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Preface to ”Modelling and Simulation of Sheet Metal

Forming Processes”

The numerical simulation of sheet metal forming processes has become an indispensable tool

for the design of components and their forming processes. This role was attained due to the huge

impact in reducing time to market and the cost of developing new components in industries ranging

from automotive to packing, as well as enabling an improved understanding of the deformation

mechanisms and their interaction with process parameters. Despite being a consolidated tool, its

potential for application continues to be discovered with the continuous need to simulate more

complex processes, including the integration of the various processes involved in the production

of a sheet metal component and the analysis of in-service behavior. The quest for more robust and

sustainable processes has also changed its deterministic character into stochastic to be able to consider

the scatter in mechanical properties induced by previous manufacturing processes. Faced with these

challenges, this Special Issue presents scientific advances in the development of numerical tools that

improve the prediction results for conventional forming process, enable the development of new

forming processes, or contribute to the integration of several manufacturing processes, highlighting

the growing multidisciplinary characteristic of this field.

Marta C. Oliveira, José Valdemar Fernandes

Special Issue Editors
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1. Introduction and Scope

Numerical simulation of sheet metal forming processes has become an indispensable tool for the
design of components and their forming process, in industries ranging from the automotive, to the
aeronautics, packing and household appliances. The strong contribution of virtual try-out to reduce
the time-to-market and the cost of developing new components has been the main promoter for its
extended application, along with the increasing computational power. The Finite Element Method
(FEM) is the main numerical tool used in this context.

Nowadays, the automotive industry continues to drive the development of numerical simulation
of sheet metal forming processes due to the strong environmental and safety standards that have
led to the development of materials with better strength-to-weight ratio or new forming processes.
Newly introduced materials allow to produce components from thinner sections, while maintaining
satisfactory strength and stiffness, which ultimately results in a reduction of the overall structure mass,
a crucial step to meet the ever-stringent standards of passenger safety and gas emissions [1]. However,
as is well known, the increased mechanical strength of metallic materials is usually accompanied by
a reduction of their ductility. This poses new challenges for predicting forming defects, leading to
alternative strategies to the Forming Limit Diagram (FLD) concept. Moreover, the research effort has
also been focused on the development of numerical models that enable the virtual try-out of forming
processes, involving non-isothermal temperature environments or high strain rates, to try to explore
the best formability of the material under these conditions. This requires an enhanced modelling of
the material behaviour as well as process conditions, which demands for an improved integration
between experimental and numerical analysis. The aim is to be able to integrate the several processes
involved in the production of a sheet metal component in the virtual analysis of the forming processes
and in-service behaviour. The analysis of the post-forming behaviour should also take into account the
scatter in mechanical properties induced by the manufacturing processes. These research trends are
reflected in the papers published in this issue, as analysed in the following section.

2. Contributions to the Special Issue

Researchers were invited to submit innovative research papers on modelling and numerical
simulation of sheet metal forming processes. Thirteen research papers were published in this Special
Issue of Metals, entitled “Modelling and Simulation of Sheet Metal Forming Processes”, which highlight
some of the research trends in the field [2–14].

The FEM virtual try-out for cold forming components is commonly supported by the concept
of forming limit diagrams (FLDs), introduced to characterize the ductility of metal sheets [15,16].
The experimental determination of FLDs involves performing various mechanical tests on metal sheets
with different samples geometries to reproduce a certain range of monotonic loading paths. However,
this experimental approach is both expensive and time consuming, particularly at high temperatures.

Metals 2019, 9, 1356; doi:10.3390/met9121356 www.mdpi.com/journal/metals1
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For these reasons, different theoretical approaches have been develop for the prediction of FLDs,
among which the Marciniak–Kuczynski (M–K) theory [17] is the most widely applied. In their paper,
Fan et al. [10] used the M-K theory to predict the FLD for a TA32 alloy, for a temperature range between
700 ◦C and 800 ◦C, taking into account strain rate effects. The parameters of the thermomechanical
hardening law considered in the M-K theory were fitted using experimental results from hot tensile
tests. The results from these tests are also used to identify the normal anisotropy coefficient and
select the Logan–Hosford yield criterion that allows a better correlation between the theoretical and
experimental FLD, determined using the Nakazima test. Also, the theoretical FLD is used to study
the initial blank shape of a component produced by Hot Press Forming (HPF), showing that the FLD
concept can also be extended to this type of process.

