcrack (8)

Kn,c “
EbEm

hmpEb ´ Emq
(9)

where Kt,c and Kn,c represent the tangential and normal stiffness respectively; Gb
and Gm the shear modulus of brick and mortar, respectively; Eb and Em the Young
modulus of brick and mortar, respectively; hm the mortar thickness; and βcrack the
shear retention factor.
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Figure 12. (a) Isometric view of the considered mesh model; (b) Discrepancies,
expressed in mm, between the Non-Uniform Rational B-Splines (NURBs) and the
photogrammetric models.

Table 8. Mechanical properties considered for the interaction between
macroblocks (cracks).

Mechanical Properties of the Cracks

hm (mm) Mortar thickness 15.00
Gb (N/mm2) Brick’s shear modulus 1.27
Gm (N/mm2) Mortar’s shear modulus 0.47

βcrack Shear retention factor βc,m
Kt,c (N/mm3) Tangential stiffness 121.88
Kn,c (N/mm3) Normal stiffness (compression) 49.74
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Finally a mesh for the numerical simulation is provided, with a total of
45,350 elements, clustered in: 45,196 high order solid elements and 154 high order
interface elements.

For the stability analysis, all the loads acting on the dome (self-weight, infill
pressure and asymmetric load) were considered. Afterwards, the estimated safety
factor was established as the ratio between the current load and the collapse load
obtained in the numerical simulation (Figure 13).
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According to the study carried out in the Section 4.1 and the inspection of the
SfM point cloud, the collapse mechanisms are mainly due to the formation of plastic
hinges in the tensile regime.

The complexity of the model and the uncertainties associated with the variables
(e.g., soil properties) require the study of the influence of different mechanical
variables in the global stability of the construction, through parametrics analysis.

For these analyses, only the most important mechanical properties (to the tensile
regime) were considered, namely: (i) Young modulus; (ii) tensile strength; and
(iii) shear retention factor.

It can be observed, that the stability of the dome is mainly conditioned by the
mechanical properties of the masonry, rather than the mechanical properties of the
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infill. Therefore, a safety factor (considering the initial mechanical properties) of
1.23 was established (Figure 13c).

However, it is worth mentioning that only the most important cracks were
taken into account. By following a discrete strategy, minor and diffuse cracks were
not considered. For this reason further investigation, integrating complementary
approaches is necessary in order to obtain a better estimation of the actual stability.

5. Conclusions

Based in the already established photogrammetric techniques of Digital
Image Correlation (DIC) and image-based modelling (SfM), and complemented
with geometrical (NURBs modelling and Hausdorff distance) and numerical
methodologies (FEM), the strategies defined and used in the article allow the needs
of structural evaluation of historical constructions to be met.

On one hand, two novel geometric quality indices are introduced and defined,
called Global Hausdorff metric or GHms and Local Hausdorff metric or LHms. They
allow to assess globally (GHms) and locally (LHms) the robustness, in geometric
terms, of the obtained numerical model in comparison to the point cloud (deformed
shape) of the construction. These indices can calibrate the different variables, based
on the geometrical similarity between models acting on the numerical simulation.

On the other hand, with the aim of evaluating the actual stability of the
construction and exploiting the geometrical and radiometric components of the
obtained products (SfM point clouds), a modelling strategy based on NURBs is
proposed. This strategy is able to profit from these properties to obtain an accurate
geometrical model (with the actual deformation and damage), that serves as a basis
for subsequent numerical analysis.

In order to validate these parameters and modelling methodology, it was applied
to a real case study: the dome of the church of San Lorenzo in Sejas de Aliste (Zamora,
Spain). Several simulations were carried out to understand the degradation process
between the initial and the current state, and to corroborate the viability of the defined
robustness parameters with a value of 7.40%, for the GHms. When studying the
current construction’s stability, through the modelling strategy defined in the article,
the results reveal a damaged construction with an estimate safety factor of 1.23.

However, the complexity of the model, the initial state, the absence of
comprehensive knowledge of the different construction stages and the need of more
experimental campaigns hinder the numerical results and the correct estimation of
the safety factor. Taking this into account, further research will focus on the following
aspects: (i) dynamical tests; and (ii) a robust calibration procedure (e.g., Non-Linear
Square Minimization) based on the geometrical indices defined to enhance the
numerical simulation of the dome.
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Complementary to this, concerning the used image-based procedures, their
potential includes: (i) flexibility (these may be used in the evaluation of mechanical
properties of materials as well as geometrical models); (ii) wide range of applications,
its use may be extended to other types of constructions such as tunnels or bridges;
(iii) non-contact and non-destructive techniques; (iv) low associated cost; and
(v) abundance of geometric and radiometric data. However, the methodology
has some limitations: (i) the lack of geometrical information in non-visible areas,
requiring complementary sensors such as electric tomography or ground penetration
radar; and (ii) the model’s accuracy, with several millimeters of error, restricting this
strategy to constructions with large deformations.
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Geometrical Issues on the Structural
Analysis of Transmission Electricity Towers
Thanks to Laser Scanning Technology and
Finite Element Method
Borja Conde, Alberto Villarino, Manuel Cabaleiro and Diego Gonzalez-Aguilera

Abstract: This paper presents a multidisciplinary approach to reverse engineering
and structural analysis of electricity transmission tower structures through the
combination of laser scanning systems and finite element methodology. The use
of laser scanning technology allows the development of both drawings and highly
accurate three-dimensional geometric models that reliably reproduce geometric
reality of towers structures, detecting imperfections, and particularities of their
assembly. Due to this, it is possible to analyze and quantify the effect of these
imperfections in their structural behavior, taking into account the actual geometry
obtained, different structural models, and load hypotheses proposed. The method
has been applied in three different types of metal electricity transmission towers
with high voltage lines located in Guadalajara (Spain) in order to analyze its
structural viability to accommodate future increased loads with respect that which
are currently subjected.

