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Abstract: Regional studies on the erosive power of rainfall patterns are still limited and the actual
impacts that may follow on erosional and sedimentation processes are poorly understood. Given the
several interrelated challenges of environmental management, it is also not always unclear what is
relevant for the development of adaptive and integrated approaches facilitating sustainable water
resource management. This editorial introduces the Special Issue entitled “Rainfall Erosivity in Soil
Erosion Processes”, which offers options to fill some of these gaps. Three studies performed in China
and Central Asia (by Duulatov et al., Water 2019, 11, 897, Xu et al., 2019, 11, 2429, Gu et al. 2020, 12, 200)
show that the erosion potential of rainfall is increasing in this region, driving social, economic, and
environmental consequences. In the same region (the Weibei Plateau in China), Fu et al. (Water 2019,
11, 1514) assessed the effect of raindrop energy on the splash distance and particle size distribution
of aggregate splash erosion. In the Mediterranean, updated estimates of current and future rainfall
erosivity for Greece are provided by Vantas et al. (Water 2020, 12, 687), while Diodato and Bellocchi
(Water 2019, 11, 2306) reconstructed and investigated seasonal net erosion in an Italian catchment
using parsimonious modelling. Then, this Special Issue includes two technologically oriented articles
by Ricks at al. The first (Water 2019, 11, 2386) evaluated a large-scale rainfall simulator design to
simulate rainfall with characteristics similar to natural rainfall. The data provided contribute to the
information that may be useful for the government’s decision making when considering landscape
changes caused by variations in the intensity of a rainfall event. The second article (Water 2020,
12, 515) illustrated a laboratory-scale test of mulching methods to protect against the discharge of
sediment-laden stormwater from active construction sites (e.g., highway construction projects).

Keywords: erosion control; mulching; net soil erosion; raindrop energy; rainfall erosivity; runoff;
sediment yield

1. Introduction

Rainfall erosivity is a major driver of sediment and nutrient losses worldwide, which may
leave farmers vulnerable to crop failures and lead to unstable equilibrium states in landscapes [1,2].
The exposure of the Earth’s surface to aggressive rainfall is a key factor controlling the water erosion in
terrestrial ecosystems [3] and other damaging hydrological events, such as floods and flash floods [4].
The occurrence of hydrological extremes and the associated sediment loss during rainfall events
are central features in the global climate system because worldwide variations in temperature and
precipitation patterns produce corresponding changes in the development of natural hazards [5].
It is also assumed that extreme storms and rainfall-runoff erosivity are becoming more frequent due
to climate change [6]. Highly vulnerable areas may result in catastrophic regime shifts connected
with the occurrence of damaging hydrological events [7]. This explains the continuing interest of
scientists and engineers in the hydrological response of landscapes. This interest ranges from a basic
understanding of processes to prediction under changing conditions, driven by a greater recognition
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of the cost (both financial and environmental) of neglecting the hydroclimatic forcing factors in
relation to soil conservation systems and land-use planning. This Special Issue is an overview of the
research and implications for environmental monitoring and policymaking, and encourages further
methodological development.

2. Special Issue Overview

The special issue of Water entitled “Rainfall Erosivity in Soil Erosion Processes” publishes eight
articles that provide insights into challenges of hydrology and emerging issues at the interface with
other related sciences like geomorphology.

The Special Issue contains four articles with a focus on hydrological hazards across China and
Central Asia, dealing with: (1) spatiotemporal patterns of rainfall erosivity (Gu et al. [8]), (2) the
explanatory power of peak rainfall amounts on sediment yield (Xu et al. [9]), (3) climate-change-induced
rainfall erosivity (Duulatov et al. [10]), and (4) rainfall energy-induced soil splash erosion (Fu et al. [11]).
The Tibetan Plateau (the focus of Gu et al. [8]), the most active geological belt in China, is not only
being affected by the melting of glaciers and other ice formations but also by heavy precipitations
that provoke widespread soil loss. These conditions may increase the risk of soil erosion. Especially
in spring, rainfall erosivity has been significantly increasing from the 1980s. The southeastern region,
where severe soil erosion restricts the development of agriculture and animal husbandry, requires
the sustained attention of scientists. The study performed by Xu et al. [9] on the Shixia watershed,
in the northeast of the upper reaches of Miyun reservoir in Beijing (China), is about how rainfall
morphology affects runoff and soil loss, which is important to deepen the understanding of catchment
hydrology and provide support for water and soil resource management. This contribution is worthy
because the researches on rainfall affecting runoff and sediment yield rarely analyze impacts from the
point of view of rain peak morphology. Fu et al. [11] clarified the effect of raindrop energy on the
splash distance and particle size distribution of aggregate splash erosion and introduced a modelling
approach to predict splash erosion in the Loess Plateau (central China). Duulatov et al. [10] estimated
the potential influence of climate change on erosivity precipitations over Central Asia. In recent years,
climatic conditions in Central Asian countries (Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan,
and Uzbekistan) have changed owing to the reduction in glacier areas, accompanied by a shortage
of water for irrigation, degraded natural vegetation covers, erosion processes and salinization, and a
decreasing productive capacity of irrigated lands. The authors’ predictions indicate that Kyrgyzstan
and Tajikistan are expected to be the most affected countries from changes in rainfall patterns, especially
from the increase in rainfall erosivity.

Two papers addressed specific topics in the Mediterranean region, where desertification is a
serious issue that could be aggravated by rainfall-driven soil erosion. This was highlighted for Greece
by Vantas et al. [12], while Diodato and Bellocchi [13] advocated a parsimonious modelling approach
for the reconstruction of past erosion data, with an application to a small Mediterranean basin, whose
dynamics are analysed in response to climate variability and land-use changes.

Finally, the topics addressed in two studies developed in Alabama (US) by Ricks et al. [14,15]
are interesting and challenging in equal measure, and with a high degree of novelty that decision
makers may find motivating and engaging. The methods used are high-tech (e.g., adding soil-specific
polyacrylamide to erosion-control practices for a greater erosion control), supported by an adequately
described mathematical background, and combined with application for construction sites apart from
soil erosion itself, the transported sediments being carriers of contaminant factors as well.

3. Conclusions

Water, which is a precious resource for ecosystems, can also turn into a land-disturbing factor
due to the erosive force of rainfall, expressed as storm erosivity. Hydrological extremes alter soil
structure, triggering erosion, but the ecological consequences of shifts in precipitation extremes
and characteristics due to climate change (e.g., nutrient loss and carbon balance) are often poorly

2



Water 2020, 12, 722

understood. The widespread availability of high-temporal resolution rainfall records for large areas and
the development of climate models have opened new opportunities for using methods for large scale
planning and hazard prevention. This Special Issue raises awareness of the crucial role of hydrological
extremes, though the limitations of the body of articles it publishes should be highlighted. It is
important that it takes part in sketching the future of two regions particularly sensitive to hydrological
changes (i.e., the Mediterranean and Central Asia with China), but there is still a lack of established
studies in several regions of the world. Then, this Special Issue does not consider in full measure
the extent to which population density, infrastructures, plant density, and other factors influence
the occurrence of hydrological damages. The approaches and data resources that this Special Issue
introduces are thus expected to promote future research and encourage the consideration of a wide
array of scientific sources and possible methods for delivering decision support in various contexts.
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Abstract: A future variation of precipitation characteristics, due to climate change, will affect the
ability of rainfall to precipitate soil loss. In this paper, the monthly and annual values of rainfall
erosivity (R) in Greece are calculated, for the historical period 1971–2000, using precipitation records
that suffer from a significant volume of missing values. In order to overcome the data limitations, an
intermediate step is applied using the calculation of monthly erosivity density, which is more robust
to the presence of missing values. Spatial Quantile Regression Forests, a data driven algorithm that
imitates kriging without the need of strict statistical assumptions, was utilized and validated, in order
to create maps of R and its uncertainty using error propagation. The monthly average precipitation
for the historical period 1971–2000 estimated by five (5) Global Circulation Models-Regional Climatic
Models were validated against observed values and the one with the best performance was used
to estimate projected changes of R in Greece for the future time period 2011–2100 and two different
greenhouse gases concentration scenarios. The main findings of this study are: (a) the mean annual R
in Greece is 1039 MJ·mm/ha/h/y, with a range between 405.1 and 3160.2 MJ·mm/ha/h/y. The highest
values are calculated at the mountain range of Pindos and the lowest at central Greece; (b) the
monthly R maps adhere to the spatiotemporal characteristics of precipitation depth and intensities
over the country; (c) the projected R values, as an average over Greece, follow the projected changes
of precipitation of climatic models, but not in a spatially homogenous way.

Keywords: rainfall erosivity; erosivity density; climate change; regional climate models; quantile
regression forests; Greece

1. Introduction

Rainfall erosivity concerns the ability of rainfall to precipitate soil loss [1], as it supplies energy to
the mechanical processes of soil erosion. Decertification has been identified as one of the most serious
issues facing Mediterranean European countries, including Greece [2], and a possible increase in future
rainfall, due to climate change, will aggravate this process, as soil erosion increases at a greater rate [3].
Unanticipatedly, a decrease in future rainfall and a possible decrease of biomass production may also
lead to higher erosion rates [4].

Higher erosion rates in conjunction with unsustainable land management and increasing human
pressure can lead to soil degradation [5], and consequently a disrupted ecological balance, a decreasing
agricultural production and income [6] and even the reduction of effectiveness of adaptation options [7].
Several issues may arise due to accelerated soil losses on achieving of the Sustainable Development
Goals of the United Nations [8], as these goals are dependent on a healthy biophysical environment
in which the soil is the base [9]. In order to predict these soil erosion future changes it is necessary

Water 2020, 12, 687; doi:10.3390/w12030687 www.mdpi.com/journal/water5
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to simulate changes in future rainfall erosivity, land uses and the application of policies on land
management [10].

Universal Soil Loss Equation (USLE) [11], which is the most widely used soil erosion prediction
model in the world [12], is an empirical equation that estimates the long-term, average, rate of soil loss
involving the product of six factors. The USLE erosivity factor, R, is calculated using high frequency or
break-point precipitation data with a duration of over 20 years [13,14], as a function of rainfall intensity
and depth. In the second revised version of USLE, RUSLE2 [15], monthly Erosivity Density (ED) was
introduced, as a measure of rainfall erosivity per unit rainfall, which requires shorter precipitation
record lengths. ED is approximately a function of values only related to rainfall intensity and was
used in RUSLE2 as an intermediate step, in conjunction with coarser, monthly, precipitation data, to
compute R values in the USA.

Precipitation in Greece has been investigated in several studies over the past two decades [16–23].
In general, precipitation varies from its maximum values during winter to a minimum during summer.
The highest precipitation values are observed on the mountain range of Pindos, and its expansion
on Peloponnesus, and the lowest values of precipitation are recorded on the Cyclades Islands, at the
center of the Aegean Sea. Due to the fact that most weather systems and prevailing winds are moving
over the Ionian Sea perpendicularly to Pindos, a contrast exists between the wetter western parts of
the country and the dryer eastern ones. During summer months convective activity over northern
Greece produces higher precipitation amounts than over the drier southern parts.

Global Circulation Models (GCMs) are models that represent the atmosphere, land surface, ocean
and sea ice and simulate their interactions in three dimensions, to make long-term predictions of
climate [24]. Different scenarios about future concentrations of greenhouse gases (Representative
Concentration Pathways, RCPs) are employed to describe a set of different climate futures that drive
GCMs [25]. Due to the coarse grid scale of GCMs (over 80 to ~300 km), Regional Climate Models
(RCMs) were developed to downscale them and provide information on a finer scale, more applicable
to local scaled phenomena, impact studies and adaptation decisions. RCMs are dependent on GCMs,
because GCMs provide the response of global circulation, greenhouse gases concentrations, etc.
and RCMs refine them in a spatiotemporal sense, using features such as the topography, coastlines,
land cover or mesoscale dynamics [26]. The climatic models from COordinated Regional Climate
Downscaling EXperiment over Europe (EURO-CORDEX) [27], using high-resolution RCMs for the high
greenhouse gases concentration scenario, RCP8.5, project a decrease of precipitation from 1971–2000 to
2071–2100 and for the medium concentration scenario, RCP4.5, project the same trend with a smaller
magnitude [27,28]. Regarding rainfall intensity, in the form of heavy precipitation that exceeds the
intensity at the 95th percentile of daily precipitation, the same models project diverging trends that are
not statistically significant in most areas of Greece [27,28].

In our previous studies about ED in Greece [29,30] it was proven that, in general, ED values are
robust to the presence of missing values in contrast to R, which is highly affected, and specifically in
Greece: (a) the values of ED are not significantly correlated with the elevation, (b) ED annual timeseries
are found to be stationary, in contrast to reported precipitation trends for the same time period and
(c) ED can be considered as spatially autocorrelated, as three contiguous areas were identified using
clustering analysis, that had distinct temporal patterns. A comparison of our studies with an earlier
study about R in Greece by Panagos et al. [31] revealed that the previously reported R values were
underestimated due to the presence of a significant volume of missing data in the precipitation records
used in the calculations.

In the Mediterranean region, the annual R model MedREM was developed using annual
precipitation depth, the longitude and annual daily maximum precipitation data [32]. A recent
paper regarding the estimation of future R values in Europe for 2050 [10], used one GCM and a single
RCP, applied Gaussian Process Regression using monthly variables obtained from the WorldClim
dataset [33] and estimated an increase of R by 14.8% in Greece. A number of papers in Europe examined
the potential increase of rainfall erosivity using temporal trends of high resolution precipitation data
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in Western Germany [34], Belgium [35] and in the Czech Republic [36]. Other studies in various
parts of the world used GCMs in conjunction with empirical equations that predict R using annual
precipitation [37,38], monthly [39,40] and daily rainfall indices [41,42]. A different approach estimated
projected R changes, using a weather generator with spatial and temporal downscaled precipitation
values coming from various GCMs [43].

Random Forests [44] is a data-driven algorithm in the area of supervised learning which tries to
fit a model using a set of paired input variables and their associated output response and can be used
in classification and regression problems. Quantile Regression Forests (QRF) [45], is an extension of RF
that is able to compute prediction intervals of the output response in regression problems. RF has been
used for spatial prediction in various domains [46–50] and recently, Hengl et al. [51] presented RF for a
spatial predictions framework, that can make equally accurate predictions as kriging, without the need
of statistical assumptions.

The aim of this work is to calculate the current and estimate the future changes of R values in
Greece. The latest methodologies developed and presented with RUSLE2 are used, taking into account
the presence of missing values in precipitation records. The first objective of the analysis is to create
monthly precipitation and ED maps, as intermediate datasets, and to estimate the uncertainty of their
predictions and their errors using cross-validation. Consequently, the current R values in Greece are
computed from the interpolated surfaces and error propagation is used to estimate approximately
their uncertainty. Finally, downscaled precipitation from GCMs-RCMs is validated and used, along
with ED, to estimate the potential changes of R in Greece for the years 2040, 2070 and 2100 using two
future greenhouse gases concentration trajectories/pathways (i.e., RCPs). This type of analysis is a
novel approach and it has not been presented, until now, in the international literature.

2. Materials and Methods

The methodology that was applied in the study, is presented in the flowchart of Figure 1, where
data flows from the left to the right. Blue symbolizes the data that were used as input (pointwise and
raster), orange the intermediate raster datasets that were created and green the final results, also in
raster format, that were computed using different sets of input and intermediate datasets.

 

High frequency time 

series precipitation  

Homogenized mean 

monthly precipitation 

Monthly Erosivity 

Density raster datasets 

Monthly Precipitation 

raster datasets 

GCM-RCM raster 

datasets 

Current Rainfall 

Erosivity raster 

dataset 

Projected Rainfall 

Erosivity raster 

dataset Digital Elevation raster 

dataset 

Figure 1. Flowchart of the applied methodology.

2.1. Data Acquisition and Processing

Point precipitation data from 237 meteorological stations across Greece (Figure 2), was used in the
analysis. The data consisted of:
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• Pluviograph data for 87 meteorological stations that were taken from the Greek National Bank of
Hydrological and Meteorological Information (NBHM) [52]. The time series comprised a total of
2273 years of 30-min-records and 394 years of five-min-records for the time period from 1953 to
1997, with a mean length of 30 years per station. The timeseries coverage was 62.8% on average.

• Mean monthly precipitation data for 150 meteorological stations that were taken from the Hellenic
National Meteorological Service (HNMS) [53]. These are homogenized data and available for the
time period from 1971 to 2000. These data were used to overcome the limitations of precipitation
data from NBHM.

• Five different monthly GCM-RCM raster datasets were downloaded for a number of experiments and
time periods (Table 1). These data were computed in the framework of the EURO-CORDEX [27,54],
had a horizontal resolution 0.11◦ × 0.11◦ and were remapped using bilinear interpolation to a 30” ×
30” resolution grid using the Climate Data Operator (CDO) software [55].

Table 1. Global Circulation Models (GCMs)-Regional Climate Models (RCMs) used in the analysis (i.e.,
data retrieved from EURO-CORDEX).

GCM RCM Institution

1 EC-EARTH DMI-HIRHAM5 Danish Meteorological Institute
2 EC-EARTH KNMI-RACMO22E Royal Netherlands Meteorological Institute
3 HadGEM2-ES KNMI-RACMO22E Royal Netherlands Meteorological Institute
4 MPI-ESM-LR CSC-REMO2009 Max Planck Institute for Meteorology
5 NorESM1-M DMI-HIRHAM5 Danish Meteorological Institute

Figure 2. Station locations in Greece used in the analysis. Red points symbolize the 87 stations with
pluviograph data from the Greek National Bank of Hydrological and Meteorological Information
(NBHM) and blue points are the 150 stations with average monthly precipitation from the Hellenic
National Meteorological Service (HNMS).
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The GCM-RCM monthly precipitation timeseries data were:

• Historical, for the time period from 1971 to 2000 (like the ones coming from HNMS) as they were
driven by the boundary conditions provided by the GCMs.

• Future, for the forcing scenarios RCP4.5 (where greenhouse gases emissions peak around 2040
and then decline) and RCP8.5 (where greenhouse gases emissions continue to rise throughout the
21st century), using the control ensemble of the CORDEX climate projection experiments. The
dataset period was from 2011 to 2100.

Digital elevation raster data were downloaded from the NASA Shuttle Radar Topography
Mission (SRTM) [56], and aggregated to the same 30” × 30” resolution grid as the one used in the
GCM-RCMs datasets.

2.2. Monthly Erosivity Density Calculation

The erosivity of a single erosive rainfall event, EI30 (MJ·mm/ha/h), given the product of the kinetic
energy of rainfall and its maximum 30 min intensity, was computed using the pluviograph records
from NBHM [15]:

EI30 =

⎛⎜⎜⎜⎜⎜⎝
m∑

r=1

er · vr

⎞⎟⎟⎟⎟⎟⎠× I30 (1)

where er is the kinetic energy per unit of rainfall (MJ/ha/mm), vr the rainfall depth (mm) for the time
interval r of the hyetograph, which has been divided into r = 1, 2, . . . , s time sub-intervals and I30 is the
maximum rainfall intensity for a 30 min duration during that rainfall.

The quantity er was calculated for each time sub-interval, r, applying the kinetic energy equation
that was used in RUSLE2 [57], which was recently evaluated in Italy, a nearby country to Greece, and
had the best performance among alternative literature expressions [58]:

er = 0.29 ·
(
1− 0.72e−0.82ir

)
(2)

where ir is the rainfall intensity (mm/h).
An individual rainfall event was extracted from the continuous pluviograph data, if its cumulative

depth for a duration of 6 h at a certain location was less than 1.27 mm. A rainfall event was considered
to be erosive if it had a cumulative rainfall depth greater than 12.7 mm. Only the screened events with
a return period of less than 50 years were used in the calculations.

On the grounds that the use of coarser fixed time intervals to a finer one can lead to an
underestimation of the value of erosivity [59,60], monthly conversion factors cm were computed using
the five-min-time-step timeseries:

cm =
1

nm

∑nm

i=1

(EI30)m, ts=5 min

(EI30)m, ts=30 min
(3)

where nm is the number of storms at month m, (EI30)m, ts=5 min is the erosivity of a storm using the five
min time step and (EI30)m, ts=30 min the erosivity of the same storm when the timeseries was aggregated
using a 30 min time step. These conversion factors were applied to the values of erosivity that were
estimated from 30-min pluviograph data.

After the computation of EI30 values, the average monthly rainfall erosivity density EDm (MJ/ha/h)
per station was calculated:

EDm =
1
n

∑n

i=1

⎛⎜⎜⎜⎜⎜⎝
∑stm

k=1(EI30)k

Pm

⎞⎟⎟⎟⎟⎟⎠
i

(4)

where stm is the number of storms during the month m, (EI30)k the erosivity of storm k, Pm the monthly
precipitation height and n the number of years.
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2.3. Spatial Quantile Regression Forests

Random Forests (RF) [44] is one of the most successful methods used in Machine Learning [61],
among other reasons because of: (a) its robustness to outliers [62] and overfitting [63], (b) its ability to
perform feature selection [64] and (c) the fact that its default parameters, as implemented in software,
give satisfactory results [61,65]. Examples of RF open source software are the R’s language packages
randomForest [66] and its faster alternative, ranger [67].

In summary, RF consists of a number of decision trees [68]. For each tree, a random set of the
dataset is created via bootstrapping [69] and in each node of the tree a random set of n input variables
from the p variables of the dataset is considered to pick the best split [70]. The prediction of the output
response in regression problems is the mean value of the estimations of these random decision trees.
The estimate of the out-of-sample error is computed using the out-of-bag error [71], without the need
of cross-validation.

Quantile Regression Forests (QRF) is an extension of RF that provides information about the full
conditional distribution of the output response and not only about its mean [45], as is the case in plain
RF. In this way, it is possible to provide prediction intervals and measures of uncertainty.

The use of QRF as a framework for the modeling of spatial variables was introduced by Hengl
et al. [51], where the distances among observation locations are used as variables in QRF in order
to incorporate geographical proximity effects. In this way, using these buffer distances, spatial QRF
imitate kriging’s spatial correlation. Spatial QRF (spQRF) produces comparable results, in terms of
accuracy, compared to the state-of-the-art kriging methods, with the advantage of no prior assumptions
about the distribution or stationarity of the response variable [51].

In this work, spQRF were used for the spatial prediction of monthly precipitation and ED:

• The 12 monthly ED models (one model for each month of the year) were trained using as input
variables the buffer distances for each one of the 87 stations of NBHM in a chained procedure [72].
In that procedure, at the first run, only the distances are used as input variables and at the nth
both distances and the monthly results from the previous step, with the exception of the month
that is the output response. This procedure stops when the out-of-sample error estimated by RFs
in the form of out-of-the-bag error ceases to decrease.

• The 12 monthly precipitation models were trained using as input variables the buffer distances for
each one of the 150 stations of HNMS and elevation data from the SRTM.

As a measure of the out-of-sample error, the average Root Mean Squared Error (RMSE), the
coefficient of determination R2 and Lin’s Concordance Correlation Coefficient (CCC) were computed
using 10-fold cross validation:

RMSE =

√√
1
n

n∑
i=1

(
ŷ(si) − y(si)

)2
(5)

R2 = 1−
∑n

i=1

(
ŷ(si) − y(si)

)2

∑n
i=1

(
ŷ(si) − μy

)2 (6)

CCC =
2 · σŷy

σ2
ŷ + σ

2
y +

(
μŷ − μy

)2 (7)

where n is the total number of cross-validation locations, ŷ(si) is the predicted value of y(si) at a
cross-validation location si (i.e., the coordinates longitude and latitude of location i), μŷ, μy, σ2

ŷ, σ2
y are

the means and variances of ŷ(si) and y(si), respectively, and σŷy is the covariance of ŷ(si) and y(si).
R2 describes the ratio of variance that is explained by a model and may be negative, among other

reasons, if an inappropriate model is used [73]. CCC combines measures of both precision and accuracy
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and examines how far ŷ deviate from the line of perfect concordance (the line of 45 degrees on a square
scatterplot) and ranges from 0 to ±1 [74,75].

The uncertainty of the predictions from the models, in the form of prediction error standard
deviation, was computed using a dense level of all the quantiles per 1% of the output response and for
every location [51]:

σ(Si) =

√√√√∑100%
p=1%

(
ŷp(si) − μŷ(si)

)2

100− 1
(8)

where ŷp
(si) is the pth percentile of the distribution of the response variable at location si and μŷ(si) the

mean value of ŷp
(si) for all the percentiles.

The quantity z-score, which quantifies the error of prediction errors, was calculated at cross
validation locations [76]:

z(si) =
ŷ(si) − y(si)

σ(si)
(9)

where z, ideally, should have a mean equal to zero and variance equal to one. On the contrary:

• If variance(z) >> 1, the model underestimates the actual prediction uncertainty.
• If variance(z) << 1, the model overestimates the actual prediction uncertainty.

2.4. Regional Climate Models Historical Precipitation Validation

In order to validate and select one of the GCMs-RCMs for the projected erosivity calculations,
at first, a multi-layer raster dataset was computed for each of the five models with the overall
30-year-mean-monthly precipitation values, using the historical time period from 1971 to 2000. Then,
using the monthly precipitation spQRF models to create raster datasets with the same 30” × 30”
resolution grid, RMSE, CCC and R2 errors metrics were computed, setting in Equations (5)–(7) as ŷ(si)

the values estimated by GCMs-RCMs and as y(si) the values calculated by the spQRF models.

2.5. Current and Projected Erosivity Calculation

The estimation of current and future monthly erosivity was made under the assumption of future
temporal stationarity of ED values, due to the fact that ED is related to seasonal rainfall intensity [15]
and EURO-CORDEX GCMs-RCPs models does not project statistically significant trends in most areas
of Greece [27]. Temporal stationarity of ED values already has been documented in Greece for the
historical period [30].

The current monthly erosivity was calculated as the product of predictions of the trained spQRF
models of monthly EDm and precipitation Pm for each month m:

R̂m
(si) = P̂m

(si) · ˆEDm
(si) (10)

The prediction error standard deviation of monthly Rm was calculated using error propagation [77]:

σ
(si)
Rm

= R̂m
(si) ·

√√√√√√⎛⎜⎜⎜⎜⎜⎜⎜⎝
σ
(si)
Pm

P̂m(si)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
2

+

⎛⎜⎜⎜⎜⎜⎜⎜⎝
σ
(si)
EDm

ˆEDm(si)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
2

(11)

In order for Equation (11) to hold true, P̂m
(si) and ˆEDm

(si) were considered as the true values on
locations si and that were independent of each other. More specifically, these values were considered,
to a good approximation, as not correlated on the basis of the following remarks:

• P̂m
(si) came from monthly average data and ˆEDm

(si) from random proportions of pluviograph
data due to missing values.
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• In general, precipitation depth, alone, is a poor indicator of erosivity [78].
• Using the approximation that kinetic energy in Equation (1) can be replaced with a constant

monthly value [79], then as is proved in RUSLE2 [15], monthly ED is directly proportional to
30-min rainfall intensity without the effect of precipitation depth.

The annual rainfall erosivity and its error standard deviation were calculated, respectively:

R̂(si) =
∑12

m=1
R̂m

(si) (12)

σ
(si)
R =

√∑12

m=1

(
σ
(si)
Rm

)2
(13)

The projected values of monthly erosivity were computed using the ratio δ f ,m of the future

30-years-mean P(si)

GCM−RCM, f uture, m to the historical 30-years-average-monthly precipitation values

P(si)

GCM−RCM, historical, m that came from a GCM-RCM:

R̂(si) f , m =
(
δ
(si)

f ,m · P̂(si)m

)
· ˆEDm

(si) = δ
(si)

f ,m · R̂m
(si) (14)

where f is the future year in which long term average monthly values refer to and:

δ
(si)

f ,m =
P(si)

GCM−RCM, f uture, m

P(si)

GCM−RCM, historical, m

(15)

The projected annual erosivity was estimated with:

R̂(si) f =
∑12

m=1
δ
(si)

f ,m · R̂m
(si) (16)

And the ratio of future to current values:

r̂(si) f =
R̂(si) f

R̂(si)
(17)

With Equations (14)–(17), the projected annual erosivity values were calculated preserving the
relative projected changes of precipitation without the direct use of simulated values coming from a
GCM-RCM and the need to apply a bias-correction method. However, the need to use a statistical
downscaling technique to apply bias correction to the GCM + RCM output will be tested.

3. Results and Discussion

3.1. Precipitation and ED Pointwise Values

The monthly conversion factors cm that were computed specifically for Greece using the
five-min-time-step timeseries have a mean value 1.22, close to the one calculated for Europe [59], but
had different seasonality with their maximum values in the period from May to October and minimum
during March (Table 2).

Table 2. Monthly erosivity conversion factors cm (unitless) for 30 min timestep compared to the base
timestep of five min.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Mean

cm 1.20 1.18 1.16 1.18 1.25 1.24 1.29 1.26 1.24 1.25 1.19 1.19 1.22
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The first four central moments (mean, standard deviation, skew and kurtosis) and other statistical
properties were used to describe the calculated monthly values of ED (87 stations from NBHM, Table 3)
and the average monthly precipitation (150 stations from HNMS, Table 4).

Table 3. The average statistical properties of calculated monthly Erosivity Density (ED) (MJ/ha/h). SD
is an abbreviation for standard deviation and CV for coefficient of variation (the ratio of the standard
deviation to the mean).

Prec (mm) Min Mean Median Max SD Skew Kurtosis CV

January 0.380 1.138 1.110 2.345 0.435 0.416 −0.455 0.383
February 0.535 1.149 1.088 2.403 0.409 0.787 0.130 0.356

March 0.525 1.113 1.054 2.413 0.356 1.105 1.681 0.320
April 0.464 1.099 1.062 2.175 0.316 0.895 0.876 0.288
May 0.407 1.496 1.404 2.645 0.447 0.377 −0.435 0.299
June 0.850 1.854 1.712 4.137 0.641 0.992 0.953 0.346
July 1.215 2.341 2.102 5.445 0.863 1.381 1.800 0.369

August 0.703 2.079 1.987 5.993 0.819 1.637 4.921 0.394
September 0.912 1.842 1.657 3.786 0.669 1.017 0.427 0.363

October 0.666 1.916 1.791 3.891 0.706 1.018 0.650 0.369
November 0.589 1.732 1.619 3.904 0.677 0.574 −0.103 0.391
December 0.517 1.442 1.435 3.497 0.568 0.680 0.635 0.394

Table 4. The average statistical properties of observed monthly precipitation values (mm). SD is
an abbreviation for standard deviation and CV for coefficient of variation (the ratio of the standard
deviation to the mean).

Prec (mm) Min Mean Median Max SD Skew Kurtosis CV

January 25.8 101.5 99.6 227.8 46.2 0.515 −0.378 0.455
February 34.6 104.9 93.4 257.4 50.5 0.766 −0.096 0.482

March 29.5 83.8 75.0 202.4 35.8 0.802 0.045 0.427
April 18.5 69.9 61.6 183.8 36.8 0.644 −0.371 0.526
May 7.4 51.3 51.6 149.1 29.3 0.342 −0.455 0.571
June 1.0 26.9 26.1 81.9 19.1 0.692 0.097 0.711
July 0.1 23.6 22.8 80.6 18.0 0.877 0.726 0.762

August 0.1 24.5 24.4 78.3 16.7 0.498 0.012 0.679
September 4.4 37.0 36.7 96.9 20.2 0.375 −0.414 0.546

October 30.6 85.9 75.7 205.7 40.6 0.738 −0.172 0.473
November 47.5 134.8 110.4 300.6 66.0 0.556 −0.808 0.490
December 43.9 133.0 117.6 329.2 65.6 0.742 −0.249 0.493

Monthly precipitation and ED had different monthly temporal patterns (Figure 3). The temporal
pattern of precipitation is typical for a Mediterranean area with the minimum precipitation occurring
during summer and the maximum precipitation observed in November and December (Figure 3a).
This temporal pattern of monthly precipitation is typical for Greece [80]. The second had an almost
bimodal shape with its two peaks at July and October. The values of ED were slightly different from
the ones already reported in our previous work [30], due to the application of the seasonal monthly
conversion factors cm to a constant one.
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(a) (b) 

Figure 3. Scatterplots for: (a) Observed mean monthly precipitation values; (b) Calculated ED monthly
values. In the above plots jitter exists in order to make visible all points. With color are the smooth
lines produced by means of Local Polynomial Regression Fitting [81].

3.2. Spatial Models of Precipitation and ED

The training and cross validation of the spatial models was made using the implementation of
QRF in the ranger [67] package of language R [82]. The number of trees was set to 1000 and the
fine-tuning of the parameters of the model was made using the tuneRanger [83] package.

The cross validation error metrics of the models for monthly precipitation were satisfactory
(Table 5), especially comparing them to recent precipitation models for Greece that showed weak
correlation during the spring season [17] or equally good estimations [23]. As most months had a z-score
variance smaller than one, these monthly models overestimated the actual prediction uncertainty (i.e.,
the error of prediction the error from the models in cross-validation locations).

Table 5. Cross validation metrics for monthly precipitation spQRF models. RMSE units are in mm, R2,
z-score related values and Concordance Correlation Coefficient (CCC) are unitless.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Mean

RMSE 24.4 25.9 19.9 15.9 11.8 7.4 6.8 7.6 7.9 16.2 26.6 30.6 16.7
R2 0.68 0.68 0.62 0.77 0.81 0.83 0.84 0.76 0.83 0.81 0.81 0.75 0.77

CCC 0.81 0.83 0.79 0.87 0.89 0.90 0.91 0.86 0.90 0.90 0.90 0.86 0.87
¯
z −0.11 −0.08 −0.03 −0.03 0.01 −0.03 −0.02 −0.07 −0.04 −0.04 −0.07 −0.07 −0.05
σz 1.01 0.87 0.89 0.73 0.69 0.64 0.58 0.68 0.77 0.92 1.10 0.87 0.81

The same cross validation error metrics of the models for monthly ED did not show equally good
performance (Table 6), as most months had moderate results with the exception of summer months
that had poor results. These poor results were coming from the scarcity of the stations used and the
predictions of high ED values that the models underestimated them (Figure 4b), affecting especially
RMSE and R2 metrics that are sensitive to outliers. Given the values of z-score’s variance, in general,
also, most of the monthly ED models overestimated the actual prediction uncertainty.
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Table 6. Cross validation metrics for monthly ED Spatial Quantile Regression Forests (spQRF) models.
RMSE units are in MJ/ha/h, R2 z-score related values and CCC are unitless.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Mean

RMSE 0.29 0.29 0.27 0.22 0.35 0.48 0.71 0.67 0.46 0.44 0.39 0.33 0.41
R2 0.38 0.37 0.23 0.37 0.02 0.07 0.06 0.13 0.38 0.49 0.46 0.36 0.28

CCC 0.62 0.56 0.51 0.55 0.51 0.52 0.39 0.38 0.59 0.66 0.74 0.73 0.56
¯
z −0.07 −0.15 −0.08 −0.10 −0.06 −0.10 −0.10 −0.10 −0.06 −0.07 −0.06 −0.08 −0.09
σz 1.09 1.00 0.79 0.95 0.70 1.21 1.10 1.01 0.82 0.79 0.76 0.68 0.91

(a) (b) 

Figure 4. Scatterplots based on the results from ten-fold cross validation for: (a) Predicted vs. observed
precipitation monthly values; (b) Predicted vs. calculated ED monthly values. Black line symbolized
the identity function f(x) = x.

