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Preface to “The Application of Mathematics to Physics

and Nonlinear Science”

The importance of understanding nonlinearity has increased over the decades through the

development of newer fields of application: biophysics, wave dynamics, optical fibers, plasmas,

ecological systems, micro fluids, and cross-disciplinary fields. The necessary mathematics involves

nonlinear evolution equations. Obtaining closed-form solutions for these equations plays an

important role in the proper understanding of features of many phenomena by unraveling their

complex mechanisms such as pattern formation and selection, the spatial localization of transfer

processes, the multiplicity or absence steady states under various conditions, the existence of peaking

regimes, etc. Even exact test solutions with no immediate physical meaning are used to verify

the consistency of numerical, asymptotic, and approximate analytical methods. This Special Issue

gathered a few of the most important topics in nonlinear science.

The problem of nonlinear viscoelastic fluid flow has been studied extensively by different

mathematicians over the past several decades starting in the 1970s. The mathematical model

describing such flows, including liquid polymers dynamics, is given by the Navier–Stokes–Voigt

(also called Kelvin–Voigt, or weakly compressible) equations. Although their local-in-time solvability

and weak solutions existence and uniqueness in the framework of the Hilbert space techniques

were established for several special configurations (blowup of solutions, various slip problems,

weak solutions of the g-Kelvin–Voigt equations for viscoelastic fluid flows in thin domains, Dirichlet

problems, inverse problem, coupled system of nonlinear equations for heat transfer in steady-state

flows of a polymeric fluid, etc.), the relevant question for the existence and uniqueness of strong

solutions in a Banach space, under natural conditions, was not previously solved. E. S. Baranovskii,

in this Special Issue, proves the existence and uniqueness of a strong solution to the incompressible

Navier–Stokes–Voigt model as a nonlinear evolutionary equation in suitable Banach space. In

addition, convenient algorithms for finding these strong solutions in 2D and 3D domains are

developed by using the Faedo–Galerkin procedure with a special basis of eigenfunctions of the Stokes

operator and deriving various a priori estimates of approximate solutions in Sobolev’s spaces.

The nonlinear behavior of complex fluids and soft matter (interfacial fluid flow, polymer

science, and in industrial applications) are important topics in the present front of the wave

research. The Cahn–Hilliard equations model some of these phenomena, especially when the system

consists of binary mixtures or more generally for interface-related problems, such as the spinodal

decomposition of a binary alloy mixture, in painting of binary images, microphase separation of

co-polymers, microstructures with elastic inhomogeneity, two-phase binary fluids, in silico tumor

growth simulation, and structural topology optimization. Some of these problem are related to

solutions of Stefan problems and the model of Thomas and Windle for diffuse interface problems.

Another interesting application is for the coupling of the phase separation of the Cahn–Hilliard

equation to the Navier–Stokes equations of fluid flow. In this phase separation, the two components

of a binary fluid spontaneously separate and form domains pure in each component. C. Lee et al.

studied the 2D Cahn–Hilliard equation numerically using a novel nonlinear multigrid method.

Another important topic in this Special Issue is represented by the article authored by J.

Danane et al. on a mathematical model describing viral dynamics in the presence of the latently

infected cells and the cytotoxic T-lymphocytes cells, considering the spatial mobility of free viruses.

Mathematical modelling becomes an important tool for the understanding and predicting the spread

ix



of viral infection and for the development of efficient strategies to control its dynamics. Viral

infections represent a major cause of morbidity with important consequences for patient health and

society. Among the most dangerous are the human immunodeficiency virus that attacks immune

cells leading to the deficiency of the immune system, the human papillomavirus that infects basal

cells of the cervix, and the hepatitis B/C viruses that attack liver cells. In this paper, the authors

couple five nonlinear differential equations describing the interaction among the uninfected cells, the

latently infected cells, the actively infected cells, the free viruses, and the cellular immune response.

The existence, positivity, boundedness, and global stability of each steady state obtained through

Lyapunov functionals for the suggested diffusion model are proved. The theoretical results are

validated by numerical simulations for each case.

In the paper by D. Dutych, the Feller’s nonlinear diffusion equation and its numerical solutions

are analyzed. This equation arises naturally in probability and physics (e.g., wave turbulence theory).

In previous literature, this equation was discretized naively. This approach may introduce serious

numerical difficulties since the diffusion coefficient is practically unbounded and most of its solutions

are weakly divergent at the origin. To overcome these difficulties, the author reformulated this

equation using inspiration from Lagrangian fluid mechanics.

Another interesting topic included in this Special Issue concerns nonlinear evolution equations

modeling waves in rotating fluids. The case of finite depth fluid and small-amplitude long waves

is analyzed in the frame of the Ostrovsky model. This model generalizes the Korteweg–deVries

equation by the additional term induced by the Coriolis force. There are several studies in the

literature on the local and global well-posedness in energy space, stability of solitary waves, and

convergence of solutions in the limit of the Korteweg–deVries equation. In the paper authored by G.

M. Coclite and L. di Ruvo, the reduced Ostrovsky equation (also known as the Ostrovsky–Hunter

equation, the short-wave equation, or the Vakhnenko equation) is analyzed. The authors discuss the

continuum spectrum pulse equation as a third-order nonlocal nonlinear evolution equation related

to the dynamics of the electrical field of linearly polarized continuum spectrum pulses in optical

waveguides. The authors study the well-posedness of the classical solutions to the Cauchy problem

associated with this equation.

Andrei Ludu

Special Issue Editor
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Abstract: This article is devoted to FELLER’s diffusion equation, which arises naturally in probability
and physics (e.g., wave turbulence theory). If discretized naively, this equation may represent serious
numerical difficulties since the diffusion coefficient is practically unbounded and most of its solutions
are weakly divergent at the origin. In order to overcome these difficulties, we reformulate this
equation using some ideas from the LAGRANGIAN fluid mechanics. This allows us to obtain a
numerical scheme with a rather generous stability condition. Finally, the algorithm admits an elegant
implementation, and the corresponding MATLAB code is provided with this article under an open
source license.

Keywords: Feller equation; parabolic equations; Lagrangian scheme; Fokker–Planck equation;
probability distribution

PACS: 02.30.Jr (primary); 02.60.Cb; 02.50.Cw (secondary)

MSC: 35K20 (primary); 65M06; 65M75 (secondary)

1. Introduction

The celebrated FELLER equation was introduced in two seminal papers published by William
FELLER (1951/1952) in Annals of Mathematics [1,2]. These publications studied mathematically (and,
henceforth, gave the name) the following equation (To be more accurate, W. FELLER studied the
following equation [1]:

p t =
[

a x u
]

x x −
[
(c + b x) u

]
x ,

where a > 0 and 0 < x < +∞ .).

p t + F x = 0 , F (p, x, t)
def
:= −x ·

(
γ p + η p x

)
, (1)

where the subscripts t , x denote the partial derivatives, i.e., (·) t
def
:=

∂(·)
∂t

, (·) x
def
:=

∂(·)
∂x

. Two
parameters γ and η > 0 can be time-dependent in some physical applications, even if in this study we
assume they are constants, for the sake of simplicity (The numerical method we are going to propose
can be straightforwardly generalized for this case when γ = γ (t) and η = η (t) . Moreover, FELLER’s
processes with time-varying coefficients were studied recently in [3].). Equation (1) can be seen as the
FOKKER–PLANCK (or the forward KOLMOGOROV) equation, with γ x being the drift and η x being
the diffusion coefficients (see [4] for more information on the FOKKER–PLANCK equation). One can
notice also that Equation (1) becomes singular at x = 0 and x = +∞ . We remind that practically
important solutions to FELLER’s equation might be unbounded near x = 0 . In order to attempt
solving Equation (1), one has to prescribe an initial condition p (x, 0) = p 0 (x), presumably with a

Mathematics 2019, 7, 1067; doi:10.3390/math7111067 www.mdpi.com/journal/mathematics1
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boundary condition at x = 0 . A popular choice is to prescribe the homogeneous boundary condition
p (0, t) ≡ 0 . For this choice of the boundary condition, it is not difficult to show that the FELLER

equation dynamics would preserve solution positivity provided that p 0 (x) � 0 (see Appendix A
for a proof). The solution norm is also preserved (see Appendix B). Moreover, using the LAPLACE

transform techniques, FELLER has shown in [1] that the initial condition p 0 (x) determines uniquely
the solution. In other words, no boundary condition at x = 0 should be prescribed. This conclusion
might appear, perhaps, to be counter-intuitive.

The great interest in FELLER’s equation can be explained by its connection to FELLER’s processes,
which can be described by the following stochastic differential LANGEVIN equation (The stochastic
differential equations are understood in the sense of ITŌ.):

dX t = − γ X t dt +
√

2 η X t dW t ,

where W t is the standard WIENER process, i.e., ξ (t)
def
:=

dW t

dt
is zero-mean GAUSSIAN white noise, i.e.,

〈ξ (t)〉 = 0 , 〈ξ (t) ξ (s)〉 = δ (t − s) ,

where the brackets 〈·〉 denote an ensemble averaging operator. Then, the Probability Density Function
(PDF) p (x, t; x 0) of the process X (t) , i.e.,

P
{

x < X (t) < x + dx | X (0) = x 0
}

≡ p (x, t; x 0)dx,

satisfies Equation (1) with the following initial condition [5]:

p 0 (x) = δ (x − x 0) , x 0 ∈ R+ .

The point x = 0 is a singular boundary that the process X (t) cannot cross. The FELLER process
is a continuous representation of branching and birth–death processes, which never attains negative
values. This property makes it an ideal model not only in physical, but also in biological and social
sciences [3,6,7].

As a general comprehensive reference on generalized FELLER’s equations, we can mention the
book [8]. Since at least a couple of years ago there has again been a growing interest for studying
Equation (1). Some singular solutions to FELLER’s equation with constant coefficients were constructed
in [6] via spectral decompositions. FELLER’s equation and FELLER’s processes with time-varying
coefficients were studied analytically (always using the LAPLACE transform) and asymptotically in [3].

The FELLER (and FOKKER–PLANCK) equation ’has already made its appearance in optical
communications [9]. Recently, the FELLER equation was derived in the context of the weakly interacting
random waves dominated by four-wave interactions [10]. Wave Turbulence (We could define the
Wave Turbulence (WT) as a physical and mathematical study of systems where random and coherent
waves coexist and interact [11].) WT is a common name for such processes [11]. In WT, the FELLER

equation governs the PDF of squared FOURIER wave amplitudes, i.e., x ∼ | a | 2 . In [10], some steady
solutions to this equation with finite flux in the amplitude space were constructed (There is probably a

misprint in ([10] p. 366). To obtain mathematically correct solutions, one has to define n k
def
:=

η

γ
on

the line below Equation (14)). See also [12], Chapter 11 for a detailed discussion and interpretations.
Recently, the FELLER equation has been studied analytically in [13]. The authors applied the LAPLACE

transform to it in space (this computation can be found even earlier in [1], Equation (3.1)) and the
resulting non-homogeneous hyperbolic equation was solved using the method of characteristics along
the lines presented in ([1], Section §3) (see ([1], Equation (3.9)) for the general analytical solution).

The behaviour of solutions p (x, t) for large x describes the appearance probability of extreme
waves. In the context of ocean waves, these extreme events are known as rogue (or freak) waves [14].
In the WT literature, any noticeable deviation from the RAYLEIGH distribution for x � 1 is referred

2
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to as the anomalous probability distribution of large amplitude waves [10]. For GAUSSIAN wave fields,
all statistical properties can be derived from the spectrum. However, the PDFs and other higher order
moments are compulsory tools to study such deviations.

The present study focuses on the numerical discretization and simulation of FELLER equation.
The naive approach to solve this equation numerically encounters notorious difficulties. The first
question that arises is what is the (numerical) boundary condition to be imposed at x = 0 ? Moreover,
one can notice that Equation (1) is posed on a semi-infinite domain. There are three main strategies to
tackle this difficulty:

1. Map R+ on a finite interval [ 0, � ];
2. Use spectral expansions on R+ (e.g., LAGUERRE or associated LAGUERRE polynomials);
3. Replace (truncate) R+ to [ 0, L ] , with L � 1 .

In most studies, the latter option is retained by imposing some appropriate boundary conditions
at the artificial boundary x = L . In our study, we shall propose a method that is able to handle the
semi-infinite domain R+ without any truncations or simplifications. Finally, the diffusion coefficient
in the FELLER Equation (1) is unbounded. If the domain is truncated at x = L , then the diffusion

coefficient takes the maximal value νmax
def
:= η L � 1 , which depends on the truncation limit L and

can become very large in practice. We remind also that explicit schemes for diffusion equations are
subject to the so-called COURANT–FRIEDRICHS–LEWY (CFL) stability conditions [15]:

Δt � Δx 2

2 νmax
.

Taking into account the fact that νmax can be arbitrarily large, no explicit scheme can be usable
with FELLER equation in practice. Moreover, the dynamics of the FELLER equation spread over the
space R+ even localized initial conditions. In general, one can show that the support of p (x, t) , t > 0
is strictly larger (Using modern analytical techniques, it is possible to show even sharper results on
the solution support, see e.g., [16].) than the one of p (x, 0) . It is the so-called retention property. Thus,
longer simulation times require larger domains. For all these reasons, it becomes clear that numerical
discretization of the FELLER equation requires special care.

In this study, we demonstrate how to overcome this assertion as well. The main idea behind
our study is to bring together PDEs and Fluid Mechanics. First, we observe that the classical
EULERIAN description is not suitable for this equation, even if the problem is initially formulated
in the EULERIAN setting. Consequently, the FELLER equation will be recast in special material or the
so-called LAGRANGIAN variables (It is known that both EULERIAN and LAGRANGIAN descriptions
were proposed by the same person, Leonhard EULER), which make the resolution easier and naturally
adaptive ([17], Chapter 7).

The present manuscript is organized as follows. The symmetry analysis of Equation (1) is
performed in Section 2. Then, the governing equation is reformulated in LAGRANGIAN variables
in Section 3. The numerical results are presented in Section 4. Finally, the main conclusions and
perspectives are outlined in Section 5.

2. Symmetry Analysis

In general, a linear PDE admits an infinity of conservation laws, with integrating multipliers
being solutions to the adjoint PDE [18]. Here, we provide an interesting conservation law, which was
found using the GEM MAPLE package [19]:(

E 1
(
−γ x

η

)
p
)

t
+ G x = 0 ,

3
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where E 1 (z)
def
:=

∫ +∞
1

e− t z

t dt is the so-called exponential integral function [20] and the flux G is
defined as

G (x, p)
def
:= −η e

γ x
η p − x

(
γ E 1

(
−γ x

η

)
p + η E 1

(
−γ x

η

)
p x

)
.

The symmetry group of point transformations can be computed using GEM package as well.
The infinitesimal generators are given below:

ξ 1 = D t ,

ξ 2 = p D p ,

ξ 3 = − e− γ t

γ
D t + e− γ t x D x − e− γ t p D p ,

ξ 4 =
e γ t

γ
D t + e γ t x D x − γ e γ t

η
x p D p ,

ξ 5 = e (γ + c) t M
(

1 +
c
γ

, 1,
γ x
η

)
e− γ x

η D p ,

ξ 6 = e (γ + c) t U
(

1 +
c
γ

, 1,
γ x
η

)
e− γ x

η D p ,

where c ∈ R , M (a, b, z) and U (a, b, z) are KUMMER special functions [20,21] (see also Appendix C).
The corresponding point transformations, which map solutions of (1) into other solutions, can be
readily obtained by integrating several ODE systems (we do not provide integration details here):(

t, x, p
)
�→

(
t + ε 1, x, p

)
,(

t, x, p
)
�→

(
t, x, eε 2 p

)
,

(
t, x, p

)
�→

( 1
γ

ln
(
ε 3 γ + e γ t),

e γ t

ε 3 γ + e γ t x,
(
1 + ε 3 γ e− γ t) p

)
,

(
t, x, p

)
�→

(
t − 1

γ
ln
(
1 − ε 4 γ eγ t) ,

x
1 − ε 4 γ e γ t , e

−
ε 4 γ 2 x e γ t

η (1 − ε 4 γ e γ t) · p
)

,

(
t, x, p

)
�→

(
t, x, p + ε 5 M

(
1 +

c
γ

, 1,
γ x
η

)
e−

γ x
η + (γ + c) t

)
,

(
t, x, p

)
�→

(
t, x, p + ε 6 U

(
1 +

c
γ

, 1,
γ x
η

)
e−

γ x
η + (γ + c) t

)
.

The first symmetry is the time translation. The second one is the scaling of the dependent variable
(the governing equation is linear). Symmetries 3 and 4 are exponential scalings. Two last symmetries
express the fact that we can always add to the solution a particular solution to the homogeneous
equation to obtain another solution. For instance, the solutions invariant under time translations (ξ 1)
are steady states and their general form is the following:

p (x) = e− γ x
η

(
C 1 E 1

(
−γ x

η

)
+ C 2

)
, (2)

where C 1, 2 are ‘arbitrary’ constants, which have to be determined from imposed conditions. Of course,
they should be chosen so that the resulting steady solution is a valid probability distribution. It is not
difficult to check that the imposed flux F on the steady state solution is equal to C 1 η . Some properties
of the exponential integral function are reminded in Appendix D.

We provide here also the general solutions invariant under the symmetry (ξ 3) :

p (x, t) =
(
C 2 − C 1 t +

C 1

γ
ln x

)
e−

γ x
η

4
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and under symmetry (ξ 4) :

p (x, t) =
(
C 1 + C 2 t +

C 2

γ
ln x

)
e γ t .

These solutions might be used, for example, to validate numerical codes.

Remark 1. As a byproduct of this analysis, we obtain two new exact solutions to the FELLER Equation (1):

p (x, t) = M
(
1 +

c
γ

, 1,
γ x
η

)
e−

γ x
η + (γ + c) t ,

p (x, t) = U
(
1 +

c
γ

, 1,
γ x
η

)
e−

γ x
η + (γ + c) t ,

for some constant c ∈ R .

3. Reformulation

By following the lines of ([17], Chapter 7), we are going to rewrite FELLER’s Equation (1) with
the so-called LAGRANGIAN or material variables. The main advantage of this formulation is due to
the fact that we can handle infinite domains without any truncations, transformations, etc. It becomes
possible to carry computations in infinite domains. Our domain is semi-infinite (x ∈ R+), with the
left boundary x = 0 being a reflection point.

As the first step, we introduce the distribution function associated to the probability density
p (x, t) :

P (x, t)
def
:=

∫ x

0
p (ξ, t)dξ . (3)

The same can be done for the initial condition as well:

P 0(x)
def
:=

∫ x

0
p 0 (ξ)dξ , p 0 ∈ W 1, 1

loc (R+) .

We notice also two obvious properties of the function P (x, t) :

∂ xP (x, t) ≡ p (x, t) , lim
x → 0

P (x, t) = 0 , lim
x → +∞

P (x, t) = 1 .

Due to the positivity preservation property (see Appendix A), the function P (x, t) is nondecreasing
in variable x . Thus, we can define its pseudo-inverse (This mapping is sometimes called in the literature
as the reciprocal mapping [17] or an order preserving string [22].):

X : [ 0, 1 ]×R+ �→ R+ ,

which can be computed as

X (P̄ , t)
def
:= inf { ξ ∈ R+ | P (ξ, t) = P̄ } .

The operation of taking the pseudo-inverse can be also seen as a generalized hodograph
transformation (x, t; P) �→ (P, t; x) proposed presumably for the first time by Sir W.R. HAMILTON [23].
Similarly, the initial condition does possess a pseudo-inverse as well:

X 0 (P̄)
def
:= inf { ξ ∈ R+ | P 0 (ξ) = P̄ } , (4)

such that X (P̄ , 0) ≡ X 0 (P̄) .

5
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If FELLER Equation (1) holds in the sense of distributions, then the following equation holds
as well:

P t − x
[

γ P + η P x

]
x
= 0 . (5)

along with the initial condition
P (x, 0) = P 0(x) .

Equation (5) can be readily obtained by exploiting the obvious property p (x, t) = ∂ x P (x, t) .
In Appendix A, we show that zero value of the solution p (x, t) is repulsive. Thus, ∂ x P (x, t) ≡
p (x, t) > 0 , ∀ (x, t) ∈

(
R+

) 2 . Thus, the implicit function theorem [24,25] guarantees the existence
of derivatives of the inverse mapping X (P̄ , t) . Let us compute them by differentiating, with respect
to P̄ and t, the following obvious identity:

P (X (P̄ , t), t) ≡ P̄ .

Thus, one can easily show that

∂X

∂P
=

1
∂ x P

,
∂X

∂t
= − ∂ t P

∂ x P
.

Using these expressions of partial derivatives, we derive the following evolution equation for the
inverse mapping X (P , ·) :

(
e γ t X

)
t + X ·

[
η e γ t

(∂X

∂P

)−1 ]
P

= 0 . (6)

The last equation can be rewritten also by introducing a new dynamic variable:

Y (P , t)
def
:= e γ t X (P , t) , Y (P , 0) ≡ X (P , 0) . (7)

It is not difficult to see that Equation (6) becomes

Y t + Y ·
[

η e γ t
( ∂Y

∂P

)−1 ]
P

= 0 . (8)

The last equation will be solved numerically in the following Section.

Remark 2. We would like to underline the fact that, by our assumptions, ∂Y
∂P as well as ∂X

∂P cannot vanish.
Thus, there is no problem in dividing by ∂Y

∂P in Equation (8).

3.1. Numerical Discretization

Earlier, we derived Equation (6), which governs the dynamics of the pseudo-inverse mapping
X (P , ·) . The initial condition for Equation (6) is given by the pseudo-inverse (4) of the initial
condition P 0 (x) . We discretize Equation (6) with an explicit discretization in time since it yields the
most straightforward implementation.

The first step in our algorithm consists of choosing the initial sampling interval. We make this
choice depending on the provided initial condition. Typically, we want to sample only where it is
needed. Thus, it seems reasonable to choose the initial segment [ 0, � 0 ], with � 0 being the leftmost
location such that

1 − P 0 (� 0) < tol .

In simulations presented below, we chose tol ∼ O (10−5) . Then, we chose the initial sampling{
X 0

k
} N

k = 0 ∈ [ 0, � 0 ] ⊆ R+ , with X 0
0 = 0 and X 0

N = � 0 . It is desirable that the initial sampling
be adapted to the initial condition, since errors made initially cannot be corrected later. One of the

6
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possible strategies for the initial grid generation can be found in ([26], Section 2.3.1). We define also
P k = P 0 (X

0
k ) . We stress that

{
P k

} N
k = 0 stand for a discrete cumulative mass variable and, thus,

they are time independent.
More generally, we introduce the following notation:

X n
k

def
:= X (P k, t n) , k = 0, 1, . . . , N ,

with t n def
:= n Δt , n ∈ N and Δt > 0 being a chosen time step. (We present our algorithm with a

constant time step for the sake of simplicity. However, in realistic simulations presented in Section 4, the
time step will be chosen adaptively and automatically to meet the stability and accuracy requirements
prescribed by the user.) We introduce also similar notation for the dynamic variable:

Y n
k

def
:= Y (P k, t n) , Y 0

k ≡ X 0
k , k = 0, 1, . . . , N .

Now, we can state the fully discrete scheme for Equation (8):

Y n+ 1
k − Y n

k
Δt

+ η e γ t n Y n
k

ΔP k

{ ΔP
k + 1

2
Y n

k + 1 − Y n
k

−
ΔP

k − 1
2

Y n
k − Y n

k − 1

}
, (9)

with n � 0 , k = 0, 1, . . . , N − 1 and

ΔP
k + 1

2

def
:= P k + 1 − P k , ΔP

k − 1
2

def
:= P k − P k − 1 .

The quantity ΔP k can be defined as the arithmetic or geometric mean of two neighbouring
discretization steps ΔP

k ± 1
2

:

ΔP k
def
:=

ΔP
k + 1

2
+ ΔP

k − 1
2

2
, ΔP k

def
:=

√
ΔP

k + 1
2
· ΔP

k − 1
2

.

To be specific, in our code, we implemented the arithmetic mean. The fully discrete scheme can
be easily rewritten under the form of a discrete dynamical system:

Y n+ 1
k = Y n

k − η Δt e γ t n Y n
k

ΔP k

{ ΔP
k + 1

2
Y n

k + 1 − Y n
k

−
ΔP

k − 1
2

Y n
k − Y n

k − 1

}
, n � 0 .

Remark 3. We would like to say a few words about the implementation of boundary conditions. First of all,
no boundary condition is required on the left side, where X n

0 = Y n
0 ≡ 0 . On the right boundary, we

prefer to impose the infinite NEUMANN-type boundary condition (i.e., ∂Y
∂P → ∞), which yields the exact

‘mass’ conservation at the discrete level as well. Namely, at the rightmost cell, we have the following fully
discrete scheme:

Y n+ 1
N = Y n

N + η Δt e γ t n Y n
N

ΔP N
·

ΔP
N − 1

2
Y n

N − Y n
N − 1

, n � 0 ,

with ΔP N
def
:=

P N − P N − 2

2
. As a result, we obtain the exact conservation of ‘mass’ at the discrete level:

N

∑
k = 0

ΔP k X n
k ≡

N

∑
k = 0

ΔP k X 0
k , ∀n ∈ N .

7
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To summarize, our numerical strategy consists of the following steps:

1. We compute the pseudo-inverse of the initial data p 0 (x) to obtain X (P , 0) ≡ Y (P , 0) .
2. This initial condition Y (P , 0) is evolved in (discrete) time using an explicit marching scheme in

order to obtain numerical approximation to Y (P , t) , t > 0 .
3. The variable X (P , t) is recovered by inverting (7), i.e.,

X (P , t) = e−γ t Y (P , t) .

4. Thanks to (3), we can deduce the values of p
(
X (P , t), t

)
∈ [ 0, 1 ] by applying a favorite finite

difference formula (In our code, we employed the simplest forward finite differences, and it led
satisfactory results. This point can be easily improved when necessary.).

Working with the pseudo-inverse allows us to overcome the issue of the retention phenomenon,
which manifests as the expanding support of p (x, t) for positive (and possibly large) times t > 0 ,
t � 1 , since the computational domain was transformed to [ 0, 1 ] . This method is the LAGRANGIAN

counterpart of the moving mesh technique in the EULERIAN setting [26,27].
A simple MATLAB code, which implements the scheme we described above, is freely available for

reader’s convenience at [28].

4. Numerical Results

In this Section, we validate and illustrate the application of the proposed algorithm on several
examples. However, first, we begin with a straightforward validation test. The only difference with
the proposed algorithm above is that we are using a higher-order adaptive time stepping for our
practical simulations. The explicit first-order scheme was used to simplify the presentation. In practice,
much more sophisticated time steppers can be used. For instance, we shall employ the explicit
embedded DORMAND–PRINCE RUNGE–KUTTA pair (4, 5) [29] implemented in MATLAB under the
ode45 routine [30]. Conceptually, this method is similar to the explicit EULER scheme presented above.
It conserved all good properties we showed, but it provides additionally the higher accuracy order
and totally automatic adaptivity of the time step, which matches very well with adaptive features of
the LAGRANGIAN scheme in space. The values of absolute and relative tolerances used in the time
step choice are systematically reported below.

4.1. Steady State Preservation

In order to validate the numerical algorithm, we have at our disposal a family of steady state
solutions (2). Hence, if we take such a solution as an initial condition, normally the algorithm has
to keep it intact under the discretized dynamics. The parameters η , γ of the equation, those of the
steady solution, and numerical parameters used in our computation are reported in Table 1. The
initial condition at t = 0 along with the final state at t = T are shown in Figure 1. Up to graphical
resolution they coincide completely. We can easily check that during the whole simulation the points
barely moved, i.e.,

‖X (·, T) − X (·, 0) ‖∞ ≈ 0.008577 . . .

We can check also other quantities. For instance, P (ξ, t) is preserved up to the machine precision.
If we reconstruct the probability distribution p (x, t) , we obtain

‖ p (·, T) − p (·, 0) ‖∞ ≈ 0.003051 . . .

The last error comes essentially from the fact that we apply simple first-order finite difference to
reconstruct the variable p (x, t) from its primitive P (x, t) . We can improve this point, but even this
simple reconstruction seems to be consistent with the overall scheme accuracy. Thus, this example
shows that our implementation of the proposed algorithm is also practically well-balanced [17], since
steady state solutions are well preserved.

8
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Table 1. Numerical parameters used in the steady state computations.

Parameter Value

Drift coefficient, γ 1.0
Diffusion coefficient, η 1.0
Integration constant, C 1 0.0
Integration constant, C 2

η

γ
≡ 1.0

Final simulation time, T 10.0
Number of discretization points, N 500
Absolute tolerance, tol a 10−5

Relative tolerance, tol r 10−5

x
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p
(x
,
t)
,
t
≥

0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Initial condition
Numerical solution

Figure 1. Comparison of a steady state solution of class (2) at t = 0 and at t = T = 10 . They are
indistinguishable up to the graphical resolution, which validates the solver.

4.2. Transient Computations

In this Section, we present a couple of extra truly unsteady computations in order to illustrate the
capabilities of our method. Namely, we shall simulate the probability distributions emerging from a
family of initial conditions (normalized to have the following probability distribution):

p 0 (x) =
e− x

σ1 + e− x − x 0
σ2

σ1 + σ2 e
x 0
σ2

.

The primitive of the last distribution can be easily computed as well:

P (x) = 1 − σ1 e− x
σ1 + σ2 e− x − x 0

σ2

σ1 + σ2 e
x 0
σ2

.

We design two different experiments in silico to show two completely different behaviour of
solutions to FELLER Equation (1) depending on the sign of the drift coefficient γ . These will constitute
additional tests for the proposed numerical method. In both cases, the initial positions of particles
are chosen according to the logarithmic distribution (logspace function in MATLAB) on the segment
[ 0, 20 ] . This choice is made to represent more accurately the exponentially decaying initial condition
since the errors made in the initial condition cannot be corrected in the dynamics.

9
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4.2.1. Expanding Drift

If the drift coefficient γ < 0 , this term will cause FELLER’s Equation (1) to transport information
in the rightward direction. This situation is quite uncomfortable from the numerical point of view
since the initial condition expands quickly towards the (positive) infinity. We submitted our method
to this case. All numerical and physical parameters are provided in Table 2 (the middle column).
The initial condition along with the probability distribution at the end of our simulation are shown
simultaneously in Figure 2a,b in CARTESIAN and semilogarithmic coordinates correspondingly.
As expected, the support of the initial condition more than triples from t = 0 to t = T = 3.0 .
We remind that the diffusion and drift coefficients are proportional to x, and the scheme handles
the growth of these terms automatically. The smooth decay of the solution on the semilogarithmic
plot (see Figure 2b) shows the absence of any numerical instabilities. The trajectory of grid nodes is
shown in Figure 2c. One can see that points follow the expansion of the solution. Nevertheless, they
concentrate in the areas where the probability takes significant values.

Table 2. Numerical parameters used in unsteady computations.

Parameter Expanding Experiment Confining Experiment

Drift coefficient, γ −0.1 0.5
Diffusion coefficient, η 1.0 1.0
Final simulation time, T 3.0 12.0
Number of discretization points, N 100 100
Initial condition parameter, σ1 2.0 2.0
Initial condition parameter, σ2 1.0 1.0
Initial condition parameter, x 0 3.0 3.0
Absolute tolerance, tol a 10−5 10−5

Relative tolerance, tol r 10−5 10−5
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(b)

Figure 2. Cont.
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(c)

Figure 2. Numerical result of the expanding experiment with negative drift γ = −0.1 < 0 : (a) initial
and terminal states of the numerical discretized solution; (b) initial and terminal states of the numerical
discretized solution in semilogarithmic coordinates; and (c) trajectories of grid nodes. All numerical
parameters for this computation are reported in Table 2 (middle column).

4.2.2. Confining Drift

In the case of the positive drift coefficient γ > 0 , the FELLER dynamics get even more interesting
since we have two competing effects:

1. Positive drift moving information towards the origin x = 0 ;
2. Diffusion spreading solution towards the positive infinity.

It might happen that both effects balance each other and result in a steady solution. Such a
simulation is presented in this Section. The numerical and physical parameters are given in Table 2 (the
right column). The initial condition along with the probability distribution at the end of our simulations
are shown simultaneously in Figure 3a,b in CARTESIAN and semilogarithmic coordinates, respectively.
The trajectories of grid nodes are shown in Figure 2c. One can see the rapid initial expansion stage,
which is followed by a stabilization process, when we almost achieved the expected steady state. Again,
the grid nodes trajectories show excellent adaptive features of the numerical scheme—at the end of the
simulation, the relative density of nodes turns out to be preserved. The semilogarithmic plot shown
in Figure 3b shows that the numerical solution is free of numerical instabilities. The obtained steady
solution will be preserved by discrete dynamics thanks to the well-balanced property demonstrated in
Section 4.1.
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Figure 3. Numerical result of the confining experiment with positive drift γ = 0.5 > 0 : (a) initial
and terminal states of the numerical discretized solution; (b) initial and terminal states of the numerical
discretized solution in semilogarithmic coordinates; and (c) trajectories of grid nodes. All numerical
parameters for this computation are reported in Table 2 (right column).

5. Discussion

Above, we presented some rationale about the discretization, existence, and uniqueness theory
for FELLER’s equation. The main conclusions and perspectives are outlined below.