Reprinted from Remote Sens. Cite as: Conde, B.; Villarino, A.; Cabaleiro, M.;
Gonzalez-Aguilera, D. Geometrical Issues on the Structural Analysis of Transmission
Electricity Towers Thanks to Laser Scanning Technology and Finite Element Method.
Remote Sens. 2015, 7, 11551–11567.

1. Introduction

Traditionally, building high-voltage power lines has had few obstacles during
their construction phase. Currently, this type of infrastructure is facing a number of
setbacks: it has a considerable impact on the environment, on economic activities,
and on the expansion of cities, besides its economic cost, including inspections and
maintenance. All of these problems have led the companies that use and maintain
this infrastructure to consider making the best use possible of the existing lines before
placing new lines. Old lines were designed according to the standards of the time in
which they were built and they were designed to bear a certain load. In many cases,
these towers were designed over forty years ago, so the increased loads that will be
placed on them will be far greater than the one for which they were designed. In
addition to this fact, the design and execution data of the towers has, in most cases,
disappeared, and in other cases, building regulations did not even exist at the time.
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Due to this, addressing the re-use of existing power lines requires a geometric and
structural analysis of the towers to assess their current state.

Formerly, the towers’ dimensional analysis was performed through expeditious
and manual methods (through the use of a gauge and a measuring tape) that
required direct contact with the structure and, therefore, meant high risks and
high costs. Afterwards, in search of a remote non-invasive measuring method,
classic topographic measuring allowed thorough, notably intense, field work taking
angular measurements and determining singular points indirectly through angular
intersections. More recently, the existence of reflectorless electromagnetic surveying
equipment has allowed direct measurement of distances and angles from a single
point, making field work easier and more efficient, although it solely focuses on
extracting unique and specific measurements determined by the topographer [1].
This has meant great uncertainty upon the elements of the tower, since the data was
only taken at the point where the measurement is performed. In order to have the
full representation of the geometry of the structure, in the last years laser scanning
has presented as an interesting solution [2–5], due to the fact that they generate
dense real-time point-clouds of the tower’s geometry from a distance [6]. However,
one of the major limitations of these terrestrial geotechnologies is the overall height
of the tower, impossible to cover completely from the ground, which has led to
the use of robotic unmanned aerial systems that take aerial images and, through
photogrammetric procedures, obtain dense three-dimensional models of this type of
infrastructure [7].

As for structural assessment, this kind of structure has been analyzed from
different points of view as presented in the literature: the effects of loading in the
stability of the tower [8–11]; the effects of the stiffness of connections [12–14]; and
causes of failure [15–17]. No previous work was performed in order to evaluate the
effect of geometric imperfections such as misalignments of structural members at
joints or assembly imperfections.

Therefore, in view of what is mentioned above, this paper presents a
non-destructive multidisciplinary approach that is articulated in two stages and
that analyzes geometrically and structurally electricity transmission tower structures:

1. The first stage will address a detailed geometric description of the structure
(reverse engineering) using a terrestrial laser scanner system, performing an
“as built” model that provides information on the structure’s most relevant
data, such as geometry, type, and dimensions of the metallic profiles and their
assembly drawings.

2. Secondly, and taking the geometric model obtained by the laser system
as a starting point, three different structural finite element models will be
developed: one model will have an ideal geometry considering the nodes of
the transmission tower to be pinned, supposing that this model was the one
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that was used in the original design of the towers. A second model will be
developed with the ideal geometry of the previous model, but considering
certain continuous elements of the transmission tower to be rigidly connected
at both ends. The third model will use the real geometry obtained from the
laser scanner (taking into account all possible initial imperfections as, for
example, misaligned structural members at joints) and will also consider the
stiffness behavior of the continuous elements of the tower. For its analysis
the current Spanish standard for the design of such towers will be taken into
account [18]. The analysis will be carried out in a linear elastic regime with
the software SAP2000 [19] to obtain data of the displacements and stresses in
transmission tower members for each load case established by the current codes.
It is expected to obtain conclusions about the performance of these different
structural approaches and, therefore, conclude which is the most appropriate
modeling strategy in structural assessment procedures when an increase in
loads to accommodate new services is demanded.

The paper is outlined as follows: after the introduction, in Section 2, the
characteristics of the towers’ considered structural models are described. Section 3
details: the equipment used, the production of the geometric models through
computer aided design (CAD) software, and the data used in structural analysis. In
section 4 the results are analyzed and end with the reached conclusions.

