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Computing systems are undergoing a transformation from logic-centric toward memory-centric
architectures, where overall performance and energy efficiency at the system level are determined by
the density, bandwidth, latency, and energy efficiency of the memory, rather than the logic sub-system.
This is driven by the requirements of data-intensive applications in artificial intelligence, autonomous
systems, and edge computing. We are at an exciting time in the semiconductor industry where
several innovative device and technology concepts are being developed to respond to these demands,
and capture shares of the fast growing market for AI-related hardware. The collection of articles in this
special issue on “Emerging Memory and Computing Devices in the Era of Intelligent Machines” is
devoted to highlighting some of the latest advancements in this area, drawing on work on emerging
memory devices including magnetic, resistive, and phase change memories, their related circuit and
material-level issues, and emerging architectures based on logic-in memory and in-memory computing
concepts. A few articles also highlight some of the recent advances in engineering conventional
memories—notably Flash and DRAM—to extend and push their performance limits.

The existing memory hierarchy in electronic systems is characterized by a tradeoff between
cost per bit (or, more or less equivalently, bit density per unit area on a chip) and performance
(read/write speed). On the slow (highest-density) end is NAND Flash, while the other extreme is
(fast but low-density) static random access memory (SRAM), with dynamic RAM (i.e. DRAM) falling
in between. Considerable gaps in price per bit and performance exist between NAND and DRAM,
and also between DRAM and SRAM.

Much of the wide-ranging ongoing work on emerging memory devices and architectures can
be classified into three categories: (i) Memories that fall between DRAM and SRAM in terms of
both bit density and speed, i.e., those that are denser than SRAM but not quite as fast, faster than
DRAM but more expensive. Magnetic random access memory is the leading contender in this realm,
where both discrete and embedded solutions are of interest. Existing spin-transfer torque magnetic
RAM (STT-MRAM) is the state-of-the-art magnetic memory that has received much traction within
the industry as an embedded nonvolatile memory (eNVM), with the potential to also replace some
embedded SRAM (e.g., L3 or L2 Cache) driving much of the ongoing work to further improve its
characteristics. (ii) Memories that are targeted to fill in the large performance and cost gap of DRAM and
NAND Flash, also referred to as storage-class memories (SCM). These memories are most often geared
toward discrete parts (though specialized embedded applications exist), where a cost penalty compared
to NAND Flash is acceptable provided a faster read/write performance is achieved. Examples of these
memories are many resistive random access memories (RRAM) and phase-change memories reported
to date, among others. (iii) Work that draws on the advances in any of the above memory technologies,
but explores unconventional computing approaches, examples being logic-in memory, in-memory
computing, neuromorphic computing, and probabilistic computing concepts, among others.

This special issue covers examples of work in all three of these areas: (i) One of the key areas
of MRAM research is the exploration of alternative write mechanisms with respect to STT, which
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is based on driving currents through the memory bit. The goal of these efforts is to achieve better
tradeoffs between write speed, bit density, and endurance, while reduction of the write energy is also a
possible advantage. An important example is MRAM based on voltage control of magnetic anisotropy
(VCMA) [1], which completely departs from the current-controlled mechanism of STT and instead
uses electric fields to write information. In “Recent Progress in the Voltage-Controlled Magnetic
Anisotropy Effect and the Challenges Faced in Developing Voltage-Torque MRAM”, T. Nozaki et al. [2]
present some of their latest results in the development of this type of voltage-controlled MRAM
(i.e., VCM). In “Fine-Grained Power Gating Using an MRAM-CMOS Non-Volatile Flip-Flop”, J. Park
and Y. Yim [3] explore some of the advantages of MRAM in terms of power management, by taking
advantage of its nonvolatility to enable a flip-flop that retains its information without applied voltage.
(ii) There are also several examples of RRAM and phase-change memories discussed throughout the
selected articles. These range from material- and cell-level studies (X. Lian et al. [4]; Z. Shen et al. [5];
C. Xie et al. [6]; and K. Drake et al. [7]), to the applications of RRAM in processing of biosignals
(Y. K. Lee et al. [8]), neural networks (S. Jo et al. [9]; and S. N. Truong [10]), and nonvolatile processors
(X. Xue et al. [11]). (iii) Several of the selected articles discuss new computing paradigms that may
take advantage of emerging memory devices (G. Santoro et al. [12] and S. Nam et al. [13]), as well as
extensions, modifications, or innovations in existing volatile and nonvolatile memory technologies
(at both the device and circuit levels), which may add new functionalities or improve their performance
for computing applications (H. H. Shin et al. [14]; S. Yang et al. [15]; A. Subbiah and T. Ogunfunmi [16];
H. E. Yantir et al. [17]; and L. Gan et al. [18]). Finally, in “Development of Bioelectronic Devices Using
Bionanohybrid Materials for Biocomputation System,” J. Yoon et al. [19] review their recent progress in
the development of biocompatible memory and computing devices.

The selected papers cover a broad range of research and development activities related to emerging
memory devices and computing paradigms. It is hoped that this selection of articles will serve as
a resource for researchers in academia and industry, practicing engineers, and students, both as a
window into some of the recent advances in emerging memory technologies, as well as to stimulate
interest in potential new directions for research.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: Bioelectronic devices have been researched widely because of their potential applications,
such as information storage devices, biosensors, diagnosis systems, organism-mimicking processing
system cell chips, and neural-mimicking systems. Introducing biomolecules including proteins,
DNA, and RNA on silicon-based substrates has shown the powerful potential for granting various
functional properties to chips, including specific functional electronic properties. Until now, to extend
and improve their properties and performance, organic and inorganic materials such as graphene and
gold nanoparticles have been combined with biomolecules. In particular, bionanohybrid materials
that are composed of biomolecules and other materials have been researched because they can
perform core roles of information storage and signal processing in bioelectronic devices using the
unique properties derived from biomolecules. This review discusses bioelectronic devices related to
computation systems such as biomemory, biologic gates, and bioprocessors based on bionanohybrid
materials with a selective overview of recent research. This review contains a new direction for the
development of bioelectronic devices to develop biocomputation systems using biomolecules in
the future.

Keywords: bioelectronic devices; bionanohybrid material; biomemory; biologic gate; bioprocessor;
protein; nucleic acid; nanoparticles

1. Introduction

Bioelectronics is defined as the combined field of biology and electronics that has recently been
greatly developed to overcome the current limitation of silicon-based electronics and biology-based
engineering [1]. By introducing biomolecules on the silicon-substrate, electrical functions have been
demonstrated on the chip using the unique properties of biomolecules, such as specific target molecule
detection and optoelectrical properties, that can be applied in bioelectronic devices such as biosensors,
biophotodiodes, and biotransistors [2–5]. Various biomolecules including metalloprotein possess a
metal ion at their core, and functional DNA with specific chemical group modifications such as amine
and carboxyl groups have advantages for applications to develop bioelectronic devices because of
their unique properties such as redox properties that are derived from the metal ion in the protein
and the specific binding properties of DNA with its complementary DNA at the nanometer scale [6,7].
By fusing biomolecules with organic materials, electronic functions have been widely studied to develop
bioelectronic devices with enhanced performance such as more sensitive target detection and increased
signal [8–11]. Until now, many functional bioelectronic devices including protein-based bioelectronic
chips that use the electron transfer mechanism of proteins and biophotodiode devices that use the
photoelectric effect of rhodopsin have been reported [12–14]. However, current bioelectronic devices
have certain critical limitations for practical application because the use of biomolecules inevitably

Micromachines 2019, 10, 347; doi:10.3390/mi10050347 www.mdpi.com/journal/micromachines5
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accompanies limitations such as the low electrical/electrochemical signal-to-noise ratio derived from
biomolecules, instability in harsh conditions, and narrow functionalization [15,16]. To overcome the
limitations of biomolecules, innovative methods have been developed introducing nanoparticles to
enhance the signal induced from biomolecules, combine biomolecules with carbon-based materials
such as carbon nanotubes (CNT) or graphene for electrochemical signal increment and long-term
stability using the biocompatibility of carbon-based materials, and the use of nanoscale-patterned chips
as a platform for the extension of the functionality of bioelectronic devices such as by demonstrating
nanoscale electronic functions and immobilizing different biomolecules independently at the nanometer
scale to use these biomolecules simultaneously [17–22].

Recently, bionanohybrid materials composed of biomolecules and other nanomaterials have been
developed widely for applications in bioelectronic devices. Bionanohybrid materials have received
much attention for their wide application in developing delicate bioelectronic devices that accompany
enhanced electronic functions or highly sensitive target detection for biosensors. As mentioned
above, biomolecules have unique properties at the nanometer scale and nanomaterials such as
nanoparticles, CNT, and biocompatible polymers that improve the properties of biomolecules can
be hybridized precisely at the nanometer scale while retaining the properties of biomolecules and
nanomaterials [23–25].

Among the various bioelectronic devices, certain bioelectronic devices that are capable of
performing information storage or signal processing similar to memory or logic gates in conventional
electronic devices have shown a new perspective and direction for the development of biocomputation
systems [26,27]. Biomemory devices based on metalloprotein or redox-controllable linker have been
reported [28–30] that can demonstrate the memory function using biomolecules through controlling
two apparently distinguished biomolecular states reversibly. In addition, using the above-mentioned
bionanohybrid materials as the core component, bioprocessor devices have been reported that can
process the input signal to process the out signal using bionanohybrid materials as the processing
platform [31]. In addition, to develop sophisticated and improved functional bioelectronic devices,
various advanced materials have been studied and introduced to fabricate modern devices such
as new functionalized structural graphene and two-dimensional materials [32–34]. Through these
efforts, various bionanohybrid materials that are capable of performing information storage, logical
functions, and information processing have been developed for the development of bioelectronic
devices including biomemory, biologic gates, and bioprocessors. Such bioelectronic devices can be used
as core components to develop a biocomputation system that is capable of performing computation
similar to conventional computers that are common in our surroundings as depicted in Figure 1.

Figure 1. Bioelectronic devices based on bionanohybrid materials to develop biomemory, biologic
gates, and bioprocessors for biocomputation systems.
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In this review, bioelectronic devices based on bionanohybrid materials that are capable of
performing information storage and signal processing for computation systems are discussed with
a selective overview of recent research. Although there are many extensive reviews of bioelectronic
devices, this review discusses in detail recent reports of various specific types of bioelectronic device
for biocomputation systems. This review will suggest a new inspirable direction and aspects of
bioelectronic devices to develop a biocomputation system [35,36].

2. Biomemory

Information storage is an important function for the operation of electronic devices. Until now,
various information storage function devices have been developed in conventional silicon-based
electronic devices through controlling two apparently distinguished states such as “1” and “0” states
for the demonstration of conventional memory functions. From the bioelectronics perspective, some
specific biomolecules have properties of existing in two distinguished states by external stimulation
such as metal ion states that control metalloprotein, which can be utilized to develop biomolecular
memory devices [37,38]. In addition, the hybridization of more than two types of biomolecule and
bionanohybrid materials has been proposed to demonstrate multiple states control and increase
the electrochemical signal derived from biomolecules for biomemory. In this chapter, we provide
research related to biomemory devices including protein-based biomemory and resistive switching
memory devices.

2.1. Multilevel Biomemory Devices

Metalloproteins have metal ions in their body that can be utilized for electrochemical
investigation [39,40]. For example, the metal ion of a metalloprotein can be used to affect the
redox reactions of specific materials, which can be measured using electrochemical techniques for
developing biosensors [18,41]. In addition, this can be applied to develop biotransistors using redox
properties [42]. This metal ion can exist in two different states like the Cu+ and Cu2+ states of
azurin, a metalloprotein that possesses copper ion, which shows the potential of metalloprotein-based
biomemory devices [28] by controlling metal ions with distinguished states. Various research
groups have developed metalloprotein-based biomemory devices [29,37,38]. Among them, our group
developed various biomemory devices using metalloproteins such as azurin and cytochrome c, which
have never been reported before. Beyond just controlling the ion states of one type of metalloprotein for
biomemory, we suggested multilevel biomemory devices using two kinds of metalloproteins to achieve
the incremental memory density [43]. By controlling isoelectric points of metalloproteins via pH control,
we immobilized two different metalloproteins, recombinant azurin modified with cysteine group and
cytochrome c, directly on to the gold substrate by self-assembly through the electrostatic bond without
any chemical linkers for the control of multiple redox states [44,45]. This simple immobilization process
could reduce the immobilizing time of biomolecules, and remove the introduction of the other chemical
materials for immobilization. Figure 2A shows the schematic image and demonstration of multilevel
biomemory using the direct immobilization of two kinds of metalloproteins. We confirmed multilevel
memory device fabrication by surface plasmon resonance (SPR) and scanning tunneling microscopy
(STM) to verify the metalloprotein double layer formation through morphological changes. Then, an
electrochemical investigation was performed using cyclic voltammetry (CV) and chronoamperometry
(CA). By introducing two different metalloproteins, this device showed the multiple redox states that
could be derived from copper ions of azurin and iron ions of cytochrome c as shown in Figure 2B.
This showed oxidation potential peaks at 0.294 V and 0.184 V that were derived from cytochrome c and
azurin, respectively, and the reduction of potential peaks at 0.131 V and 0.062 V from cytochrome c and
azurin, respectively. These potential values for each metalloprotein were used as input potentials to
control the metal ion states of the two metalloproteins. Then, we estimated the memory performance
for this device using the obtained redox potential peak values of two metalloproteins for the “writing
step” and “erasing step” and obtained the open circuit potential (OCP) values of metalloproteins for the
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“reading step” for multilevel biomemory demonstration. As shown in Figure 2C, this device showed
apparently distinguished states when applying a potential to the device following expected schematic
images with two different forms of “writing step”, “reading step”, and “erasing step”. From these
results, we successfully developed new-concept multilevel biomemory devices using two different
metalloproteins for multiple information storage biodevices.

Figure 2. Multilevel biomemory device. (A) Schematic image demonstrating a multilevel biomemory
device using metal ions states to control two different kinds of metalloprotein. (B) Cyclic voltammogram
of a multilevel biomemory device composed of recombinant azurin and cytochrome c that shows two
apparently distinguished reduction potential peaks and two oxidation potential peaks. (C) Memory
performance of a multilevel biomemory device including writing, reading, and erasing steps by
applying the potential values of reduction and oxidation potential peak values and the OCP values of
metalloproteins. (Reproduced with permission from [43], published by John Wiley and Sons, 2010).

2.2. Electrochemical Signal-Enhanced Biomemory Device

As mentioned in the introduction, bioelectronic devices have certain limitations like the
low electrical or electrochemical signal induced from biomolecules and low stability in harsh
conditions [15,16]. To overcome these problems, various researchers have proposed the introduction
of functional biocompatible nanomaterials for improved signal and stability [18–20]. Through these
suggestions, biosensors and biofuel cells have been developed with advanced performance. In the
case of biomemory devices, the extremely low electrochemical signal from biomolecules should be
solved for application in practical applications. To achieve this, introducing metal nanoparticles can be
a solution for signal enhancement. Gold nanoparticles (GNP) have been reported as an enhancer for
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the electron transfer reaction with metalloprotein [46]. Using the reported results, our group proposed
a biomemory device using metalloprotein (azurin, Azu) and GNP to increase the electrochemical
signal derived from metalloprotein (Figure 3A) [17]. To develop this electrochemical signal enhanced
biomemory device, various GNP of nanometer size of diameter in the range 5–60 nm was introduced
to find the optimized size for the GNP diameter. Based on the electrochemical signal increasing the
redox potential peak values from CV results (Figure 3B), we found the optimized GNP size (5 nm) that
showed smaller redox potential peak values compared to the results using the 60 nm GNP. However, in
the case of the 60 nm GNP, the enhanced signal was not derived from Azu–GNP but directly induced
from the immobilized GNP to the gold substrate without Azu. Therefore, the 5 nm GNP was chosen as
the optimized size for biomemory fabrication. In addition, we assumed that the proposed increment of
the electron transfer mechanism followed the equation below:

GNP k1↔
k−1

Protein k2↔
k−2

Electrode (1)

Figure 3. Electrochemical signal enhanced biomemory device. (A) Schematic image of the biomemory
device composed of Azu and gold nanoparticles (GNP). (B) Redox potential peak values for optimizing
the GNP diameter. (C) Cyclic voltammogram of Azu–GNP and Azu. (D) memory performance of
Azu–GNP and Azu. (Reproduced with permission from [17], published by John Wiley and Sons, 2011).

In Equation (1), k1 and k−1 are the electron transfer rate constants between the GNP and Azu and
k2 and k−2 are the electron transfer rate constants between Azu and the gold substrate. By introducing
the GNP, the electrochemical signal from Azu could be enhanced through the better electric coupling
between azurin and GNP and between Azu and the gold substrate. Furthermore, the better coupling
between Azu and GNP compared to that between Azu and the gold substrate induced a remarkably
enhanced signal. After verifying the signal enhancement, the biomemory function of the proposed
device was estimated. As shown in Figure 3C,D, the biomemory device composed of Azu and GNP
(Azu–GNP) showed enhanced memory function compared to biomemory prepared with only Azu.
The stored charge amounts were calculated by the following equation,

Q =
∫

i × dt (2)
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The current value (i) and time value (dt) were obtained by CA technique. To acquire the CA
results, the redox potential peak values of Azu–GNP obtained by CV analysis were applied. From the
calculation of the area underneath the CA graphs, the stored charge amounts of biomemory composed
of Azu–GNP was about 4.503 μC, approximately four times higher than that of biomemory prepared
with only Azu (about 1.1413 μC). This difference originated from the electric coupling between Azu
and the GNP. Through this research, electrochemical signal-enhanced biomemory was developed for
the first time, and this approach may demonstrate the possibility of developing accurate nanoscale
biomemory devices that can overcome the problems associated with low electrochemical signals.

2.3. Resistive Biomemory Device

In conventional silicon-based electronic fields, huge attention has been paid to the development
of resistive memory devices for resistive switching function demonstration. Resistive memory devices
have been researched widely for commercialization due to their advantages such as fast processing and
response and low energy requirement. In the case of the existence of metal–insulator–metal layers or
semiconductor–insulator–metal layers on the substrate, there are specific unique hysteresis properties
at some voltage range with two apparently different resistance values (extremely high resistance
value and extremely low resistance value) following theories such as ohmic conduction, thermionic
emission, Schottky emission, or tunneling current [47]. Various research groups have developed
organic material-based resistive memory devices [48,49]. Biomolecules are suitable for demonstrating
resistive switching functionality at the nanometer scale because they possess unique properties at such
scale. Guo’s group developed a resistive biomemory device using the RNA structure and quantum
dot (QD) by collaboration with our group [50]. In previous research, they developed a packaging
RNA (pRNA) three-way junction structure (pRNA-3WJ) that showed thermodynamically stability [51].
This pRNA-3WJ could overcome the critical limitations of conventional RNA such as extremely low
stability even at room temperature. In resistive biomemory research, they introduced the developed
pRNA-3WJ as a stable insulator to demonstrate the resistive switching function. Figure 4A shows
the schematic images and resistive function in this device. Using the biological binding properties
between streptavidin and biotin, they developed a nanoscale bionanohybrid material composed of
pRNA-3WJ and QD. The conjugation of pRNA-3WJ and QD for bionanohybrid materials was verified
by electrophoresis through the existence of the upper located band due to the increased total weight and
size by QD introduction compared to the band in only pRNA-3WJ without QD. After immobilizing this
bionanohybrid material on the gold substrate, pRNA-3WJ performed a role as an insulating layer and
QD as the semiconducting layer on the conducting gold layer. Using a scanning tunneling spectroscopy
(STS) technique, they estimated the resistive switching function of this device at the nanometer scale
using the platinum tip as the probe located on this bionanohybrid material. Figure 4B displays the I–V
curve of a bionanohybrid material on a gold substrate. Compared to the gold substrate alone, only
pRNA-3WJ, and only QD on a gold substrate, a bionanohybrid material composed of pRNA-3WJ and
QD on a gold substrate showed apparently distinguished resistance values with extremely high and
low resistance at the voltage range of +3 to −3 V. This bistable behavior could be defined as “On state”
and “Off state” for resistive memory applications.

Our group also developed a resistive biomemory device based on two-dimensional material.
A bionanohybrid material composed of molybdenum disulfide nanoparticles (MoS2) and a DNA
layer on a gold substrate was developed to demonstrate resistive switching functionality at the
nanometer scale [52]. To develop this resistive biomemory at the nanometer scale, we immobilized
DNA and synthesized MoS2 sequentially on a complementary DNA modified gold substrate.
Then, a semiconductor (MoS2)–insulator (DNA)–metal layer (gold substrate) was formed that could
demonstrate resistive switching functionality through specific unique hysteresis properties at a certain
voltage range with two apparently different resistance values. MoS2 is a metal dichalcogenide material
that has been widely used to develop bioelectronic devices because of its unique properties including
biocompatibility, excellent semiconductivity, and its optical properties [53,54]. To demonstrate resistive
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switching functionality at the nanometer scale, MoS2 nanoparticles with surface modification (carboxyl
group) was synthesized for the first time to conjugate efficiently with amine-tagged DNA via EDC/NHS
bonding. The synthesis of surface-modified MoS2 nanoparticles and the fabrication of bionanohybrid
materials were verified by transmission electron microscopy (TEM) for MoS2 synthesized nanoparticles,
energy-dispersive X-ray spectroscopy (EDS) for elemental analysis, electrophoresis for the conjugation
of MoS2 and DNA, and STM techniques to immobilize this bionanohybrid material on the gold
substrate. Using STS analysis, the proposed resistive biomemory device based on MoS2 and DNA
showed the resistive switching function with bistable states at a wide voltage range (4 to −4 V) and
long-term stability as shown in Figure 4C. Figure 4C shows that the resistance value dramatically
decreased when the voltage reached 2.4 V; on the other hand, the resistance value abruptly increased
when the voltage reached 0.01 V. In addition, by introducing DNA as the insulating layer, which is
more stable than RNA, it showed resistive switching function for about 10 days. As with these studies,
bionanohybrid material-based resistive biomemory devices have been researched to demonstrate
resistive switching functionality at the nanometer scale, which suggests a future direction for the
development of the next generation of memory devices using biomolecules.

Figure 4. Resistive biomemory device. (A) Schematic image of a resistive biomemory device composed
of pRNA-3WJ and quantum dot (QD) on a gold substrate, (B) I–V curves of bare Au, pRNA-3WJ, QD
and pRNA-3WJ, and QD. (C) Resistive switching function and stability test for a resistive biomemory
device composed of MoS2 and DNA on a gold substrate with apparently distinguished resistance states
and long-term stability for 10 days. (Reproduced with permission from [50], published by the American
Chemical Society, 2015, and reproduced with permission from [52], published by Elsevier, 2019).
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3. Biologic Gate

Among the various components of computing systems, logic gates are a core component in the
computing process. These electrical circuits implement Boolean functions that can perform logical
operations by converting more than two inputs to one binary output. Until now, many logic gates have
been developed including AND (the gate that performing the logical conjugation), OR (the gate that
performing the logical disjunction), NOT (the gate that performing the logical negation), XOR (the gate
that giving the true outputted signal when the number of true inputs is odd), and NAND (the gate that
giving the false outputted signal only when all inputs are true) gates [55,56]. In bioelectronics, some
biomolecules can interact with specific chemical materials or biomolecules. For example, myoglobin
can react with hydrogen peroxide [18] and glucose oxidase can react with glucose [57]. These properties
can be utilized to demonstrate a logic gate using biomolecular interactions by controlling the input
materials. In addition, conformational changes of biomolecules can be utilized to develop logic gates
such as the conformational change of G-quadruplex DNA (G-rich DNA) as a bending shape and
straightening shape that is dependent on the pH value [58]. Furthermore, these logic functions based
on biomolecules can provide opportunities to mimic the analog human decision-making process [59]
through controlling the combination of biomolecules and organic and inorganic materials. In this
chapter, we will introduce research into biologic gates using biomolecules such as proteins and DNA
and bioelectronic devices that mimic the analog human decision-making process.

3.1. DNA-Based Biologic Gate

DNA is the smallest level at which the composition of living organisms is developed. There have
been reports related to DNA research such as DNA sequencing, immunoassay, and DNA structure
formation for wider applications [60–62]. From the bioelectronics perspective, the unique properties
of DNA have received attention for their granting of functionality to bioelectronic devices. DNA
can specifically bind with complementary DNA and the structure of DNA can be controlled by
external responses [58]. Until now, various DNA-based logic gates have been reported based on
colorimetric or fluorescence investigations. However, electrochemical techniques are better suited to
bioelectronic device fabrication due to their fast response, minimal required reagents, and simplified
outputs compared to colorimetric-based bioelectronic devices. In addition, a report found that
mismatched sequences of double strand DNA such as cytosine–cytosine (C–C) and thymine–thymine
(T–T) mismatched pairs could possess metal ions in such locations [63]. From this perspective, Qiu’s
group developed a biologic gate using this unique property of DNA [64]. Figure 5A showed the
schematic process and results of AND logic gates based on DNA mismatching. Silver ions (Ag+)
and mercury ions (Hg2+) could enter the mismatched C–C and T–T pairs, respectively. Using these
properties, they designed T- and C-rich DNA sequences with ferrocenecarboxylic acid (Fc) as the
redox generator. In this device, metal ions were used as input molecules and the electrochemical
signal from Fc was the output signal from the logic gate. By controlling the DNA sequences, they
developed AND, NAND, and NOR logic gates through controlling the output signal using the unique
electrochemical signals derived from the inserted Ag+ and Hg2+ ions located inside the mismatched
pairs in the DNA. From the results, in the case of the insertion of only both Ag+ and Hg2+ ions, the
electrochemical signal was detected by the differential pulse voltammetry (DPV), which was defined
as “1” due to the co-existence of Ag+ and Hg2+ ions as shown in Figure 5A. Furthermore, this logic
gate based on DNA mismatching can be operated reversibly compared to DNA cleavage-based logic
gates. This result showed the possibility of applying bionanohybrid materials based on specifically
designed DNA sequences and metal ions for both bioelectronic devices and for the development of a
multiplexed biosensing platform.
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Figure 5. Biologic gates. (A) Schematic image of a DNA-based biologic gate based on metal ions
inserted inside mismatched DNA pairs and differential pulse voltammetry (DPV) results of this
device by controlling output signals through Ag+ and Hg2+ ions inserted inside mismatched DNA
pairs. (B) Schematic image of a protein/DNA-based biologic gate through the signal transduction of a
protein-based biologic gate to a DNA-based biologic gate for the final outputted fluorescence signal
(Reproduced with permission from [64], published by John Wiley and Sons, 2013 and reproduced with
permission from [65], published by John Wiley and Sons, 2016).

3.2. Protein/DNA-Based Biologic Gate

Their distinct properties mean that proteins are widely utilized in bioelectronics. As mentioned in
the introduction, proteins have certain unique advantages such as distinctive redox properties that
can target specific molecules and reactions. Through these properties, protein-based biologic gates,
particularly enzyme-based biologic gates, have been broadly developed [66,67]. Aida’s group developed
a biologic gate by protein folding [68] and Schöning’s group proposed a biologic gate using a membrane
composed of multiple enzymes [69]. Recently, Katz’s group developed reversible biologic gates based
on both enzymes and DNA [65]. They developed and combined an enzyme-based biologic gate with a
reversible DNA-based biologic gate through a biomolecular electrode to create complex reversible
logical computing systems. This proposed system was composed of an enzyme-based Fredkin gate
that was capable of converting three input signals to three output signals and a DNA-based Feynman
gate that was capable of converting two input signals to two output signals [70,71]. To demonstrate
this complex biologic gate, they introduced the optical, electrochemical, and fluorescent measurement
techniques. Figure 5B shows a schematic diagram of this complex biologic system that is composed of
a protein-based biologic gate and a DNA-based biologic gate as demonstrated by the enzyme reaction

13



Micromachines 2019, 10, 347

and connected DNA reaction. Glucose (Glc), lactic acid (Lac), and β-nicotinamide adenine dinucleotide
hydrate (NAD+) were used as three input signals for the enzyme-based Fredkin biologic gate and
glucose dehydrogenase (GDH), lactate dehydrogenase (LDH), glucose oxidase (GOx), and horseradish
peroxidase (HRP) were utilized for enzyme-based biologic operation. After reacting in the first
enzyme-based biologic gate, the generated signal that produced NADH through enzymatic reactions
was measured by an optical technique and transferred to the electrochemical system for electrochemical
enzymatic reaction. Then, in the final stage at the connected DNA-based biologic gate, the transferred
signal was converted to fluorescent final outputs. Pyrroloquinoline quinone (PQQ)-modified electrode
and iron ion (Fe3+) crosslinked alginate-modified electrode with entrapped DNA were used for the
electrochemical system and final DNA-based biologic system. By the electrochemical reaction, the Fe3+

ion of the crosslinked alginate-modified electrode with entrapped DNA was oxidized to Fe2+ and the
entrapped DNA was released from the alginate-modified electrode to a DNA-based biologic gate for
the final fluorescence output signal. Although many components and complex biological reactions
were utilized for this biologic gate, they developed a complex biologic system that was composed of
two different kinds of biomolecule-based biologic gates that were more complex than the reported
biologic gate to accurately mimic a conventional silicon-based electronic logic system.

3.3. Analog Decision Mimicking Bioelectronic Device

In conventional silicon-based electronics, only digitalized processing, logic, and arithmetic
operations have been developed and utilized in all devices [72,73]. These operations have certain
advantages for the development of electronic devices in which the binary coded digital signals
“1” and “0” can be distinguished, defined, and operated easily by converting input signals into
an integrated single output signal. However, digital signal-based conventional electronic devices
have limitations for the demonstration of human logic systems or other analog decision-making
processes because these systems are not decided or operated by one simple and single digital input
and output, but are instead affected by a myriad of complex factors such as personality, experience,
and intelligence. The critical difference between conventional electronic devices and real human
logic systems can hinder the development of biocomputation systems. Therefore, in bioelectronic
fields, there have been studies to develop bioelectronic devices that are capable of mimicking analog
decisions or analog logic systems [74] by considering various factors for analog calculation. Liu’s
group developed four analog computing systems and extended the range of computing to real
numbers based on DNA by connecting DNA-based biologic gates using unique properties of DNA
such as DNA strand displacement. This result showed the potential of DNA-based real number
calculation such as a calculator and by extension a combination of various DNA-based biologic
gates; this could demonstrate more complex number calculation. In addition, bioelectronic noses and
tongues based on biomolecular receptors have been researched recently to mimic the processes of
real living organisms [75,76]. To demonstrate the analog decision-making process on a bioelectronic
chip, our group developed an electrochemical bioelectronic device based on a bionanohybrid material
composed of metalloprotein and organic/inorganic nanomaterials or metal ions [59]. Figure 6A shows
a conceptual image of their research for mimicking analog decision-making through the analogously
processed output signals by inputting two different external factors (negative input and positive input)
via electrochemical investigation. We defined specific regions of the acquired signal as the degree of
confidence and reliability of a human following defined threshold values. Myoglobin (Mb) that is a
metalloprotein used as signal generator and defined as an inherent human tendency, organic chemical
linkers that are used as signal controllers and defined as experience-induced human tendencies, and
inorganic materials that are used for signal modulation and defined as environment-dependent signal
modulators were combined to demonstrate analog decision-making by signal control and modulation
(Figure 6B). As shown in Figure 6C, the plotted results of analog decision-making based on the analysis
of electrochemical signals by defined external factors showed the decision variation of 12 people
based on defined threshold values. This research shows the conceptual potential for the development
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of analog-based bioelectronic devices which has never been reported to apply for biocomputation
systems. Of course, many subjective definitions exist that can demonstrate the analog decision-making
process on a bioelectronic chip. This research shows one potential development route for a human
mimicking analog computation system.

 
Figure 6. Analog decision mimicking bioelectronic device. (A) Schematic image and theory of this
bioelectronic device through the analogously processed output signals by two different external factors
inputted (negative input and positive input) by electrochemical investigation. (B) Bionanohybrid
material used for this device composed of metalloprotein used as signal generator, organic chemical
linkers as signal controller, and inorganic materials used for signal modulation. (C) The plotted results
of analog decision-making based on the analysis of electrochemical signal by defined external factors
showed the decision variation of 12 persons based on the defined threshold values. (Reproduced with
permission from [59], the figures follow the terms of use under a Creative Commons Attribution 4.0
International License.).

4. Bioprocessor

Until now, numerous molecular electronic devices have been developed to miniaturize electronic
devices at the molecular scale for overcoming the physical or technological limitations of conventional
silicon-based electronic devices, such as difficulty to achieve compact integration at nanometer or
molecular scale [77]. Biomolecules have unique properties even at the nanometer scale that are
suitable to complement the molecular electronic devices with delicate functional processing properties.
Accordingly, some researchers developed bioprocessors that could control the biological output
signals, such as the expressed gene level, through the biological reaction process by specific inputted
biomolecules [78,79]. To mimic the conventional silicon-based electronic processors, especially, the
functional bionanohybrid material composed of biomolecules and various nanomaterials can used
for processing the input signal converted to the processed output signal such as electrochemical
signal. In addition, specifically designed microchips can be a powerful tool to control the biologically
processed output signals through the control of biological reactions. In this chapter, we will provide
the recently developed bioprocessor devices that could mimic the processing in electronic devices.
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4.1. DNA-Based Bioprocessor

As mentioned in the above chapters, DNA is a suitable biomaterial for bioelectronic applications.
Especially, the massive parallelism of DNA hybridization exhibits tremendous potential, which can
be utilized to develop feasible electronic devices capable of performing processing or computing
operation to fulfill the demands of monolithic parallel computing system with specific computational
algorithm [80]. From this point of view, DNA-based bioprocessors or applications have been
reported [81]. Lee’s group proposed a novel programmable DNA-mediated processor to solve the
optimal route planning problems [82]. To achieve this functional DNA-mediated bioprocessor, they
fabricated the programmable optimal route planning apparatus comprising six stages, as shown in
Figure 7A. Also, the routes shown in Figure 7A were defined following the specific DNA sequences
(20mer single strand DNA) to find the optimal route based on DNA processing through the conventional
PCR reaction using the inputted DNA sequences, which determine distance between specific locations
as shown in the map of the right side of Figure 7A. To operate this PCR system, they defined the first
stage as problem encoder for conversion of vertices and weighted edges of the designed route to DNA
sequences, and all distances between each of the six locations were defined as specific DNA sequences
(20mer single strand DNA) to apply for the program encoder. They defined the second stage as DNA
solution bay for converted DNA preparation, the third as mixing controller for mixing and ligase of
appropriate DNA sequences to make the template of DNA duplexes that represents the possible routes,
the fourth as solution purifier for isolation of optimal DNA template from impurities such as the
incompletely hybridized oligonucleotides or enzymes, and the fifth as PCR amplifier for amplification
of optimal DNA template which is the optimal route, final as gel electrophoresis to acquire the final
electrophoresis data for optimal DNA template as the find of the defined optimal route. Using these
stages for optimal-route finding, they performed the DNA reactions at these mentioned stages by
binding and amplification of the combined six defined DNA sequences for six locations. They obtained
the results of electrophoresis to find the optimal route from home or company to the hospital as shown
in Figure 7A using subjectively defined factors. Although there existed too many subjective definitions
for operation, these results showed the possibility of DNA-based bioprocessing for solving the practical
problems; this could be demonstrated with much fewer components and materials compared to the
conventional silicon-based electronic devices. Until now, DNA-based bioprocessors remain at the early
stage. However, due to the huge researches for DNA-based bioprocessors, the more sophisticate and
functional processable bioprocessors will be developed.

Figure 7. Cont.
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Figure 7. Bioprocessors. (A) Schematic image and electrophoresis results of DNA-based bioprocessor
composed of six stages, including the first stage as problem encoder, the second stage as DNA
solution bay for converted DNA preparation, the third as mixing controller for mixing and ligase
of appropriate DNA sequences to make the template of DNA duplexes, the fourth as solution
purifier for isolation of optimal DNA template from impurities such as the incompletely hybridized
oligonucleotides or enzymes, the fifth as PCR amplifier for amplification of optimal DNA template
which is the optimal route, and the sixth as gel electrophoresis to acquire the final electrophoresis
data for solving optimal-route-planning problems, (B) Schematic image of bioprocessor based on
bionanohybrid materials to demonstrate the specific processing functions including the electrochemical
signal reinforcement, regulation, and amplification. (Reproduced with permission from [82], published
by American Chemical Society, 2015, and reproduced with permission from [31], published by John
Wiley and Sons, 2013).

4.2. Bioprocessor Based on Bionanohybrid Material

Advancing from only DNA-based bioprocessors, bionanohybrid material based on DNA can be
used as the platform to develop the bioprocessor with more intuitive bioprocessing operation, without
too much subjective definition seen in DNA-based bioprocessors, such as definition of the specific DNA
sequences as the specific distance between home or company to hospital for solving the optimal-route
finding. Our group developed the bioprocessing device based on bionanohybrid materials composed
of protein, DNA, and inorganic nanomaterials to demonstrate the various bioprocessing functions
using electrochemical/electrical investigation [31]. To develop this bioprocessor, the recombinant
protein (azurin, Azu) and single-strand DNA were conjugated through the organic linker as the
electrochemical signal generating bioprocessing unit (Azu/DNA hybrid) by the redox properties
derived from recombinant azurin. Then, the complementary DNA (cDNA) and gold nanoparticle
(GNP) hybrid (cDNA/GNP), heavy metal ions, and cDNA and quantum dot (QD) hybrid (cDNA/QD)
were introduced to the bioprocessing unit as the input materials for electrochemical signal reinforcement,
regulation, and amplification. Figure 7B showed the schematic image of this bioprocessor, which
processed the three different outputs by introduced each input material. In the case of cDNA/GNP
introduction, the electrochemical signal from bioprocessing unit was reinforced by the existence of
conducting GNP. Moreover, in the case of introduction of heavy metal ions, the electrochemical signal
was regulated by existed heavy metal ions such as Cu, Zn, Ni, Co, Fe, and Mn through the movement
of redox peak values compared with the peak values of only Azu/DNA hybrid without metal ions.
In addition, in the case of introduction of the cDNA/QD as the semiconducting nanoparticle to the
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bioprocessing unit, the processed electrical signal showed the electrical bistable properties as the
resistive memory function by STS investigation compared to the result of only the bioprocessing
unit without cDNA/QD. This developed bioprocessor device can process three different functions in
the single bionanohybrid material using electrochemical and electrical signals intuitively compared
to the bioprocessors demonstrated based on subjective definitions. It showed the possibility of the
development of the biocomputation system in a single-biomolecular hybrid at nanometer scale.

5. Future Perspective

Since the 1960s, silicon-based electronic devices have been developed widely to demonstrate more
complex functions with faster and more efficient processing on nanoscale-size chips. However, until
now, the demonstration of a computation system on the single-molecular level has been impossible
in the electronics field. To develop the single-molecular computation system, bioelectronic devices
present new possibilities in the development of single biomolecular computation systems based on
bionanohybrid materials. Bionanohybrid materials composed of biomolecules such as protein or DNA,
and organic/inorganic nanomaterials can perform sophisticated functions at the single-biomolecular
level to apply for bioelectronic devices. In this review, authors discussed the various research areas
related to the bioelectronic devices including biomemory, biologic gates, and bioprocessors, which are
the core components of the computation system. First, we discussed biomemory device based on the
metalloprotein heterolayer, metalloprotein-nanoparticle hybrids, and nucleic acids-semiconducting
nanoparticle hybrids. To achieve the memory function, developed bionanohybrid materials should
demonstrate the two distinctive bistable states, which can be defined as ‘1’ and ‘0’ states for memory.
As shown in results, those bionanohybrid materials showed apparently distinguished bistable states
by electrochemical or electrical investigation. Next, we examined the studies about biologic gates
based on the DNA–metal ion hybrids, protein–DNA connected reaction, and protein–organic/inorganic
nanomaterial hybrids. Using these bionanohybrid material, various logic functions including the
AND, NAND, Fredkin, or Feynman logic gates were demonstrated. Furthermore, the human analog
decision-mimicking device was developed. In addition, we discussed about bioprocessors capable of
processing of the inputted signals to the output signals such as finding of optimal routes and processing
of different electrochemical signals through the DNA reactions and metalloprotein, DNA and inorganic
nanomaterial hybrids. In addition to the results discussed in this review, many research groups have
studied to develop the delicate functional bionanohybrid materials to apply for biomemory, biologic
gates, and bioprocessors. The bioelectronic devices comprised with bionanohybrid materials would be
a milestone for biomolecular-computation systems in the near future. Moreover, this will provide a
useful way of bioelectronic devices to apply in development of wearable devices [83,84], biohybrid
robots [85–87], and bioelectronic medicine [88,89].
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Abstract: The electron spin degree of freedom can provide the functionality of “nonvolatility” in
electronic devices. For example, magnetoresistive random access memory (MRAM) is expected as
an ideal nonvolatile working memory, with high speed response, high write endurance, and good
compatibility with complementary metal-oxide-semiconductor (CMOS) technologies. However,
a challenging technical issue is to reduce the operating power. With the present technology, an
electrical current is required to control the direction and dynamics of the spin. This consumes high
energy when compared with electric-field controlled devices, such as those that are used in the
semiconductor industry. A novel approach to overcome this problem is to use the voltage-controlled
magnetic anisotropy (VCMA) effect, which draws attention to the development of a new type of
MRAM that is controlled by voltage (voltage-torque MRAM). This paper reviews recent progress
in experimental demonstrations of the VCMA effect. First, we present an overview of the early
experimental observations of the VCMA effect in all-solid state devices, and follow this with an
introduction of the concept of the voltage-induced dynamic switching technique. Subsequently, we
describe recent progress in understanding of physical origin of the VCMA effect. Finally, new materials
research to realize a highly-efficient VCMA effect and the verification of reliable voltage-induced
dynamic switching with a low write error rate are introduced, followed by a discussion of the technical
challenges that will be encountered in the future development of voltage-torque MRAM.

Keywords: voltage-controlled magnetic anisotropy; magnetoresistive random access memory;
magnetic tunnel junction

1. Introduction

The evolving information society has triggered the rapid spread of advanced technologies, such
as Artificial Intelligence (AI), Advanced Safety Vehicle (ASV), and IoT (Internet of Things), and this
has led to further industrial innovation. In the society of the future, Big-Data collected from physical
space will be stored and analyzed in cyber space, which creates new social values. Such a data-driven
society can only be sustained by the high-speed processing of Big-Data; therefore, reducing the power
consumption of nano-electronic devices is becoming increasingly crucial. One promising approach is
the introduction of nonvolatile computation.

Micromachines 2019, 10, 327; doi:10.3390/mi10050327 www.mdpi.com/journal/micromachines23
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It is expected that the stand-by power of future computing systems will be reduced by utilizing
the nonvolatile features of spintronic devices, such as a magnetoresistive random-access memory
(MRAM) while using magnetic tunnel junctions (MTJ). An MTJ consists of two ferromagnetic layers
that are separated by an ultrathin insulating layer, such as magnesium oxide (MgO) [1,2]. Electrons can
tunnel through the barrier when a bias voltage is applied between the two ferromagnetic layers due
to the ultrathin thickness of the insulating layer. The amplitude of the tunneling current depends on
the relative angle between the magnetizations in each ferromagnetic layer through a spin-dependent
tunneling process, which is called the tunnel magnetoresistance (TMR) effect. The direction of the
magnetizations of one of the ferromagnetic layers is fixed (reference layer), typically by exchange
coupling with an antiferromagnetic material. An external field (free layer), using an electric-current,
can control the direction in the other, as discussed below. In this way information is written to the
memory device. Then, the information can be stored by controlling the magnetization configuration
between parallel and anti-parallel states, exhibiting two resistance states, in a nonvolatile manner.

MRAM has great potential to be a fast, high write endurance, and CMOS-compatible nonvolatile
memory, which is suitable for embedded as well as standalone memory applications. However, one of
the significant remaining challenges is to reduce the energy that is needed to write information, that is,
to switch the magnetization. In the long history of magnetism, magnetic fields that are produced by
electric-current have been used for magnetization reversal. This indirect approach is inefficient and
not scalable. Spintronics has brought us a new way of switching the magnetization through the s-d
exchange interaction between the conduction electron spin and localized spin, called the spin-transfer
torque (STT) effect [3–8]. The spin angular momentum that is carried by conduction electrons can
be transferred to localized electrons and can induce magnetization reversal. Recently, an alternative
technique for magnetization switching using the spin Hall effect, which is called the spin-orbit torque
(SOT) switching [9–12], has also been attracting attention. A typical SOT device comprises a bilayer
that consists of a non-magnetic heavy metal layer, such as Ta or W, and a ferromagnetic layer capped
by an oxide. A transverse pure-spin current is generated when an in-plane electric-current is injected
into the bilayer due to the spin Hall effect. The accumulation of spin at the heavy metal/ferromagnet
interface exerts a torque and induces magnetization switching. In this switching scheme, high write
endurance can be realized, even with high speed switching of the order of a few nanoseconds, because
the read and write passes are separate.

STT-based switching (STT-MRAM) has brought a drastic reduction in writing energy and expanded
potential for applications; STT-MRAM [13–15]. Figure 1 summarizes the reported writing energies
for a MRAM (red dots) and STT-MRAM (blue dots) as a function of the MTJ cell size. For example,
recent developments in STT-MRAMs have achieved writing energies of approximately 100 fJ/bit in
perpendicularly magnetized MTJs [13], which is close to the writing energy for a dynamic-RAM
(DRAM). However, it is still much higher than that of a static-RAM (SRAM), which is made up of
several MOSFETs that an electric-field operates. Furthermore, a writing energy of 100 fJ/bit corresponds
to 107 kBT (kB is the Boltzmann constant and T is the temperature, assumed to be 300 K). On the other
hand, the energy that is required to maintain magnetic information, i.e. the thermal stability, is about
60 kBT (green line in Figure 1), which means that we have a large energy gap between data writing
and retention, in the order of 105. This difference mainly comes from unwanted energy consumption
due to ohmic dissipation of the electric-current flow. Overcoming this fundamental issue using a
novel way of electric-field based spin manipulation is strongly desired. Not only for MRAMs, but
all of the nonvolatile memories that have been proposed so far have a dilemma of choosing between
stable nonvolatility and high operating energy. Therefore, the development of a novel type of memory
having low operating energy as well as low stand-by energy can have great impact on the design of
future memory hierarchy.
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Figure 1. Reported writing energy for toggle magnetoresistive random-access memory (MRAM)
(red dots) and spin-transfer torque-based switching (STT-MRAM) (blue dots) as a function of magnetic
tunnel junctions (MTJ) cell size and the target area for voltage-torque MRAM.

Various kinds of approaches to the electric-field manipulation of spin have been proposed and
experimentally demonstrated, such as using the inverse magnetostriction effect in a multilayered
stack with piezoelectric materials [16–18], the gate-controlled Curie temperature in ferromagnetic
semiconductors [19–21] or even in an ultrathin ferromagnetic metal layer [22], magnetoelectric
switching of exchange bias [23–26], electric polarization induced control in magnetic anisotropy at the
ferromagnetic/ferroelectric interface [27,28], electric-field induced magnetic phase transition through
structural phase transition [29], and the utilization of multiferroic materials [30,31]. However, each
of these approaches have the drawbacks of limited operation temperature or low write endurance
or difficulty in the introduction to magnetoresistive devices, although these requirements should be
simultaneously satisfied for memory applications. We have focused on the voltage-controlled magnetic
anisotropy (VCMA) effect in an ultrathin ferromagnetic layer [32,33] to overcome this problem.

This paper reviews recent progress in the research of the VCMA effect and the challenges that are
faced in developing new types of MRAM controlled by voltage, called voltage-torque MRAM (also
called Magnetoelectric (ME)-RAM) [34–39]. Section 2 presents an overview of the early experimental
observations of the VCMA effect in all-solid state devices and the concept of voltage-induced dynamic
switching, with a discussion of the technical challenges. In Section 3, the current understanding of the
physical origin of the VCMA effect is discussed through experimental investigations while using X-ray
absorption spectroscopy (XAS) and magnetic circular dichroism (XMCD) analyses with first-principles
calculation. Section 4 presents the materials research being done to enhance the VCMA effect, especially
focusing on the heavy metal doping technique. Finally, in Section 5, experimental demonstrations
of reliable voltage-induced dynamic switching and an understanding of the voltage-induced spin
dynamics are discussed, together with a discussion on the theoretical investigations being made.

2. Overview of the VCMA Effect and Voltage-Induced Dynamic Switching

Weisheit et al. first reported the VCMA effect in a 3d transition ferromagnetic layer in 2007 [32].
They observed a coercivity change of a few % in 2–4 nm-thick FePt(Pd) films immersed in a liquid
electrolyte. Opposing trends in the change in coercivity in FePt and FePd, depending on the applied
voltage, were observed. An electric double layer is effective for applying a large electric-field at the
interface; however, the operating speed is limited and we need to take care of the influence of chemical
reactions. The voltage control of in-plane magnetic anisotropy was also found in ferromagnetic
semiconductors at low temperature [40]. Theoretical attempts to understand the physical origin of
the VCMA effect in metal started around the same time. Duan et al. proposed that spin-dependent
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screening of the electric-field can induce modification in the surface magnetization and magnetic
anisotropy [41]. Nakamura et al. calculated the VCMA effect in a freestanding Fe(001) monolayer and
pointed out that electric-field induced changes in the band structure, especially the p orbitals near the
Fermi level, which are coupled to the d states, play an important role [42]. Tsujikawa et al. studied
the VCMA effect in a Pt/Fe/Pt/vacuum system and found that relative modification in the electron
filling of the 3d orbital induced by the accumulated charges at the interface causes a change in the
perpendicular magnetic anisotropy (PMA) [43]. Other possible mechanisms have also been discussed,
such as electric-field induced modification in Rashba spin-orbit anisotropy [44,45] and electric-field
induced atomic displacement at the interface between ferromagnetic oxide and dielectric layers [46].

We attempted to apply the VCMA effect in an all solid state structure, which consisted of epitaxial
Au/ultrathin Fe(Co)/MgO/polyimide/ITO junctions grown on MgO(001) substrates (see Figure 2a)
to investigate the feasibility for practical applications [33,47]. Figure 2b shows an example of polar
magneto-optical Kerr effect (MOKE) hysteresis curves that were measured under the application of
a voltage. The thickness of the Fe80Co20 layer is fixed at 0.58 nm. The bias direction is defined with
respect to the top ITO electrode. A clear change in the saturation field in the out-of-plane direction can
be seen, which suggests a modification in the PMA. Under the application of a positive bias, the PMA
is suppressed and the in-plane anisotropy becomes more stable. On the other hand, the application of
a negative voltage enhances the PMA and even the transition of the magnetic easy axis can be realized
from the in-plane to the out-of-plane direction.

 
Figure 2. (a) Schematic illustration of sample stack used for the first demonstration of the
voltage-controlled magnetic anisotropy (VCMA) effect in an all-solid state structure, and (b) applied
bias voltage dependence of the polar-magneto-optical Kerr effect (MOKE) hysteresis curves for a
0.58 nm-thick Fe80Co20 layer.

Due to screening by free electrons, the penetration of the electric-field into a metal is limited to the
surface, unlike in the case of a semiconductor; however, if the thickness of the ferromagnetic layer is
thin enough, e.g. several monoatomic layers, the modulation in the electronic structure at the interface
can make a sizable impact on the magnetic properties. Details of an experimental verification for the
physical origin of the VCMA effect are discussed in Section 2.

One great advantage of the VCMA effect is its high applicability in a MTJ structure, which
is the most important practical devices in spintronics. Figure 3 exhibits the first demonstration
of the VCMA effect that was observed in a MTJ structure, which consisted of Cr/ Au/ultrathin
Fe80Co20(0.5 nm)/MgO(tMgO)/Fe grown on a MgO(001) substrate [48]. Here, we made electrical
ferromagnetic resonance (FMR) measurements through the TMR effect. The PMA energy, KPMA, was
evaluated from the resonant frequency of the free layer at each applied voltage. In addition to FMR
measurements, the effect of a bias voltage on normalized TMR curves has also often been used for the
quantitative evaluation of the VCMA effect, as discussed later [49]. Generally, the PMA energy linearly
changes as a function of the applied electric field, E, which is defined as the applied bias voltage,
Vbias, divided by the MgO thickness, tMgO. The slope of the linear relationship represents the VCMA
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coefficient in units of J/Vm, e.g. −37 fJ/Vm for the case in Figure 3. The VCMA coefficient is one of
the most important parameters for demonstrating scalability and also in the reliable switching of the
magnetization and thus the development of voltage-torque MRAM.

Figure 3. Example of applied electric-field dependence of KPMAtfree observed in an MgO-based MTJ
structure. Reprinted figure with permission from [48], Copyright 2010 by the AIP Publishing LLC.

The realization of the VCMA effect in all-solid state devices, including a MTJ structure, made
it possible for us to demonstrate the high speed response of this effect, such as in voltage-induced
ferromagnetic resonance excitation [50–54], dynamic magnetization switching driven solely by the
application of a voltage [55], and spin wave excitation [56–58].

In addition to ultrathin epitaxial films with large PMA [35,59–67], VCMA effects have been
observed in various materials systems, for example, in sputter-deposited CoFeB [68–81], which is
an important practical material that is used in the mass production of MTJs, and in self-assembled
nano-islands [82], nanocomposite structures [83], and ultrathin layers with quantum well states [84].
The VCMA effect can also be applied for the control of domain wall motion [85–87] and magnetic
skyrmions [88–90]. In addition, voltage control of the magnetic properties has been expanded not
only for the PMA, but also for the Curie temperature [22], Dzyaloshinskii-Moriya interactions [91],
interlayer exchange coupling [92], and proximity-induced magnetism in non-magnetic metal thin
films [93–95].

The VCMA effect can induce a transition of the magnetic easy axis between the in-plane and
out-of-plane directions by the application of a static voltage; however, bi-stable switching is not easily
attained, because the VCMA effect does not break the time reversal symmetry. One possible way is to
use the VCMA effect to assist other external fields. For example, the coercivity of the perpendicularly
magnetized film can be reduced by the application of dc voltage [47,96,97] or of voltage-induced
FMR [98], just as in the microwave-assisted magnetization reversal (MAMR) technique. Moreover,
the combination of STT [99,100] or SOT [101] and the VCMA effect has also been experimentally
demonstrated. These approaches are effective in reducing the energy that is required for writing by
electric-current based manipulation; however, the realization of magnetization switching solely by a
voltage effect is much more preferable.

We proposed pulse voltage-induced dynamic switching to overcome this problem (see Figure 4).
This technique was first demonstrated in in-plane magnetized MTJs [55,102] and it was then applied
in perpendicularly-magnetized MTJs [103–109]. For example, we assume the initial state (Figure 4a)
to be the perpendicularly magnetized “up” state under the application of an in-plane bias magnetic
field, Hbias. When a short pulse voltage is applied to eliminate the PMA completely, the magnetization
starts to precess around the Hbias (Figure 4b). If the voltage pulse is turned off at the timing of half turn
precession, then the magnetization can be stabilized in the opposite “down” direction (Figure 4c). Hbias
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is required to determine the axis of magnetization precession. The effective field, such as crystalline
anisotropy field and the exchange bias field, is also applicable.

 
Figure 4. Conceptual diagram of voltage-induced dynamic switching for a perpendicularly-magnetized
film. The in-plane bias magnetic field, Hbias, which determines the axis of the precessional dynamics,
is applied in the +x direction. (a) initial state (point S), (b) precessional switching process induced by
an application of pulse voltage (from point S to point M), and (c) relaxation process (from point M to
point E).

Figure 5a shows an example of an experimental demonstration of voltage-induced dynamic
switching being observed in perpendicularly magnetized MTJs [105]. The top FeB layer with a W cap
is the voltage-driven free layer. Under an optimized applied magnetic field, we achieved the stable
toggle switching by the successive application of voltage pulses with a width of 1 ns and amplitude of
−1.2 V. The precessional dynamics of the magnetization are reflected in the oscillation of the switching
probability (PSW) as a function of pulse width, as shown in Figure 5b. A high PSW is obtained at the
timing of half turn precession; however, when the pulse width is twice this, one turn precession results
in low PSW. From a practical point of view, the first half turn precession is effective in obtaining a
low WER with fast switching speed. Under the condition that the PMA is completely eliminated, the
amplitude of Hbias determines the precession frequency, and then the switching time, tSW for the half
turn precession is expressed as

tSW ∼
π
(
1− α2

)
γμ0Hbias

(1)

where α, γ, and μ0 are the magnetic damping constant, the gyromagnetic ratio, and the permeability of
vacuum, respectively.

The possible advantages of voltage-induced dynamic switching are as follows. (i) Fast switching
(~1 nanosecond) can be induced with an ultralow switching power of the order of a few fJ/bit.
(ii) The switching transistor can be downsized, because we do not need to apply a large electric-current.
(iii) Unipolar switching can separate the polarity of voltages for writing and reading. In addition,
the VCMA-induced enhancement in PMA has been used to propose a unique approach to reduce the
read disturbance [110].
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On the other hand, the following technical challenges remain. Firstly, the realization of a
large VCMA effect is the most important issue to show the scalability of the voltage-torque MRAM,
as discussed in Section 4. Furthermore, as seen in Figure 5b, the switching probability is sensitive
to the writing pulse width, due to the precession-mediated switching process. Therefore, we need
verification as to whether a sufficiently-low WER can be achieved by the voltage-induced dynamic
switching technique. In addition, this is a toggle switching technique, so pre-read and read-verify
processes are always required for writing. These reading processes dominate the total write time, and
it can be critical when the resistance of the MTJ cell increases. In addition, the removal of the external
magnetic field is also an important issue for practical applications.

 
Figure 5. Experimental demonstration of voltage-induced dynamic switching. (a) Schematic of the
sample structure of a voltage-controlled perpendicularly-magnetized MTJ and observed bi-stable
switching between parallel and antiparallel magnetization configurations induced by successive pulse
voltage applications. (b) Pulse width dependence of switching probability, PSW. Due to the precessional
dynamics, PSW exhibits oscillatory behavior depending on the pulse width.