5.1. Conclusions

The celebrated FELLER equation was studied mathematically in two seminal papers published
by William FELLER (1951/1952) in Annals of Mathematics [1,2]. In particular, the uniqueness was
shown in [2] without any boundary condition required at x = 0 . This result is notable and we use it
in our study. The main goal of our work was to present an efficient numerical scheme, which is able
to handle the unbounded diffusion inherent to Equation (1). Moreover, the retention phenomenon
causes the solution support to expand all the time. Thus, if we wait a sufficiently long time, it will
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reach the computational domain boundaries (since R+ � x was truncated to a finite segment to
make the in silico simulation possible). To overcome this difficulty, we proposed a simple and explicit
LAGRANGIAN scheme using the notion of the pseudo-inverse. In this way, we obtained a stable
numerical scheme (under not so stringent stability conditions), which turns out to be naturally adaptive
as well, since particles move together with the growing support (the rightmost particle position defines
the support) and tend to concentrate where it is really needed. The performance of our scheme
was illustrated in several examples. We share also the MATLAB code so that anybody can check the
claims we made above and use it to solve numerically the FELLER equation in their applications:
https://github.com/dutykh/Feller/.

5.2. Perspectives

All the numerical schemes and results presented in this paper were in one ‘spatial’ dimension.
The FELLER equation considered here is 1D as well. However, it seems interesting (regardless of
the physical applications) to consider generalized FELLER equations in higher space dimensions and
to extend the proposed numerical strategy to the multidimensional case as well. Another possible
extension direction consists of proposing higher-order schemes to capture numerical solutions with
better accuracy with the same number of degrees of freedom. On the more theoretical side, we would
like to obtain an alternative well-posedness theory for FELLER equation by taking a continuous limit in
our numerical scheme.
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Abbreviations

The following abbreviations are used in this manuscript:

CFL Courant Friedrichs Lew
GeM A Maple module for the computation of symmetries and conservation laws of differential equations
ODE Ordinary Differential Equation
PDF Probability Density Function
PDE Partial Differential Equation
WT Wave Turbulence

Appendix A. Positivity Preservation

In this Appendix, we show the positivity preservation property of the solution p (x, t) to
Equation (1). We suppose that initially the solution is non-negative, i.e.,

p (x, 0) = p 0 (x) � 0 , ∀x ∈ R+ .

Let us assume that at some positive time t = t ∗ > 0 and in some point x = x ∗ ∈ R+ the
solution attains zero value, i.e.,

p (x ∗, t ∗) = 0 .

This situation is schematically depicted in Figure A1.

13



Mathematics 2019, 7, 1067

Figure A1. A schematic representation of the situation where the solution p (x, t) attains a zero value
at some point x � > 0 .

Equation (1) can be rewritten in the nonconservative form:

p t = x
[

γ p x + η p x x
]
+ γ p + η p x .

Taking into account the fact that the point x � is a local minimum (p x | x � = 0), where the solution
takes zero value (p | x � = 0), the last equation greatly simplifies at this point:

p t |x � = x � η p x x | x � > 0 ,

since in the minimum p x x | x � > 0 . Thus, zero values of the solution are repulsive and for (at least
small) times t > t �, the function t �→ p (x �, t) will be increasing.

Appendix B. ‘Mass’ conservation

It is straightforward to show that the L 1 norm of the solution to Equations (1) is preserved. Indeed,
taking into account that the solution p (x, t) > 0 is positive for all times t > 0 provided that the
initial condition p 0 (x) � 0 , ∀x ∈ R+ , we have | p (x, t) | ≡ p (x, t) . By integrating Equation (1),
we have

∂ t

∫
R+

p (x, t)dx +
∫
R+

F x dx = 0 .

Taking into account that F | x = 0 ≡ 0 and the solution p (x, t) is decaying sufficiently fast, as
x → +∞ together with its derivative, we obtain

∂ t

∫
R+

p (x, t)dx ≡ 0 .

In other words,
‖ p (·, t) ‖ L 1 = const .

The last constant can be in general taken equal to one after the appropriate rescaling (provided
that the initial condition is nontrivial). It is this scaling which is assumed throughout the whole text
above. This renormalization is consistent, with the ‘physical sense’ of the variable p being the density
of a probability distribution.

Appendix C. Kummer’s Functions

The KUMMER functions M (a, b, z) and U (a, b, z) are two linearly independent solutions of the
following ordinary differential equation:

z
dy 2

dz 2 + (b − z)
dy
dz

− a y = 0 .
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This equation admits two singular points: z = 0 (regular) and z = +∞ (irregular). There exists
a connection between KUMMER and hypergeometric functions [20].

Appendix D. Exponential Integral

Notice also an important property of the exponential integral function E 1 (x) , which is useful in
manipulating its values for negative arguments:

lim
δ → 0

E 1 (x ± i δ) = E 1 (x) ∓ i π ≡ − Ei (−x) ∓ i π , x < 0 ,

where Ei (z) is the following exponential integral:

Ei (z)
def
:= −

∫ z

−∞

e t

t
dt .

Thus, Ei (x) ≡ −E 1 (−x) for x < 0 . The last relation can be also extended to the entire complex
plain as follows:

Ei (z) ≡ −E 1 (−z) +
1
2

ln z − 1
2

ln
( 1

z

)
− ln(−z) , z ∈ C .

More properties of the exponential integral can be found in the specialized literature (see e.g.,
([20], Chapter 5)).
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Abstract: The continuum spectrum pulse equation is a third order nonlocal nonlinear evolutive
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1. Introduction

In this paper, we investigate the well-posedness of the classical solution of the following
Cauchy problem: ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂tu + 3gu2∂xu − a∂3
xu + q∂x(uv) = bP, t > 0, x ∈ R,

∂xP = u, t > 0, x ∈ R,

α∂2
xv + β∂xv + γv = κu2, t > 0, x ∈ R,

P(t,−∞) = 0, t > 0,

u(0, x) = u0(x), x ∈ R,

(1)

where g, a, q, b, α, β, γ, κ ∈ R.
On the initial datum, we assume that

u0 ∈ H2(R) ∩ L1(R),
∫
R

u0(x)dx = 0. (2)

Following [1–6], on the function

P0(x) =
∫ x

−∞
u0(y)dy, (3)

we assume that ∫
R

P0(x)dx =
∫
R

(∫ x

−∞
u0(y)dy

)
= 0,

‖P0‖2
L2(R) =

∫
R

(∫ x

−∞
u0(y)dy

)2
dx < ∞.

(4)
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Mathematics 2019, 7, 1006

In addition, we assume that

qβ

κ
≥ 0, g �= 0, a �= 0, α �= 0. (5)

Observe that, since α cannot vanish, we can factorize it and deal with only three constants.
In the physical literature (1) is termed the continuum spectrum pulse equation (see [7–14]). It is

used to describe the dynamics of the electrical field u of linearly polarized continuum spectrum pulses
in optical waveguides, including fused-silica telecommunication-type or photonic-crystal fibers, as
well as hollow capillaries filled with transparent gases or liquids.

The constants a, b, g, q, α, κ, β, γ, in (1), take into account the frequency dispersion of the
effective linear refractive index and the nonlinear polarization response, the excitation efficiency
of the vibrations, the frequency and the decay time (see [7,8,14]).

Moreover, (1) generalizes the following system:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂tu + q∂x(uv) = bP, t > 0, x ∈ R,

∂xP = u, t > 0, x ∈ R,

α∂2
xv + β∂xv + γv = κu2, t > 0, x ∈ R,

P(t,−∞) = 0, t > 0,

u(0, x) = u0(x), x ∈ R,

(6)

whose the well-posedness is studied in [15]. From a mathematical point of view, the presence of
the term

3gu2∂xu − a∂3
xu

in the first equation of (1) makes the analysis of such system more subtle than the one of (6).
Observe that, taking b = α = β = 0, (1) becomes the modified Korteweg-de Vries equation

(see [16–20])

∂tu +

(
g +

qκ

γ

)
∂xu3 − a∂3

xu = 0. (7)

In [8,9,21–24], it is proven that (7) is a non-slowly-varying envelope approximation model that
describes the physics of few-cycle-pulse optical solitons. In [6,18], the Cauchy problem for (7) is
studied, while, in [16,19], the convergence of the solution of (7) to the unique entropy solution of the
following scalar conservation law

∂tu +

(
g +

qκ

γ

)
∂xu3 = 0 (8)

is proven.
On the other hand, taking α = β = 0 in (1), we have the following equations⎧⎪⎨⎪⎩∂tu +

(
g +

qκ

γ

)
∂xu3 = bP, t > 0, x ∈ R,

∂xP = u, t > 0, x ∈ R,
(9)

that were deduced by Kozlov and Sazonov [12] for the description of the nonlinear propagation of
optical pulses of a few oscillations duration in dielectric media and by Schäfer and Wayne [25] for
the description of the propagation of ultra-short light pulses in silica optical fibers. Moreover, (9) is
a non-slowly-varying envelope approximation model that describes the physics of few-cycle-pulse
optical solitons (see [22–24,26–28]), a particular Rabelo equation which describes pseudospherical
surfaces (see [29–32]), and a model for the descriptions of the short pulse propagation in nonlinear
metamaterials characterized by a weak Kerr-type nonlinearity in their dielectric response (see [33]).
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Finally, (9) was deduced in [34] in the context of plasma physic and that similar equations
describe the dynamics of radiating gases [35,36], in [37–40] in the context of ultrafast pulse propagation
in a mode-locked laser cavity in the few-femtosecond pulse regime and in [41] in the context of
Maxwell equations.

The Cauchy problem for (9) was studied in [42–44] in the context of energy spaces, [4,5,45,46]
in the context of entropy solutions. The homogeneous initial boundary value problem was studied
in [47–50]. Nonlocal formulations of (9) were analyzed in [15,51] and the convergence of a finite
difference scheme proved in [52].

Observe that, taking α = β = 0, (1) reads⎧⎪⎨⎪⎩∂tu +

(
g +

qκ

γ

)
∂xu3 − a∂3

xu = bP, t > 0, x ∈ R,

∂xP = u, t > 0, x ∈ R.
(10)

It was derived by Costanzino, Manukian and Jones [53] in the context of the nonlinear Maxwell
equations with high-frequency dispersion. Kozlov and Sazonov [12] show that (10) is an more general
equation than (9) to describe the nonlinear propagation of optical pulses of a few oscillations duration
in dielectric media.

Mathematical properties of (10) are studied in many different contexts, including the local and
global well-posedness in energy spaces [43,53] and stability of solitary waves [53,54], while, in [6], the
well-posedness of the classical solutions is proven.

Observe that letting a → 0 in (10), we obtain (9). Hence, following [19,55,56], in [5,57],
the convergence of the solution of (10) to the unique entropy solution of (9).

The main result of this paper is the following theorem.

Theorem 1. Assume (2), (3), (4) and (5). Fix T > 0, there exists an unique solution (u, v, P) of (1) such that

u ∈ L∞(0, T; H2(R)),

v ∈ L∞(0, T; H4(R)),

P ∈ L∞(0, T; H3(R)).

(11)

In particular, we have that ∫
R

u(t, x)dx = 0, t ≥ 0. (12)

Moreover, if (u1, v1, P1) and (u2, v2, P2) are two solutions of (1), we have that

‖u1(t, ·)− u2(t, ·)‖L2(R) ≤eC(T)t ‖u1,0 − u2,0‖L2(R) ,

‖v1(t, ·)− v2(t, ·)‖H2(R) ≤eC(T)t ‖u1,0 − u2,0‖L2(R) ,

‖P1(t, ·)− P2(t, ·)‖H1(R) ≤eC(T)t ‖P1,0 − P2,0‖H1(R) ,

(13)

where,

P1,0(x) =
∫ x

−∞
u1,0(y)dy, P2,0(x) =

∫ x

−∞
u2,0(y)dy, (14)

for some suitable C(T) > 0, and every 0 ≤ t ≤ T.

The proof of Theorem 1 is based on the Aubin–Lions Lemma (see [58–60]).
The paper is organized as follows. In Section 2, we prove several a priori estimates on a vanishing

viscosity approximation of (1). Those play a key role in the proof of our main result, that is given in
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Section 3. Appendix A is an appendix, where we prove the posedness of the classical solutions of (1),
under the assumption

u0 ∈ L1(R) ∩ H3(R). (15)

2. Vanishing Viscosity Approximation

Our existence argument is based on passing to the limit in a vanishing viscosity approximation
of (1).

Fix a small number 0 < ε < 1 and let uε = uε(t, x) be the unique classical solution of the following
mixed problem [19,61,62]:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂tuε + 3gu2
ε ∂xuε − a∂3

xuε + q∂x(vεuε) = bPε − ε∂4
xuε, t > 0, x ∈ R,

∂xPε = uε, t > 0, x ∈ R,

α∂2
xvε + β∂xvε + γvε = κu2

ε , t > 0, x ∈ R,

Pε(t,−∞) = 0, t > 0,

uε(0, x) = uε,0(x), x ∈ R,

(16)

where uε,0 is a C∞ approximation of u0 such that

‖uε,0‖H2(R) ≤ ‖u0‖H2(R) ,
∫
R

uε,0dx = 0,

‖Pε,0‖L2(R) ≤ ‖P0‖L2(R) ,
∫
R

Pε,0dx = 0.
(17)

Let us prove some a priori estimates on uε, Pε and vε. We denote with C0 the constants which
depend only on the initial data, and with C(T), the constants which depend also on T.

Lemma 1. For each t ≥ 0,
Pε(t, ∞) = 0. (18)

In particular, we have that ∫
R

uε(t, x)dx = 0. (19)

Proof. We begin by proving (18). Thanks to the regularity of uε and the first equation of (16),
we have that

lim
x→∞

(
∂tuε + 3gu2

ε ∂xuε − a∂3
xuε + q∂x(vεuε)− ε∂5

xuε

)
= bPε(t, ∞) = 0,

which gives (18).
Finally, we prove (19). Integrating the second equation of (16) on (−∞, x), by (16), we have that

Pε(t, x) =
∫ x

−∞
uε(t, y)dy. (20)

Equation (19) follows from (18) and (20).

Arguing as in ([15], Lemma 2.2), we have the following result.

Lemma 2. Assume (5). We have that

∫
R

u2
ε ∂xvεdx =

⎧⎨⎩
β

κ
‖∂xvε(t, ·)‖2

L2(R) , if β �= 0,

0, if β=0.
(21)
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Lemma 3. Assume (5). If β �= 0, then for each t ≥ 0, there exists a constant C0 > 0, independent on ε,
such that

‖uε(t, ·)‖2
L2(R) +

qβ

κ

∫ t

0
‖∂xvε(s, ·)‖2

L2(R) ds

+ 2ε
∫ t

0
‖∂xuε(t, ·)‖2

L2(R) ds ≤ C0.
(22)

If β = 0, then for each t ≥ 0,

‖uε(t, ·)‖2
L2(R) + 2ε

∫ t

0
‖∂xuε(s, ·)‖2

L2(R) ds ≤ ‖u0‖2
L2(R) . (23)

In particular, we have

‖∂xvε(t, ·)‖L∞(R) , ‖∂xvε(t, ·)‖L2(R) ≤C0,

‖vε(t, ·)‖L∞(R) , ‖vε(t, ·)‖L2(R) ≤C0.
(24)

Moreover, fixed T > 0, there exists a constant C(T) > 0, independent on ε, such that

ε
∫ t

0
‖∂xuε(s, ·)‖2

L2(R) ds ≤ C(T). (25)

Proof. Multiplying by 2uε the first equation of (16), an integration on R gives

d
dt

‖uε(t, ·)‖2
L2(R) =2

∫
R

uε∂tuεdx

=− 6g
∫
R

u3
ε ∂xuεdx − 2q

∫
R

uε∂x(uεvε)dx + 2b
∫
R

Pεuεdx

+ 2a
∫
R

uε∂
3
xuεdx − 2ε

∫
R

uε∂
4
xuεdx

=− 2q
∫
R

uε∂x(uεvε)dx − 2a
∫
R

∂xuε∂
2
xuεdx

+ 2b
∫
R

Pεuεdx + 2ε
∫
R

∂xuε∂
3
xuεdx

=− 2q
∫
R

uε∂x(uεvε)dx − 2a
∫
R

∂xuε∂
2
xuεdx

+ 2b
∫
R

Pεuεdx − 2ε
∥∥∥∂2

xuε(t, ·)
∥∥∥2

L2(R)
.

Therefore,

d
dt

‖uε(t, ·)‖2
L2(R) + 2ε

∥∥∥∂2
xuε(t, ·)

∥∥∥2

L2(R)
= 2b

∫
R

Pεuεdx − 2q
∫
R

uε∂x(uεvε)dx.

Arguing as in ([15], Lemma 2.2), we have (22), (23) and (24).
Finally, arguing as in ([6], Lemma 2.3), we have (25).

Lemma 4. Assume (5). Fix T > 0. There exists a constant C0 > 0, independent on ε, such that∥∥∥∂2
xvε

∥∥∥
L∞((0,T)×R)

≤ C0

(
1 + ‖uε‖2

L∞((0,T)×R)

)
. (26)

Proof. Let 0 ≤ t ≤ T. Thanks to the third equation of (16), we have that

α∂2
xvε = κu2

ε − β∂xvε − γvε. (27)
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Therefore, by (24),

|α||∂2
xvε| =|κu2

ε − β∂xvε − γvε| ≤ |κ|u2
ε + |β||∂xvε|+ |γ||vε|

≤|κ| ‖uε‖2
L2((0,T)×R) + |β| ‖∂xvε(t, ·)‖L∞(R) + |γ| ‖vε(t, ·)‖L∞(R)

≤|κ| ‖uε‖2
L2((0,T)×R) + C0 ≤ C0

(
1 + ‖uε‖2

L2((0,T)×R)

)
,

which gives (26).

Arguing as in ([6], Lemma 2.2), we have the following result.

Lemma 5. For each t ≥ 0, we have that ∫ −∞

0
Pε(t, x)dx = Aε(t), (28)∫ ∞

0
Pε(t, x)dx = Aε(t), (29)

where
Aε(t) = −1

b
∂tPε(t, 0)− g

b
u3

ε (t, 0)− a
b

∂2
xuε(t, 0)− q

b
uε(t, 0)vε(t, 0) +

ε

b
∂xuε(t, 0).

In particular, we have ∫
R

Pε(t, x)dx = 0. (30)

Lemma 6. Assume (5). Fix T > 0. There exists a constant C(T) > 0, independent on ε, such that

‖Pε(t, ·)‖2
L2(R) +2εeC0t

∫ t

0
e−C0s ‖∂xuε(s, ·)‖2

L2(R) ds

≤C(T)
(

1 + ‖uε‖2
L∞((0,T)×R)

)
.

(31)

for every 0 ≤ t ≤ T. In particular, we have that

‖Pε‖L∞((0,T)×R) ≤ 4

√
C(T)

(
1 + ‖uε‖2

L∞((0,T)×R)

)
. (32)

Proof. Let 0 ≤ t ≤ T. We begin by observing that, by (28), we can consider the following function:

Fε(t, x) =
∫ x

−∞
Pε(t, y)dy. (33)

Integrating the second equation of (16) on (−∞, x), we have

Pε(t, x) =
∫ x

−∞
uε(t, y)dy. (34)

Differentiating (34) with respect to t, we get

∂tPε(t, x) =
d
dt

∫ x

−∞
uε(t, y)dy =

∫ x

−∞
∂tuε(t, x)dx. (35)

Equation (33), (35) and an integration on (−∞, x) of the first equation of (16) give

∂tPε = bFε − ε∂3
xuε − gu3

ε + a∂2
xuε − qvεuε. (36)
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Multiplying (36) by −2Pε, an integration on R gives

d
dt

‖Pε(t, ·)‖2
L2(R) =2b

∫
R

FεPεdx − 2ε
∫
R

Pε∂
3
xuεdx − 2g

∫
R

Pεu3
ε dx

+ 2a
∫
R

Pε∂
2
xuεdx − 2q

∫
R

Pεvεuεdx.
(37)

Observe that, by (18), (30), (33) and the second equation of (16),

2b
∫
R

FεPεdx =2b
∫
R

Fε∂xFεdx = bF2
ε (t, ∞) = b

(∫
R

Pε(t, x)dx
)2

dx = 0,

−2ε
∫
R

Pε∂
3
xuεdx =2ε

∫
R

∂xPε∂
2
xuεdx = 2ε

∫
R

uε∂
2
xuεdx = −2ε ‖∂xuε(t, ·)‖2

L2(R) ,

2a
∫
R

Pε∂
2
xuεdx =− 2a

∫
R

∂xPε∂xuεdx = −2a
∫
R

uε∂xuε = 0,

−2q
∫
R

Pεvεuεdx =− 2q
∫
R

Pεvε∂xPεdx = 2q
∫
R

∂xvεP2
ε dx.

Consequently, by (24) and (37),

d
dt

‖Pε(t, ·)‖2
L2(R) + 2ε ‖∂xuε(t, ·)‖2

L2(R)

=2q
∫
R

∂xvεP2
ε dx − 2g

∫
R

Pεu3
ε dx

≤2|q|
∫
R

|∂xvε|P2
ε dx + 2|g|

∫
R

|Pε||uε|3dx

≤2|q| ‖∂xvε(t, ·)‖L∞(R) ‖Pε(t, ·)‖2
L2(R) + 2|g|

∫
R

|Pε||uε|3dx

≤C0 ‖Pε(t, ·)‖2
L2(R) + 2|g|

∫
R

|Pε||uε|3dx.

(38)

Due to Lemma 3 and the Young inequality,

2|g|
∫
R

|Pε||uε|3dx =
∫
R

|2Pεuε||gu2
ε |dx ≤ 2

∫
R

P2
ε u2

ε dx +
g2

2

∫
R

u4
ε dx

≤2 ‖Pε(t, ·)‖2
L∞(R) ‖uε(t, ·)‖2

L2(R)

+
g2

2
‖uε‖2

L∞((0,T)×R) ‖uε(t, ·)‖2
L2(R)

≤C0 ‖Pε(t, ·)‖4
L∞(R) + C0 ‖uε‖2

L∞((0,T)×R)

≤‖Pε(t, ·)‖4
L∞(R) + C0 + C0 ‖uε‖2

L∞((0,T)×R) .

It follows from (38) that

d
dt

‖Pε(t, ·)‖2
L2(R) + 2ε ‖∂xuε(t, ·)‖2

L2(R)

≤C0 ‖Pε(t, ·)‖2
L2(R) + ‖Pε(t, ·)‖4

L∞(R) + C0

(
1 + ‖uε‖2

L∞((0,T)×R)

)
.

(39)

Thanks to Lemma 3 and the Hölder inequality,

P2
ε (t, x) = 2

∫ x

−∞
Pεuεdy ≤ 2

∫
R

|Pε||uε|dx

≤‖Pε(t, ·)‖L2(R) ‖uε(t, ·)‖L2(R) ≤ C0 ‖Pε(t, ·)‖L2(R) .
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Hence,
‖Pε(t, ·)‖4

L∞(R) ≤ C0 ‖Pε(t, ·)‖2
L2(R) . (40)

It follows from (39) and (40) that

d
dt

‖Pε(t, ·)‖2
L2(R) + 2ε ‖uε(t, ·)‖2

L2(R)

≤C0 ‖Pε(t, ·)‖2
L2(R) + C0

(
1 + ‖uε‖2

L∞((0,T)×R)

)
.

The Gronwall Lemma and (17) give

‖Pε(t, ·)‖2
L2(R) + 2εeC0t

∫ t

0
e−C0s ‖uε(s, ·)‖2

L2(R) ds

≤C0eC0t + C0

(
1 + ‖uε‖2

L∞((0,T)×R)

)
eC0t

∫ t

0
e−C0sds

≤C(T)
(

1 + ‖uε‖2
L∞((0,T)×R)

)
,

which gives (31).
Finally, (32) follows from (31) and (40).

Following ([6], Lemma 2.5), we prove the following result.

Lemma 7. Assume (5). Fix T > 0. There exists a constant C(T) > 0, independent on ε, such that

‖uε‖L∞((0,T)×R) ≤ C(T). (41)

In particular, we have

‖∂xuε(t, ·)‖2
L2(R) + 2εeC0t

∫ t

0
e−C0s

∥∥∥∂3
xuε(s, ·)

∥∥∥2

L2(R)
ds ≤ C(T), (42)

for every 0 ≤ t ≤ T. Moreover, ∥∥∥∂2
xvε

∥∥∥
L∞((0,T)×R)

≤C(T),

‖Pε(t, ·)‖L2(R) ≤C(T),

‖Pε‖L∞((0,T)×R) ≤C(T),

(43)

for every 0 ≤ t ≤ T.

Proof. Let 0 ≤ t ≤ T. Multiplying the first equation of (1) by −2∂2
xuε +

2g
a u3

ε , we have that(
−2∂2

xuε +
2g
a

u3
ε

)
∂tuε + 3g

(
−2∂2

xuε +
2g
a

u3
ε

)
u2

ε ∂xuε

− a
(
−2∂2

xuε +
2g
a

u3
ε

)
∂3

xuε + q
(
−2∂2

xuε +
2g
a

u3
ε

)
∂x(vεuε) (44)

=b
(
−2∂2

xuε +
2g
a

u3
ε

)
Pε − ε

(
−2∂2

xuε +
2g
a

u3
ε

)
∂4

xuε.

Observe that, by (18) and the second equation of (16),

− 2b
∫
R

Pε∂
2
xuεdx = 2b

∫
R

∂xPε∂xuεdx = 2b
∫
R

uε∂xuεdx = 0. (45)
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Moreover, ∫
R

(
−2∂2

xuε +
2g
a

u3
ε

)
∂tuεdx =

d
dt

(
‖∂xuε(t, ·)‖2

L2(R) +
g

2a

∫
R

u4
ε dx

)
,

3g
∫
R

(
−2∂2

xuε +
2g
a

u3
ε

)
u2

ε ∂xuεdx =− 6g
∫
R

u2
ε ∂xuε∂

2
xuεdx,

−a
∫
R

(
−2∂2

xuε +
2g
a

u3
ε

)
∂3

xuεdx =6g
∫
R

u2
ε ∂xuε∂

2
xuεdx, (46)

−ε
∫
R

(
−2∂2

xuε +
2g
a

u3
ε

)
∂4

xuεdx =− 2ε
∥∥∥∂3

xuε(t, ·)
∥∥∥2

L2(R)

+
6gε

a

∫
R

u2
ε ∂xuε∂

3
xuεdx.

Defined
G(t) := ‖∂xuε(t, ·)‖2

L2(R) +
g

2a

∫
R

u4
ε dx, (47)

it follows from (45), (46) and an integration on R of (44) that

dG(t)
dt

+ 2ε
∥∥∥∂3

xuε(t, ·)
∥∥∥2

L2(R)
=

2bg
a

∫
R

Pεu3
ε dx +

6gε

a

∫
R

u2
ε ∂xuε∂

3
xuεdx

+ 2q
∫
R

∂x(vεuε)∂
2
xuεdx − 2qga

∫
R

∂x(vεuε)u3
ε dx.

(48)

Observe that

2q
∫
R

∂x(vεuε)∂
2
xuεdx =2q

∫
R

uε∂xvε∂
2
xuεdx + 2q

∫
R

vε∂xuε∂
2
xuεdx

=− 2q
∫
R

∂2
xvεuε∂xuεdx − 3q

∫
R

∂xvε(∂xuε)
2dx,

−2qga
∫
R

∂x(vεuε)u3
ε dx =− 2qga

∫
R

∂xvεu4
ε dx − 2qga

∫
R

vε∂xuεu3
ε dx

− 3qg
2a

∫
R

∂xvεu4
ε dx.

Consequently, by (48),

dG(t)
dt

+ 2ε
∥∥∥∂3

xuε(t, ·)
∥∥∥2

L2(R)
=

2bg
a

∫
R

Pεu3
ε dx +

6gε

a

∫
R

u2
ε ∂xuε∂

3
xuεdx

− 3q
∫
R

∂xvε(∂xuε)
2dx − 2q

∫
R

∂2
xvεuε∂xuεdx (49)

− 3qg
2a

∫
R

∂xvεu4
ε dx.
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Due to (26), (32), Lemma 3 and the Young inequality,∣∣∣∣2bg
a

∣∣∣∣ ∫
R

Pεu3
ε dx =

∫
R

|2Pεuε|
∣∣∣∣ bgu2

ε

a

∣∣∣∣ dx

≤2
∫
R

P2
ε u2

ε dx +
b2g2

2a2

∫
R

u4
ε dx

≤2 ‖Pε‖2
L∞((0,T)×R) ‖uε(t, ·)‖2

L2(R)

+
b2g2

2a2 ‖uε‖2
L∞((0,T)×R) ‖uε(t, ·)‖2

L2(R)

≤2C0 ‖Pε‖2
L∞((0,T)×R) + C0 ‖uε‖2

L∞((0,T)×R)

≤‖Pε‖4
L∞((0,T)×R) + C0 ‖uε‖2

L∞((0,T)×R) + C0

≤C(T)
(

1 + ‖uε‖2
L∞((0,T)×R)

)
,

3|q|
∫
R

|∂xvε|(∂xuε)
2dx ≤3|q| ‖∂xvε(t, ·)‖L∞(R) ‖∂xuε(t, ·)‖2

L2(R)

≤C0 ‖∂xuε(t, ·)‖2
L2(R) ,

2|q|
∫
R

∂2
xvεuε∂xuεdx =2

∫
R

|q∂2
xvεuε|∂xuε|dx

≤q2
∫
R

(∂2
xvε)

2u2
ε dx + ‖∂xuε(t, ·)‖2

L2(R)

≤q2
∥∥∥∂2

xvε

∥∥∥2

L∞((0,T)×R)
‖uε(t, ·)‖2

L2(R) + ‖∂xuε(t, ·)‖2
L2(R)

≤C0

∥∥∥∂2
xvε

∥∥∥2

L∞((0,T)×R)
+ ‖∂xuε(t, ·)‖2

L2(R)

≤C(T)
(

1 + ‖uε‖2
L∞((0,T)×R)

)
+ ‖∂xuε(t, ·)‖2

L2(R) ,∣∣∣∣3qg
2a

∣∣∣∣ ∫
R

|∂xvε|u4
ε dx ≤

∣∣∣∣3qg
2a

∣∣∣∣ ‖∂xvε(t, ·)‖L∞(R)

∫
R

u4
ε dx

≤C0

∫
R

u4
ε dx ≤ C0

∥∥∥u2
ε

∥∥∥
L∞((0,T)×R)

‖uε(t, ·)‖2
L2(R)

≤C0

∥∥∥u2
ε

∥∥∥
L∞((0,T)×R)

,∣∣∣∣6gε

a

∣∣∣∣ ∫
R

|u2
ε ∂xuε||∂3

xuε|dx =2ε
∫
R

∣∣∣∣3g
a

u2
ε ∂xuε

∣∣∣∣ ∣∣∣∂3
xuε

∣∣∣ dx

≤9g2ε

a2

∫
R

u4
ε (∂xuε)

2dx + ε
∥∥∥∂3

xuε(t, ·)
∥∥∥2

L2(R)
.

Consequently, by (49),

dG(t)
dt

+ ε
∥∥∥∂3

xuε(t, ·)
∥∥∥2

L2(R)
≤C0 ‖∂xuε(t, ·)‖2

L2(R) +
9g2ε

a2

∫
R

u4
ε (∂xuε)

2dx

+ C(T)
(

1 + ‖uε‖2
L∞((0,T)×R)

)
.

(50)

Lemma 2.6 of [6] says that∫
R

u4
ε (∂xuε)

2dx ≤ 4 ‖uε(t, ·)‖4
L2(R)

∥∥∥∂2
xuε(t, ·)

∥∥∥2

L2(R)
. (51)
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Hence, by Lemma 3, we have that

9g2ε

a2

∫
R

u4
ε (∂xuε)

2dx ≤36g2ε

a2 ‖uε(t, ·)‖4
L2(R)

∥∥∥∂2
xuε(t, ·)

∥∥∥2

L2(R)

≤C0ε
∥∥∥∂2

xuε(t, ·)
∥∥∥2

L2(R)
.

Therefore, by (50),

.
dG(t)

dt
+ ε

∥∥∥∂3
xuε(t, ·)

∥∥∥2

L2(R)
≤C0 ‖∂xuε(t, ·)‖2

L2(R) + C0ε
∥∥∥∂2

xuε(t, ·)
∥∥∥2

L2(R)

+ C(T)
(

1 + ‖uε‖2
L∞((0,T)×R)

)
.

(52)

Observe that, by (47) and Lemma 3,

C0 ‖∂xuε(t, ·)‖2
L2(R) =C0G(t)− gC0

2a

∫
R

u4
ε dx

≤C0G(t) +
∣∣∣∣ gC0

2a

∣∣∣∣ ‖uε‖2
L∞((0,T)×R) ‖uε(t, ·)‖2

L2(R) (53)

≤C0G(t) + C0 ‖uε‖2
L∞((0,T)×R) .

It follows from (52) and (53) that

dG(t)
dt

+ ε
∥∥∥∂3

xuε(t, ·)
∥∥∥2

L2(R)
≤C0G(t) + C0ε

∥∥∥∂2
xuε(t, ·)

∥∥∥2

L2(R)

+ C(T)
(

1 + ‖uε‖2
L∞((0,T)×R)

)
.