The HPF technology is widely used to prevent formability problems and reduce springback. In
addition to the parameters of conventional cold press forming, the blank temperature, the strain rate
and the quenching methods also affect the formability and complicate the analysis of hot forming
processes. Seo et al. [5] performed direct and indirect hot press forming of a ultra-high-strength
steel (UHSS) boron steel, 22MnB5, considering different initial blank temperatures and blank-holding
forces, in order to evaluate the formability but also the mechanical properties of the material after
the forming process. The knowledge of such properties is very important to predict the failure in
UHSS sheet metals during a car crash. Bayat et al. [7] propose the use of the M-K theory to predict the
FLD for a 22MnB5, taking into account the scatter in material properties at different regions of formed
components. Therefore, the hardening behaviour is characterized by performing uniaxial tensile tests
of specimens extracted from structural components of a car, enabling the definition of a range for the
hardening law parameters. In this context, Bayat et al. [7] suggest replacing the single FLD by a band
of forming limits, using statistical approaches to calibrate its bounds.

It is well established that ductile failure in metals occurs due to the presence of defects such as
voids and micro-cracks [18]. On the macroscopic scale, damage is observed as the degradation of
material properties, e.g., the elastic stiffness, the yield stress or other measurable material properties.
This is the approach adopted in continuous damage mechanics, which introduces an internal damage
variable to be able to predict the ductile fracture. Cherouat et al. [11] coupled the damage potential,
introduced by Lemaitre [19], with an elasto-visco-plastic material model in order to predict the onset
of ductile damage for different forming processes. The occurrence of large inelastic deformations
commonly implies a severe distortion of the computational domain, whose boundary is also altered
by the elimination of the fully damaged elements. In this context, the authors propose a 3D adaptive
remeshing scheme, for linear tetrahedral finite element, to enable tracking the evolution of large
plastic deformations. The proposed model is used to analyse different processes, including blanking,
multi-point and incremental forming and deep drawing of a front door panel. The results highlight the
importance of the coupling between elastoplastic and damage behaviour on the damage evolution
at large plastic deformations, but also of using remeshing techniques to assure the computational
efficiency as well as to avoid convergence problems. Yue et al. [9] also used a coupled damage model to
analyse the influence of kinematic hardening and ductile damage on springback prediction. In order to
study the influence of the kinematic hardening, experimental three-point bending tests were performed
for the AA7055 aluminium alloy, with specimens submitted to uniaxial tension until different pre-strain
levels. The results show that both kinematic hardening and ductile damage influence the springback
prediction, particularly for non-proportional strain paths.

The accuracy of the numerical results of sheet metal forming processes depends of the constitutive
model selected for describing the material behaviour. In general, FEM analysis of complex
forming processes is performed with phenomenological models. This was the approach adopted by
Thuillier et al. [6] to describe the bake hardening effect, which is a thermal induced phenomenon that is
widely explored, in particular by the automotive industry. Thuillier et al. [6] performed an experimental
characterization of this effect for a low carbon steel (E220BH) and proposed a phenomenological model
for its description. The specimens used in the experimental approach are pre-strained using a hydraulic
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bulge test device and a dedicated equipment was designed to characterize the dent resistance. The
phenomenological model was validated through the numerical simulation of this multi-step process,
i.e., bulge followed by dent at the pole by a vertical movement of a hemispherical punch.

The use of phenomenological models implicitly includes the strategy for identifying the model
parameters, which is generally seen as an optimization problem [6,9,11,13]. Forming processes
involving non-isothermal temperature conditions and/or high strain rates require constitutive models
with more parameters. In this context, the Johnson–Cook hardening law was used to study the gas
detonation forming [2], which is a high-speed forming process, with the potential to form complex
geometries, including sharp angles and undercuts. The authors neglected the thermal softening, but
included damage evolution [2]. Cherouat et al. [11] adopted the same hardening law only to take
into account the strain rate effect. These authors used an inverse approach to identify the constitutive
parameters, suggesting the use of the stage up to the maximum load of uniaxial tensile tests for the
identification of the plastic parameters, while the stage after the maximum load is used only to identify
the damage parameters. The results highlight that the damage evolution is sensitive to the element size,
which can be mitigated by the adoption of the proposed remeshing technique. In fact, the identification
of coupled damage models parameters still poses many challenges, as also mentioned in the work of
Yue et al. [9].

Electromagnetic forming (EMF) is another widely used high-speed forming process, in which
the deformation is promoted by the application of a magnetic force. Cui et al. [12] developed a
three-dimensional (3D) sequential coupling method to analyse the electromagnetic uniaxial tensile
test using a runway coil. As the magnetic force field depends on the specimen deformation, the
mechanical and the electromagnetic problems must be coupled whenever the process involves large
deformations. Sequential coupling allows the analysis of the influence of process parameters, such as
tools conductivity, relative coil position and discharge voltages, for the strain paths observed in the
specimen. In this context, numerical simulation is used to support the development of an experimental
procedure and improve knowledge concerning the analysis of results.