3. Physical Origin of the VCMA Effect

In this section, recent experimental trials conducted to understand the physical origin of the
VCMA effect are introduced [111]. The following two mechanisms account for the purely electronic
VCMA effect. The first mechanism comes from the charge-doping-induced anisotropy in the orbital
angular momentum, as shown in Figure 6a. As each electron orbital in the vicinity of the Fermi
level has a different density of states, selective charge doping may induce anisotropy in the orbital
angular momentum. This effect changes the PMA energy through spin-orbit interactions from the
spin-conserved virtual excitation processes [112,113], as expressed by the first term in Equation (2) [114].
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λ
�

(〈
ΔLξ, ↓↓

〉
−

〈
ΔLξ, ↑↑

〉)
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2
λ
�

(〈
ΔT′ζ, ↓↑

〉
−

〈
ΔT′ζ, ↑↓

〉)
(2)

Here, λ is the spin-orbit interaction coefficient. L and T′ are the orbital angular momentum and
part of the magnetic dipole operator, respectively. Here, 〈ΔLξ〉 ≡ 〈Lz〉 − 〈Lx〉 and 〈ΔT′ζ〉 ≡ 〈T′z〉 − 〈T′x〉
are used. 〈Lz〉 and 〈Lx〉 are evaluated for the z- and x- components of the spin angular momentum,
respectively. The same is the case for 〈T′z〉 and 〈T′x〉. ↑ and ↓ denote the contributions from the majority
and minority spin-bands, respectively. We call the first mechanism the orbital magnetic moment
mechanism. The second mechanism is the VCMA effect from the induction of an electric quadrupole
(Figure 6b). An electric-field applied to the metal/dielectric interface is inhomogeneous, owing to
the strong electrostatic screening effect in the metal, such as electric-field, including higher-order
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quadratic components, can couple with the electric quadrupole correlated with the magnetic dipole
operator in an electron shell of the metal layer. The induced energy split of each orbital changes the
magnetic anisotropy through spin-orbit interactions from spin-flip virtual excitation processes [115,116],
as shown in Figure 6c. The latter mechanism corresponds to the second term in Equation (2). We call
this the electric quadrupole mechanism. As the expectation values for the orbital angular momentum
and the magnetic dipole operator can be measured as the orbital magnetic moment and the magnetic
dipole Tz term (mT), respectively, the aforementioned two mechanisms can be validated by X-ray
absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) spectroscopy.

 
Figure 6. Microscopic origin of the VCMA effect. (a) Orbital magnetic moment mechanism. (b) Electric
quadrupole mechanism. (c) Schematic of the nonlinear electric field at the interface between the
dielectrics and the ferromagnet, which induces a charge redistribution-induced VCMA effect.

The XAS/XMCD experiments provide element-specific information on the electronic structure via
the optical transition from the core level to unoccupied states in the valence band. Based on the use of
circularly polarized X-rays, X-ray absorption techniques provide interesting features for the study of
magnetic materials. Figure 7 shows a schematic diagram of the electronic states that are involved in
an optical transition from the 2p core to d valence states, which is related to XMCD at the L edges of
transition metals. The dichroic signal directly reflects the difference in the density of the states near
the Fermi level between the up and down spin sub-bands. From the XMCD results with sum-rule
analysis [117,118], the magnetic moments (spin magnetic moment: mS, mL, and mT) can be determined
from the measured XAS/XMCD spectra. Here, the measured orbital magnetic moments and magnetic
dipole Tz term have the following relationships;

ΔmL = −μB(〈ΔL↓↓〉+〈ΔL↓↓〉)
�
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It should be noted that the PMA energy from the spin-conserved virtual excitation process (first
term in Equation (2)) is related to the orbital magnetic moment and the PMA energy from the spin-flip
virtual excitation process (second term in Equation (2)) is related to the magnetic dipole Tz term.

 
Figure 7. Diagram of the electronic states related to X-ray absorption spectroscopy and X-ray magnetic
circular dichroism (XAS/XMCD) measurements at the L-edges of transition metals.

A Fe/Co (1 ML)/MgO multilayer was employed to see the changes in the orbital magnetic moment
in XAS/XMCD experiments [113]. The sample stack is depicted in Figure 8a. A multilayered structure,
consisting of bcc-V(001) (30 nm)/bcc-Fe(001) (0.4 nm)/Co (0.14 nm)/MgO(001) (2 nm)/SiO2 (5 nm)/Cr
(2 nm)/Au (5 nm), was deposited on a MgO(001) substrate. Figure 8b shows the typical XAS/XMCD
results around the L3 and L2 edges of Co with a magnetic field of 1.9 T (θ = 20◦) to saturate the
magnetization of the Fe/Co layer. The changes in the orbital magnetic moment and effective spin
magnetic moment (mS − 7mT) of Co were determined while using sum-rule analysis, and they are
summarized in Figure 8c,d. We can see that mL of Co with an electric-field of −0.2 V/nm is larger than
that corresponding to +0.2 V/nm. Moreover, the induced change in mL with θ = 20◦ is larger than that
with θ = 70◦. The experiment demonstrates that an orbital magnetic moment anisotropy change of
(0.013 ± 0.008)μB between the magnetization angles of θ = 20◦ and 70◦ was generated in the presence of
applied electric fields of ±0.2 V/nm. Figure 8d shows the electric-field-induced change in mS − 7mT of
Co. As with mL, mS − 7mT is enhanced under the application of a negative electric-field. Moreover, the
electric-field-induced change in the magnetic moment is anisotropic. In contrast to mT, it is known that
mS is not sensitive to the magnetization direction. Hence, the anisotropic part of the induced change in
the magnetic moment should be attributed to mT.
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Figure 8. Voltage-induced changes to the magnetic moment of Co in the Fe/Co/MgO system.
(a) Schematic of the sample structure. (b) Typical XAS/XMCD results around the Co-absorption
edges. (c) Voltage-induced change to the orbital magnetic moment in Co. (d) Voltage-induced changes
to the effective spin magnetic moment (mS − 7mT) in Co. Reprinted figure with permission from [113],
Copyright 2017 by the American Physical Society.

As discussed in the previous section, Equation (2) can be used to analyze the VCMA effect. If we
employ the spin-orbit interaction coefficient of Co, λCo = 5 meV, then the induced change in the
PMA energy is estimated to be 0.039 ± 0.023 mJ/m2 when the applied electric-field is switched from
+0.2 V/nm to −0.2 V/nm. Here, the experimentally obtained ΔmL = (0.017±0.010)μB was used. From
the VCMA coefficient in the Fe/Co/MgO system (−82 fJ/Vm), the PMA energy change at ±0.2 V/nm is
0.03 mJ/m2, which is in good agreement with the PMA energy change that was obtained using the first
term of Equation (2). From the discussion above, the change in the orbital magnetic moment anisotropy
in Co seems to explain the VCMA effect. However, the impact of the change in the magnetic dipole
Tz term (mT) that is shown in Figure 8d on the VCMA effect remains to be seen. In Ref. 113, a first
principles study was employed to clarify this point. As a result, the VCMA effect from the spin-flip
terms (ΔE↓↑ + ΔE↑↓) is found to be negligible and that from the spin-conserved terms (ΔE↑↑ + ΔE↓↓)
appeared to be dominant. Therefore, the change in orbital magnetic moment is responsible for the
VCMA effect. Due to the large exchange splitting for Co, the observed changes in mT do not contribute
to the VCMA effect, as described by the second term in Equation (2).

It has been reported that the spin-orbit interaction energy from a spin-flip virtual excitation
process makes a significant contribution to the VCMA effect when 3d/5d-layered transition metals
are employed [116]. Figure 9a shows an experimental design and a high-angle annular dark-field
scanning transmission electron microscopy (HAADF-STEM) image of the device. Figure 9b shows
the typical results of the polarization-averaged XAS and its XMCD around the L3 and L2 energy
edges of Pt. A perpendicular magnetic field of ±60 mT was applied to saturate the magnetization of
FePt. Figure 9c,d show electric-field-induced changes in the magnetic moments of Pt. The results
confirm a clear bias voltage inductions of mS − 7mT, while there is no significant change to mL under
voltage applications.

In general, in low-symmetry systems, such as interfaces, the atomic electron orbital may possess an
electric quadrupole moment. If the atom is also spin-polarized, the electric quadrupole moment induces
the anisotropic part of the spin-density distribution, i.e., the magnetic dipole Tz term (mT) [114–116,118].
In contrast to mT, mS is not sensitive to the magnetization direction. In Ref. 116, the voltage-induced
change in mS − 7mT shows large magnetization direction dependence. Thus, the observations indicate
the significant induction of mT in Pt by an external voltage. A first-principles study was also conducted
for the FePt/MgO system, similar to the Fe/Co/MgO study. As a result, firstly, the monoatomic Pt layer
at the interface with MgO makes the dominant contribution to the VCMA effect. Moreover, while the
VCMA effect from the spin-conserved terms (ΔE↑↑ + ΔE↓↓) decreases the PMA energy, the VCMA
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effect that is induced by the applied voltage from the spin-flip terms of interfacial Pt increases the PMA
energy (ΔE↓↑ + ΔE↑↓). The total PMA energy in the FePt/MgO system increases under the condition of
electron depletion at the Pt/MgO interface, as the PMA energy increase by the spin-flip terms is greater
than the PMA energy decrease by the spin-conserved terms.

 
Figure 9. Voltage-induced changes to the magnetic moment of Pt in the Fe/Pt/MgO system.
(a) Schematic of the sample structure and its high-angle annular dark-field scanning transmission
electron microscopy (HAADF-STEM) image. (b) Typical XAS/XMCD results around the Pt-absorption
edges. (c) Voltage-induced change to the orbital magnetic moment in Pt. (d) Voltage-induced changes
to the effective spin magnetic moment (mS − 7mT) in Pt. Reproduced from [116]. CC BY 4.0.

To conclude, for the 3d-transition ferromagnetic metals, it is important to consider the orbital
magnetic moment anisotropy. The validity of the Bruno model [112] (first term of Equation (2) and
Figure 6a) has been experimentally demonstrated in Ref. 113. For the 3d/5d-multilayered ferromagnetic
metals, the orbital magnetic moment anisotropy in 3d-metals cannot completely explain the VCMA
effect. In addition to the magnetic moments in 3d metals, those in 5d metals should be considered
in treating the total PMA energy in the system. Moreover, both the orbital magnetic moments and
the electric quadrupole mechanisms (second term of Equation (2) and Figure 6b) of Pt dominate the
VCMA in the case of L10-FePt, as shown in Ref. 116. As discussed in the recent review paper [111],
it has been widely recognized that the XAS/XMCD spectroscopy is a powerful tool to investigate the
voltage-induced effects in spintronic devices [28,113,116,119–124].

A much larger VCMA coefficient can be obtained when compared with that of purely electronic
origin if we use a chemical reaction [122,125]. For example, a VCMA coefficient exceeding 10,000 fJ/Vm
originating from reversible oxygen ion migration has been demonstrated in the Co/GdOx system.
In Ref. 122, XAS/XMCD spectroscopy at the Co absorption edge was employed to a Ta (4 nm)/Pt
(3 nm)/Co (0.9 nm)/GdOx (33 nm)/Ta (2 nm)/Au (12 nm) multilayer and found that an applied voltage
changes the oxidation state and magnetization of the Co. Ref. 125 also reports real-time measurements
of such an electrochemical VCMA effect. The operating speed strongly depends on the applied voltage
and temperature, which strongly indicates that the electrochemical VCMA requires a thermal activation
process. The reported maximum speed was in the sub-millisecond range. Therefore, such large values
of the electrochemical VCMA seem attractive, but lie beyond the scope of VCMA studies for working
memory applications. A similarly large VCMA effect with limited operating speed has been observed
in many systems with electrochemical reactions [28,126,127] and/or charge traps [128,129].
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Recently, strain-induced modulation of electronic structures and its influence on the VCMA effect
has attracted attention [130,131]. For example, Hibino et al. reported a high VCMA coefficient of
+1600 fJ/Vm in a Pt/Co/Pd/MgO structure at 10 K [95]. Here, the thin Pd layer possesses a magnetic
moment that is induced by the proximity effect from the adjacent Co layer. At room temperature,
a conventional linear VCMA effect with an efficiency of −90 fJ/Vm was observed. On the other hand,
at lower temperatures below 100 K, a strong nonlinear VCMA effect appeared with the sign reversal.
They explained that the observed effect can be attributed to the temperature dependence of the strain
in the Pd. Similarly, Kato et al. reported a VCMA coefficient of over +1000 fJ/Vm at room temperature
in an Ir/tetragonal FeCo/MgO structure [132]. So far, only static measurements have been done in these
experiments. A demonstration of a high speed response is required to confirm whether they actually
originate from the purely-electronic VCMA effect or not.

4. Materials Research for a Large VCMA Effect

The VCMA coefficient is one of the most important parameters for the scalability design of
voltage-torque MRAM. When the cell size is reduced, we need to increase the PMA of the free layer to
maintain the target thermal stability. As described in Section 2, voltage-induced dynamic switching
requires the elimination of the PMA during the precessional dynamics.

Figure 10 shows a simple estimate of the PMA and VCMA coefficient required to consider the
scalability [34,35]. As the simplest example, if we assume a free layer whose PMA is only determined
by the interface magnetic anisotropy at the interface with the dielectric layer, the effective PMA energy
is expressed as

KPMA(E) =
Ki(E)
tfree

− 1
2
μ0M2

S (4)

Here, tfree and MS are the thickness and saturation magnetization of the free layer. Ki(E) is the
PMA under application of the electric-field (E), and it is given by

Ki(E) = Ki(E = 0) − ηE (5)

where η is the VCMA coefficient. The thermal stability Δ(E) of the free layer under the application of
the electric-field can be expressed by

Δ(E) =
KPMA(E)Atfree

kBT
= Δ0 − ηAkBT

E (6)

Here, A and Δ0 are the area of the free layer and the thermal stability under zero
electric-field, respectively.

Consequently, the VCMA coefficient, η, which is required to eliminate Δ0 can be expressed as,

η =
kBTΔ0

AESW
(7)

where ESW is the amplitude of the switching electric-field.
For the curves in Figure 10, it was assumed that tfree = 1 nm and ESW = 1 V/nm for each value

of Δ0. If we take cache memory applications as an example, the required KPMAtfree values range
from 0.2 mJ/m2 to 0.5 mJ/m2, depending on the target Δ0 values; consequently, the required VCMA
coefficient is estimated to be from 200 fJ/Vm to 500 fJ/Vm. The main memory applications need higher
KPMAtfree values in the range from 0.6 mJ/m2 to 1.5 mJ/m2. As a result, the required VCMA coefficient
is in the range from 600 fJ/Vm to 1500 fJ/Vm. However, in experiments that have only focused on
the purely-electronic VCMA effect, the achieved VCMA coefficient that is demonstrated in practical
materials, such as CoFeB, has been limited to about 100 fJ/Vm [71,78,81,98].
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Figure 10. Scalability issue for voltage-torque MRAMs. The dependence of the required KPMAtfree and
VCMA coefficient on the diameter of the MTJ was estimated for each thermal stability factor (Δ0).

We employed a fully epitaxial Cr/ultrathin Fe/MgO system as a standard system for the materials
research of VCMA effect [133], because large interface magnetic anisotropy can be obtained due to the
flat and well-defined Fe/MgO interface [134–136] when compared to MTJs with noble metal buffers,
which can have the problem of surface segregation [137]. To evaluate the VCMA properties, we used
molecular beam epitaxy to prepare orthogonally-magnetized MTJ structures that consisted of a MgO
seed (3 nm)/Cr buffer (30 nm)/ultrathin Fe (tFe)/MgO (tMgO = 2.3 nm)/Fe(10 nm) on MgO(001) substrates.
Here, the bottom ultrathin Fe layer is the voltage-controlled free layer with perpendicular magnetic
easy axis and the top 10 nm-thick Fe is the in-plane magnetized reference layer. Figure 11a shows an
example of the applied bias voltage, Vbias, and dependence of the half-MR loop measured under an
in-plane magnetic field, Hex. The vertical axis is normalized using the maximum (Hex = 0 Oe) and
minimum (Hex = −20 kOe) resistances. The Fe thickness is fixed at tFe = 0.44 nm.

The application of an in-plane magnetic field tilts the magnetization of the ultrathin Fe layer into
the magnetic hard axis, while that of the reference layer remains in the film plane (see the drawings
in Figure 11a). Therefore, the effective perpendicular anisotropy field is reflected in the saturation
behavior of tunneling resistance. The tunneling conductance, G, depends on the relative angle (θ)
between the magnetizations of the free and reference layers, i.e. G(θ) = G90 + (GP−G90)cosθ. Here, G90

and GP are the conductance under the orthogonal and parallel magnetization configurations. Therefore,
the ratio of the in-plane component of the magnetization of the free layer, Min-plane, to its saturation
magnetization, MS, is expressed as

Min−plane

MS
= cosθ =

R90 −R(θ)
R(θ)

RP

R90 −RP
(8)

where RP is the MTJ resistance in the parallel magnetization configuration, R90 is the MTJ resistance in
the orthogonal magnetization configuration, and R(θ) is the MTJ resistance when the magnetization of
the ultrathin Fe layer is tilted towards the in-plane direction at angle θ under the application of an
in-plane magnetic field. Using Equation (8), we can evaluate the normalized in-plane magnetization
versus the applied magnetic field. The inset in Figure 11b shows an example of a normalized M-H
curve measured under Vbias = 10 mV. The PMA energy, KPMA can be calculated from Min-plane (H)
with the saturation magnetization value evaluated by SQUID measurements (yellow area in the inset
of Figure 11b). Figure 11b summarizes the applied electric-field, Vbias/tMgO, dependence of KPMAtFe.
With ultrathin layers of Fe, an unexpected nonlinear VCMA effect was observed. Under the application
of negative voltages, the PMA monotonically increases with a large VCMA coefficient of −290 fJ/Vm.
On the other hand, the PMA deviates from a linear relationship under the application of positive
voltages. Figure 12 summarizes the Fe thickness dependence of the VCMA coefficient. This nonlinear
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VCMA effect was only observed with ultrathin layers of Fe, tFe < 0.6 nm (blue dots), and the usual
linear VCMA effect appears for thicker layers (red dots). Xiang et al. systematically investigated the
tunneling conductance, the PMA, and the VCMA effect in a similar system to determine the origin
of the nonlinear VCMA effect, but the MgO was replaced by a MgAl2O4 barrier, which has smaller
lattice mismatch with Fe. Interestingly, they found strong correlation between the VCMA effect and
the quantum well states of Δ1 band formed in an ultrathin Fe layer that is sandwiched between the
Cr and MgO layers [138]. These results may indicate that artificial control of the electronic states in
an ultrathin ferromagnetic layer may provide a new approach for designing the VCMA properties.
In addition to the influence of quantum well states, we found that intentional Cr doping at the Fe/MgO
interface can enhance the PMA and the VCMA effect [62]. Therefore, intermixing with the bottom Cr
buffer may also have an influence on the observed large VCMA effect. A theoretical investigation to
understand the role of the inter-diffused Cr atoms has been proceeded [139,140].

 
Figure 11. (a) Bias voltage dependence of normalized tunnel magnetoresistance (TMR) curves measured
under in-plane magnetic fields for an orthogonally magnetized MTJ consisting of Cr/ultrathin Fe
(0.44 nm)/MgO/Fe (10 nm). The inset shows a cross-sectional TEM image of the MTJ. (b) Applied
electric-field dependence of KPMAtFe values. The inset displays an example of a normalized M-H curve.
KPMA was evaluated from the yellow-colored area with the saturation magnetization value that was
obtained by a SQUID measurement. Reprinted figure with permission from [133], Copyright 2017 by
the American Physical Society.

 
Figure 12. Fe thickness dependence of the VCMA coefficient observed in a Cr/ultrathin Fe(tFe)/MgO/Fe
structure. A large VCMA coefficient with nonlinear behavior was found in the thinner Fe thickness
range, tFe < 0.6 nm (blue dots). Reprinted figure with permission from [133], Copyright by the American
Physical Society.
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A large VCMA effect can be obtained with the Cr/ultrathin Fe/MgO system; however, we can only
induce an enhancement in the PMA. As explained in Section 2, reduction in the PMA is required for
voltage-induced dynamic switching of the perpendicularly-magnetized free layer.

Nakamura et al. proposed inserting a heavy metal monolayer at the Fe/MgO interface to improve
the VCMA properties, and found using first-principles calculations that 5d transition metals, such as
Ir and Os, would be effective in enhancing the VCMA coefficient [141]. A few experimental trials of
interface engineering that included the insertion of a heavy metal layer at a CoFe-based film/MgO
interface have been reported [81,142]; however, the VCMA coefficient was still less than 100 fJ/Vm.
Ir seems to be a promising candidate for this purpose due to its huge spin-orbit coupling constant,
which is more than 10 times larger than that of 3d transition ferromagnets [141].

We prepared multilayer structures consisting of Cr (30 nm)/ultrathin Fe(tFe)/Ir(tIr)/MgO (2.5 nm)
with indium-tin oxide (ITO) or Fe (10 nm) top electrodes to investigate the impact of the introduction
of Ir on the interfacial PMA and the VCMA effect [35]. The ultrathin Ir layer was inserted between the
Fe and MgO layers; however, we found that the Ir atoms were dispersed inside the Fe layer during the
post-annealing process, as seen in the HAADF-STEM images in Figure 13a. Atomic-scale Z-contrast
HAADF-STEM imaging enabled the identification of inter-diffused Ir atoms as bright spots that are
indicated by yellow arrows. The first-principles calculation predicts strong in-plane anisotropy at the
Ir/MgO interface [141]; however, we observed an unexpected enhancement in the PMA. Figure 13b
shows a comparison between the polar MOKE hysteresis curves of a single Fe layer (tFe = 1.0 nm)
and an Ir-doped Fe layer formed the bilayer structure consisting of Fe (1.0 nm)/Ir (0.1 nm)). The pure
Fe layer exhibits large saturation fields of about 7 kOe, which indicated an in-plane magnetic easy
axis. On the other hand, the introduction of the quite thin Ir doping layer resulted in transition of
the magnetic easy axis from the in-plane to the out-of-plane direction. Figure 13c summarizes the
dependence of the intrinsic interfacial magnetic anisotropy, Ki,0, on the thickness of the Ir layer. With
appropriate Ir doping, Ki,0 reaches 3.7 mJ/m2, which is about 1.8 times that observed at the Fe/MgO
interface (2.0 mJ/m2) [35,134].

 
Figure 13. (a) HAADF-STEM images of a multilayer structure of Cr/ultrathin Ir-doped Fe/MgO.
Inter-diffused Ir atoms can be identified by atomic-scale Z-contrast HAADF-STEM imaging as indicated
by the yellow arrows. (b) Comparison of the polar MOKE hysteresis curves for pure Fe (1 nm)/MgO
and Fe (1 nm)/Ir (0.1 nm)/MgO structures. (c) Dependence of the intrinsic interface magnetic anisotropy
energy, Ki,0, on the thickness of the Ir layer. Reproduced from [35]. CC BY 4.0.
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The Ir doping also has an effect on the VCMA. Figure 14a shows an example of the bias voltage effect
on the TMR curves that were measured under in-plane magnetic fields for an orthogonally-magnetized
MTJ with an Ir-doped Fe free layer (tFeIr = 0.82 nm; formed from Fe (0.77 nm)/Ir (0.05 nm)). The saturation
field shifts with changes in the applied voltage, as is the case in a pure Fe/MgO structure. However, the
applied electric-field dependence of KPMAtFeIr exhibits a completely different trend when compared
with that observed in the Fe/MgO structure. We observed a large reduction in PMA with a VCMA
coefficient of −320 fJ/Vm under positive voltages (see Figure 14b). It is interesting that such a low
doping concentration of Ir, which is even thinner than one monolayer, can have a drastic effect on
the VCMA properties. In addition, voltage-induced FMR measurements confirmed the high speed
response of the VCMA effect, as shown in the inset in Figure 14b. Thus, the observed large VCMA
comes from purely-electronic origin.

 
Figure 14. (a) Bias voltage dependence of normalized TMR curves measured under in-plane magnetic
fields for an orthogonally-magnetized MTJ consisting of Cr/Ir-doped Fe(0.82 nm)/MgO/Fe(10 nm). (b)
Applied electric-field dependence of KPMAtFeIr. The inset shows an example of voltage-induced FMR
excitation measured by a homodyne detection technique, which proves the high speed responsiveness
of the observed VCMA effect. Reproduced from [35]. CC BY 4.0.

A theoretical analysis using first-principles calculation was performed in Cu(5ML)/
Fe94Ir6(5ML)/MgO(5ML) structures to discuss the physical origin of the large VCMA effect in Ir-doped
Fe. The Ir-doped bcc Fe was modeled by a supercell consisting of 4×4 unit cells as shown in Figure 15a.
Figure 15b depicts the atomic-resolved electric-field induced magnetic anisotropy energies (MAE) for
the Fe and Ir atoms. The variation in the MAE for the Ir atoms is more than five times greater than
that for the Fe atoms. Interestingly, MAE change in the second layer (layer 2 in Figure 15b) from the
interface with the MgO layer is larger than that of the layer 1, contrary to expectations.

We also attempted to divide the MAE into contributions from the spin-flip and spin-conserved
terms between the occupied and unoccupied states. Figure 15c shows the voltage-induced changes
in MAE that arise from second-order perturbation of the Ir sites in layers 1 and 2. The electric-field
modulation of the spin-conserved term for the majority spin occupied and unoccupied states δE↑↑ is
larger than that for the minority spin states δE↓↓. On the other hand, the spin-flip terms that are by the
electric-field, δE↑↓ and δE↓↑ have almost the same absolute value, but with opposite sign, so the VCMA
effect that arises from the spin-flip term is small. Therefore, the large VCMA effect in Ir-doped Fe is
mainly caused by the electric-field effect on the majority spin Ir-5d states and it can be interpreted by
the modulation in the first term of Equation (2), i.e. the orbital magnetic moment mechanism.
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Figure 15. First principles calculations of the electric-field induced magnetic anisotropy energy change
in an Ir-doped Fe/MgO system. (a) Supercell structure used for the calculation, consisting of MgO
(5 ML)/FeIr (5 ML)/MgO (5 ML). (b) Atomic-resolved magnetic anisotropy energies (MAE) change
induced by an electric-field of 0.1 V/nm in MgO. The Ir concentration was maintained at about 6%
in the FeIr layer. (c) The electric-field induced MAE arising from second-order perturbation of the
spin-orbit coupling for Ir atoms in layers 1 and 2. Reproduced from [35]. CC BY 4.0.

Figure 16 shows the density of states for Ir atoms in layer 2. The majority spin 5d states are
dominant near the Fermi level, since the minority spin 5d states near the Fermi level form bonding
and anti-bonding states by hybridization with the minority spin Fe-3d states. On the other hand,
the majority spin 5d states are well-localized when compared with the minority spin states near the
Fermi level. Figure 16 also shows the MAE as a function of the Fermi energy shift (black line). The PMA
energy is drastically modified by a small shift in Fermi energy reflecting the localized majority spin
states and the large spin-orbit coupling of the Ir atoms. As a result, a large VCMA is obtained for the
charge-doping effect even in layer 2.

 
Figure 16. Spin polarized local density of states of Ir-5d orbitals and magnetic anisotropy energy as a
function of the band energy in layer 2.
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The theoretical calculations predict the larger VCMA effect exceeding a few thousand fJ/Vm by
inserting a monolayer of Ir at the Fe/MgO interface; however, such a structure can drastically degrade
the TMR properties in the MTJ device, in addition to the strong in-plane anisotropy. On the other
hand, if Ir doping can improve both the PMA and the VCMA effect while minimizing degradation
in TMR, the MTJs should be much more manufacturable, even by sputtering processes. In fact, the
enhancement of the PMA and the VCMA effect by Ir doping has also been confirmed in polycrystalline
MTJs that are mainly prepared by sputtering [143]. We still have numerous choices for the 4d and 5d
elements, therefore materials engineering using heavy metal doping has enormous possibilities for
further improvement in the interfacial PMA and VCMA properties.

5. Towards Reliable Voltage-Induced Dynamic Switching

In this section, recent experimental trials for reliable voltage-induced dynamic switching are
discussed. As shown in Figure 4, voltage-driven magnetization switching is initiated by precession
of the magnetization that is induced by the VCMA effect and the associated voltage-torque, which
is proportional to the time derivative of the applied voltage. During the application of a voltage,
the magnetization precesses around the effective field while undergoing magnetization damping.
Once the voltage is turned off, the magnetic anisotropy immediately recovers as the ferromagnetic
layer/dielectric layer junction discharges, and the magnetization relaxes into one of two polarities.
We can achieve bipolar magnetization switching using a unipolar voltage pulse with a controlled
duration since the polarity of the final state can be controlled by the voltage pulse width. In the
absence of thermal fluctuations, the magnetization trajectory during the switching process is uniquely
determined for a given initial state and voltage pulse shape, and therefore error-free magnetization
switching can be achieved by choosing the appropriate voltage pulse width. However, in practice,
the magnetization inevitably suffers thermal fluctuations and that results in the stochastic generation of
write errors. Special care must be taken when attempting to reduce the write errors in voltage-torque
MRAM cells. In the case of STT, the current polarity determines the polarity of magnetization switching,
and a longer pulse may be used to reduce write errors. On the other hand, in the case of voltage-induced
dynamic switching, a longer pulse dampens the magnetization along the effective field direction, and
this degrades the switching accuracy.

Although earlier experiments have characterized the basics of voltage-driven magnetization
switching, it was only in 2016 that the WER in a practical MTJ was quantitatively evaluated for the
first time [105]. Figure 17a shows a schematic illustration of an experimental setup for evaluating the
WER of an MTJ. Voltage pulses that were generated by the pulse generator are fed to the MTJ and
these switch the free layer magnetization. The free layer magnetization direction, either parallel or
antiparallel with respect to the reference layer magnetization, can be monitored via the TMR effect.

Figure 17b displays the typical behavior of voltage-driven magnetization switching; Psw is the
switching probability, tpulse is the pulse width; and, Vpulse is the voltage amplitude. When Vpulse is small,
the VCMA effect cannot completely eliminate the magnetic energy barrier; therefore, the magnetization
switching in this region is dominated by thermal activation. As Vpulse is increased, well-defined
oscillation of Psw appears, which is a signature of precession-mediated switching induced by the VCMA
effect. As discussed in Section 2, the highest Psw is obtained at tpulse that corresponds to one-half the
magnetization precession cycle, and then Psw gradually moves toward 0.5 while undergoing damped
oscillations. This behavior can be understood as the combined action of magnetization damping and
thermal fluctuations.

In Ref. 105, Shiota et al. employed perpendicularly magnetized MTJ (p-MTJ) that consisted of a
reference layer/MgO/Fe80B20/W cap and experimentally demonstrated a WER of 4 × 10−3. They also
demonstrated in numerical simulations that the WER could be reduced by improving the thermal
stability factor, Δ and by reducing the magnetic damping, α of the free layer, as shown in Figure 17c.
An improved Δ effectively reduces the thermal fluctuations in the initial state and in the relaxation
process after switching. Moreover, a lower α can reduce the influence of thermal fluctuations during
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the switching process, which leads to more accurate writing. However, it should be noted that, the
larger the value of Δ, the larger the VCMA efficiency required, otherwise the magnetization switching
is dominated by thermal activation, and well-controlled magnetization switching cannot be obtained.
By using CoFeB/MgO/CoFeB p-MTJs, Grezes et al. experimentally investigated the WER and the read
disturbance rate as a function of read/write pulse width and amplitude, and examined the compatibility
of the bit-level device performance for integration with CMOS processes [110]. They also simulated
the performance of a 256 kbit voltage-torque MRAM block in a 28 nm CMOS process, and showed
the capability of the MTJs for delivering WERs below 10−9 for 10 ns total write time by introducing
the read verify processes. The introduction of read verify processes makes it possible to reduce the
effective WER, however it causes an increase in the total writing time. Therefore, we need further
effort to reduce the essential WER that is induced by single pulse switching. Recently, Shiota et al.
showed that improvement in the PMA and VCMA properties can be achieved in the MTJ consisting
of Ta/(Co30Fe70)80B20/MgO/reference layer, and demonstrated a WER of 2 × 10−5 without the read
verify process [106]. Further optimization of the composition of the CoFeB alloy and the device
structure allowed for a WER lower than 10−6 to be achieved, as shown in Figure 18 [109]. In this case,
the introduction of a once read verify process enables a practical WER of the order of 10−12.

 

Figure 17. (a) Experimental setup for evaluating the WER of an MTJ. (b) Pulsed-voltage-driven
magnetization switching in a p-MTJ. (c) WER as a function of Δ obtained from numerical simulations.

In addition to materials engineering, a physical understanding of the voltage-driven magnetization
dynamics is also needed in order to facilitate reductions in the WER. Recent studies [107,108] showed
that numerical simulations that are based on the macrospin approximation could well reproduce
the experimental data by taking into account thermal fluctuations and magnetization damping.
In macrospin approximation, the free layer spins are represented by a magnetic moment M, and its
time evolution can be obtained by numerically solving the Landau-Lifshitz-Gilbert equation:

dM
dt

= γM×Heff +
αM
Ms
× dM

dt
(9)

where Ms is the saturation magnetization, t is the time, α is the damping constant, and Heff is the
effective field given by

Heff = − dE
dM

(10)
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and E is the energy density expressed as

E = KPMA
(
1−m2

z

)
−MsHxmx (11)

where m = (mx, my, mz) is the magnetization unit vector and Hx is an in-plane bias magnetic field.
As displayed in Figure 19a, without the VCMA effect, the magnetization has two energy equilibrium

at m̃± =
(
m̃x, 0, ±

√
1− m̃2

x

)
, where m̃x = MsHx/(2KPMA), one maximum at mx = −1, and one saddle

point at mx = 1. By letting KPMA fall to zero, the magnetization precesses around Hx associated with
damping, and the appropriate duration can switch the magnetization direction.

Figure 19b displays a typical plot of the dependence of WER on tpulse that was observed in an
MTJ consisting of a Ta/(Co30Fe70)80B20 (1.1 nm)/MgO/reference layer. The amplitude of the in-plane
component of the bias magnetic field is 890 Oe. The filled circles and the line denote data were
obtained from experiments and numerical simulations, respectively [107]. Good agreement with
the experimental data suggests the validity of the model used for the numerical simulations. It is
noteworthy that the WER exhibits a local maximum at a certain tpulse, which cannot be explained
just by considering the VCMA effect. A detailed analysis of the magnetization trajectory revealed
that thermal agitation during the relaxation process (i.e., after the pulse application) induces the
transition of the magnetization between the precession orbits surrounding the energy minima and that
the precession-orbit transition enhances the WER. The numerical simulations also revealed that the
probability of the precession-orbit transition depends on tpulse (see Ref. 107 for more details). In the
present case, the probability is maximized at around tpulse = 0.12 ns. This results in the appearance of a
local maximum in the WER, and it narrows the operating tpulse range for which reliable magnetization
switching is assured. As the appearance of the WER local maximum is related to magnetization
fluctuations during the relaxation process, we need to reduce its influence by improving the PMA and
VCMA properties in order to achieve a wide operating tpulse range.

 
Figure 18. Example of the optimized WER as a function of tpulse observed in a perpendicularly-
magnetized MTJ consisting of Ta/(Co50Fe50)80B20/MgO/reference layer. The blue and red symbols
represent the WER of parallel (P) to antiparallel (AP) and AP to P switching, respectively. Reprinted
figure with permission from [109], Copyright 2019 by the IOP Publishing Ltd.
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Figure 19. (a) Contour plot of energy density in the absence of a bias voltage. (b) Appearance of a local
peak in the WER observed in an MTJ consisting of Ta/(Co30Fe70)80B20 (1.1 nm)/MgO/reference layer.
The filled circles and the lines represent experimental data and numerical simulations, respectively.
Reprinted figure with permission from [107], Copyright 2018 by the American Physical Society.

In addition to tpulse, a recent study revealed that the WER depends in a unique manner on the
rise time (trise) and fall time (tfall) [108]. Figure 20 displays the magnetization trajectories that were
obtained by using three different waveforms. When a pulsed voltage is applied, the magnetization
rotates from m+ towards m− (red line) and, after the pulse, the magnetization relaxes to either m̃+ or
m̃−, depending on tpulse (green line). An important thing is that, due to the nonzero magnetization
damping, the magnetization direction at the end of the voltage pulse (m′) never reaches m̃+ or m̃−
whatever tpulse is chosen as long as one uses square pulses (Figure 20a). Therefore, it takes some time
before the magnetization settles down to the energy minimum. During that time, the magnetization is
subjected to thermal agitation, and a finite number of write errors will be counted. When a nonzero
trise and/or nonzero tfall is introduced, the magnetization is subjected not only to Hx, but also to the
anisotropy field due to the uncompensated PMA KPMA

′(V,t), which is given by

Hani = −
2K′PMA(V, t)mz

Ms
(12)

Since the polarity of Hani switches according to the polarity of mz, it applies additional torque to the
magnetization that tilts the magnetization to Hx during trise (Figure 20b), and it pulls the magnetization
away from Hx during tfall (Figure 20c). As a result, for trise = 0.085 ns, m′ comes closer to the saddle
point, whereas, for tfall = 0.085 ns, m′ almost overlaps with m̃− and thereby one can minimize the time
that is required for relaxation. This suggests that there is a certain tfall which can minimize the WER.
Indeed, such WER reduction is experimentally obtained and the numerical simulations reproduce it,
as shown in Figure 20d,e.

The inverse bias method is another unique technique for reducing the WER. Figure 21a illustrates
the write sequence of the conventional and inverse bias methods. In the inverse bias method, a bias
voltage with a negative polarity is applied before and after the write pulse. If the system exhibits a
linear VCMA effect, then the inverse bias enhances the KPMA of the free layer, and thereby reduces
the thermal fluctuations in the initial state and during the relaxation process. It should be noted that
inverse biases can also be used for the pre-read and read verify processes, which thereby offers a
read-disturbance-free operation as well as WER reduction. Noguchi et al. first proposed the inverse
bias method [37] and the effectiveness was later studied using numerical simulations [144]. In Ref. 144,
a substantial reduction in WER was confirmed by introducing inverse biases, whose absolute intensity
was the same as that of the write pulse, but with opposite sign (see Figure 21b).
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Figure 20. (a)–(c) Effects of pulse shaping on magnetization trajectory. The red and green lines represent
the magnetization trajectory during and after application of the pulse, tpulse, respectively. (d), (e) WER
minimum as a function of rise time (blue symbols) and fall time (red symbols). (d) experimental results;
(e) numerical simulation results. Reprinted figure with permission from [108], Copyright 2019 by the
American Physical Society.

 
Figure 21. (a) Comparison of write pulse sequence in conventional and inverse bias methods.
(b) Numerically obtained WER as a function of Δ using two different methods.
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Since precise control of voltage-driven magnetization switching relies on the precise control of the
voltage pulse shape, accurate calculation and shaping of the voltage pulse waveform [38,145] are also an
important technique for studying the voltage-driven magnetization dynamics in detail. The procedure
that is presented in Ref. 145 allows for one to accurately analyze and control the voltage waveform
applied to an MTJ. This is especially important in the development of voltage-torque MRAM, because
the MTJ resistance becomes much higher than 50 Ω to suppress the flow of charge current, whereas
nearly all microwave interconnects have a characteristic impedance of 50 Ω. This impedance mismatch
gives rise to multiple reflections between the signal source and the MTJ, and/or the deformation of the
waveform, and this obscures the correlation between the applied voltage waveform and the induced
magnetization dynamics.

An external bias magnetic field has been used to determine the axis for magnetization precession
in most experimental demonstrations of voltage-induced dynamic switching. However, the application
of a magnetic field is not suitable for practical circuits. Therefore, we also need efforts to replace the
external bias field by an effective field, such as through crystalline anisotropy and exchange bias fields.
Matsumoto et al. proposed using a combination of a conical magnetization state and shape anisotropy
to induce precessional switching under zero-bias magnetic field [146]. Conical magnetization states
have been mainly studied in multilayer structures containing Co, such as Co/Pt and Co/Pd [147–149],
however recently it can be realized, even in a practical CoFeB/MgO structure [150–152]. Therefore, the
above proposed structure might be applicable if we can realize a sufficiently-high thermal stability
while keeping the conical states.

6. Conclusions

Electric-field control of spin has the potential to make substantial impact on the development of
novel nonvolatile memory with ultra-low operating power, as well as the expected zero stand-by power.
The utilization of the voltage-controlled magnetic anisotropy (VCMA) effect is a promising approach
to realizing voltage-torque MRAMs. Bi-stable magnetization switching has been demonstrated while
using precessional dynamics that are induced by the VCMA effect. The purely-electronic VCMA effect
originates from electric-field induced modification of the electronic structure at the interface between
an ultrathin ferromagnet and a dielectric layer, such as MgO. In a 3d transition ferromagnet, e.g. Fe and
Co, the voltage-induced change in the orbital magnetic moment plays an important role in the origin of
the VCMA effect through the carrier accumulation/depletion effect at the interface. On the other hand,
in a 3d/5d composite system, e.g. L10-FePt film, an electric quadrupole mechanism also has significant
influence on the VCMA effect. To increase of the VCMA coefficient, the utilization of proximity-induced
magnetism in a 5d transition metal, which has large spin-orbit coupling, is promising. A large VCMA
coefficient of −320 fJ/Vm has been achieved in an Ir-doped ultrathin Fe layer with a demonstration
of high-speed responsiveness. As for the reliability of writing while using voltage-induced dynamic
switching, low write error rates of the order of 10−6 have been realized by improving the thermal
stability and the VCMA effect in practical perpendicularly-magnetized MTJs. Further enhancement
in the VCMA coefficient is the key to demonstrating the potential for scalability and realizing more
reliable switching for voltage-torque MRAM. A novel nonvolatile memory maintaining low operating
power as well as zero stand-by power can provide a broader option for the design of memory hierarchy
in future data-driven society. We expect that the voltage-torque MRAM has the potential to be
applied in IoT edge devices and wearable/implantable computing systems, in which, ultimately, low
power consumption is strongly demanded. Furthermore, the voltage-control of spin may also lead to
the improvement in other spintronic devices, such as a voltage-tuned magnetic sensor, spin-torque
oscillator, and spin-based neuromorphic devices.
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Abstract: Wire resistance in metal wire is one of the factors that degrade the performance of memristor
crossbar circuits. In this paper, an analysis of the impact of wire resistance in a memristor crossbar
is performed and a compensating circuit is proposed to reduce the impact of wire resistance in
a memristor crossbar-based perceptron neural network. The goal of the analysis is to figure out
how wire resistance influences the output voltage of a memristor crossbar. It emerges that the
wire resistance on horizontal lines causes the neuron’s output voltage to vary more than the wire
resistance on vertical lines. More interesting, the voltage variation caused by wire resistance on
horizontal lines increases proportionally to the length of metal wire. The first column has small
voltage variation whereas the last column has large voltage variation. In addition, two adjacent
columns have almost the same amount of voltage variation. Under these observations, a memristor
crossbar-based perceptron neural network with compensating circuit is proposed. The neuron’s
outputs of two columns are put into a subtractor circuit to eliminate the voltage variation caused by
the wire resistance. The proposed memristor crossbar-based perceptron neural network is trained to
recognize the 26 characters. The proposed memristor crossbar shows better recognition rate compared
to the previous work when wire resistance is taken into account. The proposed memristor crossbar
circuit can maintain the recognition rate as high as 100% when wire resistance is as high as 2.5 Ω.
By contrast, the recognition rate of the memristor crossbar without the compensating circuit decreases
by 1%, 5%, and 19% when wire resistance is set to be 1.5, 2.0, and 2.5 Ω, respectively.

Keywords: memristor; crossbar array; wire resistance; synaptic weight; character recognition

1. Introduction

Neuromorphic computing, inspired from biological perception, was introduced by C. Mead in the
late 1980s [1]. It has been expected to become an alternative architecture to overcome the bottleneck
of von Neumann computer architectures [1,2]. Neuromorphic computing refers to a hardware
implementation of a brain-inspired system, which has the capabilities of parallel processing like a
human brain. For realizing neuromorphic computing systems, various research activities, based on
CPUs (Central Processing Units), GPUs (Graphics Processing Units), FPGAs (Field-Programmable Gate
Arrays), analog circuits, memory circuits, etc., have been proposed in the past two decades [3–8]. These
architectures are based on CMOS (Complementary-Metal-Oxide-Semiconductor) technology, which
is approaching the end of their capabilities because scaling CMOS down faces several fundamental
limiting factors stemming from electron thermal energy and quantum-mechanical tunneling [9,10].
The memristor crossbar array has been one of the promising candidates for realizing neuromorphic
computing systems because crossbar architecture can be made with high density and low cost [11].
Memristor was postulated by Leon O. Chua in 1971 as the fourth basic circuit element and experimentally
demonstrated by HP Lab in 2008 [12,13]. A memristor is a resistor with modifiable resistance, which
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makes it ideal for mimicking the synaptic plasticity of biological neurons [14]. The early memristor-based
synaptic circuits are composed of memristors and CMOS transistors [15–17]. However, pure memristor
crossbar arrays without CMOS devices seem to be more efficient in terms of their integration and
power consumption [18–23]. Miao Hu et al. proposed a crossbar synaptic array that is composed of a
plus and minus crossbar array representing plus- and minus-polarity connection matrices for analog
neuromorphic computing [20]. Such a pure memristor crossbar array is very effective in realizing the
bio-inspired systems in term of power consumption and area occupation. To reduce area and power
consumption, S. N. Truong proposed a new memristor crossbar array architecture which is composed
of a single memristor array and a constant-term circuit [21].

In a memristor array, some amount of voltage drop can be caused by interconnect resistance, also
known as wire resistance along the row and the column lines [19,24–27]. Wire resistance degrades the
performance of the circuit more seriously when the array size increases [25]. To mitigate the impact
of wire resistance, several interesting schemes were proposed [24–27]. These schemes are effective
when they are applied to a memristor crossbar array, in which memristors are used as binary switches
between two distinct high and low resistance states (HRS and LRS, respectively). However, the impact
of wire resistance in an analog memristor crossbar array for realizing the synaptic weight matrix
was not fully considered. In this work, we propose a memristor crossbar array with a compensating
circuit for implementing the analog synaptic array of a perceptron neural network. The impact of wire
resistance is mitigated by compensating the voltage variation of two adjacent columns.

In this work, the output voltages of columns are figured out with taking the existing of wire
resistance into account. The mathematical analysis and the simulation result show that the output
voltage of columns increase, which is caused by the amount of voltage lost from wire resistance. The
column close to the first one has a small variation of voltage, compared to the one far from the first
column. From these observations, we propose a compensating circuit to mitigate the voltage variation
caused by the wire resistance in a memristor crossbar array.

2. Materials and Methods

Figure 1 shows an interesting memristor array circuit for implementing the synaptic weight matrix
of a perceptron neural network [21]. A single memristor array and a constant-term circuit are used for
realizing the negative and positive synaptic weights, instead of using two complementary crossbar
arrays [20,21].

In Figure 1, gj,k is the memristor’s conductance at the crossing point between the jth row and the
kth column. VIN,j is the input voltage applied to the jth row. VC,k is the column-line voltage on the kth
column. The column line, VC,F, is added in Figure 1 instead of using another memristor array [21].
The column line, VC,F, is connected to the inputs, from VIN,1 to VIN,m. In Figure 1, VC,F enters GF that
constitutes an inverting OP amp with the negative feedback resistor, RF1. The output voltage of GF is
VF that is connected to all the column lines from VC,1 to VC,n via RF2, as shown in Figure 1. By applying
Kirchhoff current law to the column line, VC,F, we can calculate VF and VO,k with Equations (1) and (2).

VF = −
m∑

j=1

RF1

RB
VIN, j. (1)

VO,k = −
⎡⎢⎢⎢⎢⎢⎢⎣

m∑
j=1

(
R0 · g j,k ·VIN, j

)
+

R0

RF2
VF

⎤⎥⎥⎥⎥⎥⎥⎦. (2)

If we choose RF1 = RF2 and combining Equation (1) with Equation (2), the following Equation (3)
can be obtained [21].

VO,k = −
⎡⎢⎢⎢⎢⎢⎢⎣

m∑
j=1

(
R0 · g j,k −

R0

RB

)
VIN, j

⎤⎥⎥⎥⎥⎥⎥⎦. (3)
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If −
(
R0 · g j,k − R0

RB

)
is defined as a synaptic weight of the jth row and kth column, wj,k, we can

rewrite Equation (3) with Equation (4).

VO,k =
m∑

j=1

w j,kVIN, j, (4)

where w j,k = R0
(

1
RB
− g j,k

)
= R0

(
1

RB
− 1

M j,k

)
.

 
Figure 1. The memristor-based crossbar architecture with a single memristor array and a constant-term
circuit for realizing the synaptic matrix of a perceptron neural network [21].

Equation (4) is used for calculating the output voltage of the kth column. The output of each
column is a summation of the weighted inputs, hence each column works as a perceptron neuron.
In Equation (4), Mj,k is the memristance value of the crossing point between the jth row and kth column.
RB is a constant. The synaptic weight, wj,k, can be decided to be either negative or positive by adjusting
the memristance, Mj,k. The output of the perceptron neuron is decided by a threshold function which
produces 0 or 1. By adding the comparator to the output voltage, VO,k, we can decide if the neuron’s
output of the kth column, OUTk, should be activated or not.

OUTk =

{
1, if VO,k ≥ VREF

0, if VO,k < VREF
. (5)

In previous work, the impact of wire resistance is ignored. However, in the crossbar array, the
voltage drop along column and row lines cannot be omitted [19,24–27]. It becomes more serious when
the array size increases [24]. The wire resistance between two adjacent junctions is modeled by a
small-value resistor, r, as shown in Figure 2.
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Figure 2. Wire resistance between two adjacent junctions is modeled by a small-value resistor, r,
connecting between two crossing points. (a) Wire resistance on horizontal lines is omitted. (b) Wire
resistance on vertical lines is omitted.

For the sake of simplicity, in this section we analyze the circuit separately with respect to the
wire resistance on horizontal lines and the wire resistance on vertical lines, as shown in Figure 2a,b,
respectively. We define Vb1, Vb2 as the voltages of node b1, b2, which are on the first column. Generally,
Vbj is the voltage of node bj on the first column. Similarly, Vkj is the voltage of node kj, which is on the
jth column. Applying Kirchhoff current law for all nodes in Figure 2a, VF and VO,k can be estimated
as follows:

−VF
RF1

=
VIN,m−Vbm

RB
+ . . .+

VIN, j−Vb j
RB

+ . . .+
VIN,1−Vb1

RB

VF = −RF1

⎛⎜⎜⎜⎜⎝ m∑
j=1

VIN, j
RB
− m∑

j=1

Vb j
RB

⎞⎟⎟⎟⎟⎠.
(6)

−VO,k
R0

= (VIN,m −Vkm)gm,k + . . .+
(
VIN, j −Vkj

)
g j,k + . . .+ (VIN,1 −Vk1)g1,k +

VF
RF2

VO,k = −R0

⎛⎜⎜⎜⎜⎝ m∑
j=1

VIN, jg j,k −
m∑

j=1
Vkjg j,k +

VF
RF2

⎞⎟⎟⎟⎟⎠.
(7)

If we assume that RF1 = RF2, Equation (7) can be simplified as follow:

VO,k = −
⎡⎢⎢⎢⎢⎢⎢⎣

m∑
j=1

(
R0 · g j,k −

R0

RB

)
VIN, j −

m∑
j=1

R0Vkjg j,k +
m∑

j=1

R0
Vb j

RB

⎤⎥⎥⎥⎥⎥⎥⎦. (8)

By comparing Equation (8) and Equation (4), we can derive the variation of voltage, ΔV, which is
caused by wire resistance on the vertical lines.

ΔV = −
m∑

j=1

R0
Vkj

M j,k
+

m∑
j=1

R0
Vb j

RB
. (9)

Here Mj,k is the memristance of the crossing point between the jth row and the kth column. Vbj
and Vkj are the voltage at nodes bj and kj of the first column and the kth column, respectively, as shown
in Figure 2a. Mj,k is calculated using Equation (4). It is possible to infer that the variation of voltage
presented in Equation (9) can be very small because there are a negative term and a positive term in
the right side of Equation (9).
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In Figure 2b, wire resistance on vertical lines is omitted whereas wire resistance on horizontal
lines is taken into account. The voltages applied to the columns decrease because they are lost from
wire resistance. If we define Vj(k) as the amount of voltage drop on wire resistance, which is on the jth
row and between the (k − 1)th and kth column, the voltage applied to the jth row of the kth column is
calculated as Equation (10).

VIN, j(k) = VIN, j −
k∑

i=1

V j(i). (10)

Here VIN,j(k) is the voltage applied to the jth row of the kth column. The column-line voltage on
the kth column, VO,k, can be calculated using Equation (11).

VO,k = −
⎡⎢⎢⎢⎢⎢⎢⎣

m∑
j=1

(
R0 · g j,kVIN, j(k) − R0

RB
VIN, j

)⎤⎥⎥⎥⎥⎥⎥⎦. (11)

By comparing Equation (11) and Equation (3), we obtain the variation of voltage, ΔVk, of the kth
column as follows.

ΔVk =
m∑

j=1

R0g j,kVIN, j −
m∑

j=1

R0g j,kVIN, j(k). (12)

Calculating VIN,j(k) by using Equation (10), we obtain ΔVk as presented in Equation (13).

ΔVk =
m∑

j=1

⎛⎜⎜⎜⎜⎜⎝R0g j,k

k∑
i=1

V j(i)

⎞⎟⎟⎟⎟⎟⎠. (13)

Here
∑k

i=1 V j(i) is the sum of the voltage on k resistors on the jth row. Equation (13) indicates that
the output voltage of the kth column increases because of wire resistance. It is possible to infer that the
column close to the first column has small voltage variation and the column far from the first column
has large voltage variation. In Equation (13), the voltage variation increases proportionally to the
column’s index, k. Hence, it is interesting that two adjacent columns can have almost the same amount
of voltage variation. Due to this reason, we propose a memristor crossbar array with compensating
circuit to mitigate the voltage variation caused by wire resistance. By putting two adjacent columns
into a subtraction circuit, the voltage variation can be eliminated significantly. The proposed memristor
crossbar is schematically shown in Figure 3.

In Figure 3, the memristor crossbar is composed of 27 columns for recognizing 26 character
images. The first column is a constant-term circuit to generate a negative voltage, as mentioned in
the previous section. The remaining 26 columns represent 26 perception neurons trained to recognize
the 26 characters. The differential amplifies from Gs,2 to Gs,26 are inserted into the circuit. The gain of
these amplifiers is 1, so they work as the subtractors. The output voltages from VO,1 to VO,n are the
neuron’s output of columns from Col1 to Coln. VO,1 enter the comparator C1 to decide if the neuron’s
output of column Col1 should be activated or not. VO,2 and VO,1 go into Gs,2 that produces VOs,2. VOs,2

enters the comparator C2 to decide if the neuron’s output of column Col2 should be activated or not.
In general, the output voltage of the column Colk−1 and the column Colk enter the subtractor Gs,k for
generating the neuron’s output, VOs,k, of the column Colk. Using superposition theorem, VOs,k can be
calculated with the difference of VO,k − 1 and VO,k.

VOs,k = −VO,k−1

(
R4

R3

)
+ VO,k

(
R6

R5 + R6

)(
R3 + R4

R3

)
. (14)
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If we assume that R3 = R4 = R5 = R6, we can obtain:

VOs,k = VO,k −VO,k−1. (15)

The differential amplifier is able to reject any signal common to both inputs. That means, if two
adjacent columns have almost the same amount of voltage variation, the voltage variation is then
mitigated at the output.
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Figure 3. The proposed memristor crossbar with compensating circuit for implementing a perceptron
neural network. The outputs of two adjacent columns are put into a differential amplifier working as a
subtractor to eliminate the output voltage variation.

The concept of the proposed circuit is shown in Figure 4. The crossbar is trained to recognize the
26 characters from “A” to “Z”. The 25th column is for recognizing the character “Y”. The output of the
25th column is close to 1V when the input is “Y” and close to 0 when the other characters are applied
to the input. Similarly, the neuron’s output of the 26th column should be activated if the input is “Z”,
as indicated in Figure 4a. In Figure 4b, it is assumed that the wire resistance is present in the crossbar.
The output voltage increases as reasoned in the previous section. The two last neurons recognize the
input characters incorrectly, as demonstrated in Figure 4b. However, if we put the outputs of two
last columns into a subtractor, the voltage variation can be mitigated significantly, as illustrated in
Figure 4b. By doing this, we can maintain the recognition rate when wire resistance is present in the
crossbar circuit.
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Figure 4. The concept of the proposed circuit for compensating the output voltage variation caused
by wire resistance. (a) The ideal output of the 25th and 26th columns, which are trained to recognize
character images of “Y” and “Z”, respectively. (b) The output voltage of the 25th and 26th columns
when the wire resistance is taken into account. VOs,26 is the output of subtractor for the 26th column,
as depicted in Figure 3.

3. Results

The proposed memristor crossbar circuit in Figure 3 is verified for the application of character
recognition. Figure 5a shows eight × eight images of characters used in this simulation. Each character
is composed of 64 black-and-white pixels. The proposed memristor crossbar is composed of 64 rows
and 27 columns. The first column connects with all inputs through RB to generate the negative voltage
as mentioned in the previous section. The remaining 26 columns are for recognition of 26 characters
from “A” to “Z”. The 64 input voltages obtained from 64 pixels are applied to the inputs of 64 rows.

The red line in Figure 5b shows a hysteresis behavior of a real memristor based on the film
structure of Pt/LaAlO3/Nb-doped SrTiO3 stacked layer [28]. The black line in Figure 5b represents the
behavior model of the memristor used in this paper. This model can well describe various memristive
behaviors that come from different kinds of memristors [29]. The circuit simulation is performed using
the SPECTRE circuit simulation provided by Cadence Design Systems Inc. Memristors are modeled
using Verilog-A and the CMOS technology is given by SAMSUNG 0.13 mm process technology [29,30].
The Verilog-A model parameters are presented in [28]. The wire resistance between two adjacent
junctions is set to be 2.5 Ω for a 4F2 cross-point structure [19,31]. Figure 6a shows the neuron’s output
of the 25th column, which is trained to be activated when character “Y” is applied to the input. Ideally,
VO,25 is close to 1V for character “Y”, and close to 0V for others. However, the output voltage of
the 25th column, VO,25, is shifted up because of wire resistance, as reasoned in the previous section.
Similarly, in Figure 6b, the neuron’s output of the 26th column is shifted up as a result of the voltage
drop along wire resistance. It can be realized that if we compare the column’s output voltage, VO,26,
with the reference voltage, VREF, the neuron’s output of the 26th column can be activated for several
input characters, which consequently degrades the recognition rate. The output voltage of the 25th
column and the 26th column are put into a subtractor circuit to produce the neuron’s output voltage of
the 26th column, VOs,26. By doing this, the voltage variation is mitigated significantly, as demonstrated
in Figure 6c. When the character “Y” is applied to the inputs, VOs,26 is negative, because VO,25 is
higher than VO,26. For the character “Z”, VOs,26 is high, as indicated in Figure 6c. The simulation result
shown in Figure 6c indicates that the neuron’s output of the 26th column is only activated for the input
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character “Z”, because the variation of voltage caused by wire resistance is mitigated remarkably by
the subtractor circuit.

μ

Figure 5. (a) The eight × eight pixels images of characters used to test the proposed memristor crossbar
circuit. (b) The memristor’s current–voltage characteristic measured from the real device and the
memristor’s behavior model [28,29].