The Gronwall Lemma, (17), (47) and Lemma 3 that

‖∂xuε(t, ·)‖2
L2(R) +

g
2a

∫
R

u4
ε dx + εeC0t

∫ t

0
e−C0s

∥∥∥∂3
xuε(s, ·)

∥∥∥2

L2(R)
ds

≤ C0eC0t + C(T)
(

1 + ‖uε‖2
L∞((0,T)×R)

)
eC0t

∫ t

0
e−C0sds

+ C0εeC0t
∫ t

0
e−C0s

∥∥∥∂2
xuε(s, ·)

∥∥∥2

L2(R)
ds

≤ C(T)
(

1 + ‖uε‖2
L∞((0,T)×R)

)
+ C(T)ε

∫ t

0

∥∥∥∂2
xuε(s, ·)

∥∥∥2

L2(R)
ds

≤ C(T)
(

1 + ‖uε‖2
L∞((0,T)×R)

)
.

Consequently, by Lemma 3,

‖∂xuε(t, ·)‖2
L2(R) + 2εeC0t

∫ t

0
e−C0s

∥∥∥∂3
xuε(s, ·)

∥∥∥2

L2(R)
ds

≤C(T)
(

1 + ‖uε‖2
L∞((0,T)×R)

)
− g

2a
‖uε(t, ·)‖4

L4(R)

≤C(T)
(

1 + ‖uε‖2
L∞((0,T)×R)

)
+

∣∣∣ g
2a

∣∣∣ ∫
R

u4
ε dx (54)

≤C(T)
(

1 + ‖uε‖2
L∞((0,T)×R)

)
+

∣∣∣ g
2a

∣∣∣ ‖uε‖2
L∞((0,T)×R) ‖uε(t, ·)‖2

L2(R)

≤C(T)
(

1 + ‖uε‖2
L∞((0,T)×R)

)
+ C0 ‖uε‖2

L∞((0,T)×R)

≤C(T)
(

1 + ‖uε‖2
L∞((0,T)×R)

)
.

27



Mathematics 2019, 7, 1006

We prove (41). Thanks to (54), Lemma 3 and the Hölder inequality,

u2
ε (t, x) =2

∫ x

−∞
uε∂xuεdx ≤

∫
R

|uε||∂xuε|dx

≤‖uε(t, ·)‖2
L2(R) ‖∂xuε(t, ·)‖2

L2(R) ≤ C(T)
√(

1 + ‖uε‖2
L∞((0,T)×R)

)
.

Hence,
‖uε‖4

L∞((0,T)×R) − C(T) ‖uε‖2
L∞((0,T)×R) − C(T) ≤ 0,

which gives (41).
Finally, (42) follows from (41) and (54), while (26), (31), (32) and (41) give (43).

Arguing as in ([15], Lemmas 2.8 and 2.9), we have the following result.

Lemma 8. Assume (5). Fix T > 0. There exists a constant C(T) > 0, independent on ε, such that∥∥∥∂2
xvε(t, ·)

∥∥∥
L2(R)

,
∥∥∥∂3

xvε(t, ·)
∥∥∥

L2(R)
≤ C(T), (55)

for every 0 ≤ t ≤ T.

Lemma 9. Assume (5). Fix T > 0. There exists a constant C(T) > 0, independent on ε, such that

‖∂xuε‖L∞((0,T)×R) ≤ C(T), (56)

In particular, we have that∥∥∥∂2
xuε(t, ·)

∥∥∥2

L2(R)
+ 2εeC0t

∫ t

0
e−C0s

∥∥∥∂4
xuε(s, ·)

∥∥∥2

L2(R)
ds ≤ C(T), (57)

for every 0 ≤ t ≤ T.

Proof. Let 0 ≤ t ≤ T. Consider two real constants D, E which will be specified later Multiplying the
first equation of (16) by

2a2∂4
xuε + Daguε(∂xuε)

2 + Eagu2
ε ∂2

xuε,

we have that (
2a2∂4

xuε + Daguε(∂xuε)
2 + Eagu2

ε ∂2
xuε

)
∂tuε

+ 3g
(

2a2∂4
xuε + Daguε(∂xuε)

2 + Eagu2
ε ∂2

xuε

)
u2

ε ∂xuε

− a
(

2a2∂4
xuε + Daguε(∂xuε)

2 + Eagu2
ε ∂2

xuε

)
∂3

xuε

+ q
(

2a2∂4
xuε + Daguε(∂xuε)

2 + Eagu2
ε ∂2

xuε

)
uε∂xvε

+ q
(

2a2∂4
xuε + Daguε(∂xuε)

2 + Eagu2
ε ∂2

xuε

)
vε∂xuε

= b
(

2a2∂4
xuε + Daguε(∂xuε)

2 + Eagu2
ε ∂2

xuε

)
Pε

− ε
(

2a2∂4
xuε + Daguε(∂xuε)

2 + Eagu2
ε ∂2

xuε

)
∂4

xuε.

(58)
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Observe that∫
R

(
2a2∂4

xuε + Daguε(∂xuε)
2 + Eagu2

ε ∂2
xuε

)
∂tuεdx

= a2 d
dt

∥∥∥∂2
xuε(t, ·)

∥∥∥2

L2(R)
+ Dag

∫
R

uε(∂xuε)
2∂tuεdx + Eag

∫
R

u2
ε ∂2

xuε∂tuεdx,

3g
∫
R

(
2a2∂4

xuε + Daguε(∂xuε)
2 + Eagu2

ε ∂2
xuε

)
u2

ε ∂xuεdx

= −12a2g
∫
R

uε(∂xuε)
2∂3

xuεdx − 6a2g
∫
R

u2
ε ∂2

xuε∂
3
xuεdx

+ (3D − 6E) ag2
∫
R

u3
ε (∂xuε)

3dx

= 30a2g
∫
R

uε∂xuε(∂
2
xuε)

2dx + (3D − 6E) ag2
∫
R

u3
ε (∂xuε)

3dx,

− a
∫
R

(
2a2∂4

xuε + Daguε(∂xuε)
2 + Eagu2

ε ∂2
xuε

)
∂3

xuεdx

= − (2D + E) a2g
∫
R

uε∂xuε(∂
2
xuε)

2dx,

q
∫
R

(
2a2∂4

xuε + Daguε(∂xuε)
2 + Eagu2

ε ∂2
xuε

)
uε∂xvεdx

= −2a2q
∫
R

∂xuε∂xvε∂
3
xuεdx − 2a2q

∫
R

uε∂
2
xvε∂

3
xuεdx

+ (D − 3E) agq
∫
R

u2
ε (∂xuε)

2∂xvεdx − agqE
∫
R

u3
ε ∂xuε∂

2
xvεdx

= 2a2q
∫
R

∂xvε(∂
2
xuε)

2dx + 4a2q
∫
R

∂xuε∂
2
xvε∂

2
xuεdx

+ 2a2q
∫
R

uε∂
3
xvε∂

2
xuεdx + aq (D − 3E)

∫
R

u2
ε (∂xuε)

2∂xvεdx,

q
∫
R

(
2a2∂4

xuε + Daguε(∂xuε)
2 + Eagu2

ε ∂2
xuε

)
vε∂xuεdx

= −2a2q
∫
R

∂xvε∂xuε∂
3
xuεdx − 2a2q

∫
R

vε∂
2
xuε∂

3
xuεdx

+ (D − E) agq
∫
R

uεvε(∂xuε)
3dx − Eagq

2

∫
R

u2
ε (∂xuε)

3∂2
xvεdx

= 2a2q
∫
R

∂2
xvε∂xuε∂

2
xuεdx + 3a2q

∫
R

∂xvε(∂
2
xuε)

2dx

+ (D − E) agq
∫
R

uεvε(∂xuε)
3dx − Eagq

2

∫
R

u2
ε (∂xuε)

3∂2
xvεdx,

− ε
∫
R

(
2a2∂4

xuε + Daguε(∂xuε)
2 + Eagu2

ε ∂2
xuε

)
∂4

xuεdx

= −2a2ε
∥∥∥∂4

xuε(t, ·)
∥∥∥2

L2(R)
+ Dagε

∫
R

uε(∂xuε)
2∂4

xuεdx

+ Eagε
∫
R

u2
ε ∂2

xuε∂
4
xuεdx.
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Consequently, an integration on R of (58) gives

a2 d
dt

∥∥∥∂2
xuε(t, ·)

∥∥∥2

L2(R)
+ Dag

∫
R

uε(∂xuε)
2∂tuεdx + Eag

∫
R

u2
ε ∂2

xuε∂tuεdx

+ 2a2ε
∥∥∥∂4

xuε(t, ·)
∥∥∥2

L2(R)

= −a2g (30 + 2D + E)
∫
R

uε∂xuε(∂
2
xuε)

2dx − (3D − 6E) ag2
∫
R

u3
ε (∂xuε)

3dx

− 5a2q
∫
R

∂xvε(∂
2
xuε)

2dx − 6a2q
∫
R

∂2
xvε∂xuε∂

2
xuεdx

− 2a2q
∫
R

uε∂
3
xvε∂

2
xuεdx − aq (D − 3E)

∫
R

u2
ε (∂xuε)

2∂xvεdx (59)

− (D − E) agq
∫
R

uεvε(∂xuε)
3dx +

Eagq
2

∫
R

u2
ε (∂xuε)

3∂2
xvεdx

+ 2a2b
∫
R

Pε∂
4
xuεdx + Dagb

∫
R

Pεuε(∂xuε)
2dx + Eagb

∫
R

Pεu2
ε ∂2

xuεdx

− Dagε
∫
R

uε(∂xuε)
2∂4

xuεdx + Eagε
∫
R

u2
ε ∂2

xuε∂
4
xuεdx.

Thanks to the second equation of (16) and (18), we have that

2a2b
∫
R

Pε∂
4
xuεdx =− 2a2b

∫
R

∂xPε∂
3
xuε = −2a2b

∫
R

uε∂
3
xuεdx

=2a2b
∫
R

∂xuε∂
2
xuεdx = 0,

Eagb
∫
R

Pεu2
ε ∂2

xuεdx =− Eagb
∫
R

∂xPεu2
ε ∂xuεdx − 2Eagb

∫
R

Pεuε(∂xuε)
2dx

=− 2Eagb
∫
R

Pεuε(∂xuε)
2dx − Eagb

∫
R

u3
ε ∂xuεdx

=− 2Eagb
∫
R

Pεuε(∂xuε)
2dx.

Therefore, by (59),

a2 d
dt

∥∥∥∂2
xuε(t, ·)

∥∥∥2

L2(R)
+ Dag

∫
R

uε(∂xuε)
2∂tuεdx + Eag

∫
R

u2
ε ∂2

xuε∂tuεdx

+ 2a2ε
∥∥∥∂4

xuε(t, ·)
∥∥∥2

L2(R)

= −a2g (30 + 2D + E)
∫
R

uε∂xuε(∂
2
xuε)

2dx − (3D − 6E) ag2
∫
R

u3
ε (∂xuε)

3dx

− 5a2q
∫
R

∂xvε(∂
2
xuε)

2dx − 6a2q
∫
R

∂2
xvε∂xuε∂

2
xuεdx

− 2a2q
∫
R

uε∂
3
xvε∂

2
xuεdx − aq (D − 3E)

∫
R

u2
ε (∂xuε)

2∂xvεdx (60)

− (D − E) agq
∫
R

uεvε(∂xuε)
3dx +

Eagq
2

∫
R

u2
ε (∂xuε)

3∂2
xvεdx

+ (D − 2E) agb
∫
R

Pεuε(∂xuε)
2dx + Dagε

∫
R

uε(∂xuε)
2∂4

xuεdx

+ Eagε
∫
R

u2
ε ∂2

xuε∂
4
xuεdx.
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Observe that

Dag
∫
R

uε(∂xuε)
2∂tuεdx + Eag

∫
R

u2
ε ∂2

xuε∂tuεdx

=
Dag

2

∫
R

∂t(u2
ε )(∂xuε)

2dx − Eag
∫
R

∂xuε∂x(u2
ε ∂tuε)dx

=
Dag

2

∫
R

∂t(u2
ε )(∂xuε)

2dx − 2Eag
∫
R

uε(∂xuε)
2∂tuεdx − Ea

∫
R

u2
ε ∂xuε∂

2
txuεdx

ag
(

D
2
− E

) ∫
R

∂t(u2
ε )(∂xuε)

2dx − Eag
2

∫
R

u2
ε ∂t((∂xuε)

2)dx.

Consequently, by (60),

a2 d
dt

∥∥∥∂2
xuε(t, ·)

∥∥∥2

L2(R)
+ ag

(
D
2
− E

) ∫
R

∂t(u2
ε )(∂xuε)

2dx

− Eag
2

∫
R

u2
ε ∂t((∂xuε)

2)dx + 2a2ε
∥∥∥∂4

xuε(t, ·)
∥∥∥2

L2(R)

= −a2g (30 + 2D + E)
∫
R

uε∂xuε(∂
2
xuε)

2dx − (3D − 6E) ag2
∫
R

u3
ε (∂xuε)

3dx

− 5a2q
∫
R

∂xvε(∂
2
xuε)

2dx − 6a2q
∫
R

∂2
xvε∂xuε∂

2
xuεdx

− 2a2q
∫
R

uε∂
3
xvε∂

2
xuεdx − aq (D − 3E)

∫
R

u2
ε (∂xuε)

2∂xvεdx (61)

− (D − E) agq
∫
R

uεvε(∂xuε)
3dx +

Eagq
2

∫
R

u2
ε (∂xuε)

3∂2
xvεdx

+ (D − 2E) agb
∫
R

Pεuε(∂xuε)
2dx + Dagε

∫
R

uε(∂xuε)
2∂4

xuεdx

+ Eagε
∫
R

u2
ε ∂2

xuε∂
4
xuεdx.

We search D, E such that

D
2
− E = −E

2
, 30 + 2D + E = 0,

that is
D = E, 30 + 2D + E = 0. (62)

Since D = E − 10 is the unique solution of (62), it follows from (61) that

a2 d
dt

∥∥∥∂2
xuε(t, ·)

∥∥∥2

L2(R)
+ 5ag

∫
R

∂t(u2
ε )(∂xuε)

2dx + 5ag
∫
R

u2
ε ∂t((∂xuε)

2)dx

+ 2a2ε
∥∥∥∂4

xuε(t, ·)
∥∥∥2

L2(R)

= −30ag2
∫
R

u3
ε (∂xuε)

3dx − 5a2q
∫
R

∂xvε(∂
2
xuε)

2dx − 6a2q
∫
R

∂2
xvε∂xuε∂

2
xuεdx

− 2a2q
∫
R

uε∂
3
xvε∂

2
xuεdx − 20aq

∫
R

u2
ε (∂xuε)

2∂xvεdx − 5agq
∫
R

u2
ε (∂xuε)

3∂2
xvεdx

+ 10agb
∫
R

Pεuε(∂xuε)
2dx − 10agε

∫
R

uε(∂xuε)
2∂4

xuεdx

− 10agε
∫
R

u2
ε ∂2

xuε∂
4
xuεdx,
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that is

d
dt

(
a2

∥∥∥∂2
xuε(t, ·)

∥∥∥2

L2(R)
+ 5ag

∫
R

u2
ε (∂xuε)

2dx
)
+ 2a2ε

∥∥∥∂4
xuε(t, ·)

∥∥∥2

L2(R)

= −30ag2
∫
R

u3
ε (∂xuε)

3dx − 5a2q
∫
R

∂xvε(∂
2
xuε)

2dx

− 6a2q
∫
R

∂2
xvε∂xuε∂

2
xuεdx − 2a2q

∫
R

uε∂
3
xvε∂

2
xuεdx (63)

− 20aq
∫
R

u2
ε (∂xuε)

2∂xvεdx − 5agq
∫
R

u2
ε (∂xuε)

3∂2
xvεdx

+ 10agb
∫
R

Pεuε(∂xuε)
2dx − 10agε

∫
R

uε(∂xuε)
2∂4

xuεdx

− 10agε
∫
R

u2
ε ∂2

xuε∂
4
xuεdx.

Due to (41), (42), (43), (55), Lemma 3 and the Young inequality,

|30ag2|
∫
R

|uε|3|∂xuε|3dx ≤|30ag2| ‖uε‖3
L∞((0,T)×R)

∫
R

|∂xuε|3dx

≤C(T)
∫
R

|∂xuε|3dx

≤C(T) ‖∂xuε(t, ·)‖2
L2(R) + C(T)

∫
R

(∂xuε)
4dx

≤C(T) + C(T) ‖∂xuε‖2
L∞((0,T)×R) ‖∂xuε(t, ·)‖2

L2(R)

≤C(T)
(

1 + ‖∂xuε‖2
L∞((0,T)×R)

)
,

|5a2q|
∫
R

|∂xvε|(∂2
xuε)

2dx ≤|5a2q| ‖∂xvε(t, ·)‖L∞(R)

∥∥∥∂2
xuε(t, ·)

∥∥∥2

L2(R)

≤C0

∥∥∥∂2
xuε(t, ·)

∥∥∥2

L2(R)
,

|6a2q|
∫
R

|∂2
xvε∂xuε||∂2

xuε|dx ≤3a4q2
∫
R

(∂2
xvε)

2(∂xuε)
2dx + 3

∥∥∥∂2
xuε(t, ·)

∥∥∥2

L2(R)

≤3a4q2
∥∥∥∂2

xvε

∥∥∥2

L∞((0,T)×R)
‖∂xuε(t, ·)‖2

L2(R) + 3
∥∥∥∂2

xuε(t, ·)
∥∥∥2

L2(R)

≤C(T) + 3
∥∥∥∂2

xuε(t, ·)
∥∥∥2

L2(R)
,

|2a2q|
∫
R

|uε∂
3
xvε||∂2

xuε|dx ≤a4q2
∫
R

u2
ε (∂

3
xvε)

2dx +
∥∥∥∂2

xuε(t, ·)
∥∥∥2

L2(R)

≤a4q2 ‖uε‖2
L∞((0,T)×R)

∥∥∥∂3
xvε(t, ·)

∥∥∥2

L2(R)
+

∥∥∥∂2
xuε(t, ·)

∥∥∥2

L2(R)

≤C(T) +
∥∥∥∂2

xuε(t, ·)
∥∥∥2

L2(R)
,

|20aq|
∫
R

u2
ε (∂xuε)

2|∂xvε|dx ≤|20aq| ‖∂xvε(t, ·)‖L∞(R) ‖uε‖2
L∞((0,T)×R) ‖∂xuε(t, ·)‖2

L2(R)

≤C(T) ‖∂xuε(t, ·)‖2
L2(R) ≤ C(T),
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|5agq|
∫
R

u2
ε |∂xuε|3|∂2

xvε|dx ≤|5agq| ‖uε‖2
L∞((0,T)×R)

∥∥∥∂2
xvε

∥∥∥
L∞((0,T)×R)

∫
R

|∂xuε|3dx

≤C(T)
∫
R

|∂xuε|3dx

≤C(T) ‖∂xuε(t, ·)‖2
L2(R) + C(T)

∫
R

(∂xuε)
4dx

≤C(T) + C(T) ‖∂xuε‖2
L∞((0,T)×R) ‖∂xuε(t, ·)‖2

L2(R)

≤C(T)
(

1 + ‖∂xuε‖2
L∞((0,T)×R)

)
,

|10agb|
∫
R

|Pεuε|(∂xuε)
2dx ≤|10agb| ‖Pε‖L∞((0,T)×R) ‖uε‖L∞((0,T)×R) ‖∂xuε(t, ·)‖2

L2(R)

≤C(T) ‖∂xuε(t, ·)‖2
L2(R) ≤ C(T),

|10ag|ε
∫
R

|uε(∂xuε)
2||∂4

xuε|dx =ε
∫
R

|10guε(∂xuε)
2||a∂4

xuε|dx

≤50g2ε
∫
R

u2
ε (∂xuε)

4dx +
a2ε

2

∥∥∥∂4
xuε(t, ·)

∥∥∥2

L2(R)

≤50g2ε ‖uε‖2
L∞((0,T)×R)

∫
R

(∂xuε)
4dx +

a2ε

2

∥∥∥∂4
xuε(t, ·)

∥∥∥2

L2(R)

≤C(T)ε ‖∂xuε‖2
L∞((0,T)×R) ‖∂xuε(t, ·)‖2

L2(R)

+
a2ε

2

∥∥∥∂4
xuε(t, ·)

∥∥∥2

L2(R)
,

|10ag|ε
∫
R

|u2
ε ∂2

xuε||∂4
xuε|dx =ε

∫
R

|10gu2
ε ∂2

xuε||a∂4
xuε|dx

≤50g2ε
∫
R

u4
ε (∂

2
xuε)

2dx +
a2ε

2

∥∥∥∂4
xuε(t, ·)

∥∥∥2

L2(R)

≤50g2ε ‖uε‖4
L∞((0,T)×R)

∥∥∥∂2
xuε(t, ·)

∥∥∥2

L2(R)
+

a2ε

2

∥∥∥∂4
xuε(t, ·)

∥∥∥2

L2(R)

≤C(T)ε
∥∥∥∂2

xuε(t, ·)
∥∥∥2

L2(R)
+

a2ε

2

∥∥∥∂4
xuε(t, ·)

∥∥∥2

L2(R)
.

Therefore, defining

G1(t) = a2
∥∥∥∂2

xuε(t, ·)
∥∥∥2

L2(R)
+ 5ag

∫
R

u2
ε (∂xuε)

2dx, (64)

by (63) and (64), we have

dG1(t)
dt

+ ε
∥∥∥∂4

xuε(t, ·)
∥∥∥2

L2(R)
≤C0

∥∥∥∂2
xuε(t, ·)

∥∥∥2

L2(R)
+ C(T)

(
1 + ‖∂xuε‖2

L∞((0,T)×R)

)
+ C(T)ε ‖∂xuε‖2

L∞((0,T)×R) ‖∂xuε(t, ·)‖2
L2(R) (65)

+ C(T)ε
∥∥∥∂2

xuε(t, ·)
∥∥∥2

L2(R)
.
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Observe that by (41), (42) and (64),

C0

∥∥∥∂2
xuε(t, ·)

∥∥∥2

L2(R)
=

C0a2

a2

∥∥∥∂2
xuε(t, ·)

∥∥∥2

L2(R)

=
C0

a2 G1(t)−
5C0g

a

∫
R

u2
ε (∂xuε)

2dx

≤C0G1(t) +
∣∣∣∣5C0g

a

∣∣∣∣ ∫
R

u2
ε (∂xuε)

2dx (66)

≤C0G1(t) +
∣∣∣∣5C0g

a

∣∣∣∣ ‖uε‖2
L∞((0,T)×R) ‖∂xuε(t, ·)‖2

L2(R)

≤C0G1(t) + C(T).

It follows from (65) and (66) that

dG1(t)
dt

+ ε
∥∥∥∂4

xuε(t, ·)
∥∥∥2

L2(R)
≤C0G1(t) + C(T)

(
1 + ‖∂xuε‖2

L∞((0,T)×R)

)
+ C(T)ε ‖∂xuε‖2

L∞((0,T)×R) ‖∂xuε(t, ·)‖2
L2(R)

+ C(T)ε
∥∥∥∂2

xuε(t, ·)
∥∥∥2

L2(R)
.

The Gronwall Lemma, (17) and Lemma 3 give∥∥∥∂2
xuε(t, ·)

∥∥∥2

L2(R)
+ 5ag

∫
R

u2
ε (∂xuε)

2dx + 2εeC0t
∫ t

0
e−C0s

∥∥∥∂4
xuε(s, ·)

∥∥∥2

L2(R)
ds

≤C0eC0t + C(T)
(

1 + ‖∂xuε‖2
L∞((0,T)×R)

)
eC0t

∫ t

0
e−C0sds

+ C(T)ε ‖∂xuε‖2
L∞((0,T)×R) eC0t

∫ t

0
e−C0s ‖∂xuε(s, ·)‖2

L2(R) ds

+ C(T))εeC0t
∫ t

0
e−C0s

∥∥∥∂2
xuε(s, ·)

∥∥∥2

L2(R)
ds

≤C(T)
(

1 + ‖∂xuε‖2
L∞((0,T)×R)

)
+ C(T)ε ‖∂xuε‖2

L∞((0,T)×R)

∫ t

0
‖∂xuε(s, ·)‖2

L2(R) ds

+ C(T))ε
∫ t

0

∥∥∥∂2
xuε(s, ·)

∥∥∥2

L2(R)
ds

≤C(T)
(

1 + ‖∂xuε‖2
L∞((0,T)×R)

)
.

Therefore, thanks to (41) and (42),∥∥∥∂2
xuε(t, ·)

∥∥∥2

L2(R)
+ 2εeC0t

∫ t

0
e−C0s

∥∥∥∂4
xuε(s, ·)

∥∥∥2

L2(R)
ds

=C(T)
(

1 + ‖∂xuε‖2
L∞((0,T)×R)

)
− 5ag

∫
R

u2
ε (∂xuε)

2dx

≤C(T)
(

1 + ‖∂xuε‖2
L∞((0,T)×R)

)
+ |5ag|

∫
R

u2
ε (∂xuε)

2dx (67)

≤C(T)
(

1 + ‖∂xuε‖2
L∞((0,T)×R)

)
+ |5ag| ‖uε‖2

L∞((0,T)×R) ‖∂xuε(t, ·)‖2
L2(R)

≤C(T)
(

1 + ‖∂xuε‖2
L∞((0,T)×R)

)
.

34



Mathematics 2019, 7, 1006

We prove (56). Due to (42), (67) and the Hölder inequality,

(∂xuε(t, x))2 =2
∫ x

−∞
∂xuε∂

2
xuεdx ≤ 2

∫
R

|∂xuε||∂2
xuε|dx

≤‖∂xuε(t, ·)‖L2(R)

∥∥∥∂2
xuε(t, ·)

∥∥∥
L2(R)

≤ C(T)
√(

1 + ‖∂xuε‖2
L∞((0,T)×R)

)
.

Therefore,
‖∂xuε‖4

L∞((0,T)×R) − C(T) ‖∂xuε‖2
L∞((0,T)×R) − C(T) ≤ 0,

which gives (56).
Finally, (57) follows from (56) and (67).

Lemma 10. Assume (5). Fix T > 0. There exists a constant C(T) > 0, independent on ε, such that∥∥∥∂4
xvε(t, ·)

∥∥∥2

L2(R)
≤ C(T), (68)

for every 0 ≤ t ≤ T. In particular, we have that∥∥∥∂3
xvε

∥∥∥
L∞((0,T)×R)

≤ C(T), (69)

Proof. Let 0 ≤ t ≤ T. Differentiating the third equation of (16) twice with respect to x, we have

α∂4
xvε = 2κ(∂xuε)

2 + 2κuε∂
2
xuε − β∂3

xvε − γ∂2
xvε. (70)

Since
uε(t,±∞) = ∂xuε(t,±∞) = ∂2

xuε(t,±∞) = 0, (71)

it follows from (24) and (55) that
∂4

xvε(t,±∞) = 0. (72)

Multiplying (70) by 2α∂4
xvε, an integration on R gives

2α2
∥∥∥∂4

xvε(t, ·)
∥∥∥2

L2(R)
=2κα

∫
R

(∂xuε)
2∂4

xvεdx + 2κα
∫
R

uε∂
2
xuε∂

4
xvεdx

− 2βα
∫
R

∂3
xvε∂

4
xvεdx − 2γα

∫
R

∂2
xvε∂

4
xvεdx.

(73)

Observe that, thanks to (24), (55) and (72),

−2βα
∫
R

∂3
xvε∂

4
xvεdx =0,

−2γα
∫
R

∂2
xvε∂

4
xvεdx =2γα

∥∥∥∂3
xvε(t, ·)

∥∥∥2

L2(R)
.

Therefore, by (55) and (73),

2α2
∥∥∥∂4

xvε(t, ·)
∥∥∥2

L2(R)
≤2|κα|

∫
R

(∂xuε)
2|∂4

xvε|dx + 2|κα|
∫
R

|uε∂
2
xuε||∂4

xvε|dx

+ 2|γα|
∥∥∥∂3

xvε(t, ·)
∥∥∥2

L2(R)
(74)

≤2|κα|
∫
R

(∂xuε)
2|∂4

xvε|dx + 2|κα|
∫
R

|uε∂
2
xuε||∂4

xvε|dx + C(T).
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Due to (41), (42), (56), (57) and the Young inequality,

2|κα|
∫
R

(∂xuε)
2|∂4

xvε|dx ≤κ2
∫
R

(∂xuε)
4dx + α2

∥∥∥∂4
xvε(t, ·)

∥∥∥2

L2(R)

≤κ2 ‖∂xuε‖2
L∞((0,T)×R) ‖∂xuε(t, ·)‖2

L2(R) + α2
∥∥∥∂4

xvε(t, ·)
∥∥∥2

L2(R)

≤C(T) + α2
∥∥∥∂4

xvε(t, ·)
∥∥∥2

L2(R)
,

2|κα|
∫
R

|uε∂
2
xuε||∂4

xvε| =
∫
R

|2κuε∂
2
xuε||α∂4

xvε|dx

≤2κ2
∫
R

u2
ε (∂

2
xuε)

2dx +
α2

2

∥∥∥∂4
xvε(t, ·)

∥∥∥2

L2(R)

≤2κ2 ‖uε‖2
L∞((0,T)×R)

∥∥∥∂2
xuε(t, ·)

∥∥∥2

L2(R)
+

α2

2

∥∥∥∂4
xvε(t, ·)

∥∥∥2

L2(R)

≤C(T) +
α2

2

∥∥∥∂4
xvε(t, ·)

∥∥∥2

L2(R)
.

Consequently, by (74),
α2

2

∥∥∥∂4
xvε(t, ·)

∥∥∥2

L2(R)
≤ C(T),

which gives (68).
Finally, we prove (69). Due to (55), (68) and the Hölder inequality,

(∂3
xvε(t, x))2 =2

∫ x

−∞
∂3

xvε∂
4
xvεdx ≤ 2

∫
R

|∂3
xvε||∂4

xvε|dx

≤
∥∥∥∂3

xvε(t, ·)
∥∥∥

L2(R)

∥∥∥∂4
xvε(t, ·)

∥∥∥
L2(R)

≤ C(T).

Hence, ∥∥∥∂3
xvε

∥∥∥2

L∞((0,T)×R)
≤ C(T),

which gives (69).

3. Proof of Theorem 1

This section is devoted to the proof of Theorem 1.
We begin by proving the following lemma.

Lemma 11. Fix T > 0. Then,

the sequence {uε}ε>0 is compact in L2
loc((0, ∞)×R). (75)

Consequently, there exists a subsequence {uεk}k∈N of {uε}ε>0 and u ∈ L2
loc((0, ∞)×R) such that, for

each compact subset K of (0, ∞)×R),

uεk → u in L2(K) and a.e., (76)

vεk ⇀ v in H1((0, T)×R), (77)

Pεk ⇀ P in L2((0, T)×R). (78)

Moreover, (u, v, P) is a solution of (1) satisfying (11) and (12).
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Proof. We begin by proving (75). To prove (75), we rely on the Aubin–Lions Lemma (see [58–60]). We
recall that

H1
loc(R) ↪→↪→ L2

loc(R) ↪→ H−1
loc (R),

where the first inclusion is compact and the second is continuous. Owing to the Aubin–Lions
Lemma [60], to prove (75), it suffices to show that

{uε}ε>0 is uniformly bounded in L2(0, T; H1
loc(R)), (79)

{∂tuε}ε>0 is uniformly bounded in L2(0, T; H−1
loc (R)). (80)

We prove (79). Thanks to (42), (57) and Lemma 3,

‖uε(t, ·)‖2
H2(R) = ‖uε(t, ·)‖2

L2(R) + ‖∂xuε(t, ·)‖2
L2(R) +

∥∥∥∂2
xuε(t, ·)

∥∥∥2

L2(R)
≤ C(T).

Therefore,
{uε}ε>0 is uniformly bounded in L∞(0, T; H2(R)),

which gives (79).
We prove (80). By the first equation of (16),

∂tuε = ∂x

(
−gu3

ε + a∂2
xuε − qvεuε − ε∂3

xuε

)
+ bPε. (81)

We have that
‖uε‖L6((0,T)×R) ≤ C(T). (82)

Indeed, thanks to (41) and Lemma 3,

g2
∫ T

0

∫
R

u6
ε dtdx ≤g2 ‖uε‖4

L∞((0,T)×R)

∫ T

0

∫
R

u2
ε dtdx

≤C(T)
∫ T

0

∫
R

u2
ε dtdx ≤ C(T).

We prove that
q2 ‖vεuε‖2

L2((0,T)×R) ≤ C(T). (83)

Due to Lemma 3,

q2
∫ T

0

∫
R

v2
ε u2

ε dtdx ≤q2 ‖vε‖2
L∞((0,T)×R)

∫ T

0

∫
R

u2
ε dtdx

≤C(T)
∫ T

0

∫
R

u2
ε dtdx ≤ C(T).