3.3. Rainfall Erosivity and Its Uncertenty

The produced maps (Figures 5 and 6) illustrate the spatiotemporal distribution of R in Greece.
The eastern, dryer part of the country has lower values than the wetter western part for the period
during autumn and winter. During summer the convective activity over norther Greece produces
higher R values than southern Greece, with the largest values occurring in the area of Thrace. The
monthly temporal patterns illustrated in Figure 5, are compatible to the three areas that were identified
in our previous study [30].
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Figure 5. Monthly erosivity estimation. Units are in MJ·mm/ha/h/month.

Figure 6. Annual rainfall erosivity. Values are in MJ·mm/ha/h/y. Available online in
Supplementary Materials.

The lowest annual values of R were computed at the central mainland area of Greece (west and
central Macedonia, Thessaly and Attica). The uncertainty map of annual R (Figure 7) follows the
variation of the predicted annual erosivity and the scarcity of stations. The mean annual R (Table 7,
Figure 6) has a value of 1039.0 MJ·mm/ha/h/y, with a range between 405.1 and 3160.2 MJ·mm/ha/h/y.
The annual mean prediction error standard deviation is 116.9 MJ·mm/ha/h/y and its range is from 46.7
to 353.4 MJ·mm/ha/h/y (Table 7, Figure 7). The ratio of the mean annual error to the mean annual R is
11.25%, a value that was probably overestimated, given the cross-validation results of z-scores (Tables 5
and 6). These errors are not considered very high, bearing in mind the spatially sparse data and the
data-sets limitations. Although these errors may affect the reliability of the assessment of the potential

16



Water 2020, 12, 687

impacts of climate change, their effect is rather small when compared with the large uncertainties in
GCMs projections in monthly and daily precipitation and rainfall intensity [84].

Figure 7. Annual rainfall erosivity prediction error standard deviation. Values are in MJ·mm/ha/h/y.

Table 7. Mean, minimum and maximum values of erosivity R and its uncertainty σR. Values are in
MJ·mm/ha/h/month for monthly values and MJ·mm/ha/h/y for annual. Min is an abbreviation for
minimum and max for maximum values.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual

Rmin 14.3 25.6 26.7 20.2 8.2 1.7 0.3 0.6 9.5 44.7 52.1 32.6 405.1
R 95.4 94.5 74.1 58.3 65.7 44.8 46.0 42.9 54.5 128.9 182.5 151.5 1039.0

Rmax 369.6 314.3 234.7 193.5 187.2 207.4 222.6 161.5 188.8 441.7 739.2 505.7 3160.2
σR,min 10.7 9.0 8.2 3.9 4.0 2.2 4.5 1.2 4.7 11.2 18.7 10.8 46.7
σR 33.1 33.3 24.2 19.5 25.0 21.5 25.2 21.4 22.2 32.8 55.5 48.1 116.9
σR,max 97.6 129.3 74.8 61.2 62.0 69.8 100.9 83.4 50.2 95.6 220.5 192.9 353.4

The largest monthly mean R value are observed in November with 182.5 MJ·mm/ha/h/y and in
December with 151.5 MJ·mm/ha/h/y and the lowest ones during summer months which have values
about 44 MJ·mm/ha/h/y. The computed R values, due to the fact that R is linearly underestimated as
the missing values ratio increases [30], were larger than the values reported by Panagos et al. [31] (i.e.,
the mean annual R was underestimated by 28.8%, the mean minimum by 381% and the maximum by
12%). On the contrary, the range of R values in this study is smaller (405.1–3160.2 MJ·mm/ha/h/y) than
the respective values reported in [31] (was 84.2–2825 MJ·mm/ha/h/y).

In the above cited, older, study [31], the spatial distribution and annual values of R were affected
by the used interpolated precipitation dataset. As a result, the highest values were calculated at
the northwest corner of Greece. However, in this study, the maximum observed precipitation from
HNMS’s stations were recorded at the mountain range of Pindos, which is, also, the area with the
maximum annual R values in our study, indicating that the two variables are consistent.

3.4. Projected Rainfall Erosivity Changes

In order to cope with the uncertainties in climatic models, five (5) GCMs-RCMs were evaluated in
terms of RMSE, R2 and CCC using the monthly precipitation maps that were created in this study. The
EC-EARTH–KNMI-RACMO22E GCM-RCM (Table 8) gave the best results for each one of months and
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for all the error metrics. Given its performance, this GCM-RCM seemed to represent better monthly
precipitation in Greece, for the historical time period and consequently used to estimate futures changes
for the RCP forcing scenarios RCP4.5 and RCP8.5 and the years 2040, 2070 and 2100. However, the
large errors presented in Table 8 indicate that statistical downscaling techniques have to be applied to
the outputs of GCMs-RCMs for bias correction and reduction of errors.

Table 8. Mean monthly precipitation errors of the used GCMs-RCMs. RMSE units are in mm, R2 and
CCC are unitless.

GCM RCM RMSE R2 CCC

1 EC-EARTH DMI-HIRHAM5 64.4 −4.21 0.30
2 EC-EARTH KNMI-RACMO22E 25.5 0.11 0.63
3 HadGEM2-ES KNMI-RACMO22E 31.5 −0.37 0.57
4 MPI-ESM-LR CSC-REMO2009 34.9 −0.47 0.50
5 NorESM1-M DMI-HIRHAM5 61.9 −3.73 0.29

Using the RCP4.5 scenario, the ratio of the mean projected R to current values were −3.7%, −4.3%
and −0.7% for 2040, 2070 and 2100, respectively. The same values for the RCP8.5, scenario were −9.0%,
+0.01% and −14.6%. Annual R followed the annual ratio δ

(si)

f of projected to 30-years-mean historical
precipitation, which fluctuated around zero for RCP4.5 (Figure 8a) and had a negative trend for the
years 2040–2100 for RCP4.5.

(a) (b)

Figure 8. Ratio δs
f of precipitation to the historical 30-years-mean annual on Greece for the scenarios:

(a) Representative Concentration Pathway (RCP)45 and (b) RCP85. Values are unitless. With blue are
marked the smooth lines and with grey bands the standard error variance produced by means of Local
Polynomial Regression Fitting [81].

Despite the decrease of the projected R values, using RCP4.5, R, spatially, has a tendency to
increase at the central parts of Macedonia and Thessaly that have the highest agricultural productivity
in the country and the northern Thrace (Figure 9a). For RCP8.5 (Figure 9b) projected erosivity increases
on 2070, having a hotspot at Thessaly and then decreases, following the precipitation trend (Figure 8b).
In the previously reported study concerning Europe, that did not use information about rainfall
intensities in the applied model, the projected change of R values for Greece on 2050 was +14.8% using
the GCM HadGEM2 and RCP4.5 [10].
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(a) 

 
(b) 

Figure 9. Projected percentage changes of rainfall erosivty, R, for the scenarios: (a) RCP4.5 and
(b) RCP8.5 over the historical values.

The results of projected changes of R in both RCP scenarios are coherent to the precipitation
trends that are reported by EURO-CORDEX, in which precipitation decreases by a larger magnitude
in RCP8.5 than RCP4.5, from 1971–2000 to 2071–2100 [27]. This change in precipitation dominates in
projected R’s calculations and is depicted in Figure 9b for the year 2100.

4. Conclusions

The estimation of mean annual and monthly R values over Greece using precipitation records
that suffered from a significant volume of missing values was the main result of this paper, utilizing
as an intermediate step the creation of monthly precipitation and ED QRF models. The models of
monthly precipitation had better performance than the ones of monthly ED in terms of prediction
accuracy, mostly due to the scarcity of stations with calculated ED values. Validating the error of
uncertainty reported from the models on cross validation locations, showed that the models, on
average, overestimate the actual prediction error (i.e., the error of error predictions). More specifically,
the findings of the present study can be summarized as follows:

1. The mean annual R in Greece is 1039 MJ·mm/ha/h/y, with a range between 405.1 and
3160.2 MJ·mm/ha/h/y, during the historical period 1971–2000. The highest values are calculated at
the mountain range of Pindos and the lowest at central Greece’s mainland.
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2. The calculated monthly mean R values follow the already documented spatiotemporal
characteristics of precipitation depth and intensity over the country.

3. The climatic model EC-EARTH-KNMI-RACMO22E from the Royal Netherlands Meteorological
Institute better reproduces the monthly precipitation for the historical period 1971–2000 in Greece
than the other four GCMs-RCMs used and tested in this study.

4. The projected mean annual erosivity, R, as an average over Greece, follows, in general, the
projected changes of precipitation from the selected GCM-RCM model but not in a spatially
homogenous way.

The results about future values of R inherit a set of uncertainties that have to do with the limitations
of climatic models in general and the assumptions about future temporal stationarity of ED that
had been made in our study, based on the observed stationarity of ED for the historical time. This
holds true, as well as for the calculated current ED values due to missing values from the utilized
timeseries. Future research will eventually provide more robust climatic models, as computational
power increases and research continues, and hopefully we will also have high quality, high density,
observed precipitation data for longer durations and more stations to estimate more accurately current
and projected rainfall erosivity in the country.

Supplementary Materials: The annual R values raster is available online at: https://doi.org/10.5281/zenodo.
3692645.
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Abstract: Discharge of sediment-laden stormwater from active construction sites, such as highway
construction projects, continues to be a growing concern in the construction industry. Therefore,
there has been an increased interest in research efforts to test many different erosion and sediment
control practices. The purpose of this research effort was to test the laboratory-scale performance of
four hydromulches and two methods of mulching (crimped and tackified), normalized to a bare soil
control condition using 0.6 m (2 ft) wide by 1.2 m (4 ft) long test plots. The treatments consisted of
a (1) bare soil control, (2) conventional straw, crimped, (3) conventional straw, tackified, (4) wood
fiber hydromulch, (5) straw and cotton hydromulch, (6) cotton fiber reinforced matrix hydromulch,
and (7) bonded wheat fiber matrix hydromulch. Each treatment was subject to simulated rainfall,
divided into four 15 min rainfall events with 15 min breaks in between, producing a total cumulative
rainfall of 11.2 cm (4.4 in.). To determine the overall performance of each treatment, turbidity and soil
loss measurements were continuously collected from plot runoff. The products tested provided a
reduction in turbidity of 80%, 98%, 85%, 92%, 95%, and 99%; and a soil loss reduction of 96%, 98%,
94%, 97%, 99%, and 100%, respectively. Overall, the results showed that the four tested hydromulch
practices and conventional straw applications were successful in controlling and reducing erosion
under laboratory-scale simulated rainfall conditions.

Keywords: erosion control; laboratory-scale testing; simulated rainfall; runoff

1. Introduction

The discharge of sediment-laden stormwater from active construction sites, such as highway
construction projects, is a growing concern in the construction industry [1]. The United States Environmental
Protection Agency (USEPA) labels such discharge as nonpoint source (NPS) pollution, which is defined as
land runoff, precipitation, atmospheric deposition, seepage, or hydrologic modification that does not meet
the legal definition of ‘point source’ in Section 502 (14) of the Clean Water Act [2].

Soil erosion is considered the largest contributor to NPS pollution in the U.S. [3]. Construction sites
are known to be a significant contributor to soil erosion by exhibiting soil loss rates that are 20 times
greater from construction sites than agricultural lands, and 1000 to 2000 times greater than forest
lands [4,5]. Studies have shown that erosion rates on cut slopes of roadways has varied from 5.93 mm/ha
(0.09 in./ac. or in./ac.) up to 70 mm/ha (1.12 in./ac.) [6]. When soil is eroded from construction sites,
other harmful particulates such as fertilizers, pesticides, metals, and fuels attach to the soil and are
transported into municipal separate storm sewer systems (MS4s) [7,8]. Polluted MS4s transport
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construction site runoff directly to surface waters, ultimately causing sedimentation. In the U.S. alone,
“sedimentation impairs 84,503 river and stream miles (12% of the assessed river and stream miles
and 31% of the impaired river and stream miles)” [9]. Sedimentation of surface water can lead to
deterioration of aquatic habitats, rapid loss of storage capacity of reservoirs, eroded streambanks,
and increased turbidity of the waters thereby reducing photosynthesis, and clogging fish gills [10].
An annual estimate of $17 billion is spent in the U.S. alone in an effort to control onsite sedimentation,
bringing the national total to nearly $60 billion in erosion and sediment control activities [11]. Thus,
the combination of environmental and economic downfalls related to erosion and sedimentation in
the construction industry has developed a need for scientific research to be performed to understand
the overall performance of erosion and sediment control (ESC) practices used at the federal, state,
and local levels.

Within the construction industry, there are numerous types of erosion controls. The focus of this
research effort is to test the performance of the following surface cover treatments: (1) conventional
straw, crimped, (2) conventional straw, tackified, (3) wood fiber hydromulch (HM) (Excel® Fibermulch
II), (4) straw and cotton hydromulch (Geoskin®), (5) cotton fiber reinforced matrix hydromulch (FRM)
(HydraCX2®), and (6) bonded wheat fiber matrix hydromulch (FM) (Hydrostraw® BFM).

1.1. Mulching as an Erosion Control

Mulching is defined as an erosion control practice that uses materials such as shredded paper,
grass, hay, wood chips, wood fibers, straw, or gravel to stabilize exposed or recently planted soil
surfaces [12,13]. Surface mulch has been found to be one of the most effective, practical means of
controlling runoff and erosion on disturbed land prior to vegetation establishment; however it is most
effective when used in conjunction with vegetation [12,14,15]. Researchers [16–19] have reported that
mulches used to control erosion have a two-fold advantage: (1) reduce soil loss and (2) protect grass
seeds and soil amendments from being washed away. Additionally, mulches are capable of reducing
solar radiation, suppressing fluctuations of soil temperature, reducing water loss through evaporation,
increases interception storage capacity, dissipating the kinetic energy from the raindrops impact,
and helping to prevent soil crust formation [17,18,20–23]. Research has also shown that mulching can
reduce sediment yields by over 80% when applied at a rate of 2000 kg/ha (1784 lb./ac.) [23,24].

The purpose of testing conventional straw was to have a traditional, low-cost, widely used erosion
control practice to compare to the performance of hydromulch products. Straw is one of the most
widely used ground covers used to reduce erosion on construction sites [25], and has been reported to
reduce erosion rates by more than 90% if applied at sufficient rates [22,26–28]. Turgeon [21] states that
straw is also capable of encouraging grass establishment by reducing runoff, increasing infiltration,
and improving soil conditions.

Straw crimpers are typically used to crimp or punch straw into the soil when the soil is not too
sandy [29]. If crimpers are not available or necessary, liquid mulch binders are used to ‘tack’ mulch by
spraying the tack on top of the straw [15].

There are advantages and disadvantages to using straw mulch for erosion control. The advantages
are that it is inexpensive, quick, and easy to apply using a straw-blower, capable of achieving efficient
grass growth, and water is not needed for application. Straw mulch has also been found to perform as
well as or better than hydromulch products when applied at sufficient rates [30]. Other studies have
shown straw mulch to not only reduce soil erosion in the short term, but also by aiding in vegetation
establishment through the long-term reduction of soil erosion [31]. Conversely, disadvantages of
conventional straw include that it does not prevent soil loss as well as more expensive erosion products
(e.g., erosion control blankets, compost, etc.), is susceptible to wind if not properly anchored, may
introduce weed seeds, and fines from straw blowers can drift long distances [29].

26



Water 2020, 12, 515

1.2. Hydraulically Applied Mulch (As Known as Hydromulch)

Hydraulically applied mulches, referred to herein as ‘hydromulches’, have shown continuous
evolution and improvement over the past 50 years. Advancements in technology have resulted in
the production of equipment and materials that offer enhanced performance and greater productivity
over many traditional methods of erosion control. Hydromulch has been shown to meet the required
planting depth for small seeded species [32]. In other studies, hydromulch has been shown to reduce
the sediment yield by about 75% when compared to bare plots [33]. There is a knowledge gap between
the cost-effectiveness and performance benefits of new products [18,34–36] such as hydromulches,
largely due to newly evolving technologies as well as a lack of research involving hydromulch products.

The introduction of water, refined fiber matrices, tackifiers, super-absorbents, flocculating agents,
man-made fibers, plant biostimulants, and other performance enhancing additives to hydromulching
practices on slopes has forced federal, state, and local governments to develop hydromulch guidelines.
ASTM International (ASTM) has proposed new standards for testing hydraulically applied erosion
control products (HECPs). Additionally, the Erosion Control Technology Council (ECTC) has divided
HECPs into five distinct categories, relevant to their corresponding functional longevity, erosion control
effectiveness, and vegetative establishment [29,37]. Specific to this study, the addition of a tackifier
to a hydromulch has been shown to increase the effectiveness of the hydromulch as a soil cover due
to the tackifier bonding with the soil particles and creating a more hydrophobic environment [38].
Prats et al. [23] determined that the initial reduction in soil erosion on a plot treated with hydromulch
was attributed to the initial protective cover provided by the mulch to minimize splash erosion.

McLaughlin and Brown [27] conducted large- and laboratory-scale tests on four ground cover
practices: straw mulch, straw erosion control blanket, wood fiber, and a mechanically bonded fiber
matrix (MBFM) hydromulch. In their study, it was reported that the ground covers reduced runoff
turbidity by a factor of four or greater when compared to bare soil. More specifically, on the controlled,
laboratory-scale tests, the MBFM reduced average turbidity by approximately 85% and sediment loss
by about 86% in comparison to a bare soil control.

Holt et al. [39] performed laboratory-scale tests on six hydromulch treatments using 0.6 m
(2 ft) wide by 3.05 m (10 ft) long by 7.62 cm (3 in.) deep trays at a 15.7% slope. The following six
hydromulches were applied by hand at 1120 kg/ha (1000 lb./ac.) and 2240 kg/ha (2000 lb./ac.): wood
hydromulch, paper hydromulch, cottonseed hulls hydromulch, cotton byproduct (COBY) hydromulch
produced from stripper waste (COBY Red), COBY produced from picker waste (COBY Yellow), and
COBY produced from ground stripper waste (COBY Green). COBY is a term used in Holt’s report to
represent a patented cotton by product of cottonseed hulls [40]. The respective soil treatments with an
application rate of 1120 kg/ha (1000 lb./ac.) achieved soil loss reductions of 35%, 58%, 84%, 90%, 80%,
and 80% for wood, paper, cotton-seed hulls, COBY red, COBY yellow, and COBY green. When the
application rate was increased to 2240 kg/ha (2000 lb./ac.), the respective soil treatments achieved soil
loss reductions of 19%, 32%, 79%, 88%, 88%, and 68% for wood, paper, cotton-seed hulls, COBY red,
COBY yellow, and COBY green.

In 2002, Landloch [41] studied the performance of four hydromulch treatments using 15 plots that
were 5 m long by 1.5 m wide (16.4 ft long by 4.9 ft wide) at a 25% slope. The four hydromulches tested
were paper hydromulch, flax hydromulch, flax plus paper hydromulch, and sugar cane hydromulch,
applied at a rate of 1000 (893 lb./ac.), 2500 (2232 lb./ac.), 3250 (2900 lb./ac.), and 5000 kg/ha (4464 lb./ac.),
respectively. The respective treatments achieved soil loss reductions of 80%, 85%, 96%, and 96% for
paper, flax, flax plus paper, and sugar cane.

Benik et al. [42] developed a study comparing the effectiveness of five treatments, including Soil
Guard® which is a bonded fiber matrix (BFM). In their experiments, the BFM was applied at a minimum
rate of 3360 kg/ha (3000 lb./ac.). The BFM reduced average sediment yield by approximately 94%.

Buxton and Caruccio [43] evaluated 19 soil stabilizing and erosion control treatments, four of them
were hydromulches without tackifiers. The plot sizes used were approximately 1.5 m (5 ft) wide by
3 m (10 ft) long at a 12% to 15% slope. The four hydromulches tested were Conwed wood fiber mulch,
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Superior wood fiber mulch, Silva wood fiber mulch, and Pulch; each hydromulch was applied at a rate
of 1344 kg/ha (1200 lb./ac.). In the study of Buxton and Caruccio [43], effectiveness of the hydromulches
were measured using a vegetative maintenance (VM) and erosion control value, which in 1979 was a
new parameter in the Universal Soil Loss Equation (USLE), and represented total loss ratio expressed
as a decimal. These values ranged from 0.0 to 1.0, where a value of 1.0 means the erosion control
practice had no effect in reducing erosion. The VM values for Buxton and Cauccio’s [43] report were
translated below in Table 1 to measure erosion control performance in soil loss reduction percentage.

Table 1. Summary of reviewed hydromulch practices.

Study Type of Hydromulch Test Scale Slope
Application
Rate (kg/ha)

Soil Loss
Reduction (%)

McLaughlin and
Brown [27] MBFM Large and

laboratory 10% and 20% 3360 86

Holt et al. [39]

Wood

Laboratory 15.7%

1120

35
Paper 58

Cotton-seed hulls 84
COBY red 90

COBY yellow 80
COBY green 80

Wood

2240

19
Paper 32

Cotton-seed hulls 79
COBY red 88

COBY yellow 88
COBY green 68

Benik et al. [42] BFM Large 35% 3360 94

Landloch [41]

Paper

Large 25%

1000 80
Flax 2500 85

Flax plus paper 3250 96
Sugar Cane 5000 96

Buxton and Caruccio
[43]

Conwed *

Large 12% to 15% 1344

77
Superior * 73

Silva * 35
Pulch * 72

Babcock and
McLaughlin [25] Wood Laboratory 33%

1970 19
2940 8

Robichaud et al. [44] Wood Large Various
1100 65
600 19

* All are wood-fiber hydromulches.

Babcock and McLaughlin [25] evaluated straw mulch, with and without polyacrylamide (PAM),
and a wood fiber hydromulch, with and without PAM, on the effectiveness of reducing erosion and
improving the water quality of the runoff. The plot sizes used were 1 m by 2 m (3.3 ft by 6.6 ft)
on a −33% slope. The plots were subjected to a total rainfall of 3.05 cm (1.2 in.) at an intensity of
3.7 cm/h (1.5 in./h). The mulch was applied at a rate of 2240 kg/ha (1998 lb./ac.), while the hydromulch
was applied at two separate application rates: 1970 kg/ha (1758 lb./ac.) and 2940 kg/ha (2623 lb./ac.).
This study found that hydromulch applied at a rate of 2940 kg/ha (2623 lb./ac.) provided a soil loss
reduction of 8% and hydromulch applied at a rate of 1970 kg/ha (1758 lb./ac.) provided a soil loss
reduction of 19% when normalized to a straw mulch application of 2240 kg/ha (1998 lb./ac.).

Robichaud et al. [44] developed a study to evaluate the performance of wheat straw mulch and
wood hydromulch when used in a post-fire condition to reduce erosion. This study utilized natural
rainfall over several years to evaluate the products. Two separate tests were performed in two different
locations. At the first location, the application rate of the wheat straw was 2200 kg/ha (1963 lb./ac.) and
the hydromulch was 1100 kg/ha (981 lb./ac.). The soil loss reduction rates of the wheat straw mulch
and the hydromulch were found to be 97% and 65%, respectively, for the first year of the study. At the
second location, the application rate of the wheat straw was 4500 kg/ha to 6700 kg/ha (4015 lb./ac. to
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5978 lb./ac.) and the hydromulch was 600 kg/ha (535 lb./ac.). The soil loss reduction rates of the wheat
straw mulch and the hydromulch were found to be 99% and 19% for the first year, respectively.

This research aims to evaluate the effectiveness of six different ground cover treatments, normalized
to a control treatment, when evaluated under simulated rainfall on laboratory scale plots. The process
will include a standard and repeatable methodology that is consistently applied across the treatments
under evaluation. The expected outcome is to confirm the effectiveness of the treatments.

2. Test Methods and Procedures

The validity of this research effort relies heavily on the amount of reproducible data that is
collected during experiments that can be used for comparative analyses to evaluate erosion control
practice and product performance and effectiveness. The test plots and rainfall simulator constructed
for this research effort were replicas of Shoemaker’s [45] experiments with the exception of the runoff
collection device. Each test plot is 0.6 m in width by 1.2 m in length (2 ft by 4 ft) by 7.62 cm (3.5 in.) in
depth. The sizes of the test plots were constructed with the purpose of testing erosion control practices
with ease, speed, accuracy, and mobility throughout the experiment. The rainfall simulator was
constructed using a single FullJet™ 1/2 HH—30 WSQ nozzle, with a wide angle uniform square spray
area, and medium to large drop size distribution. To regulate flow rate, the inlet hose was attached to a
Norgren™ R43-406-NNLA pressure regulator with 1.27 cm (1/2 in.) port sizes. To maintain a consistent
pressure specific to the desired rainfall event, a pressure gauge was attached to the pressure regulator
to observe and regulate operating water pressure. The simulator was suspended approximately 1.5 m
(5 ft) from the building wall, and 3 m (10 ft) from the floor as shown in Figure 1, and rainfall covers
approximately a 2.4 m by 2.4 m (8 ft by 8 ft) area.

 
Figure 1. Illustration of rainfall simulator and test plots.

Shoemaker’s research efforts determined the Christiansen Uniformity Coefficient (CUC) [46] over
the 2.4 m by 2.4 m (8 ft by 8 ft) spray area to range from 83% to 88% [45]; generally in the center 1.2 m
by 1.2 m (4 ft by 4 ft) area.

For this study, the rainfall in 24 h for a return period of 2 years for Auburn, Alabama, was selected.
The rainfall regime was designed using data available from Shoemaker [45]. The rainfall regime consisted
of four separate 15-min rainfall events, each with a rainfall amount of 2.8 cm (1.1 in.) for a total rainfall
amount of 11.2 cm (4.4 in.). The rainfall intensity for this regime is 11.2 cm/h (4.4 in./h). There was a
15-min period of no rainfall between two test events utilized by the researchers for data collection.
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2.1. Soil Analysis

Soil for the research effort herein was provided by a local grading contractor from a construction
site near the Auburn University—Erosion and Sediment Control Testing Facility (AU-ESCTF) located in
Opelika, Alabama (32◦33′5” N, 85◦20′28” W, approximately 22.9 km (14.2 mi.) from Auburn, Alabama).
A soil analysis was conducted by the Auburn University Soil Testing Laboratory to determine the
soil composition. The experimental soil presented a “sandy clay loam” textural class according to the
United States Department of Agriculture textural classification system with respective composition of
67.5%, 2.5%, and 30% of sand, silt, and clay.

After classifying the soil, a compaction test was conducted. In accordance with local standards
for highway construction [47] on a typical highway embankment, slopes were compacted to 95%
compaction. Given the scale of this experiment, hand tamping was selected to be used on the box
plots to achieve optimum compaction. To determine the number of drops required to compact the soil,
two compaction tests were completed. The first soil compaction test was to determine the optimum
moisture content (OMC) or gravimetric water content of the soil. This was completed using a modified
Proctor test, as specified in ASTM D1557-09, Standard Test Methods for Laboratory Compaction
Characteristics of Soil Using Modified Effort [48]. The modified Proctor test enabled researchers to
develop a Proctor curve representing the moisture content of the soil versus the dry unit weight of the
soil, as shown in Figure 2.
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Figure 2. Proctor curve for experimental soil.

The Proctor curve shown in Figure 2 illustrates four determined moisture contents (MC) to achieve
a specific dry unit weight for the tested soil. An OMC was determined to be 1762 kg/m3 (111 lbm/ft3

or pcf) at 14% MC by locating the maximum dry unit weight on the Proctor curve. The dotted line
shown in Figure 2 represents the minimum dry unit weight of 1682 kg/m3 (105 pcf) required to reach
the specified 95% compaction rate over a MC range of 5% to 23%.

The second compaction test, also adopted from Shoemaker [45], was created to test the number of
drops of the hand tamper required to achieve 95% compaction. The purpose of this compaction test
was to drop the hand tamper a specified number of times upon a known volume of compacted soil to
determine a corresponding unit weight. Soil with a MC of approximately 14% was loaded into the
testing apparatus and a hand tamper was dropped approximately 30.5 cm (12 in.) from the soil surface
in a series of 5 sets: 10, 20, 30, 50, and 60 drops. After each set of drops, the known volume of soil was
weighed, and a dry unit weight was calculated, and plotted on a graph, shown in Figure 3.

30



Water 2020, 12, 515

 

y = 609.98x0.2348

R² = 0.997

800

900

1000

1100

1200

1300

1400

1500

1600

1700

0 10 20 30 40 50 60 70

D
ry

 U
ni

t W
ei

gh
t (

kg
/m

3 )

Number of Drops

Figure 3. Number of drops with a hand tamper in relation to dry unit weight.

When compacted, soil will approach a point where it has reached maximum compaction,
preventing any further compaction. A regression curve of power function was developed using the five
measured points. When soil is no longer further compacted, the soil has reached maximum compaction
and the dry unit weight levels off, regardless of energy applied by hand tamping. Using the power
function, the specified number of drops of the hand tamper required to reach optimum compaction
was calculated (Table 2).

Table 2. Calculated dry unit weight (kg/m3) and number of required drops.

Number of Drops Dry Unit Weight, kg/m3 (pcf)

10 1048 (65.4)
20 1232 (76.9)
30 1355 (84.6)
40 1450 (90.5)
50 1528 (95.4)
60 1596 (99.6)
70 1655 (103.3)
80 1706 (106.5)
90 1754 (109.5)

100 1799 (112.3)

To obtain a minimum of 95% compaction, a minimum dry unit weight of 1682 kg/m3 (105 pcf)
was required, which corresponded to approximately 80 drops of the hand-tamper.

2.2. Experimental Design

Seven treatments were tested for this research effort: (1) one bare soil control; (2) conventional
straw, crimped; (3) conventional straw, tackified; (4) wood fiber hydromulch; (5) straw and cotton
hydromulch; (6) cotton fiber reinforced matrix hydromulch; and (7) bonded wheat fiber matrix
hydromulch. Two of these treatments are classified as not having tackifiers: conventional straw,
crimped and wood fiber hydromulch. The remainder of the products contain a tackifier component
to the product. The bare soil treatment serves as the control, and conventional straw treatments
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were developed as a baseline condition for comparison of traditional mulching practices to newer
hydromulch technologies currently being used in the industry. Given the application area of the rainfall
simulator, two plots with the same treatment were always tested simultaneously (Figure 1) over the full
experiment (four 15-min events). For each of the seven treatments tested, two separate experiments
were administered; therefore, there were a total of four replicate plots for each treatment. The data for
the four replicates of each treatment were averaged first before performing any further analysis.

2.3. Test Plot Preparation Prior to Condition Application

To perform this test, the soil was tested to verify the proper moisture content and then loaded into
the test plots. The test plots were then compacted in a single layer of 7.62 cm (3 in.) to a density of
95% and scoured with a hand rake to a depth of 6.35 mm (1/4 in.). Once the test plots were prepared,
the selected products were applied as per the manufacturer’s recommended rates.

For each hydromulch product, testing was conducted using a commercially available hydroseeder
(TurfMaker 380). Test boards were used to determine the number of passes required over the test plots
to provide the manufacturer’s specified application rates for each product. The test boards consisted
of plywood with the same dimensions (0.6 m by 1.2 m (2 ft by 4 ft)) as the test plots, without the
compacted soil. The applied products were scraped from the test boards and weighed to verify the
application rates. The results of this testing are shown below in Table 3.

Table 3. Summary application rates for each hydromulch product.

Hydromulch Product

Manufacturer
Required Dry

Application Rate
kg/ha (lb./ac.)

Equivalent Test
Plot Required Dry
Application Rate

(g/plot)

Averaged
Factors 1

Minimum
Number of Sprays

Required

Straw and cotton HM 2241 (2000) ≈167 10.1 6
cotton FRM 3923 (3500) ≈292 9.7 7

Wood fiber HM
2241–2802 ≈167–209 9.3 9(2000–2500)

Bonded wheat FM 3362 (3000) ≈250 8.9 3
1 Averaged factors is the product wet weight divided by the dry weight.

Once the minimum number of sprays was determined for each hydromulch product, each product
was ready to be applied to test plots and tested accordingly. In order to verify application rates during
the testing procedure, test boards were also sprayed in conjunction with the test plots. After the
minimum number of sprays were applied to the two test boards and the two test plots, the test boards
were scraped and weighed to check for application consistency to ensure manufacturer recommended
rates were achieved on the test plots.

After the test plots were sprayed with the manufacturer specified application rate of the
hydromulch, the test plots required time for the products to dehydrate and cure. After applying
the product to the test plots, a structure was constructed, shown in Figure 4a, to hold four, 250 Watt
ultraviolet-ray bulbs for the purpose of simulating natural sunlight. To ensure consistent drying,
the bulbs were oriented on the structure to hang at a 3H:1V slope, which mimics the test plot setup.
Lastly, the distance (approximately 45.7 cm (18 in.)) between the bulbs and the hydromulch on the test
plots were measured and adjusted to ensure all bulbs were equidistant to the hydromulch surface,
as illustrated in Figure 4a. The hydromulch test plots were left to dry for 48 h.
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(a) (b) 

Figure 4. (a) Drying of test plots during hydromulch testing; (b) collection from runoff for each test plot.

2.4. Data Collection

Collected data for this research included (1) soil loss, (2) runoff volume, and (3) turbidity. The focus
was primarily on runoff generated from test plots during rainfall events. Runoff volume and mass
for each ‘left’ and ‘right’ test plot (Figure 4b) was collected throughout the rain event. Instantaneous
turbidity was recorded with a turbidity meter. The runoff volume and turbidity observations were
recorded every minute and there were a total of 1680 observations for seven treatments on four plots
for four replicates (7 × 4 × 4 × 15). The soil loss observations were recorded every 3 min (560 records
= 7 × 4 × 4 × 5). Turbidity measurements were recorded from thoroughly stirred runoff collected at
1-min intervals using 4.7 L (5.0 quart) buckets.

To calculate the total soil loss, the runoff volume collected from the plots was filtered through
Hayward single-length bags with one micron size pores. Once all samples were filtered, the bags were
placed in an oven at 71.1 ◦C (160 ◦F) and dried for 24 h. After drying, the bags were compared to the
weight of the empty bags recorded prior to filtering to determine the amount of eroded soil from each
test plot contained within each bag.

2.5. Statistical Analyses

The Tukey–Kramer method, a single-step multiple comparison procedure and statistical test, was
used to analyze the recorded data and establish statistical significance between treatments [45].

3. Results and Discussion

3.1. Turbidity Variations

Using the previously outlined procedures, turbidity measurements were recorded for each series
of tests from a thoroughly stirred bucket of runoff collected at 1-min intervals. A summary of the
collected results is provided below in Table 4. Average turbidity of all four replicate plots for each
minute and each treatment is presented in Figure 5 for four 15-min events for the bare soil (Control) and
six erosion control treatments. When compared to the bare soil treatment, labeled ‘Control’, turbidity
was reduced by at least a factor of 6 for all treatments by the end of the 60 min test (‘Event 4’).
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Table 4. Average turbidity, standard deviation, and percent reduction of each treatment with respect to
the control of four 15-min events for surface runoff.

Treatment
Average Turbidity

(NTU) 1
Standard Deviation

(NTU)
Percent

Reduction

Control 6060 638 -
Straw and cotton HM 501 a 150 92%

Straw, crimped 1240 a,b 468 80%
Cotton FRM 277 a,c 71 95%

Wood fiber HM 930 a,b,d 285 85%
Bonded wheat FM 59 a,b,c,e 10 99%

Straw, tackified 148 a,b,c,e,f 35 98%
1 Letters following the value show whether it is significantly different (p < 0.05) to the referenced treatment:
a represents significantly different to the control; b represents significantly different to straw and cotton HM;
c represents significantly different to straw, crimped; d represents significantly different to cotton FRM; e represents
significantly different to wood fiber HM; f represents significantly different to bonded wheat FM.
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Figure 5. Average turbidity of surface runoff vs. time. Average turbidity for each minute was calculated
for all four replicate plots for each treatment.