2. Structural Modeling of Truss Structures

A transmission tower could be considered as a three dimensional truss
structure [20], which is comprised of a reticular structure formed by discrete elements
(bar or rods), joined together at their ends by means of connections without friction
and designed to withstand the external forces by means of axial internal forces in
their members. The idealized structural model used for the study of this kind of
structure is usually based on the following assumptions [21,22]:

1. Individual elements or rods are joined together at their ends by means of
connections with no friction, which means the nodes transmit forces but do not
transmit moments.

2. The centroidal axis of each member is straight and matches the line that joins
each end of the member. The axis of all of the members that end in the same
node is cut at a single point; otherwise moments will appear in these members
so that the node could be at static equilibrium.

3. Whenever external loads are applied in the nodes, all the elements that comprise
the structure are subjected to tensile and compressive forces, since there is no
friction at the connections. This means that the self-weight of the elements is

563



replaced with loads applied at their ends. According to [23] bending caused by
direct wind loads on the structural elements can be omitted.

4. The cross section of each member has a negligible area compared to its length.
5. The self-weight of the elements is negligible, since the loads supported by the

structural elements are usually large in comparison to their weights.

Under the fulfillment of these assumptions, the structural elements are
exclusively subjected to axial forces. For the case studies later reported in this paper,
given the age of the towers and the virtual inexistence of structural calculation
software at that time, it is logical to assume that they were either calculated
manually, using the so-called Ritter method [21,22] or graphically, using the Cremona
method [21,22].

However when looking at the analyzed tower’s “as built” model we found out
that assumption 1 and 2 are not true in the case studies herein presented:

1. In the case of members of the towers, their connections are bolted and thus they
are not actually frictionless nodes. Additionally, some members, such as the
truss chords, are continuous elements, which can evidently transmit moments
from one side of a node to another [24].
Thus, these nodes are assumed to be rigidly connected behaving as elastic
embedment (or simply rigid joints), which cause local bending moments due
to rotations that take place as a consequence of the global deformation of the
structure. Such effect causes the so-called secondary bending moments and
consequently a secondary stress state, which are juxtaposed to the primary
stresses derived from axial forces.

2. Furthermore, truss members that end in the same node do not always cut it at
the same point, leading again to an apparition of secondary bending moments.
Such bending moments depend upon both proportion of the misaligned or
eccentricity and stiffness of the elements.

Both circumstances are observed in all towers herein analyzed. Figure 1
corresponds to an example of the aforementioned issues upon one of the case studies
later described (Tower 1). Furthermore, as it can be appreciated, the ideal situation
of perfectly-aligned elements assumed in the initial stage of structure design and
calculation can suffer variations during its construction on site. This is shown in
the “as built” model, obtained with the laser scanner, where small deviations in the
horizontality of several truss members and even a small deviation in the vertical
alignment of the main body of the tower can be appreciated (Figure 1).

All of these issues question the use of a model with ideal pinned connections,
which was possibly the used method at the time of the structure’s design and
calculation, and whether it is a valid model to perform further calculations at the
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present time. Therefore, in view of the constraints and considerations discussed
above, three different structural models of the towers are tested in order to compare
the results with each other and draw conclusions about the deformations and the
actual stress state of the tower’s elements, all under different load hypotheses
established by current standards [18].

1. Model with pinned joints and ideal geometry (Model 1). This model is supposed
to be the one that was used for the design of the towers. A three-dimensional
model with all members pin-jointed at nodes was developed that took into
account all the previously-mentioned assumptions. Accordingly, the adoption
of certain assumptions about the geometry provided by the laser scanner was
needed in order to adapt the model to an ideal geometry. More specifically, it
was assumed that all members concurring in one node were overlapping in
a single common point since, in reality, these members were assembled more
erratically. For this, the criterion used was to assume that the main vertical
members of the tower and the horizontal members were fixed in their position,
and the corrections changed the length and exact location of the diagonal
braces that connect at each joint. Additionally, the geometry was simplified in
certain areas of the horizontal sections of the towers, ignoring the bend and the
inclination. Accordingly, vertical deviation of the main bodies of the towers was
not taken into account. Finally, the obtained “as built” model measurements
of certain modules that form the main body of the towers are simplified to
theoretical values. For example, when certain lengths result in 1.99 m or 2.01 m,
the value is simplified and considered to be 2 m. For clarity, Figure 2 presents a
scheme with the principal structural parts of a transmission tower.

2. Model with rigid joints and ideal geometry (Model 2). According to the data
proportioned from the “as built” model, assumption 1 is not valid because
certain elements, such as truss chords, are continuous elements. Therefore, a
second model was elaborated which considers an ideal geometry but where
truss chords and horizontal members of the towers are considered rigidly
connected at both ends and all other structural components (truss elements) are
treated as pin jointed. In this way, the originated secondary bending moments
and, consequently, secondary stresses can be taken into account and their impact
in comparison to modeling the tower with all ideal pinned joints quantified.