Observe that, since 0 < ε < 1, thanks to (42) and (57),

ε
∥∥∥∂3

xuε

∥∥∥2

L2((0,T)×R)
, β2

∥∥∥∂2
xuε

∥∥∥2

L2((0,T)×R)
≤ C(T). (84)

Therefore, by (82), (83) and (84),{
∂x

(
−gu3

ε + a∂2
xuε − qvεuε − ε∂3

xuε

)}
ε>0

is bounded in H1((0, T)×R). (85)

Moreover, by (43), we have that

b2 ‖Pε‖2
L2((0,T)×R) ≤ C(T). (86)
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Equation (80) follows from (85) and (86).
Thanks to the Aubin–Lions Lemma, (75) and (76) hold.
Observe that, (77) follows from Lemma 3, while, by (43), we have (78). Consequently, (u, v, P)

solves (1).
Observe again that, thanks to Lemmas 3, 7, 8, 9, (10) and the second equation of (16), we

obtain (11).
Finally, we prove (12). Thanks to Lemmas 3 and 7, we have

uεk ⇀ u in H1((0, T)×R). (87)

Therefore, (12) follows from (19) and (87).

We are ready for the proof of Theorem 1.

Proof of Theorem 1. Lemma 11 gives the existence of a solution of (1) satisfying (11) and (12).
Let (u1, P1) and (u2, P2) be two solutions of (1) satisfying (11) and (12), namely⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂tu1 + 3gu2
1∂xu1 − a∂3

xu1 + q∂x(u1v1) = bP1, t > 0, x ∈ R,

∂xP1 = u1, t > 0, x ∈ R,

α∂2
xv1 + β∂xv1 + γv1 = κu2

1, t > 0, x ∈ R,

P1(t,−∞) = 0, t > 0,

u1(0, x) = u1, 0(x), x ∈ R,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂tu2 + 3gu2
2∂xu2 − a∂3

xu2 + q∂x(u2v2) = bP2, t > 0, x ∈ R,

∂xP2 = u2, t > 0, x ∈ R,

α∂2
xv2 + β∂xv2 + γv2 = κu2

2, t > 0, x ∈ R,

P2(t,−∞) = 0, t > 0,

u2(0, x) = u2, 0(x), x ∈ R.

Then, the triad (ω, V, Ω) defined by

ω(t, x) = u1(t, x)− u2(t, x), V(t, x) = v1(t, x)− v2(t, x),

Ω(t, x) =
∫ x

−∞
ω(t, y)dy =

∫ x

−∞
u1(t, y)dy −

∫ x

−∞
u2(t, y)dy,

Ω(0, x) =
∫ x

−∞
ω(0, y)dy =

∫ x

−∞
u1(0, y)dy −

∫ x

−∞
u2(0, y)dy.

(88)

is solution of the following Cauchy problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tω + 3g
(

u2
1∂xu1 − u2

2∂xu2

)
−a∂3

xω + q∂x(u1v1 − u2v2) = bΩ, t > 0, x ∈ R,

∂xΩ = ω, t > 0, x ∈ R,

α∂2
xV + β∂xV + γV = κ(u2

1 − u2
2), t > 0, x ∈ R,

Ω(t,−∞) = 0, t > 0,

ω(0, x) = u1, 0 − u2, 0(x), x ∈ R.

(89)
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Arguing as in ([15], Theorem 1.1), we have that

‖V(t, ·)‖2
H2(R) ≤C(T) ‖ω(t, ·)‖2

L2(R) , (90)

‖V(t, ·)‖2
L∞(R) ≤C(T) ‖ω(t, ·)‖2

L2(R) , (91)

‖∂xV(t, ·)‖2
L∞(R) ≤C(T) ‖ω(t, ·)‖2

L2(R) . (92)

Moreover, by (12) and (88),

Ω(t, ∞) =
∫
R

ω(t, x)dx =
∫
R

u1(t, y)dy −
∫
R

u2(t, x)dx = 0. (93)

Observe that, by (88)

3g
(

u2
1∂xu1 − u2

2∂xu2

)
=3g

(
u2

1∂xu1 − u2
2∂xu1 + u2

2∂xu1 − u2
2∂xu2

)
=3g

(
∂xu1

(
u2

1 − u2
2

)
+ u2

2∂xω
)

(94)

=3g
(

∂xu1 (u1 + u2)ω + u2
2∂xω

)
.

Moreover, arguing as in ([15], Theorem 1.1),

q∂x(u1v1 − u2v2) = q∂x(u1v1 − u2v1 + u2v1 − u2v2) = q∂x(v1ω) + q∂x(u2V). (95)

Therefore, thanks to (94) and (95), the first equation of (89) is equivalent to the following one:

∂tω = bΩ − 3g∂xu1 (u1 + u2)ω − 3gu2
2∂xω + a∂3

xω − q∂x(v1ω)− q∂x(u2V). (96)

Multiplying (96) by 2ω, an integration on R gives

d
dt

‖ω(t, ·)‖2
L2(R) =2b

∫
R

Ω∂xωdx − 6g
∫
R

∂xu1 (u1 + u2)ω2dx − 2a
∫
R

ω∂3
xωdx

− 6g
∫
R

u2
2ω∂xωdx − 2q

∫
R

∂x(v1ω)ωdx − 2q
∫
R

∂x(u2V)ωdx.
(97)

Observe that, by (88) and (93),

2b
∫
R

Ω∂xωdx =2b
∫
R

Ω∂xΩdx = bΩ2(t, ∞) = 0,

−6g
∫
R

u2
2ω∂xωdx =6g

∫
R

u2∂xu2ω2dx,

−2a
∫
R

ω∂3
xωdx =2a

∫
R

∂xω∂2
xω = 0, (98)

−2q
∫
R

∂x(v1ω)ωdx =2q
∫
R

v1ω∂xωdx = −q
∫
R

∂xv1ω2dx,

−2q
∫
R

∂x(u2V)ωdx =− 2q
∫
R

∂xu2Vωdx − 2q
∫
R

u2∂xVωdx.

It follows from (97) and (98) that

d
dt

‖ω(t, ·)‖2
L2(R) =− 6g

∫
R

∂xu1 (u1 + u2)ω2dx + 6g
∫
R

u2∂xu2ω2dx

− q
∫
R

∂xv1ω2dx − 2q
∫
R

∂xu2Vωdx − 2q
∫
R

u2∂xVωdx.
(99)
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Since (11) holds, we have that

‖u1‖L∞((0,T)×R) , ‖u2‖L∞((0,T)×R) ≤C(T),

‖∂xu1‖L∞((0,T)×R) , ‖∂xu2‖L∞((0,T)×R) ≤C(T),

‖∂xv1‖L∞((0,T)×R) , ‖u2(t, ·)‖L2(R) , ‖∂xu2(t, ·)‖L2(R) ≤C(T),

(100)

for evert 0 ≤ t ≤ T. Consequently, by (91), (100) and the Hölder inequality,

|6g|
∫
R

|∂xu1||u1 + u2|ω2dx ≤|6g| ‖∂xu1‖L∞((0,T)×R)

∫
R

|u1 + u2|ω2dx

≤C(T)
(
‖u1‖L∞((0,T)×R) + ‖u2‖L∞((0,T)×R)

)
‖ω(t, ·)‖2

L2(R)

≤C(T) ‖ω(t, ·)‖2
L2(R) ,

|6g|
∫
R

|u2||∂xu2|ω2dx ≤|6g| ‖u1‖L∞((0,T)×R)

∫
R

|∂xu2|ω2dx

≤C(T) ‖∂xu2‖L∞((0,T)×R) ‖ω(t, ·)‖2
L2(R)

≤C(T) ‖ω(t, ·)‖2
L2(R) ,

|q|
∫
R

|∂xv1|ω2dx ≤|q| ‖∂xv1‖L∞((0,T)×R) ‖ω(t, ·)‖2
L2(R)

≤C(T) ‖ω(t, ·)‖2
L2(R) ,

|2q|
∫
R

|∂xu2||V||ω|dx ≤|2q| ‖V(t, ·)‖L∞(R)

∫
R

|∂xu2||ω|dx

≤C(T) ‖∂xu2(t, ·)‖L2(R) ‖ω(t, ·)‖2
L2(R)

≤C(T) ‖ω(t, ·)‖2
L2(R) ,

|2q|
∫
R

|u2||∂xV||ω|dx ≤|2q| ‖∂xV(t, ·)‖L∞(R)

∫
R

|u2|||ω|dx

≤C(T) ‖u2(t, ·)‖L2(R) ‖ω(t, ·)‖2
L2(R)

≤C(T) ‖ω(t, ·)‖2
L2(R) .

It follows from (99) that

d
dt

‖ω(t, ·)‖2
L2(R) ≤ C(T) ‖ω(t, ·)‖2

L2(R) . (101)

The Gronwall Lemma and (89) give

‖ω(t, ·)‖2
L2(R) ≤ eC(T)t ‖ω(0, x)‖2

L2(R) . (102)

Since (11) holds, by (88), arguing as in Lemma 5, Ω(t, ·) is integrable at ±∞. Moreover, thanks
to (93) and Lemma 5, we have that ∫

R

Ω(t, x)dx = 0. (103)

Consider the following function:

Ω1(t, x) =
∫ x

−∞
Ω(t, y)dy, (104)

since, by the second equation of (89),

∂tΩ =
d
dt

∫ x

−∞
ω(t, y)dy =

∫ x

−∞
∂tω(t, y)dy, (105)
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integrating the first equation of (89) on (−∞, x), by (104) and (105), we have that

∂tΩ = bΩ1 − g
(

u3
1 − u3

2

)
+ a∂2

xω − q (u1v1 − u2v2) . (106)

Observe that, by (88),

u3
1 − u3

2 =
(

u2
1 + u2

2 + u1u2

)
ω,

u1v1 − u2v2 =v1ω + u2V.

Consequently, by (106),

∂tΩ = bΩ1 − g
(

u2
1 + u2

2 + u1u2

)
ω + a∂2

xω − qv1ω − qu2V. (107)

It follows from (88), (93), (103) and (104) that

2b
∫
R

Ω1Ωdx =2b
∫
R

Ω1∂xΩ1dx = bΩ2
1(t, ∞) = b

(∫
R

Ω(t, x)dx
)2

= 0,

2a
∫
R

Ω∂2
xωdx =− 2a

∫
R

∂xΩ∂xωdx = −2a
∫
R

ω∂xωdx = 0.

Therefore, multiplying (107) by 2Ω, an integration on R gives

d
dt

‖Ω(t, ·)‖2
L2(R) =− 2g

∫
R

(
u2

1 + u2
2 + u1u2

)
ωΩdx

− 2q
∫
R

v1ωΩdx − 2q
∫
R

u2VΩdx.
(108)

Due to (91), (100) and the Young inequality,

|2g|
∫
R

∣∣∣u2
1 + u2

2 + u1u2

∣∣∣ |ω|||Ω|dx

≤ g2
∫
R

(
u2

1 + u2
2 + u1u2

)2
ω2dx + ‖Ω(t, ·)‖2

L2(R)

≤ C(T) ‖ω(t, ·)‖2
L2(R) + ‖Ω(t, ·)‖2

L2(R) ,

|2q|
∫
R

|v1ω||Ω|dx

≤ q2
∫
R

v2
1ω2dx + ‖Ω(t, ·)‖2

L2(R)

≤ q2 ‖v1‖2
L∞((0,T)×R) ‖ω(t, ·)‖2

L2(R) + ‖Ω(t, ·)‖2
L2(R)

≤ C(T) ‖ω(t, ·)‖2
L2(R) + ‖Ω(t, ·)‖2

L2(R) ,

|2q|
∫
R

|u2V|Ωdx

≤ q2
∫
R

V2u2
2dx + ‖Ω(t, ·)‖2

L2(R)

≤ q2 ‖V(t, ·)‖2
L∞(R) ‖u2(t, ·)‖2

L2(R) + ‖Ω(t, ·)‖2
L2(R)

≤ C(T) ‖V(t, ·)‖2
L∞(R) + ‖Ω(t, ·)‖2

L2(R)

≤ C(T) ‖ω(t, ·)‖2
L2(R) + ‖Ω(t, ·)‖2

L2(R) .

Therefore, by (108),

d
dt

‖Ω(t, ·)‖2
L2(R) ≤ C(T) ‖ω(t, ·)‖2

L2(R) + 3 ‖Ω(t, ·)‖2
L2(R) . (109)
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Adding (101) and (109), by (88) and the second equation of (89), we have that

d
dt

‖Ω(t, ·)‖2
H1(R) ≤ C(T) ‖ω(t, ·)‖2

L2(R) + 3 ‖Ω(t, ·)‖2
L2(R) ≤ C(T) ‖Ω(t, ·)‖2

H1(R)

and
‖Ω(t, ·)‖2

H1(R) ≤ eC(T)t ‖Ω(0, ·)‖2
H1(R) . (110)

Therefore, (13) follows (14), (88), (89), (90), (102) and (110).

4. Conclusions

In this paper we studied the Cauchy problem for the Spectrum Pulse equation. It is a third order
nonlocal nonlinear evolutive equation related to the dynamics of the electrical field of linearly polarized
continuum spectrum pulses in optical waveguides. Our existence analysis is based on on passing to
the limit in a fourth order perturbation of the equation. If the initial datum belongs to H2(R) ∩ L1(R)

and has zero mean we use the Aubin–Lions Lemma while if it belongs to H3(R) ∩ L1(R) and has zero
mean we use the Sobolev Immersion Theorem. Finally, we directly prove a stability estimate that
implies the uniqueness of the solution.
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Appendix A. u0 ∈ H3(R)∩ L1(R)

In this appendix, we consider the Cauchy problem (1), where, on the initial datum, we assume

u0(x) ∈ H3(R) ∩ L1(R),
∫
R

u0(x)dx = 0, (A1)

while on the function P(x), defined in (3), we assume (4). Moreover, we assume (5). The main result of
this appendix is the following theorem.

Theorem A1. Assume (3), (4), (5) and (A1). Fix T > 0, there exists an unique solution (u, v, P) of (1)
such that

u ∈ H1((0, T)×R) ∩ L∞(0, T; H3(R)),

v ∈ H1((0, T)×R) ∩ L∞(0, T; H5(R)) ∩ W1,∞((0, T)×R),

∂2
txv ∈ L∞((0, T)×R) ∩ L∞(0, T; L2(R)),

P ∈ L∞(0, T; H4(R)).

(A2)

Moreover, (12) and (13) hold.

To prove Theorem A1, we consider the approximation (16), where uε,0 is a C∞ approximation of
u0 such that

‖uε,0‖H3(R) ≤ ‖u0‖H3(R) ,
∫
R

uε,0dx = 0,

‖Pε,0‖L2(R) ≤ ‖P0‖L2(R) ,
∫
R

Pε,0dx = 0,

ε
∥∥∥∂4

xuε(t, ·)
∥∥∥2

L2(R)
≤ C0,

(A3)
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where C0 is a positive constant, independent on ε.
Let us prove some a priori estimates on uε, vε and Pε.
Since H2(R) ⊂ H3(R), then Lemmas 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 are still valid.
We prove the following result.

Lemma A1. Assume (5). Fix T > 0. There exists a constant C(T) > 0, independent on ε, such that,∥∥∥∂3
xuε

∥∥∥
L∞((0,T)×R)

≤ C(T). (A4)

In particular, we have that∥∥∥∂3
xuε(t, ·)

∥∥∥2

L2(R)
+ 2εeC(T)t

∫ t

0
e−C(T)s

∥∥∥∂5
xuε(s, ·)

∥∥∥2

L2(R)
ds ≤ C(T), (A5)

for every 0 ≤ t ≤ T.

Proof. Let 0 ≤ t ≤ T. Multiplying the first equation of (16) by −2∂6
xuε, we have that

−2∂6
xuε∂tuε =− 2bPε∂

6
xuε + 2ε∂6

xuε∂
4
xuε + 6gu2

ε ∂xuε∂
6
xuε

− 2a∂3
xuε∂

6
xuε + 2quε∂xvε∂

6
xuε + 2qvε∂xuε∂

6
xuε.

(A6)

Observe that by (18) and the second equation of (16),

−2b
∫
R

Pε∂
6
xuεdx =2b

∫
R

∂xPε∂
5
xuεdx = 2b

∫
R

uε∂
5
xuεdx

=− 2b
∫
R

∂xuε∂
4
xuεdx = 2b

∫
R

∂2
xuε∂

3
xuεdx = 0.

(A7)

Moreover,

−2
∫
R

∂6
xuε∂tuε =

d
dt

∥∥∥∂3
xuε(t, ·)

∥∥∥2

L2(R)
,

2ε
∫
R

∂6
xuε∂

4
xuεdx =− 2ε

∥∥∥∂5
xuε(t, ·)

∥∥∥2

L2(R)
, (A8)

−2a
∫
R

∂3
xuε∂

6
xuεdx =2a

∫
R

∂4
xuε∂

5
xuεdx = 0.

It follows from (A7), (A8) and an integration of (A6) on R that

d
dt

∥∥∥∂3
xuε(t, ·)

∥∥∥2

L2(R)
+ 2ε

∥∥∥∂5
xuε(t, ·)

∥∥∥2

L2(R)

=6g
∫
R

u2
ε ∂xuε∂

6
xuεdx + 2q

∫
R

uε∂xvε∂
6
xuεdx (A9)

+ 2q
∫
R

vε∂xuε∂
6
xuεdx.
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Observe that

6g
∫
R

u2
ε ∂xuε∂

6
xuεdx =− 12g

∫
R

uε(∂xuε)
2∂5

xuεdx − 6g
∫
R

u2
ε ∂2

xuε∂
5
xuεdx

=12g
∫
R

(∂xuε)
3∂4

xuεdx + 36g
∫
R

uε∂xuε∂
2
xuε∂

4
xuεdx

+ 6g
∫
R

u2
ε ∂3

xuε∂
4
xuεdx

=− 72g
∫
R

(∂xuε)
2∂2

xuε∂
3
xuεdx − 36g

∫
R

uε(∂
2
xuε)

2∂3
xuεdx

− 42g
∫
R

uε∂xuε(∂
3
xuε)

2dx,

2q
∫
R

uε∂xvε∂
6
xuεdx =− 2q

∫
R

∂xuε∂xvε∂
5
xuεdx − 2q

∫
R

uε∂
2
xvε∂

5
xuεdx

=2q
∫
R

∂2
xuε∂xvε∂

4
xuεdx + 4q

∫
R

∂xuε∂
2
xvε∂

4
xuεdx

+ 2q
∫
R

uε∂
3
xvε∂

4
xuεdx

=− 2q
∫
R

∂xvε(∂
3
xuε)

2dx − 6q
∫
R

∂2
xuε∂

2
xvε∂

3
xuεdx

− 6q
∫
R

∂xuε∂
3
xvε∂

3
xuεdx − 2q

∫
R

uε∂
4
xvε∂

3
xuεdx

=− 2q
∫
R

∂xvε(∂
3
xuε)

2dx + 3q
∫
R

∂3
xvε(∂

2
xuε)

2dx

− 6q
∫
R

∂xuε∂
3
xvε∂

3
xuεdx − 2q

∫
R

uε∂
4
xvε∂

3
xuεdx,

2q
∫
R

vε∂xuε∂
6
xuεdx =− 2q

∫
R

∂xvε∂xuε∂
5
xuεdx − 2q

∫
R

vε∂
2
xuε∂

5
xuεdx

=2q
∫
R

∂2
xvε∂xuε∂

4
xuεdx + 4q

∫
R

∂xvε∂
2
xuε∂

4
xuεdx

+ 2q
∫
R

vε∂
3
xuε∂

4
xuεdx

=− 2q
∫
R

∂3
xvε∂xuε∂

3
xuεdx − 6q

∫
R

∂2
xvε∂

2
xuε∂

3
xuεdx

− 5q
∫
R

∂xvε(∂
3
xuε)

2dx

=− 2q
∫
R

∂3
xvε∂xuε∂

3
xuεdx + 3q

∫
R

∂3
xvε(∂

2
xuε)

2dx

− 5q
∫
R

∂xvε(∂
3
xuε)

2dx.

Consequently, by (A9),

d
dt

∥∥∥∂3
xuε(t, ·)

∥∥∥2

L2(R)
+ 2ε

∥∥∥∂5
xuε(t, ·)

∥∥∥2

L2(R)

=− 72g
∫
R

(∂xuε)
2∂2

xuε∂
3
xuεdx − 36g

∫
R

uε(∂
2
xuε)

2∂3
xuεdx

− 42g
∫
R

uε∂xuε(∂
3
xuε)

2dx − 7q
∫
R

∂xvε(∂
3
xuε)

2dx (A10)

+ 6q
∫
R

∂3
xvε(∂

2
xuε)

2dx − 8q
∫
R

∂3
xvε∂xuε∂

3
xuεdx

− 2q
∫
R

uε∂
4
xvε∂

3
xuεdx.
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Due to (24), (41), (42), (56), (57), (68), (69) and the Young inequality,

|72g|
∫
R

|(∂xuε)
2∂2

xuε||∂3
xuε|dx

≤ 36g2
∫
R

(∂xuε)
4(∂2

xuε)
2dx + 36

∥∥∥∂3
xuε(t, ·)

∥∥∥2

L2(R)

≤ 36g2 ‖∂xuε‖4
L∞((0,T)×R)

∥∥∥∂2
xuε(t, ·)

∥∥∥2

L2(R)
+ 36

∥∥∥∂3
xuε(t, ·)

∥∥∥2

L2(R)

≤ C(T) + 36
∥∥∥∂3

xuε(t, ·)
∥∥∥2

L2(R)
,

|36g|
∫
R

|uε(∂
2
xuε)

2||∂3
xuε|dx

≤ 18g2
∫
R

u2
ε (∂

2
xuε)

4dx + 18
∥∥∥∂3

xuε(t, ·)
∥∥∥2

L2(R)

≤ 18g2 ‖uε‖2
L∞((0,T)×R)

∥∥∥∂2
xuε

∥∥∥2

L∞((0,T)×R)

∥∥∥∂2
xuε(t, ·)

∥∥∥2

L2(R)
+ 18

∥∥∥∂3
xuε(t, ·)

∥∥∥2

L2(R)

≤ C(T)
∥∥∥∂2

xuε

∥∥∥2

L∞((0,T)×R)
+ 18

∥∥∥∂3
xuε(t, ·)

∥∥∥2

L2(R)
,

|7q|
∫
R

|∂xvε|(∂3
xuε)

2dx ≤ |7q| ‖∂xvε(t, ·)‖L∞(R)

∥∥∥∂3
xuε(t, ·)

∥∥∥2

L2(R)

≤ C0

∥∥∥∂3
xuε(t, ·)

∥∥∥2

L2(R)
,

|6q|
∫
R

|∂3
xvε|(∂2

xuε)
2dx

≤ |6q|
∥∥∥∂3

xvε

∥∥∥
L∞((0,T)×R)

∥∥∥∂2
xuε(t, ·)

∥∥∥2

L2(R)
≤ C(T),

|8q|
∫
R

|∂3
xvε∂xuε||∂3

xuε|dx

≤ 4q2
∫
R

(∂3
xvε)

2(∂xuε)
2dx + 4

∥∥∥∂3
xuε(t, ·)

∥∥∥2

L2(R)

≤ 4q2
∥∥∥∂3

xvε

∥∥∥2

L∞((0,T)×R)
‖∂xuε(t, ·)‖2

L2(R) + 4
∥∥∥∂3

xuε(t, ·)
∥∥∥2

L2(R)

≤ C(T) + 4
∥∥∥∂3

xuε(t, ·)
∥∥∥2

L2(R)
,

|2q|
∫
R

|uε∂
4
xvε||∂3

xuε|dx

≤ q2
∫
R

u2
ε (∂

4
xvε)

2dx +
∥∥∥∂3

xuε(t, ·)
∥∥∥2

L2(R)
,

≤ q2 ‖uε‖2
L∞((0,T)×R)

∥∥∥∂4
xvε(t, ·)

∥∥∥2

L2(R)
+

∥∥∥∂3
xuε(t, ·)

∥∥∥2

L2(R)
.

It follows from (A10) that

d
dt

∥∥∥∂3
xuε(t, ·)

∥∥∥2

L2(R)
+ 2ε

∥∥∥∂5
xuε(t, ·)

∥∥∥2

L2(R)

≤C(T)
∥∥∥∂3

xuε(t, ·)
∥∥∥2

L2(R)
+ C(T)

(
1 +

∥∥∥∂2
xuε

∥∥∥2

L∞((0,T)×R)

)
.
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The Gronwall Lemma and (A3) give∥∥∥∂3
xuε(t, ·)

∥∥∥2

L2(R)
+ 2εeC(T)t

∫ t

0
e−C(T)s

∥∥∥∂5
xuε(s, ·)

∥∥∥2

L2(R)
ds

≤C0eC(T)t + C(T)
(

1 +
∥∥∥∂2

xuε

∥∥∥2

L∞((0,T)×R)

)
eC(T)t

∫ t

0
e−C(T)sds (A11)

≤C(T)
(

1 +
∥∥∥∂2

xuε

∥∥∥2

L∞((0,T)×R)

)
.

We prove (A4). Thanks to (57), (A11) and the Hölder inequality,

(∂2
xuε(t, x))2 =2

∫ x

−∞
∂2

xuε∂
3
xuεdx ≤ 2

∫
R

|∂2
xuε||∂3

xuε|dx

≤
∥∥∥∂2

xuε(t, ·)
∥∥∥

L2(R)

∥∥∥∂3
xuε(t, ·)

∥∥∥2

L2(R)
≤ C(T)

√(
1 + ‖∂2

xuε‖2
L∞((0,T)×R)

)
.

Hence, ∥∥∥∂2
xuε

∥∥∥4

L∞((0,T)×R)
− C(T)

∥∥∥∂2
xuε

∥∥∥2

L∞((0,T)×R)
− C(T) ≤ 0,

which gives (A4).
Finally, (A5) follows from (A4) and (A11).

Lemma A2. Assume (5). Fix T > 0. There exists a constant C(T) > 0, independent on ε, such that∥∥∥∂5
xvε(t, ·)

∥∥∥2

L2(R)
≤ C(T), (A12)

for every 0 ≤ t ≤ T. In particular, we have that∥∥∥∂4
xvε

∥∥∥
L∞((0,T)×R)

≤ C(T). (A13)

Proof. Let 0 ≤ t ≤ T. Differentiating (70) with respect to x, we have

α∂5
xvε = 6κ∂xuε∂

2
xuε + 2κuε∂

3
xuε − β∂4

xvε − γ∂3
xvε. (A14)

Since ∂3
xuε(t,±∞) = 0, by (55), (71) and (72), we have that

∂5
xvε(t,±∞) = 0. (A15)

Observe that

−2βα
∫
R

∂4
xvε∂

5
xvεdx =0,

−2αγ
∫
R

∂3
xvε∂

5
xvεdx =2αγ

∥∥∥∂4
xvε(t, ·)

∥∥∥2

L2(R)
.

Consequently, multiplying (A14) by 2α∂5
xvε, an integration on R gives

2α2
∥∥∥∂5

xvε(t, ·)
∥∥∥2

L2(R)
=12ακ

∫
R

∂xuε∂
2
xuε∂

5
xvεdx + 4ακ

∫
R

uε∂
3
xuε∂

5
xvεdx

+ 2αγ
∥∥∥∂4

xvε(t, ·)
∥∥∥2

L2(R)
.

(A16)
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Due to (41), (56), (57), (A4) and the Young inequality,

12|ακ|
∫
R

|∂xuε∂
2
xuε||∂5

xvε|dx

=
∫
R

|12κ∂xuε∂
2
xuε||α∂5

xvε|dx

≤ 72κ2
∫
R

(∂xuε)
2(∂2

xuε)
2dx +

α2

2

∥∥∥∂5
xvε(t, ·)

∥∥∥2

L2(R)

≤ 72κ2 ‖∂xuε‖2
L∞((0,T)×R)

∥∥∥∂2
xuε(t, ·)

∥∥∥2

L2(R)
+

α2

2

∥∥∥∂5
xvε(t, ·)

∥∥∥2

L2(R)

≤ C(T) +
α2

2

∥∥∥∂5
xvε(t, ·)

∥∥∥2

L2(R)
,

|4ακ|
∫
R

|uε∂
3
xuε||∂5

xvε|dx

=
∫
R

|4κuε∂
3
xuε|||α∂5

xvε|dx

≤ 8κ2
∫
R

u2
ε (∂

3
xuε)

2dx +
α2

2

∥∥∥∂5
xvε(t, ·)

∥∥∥2

L2(R)

≤ 8κ2 ‖uε‖2
L∞((0,T)×R)

∥∥∥∂3
xuε(t, ·)

∥∥∥2

L2(R)
+

α2

2

∥∥∥∂5
xvε(t, ·)

∥∥∥2

L2(R)

≤ C(T) +
α2

2

∥∥∥∂5
xvε(t, ·)

∥∥∥2

L2(R)
.

It follows from (68) and (A16) that

α2
∥∥∥∂5

xvε(t, ·)
∥∥∥2

L2(R)
≤ C(T) + |2αγ|

∥∥∥∂4
xvε(t, ·)

∥∥∥2

L2(R)
≤ C(T),

which gives (A12).
Finally, we prove (A13). Thanks to (68), (A12) and the Hölder inequality,

(∂4
xvε(t, x))2 =2

∫ x

−∞
∂4

xvε∂
5
xvεdx ≤ 2

∫
R

|∂4
xvε||∂5

xvε|dx

≤
∥∥∥∂4

xvε(t, ·)
∥∥∥

L2(R)

∥∥∥∂5
xvε(t, ·)

∥∥∥
L2(R)

≤ C(T).

Hence, ∥∥∥∂4
xvε

∥∥∥2

L∞((0,T)×R)
≤ C(T),

which gives (A13).

Lemma A3. Assume (5). Fix T > 0. There exists a constant C(T) > 0, independent on ε, such that,

ε
∥∥∥∂4

xuε(t, ·)
∥∥∥2

L2(R)
+ ε2

∫ t

0

∥∥∥∂6
xuε(s, ·)

∥∥∥2

L2(R)
ds ≤ C(T), (A17)

for every 0 ≤ t ≤ T.

Proof. Let 0 ≤ t ≤ T. Multiplying the first equation of (16) by 2ε∂8
xuε, we have

2ε∂8
xuε∂tuε =2bεPε∂

8
xuε − 2ε2∂4

xuε∂
8
xuε − 6gεu2

ε ∂xuε∂
8
xuε

+ 2aε∂3
xuε∂

8
xuε − 2qεuε∂xvε∂

8
xuε − 2qεvε∂xuε∂

8
xuε.

(A18)
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Observe that by the second equation of (16) and (18),

2bε
∫
R

Pε∂
8
xuεdx =− 2bε

∫
R

∂xPε∂
7
xuεdx = −2bε

∫
R

uε∂
7
xuεdx = 2bε

∫
R

∂xuε∂
6
xuεdx

=− 2bε
∫
R

∂2
xuε∂

5
xuεdx = 2bε

∫
R

∂3
xuε∂

4
xuεdx = 0.

(A19)

Moreover,

2ε
∫
R

∂8
xuε∂tuεdx =ε

d
dt

∥∥∥∂4
xuε(t, ·)

∥∥∥2

L2(R)
,

−2ε2
∫
R

∂4
xuε∂

8
xuεdx =− 2ε2

∥∥∥∂6
xuε(t, ·)

∥∥∥2

L2(R)
, (A20)

2aε
∫
R

∂3
xuε∂

8
xuεdx =0.

Therefore, (A19), (A20) and an integration of (A18) on R give

ε
d
dt

∥∥∥∂4
xuε(t, ·)

∥∥∥2

L2(R)
+2ε2

∥∥∥∂6
xuε(t, ·)

∥∥∥2

L2(R)

=− 6gε
∫
R

u2
ε ∂xuε∂

8
xuεdx − 2qε

∫
R

uε∂xvε∂
8
xuεdx (A21)

− 2qε
∫
R

vε∂xuε∂
8
xuεdx.

Observe that

−6gε
∫
R

u2
ε ∂xuε∂

8
xuεdx =12gε

∫
uε(∂xuε)

2∂7
xuεdx + 6gε

∫
R

u2
ε ∂2

xuε∂
7
xuεdx

=− 12gε
∫
R

(∂xuε)
3∂6

xuεdx − 36gε
∫
R

uε∂xuε∂
2
xuε∂

6
xuεdx

− 6gε
∫
R

u2
ε ∂3

xuε∂
6
xuεdx,

−2qε
∫
R

uε∂xvε∂
8
xuεdx =2qε

∫
R

∂xuε∂xvε∂
7
xuεdx + 2qε

∫
R

uε∂
2
xvε∂

7
xuεdx

=− 2qε
∫
R

∂2
xuε∂xvε∂

6
xuεdx − 4qε

∫
R

∂xuε∂
2
xvε∂

6
xuεdx (A22)

− 2qε
∫
R

uε∂
3
xvε∂

6
xuεdx,

−2qε
∫
R

vε∂xuε∂
8
xuεdx =2qε

∫
R

∂xvε∂xuε∂
6
xuεdx + 2qε

∫
R

vε∂
2
xuε∂

7
xuεdx

=− 2qε
∫
R

∂2
xvε∂xuε∂

6
xuεdx − 4qε

∫
R

∂xvε∂
2
xuε∂

6
xuεdx

− 2qε
∫
R

vε∂
3
xuε∂

6
xuεdx.
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Consequently, by (A21),

ε
d
dt

∥∥∥∂4
xuε(t, ·)

∥∥∥2

L2(R)
+ 2ε2

∥∥∥∂6
xuε(t, ·)

∥∥∥2

L2(R)

=− 12gε
∫
R

(∂xuε)
3∂6

xuεdx − 36gε
∫
R

uε∂xuε∂
2
xuε∂

6
xuεdx

− 6gε
∫
R

u2
ε ∂3

xuε∂
6
xuεdx − 6qε

∫
R

∂xvε∂
2
xuε∂

6
xuεdx (A23)

− 6qε
∫
R

∂2
xvε∂xuε∂

6
xuεdx − 2qε

∫
R

uε∂
3
xvε∂

6
xuεdx

− 2qε
∫
R

vε∂
3
xuε∂

6
xuεdx.