Figure 6. The simulation result of the proposed memristor crossbar array depicted in Figure 4. (a) The
neuron’s output of the 25th column without compensating circuit. (b) The neuron’s output of the 26th
column without compensating circuit. (d) The neuron’s output of the 26th column with compensating
circuit. The wire resistance between two adjacent junctions is set to be 2.5 Ω [19,28].

62



Micromachines 2019, 10, 671

The proposed circuit is tested with wire resistance that is varied from 0.5 to 2.5 Ω. This range
of wire resistance is commonly used and obtained from the International Technology Roadmap
for Semiconductors [24,25,31–34]. Figure 7 shows the comparison of the recognition rate between
the memristor crossbar without compensating circuit and the proposed memristor crossbar with
compensating circuit when the wire resistance is set to be 0.5, 1.0, 1.5, 2.0, and 2.5 Ω, respectively.
The recognition rate of the memristor crossbar without compensating circuit declines dramatically
when wire resistance increases. In particular, the recognition rate of the memristor crossbar without
compensating circuit is 99%, 95%, and 81%, when the wire resistance is set to be 1.5, 2.0, and 2.5 Ω,
respectively. By contrast, the proposed memristor crossbar with compensating circuit can maintain the
recognition as high as 100% when wire resistance is as high as 2.5 Ω.

Ω

Figure 7. The comparison of the recognition rate between the memristor crossbar without compensating
circuit and the proposed memristor crossbar with compensating circuit. The wire resistance is set to be
0.5, 1.0, 1.5, 2.0, and 2.5 Ω, respectively.

4. Discussion

Finally, we discuss the power and area overhead of the proposed memristor crossbar circuit.
The proposed circuit uses the compensating circuit constituted by an Op-Amp and four resistors.
The proposed circuit consumes more power and area, compared to the memristor crossbar without
compensating circuit. However, the proposed memristor crossbar with compensating circuit shows
better recognition rate by 19% than the previous memristor crossbar circuit, when wire resistance is set
to be 2.5 Ω. Because wire resistance in the crossbar cannot be omitted, the proposed scheme makes the
memristor crossbar-based perceptron neural network become more possible. The proposed circuit can
be applied to memristor-based crossbar architectures which are used in resistive memory and artificial
neural networks [34–36].

5. Conclusions

In this work, a memristor crossbar-based perceptron neural network with compensating circuit
is proposed. The neuron’s outputs of two columns are put into a subtractor circuit to eliminate the
voltage variation caused by wire resistance. The memristor crossbar-based perceptron neural network
is trained to recognize the 26 characters. The proposed memristor crossbar with compensating circuit
shows better recognition rate, compared to the previous memristor crossbar without compensating
circuit when wire resistance is taken into account. The simulation result shows that the proposed
circuit can maintain the recognition rate as high as 100% when the wire resistance is set to be 2.5 Ω.
By contrast, the recognition rate of the memristor crossbar without compensating circuit decreases by
19% when wire resistance is set to be 2.5 Ω.
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Abstract: Electrical performance of self-directed channel (SDC) ion-conducting memristors which
use Ag and Cu as the mobile ion source are compared over the temperature range of 6 K to 300 K.
The Cu-based SDC memristors operate at temperatures as low as 6 K, whereas Ag-based SDC
memristors are damaged if operated below 125 K. It is also observed that Cu reversibly diffuses
into the active Ge2Se3 layer during normal device shelf-life, thus changing the state of a Cu-based
memristor over time. This was not observed for the Ag-based SDC devices. The response of each
device type to sinusoidal excitation is provided and shows that the Cu-based devices exhibit hysteresis
lobe collapse at lower frequencies than the Ag-based devices. In addition, the pulsed response of the
device types is presented.

Keywords: chalcogenide; electrochemical metallization cell; electrochemical metallization (ECM);
ion conduction; memristor; self-directed channel (SDC)

1. Introduction

Self-directed channel (SDC) memristors are a type of chalcogenide-based electrochemical
metallization (ECM) device [1–7] in which it is posited that re-usable and irreversible ion-transport
channels are formed within the active chalcogenide layer during the first write operation [6,7].
The persistence of these channels, even after the device is cycled between high and low resistance states,
is considered the largest factor responsible for consistent SDC device state switching [6]. ECM devices
of many different material types, ranging from oxides, to chalcogenides, typically using Ag or Cu as
the ion source, are lauded as having the highest likelihood for success in next generation non-volatile
memory, neuromorphic computing, and space applications where a robust, radiation hardened, and
temperature tolerant device is desirable [1–4,6–20]. Investigation of ECM device operational theory
is ongoing since device improvement and good application-based device design requires a closer
understanding of how the devices work.

Recently, there has been a trend in the literature to classify all ECM device types as conductively
bridged random access memory (CBRAM) devices [4,21]. This generalization is in conflict with the
earlier literature where CBRAM was used to describe a specific device type in which a conductive
filament is formed through a solid solution, e.g., GexSe1-x (or GexS1-x) where x < 0.33 [10–13,22–31].
These devices have also been referred to as programmable metallization cell (PCM) devices [13,26–29].
Now, the CBRAM designation is used synonymously with ECM [4] and over the years has included
oxide-based materials as well as organic materials [32] and even BN films [33]. We classify the
SDC memristor as an ECM device but remove it from the general classification of CBRAM for three
reasons. First, the description of “GeSe-based CBRAM” is currently associated with a doped solid
solution GeSe-Ag system [25,28,30]. The SDC does not contain a doped solid solution; the device does
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not require Ag doping, nor allow doping [7]. Unlike the GeSe-Ag CBRAM device, the SDC device
structure contains material layers meant to store metal ions (the SnSe layer or other metal-chalcogenide
layer—see [7] for experimental data and a discussion of the effects of the metal on SDC operation) and
to facilitate fast switching; these are not present in the GeSe-Ag solid solution-based device.

Second, the fabrication methods, operation, temperature tolerance, device switching consistency,
and longevity of the SDC are significantly different from the GeSe-Ag CBRAM, so separation prevents
confusion between the two types of ECM devices. The SDC device can withstand higher fabrication
temperatures than other typical chalcogenide-based ECM devices, which gives it more flexibility
for manufacturing in a commercial facility. SDC devices have also been shown to operate at high
temperatures (150 ◦C) for an extended time without performance degradation, and have been shown
to function normally after reaching high temperatures (at least 250 ◦C) [6]. The SDC device fabrication
is simple, requiring no photodoping or thermal annealing for incorporation of oxidizable metals.
The device materials can all be sputter deposited in-situ making thin film deposition simpler as well
as protecting the device material layers from oxygen and detrimental water exposure [34]. During
the fabrication steps, the chalcogenide film stack is never exposed to photolithography chemicals or
solvents; the final device etch step is performed by ion milling (no chemical etching), thus further
preventing any water or oxygen exposure to the device active layer. The Ag-based SDC device longevity
has been physically measured over a time of more than 10 years (see Supplementary Material, Figure S1).

Third, and most importantly, it is a working hypothesis that the SDC operation requires a
separate metal chalcogenide layer and an amorphous active layer, such as Ge2Se3, which contains
thermodynamically unstable homopolar bonds (such as the Ge-Ge bonds that are present in the SDC
device Ge2Se3 active layer). Channel formation then occurs through an irreversible chemical reaction
between the device material layers upon the first programming event [7,35]; the combination of these
layers will reactively generate permanent channels, i.e., Ag or Cu ion transport routes, through the
SDC device Ge2Se3 active layer via a chemical reaction preferentially with the Ge-Ge bond sites. Once
the channel is formed, it is permanent under similar operating conditions, with the device state change
depending on Ag or Cu ion movement within the established channel. There is no “dissolution”
of randomly ordered conductive filaments into the material matrix film which is the hallmark of
CBRAM [36,37]; there is simply movement of metal ions within a well-defined transport route. Ag or
Cu ions can move into or out of the channels, corresponding to a write or erase for modification to a
lower or higher resistance. The channels enable more consistent and predictable switching within a
device as well as between different devices compared with the other chalcogenide-based ECM device
types. After channel formation, the SnSe layer can be considered an intermediate layer, or ‘stepping
stone’ for oxidation of Ag or Cu, and storage of metal ions. The formed channels assist the device in
fast and consistent switching since it allows formation and storage of oxidizable metal ions instead of
overcrowding and saturating the active glass layer. The desired morphology of the SnSe layer is thus
one that is disordered, with a large surface area for Ag or Cu (and their ions) to react with SnSe [7].

A similar approach has recently been used in amorphous carbon (a-C) ECM devices which use
Ag as the oxidizable metal [38]. In this case, a layer of AgInSbTe was used to buffer the a-C film from
oversaturation of Ag, as well as to provide a location for Ag-ion storage. Similarly to the SDC device
compared with and without the SnSe layer [7], these a-C devices exhibited highly uniform switching,
high cycling endurance, and fast switching times only in the presence of the storage layer.

Even though there are ECM devices with materials systems that appear similar to the SDC
due to the chemical elements present in the device [22], the extreme differences in device operation,
fabrication and stability justify placing the SDC memristors in their own ECM subcategory as a
“self-directed channel”.

In this work, we compare the direct current (DC) (quasi-static) and pulse electrical response of
Ag and Cu SDC memristors as a function of temperature from 6 K to 300 K, and discuss the device
stability under various programming conditions.
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2. Materials and Methods

2.1. Device Structure and Fabrication

Devices were fabricated in the Idaho Microfabrication Laboratory at Boise State University on
100 mm p-type wafers in a stacked layer structure (Figure 1). The device size is defined by the bottom
electrode contact area and is 2 μm in diameter. The devices were fabricated with either a Ag or Cu
layer as the mobile ion source layer. The active layer, responsible for device resistance switching is the
bottom Ge2Se3 layer in contact with the bottom W electrode, within the nitride opening. The details of
the purpose of each thin film layer have been described previously [6] and a full discussion can be
found there. In brief, the SnSe layer assists in the formation of the self-directed channel within the
active layer and acts as a cation storage layer. The two Ge2Se3 layers surrounding the Ag or Cu layer
enable thin film adhesion and photolithography. The active switching layer is the bottom Ge2Se3 layer.

 
Figure 1. Self-directed channel (SDC) device structure described in [6]. The target layer thicknesses
were (from bottom to top): Ge2Se3 (300 Å)/SnSe (800 Å)/Ge2Se3 (150 Å)/Ag (500 Å)/Ge2Se3 (100 Å)/W
(400 Å). The top three layers below the W top electrode, corresponding to Ge2Se3/Ag/Ge2Se3, mix
during fabrication, becoming one conductive layer.

Prior to thin film deposition using an AJA International ATC Orion 5 UHV Magnetron sputtering
system, the wafers were sputtered with Ar+ to prepare the bottom electrode surface. This was followed
by in-situ sputter deposition of all of the remaining device layers, including a top W electrode capping
layer. In-situ deposition of layers was performed to minimize the potential for detrimental water
vapor on the device [34]. Final device etching was performed with a Veeco ME1001 ion-mill (Veeco,
Plainview, NY, USA).

2.2. Electrical Measurements

Temperature control and sample probing was performed using a Lake Shore CRX-4K probe
station, two Lake Shore Model 340 temperature controllers (Lake Shore Cryotronics, Inc., Westerville,
OH, USA), a SHI RDK-408D2 closed-cycle refrigerator (Sumitomo (SHI) Cryogenics of America, Inc.,
Allentown, PA, USA) with a controlled temperature range of 5 K to 400 K, and an RC-EM10-208230-60
CE liquid helium recirculating chiller. Lake Shore ZN50R alumina ceramic probe cards with 25 μm
Tungsten tips were used for measurements. Probe cards were anchored to the sample stage with copper
braiding to ensure temperature equilibration between stage and probe. Vacuum was maintained and
monitored with a Varian V-81 turbo pump.

DC (quasi-static), sinusoidal excitation, and pulsed measurements were made using a Keysight
B1500A Semiconductor Parameter Analyzer equipped with two Waveform Generator/Fast Measurement
Units (WGFMUs) (Keysight, Inc., Santa Rosa, CA, USA). The WGFMUs allowed direct measurement
of the current through the device during testing without external circuits or current limiting series
resistors. The sweep rate for a DC measurement depends on the voltage and current ranges used, which
are varied depending upon the sample measurement temperature and write/erase measurements;
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however, for all measurements the sweep rate is in the range of 0.14 to 0.2 V/s (switching voltage vs
sweep rate is shown in the Supplementary Material, Figure S2).

At least 10 unique devices were measured at every temperature, for both the Ag and Cu-based
devices. Three trials of temperature measurements were performed over a two year period after
wafer fabrication. During the storage periods, the samples were maintained in the dark, at ambient
temperature. Since the effect of cold temperature on the devices was unknown at the start of the
experiment, wafer pieces were measured in the order of decreasing and increasing temperature. It was
determined that the temperature order of measurement did not influence the measurement outcome.
Therefore, for the experimental data provided in this work, the samples were brought to a base
temperature of 6 K and equilibrated for 30 min prior to commencing measurements. The temperature
was raised for each subsequent temperature measurement, with an equilibration of at least 30 min at
each temperature prior to the measurement.

All DC sweep measurements consisted of the sequence: Write 1-Erase-Write 2-Read. The Write
sweeps applied a positive potential to the device top electrode and used a 10 × 10−6 A compliance
current. The Erase sweep applied a negative potential to the top electrode; a 10 × 10−3 A compliance
current was applied. A +20 mV Read sweep was applied to the top electrode to read the final written
resistance state after the Write 2 step (Read). In all measurements, the bottom electrode was maintained
at ground and the top electrode potential was varied. For the Ag devices, the Write 1 and Write 2
sweeps were performed over the range of 0 to 3 V for T ≥ 150 K, and 0 to 5 V for T < 150 K. For the Cu
devices, the Write 1 range was 0 to 3 V for T ≥ 140 K and 0 to 5 V for T < 140 K. The Erase voltage
ranges for each type of device were the same, except in the negative potential direction.

Prior to the first (Write 1) sweep, all devices tested were in a pristine (never previously tested) state.
Table 1 summarizes the sweep measurement and Read voltage for each resistance type. The conductance
of a device was calculated from 1/R, where R is the measured resistance.

Table 1. I–V sweep resistance measurement descriptions.

Resistance Resistance Measurement Sweep

Initial, Ri +20 mV on Write 1

First Write, RW1 −20 mV on Erase

Erased, RE +20 mV on Write 2

Second Write, RW2 +20 mV on Read

3. Results

3.1. DC (Quasi-Static) Measurements

Representative DC I–V measurement curves for each measurement sequence at each temperature
are shown in Figures 2–4. Write 1 and Write 2 curves are shown in Figure 2a,b for Ag, and Figure 2c,d
for Cu. The Erase sweeps are shown in Figure 3a,b for Ag devices and Figure 4a–d for Cu devices.

The Write 1 sweep is the first time voltage is applied to a pristine device. This measurement can
therefore provide the initial device resistance when measured at +20 mV during the Write 1 sweep.
The Write I–V curves in Figure 2 are typical for an SDC device. The Write sweep starts at 0 V and the
potential is increased until the device transitions to a low-resistance state, at which point the current
reaches the compliance current. In the pristine state, Ag-based SDC devices initially have a very high
resistance (GΩ range), and exhibit either an instantaneous increase in current to the compliance value
during the Write 1 sweep, or an exponential rise in current with applied voltage, depending upon
temperature. The exponential increase in current is present in the low temperature Write 1 sweeps for
Ag and Cu (Figure 2a,c), and Cu Write 2 sweeps (Figure 2), but is absent in the Write 2 sweep for Ag
(Figure 2b).
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Figure 2. Representative Write I–V curves as a function of temperature. Ag devices: (a) Write 1;
(b) Write 2. Cu devices: (c) Write 1; (d) Write 2. The * in (b) corresponds to I–V curves of broken
(shorted) devices. Note: the Write 1 sweep voltage maximum for measurements below 150 K was 5 V,
compared to 3 V used for T ≥ 150 K.

Figure 3. Ag device representative Erase I–V curves for all temperatures (see legend). (a) Full scale
view; (b) expanded low I–V region.
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Figure 4. Cu device erase regions for (a) 6 K ≤ T ≤ 100 K; (b) 125 K ≤ T ≤ 185 K; (c) 260 K ≤ T ≤ 200 K;
and (d) 245 K ≤ T ≤ 300 K.

The Write 1 I–V sweeps, Figure 2a,c for both device types, show that devices switch with
an increasing switching voltage as the temperature is reduced. At 6 K, the Ag devices switch at
approximately 4 V. However, as can be seen in the erase sweeps (Figure 3a,b), not all of the Ag devices
that switched at low temperature can erase. These devices appear as ‘shorts’ on the Write 2 I–V
sweeps (denoted by * in Figure 2b). The devices that were switched at low temperature could not
be cycled back, despite the large compliance current on the Erase sweep of 10 × 10−3 A, compared
to 10 × 10−6 A on the Write sweep. Measurements upon return to room temperature indicated the
devices were destroyed.

An Erase sweep corresponds to application of a reverse polarity potential to the top electrode.
Since the erase occurs after the SDC device was written, the low potential region of the Erase I–V curve
for the Ag device (Figure 3a,b) shows a mostly linear behavior up to a peak current value, as expected
for a device programmed into a resistive state. Beyond the peak current voltage, the device experiences
negative resistance as it transitions towards a high resistance state. Erase sweeps are shown in an
expanded view in Figure 3b for Ag devices, in which only the data for T ≥ 220 K is in view since the
peak current is 1000 times lower than for T < 220 K (low temperature, higher currents, are dominant
in the full-scale view in Figure 3a). The current required to erase the Ag devices that switched at
temperatures below 150 K is in the mA range, which is three orders of magnitude higher than under
room temperature conditions (Figure 3b). For the temperatures between 140 K ≤ T ≤ 220 K, the devices
that were switched during the Write 1 sweep (Figure 2b) did not latch the low resistance state, so no
Erase current is measured (it is within the noise of the instrument and too low to observe in Figure 3a
or Figure 3b).

It is reasonable to expect that not all Cu or Ag ions generated during the Write sweep get reduced
within the duration of the Write sweep. It is anticipated that when the voltage is removed, there is a
concentration of ions still within the active layer channels that are oxidized. In other words, not all ions
generated during the Write sweep will reach a conductive contact point, directly or indirectly, with
the bottom electrode during the measurement. These ions can remain within the channel, diffusing
towards a more energetically stable location in the channel or the SnSe layer. As temperature is reduced,
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the possibility of the ions diffusing is reduced, making it more likely that the low temperatures yield
more excess ions within the devices.

The low temperature Ag device Erase I–V curves (Figure 3a) are much different than the curves
for higher temperatures (Figure 3b). For the 300 K to 230 K Erase sweep data (Figure 3b) there is a
maximum current peak at approximately −0.05 V, and a linear slope leading up to this peak from
0 V. These data are consistent with the rupture, or loss of contact, of a conduction path between the
electrodes. In contrast, a broad peak in the Ag device Erase sweeps (Figure 3a) at temperatures below
150 K occurs between −0.3 to −0.5 V. This voltage range is 10 times greater than the potential needed to
break conductive contact between electrodes for 230 K ≤ T ≤ 300 K. Cyclic voltammograms for Sn-Ag
systems [39] can show broad peaks between −0.2 V and −0.8 V, depending upon the concentrations
of Ag and Sn in the system, and formation of a Sn-Ag alloy. The observed broad peak for T < 150 K
is within the range observed in cyclic voltammetry of systems comprising the formation of Sn-Ag
alloys [39]. Since Sn can participate in redox reactions during the channel formation and subsequent
switching cycles, it is possible that the maximum sweep voltage (5 V) during the low temperature
Write sweep is high enough to oxidize Sn. Any excess Ag+ that remained upon removal of the Write
sweep potential would still be present within the device, with ion diffusion occurring much slower
at the low temperatures. Reduction of the excess Ag+ is therefore possible during the Erase sweep,
and would appear more prominently at low temperatures where higher ion concentration is expected.
Interestingly, the low temperature Write 1 I–V curves exhibit an exponential increase in current, not
observed in the higher temperature curves (Figure 2a). This, in combination with the Erase peak
occurring within a Sn-Ag alloy redox potential range, could indicate Sn involvement in switching.
With the Ag consumed in an alloying reaction with Sn, Ag would no longer be available for ion
movement during programming. A Sn-Ag alloy could produce a permanently conductive pathway
within the channel. The Ag devices in the low temperature range were readily damaged by application
of potentials higher in magnitude than −1 V during the erase, as seen by the sharp transitions to
compliance current on the Erase sweep (Figure 3a). In order to erase the devices that did write at low
temperature, currents as high as almost 4 mA were needed. The formation of a Sn-Ag alloy may be
why the devices that switch at low temperature are ‘shorted’ and no longer function.

Similarly to the Ag case, at low temperatures, the Cu devices required higher applied potentials
to switch; the Cu device threshold voltage increased as the temperature decreased (Figure 2c). If the
only redox consideration were Cu, it could be concluded that the oxidation of Cu during the Write
will occur first through Cu→ Cu2+, then as voltage is further increased, it would go directly from
Cu→ Cu+. Therefore, it would be expected that for the cold temperature Write sweeps, the generation
of Cu+ would be possible due to the increased Write Sweep potential. It is further expected that there
would be excess Cu+ and Cu2+ in the device upon removal of the Write potential; at cold temperatures,
the diffusion of the ions would be significantly reduced, thus keeping a higher concentrations of ions
within the channel. Upon application of an Erase sweep, these excess ions could be reduced. Reduction
of the Cu ions would appear in the Erase sweep as a reduction of Cu+→ Cu at a potential near −0.5 V.
A peak around −0.45 V is observed for the Erase sweeps between 5 to 100 K, Figure 4a. This is not
observed in the other Erase temperature ranges, where the Write 1 sweep voltage maximum was 3 V,
instead of 5 V, and therefore was likely not high enough to achieve the Cu→ Cu+ oxidation. However,
as in the case for Ag, a contribution due to Sn redox reactions cannot be ruled out.

The Erase sweeps for the Cu sample have at least four temperature regions with differing I–V
curve characteristics (Figure 4a–d). Since Cu can oxidize during the Write sweep to both Cu+ and
Cu2+ depending upon the magnitude of the applied potential, it is expected that the Cu device
Erase I–V curves could be more complicated than the Ag device Erase curves, and potentially have
between two and three peaks corresponding to different Cu ion reduction potentials. Based on cyclic
voltammograms [34] it is expected that the peak near the lowest magnitude Erase potential corresponds
to a Cu+→ Cu reduction. The next highest potential would correspond to a Cu2+→ Cu reduction, and
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the highest potential to the Cu2+→ Cu+ reduction. However, Cu can also form an alloy with Sn [40].
Therefore, the observed peaks may be complicated by multiple redox reactions of Cu and Sn.

The Erase peak potentials for the Cu-based devices have a significant temperature dependence
above 125 K. Figure 4b–d show the Erase sweeps for temperatures from 125 K to 300 K.
For 185 K ≥ T ≥ 125 K (Figure 4b), there are multiple small peaks on I-V curves between −3 V to
−1.4 V. There are also low amplitude broad peaks between −0.3 V to −1.25 V. In all cases, the I-V curves
exhibit a temperature dependence, with peak shifting to lower voltage as the temperature is increased.
The higher voltage region peaks exhibit an increasing number of sharp peaks as the temperature is
reduced. Similar sharp peaks have been observed in a Cu-Sn alloy reaction [40]. Within the temperature
range 260 K ≥ T ≥ 200 K (Figure 4c), the largest Erase peak voltage (at approximately −1.5 V for the
200 K trace) and current at the peak, has a significant dependence on temperature, with the peak
voltage and current decreasing with an increase in temperature. This is also the temperature range
where the Cu device exhibits a negative slope in the ln(1/RW1) vs 1000/T plot (Figure 5b). The peaks
that occur between −2 and −3 V in Figure 4 could correspond to a Cu2+→ Cu+ reduction due to excess
Cu2+ present in the channel following the Write sweep [34].

Figure 5. Average conductance versus inverse temperature for (a) initial resistance, Ri; (b) written
resistance after the first write sweep, RW1; (c) erased resistance, RE; and (d) written resistance after the
second write sweep, RW2. In each graph, the Cu device data is represented by circles; Ag devices as
triangles. The inset of each graph is the extension of the data into the coldest temperature region. Error
bars are one standard deviation.

The average initial, written, and erased resistances as a function of temperature are provided
in Figure 5, plotted as ln(1/R) vs 1000/T. Error bars correspond to 1 standard deviation. The lowest
temperature region is displayed in the inset of each plot.

As discussed, and apparent in the Write 2 sweep, Figure 2, and the Erase sweep in Figure 3, Ag
devices did not always switch at low temperatures. The inset of Figure 5c shows this clearly: instead
of erasing to high resistance, RE is a similar magnitude to RW1 and RW2 at temperatures below 125 K.
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This indicates that the Ag devices were damaged or permanently altered during the Write 1 sweep.
The Cu devices clearly erased to high resistances over the entire temperature range.

The switching (threshold) voltage, Vth, for a Write voltage sweep is identified as the potential at
which a large current jump is initiated towards the compliance current value. These switching voltages
were determined for each I-V trace of the Write 1 and Write 2 sweeps and have been plotted as a
function of temperature in Figure 6 as Vth1 and Vth2, respectively. There is an exponential relationship
between Vth and T for both threshold voltages above 150 K. This is clear in the inset graph which plots
Ln(Vth) vs 1000/T and the corresponding linear fit. No data is available for Vth2 for the Ag devices
operated below 150 K due to low temperature operational damage (Figure 6b).

Figure 6. Average write threshold voltages as a function of temperature. (a) First Write, Vth1; (b) Second
Write, Vth2. The inset in (a) and (b) is the Ln(Vth) vs 1000/T plot showing the Arrhenius behavior for
the threshold voltage of both device types. Error bars represent one standard deviation.

3.2. Sinusoidal Excitation and Pulsed Response

A sinusoidal input signal was applied to each device type, and the device response as a function
of frequency of the input signal was measured (Figure 7). Both device types exhibit the characteristic
fingerprint of memristors, a pinched hysteresis loop, under sinusoidal excitation (Figure 7) [41]. In both
cases, the device response is pinched at the origin, and the hysteresis lobe area is decreased to zero as
the input signal frequency is increased. Cu devices (Figure 7a) display flattened hysteresis lobes at a
low frequency of 100 Hz, whereas for the Ag devices (Figure 7b) this occurs at 10 kHz.

 
Figure 7. Cu and Ag device response to a sinusoidal input with varying frequency. (a) Cu device;
(b) Ag device. T = 300 K. Six cycles at each frequency are shown.

The pulse response is measured by applying a programming voltage pulse sequence (as labeled
in Figure 8) to the memristor. The response of the memristor is determined by the current measured
through it during application of the voltage pulse. The current measurement is opposite polarity from
the voltage pulse sequence due to the instrument set up; a negative current is measured when voltage
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is positive. An adjustment of the data to the correct sign of current is not made, since this allows
current and voltage data to be displayed on the same graph (right and left axes, respectively) with
minimal interference.

 
Figure 8. Cu and Ag device response to a programming pulse sequence. The solid black trace
corresponds to the applied voltage pulse sequence. The dashed lines correspond to the current
measured during the voltage pulse sequence for a pristine (before channel formation) device. The solid
red line corresponds to the current measured during the next applied pulse sequence after channel
formation. (a) Cu device; (b) Ag device. T = 300 K.

The response of Cu devices to the programming pulse sequence is provided in Figure 8a. A
pristine Cu device (never switched previously, but from the Ri data in Figure 5a, does appear to have
some Cu diffused into the active layer) was tested. The current through the pristine device during the
voltage pulse sequence is given by the dashed line trace in Figure 8a. A Read pulse was applied first;
the current response during the Read pulse is too low to observe on the mA scale, indicating that RI

was higher than 10 MΩ. The second Read pulse also shows no measureable current, indicating the
device is still in a high resistance state following the Erase pulse (as anticipated). Given that the Cu
device was pristine, the self-directed channel has not yet been formed in the active layer at this point in
the pulse sequence (i.e., prior to the Write pulse). Channel formation happens during the first Write
pulse. Note that there is approximately 500 ns delay from the initiation of the Write pulse and the
current response. This delay is likely due to oxidation of Cu, and the chemical reaction taking place
within the SnSe layer and active layer to form the channel. The measured current through the device
during the final Read pulse indicates that the device was written to a low resistance state during the
Write pulse.

A second pulse sequence was applied to the same Cu device two minutes after the previous
measurement. The current response to this second sequence is given by the red trace in Figure 8a.
The device was still in a low resistance state from the previous measurement (as indicated by the
current through the device during the first Read pulse of the second applied pulse sequence, red trace
Figure 8a). However, the amplitude of the current response during the Read pulse is lower than the
Read current measurement at the end of the first pulse sequence, indicating that the Cu device exhibits
a drift in the programmed resistance state. Following the Erase pulse of the second pulse sequence,
the Read pulse indicates the device resistance was increased successfully. Application of the Write
pulse on this second pulse sequence does not have the delay in device response that was observed
in the first Write pulse, as expected since the channel was formed on the prior pulse sequence, and
storage of Cu is presumed to be present in the SnSe layer.

The Ag devices, Figure 8b, did not exhibit the large delay in initial switching during channel
formation. In this case, if there is a delay during channel formation, it is beyond the resolution of the
pulse timing.
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4. Discussion

Even though Figure 5 provides the measured conductance as a function of temperature, it must be
noted that while the conductance plots in Figure 5 are plotted in an Arrhenius form (ln(1/R) vs 1/T), these
data are not typical conductance vs temperature measurements where one could determine conduction
activation energies accurately, or reliably investigate conduction mechanisms. The conductance value
at each temperature is determined from the resistance that the device achieved upon switching at a
particular temperature. There are many factors that go into device switching at each temperature
for the SDC device. Some examples include the temperature dependence of the chemical reaction
between Ag or Cu and the SnSe layer and induced reactions in the active layer; movement of mobile
ions through a variable-stiffness glass network; constricted channel for ion motion (e.g., due to cold
temperature volume contractions); and the typical DC conductivity mechanistic concerns (e.g., Fermi
energy level and dominant electron conduction mechanism at each temperature [42–44]). It could also
be reasoned that even programming a set of devices to a state value, and then subjecting the devices
to a set of varying temperatures and measuring conductivity could also confound the mechanism
analysis. The amorphous chalcogenide materials tend to be flexible and can move (constrict volume,
expand volume, pull away from interfaces) which could have a ripple effect around any ions within
the material or provide alternative electron conduction pathways as a function of temperature. In this
work, the switching properties at a given temperature were studied, not how a pre-programmed
property changed as a function of temperature.

Despite the stated concerns, several observations can be made from the DC switching data as a
function of temperature. The lower initial resistance of the Cu devices at 300 K in Figure 5a (especially
compared to the RE values, Figure 5c) indicate that the Cu devices have experienced Cu diffusion into
the active layer over time while stored at ambient room temperature. This limits the Cu device data
retention. This is not the case for the Ag devices. This conclusion can be reached for three reasons:
(1) the lower initial resistance of the Cu device; (2) since both the Ag and Cu devices are pristine in the
initial resistance measurement, the active layers should be the same and give the same Ri throughout
the temperature measurement range; and (3) the erased resistance of the Cu device is the same as the
Ag device when they are at higher temperatures (Figure 5c), as expected if excess Ag and Cu have
been removed from the channel during the reverse potential sweep.

The Cu migration may be responsible for the well-behaved switching of the Cu devices at low
temperatures during the Write 1 sweep (Figure 2c). Since this diffused Cu may be removed during
an Erase sweep, it could account for the worse switching observed in the I–V curves for the Write 2
sweeps (Figure 2d) compared to the Write 1 I–V curves.

The Cu devices survive switching at temperatures down to 6 K. Figure 4 shows the Cu device
Erase I-V sweeps and it is clear that devices erase at all temperatures. This is supported by the RE data
shown in Figure 5c. In addition to the robustness of the Cu-based SDC device, a Cu-silica memristor
was also shown to survive operation at 4 K [11].

The Ag device I-V curves have three distinct temperature transitions at 230 K, 210 K, and 140 K in
which the ability of the device to write varies. The RW2 and RE data for the Ag devices indicate that
below 150 K these devices are damaged if they are operated. This is not the case for the Cu devices.
However, it is notable that the Cu devices have higher Write resistances when operated at T > 200 K
(Figure 5b,d). It is interesting to note that the effect of temperature on RW1 and RW2 for Ag and Cu
devices is opposite. Taking RW1 as an example, above 200 K, the slope of the ln(1/RW1) vs 1000/T plot
(Figure 5b) is negative for the Ag devices, but positive for the Cu devices. Between temperatures of
200 K and 150 K, the Ag devices exhibit high resistance trough with little resistance change; the Cu
devices exhibit a hill-like peak of decreasing resistance. A similar, but less pronounced, effect is seen
for RW2 in Figure 5d.

The Ag device RW1 resistances are higher than those for the Cu devices at temperatures between
200K and 150 K (Figure 5b) since within this range, the Ag devices do not switch out of the high
resistance state. When the temperature is further reduced to a range where T < 150 K, the devices
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‘break’ (the exact ‘breaking’ temperature is unknown). As previously mentioned, Ag devices switched
at these temperatures are damaged. The formation of a Sn-Ag alloy at the lower temperatures might
be the cause of the inability to erase devices that have been written at those temperatures.

The write threshold voltages for each device type as a function of temperature are in Figure 6.
The Write 2 threshold voltage is the same between both device types (Figure 6b). This seems logical
if a channel is formed on the first write and used for small movement of mobile ions within the
channel during subsequent programming events. Note again that there is a divergence in device
response between Ag and Cu near 150 K. This is likely due to differences in Ag or Cu participation
in the chemical reaction of channel formation and Ag or Cu storage in the SnSe layer that become
relevant when higher voltages are applied. In addition, the first and second write thresholds exhibit
an exponential dependence on temperature between 300 K and 150 K. This exponential behavior has
been attributed to the collective motion of carriers in metal-insulator transition studies, for example
two-terminal VO2 devices [45]. In the SDC device case, this could correspond to the collective motion
of mobile ions, or to the formation of a Sn-Ag alloy (or Sn-Cu alloy) [39,40].

Sinusoidal excitation (Figure 7) and pulse studies (Figure 8) can offer insights into ion movement
and channel formation for each device type. During sinusoidal excitation, the Cu devices show
flattened hysteresis lobes at an input signal frequency of 100 Hz, whereas Ag devices achieve flattened
lobes at approximately 10 kHz. The significance of this is still not understood, however, the two device
types demonstrate differences in switching speed. The possibility of using the frequency at which
lobes flatten as a predictor of device switching speed would offer a simple way to predict device speed
prior to more complicated pulsed measurements.

5. Conclusions

The electrical behavior of the Ag and Cu-based memristors over a large temperature range is
complex. The factors that contribute to device operation are varied and include the effects of temperature
on the active Ge2Se3 material layer’s flexibility, the chemical reaction involved in formation of the
self-directed channels, and the redox reactions of Ag, Cu, and Sn from the SnSe layer. The Ag-based
devices appear to be damaged when operated at low temperatures. However, it is possible this is
due only to the increased potential applied during the Write sweeps at lower temperatures and a
resultant alloy formation with Sn. Further work is underway to quantify the effects of the interaction
between the SnSe layer and Ag and Cu during device operation and to understand any potential alloy
formation between Sn and Ag or Cu.

Interestingly, the Cu-based devices showed a migration of Cu through the active layer over time.
This migration is detrimental for long term data storage since the device will lose any programmed
data state. The Ag-based devices did not exhibit this response.

The Ag-based devices appear to exhibit faster pulsed programming switching during the first
programming Write cycle. Faster response time of the Ag devices was also observed in the sinusoidal
excitation measurements where the Ag-devices exhibited a flattening of the characteristic memristor
hysteresis loop at 10 kHz, whereas the Cu-based devices exhibited flattening at 100 Hz.

The formation of the self-directed channels as a function of the SnSe layer should be studied
through the replacement of Sn within that layer, with different metals. It is possible that any alloy
formation between the mobile ion and the metal from the metal chalcogenide layer could have a
significant impact on device performance, and be a method of selected device performance tuning. If
Sn-Ag alloy is responsible for the device damage when higher voltages at low temperatures, it may be
possible to change the metal in the metal-chalcogenide layer to one less likely to alloy with Ag.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-666X/10/10/663/s1,
Figure S1, a data retention plot for Ag-based SDC devices. Figure S2, Ag-based device switching voltage vs
sweep rate.
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Abstract: We have simulated a U-shape recessed channel floating gate memory by Sentaurus TCAD
tools. Since the floating gate (FG) is vertically placed between source (S) and drain (D), and control
gate (CG) and HfO2 high-k dielectric extend above source and drain, the integrated density can be well
improved, while the erasing and programming speed of the device are respectively decreased to 75 ns
and 50 ns. In addition, comprehensive synaptic abilities including long-term potentiation (LTP) and
long-term depression (LTD) are demonstrated in our U-shape recessed channel FG memory, highly
resembling the biological synapses. These simulation results show that our device has the potential
to be well used as embedded memory in neuromorphic computing and MCU (Micro Controller
Unit) applications.

Keywords: U-shape recessed channel; floating gate; neuromorphic computing;
MCU (microprogrammed control unit)

1. Introduction

With the popularity of intellectualization in medical devices, automotive electronics, smart grid,
green energy, wearing equipment, smartcards, and the rise of the Internet of things, Microprogrammed
Control Unit (MCU) has been widely used in industrial control and consumer electronics markets and
has shown tremendous growth potential in the next few years. To reduce peripheral discrete devices
and increase applicability, MCU tends to store programs and small amounts of data through embedded
non-volatile memory (NVM). Therefore, with the expanding scale of semiconductor devices and the
increasing density of transistors, embedded flash memory, as an important branch of flash products,
is more and more widely used in the booming MCU market, and its requirement of integration
density is higher and higher [1–4]. With the development of Moore’s law, the traditional horizontal
channel embedded flash memory has limited miniaturization capability and encountered the small
size effect. The leakage caused by this effect will affect the memory’s judgment of 0/1 state, which is a
serious problem to be avoided, especially in the development of multi-value storage of floating gate
(FG) memory.

Today digital computers are based on von Neumann architecture where the memory and processor
are physically separated. This fundamentally limits the development of modern computers [5].
Envisioned by Carver Mead in 1990, neuromorphic computing seeks inspirations from the massive
parallelism, robust computation, and high energy efficiency of the human brain and can potentially
give rise to a revolutionary computing technology that fundamentally overcomes the von Neumann
bottleneck in conventional digital computers [6–10]. Synapse is the basic unit in biological nervous
system, which connects between two neurons and response differently to incident signals [11]. The
change of the strength of synaptic weights caused by memorization events is in charge of encoding
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and storing memory. Mimicking the physiological synaptic behaviors by using electronic devices is
the most important step for neuromorphic systems [12]. The embedded flash memory can emulate
the synaptic behaviors such as long-term potentiation (LTP) and long-term depression (LTD), and a
high accuracy of more than 1% can be obtained in the application of neuromorphic computing [13].
However, the slow operation speed of traditional embedded floating-gate memory and its limited
miniaturization ability hinder its further development in neuromorphic computing [14].

For the first time, this paper proposes a new FG memory structure (UFGM) based on NAND flash
programming method and U-shape recessed channel for the applications of neuromorphic computing
and MCU. Since the floating gate is vertically placed between source and drain, and control gate and
HfO2 high-k dielectric extend above source and drain, the integrated density can be well improved.
The enlarged tunneling area and enhanced tunneling rate dramatically increase the tunneling current
when the device is turned on, and the erasing and programming speed of the device are respectively
decreased to 75 ns and 50 ns. Therefore, UFGM can quickly adjust synaptic weights during long-term
potentiation (LTP) and long-term depression (LTD) operation. In addition, the off-leakage current of
UFGM is suppressed because of the extended physical channel length [15–18], which is conducive
to reducing the power consumption whether it is used as a synaptic device in the application of
neuromorphic computing or MCU. Furthermore, for UFGM, because FG is U-shape embedded, there
is no FG capacitive coupling crosstalk between cell and cell in the storage matrix.

2. Device Structure

We have simulated two devices with Sentaurus TCAD tools. Their difference is the doping type
of FG. The first device structure is shown in Figure 1a and its FG is p+-doped. The second device
structure is shown in Figure 1b and its FG is n+-doped.

Figure 1. The device structure of (a) a new FG memory structure UFGM with p+ floating gate (FG) and
(b) UFGM with n+ FG.

Take the first device as an example. The p+-doped FG is buried vertically between source (S) and
drain (D), and S and D are cut off, and the channel becomes U-shape recessed. This can save area to
increase device density, reduce short-channel effects, reduce cell-to-cell coupling, and suppress the
off-leakage current. These features will facilitate the applications of UFGM in neuromorphic computing
and MCU.

The traditional SiO2 blocking layer between the polysilicon control gate (CG) and p+-doped FG
is replaced with 12 nm HfO2 high-k dielectric, and CG and HfO2 high-k dielectric extend above S
and D. The advantage of this is that the inversion and accumulation of electrons and holes on both
sides of S and D can be directly controlled by CG through HfO2 high-k dielectric, which will greatly
enhance Fowler–Nordheim (F-N) tunneling rate. Another advantage is that FG is coupled to CG
directly through HfO2 high-k dielectric, and the coupling capacitance is increased, so the CG potential
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can be dropped to FG more effectively, thus enhancing FN tunneling rate. In terms of the tunneling
area, UFGM also shows its advantage. Compared with the horizontal channel, the U-shape recessed
channel can increase the effective tunneling area approximately twice under the same feature size. The
enlarged tunneling area and enhanced tunneling rate can dramatically increase the tunneling current
when the device is turned on.

We also simulated two devices with original SiO2 based FG for comparison. The first device
structure is shown in Figure 2a and its FG is p+-doped. The second device structure is shown in
Figure 2b and its FG is n+-doped. The fabrication process of the device is similar to that of the UFGM
with HfO2 based FG, except that the 12 nm HfO2 high-k dielectric material is replaced by 12 nm SiO2.

Figure 2. The device structure of UFGM with SiO2 based (a) p+ FG and (b) n+ FG.

3. Electrical Characteristics

Table 1 contains the main physical models used in electrical simulation. The non-local tunneling
model is powerful. It can deal with any shape of barrier and take into account the carrier heating. It
allows users to describe tunneling between valence band and conduction band, and approximates
several different tunneling probabilities. Non-local tunneling includes FN tunneling.

Table 1. Main physical models selection.

Interface Physical Mechanism Model Selection

Oxide/FG poly Nonlocal tunneling eBarrierTunneling
hBarrierTunneling

Oxide/silicon Nonlocal tunneling eBarrierTunneling
hBarrierTunneling

We studied the change in the FG potential during one operation period. There are similar trends
in the two kinds of devices. As described in Figure 3, under the same conditions, the amount of change
in the FG potential gradually increases as Vcg increases. Due to the capacitive coupling, a change in
the FG potential will cause a drift in the device threshold voltage, which will be used to distinguish
between state 0 and state 1 during the reading operation. In the erasing/programming operation, there
is a balance between the voltage magnitude and the time setting. Take the UFGM with p+ FG as an
example, at VCG = 10 V and time = 50 ns, the FG potential drops by 0.0528 V, while at VCG = 13 V and
time = 50 ns, the FG potential drops by 1.8527 V. However, by extending the bias time at VCG = 10 V,
we can get the same FG potential change as at VCG = 13 V and time = 50 ns. The erasing and writing
speed can be manually adjusted with different voltage and the time of reading and writing sequence.
Therefore, the specific setting of working voltage and time should be carried out under the specific
requirements of high speed or low power design.

85



Micromachines 2019, 10, 558

Figure 3. FG potential shift in UFGM as a function of VCG after (a) 50 ns programming operation and
(b) 50 ns erasing operation. The other contacts are set to 0 V.

There are also some slight gaps between two kinds of devices. In the programming operation, the
amount of change in the FG potential of the UFGM with p+ FG is much larger than the UFGM with n+

FG, which means the UFGM with p+ FG responds faster. For example, at VCG = 15 V and time = 50 ns,
the FG potential of the UFGM with p+ FG drops by 4.6726 V and the FG potential of the UFGM with
n+ FG drops by 4.4548 V. In the erasing operation, the amount of change in the FG potential of the
UFGM with n+ FG is much larger than the UFGM with p+ FG, which means the UFGM with n+ FG
responds faster. For example, at VCG = −15 V and time = 50 ns, the FG potential of the UFGM with
p+ FG increases by 0.1327 V and the FG potential of the UFGM with n+ FG increases by 0.2259 V.
As a conclusion, these two devices have their own advantages. In the application of neuromorphic
computing and MCU, we can choose the suitable device according to actual needs.

We also studied the change of FG potential of UFGM based on SiO2 under different operating
voltage. There is a similar trend in these two devices. As shown in Figure 4a, the variation of FG
potential increases with the increase of Vcg in programming operation. At Vcg = 15 V, the potential
change of p+ UFGM based on SiO2 is 0.2637 V, but at the same voltage, the potential change of p+

UFGM based on HfO2 can reach 4.6726 V. When Vcg = 20 V, the potential change of p+. UFGM based
on SiO2 can reach 4.1173 V, which is still lower than that of UFGM based on p+ HfO2 when Vcg = 15 V.
As shown in Figure 4b, in the erasing operation, the change in FG potential gradually decreases as
Vcg increases. At Vcg = −20 V, the potential change of n+ UFGM based on SiO2 is 3.2647 V while the
potential change of n+ UFGM based on HfO2 can reach 3.6059 V at the same operation voltage. By
comparing the potential changes, we can find that UFGM based on HfO2 has obvious speed advantages
over UFGM based on SiO2 in both programming and erasing operations.
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Figure 4. FG potential shift in UFGM with SiO2 based FG as a function of VCG after (a) 50 ns
programming operation and (b) 50 ns erasing operation. The other contacts are set to 0 V.

Figure 5a,b describes the change of the FG potential with time, and the operating voltage scheme
as shown in Table 2. During the programming operation, as described in Figure 5a, potential gradually
decreases as time increases. The potential decreases approximately linearly in the first 1 μs, and with
the increase of time, the potential decreases slowly and finally tends to saturation state. However, the
time of linear change of potential is close to 1 μs, and the change of FG potential is about 2.0212 V,
which is already enough to distinguish state 0 and state 1. For example, in this paper, we only need
50 ns of operation time. In LTP/LTD operations, there is also sufficient time for weights to approximate
linear variations. Similarly, during the erasing operation, as described in Figure 5b, FG potential
gradually increases as time increases and the potential increases approximately linearly in the first 1 μs.
With the increase of time, the potential increases slowly and finally tends to saturation state. The time
of linear change of potential during erasing operation is close to 1.6 μs, and the change of FG potential
is about 1.4957 V, which is also enough to distinguish 0/1 state.

Figure 5. FG potential in UFGM as a function of time after (a) programming operation and (b) erasing
operation using the operation voltage scheme in Table 2
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Table 2. Operation voltage and time of UFGM with p+ FG.

Voltage or Time Program Erase Read Standby

VCG (V) 11 −15 1.5 0
VD (V) 0 0 2 0
VS (V) 0 0 0 0

VSub (V) 0 0 0 0
Figure 6 Time (ns) 50 75 50 50
Figure 7 Time (ns) 1 1.5 1 2

Figure 6. The Id change curve of (a) UFGM with p+ FG and (b) UFGM with n+ FG with time in a
transient simulation using the operation voltage scheme in Table 2.

Figure 7. Long-term potentiation (LTP)/long-term depression (LTD) characteristics of UFGM with p+

FG: (a) Drain current and (b) FG potential vary with the number of pulses in a transient simulation
using the operation voltage scheme in Table 2.

Figure 6 is the drain current (Id) curve of UFGM cell extracted in the second cycle. The operation
voltage and time settings of UFGM with p+ FG are given in Table 2. According to the simulation
experience, the current is more stable and reproducible from the second cycle. The drain current curve
of UFGM with p+ FG and UFGM with n+ FG cells are shown in Figure 6a,b, respectively. There are
also similar trends in the two kinds of devices. As can be seen from Figure 6a, after 50 ns programming
operation, a small Id of about 1.84 × 10−8 A can be read and state 0 is successfully written. After 75 ns
erasing operation, a large current of about 1.42 × 10−6 A can be read under the same reading voltage,
and state 1 is successfully written. The ION/IOFF ratio is over 77. As can be seen from Figure 6b, after
50 ns programming operation, a small Id of about 1.01 × 10−9 A can be read and state 0 is successfully
written. After 75 ns erasing operation, a large current of about 3.81 × 10−7 A can be read under the same
reading voltage, and state 1 is successfully written. The ION/IOFF ratio is over 376. In the application
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of MCU, we need to distinguish the state “0” and the state “1” as clearly as possible, so the difference
value between ION and IOFF should be as large as possible to achieve this distinction, so it is more
appropriate to use the UFGM with p+ FG at this time. In the application of neuromorphic computing,
for example, we build a neural network to do weight updates, the ION/IOFF ratio should be as large as
possible to get as many adjustable current states as possible. Here, the UFGM with n+ FG is more
suitable. From the simulation results, we can see that a high-speed embedded FG memory with good
characteristics of scaling down is realized, which has the potential to be well applied to neuromorphic
computing and MCU.

In the biological brain, the energy efficiency of synaptic transmission is not fixed, which changes
with the change of synaptic activity pattern. In many synapses, repeated stimuli can produce an
increase or decrease in synaptic weights up to hours or even days. Synaptic weights refer to the
strength or magnitude of synaptic weights between the presynaptic and postsynaptic nodes. The
enhancement of synaptic weight is called long-term potentiation (LTP), and the reduction of synaptic
weight is called long-term depression (LTD). LTP and LTD are the material basis for learning and
memory formation [19]. We use the UFGM with p+ FG as an example to simulate the LTP and LTD
characteristics of synapses.

Figure 7 shows the LTP and LTD characteristics of UFGM with p+ FG. The operation voltage and
time settings of pulses applied to UFGM with p+ FG are given in Table 2. Each erasing/programming
pulse is followed by a 1 ns read pulse to monitor the erasing/programming effect. As shown in
Figure 7a, the current flowing through the device increases with the increase of the number of pulses,
which means the UFGM with p+ FG exhibits obvious LTP characteristics under a series of pulses with
a width of 1.5 ns width and an amplitude of −15 V. Changing the direction of the programmable pulse,
setting the pulse width to 1 ns, the amplitude to 11 V, the current flowing through the device decreases
gradually with the increase of the number of pulses, and the device shows obvious LTD characteristics.
As shown in Figure 7b, when the pulse width is 1.5 ns, the amplitude is −15 V, the potential of the FG
increases with the increase of the number of pulses, and the threshold voltage of the device reduces
gradually. At a constant reading voltage, the device shows obvious LTP characteristics. Similarly, by
changing the direction of the programmed pulse, the device is stimulated by a pulse with a pulse
width of 1 ns, an amplitude of 11 V. The potential of the device decreases gradually with the increase
of the number of pulses, thus the threshold voltage of the device increases gradually. At the same
constant reading voltage, the distinct LTD characteristics can be displayed.

The linearity in weight update refers to the linearity of the curve between the device conductance
and the number of identical programming pulses. Ideally, this should be a linear and symmetrical
relationship that maps the weight of the algorithm directly to the conductance of the device [14]. This
nonlinearity/asymmetry is undesirable because the weight changes depend on the current weight, or
in other words, the weight updates are historically relevant [20–22]. As can be seen from Figure 7, the
drain current and potential curves of UFGM with p+ FG have good linearity and symmetry, which
means the weight update of UFGM with p+ FG has excellent linearity and symmetry. This can avoid
the loss of learning accuracy of neural networks due to nonlinearity/asymmetry.

4. Conclusions

In this research, we designed and simulated two new structures of U-shape recessed channel FG
memory using Sentaurus TCAD tools. After 50 ns programming operation and 75 ns erasing operation,
the ION/IOFF ratio of the UFGM with p+ FG is over 77, while the ION/IOFF ratio of the UFGM with n+

FG is over 376. When a series of continuous pulse operations are applied, the UFGM shows obvious
LTP and LTD characteristics. The increase in operating speed, the decrease in short-channel effects and
cell-to-cell coupling of FG, the enhanced tunneling rate, the excellent LTP and LTD characteristics, and
the increased scaling down ability of the device due to structural changes, make it suitable for the use
as an embedded FG memory in neuromorphic computing and MCU.
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Abstract: Blockchain technology is increasingly being used in Internet of things (IoT) devices
for information security and data integrity. However, it is challenging to implement complex
hash algorithms with limited resources in IoT devices owing to large energy consumption and a
long processing time. This paper proposes a RISC-V processor with memristor-based in-memory
computing (IMC) for blockchain technology in IoT applications. The IMC-adapted instructions were
designed for the Keccak hash algorithm by virtue of the extendibility of the RISC-V instruction set
architecture (ISA). Then, a RISC-V processor with area-efficient memristor-based IMC was developed
based on an open-source core for IoT applications, Hummingbird E200. The general compiling policy
with the data allocation method is also disclosed for the IMC implementation of the Keccak hash
algorithm. An evaluation shows that >70% improvements in both performance and energy saving
were achieved with limited area overhead after introducing IMC in the RISC-V processor.

Keywords: in-memory computing; memristor; RISC-V; Internet of things; blockchain

1. Introduction

Internet of things (IoT) refers to the network of different physical devices, which enables them
to collect and exchange data [1,2]. With the development of telecommunication, computers, and
integrated circuits, IoT is being increasingly applied in commercial fields such as modern agriculture,
driverless vehicles, smart cities, etc., which promise to become vital parts of global economics [3].
However, as billions of IoT devices are connected to the continuously growing networks, security
appears to be a major concern. IoT devices collect a great amount of private information, which is
vulnerable to attacks if not well protected. Moreover, most of the devices are resource-constrained and,
thus, heavy cryptographic approaches are difficult to implement.

Recently, a trend emerged to exploit the blockchain technology in IoT devices for information
security and data integrity [4]. The blockchain is a peer-to-peer (P2P) ledger which was first used in
the Bitcoin cryptocurrency for economic transactions [5]. Bitcoin users that are known by a changeable
public key generate and broadcast transactions to the network to transfer money. These transactions
are pushed into a block by users. Once a block is full, the block is appended to the blockchain by
performing a mining process. To mine a block, some specific nodes known as miners try to solve a
cryptographic puzzle named proof of work (POW), and the node that solves the puzzle first mines the
new block to the blockchain, as shown in Figure 1. Because of its distributed, secure, and private nature,
the blockchain can enable secure messaging between devices in an IoT network. In this approach, the
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blockchain treats message exchanges between devices similar to financial transactions in a Bitcoin
network. To enable message exchanges, devices leverage smart contracts which model the agreement
between two parties. The distributed datasets maintained by blockchain technology also allow the
data to be safely stored by different peers, and people are not required to entrust IoT data produced
by their devices to centralized companies [6]. Moreover, the blockchain technology lowers the cost
of the deployment of the IoT devices and makes it safe and easy for users to pay for the data on IoT
devices [7].

Verify 
transactions are 

valid

Bundle 
transactions in a 

block

Take hash of 
previous block 

and insert it into 
new block

Propagate 
blockchain to 

network

When solution is 
found, add new 

block to 
blockchain

Solve proof of 
work

 

Figure 1. Bitcoin mining process using blockchain technology.

However, the hardware for mining in IoT devices has to be lightweight, low-cost, and
energy-efficient to adapt the blockchain technology. IoT devices are often deployed in nonhuman
conditions to a great extent and are powered through batteries, calling for extremely low cost and
low energy consumption [8]. However, when using a general processor, i.e., central processing unit
(CPU) or graphics processing unit (GPU), to implement the blockchain, it is likely to consume too
much energy, resulting in frequent recharging or a short battery lifetime. Resorting to a conventional
application-specific integrated circuit (ASIC) or coprocessor can help to reduce energy consumption
and improve speed, but will induce considerable area cost [9].

In-memory computing (IMC) provides a promising alternative. In a general processor, the data
transfer on the bus between the central processing unit (CPU) and the memory leads to large power
consumption and limited performance, i.e., memory bottleneck. To address this issue, IMC modifies
the memory to be able to perform some regular logic operations such as AND, OR, and exclusive or
(XOR) [9]. Especially for data vectors with large bit width, IMC can accomplish the AND/OR/XOR
operation in one read access, saving both execution time and power consumption. Static random-access
memory (SRAM) can be employed in IMC, but its cell size is too large with 6–10 transistors and it also
needs constant power to hold the data, incurring considerable area cost and standby power [10].

Emerging memory technologies, especially memristors, feature a simple cell structure,
high density, three-dimensional (3D) stackability, good compatibility with complementary
metal–oxide–semiconductor (CMOS) processes, and non-volatility [11]. Recently, memristors were
investigated to realize IMC using a one-transistor-one-memristor (1T1R) array accompanied by
modified peripheral circuits [12]. However, it is still difficult to rely on memristor-based IMC alone
to implement the hash algorithm in blockchain technology. A processor is still required to perform
the data allocation, as well as other complexed logic operations. For resource-limited IoT devices, the
processor should be flexible to support memory computation instructions while incurring small power
consumption and area cost. Thanks to its simplicity, scalability, fast speed, and low power, the RISC-V
processor is believed to be competent for the abovementioned requirements [13,14]. The instruction
set architecture (ISA) of the RISC-V is designed to avoid over-architecting, while supporting command
extension to achieve high flexibility [13]. Nevertheless, for the practical integration of IMC in RISC-V,
the corresponding compiling policy and data allocation method still need specific consideration.
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This paper proposes a RISC-V processor with memristor-based IMC for blockchain technology in
IoT applications. The IMC-adapted instructions are designed for the Keccak hash algorithm by virtue
of the extendibility of the RISC-V ISA. Then, a RISC-V processor with area-efficient memristor-based
IMC is developed based on the open-source core, Hummingbird E200. The general compiling policy
with data allocation method is also disclosed for the Keccak hash algorithm. An evaluation shows that
remarkable improvements in performance and energy consumption are achieved with limited area
overhead after introducing IMC.

The rest of the paper is organized as follows: Section 2 gives the IMC-adapted ISA design
for the hash algorithm. Section 3 describes the RISC-V processor architecture with IMC and the
implementation of IMC. Section 4 provides the policy for compiling and data allocation. Section 5
presents the evaluation, and Section 6 concludes this paper.

2. IMC-Adapted ISA Design for Hash Algorithm

2.1. Hash Algorithm in Blockchain Technology

A blockchain is literally a chain of blocks, each of which has a block header containing the hash
value of its parent block to ensure the integrity of the chain [5]. With the rapid development of both
computer hardware and software, traditional hash algorithms like Message-Digest algorithm 4 (MD4),
Message-Digest algorithm 5 (MD5), and Secure Hash Algorithm 1 (SHA-1) were cracked. Therefore,
the United States (US) National Institute of Standards and Technology (NIST) selected the Keccak
sponge function family as the third-generation secure hash algorithm (SHA-3) to ensure the security of
hash algorithms [15,16].