As shown in Figure 5, each hydromulch with the exception of the wood fiber HM and the straw
and cotton HM were capable of reducing turbidity levels to under 500 NTUs. Two observations can be
made from Figure 5: (1) the treatments without a polymer-enhanced tackifier (e.g., conventional straw,
crimped, and wood fiber HM) had higher turbidity values during ‘Event 1’ and ‘Event 2’, whereas
the turbidity decreased slightly during the last two rainfall events in comparison to treatments with a
tackifier; (2) the treatments with tackifiers started with very low turbidity values and steadily increased
over the four, 15 min rainfall events. The bonded wheat FRM was the only product to maintain a
steady turbidity of about 60 NTUs throughout the four rainfall events. The improved performance
of the treatments containing a tackifier in comparison to the treatments without a tackifier is likely
due to the bonding of the tackifier with the soil particles, which in turn creates a more hydrophobic
environment [38].

Table 4 shows average turbidity measurements, standard deviation of the average turbidity, and a
percent reduction, normalized for the control condition. As shown, the bonded wheat FRM is the
most effective treatment in reducing average turbidity of nearly 99%, followed by straw, tackified,
cotton FRM, straw and cotton HM, wood fiber HM, and straw, crimped with percent reductions of
98%, 95%, 92%, 85%, and 80% respectively. A statistical analysis was conducted and the values for
average turbidity were compared to determine if the results were statistically significantly different.
The results are denoted by different letters as shown in Table 4: a represents significantly different
to the control; b represents significantly different to straw and cotton HM; c represents significantly
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different to straw, crimped; d represents significantly different to cotton FRM; e represents significantly
different to wood fiber HM; f represents significantly different to bonded wheat FM. Shoemaker [35]
also computed and reported the lower and upper bounds of confidence intervals for all comparisons.

Hydromulches typically include tackifying or bonding agents to bond the mulch particles to the
soil surface. Once the hydromulch dries on the soil surface, a crusted, rough surface is formed which is
typically a more hydrophobic environment. The crusted surface is designed to absorb the rainfall and
serve as a filtration system to capture soil particles suspended in the stormwater runoff. When the
tackifier or bonding agents have been washed away or begin to degrade due to stormwater runoff,
the turbidity observed began to increase slightly as shown in Figure 5 above for the straw, tackified,
cotton FRM, and straw and cotton HM. However, products with stronger tackifying agents such as
bonded wheat FM take longer to deteriorate.

The treatments without a tackifier, straw, crimped and wood fiber HM, rely primarily on the
mulch material by itself to minimize erosion from the plots. From a soil erosion perspective, these
treatments are functioning as a protective layer to minimize the splash erosion created by the rainfall.
Splash erosion has been found to be the initial cause of erosion [49]. An observation was made from
Figure 5 during the first two rainfall events, which was that the treatments that do not have a tackifying
agent applied experienced a higher rate of erosion due to the absence of a tackifying agent to bond the
soil particles to the treatment. This initial large concentration of soil in the runoff at the beginning
of a rainfall event is due to the splash erosion caused by the raindrops impacting the soil surface.
The treatments which contain a tackifying agent lessen this initial erosion by bonding the soil particles
with the other material. On the other hand, the products without a tackifying agent lessen the amount
of splash erosion by providing a surface cover over the soil particles when compared to the bare
soil treatment.

A statistical analysis was completed to confirm observed differences between the control and
treatments for turbidity measurements of stormwater surface runoff. ANOVA tables were created
using Tukey–Kramer comparison tests to determine statistical significance between individual pairs
of groups, as illustrated in Table 4. As observed, this table demonstrated that the average turbidities
had statistically significant differences between the control and all treatments. All treatments showed
significant differences between them in the average turbidity except for straw and cotton HM and
cotton FRM. Additionally, no significant statistical difference was observed between cotton FRM and
bonded wheat FM, cotton FRM and straw, tackified, and bonded wheat FM and straw, tackified.
All other treatment comparisons proved to show a statistically significant difference as shown in
Table 4.

3.2. Soil Loss

Samples used to calculate soil loss were collected from simulated rainfall runoff every 3 min
for all experiments conducted. Based on the data collected, it was observed that all treatments had
significantly smaller levels of soil loss when compared to the bare soil (control). The control condition
and the treatments without a tackifying agent (i.e., straw, crimped, and wood fiber HM) experienced
an initial surge of soil loss due to the breakage of soil aggregates by the impact of raindrops, with the
consequent dispersion of fine particles (splash erosion). However, the treatments with tackifiers did not
have this surge; a steady increase in soil loss over time for each rainfall event was observed for these
treatments. As shown in Figure 6, the most effective treatment in reducing soil loss was bonded wheat
FM. After the first rainfall event, it was observed that soil loss measurements remained consistent for
the remainder of the experiment. The summarized data is provided in Figure 6 below.

35



Water 2020, 12, 515

1

10

100

1000

10000

0 15 30 45 60

So
il 

Lo
ss

 (k
g/

ha
)

Time (min)

wood fiber HM straw, crimped straw & cotton HM straw, tackified

cotton FRM bonded wheat FM Control

Event 1 Event 2 Event 3 Event 4

Figure 6. Three-minute soil loss vs. time for all treatments as compared to the control.

The control recorded more soil loss than all of the treatments in the first rainfall event by a factor
of 17. The most consistent and effective erosion control treatment was bonded wheat FM, maintaining
an average soil loss of approximately 11.2 kg/ha (10 lb./ac.) over the entire experiment. Wood fiber HM
was observed to produce the largest consistent amount of eroded soil, starting at approximately 1008
kg/ha (900 lb./ac.), and decreasing to approximately 504 kg/ha (450 lb./ac.) by the last rainfall event.
Straw and cotton HM showed initial signs of strength in controlling erosion with 224 kg/ha (200 lb./ac.)
of cumulative eroded soil, however steadily increased to almost 448 kg/ha (400 lb./ac.) by ‘Event 4’,
nearly doubling its initial amount. It was also observed that straw, crimped began with approximately
the same amount of cumulative soil loss as wood fiber HM; however after the first two rainfall events,
steadily decreased to nearly 224 kg/ha (200 lb./ac.), which are soil loss levels similar to that of straw,
tackified, and cotton FRM. The cotton FRM averaged 112 kg/ha (100 lb./ac.) over the entire experiment.
This data is shown in Figure 7 below.
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Figure 7. Cumulative soil loss vs. time for six treatments as compared to the control.
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Table 5 presents specific values of average soil loss, standard deviation, and percent reduction
for each treatment during each rainfall event. The straw, crimped treatment, when normalized to the
control, reduced erosion during the first rainfall event by nearly 96% and increased to approximately
98.9% by the fourth rainfall event. Similarly, straw, tackified, and wood fiber HM increased in
percent reduction from ‘Event 1’ to ‘Event 4’ by 98.9% to 99.2% and 94.9% to 97.4%, respectively.
The hydromulches with tackifying agents reacted in a dissimilar way when normalized to the control.
Over the rainfall events, percent reductions decreased from 98.9%% to 97.8%, 99.5 to 99.1%, and
99.9% to 99.7% for straw and cotton HM, cotton FRM, and bonded wheat FM, respectively. It was
observed that this reduction was due to the degradation of the tackifying bonds between the soil and
the mulch; contrarily, the increased performance of the non-tackified treatments was observed to be
due to the ‘flush effect’ of the scoured surface in the first events, exposing the less erodible, compacted,
underlying soil.

Table 5. Average soil loss over each 15-min rainfall event due to surface runoff.

Condition Soil Loss 1 (kg/ha) Standard Deviation 2 (kg/ha) Percent Reduction 3 (%)

1st 15-min rainfall event

Control 3889 3000 -
Straw, crimped 155.4 108.0 96.0
Straw, tackified 42.8 39.6 98.9
Wood fiber HM 198.9 158.4 94.9

Straw and cotton HM 42.8 50.1 98.9
Cotton FRM 20.7 12.9 99.5

Bonded wheat FM 3.81 2.9 99.9

2nd 15-min rainfall event

Control 1694 212.7 -
Straw, crimped 77.6 24.3 98.0
Straw, tackified 38.3 38.7 99.0
Wood fiber HM 127.1 84.7 96.7

Straw and cotton HM 46.9 39.5 98.8
Cotton FRM 23.8 16.9 99.4

Bonded wheat FM 11.2 3.70 99.7

3rd 15-min rainfall event

Control 1602 264.9 -
Straw, crimped 62.0 135.6 98.4
Straw, tackified 30.2 26.7 99.2
Wood fiber HM 121.4 84.4 96.9

Straw and cotton HM 64.3 53.1 98.3
Cotton FRM 29.7 18.3 99.2

Bonded wheat FM 10.5 5.8 99.7

4th 15-min rainfall event

Control 1377 217.5 -
Straw, crimped 44.1 13.8 98.9
Straw, tackified 31.7 28.4 99.2
Wood fiber HM 101.8 78.0 97.4

Straw and cotton HM 84.3 56.3 97.8
Cotton FRM 36.7 24.5 99.1

Bonded wheat FM 10.3 3.7 99.7
1 Average of 3-min soil loss (Figure 6) for each 15-min rainfall event. 2 Standard deviation for average soil loss over
an event. 3 Denotes values normalized by control condition.

Continuing the statistical analysis used throughout this research effort, ANOVA procedures
with Tukey–Kramer multiple comparison tests were used for the recorded amounts of soil loss.
Table 6 illustrates statistically significant and insignificant results of average soil loss throughout the
experiments. The statistical analysis compared all treatments to the control and each other. The control
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proved to be statistically different to all treatments; therefore, each treatment had a significant effect in
reducing soil loss when compared the bare soil. No significant differences were found between the
comparison to the other treatments. Therefore, it can be concluded from Table 6 that statistically, each
treatment is capable of significantly reducing and controlling erosion on 3H:1V, compacted fill slopes.

Table 6. Cumulative soil loss for four, 15-min rainfall events (A) and calculated soil loss ratio
per treatment.

Treatment
Cumulative Soil Loss (A)

(grams/plot) 2
Cumulative Soil Loss (A)

(g/m2)
* Calculated Soil Loss

Ratio 1

Straw, crimped 126 a 169.5 0.040
Straw, tackified 53 a 71.3 0.017
Wood fiber HM 204 a 274.4 0.064

Straw and cotton HM 89 a 119.7 0.028
Cotton FRM 41 a 55.2 0.013

Bonded wheat FM 13 a 17.5 0.004
1 Soil loss ratio normalized to a bare soil value of 4281 g/m2. * Soil loss ratio calculation: SLR = A/Control 1. 2 The
letter a following the values show that they are significantly different (p < 0.05) to the control.

3.3. Cover-Factor

Several studies [39,41,43,50,51] used a ‘cover-factor’ to report erosion control performance.
The cover factor is a parameter in the Revised Universal Soil Loss Equation (RUSLE) to represent
a comparison of soil loss occurring with the treatment in place to that which occurs in the bare,
unprotected condition [51]. The RUSLE allows researchers to calculate cover-factors for treatments
without testing a bare soil using several different parameters based upon soil type, slope, and rain
regimes; ECTC [50] and Clopper et al. [51] used the RUSLE to calculate cover-factors. However, in this
study, the treatment results were compared to the results of the bare soil control test. This comparison
is defined as the “Soil-Loss Ratio”. Table 6 summarizes the soil loss ratio calculated in this research
effort. According to calculated soil loss ratios of 0.004, 0.013, 0.017, 0.028 0.040, and 0.064 in Table 6,
the hydromulches can be ranked from most to least effective erosion control practices accordingly:
(1) bonded wheat FM, (2) cotton FRM, (3) straw, tackified, (4) straw and cotton HM, (5) straw, crimped,
and (6) wood fiber HM.

4. Conclusions

Twenty eight experiments were conducted to examine the ESC effectiveness of seven treatments:
(1) control (bare soil), (2) conventional straw, crimped, (3) conventional straw, tackified, (4) wood fiber
HM, (5) straw and cotton HM, (6) cotton FRM, and (7) bonded wheat FM. Performance was evaluated
using data collection from experiments, which included surface runoff volume, soil loss, and turbidity.

Turbidity measurements were recorded from samples that were collected every minute of each of
the four, 15 min rainfall events. The order of the six treatments ranked from most to least effective
according to an averaged percent reduction when normalized by the bare soil condition were (1) bonded
wheat FM (99% reduction), (2) straw, tackified (98% reduction), (3) cotton FRM (95% reduction), (4) straw
and cotton HM (92% reduction), (5) wood fiber HM (85% reduction), and (6) straw, crimped (80%
reduction). The erosion control practices without tackifiers (conventional straw, crimped, and wood
fiber HM) experienced a significant increase in the amount of eroded sediment during the first two
rainfall events, likely caused by the lack of the bonding between soil particles; however, each treatment
steadily improved sediment control over time. Contrarily, the surface cover practices with tackifying
agents provided excellent initial sediment control due to the bonds between soil particles and the
mulching materials, but over the four rainfall events, the chemical bonds began to deteriorate, showing
a steady decrease in performance.

Approximately, 100%, 99%, 98%, 97%, 96%, and 94% soil loss reduction for bonded wheat FM,
cotton FRM, straw-tackified, straw and cotton HM, straw-crimped, and wood fiber HM were observed,
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respectively. Cumulative soil losses were also used in this research to calculate the soil loss ratios (SLR)
between treated and untreated conditions; calculated ratios mimicked percent reduction performances,
ranging in value from 0.004 for bonded wheat FM to 0.064 for wood fiber HM.

Literature reviewed and results from this research effort suggest that conventional straw crimped
or tackified as well as hydromulches are very effective erosion control measures, when applied at the
proper application rates.

Recommended Future Research

Results and conclusions presented in this study show that conventional straw (crimped or
tackified) and hydromulches are effective means of reducing erosion and sedimentation caused by
sediment laden runoff. However, using soil specific polyacrylamide would likely result in greater
erosion control than the non-soil specific polymers that make up many of the tackifying agents used
on straw and that are a part of many hydromulch products. Therefore, further research should be
conducted to examine how the addition of polyacrylamide to these practices could potentially improve
in-field performance.

Additionally, the conclusions derived in this study are based on laboratory-scale test plots. It would
be beneficial if the performance of these treatments were tested at field-scale conditions to validate
laboratory-scale results provided in this research. Laboratory-scale experiments allow researchers to
test the performance of erosion control practices at a faster rate than most field-scale experiments;
therefore, if field-scale test results are similar to laboratory-scale test results, a larger quantity of
products could be effectively evaluated in a shorter period of time using laboratory-scale tests.
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Abstract: The Tibetan Plateau is influenced by global climate change which results in frequent
melting of glaciers and snow, and in heavy rainfalls. These conditions may increase the risk of soil
erosion, but prediction is not feasible due to scarcity of rainfall data in the high altitudes of the region.
In this study, daily precipitation data from 1 January 1981 to 31 December 2015 were selected for
38 meteorological stations in the Tibetan Plateau, and annual and seasonal rainfall erosivity were
calculated for each station. Additionally, we used the Mann–Kendall trend test, Sen’s slope, trend
coefficient, and climate tendency rate indicators to detect the temporal variation trend of rainfall
erosivity. The results showed that the spatial distribution of rainfall erosivity in the Tibetan Plateau
exhibited a significant decreasing trend from southeast to northwest. The average annual rainfall
erosivity is 714 MJ·mm·ha−1·h−1, and varies from 61 to 1776 MJ·mm·ha−1·h−1. Rainfall erosivity
was mainly concentrated in summer and autumn, accounting for 67.5% and 18.5%, respectively.
In addition, annual, spring, and summer rainfall erosivity were increasing, with spring rainfall
erosivity highly significant. Temporal and spatial patterns of rainfall erosivity indicated that the risk
of soil erosion was relatively high in the Hengduan mountains in the eastern Tibetan Plateau, as well
as in the Yarlung Zangbo River Valley and its vicinity.

Keywords: rainfall erosivity; soil erosion; spatial and temporal pattern; Mann–Kendall test;
Tibetan Plateau

1. Introduction

Soil erosion is a global environmental problem, which leads to land degradation, siltation of
reservoirs, and eutrophication of water bodies, among others [1–3]. Formation mechanisms and
succession processes of soil erosion are affected by rainfall erosivity, which is highly correlated with the
product (EI) of the total storm energy (E) and the maximum 30 min intensity (I30), both derived from
data by Wischmeier and Smith (1958) [4] and Wischmeier (1959) [5]. The concept of rainfall erosivity
developed further by Hudson (1971) [6] and Wischmeier and Smith (1978) [7] describes erosivity as
the average of annual summations of storm EI30. Rainfall erosivity is the basic factor in the Universal
Soil Loss Equation [7] and the Revised Universal Soil Loss Equation [8]. Additionally, many empirical
soil erosion predictions also use rainfall erosivity [9–12]. Although the EI30 index has been accepted
worldwide, its calculation requires hyetograph data for a storm. Therefore, the use of the EI30 index
has been limited by a lack of high temporal resolution rainfall data.
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Many statistical models have been established based on annual rainfall [13–17], monthly
rainfall [18–20], daily rainfall [21–25], and even hourly rainfall [26,27]. Hourly rainfall data cannot be
obtained from many of the national meteorological observation stations, which limits their application.
By contrast, daily rainfall data can guarantee the accuracy of rainfall erosivity calculations due to the
level of detail on rainfall variability [21]. Daily rainfall data is widely used in the calculation of rainfall
erosivity [21–25].

The spatial heterogeneity of soil erosion is very high and has multiple scale characteristics.
It depends on the diversity and complexity of factors affecting soil erosion. Rainfall erosivity is one of
the basic factors responsible for soil erosion [28]. However, it is not distributed uniformly throughout
the year, and at regional scale, knowledge of seasonal and even semi-monthly distribution of rainfall
erosivity is critical to the accuracy of soil erosion calculations [8,11]. Therefore, the spatial and temporal
distribution of rainfall erosivity concerns various countries and regions [12,15,29–32]. Spatial variability
in rainfall erosivity in China is relatively large, with rainfall erosivity decreasing from the southeast
to the northwest [33,34]. Therefore, compared with the northwest region, the risk of erosion in the
southeastern region was significantly greater, and the area is also receiving the attention of scientists.

The global climate system is undergoing a change characterized by significant warming [35].
The Tibetan Plateau is sensitive to climate change and ecologically fragile [36]. Climate in the Tibetan
Plateau has changed dramatically in the early 21st century, with the continuing severe warming
and increasing precipitation [37]; changes include increasing snowmelt and more frequent heavy
precipitation events. Vegetation changes in the Tibetan Plateau and its response to climate change [38],
precipitation and climate change [39], runoff and soil erosion [40–42], as well as watershed non-point
source pollution in the main farming area [43], have attracted the attention of researchers. Protecting the
grasslands of the Tibetan Plateau is of great importance in limiting global climate change [44]. However,
grassland degradation phenomena have been found due to the unreasonable use of grassland by
human beings and changing global climate [45]. Besides, aeolian desertification is impeding sustainable
socio-economic development [46]. Furthermore, soil erosion in this area is relatively weak compared
to the eastern part of China, and recovery from soil erosion is lengthy and difficult once it occurs.

The service span of water conservancy facilities and flood control capabilities were reduced by
severe soil erosion that led to the siltation of channel beds and thus a reduction in reservoir capacity
in the Tibetan Plateau [47]. The Tibetan Plateau, especially the gorge area in the eastern part, has a
large elevation difference where severe soil erosion restricts the development of agriculture and animal
husbandry [42]. Sparse distribution of meteorological stations in this region prevented data collection
on rain characteristics; however, surface runoff generated by snowmelt can also cause soil erosion.
Although researchers have done some studies on rainfall erosivity in the Tibetan Plateau, it is far from
enough [48–51]. Dynamic monitoring of soil erosion in China still requires detailed data on rainfall
erosivity in the area.

To address this, daily precipitation data were used from 1 January 1981 to 31 December 2015 for a
total of 38 stations in Tibet, and the annual and seasonal rainfall erosivity was calculated. The objectives
of the study were to (a) identify long-term trends in rainfall erosivity, and (b) map the spatiotemporal
patterns in rainfall erosivity. The results of this paper are intended to optimize the quantitative
prediction of soil erosion and soil and water conservation planning services in the Tibetan Plateau.

2. Materials and Methods

2.1. Study Area

The Tibetan Plateau is part of and located in the southwestern part of the Qinghai–Tibet Plateau.
It has a total area of about 1.2 million km2 and an average elevation of 4000 m, which gave it its
designation as the “roof of the world”. Most of the Tibetan Plateau is arid and semi-arid. Precipitation
has an uneven distribution and large spatial differentiation. The southeast area has annual precipitation
of 600–800 mm, while the western area suffers from drought with annual precipitation of less
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than 200 mm. Precipitation from May through October accounts for more than 80% of the annual
total. The spatial distribution of precipitation indicates a decreasing trend from the southeast to the
northwest [52]. Mean annual temperature varies between −3.0 and 11.8 ◦C, and daily temperature
fluctuations are often as much as about 15 ◦C [53]. The region experiences soil erosion, desertification,
and mountain hazards. Grasslands make up the largest proportion of land cover, accounting for
56.72% of the total land area in the region. The proportion of cultivated land is 0.42% and it is mainly
found in southern Tibet, with a small amount distributed in the east and southeast. Due to the high
altitude in the northwestern region, the snow cover and frozen soil make this area unsuitable for
human habitation, and the level of human activities is thus low. Thirty-eight meteorological stations
used in this study are primarily found in the eastern and southern parts of the Tibetan Plateau, with
very few in the northwest (Figure 1).

 
Figure 1. Study area and distribution of meteorological stations.

2.2. Collection of Rainfall Data

Daily precipitation data from 1 January 1981 to 31 December 2015 for a total of 38 stations from the
National Meteorological Information Center of the China Meteorological Administration were used
in the present study [54]. The altitude of these stations varies from 2327 to 4800 m, with the lowest
elevation at Zayu station and the highest at Amdo station. The northernmost and westernmost station
was Shiquanhe, the southernmost was Pagri, and the easternmost was Markam station (Figure 1).

2.3. Methodology

2.3.1. Calculation of Rainfall Erosivity

Rainfall data were checked for quality. The cold and warm season rainfall estimation model was
selected to calculate rainfall erosivity [34,55]. The model takes into full account the characteristics of
rainfall in China; that is, the warm season (May–September) with multi-convective, short-duration
heavy rain, and the cold season (October–December, January–April) with many frontal, long-duration
and heavy rains. The model has been widely used, especially in the first national water census in
China [11].
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The rainfall erosivity model for estimating the daily rainfall during the warm and cold seasons
has the following form:

R =
24∑

k=1

Rhal f month k, (1)

Rhal f month k =
1
n

n∑
i=1

m∑
j=0

(
α× p1.7265

i, j,k

)
, (2)

WRhal f month k =
Rhal f month k

R
, (3)

where R is the average annual rainfall erosivity in MJ·mm·ha−1·h−1; k = 1, 2, . . . , 24, which divide the
year into 24 half months; Rhal f month k is rain erosivity of the kth half-month in MJ·mm·ha−1·h−1; I = 1, 2,
. . . , n, and n indicates the rainfall data year; j = 0,1, . . . , m, m is the number of the erosion-causing
rainy days in the kth half month of the ith year; pi, j,k is the j amount of erosive daily rainfall (rainfall
≥12 mm) in the kth month of the ith year in mm, with j = 0 indicating no erosive rainfall resulting in
pi, j,k = 0; in the dry season α is 0.3101, and in the rainy season α is 0.3937; and WRhal f month k is the ratio
of the average rainfall erosivity of the kth month to the average annual rainfall erosivity.

2.3.2. Trend Coefficient and Climate Tendency Rate

To determine temporal variability in rainfall erosivity, we applied the trend coefficient (TC) and
climate tendency rate (CTR) indicators, which are widely used to detect and assess, respectively,
the direction and extent of long-term change in climate factors [56,57]. The formula for the trend
coefficient is as follows:

rxt =

n∑
i=1

(xi − x)(i− t)√
n∑
i
(xi − x)2 n∑

i=1
(i− t)

2

(4)

t = (n + 1)/2 (5)

where rxt is the trend coefficient and n is the number of years. xi is rainfall erosivity of the i-th year.
x is the average annual rainfall erosivity for the n years. When the trend coefficient rxt is positive,
it indicates a linearly increasing trend of rainfall erosivity, and a negative value indicates a linearly
decreasing trend.

A linear equation is usually used to indicate trends in meteorological elements [58,59]. The climate
tendency rate was calculated as follows:

�
p t = a0 + a1t t = 1, 2, · · · , n, (6)

d
�
x t

dt
= a1, (7)

where a1 × 10 is the climate tendency rate over a 10-year period (MJ·mm·ha−1·h−1·10a−1), indicating
the variation of rainfall erosivity per 10 years.

According to the linear regression theory,

a1 = rxt
σx

σt
, (8)

where σx is the mean square error of the rainfall erosivity and σt is the mean square error of sequence 1,
2, . . . , n.

46



Water 2020, 12, 200

2.3.3. Mann–Kendall Trend Test

The Mann–Kendall test [60,61] was used to detect the significance level and the abrupt-change
point of the long-term variability in R factors; the specific calculation method was as follows:

Construct a matrix for the time series x which has a sample of n:

sk =
k∑

i=1

ri (k = 2, 3, . . . , n), (9)

ri =

⎧⎪⎪⎨⎪⎪⎩+1 when xi > xj

0 otherwise
( j = 1, 2, . . . , i). (10)

Define the statistic UFk given the assumption that the time series is random and independent:

UFk =
[sk − E(sk)]√

Var(sk)
(k = 1, 2, . . . , n), (11)

where UF1 = 0, and E(sk) and Var(sk) are the average and variance of the cumulative number sk,
respectively. When x1, x2, . . . , xn are mutually independent and of the same continuous distribution,
they can be calculated from the equations below:

E(sk)
=

n(n + 1)
4

, (12)

Var(sk) =
n(n− 1)(2n + 5)

72
. (13)

UFi is the standard normal distribution, which is calculated according to the time sequence x1, x2, . . . ,
xn. Given the significance level α, when|UFi| > Uα, there is a significant trend in the sequence.

Repeat the calculation to the inverted sequence xn, xn−1, . . . , x1, and make UBk = −UFk (k = n,
n − 1, . . . 1), UB = 0. Intersection of UF and UB is the abrupt change point.

2.3.4. Sen’s Slope Estimator

Sen (1968) [62] developed the non-parametric procedure for estimating the slope of the trend in
the sample of N pairs of data:

Qi =
xj − xk

j− k
f or i = 1, . . . , N, (14)

where xj and xk are the data values at times j and k (j > k), respectively.
If there is only one datum in each time period, then N = n(n− 1)/2, where n is the number of

time periods. If there are multiple observations in one or more time periods, then N < n(n− 1)/2,
where n is the total number of observations. The N values of Qi are ranked from smallest to largest and
the median of slope or Sen’s slope estimator is computed as shown:

Qmed =

⎧⎪⎪⎨⎪⎪⎩Q[(N+1)/2] i f N is odd
Q[N/2]+Q[(N+2)/2]

2 i f N is even
. (15)

The sign of Qmed reflects the direction of data trend, while its value indicates the steepness of
the trend.

The confidence interval about the time slope [62,63] can be computed as follows:

Cα = Z1−α/2

√
Var(S), (16)
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where Var (S) is defined in Equation (13) and Z1−α/2 is obtained from the standard normal distribution
table. In this study, the confidence interval was computed at two significance levels (α = 0.01 and
α = 0.05).

Then, M1 = (N −Cα)/2 and M2 = (N + Cα)/2 are calculated. The lower and upper limits of the
confidence interval, Qmin and Qmax, are the M1 largest and the (M2+1)th largest of the N ordered slope
estimates [63].

The slope Qmed is statistically different than zero if the two limits (Qmin and Qmax) have the
same sign.

Both the Mann–Kendall statistical test and Sen’s slope have been frequently used to detect the
significance of trends in hydro-meteorological time series [64–69].

3. Results

3.1. Temporal Variability in Rainfall Erosivity

Sen’s slope estimator analysis indicated that rainfall erosivity in the Tibetan Plateau exhibited an
increasing trend from 1980 to 2015, but the trend was not significant. Sen’s slope of annual rainfall
erosivity was 3.05 (p = 0.32). However, variability at each station was high, and 13 stations exhibited
a decreasing trend (34% of the stations), and 25 stations an increasing trend (66% of the stations)
(Figure 2a, Table 1). The climate tendency rate had a significantly increasing trend at the Gerze station
in the northern part of the Tibetan Plateau, Shenza station in the middle, and Markam station in
the eastern part of the Minjiang River basin (at the 0.05 significance level), and the rate increased by
20 MJ·mm·ha−1·h−1·10a−1, 32 MJ·mm·ha−1·h−1·10a−1, and 50 MJ·mm·ha−1·h−1·10a−1, respectively, at the
three stations. Increasing rainfall erosivity was mainly found in the southern Tibetan valley, Yarlung
Zangbo River basin, and Hengduan Mountains in the Tibetan Plateau, especially in the Lancang River
Basin. An annual rainfall erosivity anomaly showed that it fluctuated. The rainfall erosivity was small
before 1987, and the value increased after 2010. In the study period, two-thirds of the annual rainfall
erosivity was higher than the average; the minimum appeared in 1992, and the maximum appeared
in 1998 (Figure 2b). The results of the M–K test showed a non-significant increasing trend in rainfall
erosivity in the Tibetan Plateau since 1984 (Figure 2c).

 

Figure 2. The trend coefficient (a), anomalies (b), and M–K test (c) for annual rainfall erosivity from
1981 to 2015 in the Tibetan Plateau. Note: Dots are scaled according to trend magnitude. The red color
corresponds to an increasing trend, and the green color corresponds to a decreasing trend. UF > 0
indicates an increasing trend, UF < 0 indicates a decreasing trend. The mutation year exists at the
intersection of UF and UB.
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Table 1. Statistical tests for annual rainfall erosivity for the period 1981–2015.

Station Zs Qmed Station Zs Qmed Station Zs Qmed Station Zs Qmed

Shiquanhe −0.493 0.000 Shigatse 0.573 5.495 Cona 1.184 4.227 Bome −0.398 −3.866
Gerze 2.075 * 5.030 Nyemo −0.308 −1.668 Lhunze 1.71 5.334 Baxoi 1.008 2.447

Baingoin −0.059 −0.151 Konggar 1.462 8.526 Pagri 0.741 3.367 Gyaca 1.184 7.970
Amdo −0.294 −1.144 Lhasa 1.641 11.284 Sog −0.312 −1.725 Nyingchi −0.068 −0.836
Naqu 0.000 −0.060 Maizhokunggar 0.859 7.607 Biru 0.593 2.892 Mainling 0.652 5.247

Purang −0.243 −0.502 Zetang 1.564 8.255 Denqen 0.015 0.302 Zuogong −0.089 −0.184
Shenza 2.102 * 7.084 Nyalam −0.267 −7.061 Riwoqe 0.741 4.040 Markam 1.957 12.316

Damxung 0.759 3.489 Tingri 1.038 5.141 Qamdo 1.392 6.841 Zayu −0.625 −4.515
Lazi 1.789 6.831 Gyangze −1.379 −4.114 Lhari 1.476 5.079

Nanmulin 1.071 9.389 Nagarze 1.022 5.305 Lhorong −0.728 −2.851

Note: Zs: Mann–Kendall test, Qmed: Sen’s slope estimator, *: Statistically significant trend at the 0.05 significance level.

The distribution of rainfall erosivity over the 24 and a half months is an input factor for many soil
erosion model calculations, including the Chinese Soil Loss Equation (CSLE) [70] and for calculating
vegetation cover and biological measure factors. Data from 1981 to 2010 indicated that rainfall erosivity
in the Tibetan Plateau was mainly concentrated in June–September, accounting for 81% of the year
(Figure 3). This was closely related to the monsoon climate of the Tibetan Plateau, as monsoons account
for 58.5% of the annual precipitation [52]. The proportion of rainfall in May–October accounted for
90% of the rain in the eastern part of Tibet [49]. Therefore, the rainy season was also a frequent period
of soil water erosion.

Figure 3. Statistics of half-monthly rainfall erosivity and its percentages.

Rainfall erosivity at most meteorological stations in spring showed an increasing trend; only 5 of
the 38 meteorological stations had a decreasing trend (Figure 4a, Table 2). The climate tendency rate
indicated a significant increasing trend (at the 0.05 significance level) at Cona and Nyingchi stations in
the southern part of the Tibetan Plateau, and a highly significant increase (at 0.01 significance level) at
the Sog station in the upper reaches of the Nu River Basin; the climate tendency rate increased by 10, 20,
and 11 MJ·mm·ha−1·h−1·10a−1, respectively, for the three stations. Sen’s slope analysis indicated that
rainfall erosivity in the Tibetan Plateau increased during the study period. Sen’s slope value for spring
rainfall erosivity was 1.85 (p = 0.005 < 0.01). Rainfall erosivity with a decreasing trend was found in the
western part of the Tibetan Plateau where the Zuogong station had an insignificant decreasing trend;
its erosivity decreased by 40 MJ·mm·ha−1·h−1·10a−1 (Table 2). A spring rainfall erosivity anomaly
showed that rainfall erosivity was smaller before 2000, and larger after 2000. During the study period,
spring rainfall erosivity was below average 67% of the time; the minimum appeared in 1987 and the
maximum in 2010 (Figure 4b). The M–K test results showed an increasing trend in spring erosivity in
the Tibetan Plateau since 1987, a significant increasing trend after 2010, and the abrupt year occurred
in 2005 (Figure 4c).
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Figure 4. The trend coefficient (a), anomalies (b), and M–K test (c) for spring rainfall erosivity from
1981 to 2015 in Tibetan Plateau. Note: Dots are scaled according to trend magnitude. The red color
corresponds to an increasing trend, and the green color corresponds to a decreasing trend. UF > 0
indicates an increasing trend, UF < 0 indicates a decreasing trend. The mutation year exists at the
intersection of UF and UB.

Table 2. Statistical tests for spring rainfall erosivity for the period 1981–2015.

Station Zs Qmed Station Zs Qmed Station Zs Qmed Station Zs Qmed

Shiquanhe - - Shigatse 0.615 0 Cona 2.25 * 1.927 Bome 1.449 7.632
Gerze 1.364 0 Nyemo 1.151 0 Lhunze −0.024 0 Baxoi 1.467 0.485

Baingoin 0.825 0 Konggar 1.044 0 Pagri 1.819 1.512 Gyaca 1.715 0.873
Amdo 0.830 0 Lhasa 1.227 0 Sog 2.753 ** 1.966 Nyingchi 2.261 * 3.985
Naqu 1.943 0 Maizhokunggar −0.066 0 Biru 0.959 0.452 Mainling 1.853 2.571

Purang −1.198 −0.852 Zetang 0.299 0 Denqen 0.187 0 Zuogong 1.386 0
Shenza 1.913 0 Nyalam −0.460 −0.950 Riwoqe 0.730 0.332 Markam 1.782 0.815

Damxung 0.882 0 Tingri 1.623 0 Qamdo 0.539 0.133 Zayu −0.199 −2.253
Lazi 0.917 0 Gyangze −0.228 0 Lhari 0.130 0.312

Nanmulin 1.970 0 Nagarze 0.370 0 Lhorong 0.779 0.944

Note: Zs: Mann–Kendall test, Qmed: Sen’s slope estimator, *: Statistically significant trend at the 0.05 significance
level, **: Statistically significant trend at the 0.01 significance level.