Due to (24), (41), (42), (43), (56), (57), (A5) and the Young inequality,

12|gε|
∫
R

|∂xuε|3|∂6
xuε|dx = 12

∫
R

∣∣∣∣ g(∂xuε)3
√

D1

∣∣∣∣ ∣∣∣ε√D1∂6
xuε

∣∣∣ dx

≤ 6g2

D1

∫
R

(∂xuε)
6dx + 6D1ε2

∥∥∥∂6
xuε(t, ·)

∥∥∥2

L2(R)

≤ 6g2

D1
‖∂xuε‖4

L∞((0,T)×R) ‖∂xuε(t, ·)‖2
L2(R) + 6D1ε2

∥∥∥∂6
xuε(t, ·)

∥∥∥2

L2(R)

≤ C(T)
D1

+ 6D1ε2
∥∥∥∂6

xuε(t, ·)
∥∥∥2

L2(R)
,

|36gε|
∫
R

|uε∂xuε∂
2
xuε||∂6

xuε|dx = 36
∫
R

∣∣∣∣ guε∂xuε∂
2
xuε√

D1

∣∣∣∣ ∣∣∣√D1ε∂6
xuε

∣∣∣ dx

≤ 18g2

D1

∫
R

u2
ε (∂xuε)

2(∂2
xuε)

2dx + 18D1ε2
∥∥∥∂6

xuε(t, ·)
∥∥∥2

L2(R)

≤ 18g2

D1
‖uε‖2

L∞((0,T)×R) ‖∂xuε‖L∞((0,T)×R)

∥∥∥∂2
xuε(t, ·)

∥∥∥2

L2(R)
+ 18D1ε2

∥∥∥∂6
xuε(t, ·)

∥∥∥2

L2(R)

≤ C(T)
D1

+ 18D1ε2
∥∥∥∂6

xuε(t, ·)
∥∥∥2

L2(R)
,

|6gε|
∫
R

|u2
ε ∂3

xuε||∂6
xuε|dx = 6

∫
R

∣∣∣∣ gu2
ε ∂3

xuε√
D1

∣∣∣∣ ∣∣∣√D1ε∂6
xuε

∣∣∣ dx

≤ 3g2

D1

∫
R

u4
ε (∂

3
xuε)

2dx + 3D1ε2
∥∥∥∂6

xuε(t, ·)
∥∥∥2

L2(R)

≤ 3g2

D1
‖uε‖4

L∞((0,T)×R)

∥∥∥∂3
xuε(t, ·)

∥∥∥2

L2(R)
+ 3D1ε2

∥∥∥∂6
xuε(t, ·)

∥∥∥2

L2(R)

≤ C(T)
D1

+ 3D1ε2
∥∥∥∂6

xuε(t, ·)
∥∥∥2

L2(R)
,

|6qε|
∫
R

|∂xvε∂
2
xuε||∂6

xuε|dx = 6
∫
R

∣∣∣∣ q∂xvε∂
2
xuε√

D1

∣∣∣∣ ∣∣∣√D1ε∂6
xuε

∣∣∣ dx

≤ 3q2

D1

∫
R

(∂xvε)
2(∂2

xuε)
2dx + 3D1ε2

∥∥∥∂6
xuε(t, ·)

∥∥∥2

L2(R)

≤ 3q2

D1
‖∂xvε(t, ·)‖2

L∞(R)

∥∥∥∂2
xuε(t, ·)

∥∥∥2

L2(R)
+ 3D1ε2

∥∥∥∂6
xuε(t, ·)

∥∥∥2

L2(R)

≤ C(T)
D1

+ 3D1ε2
∥∥∥∂6

xuε(t, ·)
∥∥∥2

L2(R)
,
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|6qε|
∫
R

|∂2
xvε∂xuε||∂6

xuε|dx = 6
∫
R

∣∣∣∣ q∂2
xvε∂xuε√

D1

∣∣∣∣ ∣∣∣√D1ε∂6
xuε

∣∣∣ dx

≤ 3q2

D1

∫
R

(∂2
xvε)

2(∂xuε)
2dx + 3D1ε2

∥∥∥∂6
xuε(t, ·)

∥∥∥2

L2(R)

≤ 3q2

D1

∥∥∥∂2
xvε

∥∥∥2

L∞((0,T)×R)
‖∂xuε(t, ·)‖2

L2(R) + 3D1ε2
∥∥∥∂6

xuε(t, ·)
∥∥∥2

L2(R)

≤ C(T)
D1

+ 3D1ε2
∥∥∥∂6

xuε(t, ·)
∥∥∥2

L2(R)
,

|2qε|
∫
R

|uε∂
3
xvε||∂6

xuε|dx = 2
∫
R

∣∣∣∣ quε∂
3
xvε√

D1

∣∣∣∣ ∣∣∣√D1ε∂6
xuε

∣∣∣ dx

≤ q2

D1

∫
R

u2
ε (∂

3
xvε)

2dx + D1ε2
∥∥∥∂6

xuε(t, ·)
∥∥∥2

L2(R)

≤ q2

D1
‖uε‖2

L∞((0,T)×R)

∥∥∥∂3
xvε(t, ·)

∥∥∥2

L2(R)
+ D1ε2

∥∥∥∂6
xuε(t, ·)

∥∥∥2

L2(R)

≤ C(T)
D1

+ D1ε2
∥∥∥∂6

xuε(t, ·)
∥∥∥2

L2(R)
,

|2qε|
∫
R

|vε∂
3
xuε||∂6

xuε|dx =
∫
R

∣∣∣∣ qvε∂
3
xuε√

D1

∣∣∣∣ ∣∣∣√D1ε∂6
xuε

∣∣∣ dx

≤ q2

D1

∫
R

v2
ε (∂

3
xuε)

2dx + D1ε2
∥∥∥∂6

xuε(t, ·)
∥∥∥2

L2(R)

≤ q2

D1
‖vε(t, ·)‖2

L∞(R)

∥∥∥∂3
xuε(t, ·)

∥∥∥2

L2(R)
+ D1ε2

∥∥∥∂6
xuε(t, ·)

∥∥∥2

L2(R)

≤ C(T)
D1

+ D1ε2
∥∥∥∂6

xuε(t, ·)
∥∥∥2

L2(R)
,

where D1 is a positive constant, which will be specified later. Consequently, by (A23),

ε
d
dt

∥∥∥∂4
xuε(t, ·)

∥∥∥2

L2(R)
+ (2 − 35D1) ε2

∥∥∥∂6
xuε(t, ·)

∥∥∥2

L2(R)
≤ C(T)

D1
.

Taking D1 = 1
35 , we have that

ε
d
dt

∥∥∥∂4
xuε(t, ·)

∥∥∥2

L2(R)
+ ε2

∥∥∥∂6
xuε(t, ·)

∥∥∥2

L2(R)
≤ C(T).

Equation (A3) and an integration on (0, t) give

ε
∥∥∥∂4

xuε(t, ·)
∥∥∥2

L2(R)
+ ε2

∫ t

0

∥∥∥∂6
xuε(s, ·)

∥∥∥2

L2(R)
ds ≤ C0 + C(T)t ≤ C(T),

that is (A17).

Lemma A4. Assume (5). Fix T > 0. There exists a constant C(T) > 0, independent on ε, such that,

‖∂tuε(t, ·)‖L2(R) ≤ C(T), (A24)

for every 0 ≤ t ≤ T.
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Proof. Let 0 ≤ t ≤ T. Multiplying the first equation of (16) by 2∂tuε, an integration on R gives

2 ‖∂tuε(t, ·)‖2
L2(R) =2b

∫
R

Pε∂tuεdx − 2ε
∫
R

∂4
xuε∂tuεdx − 6g

∫
R

u2
ε ∂xuε∂tuεdx

+ 2a
∫
R

∂3
xuε∂tuεdx − 2q

∫
R

uε∂xvε∂tuεdx

− 2q
∫
R

vε∂xuε∂tuεdx.

(A25)

Since 0 < ε < 1, thanks to (24), (41), (42), (43), (A5), (A17) and the Young inequality,

|2b|
∫
R

|Pε||∂tuε|dx = 2
∫
R

∣∣∣∣ bPε√
D2

∣∣∣∣ ∣∣∣√D2∂tuε

∣∣∣ dx

≤ b2

D2
‖Pε(t, ·)‖2

L2(R) + D2 ‖∂tuε(t, ·)‖2
L2(R)

≤ C(T)
D2

+ D2 ‖∂tuε(t, ·)‖2
L2(R) ,

2ε
∫
R

|∂4
xuε||∂tuε|dx = 2

∫
R

∣∣∣∣ ε∂4
xuε√
D2

∣∣∣∣ ∣∣∣√D2∂tuε

∣∣∣ dx

≤ ε2

D2

∥∥∥∂4
xuε(t, ·)

∥∥∥2

L2(R)
+ D2 ‖∂tuε(t, ·)‖2

L2(R)

≤ ε

D2

∥∥∥∂4
xuε(t, ·)

∥∥∥2

L2(R)
+ D2 ‖∂tuε(t, ·)‖2

L2(R)

≤ C(T)
D2

+ D2 ‖∂tuε(t, ·)‖2
L2(R) ,

|6g|
∫
R

|u2
ε ∂xuε||∂tuε|dx = 6

∫
R

∣∣∣∣ gu2
ε ∂xuε√
D2

∣∣∣∣ ∣∣∣√D2∂tuε

∣∣∣ dx

≤ 3g2

D2

∫
R

u4
ε (∂xuε)

2dx + 3D2 ‖∂tuε(t, ·)‖2
L2(R)

≤ 3g2

D2
‖uε‖4

L∞((0,T)×R) ‖∂xuε(t, ·)‖2
L2(R) + 3D2 ‖∂tuε(t, ·)‖2

L2(R)

≤ C(T)
D2

+ 3D2 ‖∂tuε(t, ·)‖2
L2(R) ,

|2a|
∫
R

|∂3
xuε||∂tuε|dx = 2

∫
R

∣∣∣∣ a∂3
xuε√
D2

∣∣∣∣ ∣∣∣√D2∂tuε

∣∣∣ dx

≤ a2

D2

∥∥∥∂3
xuε(t, ·)

∥∥∥2

L2(R)
+ D2 ‖∂tuε(t, ·)‖2

L2(R)

≤ C(T)
D2

+ D2 ‖∂tuε(t, ·)‖2
L2(R) ,

|2q|
∫
R

|uε∂xvε||∂tuε|dx = 2
∫
R

∣∣∣∣ quε∂xvε√
D2

∣∣∣∣ ∣∣∣√D2∂tuε

∣∣∣ dx

≤ q2

D2

∫
R

u2
ε (∂xvε)

2dx + D2 ‖∂tuε(t, ·)‖2
L2(R)

≤ q2

D2
‖uε‖2

L∞((0,T)×R) ‖∂xvε(t, ·)‖2
L2(R) + D2 ‖∂tuε(t, ·)‖2

L2(R)

≤ C(T)
D2

+ D2 ‖∂tuε(t, ·)‖2
L2(R) ,
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|2q|
∫
R

|vε∂xuε||∂tuε|dx = 2
∫
R

∣∣∣∣ qvε∂xuε√
D2

∣∣∣∣ ∣∣∣√D2∂tuε

∣∣∣ dx

≤ q2

D2

∫
R

v2
ε (∂xuε)

2dx + D2 ‖∂tuε(t, ·)‖2
L2(R)

≤ q2

D2
‖vε(t, ·)‖2

L∞(R) ‖∂xuε(t, ·)‖2
L2(R) + D2 ‖∂tuε(t, ·)‖2

L2(R)

≤ C(T)
D2

+ D2 ‖∂tuε(t, ·)‖2
L2(R) ,

where D2 is a positive constant, which will be specified later. Therefore, by (A25),

2 (1 − 4D2) ‖∂tuε(t, ·)‖2
L2(R) ≤

C(T)
D2

.

Choosing D2 = 1
8 , we have that

‖∂tuε(t, ·)‖2
L2(R) ≤ C(T),

which gives (A24).

Arguing as in ([15], Lemma 2.12), we have the following result.

Lemma A5. Assume (5). Let T > 0. There exists a constant C(T) > 0, independent on ε, such that∥∥∥∂2
txvε(t, ·)

∥∥∥
L∞(R)

,
∥∥∥∂2

txvε(t, ·)
∥∥∥

L2(R)
≤C(T),

‖∂tvε(t, ·)‖L∞(R) , ‖∂tvε(t, ·)‖L2(R) ≤C(T),
(A26)

for every 0 ≤ t ≤ T.

Using the Sobolev Immersion Theorem, we begin by proving the following result.

Lemma A6. Fix T > 0. There exist a subsequence {(uεk , vεk , Pεk )}k∈N of {(uε, vε, Pε)}ε>0 and an a limit
triplet (u, v, P) which satisfies (11) such that

uεk → u a.e. and in Lp
loc((0, T)×R), 1 ≤ p < ∞,

uεk ⇀ u in H1((0, T)×R),

vεk → v a.e. and in Lp
loc((0, T)×R), 1 ≤ p < ∞,

vεk ⇀ v in H1((0, T)×R),

Pεk ⇀ P in L2((0, T)×R).

(A27)

Moreover, (u, v, P) is solution of (1) satisfying (12).

Proof. Let 0 ≤ t ≤ T. We begin by observing that, thanks to Lemmas 3, 7, 9, A1 and A4,

{uε}ε>0 is uniformly bounded in H1((0, T)×R). (A28)

Lemmas 3 and A5 say that

{vε}ε>0 is uniformly bounded in H1((0, T)×R). (A29)
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Instead, by Lemma 7, we have that

{Pε}ε>0 is uniformly bounded in L2((0, T)×R). (A30)

Equation (A28), (A29) and (A30) give (A27).
Observe that, thanks to Lemmas 3, 7, 9, A1 and the second equation of (16), we have that

P ∈ L∞(0, T; H4(R)).

Lemmas 3, 7, 9, A1 say that
u ∈ L∞(0, T; H3(R)).

Instead, thanks to Lemmas 3, 8, 10, A2 and (A26), we get

v ∈ L∞(0, T; H5(R)) ∩ W1,∞((0, T)×R).

Moreover, Lemmas A5 says also that

∂2
txv ∈ L2(R) ∩ L∞(R),

for every 0 ≤ t ≤ T. Therefore, (11) holds and (u, v, P) is solution of (1).
Finally, (12) follows from (19) and (A27).

Now, we prove Theorem A1.

Proof of Theorem A1. Lemma A6 gives the existence of a solution of (1) such that (12) and (A27) hold.
Arguing as in Theorem 1, we have (13).
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Abstract: This paper deals with an initial-boundary value problem for the Navier–Stokes–Voigt
equations describing unsteady flows of an incompressible non-Newtonian fluid. We give the strong
formulation of this problem as a nonlinear evolutionary equation in Sobolev spaces. Using the
Faedo–Galerkin method with a special basis of eigenfunctions of the Stokes operator, we construct
a global-in-time strong solution, which is unique in both two-dimensional and three-dimensional
domains. We also study the long-time asymptotic behavior of the velocity field under the assumption
that the external forces field is conservative.

Keywords: Navier–Stokes–Voigt equations; viscoelastic models; non-Newtonian fluid; strong
solutions; existence and uniqueness theorem; Faedo–Galerkin approximations; Stokes operator;
long-time behavior

1. Introduction

In this work, we study an initial-boundary value problem for the Navier–Stokes–Voigt (NSV)
equations that model the unsteady flow of an incompressible viscoelastic fluid:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t

+ (u · ∇)u − νΔu − α2 ∂Δu
∂t

+∇p = f in Ω × (0,+∞),

∇ · u = 0 in Ω × (0,+∞),

u = 0 on ∂Ω × (0,+∞),

u(·, 0) = u0 in Ω,

(1)

where Ω denotes the bounded domain of flow in Rn, n = 2, 3, with boundary ∂Ω; the vector function u
represents the velocity field; p denotes the pressure; ν > 0 is the viscosity coefficient; α is a length scale
parameter such that α2/ν is the relaxation time of the viscoelastic fluid; f is the external forces field;
and u0 is the initial velocity.

Note that when α = 0 the NSV system becomes the incompressible Navier–Stokes equations
that describe Newtonian fluid flows. If α = 0 and ν = 0, then we arrive at the incompressible Euler
equations governing inviscid flows.

In the literature, the NSV equations are often called the Kelvin–Voigt equations or Oskolkov’s
equations. The NSV model and related models of viscoelastic fluid flows have been studied extensively
by different mathematicians over the past several decades starting from the pioneering papers by
Oskolkov [1,2]. It should be mentioned at this point that Oskolkov later admitted [3] that these works
contain some errors and not all obtained results hold. In this regard, Ladyzhenskaya remarked in
her note [4] that the method of introduction of auxiliary viscosity used in [1,2] is incorrect under the
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no-slip boundary condition and explained the reasons for this. However, it is certain that the series
of Oskolkov’s works played a major role in the study of the NSV equations and stimulated further
research in this direction.

Let us shortly review available literature on mathematical analysis of NSV-type models.
Sviridyuk [5] established the solvability of the weakly compressible NSV equations. In [6], the
local-in-time unique solvability of problem (1) is proved. Korpusov and Sveshnikov [7] investigated
the blowup of solutions to the NSV equations with a cubic source. Various slip problems are studied
in the papers [8–10]. Kaya and Celebi [11] proved the existence and uniqueness of weak solutions
of the so-called g-Kelvin–Voigt equations that describe viscoelastic fluid flows in thin domains. The
solvability of the inhomogeneous Dirichlet problem for the equations governing a polymer fluid flow
is proved in [12]. Berselli and Spirito [13] showed that weak solutions to the Navier–Stokes equations
obtained as limits α → 0+ of solutions to the NSV model are “suitable weak solutions” [14] and satisfy
the local energy inequality. Fedorov and Ivanova [15] dealt with an inverse problem for the NSV
equations. An algorithm for finding of numerical solution of an optimal control problem for the
two-dimensional Kelvin–Voigt fluid flow was proposed by Plekhanova et al. [16]. Antontsev and
Khompysh [17] established the existence and uniqueness of the global and local weak solutions to
the NSV equations with p-Laplacian and a damping term. Artemov and Baranovskii [18] proved the
existence of weak solutions to the coupled system of nonlinear equations describing the heat transfer in
steady-state flows of a polymeric fluid. Mohan [19] investigated the global solvability, the asymptotic
behavior, and some control problems for the NSV model with “fading memory” and “memory of
length τ”.

Most of the papers mentioned above deal with the study of weak (generalized) solutions to the
NSV equations in the framework of the Hilbert space techniques. Therefore, it is a relevant question to
prove the existence and uniqueness of strong solutions of system (1) in a Banach space under natural
conditions on the data. Another important objective is to develop convenient algorithms for finding
strong solutions or their approximations. Motivated by this, in the present work, we propose the strong
formulation of problem (1) as a nonlinear evolutionary equation in suitable Banach spaces with the
initial condition u(0) = u0. Using the Faedo–Galerkin procedure with a special basis of eigenfunctions
of the Stokes operator and deriving various a priori estimates of approximate solutions in Sobolev’s
spaces H1(Ω) and H2(Ω), we construct a global-in-time strong solution of (1), which is unique in both
two-dimensional and three-dimensional domains. We also derive the energy equality that holds for
strong solutions. Moreover, it is shown that, if the external forces field f is conservative, then the
H1-norm of the velocity field u decays exponentially as t → +∞.

2. Preliminaries

To suggest the concept of a strong solution to problem (1), we introduce some notations, function
spaces, and auxiliary results.

For vectors x, y ∈ Rn and matrices X, Y ∈ Rn×n by x · y and X : Y, we denote the scalar products,
respectively:

x · y def
=

n

∑
i=1

xiyi, X : Y
def
=

n

∑
i,j=1

XijYij.

Let Ω ⊂ Rn be a bounded domain with sufficiently smooth boundary ∂Ω. By D(Ω) denote the
set of C∞ functions with support contained in Ω. We use the standard notation for the Lebesgue spaces

Ls(Ω), s ≥ 1, as well as the Sobolev spaces Hk(Ω)
def
= Wk,2(Ω), k ∈ N. When it comes to classes of

Rn-valued functions, we employ boldface letters, for instance,

D(Ω)
def
= D(Ω)n, Ls(Ω)

def
= Ls(Ω)n, Hk(Ω)

def
= Hk(Ω)n.

It is well known that the space Sobolev H1(Ω) is compactly embedded in L4(Ω).
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Let us introduce the following spaces:

V(Ω)
def
= {v ∈ D(Ω) : ∇ · v = 0},

V0(Ω)
def
= the closure of the set V(Ω) in the space L2(Ω),

V1(Ω)
def
= the closure of the set V(Ω) in the space H1(Ω),

V2(Ω)
def
= H2(Ω) ∩ V1(Ω).

(2)

It is obvious that V0(Ω), V1(Ω), and V2(Ω) are Hilbert spaces with the scalar products induced
by L2(Ω), H1(Ω), and H2(Ω), respectively. However, when studying problem (1), in the spaces V1(Ω)

and V2(Ω), it is more convenient to use the scalar products and the norms defined as follows:

(v, w)V1(Ω)
def
= (v, w)L2(Ω) + α2(∇v,∇w)L2(Ω), ‖v‖V1(Ω)

def
= (v, v)1/2

V1(Ω)
, (3)

(v, w)V2(Ω)
def
= (PΔv,PΔw)L2(Ω), ‖v‖V2(Ω)

def
= (v, v)1/2

V2(Ω)
. (4)

Here, P : L2(Ω) → V0(Ω) is the Leray projection, which corresponds the well-known Leray
(or Hodge–Helmholtz) decomposition for the vector fields in L2(Ω) into a divergence-free part and a
gradient part (see, e.g., [20], Chapter IV):

L2(Ω) = V0(Ω)⊕ G(Ω),

where the symbol ⊕ denotes the orthogonal sum and the subspace G(Ω) is defined as follows

G(Ω)
def
= {∇h : h ∈ H1(Ω)}.

Note that the norm ‖ · ‖V i(Ω) is equivalent to the norm ‖ · ‖H i(Ω), i = 1, 2.

We introduce the equivalence relation on the space H1(Ω) by stating that ϕ ∼ ψ if ϕ − ψ = const.
As usual, H1(Ω)/R denotes the quotient of H1(Ω) by R.

For a function ξ ∈ H1(Ω), we set

ξ
def
= {ω ∈ H1(Ω) : ω ∼ ξ} ∈ H1(Ω)/R.

Let us define the gradient and the norm of ξ as follows

∇ξ
def
= ∇ξ, ‖ξ‖H1(Ω)/R

def
= ‖∇ξ‖L2(Ω).

Using Proposition 1.2 from ([21], Chapter I, § 1), it is easy to verify that the norm ‖ · ‖H1(Ω)/R is
well defined.

The following lemmas are needed for the sequel.

Lemma 1. Suppose E is a Banach space and T is a positive number. A set K of the space C([0, T]; E) is
relatively compact if and only if:

• for any number t ∈ (0, T), the set K(t) def
= {w(t) : w ∈ K} is relatively compact in E;

• for any number ε > 0, there exists a number η >0 such that the inequality

‖w(t1)− w(t2)‖E ≤ ε

holds for any function w ∈ K and any numbers t1, t2 ∈ [0, T] such that |t1 − t2| ≤ η.

The proof of this lemma is given in [22].
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Lemma 2. The embedding C1([0, T]; V2(Ω)) ↪→ C([0, T]; V1(Ω)) is completely continuous.

Proof. Let S be a bounded set of C1([0, T]; V2(Ω)). Then

max
(w,t)∈S×[0,T]

‖w(t)‖V2(Ω) + max
(w,t)∈S×[0,T]

‖w′(t)‖V2(Ω) ≤ r (5)

with some constant r. Clearly, this implies that the set

S(t) def
= {w(t) : w ∈ S}

is bounded in V2(Ω) for any t ∈ [0, T].
From the Rellich–Kondrachov theorem (see, e.g., [23], Chapter 1, Theorem 1.12.1), it follows that

the space V2(Ω) is compactly embedded into V1(Ω). Therefore, the set S(t) is relatively compact in
the space V1(Ω).

By I denote the embedding operator from V2(Ω) into V1(Ω). Taking into account inequality (5),
we get the estimate

‖w(t1)− w(t2)‖V1(Ω) ≤‖I‖L(V2(Ω),V1(Ω))‖w(t1)− w(t2)‖V2(Ω)

≤‖I‖L(V2(Ω),V1(Ω)) max
τ∈[t1,t2]

‖w′(τ)‖V2(Ω)|t1 − t2|

≤r‖I‖L(V2(Ω),V1(Ω))|t1 − t2| ≤ ε

for any function w ∈ S and for any numbers t1, t2 ∈ [0, T] such that

|t1 − t2| ≤
ε

r‖I‖L(V2(Ω),V1(Ω))

,

where ‖I‖L(V2(Ω),V1(Ω)) is the operator norm of I.

Applying Lemma 1 with E = V1(Ω), we conclude that the set S is relatively compact in the space
C([0, T]; V1(Ω)). Lemma 2 is proved.

Lemma 3. Let
Ld

def
= {x ∈ R

n : |xn| < d/2}, dΩ
def
= inf{d > 0 : Ω ⊂ Ld}.

Then, we have
4

d2
Ω + 4α2

(
‖v‖2

L2(Ω)
+ α2‖∇v‖2

L2(Ω)

)
≤ ‖∇v‖2

L2(Ω)
, (6)

for any v ∈ V1(Ω).

Proof. The estimate (6) is a direct consequence of the Poincaré inequality (see, e.g., [24], Chapter II,
Theorem II.5.1).

3. Strong Formulation of Problem (1) and Main Results

Let us suppose that
f ∈ C([0,+∞); L2(Ω)), u0 ∈ V2(Ω). (7)

Definition 1. We say that a pair (u, p) is a strong solution to problem (1) if

u ∈ C1([0,+∞); V2(Ω)), p ∈ C([0,+∞); H1(Ω)/R)
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and the following equalities are valid:

u′(t) + (u(t) · ∇)u(t)− νΔu(t)− α2Δu′(t) +∇p(t) = f (t), t > 0, (8)

u(0) = u0.

Remark 1. Equation (8) with the initial condition u(0) = u0 is a natural interpretation of the initial-boundary
value problem (1) as an evolutionary equation in suitable function spaces. Note that, if a pair (u∗, p∗) is a
classical solution to problem (1), then (u∗, p∗) satisfies Equation (8), i.e., this pair is a strong solution. On the
other hand, if (u, p) is a strong solution and the functions u and p are sufficiently smooth in the usual sense,
then (u, p) is a classical solution to (1).

We are now in a position to state our main results.

Theorem 1. Assume that the boundary of the domain Ω belongs to the class C2 and condition (7) holds. Then
problem (1) has a unique strong solution (u, p). This strong solution satisfies the energy equality

‖u(t)‖2
L2(Ω)

+ 2ν

t∫
0

‖∇u(τ)‖2
L2(Ω)

dτ + α2‖∇u(t)‖2
L2(Ω)

= ‖u0‖2
L2(Ω)

+ α2‖∇u0‖2
L2(Ω)

+ 2
t∫

0

∫
Ω

f (τ) · u(τ) dx dτ, t ≥ 0. (9)

If there exists a function q ∈ C([0, T]; H1(Ω)) such that ∇q = f , then

‖u(t)‖2
L2(Ω)

+ α2‖∇u(t)‖2
L2(Ω)

≤ exp

(
− 8νt

d2
Ω + 4α2

)(
‖u0‖2

L2(Ω)
+ α2‖∇u0‖2

L2(Ω)

)
, t ≥ 0, (10)

where the positive constant dΩ is defined in Lemma 3.

4. Proof of Theorem 1

To prove the existence of a strong solution to problem (1), we use the Faedo–Galerkin method
with a special basis of eigenfunctions of the Stokes operator

A : V2(Ω) → V0(Ω), Aw def
= −PΔw.

This linear operator is invertible and A−1 is self-adjoint and compact as a map from V0(Ω) into V0(Ω).
From the spectral theorem for self-adjoint compact operators (see, e.g., [25], Chapter 10, Theorem 10.12),
it follows that there exist sequences {wj}∞

j=1 ⊂ V2(Ω) and {λj}∞
j=1 ⊂ (0,+∞) such that

Awj = λjwj, j ∈ {1, 2, . . . }, (11)

and {wj}∞
j=1 is an orthonormal basis of the space V0(Ω).

Let
w̃j

def
= λ−1

j wj, j ∈ {1, 2, . . . }.

It is easily shown that {w̃j}∞
j=1 is an orthonormal basis in the space V2(Ω).

Let us fix an arbitrary number T > 0. For each fixed integer m ≥ 1, we would like to define the
approximate solution as follows:

vm(t)
def
=

m

∑
i=1

gmi(t)wi, t ∈ [0, T],
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where gm1, . . . , gmm are unknown functions such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ω

v′
m(t) · wj dx +

n

∑
i=1

∫
Ω

vmi(t)
∂vm(t)

∂xi
· wj dx − ν

∫
Ω

Δvm(t) · wj dx

−α2
∫
Ω

Δv′
m(t) · wj dx =

∫
Ω

f (t) · wj dx, t ∈ (0, T), j = 1, . . . , m,

vm(0) =
m

∑
i=1

(u0, w̃i)V2(Ω)w̃i.

(12)

Let us define the matrix Qm ∈ Rm×m and the vector am ∈ Rm by the rules:

Qmij
def
=

∫
Ω

wi · wj dx − α2
∫
Ω

Δwi · wj dx, i, j = 1, . . . , m,

ami
def
= λ−2

i (u0, wi)V2(Ω), i = 1, . . . , m.

Then, system (12) can be rewritten in the form⎧⎨⎩
Q�

m g′m(t) = Fm(t, gm(t)), t ∈ (0, T),

gm(0) = am,
(13)

where Fm : [0, T]×Rm → Rm is a known nonlinear vector function and gm
def
= (gm1, . . . , gmm).

Using integration by parts, we obtain

Qmij = (wi, wj)V1(Ω), i, j = 1, . . . , m.

Therefore, the matrix Qm is symmetric and invertible.
Applying Q−1

m to the first equation of problem (13), we obviously get⎧⎨⎩
g′m(t) = Q−1

m Fm(t, gm(t)), t ∈ (0, T),

gm(0) = am.

The local existence of gm on an interval [0, Tm] is insured by the Cauchy–Peano theorem. Thus, we
have a local solution vm of problem (12) on [0, Tm]. Below, we obtain a priori estimates (independent
of m) for vector function vm, which entail that Tm = T.

Let us assume that vm satisfies system (12). We multiply the jth equation of (12) by gmj(t) and
sum with respect to j from 1 to m. Since

n

∑
i=1

∫
Ω

vmi(t)
∂vm(t)

∂xi
· vm(t) dx =

1
2

n

∑
i=1

∫
Ω

vmi(t)
∂

∂xi
|vm(t)|2 dx

=− 1
2

n

∑
i=1

∫
Ω

∂vmi(t)
∂xi

|vm(t)|2 dx

=− 1
2

∫
Ω

∇ · vm(t)︸ ︷︷ ︸
=0

|vm(t)|2 dx

=0, t ∈ (0, T),
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we get∫
Ω

v′
m(t) · vm(t) dx − ν

∫
Ω

Δvm(t) · vm(t) dx − α2
∫
Ω

Δv′
m(t) · vm(t) dx =

∫
Ω

f (t) · vm(t) dx. (14)

Integrating by parts the second and third terms on the left-hand side of equality (14), we arrive at the
following relation∫

Ω

v′
m(t) · vm(t) dx + ν

∫
Ω

|∇vm(t)|2 dx + α2
∫
Ω

∇v′
m(t) : ∇vm(t) dx =

∫
Ω

f (t) · vm(t) dx,

which, in turn, gives

1
2

d
dτ

‖vm(τ)‖2
L2(Ω)

+ ν‖∇vm(τ)‖2
L2(Ω)

+
α2

2
d

dτ
‖∇vm(τ)‖2

L2(Ω)
=

∫
Ω

f (τ) · vm(τ) dx,

for any τ ∈ [0, T]. Further, we multiply the last equality by 2 and integrate from 0 to t with respect
to τ; this yields

‖vm(t)‖2
L2(Ω)

+ 2ν

t∫
0

‖∇vm(τ)‖2
L2(Ω)

dτ + α2‖∇vm(t)‖2
L2(Ω)

= ‖vm(0)‖2
L2(Ω)

+ α2‖∇vm(0)‖2
L2(Ω)

+ 2
t∫

0

∫
Ω

f (τ) · vm(τ) dx dτ. (15)

Taking into account (3) and (4), we easily derive from equality (15) that

‖vm(t)‖2
V1(Ω)

≤ ‖vm(0)‖2
V1(Ω)

+ 2
t∫

0

∫
Ω

f (τ) · vm(τ) dx dτ

≤ ‖vm(0)‖2
V1(Ω)

+

t∫
0

∫
Ω

| f (τ)|2 dx dτ +

t∫
0

∫
Ω

|vm(τ)|2 dx dτ

≤ C1‖u0‖2
V2(Ω)

+

T∫
0

‖ f (τ)‖2
L2(Ω)

dτ + C2

t∫
0

‖vm(τ)‖2
V1(Ω)

dτ.