3. Model with rigid joints and real geometry (Model 3). In contrast with the two
previous models, this approach considers all of the real geometric singularities
of the structure and includes them into the simulations; for example, it includes
horizontal deviations of truss chords, the vertical deviation of the tower’s main
body, as well as assumptions 1–3 obsolescence. To create such a structural
model, first a 3D wire-model was produced using the “as-built” model as a
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dimensional foundation. Secondly, it was imported as a “dxf” file into the
structure calculation software SAP2000 [19].
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technology according to the methodology presented in Section 3. 
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distance measurement is obtained with a nominal accuracy of 4 mm at 25 m range. The horizontal and 
vertical angular accuracy is of 60 µrad (3.8 mgon). The diameter of the laser spot is 4 mm at 50 m. 
According to the technical specification of the instrument, it has a maximum acquisition rate  
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Z-direction is perfectly defined during data acquisition. Due to the complexity of transmission towers 
and their heights, four scanner stations with a resolution of 5 mm at 25 m were required to enclose the 
whole structure. The resulting 3D point cloud (about 6 million points per tower) contains geometric 
data, normally given in Cartesian coordinates (XYZ), as well as the intensity values (I). This intensity 
measurement is referred to as the amount of reflected radiation with respect to the emitted radiation. 
Typically, this value is normalized in the range of 0–1 or 0–255, 8-bit format in our case. According to 
the principles of interaction between electromagnetic radiation and matter, the intensity values directly 

Figure 2. Scheme of main structural parts of transmission tower upon draws of
one of the cases studies herein analyzed (Tower 1). Data was obtained from laser
scanning technology according to the methodology presented in Section 3.
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3. Methodology

3.1. Geometric Digitalization

A laser scanning survey was conducted in order to generate a 3D model
accurately describing the structure of the transmission towers. A time-of-flight (ToF)
terrestrial laser scanner (TLS), Leica ScanStation2, was used for recording external
geometry. This scanner covers a field of view of 360˝ in the horizontal direction
and 270˝ in the vertical direction, enabling the collection of full panoramic views.
The distance measurement is obtained with a nominal accuracy of 4 mm at 25 m
range. The horizontal and vertical angular accuracy is of 60 µrad (3.8 mgon). The
diameter of the laser spot is 4 mm at 50 m. According to the technical specification
of the instrument, it has a maximum acquisition rate of 50,000 points per second.
The scanner incorporates a dual axis compensator, so the vertical Z-direction is
perfectly defined during data acquisition. Due to the complexity of transmission
towers and their heights, four scanner stations with a resolution of 5 mm at 25 m
were required to enclose the whole structure. The resulting 3D point cloud (about
6 million points per tower) contains geometric data, normally given in Cartesian
coordinates (XYZ), as well as the intensity values (I). This intensity measurement is
referred to as the amount of reflected radiation with respect to the emitted radiation.
Typically, this value is normalized in the range of 0–1 or 0–255, 8-bit format in our
case. According to the principles of interaction between electromagnetic radiation
and matter, the intensity values directly depend on the physical characteristics of the
object surface, the wavelength of the incident radiation, and the distance between
the laser and the object.

3.2. Geometric Modeling

The geometric modeling of the transmission towers was performed following
four steps:

1. Cleaning and segmentation of point clouds in order to remove undesired data,
such as reflections, noise or sensor artifacts. This step was performed manually.

2. Alignment of the point clouds from each scan under a common coordinate
system. An automated registration method, iterative closest point (ICP) [25],
was applied, supported by the identification of matching points and
minimizing the Euclidean distance between corresponding point clouds. Initial
approximations (three points) were manually identified by the user, trying
to guarantee a good distribution around the area of interest and along the
three main directions (X, Y, Z). A solid-rigid transformation based on the three
points identified was executed. Afterwards, an automatic iterative process
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to align the different scans was performed taking the Euclidean distance as a
minimization criterion.

3. Generating cross-sections and technical drawings of the electrical towers,
focusing on the steel profiles that make up each section of the tower and the
arrangement of the connections used to define the linkage of these profiles.
Different profiles were automatically generated along each main direction
(X, Y, Z) in order to obtain vector information of the main sections of the towers
and, thus, initial approximations to support the technical drawings and CAD
model generation.

4. Obtaining a computer aided design (CAD) model. Since the structural analysis
based on a FEM model does not cope with dense laser models, an important
step which allows us to pass from the 3D point clouds to a solid geometric
model was performed. This step consists in extruding the sections obtained
in the step before along its normal direction. Manual interaction is required
in this step in order to solve the different intersections between profiles and
their connections. In addition, specific existing libraries based on standard
steel profiles (i.e., L-shaped and U channel profiles) were used for modeling the
towers. Geometric modeling was done using Geomagic Spark, 2013 version.

3.3. Structural Analysis

The three towers are formed by angular steel profiles of different dimensions,
and given the age of the towers and only for the purpose of the methodology
developed in this article, we assume the lower specification for a steel material
enabled by [26], type S-235.

This brings the following mechanical properties: Young’s modulus of
2.1 ˆ 108 kN/m2, specific weight of 76.9729 kN/m3, Poisson’s coefficient of 0.3,
and yield stress of 235 MPa.

Furthermore, the data of the power line, support type of the tower, and the
mechanical characteristics of the electrical drivers are detailed below:

- High voltage power line with rated voltage of 132 kV and 50 Hz AC
- Two duplex-circuit line with alignment support.
- Span: 300 m between supports.
- Electrical driver of aluminum galvanized steel, type LA-280.