Increasing rainfall erosivity in summer was observed at more stations than did decreasing, with
21 of 38 meteorological stations (55%) showing increasing trends in rainfall erosivity (Figure 5a, Table 3).
Based on the climate tendency rate, Shenza station in the middle of the Tibetan Plateau, and the Qamdo
station of the Lancang River Basin in the eastern Hengduan Mountains showed a significant trend (at
0.05 significance level) with an increase of 31 and 41 MJ·mm·ha−1·h−1·10a−1, respectively; the trend at
Gerze station in the west and Markam station in the Lancang River Basin in the eastern Hengduan
Mountains was highly significant (at the 0.01 significance level) at 24 and 69 MJ·mm·ha−1·h−1·10a−1,
respectively. The results of Sen’s slope estimator indicated an increasing but not significant trend
during the study period. The Sen’s slope value of summer rainfall erosivity was 1.41 (p = 0.41). Rainfall
erosivity showing a decreasing trend was observed mainly in the western part of the Tibetan Plateau,
the southern part, and the western part of Hengduan Mountains, with the largest decrease at Gyangze
and Lhorong stations where the trend coefficient decreased by 34 and 24 MJ·mm·ha−1·h−1·10a−1,
respectively (Table 3). A summer rainfall erosivity anomaly showed that summer rainfall erosivity was
above average in most years (57%), with the minimum in 1983 and the maximum in 1998 (Figure 5b).
The M–K test results indicated an insignificant increasing trend of summer rainfall erosivity in the
Tibetan Plateau since 1983 (Figure 5c).
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Figure 5. The trend coefficient (a), anomalies (b), and M–K test (c) for summer rainfall erosivity from
1981 to 2015 in the Tibetan Plateau. Note: Dots are scaled according to trend magnitude. The red color
corresponds to an increasing trend, and the green color corresponds to a decreasing trend. UF > 0
indicates an increasing trend, UF < 0 indicates a decreasing trend. The mutation year exists at the
intersection of UF and UB.

Table 3. Statistical tests for summer rainfall erosivity for the period 1981–2015.

Station Zs Qmed Station Zs Qmed Station Zs Qmed Station Zs Qmed

Shiquanhe −0.199 −2.253 Shigatse 0.604 5.805 Cona −0.600 −0.873 Bome −1.647 -10.265
Gerze 2.861 ** 4.857 Nyemo −0.730 −2.692 Lhunze 1.142 2.823 Baxoi 1.275 2.085

Baingoin 0.208 0.608 Konggar 0.442 3.397 Pagri −0.504 −1.199 Gyaca 0.795 4.846
Amdo −0.418 −1.626 Lhasa 2.141 11.923 Sog −0.483 −1.821 Nyingchi −0.204 −1.231
Naqu −0.036 −0.443 Maizhokunggar 0.697 6.002 Biru −0.089 −0.151 Mainling 0.296 2.119

Purang −1.262 0 Zetang 1.190 4.986 Denqen −0.666 −3.152 Zuogong −0.059 −0.157
Shenza 2.017 * 5.683 Nyalam −1.008 −3.273 Riwoqe 0.148 0.469 Markam 2.580 ** 14.369

Damxung 0.821 2.952 Tingri 0.534 1.774 Qamdo 2.070 * 8.620 Zayu −1.221 −4.697
Lazi 1.591 5.814 Gyangze −1.286 −4.041 Lhari 0.697 2.741

Nanmulin 1.463 11.478 Nagarze 0.924 3.610 Lhorong −0.976 −2.554

Note: Zs: Mann–Kendall test, Qmed: Sen’s slope estimator, *: Statistically significant trend at the 0.05 significance
level, **: Statistically significant trend at the 0.01significance level.

The number of stations with increasing rainfall erosivity in autumn was slightly lower than that
with a decreasing trend; 17 of the 38 meteorological stations (45%) showed an increasing trend for rainfall
erosivity (Figure 6a, Table 4). Bases on the climate tendency rate, the Konggar station in the Yarlung
Zangbo River valley in the southern part of the Tibetan Plateau (near Zetang station) showed a significant
increasing trend (at the 0.05 significance level), and the Lhunze station showed a highly significant
increasing trend (at the 0.01 significance level), with an increase of 16 and 13 MJ·mm·ha−1·h−1·10a−1,
respectively. The results of autumn rainfall erosivity indicated an insignificant decreasing trend during
the study period. The Sen’s slope value of autumn rainfall erosivity was −0.02 (p = 0.98). In addition
to the Yarlung Zangbo River Basin, autumn rainfall erosivity in other areas was mainly decreasing
(Table 3). Autumn rainfall erosivity at the Bome and Zuogong stations in the Hengduan Mountains
in the eastern part of the Tibetan Plateau decreased by 46 and 9 MJ·mm·ha−1·h−1·10a−1, respectively.
An autumn rainfall erosivity anomaly shows that autumn rainfall erosivity was above average in most
years (50%), with the minimum in 1992 and the maximum in 1985 (Figure 6b). The M–K test results
indicated an insignificant increasing trend in the Tibetan Plateau from 1984 to 2003, and a slowly
increasing trend after 2008 (Figure 5c).
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Figure 6. The trend coefficient (a), anomalies (b), and M–K test (c) for autumn rainfall erosivity from
1981 to 2015 in Tibetan Plateau. Note: Dots are scaled according to trend magnitude. The red color
corresponds to an increasing trend, and the green color corresponds to a decreasing trend. UF > 0
indicates an increasing trend, UF < 0 indicates a decreasing trend. The mutation year exists at the
intersection of UF and UB.

Table 4. Statistical tests for autumn rainfall erosivity for the period 1981–2015.

Station Zs Qmed Station Zs Qmed Station Zs Qmed Station Zs Qmed

Shiquanhe −0.226 0 Shigatse 0.966 0.934 Cona 1.088 1.124 Bome −0.824 −3.893
Gerze −0.233 0 Nyemo 0.309 0.191 Lhunze 3.061 ** 2.567 Baxoi −1.168 −0.775

Baingoin 0.301 0 Konggar 1.990 * 3.093 Pagri 0.58 0.302 Gyaca −0.016 0
Amdo −0.171 −0.074 Lhasa −1.089 −1.582 Sog −0.824 −0.958 Nyingchi −0.272 −1.306
Naqu −0.965 −1.680 Maizhokunggar −0.730 −1.911 Biru 0.252 0.494 Mainling −0.682 −1.031

Purang 0.904 0 Zetang 0.034 0 Denqen 0.821 1.740 Zuogong −1.380 −1.870
Shenza −0.868 0 Nyalam −0.326 −2.011 Riwoqe 1.453 2.589 Markam −0.830 −1.821

Damxung −0.543 −0.981 Tingri −0.171 0 Qamdo 0.500 0.753 Zayu −0.939 −3.321
Lazi 0.432 0 Gyangze 1.238 0 Lhari 1.022 1.779

Nanmulin −0.018 0 Nagarze 0.049 0 Lhorong −0.744 −1.360

Note: Zs: Mann–Kendall test, Qmed: Sen’s slope estimator, *: Statistically significant trend at the 0.05 significance
level, **: Statistically significant trend at the 0.01significance level.

Winter rainfall erosivity in the Tibetan Plateau was very low, and about 66% of the stations had a
value of 0 (Figure 7a, Table 5). The results indicated an insignificant decreasing trend in winter rainfall
erosivity during the study period. Meanwhile, the Sen’s slope value of winter rainfall erosivity was
−0.03 (p = 0.89). Based on the climate tendency rate, the largest decreasing trend was observed at the
Lhunze station and Qamdo in the Hengduan Mountains in the eastern part of the Tibetan Plateau,
as well as at the Cona station in the southern region, where it decreased almost 100%. The anomaly
showed that winter rainfall erosivity was below average in most years (66%), with the minimum in
1992 and the maximum in 1989 (Figure 7b). The M–K test results demonstrated that the winter rainfall
erosivity in the Tibetan Plateau had an insignificant decreasing trend since 1991 (Figure 7c).
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Figure 7. The trend coefficient (a), anomalies (b), and M-K test (c) for winter rainfall erosivity from
1981 to 2015 in Tibetan Plateau. Note: Dots are scaled according to trend magnitude. The red color
corresponds to an increasing trend, and the green color corresponds to a decreasing trend. UF > 0
indicates an increasing trend, UF < 0 indicates a decreasing trend. The mutation year exists at the
intersection of UF and UB.

Table 5. Statistical tests for winter rainfall erosivity for the period 1981–2015.

Station Zs Qmed Station Zs Qmed Station Zs Qmed Station Zs Qmed

Shiquanhe - - Shigatse - - Cona −1.564 0 Bome 1.255 0
Gerze - - Nyemo - - Lhunze −1.618 0 Baxoi −1.631 0

Baingoin - - Konggar - - Pagri 0.555 0 Gyaca - -
Amdo - - Lhasa - - Sog - - Nyingchi - -
Naqu - - Maizhokunggar −0.545 0 Biru - - Mainling −1.359 0

Purang 0 0 Zetang - - Denqen - - Zuogong - -
Shenza - - Nyalam −0.148 −1.017 Riwoqe −1.631 0 Markam - -

Damxung - - Tingri - - Qamdo −1.618 0 Zayu −0.288 0
Lazi - - Gyangze −1.628 0 Lhari - -

Nanmulin - - Nagarze −1.625 0 Lhorong −1.628 0

Note: Zs: Mann–Kendall test, Qmed: Sen’s slope estimator, -: No data.

3.2. Spatial Distribution of Rainfall Erosivity in the Tibetan Plateau

Spatial distribution of rainfall erosivity in the Tibetan Plateau showed a decreasing trend from the
southeast to the northwest (Figure 8). The average annual rainfall erosivity at 38 meteorological stations
varied from 61 to 1776 MJ·mm·ha−1·h−1 during the study period, with an average of 714 MJ·mm·ha−1·h−1.
The largest annual rainfall erosivity was observed at the Bome station in the eastern part of the
Tibetan Plateau, and the smallest at the Shiquanhe station in the western region (Figure 8). Rainfall
erosivity was <500 MJ·mm·ha−1·h−1 at 24% of the stations, 500–1000 MJ·mm·ha−1·h−1 at 55%, and
>1000 MJ·mm·ha−1·h−1 at 21% of the stations. Relatively high rainfall erosivity was mainly distributed
in the Hengduan Mountains in the eastern part of the Tibetan Plateau and in the low-elevation areas
between the Yarlung Zangbo and Nu rivers.
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Figure 8. Spatial distribution of annual average rainfall erosivity (MJ·mm·ha−1·h−1) from 1981 to 2015.

The seasonal distribution of rainfall erosivity varied greatly across the Tibetan Plateau; the average
summer rainfall erosivity was 482 MJ·mm·ha−1·h−1, accounting for a maximum of 67.5% of the annual
rainfall erosivity, followed by autumn and spring, accounting for 18.5% and 11.5%, respectively.
The proportion of winter rainfall erosivity was the smallest at only 2.5%. Seasonal variability in rainfall
erosivity varied among meteorological stations, but generally followed rain distribution in summer
> autumn > spring > winter (Figure 9). The proportions of spring to annual total rainfall erosivity
differed among meteorological stations. The Shiquanhe station had the smallest proportion at 0 and
the Zayu station in the Hengduan Mountains had a proportion of 46.5%. Meanwhile, the proportion in
the south was higher than in the north, and higher in the east than in the west, resulting in a slight
decreasing trend from the southeast to the northwest (Figure 9a). The proportion of summer rainfall
erosivity varied from the smallest of 16.4% at Nyalam, to the largest of 94.7% at Shiquanhe station.
In addition, 71% of the stations accounted for more than 70% of summer rainfall erosivity, and summer
rainfall erosivity in most meteorological stations in the southern Tibet Valley contributed more than
80% to the total (Figure 9b). The proportion of autumn rainfall erosivity at each meteorological station
varied between 5.3% and 39.4% with the highest at Purang station, followed by the Nyalan and Cona
stations; these stations were located on the southernmost edge of the Tibetan Plateau (Figure 9c).
The proportion of winter rainfall erosivity to the total was small, with less than 4% of the stations
contributing >90% of the winter erosivity. In that, the Nyalam station contributed the most at 33.9%,
followed by Purang, both located on the southwestern edge of the Tibetan Plateau (Figure 9d).
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Figure 9. Spatial distribution of spring (a), summer (b), autumn (c), and winter (d) rainfall erosivity
from 1981 to 2015.

4. Discussion

Rainfall erosivity in the Tibetan Plateau from 1981 to 2015 varied from 61 to 1776 MJ·mm·ha−1·h−1,
with an average of 714 MJ·mm·ha−1·h−1. This value is higher than the inland areas of northwest China,
but smaller than the areas of east and south China [34]. Yan et al. [48] assessed temporal and spatial
distribution of rainfall erosivity in the Tibetan Plateau using TRMM 3B42 data from 2000 to 2008 and
showed a decreasing trend during the study period. However, our results showed that from 1980 to
2015, the annual rainfall erosivity indicated an insignificant increase. If we put our research period
in 2000–2008, the annual rainfall erosivity also showed a slight decrease. Fan et al. [53] found that
rainfall erosivity varied from 32 to 12,189 MJ·mm·ha−1·h−1, with an average of 768 MJ·mm·ha−1·h−1

during 2000–2010, which is closed to our findings. Gu et al. [49] also estimated rainfall erosivity in
the Hengduan Mountainous Region of Eastern Tibet. Their results showed that rainfall erosivity of
Qamdo station based on monthly rainfall was about 300 MJ·mm·ha−1·h−1, which was half of our value.
Data precision and models cause the difference. Daily rainfall data is better than monthly rainfall data.
Spatial distribution is characterized by a decreasing trend from the southeast to the northwest, which
is in accord with previous studies [33,34,50,51].

Topography and monsoon affect rainfall distribution in the study area. The higher the altitude, the
less the rainfall (Figure 10a). High altitude and atmospheric circulation patterns have created a cold,
dry, and fragile environment, which is very sensitive to soil erosion. Weak rainfall erosivity can cause
very severe soil erosion, and terrain has an important influence on the distribution of rainfall erosivity
in the Tibetan Plateau. Previous studies have shown that altitude, slope, and aspect affect transport
of water vapor and the spatial distribution of precipitation in the study area [71]. The relationship
between the average annual rainfall erosivity and altitude of meteorological stations revealed a high
correlation coefficient (−0.63), with rainfall erosivity decreasing with increasing altitude (Table 6,
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Figure 10b). The main factors affecting rainfall erosivity were rainfall and rainfall intensity. There is a
strong correlation between rainfall and rainfall erosivity in the study area (Figure 10c). The correlation
coefficient is as high as 0.92.

 
Figure 10. Correlation between elevation and annual rainfall (a), elevation and annual rainfall erosivity
(b), annual rainfall and annual rainfall erosivity (c) of meteorological stations.

Table 6. Rainfall (P) and rainfall erosivity (R) for the period 1981–2015.

Station P R Station P R Station P R Station P R

Shiquanhe 67 61 Shigatse 425 883 Cona 415 333 Bome 895 1776
Gerze 174 181 Nyemo 336 526 Lhunze 267 292 Baxoi 253 307

Baingoin 333 313 Konggar 389 716 Pagri 445 516 Gyaca 502 753
Amdo 459 561 Lhasa 424 750 Sog 602 797 Nyingchi 684 1201
Naqu 436 521 Maizhokunggar 552 1078 Biru 595 798 Mainling 692 1072

Purang 146 243 Zetang 374 630 Denqen 640 887 Zuogong 444 713
Shenza 325 385 Nyalam 656 1530 Riwoqe 604 924 Markam 585 1127

Damxung 470 626 Tingri 284 557 Qamdo 472 674 Zayu 768 1460
Lazi 326 580 Gyangze 275 389 Lhari 731 1098

Nanmulin 458 835 Nagarze 361 503 Lhorong 415 532

The north–south pattern of the mountains and river valleys in Hengduan Mountains in eastern
Tibet was conducive to the entry of water vapor from the Indian Ocean, and the rainfall was relatively
abundant in that area. Therefore, the annual rainfall erosivity was also relatively high in eastern Tibet,
with annual, spring, and summer rainfall erosivity increasing during the study period. In northwestern
Tibet, precipitation was extremely small, and the corresponding rainfall erosivity was low; this was
due to the obstruction by the mountain system of the Himalayas coupled with high altitude and low
temperature. In southern Tibet and in the Himalayas, annual rainfall erosivity was small, mainly due
to the local topography of the leeward slope of the mountain. However, in the Yarlung Zangbo river
valley, rainfall erosivity was higher due to a lower terrain and sufficient water and heat. Additionally,
precipitation in the rainy season has a pronounced vertical differentiation in the plateau, and with the
increase in altitude, precipitation significantly decreases, and then increases [71], leading to complexity
in the spatial distribution of rainfall erosivity.

Rainfall erosivity in the Tibetan Plateau exhibited a decreasing trend from the southeast to the
northwest, due to mainly to the monsoon. Specifically, the trend was affected by the southeast monsoon
from the Pacific Ocean, and by the southwest monsoon from the Indian Ocean [72]. The climate
of the Tibetan Plateau is diverse, from southeast to northwest, and includes tropical, subtropical,
temperate plateau, plateau sub-frigid, and plateau cold zones. The southern Tibetan valley belongs to
the subtropical monsoon climate, with relatively abundant precipitation, and relatively high rainfall
erosivity. The annual, spring, and summer rainfall erosivity showed an increasing trend in the Tibetan
Plateau, with spring erosivity showing an especially significant increase, which was closely related to
climate change in this area. The region experienced a warming and more humid trend [73]. A previous
study has shown that there was a slight increase in annual rainfall erosivity in most parts of China.
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Besides, the central and eastern Qinghai–Tibet Plateau is the region with the most significant increase
in rainfall erosivity [33]. Our results also showed that the rainfall erosivity of most meteorological
stations on the Tibetan Plateau was increasing. This variation may increase the risk of soil erosion in
the region.

The Tibetan Plateau is located in the most active geological and structural tectonic belt with the
most varied geological history and the strongest tectonic movement in China; physical weathering
of the ground is strong, the freezing and thawing effects are widely distributed, and the material on
slopes is unstable, leading to an extremely fragile environment. As shown in this study, the risk of
soil erosion in the Hengduan Mountains in the eastern Tibetan Plateau and the Yarlung Zangbo River
Valley and its vicinity were high. Rainfall erosivity in this area was not only high, but also showed an
increased trend, especially in spring. As the temperature rises, the snow melts and erosion caused by
rainfall makes the risk of soil erosion in spring also high. Previous studies also showed that the region
with the largest annual erosion modulus in Tibet was the “Three Rivers Basin” in the east (Jinsha
River, Lancang River, and Nu River), followed by the Yarlung River valley [74]. The terrain of the
Tibetan Plateau is complex; heavy rainfall is likely to cause soil erosion, as well as floods, landslides,
and mudslides. Annual rainfall erosivity in the Hengduan Mountains in eastern Tibet was relatively
high, and mainly concentrated in summer. The area was high, and with sleep slopes and deep river
gorges, and the mountains and valleys coexist. Coupled with flood disasters, it is a region with high
risk of soil erosion. Due to the influence of the southwest monsoon in the Indian Ocean, the southern
Tibetan valley has excellent hydrothermal conditions and can grow many subtropical crops, but human
activities undermine environmental protection, which results in creation of important sources of soil
erosion from low-coverage grasslands and sloping farmland in the valley.

5. Conclusions

The Tibetan Plateau is an ecologically fragile area. Climate in the Tibetan Plateau has changed
significantly in the early 21st century, especially due to significant warming. The risk of soil erosion
brought about by climate change may be significant. In this study, we collected daily precipitation
data from 1 January 1981 to 31 December 2015 at 38 meteorological stations in the Tibetan Plateau, and
calculated annual and seasonal rainfall erosivity. Temporal and spatial variability patterns of rainfall
erosivity were analyzed. We concluded that:

(1) Rainfall erosivity in the Tibetan Plateau from 1981 to 2015 varied from 61 to 1776 MJ·mm·ha−1·h−1,
with an average of 714 MJ·mm·ha−1·h−1. The spatial distribution of rainfall erosivity differed
significantly across the area, with the value decreasing from the southeast to the northwest.

(2) Summer rainfall erosivity accounted for 67.5% of the total annual rain erosivity, followed
by autumn and spring, accounting for 18.5% and 11.5%, respectively. Between 1981 to 2015, and
especially since the mid-1980s, annual and summer rainfall erosivity in the Tibetan Plateau exhibited
an increasing trend (increased by 50% and 60%); spring erosivity had a highly significant increasing
(increased by 94%), while autumn and winter a slightly decreasing trend (less than 10%).

(3) The spatial distribution and temporal variability in rainfall erosivity were affected by the special
topography and monsoon of the Tibetan Plateau, as well as by increasing warming and humidification
in this area. In contrast, soil erosion risk was high in the Hengduan Mountains in the eastern Tibetan
Plateau and in the Yarlung Zangbo River Valley and its vicinity.
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Abstract: The research on the impact of rainfall patterns on runoff and sediment yield is still
insufficient, especially under natural rainfall conditions. We analyzed the influence of rain peak
morphology on runoff and sediment yield based on the data of rainfall, runoff, and sediment in the
bare runoff plot of Shixia, a small watershed in the Miyun district of Beijing, from 2007 to 2016. We took
0.4 mm min−1 as the standard of rain peak classification and the peak width, peak number, peak
value, peak position and multi-peak continuity as the indexes of rain peak morphology. The results
showed that: (1) Peak number, peak value, and peak width were significantly correlated with runoff
and sediment yield, while peak position was irrelevant. The order of correlation between rain peak
morphology indexes and runoff yield was peak width (0.71) > peak number (0.69) > peak value
(0.33) > peak position (0.05). The order of correlation between rain peak morphological indexes and
sediment yield was peak width (0.62) > peak value (0.36) > peak number (0.36) > peak position
(−0.09). The multi-peak continuity was not correlated with runoff (0.12) and sediment yield (0.45).
(2) When the number of rain peaks was greater than one in a single rainfall, the amount of runoff and
sediment production increased significantly. (3) For multi-peak rainfall, 90 min was the boundary
point of the rain peak interval, and the sediment yield formed by rainfall with a rain peak continuity
>1/90 min−1 was significantly larger than the rainfall of ≤1/90 min−1. (4) Covariance analysis showed
that the runoff caused by rainfall with a peak at the middle positions was obviously more than rainfall
with a peak at the front position. However, the peak position had no significant effect on the sediment
yield. (5) The peak rainfall amount of a rainfall (TPR) was a comprehensive index reflecting peak
number, peak value and peak width, and the correlation between it and the sediment yield and runoff
reached 0.60 and 0.71, respectively. Statistical rainfall characteristic indexes included rainfall amount,
average rainfall intensity, rainfall duration, I5 (maximum 5-min rainfall intensity), I10, I15, I20, I30,
and I60, among which I60 had the strongest correlation with runoff and sediment yield (0.69, 0.60),
which were much larger than other rainfall indexes (0.08~0.47, 0.14~0.48) except rainfall amount (0.75,
0.37). By establishing a regression equation, it was found that both TPR and I60 had good explanatory
power for runoff and weak explanatory power for sediment yield.

Keywords: rainfall peak; morphological characteristics; runoff; sediment yield

1. Introduction

Researchers usually use statistical rainfall indicators such as average rainfall intensity and rainfall
amount to analyze the relationship between rainfall and soil erosion. Rainfall intensity was found to be
the most important factor, the increase of which lead to an increase of runoff and erosion [1–3]. However,
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many scholars thought that the explanatory power of the above indicators is limited. For example,
in the Loess Plateau and Northeast China, the correlation between rainfall amount and soil erosion is
very low [4,5], and the maximum rainfall during the period, such as I30 (maximum 30-min rainfall
intensity), was chosen as the rainfall indicator [6,7].

In previous experimental studies using artificial rainfall, researchers mainly focused on the effects
of even rainfall intensity on surface infiltration, runoff, and soil loss [8–10]. However, studies have
shown that the internal structure of rainfall processes, i.e., rainfall patterns, had an important influence
on infiltration, runoff, and erosion processes [11–13]. Dunkerley [14] scoured dry soil with crusts
and without vegetation using instantaneously varied rainfall intensity generated by artificial rainfall
experiments. The results showed that the runoff coefficient and flood peak caused by the rainfall
process with constant instantaneous rainfall intensity were significantly increased by 570% compared
with the rainfall process with even rainfall intensity. In artificial rainfall experiments, if the rainfall
pattern cannot be designed to match the rainfall characteristics of the local natural rainfall process,
the estimation of soil erosion can be erroneous.

Since the soil erosion process is affected by multi-factor coupling, erosion intensity prediction
is a current problem for academics, especially the uncertainty of time scale predictions of individual
rainfall. Regardless of which statistical models or physical models are used, the relative errors of
related studies are mostly between 20% and 30%, rather than within 10% [15]. Hudson’s study [16] in
south-central Africa found that a total kinetic energy of individual rainfall stronger than 25 mm/h could
be regarded as an index of erosivity, which is called the Kinetic Energy (KE) > 25 method. Huff [17]
equally divided the rainfall duration into four periods according to which quarter of the rainfall
duration the peak rainfall intensity occurred. All of these studies contributed to the improvement of
soil erosion model accuracy.

This paper creatively proposes a morphological index of rainfall peaks to characterize rainfall and
to analyze its effects on runoff and sediment yield, which includes peak number, peak value, peak
position, peak width, and multi-peak continuity. It is rare to analyze the effect of rainfall on runoff and
sediment yield from the point of view of rain peak morphology. Only some studies on peak position
are available, as mentioned above. Based on 46 rainfall data points we aimed to: (1) quantitatively
analyze the effect of the morphological characteristics of rainfall peak on runoff and sediment yield,
(2) compare the advantages and disadvantages of the morphological indexes of rainfall peak with the
traditional statistical rainfall indexes, and (3) propose an applied model of runoff and sediment yield
based on rain peak morphological indexes.

2. Materials and Methods

2.1. Study Area

The Shixia watershed is located in the northeast of the upper reaches of Miyun reservoir in
Beijing, within the primary protection zone of the Miyun reservoir, between 117◦01′–117◦07′ E and
47◦32′–47◦38′ N, with a total watershed area of 33 km2, as shown in Figure 1. The small Shixia
watershed is also located in the Yanshan mountain range, in the transition zone from the piedmont
alluvial plain to the mountainous region. It is an earth-rock shallow hilly area with high terrain in the
north and low terrain in the south, whose altitude is 150–390 m. The gully density is 0.2 km km−2,
and the slopes are gentle with a slope grade larger than 20◦ only accounting for 16.2% of the watershed
area. The lithology is dominated by gneiss, among which are scattered granite and limestone. The soil
type is brown soil developed on alluvial and diluvial parent materials with light soil texture, deep
soil layer, compact soil mass, and shallow tillage layer. The basin has a warm temperate monsoon
climate. It is dry and cold in winter with an average temperature in January of −6.6 ◦C and is hot in
summer with an average temperature in July of 25.3 ◦C. The annual evaporation of the whole basin
is 1840 mm, and the annual average rainfall is 661.8 mm. Eighty percent of the precipitation occurs
from June to September. The vegetation in the northern part of the basin is dominated by weeds and
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shrubs. The vegetation in the hilly area is mostly artificial Robinia pseudoacacia, Pinus tabulaeformis, and
economic forest. Human activities have been frequent for a long time, and natural vegetation types,
having been destroyed, are hard to see.

 

 

Figure 1. Location of Shixia watershed and runoff plot.

2.2. Sampling Site and Experimental Design

The data in this study were collected from two bare land runoff plots, which are located in the
central demonstration area of the Shixia watershed. The two plots both are 20 m long and 5 m wide,
with a slope of 14.4◦, a slope direction of N270◦ and 20 cm of soil. Figure 1 is a schematic diagram of
the location of the Shixia watershed and runoff plot.
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2.3. Rainfall Data Acquisition and Rainfall Characteristic Index Selection

Rainfall was measured by a self-recording rain gauge and standard rain barrel. According to the
rainfall records, the rainfall amount, rainfall duration, rainfall intensity, I5 (maximum 5-min rainfall
intensity), I10, I15, I20, I30, and I60 were calculated (see Table A1 for data).

In the selection of rainfall characteristic indexes, the morphology of the whole rainfall process
needed to be considered. Therefore, on the basis of sorting and analyzing 46 rainfall data points, we
put forward rain peak-related indexes to reflect the rainfall characteristics. The minimum peak of
rainfall intensity that could cause bare land erosion in this research area was 0.4 mm min−1, so rainfall
with a rainfall intensity above 0.4 mm min−1 was defined as the rain peak. The definition of specific
rain peak morphological indexes were as follows:

Peak number: the number of peaks during a single rainfall.
Peak position: according to the time of the occurrence of the peak during a rainfall, it could be

divided into the front position, middle position, and rear position. The rainfall peak is in the front
position in 0–30%, in the middle position in 30–60% and in the back position in 60–100% of the rainfall
duration. The peak position of a multi-peak rainfall, where the number of rainfall peaks was more
than one, was determined by the occurrence time of 40% of the rainfall concentration according to the
dividing method of Wang [18]. According to this, rainfall could be divided into front-position rainfall,
middle-position rainfall, rear-position rainfall, and uniform rainfall.

Peak value: the highest rainfall intensity. The peak during a single rainfall with the highest value
was the highest peak.

Peak width: referred to the duration when the rainfall intensity reached above 0.4 mm min−1.
Peak continuity: the reciprocal of the average interval time between adjacent rainfall peaks.

The interval between two adjacent peaks refers to the time from the end of the previous peak to the
head of the following peak. This paper attempted to analyze the influence of different multi-peak
continuities on runoff and sediment yield, besides the correlation analysis of multi-peak continuity
and runoff and sediment yield, the difference of runoff and sediment yield caused by multi-peak
continuity within and outside 1/60 min−1 and 1/90 min−1 were analyzed by variance analysis by taking
the multi-peak continuity of 1/60 min−1 and 1/90 min−1 as dividing nodes.

Peak rainfall: The total peak rainfall amount of one rainfall was referred to as TPR for short, and
the rainfall amount of the highest peak of a single rainfall was referred to as HPR for short.

The data were shown in Table A2.

2.4. Runoff and Erosion Measurements

Runoff and sediment were measured in runoff plots. The volume method was used to measure
runoff after each rainfall event. When the amount of slurry was small, 1000 mL of slurry sample was
taken after full mixing. When there was more mud, stratified sampling was conducted, and 500 mL
was taken in each layer. Runoff and sediment were calculated by dividing the total amount of the two
plots by the total area of the two plots (see Table 3 for data).

2.5. Coefficient of Variation

The coefficient of variation (Cv) was used to reflect the inter-annual changes in precipitation,
runoff, and sediment. It is calculated using the following equation:

Cv = Sd/M, (1)

where Sd is the standard deviation, M is the average. The greater the Cv value of precipitation or runoff,
which means the greater the variation range of precipitation or runoff, the greater the possibility of
flood or drought. The larger the Cv value of sediment yield, which means the greater the variation
range of sediment yield, the more common the disasters such as soil erosion are.
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2.6. Construction and Test of the Regression Equation

On the basis of Pearson correlation analysis, a regression equation was established by selecting
the rainfall characteristic indexes that were most closely related to soil erosion, and the application
accuracy of the regression equation was determined by cross-examination. The accuracy evaluation
indexes include the mean relative error (MRE), coefficients of determination (R2) and Nash–Suttclife
efficiency coefficient (Ens).

MRE =
1
n

n∑
i=1

∣∣∣∣∣Oi −Yi
Oi

∣∣∣∣∣, (2)

R2 =

(
n∑

i=1
(Oi −O)(Yi −Y))

2

n∑
i=1

(Oi −O)
2 n∑

i=1
(Yi −Y)

2
, (3)

Ens = 1 −

n∑
i=1

(Yi −Oi)
2

n∑
i=1

(Yi −O)
2

, (4)

Yi is the calculated value, Oi is the measured value, O is the average value of the measured value, Y is
the average value of the calculated value, and n is the number of data points.

3. Results

3.1. Rainfall Characteristics Analysis

During the 10 years from 2007 to 2016, there were 101 erosive rainfalls in the small Shixia watershed.
In order to analyze the impact of rainfall on runoff and sediment yield, we had to eliminate the previous
rainfall events as much as possible, so 45 precipitation events without rainfall in the previous two days
were selected. The total rainfall of these 45 rainfall events was 1494.4 mm with an average rainfall of
33.2 mm, a maximum rainfall of 114.3 mm and a minimum rainfall of 9.8 mm. The average rainfall
duration was 391.0 min, with a maximum rainfall duration of 1225.0 min, and a minimum rainfall
duration of 20.0 min.

A total of 81 rain peaks appeared in 45 rainfall events (Table 1), and the maximum number of
rain peaks that appeared in one rainfall event was five. There were 26 single-peak rainfall events,
accounting for 41% of the total rainfall, and 19 multi-peak rainfall events, accounting for 59% of the
total rainfall. In the multi-peak rainfall events, there were three rainfalls with a peak continuity of less
than 1/90 min−1 and 16 rainfalls with a peak continuity more than 1/90 min−1. Among the 81 rainfall
peaks, the numbers that had a front position, middle position and rear position were 29, 30, and 22,
respectively. Among the 45 rainfall events, the numbers that had a front position, middle position and
rear position were 24, 13, and 8, respectively. It could be seen that the front-position rainfall in the
research area was predominant and accounted for 53% of the total erosive storms.

Table 1. Statistics of the rainfall peak characteristics.

Rainfall
Characteristics

Category
Number of

Rainfall
Number of

Peaks
Average
Rainfall

Average Rainfall
Duration

Average Rainfall
Intensity

Peak Number
single-peak 26 - 23.67 297.23 12.75
multi-peak 19 - 46.26 519.21 7.77

Peak position
front 24 29 22.75 235.25 12.66

middle 13 30 48.81 532.85 7.25
rare 8 22 39.25 627.50 10.12

Rain peak
continuity

≤1/90 min−1 3 - 30.17 998.33 1.72
>1/90 min−1 16 - 48.81 406.88 9.23
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Figure 2 shows the frequency distribution of the rainfall peak value and peak width. The frequency
distribution of the rainfall peak value in this region was in accordance with the Voiht peak shape
function, and the peak value of rainfall was from 0.4 to 3.2 mm min−1, of which 0.8–1.2 mm min−1

was most common, accounting for 33%. The frequency distribution of the rainfall peak width was in
accordance with the extreme distribution. The peak width of rainfall was generally less than 60 min,
of which 10–20 min was most common, accounting for 38%. The frequency distribution of a single rain
peak width conformed to the extreme peak function. The duration of a single rain peak was generally
below 40 min, and the majority were about 5–10 min, which accounted for 29%, followed by 10–15 min,
which accounted for 28%.
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Figure 2. Frequency distribution of rainfall peak and peak width. (a) Frequency distribution of rainfall
peak value, (b) frequency distribution of peak width.
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3.2. Effect of Rain Peak Morphology on Runoff and Sediment Yield

3.2.1. Effect of Peak Number, Peak Position and Peak Continuity on Runoff and Sediment Yield

Taking the peak number of 46 rainfalls as independent variables, and runoff and sediment yield
as dependent variables, one-way analysis of variance was carried out. The results are shown in Table 2.
Table 2 shows that there were significant differences in runoff and sediment yield between single-peak
and multi-peak rainfalls (P < 0.05). The average runoff of multi-peak rainfalls was 2.83 times that of
single-peak rainfalls, and the average sediment yield of multi-peak rainfalls was 1.49 times that of
single-peak. It could be seen that if the rainfall peaks reached two or more, the amount of soil and
water erosion would increase significantly.