Here and in the succeeding discussion, the symbols Ci, i = 1, 2, . . . , designate positive constants that
are independent of m. Using Grönwall’s inequality, we get

‖vm(t)‖2
V1(Ω)

≤
(

C1‖u0‖2
V2(Ω)

+

T∫
0

‖ f (τ)‖2
L2(Ω)

dτ

)
exp(C2t), t ∈ (0, T). (16)

Hence,

‖vm‖C([0,T];V1(Ω)) = max
t∈[0,T]

‖vm(t)‖V1(Ω)

≤
(

C1‖u0‖2
V2(Ω)

+

T∫
0

‖ f (τ)‖2
L2(Ω)

dτ

)1/2[
exp(C2T)

]1/2. (17)
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Next, by multiplying the jth equation of (12) with g′mj and summing over j = 1, . . . , m, we obtain

∫
Ω

|v′
m(t)|2 dx +

n

∑
i=1

∫
Ω

vmi(t)
∂vm(t)

∂xi
· v′

m(t) dx − ν
∫
Ω

Δvm(t) · v′
m(t) dx

− α2
∫
Ω

Δv′
m(t) · v′

m(t) dx =
∫
Ω

f (t) · v′
m(t) dx, t ∈ (0, T).

Integrating by parts the third and fourth terms on the left-hand side of the last equality, we arrive at

∫
Ω

|v′
m(t)|2 dx +

n

∑
i=1

∫
Ω

vmi(t)
∂vm(t)

∂xi
· v′

m(t) dx + ν
∫
Ω

∇vm(t) : ∇v′
m(t) dx

+ α2
∫
Ω

|∇v′
m(t)|2 dx =

∫
Ω

f (t) · v′
m(t) dx, t ∈ (0, T).

From here, using (3) and Hölder’s inequality, one can obtain

‖v′
m(t)‖2

V1(Ω)
=−

n

∑
i=1

∫
Ω

vmi(t)
∂vm(t)

∂xi
· v′

m(t) dx

− ν
∫
Ω

∇vm(t) : ∇v′
m(t) dx +

∫
Ω

f (t) · v′
m(t) dx

≤
n

∑
i,j=1

‖vmi(t)‖L4(Ω)

∥∥∥∥∂vmj(t)
∂xi

∥∥∥∥
L2(Ω)

‖v′mj(t)‖L4(Ω)

+ ν‖∇vm(t)‖L2(Ω)‖∇v′
m(t)‖L2(Ω) + ‖ f (t)‖L2(Ω)‖v′

m(t)‖L2(Ω)

≤C3
(
‖vm(t)‖2

V1(Ω)
+ ‖ f (t)‖L2(Ω)

)
‖v′

m(t)‖V1(Ω),

whence
‖v′

m(t)‖V1(Ω) ≤ C3
(
‖vm(t)‖2

V1(Ω)
+ ‖ f (t)‖L2(Ω)

)
, t ∈ (0, T).

With the help of inequality (16), we get

‖v′
m(t)‖V1(Ω) ≤ C3

(
C1‖u0‖2

V2(Ω)
+

T∫
0

‖ f (τ)‖2
L2(Ω)

dτ

)
exp(C2t) + C3‖ f (t)‖L2(Ω),

for all t ∈ (0, T). Therefore, we have

‖v′
m‖C([0,T];V1(Ω)) = max

t∈[0,T]
‖v′

m(t)‖V1(Ω)

≤C3

(
C1‖u0‖2

V2(Ω)
+

T∫
0

‖ f (τ)‖2
L2(Ω)

dτ

)
exp(C2T) + C3 max

t∈[0,T]
‖ f (t)‖L2(Ω). (18)

We now multiply the jth equation of (12) by −λjgmj(t) and sum with respect to j from 1 to m.
Taking into account equality (11), we get
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∫
Ω

v′
m(t) · PΔvm(t) dx +

n

∑
i=1

∫
Ω

vmi(t)
∂vm(t)

∂xi
· PΔvm(t) dx − ν

∫
Ω

Δvm(t) · PΔvm(t) dx

− α2
∫
Ω

Δv′
m(t) · PΔvm(t) dx =

∫
Ω

f (t) · PΔvm(t) dx, t ∈ (0, T),

which leads to

∫
Ω

v′
m(t) · PΔvm(t) dx +

n

∑
i=1

∫
Ω

vmi(t)
∂vm(t)

∂xi
· PΔvm(t) dx − ν

∫
Ω

|PΔvm(t)|2 dx

− α2
∫
Ω

PΔv′
m(t) · PΔvm(t) dx =

∫
Ω

f (t) · PΔvm(t) dx, t ∈ (0, T).

From this equality, with the help of Hölder’s and Young’s inequalities, we derive

ν‖PΔvm(t)‖2
L2(Ω)

+
α2

2
d
dt
‖PΔvm(t)‖2

L2(Ω)

=
∫
Ω

v′
m(t) · PΔvm(t) dx +

n

∑
i=1

∫
Ω

vmi(t)
∂vm(t)

∂xi
· PΔvm(t) dx −

∫
Ω

f (t) · PΔvm(t) dx

≤
(
‖v′

m(t)‖L2(Ω) +
n

∑
i=1

‖vmi(t)‖L4(Ω)

∥∥∥∂vm(t)
∂xi

∥∥∥
L4(Ω)

+ ‖ f (t)‖L2(Ω)

)
‖PΔvm(t)‖L2(Ω)

≤ 1
2ν

(
‖v′

m(t)‖L2(Ω) +
n

∑
i=1

‖vmi(t)‖L4(Ω)

∥∥∥∂vm(t)
∂xi

∥∥∥
L4(Ω)

+ ‖ f (t)‖L2(Ω)

)2

+
ν

2
‖PΔvm(t)‖2

L2(Ω)
, t ∈ (0, T).

Therefore, the following inequality holds

ν‖PΔvm(t)‖2
L2(Ω)

+ α2 d
dt
‖PΔvm(t)‖2

L2(Ω)

≤ 1
ν

(
‖v′

m(t)‖L2(Ω) +
n

∑
i=1

‖vmi(t)‖L4(Ω)

∥∥∥∂vm(t)
∂xi

∥∥∥
L4(Ω)

+ ‖ f (t)‖L2(Ω)

)2

, t ∈ (0, T),

and, using estimates (17) and (18), we deduce that

ν‖vm(τ)‖2
V2(Ω)

+ α2 d
dτ

‖vm(τ)‖2
V2(Ω)

≤ C4 + C5‖vm(τ)‖2
V2(Ω)

, τ ∈ (0, T).

Integrating both sides of this differential inequality with respect to τ from 0 to t, we deduce

ν

t∫
0

‖vm(τ)‖2
V2(Ω)

dτ + α2‖vm(t)‖2
V2(Ω)

≤ α2‖vm(0)‖2
V2(Ω)

+ C4t + C5

t∫
0

‖vm(τ)‖2
V2(Ω)

dτ

≤ α2‖u0‖2
V2(Ω)

+ C4T + C5

t∫
0

‖vm(τ)‖2
V2(Ω)

dτ.

It follows easily that

‖vm(t)‖2
V2(Ω)

≤ ‖u0‖2
V2(Ω)

+ C4α−2T + C5α−2
t∫

0

‖vm(τ)‖2
V2(Ω)

dτ, t ∈ (0, T).
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Applying Grönwall’s inequality, we obtain

‖vm(t)‖2
V2(Ω)

≤
(
‖u0‖2

V2(Ω)
+ C4α−2T

)
exp(C5α−2t), t ∈ (0, T).

This implies that

‖vm‖C([0,T];V2(Ω)) = max
t∈[0,T]

‖vm(t)‖V2(Ω) ≤
{(

‖u0‖2
V2(Ω)

+ C4α−2T
)

exp(C5α−2T)
}1/2

. (19)

Finally, we multiply the jth equation of (12) by −λjg′mj(t) and sum with respect to j from 1 to m.
Bearing in mind equality (11), we obtain

∫
Ω

v′
m(t) · PΔv′

m(t) dx +
n

∑
i=1

∫
Ω

vmi(t)
∂vm(t)

∂xi
· PΔv′

m(t) dx − ν
∫
Ω

Δvm(t) · PΔv′
m(t) dx

− α2
∫
Ω

Δv′
m(t) · PΔv′

m(t) dx =
∫
Ω

f (t) · PΔv′
m(t) dx, t ∈ (0, T).

Using Hölder’s inequality, from the last equality one can derive

α2‖PΔv′
m(t)‖2

L2(Ω)
=

∫
Ω

v′
m(t) · PΔv′

m(t) dx +
n

∑
i=1

∫
Ω

vmi(t)
∂vm(t)

∂xi
· PΔv′

m(t) dx

− ν
∫
Ω

PΔvm(t) · PΔv′
m(t) dx −

∫
Ω

f (t) · PΔv′
m(t) dx

≤
(
‖v′

m(t)‖L2(Ω) +
n

∑
i=1

‖vmi(t)‖L4(Ω)

∥∥∥∂vm(t)
∂xi

∥∥∥
L4(Ω)

+ ν‖PΔvm(t)‖L2(Ω) + ‖ f (t)‖L2(Ω)

)
‖PΔv′

m(t)‖L2(Ω)

≤
(
‖v′

m(t)‖L2(Ω) + C6‖vm(t)‖V1(Ω)‖vm(t)‖V2(Ω)

+ ν‖vm(t)‖V2(Ω) + ‖ f (t)‖L2(Ω)

)
‖PΔv′

m(t)‖L2(Ω), t ∈ (0, T).

Clearly, this yields the estimate

‖PΔv′
m(t)‖L2(Ω) ≤α−2

(
‖v′

m(t)‖L2(Ω) + C6‖vm(t)‖V1(Ω)‖vm(t)‖V2(Ω)

+ ν‖vm(t)‖V2(Ω) + ‖ f (t)‖L2(Ω)

)
, t ∈ (0, T).

Taking into account (17)–(19), from the last inequality, we easily obtain that

‖v′
m(t)‖V2(Ω) = ‖PΔv′

m(t)‖L2(Ω) ≤ C7, t ∈ (0, T),

and, hence,

‖v′
m‖C([0,T];V2(Ω)) = max

t∈[0,T]
‖v′

m(t)‖V2(Ω) ≤ C7. (20)

From estimates (19) and (20) and Lemma 2, it follows that there exist a subsequence {mk}∞
k=1 and

a function u such that vmk converges strongly to u in the space C([0, T]; V1(Ω)) as k → ∞. Without
loss of generality, we can assume that
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vm → u strongly in C([0, T]; V1(Ω)) as m → ∞, (21)

vm ⇀ u weakly in L2(0, T; V2(Ω)) as m → ∞. (22)

Moreover, we have
vm(0) → u0 strongly in V2(Ω) as m → ∞. (23)

On the other hand, from (21) it follows that

vm(0) → u(0) strongly in V1(Ω) as m → ∞. (24)

Comparing the convergence results (23) and (24), we obtain

u(0) = u0. (25)

Integrating the jth equation of (12) from 0 to s, we obtain

∫
Ω

vm(s) · wj dx +
n

∑
i=1

s∫
0

∫
Ω

vmi(t)
∂vm(t)

∂xi
· wj dxdt − ν

s∫
0

∫
Ω

Δvm(t) · wj dxdt − α2
∫
Ω

Δvm(s) · wj dx

=
∫
Ω

vm(0) · wj dx − α2
∫
Ω

Δvm(0) · wj dx +

s∫
0

∫
Ω

f (t) · wj dxdt, j ∈ {1, 2, . . . }, s ∈ [0, T].

Integrating by parts the third and fourth terms on the left-hand side of this equality, we arrive at

∫
Ω

vm(s) · wj dx +
n

∑
i=1

s∫
0

∫
Ω

vmi(t)
∂vm(t)

∂xi
· wj dxdt + ν

s∫
0

∫
Ω

∇vm(t) : ∇wj dxdt

+ α2
∫
Ω

∇vm(s) : ∇wj dx =
∫
Ω

vm(0) · wj dx − α2
∫
Ω

Δvm(0) · wj dx +

s∫
0

∫
Ω

f (t) · wj dxdt.

Using the convergence results (21)–(23), we can pass to the limit m → ∞ in the last equality
and obtain

∫
Ω

u(s) · wj dx +
n

∑
i=1

s∫
0

∫
Ω

ui(t)
∂u(t)
∂xi

· wj dxdt + ν

s∫
0

∫
Ω

∇u(t) : ∇wj dxdt + α2
∫
Ω

∇u(s) : ∇wj dx

=
∫
Ω

u0 · wj dx − α2
∫
Ω

Δu0 · wj dx +

s∫
0

∫
Ω

f (t) · wj dxdt, j ∈ {1, 2, . . . }, s ∈ [0, T].

Applying integration by parts again, we get

∫
Ω

u(s) · wj dx +
n

∑
i=1

s∫
0

∫
Ω

ui(t)
∂u(t)
∂xi

· wj dxdt − ν

s∫
0

∫
Ω

Δu(t) · wj dxdt − α2
∫
Ω

Δu(s) · wj dx

=
∫
Ω

u0 · wj dx − α2
∫
Ω

Δu0 · wj dx +

s∫
0

∫
Ω

f (t) · wj dxdt, j ∈ {1, 2, . . . }, s ∈ [0, T]. (26)
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Because {wj}∞
j=1 is a basis of V0(Ω), equality (26) remains valid if we replace wj with an arbitrary

vector function w from the space V0(Ω), that is

∫
Ω

u(s) · w dx +
n

∑
i=1

s∫
0

∫
Ω

ui(t)
∂u(t)
∂xi

· w dxdt − ν

s∫
0

∫
Ω

Δu(t) · w dxdt

− α2
∫
Ω

Δu(s) · w dx =
∫
Ω

u0 · w dx − α2
∫
Ω

Δu0 · w dx +

s∫
0

∫
Ω

f (t) · w dxdt, s ∈ [0, T].

From the last equality it follows that

u(s) +
n

∑
i=1

P

s∫
0

ui(t)
∂u(t)
∂xi

dt − νP

s∫
0

Δu(t)dt − α2
PΔu(s) = u0 − α2

PΔu0 + P

s∫
0

f (t)dt. (27)

Using the Stokes operator A, we can rewrite this equality as follows

(I+ α2
A)u(s) = −

n

∑
i=1

P

s∫
0

ui(t)
∂u(t)
∂xi

dt+ νP

s∫
0

Δu(t)dt+(I+ α2
A)u0 +P

s∫
0

f (t)dt, s ∈ [0, T], (28)

where I : V2(Ω) → V0(Ω) is the embedding operator.
Applying the operator (I+ α2A)−1 : V0(Ω) → V2(Ω) to both sides of equality (28), we get

u(s) =−
n

∑
i=1

(I+ α2
A)−1

P

s∫
0

ui(t)
∂u(t)
∂xi

dt + ν(I+ α2
A)−1

P

s∫
0

Δu(t)dt

+ u0 + (I+ α2
A)−1

P

s∫
0

f (t)dt, s ∈ [0, T]. (29)

Since
u ∈ C([0, T]; V1(Ω)) ∩ L2(0, T; V2(Ω)),

we conclude from (29) that
u ∈ C([0, T]; V2(Ω)). (30)

Next, differentiating both sides of (29) with respect to s, we get

u′(s) = −
n

∑
i=1

(I+ α2
A)−1

P

[
ui(s)

∂u(s)
∂xi

]
+ ν(I+ α2

A)−1
PΔu(s) + (I+ α2

A)−1
P f (s), s ∈ [0, T].

Taking into account (30), from the last equality we deduce that u′ ∈ C([0, T]; V2(Ω)). Hence,

u ∈ C1([0, T]; V2(Ω)). (31)

Next, from equality (27) it follows that there exists an element π(t) ∈ H1(Ω)/R such that

u(t) +
n

∑
i=1

t∫
0

ui(τ)
∂u(τ)

∂xi
dτ − ν

t∫
0

Δu(τ) dτ − α2Δu(t)− u0 − α2Δu0 −
t∫

0

f (τ) dτ = ∇π(t). (32)

It is readily seen that ∇π ∈ C1([0, T]; G(Ω)) and, consequently, we have

π ∈ C1([0, T]; H1(Ω)/R). (33)
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Letting p(t) def
= −π′(t), from (33) we get

p ∈ C([0, T]; H1(Ω)/R). (34)

Finally, differentiating both sides of (32) with respect to t, we arrive at

u′(t) +
n

∑
i=1

ui(t)
∂u(t)
∂xi

− νΔu(t)− α2Δu′(t) +∇p(t) = f (t), t ∈ (0, T). (35)

Bearing in mind (25), (31), (34), and (35), we conclude that the pair (u, p) is a strong solution to
problem (1) on the interval [0, T]. The uniqueness of a strong solution can be proved by using arguments
similar to those that are presented in [9], thus we choose to omit the details of the corresponding proof.
Since T is arbitrary, we see that (u, p) is a solution of (1) in the sense of Definition 1.

Next, we take the L2-scalar product of (8) with the vector function u. Using integration by parts,
one can easily arrive at the energy equality (9).

The rest of the proof consists in proving inequality (10). If there exists a function q from the space
C([0, T]; H1(Ω)) such that ∇q = f , then we have∫

Ω

f (τ) · u(τ) dx =
∫
Ω

∇q(τ) · u(τ) dx = −
∫
Ω

q(τ)∇ · u(τ)︸ ︷︷ ︸
=0

dx = 0, τ ≥ 0, (36)

i. e., the total work done by external forces f is zero.
In view of (36), the energy equality (9) reduces to

‖u(t)‖2
L2(Ω)

+ 2ν

t∫
0

‖∇u(τ)‖2
L2(Ω)

dτ + α2‖∇u(t)‖2
L2(Ω)

= ‖u0‖2
L2(Ω)

+ α2‖∇u0‖2
L2(Ω)

, t ≥ 0.

Differentiating the last equality with respect to t, we get

d
dt

[
‖u(t)‖2

L2(Ω)
+ α2‖∇u(t)‖2

L2(Ω)

]
+ 2ν‖∇u(t)‖2

L2(Ω)
= 0, t ≥ 0.

Using inequality (6), we obtain

d
dt

[
‖u(t)‖2

L2(Ω)
+ α2‖∇u(t)‖2

L2(Ω)

]
+

8ν

d2
Ω + 4α2

[
‖u(t)‖2

L2(Ω)
+ α2‖∇u(t)‖2

L2(Ω)

]
≤ 0, t ≥ 0

and, hence,
d
dt

[
exp

( 8νt
d2

Ω + 4α2

) {
‖u(t)‖2

L2(Ω)
+ α2‖∇u(t)‖2

L2(Ω)

}]
≤ 0, t ≥ 0. (37)

Then, by integrating (37) with respect to t, we derive inequality (10). Thus, the proof of Theorem 1 is
complete.

5. Concluding Remarks

In this paper, we prove the existence and uniqueness of a strong solution to the incompressible
Navier–Stokes–Voigt model. The construction of a strong solution proceeds via the Faedo–Galerkin
procedure with a special basis of eigenfunctions of the Stokes operator. Note that this approach allows
easily obtaining approximations of strong solutions, which frequently reduce to approximate analytic
or semi-analytic solutions when the flow domain has a simple symmetric shape. Such solutions favor
a better understanding of the qualitative features of unsteady flows of viscoelastic fluids and can be
used to test the relevant numerical, asymptotic, and approximate methods.
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Abbreviations

Symbols and Notations Meaning

Ω flow domain
∂Ω boundary of Ω
x1, . . . , xn space variables
t time
u velocity field
u0 initial velocity field
p pressure
ν viscosity coefficient
α relaxation coefficient
f external forces field
q scalar potential for f
T fixed point in time

∇
(

∂
∂x1

, . . . , ∂
∂xn

)
Δ

n
∑

i=1

∂2

∂x2
i

′ differentiation with respect to t
⊕ orthogonal sum of subspaces
⇀ weak convergence
→ strong convergence
↪→ embedding
A × B Cartesian product of two sets A and B
x · y scalar product of vectors x, y ∈ Rn

X : Y scalar product of matrices X, Y ∈ Rn×n

(v, w)H scalar product of functions v and w from a Hilbert space H

‖v‖E norm of function v from a Banach space E

L(E1, E2) space of all bounded linear mappings from E1 to E2

D(Ω) space of C∞ functions with support contained in Ω
V(Ω) space of C∞ divergence-free vector functions with support contained in Ω
Ls(Ω) Lebesgue space
Hk(Ω) Sobolev space
V i(Ω) special Hilbert space defined by (2) for i ∈ {0, 1, 2}
G(Ω) {∇h : h ∈ H1(Ω)}
H1(Ω)/R quotient of H1(Ω) by R

∼ equivalence relation on H1(Ω)

Ld layer with thickness d
dΩ inf{d : Ω ⊂ Ld}
ξ {ω ∈ H1(Ω) : ω ∼ ξ}
I embedding operator
P Leray projection
A Stokes operator
λj eigenvalue of Stokes operator
wj eigenfunction of Stokes operator
vm Galerkin solution
Ci positive constant independent of m
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Abstract: A mathematical model describing viral dynamics in the presence of the latently infected
cells and the cytotoxic T-lymphocytes cells (CTL), taking into consideration the spatial mobility of
free viruses, is presented and studied. The model includes five nonlinear differential equations
describing the interaction among the uninfected cells, the latently infected cells, the actively infected
cells, the free viruses, and the cellular immune response. First, we establish the existence, positivity,
and boundedness for the suggested diffusion model. Moreover, we prove the global stability of
each steady state by constructing some suitable Lyapunov functionals. Finally, we validated our
theoretical results by numerical simulations for each case.

Keywords: viral infection; diffusion; Lyapunov functional; convergence

1. Introduction

Viral infections represent a major cause of morbidity with important consequences for patient’s
health and for the society. Among the most dangerous, let us cite the human immunodeficiency virus
(HIV) that attacks immune cells leading to the deficiency of the immune system [1,2], the human
papillomavirus (HPV) that infects basal cells of the cervix [3,4], and the hepatitis B virus (HBV) and the
hepatitis C virus (HCV) that attack liver cells [5–8]. Mathematical modeling becomes an important tool
for the understanding and predicting the spread of viral infection, and for the development of efficient
strategies to control its dynamics [9–12]. One of the basic models of viral infection suggested by Nowak
in 1996 describes the interactions among uninfected cells, infected cells, and free viruses. Nowadays,
modeling of viral infection actively develops with a variety of new models and methods [9–15] (see also
the monograph [16] and the references therein). The action of immune system was introduced into the
basic model with cytotoxic T-lymphocytes cells (CTL) killing infected cells [12–15,17,18]. The impact
of CTL cells with a saturated incidence function was considered in [12]:

Mathematics 2020, 8, 52; doi:10.3390/math8010052 www.mdpi.com/journal/mathematics73
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ḣ = λ − d1H − k1HV
H + V

,

Ṡ =
k1HV
H + V

− d2S − k2S,

Ẏ = k2S − d3Y − pYZ,

V̇ = aY − d4V,

Ż = cYZ − bZ.

(1)

Here H, S, Y, V, and Z represent the densities of uninfected cells, exposed cells, infected cells,
free virus, and CTL cells, respectively. Our model uses a more realistic saturated incidence function
k1HV
H + V

[10,11]. This saturated incidence functional describes the infection rate taking into consideration

the effect of free viruses crowd near the healthy cells. The parameters of the system in Equation (1)
are described in Table 1.

Table 1. The parameters of the mathematical model and their descriptions.

Coefficient Description

λ The birth rate of the uninfected cells
k1 The rate of infection
d1 The natural mortality of the susceptible cells
d2 The death rate of exposed cells
k2 The average that exposed cells become infected
d3 The death rate of infected cells, not by CTL killing
a The rate of production the virus by infected cells

d4 The rate of viral clearance
p Clearance rate of infection
c Activation rate CTL cells
b Death rate of CTL cells
d Diffusion coefficient

The majority of mathematical models of viral infection ignores the spatial movement of viruses
and cells, assuming that the virus and cell populations are well mixed [19]. However, their mobility
and a nonuniform spatial distribution can play an important role for the infection development [20].
Thus far, few studies have been devoted to the influence of spatial structure on the dynamics of the
virus [21,22]. Reaction–diffusion waves of infection spreading were studied in [23–25].

In this work, we consider the previous model in Equation (1) taking into account virus diffusion:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂H
∂t

= λ − d1H − k1HV
H + V

,

∂S
∂t

=
k1HV
H + V

− d2S − k2S,

∂Y
∂t

= k2S − d3Y − pYZ,

∂V
∂t

= dΔV + aY − d4V,

∂Z
∂t

= cYZ − bZ.

(2)

As in (1), H, S, Y, V, and Z represent the densities of uninfected cells, latently infected cells,
infected cells, free virus, and CTLs cells, depending now on the space coordinate location x and on
time t, x ∈ Ω, where Ω is an open bounded set in IRn. The positive constant d is the virus diffusion
coefficient. All parameters of the system in Equation (2) have the same biological meanings as in the
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model in Equation (1). In this paper, we consider the system in Equation (2) with the homogeneous
Neumann boundary conditions:

∂V
∂ν

= 0, on ∂Ω × [0,+∞) (3)

and the initial conditions:

H(x, 0) = ϕ1(x) ≥ 0; S(x, 0) = ϕ2(x) ≥ 0; Y(x, 0) = ϕ3(x) ≥ 0; (4)

V(x, 0) = ϕ4(x) ≥ 0; Z(x, 0) = ϕ5(x) ≥ 0 ∀x ∈ Ω̄. (5)

The paper is organized as follows. The next section is devoted to the well-posedness of the model,
followed in Section 3 by the global stability analysis. In Section 4, we illustrate the results with the
numerical simulations.

2. Well-Posedness of Model

In this section, we investigate the well-posedness of the model in Equation (2) proving the global
existence, the positivity and the boundedness of solutions.

Proposition 1. For any initial condition satisfying Equations (4)–(5), there exists a unique solution to the
problem in Equations (2)–(3) defined on t ∈ (0,+∞). Moreover, this solution stays non-negative and bounded
for all t > 0.

Proof. Let consider the set

XT = {V ∈ L2 ([0, T]× Ω) ∩ C
(
[0, T]; L2 (Ω)

)
; 0 ≤ V(x, t) ≤ CT},

where T is a fixed positive constant and CT =‖ V0 ‖L∞(Ω) +a
λ

m
T (V0 = V(x, 0)), where m =

min(d1, d2, d3, pb/c).
To prove the existence of the solution, we define the following map

Ψ : XT → L2 ([0, T]× Ω)

V̄ �→ Ψ(V̄) = V

such that ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂V
∂t

− dΔV = aY − d4V, in Ω

∂V
∂ν

= 0, in [0, T]× ∂Ω

V(x, 0) = ϕ4(x), ∀x ∈ Ω,

(6)

where Y is the third component of the solution vector of the following subsystem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂H(x, t)
∂t

= λ − d1H(x, t)− k1H(x, t)V̄(x, t)
H(x, t) + V̄(x, t)

,

∂S(x, t)
∂t

=
k1H(x, t)V̄(x, t)
H(x, t) + V̄(x, t)

− d2S(x, t)− k2S(x, t),

∂Y(x, t)
∂t

= k2S(x, t)− d3Y(x, t)− pY(x, t)Z(x, t),

∂Z(x, t)
∂t

= cY(x, t)Z(x, t)− bZ(x, t),

(7)
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with the initial data

H(x, 0) = ϕ1(x) ≥ 0; S(x, 0) = ϕ2(x) ≥ 0; Y(x, 0) = ϕ3(x) ≥ 0;

Z(x, 0) = ϕ5(x) ≥ 0 ∀x ∈ Ω̄.

Then, the system in Equation (7) can be written abstractly in X = Ω4 by the following form

U′(t) = AU(t) + F(U(t)), ∀t > 0,

U(0) = U0 ∈ X,

with U = (H, S, Y, Z)T , U0 = (ϕ1, ϕ2, ϕ3, ϕ5)
T , and

F(U(t)) =

⎛⎜⎜⎜⎜⎜⎜⎝
λ − d1H(x, t)− k1H(x, t)V̄(x, t)

H(x, t) + V̄(x, t)
k1H(x, t)V̄(x, t)
H(x, t) + V̄(x, t)

− d2S(x, t)− k2S(x, t)

k2S(x, t)− d3Y(x, t)− pY(x, t)Z(x, t)
cY(x, t)Z(x, t)− bZ(x, t)

⎞⎟⎟⎟⎟⎟⎟⎠ .

It is clear that F is locally Lipschitz in U. Using the theorem of Cauchy–Lipschitz, we deduce
that the system in Equation (7) admits a unique local solution on [0, τ], where τ ≤ T. In addition, the
system in Equation (7) can be written of the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂H
∂t

= F1(H, S, Y, Z),

∂S
∂t

= F2(H, S, Y, Z),

∂Y
∂t

= F3(H, S, Y, Z),

∂Z
∂t

= F4(H, S, Y, Z).

It is easy to see that the functions Fi(H, S, Y, Z), 1 ≤ i ≤ 4 are continuously differentiable, verifying

F1(0, S, Y, Z) = λ ≥ 0, F2(H, 0, Y, Z) =
k1HV̄
H + V̄

≥ 0, F3(H, S, 0, Z) = k2S ≥ 0 and F4(H, S, Y, 0) = 0 for

all H, S, Y, V̄, Z ≥ 0. Since the initial data of the system in Equation (7) are nonnegative, we obtain the
positivity of H, S, Y, and Z thanks to the quasi-reversibility principle.

Now, we show the boundedness of solution. Let

T (x, t) = H(x, t) + S(x, t) + Y(x, t) +
p
c

Z(x, t)

∂T
∂t

= λ − d1H(x, t)− d2S(x, t)− d3Y(x, t)− p
b
c

Z(x, t)

≤ λ − mT (x, t),

Then,

T (x, t) ≤ T (x, 0)e−mt +
λ

m
(1 − e−mt),

For biological reasons, we assume that the problem initial data are upper-bounded by the carrying

capacity. This means that T (x, 0) ≤ λ

m
. We deduce that
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H(x, t) ≤ 2λ

m
, S(x, t) ≤ 2λ

m
,

Y(x, t) ≤ 2λ

m
, Z(x, t) ≤ 2λ

m
.

Thus, H, S, Y, and Z are bounded.
Let us recast the system in Equation (6) as follows⎧⎪⎨⎪⎩

∂V
∂t

− dΔV + d4V = aY, on Ω,

∂V
∂ν

= 0, on ∂Ω.

We know that 0 ≤ Y(x, t) ≤ λ

m
, then from the proposition 2.1 in [26], we deduce for all V0 ∈ L2(Ω)

the existence and the uniqueness of the solution V ∈ L2([0, T]; H1(Ω)) ∩ C([0, T]; L2(Ω)) such that
∂tV ∈ L2([0, T]; H1(Ω)′). Furthermore, if V0 ∈ L∞(Ω), by using the maximum principle relation,
we have

0 ≤ V(t, x) ≤‖ V0 ‖L∞(Ω) +a
λ

m
T.

We note that Ψ is well defined and continuous and Ψ(XT) is compact, thus Ψ admits a fixed point.
Then, we conclude the existence of the solution V of (6) and it is positive and bounded.

Equilibria and Basic Reproduction Number

The system in Equation (2) has an infection-free equilibrium Ef = (
λ

d1
, 0, 0, 0, 0), corresponding

to the total absence of viral infection. The basic reproduction number of the system in Equation (2) is
given by

R0 = k1
k2

d2 + k2

a
d3

1
d4

, (8)

with
k2

d2 + k2
the ratio of exposed cells that will become infected,

a
d3

the average of free virus produced

by an infected cell, and
1
d4

the lifespan of the virus. The biological interpretation of R0 represents the

rate of secondary infections generated by an infected cell when it is introduced into a population of
uninfected cells.

In addition to the disease free equilibrium, our system (Equation (2)) admits three endemic
equilibria. The first of them is E1 = (H1, S1, Y1, V1, Z1), where

H1 =
λ

d1 + k1(1 − 1
R0
)

, Z1 = 0,

S1 =
k1λR0(1 − 1

R0
)

(d2 + k2)(d1 + k1(1 − 1
R0
))((1 − 1

R0
)R0 + 1)

,

Y1 =
d4λR0(1 − 1

R0
)

ad1 + ak1(1 − 1
R0
)

, V1 =
λR0(1 − 1

R0
)

d1 + k1(1 − 1
R0
)

.