Keccak or SHA-3 shares a structure involving sponge functions with different parameters.
The default Keccak sponge function works on a 1600-bit state array, which is logically a
three-dimensional array with a row and column width of five and a lane width of 64. The array is
often denoted as [x][y][z] in GF(2), where 0 ≤ x ≤ 4, 0 ≤ y ≤ 4, and 0 ≤ z ≤ 63.

The process of the Keccak sponge function consists of two phases, i.e., the absorbing phase and
the squeezing phase. In the absorbing phase, the r-bit input blocks are XORed into the first r bits of the
state, interleaved with a permutation called Keccak-f permutation; when all input blocks are processed,
the sponge construction switches to the squeezing phase. In the squeezing phase, the first r bits of
the state are returned as output blocks, interleaved with Keccak-f permutation; the number of output
blocks is chosen at will by the user. Here, the value r is the bit rate. The process of the Keccak sponge
function is actually an iteratively executed Keccak-f permutation, which takes most of the executing
time. By default, 24 Keccak-f permutations take place for one permutation of sponge function.

Keccak-f permutation consists of five steps, which are the θ step, ρ step, π step, χ step, and ι

step. The corresponding calculations of the five steps are shown in Equations (1)–(7). More detailed
information for the algorithm can be found in Reference [17]. Table 1 summarizes the main processes
performed in the five steps where the calculations of large vectors are hopefully implemented by
the IMC.

a[x][y][z]← a[x][y][z] +
4∑

y′=0

a[x− 1][y′][z] +
4∑

y′=0

a[x + 1][y′][z− 1]. (1)

a[x][y][z]← a[x][y]
[
z− 1

2
(t + 1)(t + 2)

]
. (2)

(
0 1
2 3

)t(
1
0

)
=

(
x
y

)
, 0 ≤ t ≤ 24 or x = y = 0, t = −1. (3)

a[x][y]← a[x′][y′],
(

x
y

)
=

(
0 1
2 3

)(
x′
y′

)
. (4)

a[x]← a[x] + (a[x + 1] + 1)a[x + 2]. (5)
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a[0][0]← a[0][0] + Ri. (6)

Table 1. Five steps in Keccak-f permutation.

Step Equations Main Process

θ (1) Massive 64-bit and 320-bit bitwise XOR operations, a few 64-bit shift operations

ρ (2), (3) Massive 64-bit shift operations and data copying

π (4) Massive 64-bit data copying

χ (5) Massive bitwise 320-bit logic operations (XOR, OR and AND)

ι (6) Massive operations on one 64-bit binary string

2.2. IMC-Adapted ISA Design

Before proposing the RISC-V processor with IMC for SHA-3, the characteristics hidden in Keccak
calculations and how to adapt the ISA to support the IMC are investigated. Many operations in
SHA-3, especially the sheet and plane logic operations, require frequent memory access and can be
greatly optimized by adopting IMC, since they are 320 bits long while a processor is often 32-bit or
64-bit. RISC-V ISA is highly extendable and provides the users with four custom operations in its
base instruction set and long custom instruction sets to be defined in the future [12]. To improve
SHA-3 performance, only a few IMC instructions are needed; thus, this work employs the four custom
operations to adapt IMC. The long custom instruction sets are reserved for more IMC operations
as needed.

The operations in Keccak-f permutation can be classified into four different types, which are
(1) long bitwise logic operations (both 64 bits and 320 bits), (2) 64-bit shift operations on a 320-bit
binary string, (3) 64-bit data copying, and (4) operations on one 64-bit binary string. For these four
types of operations, the first three can be easily implemented by IMC technology. Based on the above
analysis, three kinds of IMC operations are adopted, including 320-bit bitwise logic operations (XOR,
OR, and AND), 64-bit shift operation (SHIFT), and 64-bit data copying operation (CP). In addition, an
operation that copies 64-bit data to all columns in another row address (copy to all columns, CPA) is
needed for data allocation purposes (see Section 4). CPA operations are also needed in the θ step and
χ step for data allocation purposes. Table 2 shows the IMC operations involved in different steps of
Keccak-f permutation.

Table 2. In-memory computing (IMC) applications in Keccak-f permutation. XOR—exclusive or;
SHIFT—64-bit shift operation; CPA—copy to all columns; CP—64-bit data copying operation.

Step IMC Involved

θ XOR, SHIFT, CPA

ρ SHIFT, CP

π CP

χ XOR, OR, AND, CPA

ι None

Table 3 shows the detailed IMC instruction definition. The IMC logic instructions including
XOR, OR, and AND perform the 320-bit logic operation with operands from addresses (BA + A1) and
(BA + A2), and store the results in (BA + A0). A0, A1, and A2 are addresses either from immediate or
registers, depending on 3-bit I/R, and BA is an address from a register. SHIFT instruction performs the
64-bit circular right shift on (BA + A1) by SA[6:0] amount and stores the result in (BA + A0). A0 and
A1 are addresses either from immediate or from registers, depending on 2-bit I/R. The addresses used
in 320-bit operations are all 9-bit row addresses; thus, only 9 bits in the address are valid. The normal
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read loads the 32-bit data from memory address (rs + Imm[11:0]) to register rd. The normal write
stores the 32-bit word data in register rs2 to memory address (rs1 + Imm[11:0]). For CP and CPA
instructions, when Flag = 0, the data in memory address (BA + A1 + Col[2:0]) are copied to address
(BA + A2 + Col[5:3]) for CP; when Flag = 1, the data in memory row address (BA + A1 + Col[3:0]) are
copied to all the columns in row address (BA + A2) for CPA. The reserved bits in the IMC-adapted ISA
can be used for more functions if necessary.

Table 3. IMC-adapted instruction definition list.

Bit 31–30 29–25 24–20 19–15 15–13 12 11–7 6–0

XOR 00 A1 A2 BA I/R A0 Custom0

OR 01 A1 A2 BA I/R A0 Custom0

AND 10 A1 A2 BA I/R A0 Custom0

SHIFT 11 A1 SA[5:0] BA I/R SA[6:0] A0 Custom0

Normal read Imm[11:0] rs Reserved rd Custom1

Normal write Imm[11:5] rs2 rs1 Reserved Imm [4:0] Custom2

CP and CPA 0 Flag A1 A2 BA I/R Col[5:0] Custom3

3. RISV Processor with IMC

3.1. Processor Architecture

RISC-V foundations introduced a few open-source RISC-V processor cores. This work chose
Hummingbird E200 as the original processor because it was designed for IoT applications and optimized
for low power and area costs [18].

The original Hummingbird E200 processor employs two static random-access memories (SRAMs)
as working memories, one for instructions and the other for data. This work adds an additional
memory module, i.e., the IMC module, which includes an IMC core based on a memristor and a
customized IMC controller to interact with the control and operation module (COM) in the CPU core,
as shown in Figure 2. Some modifications are also made inside the processor without changing the
original functions; thus, the generality is not destroyed after adding IMC functions. The memory
controller is not reused for the IMC module because it has more functions than a traditional SRAM.
Therefore, a separate controller is designed inside the IMC module (as discussed in Section 3.2).

Instruction 
Fetch Unit

Instruction 
Memory

Data Memory

Control and Operation Module

Arithmetic 
Logic Unit

Bus Interface Unit

Memory 
Controller

IMC Core

Write back 
to registers

IMC 
Controller

To the external system bus

IMC Module
CPU Core 

Memory module
 

Figure 2. Modified RISC-V processor core with in-memory computing (IMC).
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3.2. IMC Implementation

3.2.1. IMC Core Architecture and Assistant Logic

The IMC core is designed to implement the IMC instructions. It consists of an advanced row
decoder, a write buffer, a memristor array, an IMC read-out circuit, a 64-bit shifter, and a mode selector,
as shown in Figure 3.

Memristor Array
Advanced 

Row 
Decoder

64-bit Shifter

Write Buffer

Addr0

Addr1

single/
double

Mode 
selector

rdata

sel

shift amount

wdata

IMC Read-out Circuit

mode

IMC core

 

Figure 3. IMC core architecture.

The read-out circuit is specially designed to implement the IMC logic instructions. The memristor
array stores the data which participate in the IMC computations. These two modules are indispensable
for IMC and are described in Section 3.2.2. The rest of the IMC core includes assistant circuits, which
help to implement the IMC instructions and the control of the IMC core.

The advanced row decoder can either activate two row addresses simultaneously to execute IMC
logic instructions or only one address to execute read/write instructions. The 64-bit shifter implements
the 64-bit circular shift operation, and is disabled when other operations are performed. The mode
selector decides whether the data are loaded out to the registers or written to the memory (either
64-bit data or 320-bit data) for CP and CPA. The write buffer is used when the data are written to the
memristor array. A selection signal is sent to the Bitline (BL) calculator inside the IMC read-out circuit
to determinate the IMC logic type. It should be noted that some control circuits are not shown in
Figure 3 for conciseness.

3.2.2. IMC Memristor Array and Read-Out Circuit

In-memory computing implements all the 320-bit bitwise logic operations including AND, OR,
and XOR operations in the hash algorithm using memristor-based IMC technology. As shown in
Figure 4, a one-diode-one-memristor (1D1R) crossbar array is proposed with the IMC read-out circuit
to realize the logic operations. The diode helps to restrain the disturbance of sneaking current to
write/read, and logic operations; the memristor features unipolar set and reset operations. Using
the diode as the selector, the 1D1R cell achieves higher density than the 1T1R cell [19]. Moreover,
the diode selector and the memristor can both be integrated in the back end of line (BEOL) of the
standard CMOS process. Therefore, the IMC core can be physically stacked by placing peripheral
circuits on the substrate and lower interconnect metals, and the 1D1R crossbar array on the middle or
upper interconnect metals. This can save area further, in accordance with the low-cost requirement of
IoT devices.
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Figure 4. Memristor array with IMC read-out circuit.

The data are written into the 1D1R array by the processor in advance. The operation table of
the 1D1R memristor array is shown in Table 4. Here, Vset/Vreset/Vread stand for the set/reset/read
voltage of the memristor, and Vt is the threshold voltage of diode selector. The low-resistance state
(LRS) of the memristor stands for logic “1”, while the high-resistance state (HRS) stands for logic “0”.
To perform IMC, two selected wordlines (WLs), e.g., WL0 and WL1, are activated while applying
proper read voltage (Vread) on the bitlines, e.g., BL0–BLn. The sum of currents along the same bitline
(BL), e.g., IBL0 and IBLn, are compared with two reference currents, IOR and IAND. The HRS is usually
10 times larger than the LRS [10], meaning that ILRS >> IHRS, where IHRS and ILRS stand for the typical
read currents for HRS and LRS, respectively. Therefore, the typical values of IOR and IAND can be set
as 0.5 × ILRS and 1.5 × ILRS. When ISUM is larger than IOR, the signal OR becomes logic “1”, implying
that at least one of the two activated memristors along the same bitline is the LRS. When ISUM is larger
than IAND, the signal AND becomes logic “1”, implying that both activated memristors along the
same bitline are the LRS. By sending the results of OR and AND to an XOR gate, the XOR result is
obtained at the output O0–On. According to the control signal sel[1:0] from the assistant logic circuit,
the corresponding result is written back to the 1D1R array in the next clock cycle. To perform 320-bit
operations, this work adopts a 20-kb memristor array with 64 rows and 320 columns.

Table 4. Operation table of one-diode-one-memristor (1D1R) memristor array for IMC. HRS—high-
resistance state; LRS—low-resistance state.

Operation Mode
Wordline (WL) Bitline (BL)

Selected Un-Sel Selected Un-Sel

Set (HRS→LRS) 0 Vset Vset + Vt 0

Reset (LRS→HRS) 0 Vreset Vreset + Vt 0

Logic (Read) 0 Vread Vread + Vt 0
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4. IMC Compiling Policy and Data Allocation Method

4.1. IMC Compiling Policy

In a traditional general processor, it is up to the software programmers to decide how to store the
data needed, and the compiler to decide where to store them [20]. However, when it comes to IMC
instructions, the programmer also has to decide whether to perform the computation with Arithmetic
Logic Unit (ALU) or with IMC, requiring a special compiling policy. In addition, as mentioned in
Section 3, only data in the same column and different rows can perform IMC logic operations; thus,
IMC requires a different data allocation policy.

When a 32-bit vector is to be calculated with another 32-bit vector, ALU can finish this process
in one clock cycle if the data are already cached in the registers, but IMC needs two clock cycles.
This indicates that IMC consumes more processing time than ALU when performing simple logics.
However, if both vectors are originally in the memory, ALU needs two additional clock cycles to load
them out, and another clock cycle to store them into the memory if needed. This consumes more time
than IMC. More generally, for a certain part of the algorithm with A 32-bit inputs, N steps of basic
32-bit operations, and Y 32-bit outputs (including long-lifetime intermediate results that cannot be
cached in general registers), ALU takes (A + N + Y) clock cycles to process, whereas IMC needs 2N.
Therefore, ALU should be used to perform calculations when

A + N+ Y < 2N, (7)

i.e.,
N > A + Y. (8)

Similarly, if the vectors are 64-bit long, ALU needs at least 2–6 clock cycles to finish this operation,
but IMC needs only two clock cycles anyway; thus, IMC should be used to perform the calculations.
This works better for vectors with widths larger than 64 bits. To sum up, for 32-bit vectors, ALU
performs better when Equation (8) is satisfied, and, for 64-bit or longer vectors, IMC is always better.

4.2. Data Allocation Method for SHA-3

In terms of data allocation, IMC logics require any data processed to be in the same columns and
different rows, and then data in the same row are handled simultaneously. Therefore, it is required
that data placed in the same columns should frequently be operands of IMC operations, and data in
the same row should share the same IMC operations frequently.

Considering the regular features in Keccak-f permutation and the general compiling policy, we
decided to adopt the data allocation method as shown in Figure 5. The 1600-bit state array is placed
in row addresses R0–R4, and five 64-bit words are located in each row address with column address
C0–C4, denoted as A(x,y). The five permutation steps are processed as below.

Figure 5. Data mapping of the 1600-bit state array.
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a. θ step

Perform XOR operations and get the XOR result of R0–R4, and then put the result in R5. Copy
the result in C0–C4 of R5 to all columns in R6–R10 by performing CPA operations. Perform SHIFT
operations on R6–R10 with the result placed in R11–R15. Then, XOR operations with the result placed
in R0–R4 can be performed to finish the θ step.

b. ρ and π step

The ρ step and π step can be processed in a mixed way. Copy all data from R0–R4 to R5–R9; then,
perform SHIFT operation to get the rotated value (stored temporarily in R10) and CP operations to
update the data in R0–R4.

c. χ step

Copy data in C0–C4 of R0 to R5–R9 by CPA operations, and perform NOT, AND, and XOR
operations in succession and update R0. Repeat this process five times so that all R0–R4 rows are
updated. Note that the NOT operation can be performed by XOR with an all-1 vector.

d. ι step

In the ι step, there are lots of frequently used data and few long vectors; thus, ALU is used to
perform this operation, and the instructions can be given by a C compiler.

5. Evaluation

5.1. Evaluation Methods

The proposed RISC-V processor with IMC for the Keccak algorithm was evaluated against the
baseline one without IMC in terms of area, processing time, and energy consumption. The evaluation
was carried out using the 28-nm process parameters.

For area evaluation, the control and operation module in Verilog hardware description language
(HDL) format was firstly compiled by a Synopsys design compiler to acquire the equivalent gate count,
which was then multiplied by the size of two-input NAND gate, i.e., NAND2, in the 28-nm process to
get the corresponding area. The total area of the processor was calculated by summing the area of the
control and operation module, the area of two working SRAM memories, and the area of the 20-kb
IMC module.

Figure 6 gives the evaluation method for processing time and energy consumption. To evaluate the
processing time, the Keccak process was simulated in a Synopsis VCS Verilog simulator [21]. A 7-byte
binary string was adopted as the test input. By simply compiling the C source code of the Keccak
algorithm, the baseline processor could give the SHA-3 value through a non-IMC method. Then, by
adding IMC instructions into the compiled machine codes of Keccak algorithm, the IMC-extended
processor could give the SHA-3 value through an IMC method. The processing time can be acquired
from the simulation log files. The energy evaluation was based on the simulation results of processing
time. Firstly, the executed instructions in both cases were counted from the simulation log files
separately. Then, based on the average energy consumption of individual instructions, the total energy
consumption could be obtained by weighted summation.
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Figure 6. Evaluation method for processing time and energy consumption.

5.2. Area Overhead

The equivalent gate count of the control and operation module, i.e., COM, was compiled to be
about 110 K. Given the size of NAND2 to be 0.9 μm × 0.56 μm, the area of COM was about 0.006 mm2.
The two working SRAM memories both had a capacity of 64 kb. The SRAM cell size was 0.12 μm2

and the total area of two working SRAMs was 0.028 mm2 [22]. For the IMC module, the count of
IMC read-out circuits was required to be as many as 320 to support 320-bit bitwise logic operations.
Assuming that each IMC read-out circuit had a size of 2 μm × 4 μm, the total area of IMC read-out
circuits was 0.0026 mm2. The area of the advanced row decoder was estimated to be 0.001 mm2, i.e.,
50 μm × 20 μm. The areas of the other circuits in the IMC module were relatively small and were
estimated to be 0.0005 mm2. By 3D stacking, the 20-kb memristor array of the 1D1R cell would not
bring additional area cost. To sum up, the area of the IMC module was about 0.004 mm2. Figure 7
shows the area comparison of the baseline and the RISC-V processor with IMC. The IMC module
brings an area overhead of about 12%. However, the memristor array in the IMC module also plays
the part of data cache; thus, the capacity of SRAM memory for data can be reduced, alleviating the
area overhead. When the capacity of SRAM memory for data is reduced by 20 kb, the total area is
reduced by about 0.003 mm2, and the area overhead is decreased to only 3%.

Figure 7. Area comparison between the baseline and the proposed RISC-V with IMC.
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5.3. Performance Improvement

The processing time of the baseline RISC-V processor and the proposed one with IMC can be
easily given by the simulator. The simulation was performed at a clock frequency of 62.5 MHz. Since
our IMC technology accelerates each round in the Keccak-f permutation, both the processing time in
one round and the overall process were considered, as shown in Figure 8. The processor can achieve
over 70% improvement in terms of processing time for both one round and the overall process.

 

Figure 8. Comparison of processing time for the Keccak algorithm.

5.4. Energy Reduction

The average energy consumption for different operations was firstly characterized in the 28-nm
process, as shown in Table 5. The energy consumed by SRAM read or write was similar. The 1D1R
memristor cell consumed more energy than SRAM for read and write due to large active currents.
Furthermore, the write operation of the memristor was even more energy-consuming than the read.
Since the IMC logic was performed mainly by the read operation, the IMC readout circuits and other
peripheral circuits still brought additional energy consumption by about 50%. All the parameters were
closely relevant to the circuit design techniques and can be further optimized.

Table 5. The average energy consumption for different operations in the 28-nm process.

Operation Energy (pJ)

ALU 70

SRAM read/write 0.1/bit

memristor read 0.3/bit

memristor write 0.6/bit

memristor logic 0.45/bit

The average energy for each instruction is described in Table 6. The energy of ALU instruction
refers to the energy consumed by the control and operation module to fetch an instruction from
instruction SRAM, and then to decode and execute the instruction. The energy of SRAM read/write
refers to the energy consumed by the normal ALU instruction and the energy to read/write 32-bit data
from/to the data SRAM. The energy of IMC read/write refers to the energy consumed by the normal
ALU instruction and the energy to read/write 32-bit data from/to the memristor array. The energy of
IMC CP refers to the energy consumed by the normal ALU instruction and the energy to read 64-bit
data from the memristor array and then write it to another address in the memristor array. The energy
of IMC CPA refers to the energy consumed by the normal ALU instruction and the energy to read 64-bit
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data from the memristor array and then write it to five addresses in the same row of the memristor
array. The energy of IMC logic refers to the energy consumed by the normal ALU instruction and
the energy to perform 320-bit IMC logic and then write the 320-bit result back to the memristor array.
The energy of 320-bit IMC SHIFT refers to the energy consumed by the normal ALU instruction and
the energy to read 320-bit data from the memristor array and then write it back to the memristor
array after shifting. It should be noted that IMC instructions usually consume more energy than ALU
and SRAM read/write (R/W) instructions. With the development of memristor technology, the power
consumption can be expected to decrease.

Table 6. The average energy consumption for each instruction in the 28-nm process.

Instruction Main Actions Energy (pJ)

ALU Fetch, decode and execute the instruction 70

SRAM read/write ALU, 32-bit SRAM read/write 73.2

IMC read ALU, 32-bit memristor read 82.8

IMC write ALU, 32-bit memristor write 89.2

IMC CP ALU, 64-bit memristor read and write 134

IMC CPA ALU, 64-bit memristor read and 320-bit
memristor write 287.6

IMC Logic (AND, OR, and XOR) ALU, 320-bit memristor logic and write 406

IMC SHIFT ALU, 320-bit memristor read and write 390

Like the processing time, both the energy consumption in one round of Keccak-f permutation and
the overall process were considered. Figure 9 gives the comparison of instruction count of the baseline
RISC-V processor and the one with IMC. In one round of Keccak-f permutation, the instruction counts
of ALU and SRAM R/W were greatly reduced and the total instruction count was reduced by 83%
after introducing IMC. The reduced instructions mean less data transferred between the memory and
the ALU and also less workload for the ALU. As a result, the energy consumption in one round of
Keccak-f permutation was reduced by 72%, as shown in Figure 10. Among the IMC instructions,
the IMC logic brought the most energy consumption, accounting for more than 60%. Although the
IMC instructions are generally energy-consuming, remarkable energy reduction was still achieved
owing to the sharp reduction in instruction count. The reductions in instruction count and energy
consumption for the overall Keccak process show similar trends to one round of Keccak-f permutation,
achieving reductions of 81% and 70% after introducing IMC, respectively, as shown in Figures 11
and 12. It should be noted that our simulation adopted a 7-byte binary string as the Keccak input, and,
if the input data were infinitely long, the energy improvement tended to approximate to the extent of
one round of Keccak-f permutation.

104



Micromachines 2019, 10, 541

Figure 9. Comparison of instruction count in one round of Keccak-f permutation.

 
Figure 10. Comparison of energy consumption in one round of Keccak-f permutation.

Figure 11. Comparison of instruction count in overall Keccak process.
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Figure 12. Comparison of energy consumption in overall Keccak process.

5.5. Comparison with Mainstream Mining Platforms and SRAM-Based IMC

Table 7 gives a comparison of the proposed memristor-based IMC with mainstream mining
platforms and SRAM-based IMC. For the CPU, GPU, and ASIC, we selected i5 2500k from Intel,
Tesla S1070 from Nvidia, and Antminer S4 from Bitmain, all of which were implemented in the
28/32-nm technology node. The performance was measured by the hash rate, i.e., hash operations
performed in one second (H/s). The SRAM-based IMC was evaluated using the same method with the
memristor-based one in this work.

Table 7. Comparison of memristor-based IMC with central processing unit (CPU), graphics processing
unit (GPU), application-specific integrated circuit (ASIC), and SRAM-based IMC.

Mining Platform Performance (H/s)
Active Power

(Watts)
Energy

Efficiency (J/H)
Area (mm2)

CPU (i5 2500K) [23] 4.80 × 104 90 1.88 × 10−3 large scale

GPU (Tesla S1070) [23] 1.55 × 108 8.00 × 102 5.16 × 10−6 large scale

ASIC (Antminer S4) [23] 2.00 × 109 1.40 × 103 7.00 × 10−7 large scale

SRAM-based IMC 1.03 × 103 8.80 × 10−4 8.50 × 10−7 3.50 × 10−2

Memristor-based IMC 1.03 × 103 1.17 × 10−3 1.14 × 10−6 5.50 × 10−2

From the comparison, two key points are worth mentioning. Firstly, although the CPU/GPU/ASIC
provided higher performance than the SRAM/memristor-based IMC RISC-V, the latter consumed
much less power (more than four orders of magnitude), which satisfies the low-power requirement of
IoT applications. The large power of the CPU/GPU/ASIC also brings the need for cooling facilities.
Moreover, a great number of IoT devices can also be coordinated to acquire high performance [4].
Secondly, memristor-based IMC brings less area cost (>50%) than SRAM-based IMC. Currently,
SRAM-based IMC is more energy-efficient (~30%) than memristor-based IMC. The reason is that
the write and read operations of the memristor consume much larger current. However, with the
development of memristor technology, it is believed that the power consumption of the memristor will
decrease. Moreover, the nonvolatility of the memristor enables the IMC module to fully power-off
without data loss during standby mode, helping to reduce the total standby power.

6. Conclusions

Security for private information on IoT devices is becoming increasingly important. The hash
function used in blockchain helps to ensure information security, as well as data integrity. However,
the corresponding hardware in IoT devices is challenging when realizing the complex hash algorithm
owing to a low energy budget. This paper proposes combining in-memory computing with the highly
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extensible RISC-V for lower-power hash algorithm implementation. Remarkable improvements in
both performance and energy consumption were achieved with limited area overhead. Further work
may involve general compiling techniques to help the processor with IMC to realize diverse functions.
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Abstract: Current computation architectures rely on more processor-centric design principles. On the
other hand, the inevitable increase in the amount of data that applications need forces researchers to
design novel processor architectures that are more data-centric. By following this principle, this study
proposes an area-efficient Fast Fourier Transform (FFT) processor through in-memory computing.
The proposed architecture occupies the smallest footprint of around 0.1 mm2 inside its class together
with acceptable power efficiency. According to the results, the processor exhibits the highest area
efficiency (FFT/s/area) among the existing FFT processors in the current literature.

Keywords: Fast Fourier Transform; in-memory computing; associative processor; non-von neumann
architecture

1. Introduction

Today’s processor-centric design principle of computer architectures causes a great deal of energy
waste. This is mainly because processing on the data is performed far away from the data [1]. Moreover,
even though the processor systems are highly optimized, the data units are not considered much.
On the other hand, computer applications are becoming increasingly data hungry. This became an
indispensable fact especially after the rise of artificial intelligence (AI) and deep-learning domains
for which big data is necessary [2]. Therefore, data movement energy dominates to compute energy
in a traditional computer architecture serving today’s computational needs. For example, memory
access nearly consumes 1000× the energy of a complex addition operation [3]. Since the amount
of data required increases, this adversely affects the efficiency of computers. Not only for AI but
also in all domains ranging from signal processing to robotics, an efficient and memory-optimized
computation is desired for the sake of specific advantages. Therefore, this fact forces researchers
to find alternative computation methodologies. A paradigm shift to perform the computation with
minimal data movement is needed by computer scientists. The most reasonable way to achieve this is
by making the computation more data-centric than at present processor-centric. This research goal is
investigated by many different methodologies. In the ideal case, the most advantageous computing
methodology is in-memory computing means that data is processed where it resides.

In-memory computing can be achieved through different methodologies [4]. The most
straightforward method is placing memory and processor inside the same chip to facilitate ultra-fast
data processing instead of moving the data through the slow buses between the different chips [5]. Even
though the idea seems as simple, this combination requires special fabrication in-chip manufacturing.
The architecture targets to combine the processor logic with a stack of through-silicon-via (TSV) bonded
memory die [6,7]. The logical core of the memory system is a kind of single instruction multiple data
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(SIMD) processor where the different memory portions are directly connected to different cores, thus
increasing the overall system bandwidth. As another methodology, some researchers focus to insert
extra abilities to existing memory chips with minimal modifications. As a basic motivation example,
5% of the overall cycles in Google’s data centers are spent on memcopy and memmove operations [8].
If a dynamic random-access memory (DRAM) has the capability to exchange data between its rows
without processor intervention, then these operations would not have to be carried over the central
processing unit (CPU). The study in [9] modifies the DRAM chip to perform this operation directly
inside the DRAM without moving the data. The modification increases the DRAM area only 0.01%.
Emergence of the new nonvolatile memory (NVM) technologies such as resistive RAM (ReRAM) and
phase change memory (PCM) created a widespread adaptation for in-memory processing due to their
inherently analog processing capability, high density, and scalability [10,11]. There are many studies
that aim to perform in-memory computation by using NVMs, but with different methodologies [12,13].
An example of this kind in-memory computation methods is using memristor crossbars where the
crossbar is configured in a way to perform corresponding specific operations. When an input is
applied to the programmed crossbar, its corresponding output becomes the result of the programmed
operation [14]. The study in [15] exploits the memristor crossbar for approximate addition and
multiplication operations. The prime architecture proposed in [16] uses memristor crossbars to create
a neural network realization which is the fundamental operation in deep learning. Another approach
of in-memory computing is integrating simple logic structures in each memory cell [17]. The study
in [18] proposes an architecture in which the memory cells can both store the data and perform simple
computations on it. Furthermore, two or more cells can be combined to perform more complex
operations. Another study in [19] proposes a systolic three-layer memory structure consists of memory,
routing, and logic planes.

As another methodology, associative in-memory processing performs the in-memory computation
by using look-up tables of the arithmetic and logical operations. Unlike the traditional von Neuman
or near-memory computation in which the data sent to a processor for computation, associative
processors (AP) sent the functionality (i.e., operation) over the data without moving it. In other
words, functionality is performed directly inside the memory. Table 1 summarizes the comparison
between these methodologies. According to the specifications, in-memory processing provides the
broadest constraint in terms of bandwidth. With the invention of resistive memory devices such as
ReRAM [20], STT-RAM (spin-transfer torque random-access memory) [21] this convention has started
to gain popularity recently. Since there are numerous studies performing in-memory computation
through different approaches, the study in [18] puts an extra effort for the taxonomy and proposes
a classification into four groups; computation-near-memory (processor and memory in the same
chip), computation-in-memory (computation is performed in the peripheral circuitry of the memory),
computation-with-memory (LUTs are used for computation), and logic-in-memory (the memory cells
have the computation ability). Regarding this classification, associative processing can be considered
to be a computation-with-memory approach.

Table 1. Computation types with respect to memory.

Computation Data Functionality Bandwidth
Type Location Location Constraint

Traditional Separate IC Processor Inter-chip Bus

Near-memory Same IC Processor In-chip Bus

In-memory Same IC Memory Memory Capacity

In this study, a fast and efficient in-memory accelerator/processor is proposed for the Fast Fourier
Transform (FFT) which is the most important and extensively used algorithm in signal processing.
Since the computation domain has already reached to big data era, signal processing architectures
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should be reconsidered from the data perspective. As a supportive case from health industry, magnetic
resonance imaging (MRI) requires huge data sampling and processing for better patient diagnosis.
Fast Fourier Transform is heavily used during the processing [22]. If the computation is inadequate in
performing the FFT at enough speed, the patient must stay longer inside the MRI [23,24], therefore be
exposed to more stress. On the contrary, if the sampled signal size is decreased, the accuracy is affected
negatively which is not acceptable in the health industry. Therefore, a fast FFT processor is required to
acquire both enough accuracy and processing speed. The proposed architecture exploits the different
FFT computation methodologies which have a coherence inherently for in-memory computing to come
up with the efficient architectures. The study also proposes the overall integration solution in which
accelerator can be used as a standalone processor on its own.

The rest of the paper is organized as follows: In the following section, the fundamental idea of
associative computing together with the architecture is presented. Section 3 introduces the proposed
two architectures of in-memory FFT processor that are throughput-optimized and area-optimized,
respectively. Experimentation and evaluation results are discussed in Section 4. The final section
concludes the work.

2. In-memory Associative Processing

Associative in-memory processing is a computing paradigm aims to perform the operations on
the data by using associativity principles [25]. The proposed FFT processor in this study bases the
associative in-memory processing. All primitive FFT operations are performed on the input data
placed inside the memory without moving it. The following two subsections form a background on
the AP architecture as well as how associative computing is performed.

2.1. Associative Computing

Figure 1 shows the overall architecture of an AP in detail. The key component of an AP is a
content addressable memory (CAM) [26,27]. A CAM is used to access the data by its content on the
contrary to the traditional memory where the data is accessed by its address. The CAM stores the
data on which the operations are performed. The figure shows the SRAM-based CAM cell structure.
In this cell, the one-bit data is stored by a coupled inverter where each inverter supports to the other
to keep its logical value. Associative processing exploits the associativity feature of the CAMs hence
the name comes from. The basic operation on a CAM is done through the key, mask, and tag registers
which are managed by the controller. A search operation inside the CAM can be performed as follows;
First, the content which searched for inside the CAM is written to the key. The mask register identifies
the columns on which the search is performed. If the content is found in a row, the corresponding tag
register of this row becomes logic-1.

In addition to CAM, AP needs an address decoder for the communication with the outer system.
This outer system can directly be a data source or a processor. Depending on the usage, AP can function
as either a standalone processor or an accelerator. The computation inside the CAM is performed in a
SIMD fashion. On the other hand, the traditional processors or outer systems (e.g., sensors) provide
the data as sequential. To interact between these two different systems, an address decoder is used to
feed or output data as sequential by activating the specific rows of the CAM.

As detailed in the next subsection, APs are very powerful for performing parallel operations
when the provided data is on the same row. On the other hand, if the benchmark requires computation
not only as pairwise (e.g., vector dot product) but also between the different pairs (e.g., matrix
multiplication), it needs data exchange between the rows. For this purpose, a switching matrix is used
to move the data as column-wise between the APs or to the same AP. This communication must be
configurable if the processor supports different kinds of tasks with different communication patterns.
On the other hand, if the processors is an application specific, it can be fixed. Figure 1 shows these two
kinds of approaches in the interconnection matrix.
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Figure 1. Associative processor architecture.

2.2. Operation

The main idea of associative in-memory processing is performing the function/operation on the
data without moving it. In traditional processors, to perform an operation on a set of data, the data is
moved to the processor through the special high-speed buses and brought to the processor. Inside the
processor, the data passes through the functionality (e.g., a full adder or multiplier) and the computed
results are written back to the memory. Unlike this approach of sending data over functionality,
in in-memory associative processing, the functionality is sent over the data (see Table 1). Even though
this approach seems unconventional, the CAM structure inside the AP makes it feasible.

The operations on the AP are performed through the compare and write cycles. During the
compare cycle, a specific key (data) is searched for inside the CAM and in the write cycle, the specific
data can be written to the columns which have the searched content (i.e., matched as a result of
compare operation). Since a specific content can be selected in the CAM through the compare cycles,
the corresponding function on this specific content can be applied to data inside the CAM. As an
example, to perform the logical NOT operation (i.e., B = ∼A where column B is initialized with
logic-0), the CAM is searched for logic-0 on the input column (i.e., column A) and a logic-1 is written
to the column B of the matched rows. Therefore, the logical not operation can be applied to the
data which is logic-0. In the end, the rows with logic-1 in Column A have logic-0 in Column B and
vice versa. Therefore, by applying the special functionality with respect to the searched content, the
intended function can be performed. The functionalities of the AP operations are defined by look-up
tables (LUTs). Depending on the LUT, the corresponding functionality is applied to the rows of
the CAM separately. Table 2 shows two example LUTs for in-place addition (i.e., B ← B + A) and
subtraction (i.e., B ← B − A) operations where Cr and Br are stand for carry and borrow respectively.
The operations are performed as bitwise, starting from the least significant bit (LSB) of the operand
towards the most significant bit (MSB). On each bit, the LUT passes are applied through the compare
and write cycles. As an example of addition operation, in the first LUT pass, “011” is searched for in
the CAM array for Cr, B, and A bits respectively during the compare cycle and then “10” is written to
the Cr and B columns of the matched rows. The entries of LUT are iteratively applied to all bits of B
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and A in sequence by following the order. The comment column indicates the order that LUT entries
are applied required to perform the operation correctly. Some LUT entries are unnecessary and do
not participate in the result; therefore, they are indicated as NC (no change) in the comment column.
The studies in [27–29], show the detailed examples of some arithmetic and logical AP operations in
detail together with the step-by-step illustrations.

Table 2. LUTs for addition and subtraction.

Addition Subtraction

Compare Write Write

Cr/Br B A Cr B Comment Br B Comment
0 0 0 0 0 NC 0 0 NC
0 0 1 0 1 2nd Pass 1 1 1st Pass
0 1 0 0 1 NC 0 1 NC
0 1 1 1 0 1st Pass 0 0 2nd Pass
1 0 0 0 1 3rd Pass 1 1 4th Pass
1 0 1 1 0 NC 1 0 NC
1 1 0 1 0 4th Pass 0 0 3rd Pass
1 1 1 1 1 NC 1 1 NC

3. FFT Processor Architecture

The Fourier transform is a function used to decompose the given signals into its sinusoidal
components [30]. It is used in nearly all scientific domains ranging from signal processing to artificial
intelligence. In 1965, Cooley and Tukey proposed a faster algorithm named FFT to compute the
Discrete Fourier Transform (DFT) [31] where the complexity of the transform decreased to O(n log2 n)
from O(n2). The proposed faster methodology consists of the interleaved computation stages where
each stage composes of basic butterfly operations performed on data pairs. Since the algorithm is
highly parallel, it inherently provides a widespread adaptation for in-memory associative processing
both has a computation structure in an SIMD fashion [32]. On the other hand, the architecture requires
some modifications to fulfill the requirements of an efficient processing platform. The following
subsections detail the proposed implementations of FFT on in-memory AP in a hierarchical manner.

3.1. Butterfly Operation

The butterfly operation is the fundamental building block of an FFT stage. Figure 2 shows the
simplest butterfly diagram consisting of two inputs, two outputs and one exponential coefficient
(twiddle factor) where all numbers are complex (i.e., X0, X1 = butterfly(e0, x0, x1)).

x0 X0 = x0 + e0.x1

x1

X0

X1
X1 = x0 – e0.x1

e0

Figure 2. Simple butterfly operation.

Figure 3 shows the data flow of radix-2, decimation in time, 8-point Cooley-Tukey’s FFT in three
stages where each stage consists of four butterfly operations. After each stage, the partial outputs
of previous stages are rearranged as an input of the next stage. From the AP-based point of view
where each row can be regarded as a different processor with their own registers, two input and
one exponential factor must be stored in the same row to perform a butterfly operation. However,
after completion of a butterfly stage, the output of the current stage must be rearranged for the next
stage since the computation pattern changes and the AP can perform the butterfly operation if and
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only if the operands (i.e., two inputs and coefficient) are in the same row. The exponential coefficients
(exy) can be placed to the CAM arrays before the operations. For an n-point FFT operation, the overall
system requires log2(n) APs and each AP requires n

2 rows. For example, the system requires 10 APs
and 512-rows in each AP for 1024-point FFT operation. Since this is an in-memory FFT processor,
the memory requirement is higher than the traditional FFT processors (e.g., [33–35]). On the other
hand, the proposed processor does not need any traditional logic circuit, therefore provides an overall
area efficiency. Section 4 discusses the comparison in detail.

x0
x1
x2
x3
x4
x5
x6
x7

X0
X1
X2
X3
X4
X5
X6
X7

Stage #1 Stage #2 Stage #3
Figure 3. 8-point traditional FFT.

3.2. Data Movement

To process the data inside the AP accelerator, the outer system (i.e., processor) needs to
communicate well enough with the accelerator (i.e., FFT processor). To feed the input data and
retrieve the output data, the processor should have access to the data of the CAMs as row addressed.
The main reason for this is that the traditional processors process the data as row-wise on the contrary
of APs where data is processed as column-wise (see Section 2). Additionally, the sensors sample the
data in time as sequential and provide it in this manner. The Figure 1 shows this hierarchy where the
address decoder handles the communication between the AP and the processor. This decoder activates
the specific row of the AP as described in the address input. The previous studies on associative
computing [27,36] also provide a decoder mechanism for this purpose. In such an architecture,
every row of the AP becomes addressable by the outer processor. On the other hand, the main purpose
of in-memory accelerators is parallelizing the jobs done on large chunks of data where the sequential
access to the individual memory locations is not much necessary during the operation. It is only needed
during the initialization of the CAM array where the processor feeds the data as serial. However, even
for this purpose, the random-access feature is still not much needed since this copy operation are done
in order from the first line until the end. Therefore, the decoder circuit provides over functionality to
the overall system which has no additional benefit.

Instead of using an address decoder, the shift register mechanism is introduced for the sake of
area, performance, and energy efficiencies. Figure 4 shows the proposed in-memory FFT architecture
explicitly where the costly decoder mechanism is replaced with the shift register-based approach.
In this approach, a shift register is placed as vertical to the rows of the AP. The shift register has the
same number of registers (flip-flops) as the number of rows in the AP. The outputs of each shift register
are connected to the activation input of the corresponding rows. In this case, if the register outputs
a logic-1, the row becomes activated while the logic-0 deactivates the corresponding row. The data
movement operation from the processor to the AP is performed as follows; First, the processor selects
the location of the AP’s columns to which data is written by setting the corresponding mask registers.
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The processor also asserts the init pin of the shift register to initiate the bulk data movement, so that
the first register in the shift register becomes logic-1 in the next clock cycle. Therefore, in the first cycle,
the first row is activated and ready to be written. At the same time, the outer processor synchronously
provides the input data that is written to the selected columns of the first row. In the second cycle, shift
register content is shifted by a single bit and the second row is activated and write operation is done for
this row. At every time, the activated row by the shift register is written. The processor feeds the data
as synchronized with the shift register, so they must be clocked by the same source. In this manner,
the write operation for each row continues until reaching to the end row of the AP. To initialize an AP
with n rows, n + 1 cycles are required. In this case, even though the inter-communication between
the APs is column-wise through the switching matrix, the communication between the processor and
the AP is handled as row-wise but more efficiently. After processing the data in the AP accelerator,
the data can be retrieved by the processor in the same manner where the processor reads the data
of the activated row from the bit lines as serial. The same shift register can be used for both writing
and reading. When compared with the complexity of a decoder circuitry which needs n-1 1-to-2
demultiplexers for n-row CAM, the shift register approach requires n flip-flops only.
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Figure 4. Pipelined in-memory FFT processor architecture.

3.3. Area-Optimized Architecture

For the in-memory FFT processors, two different architectures are proposed which are throughput
and area-optimized, respectively. The throughput-optimized architecture performs each stage of
the FFT in an AP-CAM as shown in Figure 4. The communication patterns between the APs can
be fixed since the FFT size is fixed to 1024-point and it is known as a priori. On the other hand,
the communication pattern varies with respect to the current stage as seen in Figure 3. Even though this
architecture provides high-throughput in-memory FFT, it needs to replacement of AP-CAMs 10 times
(i.e., log2(n)). An area-efficient alternative can be possible through the reconfigurable switching matrix
where the results of a single AP stage are feedbacked back to the AP itself (see Figure 5). After
completion of a butterfly stage, the reconfigurable switching matrix can be configured according to
the next stage. However, this approach requires additional area and control costs. If the number of
rows of a CAM array (n) is more than the number of columns (m) in an AP which is generally so since
parallelism is obtained as row-wise, the area complexity of a reconfigurable switching matrix (n × n)
becomes more than CAM itself (n × m). For instance, to perform a 1024-point FFT on 12-bit data,
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132 × 512-bit CAM array is required. On the other hand, it requires a 512 × 512-bit reconfigurable
switching matrix. Even the CAM cell size is assumed as 2× of the traditional memory, the switching
matrix requires about 1.94× more area. Furthermore, the control over the switching matrix becomes
intractable also since every cell must be controlled individually.
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Figure 5. The ultra-area-efficient FFT processor based on singleton’s FFT and feedback.

There are many algorithmic implementation of FFT (e.g., prime-factor FFT [37], Krukar’s FFT [38],
and Bluestein’s FFT [39]) where some of them are optimized for specific input types (e.g., prime sizes,
powers of two). Singleton’s FFT [40] is an approach for performing FFT in the same manner and
operational complexity as Cooley-Tukey FFT in traditional computers. On the other hand, it provides
an incomparable advantage for APs. Even though the traditional FFT requires the change in the
communication pattern where each FFT stage requires different input pairs, Singleton’s FFT fixes
the pattern of the data flow between the butterfly stages. For the visualization, Figure 6 shows
an 8-point FFT using Singleton’s method where the input xi of every step goes into butterfly with
input xi+n/2 where n is the FFT size. Even though variable computation pattern is not an issue
for general-purpose processors or ASICs which always have a random-access memory structure,
it provides a vital advantage for parallel in-memory processing systems detailed as follows.
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Figure 6. 8-point Singleton’s FFT.
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The area-optimized architecture exploits the Singleton’s FFT to fix the inter-communication
pattern between the stages. In this way, the whole FFT computation can be performed by using a single
FFT stage. If the FFT implementation was the traditional one (i.e., Cooley-Tukey), the switching matrix
would have to be reconfigurable. Figure 5 exploits the proposed area-optimized FFT architecture.
To move the data from/to processor, a single shift register is used as described above. The switching
matrix has a fixed pattern feedbacked to the AP itself so that every FFT stages are performed on the
same AP. One drawback of this architecture is that after every computation, the new twiddle factors of
the corresponding stage must be loaded to the APs from the outer processor by using the proposed
shift register-based data movement approach. On the other hand, the cost of this overhead seems
negligible compared with the whole butterfly operation on 1K data.

3.4. Dual-Issue Butterfly Operation

For the further optimization on the performance, the data flow diagram of a single butterfly
operation on the AP (i.e., A, B = butterfly(e, a, b)) are inspected. Figure 7 shows the corresponding
directed acyclic graph (DAG) of a butterfly operation on the AP where each box corresponds to an
operation described inside and the lines show the data dependencies (flow of the data). Since AP
performs a complex multiplication operation as four real multiplications, the diagram shows the
operations on the real and imaginary parts with subscripts r and i respectively. At the first insight,
it is obvious that the operations show a perfectly symmetric flow. For example, at the beginning
while multiplying er with br, the same multiplication operation of bi × ei are performed. The set of
instructions for performing these operations are the same, therefore can be performed as parallel.
At that point, an AP row can be divided into two parts to perform the operations as parallel by adding
extra matching circuit. Figure 8 shows the modified architecture for dual-way issue AP. The proposed
modification does not require any additional cost to the controller part since the performed operations
are identical, so the generated signals for the key and mask registers are exactly the same. At some point,
if any operations needs to be performed between the operands on these two parts (e.g., ti computation),
the switch between them can be closed and it behaves as a single row. While this modification requires
an 10% area overhead to the overall system because of the additional matching circuit, it provides
around 1.9× speedup due to the parallel execution of the costly multiplication operations.

er br bi ei

er x br ei x bi er x bi ei x br

tr = er x br + ei x bi ti = er x bi + ei x br aiar

Br = ar - tr  Ar = ar + tr  Ai = ai + ti  Bi = ai - ti  

Figure 7. Directed acyclic graph of a butterfly operation.
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Figure 8. Dual-issue FFT on the AP.

4. Evaluation

For the evaluation of the proposed in-memory FFT processors (both area-optimized and
throughput-optimized), the simulator in [29] are used to perform both system-level and circuit-level
(pre-layout) simulations in Matlab and HSPICE, respectively. For the transistor model, the Predictive
Technology Models (PTM) [41] is used to simulate high-density memories with 65 nm feature sizes [42].
Even though the used technology is 65 nm, the CAM cells are custom designed to decrease the current
leakage and therefore energy consumption since traditional ternary CAM functionality is not needed
for APs. The area of the cell design is calculated by referencing the fabricated SRAM and CAM designs
in 65 nm [43,44]. The parasitic effects such as the line resistances are taken into account during the
circuit simulation to obtain the accurate results [45]. Performance metrics and results are obtained
by cross-checking the output of both Matlab and HSPICE simulations. For the sense amplifier, a
low-power, sub-ns amplifier design in [46] is employed in the circuit. While comparing the results
with the previous studies in the literature, the processors that are in the same category are taken into
account. For example, for the data type, only fixed-point FFT processors are compared since it is not
fair to compare a fixed-point processor with floating point one.

Table 3 shows the comparison of two in-memory FFT processors with other state-of-the-art FFT
processors. The table includes both area-efficient (feedbacked) and throughput-efficient (pipelined)
versions of the AP processors indicated as AP (F) and AP (P) respectively. In the AP, all butterfly
operations on a CAM are performed simultaneously, so the running time of one stage does not depend
on the number of samples if it fits into the memory. On the other hand, the word-length of the FFT
operands affects the effective throughput since the operations are done as bitwise. The table shows that
the proposed feedbacked in-memory FFT processor has the smallest area. Actually, to store the m-bit
FFT operands (i.e., complex numbers) for n-point FFT, 6m × n bits memory is needed. On the other
hand, the feedbacked FFT processor performs both storage and computation by using about 11m × n
bits memory. When the area of a CAM cell is assumed as 2× of a normal memory cell, this leads to an
inference that both computation and storage can be done in around 3.6× of the overall storage area.
According to the normalized power results, the proposed processor shows a fair performance. On the
other hand, the figure of merit (FOM), an overall evaluation metric of (FFT/s/Energy/Area) shows
the best result within the others since the proposed FFT processor provides ultra-area efficiency.

One can put a single multiplier and adder and claim the invention of the smallest FFT processor.
Therefore, the smallest area cannot be the sole claim. For this reason, while reporting the results,
the GSample/s per area (GS/s/mm2) are provided. Figure 9 proves the overall claim of the study
which is proposing an ultra-area-efficient FFT processor. According to the figure, the proposed
processors shows the best area efficiency in terms of GSample/s/area when compared with the
other processors. In other words, the in-memory FFT processors exhibit the best FFT performance
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per unit area. The recent study in [34] claims the better normalized throughput per unit area than
the state-of-the-art available designs. Beyond this study, the proposed design accomplishes a 33.2%
improvement over their reported results.

Table 3. Comparison of FFT Processors without normalization.

Specification AP (F) AP (P) [47] [33] [48] [35] [34]

FFT Size (N) 1024 1024 1024 256 2048 1024 4096

Technology 65 nm 65 nm 65 nm 90 nm 65 nm 65 nm 65 nm

Vdd 0.45 V 0.45 V 0.27 V 1 V 0.45 V 0.6 V 1.2 V

Word-length 12-bit 12-bit 16-bit 10-bit 12-bit 32-bit * 14-bit

Area 0.099 mm2 0.99 mm2 8.29 mm2 5.1 mm2 1.37 mm2 3.6 mm2 1.46 mm2

Power 12 mW 123 mW 4.15 mW 165 mW 1.01 mW 60.3 mW 68.6 mW

Throughput/Area (GS/s/mm2) 0.89 0.89 0.03 0.47 0.015 0.22 0.67

FOM (FFT/Energy/Area) 70.4 7.09 6.82 15.3 7.04 3.60 2.37

* The bitwidth of the architecture is variable over the FFT stages and the maximum one is 32-bit.
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Figure 9. Area efficiencies of FFT processors (GS/s/mm2).

In some cases, custom FFT processors can be used as directly coupled with an outer data source
(sensor, channel, etc.) without any intermediate processor. If there is no outer processor, the coupled
system must generate the address while sending the data. A basic counter can be used for this purpose.
The proposed methodology of shift register also eliminates this need where the requirement can
be fulfilled with a basic shift register. The shift register-based approach can also support multiple
writings at the same time (i.e., multi-row activation); however, this is not necessary for the current
content. According to the comparison between shift register and address decoder approaches for
1K-FFT processor, the synthesized design on Cadence shows that the shift register consists of fewer
flip-flops and logic gates, and hence takes up 25% less area. Furthermore, the shift register is also
shown to be more energy efficient which consumes around 0.4× of the address decoder.

For a further inspection on the designed architecture, a design space exploration is performed on
the architecture with different operand bit widths (12-32 bits) and FFT sizes (128-4K). Figure 10 shows
the energy/FFT and throughput results of the area-efficient FFT processors (feedbacked) normalized to
12-bit 1K-point FFT proposed above. Since proposed architecture performs the operations as bitwise,
both throughput and energy are highly correlated with it, therefore decreases as bitwidth increases.
On the other hand, if the FFT data can fit inside the memory, the throughput of a single butterfly
stage increases as O(n). Overall, FFT throughput depends on the total number of stages as well
which is formulated as O(log2 n). In overall, the normalized throughput with respect to FFT size
changes by O(n/ log2 n). In traditional FFT architectures, the throughput of a single butterfly stage
decreases as FFT size increases since it needs to use the available resources sequentially, therefore,
overall throughput changes by O(1/(n × log2 n)). Figure 11 shows the energy/FFT results for both
the proposed FFT and the architectures from [48,49] where the FFT size changes between 128–2048
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points. The architectures in [48,49] can be configured to perform 128, 256, 512, 1024, or 2048-point FFTs.
The result demonstrates that proposed AP-based FFT shows better scaling in terms of energy/FFT
with respect to increasing FFT sizes. Since the need for higher point FFT increases in the domains
such as MRI which also requires parallel computation on the data coming from many receivers [50],
the in-memory FFT architecture can propose an efficient solution together with the high-speed data
placement through the proposed shift register-based approach.

(a) Normalized energy/FFT (b) Normalized throughput
Figure 10. Design space exploration for the area-optimized FFT processor.
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Figure 11. Comparison of normalized Energy/FFT scaling with respect to FFT size.

Even though the proposed FFT processor achieves a great deal of area efficiency due to the
dense structure of the memory arrays, another paradigm that can be beneficial on this architecture is
approximate computing. Approximate computing is a popular computing paradigm that relaxes the
correctness constraints of a system for the sake of energy and performance improvement [51,52].
The paradigm can be applied to the error-tolerant applications. APs facilitate the approximate
computing inherently since the operations are performed bit-by-bit basis [28]. As an example case,
the proposed architecture can be evaluated for communication applications in which the bitwidth
of the FFT processor can be adjusted dynamically during the run time concerning the estimated
channel signal-to-noise ratio (SNR), aiming at achieving the desired performance at a reduced energy
consumption [32]. Figure 12 shows an example case for 1K FFT where the change in average peak
signal-to-noise ratio (PSNR) and error rate with respect to the bitwidth are shown where the reference
is 32-bit FFT. When interpreted with Figure 10 where the normalized energy and throughput results
are presented with respect to bitwidth, the approximate in-memory FFT can be performed dynamically
by adjusting the bitwidth during runtime to obtain the optimum energy consumption together with
the required throughput.
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Figure 12. Bitwidth vs. average PSNR and error rate of 1024-point FFT.

5. Conclusions

In this study, an ultra-area-efficient FFT processor through the in-memory associative processor
is introduced. The proposed processor performs FFT directly inside the memory. For better
communication with the external systems, the traditional accelerator architecture is improved by
proposing a better data moving mechanism specific to the AP-based accelerators. Furthermore,
the study introduces a dual-way associative processing methodology to perform the symmetric tasks
of the butterfly operation at nearly 2× speed without any cost to the controller. The proposed design
has the smallest area occupancy reported until now. The efficiency of the proposed architecture is
proven by comparing it with the state-of-the-art FFT processors in terms of performance, power, and
area. Beyond the smallest reported area, the proposed processor achieves the best area efficiency
(normalized throughput per area) within its own class of FFT processors. It means that the proposed
architecture delivers the best performance in a given area.
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Abstract: Multi-level cell (MLC) phase change memory (PCM) can not only effectively multiply the
memory capacity while maintaining the cell area, but also has infinite potential in the application of
the artificial neural network. The write and verify scheme is usually adopted to reduce the impact of
device-to-device variability at the expense of a greater operation time and more power consumption.
This paper proposes a novel write operation for multi-level cell phase change memory: Programmable
ramp-down current pulses are utilized to program the RESET initialized memory cells to the expected
resistance levels. In addition, a fully differential read circuit with an optional reference current source
is employed to complete the readout operation. Eventually, a 2-bit/cell phase change memory chip is
presented with a more efficient write operation of a single current pulse and a read access time of
65 ns. Some experiments are implemented to demonstrate the resistance distribution and the drift.

Keywords: multi-level cell; phase change memory; programmable ramp-down current pulses

1. Introduction

Data is the most competitive resource in the twenty-first century and its heat has never been cut
down. Especially with the advent of the big-data era and artificial intelligence, a massive amount
of data needs to be processed and saved, which undoubtedly brings unprecedented challenges to
the memory market. Phase change memory (PCM), one of the most promising novel non-volatile
memories, attracts much attention due to its prominent performances. Compared with the mainstream
flash memory, PCM has an excellent reliability below 20 nm technology [1] and its scaling is more
favorable when the NMOS (N-Metal-Oxide-Semiconductor) devices are replaced by the FinFETs [2].
What is more, the large resistance contrast between amorphous and crystalline states (typically three
or four orders of magnitude) in the memory cell means that PCM has more potential in multi-level
cell (MLC) storage, which is a crucial feature for reducing the cost-per-bit and increasing the memory
capacity. The MLC PCM can also be used in artificial neural networks as synapses, which provides a
promising solution for energy-efficient artificial neural networks (ANNs) [3,4]. Therefore, the research
on multi-level phase change memory cell storage is of great significance to the future development of
the non-volatile memory market.

However, the realization of MLC PCM still faces several challenges. First of all, new program and
read schemes should be specifically proposed since the intermediate states that represent the extra
bits are avoided as much as possible in conventional phase change memory. Then, the corresponding
circuits need to be well-designed, taking both performance and efficiency into consideration. Finally,
as a novel storage technology that improves the capacity at the expense of reliability, a physical issue
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called “resistance drift” may produce severe reliability problems as it reduces the separation between
adjacent levels.

Previous research has made some progress in multi-level cell phase change memory technology.
T. Nirschl et al. came up with a novel multi-level program algorithm based on write and verify
cycles to produce highly optimized resistance distributions in PCM [5]. G. F. Close et al. analyzed
the impact of noise in multi-bit PCM from different levels [6]. N. Papandreou et al. introduced
advanced iterative programing schemes for multilevel storage in PCM to achieve a high robustness
to cell variability and low latency [7]. A new cell-state metric was proposed by N. Papandreou et al.
to obtain larger level contrast in PCM and reduce the sensitivity to drift [8]. A 256-Mcell PCM chip
operating at 2+ bit/cell, which means that the actual capacity can reach 512 Mb, was presented by Gael
F. Close et al. [2]. Milos Stanisavljevic et al. discussed the storage and retention of data in MLC PCM at
elevated temperatures [9].

This paper starts with the principle of multi-level cell storage in phase change memory and
explores the relationship between the resistance distribution of a memory cell and the program current
pulses. Then, a PCM memory chip that demonstrates an MLC operation at 2-bit/cell is presented.
The entire work involves the program scheme of multi-level storage, chip structure, circuit realization,
and the results of the simulation and experiments. Eventually, a 4-Mcell PCM is expanded to an 8 Mb
capacity by multi-level storage technology.

The remainder of this paper is organized as follows: Section 2 briefly introduces the basic
characteristics of PCM and discusses the fundamental principles of MLC PCM; chip architecture,
specific write-read schemes combined with the circuit implement are demonstrated respectively in
Section 3; Section 4 presents the results of experiments and the simulation; and conclusions are drawn
in Section 5.

2. Phase Change Storage Technology

2.1. Basic Characteristics of Phase Change Memory

The basic principle of phase change storage is the chalcogenide phase change materials’ (typical
Ge2Sb2Te5, GST) reversible transformation between two different phases (amorphous and crystalline
phase) by internal structure changes [10,11]. The great difference in electrical properties between two
phases makes it possible to store binary data: the amorphous phase with a high resistance usually
represents ‘0′ and the crystalline one represents ‘1′, with a lower resistance.