Over the years, several benchmarks have been proposed to analyse the influence of the constitutive
model and numerical strategies on formability and/or springback predictions, in particular within
the NUMISHEET conference series. The “Benchmark 2 - Springback of a Jaguar Land Rover
Aluminium” [20] is consider in the work by Mulidrán et al. [3], to analyse the influence of the
yield criteria on springback prediction. The results show that the use of more advanced yield functions
may improve the results accuracy. Nevertheless, the identification of the anisotropy parameters of
these type of yield criteria requires experimental data covering a wide range of stress/strain paths. In
the collected works, the characterization of the mechanical behaviour of the metallic sheets was mainly
performed with uniaxial tensile tests [3,4,6,7,10,13], although some researchers have also resorted to
shear tests [3,9,11]. Simões et al. [8] presented a numerical study that contributes for the understanding
of the mechanical phenomena that occur in the material under Knoop indention, enhancing and
simplifying the analysis of the results obtained in Depth-sensing indentation tests. This hardness test
is particularly attractive for the determination of the near-surface properties, the characterization of
brittle materials and post-forming properties; also, it is sensitive to the indenter orientation, making it
a useful tool to analyse the materials anisotropy.

Besides the unquestionable advantages of applying numerical simulation in forming process
design, numerical models also allow for better understanding of the influence of process parameters.
In this context, the work by Neto el al. [13] focused on the effects of the geometry and dimensions of
the forming tools on the formability and final thickness distribution of metallic thin stamped bipolar
plates (BPPs) for fuel cells. Rufini et al. [4] analysed the influence of several geometrical characteristics
and process parameters on the thinning prediction in the bending process of stainless steel pipes. They
concluded that the ratio between the curvature radius and the pipe diameter dictates the failure or
success of the operation, which is in agreement with empirical knowledge and the experimental results.
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Despite the increasing computational power, the numerical analysis of complex geometries,
involving features with small curvature still poses challenges. In this context, the adoption of
simplifying assumptions can help to understand specific details of the process. This approach is
commonly adopted, for instance, in the BPPs formability analysis, where most of the numerical
studies of the stamping process reported in the literature consider plane strain conditions. This
formability analysis can be complemented by studying specific zones of the BPPs plates, in particular
the area including a U-bend channel section [13]. Process conditions can also be simplified, without
compromising the numerical results accuracy. This approach was adopted by Patil et al. [2] to simulate
the gas detonation forming of a cylindrical cup, by directly applying the detonation pressure as a load
in the finite element (FE) model. This requires the proper experimental acquisition of the averaged
pressure evolution during the process, close to the blank. The numerical model enables the analysis
of the influence of the peak pressure on the damage prediction. However, the fracture prediction
requires the modelling of the complete blank, to account for improper alignment of the blank in
experiments. Also, in the case of the bending process of stainless steel pipes, the authors report that
some discrepancies between experimental and numerical results maybe related with the presence in
the experimental tests of an additional support element on the machinery, which was not contemplated
in the simulation model [4]. These results highlight the importance of an accurate analysis of the
experimental process conditions, to enable a proper analysis of the numerical simulation results. This
requires the validation of the model using experimental results, which can be difficult in the early design
stages for large size components. Tomáš et al. [14] propose the use of the similitude theory to help
engineers to select the blank material using a scaled model. In their study, this theory was applied to
study the deep drawing process of a bathtub made from cold rolled low carbon aluminium-killed steel,
using both a numerical and a physical model. The comparison between numerical and experimental
thickness variations, along some predefined sections, is used to select the constitutive model that
enables a better description of the material mechanical behaviour.

3. Conclusions and Outlook

The Special Issue “Modelling and Simulation of Sheet Metal Forming Processes” presents a
collection of research articles covering the relevant topics in the field in innovative ways. The guest
editors are aware of the quality of the contributions and hope that this collection of works may be
useful to researchers working in the field, promoting more research studies, debates, and discussions
that will continue to bridge the gap between physical and virtual reality.
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Abstract: In aerospace and automotive industries, hot press forming (HPF) technology is widely
used for rapid and precise deformation of the complex sheet metal component, where the fracture
behavior has always been a focused problem. In this study, the hot tensile test and the Nakazima test
were carried out, in order to establish the Misiolek constitutive equation and determine the forming
limit strain points at an elevated temperature, respectively. The microstructure evolution during the
tensile test was also investigated by optical microscope. In addition, the Marciniak–Kuczynski (M–K)
model, considering the Mises, Hill48, and Logan–Hosford yield criteria, was utilized to calculate
the theoretical forming limit curve (FLC). Furthermore, the fracture behavior of the TA32 alloy sheet
during the HPF process was accurately predicted by inserting the predicted FLC into finite element
simulation, and the qualified complex component was obtained by optimizing the shape of the sheet.