This endemic steady state is specified as endemic equilibrium without cellular immunity. The
second endemic steady state is E2 = (H2, S2, Y2, V2, Z2), where
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H2 =
−abd1 − abk1 + λcd4 +

√
A

2cd1d4
,

S2 =
d3R0

k2

b(−abd1 − abk1 + λcd4 +
√

A)

c(abd1 − abk1 + λcd4 +
√

A)
,

Y2 =
b
c

, V2 =
ba
cd4

,

Z2 =
d3((R0 − 1)(−ak1b + λcd4 +

√
A)− abd1(R0 + 1))

p(abd1 − ak1b + λcd4 +
√

A)
.

This endemic steady state is specified as endemic equilibrium with cellular immunity. It is also
called interior equilibrium. The third endemic steady state is E3 = (H3, S3, Y3, V3, Z3), where

H3 = − abd1 + abk1 − λcd4 +
√

A
2cd1d4

,

S3 =
k1H3V3

(k2 + d2)(H3 + V3)
,

Y3 =
b
c

, V3 =
ba
cd4

,

Z3 =
k2S3 − d3Y3

pY3
,

with A = (abk1 − λcd4)
2 + a2b2d2

1 + 2a2b2d1k1 + 2λabcd1d4.
Noting that H3 < 0, this is not biologically relevant, thus the steady state E3 is not considered.

When R0 > 1, the equilibrium E1 exists. We define the reproduction rate of the CTL RCTL immune
response by

RCTL =
cY1

b
=

cd4λR0(1 − 1
R0
)

abd1 + abk1(1 − 1
R0
)

.

Note that the endemic state E2 exists when RCTL > 1. Indeed, if one considers R0 > 1 then, in total

absence of CTL immune response, the infected cell loaded per unit time is
d4λR0(1− 1

R0
)

ad1+ak1(1− 1
R0

)
. From the

system in Equation (2), we have the CTL cells reproduced due to infected cells stimulating per unit

time is
cd4λR0(1− 1

R0
)

ad1+ak1(1− 1
R0

)
= cY1. The CTL charge during the lifespan of a CTL cell is

cd4λR0(1− 1
R0

)

abd1+abk1(1− 1
R0

)
= RCTL.

Thus, if
cd4λR0(1− 1

R0
)

abd1+abk1(1− 1
R0

)
> 1, we deduce the existence of E2.

3. Global Stability

To prove the global stability of the uninfected and the infected steady states, we use the method
of construction of Lyapunov functions developed in [12] and can claim the following result

Theorem 1. The disease-free equilibrium Ef of the model in Equation (2) is globally asymptotically stable when
R0 < 1.

Proof. We define the function Gf by

Gf (x, t) = S +
d2 + k2

k2
Y +

d3(d2 + k2)

ak2
V +

p
c

d2 + k2

k2
Z.
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Then, by using the equations of the system in Equation (2), the time derivative of Gf verifies

∂Gf

∂t
≤ d3d4(d2 + k2)

ak2
(R0 − 1)V.

Now, we define a Lyapunov function as follows

L f =
∫

Ω
Gf dx.

Calculating the time derivative of L f along the positive solutions of the model in Equation (2),
we obtain

dL f

dt
=

∫
Ω

∂Gf

∂t
dx

≤
∫

Ω

(
d3d4(d2 + k2)

ak2
(R0 − 1)V

)
dx.

Thus, if R0 < 1 implies that
dL f

dt
≤ 0. The largest compact invariant is

E = {(H, S, Y, V, Z) | V = 0},

according to LaSalle’s invariance principle, limt+∞ V(x, t) = 0, the limit system of equations is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂H(x, t)
∂t

= λ − d1H(x, t),

∂S(x, t)
∂t

= −d2S(x, t)− k2S(x, t),

∂Y(x, t)
∂t

= k2S(x, t)− d3Y(x, t)− pY(x, t)Z(x, t),

∂Z(x, t)
∂t

= cY(x, t)Z(x, t)− bZ(x, t).

For simplicity, we use the same notation,

Gf (H, S, Y, Z) =
1

H0

(
H − H0 − H0 ln

H
H0

)
+ S +

d2 + k2

k2
Y +

p
c

d2 + k2

k2
Z.

Since H0 =
λ

d1
,

∂Gf

∂t
(H, S, Y, Z) = d1

(
2 − H

H0
− H0

H

)
− d3(d2 + k2)

k2
Y − pb

c
d2 + k2

k2
Z.

We define another Lyapunov function

L f =
∫

Ω
Gf dx,

then, the time derivative of L f satisfies

dL f

dt
=

∫
Ω

∂Gf

∂t
dx

≤
∫

Ω

(
d1

(
2 − H

H0
− H0

H

)
− d3(d2 + k2)

k2
Y − pb

c
d2 + k2

k2
Z
)

dx.
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Since the arithmetic mean is greater than or equal to the geometric mean, it follows

2 − H
H0

− H0

H
≤ 0,

therefore
dL f

dt
≤ 0 and the equality holds if H = H0 and S = Y = Z = 0, which completes

the proof.

Now, we are interested in the stability of the infected steady state E1. Let us state the
following theorem.

Theorem 2. The infected steady state E1 of the model in Equation (2) is globally asymptotically stable when
RCTL ≤ 1 < R0. In this case, the other infected steady state E2 does not exist.

Proof. Firstly, we define the function

G1(x, t) = H − H1 −
∫ H

H1

(d2 + k2)S1
k1uV1

u + V1

du + S − S1 − S1 ln
S
S1

+
d2 + k2

k2

(
Y − Y1 − Y1 ln

(
Y
Y1

))
+

d3(d2 + k2)

ak2

(
V − V1 − V1 ln

(
V
V1

))
+

p
c

d2 + k2

k2
Z.

Using the same technique proposed in [12], we obtain

∂G1

∂t
= − d1H1

H(H1 + V1)
(H − H1)

2

− (d2 + k2)S1

(
H(V − V1)

2

V1(H + V1)(H + V)

)
+ (d2 + k2)S1

(
5 − H1

H
H + V1

H1 + V1
− S1

S
HV

H1V1

H1 + V1

H + V
− SY1

S1Y
− YV1

Y1V
− H + V

H + V1

)
+ pZ

d2 + k2

k2

b
c
(RCTL − 1).

Now, let us consider the following Lyapunov function

L1 =
∫

Ω
G1dx,

then we deduce

dL1

dt
=

∫
Ω

∂G1

∂t
dx

=
∫

Ω

(
− d1H1

H(H1 + V1)
(H − H1)

2 − (d2 + k2)S1

(
H(V − V1)

2

V1(H + V1)(H + V)

)
+ (d2 + k2)S1

(
5 − H1

H
H + V1

H1 + V1
− S1

S
HV

H1V1

H1 + V1

H + V
− SY1

S1Y
− YV1

Y1V
− H + V

H + V1

)
+ pZ

d2 + k2

k2

b
c
(RCTL − 1)

)
dx.
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Again, since the arithmetic mean is greater than or equal to the geometric mean, it follows

5 − H1

H
H + V1

H1 + V1
− S1

S
HV

H1V1

H1 + V1

H + V
− SY1

S1Y
− YV1

Y1V
− H + V

H + V1
≤ 0.

In addition, when RCTL < 1, which means that
dL1

dt
≤ 0.

Therefore, by Lyapunov–LaSalle invariance theorem, E1 is globally asymptotically stable when
R0 > 1 and RCTL ≤ 1.

To prove the stability of E2 equilibrium, let us state the following theorem

Theorem 3. The infected steady state E2 of the model in Equation (2) is globally asymptotically stable when
R0 > 1 and RCTL > 1. In this case, the other infected steady state E1 is unstable.

Proof. We consider the following function

G2(x, t) = H − H2 −
∫ H

H2

(d2 + k2)S2
k1uV2

u + V2

du + S − S2 − S2 ln
S
S2

+
d2 + k2

k2

(
Y − Y2 − Y2 ln

(
Y
Y2

))
+

d3(d2 + k2) + (d2 + k2)pZ2

ak2

×
(

V − V2 − V2 ln
(

V
V2

))
+

p
c

d2 + k2

k2

(
Z − Z2 − Z2 ln

(
Z
Z2

))
.

Then, we have

∂G2

∂t
= − d1V2

H(H2 + V2)
(H − H2)

2

− (d2 + k2)S2

(
H(V − V2)

2

V2(H + V2)(H + V)

)
+ (d2 + k2)S2

(
5 − H2

H
H + V2

H2 + V2
− S2

S
HV

H2V2

H2 + V2

H + V
− SY2

S2Y
− YV2

Y2V
− H + V

H + V2

)
.

As a result, we define a Lyapunov function as follows

L2 =
∫

Ω
G2dx,

then,

dL2

dt
=

∫
Ω

∂G2

∂t
dx

=
∫

Ω

(
− d1V2

H(H2 + V2)
(H − H2)

2 − (d2 + k2)S2

(
H(V − V2)

2

V2(H + V2)(H + V)

)
+ (d2 + k2)S2

(
5 − H2

H
H + V2

H2 + V2
− S2

S
HV

H2V2

H2 + V2

H + V
− SY2

S2Y
− YV2

Y2V
− H + V

H + V2

))
dx,

since the arithmetic mean is greater than or equal to the geometric mean, it follows

5 − H2

H
H + V2

H2 + V2
− S2

S
HV

H2V2

H2 + V2

H + V
− SY2

S2Y
− YV2

Y2V
− H + V

H + V2
≤ 0,

which means that
dL2

dt
≤ 0, and the equality hods when H = H2, S = S2, Y = Y2, V = V2, and Z = Z2.

By the LaSalle invariance principle, the endemic point E2 is globally stable.
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4. Numerical Simulations

In this section, we present the results of numerical simulations to validate the theoretical results
of the previous section. We used the finite difference numerical method with Euler explicit scheme.
The convergence of our numerical method was tested by successively decreasing the time and space
steps. The values of parameters are given in Appendix A.

We considered the one-dimensional interval 0 ≤ x ≤ L and time 0 < t ≤ T, where L = 20
(dimensionless space units) and T = 200 days. The initial conditions were chosen space dependent to
illustrate behavior of spatially inhomogeneous solutions. We used an explicit numerical method with
the space step hx = 0.01 and time step ht = 0.1. The program was implemented with Matlab (2014a,
MathWorks, Natick, MA, USA).

Figure 1 shows spatiotemporal dynamics of uninfected cells (left) and the maximal and the
minimal values of the virus concentration in space as a function of time (right). For the values
of parameters considered in this example, the basic reproduction number R0 = 0.22 < 1, which
implies that the virus-free equilibrium is stable. Therefore, as expected, solution converges toward the
equilibrium Ef = (8.27 × 102, 0, 0, 0, 0).
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Figure 1. Dynamics of solution for λ = 10, d1 = 0.0139, k1 = 0.04, d2 = 0.0495, k2 = 1.1, d3 = 0.5776,
a = 2, d4 = 0.6, p = 0.0024, c = 0.15, and b = 0.5. The concentration of uninfected cells is shown as a
function of x and t (left). The maximal and the minimal value of the virus concentration with respect
to x are shown as functions of time (right).

To illustrate convergence to the endemic equilibrium point E1, we considered the values of
parameters presented in Figure 2. In this case, the basic reproduction number is greater than 1,
R0 = 11.05 > 1, and the immune reproduction number is less than 1, RCTL = 3.596 × 10−1 <

1. Therefore, the free-immune endemic equilibrium E1 = (19.96, 5.98 × 10−1, 1.14, 199.78, 0) is
globally stable.
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Figure 2. Dynamics of solution for λ = 1, d1 = 0.0139, k1 = 0.04, d2 = 0.0495, k2 = 1.1, d3 = 0.5776 ,
a = 100, d4 = 0.6, p = 0.0024, c = 0.15, and b = 0.5. The concentration of uninfected cells is shown as a
function of x and t (left). The maximal and the minimal value of the virus concentration with respect
to x are shown as functions of time (right).

In the case considered in Figure 3, we obtain R0 = 11.05 > 1 and RCTL = 4.13 > 1. Consequently,
we observe that the endemic equilibrium E2 = (285.12, 6.55, 3.33, 555.55, 660.86) is stable. This,
numerical results support the theoretical findings.
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Figure 3. Dynamics of solution for λ = 10, d1 = 0.0139, k1 = 0.04, d2 = 0.0495, k2 = 1.1, d3 = 0.5776 ,
a = 100, d4 = 0.6, p = 0.0024, c = 0.15, and b = 0.5. The concentration of uninfected cells is shown as a
function of x and t (left). The maximal and the minimal value of the virus concentration with respect
to x are shown as functions of time (right).

5. Discussion and Conclusions

In this work, we study a model of viral infection in the presence of CTL cells and latently infected
cells. We take into consideration not only the variation in time, but also spatial variation of virus
distribution and its diffusion, where uninfected cells, latently infected cells, infected cells, and CTL
cells do not exhibit any such spatial mobility. As a result, we show the stability of the free-disease
equilibrium using the construction of a Lyapunov function when the reproduction number is less
than one (R0 < 1). If R0 > 1, then two scenarios are established. If RCTL < 1, then the equilibrium
point E1 is globally asymptotically stable, while, for RCTL > 1, the equilibrium point E2 is globally
asymptotically stable. We also performed numerical simulations of our model to illustrate behavior of
solutions and to confirm the theoretical results. It was established that spatial diffusion of free viruses
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has no effect on the stability of the steady states. However, the effect appears only for the first days of
infection observation.
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Appendix A. The Values of Parameters Used in the Numerical Simulations

The values of parameters used in the numerical simulations are given in Table A1:

Table A1. The values, units and meaning of all used parameters.

Parameters Units Meaning Value References

λ cells μL−1 day−1 Source rate of CD4+ T cells [0, 10] [27]
k1 μL virion−1 day−1 Average of infection [2.5 × 10−4, 0.5] [12]
d1 day−1 Decay rate of healthy cells 0.0139 [12]
d2 day−1 Death rate of exposed CD4+ T cells 0.0495 [12]
k2 day−1 The rate that exposed cells become infected CD4+ T cells 1.1 [12]
d3 day−1 Death rate of infected CD4+ T cells, not by CTL killing 0.5776 [12]
a day−1 The rate of production the virus by infected CD4+ T cells [2, 1250] [12]

d4 day−1 Clearance rate of virus [0.3466, 2.4] [12]
p μL cell−1 day−1 Clearance rate of infection 0.0024 [28]
c cells cell−1 day−1 Activation rate CTL cells 0.15 [28]
b day−1 Death rate of CTL cells 0.5 [28]
d mm2day−1 Diffusion coefficient 0.01 –
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Abstract: We present a nonlinear multigrid implementation for the two-dimensional Cahn–Hilliard
(CH) equation and conduct detailed numerical tests to explore the performance of the multigrid
method for the CH equation. The CH equation was originally developed by Cahn and Hilliard to
model phase separation phenomena. The CH equation has been used to model many interface-related
problems, such as the spinodal decomposition of a binary alloy mixture, inpainting of binary images,
microphase separation of diblock copolymers, microstructures with elastic inhomogeneity, two-phase
binary fluids, in silico tumor growth simulation and structural topology optimization. The CH
equation is discretized by using Eyre’s unconditionally gradient stable scheme. The system of discrete
equations is solved using an iterative method such as a nonlinear multigrid approach, which is one of
the most efficient iterative methods for solving partial differential equations. Characteristic numerical
experiments are conducted to demonstrate the efficiency and accuracy of the multigrid method for
the CH equation. In the Appendix, we provide C code for implementing the nonlinear multigrid
method for the two-dimensional CH equation.

Keywords: Cahn–Hilliard equation; multigrid method; unconditionally gradient stable scheme

MSC: 65N06; 65N55

1. Introduction

In this paper, we consider a detailed multigrid [1] implementation of the following
two-dimensional Cahn–Hilliard (CH) equation [2] and provide its C source code:

∂φ(x, y, t)
∂t

= MΔμ(x, y, t), (x, y) ∈ Ω, t > 0,

μ(x, y, t) = F′(φ(x, y, t))− ε2Δφ(x, y, t),

where φ is a conserved scalar field; M is the mobility; F(φ) = 0.25(φ2 − 1)2 is the free energy function
(see Figure 1); ε is the gradient interfacial energy coefficient; and Ω ⊂ R2 is a bounded domain.

Mathematics 2020, 8, 97; doi:10.3390/math8010097 www.mdpi.com/journal/mathematics87
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Figure 1. Double-well potential F(φ) = 0.25(φ2 − 1)2.

The homogeneous Neumann boundary conditions are used and are given as follows:

n · ∇φ = 0, (1)

n · ∇μ = 0 on ∂Ω. (2)

Here, n is the unit normal vector on the domain boundary ∂Ω. The first boundary condition (1)
implies that the interface contacts the domain boundary at a 90◦ angle. The second boundary
condition (2) implies that the total mass is conserved.

We can derive the CH equation from the following total free energy functional

E(φ) =
∫

Ω

[
F(φ) +

ε2

2
|∇φ|2

]
dx.

Taking the variational derivative of E with respect to φ, we define the chemical potential:

μ =
δE
δφ

= F′(φ)− ε2Δφ.

Conservation of mass implies the following CH equation

φt = −∇ · F ,

where the flux is given by F = −M∇μ. If we differentiate E(φ) and
∫

Ω φ dx with respect to time t,
then we have

d
dt
E(φ) =

∫
Ω

[
F′(φ)φt + ε2∇φ · ∇φt

]
dx =

∫
Ω

μφt dx = M
∫

Ω
μΔμ dx

= M
∫

∂Ω
μ∇μ · n ds − M

∫
Ω
∇μ · ∇μ dx = −M

∫
Ω
|∇μ|2 dx ≤ 0 (3)

and

d
dt

∫
Ω

φ dx =
∫

Ω
φt dx = M

∫
Ω

Δμ dx = M
∫

∂Ω
∇μ · n ds = 0, (4)

which imply that the total energy is decreasing and that the total mass is conserved in time, respectively.
The CH equation was originally developed by Cahn and Hilliard to model spinodal decomposition in
a binary alloy. The CH equation has been used to address many major problems such as the spinodal
decomposition of a binary alloy mixture [3,4], inpainting of binary images [5,6], microphase separation
of diblock copolymers [7,8], microstructures with elastic inhomogeneity [9,10], two-phase binary
fluids [11,12], tumor growth models [13–15] and structural topology optimization [14,16]. Further
details regarding the basic principles and practical applications of the CH equation are available in
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a recent review [14]. Thus, knowing how to implement a discrete scheme for the CH equation in
detail is very useful because this equation is a building-block equation for many applications. The CH
equation is discretized by using Eyre’s unconditionally gradient stable scheme [17] and is solved by
using a nonlinear multigrid technique [1], which is one of the most efficient iterative methods for
solving partial differential equations. Several studies have used the nonlinear multigrid method for the
CH-type equations [18–23]. However, details regarding the implementation, multigrid performance,
and source codes have not been provided.

Therefore, the main purpose of this paper is to describe a detailed multigrid implementation of
the two-dimensional CH equation, evaluate its performance and provide its C programming language
source code.

The remainder of this paper is organized as follows. In Section 2, we describe the numerical
solution in detail. In Section 3, we describe the characteristic numerical experiments that are conducted
to demonstrate the accuracy and efficiency of the multigrid method for the CH equation. In Section 4,
we provide a conclusion. In the Appendix A, we provide the C code for implementing the nonlinear
multigrid technique for the two-dimensional CH equation.

2. Numerical Solution

We consider a finite difference approximation for the CH equation. An unconditionally gradient
energy stable scheme, which was proposed by Eyre, is applied to the time discretization. A nonlinear
multigrid technique [1] is applied to solve the resulting system at an implicit time level.

2.1. Discretization

We discretize the CH equation in the two-dimensional space Ω = (a, b)× (c, d). Let Nx = 2p

and Ny = 2q be the numbers of mesh points with integers p and q. Let Δx = (b − a)/Nx

and Δy = (d − c)/Ny be the mesh size. Let Ωij = {(xi, yj) : xi = a + (i − 0.5)Δx, yj =

c + (j − 0.5)Δy, 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny} be a discrete computational domain. Let φn
ij and

μn
ij be approximations of φ(xi, yj, tn) and μ(xi, yj, tn), respectively. Here, tn = nΔt and Δt represent the

temporal step. We assume a uniform mesh grid h = Δx = Δy and a constant mobility M = 1. Using
the nonlinear stabilized splitting scheme of Eyre’s unconditionally gradient stable scheme, the CH
equation is discretized as

φn+1
ij − φn

ij

Δt
= Δhμn+1

ij , (5)

μn+1
ij = (φn+1

ij )3 − φn
ij − ε2Δhφn+1

ij , (6)

where the discrete Laplace operator is defined by Δhψij = (ψi+1,j + ψi−1,j + ψi,j+1 + ψi,j−1 − 4ψij)/h2.
The homogeneous Neumann boundary conditions (1) and (2) are discretized as

φ0j = φ1j, φNx+1,j = φNx ,j, μ0j = μ1j, μNx+1,j = μNx ,j, j = 1, . . . , Ny, (7)

φi0 = φi1, φi,Ny+1 = φi,Ny , μi0 = μi1, μi,Ny+1 = μi,Ny , i = 1, . . . , Nx. (8)

We define the discrete residual as

rij = Δhμn+1
ij −

φn+1
ij − φn

ij

Δt
. (9)

For each element aij of size Nx × Ny in matrix A, we define the Frobenius norm with a scaling
and infinite norm as

‖A‖F =

√√√√∑Nx
i=1 ∑

Ny
j=1 |aij|2

Nx Ny
and ‖A‖∞ = max

1≤i≤Nx ,1≤j≤Ny
|aij|, (10)
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respectively. The discretizations (5) and (6) are conservative, that is,

Nx

∑
i=1

Ny

∑
j=1

φn+1
ij =

Nx

∑
i=1

Ny

∑
j=1

φn
ij. (11)

To show this conservation property, we take the summation of Equation (5)

Nx

∑
i=1

Ny

∑
j=1

φn+1
ij − φn

ij

Δt
=

Nx

∑
i=1

Ny

∑
j=1

Δhμn+1
ij (12)

=
Ny

∑
j=1

(
μn+1

Nx+1,j − μn+1
Nx j

h2 −
μn+1

1j − μn+1
0j

h2

)

+
Nx

∑
i=1

⎛⎝μn+1
i,Ny+1 − μn+1

iNy

h2 − μn+1
i1 − μn+1

i0
h2

⎞⎠ = 0.

Here, we used the homogenous Neumann boundary conditions (7) and (8). Therefore,
Equation (11) holds. We define the discrete energy functional as

E h(φn) = h2
Nx

∑
i=1

Ny

∑
j=1

F(φn
ij) (13)

+
ε2

2

Ny

∑
j=1

(
(φn

1j − φn
0j)

2

2
+

Nx−1

∑
i=1

(φn
i+1,j − φn

ij)
2 +

(φn
Nx+1,j − φn

Nx j)
2

2

)

+
ε2

2

Nx

∑
i=1

(
(φn

i1 − φn
i0)

2

2
+

Ny−1

∑
j=1

(φn
i,j+1 − φn

ij)
2 +

(φn
i,Ny+1 − φn

iNy
)2

2

)

= h2
Nx

∑
i=1

Ny

∑
j=1

F(φn
ij) +

ε2

2

Ny

∑
j=1

Nx−1

∑
i=1

(φn
i+1,j − φn

ij)
2 +

ε2

2

Nx

∑
i=1

Ny−1

∑
j=1

(φn
i,j+1 − φn

ij)
2,

where we used the homogenous Neumann boundary conditions (7) and (8). We also define the discrete
total mass as

Mh(φn) =
Nx

∑
i=1

Ny

∑
j=1

φn
ijh

2. (14)

Then, the unconditionally gradient stable scheme satisfies the reduction in the discrete total
energy [24]:

E h(φn+1) ≤ E h(φn), (15)

which implies the pointwise boundedness of the numerical solution:

‖φn‖∞ ≤
√

1 + 2
√
E h(φ0)/h2 for all n. (16)

The proof of Equation (16) can be found in Reference [25]. We provide the proof herein for the sake
of completeness. We show that a constant K exists for all n values that satisfy the following inequality:

‖φn‖∞ ≤ K. (17)
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Let us assume that there is an integer nK that is dependent on K such that ‖φnK‖∞ > K for any
K. Then, φnK

ij exists such that |φnK
ij | > K. Let K be the largest solution of E h(φ0) = h2F(K), that is,

K =

√
1 + 2

√
E h(φ0)/h2. We then have

E h(φ0) = h2F(K) < h2F(|φnK
ij |) ≤ E h(φnK ) ≤ E h(φ0), (18)

where we utilize the fact that the total energy is decreasing and F(φ) is a strictly increasing function on
(K, ∞). Equation (18) leads to a contradiction. Therefore, Equation (17) should be satisfied.

2.2. Multigrid V-Cycle Algorithm

We use the nonlinear full approximation storage (FAS) multigrid method to solve the nonlinear
discrete systems (5) and (6). For simplicity, we define the discrete domains, Ω2, Ω1, and Ω0, which
represent a hierarchy of meshes (Ω2, Ω1, and Ω0) created by successively coarsening the original mesh
Ω2, as shown in Figure 2.

(a) Ω2 (8 × 8)h (b) Ω1 (4 × 4)h

(c) Ω0 (2 × 2)h (d)

Figure 2. (a–c) represent a sequence of coarse grids starting with h = L/Nx. (d) depicts a composition
of grids, Ω2, Ω1 and Ω0.

We summarize here the nonlinear multigrid method for solving the discrete CH system as follows:
First, let us rewrite Equations (5) and (6) as

NSO(φn+1, μn+1) = (ξn, ψn),
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where the linear operator NSO is defined as

NSO(φn+1, μn+1) =
(

φn+1/Δt − Δhμn+1, μn+1 − (φn+1)3 + ε2Δhφn+1
)

,

and the source term is denoted by

(ξn, ψn) = (φn/Δt, − φn) . (19)

Next, we describe the multigrid method, which includes the pre-smoothing, coarse grid correction
and post-smoothing steps. We denote a mesh grid Ωk as the discrete domain for each multigrid level
k. Note that a mesh grid Ωk contains 2k × 2k grid points. Let kmin be the coarsest multigrid level.
We now introduce the SMOOTH and V-cycle functions. Given the number ν1 of pre-smoothing and
ν2 of post-smoothing relaxation sweeps, the V-cycle is used as an iteration step in the multigrid method.

FAS multigrid cycle

Now, we define the FAScycle:

{φm+1
k , μm+1

k } = FAScycle(k, φm
k , μm

k , NSOk, ξn
k , ψn

k , β).

In other words, {φm
k , μm

k } and {φm+1
k , μm+1

k } are the approximations of φn+1(xi, yj) and
μn+1(xi, yj) before and after an FAScycle, respectively. Here, φ0

k = φn
k and μ0

k = μn
k .

(1) Pre-smoothing

{φ̄m
k , μ̄m

k } = SMOOTHν1(φm
k , μm

k , NSOk, ξn
k , ψn

k ),

which represents ν1 smoothing steps with the initial approximations φm
k , μm

k , source terms ξn
k , ψn

k
and the SMOOTH relaxation operator to obtain the approximations φ̄m

k , μ̄m
k . One SMOOTH relaxation

operator step consists of solving the systems (22) and (23), given as follows by 2 × 2 matrix inversion
for each i and j. Here, we derive the smoothing operator in two dimensions. Rewriting Equation (5),
we obtain:

φn+1
ij

Δt
+

4μn+1
ij

h2 = ξn
ij +

μn+1
i+1,j + μn+1

i−1,j + μn+1
i,j+1 + μn+1

i,j−1

h2 . (20)

Because (φn+1
ij )3 is nonlinear with respect to φn+1

ij , we linearize (φn+1
ij )3 at φm

ij , that is,

(φn+1
ij )3 ≈ (φm

ij )
3 + 3(φm

ij )
2(φn+1

ij − φm
ij ).

After substituting of this into (6), we obtain

−
(

4ε2

h2 + 3(φm
ij )

2
)

φn+1
ij + μn+1

ij = ψn
ij − 2(φm

ij )
3 − ε2

h2 (φ
n+1
i+1,j + φn+1

i−1,j + φn+1
i,j+1 + φn+1

i,j−1). (21)

Next, we replace φn+1
α,β and μn+1

α,β in Equations (20) and (21) with φ̄m
α,β and μ̄m

α,β for α ≤ i and β ≤ j,
otherwise with φm

α,β and μm
α,β, that is,

φ̄m
ij

Δt
+

4μ̄m
ij

h2 = ξn
ij +

μm
i+1,j + μ̄m

i−1,j + μm
i,j+1 + μ̄m

i,j−1

h2 , (22)

−
(

4ε2

h2 + 3(φm
ij )

2
)

φ̄m
ij + μ̄m

ij = ψn
ij − 2(φm

ij )
3 − ε2

h2 (φ
m
i+1,j + φ̄m

i−1,j + φm
i,j+1 + φ̄m

i,j−1). (23)
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(2) Compute the defect

(d̄m
1 k, d̄m

2 k) = (ξn
k , ψn

k )− NSOk(φ̄
m
k , μ̄m

k ).

(3) Restrict the defect and {φ̄m
k , μ̄m

k }

(d̄1
m
k−1, d̄2

m
k−1) = Ik−1

k (d̄1
m
k , d̄2

m
k ).

The restriction operator Ik−1
k maps k-level functions to (k − 1)-level functions.

dk−1(xi, yj) = Ik−1
k dk(xi, yj) =

1
4
[dk(xi− 1

2
, yj− 1

2
) + dk(xi− 1

2
, yj+ 1

2
)

+dk(xi+ 1
2
, yj− 1

2
) + dk(xi+ 1

2
, yj+ 1

2
)].

(4) Compute the right-hand side

(ξn
k−1, ψn

k−1) = (d̄m
1 k−1, d̄m

2 k−1) + NSOk−1(φ̄
m
k−1, μ̄m

k−1).

(5) Compute an approximate solution {φ̂m
k−1, μ̂m

k−1} of the coarse grid equation on Ωk−1, that is,

NSOk−1(φ
m
k−1, μm

k−1) = (ξn
k−1, ψn

k−1). (24)

If k = 1, we explicitly invert the 2× 2 matrix to obtain the solution. If k > 1, we solve Equation (24)
by performing a FAS k-grid cycle using {φ̄m

k−1, μ̄m
k−1} as the initial approximation:

{φ̂m
k−1, μ̂m

k−1} = FAScycle(k − 1, φ̄m
k−1, μ̄m

k−1, NSOk−1, ξn
k−1, ψn

k−1, β).

(6) Compute the coarse grid correction (CGC):

v̂m
1k−1 = φ̂m

k−1 − φ̄m
k−1, v̂m

2k−1 = μ̂m
k−1 − μ̄m

k−1.

(7) Interpolate the correction:

v̂m
1k = Ik

k−1v̂m
1k−1, v̂m

2k = Ik
k−1v̂m

2k−1.

Here, the coarse values are simply transferred to the four nearby fine grid points, that is,
vk(xi, yj) = Ik

k−1vk−1(xi, yj) = vk−1(xi+ 1
2
, yj+ 1

2
) for i and j odd-numbered integers.

(8) Compute the corrected approximation on Ωk

φm, after CGC
k = φ̄m

k + v̂1
m
k , μm, after CGC

k = μ̄m
k + v̂2

m
k .

(9) Post-smoothing

{φm+1
k , μm

k } = SMOOTHν2(φm, after CGC
k , μm, after CGC

k , NSOk, ξn
k , ψn

k ).

This completes the description of the nonlinear FAScycle. One FAScycle step stops if the
consequent error ‖φn+1,m+1 − φn+1,m‖∞ is less than a given tolerance tol. The two-grid V-cycle
is illustrated in Figure 3.
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Figure 3. Multigrid two-grid V-cycle method.

Further Numerical Schemes for the CH Equation

Previous studies have described the numerical solution of the CH equation with a variable
mobility [19], the adaptive mesh refinement technique [26,27], the Neumann boundary condition in
complex domains [20], the Dirichlet boundary conditions in complex domains [28], contact angle
boundary [29], parallel multigrid method [30] and fourth-order compact scheme [31].

3. Numerical Experiments

In numerical experiments, we consider an equilibrium solution φ(x, ∞) = tanh(x/
√

2ε) for
the CH equation on the one-dimensional infinite domain Ω = (−∞, ∞). In other words, φ(x, ∞)

satisfies μ(φ(x, ∞)) = F′(φ(x, ∞))− ε2φxx(x, ∞) = 0 and is an equilibrium solution. Then, across the
interfacial regions, φ varies from −0.9 to 0.9 over a distance of approximately ξ = 2

√
2ε tanh−1(0.9)

(see Figure 4). Therefore, if we want this value to be approximately mh, the ε value can be taken as
ε = εm = mh/[2

√
2 tanh−1(0.9)] [32].

x

0.9

−0.9

tanh x√
2ε

ξ

0
√
2ε tanh−1(0.9)

Figure 4. Concentration field varying from −0.9 to 0.9 over a distance of approximately ξ =

2
√

2ε tanh−1(0.9).

All computational simulations described in this section are performed on an Intel Core i5-6400
CPU @ 2.70 GHz with 4 GB of RAM.
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3.1. Phase Separation

For the first numerical test, we consider spinodal decomposition in binary alloys.
This decomposition is a process by which a mixture of binary materials separates into distinct
regions with different material concentrations [2]. Figure 5a–c show snapshots of the phase-field
φ at t = 100Δt, 200Δt and 1000Δt, respectively. The initial condition is φ(x, y, 0) = 0.1(1 − 2rand(x, y))
on Ω = (0, 1)× (0, 1), where rand(x, y) is a random value between 0 and 1. The parameters ε = ε4,
h = 1/64, Δt = 0.1h2 and a tolerance of tol = 1.0 × 10−10 are used.