There was no obvious difference in runoff and sediment yield caused by rainfalls with peak
continuity divided by 1/60 min−1, and there was no significant difference in runoff caused by rainfalls
with peak continuity divided by 1/90 min−1. When the effect of multi-peak continuity on sediment
yield was analyzed, the difference was found to be significant (P < 0.05). However, after excluding
the effect of rainfall as a covariate, it was found that multi-peak continuity had a significant effect on
sediment yield at the level of 0.1 (P = 0.075). With the increase in multi-peak continuity, the sediment
yield showed an increasing trend. The average sediment yield of multi-peak rainfalls with continuity
>1/90 min−1 was 2.95 times that of rainfalls with continuity ≤1/90 min−1.

The peak position of 46 rainfalls were taken as independent variables, runoff and sediment
yield were taken as dependent variables, rainfall amount were taken as covariates to exclude their
influence, and covariance analysis was carried out. The results showed that there was no significant
difference in soil erosion among front-position, middle-position, and rear-position rainfalls. However,
the runoff formed by the front-position rainfall was significantly different from the runoff formed by
the middle-position rainfall (P < 0.05), while the runoff and sediment yield formed by the rear-position
rainfall was no significantly different from the runoff formed by front-position and middle-position
rainfalls. The average runoff of the middle-position rainfall was 3.06 times that of the front-position
rainfall, which indicated that the later the rain peak appeared, the more runoff that would be generated.

Table 2. Runoff and sediment yield under different peak numbers, peak positions, and peak continuities.

Rainfall
Characteristics

Category
Average Sediment Yield (t km−2) Total

Sediment
Yield (t km−2)

Average Runoff Yield (mm) Total
Runoff

Yield (mm)Value
Standard
Deviation

Figure Value
Standard
Deviation

Figure

Peak number
single 625.17 522.19 a 16,254.42 6.45 5.21 a 167.93
multi 969.87 552.58 b 18,427.53 20.05 11.62 b 380.95

Rain peak
continuity

≤1/90 min−1 363.01 229.42 a 1089.05 10.81 8.95 a 32.42
>1/90 min−1 1071.84 527.70 b 17,149.48 21.83 15.43 a 349.28

Peak position
front 625.31 526.98 a 16,350.00 6.55 5.28 a 157.43

middle 1055.15 606.93 a 13,716.98 20.05 11.58 b 260.63
rear 770.71 556.32 a 5708.69 16.39 13.02 ab 131.10

Note: Averages followed by the same letter in the same column are not significantly different, according to the
Fisher LSD test at P ≤ 0.05, P means significance test probability.

3.2.2. Effect of Peak Value and Peak Width on Runoff and Sediment Yield

Figure 3 shows the variation in runoff and sediment yield with the peak value. With an increase
in the peak value, the average runoff and sediment yield increased gradually. The average runoff and
sediment yield with a peak value >2 mm min−1 were 2.58 times and 2.09 times higher than those with
a peak value in the range of 0.4–0.8 mm min−1, respectively. Rainfall with a peak value from 0.8 to
1.2 mm min−1 produced the largest amount of runoff, which was up to 146.50 mm, accounting for 27%
of runoff generated by all rainfalls. Although the average runoff of one rainfall within this peak range
was the smallest, the number of rainfalls was the highest (15, see Figure 2), thus contributing greatly to
the total runoff. Rainfalls with a peak value of 0.8–1.2 mm min−1 also produced the largest amount
of sediment, which was up to 8825.33 t km−2, accounting for 25% of the sediment generated by all
rainfalls because of the high number of rainfalls.
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Figure 3. Runoff and sediment yield characteristics of different peak values of the rainfalls.

Figure 4 shows the runoff and sediment yield characteristics of rainfalls with different peak widths.
With an increase in the peak width of the rainfall, the average runoff and the average sediment yield
showed an increasing trend. Compared with rainfalls with a peak width <10 min, the runoff yield and
sediment yield formed by rainfalls with a peak width >60 min increased by 7.16 times and 8.05 times,
respectively. Rainfall with a peak width of 20–30 min produced the largest amount of runoff, which
was up to 149.79 mm, accounting for 27% of runoff generated by all rainfalls. Rainfall with a peak
width of 20–30 min not only produced high average runoff (13.62 mm) but also had high rainfall times
(11, see Figure 2), thus contributing greatly to the total runoff. Rainfalls with a peak width of 10–20 min
produced the largest amount of sediment, which was up to 9099.07 t km−2, accounting for 26% of the
sediment generated by all rainfalls. This was mainly due to the largest number of rainfalls within
10–20 min (17, see Figure 2), accounting for 38% of the total rainfalls.
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Figure 4. Runoff and sediment yield characteristics of rainfalls with different peak widths.
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3.2.3. Comprehensive Effect of Rainfall Peak Morphology on Runoff and Sediment Yield

The results of the correlation analysis between runoff, sediment yield, and rainfall peak
morphological indexes are shown in Table 3. The order of influence of rainfall peak morphology
indexes on runoff was peak width (0.71) > peak number (0.69) > peak value (0.33) > peak position
(0.05). The influence on sediment was peak width (0.62) > peak value (0.36) > peak number (0.36) >
peak position (−0.09). The correlation of multi-peak continuity to runoff and sediment yield could
not be compared with other indexes because of the small sample size. Table 4 shows that multi-peak
continuity is not significantly correlated with runoff (0.12) and sediment yield (0.45). It is worth noting
that the correlation coefficients of the peak width of one rainfall with the runoff and sediment yield
were 0.71 and 0.62, respectively, which were much larger than that of the width of the highest peak
with the runoff and sediment yield (0.36 and 0.49). Based on the statistical analysis of the influence of
and the highest peak rainfall (HPR) on runoff and sediment yield, it was concluded that the influence
of TPR on runoff and sediment yield was greater than that of HPR, which indicates that the explanatory
power of runoff and sediment yield was weak when only the highest peak rainfall was considered.

Table 3. Correlation table between morphological indexes of rain peak with runoff and sediment yield.

Variable
Peak

Number
Peak

Continuity
Peak

Position
Peak
Value

Peak Width of a
Rainfall

Highest
Peak Width

TPR HPR

Runoff 0.69 ** 0.12 0.05 0.33 * 0.71 ** 0.36 * 0.71 ** 0.37 *
Sediment 0.36 * 0.45 −0.09 0.36 * 0.62 ** 0.49 ** 0.60 ** 0.38 **

Note: * and ** mean significant differences at 0.05 and 0.01 level, respectively.

Table 4. Correlation of statistical characteristic indicators of rainfall with sediment yield and runoff.

Variable
Rainfall
Amount

Average Rainfall
Intensity

Rainfall
Duration

I5 I10 I15 I20 I30 I60

Runoff 0.75 ** −0.08 0.30 * 0.33 * 0.31 * 0.40 ** 0.47 ** 0.44 ** 0.69 **
Sediment 0.37 * 0.14 −0.15 0.36 * 0.28 ** 0.38 ** 0.44 ** 0.48 ** 0.60 **

Note: * and ** mean significant differences at the 0.05 and 0.01 level, respectively.

TPR was closely related to runoff and sediment yield, which might be due to the comprehensive
consideration of the impact of multi-peaks, peak value and peak width, thus greatly enhancing the
interpretation of runoff and sediment yield. However, TPR still failed to consider the peak continuity
and peak position, which would weaken the explanatory power of runoff and sediment yield to a
certain extent. Figure 5 shows the variation of runoff and sediment yield with the TPR of 45 rainfalls.
From Figure 5, it can be seen that the trend of runoff and sediment yield was obviously consistent
with TPR.

In this study, the annual variability coefficients of the runoff and sediment yield were calculated
and their variations with TPR were plotted (Figure 6). The Cv of the runoffwas from 0.49 to 1.24, and
the Cv of the sediment yield was from 0.37 to 1.20. The Cv of the sediment yield was smaller than
that of the runoff. The Cv value of the runoff and sediment was larger than that of TPR (0.41–0.97).
With an increase in TPR, the Cv of the runoff and sediment yield also showed an increasing trend, which
indicated that the runoff and sediment yield were more sensitive to heavy rainfall. That is, runoff and
sediment yield caused by rainfall with high intensity and huge amount fluctuated more, which was
more disadvantageous to watershed management, flood control, and disaster prevention management.
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Figure 5. Variation of runoff and sediment with TPR.
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of one rainfall (TPR).

3.3. Explanatory Power of Statistical Rainfall Indexes on Changes in Runoff and Sediment Yield

The correlation analysis between statistical rainfall indexes (rainfall amount, average rainfall
intensity, rainfall duration, I5, I10, I15, I20, I30, and I60) and runoff and sediment yield were carried
out. The results are shown in Table 4. Except for the average rainfall intensity and rainfall duration,
there were significant correlations between the characteristic indexes of rainfall and sediment yield.
The correlation between I60 and sediment yield was the largest (0.60). It can be seen from the foregoing
that the duration of a single peak was generally less than 40 min (Figure 2), and its characteristics
could be expressed by any index of the maximum rainfall of 5–30 min. The correlation between I60

and sediment yield was much greater than other statistical rainfall indexes, which indicated that the
maximum rainfall of an intercept time of 60 min could accommodate more rainfall characteristics.
However, it was not correct that the larger the interception time range was, the more the maximum
rainfall in a given period is related to sediment yield because the correlation between rainfall amount
and sediment yield was also low when the interception range was all time. It was probably related to the
peak number and continuity in the rainfall process. I60 might reflect the comprehensive characteristics
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of multi-peak rainfall and their continuity to a certain extent, that was to say, the more continuous rain
peaks occurred within one hour and the larger the peak value, the greater the sediment yield produced.
The analysis of multi-peak continuity in Section 3.2.1 proved that when the peak interval is within a
certain period of time (about 90 min), multi-peak continuity had a significant impact on sediment yield.

The trend of the relationship between runoff and maximum rainfall in a given period was
consistent with sediment yield, except that the correlation between runoff and rainfall amount was
also large. The statistical rainfall characteristic indexes with the strongest correlation with runoff were
rainfall amount and I60 (Table 4), and the correlation coefficients were 0.75 and 0.69, respectively.

A comprehensive comparison between the indexes of rainfall peak morphology and statistical
rainfall characteristic indexes showed that TPR and I60 were most closely related to runoff and sediment
yield. Therefore, linear regression models were established with sediment yield (S) and runoff (R) as
dependent variables, and TPR (P) and I60 as independent variables. The results are shown in Table 5.
Five rainfall events were randomly sampled for cross-checking, and the relative error, correlation
coefficient, and Nash–Sutcliffe efficiency coefficient of predicted values with measured values were
obtained. The remaining rainfalls were used for relationship fitting. TPR could explain 62% of the
runoff variety and 36% of the sediment yield variety, which was greater than explanatory power
of I60 (51%, 37%). In general, TPR and I60 had more explanatory power for runoff than sediment
yield. The cross-examination results of measured and simulated values of runoff yield model showed
that the mean relative error of the two runoffmodels proposed in the study were 22.4% and 12.1%,
the correlation coefficient was 0.91 and 0.94, and the Nash–Sutcliffe efficiency coefficient was 0.72 and
0.93, respectively. The models had good application precision. However, the mean relative error of the
sediment yield model was larger, reaching more than 50%, and the Nash–Sutcliffe efficiency coefficient
was less than 0, which indicated that its application precision was weak.

Table 5. Regression model of runoff and sediment yield.

Plot Code Equations R2 P
Cross-Examination

MRE (%) R Ens

1 R = −0.25 + 0.64 P 0.62 <0.05 22.4 0.91 0.72
2 R = −7.25 + 0.99 I60 0.51 <0.05 12.1 0.94 0.93
3 S = 376.68 + 20.02 P 0.36 <0.05 68.4 0.87 −1.86
4 S = 34.91 + 36.93 I60 0.37 <0.05 56.1 0.97 −0.19

Note: R2 means coefficient of determination; P means significance test probability.

4. Discussion

Previous studies on how rainfall affects runoff and sediment yield have mostly focused on
statistical descriptions of rainfall (rainfall, average rainfall intensity, duration of rainfall, and maximum
rainfall in a given period), and maximum rainfall in a given time, with less than 30 min being the
most common [19,20]. In this study, the correlation between rainfall and runoff was strong, but the
correlation between rainfall and sediment yield was weak, and the average rainfall intensity had no
significant correlation with runoff and sediment yield. This showed that the average rainfall intensity
could not reflect the natural rainfall with instantaneous variation in rainfall intensity in the study of
soil erosion. I30 could only reflect the characteristics of the highest rainfall peak, ignoring the situation
of multiple peaks in the rainfall process. The results showed that there were significant differences
in runoff and sediment yield between single-peak and multi-peak rainfalls. The continuity between
rainfall peaks was rarely considered. In this paper, it was found that a distance of 90 min between the
two rain peaks was a change point, and there were significant differences in soil loss caused by rainfall
within and outside 90 min between the two peaks, which were concealed by correlation analysis.
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The analysis of this study based on natural rainfall showed that the peak position had a significant
impact on runoff, that is, the runoff caused by middle-position rainfalls was significantly larger
than that caused by front-position rainfalls, while the peak position had no significant impact on
sediment yield. Previous studies using simulated rainfall showed that more sediment could be
generated by rear-position rainfall [18,21,22]. They believed that as the rain continued, the soil water
content gradually increased, which led to the decline of infiltration capacity and an increase in runoff,
or continuous high-intensity rainfall might lead to a change in soil structure. Flanagan [11] believed
that when the soil was dry before a rainfall, a rear-position rainfall was more conducive to runoff
generation, while if the soil was wet before a rainfall, a front-position rainfall could cause more runoff
and soil loss. It was not found that the peak position had a significant effect on sediment yield in this
study, which might be due to the different soil conditions under simulated rainfall and natural rainfall.
Under artificial simulated rainfall conditions, the soil was relatively loose, which was not conducive to
the formation of crusts [22]. Under natural conditions, the rear-position rainfall was favorable for the
formation of a soil crust, that is, a storm with a lower initial rainfall intensity offered more opportunity
for surface seal development, which was more resistant to erosion by surface flow [23]. On the contrary,
the soil surface of the front-position rainfall under natural conditions was not protected by a crust,
which was beneficial for sediment yield. Therefore, although the front-position rainfall produced less
runoff than the middle- and rear-position rainfall, the sediment yield of the front-position rainfall was
comparable to that of the middle- and rear-position rainfall. Frauenfeld and Truman [12] also found
that the effect of rainfall patterns on sediment yield varied with soil type and texture.

Peak value and peak width had important effects on runoff and sediment yield, which could be
expressed by TPR. The larger the peak value and width, the larger the TPR, and the larger the runoff
and sediment yield. The results showed that the explanatory power of TPR for the runoffwas 72%,
with a higher correlation coefficient and Nash–Suttclife efficiency coefficient, and a relative error less
than 30%, which indicated that the statistical model based on TPR had good application precision.
The unexplained part might be due to: (1) This study based the rainfall events without anticipated
rainfall within 2 days, which could not completely guarantee the consistency of soil water content
before rain, and could not completely exclude the influence of soil water content. (2) The TPR could
not accommodate the characteristics of rain peaks, such as peak position and continuity. (3) The nature
of raindrops was not involved. (4) The interaction between rainfall and soil permeability.

The explanatory power of TPR on sediment yield was 36% with a low Nash–Sutcliffe efficiency
coefficient, and a relative error more than 50%, which was similar to the research of Liu [24] on the
application of the WEPP(water erosion prediction project) model to bare slope land in the black soil
region of northeast China. This might be related to the type of soil and runoff process. Rainfall
and runoff with different morphologies formed a complex response mechanism with soil particles,
thus reducing the prediction accuracy of rainfall characteristic indicators on sediment yield. Further
research is needed regarding how the interaction between rainfall and soil permeability affects runoff
and how the interaction between rainfall, runoff and soil physical properties affects sediment yield.

5. Conclusions

(1) The order of influence of rainfall peak morphological indexes on runoffwas peak width > peak
number > peak value > peak position, and the order of the influence on sediment was peak width >
peak value > peak number > peak position. Multi-peak continuity was not significantly correlated
with runoff and sediment yield.

(2) Runoff and sediment yield increased significantly when the number of rainfall peaks reached
two or more. The average interval time of 90 min between peaks of a multi-peak rainfall acted as
the critical point, and there was a significant difference between the sediment with a peak continuity
≤1/90 min−1 and >1/90 min−1. With an increase in peak continuity, the sediment yield showed an
increasing trend. In this study area, a rainfall peak with an average interval of less than 90 min
(continuity >1/90 min−1) was most common, accounting for 84%.
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(3) Analysis of variance showed peak position had no significant effect on soil erosion, but it had
a significant effect on runoff. The runoff formed by middle-position rainfalls was significantly more
than that of front-position rainfalls, which may be related to the formation of a soil crust.

(4) Peak number, peak value, and peak width had a correlation with runoff and sediment yield.
With an increase in peak number, peak value and peak width, runoff and sediment yield also increased.
As a comprehensive index, TPR could take into account all of the above factors and had the highest
correlation with runoff and sediment yield.

(5) I30 could only reflect the rainfall characteristics of the highest peak because the rainfall peak
width was generally below 40 min in the study area. However, I60 had a better explanatory power
for runoff and sediment yield and could take more factors into account to a certain extent, such as
multi-peaks and peak continuity.

(6) The regression equations established by TPR and I60 on runoff had good application precision.
The prediction error was within 30%, and the correlation coefficient and the Nash–Sutcliffe efficiency
coefficient were relatively high. Moreover, the interpretation of the TPR on the runoffwas stronger
than I60. The precision of the regression equation established by TPR and I60 on the sediment yield
was poor.
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Table 3. The data set of runoff plots.

Date Sediment (Plot 3) Sediment (Plot 4) Runoff (Plot 3) Runoff (Plot 4)

2007/6/27 10.74 7.59 0.93 0.48
2007/7/18 641 596.55 25.04 11.54
2007/8/4 1509.81 1429.82 44.77 27.67

2007/9/13 286.31 245.33 7.9 7.34
2008/7/4 1149.43 1314.84 5.04 6.76

2008/7/11 1015.74 1469.81 9.09 9.27
2008/7/14 324.77 340.86 25.03 16.03
2008/8/8 102.09 198.3 2.79 3.02

2008/8/14 182.04 264.26 5.41 4.5
2008/8/29 539.84 672.23 13.5 14.4
2008/9/7 768.55 1045.17 29.62 24.22

2008/9/14 613.31 850.36 9 9.18
2009/7/20 1188.1 954.4 35.8 8.8
2010/8/18 1192.31 879.39 6.39 5.38
2010/8/21 460.21 329.86 6.39 4.13
2010/10/1 1716.51 1379.21 19.69 16.99
2011/6/14 1542.1 1234.93 13.45 8.95
2011/7/6 1118.74 1051.87 8.3 7.17

2011/7/14 739.71 707.67 5.93 4.19
2011/7/17 1527.13 1559.76 18.81 14.31
2011/7/24 2440.44 1904.11 38.7 23.86
2011/7/29 1353.62 1425.82 15.3 9
2011/8/14 755.24 944.5 17.06 8.96
2012/6/3 302.29 456.23 6.68 3.94
2012/6/7 175.01 80.45 2.65 2.09

2012/6/24 314.15 183.73 8.73 5.57
2012/7/21 578.96 740.84 28.27 53.47
2012/9/1 547.84 389.61 7.39 4.79

2013/7/31 222.19 104.92 1.77 1.1
2013/9/4 706.23 424.52 14.18 8.33

2013/9/12 1132.77 1028.77 37.62 34.92
2013/10/1 384.58 289.81 4.52 3.5
2014/5/18 689.31 1092.13 5.48 7.74
2014/6/13 630.61 394.5 2.77 2.99
2014/7/21 1738.23 1480.98 8.89 8.78
2015/6/26 89.56 62.94 0.75 0.87
2015/7/16 1330.75 949.2 8.91 8.57
2015/8/19 412 234.91 8.06 6.48
2015/8/28 688.07 1164.96 25.1 19.7
2015/9/4 51.51 18.67 2.35 1.11

2015/9/22 150.83 90.78 2.88 2.65
2015/9/24 82.48 31.16 0.19 0.1
2016/8/12 1161.85 663.57 28.8 27
2016/8/27 1245.27 651.07 6.78 7.23
2016/9/4 2534.04 1677.23 31.54 32.44
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Abstract: Construction site erosion and resulting sedimentation constitutes one of the greatest
non-point source pollution threats to our nation’s waterways. Erosion control practices are important
aspects of any construction project due to their ability to limit the process of erosion. Testing erosion
control practices under simulated rainfall representative of conditions experienced on construction
sites is important to better understand their erosion reduction capabilities. Full-scale testing using
simulated rainfall has been shown to provide controllable and repeatable results, in comparison to
field-testing under natural conditions. Therefore, the focus of this study was to design, construct,
and calibrate a pressurized rainfall simulator testing apparatus capable of accurately and repeatedly
simulating rainfall intensities of 50.8, 101.6, and 152.4 mm/hr (2.0, 4.0, and 6.0 in/hr) for 20-min
intervals. The developed testing apparatus consisted of a 12 m (40 ft) long by 2.4 m (8.0 ft) earthen
slope at a 3H:1V slope. Ten sprinkler risers at a height of 4.27 m (14 ft) were installed around the
perimeter of the slope to create a uniform distribution of rainfall. Data collection procedures consisted
of collecting and analyzing rainfall depth, drop size distributions, and sediment concentrations.
The optimum location for each sprinkler riser, as well as the most accurate nozzle configuration,
were determined through test procedures developed for this study. Through calibration testing, the
simulator was found to produce accurate rainfall intensities with relative errors of 1.17–4.00% of the
target intensities. Uniformity of rainfall distribution ranged from 85.7 to 87.5%. Average drop sizes
were determined to be between 2.35 and 2.58 mm (0.093 to 0.102 in.).

Keywords: erosion control; full-scale testing; runoff; simulated rainfall; water quality

1. Introduction

Construction projects typically create large areas of exposed soil due to clearing, grubbing, and land
grading activities. Lack of vegetative cover leaves these areas susceptible to erosion during rain events.
In the U.S. alone, it is estimated that as much as 73 million metric tons (80 million tons) of sediment is
eroded from construction sites each year [1]. Highly concentrated sediment-laden stormwater runoff
degrades existing ecosystems and water quality through the process of sedimentation and by increasing
turbidity, making it difficult for aquatic organisms to survive. These concerns led the U.S. Congress to
include sediment discharge into the National Pollutant Discharge Elimination System (NPDES) permit
program in 1990 under the Clean Water Act. Regulations under NPDES require sediment pollution
generated by construction activities be controlled on-site by the site operator [2].

Water 2019, 11, 2386; doi:10.3390/w11112386 www.mdpi.com/journal/water79
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Several factors contribute to the erosive potential of a particular project site, including soil
properties, topography, local climate (i.e., rainfall intensity, frequency, and duration), and vegetative
cover. While there are many different types of erosion (e.g., interrill, rill, gully, channel, etc.) and
subsequent control practices and products, the focus of this paper is on the testing and evaluation of
erosion control practices and products used on earthen slopes to minimize interrill and rill erosion.

With the increasing usage of erosion control practices and products, it is important for researchers,
practitioners, contractors, inspectors, and regulatory agencies to understand their in-field performance
along with suitable applications. Small-scale testing has been conducted in the past to accomplish these
objectives; however, it does not adequately represent conditions that practices and products would
experience in the field [3]. To effectively recreate field-like scenarios, full-scale testing on a field-scale
plot must be performed. To date, the most representative and controllable method to accomplish this
has been through the use of rainfall simulators [4–7]. The purpose of this study was to design and
calibrate a test apparatus that is capable of evaluating the effectiveness of erosion control practices and
products, and enables the researchers to replicate these results.

1.1. Rainfall Simulators

Rainfall simulation has long been used to study the effects of rainfall-induced erosion [8–12].
The need for rainfall simulators arose when researchers determined that simulated rainfall provided
more uniform control over experiments in comparison to natural rainfall. While natural rainfall is
most desirable for testing of erosion control practices, simulated rainfall allows for expedited data
collection and reproducible testing [13–15].

The earliest rainfall simulators used drop forming mechanisms (i.e., hypodermic needles and
string) to form droplets [6]. Unpressurized systems need to release raindrops from heights of up to
9.1 m (30 ft) to ensure they reach terminal velocity, representative of natural rainfall. Furthermore,
these systems are highly susceptible to environmental conditions (i.e., wind), leading to these type of
simulators being employed almost exclusively in enclosed laboratory settings.

Beginning in the mid-20th century, pressurized rainfall simulation systems became more desirable
to conduct large-scale, outdoor experiments [7,9,14,16,17]. Pressurized rainfall simulators rely on
nozzles or sprinkler heads to produce rain-like droplets. With a pressurized system, raindrops have
the ability to reach terminal velocity quickly, thereby allowing for shorter, more portable simulators.
Furthermore, pressurized rainfall simulators provide some resistance to environmental conditions,
allowing researchers to conduct evaluations outdoors.

Moore et al. [14] designed, what is referred to as a Kentucky rainfall simulator, using the following
four criteria to generate conditions similar to natural rainfall: (1) uniform distribution, (2) rainfall
intensities, (3) drop size distributions, and (4) raindrop velocities that create kinetic energy. Furthermore,
a plot size large enough to effectively simulate field-like conditions is required. In addition to the above
criteria, Meyer [18] identified five supplementary design criteria that must be satisfied to adequately
simulate natural rainfall: (1) intensities similar to storms producing medium to high rates of runoff and
erosion, (2) near-continuous rainfall application, (3) near vertical impact of most drops, (4) satisfactory
performance in windy conditions, and (5) portability of the system.

1.2. Previous Erosion Studies Using Simulated Rainfall

Pressurized rainfall simulators (Table 1) differ between studies due to varying research objectives
and plot sizes. Shoemaker et al. [19] developed a laboratory-scale rainfall simulator to conduct studies
on the effectiveness of anionic polyacrylamide as an erosion control measure. The simulator consisted
of a single solenoid operated nozzle. The nozzle was installed at a height of 3.05 m (10 ft) and used a
pressure regulator to control flow. Two 3H:1V sloped plots, each with a surface area of 0.74 m2 (8.0 ft2),
were constructed and placed under the simulator. The nozzle was capable of producing a rainfall
intensity of 11.2 cm/hr (4.4 in./hr). Tests consisted of four, 15-min rainfall events separated by 15-min
intervals of no rainfall to allow for data collection. Using Christiansen’s Uniformity Coefficient (CUC),
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Shoemaker et al. [19] calculated an average uniformity of rainfall distribution of 83 to 87% on the
test plots.

Table 1. Summary of rainfall simulators and testing.

Study
Drop Size

Distribution, mm
(in.)

Uniformity
Simulator

Height, m (ft)
Rainfall Intensity,

mm/hr (in./hr)
Plot Sizes,

m2 (ft2)
Slopes, %

ASTM [a]

D6459-15 [22]

Less than 10% > 6
(0.24)

Less than 10% < 1
(0.04)

>80% 4.27 (14) 50.8, 101.6, 152.4
(2, 4, 6) 29.7 (320) 33

Moore et al. [14] D50 = 2.25 (0.089) 80.2 to 83.7 3 (9.84) 3.5 to 185
(0.138 to 7.28)

4.5 (48.4) or
99 (1065)

Shoemaker
et al. [19] 83 to 87 3.05 (10) 111.8 (4.4) 0.74 (8) 33

Kim et al. [20] 2.44 (8) 71.12 to 83.82
(2.8 to 3.3) 8 (86) 29 to 30

McLauglin and
Brown [9],
Miller [21]

2.25 to 2.5 (0.089 to
0.098) 85.7 to 93.2 3.96 (13) 33 and 66

(1.3 and 2.6) 2 (21.8) 10 and 20

Note: [a] ASTM International.

Kim et al. [20] conducted a study examining the effectiveness of flocculant treatments on steep
vegetable fields in South Korea. Six test plots were constructed on slopes ranging from 29% to 30%
with surface areas of 2.4 m2 (26 ft2). Kim et al. [20] constructed a rainfall simulator with steel angle
iron and sprinklers set at a height of 2.4 m (8.0 ft). The simulator was capable of generating rainfall
intensities from 70 to 85 mm/hr (2.8 to 3.3 in./hr).

McLaughlin and Brown [9] conducted a rainfall simulation study with the objective of determining
if application of flocculant to mulches provided erosion control improvements. For this study, 1 m
(3.3 ft) wide by 2 m (6.6 ft) long test plots were constructed on slopes of 10 and 20%. A rainfall
simulator based on a similar design to that of Miller’s [21] was constructed for this experiment.
A 1/2HH-SS50WSQ Fulljet nozzle (Spraying Systems Co.®, Wheaton, IL, USA) was installed 3.96 m
(13.0 ft) above the test plots to produce rain drops. The nozzle was set at a pressure of 34 kPa (5.0 psi)
and produced droplet sizes similar to natural rainfall. During tests, the simulator produced constant
rainfall intensity of 68 mm/hr (2.6 in./hr). The intensity was reduced to a rate of 33 mm/hr (1.3 in./hr)
by programming a solenoid valve to cycle off-and-on in 10 s intervals. Tests were performed until
5 min after runoffwas observed from the test plots.

2. Current Standard Test Methods and Installment Procedures

ASTM D6459-15 [22] is the ASTM International standard test method for determining the
performance of rolled erosion control product (RECP) using rainfall simulation. This standard test
method is used to quantify rainfall-induced erosion of hillslopes under the protection of RECPs [22].
The test determines the soil erodibility factor, K, of the soil used and the cover management factor,
C, of a RECP tested. The data analysis allows for the comparison of C values of different RECPs to
understand their relative performance for controlling erosion. To determine K and C from the Revised
Universal Soil Loss Equation (RUSLE), the rainfall-runoff erosivity factor, R, must first be determined,
which is calculated from the erosion index (EI) using Equation (1) [23]:

R =
1
n

n∑
j = 1

[
m∑

k = 1

EIk] (1)

where EIk is the erosion index for the rainfall event k, m is the total number of the rainfall events in a
year, and n is the number of years used to obtain average R in hundreds of ft·tonf·in./(acre·hr·yr). EI is
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the product of total storm energy (E) multiplied by the maximum 30-min intensity (I30) for a given
storm event, where E is in hundreds ft·tonf/acre and I30 is in in./hr [23]. E is the total kinetic energy of
all raindrops of the storm and directly related to the rainfall intensity. Since R is the average erosivity
potential from a known set of storm events over a known period of time, each storm within that time
period must be individually analyzed using Equation (2) to determine erosivity for each storm event:

EI = (E)I30 =

⎛⎜⎜⎜⎜⎜⎝
p∑

r = 1

erΔVr

⎞⎟⎟⎟⎟⎟⎠I30
(
10−2

)
(2)

where er is the rainfall energy per unit depth of rainfall per unit area in ft·tonf/(acre·in.), ΔVr is the
depth of rainfall (in.) for the rth increment of the storm hyetograph which is divided into p parts,
each with essentially constant rainfall intensity. For natural rainfall events, each raindrop reaches its
terminal velocity when reaching the ground, and er can be calculated as a function of rainfall intensity
ir (in./hr) using Equation (3) in the United States [23]:

er = 1099[1− 0.72exp(−1.27ir)] and ir = ΔVr/Δtr (3)

For large-scale testing in ASTM D6459-15, evaluations for each RECP are repeated three times,
therefore, an annual R cannot be developed, only an average EI and C for three tests are determined
for comparing the relative performance of different RECPs. ASTM D6459-15 suggests using Equation
(4) to compute EI [22]:

EI = I × 1099× [1− 0.72e(−1.27I)] (4)

ASTM D6459-15 does not provide any specific details to apply Equation (4) but refers to the U.S.
Department of Agriculture (USDA) Agriculture Handbook 703 [23]. Equation (4) as described by
ASTM D6459-15 misrepresents the original Equations (2) and (3) since there are two Is in Equation
(4) that represent two different intensities: the first I represents I30 and the second I is intended to
represent ir for the rth increment of the storm hyetograph. Also, when using the rainfall simulator (not
natural rainfall), each rainfall drop may not reach its terminal velocity and the unit rainfall energy, er,
cannot be calculated using Equations (3) or (4) directly. In this study, we will discuss the use of the
original method in the USDA Agriculture Handbook 703 [23] to directly compute the erosion index for
the large-scale test.

Following ASTM D6459-15, the rainfall simulator includes the use of sprinkler heads, sprinkler
risers, pressure gauges, and valves. The ASTM design consists of nine sprinkler risers spaced evenly
around the test plot. Raindrop sizes should vary from 1.0 to 6.0 mm (0.04 to 0.25 in.). Furthermore, the
risers should be constructed to generate a minimum raindrop fall height of 4.3 m (14 ft). To conduct
large-scale testing, a 12 m (40 ft) long by 2.4 m (8.0 ft) wide test plot must be constructed on a 3H:1V
slope. The soil veneer used for testing should be placed in two, 15 cm (6.0 in.) lifts and must consist of
either a loam, sand, or clay soil. The drop size distribution for a specific intensity is determined using
the flour pan method [24,25]. Specified rainfall intensities are 50.8, 101.6, and 152.4 mm/hr (2.0, 4.0,
and 6.0 in./hr). The test consists of three, 20-min intervals of increasing rainfall intensity for a total of
60 min.

The ASTM standard requires apparatus calibration to ensure experimental values for uniformity
of rainfall distribution, rainfall intensity, and drop size distribution are similar to natural rainfall.
A calibration test consists of running the simulator at a specific intensity for 15 min. A collection of 20
rain gauges should be spaced throughout the test plot to collect rainfall data. The recorded rainfall
depth in each rain gauge is analyzed to determine the experimental values for rainfall uniformity
and intensity.
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3. Design and Construction of the Auburn Rainfall Simulator

The purpose of this manuscript is to document the design and construction of a pressurized rainfall
simulator with the aim of developing a portable, calibrated simulator capable of producing replicable,
simulated rainfall events. The development of this rainfall simulator is in collaboration with the
Alabama Department of Transportation to provide the capability to evaluate erosion control practices
and products based upon performance under simulated rainfall. This simulator will also provide the
industry with much need additional testing options, as there is currently only one simulator within the
U.S. that is certified to ASTM D6459 and American Association of State Highway and Transportation
Officials (AASHTO) testing requirements. In this study, a rainfall simulator and full-scale test plot
were constructed at the Auburn University-Erosion and Sediment Control Test Facility (AU-ESCTF)
in Opelika, Alabama. The rainfall simulator design was based on specifications listed in ASTM
D6459-15 [22].

3.1. Sprinkler Head Design

As specified in ASTM D6459-15 [22], the targeted rainfall intensities for the rainfall simulator was
designed for 20-min intervals of 50.8, 101.6, and 152.4 mm/hr (2.0, 4.0, and 6.0 in./hr), respectively.
The rainfall simulator apparatus incorporates solenoid valves to instantaneously alter flow rates by
turning on sprinklers to achieve the required intensity over the 60-min experiment.

 
(a) 

Figure 1. Cont.
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(b) 

Figure 1. Pressurized rainfall simulator layout and components [26]. (a): canopy, riser, and anchor
detail; (b): rain gauge layout constructed.

After reviewing several commercially available pressurized sprinkler heads, Nelson Irrigation
(Walla Walla, Washington, USA) PC-S3000 sprinkler heads Figure 1a were selected in lieu of
nozzles specified in ASTM D6459-15, as the specified nozzles are no longer commercially available.
The PC-S3000 sprinkler heads were selected in part due to: their ability to operate at pressures as low
as 41.4 kPa (6.0 psi); apply water in a 190◦ arc; the ability of the equipped spinner plates to shear apart
flow in the sprinkler head to generate rain-like droplets; and their capability in interchangeable nozzles
that allow for various flow rates. The PC-S3000 use nozzles to control the flow rate through each
sprinkler head. At any given pressure, each nozzle allows a specific flow rate through the sprinkler,
depending on its size. Furthermore, the sprinkler heads can be equipped with pressure regulators to
ensure uniform pressure and thereby a constant flow rate. Manufacturer specifications for each nozzle
size were used to determine the appropriate nozzle sizes for this study.