Figure 1 shows the storage array of phase change memory and the transmission electron
microscope (TEM) image of a PCM cell. Each cell consists of a layer of phase change material
sandwiched between a top and bottom electrode and an access device, which is typically a MOSFET
(Metal-Oxide-Semiconductor Field-Effect Transistor). Phase transformation is usually performed by
applying programming pulses (voltage or current) to the bit line of the selected phase change memory
cell. The Joule heat generated by the current flowing through the phase change memory cell causes the
phase change material to melt and quench, thus producing mushroom-shaped amorphous phase in
the crystalline phase, as shown in Figure 1.

Figure 2a shows the program and read pulses of PCM. The RESET program operation from
crystalline to amorphous phase is usually performed by a rectangular current pulse with a large
amplitude and narrow width. In order to make the phase change material quench to amorphous phase,
the RESET pulse must have an abrupt trailing edge. As for SET operation, a wider current pulse with
a lower amplitude is usually used to heat the cell to its crystallization temperature until it becomes
crystalline phase. The typical current –voltage (I–V) characteristics of a PCM cell are shown in Figure 2b.
With the increase of the voltage applied to the memory cell, the current flowing through the amorphous
phase cell increases slowly. Until the voltage reaches a certain value Vth, however, the resistance of the
phase change memory cell drops sharply, which is known as the threshold switching phenomenon of
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chalcogenide compounds. Therefore, during the reading process, the voltage applied to the addressed
cell must be kept well below Vth to ensure the accuracy of the read-out data.
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Figure 1. The storage array of phase change memory and the TEM image of a phase change memory
(PCM) cell.

 
(a) (b) 

Figure 2. (a) Program and read operations of phase change memory (PCM); (b) the threshold switching
phenomenon of chalcogenide compounds.

2.2. Multilevel-Cell Storage

In PCM, the essential difference between two opposite phases is that the amorphous degree of the
phase change material layer is different; in other words, the amorphous region and its thickness are
different. The electrical resistance of the cell is only utilized to measure these differences. In conventional
applications, intermediate states are usually avoided in the PCM cell to guarantee the accuracy of data
storage. However, by changing some parameters, like the amplitude, of programming pulses, the PCM
cell can be stabilized in the intermediate state, which is the basic state for multilevel storage in PCM [8].
What is more, the large resistance contrast, which is around three to four orders, between amorphous
and crystalline phase leaves a sufficient margin for the realization of intermediate states. Figure 3
shows the sectional view of the phase change material layer with different amorphous regions.

When studying the programming conditions for realizing intermediate states, the initial state of
the PCM cell should be considered. Figure 4a,b show the characteristic programming curve of the PCM
cell resistance as a function of pulse amplitude. For the case where the initial state is high resistance
and the programming operations are performed with SET pulses of different amplitudes, with the
increase of the pulse amplitude, the resistance of the PCM cell first decreases and then increases. Taking
0.35 mA as the demarcation point, the curves before and after it both show some linearity. As for the
other case, the overall curve does not show linearity, but it increases monotonously with the increase
of the SET pulse amplitude. However, if the curve is piecewise analyzed, the part whose amplitude is
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between 0.42 mA and 0.7 mA also has a certain linearity. As shown in Figure 4c,d, whether in terms of
the resistance distribution range or its consistency, using the SET operation to program memory cells is
a better scheme for PCM multilevel storage.
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Figure 3. The sectional view of the phase change material layer with different amorphous regions.
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Figure 4. The characteristic programming curve of the phase change memory (PCM) cell resistance
as a function of pulse amplitude for (a) RESET initialization and (b) SET initialization; resistance
distribution for (c) RESET initialization and (d) SET initialization.

3. Multilevel Cell Phase Change Memory Chip

3.1. Chip Architecture

The overall framework of the 4 M 2-bit/cell phase change memory chip, which is shown in Figure 5,
includes the following modules: PCM Storage Array, Row Decoder, Column Decoder, Column Selector,
BandGap, Writer Driver, Voltage Controlled Oscillator (VCO), Pulse Control, Sense Amplifier, Logic
Control, Address Buffer and Latch, Data Input/Output Buffer et al. The entire PCM Storage Array
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is divided into four 1 M cell blocks. The Row and Column Decoders locate the addressed memory
cells according to the address signal saved in the Address Latch. BandGap and VCO generate the
corresponding reference and clock signal on the basis of configuration parameters. Then, the Logic
Control Module converts the external control signals, such as CS_, WE_, and OE_, into the internal
read-write command to control the Write Driver and Sense Amplifier. Finally, the written and readout
data interact with peripheral devices through the Data I/O Interface. Figure 6 shows the layout of the
chip. Compared with traditional phase change memory, the biggest difference of MLC PCM lies in
the read-write scheme and the specific circuit implementation, which will be covered in the flowing
two subsections.
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Figure 5. The architecture framework of the 4 M 2-bit/cell phase change memory chip.
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Figure 6. The layout of the 4 M 2-bit/cell phase change memory chip.

129



Micromachines 2019, 10, 461

3.2. Program Scheme and Circuit

From the analysis in the previous section, it can be seen that the broader resistance distribution can
be obtained if the high-resistance PCM cells are operated with rectangular current pulses of different
amplitudes. However, due to the process mismatch and energy loss in the bit line, the memory cells in
the array may not achieve the same resistance level under the same pulse operation. To minimize the
impact caused by cell variety, Samsung and STMicroelectronics propose “ASQ technology” [11] and
“SET-Sweep Programming” [12], respectively, both of which are designed to extend the crystalline time
of the PCM cells. Based on the same principle, a programmable ramp-down current pulse scheme is
adopted to achieve a better cell resistance distribution.

As shown in Figure 7, the descending edge of the slope current is achieved by constructing a
finite number of ramp current pulses. Furthermore, in order to further obtain the optimal operating
parameters of PCM cells related to the process, the initial height, initial width, and number and width
of ramp current pulses are all adjustable.
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Figure 7. Programmable ramp-down current pulse for SET operation: (a) is a rectangular SET pulse
without a ramp-down edge; (b–f) are ramp-down pulses with 1/2/3/4/5 steps, respectively; (g) is a
five-step ramp-down pulse with a larger initial amplitude; (h) is a five-step ramp-down pulse with a
larger initial width; (i,j) are five-step ramp-down pulses with different widths.

To achieve the above scheme, the ramp-down current pulse generator circuit designed in this paper
is shown in Figure 8a. The generator consists of eight current mirrors. During the SET programming
process, the control switches S<0>~S<7> are turned on or off sequentially according to a certain order,
and the SET current pulse with a specific shape can then be generated. The slope of the descent edge
can be changed by controlling the opening time of each current source. In addition, in order to facilitate
adjustment, a number of switches are designed in each current source, as shown in the lower half of
Figure 8a. Four different amplitudes can be obtained by adjusting the combination of signal S0H <1:0>,
and the height of each pulse in the ramp-down current can then be adjusted. Considering the high
voltage on the bit line during the write operation, the transmission gate is implemented by a single
PMOS, which can reduce the wiring of the layout and save the area at the same time. Figure 8b shows
the control circuit block diagram of the pulse generator. The external signals are transformed into three
kinds of control signals: RDPulse, RSPulse, and ST<5:0>, corresponding to READ, RESET, and SET
operations, respectively.
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Figure 8. (a) Ramp-down current pulse generator circuit; (b) control circuit block diagram of the
pulse generator.

3.3. Readout Scheme and Circuit

The readout scheme of phase change memory is essentially adopted to utilize a specific circuit to
measure the resistance of the memory cell. When the cell resistance is greater or less than the specific
resistance value RH or RL, the readout circuit outputs different digital levels respectively. The resistance
interval RL~RH is called the readout window of PCM. Generally, we choose RREF = (RL + RH)/2 as
the reference resistance of the readout circuit. For MLC PCM with multi-bit stored in each cell,
more readout windows need to be set up. In this paper, a readout scheme for 2-bit/cell phase change
memory with an optional reference source is proposed, and the whole readout process is divided into
two read operations: high-bit and low-bit readouts.
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According to Ohm’s law, the resistance value of the PCM cell can be distinguished by two kinds
of readout circuits: a current-bias voltage readout circuit and voltage-bias current readout circuit.
By applying a constant current to the memory cell, the current-bias voltage readout circuit generates
a reading voltage according to the cell resistance value. The voltage comparator then compares the
reading voltage with the reference voltage to complete the cell resistance discrimination and output the
logic level “0” or “1”. Correspondingly, the current-bias voltage readout circuit applies a certain voltage
to the memory cell, and then compares the generated current with the reference current and outputs
the logic level. However, due to the threshold effect of PCM and parasitic capacitance of the storage
array, the realization of the current-bias voltage readout circuit is not realistic in practical applications.

Figure 9 shows the fully differential high-speed readout circuit, which is based on the voltage-bias
current readout scheme, included in this paper. The whole readout circuit can be divided into five parts:
Clamp Circuit, Fully Differential Current Comparator, Optional Iref, Self-bias Voltage Comparator, and
Readout Inverter. The Clamp Circuit controls the bit line voltage to Vclamp–Vth0 with a single transistor
NM0. By setting Vclamp and Vth0 reasonably, the bit line voltage can be limited under the threshold
voltage of the PCM cell. This approach has a great bandwidth and can provide a fast clamping
operation. Furthermore, in order to avoid the effect of path parasitic charge on the PCM cells during the
whole read operation, a discharge transistor NM5 is added to the readout circuit. The fully differential
current comparator is composed of two sets of current mirrors which are cross-coupled. It can quickly
respond to the difference between Iread and Iref and amplify them into differential voltage signals V1

and V2. Since there are multiple readout windows when reading each cell, the reference current source
is designed to be optional. Firstly, three standard reference currents that can be changed by adjusting
configuration parameters are generated by the bias circuit module inside the chip. Then, the high-bit
reference current source is selected for the first read operation, and the reference current is mirrored
into the current comparator through the current mirror composed of PM5. Finally, the selection of the
current reference source during the second read operation is determined by the logic circuit controlled
by the first readout result. The generated differential voltage signals V1 and V2 are then delivered to
the Self-bias Voltage Comparator. It consists of two inverters and a pair of complementary MOSFET.
The inverters composed of PM7 and NM7 are used to invert differential voltage signal V1. Additionally,
the inverted V1 shifts the threshold of the second inverter, which is composed of PM8 and NM8, to
the opposite direction by controlling the working state of PM6 and NM6. Then, the second inverter
can respond more quickly to the change of differential voltage signal V2 and output the final result.
The Readout Inverter is used to reverse the output of the Self-bias Voltage Comparator and recover the
electrical level of the output signal.

 

Figure 9. Fully differential high-speed readout circuit with an optional reference current source.
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4. Experimental Results

In this section, the experiment results of the 4 M 2-bit/cell PCM chip with the assistance of
automatic test equipment (ATE) are presented. A brief discussion of the different program pulses for
four resistance levels and the comparison with the result of write and verify scheme are then given.
Following this, the Resistance Drift, which is the most dominant issue that hinders MLC functionality
in PCM, is demonstrated on the basis of the test results. Finally, some simulation diagrams of the
program and readout circuits are displayed.

4.1. The Resistance Distribution of 2-Bit/Cell Phase Change Memory

Figure 10 shows the resistance distribution of four states in PCM cells and the corresponding
program pulses. After RESET initialization, the PCM cells are programmed with different shaped
current pulses, including rectangular and ramp-down current pulses, by adjusting the configuration
parameters. Almost all the resistance distribution within the range of PCM cell resistance variation can
be obtained through this approach. As shown in Figure 10b, the optimal RESET pulse is a rectangular
current pulse with an amplitude of 0.9 mA and a width of 52 ns. A current pulse with a larger
amplitude cannot increase the resistance of the “00” state, but will result in more power consumption.
Additionally, the width of 52 ns is sufficient enough to operate all well-performing cells to “00”.
To program the RESET cell to the “01” state, a rectangular current pulse with a smaller amplitude and
larger width is performed. For the two states with a lower resistance value, complete crystallization
of the PCM cells can be achieved with ramp-down current pulses of different amplitudes. In fact,
ramp down pulses with four steps are enough to program the memory cells to their states and the
extra two steps are added to achieve a better consistency.

 
(a) 

 
(b) 

Figure 10. (a) Resistance distribution of four states in phase change memory (PCM) cells with a
ramp-down current pulse scheme; (b) the corresponding program pulses.
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As a contrast, another program scheme based on write and verify is processed with the assistance
of ATE. Unlike the previous scheme, this approach starts with an SET operation and then melting
rectangular pulses of varying amplitudes in the partial-RESET regime are utilized to increase the
resistance. After each program operation, the cell resistance will be readout to verify. If the cell
resistance has reached the expected level, the program operation is completed. Otherwise, a rectangular
current pulse with a larger amplitude will be used to program until the cell resistance reaches the
expected range. In order to compare the two schemes, the resistance range of four states is set as
shown in Figure 10a. Figure 11 displays the resistance distribution and the iteration times of four states.
To make sure that the cell resistance reaches the expected range accurately, the amplitude increment
of the current pulse in each iteration cannot be too large. Consequently, the number of iterations is
positively related to the target resistance. For the “00” state with a high resistance, there are over
70 iterations. Note that each iteration includes a read and write operation. Therefore, even though the
write and verify scheme improves the consistency of the resistance distribution, the cost of operation
time and power consumption is unacceptable. In addition, if the whole scheme is integrated in the chip,
the design of the circuit will become more complicated. In conclusion, the scheme of a single-pulse
program is preferred in terms of the operation time, power consumption, and cost.

 
(a) (b) 

Figure 11. (a) Resistance distribution of four states in phase change memory (PCM) cells with the write
and verify scheme; (b) the number of iterations.

4.2. Resistance Drift

Amorphous materials are known to display structure relaxation (SR), which is the atomistic-scale
rearrangement of an amorphous structure. The amorphous GST in PCM cells also suffers from this
phenomenon, resulting in an increase of the electrical resistance with time [13]. As a novel storage
technology that improves the capacity at the expense of performance, MLC storage in PCM faces
reliability problems as resistance drift reduces the separation between adjacent levels. To study the
effect of resistance drift on data retention in memory cells, the resistance variation of PCM cells is
recorded within 1000 s after programming. As shown in Figure 12, resistance drift mainly occurs
within 100 s after programming. After that, the resistance still increases a little with time, but the
separation is enough to distinguish four states.
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Figure 12. Measurements showing the multilevel drift behavior for a 1000 s time frame.

4.3. Simulation Results

Figure 13a shows the simulation graphs of the ramp-down current pulse generator circuit, and
the shape of each pulse corresponds to the design scheme in Figure 7. Figure 13b,c show the readout
simulation results of four states in the PCM cell during the two read operations. Taking the worst case
into consideration, the final readout time is 65 ns.

 
(a) 

  
(b) (c) 

Figure 13. (a) Simulation graphs of the ramp-down current pulse generator circuit; (b,c) readout
simulation results of four states in the phase change memory (PCM) cell during the two read operations.
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5. Conclusions

A 2-bit/cell phase change memory chip is presented in this paper with a speed-up write operation.
The program scheme adopted in this paper is started with the initialization of memory cells. Then,
different shaped pulses, which are produced by the programmable ramp-down current pulse generator,
are applied to the addressed cells and program them to the target level. The read operation of the
2-bit/cell is accomplished by a specially designed fully differential read circuit with an optional reference
current source. The final results of the simulation and experiment verify the feasibility of the scheme
and the functionality of multi-level storage in PCM.

As a comparison, Table 1 summarizes some information and the performance of the chips proposed
in this paper and [2]. Our work improves the write and read speed for 2-bit MLC PCM by 6.25 times
and 4.9 times, respectively, and decreases the write time from 9.7 μs to <1.6 μs and read time from
320 ns to 65 ns. The omission of the write & verify process reduces not only the number of generated
pulses for each bit, but also the power consumption during the programming. Furthermore, the ADCs
(analog-to-digital converters) and DACs (digital-to-analog converters) that are necessary for the chip
in [2] are dismissed in the new scheme, which greatly cuts down the complexity and cost of the chip
design. Therefore, compared with the write and verify scheme, the scheme proposed in this paper is
more attractive because of its advantages in speed, power consumption, and cost.

Table 1. Summary of the chips proposed in this paper and [2].

Chips Chip Proposed in This Paper Chip Proposed in [2]

CMOS Technology

Node SMIC 40 nm 90 nm

Supply Voltage 2.5 V Digital: 1.2 V
Phase change memory (PCM) and analog: 2.5–3.0 V

PCM Cell Array

Material C-GST Doped GST
Access Device NMOS NMOS

Cells 4 M cells, 16 accessed in parallel 256 M cells, 16 accessed in parallel

Write

Access Time RESET 52 ns+SET 1.5 μs @ 2 bits/cell 9.7 μs @ 2 bits/cell

Program Scheme Programmable ramp down current pulse Open-loop single shot, or closed-loop write and verify with
one ADC and two DACs integrated in the chip

Readout

Access Time 65 ns @ 2 bits/cell 320 ns @ 2 bits/cell

Read Scheme Fully differential read circuit with optional
reference current source 1 bit range+6-bit ADC
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Abstract: Resistive random access memory (RRAM) devices with Ni/AlOx/Pt-structure were
manufactured by deposition of a solution-based aluminum oxide (AlOx) dielectric layer which
was subsequently annealed at temperatures from 200 ◦C to 300 ◦C, in increments of 25 ◦C. The devices
displayed typical bipolar resistive switching characteristics. Investigations were carried out on the
effect of different annealing temperatures for associated RRAM devices to show that performance
was correlated with changes of hydroxyl group concentration in the AlOx thin films. The annealing
temperature of 250 ◦C was found to be optimal for the dielectric layer, exhibiting superior performance
of the RRAM devices with the lowest operation voltage (<1.5 V), the highest ON/OFF ratio (>104),
the narrowest resistance distribution, the longest retention time (>104 s) and the most endurance
cycles (>150).

Keywords: bipolar resistive switching characteristics; annealing temperatures; solution-based
dielectric; resistive random access memory (RRAM)

1. Introduction

As one of the promising candidates for next-generation nonvolatile memories, resistive random
access memory (RRAM) has received considerable attention due to significant advantages concerning
simplicity of structure, low power consumption, fast read & write speed, high scalability and
3-D integration feasibility compared to the industry standard silicon-based flash memories [1–7].
Current candidate materials for the resistive switching (RS) layer of RRAM devices include perovskite,
ferromagnetic and metal oxide-based materials [1,3–5,8–11]. In particular, metal oxide-based materials
such as AlOx, NiOx, TiOx and HfOx are currently extensively discussed because of the simplicity
of the material [10,12–14]. Among these materials, AlOx has been widely applied in gate insulator
layers [15–18] and has attracted extensive attention in the RRAM field owing to its wide band gap
(~8.9 eV), high thermal stability with Si and Pt, high dielectric constant (~8) and large breakdown electric
field [10,14,19–22] as Kim et al. has reported [19,20,23–26]. In addition, the superior elasticity [27]
and high toughness [28] make it possible for AlOx to be applied under various conditions including
vibration and pressure environments [29–31]. Cano et al. reported that AlOx-based dielectric layer
showed superior stability under environments with hydrofluoric acid pressure [29] and Choi et al.
reported large-scale flexible electronics application with AlOx thin film [31], which have demonstrated
that the AlOx thin film has great potential as a metal oxide layer in RRAM devices.
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A number of fabrication methods for incorporation of a metal oxide RS layer in AlOx-based
RRAM devices have been investigated. Methods based on solution processes for metal oxide
thin films have been extensively considered, namely spin [32–34] and dip coating [35–37],
drop casting [34,36–38] and different printing methods. Compared with traditional fabrication
methods such as atomic-layer-deposition (ALD) [17,39,40] and magnetron sputtering [28,40,41],
the solution-based method has advantages of low fabrication cost with the elimination of vacuum
deposition processes [42], ease of preparation for precursor materials [39,43,44] and high efficiency
of device throughput [27], which reveals the promising prospect of solution-based methods in RS
layer fabrication. Several factors including plasma cleaning time, deposition gaseous environment
and annealing temperature are considered to influence the performance of solution-based metal oxide
thin films. A limited number of investigations have been reported regarding the relationship between
annealing temperature and performance of RRAM device with solution-based RS layer [10,38].

In this work, the AlOx thin film was deposited with a spin-coating method and then annealed
at temperatures of 200 ◦C to 300 ◦C, in increments of 25 ◦C. The RRAM devices with solution-based
AlOx thin film were characterized electrically in terms of operation voltage, ON/OFF ratio between
the high resistance state (HRS) and low resistance state (LRS), resistance distribution, retention time
and endurance cycles. X-ray photoelectron spectroscopy (XPS) results indicate that these performance
metrics are associated with different gradients of hydroxyl group (-OH) concentrations in the AlOx

thin films with different annealing temperatures. Devices with AlOx thin films annealed at 250 ◦C
demonstrated superior performance with the lowest operation voltage (<1.5 V), the highest ON/OFF
ratio (>104), the narrowest resistance distribution, the longest retention time (>104 s) and the most
endurance cycles (>150).

2. Device Fabrication

The fabricated Ni(top)/AlOx/Pt(bottom) memory device structure with dimensions 2 mm × 2 mm
is shown in Figure 1a. Firstly, the substrate comprising layers Pt (200 nm)/Ti/SiO2/Si was ultrasonically
cleaned in acetone, ethanol and deionized (DI) water, sequentially. Then an aluminum nitrate
nonahydrate (Al(NO3)3·9H2O) solution consisting of ~9.353 g Al(NO3)3·9H2O and 10 mL deionized
water was prepared as the 2.5 M AlOx precursor. The precursor solution was stirred vigorously for
20 min under ambient air conditions. The Pt substrate surface layer was given a hydrophilic treatment
in a plasma cleaner in an atmospheric environment. The AlOx precursor solution, filtered through
a 0.45 μm polyether sulfone (PES) syringe, was spin-coated onto the substrate at a spin rate of 4500 rpm
for 40 s and subsequently annealed at the different desired temperatures of 200 ◦C, 225 ◦C, 250 ◦C,
275 ◦C and 300 ◦C for 60 min under ambient conditions. A ~40 nm-thick top electrode (TE) layer of
Ni and a ~40 nm-thick capping layer of Al were both deposited by e-beam evaporation. Figure 1b
shows a scanning electron microscope (SEM) cross-sectional image of the device, confirming the target
thicknesses of ~40 nm, ~30 nm and ~100 nm for Ni, AlOx and Pt layers respectively.
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Figure 1. (a) Schematic of an Al/Ni/solution-based AlOx/Pt RRAM device; (b) a scanning electron
microscope (SEM) cross-sectional image of the Al/Ni/solution-based AlOx/Pt RRAM device.

An Agilent B1500A high-precision semiconductor analyzer (Agilent Santa Rosa, CA, USA) was
employed to measure the I-V characteristics with a two-probe configuration. All electrical measurements
were performed in the dark and at room temperature within a Faraday cage. In addition, to investigate
the effect of annealing temperatures on device performance, X-ray photoelectron spectroscopy (XPS)
spectra of constituent Al and O core level (CL) elements were measured.

3. Results and Discussion

3.1. Memoristic Characteristics Based on Al/Ni/Solution-Based AlOx/Pt RRAM

The RRAM devices were operated under 1 mA compliance current (CC) and observed to exhibit
typical bipolar RS behavior, as illustrated by the I-V characteristics in Figure 2. The devices with
the dielectric layer annealed at 200 ◦C exhibit typical RRAM breakdown characteristics at very low
voltage <0.3 V while breakdown characteristics of 300 ◦C annealed devices are not usually observed
even for voltages higher than 18 V, which is of course, unsuitable for RRAM device application [45,46].
Therefore, RRAM devices with dielectric layers annealed at 225 ◦C, 250 ◦C, 275 ◦C were considered for
further evaluation. Compared with unipolar I-V characteristics of other RRAM devices [47], all RRAM
devices with Al/Ni/solution-based AlOx/Pt structure demonstrate typical bipolar I-V characteristics
without forming operation. The current compliance (CC) is set at 1 mA to prevent catastrophic
breakdown of the RRAM devices. During cycling, the HRS was transferred to LRS abruptly in the
SET process and the resistance of the LRS began to increase abruptly toward HRS in the RESET
process. The SET and RESET process controls the RRAM device transition to ON and OFF states.
It is observed that the majority of values of SET voltages (VSET) for the three samples are around
1.5 V while some are up to 4 V. In the RESET process, nearly all RESET voltages (VRESET) are around
−1 V approximately. As illustrated in Figure 3, in the SET operation, the average values of VSET

are around 3.2 V, 1.0 V and 2.4 V at 225 ◦C, 250 ◦C and 275 ◦C, respectively. RRAM devices with
dielectric layer annealed at 250 ◦C exhibit the lowest SET voltages (Figure 3a) with the highest ON/OFF
ratio (>104) between LRS (ON state) and HRS (OFF state). Similar results can be observed in the
RESET operation (Figure 3b) although the variation of VRESET average values is not as obvious as
that of VSET. Figure 2d shows the cumulative probability for resistance distribution of the RRAM
devices annealed at various temperatures. All values of memory resistance at HRS (RHRS) and
LRS (RLRS) of consecutive forming-free DC switching cycles were read at 0.1 V. As illustrated in
Figure 2d, curves of resistance distribution almost overlap at LRS, indicating that no significant
dependence on annealing temperature is apparent at LRS. However, an obvious variation can be
observed at RHRS. The uniformity and narrowness of the resistance distribution are key metrics for
stability and quality of RRAM devices. A narrow resistance distribution is considered to be a good
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demonstration of the stability and performance of devices [7,48–50]. In this work, the narrowest
resistance distribution of Al/Ni/solution-based AlOx/Pt RRAM devices is found for the 250 ◦C annealing
temperature, which therefore presents the best uniformity of the devices.

 

 

 

 
Figure 2. I-V curves of Al/Ni/solution-based AlOx/Pt RRAM devices with (resistive switching) RS layer
annealed at (a) 225 ◦C; (b) 250 ◦C and (c) 275 ◦C. (d) Resistance distribution of Al/Ni/solution-based
AlOx/Pt RRAM device with RS layer deposited at various temperatures.
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Figure 3. Voltage distribution of (a) SET operation and (b) RESET operation for Al/Ni/solution-based
AlOx/Pt RRAM devices with RS layer annealed at different temperatures.

3.2. Endurance and Retention Properties of Al/Ni/Solution-Based AlOx/Pt RRAM

Figure 4 demonstrates the retention and endurance properties at HRS and LRS for the RRAM
devices with RS layers annealed at various temperatures. With the results of resistance distribution
above, the resistance values of retention and endurance belong to the range of HRS and LRS values
in Figure 2d. Resistance values both at HRS and LRS are read at 0.2 V. Figure 4a–c show DC cycles
vs resistance at 1 mA CC of devices annealed at 225 ◦C, 250 ◦C and 275 ◦C, which show similar
characteristics to those observed in the resistance distribution of Figure 2d. The best resistance
distribution can be observed in 250 ◦C annealed RRAM devices and the worst uniformity of resistance
can be observed in 225 ◦C annealed RRAM devices. Similarly, the endurance property with the best
uniformity is demonstrated in the RRAM device annealed at 250 ◦C while the worst performance is
observed in the RRAM device annealed at 225 ◦C. The same retention property can be observed in
Figure 4d, which shows that the device can sustain data for more than 104 s.
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Figure 4. Endurance property of Al/Ni/solution-based AlOx/Pt RRAM devices with RS layer annealed
at (a) 225 ◦C; (b) 250 ◦C and (c) 275 ◦C. (d) Retention property of RRAM devices annealed at
various temperatures.

The best performance was found for an annealing temperature of 250 ◦C with the lowest operation
voltage (<1.5 V), the highest ON/OFF ratio (>104), the narrowest resistance distribution, the longest
retention time (>104 s) and the most endurance cycles (150).

3.3. Switching Mechanism of Al/Ni/Solution-Based AlOx/Pt RRAM

With typical bipolar RS performance demonstrated by Al/Ni/solution-based AlOx/Pt RRAM
devices, the RS modeling with fitting curves (250 ◦C annealed devices) illustrated in Figure 5a is used
to investigate the conduction mechanism. Figure 5a shows evidence for space-charge limited current
(SCLC) as the dominant conduction mechanism in 250 ◦C annealed devices. The fitting results show
positive and negative bias regions of I-V characteristics in double logarithmic plots. A large area
overlap of SET and RESET can be observed due to the approximately equal values of CC and RESET
current. The currents are seen to follow Ohmic conduction (I ∝ V) in the low voltage regime [51,52].
At higher bias voltages, the OFF-state slope shows a transition to about 2.0, consistent with Child’ s
square law [53,54]. By further increasing the applied voltage, the slope increased to approximately 8.7,
again consistent with the SCLC mechanism [53–56].
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Figure 5. (a) Curve fitting of I-V characteristics for Al/Ni/solution-based AlOx/Pt RRAM devices
indicating SCLC conduction. (b) Diagrams to describe the switching mechanism of Al/Ni/solution-based
AlOx/Pt RRAM devices at (i) the initial state, (ii) the ON state and (iii) the OFF state, respectively.

Bipolar RS performance of all RRAM devices with different annealing temperatures are considered
to be associated with the formation and rupture process of conductive filaments (CF) associated with
oxygen vacancies, in the SET/RESET process [2–4,15,57]. Figure 5b shows a schematic representation
of this process consisting of ON and OFF states, which is considered as the switching mechanism of
these devices. The formation and rupture process of CF is associated with the distribution of oxygen
ions and oxygen vacancies in the TE and RS layer [22,48,57–59]. Figure 5b(i) shows the initial state
of RRAM devices without applied voltage, indicating oxygen atoms present in the AlOx thin film.
With application of a positive voltage to the Ni electrode in the SET operation, electrons are captured by
oxygen atoms in the AlOx thin film [15,27,60–62], to yield oxygen ions which drift to TE. The generation
process of oxygen ions can be represented as:

O + 2e− → O2−

The oxygen vacancies remain in the AlOx thin film and constitute the dominant components of
CF. This formation process of CF consisting of oxygen vacancies in the AlOx thin film is considered
to be responsible for the resistance state transition (HRS to LRS) of RRAM devices at the ON state,
as depicted in Figure 5b [48,58,60]. Conversely, in the RESET operation, with a negative voltage
applied to TE, oxygen ions stored in the electrode drift back to the AlOx thin film under the influence
of the negative electrical field and therefore reduce the density of oxygen vacancies in the AlOx thin
film [48,63]. This action dominates the rupture process of CF [15,22,48] and the RRAM devices perform
at the OFF state (LRS to HRS).

The formation and rupture mechanism of CF is confirmed to be associated with the characteristics
of the RS layer in filamentary RRAM devices with the dependency on film thickness, measurement
temperature and deposition temperature [64–67]. In this work, the device performance is found to be
dependent on annealing temperature of the dielectric layer and the best performance is observed in
the device with a dielectric layer annealed at 250 ◦C.

Physical characterization was undertaken using XPS. Figure 6a–c show XPS spectra of O 1s
core levels for the AlOx thin films annealed at 225 ◦C, 250 ◦C and 275 ◦C. The O 1s CL spectrum
can be de-convoluted into two sub-peaks with binding energies located at 531.1 eV (O1) and 532.2
eV (O2) [40,64–67]. The O1 and O2 peaks are associated with the metal-oxygen bonds (O1) and
hydroxyl group (O2), respectively [5,66,67]. As illustrated in Figure 6a–c, the hydroxyl-related peak
(O2) increased with annealing temperatures from 225 ◦C to 250 ◦C and decreased from 250 ◦C to 275 ◦C.
Similar behavior has been observed by Xu et al. [68]. The highest and the lowest concentration of the
hydroxyl group is found for samples annealed at 250 ◦C and 225 ◦C, respectively. Figure 6d shows the
integrated intensity of the two sub-peaks referring to the concentration of hydroxyl group (M-OH) and
metal-oxygen bonds (M-O) for the three samples. The observed variation in concentration of hydroxyl
group has been found to show strong correlation to RRAM device performance. The best performing
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RRAM device annealed at 250 ◦C has the highest concentration of hydroxyl group, while the worst
performance is observed for device annealed at 225 ◦C which exhibits the lowest concentration of
hydroxyl group.

 

 

 

 

Figure 6. XPS spectra of O 1s CLs for Al/Ni/solution-based AlOx/Pt RRAM devices annealed at
(a) 225 ◦C; (b) 250 ◦C and (c) 275 ◦C. (d) Integrated intensities of O 1s CL sub-peak referring to M-OH
bond and M-O bond for solution-based AlOx layers annealed at different temperatures.

With the different concentrations of M-O and M-OH in the dielectric layer, two main species
of compositions, namely AlOx and Al(OH)x, play dominant roles in switching behavior. We now
propose a hypothesis for the relationship between composition and surface roughness of the dielectric
layer. The more complex the compositions of the dielectric layer, the higher surface roughness will be
present [69–71]. The surface roughness assessed by Atomic Force Microscope (AFM) of dielectric layers
annealed at 225 ◦C, 250 ◦C and 275 ◦C are 0.682 nm, 0.230 nm and 0.524 nm, respectively. In 225 ◦C
annealed devices, the similar concentration (~50%) of M-O and M-OH can be detected in the film
indicating that the concentration of AlOx and Al(OH)x are almost equal. Hence the dielectric layer
performance might be affected concurrently by two main compositions. A smooth surface of the
dielectric layer is essential to achieve low leakage current and the realization of high-performance
dielectric thin films. A higher concentration of M-OH is observed in the 250 ◦C annealed AlOx

thin film, which indicates that Al(OH)x has a more dominant influence on the layer properties.
Compared with Al(OH)x, the influence of AlOx is less significant, which results in a lower surface
roughness. In addition, the existence of the hydroxyl group in the dielectric layer is associated
with water absorption, which affects the permittivity of AlOx with a slight fluctuation (~9.3–~11.5)
and hence the capacitance associated with the dielectric thin film. This part will be submitted to
further investigation.
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4. Conclusions

RRAM devices with Al/Ni/AlOx/Pt structure were fabricated by a solution-based process with the
RS layer annealed at 200 ◦C, 225 ◦C, 250 ◦C, 275 ◦C and 300 ◦C. The effect on RRAM device performance
for annealing temperatures of 225 ◦C, 250 ◦C, 275 ◦C was investigated in terms of the operation voltages
of RS characteristics, resistance distribution, endurance cycles and retention uniformity. The worst
device performance was observed for an annealing temperature of 225 ◦C and the better performance
was demonstrated in the device annealed at 275 ◦C. The best performance was found for an annealing
temperature of 250 ◦C with the lowest operation voltage (<1.5 V), the highest ON/OFF ratio (>104),
the narrowest resistance distribution, the longest retention time (>104 s) and the most endurance cycles
(150), which indicates the lowest energy consumption and the excellent stability of the RRAM devices.
An XPS study has been conducted to determine elements present in the AlOx thin films prepared at
different annealing temperature with the aim of explaining the variation of associated RRAM devices
performance. The device performance was considered to be related to the concentration gradient of
hydroxyl groups in the solution-based AlOx thin films for different annealing temperatures.
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Abstract: An area-efficient non-volatile flip flop (NVFF) is proposed. Two minimum-sized Metal-
Oxide-Semiconductor Field-Effect Transistor (MOSFET) and two magnetic tunnel junction (MTJ)
devices are added on top of a conventional D flip-flop for temporary storage during the power-down.
An area overhead of the temporary storage is minimized by reusing a part of the D flip-flop
and an energy overhead is reduced by a current-reuse technique. In addition, two optimization
strategies of the use of the proposed NVFF are proposed: (1) A module-based placement in a design
phase for minimizing the area overhead; and (2) a dynamic write pulse modulation at runtime for
reducing the energy overhead. We evaluated the proposed NVFF circuit using a compact MTJ model
targeting an implementation in a 10 nm technology node. Results indicate that area overhead is
6.9% normalized to the conventional flip flop. Compared to the best previously known NVFFs,
the proposed circuit succeeded in reducing the area by 4.1× and the energy by 1.5×. The proposed
placement strategy of the NVFF shows an improvement of nearly a factor of 2–18 in terms of area
and energy, and the pulse duration modulation provides a further energy reduction depending on
fault tolerance of programs.

Keywords: STT-MRAM; flip-flop; power gating; low-power

1. Introduction

Power gating has been researched as an effective energy-reduction technique [1–3]. This reduces
static power consumption by shutting power off. However, data needs to be transferred to another
storage component before the power-off and restored after the power-on [4,5]. Such transfers of data
introduce energy and area overheads. Therefore, it is important to develop a low overhead temporary
storage component and an efficient strategy of the use of the storage components. Off-chip memories
have been used for the temporary storage [2,3]; however, a complex interface between the off-chip
memories and a chip stands in the way of wide adoption of such off-chip memories in power
gating scheme.

Embedded non-volatile flip-flops (NVFFs) are promising enablers to fine-grained power gating
because these do not require a complex interface to transfer state from/to the external storage.
One critical issue is an overhead to store/restore data onto non-volatile temporary storage of the NVFF
before/after the power-down. It is universally the case when adding a new feature (e.g., non-volatility)
to the existing flip-flop. However, what is the best way to build a low overhead NVFF? A magnetic
tunnel junction (MTJ) of a spin torque transfer magnetic memory (STT-MRAM) is a candidate for the
non-volatile storage of the NVFF because the MTJ does not occupy the silicon area; the MTJ is placed
between metal layers. However, the area and energy overheads can be significant if write and read
circuits for the MTJ are not carefully optimized.

In this paper, we propose an area-efficient MRAM-Complementary Metal-Oxide-Semiconductor
(CMOS) hybrid non-volatile flip-flop. We reutilize the existing CMOS flip-flop for transferring data
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to/from MTJs to reduce the area overhead. Only two minimum-sized transistors are added. In addition,
the energy overhead for storing data onto MTJs is reduced by 50% by reusing a write current to write
two MTJs. We evaluated the proposed NVFF circuit using a compact MTJ model and a 10 nm Predictive
Technology Model (PTM) MOSFET model [6–8]. The proposed NVFF has an improvement by a factor
of 4–23 in terms of the area over state-of-the-art circuits. In addition, energy for the storing operation
is reduced by 1.5× compared to the best previously proposed NVFF circuits.

We also propose optimization strategies for the use of the proposed NVFF. Because the proposed
NVFF introduces a non-negligible area overhead compared to the conventional D flip-flop (FF), it is
important to use the proposed NVFF carefully to minimize the area overhead. Replacing all the
conventional FFs in a design with NVFFs imposes a large area penalty. Therefore, we first analyze
a circuit and then place the NVFFs only for a selected module which can minimize the area penalty.
We place the proposed NVFF in a module that has a low ratio of the flop area to total. Because a module
contains flops, combinational logic circuits, and passive devices, the area penalty by the NVFF is
minimized where FFs occupy the relatively small area to the total. In the other words, the area increase
by the NVFF becomes relatively small if the other components in the same modules occupy the greater
portion of the module.

In addition, the write pulse duration for the NVFF needs to be carefully optimized due to the
stochastic nature of the MTJ write. The MTJ write process itself is fundamentally stochastic and the
actual time to the completion varies dramatically with the distribution having a very long tail [9–11].
This means that write energy also varies quite significantly and the write energy can be wasteful if the
applied write pulse duration is not carefully selected. Instead of using the conventional deterministic
strategy with a fixed pulse duration that guarantee a target error probability, we exploit this stochastic
property to save more energy by adjusting the pulse duration adaptively. A key insight is that high
fault-tolerance programs can endure more error from the NVFF so that we can reduce the write pulse
duration for the programs to save write energy even if the NVFF itself introduces higher error probability.

We demonstrate the optimization strategies on an OpenSPARC design which is an open-source
version of UltraSPARC processor [12]. Four programs—matrix multiply, sort, bzip2, and prime—are
also selected for this experiment [13]. Analysis indicates the placement shows an improvement of
nearly a factor of 2–18 in terms of area and energy and the pulse duration modulation maximizes
energy savings of the proposed NVFF for programs have high fault tolerance. The detailed analysis
are presented in the following sections.

2. MRAM-CMOS Non-Volatile Flip-Flops

2.1. State-of-the-Art MRAM-CMOS NVFFs

MRAM-CMOS NVFFs typically need extra circuits for writing and reading MTJs. Multiple
realizations of the extra circuits, which use additional write drivers and sense amplifiers, have been
proposed [14–17]. In [15], two NAND gates, seven inverters, and three NMOS switch transistors are
used for the external write driver and the sense amplifier with a significant reduction of D-Q delay.
In [16], four NOR gates, four inverters, and 16 NMOS transistors are used to reduce C-Q delay and
sensing currents.

In [14], only three extra transistors are added for writing and reading MTJs because the existing
cross-coupled inverter pair of the conventional D-FFs is used to assist with storing and restoring
operations of MTJs. Figure 1 shows the storing and restoring operations of the NVFF [14]. For the
storing operation, MTJA is written to antiparallel (AP) state by lowering Reset-ENable (REN) signal
when QS is logical ‘H’ for Q = 1. MTJB is written to parallel (P) state by raising the REN and Set-ENable
(SEN) signals in the second write phase. The restoring operation is achieved by the regenerative
feedback of the inverter pair because a different voltage is developed between QS and QSb nodes
when MTJA and MTJB have different resistances. This is why the NVFF requires only three additional
transistors. However, sizable transistors are needed to drive sufficient current with low Vgs because
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the Vgs is dropped by IR drop through an MTJ (Vgs = Vdd − I × RMTJ). Moreover, the storing energy
is doubled because two MTJs need to be written in different phases.

(a) Storing operation (Q=1) (b) Restoring operation (Slave latch only)

Figure 1. Schematic of an non-volatile flip flop (NVFF) of Yamamoto et al. [14].

2.2. Current Reutilization NVFF

We propose a current reutilization technique to reduce energy and area overheads. The main
idea that a single write current for an MTJ can be used to write another MTJ. Instead of applying two
separate current pulses to write two MTJs at different phases, we can write two MTJs using a single
write current at the same time. The current reutilization should not introduce large area overhead.
We achieved this by inserting one minimum-sized NMOS transistor because two MTJs can be placed
on the same current path via the NMOS transistor (M1) as shown in Figure 2. A write current is passed
through MTJA, M1, and MTJB when a switch transistor (M1) is turned on for Q = 1. The MTJA is
written to the AP state because the current direction is from the pinned layer (PL) to the free layer
(FL) of the MTJ, and MTJB becomes the P state because the current direction is reversed (FL→PL).
For storing Q = 0, a write current goes through MTJB, M1, and MTJA; therefore, the situation is
reversed (MTJB = AP, MTJA = P). The proposed current reutilization technique allows for writing
both MTJs using one write current at the same time. Thus, we could reduce the write current by 50%,
resulting in a half storing energy. In contrast to an NVFF of Yamamoto et al. [14], an inverter pair
drives a write current and a minimum-sized NMOS transistor is only used as a switch. In addition,
a full Vdd is applied to a gate of the inverter pair during the storing operation.

The restoring operation is achieved by another minimum-sized transistor (M2). This reutilizes the
inverter pair of the existing D-FF. Different voltages are developed between QS and QSb of the slave
latch by two MTJs that have different resistances when M1 and M2 are turned on after the power-up.
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(a) Storing operation (Q = 1) (b) Restoring operation (Slave latch)

Figure 2. Schematic of the proposed current reutilization NVFF.

2.3. Evaluation of the Proposed NVFF

We designed the proposed NVFF using a 10 nm predictive technology model (PTM) MOSFET
model and a compact MTJ model [7,8]. Key parameters of the perpendicular MTJ is described in Table 1.
Figure 3 shows Simulation Program with Integrated Circuit Emphasis (SPICE) simulation results of
the proposed NVFF using the models. The proposed NVFF operates as a conventional D-FF in normal
operations. On top of the D-FF, non-volatile operations are added. The storing operation is performed
before the power-down. The output Q is stored in MTJs when SEN is raised. MTJA is written to the
AP state and MTJB is the P state for Q = 1. During the power-down mode, the output Q is lowered.
The Q is restored when power is up again at 28.6 ns (restoring operation).

Table 1. Key parameters of perpendicular magnetic tunnel junction (MTJ) [6–8].

Parameter Value Unit

Intrinsic critical current 24 μA
Thermal stability factor 58

Tunnel Magnetoresistance ratio (TMR) ∼100 %
Diameter of MTJ 20 nm

Out-of-plane magnetic field 0.4 T

Figure 3. Waveforms of each node of the proposed NVFF. (Output ‘1’ is stored and restored. x-axis
denotes time and the y-axes indicates voltage (V) or states of MTJs.)
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We compare the proposed NVFF with the state-of-the-art NVFF circuits as shown in Table 2.
The proposed NVFF shows an improvement of nearly a factor of 2–17 in terms of restoring energy
compared to the state-of-the-art NVFF circuits. Note that the restoring energy is reduced by 50%
if MTJ and CMOS devices are the same as an NVFF [14]. The proposed NVFF implemented in
an advance technology node and the greater part of the storing energy reduction comes from the
technology scaling.

The relative area increase is only 6.9% (2/29) because only two minimum-sized transistors are
added to the conventional D flip-flop (FF) that has 29 transistors. We did not directly compare the
area because technologies of the reference circuits are different, and the actual area strongly depends
on the layout optimization. Thus, we used a relative area overhead to the D-FF of each technology
for this comparison. Note that the size of the PMOS transistor in the inverter is assumed to be 2×
NMOS transistor. The relative area overheads of state-of-the-art NVFF architectures are from 28.0% to
160.0%. Therefore, the proposed NVFF has an improvement of nearly a factor of 4–23 in terms of the
area overhead compared to state-of-the-art NVFF circuit.

Table 2. Performance summary and comparison with the state-of-the-art NVFFs.

MRAM-Based FeRAM- ReRAM-

This Work [17] [16] [15] [18] [14] [19] a [20] [21]

Technology node (nm) 10 90 45 45 90 65 65 130 65

Area overhead b (%) 6.9 131.0 160.0 120.0 103.4 109.0 28.0 64.0 32.0

Energy (pJ)
Storing 0.2 175.5 1.9 1.6 0.3 5.0 0.5 2.4 -

Restoring 0.002 - 0.171 0.007 - 0.349 0.197 - -

Delay (ns)
Storing 6.6 - - - 10.0 29.5 6.4 1640.0 -

Restoring 0.01 0.169 c 2.0 0.184 1.0 2.0 2.0 1230.0 16.0

C-Q delay (ps) 43.8 318.1 c 68.8 186.2 67.2 73.8 - - <1 ns

Power-Delay Product (fJ) 0.3 2.8 c 1.1 2.3 0.7 1.4 - - -
a Spin Hall Effect MTJ, b normalized to the conventional D flip-flop, c Data from [22]. FeRAM-Ferroelectric
RAM, ReRAM-Resistive RAM.

A simulated delay of the restoring operation is 10 ps and a storing time is set to 6.6 ns to have
a sufficiently low error probability. We computed the error probability of the proposed NVFF. We used
the following probability model derived in [11] using a Neel–Brown relaxation formula to compute
error probability. The model describes the switching probability PSW(t, I), which is the probability of
switching occurring for a pulse duration t at current I:

PSW(t, I) = 1 − e
− t

τ0eΔ(1−I/Ic0) , (1)

where Δ is the thermal stability factor and τ0 is is the inverse of the thermal attempt frequency that has
a typical value of 1 ns [10,11]. IC0 is a critical current and I is an applied current to write. A computed
write error probability is 1.5 × 10−13 where an average write current is 24.6 μA and a storing time is
6.6 ns.

3. Optimization Strategies for the Proposed NVFF

In this section, we describe optimization strategies of the use of the proposed NVFF. Because the
proposed NVFF introduces a non-negligible area overhead compared to the conventional D-FF, it is
important to use the proposed NVFF carefully to minimize the area overhead. In addition, the MTJ
write process itself is fundamentally stochastic and the actual time to completion varies dramatically
with the distribution having a very long tail [9–11]. This means that write energy also varies quite
significantly and the write energy can be wasted if the applied pulse duration is not carefully adjusted.
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We propose a two-phase optimization strategy: (1) a static NVFF placement in a design phase and (2)
dynamic pulse width modification at runtime. The proposed two-phase flow is illustrated in Figure 4.
In a design phase, we place the NVFF only in a module that is able to maximize the benefit of the
NVFF. At runtime, we dynamically adjust the write pulse duration to save more energy for a program
that has high fault tolerance. The details are described as follows.

Pulse Duration (tpw)

Figure 4. Overview of the proposed two-phase optimization flow.

3.1. Pre-Fabrication Optimization: A Module-Based Placement

A key question for the optimization is where the NVFF is placed to reduce static power while
minimizing the area overhead. Replacing all the conventional FFs with NVFFs imposes a large area
penalty. Therefore, we first analyze a circuit and then place the NVFFs only for a selected module.
This is a fine-grained (or cluster-based) power gating approach. We characterize a circuit using two
metrics, static power and a ratio of the FF area to the total, and then place the NVFFs in a module that
has high static power and low area ratio. Because the area penalty is minimized where FFs occupy
the relatively small area to the total. In addition, more static power can be saved if the module itself
consumes high static power. Because the power gating can reduce static (leakage) power by shutting
off power supply and it has no impact on dynamic power, placing the NVFFs in a high-static-power
module can save more static power. Because a module generally contains not only FFs but also has
combinational logic circuits and passive devices, the power gating can also reduce the static power of
the combinational logic circuits and passive devices in the same module too.

We demonstrate the proposed optimization strategy in designing OpenSPARC T1 core, which is
an open-source version of UltraSPARC processor. We first synthesized all modules and performed
the placement and routing using Synopsys 32 nm EDK standard cell library [23]. We used Synopsys
Design Compiler, IC Compiler, and Primetime for synthesizing, placement and routing, and static timing
and power analysis, respectively [24–26]. We then selected seven high computational modules,
and analyzed area and static power. As shown in Table 3, ALU (exu_alu) and decoder (ifu_dec)
modules have fewer FFs than the other five modules. This results in lower area ratio to total.
The increased area is less than 1% if the conventional FFs in the modules are replaced with the
proposed NVFFs. Among two modules, the static power of the ALU is higher than that of the decoder.
Therefore, we selected the ALU for a module to place the proposed NVFF. The placement shows
an improvement of nearly a factor of 2–18 in terms of area and energy compared to the other modules.

All performances of seven modules are summarized in Table 3. The area and power are computed
using Synopsys Primetime. Storing and restoring energy from the 10 nm PTM model are scaled up based
on a constant field scaling method [27] because 32 nm standard cell library is used for the placement
and routing of the OpenSPARC core. A break-even time (Tbreakeven) is determined when energy saving
by the power-gating is equal to the energy overhead by storing and restoring operations.

156



Micromachines 2019, 10, 411

Table 3. Performance summary of seven modules.

FF
Area (μm2)

Total
Area (μm2)

FF/Total
(%)

NVFF
Area (μM2)

Increased
Area (%)

Pstatic
(mW)

Estoring
+ Erestoring (pJ)

Tbreakeven
(ns)

exu_alu 429.5 15,022.5 2.9 459.1 0.2 1.8 72.6 40.8
exu_div 3714.6 12,218.2 30.4 3970.9 2.1 0.2 628.0 3924.0
exu_ecl 2319.3 6869.5 33.8 2479.4 2.3 0.1 392.1 4292.9
exu_rml 1729.2 4340.0 39.8 1848.5 2.7 0.4 733.1 1929.6
ifu_dec 277.5 4049.1 6.8 296.7 0.5 0.4 46.9 119.7
ifu_fcl 1785.6 5991.8 29.8 1908.8 2.1 0.5 301.9 616.6
ffu_dp 5466.6 13,722.1 39.8 5843.8 2.7 1.3 924.2 716.1

3.2. Post-Fabrication Optimization: A Pulse Width Modulation

We now describe a post-fabrication optimization strategy. The main idea is that a write pulse
duration can be adaptively adjusted to reduce the write energy overhead for programs which have
high fault tolerance. Because of a trade-off between energy and error probability of the propose NVFF,
the write energy can be reduced by sacrificing error probability. This is true where each program
has its unique fault tolerance even if the hardware design remains unchanged. In other words, some
programs can tolerate more error so that we can use a shorter pulse duration for the programs to save
more energy.

To implement this idea, we first examine the fault tolerance of programs to validate whether the
fault tolerance varies over programs. Four programs—matrix multiply, sort, bzip2, and prime—are
selected for this experiment. Gate-level simulations of the programs are performed on an OpenSPARC
core using Synopsys VCS to inject faults and monitor the final outputs [28]. The fault injection process
is based on a gate-level simulation that is halted at a randomly-determined cycle. The gate-level
simulator extracts outputs of the combinational blocks and flip-flops for the cycle of interest. We inject
faults (e.g., flipped value) on the flops based on the probabilities of their occurrence. After the injection,
the analysis continues to the end of programs to determine whether the fault has been masked or
a system failure has occurred. Outcomes from the fault injection are compared to a golden fault-free run.
System failures by the fault injection are categorized as one of the following: detected unrecoverable
error (DUE), Output match, silent data corruption (SDC), Hung, or Masked. We did this fault injection
process for four programs. As shown in Figure 5, the most frequent category is Masked (above 90% of
all cases). The second highest category is DUE, followed by SDC and Output match. The Hung case
is not observed in the simulation. Among the four programs, bzip2 shows the lowest system failure
rate, 1.2%. The DUE is only 0.6%, whereas the other programs are above 2.2%. This clearly shows that
bzip2 has better tolerance in this experiment; therefore, a shorter pulse duration can be used for the
program to save more energy.

Figure 5. System failure results by fault injection.
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We also examine how much energy we can save by adjusting the pulse duration. Figure 6 shows
the error rate and the expected energy of a flop at different pulse duration. The error probability is
inversely proportional to the write pulse duration as Equation (1), and the expected energy is linearly
increased by the pulse duration while the error rate is exponentially decreased. At 6.6 ns, a write error
probability is 1.5 × 10−13 and energy for a storing and restoring operations is 0.2 pJ. For short pulses
such as 3.3 ns, the computed error probability is increased to 3.9 × 10−7 while the energy consumption
is reduced by half. Because of such trade-off, the applied pulse duration for each program needs to
be carefully selected based on the target error probability of the system even if the pulse duration
modulation strategy maximizes energy savings of the proposed NVFF.

Figure 6. Error rate and the expected energy of the proposed NVFF at different write pulse duration.

In order to control the pulse duration, a control circuit is necessary. However, the area overhead
per flop would be negligible because one circuit can control all FFs in a chip. In addition, the pulse
duration is selected at software-level because the program information is needed.

4. Conclusions

In this paper, a novel area efficient NVFF is proposed. The relative area overhead is 6.9%, and the
proposed NVFF shows an improvement of nearly a factor of 4–23 in terms of area overhead compared
to state-of-the-art NVFF designs. The write current for the restoring operation is reduced by 50% using
the proposed current-reuse technique. To our knowledge, the proposed NVFF enables a fine-grained
power gating without significant area overhead. Compared to the best previously known NVFFs,
the proposed NVFF succeeds in reducing the area by 4.1× and the energy by 1.5×.

Two optimization strategies for reducing area and energy overheads are also proposed: NVFF
placement and pulse duration modulation strategies. We demonstrated the placement strategy
on an OpenSPARC T1 core design. Analysis indicates that the placement on the ALU shows
an improvement of nearly a factor of 2–18 in terms of area and energy compared to the other modules.
We also demonstrated the fault tolerance variation over programs and the adaptive pulse duration
strategy for the energy savings.
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Abbreviations

The following abbreviations are used in this manuscript:

STT-MRAM spin torque transfer magnetic RAM
MTJ magnetic tunnel junction
FF flip flop
NVFF non-volatile flip flop
PTM predictive technology model
MUX multiplexer
EDK educational design kit
VCS verilog compiler and simulator
ALU arithmetic logic unit
DUE detected unrecoverable error
SDC silent data corruption
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Abstract: Memristor devices are considered to have the potential to implement unsupervised learning,
especially spike timing-dependent plasticity (STDP), in the field of neuromorphic hardware research.
In this study, a neuromorphic hardware system for multilayer unsupervised learning was designed,
and unsupervised learning was performed with a memristor neural network. We showed that the
nonlinear characteristic memristor neural network can be trained by unsupervised learning only with
the correlation between inputs and outputs. Moreover, a method to train nonlinear memristor devices
in a supervised manner, named guide training, was devised. Memristor devices have a nonlinear
characteristic, which makes implementing machine learning algorithms, such as backpropagation,
difficult. The guide-training algorithm devised in this paper updates the synaptic weights by only
using the correlations between inputs and outputs, and therefore, neither complex mathematical
formulas nor computations are required during the training. Thus, it is considered appropriate to
train a nonlinear memristor neural network. All training and inference simulations were performed
using the designed neuromorphic hardware system. With the system and memristor neural network,
the image classification was successfully done using both the Hebbian unsupervised training and
guide supervised training methods.

Keywords: neuromorphic system; Hebbian training; guide training; memristor; image classification

1. Introduction

Neuromorphic hardware research has begun to develop new computing architectures [1–6]. From
a broad point of view, neuromorphic research has two main streams [6]. One focuses on reproducing the
exact biological phenomena that occur in the brain [3,6–10], while the other focuses on the development
of a new computing device typically known as a neuromorphic chip. As the neuromorphic chip takes
advantage of the biological neural network, it has several features such as massively parallel processing,
local memory structure, high integrity, and low power consumption [4,5,11–22]. Neuromorphic
hardware is especially efficient in terms of size and power consumption compared to typical Von
Neumann architecture computing devices. The main difference between neuromorphic hardware
and Von Neumann computers is the memory structure. In the human brain, the neural cell topology
is determined by the connections between neurons (i.e., synaptic connectivity). This means that
the biological neural network contains a memory device and a computing unit at the same time.
On the contrary, the memory device and computing unit are separated in a typical Von Neumann
computer. Most of the power is consumed from the data transfer between the memory device
and computing unit. This power issue appears in extreme forms in recent data-intensive artificial
intelligence (AI) applications.

Micromachines 2019, 10, 384; doi:10.3390/mi10060384 www.mdpi.com/journal/micromachines161
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There are approximately 100–500 trillion synapses in the adult human brain [23]. A memristor
can be very densely integrated but remain energy efficient. Therefore, it has considerable potential to
physically implement huge and complex network connectivity similar to the human brain [8,24–27].
In addition to this integration property, its I–V characteristic makes the memristor device an appropriate
synapse device. It was first suggested and reported that the I–V characteristic is analogous to the
behavior of biological synapses in [28]. Due to this device characteristic, memristors have been
considered to have the potential to implement spike timing-dependent plasticity (STDP) in hardware.
Neural networks can learn by themselves based on given information (i.e., unsupervised learning).
STDP is one of the types of unsupervised learning methods in the brain. This concept is in contrast
to supervised learning, which is learning processed as the supervisor intended. Supervised learning
needs prior information about processing data, and the supervisor needs to label all the data. As the
amount of data to process has increased, this labeling process has become more demanding. Natural
data is continuously changing, and it is difficult to label all the input data. Thus, unsupervised learning
is more appropriate to deal with natural data than supervised learning.