The boundary conditions of the three towers are assumed to be articulated
supports in each of the legs that make up the outer frame of the towers, so that they
have only limited movements according to the global axes (X, Y, Z). The constraints
upon the members are explained in each of the structural models discussed above.

The different load conditions are obtained according to [18]. The following
descriptions summarize the loads, always bearing in mind that the towers are located
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in the province of Guadalajara (Spain) and that they are power lines with alignment
support and with suspension insulator strings [18].

- Permanent loads: The self-weight of the steel profiles that comprise the towers,
electrical conductors, fittings, insulators, and the grounding wire.

- Wind load: It acts upon steel members of the towers, the insulators, and the
suspension insulator strings.

- Imbalance of tensile forces: A longitudinal force equivalent to 25% of all
unilateral tractions of electrical drivers and grounding wire. This tensile force
will be applied at the point where the electrical conductors and the grounding
wire are attached to the support, thus taking into account the torsion that these
forces could create.

- Electrical conductor failure: A unilateral tensile force related to a single electrical
conductor or a grounding cable’s failure. The minimum admissible value for
the failure is 50% of the broken cable’s tension in the power lines that have two
conductors per phase.

Taking into account aforementioned load patterns, the current standards [18]
refer to certain calculation hypotheses that establish the load cases, shown in Table 1.

Table 1. Load cases considered in structural analysis of towers.

Tower Type Force Direction Hypothesis 1 Hypothesis 2 Hypothesis 3

Alignment
support and
suspension
insulator strings

Vertical
Permanent loads, considering the electrical conductors and the
grounding cables to withstand wind load according to
a 120 km/h wind speed

Transversal

Wind load
(120 km/h) on
electrical conductors,
cables, grounding
cables and supports
of tower

Not applicable Not applicable

Longitudinal Not applicable Imbalance of
tensile stress

Electrical
conductor and
grounding
cable failure

In order to clarify such load cases considered, in Figure 3 is detailed upon finite
element model of one of the case studies herein analyzed (Tower 1), the arrangement
of the loads in each of the three scenarios previously commented. Similarly, loads
are arranged in Towers 2 and 3.
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Figure 3. Loads cases considered in structural analysis. (a) Hypothesis 1: wind;  
(b) Hypothesis 2: Imbalance tractions; (c) Hypothesis 3: electrical conductor failure. 

4. Experimental Results and Discussion 

4.1. Case Studies 

Since this study arises as a consequence of the need to analyze the structural viability of a series of 
electricity transmission towers that serve as support to an old power electricity line located between the 
cities of Guadalajara and Torija (Spain), three different cases studies were chosen for the development 
of the aforementioned methodology. 

The electricity transmission towers chosen correspond to a type of tower known as  
“support alignment” which are disposed over different sections of electricity line. Additionally,  
in order to extend the study over different structural typologies, each tower corresponds to a  
different morphology. 

The first tower is formed by both a main body support and another principal body (comprising 
horizontal bracings and diagonal bracings according to a St Andrew’s disposition) and three horizontal 
symmetrical bodies for the support of the cables. The second tower only has a support body (formed 
by horizontal bracings and secondary diagonal bracings according to a St Andrew’s disposition) and 
three asymmetric horizontal bodies. The third tower is similar to the second one, with exception in the 
diagonals forming the support body which are not arranged according to a St Andrew’s disposition. 

Figure 4 shows a photograph of the three towers that composes cases studies described above.  

Figure 3. Loads cases considered in structural analysis. (a) Hypothesis 1: wind;
(b) Hypothesis 2: Imbalance tractions; (c) Hypothesis 3: electrical conductor failure.

4. Experimental Results and Discussion

4.1. Case Studies

Since this study arises as a consequence of the need to analyze the structural
viability of a series of electricity transmission towers that serve as support to an
old power electricity line located between the cities of Guadalajara and Torija
(Spain), three different cases studies were chosen for the development of the
aforementioned methodology.

The electricity transmission towers chosen correspond to a type of tower known
as “support alignment” which are disposed over different sections of electricity line.
Additionally, in order to extend the study over different structural typologies, each
tower corresponds to a different morphology.

The first tower is formed by both a main body support and another principal
body (comprising horizontal bracings and diagonal bracings according to a St
Andrew’s disposition) and three horizontal symmetrical bodies for the support
of the cables. The second tower only has a support body (formed by horizontal
bracings and secondary diagonal bracings according to a St Andrew’s disposition)

570



and three asymmetric horizontal bodies. The third tower is similar to the second one,
with exception in the diagonals forming the support body which are not arranged
according to a St Andrew’s disposition.

Figure 4 shows a photograph of the three towers that composes cases studies
described above.Remote Sens. 2015, 7 11560 

 

 

 

Figure 4. Transmission towers considered in this study: (a) tower 1; (b) tower 2;  
(c) tower 3. 

4.2. Geometric Modeling 

Following all steps described in Section 3.2, the point cloud data obtained as a result of a laser 
scanning survey was subsequently transformed into a CAD model valid for its implementation in the 
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horizontal bodies are displayed in Table 2. The length of the horizontal bodies of the towers is 
measured from the main body of the tower up to the farthest node. Tower 1 has three horizontal bodies 
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Figure 4. Transmission towers considered in this study: (a) tower 1; (b) tower 2;
(c) tower 3.