Keywords: TA32 titanium alloy; fracture behavior; forming limit curve; M-K theory; finite
element simulation

1. Introduction

Nowadays, titanium and titanium alloys are extensively used in the aerospace, marine,
automotive, and medical industries. This is due to their superior high temperature performance,
high specific strength, low density, corrosion resistance, good creep resistance, and excellent
biocompatibility [1]. The TA32 alloy is a new type of near-α high temperature titanium alloy with good
comprehensive performance. The alloy’s long-term working temperature can reach 550 ◦C, and it has
wide application prospects in the cylinder of the advanced aeroengine afterburner and the structure
of the cruise missile [2]. However, there are plenty of difficulties, such as large forming forces, low
formability, and the occurrence of springback during the cold forming. As one of the more advanced
manufacturing technologies, the hot press forming (HPF) process has been actively developed, which
can reduce forming time and improve dimensional precision [3]. Metal additive manufacturing, which
can directly produce structural components without a mold or additional machining, has also received
much attention in recent years. However, HPF technology is preferred in sheet metal forming, due to
its advantages of higher production efficiency and lower manufacturing cost compared with the metal
additive manufacturing [4]. Therefore, accurately predicting the fracture behavior of TA32 alloy in
HPF has important significance for engineering applications.

The forming limit is an important performance index for the fracture behavior of sheet metal
forming, and reflects the maximum amount of deformation that can be reached before the plastic
deformation of the material is unstable during the forming process. Keeler and Backofen [5] first
proposed the concept of forming limit diagrams (FLD), and they obtained the right-hand side of FLD.
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Goodwin [6] obtained the left-hand side of FLD, by changing the width and thickness of the sheet, and
since then FLD has been broadly used in sheet forming industry. However, it is time-consuming and
expensive to experimentally determine FLD, especially at high temperatures; thus, many researchers
use numerical models to predict FLDs, of which the Marciniak–Kuczynski (M–K) theory is the most
widely applied [7–10].

In recently years, an increasing number of researchers have used finite element method (FEM) to
simulate the process of HPF. Nedoushan [11] simulated the hot forming process of AA5083 aluminum
alloy by combining a constitutive model, which considers inter-granular deformation and grain
boundary mechanisms, and finite element software, and the simulation datas were consistent with
the experimental results. Odenberger et al. [12] analyzed the hot forming process parameters of two
Ti-6Al-4V prototype components by using FEM. Zhao et al. [13] applied a three-dimensional FEM
model to simulate the forming process of atitanium fan blade, and discussed the influence of key
factors like descending velocity and frictional coefficient on the forming force. The above studies
indicate that FEM is an effective way to accurately predict the process of HPF.

To better predict the fracture behavior of a TA32 alloy sheet during the HPF process, it is necessary
to perform a comprehensive study on the tensile properties, microstructural evolution, and forming
limit of the TA32 alloy. In the present work, the hot tensile test and the Nakazima test were conducted to
evaluate the alloy’s mechanical properties and its forming limit strain points at an elevated temperature,
respectively. The Misiolek constitutive equation was used to characterize the flow stress of TA32 alloy,
and the microstructure evolution during the tensile test was also investigated. Then, the M–K model
considering three different yield criteria was used to theoretically predict the forming limit curves
(FLCs) of TA32 alloy. The initial inhomogeneity factor f0 at different temperatures was adjusted by
minimizing the average distances between the necking points of the hot tensile test and the theoretical
FLCs under different strain rates of a certain temperature, and the accuracy of the theoretical FLC was
evaluated by the Nakazima test results. Finally, ABAQUS software, which was developed by Dassault
company in America, combined with the theoretical FLC predicted the fracture behavior of a TA32
alloy sheet during the HPF process, and the reliability of the simulation results were discussed by
actual hot forming experiments.

2. Materials and Experimental Procedure

2.1. Materials

In this paper, the thickness of the as-received sheet was 1.5 mm. The nominal chemical
composition of the sheet was Ti–5.5Al–3.5Sn–3.0Zr–0.7Mo–0.3Si–0.4Nb–0.4Ta (wt %). The β

transformation temperature (at which α+β/β) of the TA32 alloy was 1000 ◦C [2]. The microstructure
of the as-received TA32 alloy is shown in Figure 1. It can be seen that there are a certain amount
of intergranular β phase grains in the equiaxed α phase matrix, and there are some fine and highly
dispersed rare earth phases in the matrix [2]. The contents of the α and β phases, measured by using
Image Pro Plus software (Version 6.0, Media Cybernetics, Inc., Rockville, MD, USA), were about 84%
and 8%, respectively, and the rest were the rare earth phase.
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Figure 1. Microstructure of as-received TA32 alloy.