(a) t = 100Δt (b) t = 200Δt (c) t = 1000Δt

Figure 5. Snapshots of the phase-field φ at (a) t = 100Δt, (b) t = 200Δt and (c) t = 1000Δt. Here,
ε = ε4, h = 1/64 and Δt = 0.1h2 are used.

3.2. Non-Increase in Discrete Energy and Mass Conservation

Figure 6 shows the time evolution of the normalized discrete total energy E h(φn)/E h(φ0) (solid
line) and the average mass Mh(φn)/(h2Nx Ny) (diamond) of the numerical solutions with the initial
state (25) on Ω = (0, 1)× (0, 1).

φ(x, y, 0) = 0.1(1 − 2rand(x, y)), (25)

where rand(x, y) is a random value between 0 and 1.
We use the simulation parameters, ε = ε4, h = 1/64, Δt = 0.1h2 and tol = 1.0× 10−10. The energy

is non-increasing and the average concentration is conserved. These numerical results agree well with
the total energy dissipation property (3) and the conservation property (4). The inscribed small figures
are the concentration fields at the indicated times.
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Figure 6. Normalized discrete total energy E h(φn)/E h(φ0) (solid line) and average concentration
Mh(φn)/(h2Nx Ny) (diamond line) of the numerical solutions with the initial state (25).
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3.3. Convergence Test

We consider the convergence of the Frobenius norm with a scaling of the residual error with
respect to the grid size. The initial condition on the domain Ω = (0, 1)× (0, 1) is given as

φ(x, y, 0) = 0.1 cos(πx) cos(πy). (26)

We fix ε = 0.06, Δt = 0.01 and tol = 1.0 × 10−15. Here, we use the V(2, 2) scheme with a
Gauss–Seidel relaxation, where (2, 2) indicates 2 pre- and 2 post-correction relaxation sweeps. We
define the residual after m V-cycles as

rm
ij = Δhμn+1,m

ij −
φn+1,m

ij − φn
ij

Δt
. (27)

Table 1 shows the residual norm ‖rm‖F after each V-cycle. Because no closed-form analytical
solution exists for this problem, we define the Frobenius norm with a scaling of the residual error
‖rm‖F =

∥∥Δhμn+1,m − (φn+1,m − φn)/Δt
∥∥

F. The grid sizes are set as 32 × 32, 64 × 64 and 128 × 128.
The error norms and ratios of residual between successive V-cycle are shown in Table 1. As we have
expected, the residual error decreases successively along with the V-cycle. The sharp increase in the
residual norm ratio during the last few cycles reflects the fact that the numerical approximation is
already accurate to near machine precision.

Table 1. Error and convergence results for various grid spaces.

Mesh Size 32 × 32 64 × 64 128 × 128

V-Cycle ‖r‖F Ratio ‖r‖F Ratio ‖r‖F Ratio

1 5.28 × 10−2 6.83 × 10−2 9.10 × 10−2

2 2.41 × 10−3 0.05 3.42 × 10−3 0.05 4.30 × 10−3 0.05
3 1.15 × 10−4 0.05 1.56 × 10−4 0.05 2.09 × 10−4 0.05
4 6.54 × 10−6 0.06 7.25 × 10−6 0.05 8.69 × 10−6 0.04
5 4.23 × 10−7 0.06 4.23 × 10−7 0.06 4.66 × 10−7 0.05
6 2.80 × 10−8 0.07 2.65 × 10−8 0.06 2.90 × 10−8 0.06
7 1.83 × 10−9 0.07 1.58 × 10−9 0.06 1.63 × 10−9 0.06
8 1.23 × 10−10 0.07 1.01 × 10−10 0.06 1.01 × 10−10 0.06
9 8.33 × 10−12 0.07 6.75 × 10−12 0.07 6.83 × 10−12 0.07
10 5.46 × 10−13 0.07 4.24 × 10−13 0.06 4.42 × 10−13 0.06
11 3.70 × 10−14 0.07 4.90 × 10−14 0.12 1.69 × 10−13 0.38
12 1.10 × 10−14 0.30 4.10 × 10−14 0.84 1.66 × 10−13 0.98

3.4. Effect of Tolerance

The effect of multigrid tolerance is related to the average mass convergence. We set the initial
condition φ(x, y, 0) = 0.1 cos(πx) cos(πy) on Ω = (0, 1)× (0, 1) with tolerance, tol = 1.0 × 10−1, 1.0 ×
10−2, 1.0 × 10−3, and 1.0 × 10−10 to investigate the relationship between the mass convergence and
tol. We use the simulation parameters ε = ε4, SMOOTH relaxation = 2, h = 1/32, Δt = 1/32
and mesh size 32 × 32. To compare the theoretical value (solid line) with the computational value
tol = 1.0 × 10−1 (dotted line), tol = 1.0 × 10−2 (dash-dot line), tol = 1.0 × 10−3 (dashed line) and tol
= 1.0 × 10−10 (square), we set the interval of average mass from −0.0019 to 0.0023. In Figure 7,
the average mass Mh(φn)/(h2Nx Ny) gradually converges to a theoretical value with the decrease in
tolerance. In addition, comparing the results of tol = 1.0 × 10−1, 1.0 × 10−2, 1.0 × 10−3 and 1.0 × 10−10,
we observe that the average mass become nearly convergent for tol = 1.0 × 10−10.
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Figure 7. Average mass Mh(φn)/(h2Nx Ny) of the numerical solutions in various values of tolerance.
Here, the theoretical value (solid line), tol = 1.0 × 10−1 (dotted line), tol = 1.0 × 10−2 (dash-dot line), tol
= 1.0 × 10−3 (dashed line) and tol = 1.0 × 10−10 (square).

3.5. Effects of the Smooth Relaxation Numbers ν1 and ν2

We investigate the effects of the SMOOTH relaxation numbers ν1 (pre-relaxation) and ν2

(post-relaxation) on the CPU time. In this test, we perform a numerical simulation with the initial
condition φ(x, y, 0) = 0.1 cos(πx) cos(πy) on Ω = (0, 1) × (0, 1), h = 1/128, ε4, Δt = 0.1h2

and tol = 1.0 × 10−10. Table 2 lists the average CPU times and average numbers of V-cycles for various
pre- and post-relaxation numbers after 100 time steps. The relaxation numbers are rounded off to the
nearest integer. Figure 8 shows the average CPU times for different pre- and post-relaxation numbers.
We observe that the average CPU time is the lowest when the numbers of pre- and post-relaxation
iterations are ν1 = 2 and ν2 = 4, respectively.

Table 2. Average CPU times and average numbers of V-cycles (given in parentheses) for various pre-
and post-relaxation numbers after 100 time steps.

ν2

ν1 1 2 3 4 5

1 0.075(9) 0.075(7) 0.081(6) 0.077(5) 0.089(5)
2 0.075(7) 0.079(6) 0.090(5) 0.089(5) 0.081(4)
3 0.079(6) 0.082(5) 0.089(5) 0.081(4) 0.090(4)
4 0.078(5) 0.075(4) 0.081(4) 0.090(4) 0.075(3)
5 0.072(4) 0.081(4) 0.090(4) 0.075(3) 0.082(3)

Figure 8. Average CPU time for different pre- and post-relaxation numbers after 100 time steps.

Next, we investigate the effect of SMOOTH relaxation numbers on the finest multigrid level.
We perform a numerical simulation with ε = 0.0038 and Δt = 1.0 × 10−7. The SMOOTH relaxation
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numbers ν1
0 and ν2

0 (on the finest multigrid level) are taken to be 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10. In addition,
other multigrid levels ν1

k = ν2
k are 1, 2, and 3 in the 128 × 128 and 512 × 512 mesh sizes. The other

parameters are the same as those used previously. Table 3 shows the variations in average CPU time
for different relaxation numbers with a 128 × 128 mesh size. Figure 9 illustrates the results in Table 3.

Table 3. Average CPU times for various relaxation numbers on finest multigrid level (ν1
0 , ν2

0) after 10
time steps. In other grids, ν1

k = ν2
k , (1 ≤ k) relaxation number is fixed at 1, 2 and 3.

128 × 128 ν1
k = ν2

k
ν1

0 = ν2
0 1 2 3

1 0.043 0.049 0.054
2 0.040 0.045 0.048
3 0.027 0.029 0.031
4 0.032 0.034 0.037
5 0.038 0.041 0.042
6 0.044 0.047 0.048
7 0.050 0.053 0.054
8 0.055 0.058 0.060
9 0.062 0.065 0.065

10 0.068 0.070 0.072

2 4 6 8 10
0.02

0.03

0.04

0.05

0.06

0.07

0.08

Figure 9. Average CPU times for various relaxation numbers on finest multigrid level (ν1
0 , ν2

0) and fixed
relaxation number 1, 2 and 3 on other grids with a 128 × 128 mesh size.

Table 4 lists the variations in average CPU time for different relaxation numbers with a 512 × 512
mesh size. Figure 10 illustrates the results in Table 4.

Table 4. Average CPU times for various relaxation numbers on finest multigrid level (ν1
0 , ν2

0) after 10
time steps. In other grids, the ν1

k = ν2
k , (1 ≤ k) relaxation number is fixed at 1, 2 and 3.

512 × 512 ν1
k = ν2

k
ν1

0 = ν2
0 1 2 3

1 2.182 2.506 2.750
2 2.030 2.208 2.397
3 1.726 1.850 1.982
4 2.096 2.227 2.351
5 1.872 1.943 2.047
6 2.151 2.236 2.330
7 2.426 2.514 2.617
8 1.817 1.877 1.944
9 2.002 2.066 2.118

10 2.197 2.252 2.295
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Figure 10. Average CPU times for various relaxation numbers on finest multigrid level (ν1
0 , ν2

0) and
fixed relaxation numbers 1, 2 and 3 on other grids with a 512 × 512 mesh size.

3.6. Effect Of V-Cycle

Next, we investigate the effect of V-cycle by changing the multigrid levels. In this test, we use
the parameters Δt = 0.01, ε = 0.06, SMOOTH relaxation = 2, tol = 1.0 × 10−10 and h = 1/128 on
Ω = (0, 1)× (0, 1) with a initial condition φ(x, y, 0) = 0.1 cos(πx) cos(πy). The highest number of
V-cycles is taken to be 10000. We use level2, level3, level4, level5, level6 and level7 in a single time step
as examples to illustrate the effect of the V-cycle. We calculate the CPU time for each level after 100Δt,
as listed in Table 5.

Table 5. Numbers of multigrid levels and CPU times required until tolerance ≤ 1.0 × 10−10. Here,
different levels are used.

Level 2 3 4 5 6 7

CPU time(s) 1271.437 342.906 103.032 66.422 66.172 65.218

The number of the multigrid level and CPU time shown in Figure 11 indicate that a greater
number of the multigrid level leads to a obvious decrease in CPU time. It is important to select an
appropriate multigrid level for a specific mesh size.

2 3 4 5 6 7
0

200

400

600

800

1000

1200

1400

Figure 11. Required CPU times in various multigrid levels after 100 time steps.

3.7. Comparison between Gauss–Seidel and Multigrid Algorithms

We compare the average CPU times required to perform the Gauss–Seidel algorithm and multigrid
algorithm. In this test, the initial condition is taken to be φ(x, y, 0) = cos(πx) cos(πy). The following
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parameters are used—Δt = 0.01, T = 10Δt, the SMOOTH relaxation = 2 and ε = 0.06. The highest
number of V-cycle is taken to be 10000. The mesh sizes are 32× 32, 64× 64 and 128× 128. The tolerances
are 1.0 × 10−3, 1.0 × 10−4 and 1.0 × 10−5. Table 6 shows the average CPU times for these two methods
after 10 time steps. We observe that the multigrid method require less CPU time than the Gauss–Seidel
method does.

Table 6. Average CPU times for Gauss–Seidel and multigrid algorithms with different tolerances after
10 time steps.

Mesh Size tol Gauss–Seidel Multigrid

1.0 × 10−3 0.468 0.046
32 × 32 1.0 × 10−4 0.610 0.063

1.0 × 10−5 0.735 0.062

1.0 × 10−3 7.046 0.203
64 × 64 1.0 × 10−4 8.984 0.234

1.0 × 10−5 11.360 0.266

1.0 × 10−3 109.093 0.844
128 × 128 1.0 × 10−4 140.219 0.906

1.0 × 10−5 174.922 1.078

3.8. Effects of tol and Δt on the V-Cycle

In this test, we study the effects of tol and Δt on the V-cycle with the initial condition being
φ(x, y, 0) = 0.1 cos(πx) cos(πy), h = 1/128, ε = 0.06. The highest number of the V-cycle is taken to be
10,000. Table 7 shows the number of V-cycle for various tol and Δt after a single time step. We can find
that lower values of tol lead to an increase in the V-cycle. For different values of tol, it is essential to
choose an appropriate Δt to reduce the number of V-cycle.

Table 7. Numbers of V-cycles for various tol and Δt after a single time step.

tol
Δt

10−7h2 10−6h2 10−5h2 10−4h2 10−3h2 10−2h2 10−1h2

1.0 × 10−5 2 2 3 4 6 8 8
1.0 × 10−6 10,000 2 3 4 7 9 9
1.0 × 10−7 10,000 10,000 3 5 8 10 10
1.0 × 10−8 10,000 10,000 10,000 5 9 11 12
1.0 × 10−9 10,000 10,000 10,000 10,000 10 13 13
1.0 × 10−10 10,000 10,000 10,000 10,000 10,000 14 15

tol
Δt h2 10h2 102h2 103h2 104h2 105h2 106h2

1.0 × 10−5 8 7 8 8 9 14 41
1.0 × 10−6 9 9 9 9 10 19 91
1.0 × 10−7 11 10 10 11 11 24 140
1.0 × 10−8 12 12 12 12 13 28 189
1.0 × 10−9 14 13 13 13 14 33 238
1.0 × 10−10 15 14 15 15 16 38 288

3.9. Comparison of the Jacobi, Red–Black and Gauss–Seidel

We compare the performance of three relaxation methods: Jacobi, Red–Black and Gauss–Seidel.
The initial condition is φ(x, y, 0) = 0.1 cos(πx) cos(πy) on Ω = (0, 1)× (0, 1). The parameters are
h = 1/128, ε = 0.06, Δt = 10−7, T = 100Δt and tol = 1.0 × 10−10. The SMOOTH relaxation numbers
on the finest multigrid level (i.e., ν1 = ν2) are taken to be from 1 to 5 and those on the other multigrid
levels are selected as 2 with the 128 × 128 mesh size. The relaxation numbers are rounded off to the
nearest integer. Table 8 shows the average number of V-cycles for different relaxation numbers with
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the three methods. The relationship between the average numbers of V-cycles and ν1 = ν2 with the
Jacobi, Red–Black and Gauss–Seidel method is plotted in Figure 12. The Gauss–Seidel method is
observed to be the fastest. In the parallel multigrid method, the relaxation options are either Jacobi or
Red–Black [33]. The Jacobi method requires approximately twice as many V-cycles as the Red–Black
method does.

Table 8. Average numbers of V-cycles for various relaxation numbers. The SMOOTH relaxation
numbers on the finest multigrid level (i.e., ν1 = ν2) are taken to be from 1 to 5.

Case Jacobi Red–Black Gauss-Seidal

1 32 13 9
2 16 8 6
3 11 6 5
4 8 5 4
5 7 5 3

2 4 6 8 10
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35

Figure 12. Plot of the average numbers of V-cycles versus ν1 = ν2 with the Jacobi (◦), Red–Black (∗)
and Gauss–Seidel (�) method.

3.10. Effect of ε

Next, we investigate the effect of ε = εm, which is related to the interface width. In this test, we
perform a numerical simulation with the initial condition

φ(x, y, 0) =

{
1 if 0.15 ≤ x ≤ 0.85 and 0.15 ≤ y ≤ 0.85,

−1 otherwise,

on Ω = (0, 1) × (0, 1). We use h = 1/128, Δt = h, SMOOTH relaxation = 2, tol = 1.0 × 10−10

and T = 1000Δt. Figure 13 presents the evolution of the CH equation with the three values ε4, ε8

and ε16. As we have expected, the lower value of ε leads to a narrower interface width.
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Figure 13. Evolution of the Cahn–Hilliard (CH) equation with different ε = εm: (a) initial condition,
(b–d) m = 4, m = 8 and m = 16 at T = 1000Δt, respectively.

3.11. Effect of mesh size, Nx × Ny

In this test, we compare the CPU times with different mesh sizes Nx × Ny. The initial condition
is φ(x, y, 0) = 0.1 cos(πx) cos(πy) on Ω = (0, Nx/32)× (0, Ny/32). The parameters are h = 1/32,
Δt = h, T = 100Δt, ε = 0.06, SMOOTH relaxation = 2 and tol = 1.0 × 10−10. Table 9 shows the CPU
times and their ratios (that is, the ratio of the CPU time with the mesh size 2Nx × 2Ny to the CPU time
with Nx × Ny). We observe that the values converge to 4.

Table 9. CPU times for different mesh sizes.

Mesh Size 32 × 32 64 × 64 128 × 128 256 × 256

CPU time(s) 0.610 2.812 12.156 50.594
Ratio 4.610 4.323 4.162

4. Conclusions

In this paper, we presented a nonlinear multigrid implementation for the CH equation in a
two-dimensional space. Eyre’s unconditionally gradient stable scheme was used to discretize the
governing equation. The resulting discretizing equations were solved using the nonlinear multigrid
method. We described the implementation of our numerical scheme in detail. We numerically showed
the decrease in discrete total energy and the convergence of discrete total mass. We took a convergence
test by studying the reductions in residual error on various mesh sizes in a single time step. The results
of various numerical experiments were presented to demonstrate the effects of tolerance, SMOOTH
relaxation, V-cycle and ε. The provided multigrid source code will be useful to beginners who needs
the numerical implementation of the nonlinear multigrid method for the CH equation.
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Appendix A

The C code and MATLAB postprocessing code are given as follows, and the parameters are
enumerated in Table A1.

Table A1. Parameters used for the 2D Cahn–Hilliard equation.

Parameters Description

nx, ny maximum number of grid points in the x-, y-direction
n_level number of multigrid level
c_relax number of times being relax
dt Δt
xleft, yleft minimum value on the x-, y-axis
xright, yright maximum value on the x-, y-axis
ns number of print out data
max_it maximum number of iteration
max_it_mg maximum number of multigrid iteration
tol_mg tolerance for multigrid
h space step size
h2 h2

gam ε
Cahn ε2

The following C code is available on the following website:

http://elie.korea.ac.kr/~cfdkim/codes/

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <malloc.h>

#include <time.h>

#define gnx 32

#define gny 32

#define PI 4.0*atan(1.0)

#define iloop for(i=1;i<=gnx;i++)

#define jloop for(j=1;j<=gny;j++)

#define ijloop iloop jloop

#define iloopt for(i=1;i<=nxt;i++)

#define jloopt for(j=1;j<=nyt;j++)

#define ijloopt iloopt jloopt

int nx,ny,n_level,c_relax;

double **ct,**sc,**smu,**sor,h,h2,dt,xleft,xright,yleft,yright,gam,Cahn,**mu,**mi;

double **dmatrix(long nrl,long nrh,long ncl,long nch){

double **m;

long i,nrow=nrh-nrl+2,ncol=nch-ncl+2;

m=(double **) malloc((nrow)*sizeof(double*)); m+=1;m-=nrl;

m[nrl]=(double *) malloc((nrow*ncol)*sizeof(double)); m[nrl]+=1; m[nrl]-=ncl;

for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;

return m;

}

void free_dmatrix(double **m,long nrl,long nrh,long ncl,long nch){

free(m[nrl]+ncl-1); free(m+nrl-1);

}

void zero_matrix(double **a,int xl,int xr,int yl,int yr){

int i,j;
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for (i=xl; i<=xr; i++){ for (j=yl; j<=yr; j++){ a[i][j]=0.0; }}

}

void mat_add2(double **a,double **b,double **c,double **a2,

double **b2,double **c2,int xl,int xr,int yl,int yr){

int i,j;

for (i=xl; i<=xr; i++)

for (j=yl; j<=yr; j++){ a[i][j]=b[i][j]+c[i][j]; a2[i][j]=b2[i][j]+c2[i][j]; }

}

void mat_sub2(double **a,double **b,double **c,double **a2,

double **b2,double **c2,int nrl,int nrh,int ncl,int nch){

int i,j;

for (i=nrl;i<=nrh;i++)

for (j=ncl; j<=nch; j++){ a[i][j]=b[i][j]-c[i][j];a2[i][j]=b2[i][j]-c2[i][j]; }

}

void mat_copy(double **a,double **b,int xl,int xr,int yl,int yr){

int i,j;

for (i=xl; i<=xr; i++){ for (j=yl; j<=yr; j++){ a[i][j]=b[i][j]; }}

}

void mat_copy2(double **a,double **b,double **a2,double **b2,int xl,int xr,int yl,int yr){

int i,j;

for (i=xl; i<=xr; i++)

for (j=yl; j<=yr; j++){a[i][j]=b[i][j]; a2[i][j]=b2[i][j];}

}

void print_mat(FILE *fptr,double **a,int nrl,int nrh,int ncl,int nch){

int i,j;

for(i=nrl; i<=nrh; i++){ for(j=ncl; j<=nch; j++)

fprintf(fptr," %16.15f",a[i][j]); fprintf(fptr,"\n"); }

}

void print_data(double **phi) {

FILE *fphi;

fphi=fopen("phi.m","a"); print_mat(fphi,phi,1,nx,1,ny); fclose(fphi);

}

void laplace(double **a,double **lap_a,int nxt,int nyt){

int i,j;

double ht2,dadx_L,dadx_R,dady_B,dady_T;

ht2=pow((xright-xleft)/(double) nxt,2);

ijloopt {

if (i>1) dadx_L=a[i][j]-a[i-1][j];

else dadx_L=0.0;

if (i<nxt) dadx_R=a[i+1][j]-a[i][j];

else dadx_R=0.0;

if (j>1) dady_B=a[i][j]-a[i][j-1];

else dady_B=0.0;

if (j<nyt) dady_T=a[i][j+1]-a[i][j];

else dady_T=0.0;

lap_a[i][j]=(dadx_R-dadx_L+dady_T-dady_B)/ht2;}

}

void source(double **c_old,double **src_c,double **src_mu){

int i,j;

laplace(c_old,ct,nx,ny);
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ijloop{src_c[i][j]=c_old[i][j]/dt-ct[i][j]; src_mu[i][j]=0.0;}

}

double df(double c){return pow(c,3);}

double d2f(double c){return 3.0*c*c;}

void relax(double **c_new,double **mu_new,double **su,double **sw,int ilevel,

int nxt, int nyt){

int i,j,iter;

double ht2,x_fac,y_fac,a[4],f[2],det;

ht2=pow((xright-xleft)/(double) nxt,2);

for (iter=1; iter<=c_relax; iter++){

ijloopt {

if (i>1 && i<nxt) x_fac=2.0;

else x_fac=1.0;

if (j>1 && j<nyt) y_fac=2.0;

else y_fac=1.0;

a[0]=1.0/dt; a[1]=(x_fac+y_fac)/ht2;

a[2]=-(x_fac+y_fac)*Cahn/ht2-d2f(c_new[i][j]); a[3]=1.0;

f[0]=su[i][j]; f[1]=sw[i][j]+df(c_new[i][j])-d2f(c_new[i][j])*c_new[i][j];

if (i>1) { f[0]+=mu_new[i-1][j]/ht2; f[1]-=Cahn*c_new[i-1][j]/ht2; }

if (i<nxt) { f[0]+=mu_new[i+1][j]/ht2; f[1]-=Cahn*c_new[i+1][j]/ht2; }

if (j>1) { f[0]+=mu_new[i][j-1]/ht2; f[1]-=Cahn*c_new[i][j-1]/ht2; }

if (j<nyt) { f[0]+=mu_new[i][j+1]/ht2; f[1]-=Cahn*c_new[i][j+1]/ht2; }

det=a[0]*a[3]-a[1]*a[2];

c_new[i][j]=(a[3]*f[0]-a[1]*f[1])/det;

mu_new[i][j]=(-a[2]*f[0]+a[0]*f[1])/det; }}

}

void restrictCH(double **uf,double **uc,double **vf,double **vc,int nxc,int nyc) {

int i,j;

for (i=1; i<=nxc; i++)

for (j=1; j<=nyc; j++){

uc[i][j]=0.25*(uf[2*i][2*j]+uf[2*i-1][2*j]+uf[2*i][2*j-1]+uf[2*i-1][2*j-1]);

vc[i][j]=0.25*(vf[2*i][2*j]+vf[2*i-1][2*j]+vf[2*i][2*j-1]+vf[2*i-1][2*j-1]);}

}

void nonL(double **ru,double **rw,double **c_new,double **mu_new,int nxt,int nyt) {

int i,j;

double **lap_mu,**lap_c;

lap_mu=dmatrix(1,nxt,1,nyt); lap_c=dmatrix(1,nxt,1,nyt);

laplace(c_new,lap_c,nxt,nyt); laplace(mu_new,lap_mu,nxt,nyt);

ijloopt{ ru[i][j]=c_new[i][j]/dt-lap_mu[i][j];

rw[i][j]=mu_new[i][j]-df(c_new[i][j])+Cahn*lap_c[i][j]; }

free_dmatrix(lap_mu,1,nxt,1,nyt); free_dmatrix(lap_c,1,nxt,1,nyt);

}

void defect(double **duc,double **dwc,double **uf_new,double **wf_new,double **suf,

double **swf,int nxf,int nyf,double **uc_new,double **wc_new,int nxc,int nyc) {

double **ruf,**rwf,**rruf,**rrwf,**ruc,**rwc;

ruc=dmatrix(1,nxc,1,nyc);rwc=dmatrix(1,nxc,1,nyc);ruf=dmatrix(1,nxf,1,nyf);

rwf=dmatrix(1,nxf,1,nyf);rruf=dmatrix(1,nxc,1,nyc);rrwf=dmatrix(1,nxc,1,nyc);

nonL(ruc,rwc,uc_new,wc_new,nxc,nyc);nonL(ruf,rwf,uf_new,wf_new,nxf,nyf);

mat_sub2(ruf,suf,ruf,rwf,swf,rwf,1,nxf,1,nyf);

restrictCH(ruf,rruf,rwf,rrwf,nxc,nyc);
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mat_add2(duc,ruc,rruf,dwc,rwc,rrwf,1,nxc,1,nyc);

free_dmatrix(ruc,1,nxc,1,nyc); free_dmatrix(rwc,1,nxc,1,nyc);

free_dmatrix(ruf,1,nxf,1,nyf); free_dmatrix(rwf,1,nxf,1,nyf);

free_dmatrix(rruf,1,nxc,1,nyc); free_dmatrix(rrwf,1,nxc,1,nyc);

}

void prolong_ch(double **uc,double **uf,double **vc,double **vf, int nxc,int nyc){

int i,j;

for (i=1; i<=nxc; i++)

for (j=1; j<=nyc; j++){

uf[2*i][2*j]=uf[2*i-1][2*j]=uf[2*i][2*j-1]=uf[2*i-1][2*j-1]=uc[i][j];

vf[2*i][2*j]=vf[2*i-1][2*j]=vf[2*i][2*j-1]=vf[2*i-1][2*j-1]=vc[i][j];}

}

void vcycle(double **uf_new,double **wf_new,double **su,double **sw,int nxf,int nyf,

int ilevel) {

relax(uf_new,wf_new,su,sw,ilevel,nxf,nyf);

if (ilevel<n_level) {

int nxc,nyc;

double **duc,**dwc,**uc_new,**wc_new,**uc_def,**wc_def,**uf_def,**wf_def;

nxc=nxf/2; nyc=nyf/2;

duc=dmatrix(1,nxc,1,nyc); dwc=dmatrix(1,nxc,1,nyc);

uc_new=dmatrix(1,nxc,1,nyc); wc_new=dmatrix(1,nxc,1,nyc);

uf_def=dmatrix(1,nxf,1,nyf); wf_def=dmatrix(1,nxf,1,nyf);

uc_def=dmatrix(1,nxc,1,nyc); wc_def=dmatrix(1,nxc,1,nyc);

restrictCH(uf_new,uc_new,wf_new,wc_new,nxc,nyc);

defect(duc,dwc,uf_new,wf_new,su,sw,nxf,nyf,uc_new,wc_new,nxc,nyc);

mat_copy2(uc_def,uc_new,wc_def,wc_new,1,nxc,1,nyc);

vcycle(uc_def,wc_def,duc,dwc,nxc,nyc,ilevel+1);

mat_sub2(uc_def,uc_def,uc_new,wc_def,wc_def,wc_new,1,nxc,1,nyc);

prolong_ch(uc_def,uf_def,wc_def,wf_def,nxc,nyc);

mat_add2(uf_new,uf_new,uf_def,wf_new,wf_new,wf_def,1,nxf,1,nyf);

relax(uf_new,wf_new,su,sw,ilevel,nxf,nyf);

free_dmatrix(duc,1,nxc,1,nyc); free_dmatrix(dwc,1,nxc,1,nyc);

free_dmatrix(uc_new,1,nxc,1,nyc); free_dmatrix(wc_new,1,nxc,1,nyc);

free_dmatrix(uf_def,1,nxf,1,nyf); free_dmatrix(wf_def,1,nxf,1,nyf);

free_dmatrix(uc_def,1,nxc,1,nyc); free_dmatrix(wc_def,1,nxc,1,nyc); }

}

double error2(double **c_old,double **c_new,double **mu,int nxt,int nyt){

int i,j;

double **rr,res2,x=0.0;

rr=dmatrix(1,nxt,1,nyt);

ijloopt { rr[i][j]=mu[i][j]-c_old[i][j]; }

laplace(rr,sor,nx,ny);

ijloopt { rr[i][j]=sor[i][j]-(c_new[i][j]-c_old[i][j])/dt; }

ijloopt { x=(rr[i][j])*(rr[i][j])+x; }

res2=sqrt(x/(nx*ny));

free_dmatrix(rr,1,nxt,1,nyt);

return res2;

}

void initialization(double **phi){

int i,j;
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double x,y;

ijloop {x=(i-0.5)*h; y=(j-0.5)*h; phi[i][j]=cos(PI*x)*cos(PI*y);}

}

void cahn(double **c_old,double **c_new){

FILE *fphi2;

int i,j,max_it_CH=10000,it_mg2=1;

double tol=1.0e-10, resid2=1.0;

source(c_old,sc,smu);

while (it_mg2<=max_it_CH && resid2>tol) {

it_mg2++; vcycle(c_new,mu,sc,smu,nx,ny,1);

resid2=error2(c_old,c_new,mu,nx,ny);

printf("error2 %16.15f %d \n",resid2,it_mg2-1);

fphi2=fopen("phi2.m","a");

fprintf(fphi2,"%16.15f %d \n",resid2,it_mg2-1); fclose(fphi2);}

}

int main(){

int it=1,max_it,ns,count=1,it_mg=1;

double **oc,**nc,resid2=1.0;

FILE *fphi,*fphi2;

c_relax=2; nx=gnx; ny=gny; n_level=(int)(log(nx)/log(2.0)+0.1);

xleft=0.0; xright=1.0; yleft=0.0; yright=1.0; max_it=100; ns=10; dt=0.01;

h=xright/(double)nx; h2=pow(h,2); gam=0.06; Cahn=pow(gam,2);

printf("nx=%d,ny=%d\n",nx,ny); printf("dt=%f\n",dt);

printf("max_it=%d\n",max_it); printf("ns=%d\n",ns); printf("n_level=%d\n\n",n_level);

oc=dmatrix(0,nx+1,0,ny+1); nc=dmatrix(0,nx+1,0,ny+1); mu=dmatrix(1,nx,1,ny);

sor=dmatrix(1,nx,1,ny); ct=dmatrix(1,nx,1,ny); sc=dmatrix(1,nx,1,ny);

mi=dmatrix(1,nx,1,ny); smu=dmatrix(1,nx,1,ny); zero_matrix(mu,1,nx,1,ny);

initialization(oc); mat_copy(nc,oc,1,nx,1,ny);

fphi=fopen("phi.m","w"); fclose(fphi); print_data(oc);

for (it=1; it<=max_it; it++) {

cahn(oc,nc); mat_copy(oc,nc,1,nx,1,ny);

if (it % ns==0) {count++; print_data(oc); printf("print out counts %d \n",count);}

printf(" %d \n",it);}

return 0;

}

The following MATLAB code produces the results shown in Figure 5. The code can also be
downloaded from

http://elie.korea.ac.kr/~cfdkim/codes/

clear; clc; close all;

ss=sprintf(’./phi.m’); phi=load(ss); nx=32; ny=32; n=size(phi,1)/nx;

x=linspace(0,1,nx); y=linspace(0,1,ny); [xx,yy]=meshgrid(x,y);

for i=1:n

pp=phi((i-1)*nx+1:i*nx,:);

figure(i); mesh(xx,yy,pp’); axis([0 1 0 1 -1 1]); view(-38,42);

end
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