4.2. Geometric Modeling

Following all steps described in Section 3.2, the point cloud data obtained as a
result of a laser scanning survey was subsequently transformed into a CAD model
valid for its implementation in the finite element software package SAP2000.

This is a key step required in this kind of reverse engineering process, since data
obtained from laser scanning technology do not represent any valid information by
itself for the purpose of finite element analysis without suitable data processing [27].

Therefore, taking this into account, CAD models for each one of towers analyzed
together with drawings about its current disposition and assembly information
were obtained.

Figure 5 shows CAD wire models obtained for each one of towers analyzed.
Once such geometrical models were obtained, they were directly imported as a DXF
file to SAP2000 software for the finite element analysis stage.

Main geometric data concerns to dimensions of the base, height of the tower,
and length of horizontal bodies are displayed in Table 2. The length of the horizontal
bodies of the towers is measured from the main body of the tower up to the farthest
node. Tower 1 has three horizontal bodies with different dimensions, while in
towers 2 and 3, all the horizontal bodies have similar dimensions.
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Table 2. Main geometric data for transmission towers analyzed.

Tower Base Dimensions (m) Height (m) Length of Horizontal
Body (m)

1 7.25 ˆ 7.25 37.25
3.95
6.25
5.0

2 1.5 ˆ 1.5 18.50 2.0
3 1.5 ˆ 1.5 18.50 2.15Remote Sens. 2015, 7 11561 

 

 

 

Figure 5. Geometrical CAD wireframe models of transmission towers analyzed: (a) tower 1; 
(b) tower 2; and (c) tower 3. 

4.3. Structural Analysis 

As was previously indicated, finite element models of transmission towers were analyzed in 
SAP2000 software. Within this package, frame elements were chosen so that stiffness against rotations 
could be considered in all of those nodes assumed to behave as rigid joints. For all other cases where 
moments will not be considered (as, for example, in diagonal members pin jointed to truss chords), 
releases end options in nodal degrees of freedom could be imposed for transforming frame elements to 
truss elements and, thus, only axial forces be considered. For all structural models herein developed, 
analysis was carried out considering linear elastic behavior. 

Table 3 shows the number of frame elements and the number of degrees of freedom for each of the 
finite element model developed, taking into account the type of transmission tower structure and 
structural model approach. 

Table 3. Number of frames elements and degrees of freedom for each one of the three 
different structural models considered upon cases studies analyzed. 

Tower Model 1 Model 2 Model 3 

- 
Frame 

Elements 
Degrees of 
Freedom 

Frame 
Elements 

Degrees of 
Freedom 

Frame 
Elements 

Degrees of 
Freedom 

1 419 3320 419 3896 683 6772 
2 241 1909 241 2348 321 3308 
3 181 1448 181 2100 226 2408 

Figure 5. Geometrical CAD wireframe models of transmission towers analyzed:
(a) tower 1; (b) tower 2; and (c) tower 3.

4.3. Structural Analysis

As was previously indicated, finite element models of transmission towers
were analyzed in SAP2000 software. Within this package, frame elements were
chosen so that stiffness against rotations could be considered in all of those nodes
assumed to behave as rigid joints. For all other cases where moments will not
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be considered (as, for example, in diagonal members pin jointed to truss chords),
releases end options in nodal degrees of freedom could be imposed for transforming
frame elements to truss elements and, thus, only axial forces be considered. For
all structural models herein developed, analysis was carried out considering linear
elastic behavior.

Table 3 shows the number of frame elements and the number of degrees of
freedom for each of the finite element model developed, taking into account the type
of transmission tower structure and structural model approach.

Table 3. Number of frames elements and degrees of freedom for each one of the
three different structural models considered upon cases studies analyzed.

Tower Model 1 Model 2 Model 3

- Frame
Elements

Degrees of
Freedom

Frame
Elements

Degrees of
Freedom

Frame
Elements

Degrees of
Freedom

1 419 3320 419 3896 683 6772
2 241 1909 241 2348 321 3308
3 181 1448 181 2100 226 2408

4.3.1. Displacements

In this section, displacements [12,14,28] experimented by each tower under
different load cases and structural models are analyzed and discussed.

To carry out the analysis and comparison, representative points of the three
towers associated with the nodes of the horizontal bodies and the upper node of the
dome were selected. Figure 6 shows an example of these nodes together with the
displacements experimented for each tower under Loading Case 1 (wind load) and
structural model considering real geometry for upper node of the dome (Node 1).

Table 4 reports both the values of maximum displacements obtained for Model 3
(real geometry) and the node where they take place (one of the aforementioned) for
the different loading scenarios considered in each one of the transmission towers
analyzed. Table 5 represents a comparison (in absolute value) between maximum
displacements for Models 1 and 2 with respect to Model 3 (considered as the
most accurate).