Several combinations of selected nozzles (Table 2) were used to achieve the variable intensities
required to simulate the rainfall event. Initial testing was conducted for the selected nozzle sizes to
determine the optimal spacing of sprinkler heads in relation to the rainfall plot gauges. This testing
was conducted for each sprinkler considered to determine the optimal distance from a riser to the
predetermined rain gauge layout as shown above. One example of the test data is shown in Figure 2,
below. The 15-min duration tests were repeated many times for each sprinkler to generate a data series
of rainfall depths at nine rainfall gauges (different distances to the sprinkler) in order to develop the
box plots on Figure 2. At three rainfall gauges (1.22, 1.72, and 3.66 m) measured rainfall depths did not
have much variation so no box plots are shown for them on Figure 2.

Table 2. Nozzle combinations.

20-min Test
Interval

Number and Type
of Nozzles Used

Total Flow, L/min.
(gpm)

Theoretical Flow
Requirement,
L/min. (gpm)

Theoretical vs.
Total Flow (%)

1 10–#21 [a] 18.4
(69.65)

6.65
(25.17) 36.1

2 15–#21
5–#18 [b]

34.4
(130.22)

13.30
(50.35) 38.7

3 21–#21
9–#18

50.9
(192.68)

19.95
(75.52) 39.2

Note: [a] #21–Turquoise yellow nozzle, flow rate at 41.4 kPa (6 psi) = 6.96 L/min. (1.84 gpm); [b] #18–Gray nozzle,
flow rate at 41.4 kPa (6 psi) = 5.14 L/min (1.36 gpm).
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Figure 2. Rainfall depth relative to distance from Nelson PC-S3000 sprinkler head with #21 nozzle at
41.4 kPa (6 psi) for 15-min duration tests.

Based on the testing conducted, the following distances were selected for the riser spacing: 1.52 m
(5.0 ft) from plot edge and 3.05 m (10.0 ft) center to center as shown in Figure 3. As detailed in ASTM
6459-15 [22], nine risers are specified for the test plot. For this study, an additional riser was installed
at the top of the test slope as shown below to provide for a more uniform delivery of simulated rainfall
across the plot. As shown in Figure 3, the 190◦ application allows for a large portion of the rainfall
to be applied outside the plot area. The ratio of the plot area of application to the overall sprinkler
application area is approximately 36%. As shown in Table 2, the percentage for the theoretical flow
requirement (rainfall depth x plot area) versus the total flow produced (total output for all nozzles) is
fairly consistent throughout all three rainfall intensities.

Figure 3. Detailed plan view of riser and rainfall gauge locations.

3.2. Sprinkler Canopy Design

To effectively distribute water over the test plot, a rain canopy, Figure 1b, with three sprinkler
heads was designed for each of the ten risers. The canopy was designed to allow for each sprinkler
head to be individually operated to achieve flow rates displayed in Table 2. The Nelson Irrigation
sprinkler heads, Figure 1a, spray directly out and downward, and the height of the risers was set at
4.3 m (14 ft) to satisfy ASTM D6459 standard for fall height and terminal velocity.

The canopy and all components were constructed of 19 mm (0.75 in.) diameter galvanized
steel pipe to provide structural stability as well as to resist corrosion. The canopy connected to the
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supporting riser through a galvanized steel pipe cross in the center of the canopy. Solenoid valves were
installed upstream of each sprinkler head to allow for individual and automated operation. The use of
solenoid valves represents a change from the manually operated ball valves in ASTM D6459-15.

3.3. Sprinkler Riser Design and Water Supply

A reducer tee was installed to allow for the attachment of a 0 to 690 kPa (0 to 100 psi) pressure
gauge. This gauge was used to verify that adequate pressure was generated by the water delivery
system. The riser is supported by a concrete footing as shown in Figure 1b. The risers were also
anchored to a 10.2 cm by 10.2 cm (4 in. by 4 in.) nominal pressure treated post to ensure the riser
remains plumb and level. A 7.62 cm (3 in.) high pressure water pump, capable of producing 80.2 m
(263 ft) of pump head, was used to supply and pressurize water to the rainfall simulator.

3.4. Wind Screen Design

To minimize the impact of cross winds on rainfall simulation experiments, a series of wind screens,
suspension cables, and support posts were designed with the goal of reducing wind speeds on the plot
to at most 1.6 km/hr (1.0 mi/hr). To support the screens, six, 12 cm by 12 cm, 6.0 m (6.0 in. by 6.0 in.,
20 ft) nominal lumber posts were installed around the perimeter of the test plot, Figure 1b.

3.5. Electrical Systems Design

Simulation of variable intensity rainfall was accomplished by installing solenoid valves on the
sprinkler canopy. The valves on each canopy were wired via direct burial irrigation cable to a custom
designed electrical control box. The electrical control box consisted of a series of terminal blocks and
was designed with three switches to provide control over which valves were active during testing.
Two 12-V batteries were wired in parallel to the control box to power the entire valve system. Utilization
of electronically controlled valves is an improvement over the current standard [22] which has been
utilized in other rainfall simulators [27].

3.6. Methods and Procedures

Initially, the rainfall simulator apparatus was calibrated to determine the experimental values
for rainfall intensity and uniformity. This process was critical in proving accurate and repeatable
simulated conditions similar to natural rainfall (i.e., uniformity, drop size, and terminal velocity).

According to ASTM D6459-15 [22], twenty rainfall gauges are required when measuring and
calibrating rainfall intensity and distribution. For this study, an additional nine rainfall gauges were
installed along the center of the test plot as shown in Figure 1b.

For each target rainfall intensity, a calibration test was performed for a duration of 15 min. At the
end of the test, the rainfall depth in each of the 29 gauges was measured and recorded in centimeters.
The recorded values for rainfall depth were then used to calculate CUC using Equation (5), and average
rainfall intensity:

CUC = 100

⎡⎢⎢⎢⎢⎢⎢⎣1.0−
∑(∣∣∣Di −Davg

∣∣∣)
n×Davg

⎤⎥⎥⎥⎥⎥⎥⎦ (5)

where CUC=Christiansen’s Uniformity Coefficient used to express uniformity of rainfall (%), Di =depth
of rainfall in the ith gauge (cm), Davg = average rainfall depth in all gauges (cm), and n = number
of gauges.

Using Equation (6), experimental rainfall intensities on the test plot were computed and compared
to the targeted rainfall intensities for determining the relative errors:

i = 60

⎡⎢⎢⎢⎢⎢⎢⎣
J∑

j = 1

Dj

Jt

⎤⎥⎥⎥⎥⎥⎥⎦ (6)
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where i = rainfall intensity (cm/hr), Dj = depth of rainfall (cm), J = number of rain gauges, and t = test
duration (min).

Once the uniformity of rainfall was at least 80% for each target intensity, the raindrop size
distribution for each intensity was measured using the flour pan method [24,25]. For each intensity,
pans were filled with sifted flour and exposed to rainfall for 2.0 to 4.0 s. Raindrops impacting the flour
created small pellets that were then sifted, baked, and separated using sieves. The pellets on each sieve
were then weighed and counted. This process was repeated three times (at the top, middle, and bottom
part of the slope) for each test intensity. Each of the four steps for the flour pan method are depicted in
Figure 4. Using this information, the average raindrop diameter for each sieve was then calculated
using Equation (7) [25]:

Dr =
3

√( 6
π

)
M mR (7)

where Dr = average raindrop diameter (mm), M = average pellet mass (mg), which is the total mass
divided by the number of pellets in each sieve for all three repetitions, and mR is the ratio of the mass
of the raindrop to the mass of the pellet and determined using the flour-calibration figure developed
by Laws and Parsons [25]. At the same time, the percent of the mass of the raindrops for each sieve can
be determined with respect to total mass of all raindrops measured. The calculated results are shown
in Figure 5, below.

  
(a) (b) 

  
(c) (d) 

Figure 4. Drop size distribution testing procedures. (a): sifted flour in 9 in. (23 cm) pan; (b): collection
of flour pellets; (c): separating pellets in a sieve stack; (d): weighing flour pellets.
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Figure 5. Percent of raindrop mass versus average raindrop diameter, Dr, in each sieve for three
rainfall intensities.

Following the calculation of the raindrop size distribution, the kinetic energy generated at each
rainfall intensity was calculated to determine rainfall energy, E. First, the raindrop fall height was
determined by holding a surveyor’s rod vertically in front of the center of a single sprinkler riser,
extended above the height of the sprinkler nozzles, while the riser was operational. The wetted height
was recorded as the average fall height for the raindrops. Next, using the average raindrop diameters
computed from the flour pan method, the average volume of the raindrops was calculated using
Equation (8):

Vavg =
4π
3

(Dr

2

)3
(8)

where Vavg = average volume of raindrops (mm3), and Dr = average diameter of raindrops (mm).
The diameter of the drops is used with Figure 6 to determine the velocity of the drops falling from the
height of the rainfall simulator and the terminal velocity. From this, the values for kinetic energy were
calculated using Equation (9):

KE = 0.5mv2 (9)

where, KE = kinetic energy (J), m = average mass of raindrop (kg), and v = velocity of raindrop (m/s).
The final step of the calibration process was to calculate the erosion index using Equation (4).
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Figure 6. Fall velocity of raindrops as function of raindrop size and fall height [22]. Note: 1.0 ft= 0.305 m.

4. Results and Discussion

Calibration experiments were conducted to provide a means to quantify the performance of the
rainfall simulator and determine if the apparatus is capable of simulating rainfall with characteristics
similar to natural rainfall on a consistent basis. The methods and procedures previously discussed
produced a multitude of data in the form of rainfall depth measured from each of the 29 rain gauges
after each calibration test. The data from each test were analyzed to determine the average rainfall
intensity and CUC. Finally, the values calculated from the calibration tests for each target rainfall
intensity were averaged to provide a generalized report on the performance of the rainfall simulator in
terms of experimental rainfall intensity and uniformity of rainfall distribution.

To validate the calibration process, a minimum of ten calibration tests for each intensity were
conducted. If the standard deviation was less than or equal to 2.54 mm/hr (0.10 in./hr), testing efforts
would proceed to the next interval. A maximum deviation of 2.54 mm/hr was set as the realistic limit
for the simulator performing in a consistent and repeatable fashion. A total of 30, 15-min calibration
tests were performed. The results from the calibration tests for all test intervals are summarized in
Table 3. The flow rate column represents the sum of the flow rates provided by the nozzles at a constant
pressure of 41.4 kPa (6.0 psi).

Table 3. Calibration summary for all test intervals.

Test Intervals 1 Average Rainfall
Intensity (mm/hr)

Sample Size
Standard Deviation

(mm/hr)
Target Intensity

(mm/hr)
Error (%)

1 52.83 10 1.02 50.8 4.00

2 104.65 10 1.52 101.6 3.00

3 154.18 10 1.78 152.4 1.17

Note: 1 test rainfall intervals are shown on Figure 6, 1.0 gal = 3.79 L, 1.0 in. = 25.4 mm.

After analyzing the values in Table 3, it was concluded that the rainfall simulator consistently
produced rainfall intensities slightly higher than the theoretical target. According to Meyer [3] the
experimental intensities should only vary from the theoretical intensities by a few percent. For the
purpose of this study, the benchmark was set at 5.0%. Although the average rainfall intensities were
higher than the theoretical target, the standard deviation between the 30 calibration tests was only
1.78 mm/hr (0.07 in./hr). This result ensured that the rainfall simulator was producing repeatable results
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in terms of rainfall intensity for all test intervals. Figure 7 graphically illustrates that the experimental
rainfall intensities calculated during calibration were typically slightly higher than the theoretical
targets. The intensity produced by the rainfall simulator follows a linear pattern based on the total
flow rate in the sprinkler heads. The R2 value quantifies how accurately the trend line fits the data.
With a R2 value of 0.994, the linear trend line serves as a reliable means for estimating flow rates and
corresponding nozzle sizes required to simulate specific rainfall intensities.
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Figure 7. Experimental vs. theoretical rainfall intensities at different flow rates.

The average experimental rainfall intensities were used to calculate the EI using Equation (6)
and to compare against theoretical values. EI is used in calculating the rainfall-runoff erosivity factor
(R-factor) used in the RUSLE calculations for expected erosion over a given area. The R-factor is used
to quantify the erosive energy of rainfall associated with specific storm events. The results from this
analysis are presented in Table 4.

Table 4. Experimental vs. theoretical erosion index (EI) values.

Experimental
Intensity (mm/hr)

Target Intensity
(mm/hr)

Experimental
Erosion Index

Target Erosion
Index

Percent Error (%)

52.83 50.8 2169 2073 4.60

104.65 101.6 4510 4376 3.07

154.18 152.4 6669 6592 1.17

The calculated values in Table 4 correspond with the results from Figure 6. The higher rainfall
intensities produced by the rainfall simulator result in greater erosive potential on the test slope.
The ensuing result is that higher rates of soil erosion are generated by the simulated rainfall versus
what should be expected from the actual storm event. However, as the rainfall intensities increase, the
relative error between the experimental and theoretical values decrease.

To aid in the visualization of the uniformity of rainfall distribution for each test interval, raster
surfaces showing rainfall intensity were generated using AutoCAD Civil 3DTM and overlaid on an
aerial photo of the test plot as shown in Figure 8. For each test interval, the rainfall intensities,
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Figure 8a–c, were greatest in the middle of the test plot and lowest at the bottom of the test plot.
The average uniformity of rainfall distribution for all tests performed ranged between 87.0 to 87.7%.

(a) 

(b) 

(c) 

(d) 

Figure 8. Rainfall intensity raster surfaces from calibration testing. (a) intensity–test interval 1;
(b) intensity–test interval 2; (c) intensity–test interval 3; (d) legend.

The rain drop diameters produced by the simulator were calculated using the flour pan method.
The average drop diameter was then used to calculate the average mass of the rain drops (Table 5).
At each intensity, the calculated drop diameter was smaller than the theoretical value. Smaller diameter
raindrops are produced when pressurized flow is discharged through small nozzle openings.

Table 5. Drop size distribution testing and kinetic energy of raindrops.

Rainfall Intensity, mm/hr (in./hr) 50.8 (2.0) 101.6 (4.0) 152.4 (6.0)

Average Drop Diameter, mm (in.) 2.39 (0.094) 2.58 (0.102) 2.35 (0.093)

Theoretical Drop Diameter, mm (in.) 2.53 (0.100) 2.87 (0.113) 3.09 (0.122)

Percent Error (%) 5.53 10.10 23.94

Average Drop Mass, mg (lbs)
7.13

(1.57 × 10−5)
8.97

(1.98 × 10−5)
6.77

(1.49 × 10−5)

Velocity of Drop, m/s (ft/s) 6.2 (20.3) 6.3 (20.7) 6.2 (20.3)

Kinetic Energy, J (lbs-ft2/s2)
7.24 × 10−5

(1.71 × 10−3)
8.37 × 10−5

(1.98 × 10−3)
7.00 × 10−4

(1.66 × 10−4)

Note: 1.0 in. = 25.4 mm.

The values for average drop mass calculated previously were used to determine the experimental
kinetic energy generated by the rainfall simulator (Table 5). Values for rain drop velocity were estimated
based on the diameter of the drop and the height from which the drops fell. In reality, the velocity
of the drops is greater than estimated since the drops are projected from the sprinkler head with an
initial outward and downward vector velocity. However, the actual velocities of raindrops were not
quantified in this study.

As shown in Table 5 above, the measured average drop diameter (D50, in mm) for each interval
was less than the theoretical drop diameters. However, the experimental drop diameters are consistent
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with other pressurized rainfall simulators as detailed in Bubenzer [28]. As shown in Bubenzer [28], the
median drop diameter for pressured simulators ranged from 0.6 to 2.6 mm (0.02 to 0.10 in.), with the
majority of the simulators producing a median drop diameter of 2.1 mm (0.08 in.).

For each rainfall intensity, the kinetic energy of a single raindrop is negligible. However, when
combined with the energy of the thousands of other raindrops impacting the slope each second, the
summation of this energy would be much more considerable.

4.1. Bare Soil Control Testing

Once the rainfall simulator was calibrated, the next phase of the study involved performing a
series of bare soil control tests for the design storm as specified in ASTM D6459-15. The tests consisted
of a 60-min rainfall simulation with three separate intensities of 50.8, 101.6, and 152.4 mm/hr (2.0, 4.0,
and 6.0 in/hr) for 20 min each. For these control tests, the soil tested was classified as a sandy loam as
per the USDA soil texture triangle. The particle size distribution is shown below in Figure 9.

Figure 9. Particle size distribution for control soil.

Prior to performing each simulation, the test slope was prepared by tilling to a minimum depth
of 10.2 cm (4.0 in.) and then compacting through the use of a lawn roller apparatus. The moisture
content and compaction of the soil is then determined using the procedures outlined in ASTM
D2937-10. During the simulation, grab samples of the runoff generated from the plot were captured at
a maximum of every three minutes beginning once runoff began exiting the plot and continuing until
the runoff ceased.

Summary plots are provided below in Figures 10 and 11 for both turbidity and total sediment
concentration, respectively, for the four bare soil control tests conducted. A summary of the results is
shown below in Table 6.
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Figure 10. Turbidity versus time for control tests.
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Figure 11. Total sediment concentration versus time for control tests.

Table 6. Summary of bare soil control test results.

Test Parameters Test 1 Test 2 Test 3 Test 4 Average

Rainfall Depth (mm) 103.63 103.63 104.90 102.87 103.76

Compaction (%) 87.25 87.57 86.99 85.67 86.87

Moisture Content (%) 15.08 16.08 18.53 16.82 16.63

Catch Basin Sediment (kg) 329.16 322.87 341.34 346.83 335.05

Total Soil Loss per Unit Area
(kg/ha) 110,819 108,699 113,644 116,770 112,483

Average Sediment Concentration
(mg/L) 55,872 49,178 47,323 36,326 47,175

Average Turbidity (NTU) 66,493 61,683 56,119 52,374 59,167
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4.2. Use of the Erosion Index Equation for Simulated Rainfall

It should be considered that the erosion index described in Equation (4) was developed from
analyzing soil erosion resulting from years of naturally occurring rainfall events. This results in an
assumption of naturally occurring drop size distribution and the raindrops falling at terminal velocity.
For predicting naturally occurring erosion rates based upon this Equation, these assumptions are
relatively valid for in-field conditions. However, for synthetic rainfall produced by rainfall simulators,
these conditions are difficult to create. For instance, based upon Figure 6, a 3.0 mm (0.12 in.) raindrop
has to fall approximately 16.0 m (52.5 ft) in a wind-free environment before reaching terminal velocity.
ASTM D6459-15 only requires a minimum fall height of 4.26 m (14.0 ft). The nearest drop size plotted
for this height in Figure 6 is 1.17 mm (0.05 in.) drop diameter, which is smaller than the average drop
size produced by most rainfall simulators used for erosion testing. This issue is addressed in ASTM
D 6459-15, but only minimally. After calculating the erosion index using Equation (4), the standard
specifies that the results of this calculation must then be corrected for the kinetic energy of the drops
that are falling at less than terminal velocity. Since no further guidance in the standard is provided for
correcting the results of Equation (4), it is left to the user to determine how to adjust.

However, adjusting the output of Equation (4) as the ASTM standard stipulates may not be
necessary and potentially improper. It can be seen from this previous discussion that intensity is the
correlative variable that helps define the energy of a naturally occurring storm event using Equations (3),
(4), and (9). However, should “correcting Equation (4) for kinetic energy” be performed since the
simulators are not producing naturally occurring rainfall energy? The point of using Equations (3), (4),
and (9) is to bypass determining the kinetic energy of each storm directly by using intensity as a means
of estimating energy. To be able to adjust EI from Equation (4), the kinetic energy from the simulated
storm must be known. Therefore, since the storm is not naturally occurring and may not be adequately
represented by Equation (4), it may be more prudent to simply use the kinetic energy calculations from
Equation (9) and directly calculate EI30 using the simulator’s actual measured kinetic energy, instead
of correcting Equation (4) that represents naturally occurring kinetic energy. These concepts require
further evaluation and research, which is beyond the scope of this paper.

5. Summary and Conclusions

The purpose of this research study was to design and construct a large-scale rainfall simulator
capable of repeatedly simulating rainfall with characteristics similar to natural rainfall. The design for
the rainfall simulator was largely based on existing designs in ASTM D6459-15. However, changes
were made due to the lack of specified products available for purchase and a desire to improve upon
the existing ASTM standard testing method. Changes included: (1) using Nelson Irrigation PC-S3000
sprinkler heads in lieu of nozzles, no longer commercially available, stated in ASTM D6459-15) and
(2) substituting solenoid valves in lieu of manual ball values. Discussion into the proper use of ASTM
specified equations and their appropriateness were also introduced.

In accordance with ASTM D6459-15, rainfall intensities of 50.8, 101.6, 152.4 mm/hr (2.0, 4.0,
and 6.0 in./hr) were simulated. Thirty, 15-min calibration experiments were conducted to determine
the average experimental rainfall intensities and uniformities, drop size distribution, and erosive
energy produced by the rainfall simulator. The experimental values were then compared with their
corresponding theoretical targets to determine if the apparatus was adequately simulating natural
rainfall. The theoretical target rainfall intensities for this study were 50.8, 101.6, and 152.4 mm/hr (2.0,
4.0, and 6.0 in./hr). The average experimental rainfall intensities produced by the rainfall simulator
were found to be 53.8, 105.9, and 154.2 mm/hr (2.12, 4.17, and 6.07 in./hr), respectively. The uniformity
of the rainfall distribution, quantified using CUC, was calculated to range between 87.0 to 87.7%.
The corresponding average drop size were calculated to be 2.39, 2.58, and 2.35 mm (0.094, 0.101, and
0.093 in.), respectively. These results indicate that the rainfall simulator provides repeatable rainfall
intensities, achieves uniformity, and produces consistent drop sizes.
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As shown in Figures 9 and 10 above, the simulator was also used to perform a series of bare
soil control tests to establish a baseline for future evaluation of hillslope erosion control products.
The results summarized in Table 6 as well as the visual inspection of the test plot after each control test
provide evidence that the rainfall simulator produced erosion results consistent within expected ranges.
Visual inspections provided evidence of the occurrence of consistent splash erosion, sheet erosion,
and rill erosion patterns; as well as consistent sediment yield, turbidity, and sediment concentrations
measurements. Future research is also planned to test and evaluate various erosion control measures
(i.e., rolled erosion control products, hydromulch, conventional mulching practices, etc.) on the test
slope and to compare the performance and effectiveness of each respective practice in reducing erosion.
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Abstract: In the low Mediterranean basin, late spring and autumn rainfall events have the potential
to increase discharge and transport substantial amounts of sediment soil (that is, the net soil erosion
from a watershed). For the Alento River Basin (ARB), located in the low Tyrrhenian coast of Italy,
we estimated changes of net erosion as dependent on the seasonality of antecedent soil moisture
and its control on rainfall-runoff and erosivity. Based on rainfall and runoff erosivity sub-models,
we developed a simplified model to evaluate basin-wide sediment yields on a monthly basis by
upscaling point rainfall input. For the period 1951–2018, the reconstruction of a time series of monthly
net erosion data indicated a decreasing trend of the sediment yield after 1991. Revegetation and land
abandonment that occurred in the last decades can explain such a decrease of net erosion, which
occurred even when rainfall erosivity increased. This response, obtained at the basic scale, does not
exclude that rapidly developing mesoscale convective systems, typically responsible for the heaviest
and most destructive rainfall events in the ARB, can affect small catchments, which are the most
vulnerable systems to storm-driven flash floods and soil erosion hazards during soil tilling in spring
and at beginning of autumn.

Keywords: erosive rainfall; parsimonious modeling; river basin; soil erosion

1. Introduction

Environmental changes are a prominent topic for Earth and environmental sciences, but its
importance increases during crucial changes and different types of climate extremes that potentially
lead to crises of some kind [1,2]. Extreme climate events are often associated with land degradation [3,4].
Soil erosion, in particular, is a pervasive form of soil degradation and a matter of increasing concern
because of its implications for food security with the rapidly increasing world population [5]. Modeling
processes that produce geomorphological hazards require understanding of how landscape components
respond to forced conditions of land use change and to the climatic regime [6,7]. This is valuable
to inform the assessment of future planning [8,9], but soil erosion monitoring systems tracking
downstream sediment movement may be costly, and require focused efforts to manage land and
water resources [10]. Because of this cost, modeling is playing an increasingly significant role [11].
This applies to the quantification of sediment dynamics, which is key to Earth-system science as
documented in geology [12], biogeochemistry [13], and human activities [14]. It is also key to advancing
our quantitative understanding and predictive capabilities of regional and sub-regional sediment fluxes.
In the last decade, for instance, some geomorphological studies of long-term scale have affected the
coastal areas of Southern Italy [15,16], which is the focus of this study, but research is still needed, given
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the differences in the responses at monthly and annual scales. Especially in mountainous agricultural
areas, hydro-geomorphological degradation processes represent a complex issue, which manifests
in a variety of phenomena [17]. Widespread modeling approaches are crucial in assessing climate
variability and land cover [18,19], two important factors affecting the environmental sustainability of
landscape systems [20–22]. The latter are dynamic and sensitive, and highly controlled by a set complex
of climatic, geomorphic, and ecologic processes [23]. Sediment rates may be expected to change in
response to changes in climate for a variety of reasons, responding both to the total amount of rainfall
and to differences in rainfall intensity. However, the dominant variables appear to be rainfall intensity
and energy, rather than rainfall amount alone. Nearing et al. [24] predicted that for every 1% increase
in total rainfall, erosion rate would increase by only 0.85% if there was no corresponding increase
in rainfall intensity. If both rainfall amount and intensity were to change together in a statistically
representative manner, erosion rate would increase by 1.7% for every 1% increase in total rainfall,
according to Pruski and Nearing [25]. Despite advances made in recent years, local-to-global modeling
of sediment fluxes remains a research challenge [26]. For instance, numerical models have limitations
for predicting basin sediment yield [27], especially over long timescales, and require access to powerful
computer resources [28]. Their evaluation is also difficult because of the scarcity of measurements [29].

To deal with these issues, we propose an integrative methodology, based on the concepts of Foster
et al. [30] and adapted from Thornes’ [31] model (NETAM: Net Erosion Thornes-Adapted Model),
offering a parsimonious interpretation of the relationship between hydrological data and basin-wide
net erosion. We refer here to soil erosion by water, i.e., the result of rain detaching and transporting
soil, either directly by means of rain splash or indirectly by rill and gully erosion. The capability to
reproduce at basin scale the combined effects of hydro-climatological processes, including sediment
transport, in the absence of distributed spatial and temporal data, relies on representation of the
drainage basin as a homogeneous landform unit. In this way, the NETAM approach upscales point
rainfall input data to area units where hydrological processes respond. This results in a long series
of rainfall data from a single station (1951–2018 for the Alento River Basin (ARB)) that is a sufficient
input for the parsimonious model. The use of a NETAM time-series model is thus motivated by its
potential for capturing the significant and changing environment (including climate, vegetation cover,
and erosive-resistance climate changes) with easily available data. Its evaluation in the ARB offers a
unique opportunity to explore geomorphological processes in this Mediterranean fluvial basin.

2. Study Area

The Alento River Basin (ARB) is located between the Cilento, Vallo di Diano and Alburni National
Park (Campania, southern Apennine), which is one of the largest Italian National Parks, stretching
between 40◦00′ and 40◦30′ N, and 14◦50′ and 15◦00′ E (Figure 1a,b), with a total area of 428 km2.
The main weather station is located in Gioi Cilento (40◦17 N, 15◦13′ E), which holds the longest and
most reliable hydrological data of the basin area (Figure 1c).

Altitudes range from sea level to Mt. Cervati (1898 m a.s.l.). Other peaks are located in the
easternmost portion of the basin with Mount Sacro (1705 m a.s.l.), Mount Scuro (1610 m a.s.l.),
and Mount Falascoso (1494 m a.s.l.). In southern Campania Region, three bioclimatic zones are present:
The Mediterranean flat-hills along the coast, the pre-Apennines area, and inner hilly-mountainous
zones. Precipitations vary from 600 to 1800 mm year−1, depending on altitude and distance to sea
(Figure 2a). The highest precipitation falls on Picentini Mounts, to the north, and Campano-Lucano
Apennine, to the south (Figure 2a). With an enlarged view (Figure 2b), we can detect more resolute
spatial variability also across the ARB. Here, precipitation varies from 800 mm year−1 on the valley to
1400 mm year−1 on the mountains of the National Park.
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Figure 1. (a,b) Location maps of the Alento River Basin (ARB), and (c) hydrological data of the basin
area. The station of Gioi Cilento (big dot) was used for the pluviometric elaboration and model-derived
variables. All other stations (small dots) were used for mapping the annual mean precipitation and
erosivity over the period 1951–2000.

River morphology is complex in the study region. The upstream part of the basin presents a narrow
alluvial valley with steep slopes. Downstream, however, the river makes a turn towards the south.
Subsequently, the river assumes a braided configuration down until the reservoir of Piano della Rocca,
in the commune of Prignano Cilento (40◦20′ N, 15◦04′ E). Further downstream, the river mostly takes
a meandering character. The geological nature of the rocks is dominated by the “Flysch of the Cilento”
(i.e., limestone and silicoclastic substrata), wherein the main river basins (Alento, Calore, Mingardo,
Bussento) are established [32]. Overall, the basin area is not prone to gully erosion, as it is dominated
by erosion-resistant lithologies. With the only exception of the far northern/north-eastern part of the
catchment, which is characterized by the presence of limestones pertaining to the Apennine Chain,
these formations are quite homogeneous in hydrogeological terms and may be merged into a single
hydrogeological complex of arenaceous–marly–clayey formation, which is relatively poorly permeable.
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Figure 2. (a) Annual mean precipitation map over southern Campania Region and (b) relative zoom
for the Alento River Basin upon the period 1951–2000. The maps were produced with ESRI-ArcGIS via
Geostatistical Analyst (Lognormal Detrended Ordinary Cokriging with altitudinal covariate used for
the purpose).

3. Materials and Methods

3.1. Data Collection

Daily rainfall data for the period 1951–2000 were collected from the rain gauge network of the
Servizio Idrografico and Mareografico Nazionale (SIMN, National Hydrographic and Marine Service) [33],
nowadays Rete Mareografica Nazionale (National Tidegauge Network, http://www.mareografico.it),
continued by Centro Funzionale Multirischi Protezione Civile della Regione Campania (Multirisk Functional
Centre of Civil Protection–Campania Region, http://centrofunzionale.regione.campania.it/#/pages/
dashboard). However, for sediment data, only a long-term (1951–2000) average value was available [34].
Under this limited calibration condition, credibility of final output estimates was founded on the
sub-model validation. The model was thus calibrated against long-term average net erosion and then
validated for its erosivity and runoff sub-models, using monthly–aggregated data, as determined in
the ARB from the sub-periods 2002–2008 (RUSLE-based erosivity at Gioi Cilento [35]) and 1958–1973
(SIMN measurements at the outlet of the ARB), respectively.

Monthly vegetation cover fraction was assessed with Normalized Difference Vegetation Index
(NDVI) data, as derived from the GIMMS–KNMI Climate Explorer platform (http://climexp.knmi.nl),
and rearranged to characterize the inter-annual evolution [16]. Olive orchards and sclerophyllous
Mediterranean vegetation prevail along the coast, whereas forest landscape is dominant in the
inner area, mainly represented by Quercus cerris or Fagus sylvatica woods. Not negligible is also
the presence of riparian forest cover, dominated by Salix alba, Populus nigra, Populus alba, and Alnus
glutinosa. Smallholder agriculture (arable land and orchards) dominates, sustained by mechanization,
road infrastructure, availability of groundwater stocks, and water storage for irrigation purposes.
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3.2. Net Erosion Model

Net soil water erosion is a measure of average sediment yield (soil net erosion) occurring
basin-wide over time (Figure 3a), resulting from the sum of the sediment produced by all erosional
sources, including overland flow, ephemeral gully, and stream channel areas [28], minus the amount of
sediment deposited on such transfer zones and on the valley floodplains. The result is the amount of
sediment conveyed downstream to the outlet of the basin. Four environmental factors determine the
amount of water erosion and sedimentation. They are climate, soil, topography, and land-use, which
operate independently and interactively. Basic characteristics and spatio-temporal features are thus
taken into account in a hierarchical structure for discovering erosional phenomenon. In particular,
the evolution over time of net erosion reflects the magnitude and frequency of individual storm events,
which are nested within larger events occurring on different time scales [21].

Figure 3. (a) Orography of the ARB with the fluvial drainage network facing the Tyrrhenian Sea and (b)
three-dimensional (3-D) exemplary view of landscape hydro-geomorphological processes in a nested
scheme for the ARB.

Figure 3b outlines the role played in sediment transport by mesoscale rainstorms accounted at the
basin scale (BGE, basin gross erosion), while also assuming that the distribution of local showers play
an important role in determining torrential flows rich in sediment in the individual river catchments of
the basin (CGE, catchment gross erosion).

The model structure suggests that spring–summer (May to September) precipitation is an important
factor to estimate the relative contribution of individual catchments (upper tributaries river) to the
sediment (CGE) moving within the basin drainage system. In contrast, winter precipitation mostly
contributes to basin-wide transient response (BGE within lower tributary river).

Since the procedure for determining rainfall erosivity suggested by Wischmeier and Smith [36]
is applicable to the computation of annual erosion, its use to estimate soil loss from single storms
would imply considerable errors [37] and motivate a reinterpretation of the original formulation.
Foster et al. [30] and Thornes [31] elaborated the concept of the balance between driving and resisting
forces in sediment budget. We further arranged this solution to model net erosion on a monthly basis
(NETAM, Mg km−2 month−1) as:

NETAM = A·
[
k·Sn

(
α·Ru

S + β·Rm
Q

)
·e−ν·VCF

]
(1)

where the term within round brackets is the modified Foster algorithm; RS is the rainfall-erosivity
indicator associated with splash erosion; RQ (mm) is the runoff term, associated with transport erosion;
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S (m−1) is the mean slope of the basin; the erodibility coefficient (lithology factor) k = 0.0145 and the
shape parameters (which play an adjusting role on the model inputs) n = 2 and m = 2 were arranged
from Wainwright and Mulligan [11], and u was determined by calibration; exp(-ν·VCF), with ν = 0.07,
is the exponential vegetation function [31], with VCF (%) being the vegetation cover fraction [16]; A and
α are erosivity scale coefficients, whose values were determined by calibration.

Our approximation is that hydraulically rough and vegetated surfaces reduce flow velocity and,
hence, soil interril transport capacity [28]. This is reflected in the low values attributed to parameters
k and ν in Equation (1). Then, as canopy cover reduces soil detachment caused by raindrop impact,
it also reduces interrill sediment transport capacity by attenuating raindrop impact. Based on this
understanding, the power of rainfall as prevailing storm erosivity in summer and autumn is captured
by the daily rainfall term of RS, while in winter and spring, runoff is captured by the monthly rainfall
terms of RQ. In the ARB, predominant water erosion derives from interactions between the detachment
on hillslope areas caused by water drops falling on soil, and successive runoff towards downslope up
to flow in the drainage networks. This linkage of processes occurs within a fluctuating and continuous
interplay of disturbing and resistance forces. In this way, soil erosion by water mostly occurs when
the detachment of particles and their subsequent transportation experience a greater driving force
than the force binding particles into the vegetated slope. With all these processes, rainfall is used by
nature as both a driving and a resisting factor. To better detail this, firstly the erosive influence of
rainfall increases with water amount, intensity, and runoff; secondly, and opposing this influence,
the protective effect of vegetation increases with precipitation amount.