Unsupervised learning has a simpler mechanism than supervised learning. Training a multilayer
artificial neural network (ANN), however, requires accurate data control over the entire network
(i.e., input/output of the network and input/output of the layers in the network). The systematic
implementation of unsupervised learning in a multilayer ANN is essential to develop neuromorphic
hardware whose basic function is analogous to the biological neural network, and that can consequently
process natural data. From the user-centered point of view, however, with unsupervised learning, it is
difficult to determine whether the training has been completed, and the accuracy can be lower than that
of supervised learning. On the other hand, users can train the ANN as they intend with supervised
learning, it is easier to analyze the training results, and there are many methods to improve accuracy.
However, the machine learning algorithms used to train ANNs need computations based on current
synaptic weights. In addition to the computations, those computed synaptic weights have to be applied
exactly and updated. Extra effort is needed to measure the resistance of a single memristor device
in the memristor neural network and to record the entire hysteresis. Only then can the memristor
resistance be accurately modified. These accompanied processes compromise the energy efficiency
and integrity of memristor neural networks. Therefore, it is hard to realize supervised learning when
the ANN consists of a memristor device.

Considering the circumstances of neuromorphic hardware implementation with a memristor ANN,
a clock synchronous neuromorphic hardware system for both supervised learning and unsupervised
learning was designed in this paper. The designed system was available for a multilayer memristor
ANN with an unsupervised learning method. A guide-training algorithm capable of training a nonlinear
memristor neural network in a supervised manner without backpropagation was devised in addition
to the neuromorphic system. A memristor ANN was adopted as the synapse array for the designed
neuromorphic hardware system, and the memristor ANN was trained in both unsupervised learning
with the Hebbian training algorithm and supervised learning with the guide-training algorithm.

2. Materials and Methods

2.1. Clock Synchronous Neuromorphic Hardware System

The control of network input/output and neural layer input/output is the most important aspect
of implementing unsupervised learning in an ANN. In supervised learning, the network input is
completely processed through the network, and then network output is computed. The synaptic
weights are then updated according to the backpropagation. On the contrary, unsupervised learning,
such as the Hebbian or STDP algorithm, updates the synaptic weights only based on the correlations
between inputs and outputs. There is a single pair of input and output in a single-layer ANN, and the
correlation between them is clear. However, the situation changes when it comes to the multilayer ANN.
Based on the network structure, the layers can be wide or deep, and the number of neurons contained
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in each layer differs. As a result, the data processing time between layers also differs. For instance,
consider the circumstances in a 9-6-3 double-layer ANN (nine input neurons and six output neurons in
layer 1 (L1) and six input neurons and three output neurons in layer 2 (L2)). The input to L1 is the
network input (NI), and the output of L2 is the corresponding network output (NO). The output of
L1 (L1out) is input to L2 (L2input). First, the network input NI1 is applied and the corresponding
L1 output (L1out1) is propagated to L2, but the corresponding L2 output (NO1) is not computed yet.
What happens if the second network input NI2 is applied again? In the best case, the corresponding
L2 output for L2iniput1 is computed, and then the L1 output corresponding to the NI2 (L1out2) is
applied to L2. However, in the worst case, the L1 output corresponding to the NI2 (L1out2) is applied
to L2 before L2input1 is computed. As a result, the synaptic weights of layer 1 are updated based on
the correlations between two different inputs NI1, NI2, and two different outputs L1out1 and L1out2.
However, the synaptic weights of layer 2 are updated based on the correlations between two different
inputs L2input1, L2input2 and a single merged output of two different inputs. This kind of timing
error can result in a learning error, and there are far more possibilities in a deeper ANN than this
example case.

The neuromorphic system proposed in this paper divides the data process to a single input data
into four steps, and synchronizes the entire layer with the clock: allowing the input to be received
by the layer, computing the output, updating the synaptic weights, propagating the output. This
system can perform unsupervised learning without timing error. In accordance with the clock signal
(Clock, Figure 1a), the four processing steps are performed by word line control logic (WLControl,
Figure 1b), bit line control logic (BLControl, Figure 1c), output computation block (WTALogic, Figure 1e),
and output propagating logic (OutputSpikeGenerator, Figure 1f). All layers of the ANN simultaneously
receive the data, compute the output, update the synaptic weights based on the input and output,
and propagate the output to the next layer. At this point, the propagated output from the previous
layer is not instantly applied to the next layer. Rather, it is applied to the layer as the next clock signal
for receiving input data. The aforementioned timing error can be improved with this neuromorphic
hardware system. All training and inference simulations are performed using this designed system.
The memristor ANN (Figure 1d) is applied to the neuromorphic hardware system, and both Hebbian
training and guide training are performed and analyzed. The detailed methods of Hebbian training
and guide training are explained in Sections 2.3 and 2.4, respectively, and the corresponding training
and inference results are presented in Sections 3.1 and 3.2, respectively.

Figure 1. Clock synchronous neuromorphic hardware system. (a) System clock; (b) Word line control
logic; (c) Bit line control logic; (d) memristor artificial neural network; (e) winner-takes-all logic; and (f)
output spike-generating logic.

2.2. Memristor Neural Network Array

As shown in Figure 2a, the memristor device is connected between the top electrode (Word
Line, WL) and the bottom electrode (Bit Line, BL). Input data were applied as voltage to the WL,
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and the current flowed through the memristor from the WL to the BL according to the input voltage.
The winner-takes-all logic (Figure 1e) determined the neuron where the largest current flows. Based on
this computation, OutputSpikeGenerator (Figure 1f) propagated output spikes to BLControl (Figure 1c)
and the next layer. WLControl and BLControl apply the appropriate voltage to modify memristor
conductance according to the learning algorithm.

Figure 2. (a) Memristor neural network structure; and (b) I–V characteristic of memristor device model
used in this paper.

Memristor devices can be modeled using various parameters in the equations, and various models
have been reported [29–33]. The memristor device model used in this study refers to References [31]
and [32]. The simulation result in Figure 6 of reference [32] is based on the experimental data in [33].
In this study, we used a memristor neural network and a peripheral neuromorphic system instead of a
single memristor device. Therefore, the modeling parameters were adjusted to the 1.5 V of system
operating voltage while maintaining the device current analogous to the experimental data in [33].
The modeling parameters used are shown in Table 1. The I–V characteristic of the memristor device
model used in this paper is shown in Figure 2b. To change the memristor device resistance, a voltage
larger than 0.75 V had to be applied across the memristor. To increase the synaptic weight, 1.5 V was
applied to the word line for 150 ns and 0 V was applied to the bit line. Conversely, to decrease the
synaptic weight, 0 V was applied to the word line and 1.5 V to the bit line. For the Hebbian training,
an M × N memristor ANN was implemented by adopting the single-memristor structure for the
M inputs and N outputs, and there were N different classification images. For the guide training,
an M × 2N memristor ANN was implemented by adopting the double-synapse memristor structure
for the M inputs and N outputs, and there were N different classification images.

Table 1. Memristor device modeling parameters.

Symbol Value Symbol Value

a1 0.05 An 6 × 103

a2 0.05 xp 0.5
b 0.05 xn 0.5

Vp 0.75 V αp 10
Vn 0.75 V αn 10
Ap 6 × 103 xo 0.5

2.3. Hebbian Training Method

To train the memristor neural network in an unsupervised learning manner, we used the Hebbian
training method shown in Table 2. The synaptic connections between input data without output
increased. On the contrary, the synaptic connections between output data without input were decreased.
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Otherwise, the synaptic weights remained the same. In the table, while 1 represents the existence of
input or output, 0 represents the absence of input or output.

Table 2. Hebbian training method.

Input Output Modification

1 1 Remained
1 0 Increased
0 1 Decreased
0 0 Remained

2.4. Guide Training Method

The guide-training algorithm literally guides the memristor neural networks to make them
perform a cognitive task, and it utilizes the features of both the Hebbian algorithm and a supervised
learning algorithm. The Hebbian learning algorithm updates the synaptic weights only according to the
correlations between the inputs and outputs. Thus, there are no mathematical formulas or computations
to deduce the change in the synaptic weight. One of the significant drawbacks of unsupervised learning
is that the learning results are unpredictable. Training results can differ with different initial synaptic
weights even if the training data are the same. In contrast, supervised learning algorithms are based on
mathematical formulas. Synaptic weights are changed according to these formulas so that the neural
network can respond as the supervisor intended. However, the mathematical computations are very
complex. The guide-training algorithm proposed in this paper updates synaptic weights according
to the correlation information between the input, output, and intended target output determined by
the supervisor. It guides the synaptic weights with this information so that the neural network can
respond according to the predefined learning pattern. The guide-training algorithm does not compute
derivations or integrations as the backpropagation algorithm does. It just compares the correlations
between the inputs and the outputs and then determines whether the synaptic weights increase or
decrease. This extremely simple learning algorithm is highly suitable for implementing and training
nonlinear memristor neural networks.

A double-synapse structure was used for the guide training with two synapses for a single
pair of input and output. For the M inputs and N different target classification images, an M × 2N
double-synapse memristor array was constructed. M inputs were applied to the rows, and the
{2 × j − 1}th column and the {2 × j}th column were the positive column (PCj) and the negative column
(NCj) of output neuron j (Nj) for every N output neuron. The specific guide training method used
in this paper is shown in Table 3. While 1 represents the existence of input or output, 0 represents
the absence of input or output. K represents the type of input data, and T represents the predefined
target output neuron for this input data. Users can define this learning pattern. In this study, only the
input data and predefined training pattern were considered. Only the synaptic weights where input
existed were updated. For instance, if the target output neuron for the K input image was T, and the
i-th input existed, then the positive-column synaptic weight of the target output neuron increased.
The negative-column synaptic weight of the target output neuron decreased. The positive-column
synaptic weights of the other non-target output neurons decreased, and the negative-column synaptic
weights of the other non-target output neurons increased.

Table 3. Guide training method.

Input Image
Predefined

Output Neuron
i-th Input

W (i, 2 × j − 1)
j = T

W (i, 2 × j)
j = T

W (i, 2 × j − 1)
j � T

W (i, 2 × j)
j � T

K T
1 Increased Decreased Decreased Increased
0 Remained Remained Remained Remained
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2.5. Training and Inference Dataset

For every new training trial, the memristor ANN was randomized before training. To train the
3 × 3 T, X, and V letter images (corresponding to Tref, Xref, and Vref in Figure 3a), 135 images were
contained in a single training dataset: 45 images of each Tref, Xref, and Vref images. The arrangements
of T, X, and V images in a single training dataset were randomized. Thus, if 30 sets of training data
were used for a single learning trial, then the arrangements of T, X, and V images in all 30 datasets
were different. The original image data and one-pixel flipped images (Figure 3a) of the original image
data were used to perform the inference simulations.

To make the memristor ANN learn the 10 × 10 digit images (Figure 3b), 2,708 of the original digit
images were used for the training. Three different levels of inference tests were conducted: noise 0%
images, noise 3% images, and noise 5% images. These images are shown in Figure 3b–d, respectively.
The noise 3% images consisted of images with three randomly chosen pixels flipped. For each digit,
50 different noise images were tested.

 

Figure 3. (a) 3 × 3 T, X, and V letter images. Tref, Xref, and Vref are original letter images. T1 to T9, X1
to X9, and V1 to V9 are one-pixel flipped noise images of Tref, Xref, and Vref; (b) 10 × 10 digit images;
(c) 3% noise image data of 10 × 10 digit images (three randomly chosen pixels among 100 pixels are
flipped); and (d) 5% noise image data of 10 × 10 digit images (five randomly chosen pixels among
100 pixels are flipped).

3. Results

3.1. Inference Results after Hebbian Training

Synaptic weights were trained according to the Hebbian training method shown in Table 2.
Figure 4a shows the changing pattern of synaptic weights during the Hebbian training. Figure 4b
shows the output responses of each output neuron during the Hebbian training. For the initial stage of
training, output neuron 1 (N1) did not respond to any input image, output neuron 2 (N2) responded to
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both T and X images, and output neuron 3 (N3) responded to T, X, and V images. However, as the
training continued, N1 trained to the T image, N2 trained to the X image, and N3 trained to the V
image. The Tref, Xref, Vref, T1, T3, X1, X3, V1, and V3 images in Figure 3a were used for the inference
test after the Hebbian training. Table 4 shows the initial voltages of the memristor ANN used for the
training in Figure 4. The memristor ANN was randomized before every new training. The average
accuracy of the inference test of Tref, T1, T3, Xref, X1, X3, Vref, V1, and V3 was 100%, 97.62%, 100%,
100%, 95.24%, 97.62%, 100%, 95.24%, and 90.48%, respectively.

Figure 4. (a) Synaptic weight changes during Hebbian training; and (b) output neuron responses
during Hebbian training.

Table 4. Initial random weight W (i, j) (mV).

i W (i, 1) W (i, 2) W (i, 3)

1 814.7 964.8 792.0
2 905.7 157.6 959.4
3 126.9 970.5 655.7
4 913.3 957.1 35.7
5 632.3 485.3 849.1
6 97.5 800.2 933.9
7 278.4 141.8 678.7
8 546.8 421.7 757.7
9 957.5 915.7 743.1

3.2. Inference Results after Guide Training

3.2.1. Inference Results of 9 × 6 Memristor Neural Network

Output neuron 1 was targeted to learn the T image, output neuron 2 was targeted for the X image,
and output neuron 3 was targeted for the V image. The inference test was performed after the 50 sets
of guide training with this predefined training pattern. For the inference test, the 30 test images in
Figure 3a were used. In the best result case, 10 different T images were responded to by output neuron
1 (N1), 10 different X images were responded to by N2, and 10 different V images were responded to
by N3. The test results were the same as the predefined learning pattern, and the error rate was zero.
Figure 5a shows the inference test results with error after the 50 sets of guide training. Nine different T
images were responded to by N1, and the other images of letters X and V were responded to by N2 and
N3, respectively. Thus, the single non-responding case of N1 to a T test image was counted as an error.
The average accuracy of T, X, and V letter image classification was 92%, 99%, and 100%, respectively.
The changes in the 18 synaptic weights of output neuron 1 are shown in Figure 5b.
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Figure 5. (a) 3 × 3 T, X, and V letter image classification test results. Nine different T images were
responded to by N1, 10 different X images were responded to by N2, and 10 different V images
were responded to by N3. The test results show that the memristor ANN was successfully trained
as the predefined learning pattern; (b) synaptic weight changes of output neuron 1 during 50 sets
of guide training. wij represents the memristor conductance between the i-th top electrode and j-th
bottom electrode.

3.2.2. Inference Results of 100 × 20 Memristor Neural Network

In order to train digit images (Figure 3b), 2,708 of the original digit images were used for the
training. For the 10 × 10 digit image classification, the learning pattern was predefined as follows:
digit 1 was set to output neuron 1, digit 2 was set to output neuron 2, . . . , digit 9 was set to output
neuron 9, and digit 0 was set to output neuron 10. Thus, we expected the corresponding output of
the digit 0 image to be [0, 0, 0, 0, 0, 0, 0, 0, 0, 1]. Figure 6a shows the initial random synaptic weights
before the guide training, while Figure 6b shows the trained synaptic weights after the guide training.
As shown in Figure 6b, the positive and negative synaptic weights of output neuron 1, Wi1 and Wi2,
were successfully trained in the shape of digit 1. Other output neurons were also trained as intended.
The average accuracy of the inference test of each noise image in Figure 3b–d is shown in Table 5.

 

Figure 6. Synaptic weight matrix before and after guide training. A 100 × 20 memristor neural network
is utilized for 10 × 10 digit image classification. Each output neuron has positive weights and negative
weights. Wi1 represents the positive-column weights of output neuron 1, and Wi2 represents the
negative-column weights of output neuron 1. The 100 memristor synapses of 20 columns are shown in
the 10 × 10 2D images. (a) Initial random synaptic weights. (b) Trained synaptic weights after guide
training. Trained synaptic weights are trained according to the predefined learning pattern.
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Table 5. Average accuracy of inference test of 10 × 10 digit image classification.

Noise % Digit 0 Digit 1 Digit 2 Digit 3 Digit 4 Digit 5 Digit 6 Digit 7 Digit 8 Digit 9

0 100% 100% 100% 100% 100% 98% 100% 96% 100% 100%
3 100% 100% 97% 96% 100% 91% 95% 100% 84% 100%
5 99% 100% 95% 93% 100% 84% 88% 86% 84% 92%

4. Discussion

In a real on-chip simulation, training has to be conducted with random, nonlinear memristor
arrays. In this study, training was conducted on a random memristor array without any initialization
process, considering the real-world applications. Unsupervised learning with the Hebbian training
method was performed using the proposed neuromorphic hardware system with a nonlinear random
memristor ANN, and it successfully classified images. In addition, a new training algorithm optimized
to train memristor neural networks was developed. The guide-training algorithm only uses the
correlations between the inputs and the outputs like the Hebbian learning algorithm, but the supervisor
can configure the training pattern. The training of memristor neural networks poses many intrinsic
problems related to the device characteristics. In contrast, the guide-training algorithm proposed
in this paper is sufficiently simple to be implemented in an actual circuit and is effective enough to
train a memristor neural network. With the guide training algorithm, the 3 × 3 T, X, and V letter
image classification and the 10 × 10 digit image classification were successfully conducted with the
nonlinear random memristor neural network. The proposed neuromorphic hardware system and
guide training algorithm have the potential to train more enhanced memristor ANNs. In the 10 × 10
digit image classification, the digits with large common sections were responded to by corresponding
output neurons. The flipped images of digits 5, 6, and 8 were usually responded to by N5, N6, and N8.
Moreover, the flipped images of digits 2 and 7 were usually responded to by N2 and N7. Thus,
the untrained synapses, which corresponded to the background images, are considered the main
contributor to those unintended inference responses. Ongoing studies on the different approaches of
the guide-training algorithm are being conducted to overcome these background effects.
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Abstract: A power-saving approach for real-time systems that combines processor voltage scaling
and task placement in hybrid memory is presented. The proposed approach incorporates the task’s
memory placement problem between the DRAM (dynamic random access memory) and NVRAM
(nonvolatile random access memory) into the task model of the processor’s voltage scaling and
adopts power-saving techniques for processor and memory selectively without violating the deadline
constraints. Unlike previous work, our model tightly evaluates the worst-case execution time of
a task, considering the time delay that may overlap between the processor and memory, thereby
reducing the power consumption of real-time systems by 18–88%.

Keywords: real-time system; dynamic voltage scaling; task placement; low-power technique;
nonvolatile memory

1. Introduction

As IoT (internet-of-things) technologies grow rapidly for emerging applications such as smart
living and health care, reducing power consumption in battery-based IoT devices becomes an important
issue. An IoT device is a type of real-time system, of which, power-saving has been widely studied in
terms of the processor’s dynamic voltage scaling (DVS). DVS lowers the supplied voltage of a processor
when a load of tasks is less than the processor’s full capacity, thereby saving power consumption
without violating the deadline constraints of real-time tasks. Although the execution time will increase
due to the lowered supplied voltage, it would spend less power, as the power consumption in the
CMOS (complementary metal-oxide semiconductor) digital circuits is proportional to the square of the
supplied voltage [1].

Meanwhile, recent research has shown that memory subsystems are reaching a significant portion
of power consumption in real-time embedded systems [2]. Such tremendous power consumption
results mainly from the refresh operations of DRAM (dynamic random access memory) [2,3]. As
DRAM is a volatile medium, it requires continuous power recharge in order to retain its data even in
idle states. This article shows that the power consumption of real-time systems can be further reduced
by combining a processor’s voltage scaling with hybrid memory technologies, consisting of DRAM
and NVRAM.

NVRAM (nonvolatile random access memory) technologies have emerged as an attempt of saving
the power consumption of DRAM, as NVRAM does not need refresh operations [3]. NVRAM is
byte-addressable memory similar to DRAM but it is better than DRAM in terms of energy-consumption
and scalability. Thus, NVRAM is expected to be used as a main memory medium like DRAM in the
not too far future [3–5]. Unfortunately, NVRAM has two critical weaknesses that prevent the total
substitution of DRAM memory. First, the number of write operations allowed for each NVRAM cell
is limited. For example, the current write endurance of PRAM (phase-change memory), a kind of
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representative NVRAM media, is known to be about 107–108 [3,6]. The second drawback is that the
access time of NVRAM is expected to be slower than that of DRAM [5,7,8].

Despite these limitations, the prospect of NVRAM is still bright. One way of coping with the
slow access latency and the write endurance problem of NVRAM is to adopt DRAM along with
NVRAM [5,7]. This can hide the slow performance of NVRAM and also increase the lifespan of
NVRAM. Two different memory architectures that comprise DRAM and NVRAM can be considered.
The first architecture, depicted in Figure 1a, uses DRAM as an upper-level memory of NVRAM,
which we call, the hierarchical memory architecture. The other memory architecture, depicted in
Figure 1b, presents both DRAM and NVRAM at the same main memory level, managing them together
under a single physical address space [5]. We call this architecture the hybrid memory architecture.
In general-purpose time-sharing systems, the hierarchical memory architecture can improve the
performance of virtual memory systems, as changing the backing store from slow HDD (hard disk
drive) to fast NVRAM significantly reduces the page fault handling latency. However, as we focus on
real-time systems, virtual memory is difficult to use, since page fault situations cannot be predicted
beforehand, making the deadline guaranteed service difficult. This implies that the size of the DRAM
should be large enough not to incur unexpected page faults, which is not fit for our target system, as
we focus on reducing the use of DRAM for saving power consumption. Thus, we adopt the hybrid
memory architecture and determine the location of tasks between DRAM and NVRAM in order to
satisfy the deadline constraints by estimating the memory access latency beforehand.

 
(a) 

 
(b) 

Figure 1. Architecture of the proposed system. (a) Hierarchical memory architecture, (b) hybrid
memory architecture.

Although a task in NVRAM needs more time to be accessed, we can expect that an NVRAM
resident task is still likely to be schedulable if it is executed under a low voltage mode of a processor.
Our aim is to load tasks on NVRAM if it does not violate the deadline of real-time tasks, thereby
reducing the power consumption further. To do so, we incorporate the task’s memory placement
problem into the processor voltage scaling and evaluate the effectiveness of the unified approach.
Simulation experiments show that our technique reduces the power consumption of real-time systems
by 18–88%.

2. The Proposed Policy

Let Γ = {τ1, τ2, . . . , τn} be the set of n independent tasks in a real-time system, which has a
processor capable of dynamic voltage scaling, and main memory consisting of DRAM and NVRAM
as shown in Figure 1b. Each task τi is characterized by <ni, CPIi, pi, si>, where ni is the number of
instructions to be executed, CPIi is the clock cycles per instruction for τi, pi is the period of τi, and si is
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the size of τi’s memory reference stream during its execution. By considering common assumptions
used in previous works [1], we make five assumptions for our system model.

A1. The size of the DRAM is large enough to accommodate entire task sets, but the power is turned
off for the part of the DRAM where tasks are not loaded;

A2. Each task is executed independently and does not affect others;
A3. Context switch overhead (the overhead of switching a processor from one task to another) and

voltage switching overhead (the overhead of switching the voltage mode of a processor from one
to another) are negligible;

A4. The frequency of a processor is set to an appropriate level as the voltage supply is adjusted;
A5. We consider periodic tasks, and thus the period of a task implicitly determines the deadline of

the task.

In our task model, the worst-case execution time (WCET) of a task can be determined based on
the number of instructions to be executed in the processor and the memory access latency of the task.
As modern embedded processors have an on-chip cache, main memory is accessed only upon a cache
miss. Thus, memory delay caused by NVRAM also occurs only when a requested block is not in the
on-chip cache. Once a block is loaded on the cache, then accessing a part of data within the block does
not incur memory accesses. Let c be the cache block size and si be the total size of memory reference
stream in task τi. Then, in the worst case, the number of memory accesses can be represented as si/c.

In our task model, WCET of a task is decided by the slower time component of executing
instructions and accessing memory with the given voltage mode and the memory type. Specifically,
WCET ti of a task τi with the processor’s voltage level vi and the memory type mi is defined as:

ti =max{ti,cpu (vi, ni), ti,mem (mi, si)} (1)

where ti,cpu (vi, ni) is the execution time of ni instructions in the processor with the voltage level of
vi and ti,mem (mi, si) is the memory access time of task τi with the memory type mi and the size of
reference stream si, which can be subsequently defined as follows:

ti,cpu (vi, ni) = (ni/vi) × CPIi × LC (2)

ti,mem (mi, si) = (si/c) × LT(mi) (3)

where CPIi represents clock cycles per instruction for the task τi, LC is the cycle time, c is the cache
block size, and LT(mi) is the memory access latency of the memory type mi. Note that the voltage
level vi is set to 1 for the default voltage mode, and becomes less than 1 as the processor is set to a low
voltage mode.

The schedulability of a real-time task set Γ is tested by the utilization U of a processor as follows:

U =
n∑

i=1

ti
pi
≤ 1 (4)

We use the earliest deadline first (EDF) scheduling algorithm as it is known to perform scheduling
without deadline misses, provided that there exist any feasible schedules on that task set [1]. Now,
let us take a look at an example task set consisting of three tasks τ1, τ2, and τ3, whose worst-case
execution times t1, t2, and t3 are 2, 1, and 1, respectively, under the default setting (i.e., normal voltage
mode and DRAM only placement), and their periods are 8, 10, and 14, respectively. The schedulability
of the task set is tested by calculating the utilization of the tasks τ1, τ2, and τ3, and adding up them i.e.,
U = 2/8 + 1/10 + 1/14 = 0.421. As the total utilization is less than 1, the task set is schedulable. Figure 2a
shows the scheduling result for the task set with the EDF. Although the task set is schedulable, idle
intervals reach up to 50% of the total possible working time of the processor. This inefficiency can be
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relieved by lowering the processor’s voltage for some idle intervals. For example, if two low voltage
levels of 0.5 and 0.25 are applied for tasks τ2 and τ3, respectively, t2 and t3 will be 2 and 4, respectively.
Accordingly, the utilization of the processor is increased to U = 2/8 + 2/10 + 4/14 = 0.736, which is
still less than 1 and thus schedulable. Also, if we locate τ3 in NVRAM whose access latency is twice
that of the DRAM, one may think that t3 will be 8, and thus it is not schedulable as U = 2/8+ 2/10
+ 8/14 = 1.021 > 1. However, we tightly model WCET (worst case execution time) considering the
overlapped time delay between the processor and memory, as shown in Equation (1), and thus t3 is
still 4. Therefore, in our model, the utilization of the processor by applying both DVS and NVRAM
becomes less than 1, still being schedulable. Figure 2b shows the scheduling result with our model
when the aforementioned voltage scaling and memory mapping is adopted. As we see, idle intervals
are decreased significantly when compared with the result in Figure 2a.

 
(a) 

 
(b) 

Figure 2. Comparison of the scheduled task set. (a) Scheduling result by original earliest deadline first
(EDF), (b) scheduling result by the proposed approach.

As we deal with hard real-time systems, we assume that task scheduling is performed beforehand
(i.e., off-line scheduling) and the scheduling does not change during the execution of the tasks. That is,
the schedulability test is performed with the given resources (the voltage modes and memory types) at
the design phase and the system resources are determined based on the schedulability test results, not
to miss the deadlines of all tasks. This is a typical procedure for real-time task scheduling, and we
extend it for memory placement. Note that as traditional real-time systems do not use virtual memory
swapping due to the unpredictable page fault handling I/O (input/output) latency, the full address
space of a task is loaded on the physical memory once it starts its execution. Thus, we also assume that
the memory footprint of a task is determined at the scheduling phase, which is set to the maximum
value for satisfying the deadline constraints in the worst case.

Algorithm 1 depicts the pseudo-code of our task setting and scheduling, of which the objective
function is the maximization of power_saving with the constraint of U less than 1, implying that there
are no deadline misses in the task set. Our problem can be modeled similar to the 0/1 knapsack
problem. Thus, we solve the problem based on dynamic programming, which is one of the most
efficient techniques to solve the 0/1 knapsack problem [9]. The algorithm tries to lower the power
mode of each task i (1 ≤ i ≤ n) without exceeding the given utilization of each step. The state of each
task with the utilization 1 will be our final solution. One can refer to the approximation algorithm
of 0/1 knapsack problem for more details [9]. To decide the increment of utilization, we performed
empirical analysis and found that the increment of 0.1 was appropriate in our case as the results were
not sensitive when it became less than that value.
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Algorithm 1 Task setting and scheduling

Input: n, number of tasks; power_saving(i, U), maximum power savings for tasks 1, 2, ..., i with utilization less
than U; power_savingi, power savings obtained by adopting task i to low power mode; Ui, increased utilization
by adopting task i to low power mode
Output: Φ, a schedule of all tasks

for i is 1 to n do

power_saving (i, 0) ← 0;
end for

for U is 0.0 to 1.0 by 0.1 do

power_saving (0, U) ← 0;
end for

for i is 1 to n do

for U is 0.0 to 1.0 by 0.1 do

if Ui >U
power_saving (i, U) ← power_saving (i–1, U);

else

power_saving (i, U) ←max{power_saving (i–1, U),
power_saving (i–1, U –Ui) + power_savingi };

end if

end for

end for

set processor and memory states based on power_saving(n, 1);
schedule task set via EDF;

3. Performance Evaluations

We compare our technique, called DVS-HM (dynamic voltage scaling with hybrid memory), with
DVS-DRAM, HM (hybrid memory), and DRAM, which operate as follows.

• DVS-DRAM: This algorithm uses the processor’s dynamic voltage scaling, similar to DVS-HM,
but does not use NVRAM and all tasks reside in DRAM;

• HM: This algorithm does not use the processor’s dynamic voltage scaling, but uses hybrid memory
consisting of DRAM and NVRAM, and places tasks in NVRAM if it is still schedulable;

• DRAM: This is a baseline condition that does not adopt either the processor’s dynamic voltage
scaling or hybrid memory technologies. That is, the processor is executed with its full voltage
mode and all tasks reside in the DRAM.

The sizes of the DRAM and NVRAM are equally set to accommodate the entire task set. Table 1
shows the access latency and the power consumption of the DRAM and PRAM (phase-change random
access memory), which is a type of NVRAM we experimented with. In theoretical aspects, there is no
limitation in the level of the processor’s operating modes. However, as DVS-supported processors
usually allow a very limited number of operating modes for practical reasons, we also allow four
voltage levels of 1, 0.5, 0.25, and 0.125.

Table 1. DRAM (dynamic random access memory) and NVRAM (nonvolatile random access
memory) characteristics.

Characteristics DRAM PRAM

Read latency 50 (ns) 100 (ns)

Write latency 50 (ns) 350 (ns)
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Table 1. Cont.

Characteristics DRAM PRAM

Read energy 0.1 (nJ/bit) 0.2 (nJ/bit)

Write energy 0.1 (nJ/bit) 1.0 (nJ/bit)

Idle power 1 (W/GB) 0.1 (W/GB)

Power consumption in the memory system can be divided into active and idle power consumption.
Idle power consumption includes the leakage power and refresh power. The leakage power is power
consumed even when the memory is idle and the leakage power of NVRAM is negligible compared to
that of DRAM. DRAM memory cells store data in small capacitors that lose their charge over time and
must be recharged. This process is called refresh. Regardless of the read and write operations, DRAM
consumes considerable refresh power to sustain refresh cycles to retain its data. However, this is not
required in NVRAM because of its non-volatile characteristics. Active power consumption, on the other
hand, refers to the power dissipated when data is being read and written. In our experiments, power
consumptions of processor and memory are separately evaluated and then accumulated. The total
power consumption Powertotal is evaluated as:

Powertotal = Powercpu + Powermem (5)

where:
Powercpu=

∑
cpu_mode {Unit_Powercpu_mode × Cyclescpu_mode} (6)

and:
Powermem =

∑
mem_type {Unit_Active_Powermem_type × Active_Cyclesmem_type +

Unit_Idle_Powermem_type × Idle_Cyclesmem_type}.
(7)

Unit_Powercpu_mode is the unit power consumption per cycle for the given CPU mode and
Cyclescpu_mode is the number of CPU cycles with the given CPU mode. Unit_Active_Powermem_type

is the active power per cycle for accessing the given memory type, Active_Cyclesmem_type is the
number of memory cycles for accessing the given memory type. Unit_Idle_Powermem_type is the static
power per cycle, including both the leakage power and refresh power for the given memory type,
and Idle_Cyclesmem_type is the number of memory cycles for the idle period for the given memory type.

We performed experiments under both synthetic and realistic workload conditions. In the
synthetic workload, we created 10 task sets varying the load of tasks for a given processor capacity,
similar to previous studies [10]. In the case of the realistic workload, we used two workloads, the robotic
highway safety marker (RSM) workload [11] and the IoT workload [12]. Tables 2 and 3 list the workload
configurations for the RSM and IoT workloads that we experimented with [11,12].

Table 2. Robotic highway safety marker (RSM) task set parameters. WCET = worst case execution
time; PID = process id.

Task Period WCET

Serial 7.8125 ms 100 μs

Length 7.8125 ms 1 ms

Way Point 23.4375 ms 2.5 ms

Encoder 23.4375 ms 350 μs

PID 23.4375 ms 1.06 ms

Motor 23.4375 ms 250 μs
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Table 3. Internet-of-things (IoT) task set parameters. WCET = worst case execution time; GUI =
graphical user interface.

Task Period WCET

Sense Temperature 100 ms 10 μs

Send data to server 1 min 6 ms

Sense Vibration 10 ms 600 μs

Compress and send 1 s 7.5 ms

Get info. & calc. 10 ms 1 ms

Control machine 10 ms 1 ms

Update GUI 1 s 20 ms

3.1. Experiments with Synthetic Workloads

Figure 3 shows the power consumption in processor and memory for the four schemes when the
synthetic workload is used. As shown in Figure 3a, DVS-DRAM and DVS-HM, which adopt voltage
scaling, similarly saved a substantial amount of processor’s power consumption. HM and DRAM,
which do not use DVS, showed a relatively higher power consumption than DVS-DRAM and DVS-HM,
although the gap became small in some cases. In particular, DVS was less effective as a task set’s load
approached the full capacity of a processor. This was because the chance of utilizing idle periods of a
processor by DVS becomes difficult in such cases. Note that the load of a task set became heavy as the
task set number increases in our cases.

 
(a) 

 
(b) 

Figure 3. Processor and memory power consumption under synthetic workloads. (a) Power
consumption in processor, (b) power consumption in memory. DVS-HM = dynamic voltage scaling
with hybrid memory; DVS-DRAM = dynamic voltage scaling with dynamic random access memory;
HM = hybrid memory; DRAM = dynamic random access memory.

Figure 3b shows the power consumption in the memory. The DVS-HM and HM, which use
NVRAM along with DRAM, consumed less energy than the DVS-DRAM and DRAM, which only
use DRAM. This is because the idle power of NVRAM is close to zero, and thus the reduced size of
DRAM—by adopting NVRAM—saved the refresh power of the DRAM. However, as the latency of
NVRAM is longer than that of DRAM, executing a task in NVRAM may increase the execution time in
the processor, possibly increasing the processor’s power consumption. However, as shown in Figure 3a,
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such a phenomenon happened only in HM and it disappeared in DVS-HM, which uses voltage scaling
along with hybrid memory placement. When comparing the DVS-DRAM and DVS-HM, we can see
that adopting NVRAM does not increase the processor’s power consumption if DVS is used. This is
because power-saving can be maximized by executing a processor in a low voltage mode when the
task is located in NVRAM.

Figure 4a shows the total energy consumption by adding up the consumed energy in processor
and memory. DVS-HM saved the energy consumption of the DRAM, DVS-DRAM, and HM by 36%,
18%, and 28%, respectively. Figure 4b,c separately show the active and idle power consumptions.
Although the DVS-HM performed worse than the DVS-DRAM, in terms of active power consumption,
it performed the best in idle power consumption, leading to the minimized total power consumption.
Figure 5 shows the processor’s utilization. As we see, DVS-HM showed the highest utilization in all
cases and was close to 100% in some cases.

 
(a) 

 
(b) 

 
(c) 

Figure 4. Power consumptions under synthetic workloads. (a) Total power consumptions, (b) active
power consumptions, (c) idle power consumptions.
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Figure 5. Processor utilizations under synthetic workloads.

3.2. Experiments with Realistic Workloads

To see the effectiveness of the proposed algorithm in more realistic situations, we performed
additional experiments under two realistic workload conditions, a robotic highway safety marker
(RSM) workload [11] and an IoT workload [12]. Similar to the synthetic workload cases, we show
that the proposed algorithm is effective in increasing the processor’s utilization and decreasing the
power consumption. Figure 6 shows the power consumptions in processor and memory separately
when the RSM and IoT workloads are used. For both workloads, power consumption in the processor
was significantly reduced when the DVS was used. Specifically, DVS-HM and DVS-DRAM saved the
processor’s power consumption by 86–88% in comparison with HM and DRAM, as shown in Figure 6a.

 
(a)  

(b) 

Figure 6. Processor and memory power consumptions under realistic workloads. (a) Power
consumption in processor, (b) power consumption in memory.

When we compared the power consumption in memory, algorithms that use NVRAM along with
DRAM significantly reduced the power consumption, as shown in Figure 6b. Specifically, the DVS-HM
and HM consumed 89–90% less power than the DVS-DRAM and DRAM, which only use DRAM. This
is because the idle power of NVRAM is very small.

Figure 7 shows the total power consumption when realistic workloads are used. As shown in the
figure, the trends of the graphs are consistent with the synthetic workload cases. Specifically, DVS-HM
saved the power consumption of DRAM, DVS-DRAM, and HM by 88%, 74%, and 83%, respectively,
in the RSM workload and 88%, 68%, and 87%, respectively, in the IoT workload. Figure 8 shows the
processor’s utilization for realistic workloads. As can be seen from the figure, DVS-HM exhibited the
highest utilization by adopting low-power resource configurations in both the processor and memory.
The HM also showed a high utilization similar to DVS-HM, but this was not due to the low voltage
setting of the processor, as HM does not use DVS. In fact, the high utilization of the HM was caused by
the stalls in executing the instructions while accessing the slow NVRAM memory. Due to this reason,
the HM presented a significantly larger power consumption in the processor, although its utilization
became high, which was different from the DVS-HM cases.
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Figure 7. Total power consumption under realistic workloads.

 
Figure 8. Processor utilizations under realistic workloads.

4. Related Works

4.1. Hybrid Memory Technologies

Recently, hybrid memory technologies consisting of DRAM and NVRAM have been catching
interest. As NVRAM is byte-accessible, similar to DRAM, but consumes less energy and provides
higher scalability than DRAM, it is anticipated to be adopted in the main memory hierarchy of future
computer systems. Mogul et al. suggest an efficient memory management policy for DRAM and
PRAM hybrid memory [4]. Their policy tries to place read-only pages in PRAM, while writable pages
in DRAM, thereby reducing the slow PRAM writes [4]. Dhiman et al. propose a hybrid memory
architecture consisting of PRAM and DRAM, which dynamically moves data between PRAM and
DRAM in order to balance the write count of PRAM [5]. Qureshi et al. propose a hierarchical memory
architecture consisting of DRAM and PRAM [7]. Specifically, they use DRAM as the write buffer of
PRAM in order to prolong the lifespan of PRAM and hide the slow write performances of PRAM.
Lee et al. propose the CLOCK-DWF (clock with dirty bits and write frequency) policy for hybrid
memory architecture, consisting of DRAM and PRAM [6]. They allocate read-intensive pages to PRAM
and write-intensive pages to DRAM by online characterization of memory access patterns. Zhou et al.
propose a hierarchical memory architecture consisting of DRAM and PRAM [8]. In particular, they
propose a page replacement policy that tries to reduce both the cache misses and the write-backs from
DRAM. Narayan et al. propose a page allocation approach for hybrid memory architectures at the
memory object level [13]. They characterize memory objects and allocate them to their best-fit memory
module to improve performance and energy efficiency. Kannan et al. propose heterogeneous memory
management in virtualized systems [14]. They designed a heterogeneity-aware guest operating
system (OS), which allows for placing data in the appropriate memory, which avoids page migrations.
They also present migration policies for performance-critical pages and memory sharing policies for
guest machines.

4.2. Low-Power Techniques for Real-time Scheduling

Many studies have been performed on DVS in order to reduce power consumption in real-time
systems [15–18]. Pillai and Shin propose a mechanism of selecting the lowest operating frequency
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that will meet deadlines for a given task set [19]. They propose three algorithms for DVS: Static DVS,
cycle-conserving DVS, and look-ahead DVS. Static DVS selects the voltage of a processor statically,
whereas cycle-conserving DVS uses reclaimed cycles for lowering the voltage when the actual execution
time of a task is shorter than the worst-case execution time. Look-ahead DVS lowers the voltage
further by determining future computation requirements and deferring the execution of the task in
accordance. Lee et al. use the slack time to lower the processor’s voltage [1]. Specifically, initial
voltages can be dynamically switched upon reclaiming unused clock cycles when a task completes
before its deadline. Lin et al. point out that there is a memory mapping problem, as heterogeneous
memory types are used [10]. They use dynamic programming and greedy approximation for solving
the problem. Zhang et al. propose task placement in hybrid memory to save energy consumption [20].
In their scheme, tasks are located one by one in the NVRAM and the schedulability is checked. This
procedure is repeated until the locations of all tasks are determined. Ghor and Aggoune propose
a slack-based method to find the least voltage schedule for real-time tasks [16]. They stretch the
execution time of tasks through off-line computing and schedule tasks as late as possible without
missing their deadlines.

5. Conclusions

This article presented a new real-time task scheduling approach that unifies the processor’s
voltage scaling and task placement in hybrid memory. Our approach incorporates the task placement
in hybrid memory into the task model of voltage scaling in order to maximize the power-saving of
real-time systems. The experimental results showed that the proposed technique reduces the power
consumption of real-time systems by 18–88%. In the future, we will perform measurement studies in
real systems in order to assess the effectiveness of the proposed approach in more realistic situations.
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Abstract: Silicon oxide-based memristors have been extensively studied due to their compatibility
with the dominant silicon complementary metal–oxide–semiconductor (CMOS) fabrication technology.
However, the variability of resistance switching (RS) parameters is one of the major challenges for
commercialization applications. Owing to the filamentary nature of most RS devices, the variability
of RS parameters can be reduced by doping in the RS region, where conductive filaments (CFs) can
grow along the locations of impurities. In this work, we have successfully obtained RS characteristics
in Pt dispersed silicon oxide-based memristors. The RS variabilities and mechanisms have been
analyzed by screening the statistical data into different resistance ranges, and the distributions are
shown to be compatible with a Weibull distribution. Additionally, a quantum points contact (QPC)
model has been validated to account for the conductive mechanism and further sheds light on the
evolution of the CFs during RS processes.

Keywords: silicon oxide-based memristors; resistance switching mechanism; variability; conductive
filament; Weibull distribution; quantum point contact

1. Introduction

Memristors are nonvolatile resistance switching (RS) devices which can keep their internal
resistance depending on the applied voltage and current status [1–6]. Currently, memristors have
attracted considerable attention due to their great potentials for next generation scalable nonvolatile
memory applications and neuromorphic computing [7–24]. Among numerous RS materials, silicon
oxide-based memristors have been intensively investigated, owing to their compatibility with the
dominant silicon complementary metal–oxide–semiconductor (CMOS) fabrication technology [25–35].
However, the variability of RS parameters is a major challenge for the progression of silicon oxide-based
memristors from research to application.

In this work, we fabricated Pt dispersed silicon oxide-based memristors and successfully obtained
their RS characteristics. In order to investigate the variability of RS parameters, the statistics of RS
parameters have been analyzed by screening the statistical data into different resistance ranges in
both the Reset and Set processes. Additionally, a quantum point contact model has been validated
to account for the conductive mechanism and further shed light on the evolution of the conductive
filaments (CFs) during RS processes.

Micromachines 2019, 10, 369; doi:10.3390/mi10060369 www.mdpi.com/journal/micromachines185
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2. Materials and Methods

The studied Pt/Pt:SiOx/Ta memristors (the inset of Figure 1a) were fabricated on a Si wafer. Metallic
Ta and Pt layers were deposited by DC sputter deposition at ambient temperature. The RS layers of
the Pt:SiOx films were deposited by radiofrequency (RF) magnetron co-sputtering in pure Ar, using
SiO2 and Pt targets as dielectric and metal sources, respectively. The as-grown Pt dispersed SiO2 thin
films were composed of a SiO2 matrix with 2–3 nm-sized Pt nanoclusters. Pt concentrations were
of about 20–45 atomic%, which were controlled by the RF power of the Pt sputtering target [36,37].
The sandwich structure of the Pt/Pt:SiOx/Ta memristors consisted of (from bottom to top) a 10 nm
Ta bottom electrode, a 7 nm silicon dioxide blanket layer, and a 16 nm Pt disc (the diameter is about
50 μm) top electrode.

Figure 1. The Current–Voltage (I–V) characteristics in Pt/Pt:SiOx/Ta memristors. (a) The I–V curves for
the Set and Reset transitions. A current compliance limit of 0.5 mA is given in the Set process to avoid
the breakdown; (b) The ON and OFF resistance states in 400 cycles, extracted at low voltage (0.1 V).

The Current–Voltage (I–V) switching curves and resistance measurements were performed by
using an Agilent B1500 semiconductor parameter analyzer. After the electroforming operation, long
lasting repetitive cycling experiments were performed using voltage ramp stress for both the Set
and Reset processes, and a current compliance limit of 0.5 mA was given in the Set process to avoid
the breakdown. The Pt/Pt:SiOx/Ta memristors show a bipolar switching behavior, i.e., Set to the
low-resistance state (LRS) under negative voltages and Reset to the high-resistance state (HRS) under
positive voltages, as shown in Figure 1a. Figure 1b presents the ON and OFF resistance states of 400
cycles, and the average RS range is approximately from 1 to 10 kΩ.

3. Results

3.1. Statistical Distributions

To investigate the variability of RS parameters in both the Set and Reset processes, the statistics of
RS parameters versus the initial resistances has been done, and are shown in Figure 2. Figure 2a,b
shows the Reset voltage and Reset current (VRESET and IRESET) versus the ON-state resistance (RON),
which is calculated at a low voltage (0.1 V). According to the statistics results, we can see that VRESET
is nearly independent of RON, whereas IRESET is inversely proportional to RON. This observation is
compatible with the thermal-activated dissolution model [38]. In this model, the Reset event happens
only when the temperature of the CFs reaches a critical value. Figure 2c,d shows the Set voltage and
Set current (VSET and ISET) versus the OFF-state resistance (ROFF), also calculated at 0.1 V. From these
two figures, it can be seen that VSET is proportional to ROFF, whereas ISET is nearly independent of
ROFF. Through the statistics of RS parameters, we can know that the variations of RON and ROFF have
a strong impact on the uniform distributions of RS parameters. We could improve the performance of
memristors by controlling the sizes of the CFs before the Reset and Set transitions.
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Figure 2. The statistics of resistance switching (RS) parameters in Pt/Pt:SiOx/Ta memristors. (a) The
Reset voltages and (b) the Reset currents versus the ON-state resistances for the measured 400 cycling
data of the same device. (c) The Set voltages and (d) the Set currents versus the OFF-state resistances
for the measured 400 cycling data of the same device.

Next, the nature of the variation of RS parameters was explored using a data screening method.
The cumulative distributions of VRESET and IRESET in different ON-state resistance ranges are shown
in Figure 3a,b, respectively, and the cumulative distributions of VSET and ISET in different OFF-state
resistance ranges are shown in Figure 4a,b, respectively. In these four cases, the cumulative distributions
are almost straight lines, which are compatible with the Weibull distribution. Therefore, we can use
the Weibull distribution function to fit the experimental data of RS parameters in different resistance
ranges to obtain the Weibull parameters. The Weibull distribution is defined as:

F = 1− exp
[
−(x/x63%)β

]
(1)

or
W ≡ Ln(−Ln(1− F)) = βLn(x/x63%) (2)

where β is the Weibull slope or shape factor, which represents the statistical dispersion. x63% is the
scale factor parameter, which is the value of F ≈ 63%. After fitting of the experimental data by
the Weibull distribution, we can obtain the Weibull parameters of VRESET and IRESET, as shown in
Figure 3c,d. The scale factor of VRESET (VRESET63%) is independent of RON, and the scale factor of IRESET
(IRESET63%) is inversely proportional to RON, which is consistent with the scatter plots of Figure 2a,b.
The Weibull slope of VRESET and IRESET is nearly independent of the ON-state resistances, which
means that there are no microstructure variations of the CFs before the Reset point [38,39]. Similarly,
the Weibull parameters of VSET and ISET can be obtained by fitting the experimental data using the
Weibull distribution function, as shown in Figure 4c,d, respectively. The scale factor of VSET (VSET63%)
is proportional to ROFF, and the scale factor of ISET (ISET63%) is independent of ROFF, which is consistent
with the scatter plots of Figure 2c,d. The Weibull slopes of VSET and ISET are nearly independent of
the OFF-state resistances, which means that there are no obvious microstructure variations of the CFs
before the Set point [40].
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Figure 3. The Weibull distributions of the Reset voltage and the Reset current in Pt/Pt:SiOx/Ta devices.
Experimental distributions (symbols) and the fitting to Weibull distribution (lines) of (a) the Reset
voltage and (b) the Reset current as functions of the ON-state resistance. Weibull slopes and scale
factors of (c) the Reset voltage and (d) the Reset current versus <RON>, where <RON> is the average
value of the ON-state resistance (RON) in each screening range. It can be seen that the Weibull slopes of
the Reset voltage and the Reset current are independent of <RON>, and the scale factor of the Reset
voltage is constant, whereas the Reset current is inversely proportional to <RON>.

 
Figure 4. The Weibull distributions of the Set voltage and the Set current in Pt/Pt:SiOx/Ta devices.
Experimental distributions (symbols) and the fitting to Weibull distribution (lines) of (a) the Set voltage
and (b) the Set current as functions of the OFF-state resistance. Weibull slopes and scale factors of (c) the
Set voltage and (d) the Set current versus <ROFF>, where <ROFF> is the average value of the OFF-state
resistance (ROFF) in each screening range. It can be seen that the Weibull slopes of the Set voltage and
the Set current are independent of <ROFF>, and the scale factor of the Set voltage is proportional to
<ROFF>, whereas the Set current is constant.
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3.2. Quantum Point Contact Model

Many different conduction models have been proposed for the HRS, including Schottky
emission [41–44], trap-assisted tunneling [45–47], Poole–Frenkel conduction [43,48], space-charge
limited current [49–52], thermally activated hopping [53,54], and the Quantum Point Contact model
(QPC) [55–61], among others. Specifically, the QPC model can provide a smooth transition from
tunneling in the HRS to Ohmic conduction in the LRS for several kinds of RS devices [58–61]. To analyze
the conductive mechanisms of RS processes for Pt/Pt:SiOx/Ta memristors, the QPC model has been
introduced here to fit the I–V curves in both the Reset and Set processes.

The QPC model is based on the Landauer transmission approach to calculate conduction along
narrow microscopic constrictions [57,58]. According to the Landauer’s approach, the current flowing
through a CF with N paths can be calculated as [62]:

I(V) =
2e
h

N

∞∫
−∞

T(E)
{
f (E− βeV) − f (E + (1− β)eV)

}
dE (3)

where f is the Fermi–Dirac distribution function, E is the energy, T(E) is the transmission probability, β is
the averaged asymmetry parameter (with the constraint 0 < β ≤ 1), and V is the applied voltage assumed
to drop at the cathode and anode interfaces with a fraction of β and (1 − β), respectively. Assuming an
inverted parabolic potential barrier, we can obtain an expression for the tunneling probability [63–65],
T(E) =

{
1 + exp[−α(E−Φ)]

}−1, where Φ is the barrier height, α = tBπ2h−1
√

2m∗/Φ is related to the
inverse of the potential barrier curvature, m∗ is the effective electron mass, and tB is the barrier width
at the equilibrium Fermi energy, assumed to be equal to tgap. Inserting the tunneling probability into
Equation (3), we can obtain:

I =
2e
h

N
{

eV +
1
α

Ln
[

1 + exp
{
α[Φ − βeV]

}
1 + exp

{
α[Φ + (1− β)eV]

} ]} (4)

There are four parameters in Equation (4). In order to simplify the fitting process, here we fixed
Φ = 0.5 eV and β = 1 by considering the asymmetry structure of the devices. Then, we extracted the
number of CF paths N and the average tgap from the fitting experimental data of 400 cycles by using
Equation (4) and the least squares estimation (LSE) method. The I–V fitting results are excellent in
both log and linear scales, as shown in Figure 5a,b. Furthermore, Figure 5c,d shows the exacted QPC
parameters versus the CF resistance. It can be seen that the average tgap is approximately 0.1 nm the in
LRS (ON-state) and 0.25 nm in the HRS (OFF-state), and the average number of CF paths is about 30 in
the LRS and five in the HRS.
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Figure 5. The quantum points contact (QPC) model applied to Pt/Pt:SiOx/Ta memristors. The I–V fitting
results together with experimental data of ON and OFF states (a) in log scale and (b) linear scale. (c) The
barrier thickness and (d) the number of CF paths versus the initial resistance, respectively. The averaged
values are: < tgap > = 0.1 nm,< N > = 30 in the ON-state; and < tgap > = 0.25 nm, < N > = 5 in
the OFF-state.

4. Discussion

According to the screening of the statistical data into different resistance ranges, the distributions
of RS parameters were shown to be compatible with a Weibull distribution. After using the Weibull
distribution function to fit the experimental data of RS parameters into different resistance ranges,
we can obtain that VRESET63% is independent of RON and IRESET63% is inversely proportional to RON,
whereas VSET63% is proportional to ROFF and ISET63% is independent of ROFF, which are consistent
with the experimental results. Besides, the Weibull slopes of VRESET, IRESET, VSET, and ISET are nearly
independent of the initial resistances, which means that there are no microstructure variations of the
CFs before the Reset and Set points. Furthermore, the QPC model has been validated to account for
the conductive mechanism and further show the evolution of the CFs during RS processes. From the
LRS to HRS, the number of CF paths would decrease, while the barrier gap would increase.

Combining the fitting results of the QPC model with the statistics of RS parameters, we now try
to propose the conductive mechanisms of RS processes. During the ON switching, the RS process is
mainly driven by an applied electric field, and the CFs are more likely to grow along the locations
of Pt nanostructures. Cation migration and metallic CF formation in RS layers can be identified as a
candidate RS mechanism due to the abrupt increase of the current in I–V curves (Figure 1a) [66,67].
During the OFF switching, cations are driven out of the CFs and thus introduce a gap between the CFs
and the top Pt electrode. Therefore, the number of CF paths would decrease, while the barrier gap
would increase from the LRS to the HRS. The Reset event happens only when the temperature of the CFs
reaches a critical value, according to the thermal-activated dissolution model. In addition, according to
the statistics, we can know that the variations of the RS parameters can be significantly reduced and the
performance of memristors could be improved by controlling the sizes of the CFs before the Reset and
Set transitions. That is to say, the variability of RS parameters can be reduced by doping in RS regions,
where CFs can be induced to grow along the locations of impurities, or by inserting a two-dimensional
material with engineered nanopores, which can modify the RS characteristics of memristors.
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Abstract: Processing systems are in continuous evolution thanks to the constant technological
advancement and architectural progress. Over the years, computing systems have become more
and more powerful, providing support for applications, such as Machine Learning, that require
high computational power. However, the growing complexity of modern computing units and
applications has had a strong impact on power consumption. In addition, the memory plays a key
role on the overall power consumption of the system, especially when considering data-intensive
applications. These applications, in fact, require a lot of data movement between the memory and the
computing unit. The consequence is twofold: Memory accesses are expensive in terms of energy and
a lot of time is wasted in accessing the memory, rather than processing, because of the performance
gap that exists between memories and processing units. This gap is known as the memory wall or
the von Neumann bottleneck and is due to the different rate of progress between complementary
metal–oxide semiconductor (CMOS) technology and memories. However, CMOS scaling is also
reaching a limit where it would not be possible to make further progress. This work addresses all
these problems from an architectural and technological point of view by: (1) Proposing a novel
Configurable Logic-in-Memory Architecture that exploits the in-memory computing paradigm to
reduce the memory wall problem while also providing high performance thanks to its flexibility
and parallelism; (2) exploring a non-CMOS technology as possible candidate technology for the
Logic-in-Memory paradigm.

Keywords: in-memory computing; logic-in-memory; non-von Neumann architecture; configurable
logic-in-memory architecture; memory wall; convolutional neural networks; emerging technologies;
perpendicular Nano Magnetic Logic (pNML)

1. Introduction

The von Neumann paradigm is the foundation of all modern computing systems. This paradigm
is based on the exchange of data between a Central Processing Unit (CPU) and a memory. In particular,
the CPU executes instructions on data that it retrieves from the memory, and writes back results in the
memory. This data exchange mechanism is exacerbated when dealing with applications that require
the manipulation of large data quantities (i.e., data-intensive applications). While through the years
CPUs have become more and more powerful thanks to complementary metal–oxide semiconductor
(CMOS) technology scaling, memories have not improved at the same rate, with the bandwidth being
the main limitation. As a consequence, memories are not able to provide data as fast as CPUs are able
to compute them. This problem is known as von Neumann bottleneck or memory wall and it limits the
performance of systems based on the von Neumann architectural model as a lot of time is spent in
retrieving data from the memory rather than computing them. This side effect is particularly visible
when dealing with memory bound algorithms. Another critical consequence of the physical separation
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between the processing unit and the memory is related to the energy spent in performing memory
accesses. In fact, especially for data-intensive applications, the large quantity of memory accesses
required has a big impact on the overall power consumption. The very well known Moore’s law,
according to which the number of transistors in an integrated circuit doubles every two years, has
been obeyed for decades, but the growth rate predicted by Moore is now slowing down because
of the limitations that technological scaling is facing. In fact, as foretold in the 2013 International
Technology Roadmap for Semiconductors (ITRS) [1], CMOS scaling is reaching a boundary where
further progresses will be impeded by physical, technological and economical limitations.

The drawbacks related to the von Neumann computing model and to the CMOS technology
scaling are the main factors that drive this research. On the one side, the in-memory computational
paradigm is explored as an alternative to the von Neumann one. The aim is to go beyond the
conventional separation between computation and storage by integrating simple logic directly inside
the memory cell. We refer to this approach as Logic-in-Memory (LiM). Its key benefits are mainly:
(1) Bringing the computation directly inside the memory allows one to exploit the full internal
bandwidth, mitigating the memory wall problem; (2) data are computed directly inside the memory
without the need to move them between the computing and the storage units, drastically reducing
the amount of memory accesses and the associated energy consumption and latency. On the other
side, from a technological point of view, a non-CMOS technology, namely perpendicular Nano
Magnetic Logic (pNML), is considered as a possible alternative to CMOS for implementing in-memory
computing architectures as it intrinsically provides non volatility and computing capabilities in the
same device.