In both tables, the structural model considered is represented by “M” followed
by a number indicating the corresponding model described in Section 2. Load cases
considered are indicated by “H” denoting each one of the hypothesis described in
Section 3.3 and Table 1 is applicable.
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Figure 6. Nodes considered for analysis of displacements according to the global
axis directions in each tower and structural model analyzed. (a) tower 1; (b) tower 2;
(c)tower 3.

Table 4. Values of the maximum displacements experimented for Model 3 in all
transmission towers and load cases considered with the indication of the node
where they take place.

Tower Model Displacement Ux
(mm)/Node

Displacement Uy
(mm)/Node

Displacement Uz
(mm)/Node

H1 H2 H3 H1 H2 H3 H1 H2 H3
1 M3 161/1 14/3 12/4 8/3 162/3 140/3 132/3 8/2 8/2
2 M3 182/1 44/2 11/2 9/1 88/1 125/3 123/2 11/2 15/2
3 M3 195/1 52/2 15/2 9/1 97/1 146/3 85/2 21/3 18/2

Table 5. Comparison between displacements experimented by Models 1 and 2 with
respect to Model 3 in all transmission towers and load cases considered.

Tower Models
Compared

Maximum Deviation Ux
(mm)/Node

Maximum Deviation Uy
(mm)/Node

Maximum Deviation Uz
(mm)/Node

H1 H2 H3 H1 H2 H3 H1 H2 H3

1
M3 front M1 93/1 6.3/3 4/4 5/3 52/3 62/3 27/3 4/2 4.6/2
M3 front M2 95/1 6.3/3 4/4 5/3 65/3 78/3 29/3 4/2 5/2

2
M3 front M1 66/1 8.3/2 7/2 4/1 44/1 39/3 35/2 4/2 9/2
M3 front M2 80/1 9/1 8/2 6/1 43/2 48/3 38/2 5/2 10/2

3
M3 front M1 75/1 9/2 6/2 7/1 38/1 37/3 38/2 3/3 5/2
M3 front M2 65/3 7/1 7/2 4/2 32/2 42/3 43/3 5/3 6/3

574



The results displayed in Table 5 show that principal differences always take place
in all towers under Hypothesis 1 (wind load case). The differences found between
Model 3 and Model 1, reaching 95 mm in the global X direction is remarkable.

There are also significant differences for all towers, although less than
aforementioned for displacements of nodes in the global Y direction under Hypotheses
2 and 3 (Imbalance tractions and cable break). The reasons that can explain these
differences may be due to the following factors:

1. Consideration of the initial small vertical deviations of the towers’ main
bodies along with the application of wind forces in Hypothesis 1, precisely
in that direction, may have accentuated the displacements in global X direction
obtained in Model 3.

2. The fact of considering the true connections of the profiles onto the nodes
(misalignment) has a drastic consequence upon the behavior of the structure
since it directly affects to its stiffness.

In Models 1 and 2 “ideal nodes” connecting various elements mobilize stiffness
of all concurrent elements (truss chords, diagonal, and horizontal members): axial
stiffness in Model 1, and axial and bending stiffness in Model 2; in Model 3, however,
it does not occur equally.

When considering real geometry, the existence of “intermediate” nodes inserted
into the truss chords cause local bending moments and, thereby, additional rotations
that accentuate local deformations of the structures. Therefore, we can state that the
improper execution of the connections leads to a less stiff structure and may be the
main cause of the differences found between the displacements obtained in the three
towers for global X direction under Hypothesis 1 and for global Y direction under
Hypotheses 2 and 3.

A representative example of this behavior can be seen in Figure 7, which shows
the deformed shape of tower 1 for Models 2 and 3 under Load Case 3 (electrical
conductor break), which subjects the body of the tower to a torque.

4.3.2. Stresses in Structural Elements

Finally, a comparison regarding the stresses in structural elements [12,14–16,29]
is also established. Table 6 shows, based on the finite element results obtained, the
maximum normal stresses for each transmission tower and its respective structural
model. Particularly, it details for each tower, and for each model, the maximum
normal stress in which member it occurs, and under which loading case is developed.
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Figure 7. Detail of the different structural behavior of the Tower 1 under Load
Case 3 in Model 2 (a) and Model 3 (b). Undeformed shape is shown in blue and
deformade shape in red.

Table 6. Structural elements with maximum normal stresses for all transmission
towers analyzed and structural models considered.

Tower Model Maximum Stress (Mpa)/Frame Element

Hypothesis 1 Hypothesis 2 Hypothesis 3

1
1 215.15/90 165.26/401 195.56/468
2 225.36/90 170.23/401 205.21/468
3 252.30/696 185.96/433 230.20/696

2
1 218.96/380 155.50/442 221.32/405
2 222.56/380 163.89/442 232.45/405
3 234.21/178 181.78/439 245.63/189

3
1 222.25/272 167.25/353 221.45/107
2 232.63/272 175.63/353 226.12/107
3 252.58/272 195.56/353 233.16/104

Based on Table 6, it can be observed that the differences in maximum normal
stresses between Model 1 and Model 2 for all towers are quite small and the maximum
of these values are always produced in the same members for both models. On the
contrary, significant differences appear when compared to Model 3. Consider the case
of Tower 1 and under Load Case 1 where the differences is approximately 37 MPa.