To further explain the single terms of Equation (1), arranging from Diodato and Aronica [38],
we obtain:

RS =
√

dx · (dx · f ( jm)) (2)

where dx is the daily maximum rainfall (mm) in each j month; the scale-factor f (jm) is as follows:

f ( jm) =

(
1− 0.45 · cos

(
6.28

j− 2.5
22− j

))
(3)

The semi-parametric function f (jm) modulates the intra-seasonal storm intensity proxy
during rainfalls.

The following RQ term represents, instead, the erosivity mostly associated with runoff erosion:

RQ =
(
p + pj−1

)
·w (4)

where p is the amount of rainfall (mm) in the current month and pj−1 (mm) is the rainfall in the previous
month; w is an indicator of soil humidity, in the form of a semi-parametric function, to modulate the
intra-seasonal humidity after precipitation:

w =

(
0.5 + 0.4 · cos

(
6.28

j + 0.5
24− j

))
(5)

4. Results and Discussion

Overall results of the calibrated model (1951–1990) and sub-model (rainfall erosivity and runoff)
validation are first presented, followed by the model-based reconstruction of net erosion data for the
period 1951–2018. The long-term trend is discussed at the annual scale, before highlighting the net
erosion variability at the monthly scale.

4.1. Model Calibration

For the calibration period 1951–1990, over which long-term annual mean of net erosion data was
available for the ARB, the values of the coefficients u = 2, A = 1500 (which converts values of eroded
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soil from mm to Mg km−2), and α = 0.1 in Equation (1) were obtained by approximating the model
output to the silting value determined experimentally from the degree of filling of the dam of Piano
della Rocca (490 Mg km−2 year−1), covering 24% of the entire basin [34]. If the figure of 490 Mg km−2

year−1 for the period 1951–1990 is extrapolated for the whole of the basin, then the overall erosion
rate calculates to 2042 Mg km−2 year−1. The calibrated estimate was 2041 Mg km−2 year−1 for the
same period.

4.2. Semi-Quantitative Validation

To ensure that the model serves its intended purpose, a semi-quantitative verification with
inter-monthly variability was done, since sub-models of Equations (2) and (4) do not include any scale
parameter. Figure 4 shows the performance of these sub-models. In particular, Figure 4a displays that
the rainfall-erosivity component is in agreement with RUSLE-based erosivity data [35]. Figure 4b also
reflects a satisfactory performance between predicted and actual runoff data [33].

Figure 4. (a) Predicted erosivity indicator (orange curve, Equation (2)) and actual rainfall-erosivity
(black curve, MJ mm ha−1 h−1 month−1) for Gioi Cilento station (2002–2008), and (b) predicted runoff
indicator (orange curve, Equation (4)) and actual runoff in mm (black curve) for the ARB (1958–1972).

This indicates that, at basin scale, net erosion is not the result of the runoff amount only, but of
the combination of rainfall erosivity by both raindrop impact and surface runoff. As well, vegetation
covers the soil during several months, over which erosion patterns may change [39].

In Figure 5, the model appears to correctly compute the main effects and trends associated with
sediment yield, represented in this case by the sand extracted every year (proxy of the net erosion)
in the Alento valley [40]. We evaluated the relative performance of the NETAM, without comparing
the absolute estimates. Coevolution between material extracted at the valley of ARB (histogram) and
simulated net erosion (blue curve) illustrates a substantial agreement, with the only exception of
around 1985 (corresponding to the beginning of the construction of the dam in 1984 [34]).
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Figure 5. Coevolution time-series of extracted sediment in the Alento valley (histogram) and annual
net erosion (blue curve, Equation (1), Mg km−2 year−1) for the period 1979–1991. Red arrow indicates
the disagreement occurring at the start of the dam construction.

4.3. Annual Net Erosion Reconstruction

Figure 6 shows the temporal evolution of annual sediment exports from ARB during the period
1951–2018, as calculated with Equation (1). Part of the estimated sediment was trapped by the dam
built in 1994. However, no refinement was brought to the original dataset, as the sediment trapped in
the reservoir is still the effective erosion that occurred from the several catchments composing the basin.

Figure 6. (a) Temporal evolution of the modeled—Equation (1)—annual amount of net erosion over the
period 1951–2018 in the ARB (black curve), with the respective long-term mean values (bold dashed
grey lines) before and after the change-point of 1991 (vertical dashed blue line). (b) Rainfall-erosivity in
MJ mm ha−1 h−1 year−1 (orange curve) and (c) Mann–Whitney–Pettitt (MWP) test (blue curve) for the
change-point detection.

Figure 6a, in particular, shows the actual evolution of net erosion that, after the first years with
low erosional rate, reveals an increase from 1960 at a roughly constant trend that extended until 1990,
before the change-point detected in 1991 (Figure 6c) with the Mann–Whitney–Pettitt test [41]. After
this year, the sediment rate underwent a continuous irregular decrease until the end of the time-series.

Over the first period, 1951–1990, the average estimated net erosion value is of 2041 Mg km−2

year−1 (± 889 Mg km−2 year−1 standard deviation), while in the last period, 1991–2018, the average
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value stands at 568 (±436 Mg km−2 year−1 standard deviation), with a marked decrease of 1473 Mg
km−2 year−1 compared to the previous period. This decrease is also accompanied by an amplification
of the interannual variation coefficient of net erosion, which passes from 0.42 for the period before the
change-point, to 0.58 for the following period. The growing seasonal irregularity of the precipitation is
probably the major driver of the increasing interannual variability of soil erosion. Over 1991–1998,
forest cover doubled and cropland roughly halved due to decades of land abandonment and reduction
of human pressure [42], and this is likely the cause of decrease in net erosion during the period
1991–2018, although rainfall-erosivity kept on rising (Figure 6b). Thus, vegetation cover exerted a great
resistance to the hydrological hazard, since vegetation underwent a general increase after 1990 [16].
However, during the most extremes hydrological events (e.g., precipitation at hours or sub-hourly
scales), soil erosion in small catchments could represent a large risk for soil mobilization and transport,
which can contribute to nutrient and organic carbon losses.

4.4. Net Erosion Monthly Variability and Timing

The use of monthly data helps summing up consecutive hydro-geomorphological events over an
appropriate time scale, with respect to hydrological timing and crop growing cycles or scheduling
of tillage practices. The modeled results, obtained over 68 years, show that there is a significant
variation of sediment transport at the intra-seasonal scale in both past (1951–1990) (Figure 7a) and
recent (1991–2018) periods (Figure 7b, grey bars). Almost half of suspended solid transport occurs in
autumn (43% and 54%, respectively, in the two periods) and approximately one third of the annual
flux occurs in winter (39% and 29%, respectively). However, the 95th percentile (Figure 7, empty bars)
is distributed differently than to mean values, with more divergence in April and September (Figure 7,
red bars). This divergence represents a high risk of soil erosion in correspondence to the months with
tilled soil in both the periods, although results evidence a decrease of net erosion in all months during
the recent phase 1991–2018 (Figure 7b).

Figure 7. Seasonal evolution of modeled—Equation (1)—net erosion with mean values (grey bars)
and 95th percentile (empty bars) during (a) 1951–1991 and (b) 1991–2018 for the ARB (in red bars,
the erosional soil degradation hazard in April and September months, when storms occur with
tilled soil).

The autumn season seems to maintain the primacy of erosion rates, in past as in recent times.
Rizzi [43] documented disasters in the Alento coast in autumn and winter during past times.

In winter, rainfall and average sediment are significant, but most of the erodible particles are
transported by the first floods of the preceding autumn. Spatial timeline of storminess also shows a
decadal trend (Figure 8). The increasing trend has affected practically the entire basin, especially for
storms of 24-h duration (Figure 8b). Then, the increased variability and amount of storms found at the
Gioi Cilento station can affect the areas around the station. In particular, it is understood that an average
increase of 10 mm per half a century affected the storms of 1-h duration (Figure 8a), and 10–20 mm the
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storms of 24-h duration (Figure 8b). The areas of the basin more interested from storm increases are
those included along the transect zone around the villages of Cicerale (40◦21 N, 15◦08′ E), Gioi Cilento
(40◦17 N, 15◦13′ E), and Vallo della Lucania (40◦14 N, 15◦16′ E).

Figure 8. (a) 1-h duration rainstorm trend (mm decade−1) and (b) as in (a) for 24-h rainstorm durations
during the period 1951–2014 across the ARB (arranged from ESRI-Geostatistical Analysis via de-trended
ordinary cokriging using as covariate the elevation).

5. Conclusions

Land use change has been recognized throughout the world as an important driver of
climate-driven geomorphological processes, which may also trigger changes in carbon cycling [44].
Soil erosion rates may be expected to change in response to changes in climate and vegetation for
a variety of reasons, the most direct of which is the change in the erosive power of rainfall and
resistance forces, respectively. However, modeling rainfall-driven soil erosion rates is difficult because
of the lack of long-term data in river basins. In particular, complex models are often not adequate to
reconstruct net erosion (or sediment yield) changes because they require a considerable amount of
high-resolution input data, not always available on long timescales. Thus, the use of parsimonious
models offers an interesting possibility to reconstruct net erosion series on a monthly basis. This is
what we have done with the NETAM, developed on the original Foster and Thornes algorithms, in a
test site, the Alento River Basin (~400 km2 in Southern Italy). Though the model developed for the ARB
is not easily transferable for applications in other basins, it provided a peculiar and unique opportunity
for modeling erosion responses to climate and land cover changes, where documented hydrological
processes at basin scale also support input-data generation and interpretation of results. The ARB is a
catchment with extensive natural areas. The development of agricultural and natural areas is favored
by the presence of farming practices and a markedly seasonal climate. Thanks to the continuous
observation of selected physical environmental variables, we were able to establish seasonal patterns
of weathering processes and identify the factors that control rainfall erosivity and runoff and, in turn,
net erosion. Cold and wet cycles in winter and wet and dry cycles in spring–autumn are the main
processes involved in landscape weathering, thereby controlling slope development together with
rainfall-related erosion processes. The main observed feature is the reaction of the ARB to all rainfall
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events. Hydrological events show high fluctuations of the suspended sediment by month-to-month,
and by year-to-year, deriving from a heterogeneous temporal distribution related to seasonal variations
of the hydro-climatic forcing (that is, surface erosivity and runoff) and the vegetation cover. In this way,
NETAM values were obtained for the period 1951–2018 by using parsimonious erosion sub-models
and land cover statistics from documented agrarian sources. We conclude that if pulses of sediment
fluctuation in the ARB have always been driven mainly by natural climatic oscillations, then land
abandonment and revegetation are the causes of the observed reduction of net soil erosion in the
last decades. This study adds to a growing body of literature on the development of methodological
frameworks and tools that could be used to outline scenarios of soil erosion and instability risks
resulting from climate changes (e.g., increasing heavy rainfall events), and changes in land use and
management practices in central Italy [45–47].
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Abstract: To determine the effect of different rainfall energy levels on the breakdown of soil aggregates,
this study analyzed the soil splash erosion amounts and the distribution of particle sizes under six
rainfall conditions (rainfall energy: 2.41 × 10−5–22.4 × 10−5 J m−2 s−1 and 1.29 × 10−4 J m−2 s−1) at five
splash distances (from 0–10 cm to 40–50 cm). Cores of the size 10 × 20 cm of undisturbed cultivated
dark loessial soil were selected in tree replicates as the research subject. The results indicated that
splashed aggregates were distributed mainly at splash distances of 0–20 cm, which accounted for
66%–90% of the total splash erosion amount. The splash erosion amount significantly decreased
exponentially with increasing splash distance for the same rainfall energy (p < 0.01). The splash
erosion amount significantly increased in the power function relationship with increasing rainfall
energy at the same splash distance (p < 0.05). A model was obtained to predict the splash erosion
amount for rainfall energy and splash distance. The fractal dimension (D) of the aggregates showed a
downward opening parabolic relationship with raindrop energy. The maximal value of the rainfall
energy was 1.286 × 10−4 J m−2 s−1, which broke the aggregates to the largest degree. Enrichment ratio
(ER) values for fragments >2 mm were close to 0. A particle size of 0.25 mm was the critical particle
level for splash erosion.

Keywords: raindrop energy; soil aggregate; splash distance; fractal dimension; Loess Plateau

1. Introduction

Soil erosion reduces land productivity and soil fertility, destroys farmland, exacerbates flood
disasters, and results in soil environment deterioration, which affects land exploitation and the
protection and utilization of soil and water resources [1,2]. Water erosion is the main type of soil erosion
in the Loess Plateau. The aggregates caused by splash erosion are dispersed and broken, which is the
initial stage of water erosion [1–4]. Raindrops fall from the air and impact the surface soil particles at a
certain speed under the action of gravity. Some soil particles are separated from the soil and become
loose particles, which is conducive to the formation and flow of surface runoff. At the same time, the
process provides abundant loose particles for subsequent runoff transport [5,6]. Additionally, soil
particle transport leads to reduced or blocked pores on the soil surface and reduced soil permeability
due to soil crust formation [7–9].

At present, research on splash erosion can be divided into two methods: Natural rainfall and
artificial simulated rainfall. The observation of natural rainfall requires a long timeframe, and many
factors are difficult to control, which makes the collection of splash data difficult. Artificial simulated
rainfall can make up for shortages of natural rainfall and improve the feasibility of testing and reliability
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of the data. Rainfall characteristics include raindrop diameter, rainfall intensity, raindrop kinetic
energy, and so on. The effect of rainfall intensity on raindrop diameter and rainfall was studied by
Yakubu et al. [10], who proposed that the relationship between raindrop diameter and rainfall intensity
could be expressed as an exponential or power function relationship. Sajjadi and Mahmoodabadi [11]
carried out raindrop splashing tests under two different rainfall intensities (57 mm h−1 and 80 mm h−1).
The results showed that the splash erosion amounts of fine particles with sizes <0.043 mm were
greater than those of large particles under a higher rainfall intensity. Moreover, with increasing rainfall
duration, the rate of the total splash erosion observed at the beginning of the rainfall reaches a peak
value: The larger the rainfall intensity, the less time it takes to reach the peak value [12]. Ziadat and
Taimeh [13] reported that soil erosion on cultivated land was primarily affected by moisture content,
whereas on uncultivated land it was mostly affected by slope steepness. Lim et al. [14] suggested that
a power function relationship existed between raindrop energy and rainfall intensity. Free [15] showed
that the splash erosion amount was positively correlated with rainfall energy and that raindrop energy
was an important index to evaluate the degree of soil erosion caused by rainfall [14]. Rainfall intensity,
raindrop energy, and their variations in time and space have important effects on the prediction of
rainfall erosion [16,17].

At present, most research on raindrop energy for splash erosion has used a raindrop device to
simulate natural rainfall [18] and control the raindrop energy by adjusting the rainfall intensity or
height [16,19–21]. However, the rainfall energy of natural rainfall simulated by a raindrop generator is
instantaneous energy, which has a range of changes, and an increase or decrease in the energy has a
significant impact on the amount of raindrop splash erosion. Therefore, a raindrop generator with
constant raindrop energy should be used for experimental studies to ensure that the results of the study
are more accurate. The splash collection device was mainly composed of an Ellison splashing pan [22],
an Ellison splashing cup [23], and a Morgan splashing pan [24]. The improved device [20,25,26] could
collect most soil splash erosion particles, but the horizontal spatial distribution of the splash amount
and particle size have been less well studied. Furthermore, most previous studies have used dried
soil [27] or disturbed soil [20,28], which destroyed the soil structure and reduced the reliability of
the data.

The objectives of this study were to (i) clarify the effect of raindrop energy on the splash distance
and particle size distribution of aggregate splash erosion, (ii) establish a prediction equation for splash
erosion in this area, and (iii) predict whether a certain raindrop energy will break up the aggregates to
a great extent by comparing the characteristic parameters of the aggregate fractions.

2. Materials and Methods

2.1. Sampling Site and Soil Properties

The sampling site is located in the Changwu agriculture ecological experimental station, Weibei
Plateau, Xianyang, Shanxi province (107◦40′59” E, 35◦14′27” N), and has an annual average temperature
of 9.1 ◦C and annual average precipitation of 580.0 mm. The zonal soil is dark loessial soil [29]. The
soil is loose, and the permeability is good, resulting in a good “soil reservoir” effect. The international
soil texture classification is loam soil according to the USDA (United States Department of Agriculture)
particle size classification criteria. Twenty-one samples and 1000 g of scattered soil were collected
from the top layer (0–20 cm) of cultivated land using a cutting ring (10 cm diameter × 5 cm height)
and the diagonal method. Three of the samples were used to determine the soil bulk density and
moisture content, and the remaining 18 samples were used for the raindrop splash experiment. After
the scattered soil dried naturally, the bulk density, moisture content, soil organic matter, total nitrogen,
total phosphorus, and mechanical components were determined using the cutting ring (determine
the bulk density and moisture content), potassium dichromate external heating, Kjeldahl nitrogen,
HClO4–H2SO4, and Malvin laser particle sizer methods. The soil characteristics of the sampling sites
are reported in Table 1.
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Table 1. Physical and chemical properties of the soil.

Soil
Type

Bulk
Density/
(g·cm−3)

Moisture
Content/%

Soil Organic
Carbon/%

Total
Nitrogen/
(g·kg−1)

Total
Phosphorus/

(g·kg−1)

Particle Size Composition/%

Sand
(2–0.02

mm)

Silt
(0.02–0.002

mm)

Clay
(<0.002 mm)

Dark
loessial

soil

1.1 ± 0.1 18.8 ± 1.0 1.6 ± 0.1 1.0 ± 0.1 0.7 ± 0.03 52.3 ± 0.5 37.4 ± 0.03 10.3 ± 0.04
Fragment size distribution of the undisturbed soil/%

>2 mm 1–2 mm 0.5–1 mm 0.25–0.5 mm 0.053–0.25 mm <0.053 mm
6.9 ± 1.8 12.3 ± 1.1 21.3 ± 4.2 21.1 ± 2.1 14.6 ± 4.1 23.9 ± 2.9

2.2. Experimental Design

The artificial rainfall device used in this study consisted of two parts: A raindrop generator and a
splashed raindrop-collecting device (Figure 1) [30]. The raindrop generator was a cylindrical box with
an open top (10 cm in diameter and 10 cm in height). Twenty-one syringe needles were installed in the
floor of the box, and different needles could generate different raindrop diameters. A stainless steel
pan (110 cm diameter) containing six concentric circles composed of wire was selected as the splash
raindrop-collecting device. The splash pan was centered in a circle and was used to place the open
cutting ring (10 cm diameter × 5 cm height). In turn, the edge of the cutting ring contained fenced
concentric circles with wire at distances of 10 cm, 20 cm, 30 cm, 40 cm, and 50 cm. The area between
the splash pan and wire was impermeable. Each concentric circle was set symmetrically with two
drains, which were used to collect splashed soil particles. Outside of the experimental device, a baffle
and plastic cover were placed to prevent the effects of horizontal airflow disturbance on the rainfall.

 

Figure 1. The test for splashed raindrops and soil aggregates (unit: cm). Note: the figure is from
Fu et al. [30].

Six raindrop energy levels determined by six raindrop diameters and the height of the rainfall (2 m)
were selected in the experiment. The corresponding six raindrop diameters were 2.67 mm, 3.05 mm,
3.39 mm, 3.79 mm, 4.05 mm, and 5.45 mm. The raindrop energy was calculated by the following
method: When the raindrop diameter was greater than or equal to 1.9 mm, the final velocity of the
raindrops was calculated using a modified Newton formula (Equation (1)). Equation (2) was used
to calculate the raindrop velocity under this test condition [31]. The raindrop energy was calculated
by Equation (3). Therefore, the final raindrop energy levels were 2.41 × 10−5, 3.68 × 10−5, 5.15 × 10−5,
7.30 × 10−5, 8.97 × 10−5, and 22.4 × 10−5 J m−2 s−1, which conformed to the range of natural rainfall
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raindrop energy. The corresponding rainfall intensities and rainfall diameters all conformed to the
rainfall characteristics of the Loess Plateau [32]. Equations (1)–(3) are

Vi = (17.20− 0.84d)
√

0.1d , d > 1.9, (1)

V = Vi

√
1− e

− 2g
Vi

2 H
, (2)

Ers =
∑n

i=1

1
2

mV2, (3)

where V is the raindrop velocity (m s−1), d is the raindrop diameter (mm), Vi is the terminal velocity
(m s−1), H is the height of the falling raindrop (m), Ers is the raindrop energy (J m−2 s−1), m is the
individual raindrop mass (g), i= 0, . . . , n is the number of raindrops, and g is gravity acceleration (m s−2).

Prior to the start of the test, the water head height was adjusted to 2 cm. All of the needles started
to drop raindrops at the same time. The rainfall duration was 10 min, and all tests were replicated
3 times. The splashed fragments were collected for each of the five distances (0–10 cm, 10–20 cm,
20–30 cm, 30–40 cm, and 40–50 cm). An aggregate analyzer (HR-TTF-100, Shunlong Experiment
Instrument Factory, Yuxi City, Zhejiang province, China) was used to sieve the fragments into size
fractions of >2 mm, 1–2 mm, 0.5–1 mm, 0.25–0.5 mm, 0.053–0.25 mm, and <0.053 mm, which then were
oven-dried for 24 h at 105 ◦C and weighed. A new test plot was prepared after each rainfall event.

2.3. Parameter Calculation

This study used the fractal dimension (D) proposed by Yang [33] with the quality of the particle
size distribution described in the soil fractal model as follows:

W(δ > di)

W0
= 1−

(
di

dmax

)3−D

. (4)

Take the exponential of both sides,

W(δ > di)

W0
= (3−D)lg

(
di

dmax

)
, (5)

where W(δ > di) is the cumulative mass of soil particles with size δmore than a comparative size di, W0

is the total mass of the particles, di is the average of the sieve size range (dj, dj + 1), and dmax is the
maximum particle size.

For each size fraction, the enrichment ratio (ER) refers to the mass percentage of splash sediment
compared to the undisturbed aggregates. An ER value >1 indicates enrichment of the fraction, whereas
an ER value < 1 demonstrates that the fraction is depleted. The ER is calculated as

ER =
Psp

Psa
, (6)

where Psp is the mass percentage of one size fraction in the total mass of splash aggregates, and Psa is
the mass percentage of one size fraction in the total mass of undisturbed aggregates.

Nash–Sutcliffe indices (ENS) [34] were used to evaluate the model prediction, which is a modeling
efficiency metric ranging from negative infinity to 1, where only >0 values are acceptable:

ENS = 1−
∑n

i=1(Oi − Si)
2

∑n
i=1

(
Oi −O

)2 , (7)

where Oi is the ith measured value of the mass of splash erosion, Si is the ith predicted value of the
mass of splash erosion, n is the total number of measured values, and O is the mean of the measured
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values of the mass of splash erosion. Significant differences in the splash erosion amounts for different
raindrop energies or different splash distances were detected using one-way analysis of variance
(ANOVA), followed by the LSD test (Least–Significant Difference) (p < 0.05). The relationships between
the splash erosion amount and splash distances, between the splash erosion amount and raindrop
energy, and between the splash erosion amounts, splash distances, and raindrop energy levels were
analyzed using a simple regression method. All statistical analyses were performed using SPSS 16.0
(IBM SPSS Software, Armonk, NY, USA), and all figures were processed in Origin 8.5 (OriginLab
Corporation, Northampton, MA, USA).

3. Results and Discussion

3.1. Distribution Characteristics of the Splash Erosion Amounts

The distribution of the splash erosion amounts under the different raindrop energy levels is shown
in Table 2. The splash erosion amount decreased with increasing splash distance for the same raindrop
energy. The splash erosion amounts of the six raindrop conditions were distributed mainly at 0–20 cm,
which accounted for 66% of the total splash erosion amount and was significantly higher than the
splash erosion amounts at the other distances. The splash erosion amounts at 20–30 cm and 30–40 cm
accounted for 16% and 10% of the total splash erosion amount, respectively. In addition, the amount of
splash erosion that reached a distance of 40 to 50 cm accounted for 1%–8% of the total splash erosion
amount, which was significantly less than for the other splash distances (p < 0.05). The raindrops
collided with the surface soil to destroy the original soil structure, which caused them to disperse and
spatter soil particles under the action of their own gravity via parabolic motion. Their movement
paths were affected by their own weight and volume. Theoretically, when raindrop energy is the same,
small-sized particles are transported longer distances because of their light mass, whereas large-sized
particles remain at close distances [29]. Therefore, the amount of aggregate fractions at the 0–20 cm
distance was significantly higher than that at the other splash distances. Regression analysis of the
splash erosion amount (M) and splash distance (S) produced for the different raindrop energy levels
showed that the splash amount M decreased exponentially with increasing splash distance S (p < 0.01).
The regression equation was M = mexp(nS), where m and n are the parameters (Table 3). This result
was consistent with those of the studies of Dijk et al. [26], Cheng et al. [12], and Fu et al. [30].

Table 2. Amounts of splash erosion at different distances for different raindrop energy levels.

Raindrop
Energy/(J m−2 s−1)

Splash Erosion Amount of Different Splash Distances/g Total Splash
Erosion

Amount/g0–10 cm 10–20 cm 20–30 cm 30–40 cm 40–50 cm

2.41 × 10−5 1.1 ± 0.2 Aa 0.9 ± 0.2 Aa 0.5 ± 0.2 Ba 0.3 ± 0.2 Ba 0.3 ± 0.1 Ba 3.0 ± 0.7
3.68 × 10−5 3.2 ± 1.0 Aa 2.0 ± 0.7 Ba 0.8 ± 0.3 Ca 0.4 ± 0.1 Ca 0.2 ± 0.1 Ca 6.5 ± 2.2
5.15 × 10−5 7.5 ± 0.2 Ab 2.7 ± 0.1 Ba 0.9 ± 0.1 Ca 0.4 ± 0.03 Da 0.2 ± 0.02 Ea 11.7 ± 0.4
7.30 × 10−5 26.4 ± 2.5 Ac 6.3 ± 0.8 Bb 2.2 ± 0.2 Cb 1.0 ± 0.1 Cb 0.4 ± 0.1 Ca 36.4 ± 2.3
8.97 × 10−5 28.1 ± 2.3 Acd 7.9 ± 1.3 Bb 2.7 ± 0.5 Cb 1.3 ± 0.2 Cb 0.5 ± 0.1 Ca 40.4 ± 4.3
22.4 × 10−5 30.0 ± 2.9 Ad 17.8 ± 3.0 Bc 7.2 ± 1.3 Cc 3.5 ± 0.5 Dc 1.6 ± 0.4 Db 60.1 ± 3.2

Note: The lowercase letters represent the difference in the amount of splash erosion between the same splash
distance and different raindrop energy levels, and the uppercase letters denote the difference in splash amount
between the same raindrop energy level and different splash distances. There was no significant difference in the
values of each column or line with the same letter (p > 0.05).
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Table 3. Relationships between the amounts of splash (M) and the splash distance (S) for different
raindrop energy levels.

Raindrop Energy/(J m−2 s−1) Simulated Equation R2 p-Value n

2.41 × 10−5 M = 1.725 × e−0.040S 0.976 <0.01 30
3.68 × 10−5 M = 6.826 × e−0.0471S 0.991 <0.01 30
5.15 × 10−5 M = 16.553 × e −0.091S 0.990 <0.01 30
7.30 × 10−5 M = 57.291 × e−0.101S 0.985 <0.01 30
8.97 × 10−5 M = 61.771 × e−0.098S 0.989 <0.01 30
22.4 × 10−5 M = 68.814 × e−0.074S 0.995 <0.01 30

When the splash distance was the same (Table 2), the splash erosion amount increased with
increasing raindrop energy. The splash erosion amount of the raindrop energy 22.4 × 10−5 J m−2 s−1

was at a maximum and was significantly higher than that of the other raindrop energies, which were
1.1–27.3, 2.3–20.0, 2.7–15.0, 2.7–10.9, and 3.1–6.7 times that of the other splash distances, respectively.
The regression analysis showed that for the same splash distance, the splash erosion amount M had
a power function relationship with the raindrop energy E (Table 4). These results were consistent
with those of Hu et al. [20], Rose [35], Parsons et al. [36], and Fernándezraga et al. [37] and showed
that the impact of the raindrop was enhanced by an increase in the raindrop energy, which then
promoted the separation and transportation of more soil particles. The index value of the relationship
between the total splash erosion amount and the raindrop energy was 1.42. This value was close to
the index value of 1.46 from the study of Free [15]. However, Hu et al. [20] showed that the total
soil splash erosion amount was a power function with increasing raindrop energy in the black soil
area of the northeast Chinese mollisol region under rainfall intensities of 50 mm h−1 and 100 mm h−1:
Moreover, the index values were 2.79 and 1.69, respectively, which were different from the results
of this study. This discrepancy may have been due to differences in the soil organic matter content
between black loessial soil (SOM (Soil Organic Matter): 1.55%) and the black soil area (SOM: 2.38%),
because the soil organic matter content may have affected soil erodibility. The relationship between
the splash erosion amount and raindrop energy varied with increasing splash distances, and both
the raindrop energy (E) and splash distance (S) affected the splash erosion amount (M). For the M
values, E values, and splash distances S that were analyzed using multiple regression, the relationship
followed a power–exponential function: M = E0.72 × 16.28e12.92×S−0.21

, R2 = 0.81, p < 0.05. The data
of Wang et al. [21] were placed into the above equation for verification. The ENS value was 0.67
(Figure 2a). It can be seen that the fit was better [34], which may have been because the soil used
in Wang et al. [21] was from the Loess Plateau and the rainfall conditions were similar to this study.
The data of Cheng et al. [12] were placed into the above equation for verification. The ENS value
was less than 0 (Figure 2b). This may have been affected by soil types and slope. The data in this
study were placed into the splash erosion model of Hu et al. [20]: ST = 0.14KE2.65D50

0.54, where ST is
total splash erosion (g), KE is raindrop kinetic energy (J m−2 mm−1), and D50 is the raindrop median
volume diameter (mm).The results showed that the ENS value was less than 0 (Figure 3), so the model
of Hu et al. [20] could not predict the amount of splash erosion in this study, which was mainly affected
by soil types and rainfall conditions. The above research further indicated that the model proposed
in this study can evaluate soil splash erosion in the Loess Plateau well, but the simulation results of
the areas outside the Loess Plateau are still insufficient. Therefore, model correction needs further
exploration in future research.
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Table 4. Relationships between the splash erosion amount (M) and raindrop energy (E) at different
splash distances.

Splash Distance Simulated Equation R2 p-Value n

0–10 cm M = 3.332 × 107E1.564 0.779 <0.05 18
10–20 cm M = 2.144 × 106E1.365 0.964 <0.05 18
20–30 cm M = 3.325 × 105E1.217 0.972 <0.05 18
30–40 cm M = 5.663 × 104E1.159 0.942 <0.05 18
40–50 cm M = 3.511 × 103E0.941 0.837 <0.05 18
0–50 cm M = 1.515 × 107E1.421 0.872 <0.05 18

  
(a) (b) 

N
N

Figure 2. Comparison between the predicted and measured values of the splash erosion amount.
(a) Data are from Wang et al. [21]; (b) data are from Cheng et al. [12].

ST= KE D50
N

 
Figure 3. Comparison between the predicted and measured values of the splash erosion amount.

3.2. Particle Size Distribution Characteristics of Splash Aggregate Fragments

The particle size distribution of splashed aggregates for different raindrop energy levels is
shown in Figure 4. For each raindrop energy level, the mass percentage of soil aggregates >2 mm
was almost zero, possibly because these aggregates were not sufficient to splash out under the
present experimental conditions [25,30]. As a whole, the mass percentage of particle sizes >0.25 mm
presented a down up trend with increasing raindrop energy. When the raindrop energy was
2.41 × 10−5 J m−2 s−1, the mass percentage of the water-stable aggregates >0.25 mm was highest,
with a value of 39%. When the raindrop energy was 7.30 × 10−5 J m−2 s−1, the mass percentage of
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water-stable aggregates >0.25 mm in diameter was lowest, with a value of 18%. This outcome may
have been due to the smaller raindrop energy condition, in which the raindrop was less effective at soil
splash erosion. With an increase in the raindrop energy, the effect of raindrops on soil aggregates was
enhanced. Therefore, dispersed soil particles were more likely to be splashed, and some of the splashed
aggregates broke into microaggregates (<0.25 mm). Due to the lighter mass of the microaggregates
themselves, the quantity of transportation was larger. When the raindrop energy was higher than
7.30 × 10−5 J m−2 s−1, more macroaggregates splashed out, and thus the mass percentage of the
macroaggregates (>0.25 mm) increased.

 

Figure 4. The particle size distribution of splashed aggregates for different raindrop energy levels.

3.3. Effect of Raindrop Energy Levels on Characteristic Parameters of Splash Aggregate Fragments

Castrignano [38] reported that larger D values resulted in more dispersion of aggregates. Lower
D values of aggregates represented a particle size distribution dominated by larger fragments, whereas
higher D values reflected a distribution dominated by smaller fragments [39]. The fractal dimensions
of the splash aggregate fragments for the six raindrop energy levels were 2.789, 2.798, 2.896, 2.898,
2.862, and 2.818, respectively. Regression analysis of the fractal dimension and raindrop energy levels
concluded that the fractal dimension of the soil splash aggregate (D) clearly changed as a quadratic
function, which presented an up–down trend with increasing raindrop energy (E). The equation is
D = −1.0532 × 10−4 (E − 1.29 × 10−4)2 + 2.564, R2 = 0.627, p < 0.05. The maximal raindrop energy value
was 1.29 × 10−4 J m−2 s−1, which broke the aggregates to the largest degree. On the whole, the fractal
dimension of the splash aggregate fragments for the raindrop energy of 2.41 × 10−5 J m−2 s−1 was
lower than that for 22.4 × 10−5 J m−2 s−1. This difference may have been due to the lowest raindrop
energy level, less splashing of aggregates, and a higher proportion of large particles splashed out due
to their own mass. However, when the raindrop energy was larger, more macroaggregates splashed
out, although some of them broke into microaggregates [28]: Therefore, the fractal dimension was
relatively high.

The splash enrichment ratio (ER) for each particle size at the different raindrop energy levels is
shown in Figure 5. The enrichment ratio of aggregates presented an up–down trend with decreasing
particle size. The ER value for a particle size greater than 2 mm was close to 0. Ma et al. [25] showed
that a rainfall intensity of 58.1 mm·h−1 resulted in ER values of 0 for particle sizes of 5–2 mm and a
value close to 0 for particle sizes of 2–1 mm, which was consistent with the results of this study. The ER
value for particle sizes greater than 0.25 mm was <1, whereas that for particle sizes less than 0.25 mm
was >1 for all raindrop energy levels. Thus, the 0.25-mm particle size was the critical particle size
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level for the enrichment and depletion of splash erosion. However, Zhou [40] analyzed the selective
characteristics of splash erosion for black soil aggregates and concluded that aggregates with a particle
size >1.0 mm were not easily transported. Hence, a particle size of 1.0 mm was the critical particle level
for the enrichment and depletion of splash erosion. This finding was inconsistent with the conclusion
of this study, possibly because the soil selected in this study was developed from loess parent material,
and the erodibility of the soil was relatively high. Under the condition of raindrop splash erosion, the
large particle size was smaller and was easily broken into smaller particle-sized aggregates: Thus, the
>0.25-mm macroaggregates were gradually broken into <0.25-mm microaggregates. This result was
consistent with that of Legout et al. [28], who proposed that soil aggregates could be hypothesized
into a single stratified structure. The macroaggregates (>0.25 mm) were bound by microaggregates
(<0.25 mm) and gradually disintegrated into microaggregates during rainfall. The macroaggregates
were mainly broken into 0.25–0.053-mm aggregates for all rainfall experiments (Figure 5). Fu et al. [41]
considered that the ER value of particle sizes 1–0.053 mm was greater than 1. Aggregates with a
particle size >1 mm were mainly broken into aggregates with particle sizes of 1–0.053 mm in the
single-raindrop test in that study. That particle size was larger than the results of this study, because
the single-raindrop splash soil resulted in less fragmentation of the aggregates [41]. Conversely, in
a study with multineedle rainfall, soil particles may receive secondary raindrop splash erosion, and
hence more fine particles may be produced.