The rest of this paper is organized as follows: Section 2 presents a taxonomy of the main in-memory
computing approaches, based on how the memory is used for data computation; following the
proposed taxonomy, we classify the main works found in literature. In Section 3 we present the main
concepts and ideas behind the Configurable Logic-in-Memory Architecture (CLiMA) that is presented
here for the first time. Section 4 describes an adaptation of CLiMA for quantized Convolutional Neural
Networks that in Section 5 is compared to a non in-memory architecture and Section 6 describes the
adaptation for pNML.

2. State of the Art

The state of the art on in-memory computing is vast. The works found in literature differentiate
from each other mainly for the role that the memory has in computing data. Starting from this
observation, a taxonomy for classifying previous works was defined. According to this taxonomy the
in-memory computing approaches can be divided in four main categories, as represented in Figure 1.
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Figure 1. Depending on how the memory is used for computing data, four main in-memory computing
approaches can be defined. (A) Computation-near-Memory (CnM): 3D-integration technologies allow
one to bring computation and storage closer together by reducing the length of the interconnections.
Logic and storage are still two separate entities. (B) Computation-in-Memory (CiM): The standard
memory structure is not modified, while data computation is performed in the peripheral circuitry.
(C) Computation-with-Memory (CwM): Memory is used as a Look Up Table to retrieve pre-computed
results. (D) Logic-in-Memory (LiM): Data computation is performed directly inside the memory by
adding simple logic in each memory cell.

The four main approaches are described in the following.

(A) Computation-near-Memory (CnM, Figure 1A): Thanks to the 3D Stacked Integrated Circuit
technology (3D-SIC) [2], computation and storage are brought closer together, from which the
name CnM, by stacking the two units one on top of the other. This technique has a two-fold
advantage: Reducing the length of the interconnections and widening the memory bandwidth.
However, this approach cannot be considered as true in-memory computing, since computation
and storage are still two separate entities, but more as an evolution of conventional architectures
based on the von Neumann model. Works belonging to this category are [3–8].

(B) Computation-in-Memory (CiM, Figure 1B): The structure of the memory array is not modified,
while its intrinsic analog functionality is exploited to perform computation. In particular,
in-memory computation is achieved by reading data from the memory which is then sensed
by sense amplifiers (SAs). SAs are specifically modified in order to support the computation of
a few simple logic operations (AND, OR, . . . ). The result is then written back in the memory
array. Decoders are also adapted in order to read more than one data from the array and execute
row-wise (between data on different rows) or column-wise (between data on different columns)
operations. Works belonging to this class are [9–14] and they all use a resistive non-volatile
memory technology (RRAM). The approach followed in [15] is the same but here authors use a
commodity volatile memory (DRAM, Dynamic Random Access Memory).

(C) Computation-with-Memory (CwM, Figure 1C): This approach uses memory as a Content
Addressable Memory (CAM) to retrieve pre-computed results by means of a Look Up Table
(LUT). The working principle of this kind of computation is that any Boolean function involving
two or more inputs can be encoded in a memory by storing its truth table. In particular, input
combinations are stored in a LUT, while results are stored in a CAM. Then the LUT is accessed
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through an input combination and an address is retrieved. These addresses are used to access
the CAM and obtain the final result. Works that follows this approach are [16–20].

(D) Logic-in-Memory (LiM, Figure 1D): In this case logic is directly integrated inside the memory
cell. Differently from the other three approaches, here data are computed locally without the
need to move them outside the array (towards a close computing unit as in a CnM approach
or towards the peripheral circuitry as in a CiM approach). Internal readings are performed in
order to execute operations on data stored in different cells, by exploiting inter-cells connections.
Internal writings are executed to locally save the result of the operation. There are a few works
belonging to this category, such as [21–24].

3. Configurable Logic-In-Memory Architecture (CLiMA): Main Ideas

Our approach to in-memory computing, while mainly targeting the Logic-in-Memory concept, is
not limited to it and also exploits the other approaches when required.

The novelties that we introduce with respect to existing works are manifold:

• The idea of an architecture that exploits various approaches to in-memory computing in order to
adapt to different requirements and applications (Section 3);

• Configurability, hence flexibility, at different levels:

– The basic block of CLiMA is a 1-bit Configurable LiM (CLiM) cell that can be programmed to
perform different logic and arithmetic operations (Section 4.4);

– More 1-bit CLiM cells can be grouped together to from a multi-bit CLiM cell that supports
more complex operations such as bit-wise logic operations, multi-bit addition/subtraction,
multiplication, shifts (Sections 3 and 4.4);

• A data flow for Convolutional Neural Networks workload and an inter-cells connection fabric
specifically optimized to minimize memory accesses outside CLiMA, to maximize data-reuse
inside the CLiM array and to support high parallelism (Sections 4.3–4.5);

• A pNML-based design of the 1-bit and multi-bit CLiM cells and a small version of the CLiM array
(Section 6).

We demonstrate the effectiveness of our approach by comparing CLiMA to a non in-memory
Deep Learning Accelerator, showing promising results in terms of performance and a significant
reduction of external memory accesses, which are the main limitations of the von Neumann bottleneck.
The innovations presented in this work will be thoroughly explained and highlighted in the
following sections.

3.1. Overview

Figure 2 depicts the conceptual structure, in its most generic form, of the proposed in-memory
computing architecture called CLiMA, Configurable Logic-in-Memory Architecture.

The key point in the definition of CLiMA is the flexibility. In fact, the idea is to conceive an
architecture that well adapts to various applications that can benefit from in-memory computing in
general and this means providing flexibility on different levels. In fact, applications differ for:

• Type of operations (logic, arithmetic);
• Complexity of operations (e.g., a logic function with respect to division);
• Data movement.

These parameters have an influence on the hardware requirements of the architecture.
Depending on the type of operations and on their complexity, some of them can be executed directly
in memory while others cannot. For this reason, as shown in Figure 2, CLiMA is conceived as a
heterogeneous architecture composed of an in-memory (LiM and/or CiM) computing unit, the CLiM
arrays, and a near-memory (CnM) computing unit. Operations that can be executed in-memory are
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dispatched to CLiM arrays, while the ones that cannot be executed in memory are assigned to the
CnM unit. Each CLiM array is composed of different CLiM cells and, eventually, some extra-array
(extra-row or extra-column) logic. A CLiM cell is thought as composed of a storage cell enhanced with
simple logic that can be configured to perform different types of operations, from which the name
Configurable Logic-in-Memory (CLiM) cell. The extra-array logic might be needed for further data
processing outside the array and it can be considered as the CiM unit of CLiMA. The flexibility of
CLiMA derives from its configurability (possibility of executing operations that differ for type and
complexity) and from the presence of various degrees of in-memory computation (CnM, CiM, LiM).

Memory

Logic

CLiM Array

…

…

…

…

…

… … … ……

CLiM
Cell

CiM
Extra-row logic

CiM
Extra-column logic

Logic Memory LiM

LiM + CiMCnM

Figure 2. Conceptual structure of Configurable Logic-in-Memory Architecture (CLiMA): It can be seen
as an heterogeneous unit that exploits configurability and different degrees of in-memory computation
(CnM, CiM, LiM) to guarantee flexibility.

3.2. Type of Operations and Data Movement in CLiM Array

A more detailed view of CLiM array is shown in Figure 3.
The array is composed of CLiM cells whose reading/writing operations are controlled by bit lines

(BL) and word lines (WL) as in a standard memory. Each CLiM cell is a logic-enhanced memory cell
where data can be computed locally. In the example depicted in Figure 3, each CLiM cell is composed
of a storage cell (MEM), a configurable logic block (CONFIG LOGIC) that can be configured to support
different logic functions, and a full adder.

In addition to the local data computation inside each cell, CLiM cells are interconnected between
them in order to support other kinds of operations inside the array (Figure 4):

• Intra-row computation between cells in the same row (black dashed arrow in Figure 4);
• Intra-column computation between cells in the same column (black solid arrow in Figure 4);
• Inter-row computation between two rows, an instance being an operation between a data stored

in row 0 and one stored in row 1;
• Inter-column computation between two columns, an instance being an operation between a data

stored in column 0 and one stored in column 1.

Intra-row connections can be exploited to implement in-memory addition. In fact, as shown in
Figure 3, full adders belonging to different cells can be connected together to propagate the carry
and build a Ripple Carry Adder (RCA, highlighted by the red box). Similarly, inter-row connections
can be used to build an Array Multiplier (AM) by connecting two RCAs. In this way, it is possible
to implement complex arithmetic functions completely in memory. The disadvantage is that RCAs
and AMs are not fast arithmetic circuits, hence, applications that have a large number of additions
and/or multiplications might be slowed down (especially for what concerns multiplications, since an
AM is much slower than a RCA). A solution to this problem could be to delegate these operations to a
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fast non in-memory unit when the considered application is characterized by a very large number of
arithmetic operations.
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Figure 3. Detailed internal structure of the Configurable Logic-in-Memory (CLiM) array. Each CLiM cell
can be represented as a logic-enhanced memory cell where data can be computed locally. By exploiting
inter-cells connections it is possible to build more complex in-memory functions (e.g., a Ripple Carry
Adder (RCA) or and Array Multiplier (AM)).
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Figure 4. Possible types of data computation inside CLiM array.

4. CLiMA for Quantized Convolutional Neural Networks

On the basis of the ideas and concepts presented in Section 3, here a version of CLiMA is presented
for quantized Convolutional Neural Networks. The reasons why CNNs have been chosen as target
application are manifold:

• CNNs are an extremely popular application nowadays because they are a powerful method
for solving many complex problems such as image recognition and classification, language
processing, etc.;
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• CNNs are data-intensive, hence, memory accesses represent the bottleneck;
• CNNs are computational-intensive, hence, they require hardware acceleration.

CLiMA is the ideal candidate for CNNs as it enables in-memory computation, drastically reducing
the number of required memory accesses, and a high degree of parallelism, providing acceleration for
time consuming applications like CNNs.

4.1. Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) [25–27] are a family of Artificial Neural Networks used
for pattern recognition and classification. A CNN, as depicted in Figure 5, is composed of many 3D
layers that are responsible for feature extraction and classification.
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Figure 5. Convolutional Neural Networks (CNNs) are composed of different 3D layers. Each layer
extracts different features from the input image.

Layers are three-dimensional as they are composed of a number of neuron planes, where each
neuron analyzes a small portion of the input image, called the receptive field, extracting some key
features. The feature extraction process is carried out by filtering the image with a kernel of weights
(a filter), that is shared over a plane of neurons. The extraction of features by using the kernels of
weights is called convolution, from which the name of the network. The output produced by the
convolution operation is called the output feature map (i.e., the filtered image) and it is the input
of the subsequent layer. Convolutional layers (CONV) are responsible for the extraction of features.
Other type of layers are used to down-sample feature maps (e.g., maxpooling) or to introduce linear
rectification (e.g., Rectifying Linear Unit (ReLU)). Fully connected (FC) layers are responsible for the
actual classification.

Figure 6 shows in more detail how the convolution operation works.
The input image is usually composed of different input channels (Cin) with dimensions R × C.

The kernels used to extract features have the same number of channels Cin as the input image and
dimensions K ×K, which can vary in each layer. Kernels are slid on the input feature map by a quantity
called stride (S). The number of kernels (F) determines the number of channels (Cout) of the resulting
output feature map, which has dimensions O × P. The dimensions of the output feature map depend
on the input image dimensions, the kernel dimensions and the stride, according to Equation (1).

O =
R − K

S
+ 1; P =

C − K
S

+ 1. (1)
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Figure 6. High-dimensional convolution operation.

CNNs are characterized by a complex structure and, over the years, network architectures
have become more and more complex. The consequences of this growth are the need for very
high-performance systems able to sustain such large throughput, and the increase of memory
requirements because of the large number of parameters.

4.2. ShiftCNN: A Quantized CNN

Since an in-memory implementation can support only simple operations and limited precision,
quantized CNNs are the perfect fit for in-memory computing architectures, since memory and
computational requirements are greatly reduced in exchange for a small loss in prediction accuracy.
In [28] authors propose to use power-of-two weights to eliminate the need for multiplications, which
are instead transformed in simple shift operations. Moreover, according to their quantization algorithm,
all weights are values of the type 2−n, hence, shift operations are all arithmetic right shifts. ShiftCNN
has been chosen as target application for CLiMA.

4.3. CNN Data Flow Mapping Scheme for CLiMA

In this section we present a CNN data flow mapping scheme specifically optimized for
CLiMA. Differently from the commonly used unrolling technique, this mapping scheme avoids
data redundancy while guaranteeing parallel computation.

The convolution operation, as highlighted in Figure 7, consists in applying a kernel of weights
over the input feature map.
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Figure 7. The kernel of weights is slid over the entire input image by a quantity called stride.
The sub-region of the input image on which the kernel is applied is called convolution window.
Convolution widows partially overlap.
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As explained in Section 4.1, the kernel is slid horizontally and vertically by a quantity called
stride. In the example in Figure 7 the stride is equal to 2. The sub-region of the input feature map on
which the kernel is applied is called the convolution window. It can be seen that convolution windows
partially overlap so, in order to allow parallel computation, they are unrolled and overlapping regions
are replicated causing data redundancy. The impact of unrolling convolution widows is exacerbated
as the size of the kernel increases and the stride decreases, since the overlapping region gets larger.
The graph in Figure 8 shows how the number of input features vary when applying unrolling, for each
convolutional layer of two popular CNNs, AlexNet [29] and ResNet-18 [30].
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Figure 8. Data redundancy caused by unrolling in (A) AlexNet and (B) ResNet-18. Green columns
represent the number of input features when applying no unrolling, blue columns represent the number
of input features when applying unrolling. Input features are shown for each convolutional layer.

It can be seen that the data redundancy is not at all negligible as the number of unrolled input
features (blue columns) increases of one order of magnitude with respect to the original number of
features (green columns). For an architecture such as CLiMA, data redundancy is not acceptable since
the storage space must be used in the most efficient way possible. For this reason, a different data flow
mapping scheme is proposed. When executing convolution, not all convolution windows overlap,
hence, those that do not overlap can be executed in parallel. As shown in Figure 9, the convolution
operation can be divided in different steps in which only non-overlapping convolution windows are
executed in parallel.

Step 1 Step 2 Step 3 Step 4

Figure 9. The convolution operation is divided in different steps. In each step only non-overlapping
convolution windows are executed in parallel.

The number of steps to complete the convolution between a kernel of weights and an input
feature map depends on the size of the input feature map, the kernel and on the stride. In the example
in Figure 9, four steps are required to complete the convolution. The number of steps can be computed
according to the following equation:

#steps =
tot_conv_windows

parallel_conv_windows
. (2)
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In Equation (2), tot_conv_windows is the total number of convolution windows while
parallel_conv_windows is the number of non-overlapping convolution windows that can be executed
in parallel. This number can be calculated as:

parallel_conv_windows =
(

C
K + (S − 1)

)2
, K > 1. (3)

Equation (3) is valid for kernels with dimensions larger than one (K > 1). When the kernel has size
1 × 1 the number of non-overlapping convolution windows is equal to the number of total windows.
It is clear that the advantage of this parallel non-overlapping data flow scheme is to avoid data
redundancy while still guaranteeing parallel computation. This scheme can be naturally mapped on
CLiMA by assigning a pixel of the input feature map to each cell of the array. Weights are instead
properly distributed and shifted over the array (Section 4.5).

4.4. CLiM Array Structure

Figure 10 depicts the architecture of CLiMA for quantized CNNs.
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Figure 10. Architecture of CLiMA for quantized CNNs.

The main core of CLiMA is the array of CLiM cells. Each CLiM cell has both storage and
computation capabilities. Modified row and column decoders are used to control the data flow inside
the array. Weights are read from a weight memory, external to the array, and dispatched through a
weight dispatching mechanism. More details on decoders and the weight dispatcher will be given in
Section 4.5. The internal structure of the CLiM cell is shown in Figure 11.
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Figure 11. Internal structure of the CLiM cell. Many 1-bit CLiM cells are properly interconnected,
exploiting inter-cell connections, to build a more complex N-bit CLiM cell.

It can be seen that many 1-bit CLiM cells are properly interconnected, by exploiting inter-cell
connections, to create a more complex N-bit CLiM cell. Each 1-bit cell is composed of a configurable
computational block, a storage cell and other simple logic. The computational block is a Full Adder
(FA) that can also be used to perform logic operations by fixing one or more of the FA inputs to logic 0
or 1, as shown in Table 1.

Table 1. Logic operations that can be performed with a Full Adder by fixing one or more of the
inputs. In this case A, B and Cin are the three inputs while S and Cout are the output (sum and output
carry, respectively).

Fixed Input S Cout

A = 0 B ⊕ Cin B · Cin
A = 1 B ⊕ Cin B + Cin

A = 0 & B = 1 Cin Cin
A = 1 & B = 0 Cin Cin

In order to support multi-bit addition, the output carry (Cout) of the FA inside a 1-bit CLiM cell is
connected to the input carry (Cin) of the adjacent 1-bit cell. By exploiting inter-cell connections it is
possible to build an in-memory Ripple Carry Adder (RCA). In addition, storage cells are interconnected
in a chain-like manner in order to implement a multi-bit storage block that can also work as a shift
register. Only right shifts are supported in the case represented in Figure 11 since, as explained in
Section 4.2, ShiftCNN requires only those. Nonetheless, with very simple modifications left shifts can
also be handled. Moreover, for the sake of clarity, Figure 11 does not show the presence of redundant
storage blocks (one for each 1-bit cell, in addition to the one that is also used as the shift register).
The redundant storage block is used to retain partial results that will be reused for further elaboration.

The architecture depicted in Figure 10 does not show the interconnections between CLiM cells.
These interconnections have been specifically designed to support CNN-like data flow inside the array.
A detailed scheme of the interconnection fabric inside the CLiM array is shown in Figure 12.
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Figure 12. Interconnection fabric inside the CLiM array.

Furthermore, rows of CLiM cells are alternatively configured as shift registers (even rows) and
adders (odd rows). The idea is to store pixels of the input feature map inside shift cells where they are
also locally shifted according to the value of the correspondent weight. Then the shifted pixels are
accumulated in the cells configured as adders. Figure 13 clarifies how convolution is managed inside
the array.
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Figure 13. Management of convolution computation inside the CLiM array.

In particular, the computation of a 3 × 3 convolution window is shown as example.
The interconnection fabric has been designed to be flexible, hence, it can support any kernel size.

4.5. Weight Dispatching Mechanism

In order to support the parallel non-overlapping data flow scheme shown in Figure 9, weights
must be properly dispatched to the cells inside the CLiM array. In order to do so, the combined action
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of the weight dispatcher and row/column decoders is exploited. Row/column decoders are modified
in order to activate multiple adjacent rows/columns. A starting and an ending address are provided
to decoders that will consequently activate all rows/columns comprises between the starting and
the ending address. Since, as it can be notice from Figure 9, parallel convolution windows might not
be adjacent, row/column masks are used to disable those rows or columns comprised between the
starting and ending address which must remain inactive. The weight dispatcher is used to properly
shuffle weights over the array.

As highlighted in Figure 14A, the window shifting process is obtained by controlling which cells
are active and which are not, step after step. At the same time, weights are properly shuffled, as shown
in Figure 14B, so that they are distributed to the correct cells.

The weight dispatching mechanism has been optimized for 3 × 3 kernels since they are the most
common ones. Nonetheless, other kernel sizes can be also supported.
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Figure 14. (A) Convolution windows are shifted over the array by properly activating/inactivating
rows and columns. (B) The weight dispatcher properly distributes weights inside the CLiM array in
order to reproduce the convolution window shifting process.

4.6. Data Reuse Possibilities

One of the main reasons for exploiting a Logic-in-Memory architecture such as CLiMA for
Convolutional Neural Networks is the possibility of reusing data already stored and computed inside
the array for further processing, without any need to move it outside.

The possibilities for data reuse in CLiMA are summarized in Figure 15 and explained in
the following.

• Filters are reused across input feature maps according to the sliding window process (Figure 15A).
• Input feature maps are reused by different filters (Figure 15A).
• Partial results are reused for further processing (cross-channel accumulation) to obtain the final

output feature maps (Figure 15B).
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Figure 15. Data reuse in CLiMA. (A) Filters are reused across input feature maps according to the
sliding window process. Input feature maps are also reused by different filters. (B) Partial results are
reused for further processing to obtain the final output feature maps.

5. Results and Discussion

Before bounding it to any technology, CLiMA was modelled by using a fully parametric VHDL
(VHSIC Hardware Description Language) code that was validated by means of extensive simulations
and by comparing the obtained results to those obtained from an analogous model developed in
MATLAB. Moreover, in order to prove the effectiveness of the CLiMA computational model, it has
been compared to a conventional (non in-memory) Deep Learning Processor presented in [31,32].

An analytic computational model of CLiMA was defined. This model takes into account the
following parameters:

• Convolutional layer parameters including input feature map dimensions (R, C), kernel
dimensions (K), stride (S) and output feature map dimensions (O, P);

• The number of parallel non overlapping convolution windows;
• The number of execution cycles needed to complete a convolution window.

The total number of convolution widows in a layer depends on the size of the output feature map,
that is given by the following equation:

O = P =
R − K

S
+ 1. (4)

We are assuming that input and output feature maps and kernels are square, hence, they have
the same width and height (R = C, O = P). The total number of convolution widows, CWtot, is then
equal to:

CWtot = O · P = O2 = P2. (5)

The number of non overlapping convolution windows, CWnon−ov, is given by the
following expression:

CWnon−ov =

(
R

K + (S − 1)

)2
. (6)

According to the data flow mapping scheme presented in Section 4.3, a certain number of steps
is needed to complete a convolution operation. This number, Csteps, is equal to the upper bound
of the ratio between the total number of convolution windows CWtot and the number of parallel
non-overlapping ones CWnon−ov:

Csteps =
⌈ CWtot

CWnon−ov

⌉
. (7)

The number of execution cycles, Ccycles, needed to complete a full convolution operation on a
layer is given by the product between the number of cycles to execute a single convolution window,
CWcycles, and Csteps:

Ccycles = CWcycles · Csteps. (8)
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CWcycles depends on the size of the convolution window that, in turn, depends on the size of the
kernel. Moreover, by taking into account how a convolution window is mapped and executed inside
CLiMA, the term CWcycles can be calculated as following:

CWcycles = 8 + 1 +
(

K − 1
2

)
+ (K − 1). (9)

In Equation (9) the following factors are taken into account:

• The number of cycles to execute shift operations; in CLiMA data are shifted 1 bit at a time. Since
weights are 8-bit long, in the worst case scenario eight cycles are needed to complete the operation;

• The number of cycles to execute accumulations:

– One cycle for partial accumulation of data couples (Figure 13, step 3); this term does not
depend on the size of the kernel because these accumulations can always be done in parallel;

– (K − 1)/2 cycles for partial accumulation of non-adjacent data (Figure 13, step 4); this term
depends on the size of the kernel, in fact, as the convolution window dimension changes the
number of non-adjacent data to accumulate changes as well;

– K − 1 cycles to perform final horizontal accumulations (Figure 13, steps 5 and 6); similarly to
the previous term, also this one depends on the size of the kernel.

Equations (7) and (9) can be substituted in Equation (8) to obtain the total number of cycles
required to execute a full convolution operation of a layer.

This simple but effective computational model was used to extract results and carry out
comparisons between CLiMA and the Deep Learning Processor, by considering AlexNet and ResNet-18.
The Deep Learning Processor is composed of a number of Processing Elements (PEs) that are capable
of performing different types of operations including Multiply-Accumulate (MAC) ones. PEs work in
parallel and each of them has a throughput of 1 MAC per cycle. Assuming that each PE executes a
convolution window, it takes K ×K cycles to complete a single convolution window. For what concerns
CLiMA, the assumption is that a certain number of non-overlapping convolution windows is executed
in parallel inside the array. In order to perform comparisons, four different scenarios were considered.
The difference between these scenarios is the parallelism that, for the Deep Learning Processor,
is referred to the number of parallel PEs, while for CLiMA, it is referred to the number of parallel
non-overlapping windows. Figures 16 and 17 report the average number of clock cycles needed to
perform a complete convolution in different parallelism scenarios for AlexNet and ResNet, respectively.

The average number of clock cycles is simply calculated by averaging the number of clock
cycles needed to complete the convolution of each layer in the considered CNN. In both graphs,
the parallelism level is reported on the x axis, while the average number of clock cycles is shown in
the y axis. It can be clearly seen that, for both the CNNs and for all the parallelism scenarios, CLiMA
outperforms the Deep Learning Accelerator. In the AlexNet case, the average cycles are reduced by
78% percent in the worst parallelism scenarios (only 10 PEs or non-overlapping convolution windows).
The percentage reduction slightly decreases as the parallelism increases, reaching −70% in the best
parallelism scenario (60 PEs or non-overlapping convolution windows). For what concerns ResNet,
the trend shown in Figure 17 is similar to the AlexNet one, except that the difference between the
average cycles of CLiMA with respect to the Deep Learning Accelerator is smaller. In fact, it ranges
from −49% in the worst parallelism scenario to −45% in the best.

For both the CNNs, CLiMA provides a reduction in terms of average cycles needed to complete
the convolution in all the layers of the network that is higher when the parallelism level is smaller,
as compared to the Deep Learning Accelerator, further proving the effectiveness of the CLiMA
computational model. The reduction difference between AlexNet and ResNet-18 depends on the
characteristics of the two networks (i.e., layers and kernels dimensions, number of channels etc.).
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Figure 17. Average cycles needed to execute ResNet-18 in different scenarios: CLiMA vs. Conventional.

The VHDL code used to describe CLiMA was synthesized in order to get an estimation of the
maximum working frequency at which the architecture can run. The technology used for the synthesis
is the same used for the Deep Learning Accelerator and it is a commercial 28 nm FDSOI (Fully Depleted
Silicon-on-Insulator). For both architectures a parallelism of 10 has been chosen and the maximum
reachable working frequency, in both cases, is approximately 1.8 GHz. The working frequency was
used to compute the execution time required by CLiMA and the Deep Learning Processor to run
ALexNet and ResNet-18 when the parallelism is 10. Results are reported in Table 2.
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Table 2. Performance estimation of CLiMA with respect to the Deep Learning Accelerator for AlexNet
and ResNet-18 when the parallelism is 10. For both architectures the working frequency is 1.8 GHz.

CNN Type Architecture Average Cycles Texec (μs)

AlexNet CLiMA
DL Acc.

1711
7790

0.95
43.2

ResNet-18 CLiMA
DL Acc.

2209
42,939

1.2
24

When comparing the two architectures, since the working frequency is the same, whereas the
number of average cycles required by CLiMA is much lower than what the Deep Learning Accelerator
requires, the resulting execution time needed to complete the convolution of Alexnet and ResNet-18 is,
respectively, 45× and 20× lower for CLiMA with respect to the Deep Learning Accelerator.

The main figure of comparison between the two architectures is related to the number of memory
accesses. In fact, we want to demonstrate that not only is the CLiMA computational paradigm effective
in terms of execution acceleration thanks to its intrinsic massive parallelism, but it is also effective in
reducing the data exchange between the processing unit and the memory. When considering CLiMA,
as shown in Figure 10, we can identify the computing core that is the CLiM array and an external
memory that is the weight memory. This memory is accessed to retrieve the weights that are reused
over all the convolution windows inside a feature map, therefore, requiring only K × K read operations.
We are assuming that the input features are already stored inside each CLiM cell of the array, neglecting
the write operations required to load them for the first time as this is an initialization operation that
cannot be avoided. Once the convolution operation is completed, the final results, which are then
reused for cross-channel accumulation, are already stored inside the CLiM array, hence, no further
external write or read operation is needed.

When considering, instead, the Deep Learning Accelerator, both input features and weights are
continuously read from an input buffer and passed to the execution unit that performs MAC operations
and then writes results into an output buffer. Therefore, the number of read/write operations to
input/output buffers, when considering all convolution windows in a layer, is:

• 2 × (K × K) × tot_conv_windows read accesses to the input buffer to retrieve input features
and weights;

• O × P write accesses to the output buffer to store the convolution results.

As for CLiMA, we are not considering that input features and weights must be loaded from an
external memory into the input buffer because it is an unavoidable operation.

Figures 18 and 19 show the comparison in terms of memory accesses between CLiMA and the
Deep Learning Accelerator for AlexNet and ResNet-18, respectively. It can be clearly noticed that the
in-memory computational model and the data reuse possibilities offered by CLiMA make it possible
to drastically reduce the number of memory accesses with respect to a non-in-memory conventional
paradigm, such as the one used in the Deep Learning Processor.

In general, comparing CLiMA to other architectures (either in-memory or conventional ones) is
not easy because of architectural, technological and computational differences. As a result, the risk is
that the comparison might be unfair. In addition, most of the time, papers lack of details about how
the proposed architectures manage the computation or how there are no common comparison figures.
This makes comparisons even more difficult and, for this reason, CLiMA was only compared to a
conventional architecture (the Deep Learning Processor) about which we had sufficient details to be
able to extract some useful data.
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Figure 18. Memory access evaluation for AlexNet in (A) Deep Learning Accelerator and (B) CLiMA.
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Figure 19. Memory access evaluation for ResNet-18 in (A) Deep Learning Accelerator and (B) CLiMA.

6. Beyond CMOS: A pNML Implementation

Perpendicular Nano Magnetic Logic (pNML) [33] is considered one of the most promising
alternative technologies to CMOS [34] and it is perfect for in-memory computation as it intrinsically
provides both non-volatility and computing capabilities [35,36]. In addition, pNML offers 3D
integrability and low power consumption, all characteristics that make this technology ideal for
overcoming the issues related to von Neumann architectures and CMOS scaling.

6.1. pNML Basics

pNML is based on the nanomagnet, a small (∼tens of nanometers) single domain multi-layer
Co/Pt device that has bi-stable behavior. This means that, because of the perpendicular (from which
the name perpendicular NML) magnetization anisotropy, it can be only in two stable magnetization
states that depend on the direction of the magnetization. These states can be used to encode logic ‘0’
and logic ‘1’, as shown in Figure 20A.

Signal propagation in pNML depends on the magneto-static field-coupling interactions between
nanomagnets [37]. In order to propagate the information in a specific direction, the magnetic properties
of a small region of the nanomagnet are modified through Focused Ion Beam (FIB) irradiation [38].
The irradiated region is called the Artificial Nucleation Center (ANC). As shown in Figure 20B,
neighboring pNML cells couple in a parallel or anti-parallel way, depending on their relative position,
favoring signal propagation in a direction that depends on the position of the ANC. The ANC
is the point where the nucleation of a domain wall starts and eventually propagates inside the
magnetic device (Figure 20C). ANCs can also be obtained by changing the shape and thickness of
the nanomagnet [39] (Figure 20E). The propagation of information inside pNML circuits is obtained
thanks to an external magnetic field (sinusoidal as shown in Figure 20D) that is applied globally
to the circuit [40]. This external magnetic field has the same function of the clock signal in CMOS
circuits. Thanks to the combined action of ANCs and the clocking field, information propagation
can be correctly controlled in pNML circuits. The elementary pNML blocks with which any logic
circuit can be built are the inverter (Figure 20E), the notch (Figure 20F) and the minority voter
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(Figure 20G and 3D version in Figure 20H). The notch works as a barrier, blocking the signal
propagation unless a short depinning magnetic field is applied [41]. This block can be used to
create memory elements [42,43]. Moreover, pNML technology allows one to build 3D structures by
stacking different layers of nanomagnets [44–47]. Previous works such as [42,48–52] already explore
the potentialities of NanoMagnetic Logic architectures (3D and non), but none of them propose a
complete Logic-in-Memory design, which is instead presented in the following.
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Figure 20. pNML basics. (A) The magnetization direction encodes logic ‘0’ and ‘1’. (B) The Artificial
Nucleation Center (ANC) guarantees correct signal propagation in a perpendicular Nano Magnetic
Logic (pNML) chain of magnets. (C) Domain wall propagation inside the nanomagnet causes the switch
of the magnetization direction. (D) Global out-of-plane magnetic field used as clocking mechanism.
(E) Inverter. (F) Notch. (G) Minority voter. (H) 3D minority voter.

6.2. pNML-Based CLiM Array

Figure 21 depicts a small pNML-based version of the CLiM array described in Section 4.4.
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Figure 21. Small pNML-based version of the CLiM array.

213



Micromachines 2019, 10, 368

The design of the array was done by using MagCAD (https://topolinano.polito.it) [53], a CAD
for emerging technologies developed at the VLSI Laboratory (research group in the Department of
Electronics and Telecommunication Engineering of Politecnico di Torino). MagCAD allows one to
design pNML structures thanks to an intuitive and simple GUI (Graphical User Interface) in which
elementary blocks can be combined together to form more complex structures and 3D designs. Starting
from the designed structure, MagCAD allows the extraction of the VHDL description of the circuit,
that is based on a compact VHDL model [35] of pNML devices. The generated VHDL can be used
to simulate (using a common HDL simulator) and verify the functionality of the circuit [54–56]. The
complexity of the pNML-based CLiM array depends on the complexity of the interconnections between
CLiM cells, as it can be noticed from Section 4.4. This strongly limits the size of the design that can be
implemented by hand, without any support for the routing. The design in Figure 21 uses nine layers
of nanomagnets. There are two types of cells used for the pNML array, one called complex (Figure 22)
and the other the simple (Figure 23) CLiM cell. Both are based on the structure shown in Figure 11,
the only difference between them being that the simple CLiM cell does not support shift operations
and does not have the redundant storage block. The simple CLiM cell can be used in the odd rows of
the array that perform only accumulations.

Both the cells have four layers of magnets. Based on the dimensions of the nanomagnets, that in
these designs are 30 × 50 nm, the area occupied by the complex cell is 22.5 μm, while the simple cell
occupies 14.4 μm. The area of the CLiM array is 582 μm and interconnections occupy a big portion of
it because of their complexity.

Even though in the designs here presented we have used relatively large nanomagnets (30 ×
50 nm), pNML can be easily scaled to improve compactness. The designs could be also improved in
order to reduce the impact of interconnections on the overall area occupation, however, as already said,
the lack of an automatic and optimized routing tool makes it challenging. Nonetheless, the non-volatile
nature of the technology and the total absence of current flow and leakage sources makes it an ideal
beyond-CMOS technology for in-memory computing.
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7. Conclusions

The Configurable Logic-in-Memory architecture that we have presented has strong points and
issues that are worth being analyzed. Regarding its advantages, CLiMA provides:

• In-memory computation: Data are processed directly inside the memory, drastically reducing the
need of data movement and favoring their reusing for further computation;

• Parallelism: The array is intrinsically highly parallel and perfect for accelerating compute and
data intensive applications;

• Flexibility: The configurability of the cells and the possibility of exploiting inter-cells connections
to build complex in-memory functions make CLiMA adaptable to different applications.

Regarding its limitations, mainly two can be identified:

• Not all data-flows can be supported in an array-like structure because moving data from any
source to any destination is not easy and would require a very complex (but flexible) network of
interconnections;

• The control of data movement between cells is complex and must be managed carefully in order
to avoid cells receiving/sending wrong data from/to wrong cells.

To conclude, the Logic-in-Memory paradigm seems to be a promising alternative to the von
Neumann one. We have defined a novel Configurable Logic-in-Memory Architecture that relies on
in-memory computation, flexibility and parallelism to tackle the memory bottleneck problem while
also providing high performance.
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Abstract: Bose–Chaudhuri–Hocquenghem (BCH) codes are broadly used to correct errors in flash
memory systems and digital communications. These codes are cyclic block codes and have their
arithmetic fixed over the splitting field of their generator polynomial. There are many solutions
proposed using CPUs, hardware, and Graphical Processing Units (GPUs) for the BCH decoders.
The performance of these BCH decoders is of ultimate importance for systems involving flash memory.
However, it is essential to have a flexible solution to correct multiple bit errors over the different
finite fields (GF(2m)). In this paper, we propose a pragmatic approach to decode BCH codes over the
different finite fields using hardware circuits and GPUs in tandem. We propose to employ hardware
design for a modified syndrome generator and GPUs for a key-equation solver and an error corrector.
Using the above partition, we have shown the ability to support multiple bit errors across different
BCH block codes without compromising on the performance. Furthermore, the proposed method to
generate modified syndrome has zero latency for scenarios where there are no errors. When there
is an error detected, the GPUs are deployed to correct the errors using the iBM and Chien search
algorithm. The results have shown that using the modified syndrome approach, we can support
different multiple finite fields with high throughput.

Keywords: BCH; decoder; iBM; GPU; hybrid; flash memory; Galois field; CUDA

1. Introduction

NAND flash memories are widely used in many electronic devices. These devices face reliability
issues because of the densely-populated memory cells [1]. In fact, the 3D method used to manufacture
flash memories, discussed in detail by Spinelli et al. [2], enforces the necessity to have high throughput
error correction techniques. Bose–Chaudhuri–Hocquenghem (BCH) codes [3] are the most common
error correction mechanisms for flash memory devices and other digital communications like optical
networks. The increasing efficiency and throughput of the flash memory systems have drawn
researchers to provide highly-efficient BCH decoders. The three major categories of the BCH decoders
proposed are Central Processing Units (CPUs), hardware circuits, and Graphical Processing Units
(GPUs). Cho proposed an efficient CPU-based implementation in [4], and Poolakkaprambil discussed
multi-bit error using Hamming, BCH, and Low-Density Parity Check (LDPC) codes in [5]. Later,
Lee et al. proposed a high throughput hardware architecture in [6]. Moreover, Zhang discussed
different hardware implementation techniques in [7]. Qi et al. [8] proposed a GPU-based BCH decoder;
later, we proposed an efficient algorithm for BCH decoders using GPUs in [9]. In addition to the
requirement of high throughput, modern BCH decoders are required to support multiple bit error
correction across various block sizes, which is the focus of this paper. Technology scaling has rendered
the ability to integrate multiple GPUs within a System On Chip (SOC), which has enabled researchers
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to use GPU for non-graphical applications. In fact, the term General Purpose Graphical Processing
Unit (GPGPU) refers to the application of GPU for nongraphical applications. We use the term GPU
instead of GPGPU since these terms are interchangeable in practice. Streaming Multiprocessors (SMs)
are the building blocks of these GPUs, which has multiple CPUs within them. Each of the instantiated
SMs is capable of handling multiple threads, which are scheduled by a warp scheduler. Therefore, we
need an exclusive compiler like the Computer Unified Device Architecture (CUDA) C [10] software to
program these SMs. The CUDA software creates the necessary grid of kernel routines, which in turn
create the same instruction that operates on a different data path; this technique is referred to as the
single instruction multiple data (SIMD) stream. The kernel subroutines are executed across multiple
cores and in a multiple thread fashion. The GPU-based BCH decoders [9] are flexible, and they can
support multiple BCH block sizes.

We have organized this paper as follows: Section 2 discusses the background and previous works.
Section 3 describes our proposed hybrid method using GPUs and hardware design. Section 4 presents
the results observed, and we conclude in Section 5.

2. Background

BCH codes are cyclic block codes encoded by the generator polynomial g(x) over the GF(2).
The roots of this polynomial equation reside in the extended field, also known as the splitting field,
GF(2m). Let φi(x) be the minimal polynomial of an arbitrary element βi, then the generator polynomial
for BCH code with t error correction capability is given by the following equation:

g(x) = LCM(φ1(x), φ2(x), ..., φ2t(x)) (1)

Narrow sense BCH codes use primitive element αi for the minimal polynomial with i starting from
one. For simplicity, the narrow sense BCH code decoder is discussed and implemented in this paper,
and it could be easily extended for other general BCH codes [3]. The parity bits are then generated
using the equation p(x) = m(x)mod g(x), and these parity bits are concatenated to form the message
polynomial m(x). This concatenation is given as:

c(x) = m(x) · xdeg(g(x)) + m(x)mod g(x) (2)

The generated parity bits are then stored in the spare area allocated in the page within the flash
memory device. In general, the hard decision BCH decoder has three steps in the decoding process:
syndrome generation, key-equation solver, and an error locator.

2.1. Encoder

The main issue when using large BCH codes, i.e., t greater than 30, is the fan-out issue created by
implementing the Linear Feedback Shift Register (LFSR) method of the generator polynomial. Parhi
has addressed this fan-out issue by breaking down the LFSR register into multiple cascaded LFSRs
by realizing the circuit in the Z-domain [11]. Hao addressed the same issue by using the Chinese
Remainder Theorem (CRT) method [12], but this method requires more computation on the encoder
and is applicable for encoders that have t higher than 100. Later, Tang et al. proposed a hybrid
approach for long BCH encoders that is area efficient [13]. The authors of this paper had proposed an
area efficient method by sharing the hardware between the encoder and syndrome generator [14].

2.2. Decoder

The BCH decoders can be categorized as hard decision and soft decision decoders [15,16]. These
decoders’realization can be broadly classified into three categories: Central Processing Unit (CPU) [4],
Very Large Scale implementation (VLSI) [17], and GPU implementation [8]. Various hardware
implementations of BCH decoders were discussed by Zhang [7]. BCH decoders can be categorized
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by the place of the decoders. The decoders can be either located on-chip within memory device [18]
or outside the memory device [19]. The focus of this paper is on the decoder being outside the
memory device.

The syndrome generator is the first step of the BCH decoding process [6,20]. The syndromes Si of
the received vector r(x) are given as:

Si = r(αi) (3)

In other words, the syndrome generator checks if the received code vector r(x) = rn−1xn−1 +

... + r1 + r0 has the roots as α1, α2, ..., α2t. If so, then there are no errors in the received code vector. In
the case of an error, the key-equation solver and the error locator steps are executed. For t bit error
correction on a narrow sense BCH code, it is sufficient to find t syndromes, because the elements of a
conjugacy class have the same minimal polynomial φi(x). We have discussed an alternate approach
to share the syndrome generator and encoders in [14]; Figure 1 depicts the area sharing between the
encoder and the syndrome generator presented in [14]. This method requires separate error protection
to the parity bits, and one proposal is to use a Single-Level Cell (SLC) for the parity bits to reduce error
probability.

Figure 1. Area-efficient syndrome generator.

An error locator polynomial Λ(x), which has dependency on the error location, gives a hint about
the error location, and it is given by the equation:

Λ(x) =
t

∑
i=0

Λixi = (1 − X1x)(1 − X2x)...(1 − Xtx) (4)

where Xi represents the error location of the vector r(x). The key equation:

S(x).Λ(x) = Ω(x)mod 2t (5)

shows the relationship between the error locator polynomial and the error evaluator polynomial;
moreover, Newton identities [3] show the relation between the error locator polynomial Λ(x) and the
syndromes Si. There have been many algorithms like Berlekamp–Massey (BM), Peterson, and others
proposed to solve the key equation [3,7], but the inversion-less BM (iBM) algorithm is predominantly
used in high throughput architectures [6,21]. Park et al. [22] proposed a novel folded method to
reduce the area in the hardware architecture, but the proposed method takes more clock cycles and is
proportional to the folding factor. For the final step, the Chien Search (CS) algorithm is used to locate
the error position from the error locator polynomial equation. Yoo et al. proposed a low power and
high throughput parallel CS algorithm in [23].

2.3. Motivation

This paper intends to propose a solution that can address two configurable parameters of a BCH
decoder. First, the solution should be scalable across different GF fields, i.e., it should be able to support
different GF field extensions (GF(2m)). Second, the solution should be able to scale across different
bit errors t. Different configurable BCH decoder solutions have been proposed [20,24], but they lack

221



Micromachines 2019, 10, 365

support for both configurable parameters of the BCH decoders. Inspired by the attempt to solve BCH
decoders for multiple GF dimensions in [20], we propose an alternate hybrid approach to have a
flexible solution. In [20], a hardware solution was proposed to support multiple BCH codes; however,
the circuit area increases in order to support multiple GF dimensions because of the dual-mBCH
decoders’ requirement. We have proposed a method to share the hardware logic between the BCH
encoder and BCH syndrome generator by modifying the encoding method in [14]. In this paper, we
extend our previous work by using a programmable modified syndrome generator algorithm and
GPU to have a decoder that works with multiple GF dimensions.

3. Hybrid Method

We propose a high throughput system that can correct t bit errors over different BCH codes
(n, k, t), i.e., error correction over different finite field dimensions, using hardware design and GPU
kernel routines. Figure 2 depicts the architectural block diagram for our proposed hybrid method.
The flash memory interface is a physical interface to a flash memory device, and the host interface
is a standard bus interface, which communicates with the GPU. The GPU could either reside inside
the host interface (system on chip) or external to the host system. It is important to note that the GPU
system in the system is used for dual purposes, i.e., for the graphical display and error correction.
Furthermore, in our proposed method, the GPUs are only deployed when there is an error detected
in the page, and the GPUs are not used for pages without error. It is assumed that the host system
exercises a memory copy routine to transfer data whenever there is an interaction between the host
system and the GPU system. The syndrome generation, proposed in [14], is split into two modules:
the Syndrome Residual Unit (SRU) and the syndrome kernel. Then, we propose to implement the
modules SRU and the FIFO (shaded area) in hardware and to use GPU kernel routines for the modules’
syndrome calculator, key-equation solver, and an error corrector.

Figure 2. Hybrid BCH decoder block diagram.

3.1. Flowchart

Figure 3 depicts the flow of our proposed hybrid method. Initially, the GPUs create a LUT memory
for faster GF multiplication; this method has been proven to be faster on GPUs than threads spawning
sub-kernel routines [9]. Next, a page read command is initiated to the flash memory interface. The SRU
calculates the t residuals of the minimal polynomial, while the data are written into the FIFO. If all the
residuals are zero, then we conclude that there are no errors detected in the received vector, and the
host shall transfer the data to the application layer. If there are non-zero residuals, then the host
calls the Syndrome Calculation Kernel (SK) routine to calculate the syndrome and then calls the Key
Equation Kernel (KEK) to form the error locator polynomial Λ(x). Once the Λ(x) is formed, the Chien
Search Kernel (CSK) is executed for each bit location. The final error vector is then added to the data in
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the FIFO to correct the bit errors and then copied to the host memory. Until all the intended data from
the flash memory are read, we repeat the previously mentioned steps (Node 1 in Figure 3).

Figure 3. Flow chart for the hybrid system.

3.2. Modified Syndrome Generator

The conventional syndrome generator as discussed in Section 2.2 can be split into two steps:
First, the residual polynomial resi(x), of the received code word r(x), is generated by the equation
resi(x) = r(x)mod φi(x), where the minimal polynomial φi(x) = gi,mxm + ... + gi,0 and residual
polynomial resi(x) = resi,m−1xm−1 + ...+ resi,0. Second, the syndrome can be calculated by substituting
the primitive element αi in the residual polynomial and is expressed as:

Si =
deg(φi(x))−1

∑
k=0

resi,k.(αi)k (6)

It is clear that by splitting the syndrome generation, resi(x) does not have any dependency on the
field extensions. In fact, the polynomial division used in resi(x) is identical to a Linear Feedback Shift
Register (LFSR) with its coefficient from φi(x). We introduce the idea to have the coefficients of the
LFSR as programmable. Figure 4 represents a hardware realization of the SRU array in a serial fashion
with programmable feedback coefficients. In most cases, depending on the data interface width of
the flash memory interface, we can unfold the serial interpretation of the SRU to process more bits
in parallel. Because of the relationship between the conjugacy class and φi(x) [7], it is sufficient to
generate t SRU units. These SRUs can compute resi(x) of different minimal polynomials in tandem.
Once the residuals are computed, the values of the resi(x) are compared for non-zero values. An error
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is triggered if any of the resi(x) has non-zero coefficients in them, and the GPU kernel routines for the
other stages of the BCH decoder are executed.

Figure 4. Array of the syndrome residual unit.

3.3. GPU Kernel Routines

Kernel routines are the fundamental sub routines, representing the SIMDtype of parallelism,
executed by the GPU for our proposed decoder. Figure 5 illustrates a systematic execution of the
kernel routines where PG2 and PG4 represent pages with errors. PG0, PG1, and PG3 represent pages
without error. When there are no errors, the latency incurred is the computation time consumed by the
SRU systolic array, as shown in Figure 5. Furthermore, to achieve better throughput, the SRU units
can compute resi(x) for the next page, while the GPU kernel routines are triggered during an error
scenario. For GF multiplication in the algorithm, the multiplicand and multiplier are converted to the
power basis by referring to the LUT in the global memory. Thus, the multiplication is transformed into
a simple XOR operation in the power basis domain. After the multiplication is computed, a reverse
transformation is performed by referring to another basis converter LUT in the global memory.
The three basic GPU kernel routines used in our approach are explained in detail below.
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Figure 5. Decoder execution sequence. PG, Page.

3.3.1. Syndrome Kernel

In this routine, the Si is calculated by substituting the αi in the equation resi(x). Since there are
no dependencies on the syndromes, t parallel SK routines are launched within the GPU. Algorithm 1
represents the pseudocode for the syndrome routine. The atomicXor operation is required to
synchronize the value updated by the SK routines across multiple threads.

Algorithm 1 Syndrome kernel.

1: procedure SYND KERNEL(resi, Si)

2: sum ← 0

3: for j ← 0, deg(φi(x)− 1 do

4: sum ← sum + resi,j.αi.j

5: end for

6: atomicXor(Si, sum) � synchronize between threads

7: end procedure

3.3.2. Key-Equation Kernel

The KEK is the only single thread routine, in our proposal, because of the iterative nature of the
iBM algorithm. Algorithm 2 represents the pseudocode for iBM implementation in the GPU routine.
There are other methods like the simplified iBM (siBM) algorithm [7] proposed for the key-equation
solver module, but experimental results have proven that siBM does not have significant improvement
on the performance of the GPU kernel routines.
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Algorithm 2 Key-equation kernel.

1: procedure KEQ EQ KERNEL(Λ, S)

2: Λ(0) ← 1 + S1x
3: if S1 = 0 then

4: dp ← 1; β(1) ← x3; l1 ← 0

5: else

6: dp ← S1; β(1) ← x2; l1 ← 1

7: end if

8: for r ← 1, t − 1 do

9: dr ←
t

∑
i=1

Λ(r)
i S2r−i+1

10: Λ(r) ← dpΛ(r−1) + drβ(r)

11: if dr = 0 or r < lr then

12: β(r+1) ← x2β(r); lr+1 ← lr; dp ← dp

13: else

14: β(r+1) ← x2Λ(r); lr+1 ← lr + 1; dp ← dr

15: end if

16: end for

17: end procedure

3.3.3. Chien Search Kernel

The CS algorithm is the final step within the decoder. The primitive element αpos−1
is checked

if it is a root for the error locator polynomial Λ(x) as specified in [9]. This kernel routine is an ideal
candidate for the GPU because of the parallelism it offers. Each element of the finite field is evaluated
in the equation Λ(x) as shown in Algorithm 3. This evaluation kernel routine is independent for
each GF element; hence these routines can be launched in parallel threads. Similar to the SK routine,
the memory within the GPU device is shared between threads, so the atomicXOR operation is used to
avoid writing overlap by different CSK routines. Once the error vector is formed, the error is masked
with the data in the memory to yield corrected data.

Algorithm 3 Chien search. Kernel

1: procedure CHIEN KERNEL(Λ, pos, err)

2: sum ← 1 � Always KEQ is minimal

3: for j ← 0, deg(φi(x))− 1 do

4: sum ← sum + Λj(α
pos−1

)j

5: end for

6: if sum = 0 then � αpos−1
is a root

7: atomicXor(err[pos], sum) � Prevent overlap write

8: end if

9: end procedure

4. Experimental Results and Analysis

The proposed hybrid approach was compared against conventional GPU [8,9] and hardware [20]
architectures. The hardware implementation of the syndrome generator was synthesized for 28-nm
technology, and it achieved an operational frequency of 1 GHz. The setup used for the GPU
implementation is given in Table 1. In our experiments, we analyzed the performance and the area
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consumed for different BCH code sizes. We have used the finite field dimension of m = 12, 13, 14, 15 in
our comparison, which corresponds to block sizes of 256, 512, 1024, 2048 bytes. Furthermore, we have
analyzed the results for different bit errors (t = 2, ..., 40) in our experiments.

Table 1. Experimental setup.

GPGPU CPU

Platform Geforce GTX 760. 1152 cores Intel Xeon i7
Clock Freq. 1.033 GHz 3.7 GHz

Memory GDDR5(2 GB), 6 Gbps DDR2 (32 GB), 102.4 Gbps

4.1. Error Analysis

The error correction capability increased with n, but the larger the n, the higher the probability
of random bit error. Based on the raw bit error probability p, parity bits, and message code
cpar = 2 · t · m + |m(x)|, the sector with correctable error (PsecErr) might increase and is given as:

PsecErr = 1 −
cpar

∑
i=t+1

(
cpar

i

)
· pi · (1 − p)(cpar)−i (7)

Figure 6 plots the bit error vs. sector error for different BCH codes. We can also see that the PsecErr
decreased as p decreased. Furthermore, there was a slight increase in PsecErr when compared against
different m. This was due to the increase in the probability of error within bigger sector sizes.

(a) Block size, 256 bytes (m = 12)

y gg

(b) Block size, 512 bytes (m = 13)

(c) Block size, 1024 bytes (m = 14) (d) Block size, 2048 bytes (m = 15)

Figure 6. Raw bit error vs. sector error.
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4.2. Syndrome Generation Analysis

Syndrome generation is the critical area where the proposed hybrid method provides an advantage
over the GPU methods [8,9]. Figure 7 shows the plot of the syndrome computation time vs. different
bit errors (t = 2, ..., 40) across different finite fields (m = 12, 13, 14, 15) for different architectures:
GPU [9], hardware [21], and hybrid (proposed). The computation of the SRU engine depended on
the number of clock cycles required for a page read. Since all the resi(x) that were necessary for the
key-equation solver were calculated in tandem, the latency only depended on the read cycles for flash
memory. The hardware architecture for syndrome generation consumed the same clock cycle as the
hybrid approach since the approach to syndrome generation was similar. It should be noted that the
GPU unit was used as a display unit, so the results of kernel profiling depended on the load of the
GPU during the execution of the kernel routine. The execution time for the syndrome on the GPU
architecture depended on the number of threads getting executed, and typically, it was from 30–100 μs.

(a) m=12 (b) m=13

(c) m=14 (d) m=15

Figure 7. Syndrome computation time for different arches.

4.3. VLSI Analysis

Table 2 compares the hardware area required for different methods of the syndrome generator ([20]
and the proposed). Since the GPUs were employed for key-equation and Chien search, the hardware
was only compared for the syndrome generator unit for multi-bit error correction for different GF
dimensions. This is a fair comparison since the area of the GPUs was already accounted for systems
with graphical display. The hardware implementations were targeted for 28-nm and met a frequency
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of 1 GHz. In order to support different finite field (m = 12, 13, 14, 15) and 40-bit error correction, the
hardware method [20] consumed 30,247 μm2, whereas our proposed hybrid architecture consumed
10,633 μm2, thus saving two-fold of the area. This area savings was due to the splitting of the syndrome
generation into two units (SRU and syndrome kernel). When there were no errors in the page, the total
time taken by the proposed decoder was less than 5 μs (Figure 7), which was less than the average
read latency of 100 μs. Table 3 compares the power consumed by the conventional method [20] and
our proposed method. The last entry in the table provides the power consumption required to support
error correction over different fields (m = 12, 13, 14, 15) and until 40-bit error correction. There was a
savings of 4 mW in our proposed method.

Table 2. Area comparison for different syndrome generators vs. the proposed SRU.

Setup
Area for t (μm2)

4 8 12 16 20 24 28 32 36 40

m = 12 [20] 606 1287 2079 2871 3256 3661 3959 4252 4611 4917
Prop. 853 1704 2550 3399 4209 5061 5903 6747 7592 8436

m = 13 [20] 858 1863 2962 4043 4648 5246 5814 6387 6988 7573
Prop. 924 1846 2767 3682 4607 5532 6390 7305 8308 9134

m = 14 [20] 916 2002 3167 4330 5016 5723 6375 7048 7714 8390
Prop. 994 1985 2976 3966 4966 5959 6948 7942 8935 9927

m = 15 [20] 988 2172 3435 4707 5485 6292 7043 7818 8587 9367
Prop. 1064 2125 3186 4249 5318 6383 7448 8504 9570 10,633

m = 12, ..., 15 [20] 3368 7324 116,43 15,951 18,405 20,922 23,191 25,505 27,900 30,247
Prop. 1064 2125 3186 4249 5318 6383 7448 8504 9570 10,633

Table 3. Power comparison for different syndrome generators vs. the proposed SRU.

Setup
Power for t (mW)

4 8 12 16 20 24 28 32 36 40

m = 12 [20] 0.179 0.374 0.599 0.819 0.897 0.978 1.037 1.097 1.170 1.232
Proposed 0.167 0.336 0.499 0.673 0.841 1.014 1.185 1.354 1.524 1.695

m = 13 [20] 0.226 0.491 0.773 1.054 1.178 1.304 1.426 1.546 1.674 1.797
Proposed 0.178 0.355 0.534 0.714 0.889 1.061 1.248 1.424 1.615 1.778

m = 14 [20] 0.231 0.503 0.784 1.068 1.213 1.363 1.499 1.640 1.780 1.923
Proposed 0.187 0.373 0.561 0.747 0.938 1.122 1.309 1.493 1.678 1.863

m = 15 [20] 0.235 0.512 0.812 1.110 1.270 1.438 1.593 1.755 1.915 2.078
Proposed 0.194 0.388 0.588 0.776 0.975 1.168 1.370 1.564 1.755 1.953

m = 12, ..., 15 [20] 0.692 1.506 2.369 3.232 3.661 4.105 4.518 4.941 5.369 5.798
Proposed 0.194 0.388 0.588 0.776 0.975 1.168 1.370 1.564 1.755 1.953

4.4. Performance Analysis

The comparison of the total time taken, in case of an error, is compared for the hardware [20],
GPU [8,9], and hybrid architecture (proposed) in Figure 8 (the variable be represents bit error). We can
see that the hybrid approach was better than the GPU method because of the SRU implementation in
hardware. However, the hardware implementation took less than 1 μs because of the high performance
(which is indistinguishable in Figure 8). We can observe a gain of more than 25% when the system has
errors. We can find the probability of sector error from a given bit error rate using Equation (7). For a
given PsecError, the throughput was calculated for a second’s worth of data transfer.
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Figure 8. Total computation time for different architectures and different finite fields.

Figure 9 represents the plot for throughput vs. bit error rate for different finite fields
(m = 12, 13, 14, 15) and different t = 4, ..., 40. We can see that for m = 12, 13, the throughput was
sustained till 10−3, and for m = 14, 15, the throughput was sustained till 10−3.5. This throughput is
sustainable for flash memories that have an Uncorrectable Bit Error Rate (UBER) of 10−15, an it is also
sustainable for the end of life for flash memories which is greater than 10−5.
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(a) Block size, 256 bytes (m = 12) (b) Block size, 512 bytes (m = 13)

(c) Block size, 1024 bytes (m = 14) (d) Block size, 2048 bytes (m = 15)

Figure 9. Raw bit error vs. throughput (sectors/s).