Moreover, it could be observed that the maximum stresses in Model 3 no longer
occur at the same members that for Models 1 and 2. This is due to the singular
arrangement of nodes in Model 3 (members do not intersect at a single point) which
leads to a different discretization of frame elements compared to Models 1 and 2.

Rising stresses in Model 3 are mainly due to secondary stresses caused by the
additional bending moments derived from small geometric eccentricities at diagonal
and horizontal member’s connections upon truss chords which are neglected in
Model 1 and Model 2.
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The higher the eccentricity is at the connections, the greater the induced bending
moments will be. Likewise, the level of induced secondary stresses will be influenced
by the stiffness of the truss chords; the greater is their stiffness the greater bending
moments will be induced.

This is perhaps the cause of the observed differences for Tower 1 under Load
Case 1, where the stiffness of the truss chords relative to the overall stiffness of
the whole structure is greater than in the other two towers, thus providing greater
increased stresses (37 Mpa) with respect to the theoretical Model 1.

It should be also noted that for Model 3, under certain load cases in all towers,
some elements exceed the yield point of the material. This circumstance is highlighted
in Figure 8, where for tower 1 and under Load Case 1, the element with maximum
normal stress reaches 252 MPa, exceeding the elastic limit of the material in 17 MPa.
Figure 8 also shows a representative image of the above discussed; the effects of
improper execution of nodes upon truss chords and, consequently, the different
discretization of frame elements in the model with ideal geometry and those based
on real geometry.
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(a) Model 1, with ideal representation of the nodes and maximum stress below the yield 
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to the age of the structures, assumed material properties have been chosen according to the minimum 
value specified by the current regulatory codes; however, these values do not have to match the actual 
properties of the structure. Accordingly, appropriate experimental tests should be carried out in order 
to improve their characterization and, thus, derive proper conclusions about the real current safety state 

Figure 8. Normal stresses distribution onto Tower 1 for different structural models.
(a) Model 1, with ideal representation of the nodes and maximum stress below the
yield limit of steel; (b) Model 3, including the improper executions of the nodes
and maximum stress exceeding the yield limit of steel.

As for results involving values of maximum normal stresses, they should be
analyzed carefully. Due to the age of the structures, assumed material properties have
been chosen according to the minimum value specified by the current regulatory
codes; however, these values do not have to match the actual properties of the
structure. Accordingly, appropriate experimental tests should be carried out in order
to improve their characterization and, thus, derive proper conclusions about the
real current safety state of the structure. Note, also, that the structural analysis of
transmission towers was carried out assuming a linear elastic behavior.
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Nonetheless, the results herein obtained could be considered as acceptable,
bearing in mind that the present work is focused in defining an overall methodology
able to detect the geometric imperfections present in electricity transmission tower
structures by means of precise laser scanning systems and the procedures to
incorporate them in structural models based on finite element methods.

5. Conclusions

Terrestrial laser scanning enabled performing a non-invasive remote survey of
different transmission tower structures; it should be noted that these are objects of
great complexity, not only for their size, but also by their geometry and their high
heights. This technology allowed detecting significant imperfections in terms of
connections between the members at the nodes, loss of verticality of the towers
and the lack of horizontality in the horizontal bracings. The aforementioned
imperfections motivated the consideration of different structural models for the
towers, in order to analyze how this affects their structural behavior. To that purpose,
three different models have been carried out: first, a model with an ideal geometry
and considering perfectly pin jointed nodes (supposed model in original calculations
of the structures); second, a model with ideal geometry, but taking into account real
existing continuity in some profiles by means of rigid connections and pin jointed
connections of all others elements upon them; and finally, a third model similar to
that previous, but with a real geometry incorporating all imperfections obtained
from laser scanning data.

When analyzing the results obtained in terms of displacements and stresses
yielded by the different structural models considered, significant differences were
observed. At those nodes considered for the comparison of displacements, differences
between models with ideal geometry, and models with real geometry reached several
centimeters, becoming the highest value (for Node 1 in Tower 1 under wind loading)
9.5 cm respect to the X global direction.

The study of stresses brings some other conclusions. Considering models with
ideal geometry and considering pinned joints (Model 1) or rigid joints (Model 2) no
significant differences were found. Indeed, maximum normal stresses in elements
always take place in the same elements for both models. On the contrary, the model
which accounts for real geometry (Model 3) presented notable differences when
compared with their respective idealized models. Notorious increases in stresses
were detected under certain loading conditions, even reaching the elastic limit of the
steel in some occasions.

Differences observed in displacements, stresses in elements and, thereby, whole
structural behavior of towers suggest that a detailed survey and conscientious
structural analysis has to be carried out when these type of structures will be required
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for future uses as, for example, new communication services that increase their
service loads.

Further studies could contemplate performing nonlinear analysis to extend and
improve the results herein obtained, either by considering geometric nonlinearity
effects such as P-Delta effects and plastic behavior of steel material. Moreover, due
to the nature of the structures (quite slender, and with very slender members) the
issue of structural stability should also be addressed. Therefore, it is expected that
the combination in the use of the information already available, with the procedure
herein developed, together with the consideration of more advanced topics related to
strength and structural stability evaluation, will bring a deep insight in the behavior
of the towers.
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