 
Figure 5. Splash enrichment ratio (ER) for each particle size of the different raindrop energy levels.

4. Conclusions

This study analyzed the soil splash erosion amounts and the distribution of particle sizes under six
rainfall conditions at five splash distances. Dark loessial soil with a Corg content (Organic Carbon) of
1.6% and natural moisture of 18.8% and a core size of 10 × 20 cm was used in laboratory experiments.

The splash erosion amounts of the six raindrop conditions were mainly distributed at distances of
0–20 cm. For each raindrop energy level, the mass percentage of soil aggregates >2 mm was almost zero.
As a whole, the mass percentage of particle sizes >0.25 mm presented a down–up trend. A particle
size of 0.25 mm was the critical particle size level for the enrichment and depletion of splash erosion.

A model was obtained to predict the splash erosion amount for the rainfall energy and splash
distance, which could evaluate the soil splash erosion in the Loess Plateau well, but the simulation
results of the areas outside the Loess Plateau are still insufficient. Therefore, model correction needs
further exploration in future research.

The fractal dimension (D) of the aggregates showed a downward opening parabolic relationship
with raindrop energy. The maximal raindrop energy value was 1.29 × 10−4 J m−2 s−1, which broke the
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aggregates to the largest degree. The above results provide insights into the variation in aggregates in
the soil layer during rainfall and a good understanding of soil surface crust and soil erosion mechanisms.
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Abstract: Climate change-induced precipitation variability is the leading cause of rainfall erosivity
that leads to excessive soil losses in most countries of the world. In this paper, four global climate
models (GCMs) were used to characterize the spatiotemporal prediction of rainfall erosivity and assess
the effect of variations of rainfall erosivity in Central Asia. The GCMs (BCCCSM1-1, IPSLCM5BLR,
MIROC5, and MPIESMLR) were statistically downscaled using the delta method under Representative
Concentration Pathways (RCPs) 2.6 and 8.5 for two time periods: “Near” and “Far” future (2030s
and 2070s). These GCMs data were used to estimate rainfall erosivity and its projected changes over
Central Asia. WorldClim data was used as the present baseline precipitation scenario for the study
area. The rainfall erosivity (R) factor of the Revised Universal Soil Loss Equation (RUSLE) was used to
determine rainfall erosivity. The results show an increase in the future periods of the annual rainfall
erosivity compared to the baseline. For all GCMs, with an average change in rainfall erosivity of about
5.6% (424.49 MJ mm ha−1 h−1 year−1) in 2030s and 9.6% (440.57 MJ mm ha−1 h−1 year−1) in 2070s as
compared to the baseline of 402 MJ mm ha−1 h−1 year−1. The magnitude of the change varies with the
GCMs, with the largest change being 26.6% (508.85 MJ mm ha−1 h−1 year−1), occurring in the MIROC-5
RCP8.5 scenario in the 2070s. Although annual rainfall erosivity shows a steady increase, IPSLCM5ALR
(both RCPs and periods) shows a decrease in the average erosivity. Higher rainfall amounts were the
prime causes of increasing spatial-temporal rainfall erosivity.

Keywords: rainfall erosivity; Central Asia; GCMs; soil erosion; climate change
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1. Introduction

Soil is a fragile resource that requires time to recover. Without soil, agricultural production is
inconceivable, and the sustenance of the well-being of people will be impossible [1]. Soil erosion is
the combination of natural and anthropogenic processes foremost to changes in soil functions in the
geosystem, quantitative and qualitative degradation of soil composition, properties, and regimes,
and reduction of the natural and economic importance of lands [2]. Soil erosion by water is the most
common type of soil erosion, affecting about 11 million km2 in the world [3]. Among the continents,
Asia ranks first in soil erosion severity [3,4]. Soil degradation also brings enormous economic damage,
disrupts the ecological balance and worsens social conditions of people [5]. The scientifically grounded
and rational use of lands largely depends on the correct identification and establishment of the degree
or category of erosion of the soil cover and accurate accounting for their correct nomenclature and
classification. Thus, one of the most important tasks of this century is to ensure water and food security
through effective agricultural productivity and reduced soil erosion [6,7].

Currently, agriculture remains an essential sector of the economy of Central Asia, providing
5.2% of gross domestic product (GDP) in Kazakhstan, 7.5% in Turkmenistan, 18.5% in Uzbekistan,
20.8% in Kyrgyzstan and 23.3% in Tajikistan [8], which employs between 20–50% of the Central Asian
workforce [9]. Consequently, a better understanding of the impact of climate change on soil erosion
processes is also paramount to the economy of Central Asia.

It should be noted that in recent years, climatic conditions in the Central Asian countries have
changed owing to the reduction of glacier areas of the Tien Shan [10–12] and Pamir-Alay [13,14]
mountain systems in the south and the drying up of the Aral Sea [15,16] in the north. In this regard, the
shortage of water for irrigation, degraded natural vegetation covers, erosion processes and salinization
are on the rise, while the productive capacity of irrigated lands is decreasing [8]. Humanity faces
an urgent problem—the preservation of existing natural landscapes, which includes, improving and
multiplying its types.

Rainfall erosivity is associated with the influential kinetic energy of raindrops, which often
separates soil elements and transports them along with surface runoff [17]. Rainfall erosivity is the most
significant factor and offers conservation actions by models of soil erosion prediction [18]. The rainfall
erosivity (R) factor is usually adopted in soil erosion calculation models, such as the Universal Soil
Loss Equation (USLE) [19] and its revised version (RUSLE) [20]. Rainfall erosivity in USLE (RUSLE) is
defined as the long-term average product of total rainfall energy and maximum precipitation intensity
over 30 min (EI30) for storm events [19,20]. Data on the pluviograph for at least 20 years is required
to calculate the original rainfall erosivity [20]. However, such data (EI30) is not available in many
countries and regions, and the processing of this data is quite tedious and time-consuming [21,22].
This also applies to Central Asia, where precipitation data with good temporal coverage is still scarce.
However, numerous studies have established a statistical regression equation between R and variable
rainfall, such as annual rainfall [4,23–25]. More recently, there has been evidence of the influence of
climate change on rainfall erosivity in various parts of the globe [7,17,26–28].

Climate change is one of the most significant environmental issues of the 21st century [29,30].
Climate changes that are related to soil erosion mainly include changes in temperature and
precipitation [31]. Climate change may influence rainfall erosivity alteration in precipitation
patterns [17,32]. The characteristics of precipitation (amount of precipitation, its intensity and
spatial-temporal distribution) directly affect soil erosion [33]. Similarly, an increase in temperature
indirectly affects soil erosion [31]. The addition of water vapor to the atmosphere has an impact on
the nature of climate circulation, thereby altering the intensity, frequency of extreme precipitation [7].
In arid and semi-arid climates, such as in Central Asia, there will be a more significant increase in
temperature and rainfall events than in many other regions of the world [34,35].

The spatial and temporal projection of future rainfall erosivity in a changing climate in Central
Asia has not been studied. Thus, the objective of this paper is to predict the value of rainfall erosivity
and erosivity density in the 2030s and 2070s. We used WorldClim data [36] and the climate projections
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from four GCMs, Beijing Climate Center, Climate System Model 1.1 (BCCCSM1.1), Institut Pierre
Simon Laplace Model CM5A-LR (IPSLCM5ALR), Model for Interdisciplinary Research On Climate
version 5 (MIROC5), and the Max Planck Institute for Meteorology (MPIESMLR), with RCP2.6, and
RCP8.5 scenarios.

2. Materials and Methods

2.1. Study Area

Central Asia occupies a vast territory on the Asian continent and includes the Kyrgyz Republic,
the Republic of Tajikistan, the Republic of Turkmenistan, the Republic of Uzbekistan and the
Republic of Kazakhstan entirely [37]. These five countries cover an area of 4 million km2

(46◦45′28.13′′–87◦21′47.81′′ E, 35◦5′2.24′′–52◦33′30.49′′ N) [38], with a combined population of
65 million people [8]. The nations comprising Central Asia were once part of the Soviet Union.
In physical-geographical terms, the region is a separate natural-historical region, sharply differing
from adjacent areas by its natural conditions. All local types of Central Asian climates can be divided
into three types: (1) The climate of the temperate zone, (2) climates of the dry subtropical zone and (3)
the mountain climates of Tien Shan, Pamir-Alai, Pamir and Kopetdag with a well-marked altitudinal
zonation [37]. Average annual precipitation in Central Asia is 254 mm, the minimum is 66 mm, and the
maximum is 1222 mm (Figure 1a), elevation ranges from −229 to up to 7447 m (Figure 1b). Significant
differences in the height of parts of this territory—from the areas lying below the ocean level to the
highest mountain peaks—make here variety of climate and landscape forms. Having a long and
orographically complex territory with extensive lowlands and highest mountain elevations in the
south, southeast, Central Asia is characterized by a variety of climatic conditions. The climate of
Central Asia is distinguished by a high continentality, marked by a great amplitude of fluctuations in
air temperature and a meagre amount of precipitation [37].

Figure 1. Study area: (a) Mean annual precipitation from WorldClim and (b) elevation from Shuttle
Radar Topography Mission Digital Elevation Model (SRTM DEM, 90 m).
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2.2. Climate Data

Compared to the Coupled Model Intercomparison Project Phase 3 (CMIP3), CMIP5 is a notable
improvement because it uses a new set of emission scenarios called RCPs [17,39]. Projected precipitation
data from GCMs BCCCSM1-1, IPSLCM5ALR, MIROC5, and MPIESMLR for the RCP2.6 and RCP8.5
greenhouse emission scenarios were used [39] (Table 1; Figure 2). The GCMs were selected because
of their relative independence, good performance in precipitation simulation for Central Asia [40]
and Tibetan Plateau [33]. Global precipitation with 1 km2 horizontal resolution was obtained from
the WorldClim database [36]. In assessing future changes in the erosion of rainfall and possible
consequences, the predicted rainfall data for the “near” (2020–2049) and “far” future (2060–2089)
have been retrieved from the Climate Change Agriculture and Food Security (CCAFS, http://www.
ccafs-climate.org) portal. The data were statistically downscaled to 1 km2 horizontal resolution
using the delta method [41], based on the sum of interpolated anomalies to high-resolution monthly
climate surfaces from WorldClim [36]. These anomalies were then interpolated using thin plate spline
interpolation [41]. These datasets were used as input data for this study.

Figure 2. Climate change scenarios used in the paper.

Table 1. Global Climate Models (GCMs), from the Climate Change Agriculture and Food Security
(CCAFS, http://www.ccafs-climate.org) portal.

Model Institute Country Resolution

BCCCSM-1.1 Beijing Climate Center, Climate System Model 1.1 China ~2.8125◦ × 2.8125◦

IPSLCM5ALR Institut Pierre Simon Laplace Model, New
Atmospheric Physic at Low Resolution France 3.75◦ × ~1.9◦

MIROC-5 Model for Interdisciplinary Research On Climate Japan 1.4◦ × 1.4◦
MPIESMLR Max Plank Institute for Meteorology Germany 1.875◦ × ~1.9◦

2.3. Estimation of Rainfall Erosivity

In this paper, the rainfall erosivity (R) factor from the RUSLE model was chosen to estimate
the changes in rainfall erosivity. Rainfall erosivity was calculated using the precipitation values of
gridded GCMs, comparing it with WorldClim data. [19,20] described the original method of calculating
erosivity as:

R =
1
n

n∑
j=1

mj∑
k=1

(EI30)k, (1)
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where R is the mean annual rainfall erosivity (MJ mm ha−1 h−1 year−1), n is the number of years of
data, mj is the number of erosive events in the j year and EI30 is the rainfall erosivity index of a storm k.
The event’s rainfall erosivity index EI30 is defined as:

EI30 = I30(
m∑

r=1

ervr) (2)

where er is the unit rainfall energy (MJ ha−1) and vr is the rainfall depth (mm) during a time period r.
I30 is the maximum rainfall intensity during a 30 min period of the rainfall event (mm h−1).

er = 0.29[1− 0.072exp(−0.05ir)] (3)

where ir is the rainfall intensity during the period (mm h−1).
The information needed to calculate the R factor using the proposed method is usually difficult to

obtain in many parts of the world. Therefore, various studies have been conducted to derive regression
equations for the derivation of R factor. These simplified methods offer exceptional ease of studying the
spatial and temporal variability of rainfall erosivity. Researchers [23] proposed the following equations
for estimating the R factor using annual precipitation or Modified Fournier Index (MFI) in the absence
of data on rainfall intensity for a particular site:

R = 0.04830× P1.61, where P < 850 mm (4)

R = 587.8− 1.219× P2 , where P ≥ 850 mm (5)

where R is rainfall erosivity factor (MJ mm ha−1 h−1 year−1), P is the average mean annual precipitation.

R = 0.7397MFI1.847, where MFI < 55 mm (6)

R = 95.77− 6.081MFI + 0.4770MFI2, where MFI ≥ 55 mm (7)

where R is the rainfall erosivity (MJ mm ha−1 h−1 year−1). MFI is Modified Fournier Index, given
below [42,43].

MFI =
12∑

i=1

pi

P
(8)

where P is annual precipitation (mm), and pi is the monthly rainfall.
In this study, rainfall erosivity has been determined using the average annual precipitation,

Equations (4) and (5). We used these equations because they were widely used in other similar
studies [4,17]. The data used to derive R factor are gridded WorldClim data of precipitation and
the GCMs.

2.4. Annual Erosivity Density Ratio

According to Kinnell [44], the erosivity density coefficient is the ratio of rainfall erosivity (R) factor
to precipitation. In practice, it measures the erosivity per unit of precipitation (mm) and is expressed
as MJ ha−1 h−1 (9).

ED =
R
P

(9)

where ED is the erosivity density, R is the average annual rainfall erosivity and P is the average
annual precipitation.

127



Water 2019, 11, 897

2.5. Model Evaluation Rainfall Erosivity

To evaluate the R factor of the baseline output, we made use of precipitation data from Central
Asia temperature and precipitation (CATP) data (1879–2003), version 1 from the National Snow and
Ice Data Center (NSIDC) [45]. This dataset contains monthly climatic data. The performance of the
rainfall erosivity model was assessed by comparing the rainfall erosivity of observation data (from 269
meteorological stations) with that of the baseline data using coefficient of determination (R2), root mean
squared error (RMSE) and Nash–Sutcliff Efficiency (NSE) [46] Equations (10), (11) and (12) respectively.

R2 = 1−
⎡⎢⎢⎢⎢⎢⎢⎢⎣

∑n
i=1

(
Ymod

i −Yobs
i

)2

∑n
i=1

(
Ymod

i −Yobs
i

)2
+

∑n
i=1

(
Ymod

i −Ymean
i

)2

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (10)

RMSE =

√∑n
i=1

(
Yobs

i −Ymod
i

)2

n
(11)

NSE = 1−
⎡⎢⎢⎢⎢⎢⎢⎢⎣
∑n

i=1

(
Yobs

i −Ymod
i

)2

∑n
i=1

(
Yobs

i −Ymean
i

)2

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (12)

where Ymod
i is the baseline rainfall erosivity, Yobs

i is the observed rainfall erosivity and Ymean
i is the mean

of observed and baseline rainfall erosivity.

3. Results

3.1. Rainfall Erosivity Under Baseline and Projected Climate

The WorldClim (baseline) and observation precipitation were statistically compared. The correlation
coefficient of about 0.91 was found between the baseline and observed average monthly precipitation.
The average annual rainfall erosivity for observation data ranges from 71.7–2390.3 MJ mm ha−1 h−1

year−1 with mean 497.8 MJ mm ha−1 h−1 year−1 and standard deviation 359 MJ mm ha−1 h−1 year−1.
While baseline data shows the range of rainfall erosivity to be 95–1838.9 MJ mm ha−1 h−1 year−1 with
mean and standard deviation 476.8 and 267.1 MJ mm ha−1 h−1 year−1, respectively. In comparison,
the baseline and observed rainfall erosivity produced 0.81, 156.7 MJ mm ha−1 h−1 year−1 and 0.60 for
R2, RMSE and NSE, respectively. This represents a good model performance. Figure 3 illustrates the
evaluation of rainfall erosivity of both observation and baseline estimates.

Figure 3. Scatter plot between observed and baseline annual rainfall erosivity.

The highest annual R factor was found in the southeastern part of Central Asia, with moderate
values in the northern regions, but decreased westwards, where the lowest values were recorded.
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On the other hand, the values gradually increased towards Tajikistan but reduced in the western parts
occupied by Turkmenistan. The spatial distribution of the R factor constantly varied concerning annual
precipitation in Central Asia. The estimated average annual rainfall erosivity for the baseline period
ranges from 41 MJ mm ha−1 h−1 year−1 to 4510 MJ mm ha−1 h−1 year−1, in the west and southeast,
respectively (Figure 4a).

The MIROC5 RCP2.6 and 8.5 show higher rainfall erosivity, perhaps due to the strongly projected
spatial difference in rainfall with these scenarios. In all the GCMs and baseline precipitation, the R factor
in Tajikistan, Kyrgyzstan, east Uzbekistan, and east Kazakhstan is higher but lower in Turkmenistan,
northwest Uzbekistan, southwest and central Kazakhstan (Figure 5). Also, Figure 6 shows the relative
difference between the four projected scenarios and the baseline.

 
Figure 4. (a) Baseline rainfall erosivity and (b) erosivity density.

Table 2 presents the effects of rainfall on historical and projected rainfall erosivity and erosivity
density in Central Asia. GCM ensembles show that rainfall erosivity increases from the baseline in all
ensembles, except BCCCSM1.1-8.5 in 2070s and IPSLCM5ALR both RCPs (2030 and 2070). The average
value of all scenarios shows that precipitation increased in the 2030s to 262 mm and 2070s to 268 mm,
from the baseline (254 mm). Nevertheless, MIROC5 (the 2030s and 2070s, both RCP) predicted a higher
increase in precipitation than other models with similar scenarios and periods.

Table 2. Changes in average rainfall erosivity and erosivity density under climate change across
Central Asia.

Climate Models Precipitation
Rainfall Erosivity

(MJ mm ha−1 h−1 year−1)
Change (%)

Erosivity
Density

Change (%)

Baseline 253.57 402.07 0.0 1.38 0.0

2030s

BCCCSM1.1-2.6 263.5 430.01 6.95 1.41 2.2
BCCCSM1.1-8.5 267.12 437.07 8.7 1.42 2.9

IPSLCM5ALR-2.6 247.31 386.65 −3.84 1.36 −1.4
IPSLCM5ALR-8.5 246.48 386.37 −3.9 1.35 −2.2

MIROC5-2.6 266.4 439.64 9.34 1.42 2.9
MIROC5-8.5 283.19 481.98 19.87 1.47 6.5

MPIESMLR-2.6 254.36 404.09 0.5 1.38 0.0
MPIESMLR-8.5 263.94 430.14 6.98 1.41 2.2

Average 261.54 424.49 5.58 1.4 1.6
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Table 2. Cont.

Climate Models Precipitation
Rainfall Erosivity

(MJ mm ha−1 h−1 year−1)
Change (%)

Erosivity
Density

Change (%)

2070s

BCCCSM1.1-2.6 273.95 450.35 12.01 1.45 5.1
BCC-CSM1.1-8.5 268.61 437.77 8.88 1.43 3.6
IPSLCM5ALR-2.6 248.82 391.22 −2.7 1.36 −1.4
IPSLCM5ALR-8.5 243.9 381.36 −5.15 1.34 −2.9

MIROC5-2.6 270.33 449.88 11.89 1.43 3.6
MIROC5-8.5 294.11 508.85 26.56 1.51 9.4

MPIESMLR-2.6 278.9 469.3 16.72 1.46 5.8
MPIESMLR-8.5 267.4 435.84 8.4 1.42 2.9

Average 268.25 440.57 9.58 1.43 3.3

Precipitation, erosivity and density differ accordingly given that the GCMs exhibited consistent
variations as shown in Table 2. Although average precipitation and rainfall erosivity demonstrate a
steady increase in all the GCMs in combination with the baseline precipitation output, IPSLCM5ALR
however shows a decline in average precipitation and erosivity in both periods.

3.2. Rainfall Erosivity at the National Level

In the baseline period, Kyrgyzstan had an estimated average rainfall erosivity of
869.7 MJ mm ha−1 h−1 year−1. The MIROC5 and MPIESMLR scenarios (RCP2.6 and RCP8.5),
respectively project an increase in the mean rainfall erosivity ranged from 27.9–50.1% and from 0.9–27%.
The BCCCSM1.1 scenarios also projected a mean increase of 6.3% for all periods and a decrease (−7.8%)
for the BCCCSM1.1-8.5 in the 2070s.

Figure 5. Rainfall erosivity projections for the period 2030s and 2070s according to RCP2.6 and 8.5
scenarios driven by the BCCCSM1.1, IPSLCM5ALR, MIROC-5, MPIESMLR GCM models.
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In Kazakhstan, we calculated the mean values of rainfall erosivity of 374.3 MJ mm ha−1 h−1 year−1

during the baseline period. From MIROC5, BCCCSM1.1 and MPIESMLR (both scenarios), we noted
an increase of 5.3% to 27.3%, 11.6% to 23.2 and 0.6% to 15.7%, respectively, in mean rainfall erosivity in
this country with a slight increase in the northern part and a substantial increase in the eastern part of
this country. We also found results using IPSLCM5ALR for both scenarios, with decreases ranging
from −0.3% to 1.6%, except RCP8.5 (the 2070s) with an increase of 1.5%.

Figure 6. Absolute differences of rainfall erosivity (MJ mm ha−1 h−1 year−1) between 2030, 2070
projections and baseline data.

The average rainfall erosivity in Turkmenistan for the baseline period was 188.4 MJ mm ha−1 h−1

year−1. This country has the lowest rainfall erosivity among all Central Asian countries. The ensemble
scenarios of IPSLCM5ALR and BCCCSM1.1 (RCP2.6 and RCP8.5) predict decrease from −10.1% to
−19%, and from −7.1% to −16% respectively. However, BCCCSM1.1-2.6 (2070s) predicts about 10.5%
increase in rainfall erosivity. The MPIESMLR and MIROC5 results indicate changes from 2.3% to 14.3,
and from 3.7% to 19.6%, while MIROC5-2.6 (2070s) decreased (−4.7%) during the two-time slices for
the two emission scenarios.

For Tajikistan, an average rainfall erosivity of 1447.7 MJ mm ha−1 h−1 year−1 in the baseline period
was revealed. The increase was observed in the MIROC5 and MPIESMLR scenarios thereby, indicating
the highest rainfall erosivity in the study area. However, there is also a decrease in the average
rainfall erosivity in this country for IPSLCM5ALR (both scenarios and both periods), BCCCSM1.1-8.5
(both periods) and MPIESMLR-2.6 (the 2030s) compared to the baseline. For both scenarios, MIROC5
projected increases in erosivity from 34.3% to 56.3%. IPSLCM5ALR estimated decreases from −8.2% to
−26.2%.
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Uzbekistan had an average baseline rainfall erosivity of 282.1 MJ mm ha−1 h−1 year−1. The MIROC5
scenarios (RCP2.6 and RCP8.5) projected an average increase ranging from 2.1–24.1%. The MPIESMLR
projected a mean increase ranging from 7–15.3%, except for a decrease of −2.7% for the RCP2.6
(the 2030s). IPSLCM5ALR projected decreases in the mean annual rainfall erosivity from −7.7% to
28.2%. In general, all scenarios estimated an increase and decrease in rainfall erosivity over Uzbekistan
(Table 3). Our result (<280 MJ mm ha−1 h−1 year−1) is comparable with [18], which reported low
average erosivity values (<250 MJ mm ha−1 h−1 year−1) in Kazakhstan, Turkmenistan, and Uzbekistan.

Table 3. Rainfall erosivity in Central Asia by country. Mean baseline and estimated (MJ mm ha−1 h−1

year−1) by BCCCSM1.1, IPSLCM5ALR, MIROC5 and MPIESMLR with RCP2.6 and RCP8.5 emission
scenarios models. Projected change to baseline (%).

KGZ KZT TJK TKM UZB

Baseline (1961–1990) 869.7 374.3 1447.7 188.4 282.1

RCP2.6 (2030s)

BCCCSM-1.1 903.8 420.3 1395.9 167.7 258
Change, % 6.3 11.6 0.4 −10.1 −8.1

IPSLCM5ALR 744.1 377.5 1290.8 164.7 240.5
Change, % −17.2 −0.3 −11 −11.2 −11.9
MIROC5 1057 400.6 1697.1 196.9 295.6

Change, % 27.9 5.3 36.9 3.7 2.1
MPIESMLR 870.1 380.8 1388.3 191.2 272.5
Change, % 0.9 0.6 −2.2 2.3 -2.7

RCP2.6 (2070s)

BCCCSM-1.1 910 436.2 1450.2 200.9 291.9
Change, % 6.3 17.7 3.8 10.5 9

IPSLCM5ALR 769 375.1 1350.5 172.9 263.4
Change, % −14.5 −1.5 −8.2 −7.1 −7.7
MIROC5 1062.6 416.8 1699.9 179.9 297

Change, % 28.8 9.8 34.3 -4.7 2.4
MPIESMLR 1081.9 432.5 1702.5 216.9 329
Change, % 27 15.7 24.5 14.3 15.3

RCP8.5 (2030s)

BCCCSM-1.1 909.6 430.9 1386.2 165 256.6
Change, % 6.3 14.9 −5.7 −11.1 −10

IPSLCM5ALR 736.4 380.2 1254.8 171 227.6
Change, % −17.4 −1.6 −15.4 −7.3 −17.7
MIROC5 1216.8 435.9 1818.4 212 336.9

Change, % 49.7 17 51.3 13.5 19.4
MPIESMLR 1041.7 385.2 1664.4 202.8 320
Change, % 22 4.6 20.8 8.8 14.5

RCP8.5 (2070s)

BCCCSM-1.1 794 456.8 1150.6 146.9 228.4
Change, % −7.8 23.2 −26.3 −19 −17.7

IPSLCM5ALR 581.3 400 1082 154.2 182.8
Change, % −35.5 1.5 −26.2 −16.7 −28.2
MIROC5 1224.1 473.1 1800.4 215.3 340

Change, % 50.1 27.3 56.3 19.6 24.1
MPIESMLR 988 409.6 1484.7 195.4 294.5
Change, % 15.7 11.1 9 7.6 7

KGZ-Kyrgyzstan, KZT-Kazakhstan, TJK-Tajikistan, TKM-Turkmenistan, UZB-Uzbekistan.

3.3. Annual Erosivity Density

Separately projected annual erosivity results (Figure 5) are divided by a corresponding average
rainfall data to derive average erosivity density ratio. Density values of erosivity above 1 suggest
that a certain amount of precipitation may lead to relatively higher rainfall erosivity [47]. The annual
erosivity density for baseline period has a mean value of 1.38 MJ ha−1 h−1, with variability ranging
from 0.62–3.69 MJ ha−1 h−1 (Figure 4b). The projected variation of erosivity density is also very high as
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the MIROC5-8.5 has the highest mean erosivity density with 1.47 and 1.51 MJ ha−1 h−1 in the 2030s
and 2070s, respectively. Followed by MPIESMLR-2.6 with 1.46 MJ ha−1 h−1 in 2070s, BCCCSM1.1-2.6
and BCCCSM1.1-8.5 with 1.45 and 1.43 in 2070s. However, IPSLCM5ALR-2.6 and IPSLCM5ALR-8.5
(both periods) have the lowest mean erosivity density with an average of 1.35 MJ ha−1 h−1 (Table 2;
Figures 7 and 8).

Figure 7. Erosivity density for different scenarios for the period 2030s and 2070s according to RCP2.6
and 8.5 scenarios driven by the BCCCSM1.1, IPSLCM5ALR, MIROC-5, MPIESMLR GCM models.

Figure 8. Annual precipitation, R factor and erosivity density for different scenarios and periods.
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4. Discussion

The influence of climate change on rainfall erosivity is expressed by variations in total precipitation,
as shown in the result section. The Tien Shan, Pamir-Alay and Pamir mountains experience more
torrential rainfall compared to the surrounding low-lying deserts. Changes in precipitation mainly
depend on changes in the water content in the atmosphere, which is transferred from the oceans to the
earth through large-scale atmospheric circulation [40]. Atmospheric circulation over Central Asia is
characterized by the predominance of the west-east transfer of air masses when the main moisture
that gives precipitation comes from the North Atlantic Ocean [37,48–50]. Most of the low-latitude
region (40◦ N) is marked by low-pressure anomalies [50]. As the air masses move from the Atlantic
Ocean, they lose moisture to become dry air mass as they approach the territory—causing little or
no precipitation in summer [37]. El Niño Southern Oscillation (ENSO) has affected precipitation
changes over the arid regions of Central Asia by the southwestward flow of water vapor coming from
the Arabian Sea and tropical Africa [48,49,51]. ENSO-induced precipitation is related to large-scale
atmospheric circulation changes caused by sea surface temperature (SST) [52]. Previous studies have
shown that changes in SST have a significant impact on the transport of water vapor from the oceans
to land [40,53]. The main feature in the distribution of precipitation in Central Asia is their small
annual amount of the lower part of the territory, resulting in vast deserts. At the same time, on the
shores of the Caspian Sea, and especially Balkhash Lake, precipitation is generally low. Only in the
mountains—on the outer windward slopes, where the air masses experience a forced rise, resulting
to cooling, reaching a state of saturation—does the orographic increase in precipitation occur 3–5
times or more compared to the surrounding deserts [37]. This fact explains the spatial distribution of
precipitation in Central Asia and, in turn, may clarify why some parts have higher erosion than other
parts. This results in precipitation variability that consequently influences erosion.

As stated by [17], erosion will be affected by changes in precipitation patterns and quantities
due to climate change. Studies in the Eurasian continent predicted a significant increase or decrease
in erosivity for the future climate. For example, [26] found that 81% of the territory in Europe is
projected to have an increase in rainfall erosivity and 19% rainfall erosivity projected to decrease by
2050 (HadGEM2, RCP4.5 scenario). Likewise, however, our study predicts some spatial variability
in erosivity for Central Asia concerning the anthropogenic influence on the amount of precipitation
based on different GCMs (Tables 2 and 3, Figures 5, 6 and 8).

Also, the dynamic influence of climate change on soil erosion is another essential factor that is
uncertain; however, it may depend on the interacting impacts of the associated factors. Nonetheless,
future soil erosion rates are expected to increase due to increased precipitation and rainfall erosivity.
Moreover, this has been confirmed in other prediction studies (e.g., [17,27,28,54]), an increase in
precipitation and intensity will significantly impact soil erosion rates. The highest percentage of rainfall
erosivity occurs in medium and high regions of Tajikistan, Kyrgyzstan, Eastern Uzbekistan, and East
Kazakhstan. Besides, this suggests that there will be more occasions for soil losses at medium and high
altitudes than has ever been experienced in the past. Consequently, high soil erosion may lead to high
sedimentation in rivers, lakes, and reservoirs, and these are critical for flooding and water pollution [4].
Small percent variations are usually expected in developed areas, which generally have gentle slopes
and less hilly areas. The variability of our results shows the disagreements in scenarios, periods and
climate models, but may also show persistent uncertainty in our models.

Preservation of fertile soils by agricultural lands, pastures, and forests is the primary condition for
the sustainable development of humanity. The possible increase in rainfall erosivity in Tajikistan and
Kyrgyzstan may affect a significant part of agricultural production in Central Asia due to increased
soil loss and reduced soil fertility and water availability. On the other hand, a reduction in the
rainfall erosivity over Turkmenistan and western Uzbekistan can strengthen the trend of agricultural
development in these areas. However, climate change can significantly affect land cover, which can
balance or reinforce some erosion trends. To predict future soil erosion trends, these feedbacks between
precipitation and land cover should be evaluated.
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5. Conclusions

In this research, we estimated the potential influence of climate change on rainfall erosivity and
erosivity density in Central Asia using baseline data (1960–1990) and projected precipitation data
(2020–2049 and 2060–2089). The projected precipitation was taken from the downscaled data of four
GCM, BCCCSM1.1, IPSLCM5ALR, MIROC5, and MPIESMLR, based on two scenarios, RCP2.6, and
RCP8.5. The mean erosion of rainfall in Central Asia was calculated and compared with climate
scenario predictions. The mean rainfall erosivity within the baseline period was 497.8 MJ mm ha−1

h−1 year−1, as compared to 476.8 MJ mm ha−1 h−1 year−1 from the observed rainfall data for 269
meteorological stations points. The Tajikistan and Kyrgyzstan are predicted to be the most affected
countries regarding rainfall erosivity. Increasing trends in annual rainfall erosivity from baseline
climate up to the GCMs and the climate scenarios experienced variations in rainfall erosivity. There
is a positive change in the average annual rainfall erosivity of 5.6% and 9.6% in the 2030s and 2070s
respectively compared to the baseline (1960–1990).

The BCCCSM1.1 scenarios projected both increases and decreases in mean rainfall erosivity in
Kyrgyzstan (−7.8% to 6.3%), Tajikistan (−26.3% to 3.8%), Turkmenistan (−19% to 10.5%), Uzbekistan
(−17.7% to 9%) and increases in Kazakhstan (11.6% to 23.2%). The IPSLCM5ALR scenarios project
decreases in mean rainfall erosivity in Kyrgyzstan (−14.5% to −35.5%), Tajikistan (−8.2% to −26.2%),
Turkmenistan (−7.1% to −16.7%), Uzbekistan (−7.7% to −28.2%) and both increases and decreases in
Kazakhstan (−1.6% to 1.5%). The MIROC5 scenarios project increases in Kyrgyzstan (27.9% to 50.1%),
Kazakhstan (5.3% to 27.3%), Tajikistan (34.3% to 56.3%), Uzbekistan (2.1% to 24.1%), and both increases
and decrease in Turkmenistan (−4.7% to 19.6%). The MPIESMLR scenarios project in mean rainfall
erosivity increases in Kyrgyzstan (0.9% to 27%), Kazakhstan (0.6% to 15.7%), Turkmenistan (2.3% to
14.3%) and both increases in decreases in Tajikistan (−2.2% to 24.4%), Uzbekistan (−2.7% to 15.3%).
The average values of erosion variations presented in this study are average changes in countries,
while within these countries we found both increases and decreases, which emphasize some spatial
variability of rainfall erosivity and soil erosion in Central Asia.

The aggregate average annual precipitation and erosion activity for all climate models for all
scenarios show steady growth compared with the baseline climate, only IPSLCM5ALR (RCP2.6 and
8.5) shows a decrease in the average erosivity for the 2030 and 2070 scenarios. Higher amounts of
rainfall were the main factor for the spatiotemporal variability in rainfall erosivity. Public policies
aimed at preserving soil and water resources should be encouraged and applied at the national land
survey level. Further study is required to consider other essential influences that intensify the erosivity;
particularly the future land cover changes.
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