5. Conclusions

In this paper, we have proposed a novel hybrid method to implement an efficient BCH decoder
for different finite field extensions by having the SRU module in hardware and the rest implemented
in GPU kernel routines. By using this method, we have given flexibility on two parameters: first,
the flexibility over different finite fields GF(2m); second, the flexibility over different bit error support.
The flexibility over GF(2m) was achieved by splitting the syndrome into the SRU unit and the syndrome
kernel. The SRU module resided on the Euclidean domain of GF(2) polynomials, thus making it
programmable across multiple finite fields. The syndrome kernel was executed only when an error
was encountered. The latency taken by our method, without error, was superior to the CPU and
GPU implementations and was equal to the performance observed in [20]. Besides, we had two-fold
area savings in the SRU unit to achieve flexibility over GF(2m) and bit errors. Therefore, this hybrid
approach is a pragmatic solution to have a flexible error correction for modern NAND flash devices.
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Abbreviations

The following abbreviations are used in this manuscript:

BCH Bose–Chaudhuri–Hocquenghem
iBMA inversion-less Berlekamp-Massey algorithm
CPU Central Processing Unit
CS Chien Search
CSK Chien Search Kernel
KEK Key Equation Kernel
GPU Graphical Processing Unit
GPGPU General Purpose Graphical Processing Unit
LDPC Low Density Parity Check
LFSR Linear Feedback Shift Register
MLC Multi-Level Cell
RS Reed–Solomon
SK Syndrome calculation Kernel
SLC Single-Level Cell
SRU Syndrome Residual Unit
UBER Uncorrectable Bit Error Rate
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Abstract: In order to suppress the intra-nitride charge spreading in 3D Silicon-Oxide-Nitride-Oxide-Silicon
(SONOS) flash memory where the charge trapping layer silicon nitride is shared along the cell string,
N2 plasma treated on the silicon nitride is proposed. Experimental results show that the charge loss
decreased in the plasma treated device after baking at 300 ◦C for 2 h. To extract trap density according to
the location in the trapping layer, capacitance-voltage analysis was used and N2 plasma treatment was
shown to be effective to restrain the interface trap formation between blocking oxide and silicon nitride.
Moreover, from X-ray Photoelectron Spectroscopy, the reduction of Si-O-N bonding was observed.

Keywords: SONOS; flash memory; charge spreading; plasma treatment; Oxygen-related trap;
data retention

1. Introduction

The NAND flash memory market is continuously growing by the successive introduction of mass
data storage applications in portable electronic devices, such as USB memory and solid-state drives
for tablet PCs and laptops [1]. The cell price as well as bit density are key factors in this application.
Until now, it has been possible to reduce the bit cost and increase the bit density through the linear
scaling down of cell size, which has been achieved by advanced lithography [2]. Recently, however,
the NAND Flash memory industry has faced a scaling limitation of the conventional floating gate (FG)
NAND cell. In order to find an alternative technology, Silicon-Oxide-Nitride-Oxide-Silicon (SONOS)
device has received attention from researchers, as it provides simpler process steps, lower cell to cell
coupling, and virtual immunity to stress-induced leakage current (SILC), when compared to FG [3–5].
However, the down-scaling process is still challenging in SONOS when attempted beyond the 30nm
generation. To overcome the problem, SONOS has been fabricated with 3-dimesional (3D) structures
such as BiCS [6], P-BiCS [7], TCAT [8], VG-NAND [9] and SMArT [10]. However, in the 3D SONOS
structure, the charge trapping layer is not isolated but shared in a cell string, as shown in Figure 1.
Due to this continuous trapping layer structure in the 3D scheme, the intra-nitride charge spreading
can be a serious problem for data retention properties [11,12]. Charge spreading in silicon nitride has
previously been studied in NROM devices, where a trapped charge is locally distributed, and recent
research has reported that charge spreading is driven by the spatial concentration difference [13,14].
Figure 2a shows the probable charge spreading mechanism in silicon nitride. For trapped charges
in deep-level sites, hopping can happen, yet the possibility is very low because of the long distance
between deep-level sites. In the case of shallow-level sites, however, the hopping possibility increases
due to relatively high concentration of trapping sites. Charge spreading via the shallow trap sites can be
accelerated by conduction band diffusion of thermionic emitted carriers from the trap sites. Figure 2b
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shows trap energy levels in silicon nitride, and we can see that substitutional oxygen atoms at nitrogen
vacancy causes a shallow-level trap site. Considering that the oxygen incorporation is active near
the oxide/nitride interface, it is reasonable to estimate that the oxygen and nitrogen vacancy related
defects will be formed near the nitride/oxide interface and that they are mainly located in shallow
energy level, as reported in [15–17]. Figure 3 shows comparison results on the total number of bulk
(NBulk) and interface traps (Nint) according to the channel radius of a cylinder type 3D SONOS device.
Assuming NBulk = 1.0 × 1018 cm−3, relative importance of Nint increases as the channel radius decreases.
Therefore, when the energy level of Nint is shallow, like as the oxygen related traps, the charge spreading
via the interface trap sites becomes more critical with shrinkage of device dimension occurring.

Figure 1. The charge trapping layer structure of (a) BiCS 3D NAND and (b) TCAT 3D NAND.

  
(a) (b) 

Figure 2. (a) Conduction mechanism of programmed Silicon-Oxide-Nitride-Oxide-Silicon (SONOS)
memories, (b) energy level of silicon nitride.

  
(a) (b) 

Figure 3. (a) Total real number of interfaces and bulk traps and (b) the percentage of traps depending
on the channel radius of the cylindrical 3D SONOS device. Here, the radius (Rin in inset figure) was in
the range of 10 to 100 nm, trapping layer thickness was 5 nm and gate length was 20 nm.

In this study, N2 plasma treatment on silicon nitride is proposed to suppress the intra-nitride
charge spreading by controlling the interface trap formation. To extract the trap density quantitatively,
the capacitance-voltage (C–V) analysis was made based on the measurement results by a LCR meter
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(HP 4284A, Agilent, Santa Clara, CA, USA) at a small signal frequency of 1 MHz. To find the bonding
state changes induced by plasma treatment, X-ray Photoelectron Spectroscopy (XPS) was also measured
with a K-Alpha+ spectrometer (ThermoFisher Scientific, East Grinstead, UK).

2. Experiments

To fabricate SONOS structure, 6 nm SiO2 for tunneling oxide was thermally grown on a prime
grade p-type Si substrate with high-purity oxygen gas via dry oxidation furnace. After the oxidation
of Si, N2 plasma treatment was carried out for 30 sec. The flow rate of nitrogen gas was 45 sccm at
a pressure of 10 mTorr, and a plasma power of 200 W. Silicon nitride as a charge storage layer was
deposited by low-pressure chemical vapor deposition (LPCVD) at 825 ◦C with a gas flow rate of
SiH2Cl2:NH3 = 170:70 sccm on the tunneling oxide. In this experiment, the nitride thickness varied
between 7 nm, 15 nm, and 20 nm to extract the trap density by C–V analysis. Following this, N2 plasma
treatment was performed once again on the top of nitride. Then, blocking oxide of 10nm was deposited
by LPCVD at 680 ◦C, and 100 nm titanium (Ti) was deposited by RF-sputter for gate electrode. The test
devices have a gate width by length of 100/100 μm. In order to investigate the impact of lateral charge
migration on data retention, different gate stack structures were fabricated using a lithography mask,
as shown in Figure 4. In extended structure (Ext. 10), the charge-trapping layer was extended to 10 μm
in every direction of the gate electrode. In Ext. 10 structure, the gate etch was stopped on the blocking
oxide layer, while the charge trapping layer was etched self-aligned with the gate in the reference
devices (Ref.).

 
Figure 4. Lithography mask layout to fabricate the test device with a cross-sectional view of the device.
Here, Ext. 10 means the extension length of the charge trapping layer was 10 μm. In the case of Ref.,
the charge trapping layer was etched and self-aligned with the gate and the extension length is 0 μm.

3. Results and Discussion

The program and retention behavior of the fabricated devices with and without N2 plasma
treatment were measured as shown in Figure 5 and the charge loss during retention mode were
calculated and are summarized in Table 1. The devices with extended trapping layer showed a larger
memory window than the reference device, regardless of N2 plasma treatment. The reason for this
is thought to be due to the fringe field effect of the extended devices. Furthermore, the over-etching
issue has been shown to occur during the wet etching process in the reference devices, which in
turn lowers program efficiency. However, the charge loss was larger after baking at 300 ◦C for 2 h.
implying the intra-nitride charge spreading effect. The lateral charge loss of the extended devices was
estimated to be about 28% in total charge loss. After N2 plasma treatment, the amount of charge loss
deceased in the extended devices and the portion of lateral charge loss was 16%. For the quantitative
comparison, nitride/oxide interface trap density was extracted using C–V method. When the positive
bias was forced to the gate during C–V measurement, the charge was injected from the substrate and
the flatband voltage (VFB) shifted due to charges captured at the traps. The VFB shift (ΔVFB) enlarged
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with the increase in the ratio of occupied traps, and was finally saturated when all the traps were
occupied. From the saturated ΔVFB, according to the trapping layer thickness as shown in Figure 6,
a respective trap density of the silicon nitride can be calculated based on the formula below [18].

ΔVFB =
qNBO/TL
εSiO2ε0

TBO +
q

εSiNε0

∫ TTL
0 xNBulk(x)dx

+
qTBO
εSiO2ε0

∫ TTL
0 NBulk(x)dx +

(
TTL
εSiNε0

+
TBO
εSiO2ε0

)
qNBO/TL

=
qNBulk
2εSiNε0

TTL
2 +

(
qTBONBulk
εSiO2ε0

+
qNBO/TL
εSiNε0

)
TTL+

qTBONBO/TL
εSiO2ε0

+
qTBONTO/TL
εSiO2ε0

(1)

where TBO, TTL, and TTO are the thickness of blocking oxide, trapping layer and tunneling oxide.
NBulk (cm−3) is the trap density of trapping layer and NBO/TL (cm−2) and NTO/TL (cm−2) are the interface
trap density of blocking oxide/trapping layer and tunneling oxide/trapping layer, respectively, as shown
in inset of Figure 6. From the dependency of ΔVFB on the trapping layer thickness, NBulk can be
assumed to be negligible and then, Equation (1) is expressed as follows.

ΔVFB =
qTTLNBO/TL

εSiNε0
+

qTBONBO/TL

εSiO2ε0
+

qTBONTO/TL

εSiO2ε0
(2)

(a) (b) 

Figure 5. Measurement results of program and data retention characteristics of the fabricated devices
(a) without N2 plasma treatment and (b) with treatment. Here, the retention properties were measured
after baking at 300 ◦C for 2 h.

Table 1. Extracted trap density based on C–V analysis. Here, NBO/TL and NTO/TL are the interface trap
density of blocking oxide/trapping layer and tunneling oxide/trapping layer, respectively.

Sample NBO/TL (cm−2) NTO/TL (cm−2) Charge Loss [%]

Ref. 2.53 × 1012 8.91 × 1011 18.6
Ext.10 4.36 × 1012 7.32 × 1011 25.7

N2 plasma treated Ref. 4.35 × 1011 1.11 × 1012 17.3
N2 plasma treated Ext.10 5.21 × 1011 1.18 × 1012 20.5

Based on Equation (2), the extracted trap densities are summarized in Table 1.
We can see that there was a distinct interface trap reduction in N2 plasma treatment, especially at

blocking oxide and trapping layer (BO/TL) interface. Thus, charge loss decreased by 5.2% in extended
N2 plasma devices. In the tunneling oxide and trapping layer (TO/TL) interface, the additional nitrogen
supply effect by N2 plasma was ambiguous, but this may be because the nitrogen contributed to Si-O-N
bonding formation on tunneling oxide, rather than curing the N vacancy in the nitride as the nitride was
deposited after oxide formation. More consideration is needed to evaluate the accurate nitrogen behavior
according to the underlying layer, but the results show that N2 plasma treatment was effective in reducing
the interface trap between blocking oxide and silicon nitride while maintaining the nitride bulk trap.
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Δ

Figure 6. Extracted results of VFB shift in capacitance-voltage curve according to the trapping layer
thickness. Inset shows the oxide/trapping layer interface trap sites in the SONOS device structure.

For the physical analysis on N2 plasma effect, XPS was also measured on the oxide/nitride interface
to find the bonding state changes caused by plasma treatment. Figure 7 shows the XPS multi-peak fitting
results. After N2 plasma treatment, the reduction of Si-O-N bonding was observed. The results show that
when the additional nitrogen was incorporated into the nitride layer by the plasma treatment, N vacancies
in nitride decreased, suppressing subsequent O interactions. This shows that N2 plasma treatment can be
effective method to reduce the aforementioned O-related traps that are located at oxide/nitride interface.

 
(a) 

 
(b) 

Figure 7. X-ray Photoelectron Spectroscopy (XPS) results of Si2p multi peak fitting of nitride/oxide
interface (a) as-nitride (without N2 plasma treatment) and (b) N2 plasma treated nitride.
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4. Conclusions

In this paper, N2 plasma treatment on silicon nitride is proposed as a solution to suppress the
interface trap formation and charge spreading in a SONOS device. In order to investigate the impact of
intra-nitride charge spreading on data retention in a 3D SONOS device where the charge trapping layer
is shared in a cell string, different gate structures were fabricated using a lithography mask, and the
charge loss appeared to be much more severe after baking at 300 ◦C for 2 h. After N2 plasma treatment,
both before and after a silicon nitride formation, charge loss was found to decrease. To extract the
trap density quantitatively, C–V analysis method was used, which showed an apparent trap decrease,
especially in blocking oxide and the trapping layer interface. XPS also showed the reduction of Si-O-N
bonding after plasma treatment. The results indicate that N2 plasma treatment on silicon nitride is
effective to control the shallow O-related interface trap and improve the data retention characteristics
of SONOS memory devices.
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Abstract: Recent advances in nanoscale resistive memory devices offer promising opportunities for
in-memory computing with their capability of simultaneous information storage and processing.
The relationship between current and memory conductance can be utilized to perform matrix-vector
multiplication for data-intensive tasks, such as training and inference in machine learning and analysis
of continuous data stream. This work implements a mapping algorithm of memory conductance
for matrix-vector multiplication using a realistic crossbar model with finite cell-to-cell resistance.
An iterative simulation calculates the matrix-specific local junction voltages at each crosspoint, and
systematically compensates the voltage drop by multiplying the memory conductance with the
ratio between the applied and real junction potential. The calibration factors depend both on the
location of the crosspoints and the matrix structure. This modification enabled the compression of
Electrocardiographic signals, which was not possible with uncalibrated conductance. The results
suggest potential utilities of the calibration scheme in the processing of data generated from mobile
sensing or communication devices that requires energy/areal efficiencies.

Keywords: resistive memory; crossbar; in-memory computing; analogue computing; matrix-vector
multiplication; ECG

1. Introduction

Emerging classes of mobile electronic devices offer attractive capabilities for real-time analytics of
the physical world through the connection to central computing systems. One of the critical challenges
in this emerging Internet of Things (IoT) is the instantaneous extraction of relevant information from
the abundant data with the limited power and communication bandwidth for data transmission. This
challenge demands smart components on the edge of the mobile devices that can filter, compress, or
classify the data outputs onsite [1–4]. This pre-processing needs to be extremely power efficient and
quick to handle the large volume of data continuously generated from the surrounding world.

A subset of the processing operations can be categorized as a linear transformation which can
be expressed as a matrix-vector multiplication (MVM). The MVM can be performed in an analogue
domain using a resistive memory crossbar array by storing the matrix values as the conductance of
the memory cell. The operation can take a constant time complexity (O(1)), and be energy efficient
owing to the functional integration of the processing and memory units [5–7]. The scalability of the
crossbar structure down to 4F2 (F: feature size of a technology node) is also beneficial for the device
miniaturization. Envisioned applications include linear equation solver and training of or inference on
neural networks as demonstrated recently [1,7–11].
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Prior studies have shown that the throughputs per area and the energy efficiency can exceed
today’s von Neumann computing scheme, but computational accuracy remained as a non-trivial
challenge for high-precision analogue-based MVM. In device levels, output errors can be originated
from the variations of the electrical characteristics between the cells, non-linear current-voltage
relationship, and stochasticity in resistance switching process. Separate from the efforts in development
of the reliable devices, it is also important to optimize the conductance mapping scheme using realistic
crossbar arrays. Finite conductivity of interconnecting wire has been suggested as one of the important
factors causing errors in the crossbar-based MVM [9,12]. Empirical calibration methods that are based
on the comparison between the desired output and real measurements have shown to improve the
accuracy level although the origin of the discrepancy of the measurement values was not clearly
identified [1]. To overcome the limitation of such hardware-based methods, model-based theoretical
analysis attempted more systematic approach to understand the computational error [9,12]. Hu et al.
first introduced a comprehensive crossbar array model for MVM, and applied it to the training of
neural network for pattern recognition [9]. This simulation-based optimization of the conductance
minimizes the time and power consumption to post-process the outputs and provides explanation for
the computational outputs with given circuits.

This work implemented a mapping algorithm of memory conductance for MVM using a crossbar
model with finite wire resistance, and analyzed the calibration performance for the compression of
electrocardiographic (ECG) signals. An iterative software simulation calculates the matrix-specific
local junction voltages at each cross-point, and calculate the ratio between the junction voltages and
input voltage applied from the source. The ratio becomes a calibration factor to update the memory
conductance to systematically compensates the voltage drop. The results indicate that the calibration
factors both depend on the location of the junctions and matrix structure. This correction enabled
the in-memory compression of ECG signals whose reconstruction error is comparable to the double
precision calculation. The findings suggest a possible route to overcome difficulties in analogue
computing in realizing diverse edge computing devices for onsite data processing.

2. Methods

2.1. Calibration Factor for Matrix Mapping on Proposed Crossbar Model

Figure 1a shows a schematic representation of the crossbar model that includes interconnection
line resistance to calculate the local potential at each cross-point. The model incorporates both the
cell-to-cell resistance and the access resistance from a voltage source to the first column/row metal
lines. The analogue-based MVM using a crossbar array assuming an ideal behavior has the current
output from the column (or bit) line (BL) as follows.

Iideal
j = G1, jV1,app + · · ·+ Gm, jVm,app (1)

Here, Iideal
j is the current output from jth BL. Gi, j is the conductance of memory cell located at a

crosspoint of the ith word and the jth bit lines. The conductance (Gi, j) represents a linear-transformed
matrix element to map the matrix values within the range of the achievable conductance of the device.
Vi,app is input voltage to the ith word lines (WL). (BLs are assumed to be grounded.) Equation (1)
holds true only if the series resistance of the interconnection wires is negligible. Considering the
resistivity of conventional metal wires (ρ = 10−8 to 10−7 Ω·m), the resistance between the nearest cells
(R = ρ·F/(F·d), F: feature size, d: metal thickness) ranges from 100 to 101 Ω when d is assumed
~10 nm. The wire resistance may further increase due to lower density caused by vapor deposition.
For a 4F2 crossbar structure, the interconnect resistance between two adjacent cells can be estimated to
be ~4.53, 2.97, and 1.55 Ω under 16 nm, 22 nm, and 32 nm technology node, respectively, according to
the International Technology Roadmap for Semiconductors 2013 [12]. Simple calculation estimates the
voltage drop can be a significant source of errors considering the realistic conductivity of the resistive
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memories. For example, if we assume ~100 by 100 bits of crossbar arrays and 0.1 to 1 mA total current
along the word line, iR drop at the end of the word line can be 0.01 to 0.1V. (e.g., 0.1–1 mA × R(cell-cell)
× 100→ 0.01–0.1 V). In this realistic case, the current output needs to be modified as

Ireal
j = G1, jV1, j + G2, jV2, j + · · ·+ Gm, jVm, j (2)

instead of Equation (1) with Vi,app terms to conform with the Ohm’s law. Here, Vi, j is the local junction
potentials across the memory cell at (i, j) crosspoint. Since Vi, j is not guaranteed to be equal to the
applied voltage to the ith WL due to voltage drop, Ij becomes small compared to the ideal case as
observed in previous studies [1,9].

One way to compensate the smaller current output can be the increase of the conductance level of
the memory according to the local voltage drop. If the voltage drop for arbitrary WL and BL input
voltages can be estimated, the conductance of the memory can be set as

G′i, j = Gi, j
Vi,app

Vi, j
(3)

instead of Gi, j. With the calibrated conductance (G′i, j), the current outputs become the ideal current
as follows.

Ireal
j = G1, j

V1,app

V1, j
·V1, j + · · ·+ Gm, j

Vm,app

Vm, j
·Vm, j = Iideal

j (4)

Thus, the ratio (Vi,app/Vi, j) can be considered as a calibration factor for the memory conductance
for in-memory MVM when the junction potential deviates from the applied voltage. There can
be other approaches that use equilvalent conductance terms multiplied by the applied voltage to
describe the measured current. This approach may be useful if measurement data are available and
the calibration algorithm to drive the real current to the ideal one is developed. Yet, the current work is
more focused on the calibration based only on theoretical model circuits without requirement for any
real measurements.

Figure 1. (a) Simulation model for resistive memory crossbar array with finite conductance of
interconnects. (b) Conductance calibration algorithm for mapping of an m× n matrix using a crossbar
simulator. (c) Local currents at word lines (WL) and bit line (BL) junctions in accordance with
Kirchhoff’s law.

2.2. Iterative Calibration Based on Crossbar Simulation

An iterative algorithm was developed to progressively increase conductance values based on the
simulated Vi, j at individual junctions. Figure 1b summarizes the procedure of the calibration process.
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Through the iterations, Vi, j
′s are updated by solving the 2mn Kirchhoff’s relations (mn WL junctions +

mn BL junctions) that need to be simultaneously satisfied with given memory conductance and the
voltage inputs [13]. Figure 1c, for example, illustrates the local currents on the WL junction that follow
the equation below.

Gw
(
VWL

i, j −VWL
i, j−1

)
= Gi, j

(
VBL

i, j −VWL
i, j

)
+ Gw

(
VWL

i, j+1 −VWL
i, j

)
(5)

Here, Gw is a cell-to-cell conductance, and VWL
i, j and VBL

i, j are voltages at (i, j) crosspoint on WL
and BL, respectively. 2mn Kirchhoff’s equations can be arranged in a simple matrix form whose details
are described in the Appendix A. Since the calibrated conductance (G′i, j) is higher than the previous
conductance (Gi, j), the overall current increases, and the voltage drops need to be recalculated with
this new G′i, j by the next iteration of the simulation. The iteration is repeated until the conductance
(or Vi,app/Vi, j ratios) converge, and the final ratios determine the conductance level of the memory to
represent the arithmetic matrix elements. The simulation code is implemented in MATLAB and each
iteration takes ~1 sec with single 3.5 GHz Intel Core i7 for 64 × 64 crossbar arrays. The calibration
factors were converged after 10 to 20 iterations depending on the cell-to-cell resistance and termination
criteria. The runtime and error depend on the termination criteria, and assumed to be a similar level to
the previous report [9].

3. Results and Discussion

The in-memory MVM can be used for low-power data processing, such as compression or high-
or low-pass filtering. Here, as an example, the discrete wavelet transform (DWT) matrix is mapped to
the final memory conductance ranging from 0.01 to 70 μS [14,15]. The cell-to-cell resistance (R) and the
access resistance from the voltage source to the crossbar are assumed to be 1 Ω and 100 Ω, respectively.
Larger R (10 Ω) is also studied for comparison. Voltages are supplied from the left for WLs and the
bottom for BLs. For the calculation of the voltage drops at each junction, the supply voltage of 0.1 V
was assumed for all WLs. (The calibration factors were insensitive to the voltage (0.1 to 0.5 V) since Vi, j
~ Vi,app − iR where iR varies approximately with the same factor as Vi,app). The operation parameters
were set to be consistent with the practical values reported in the previous PRAM-based studies [7].

Figure 2 presents the simulation results of the conductance mapping of 64 × 64 DWT matrix using
biorthogonal filters with 4-level of decomposition. Figure 2a describes the change in the calibration
factors through the iteration represented by the 2-norm of the difference matrix. The conductance is
quickly converged, and the norm values less than 10−4 were achieved after 10 cycles (R = 1 Ω) and
16 cycles (10 Ω). Figure 2b compares the initial conductance (G0

i, j) and final conductance for R = 10 Ω
case. Figure 2c plots the final calibration factors to visualize the voltage drop across the crossbar.
(R = 1 Ω (left), 10 Ω (right)) Calibration factors range from 1.1 to 1.4 for 1 Ω case, and 1.1 to 2.2 for 10 Ω
case. 10 Ω resistance shows larger dependency of the calibration factor on the distance from the voltage
source. The location dependency of the calibration factors implies that the effect of possible fluctuation
in the resistance of nanoscale wires can be averaged over the long distance from the voltage source for
the junctions with large calibration factors. The colormaps also reveal the large values for the first four
columns and small values for every four rows. As depicted in Figure 2d, the calibration factors reflect
the matrix structure. The conductance sum (

∑
i G0

i, j) is large for the first four columns, which results in

a large current gathered along the four BLs. For the same reason, the small conductance sum (
∑

j G0
i, j)

for every four rows result in small overall current along the WLs: thus, smaller calibration factors.
This variation in the overall current along the metal line causes different level of iR drop, resulting in
matrix-dependent calibration factors.
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Figure 2. Conductance mapping of 64× 64 matrix for discrete wavelet transform (DWT). (a) Convergence
of calibration factors though the iterations for 1 Ω and 10 Ω cell-cell resistance. (b) Colored map of cell
conductance of a crossbar before/after calibration. (R = 10 Ω). (c) Matrix-specific calibration factors at
individual cross-points for R = 1 Ω (left) and R = 10 Ω (right). (d) Conductance sum of each column
(top) or row (bottom) of the initial conductance.

Figure 3 summarizes the effect of the conductance calibration on the data compression and
reconstruction performance. Rescaled ECG signals from the MIT-BIH database were applied as the
input voltage (0–0.3 V) for DWT [16]. Figure 3a,b show the coefficients of the DWT converted from
the simulated currents from the BLs for R = 1 Ω and 10 Ω, respectively. The black squares present
the exact coefficients calculated in double-precision (64 bits), and the green diamond lines present
the simulated coefficients with the initial memory conductance before calibration. The negatively
shifted values of the simulated coefficients result from the small currents due to the voltage drop along
the resistive metal interconnects. This shift fails the threshold-based compression of data where the
small coefficients are cut off based on their absolute quantity (distance from zero). The larger negative
slope in Figure 3b compared to Figure 3a reflects a severe reduction in current outputs for the columns
located far from the voltage source due to the larger R (10 Ω). The other lines in the figures show the
coefficients calculated with the calibrated memory conductance at different stages of iteration. The red
lines in Figure 3a,b show that the fully calibrated coefficients well match to the exact values for both R
values. The 2-norms of the difference between the exact and the experimental coefficient vectors were
4.2 (1 Ω) and 8.6 (10 Ω), and the maximum difference were 3.5 (1Ω) and 7.2 (10 Ω) at the peak of the
coefficient (exact coefficient value: 224.8, index: 29). Figure 3c shows the reconstructed ECG signals
using the calibrated coefficients. (ECG signals were vertically shifted for visibility of individual lines.)
The magenta line shows the reconstructed signals from the 15 largest exact coefficients out of 64. By
filtering of the small coefficients, the noise in the original signal was removed as the case with exact
coefficients. Figure 3d plots the error of the reconstructed signal. The reconstructed signal-to-noise
ratios, defined as 20log10(||x||2/||x− x̂||2) (x: original ECG, x̂: reconstructed ECG), were 28.2/43.4 (1 Ω)
and 27.8/37.1 (10 Ω) with/without cut-off, respectively, compared to 28.3 for the reconstruction using
15 largest exact coefficients.
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Figure 3. Electrocardiographic (ECG) signal compression using in-memory computing. (a,b)
Coefficients of ECG signal after DWT using crossbar (Xbar) conductance determined by simulation. n:
iteration number of simulation for conductance calibration. (a) R = 1 Ω. (b) 10 Ω. (c) Reconstruction of
ECG from the coefficients. Compression ratio = 15/64. (d) Reconstruction error.

4. Conclusions

A conversion algorithm of a matrix to conductance was proposed in a crossbar memory array when
the metal interconnects have finite conductance. The iterative simulation systematically compensates
for the voltage drop along the interconnects by increasing the memory conductance. The calibration
enables in-memory data compression. Considering the power limit in healthcare-related mobile devices,
the proposed real-time compression using a memory crossbar can have potential as pre-processing
units in such devices for diagnosis/therapeutic purposes.
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Appendix A

The crossbar model aims to calculate junction potentials at each cross-point. Since we can build
one Kirchhoff’s equation for each junction, 2mn relations (Figure A1, mn junctions on WL+mn junctions
on BL) need to be simultaneously satisfied with given memory resistances and the applied WL and BL
applied potentials. Here, Gw and Gi, j are the wire and memory conductance, and VWL

i, j and VBL
i, j are the

local voltages at the junctions in a real system with finite conductance of the interconnects.

(WL, (i, j)) Gw
(
VWL

i, j −VWL
i, j−1

)
−Gi, j

(
VBL

i, j −VWL
i, j

)
−Gw

(
VWL

i, j+1 −VWL
i, j

)
= 0 (A1)

(WL, j = 1) GWL
i,access

(
VWL

i,1 −VWL
i,applied

)
−Gi,1

(
VBL

i,1 −VWL
i,1

)
−Gw

(
VWL

i,2 −VWL
i,1

)
= 0 (A2)

(WL, j = n) Gw
(
VWL

i,n −VWL
i,n−1

)
−Gi,n

(
VBL

i,n −VWL
i,n

)
= 0 (A3)
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(BL, (i, j)) Gw
(
VBL

i+1, j −VBL
i, j

)
−Gi, j

(
VBL

i, j −VWL
i, j

)
−Gw

(
VBL

i, j −VBL
i−1, j

)
= 0 (A4)

(BL, i = m) GBL
j,access

(
VBL

j,applied −VBL
m, j

)
−Gm, j

(
VBL

m, j −VWL
m, j

)
−Gw

(
VBL

m, j −VBL
m−1, j

)
= 0 (A5)

(BL, i = 1) Gw
(
VBL

2, j −VBL
1, j

)
−Gi, j

(
VBL

1, j −VWL
1, j

)
= 0 (A6)

When the equations are arranged in the order as described in Figure A1, the equations can be simplified
as the following matrix formulation:

Amn×mnvWL + Bmn×mnvBL = EWL (for WL junctions) (A7)

Cmn×mnvWL + Dmn×mnvBL = EBL (for BL junctions) (A8)[
A B
C D

][
vWL

vBL

]
=

[
EWL

EBL

]
(A9)

where

vWL,mn×1 =
[
VWL

1,1 , VWL
1,2 , · · · , VWL

1,n , VWL
2,1 , · · · , VWL

m,n

]T
= [vWL,i = 1, vWL,i = 2, · · · , vWL,i = m]

T (A10)

vBL,mn×1 =
[
VBL

1,1, VBL
1,2, · · · , VBL

1,n, VBL
2,1, · · · , VBL

m,n

]T
= [vBL,i = 1, vBL,i = 2, · · · , vBL,i = m]

T. (A11)

EWL,mn×1 =
[
GWL

1,accessV
WL
1,app, 0, · · · , GWL

2,accessV
WL
2,app, 0, · · · , GWL

m,accessV
WL
m,app, 0, · · ·

]T
(A12)

EBL,mn×1 = −
[
GBL

1,accessV
BL
1,app, GBL

2,accessV
BL
2,app, · · · , GBL

n,accessV
BL
n,app 0, · · ·

]T
(A13)

Here, A and D are sparse matrices whose nonzero elements are the ones that are multiplied by the
local potentials adjacent to the junction under consideration along the WL (for A) or BL (for D). For
example, the Kirchhoff’s law on the (i, j) WL junction is described by

A
(i−1)×j+jth row vWL + B

(i−1)×j+jth row vBL = EWL,(i−1)×j+jth row (A14)

The only nonzero elements of (i− 1) × j + jth row of A are j − 1, j, j + 1th elements of the row.
B and C are mn×mn diagonal matrices related to the conductance of the resistive memory to describe
the currents flow through the memory layer. More details are available in [13] although the structure of
the matrices A, B, C, D, EWL and EBL depends on the order of the Kirchhoff’s equations that correspond
to the individual junctions.

Figure A1. Kirchhoff’s law produces 2mn equations.
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For the simulation where all the applied potentials to the WL and BL are set, local potentials at
the crossbar junctions can be obtained in two steps by solving the following two equations:(

B−AC−1D
)
vBL = EWL −AC−1EBL (A15)

vWL = C−1(EBL −DvBL) (A16)
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Abstract: Recently, 3D-stacked dynamic random access memory (DRAM) has become a promising
solution for ultra-high capacity and high-bandwidth memory implementations. However, it also suffers
from memory wall problems due to long latency, such as with typical 2D-DRAMs. Although there are
various cache management techniques and latency hiding schemes to reduce DRAM access time, in a
high-performance system using high-capacity 3D-stacked DRAM, it is ultimately essential to reduce
the latency of the DRAM itself. To solve this problem, various asymmetric in-DRAM cache structures
have recently been proposed, which are more attractive for high-capacity DRAMs because they can
be implemented at a lower cost in 3D-stacked DRAMs. However, most research mainly focuses on
the architecture of the in-DRAM cache itself and does not pay much attention to proper management
methods. In this paper, we propose two new management algorithms for the in-DRAM caches to achieve
a low-latency and low-power 3D-stacked DRAM device. Through the computing system simulation,
we demonstrate the improvement of energy delay product up to 67%.

Keywords: 3D-stacked; DRAM; in-DRAM cache; low-latency; low-power

1. Introduction

The latency of dynamic random access memory (DRAM) has been a critical issue for two primary
reasons [1]. Firstly, while the processing speed of central processing unit (CPU) has been continuously
improved, DRAM latency has remained relatively unchanged for decades. This speed gap, called the
memory wall, causes significant bottlenecks in the overall computing performance [2,3]. As shown in
Figure 1a, while the capacity and bandwidth have increased 16 and 6 times over time, respectively,
the timing constraints representing the DRAM latency, row address to column address delay (tRCD) and
row cycle time (tRC), have only been improved by 11.2% and 20.0%, respectively [4–7].

Secondly, the processing speed of big data workloads is affected by the memory latency, as well
as bandwidth. Russell et al. proved that the instructions per cycle of the applications dealing with big
data could be significantly improved by reducing the DRAM latency [8]. This is because the data stream
of big data is likely to have large dependency between its elements. In particular, on-line transaction
processing (OLTP), which supports high transaction-oriented applications, is a representative example of
latency-sensitive applications [9]. In addition, recent AI applications require large amounts of memory
to handle large amounts of data, and require low latency to provide real-time data processing. In other
words, we expect to see an increasing number of applications that simultaneously demand high capacity
and low latency.

Micromachines 2019, 10, 124; doi:10.3390/mi10020124 www.mdpi.com/journal/micromachines

251



Micromachines 2019, 10, 124

(a)

(b)

Figure 1. Comparison of dynamic random access memory (DRAM) capacity, bandwidth, and latency
improvement by DRAM generation [4–7]. (a) Capacity and bandwidth of DRAM. (b) DRAM access latency:
row address to column address delay (tRCD) and row cycle time (tRC).

DRAM devices are being transformed into various structures as a result of recent developments
in die stacking through silicon via (TSV) [10]. For example, the die stacking of homogeneous DRAM
chips extends their capacity without power and performance losses [11,12]. Moreover, a heterogeneous
combination of logic and DRAM dies, such as for a high-bandwidth memory (HBM) or hybrid memory
cube (HMC), increases the data bandwidth without a significant power overhead [13,14]. The meaning
of the power implied above is precisely the power relative to the performance value, such as capacity
and bandwidth. For example, when comparing Graphic Double Data Rate 5 (GDDR5) and HBM with the
same capacity and bandwidth performance, HBM’s power consumption is significantly smaller. However,
though they have enhanced the memory sub-system in terms of capacity and bandwidth, the latency
improvements have been neglected.

In order to overcome the long latency problem of DRAM, many computers embed numerous caches
in the CPU. The cache not only overcomes the long latency of DRAM, but it also provides data locality for
the pre-fetched pages. Thus, it offers large bandwidth locally in a CPU. However, since a typical cache
is implemented using static random access memory (SRAM), it incurs large costs and consumes a high
amount of leakage power. As a result, it is essential to reduce the DRAM latency itself to improve memory
access latency (In this paper, DRAM latency refers to the time required for a DRAM controller to read or
write data to a DRAM device, and memory access latency represents the latency required to access the
data of the cache or DRAM by the processor instructions.).

The in-DRAM cache, which is embedded in a DRAM device, has several unique characteristics that
differ from the processor cache [15]. First, the cache itself is placed in the DRAM, but its operation is
managed by the DRAM controller. This is because the interface between the controller and the DRAM
follows the DRAM timing constraints specified in joint electron device engineering council (JEDEC),
which maintains high compatibility with the current computing system. Of course, there are various
ways to implement the in-DRAM cache and its manager, such as operating systems (OS) or processor
modifications. However, such methods require many modifications to the current computing system, and
eventually degrade compatibility. We designed the manager to the DRAM controller so that the proposed
method could follow the JEDEC specification, and implemented the in-DRAM cache in the DRAM device.
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Secondly, the capacity of the in-DRAM cache increases proportionally to the DRAM capacity and is much
larger than the processor cache. For example, when hundreds of gigabytes of DRAM are mounted in a
system, while the memory capacity of the processor cache remains constant at several hundred megabytes,
the capacity of the in-DRAM cache can be up to tens of gigabytes. However, this large-capacity in-DRAM
cache requires a larger tag size. This results in long tag access latency, which in turn increases the overall
memory access latency. To overcome this problem, the data transfer granularity between the DRAM and
in-DRAM cache, which is called cache block size, must be increased. However, this causes significant
power consumption.

Power issues in DRAMs are very important in terms of minimizing the energy consumed by the
DRAM chip itself, and are also critical parameters for 3D-stacked DRAMs from a thermal point of view.
Since a 3D-stacked DRAM chip consists of several dies, it is very difficult to emit the heat generated
inside the chip to the outside. This heat degrades the retention characteristics of the DRAM cells, and
thus DRAM requires a shorter refresh cycle. However, reducing the refresh cycle of the high-capacity
3D-stacked DRAM results in more heat, which causes the retention time of the DRAM cell to decrease
again. Therefore, thermal problems in 3D-stacked DRAMs are very sensitive design parameters and must
be overcome.

Considering various properties of the in-DRAM cache, this paper proposes two new in-DRAM cache
management algorithms for the data replacement, particularly to maximize its efficiency and minimize its
energy consumption. In addition, the proposed management algorithms are not tied to a specific in-DRAM
cache architecture, and can be appropriately adapted to general architectures.

2. Background and In-Dynamic Random Access Memory (DRAM) Cache Architecture

A DRAM chip consists of the DRAM cell array area and peripheral circuits, including several in-out
ports (Figure 2). Here, the DRAM cell region is composed of a plurality of sub-arrays, including DRAM
cells and bit-line sense amplifiers. As mentioned in Section 1, DRAM latency improvements are very
slow, and there are many reasons for this. The reason for the slow latency improvement is directly
related to cost and power consumption [16,17]. In order to reduce the sensing and pre-charge time,
for example, the number of cells connected per bit-line should be reduced [18]. However, this leads to
an increase in the number of bit-line sense amplifiers, and thus increases the chip size. Moreover, timing
constraints, such as CAS latency (tCL) are mainly influenced by the speed of the data path. In order to
improve this speed, the capacitive metal loading of the data path signal should be decreased, or its driver
strength should be increased. However, these approaches may increase the cost or power consumption.
Consequently, the latency of a DRAM device must be optimized with the simultaneous consideration of
multiple side-effects. In this paper, we focus on the in-DRAM cache among various skills to reduce the
latency of DRAM, and discuss its management method.
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Figure 2. Conventional DRAM structure.

We deal with three types of in-DRAM cache structures based on recently published tiered-latency
DRAM (TL-DRAM) and center high-aspect-ratio mats (CHARM) [19,20].

• TL-DRAM: This divides the bit line of the DRAM array into two segments and uses the long one as
the DRAM memory, and the short one as the in-DRAM cache [19,21]. Here, the TL-DRAM exploits
the characteristic that the short bit line improves the sensing and the pre-charge speed, and uses it
as a cache memory. Figure 3a shows the TL-DRAM architecture, which is the same in terms of the
overall DRAM structure. However, the DRAM array belonging to one bank is different from the
conventional one.

• Cache-die: This utilizes a single die among the 3D-stacked dies as the cache (Figure 3b). The in-DRAM
cache can be implemented as SRAM or DRAM, but only the DRAM is covered in this paper. This
architecture has the advantage of being able to implement a significant amount of cache capacity, but
it has the disadvantage of requiring a large area overhead.

• Cache-bank: This is similar to the CHARM structure [20]. Some DRAM banks are used as low-latency
DRAM caches, and this paper calls them cache banks (Figure 3c). It has a smaller cache capacity
than the cache die, but it can significantly reduce the latency because the cache banks are close to the
input/output interfaces of the DRAM.

In this work, we consider the three types of in-DRAM architecture described above at the same time.
This is because the purpose of this paper is not to propose a new in-DRAM architecture, but to describe its
efficient management algorithms. The cache replacement policy is also important. The most representative
cache replacement algorithms are fist-in-first-out (FIFO) and least-recently-used (LRU). The FIFO policy
removes the first block accessed the first time, regardless of how often or how many times the cache is
accessed. Conversely, LRU discards the least recently used items first, and is a commonly used policy
because it generally exhibits better hit-ratio characteristics. However, since it takes a long time to find the
appropriate replacement items, it is not appropriate for in-DRAM caches that are very sensitive to latency.
Therefore, we chose to adopt the FIFO policy as the default replacement policy for the in-DRAM cache
due to its fast operating time. We tackle these issues in Sections 3 and 4 in more detail.
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Figure 3. In-DRAM cache architectures.

3. Exploration of in-DRAM Cache Management

To design the in-DRAM cache and its management scheme, it is important to distinguish between
the properties of the typical caches and the in-DRAM caches [1]. This is because in-DRAM cache
management techniques are fundamentally based on the processor cache. This section describes the
key design parameters of the in-DRAM cache that are distinct from the processor cache.

3.1. Trade-Off between Capacity and Latency

The capacity of the in-DRAM cache is generally much larger than the processor cache. While
the processor cache, which is implemented by SRAM, has limited capacity growth due to the power
consumption and area overhead, since the in-DRAM cache is configured by DRAM cells, the capacity can
be expanded at a low cost. However, the capacity of such an in-DRAM cache is in a trade-off relation
with latency depending on how many cells are connected to a bit line. This is because as more cells are
connected to one bit line, the capacity of the DRAM increases, while the sensing speed decreases. Figure 4
shows the simulation program with integrated circuit emphasis (SPICE) simulation results of the tRCD
and tRP representing the sensing and pre-charge speed, respectively. The figure shows that when 64 cells
are connected to a bit line, tRCD and tRP are set to saturation. In addition, Figure 5 shows the waveform
of the bit line and cell node for the 512 and 64 cells per bit line. Based on these results, we assumed the 64
cells per bit line as the basic configuration of the in-DRAM cache.

Figure 4. Changes in tRCD and tRP according to the various cells per bit line.
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(a)

(b)

Figure 5. (a) SPICE simulation waveform with 512 cells per bit line, (b) Spice simulation waveform with 64
cells per a bit-line and pre-charge time.

3.2. Trade-Off between Tag Size and Power Consumption

The processor cache consists of data and tags in the CPU, which greatly reduces hundreds of
nanoseconds of memory-access latency to tens of nanoseconds. Therefore, even though the size of
the tag is large and its read-speed is somewhat slow, it is not a big deal on the overall memory access time.
On the other hand, although the capacity of the in-DRAM cache is large and its hit ratio is thus quite high,
the latency that can be reduced by the in-DRAM cache is only several nanoseconds. Therefore, it is very
important to minimize the tag access time.

The access time of the tag is influenced by the block size and the capacity of the in-DRAM cache.
The larger the cache capacity or the smaller the cache block size, the larger the tag size. Figure 6 shows
that the tag size grows from several KB to tens of MB depending on the block size and the capacity.

Figure 6. Tag-size variation with the block size and the capacity of in-DRAM cache.

There are two ways to reduce the tag size. One is to reduce the capacity of the cache, and the other
is to increase the cache block size. However, the former is not the ultimate goal of an in-DRAM cache.
Therefore, we should increase the cache block size, which has other side-effects. Firstly, a cache block
size which is too large can cause significant time overhead and power consumption for the data transfer.
Secondly, for applications with low locality, it lowers the hit ratio of the in-DRAM cache. Therefore,
it needs to design very sophisticated cache management techniques that considers these aspects.
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4. Proposed In-DRAM Cache Management Algorithms

Typical DRAMs use a rank and bank interleaving policy to maximize data bandwidth. It maximizes
the reuse rate of any pre-activated row address. This property motivated us to define the block size of
the in-DRAM cache as the total data contained in a specific row address of all ranks and banks in the
3D-stacked DRAM. This method is disadvantageous in terms of time and power consumption, because a
single data transfer operation moves hundreds of KB of data at the same time. On the other hand, it has
the advantage that the tag access time can be reduced by minimizing the tag size. Therefore, it is important
to maximize the hit ratio of the in-DRAM cache and to minimize the performance and power damage
caused by the transfer. We discuss how to effectively utilize the in-DRAM cache by proposing two new
in-DRAM cache management algorithms in the sections below.

4.1. Critical Data Detection and Evaluation Scheme

The Critical Data Detection and Evaluation (CDDE) scheme is designed to maximize the hit ratio of
an in-DRAM cache. This is a technique that evaluates and replaces the criticality of new data, rather than
replacing it with new data unconditionally when a cache miss occurs. Therefore, the proposed technique is
divided into the critical data detection stage and evaluation stage. Figure 7 shows the brief description of
the proposed algorithm. A unit cycle to determine a data transfer is defined by multiple activation counts,
called T1. T1 is divided into four steps, as shown below.

• Step 1: The algorithm finds the most frequently accessed row address (First_Row).
• Step 2: The in-DRAM cache manager selects a candidate entry (Replace_Row) to be replaced in the tag,

where the replacement policy can be the least recently used (LRU) or first-in first-out (FIFO) that are
similar to the legacy replacement policy [1]. In this paper, we use the FIFO, which can minimize the
time delay for the candidate selection.

• Step 3: It measures the reuse counts for the First_Row and Replace_Row, called RC_FR and RC_RR,
respectively, to define the more valuable one in terms of reuse.

• Step 4: The manager compares RC_FR and RC_RR and starts the transfer if RC_FR is larger than
RC_RR.

The CDDE scheme is an algorithm that allows in-DRAM caches to operate very carefully to maximize
hit ratios, but does not consider power consumption due to mass transfer. Therefore, we propose a new
in-DRAM cache management scheme that considers power consumption.

Figure 7. Descriptions of the proposed Critical Data Detection and Evaluation (CDDE) algorithm.
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4.2. Power-Aware in-DRAM Cache Management Algorithm

Although the operation of the in-DRAM cache increases the power consumption as a result of massive
data transfer, it also decreases the operating power owing to the reduced capacitance of the bit-line or
shortened signal line between the core and I/O pads. These facts provide us an opportunity to compensate
for the increase in transfer power. In other words, if the hit rate of the in-DRAM cache is sufficiently high
enough to compensate for the increased transfer power, the overall power of the DRAM device can be
maintained constant. In this work, we define several parameters. PN and αPN represent the amounts of
power consumed to access the normal DRAM and in-DRAM cache, respectively. Furthermore, we define
the transfer power as PM and the hit ratio of the in-DRAM cache as HR. Along with the defined parameters,
the total DRAM access energy over time of any activation count (CA) is calculated as Equation (1).

Eacc = {PN × tRC(1 − HR) + αPN × tRC(HR)} × CA (1)

Equation (1) indicates that, as the hit rate of the in-DRAM cache increases, the overall access energy
decreases. We will fill the reduced energy with transfer energy.

Etran = PT × TT (2)

The transfer energy is calculated as shown in Equation (2), where PT represents the transfer power
consumed when the rows of all the ranks and banks are migrated. In addition, the TT indicates the time
needed for a data transfer.

In this paper, we limit the total energy of the proposed scheme to be less than that of normal DRAM
devices. Finally, Equation (3) shows the limiting condition.

Eacc + Etran < PN × tRC × CA (3)

From Equations (1)–(3), we conclude that the transfer counts are limited, as shown in Equation (4).

TT <
PN × tRC × CA(1 − α)HR

PT
(4)

In Equation (4), all the parameters except HR of the right terms are predefined design parameters.
Therefore, if the proposed scheme can monitor HR in real time, the available TT can be calculated
periodically. The in-DRAM cache manager in the DRAM controller controls the T1 according to
Equation (4).

Figure 8 shows the hardware implementation of the proposed scheme. The shaded part—the
in-DRAM cache manager—must be added to the normal DRAM controller. The manager controls the
timing constraints, such as tRCD, tRP, tAA, tWR, and tRAS when the addresses of the issued commands
are included in the tag. The active counter identifies the four stages of CDDE, and the first row detector
determines the most frequently accessed row address. Finding the First_Row is done in real time whenever
an active row address is entered. The first row detector has as many counters as the number of bits in a
row address. For example, if a row address is configured from 0 to 15, there will be a total of 16 counters.
Therefore, when a row address is input, only the counters of bits corresponding to 1 out of the 16 bits
are incremented by 1. At the end of Step 1 of the CDDE algorithm, the first row detector compares the
total number of active inputs and the number of 1’s in each bit during step 1, and sets only the row
address bits that are more than half of the active counts to 1. Finally, it returns First_Row consisting only
of bits defined as 1 out of 16 bits. The reuse counter has two registers, one for storing the address of
First_Row and the other for storing the row address to be replaced. In addition, it has a counter for each
register, which increments each counter whenever a row address equal to the value of each register is

258



Micromachines 2019, 10, 124

input. Finally, it defines the more valuable row address in terms of hit rate with the counter output. Our
proposed approach is applicable regardless of whether it is an open- or closed-page policy. In other words,
the DRAM controllers using an open-page policy do not send multiple active commands continuously for
a single row address. However, due to the specification of DRAM which requires only one row address to
be activated in one bank, even if the open-page policy is used, there is a high possibility of accessing the
same row address discontinuously. The data transfer controller contains a hit history queue (HitQ) and a
transfer history queue (TransQ). It finally determines whether or not to execute a transfer according to the
power-aware management algorithm.

Figure 8. Implementations of in-DRAM cache manager on the DRAM controller.

Our proposed in-DRAM cache structure consists only of tags and data. This is because it can minimize
tag access time, which is one of the most important factors of in-DRAM cache. Secondly, because it is not a
multilevel structure like a typical cache, the tags do not need bits to store various information. In addition,
our proposed in-DRAM cache operates in a write-through manner, minimizing the complexity of the cache
itself and eliminating the latency penalty.

The biggest overhead in the in-DRAM cache manager is a tag that occupies from 1.125 KB to 4.5 KB.
We used the CATTI tool to calculate its area and leakage power [22]. According to the CACTI tool, for a
32 nm technology, the tag requires 0.05 mm2 and consumes 1.2 mW standby leakage power. In addition,
the time overhead of the tag is expected to be 2 ns, which can be minimized because the tag does not have
any special information other than the row address and operates in a direct-mapped manner. Since the
HitQ and TransQ each consist of 64 entries, we assumed that the area or time overhead could be ignored.
The size of the tag may vary depending on the size of the in-DRAM cache. In contrast, the size of the HitQ
and TransQ does not depend on the capacity of the in-DRAM cache, which is one of the design parameters.

5. Experimental Results and Discussion

In this paper, we have proposed two new in-DRAM cache management techniques. The ultimate
goal of the both is to reduce DRAM latency by achieving maximum in-DRAM cache efficiency within a
given energy budget. To evaluate the performance of the proposed techniques, we modeled a computing
system including various 3D-stacked DRAM architectures using gem5 and DRAMSim2, a modular platform
for computer system architectures [23,24]. Table 1 shows the system and DRAM configurations used
in the system simulation of this paper. The cache block size of 256 KB is equal to the total data size
contained in a row address of all ranks and banks in the 3D-stacked DRAM. The tag for the in-DRAM
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cache is implemented in the DRAM controller with a direct-mapped manner by SRAM. We verify
the effectiveness of the proposed schemes for various workloads of the PARSEC benchmark suite
consisting of multi-threaded programs [25]. Table 2 summarizes the timing constraints for the normal
DRAM and in-DRAM cache, where the tAA and tWR of the in-DRAM cache are only applied to the
cache-bank architecture.

Table 1. System and dynamic random access memory (DRAM) configurations.

CPU Frequency 2 GHz

DRAM Types DDR3 1600 (800 MHz)

DRAM Capacity 2 GB

in-DRAM Cache Capacity
TL-DRAM: 256 MB
Cache-die: 512 MB

Cache-bank: 128 MB

Cache Block Size 256 KB

Tag Size
(DRAM controller)

TL-DRAM: 2.25 KB
Cache-die: 4.5 KB

Cache-bank: 1.125 KB

Row Buffer Policy Adaptive Open Page

DRAM cells per a bit line
512 (DRAM)

64 (in-DRAM cache)

DRAM cells per a word line 1024

Refresh Rate 64 ms

Bit line array structure Open bit-line

Transfer time per a row 128 * tCCD (5 ns) = 640 ns

Table 2. Timing constraints of the normal DRAM and the in-DRAM cache. ACT–activate, PRE–pre-charge,
RD–read, WR–write.

Paramter Symbol Normal DRAM in-DRAM Cache

Clock cycle tCK 1.25 ns 1.25 ns
ACT to internal RD or WR delay tRCD 13.75 ns 8.75 ns
PRE command period tRP 13.75 ns 8.75 ns
ACT-to-PRE command period tRAS 35.0 ns 15.0 ns
ACT-to-ACT command period tRC 48.75 ns 23.75 ns
Internal RD command to data tAA 13.75 ns 8.75 ns
Write recovery time tWR 15.0 ns 10.0 ns

Figure 9 shows the energy delay product (EDP) results for the TL-DRAM, cache die, and cache
bank architectures, which are managed by the conventional FIFO cache management (In this paper,
all experimental results are normalized for a typical 3D-stacked DRAM without an in-DRAM cache.).
As shown in Figure 9, TL-DRAM, which requires low transfer latency and power, has an average of 54%
improvement in EDP across all workloads, even when using a conventional cache management scheme.
However, for the cache die and cache bank, EDP increases by 2 and 1239 times, respectively, when the most
memory-intensive workload canneal is running. That is, if the data locality of the workload is low, data
transfer between the cache and the DRAM is more frequent and energy consumption due to the transfer
becomes more serious. In particular, such a phenomenon is exacerbated in a cache bank-like structure
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having a small cache capacity. These results show that typical cache management schemes are not suitable
for cache die and cache bank structures, although they may be appropriate for TL-DRAM, and require
new algorithms for them.

Figure 9. Normalized energy delay product (EDP) results for the TL-DRAM, cache die, and cache bank
architecture which are managed by conventional FIFO cache management.

To evaluate the effectiveness of the CDDE scheme, we experimented with the latency, energy, and
EDP performance of 3D-stacked DRAMs with the TL-DRAM, cache die, and cache bank structures for
various transfer cycles (T1), and Figure 10 shows the results. As shown in Figure 10, TL-DRAM exhibits
better latency and EDP performance as the T1 is smaller, but the cache die and cache bank structure have
an optimal T1 in terms of EDP depending on the properties of the workloads. Since the CDDE scheme
helps prevent unnecessary data transfer between the in-DRAM cache and the DRAM, it can achieve better
EDP performance over conventional cache management techniques. In addition, CDDE minimizes the
EDP performance variation across the workloads compared to conventional management. When applying
the conventional management, the difference of normalized EDP is shown to be 0.5 to 1238, according
to the data locality (Figure 9). However, when CDDE is applied, it is shown to be 0.5 to 0.9. Despite the
benefits of CDDE, it suffers from low EDP efficiency because it has to use a fixed T1, even though different
T1s have to be applied to each application.
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(c)

Figure 10. Normalized latency, energy, and EDP of TL-DRAM (a), cache die (b), and cache bank (c)
structures for various unit cycles (T1) with CDDE.

In order to the overcome the drawbacks of CDDE, we implemented the power-aware in-DRAM
cache management algorithm and evaluated its performance. Figure 11 shows that the average latency
of 3D-stacked DRAMs improved by 22%, 25%, and 28% for the TL-DRAM, cache die, and cache bank,
respectively, and EDP by 53%, 53%, and 67%, respectively. Applying the conventional cache management
techniques to the in-DRAM cache, TL-DRAM had the best performance with 23% and 54% improvements
in latency and EDP, respectively. However, when the proposed CDDE and power-aware management
schemes were applied, the EDP of cache bank architecture showed 28% and 67% improvements in latency
and EDP, respectively. This implies that although the TL-DRAM has low time and energy consumption
for the data transfer, it is not sufficient to improve DRAM latency. In addition, adaptive management
techniques, such as CDDE and power-aware which were proposed in this paper, can more effectively
reduce DRAM latency in a structure that can basically maximize latency improvement, like cache die and
cache bank.
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Figure 11. Normalized latency and EDP for the TL-DRAM, cache die, and cache bank architecture with the
proposed algorithm. REFs are the latency and EDP results of TL-DRAM with conventional management.

6. Conclusions

Despite the recent introduction of various in-DRAM cache architectures, there was a lack of interest
in how to manage them. In this paper, we studied how to derive optimal EDP by maximizing the hit ratio
of In-DRAM cache and reducing power consumption due to data transfer. As a result, we achieved an
improved EDP of 3D-stacked DRAM up to 67% compared to the conventional cache management scheme.
Typical cache management techniques have several limitations when applied to the in-DRAM cache,
and the effect depends on the architecture. However, the approach proposed in this paper demonstrates
consistent improvements across all architectures.

Author Contributions: H.H.S. designed the architecture and algorithm, and performed the experimental testing.
E.-Y.C. supervised the work and provided expertise.

Funding: This work was funded by the National Research Foundation of Korea (NRF), by the Korea government
(MSIP) (grant number 2016R1A2B4011799), by the Ministry of Trade, Industry & Energy (MOTIE) (grant number
10080722) and Korea Semiconductor Research Consortium (KSRC) support program for the development of the future
semiconductor device and by Samsung Electronics Company, Ltd., Hwasung, Korea.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

DRAM dynamic random access memory
OLTP on-line transaction processing
TSV through silicon via
HBM high-bandwidth memory
HMC hybrid memory cube
SRAM static random access memory
CDDE critical data detection and evaluation
LRU least recently used
FIFO first-in first-out
EDP energy delay product
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