2.2. Hot Tensile Test

The tensile specimen size is shown in Figure 2a, and the length direction of the specimen is the
rolling direction. The hot tensile tests were carried out on the UTM 5504X electronic universal testing
machine which produced by SUNS company in China, and the test process is shown in Figure 2b.
The furnace was heated to the test temperature at a heating rate of 10 ◦C/s, and the temperature was
maintained for 30 min so that the temperature of the stretching chuck and the furnace chamber could
be sufficiently exchanged. Then we opened the furnace door and quickly placed the sample, held it for
10 min, and performed tensile deformation at a predetermined tensile rate until the sample was broken.
The specimen was taken out quickly and water quenched to retain the high temperature microstructure.

 

Figure 2. (a) Tensile specimen size and (b) the hot tensile test process.

Figure 3 shows the specimens before and after the hot tensile test. It can be seen that the elongation
and the section shrinkage of the specimens increases significantly with decreasing strain rates and
increasing deformation temperature. The maximum elongation of the TA32 alloy at 700 ◦C, 750 ◦C,
and 800 ◦C was 92%, 142%, and 204%, respectively.

 

Figure 3. The specimens before and after the hot tensile test.

2.3. Metallography Procedure

After the hot tensile test, the metallographic specimens with size of 6 mm × 8 mm were cut off
at a distance of 10 mm from the fracture. After being polished by SiC sandpaper, the surfaces of the
specimens were polished by mechanical polishing, until no visible scratches were observed. The polished
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specimens were etched with Kroll reagent at a volume ratio of 3:5:100 (HF: HNO3: H2O) for 3 seconds,
then quickly rinsed with clean water and blown dry. In this paper, the microstructure of TA32 alloy was
observed by an MR 5000 optical microscope (Jiangnan Novel Optics CO., Ltd, Nanjing, China).

2.4. Nakazima Test

The FLC of the TA32 alloy sheet was obtained by the Nakazima test method, which is a
hemispherical rigid punch bulging test [14]. The schematic diagram of the Nakazima test is shown in
Figure 4a. The edge of the sheet was pressed by the blank holder and the concave die, and a certain
part of the sheet was locally necked or broken by punch bulging, which reached its forming limit.
The test apparatus is an improved thermoforming platform, as shown in Figure 4b.

Figure 4. (a) Schematic diagram of the Nakazima test. (b) The forming limit curve (FLC) experimental
platform.

The Nakazima test method requires different specimen geometries to produce all possible strain
and stress states. One set of FLC specimens, with the length of 160 mm and different widths of 20 mm,
40 mm, 60 mm, 80 mm, 100 mm, 120 mm, and 140 mm, were obtained by wire cutting, in which
each specimen represents one strain path on the FLD. The size of the FLC specimens is shown in
Figure 5a. The square grid with the grid size of 5 mm was marked on the surface of specimens for
limit strain analysis.

Figure 5. (a) The sizes of FLC specimens (b = 20406080100120140; a = b + 20. (b) The deformed
FLC specimens.

In the experiment, the heating furnace and the FLC experimental device were heated to 750 ◦C,
respectively, and both were kept for 30 min. High temperature lubricant was applied to the both sides
of the FLC specimens. After waiting for the temperature in the furnace to be uniform, the specimen
with the grid was placed in the heating furnace first, and kept it for 10 min to make the temperature of
the sheet uniform. Then the specimen was removed and quickly put into the FLC experimental device
for the forming experiment. The speed of the punch pressing was 50 mm/min, and the experiment
stopped until the first crack was generated on the specimen. This process should be carried out as
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quickly as possible, so as to avoid the specimen losing too much heat and affecting the experimental
results. The deformed FLC specimens are shown in Figure 5b.

2.5. Hot Press Forming Test

The schematic diagram of the HPF test is shown in Figure 6a. There are twelve independent
resistive heating zones placed in the upper and lower workbench of the machine, and the forming
temperature is controlled by the Proportion Integration Differentiation (PID) controller which produced
by ENVADA company in China. The movement speed of the upper mold can be adjusted by controlling
the flow rate of hydraulic oil. All the activity signals of the machine tool were sent and accepted by
electronic computer. The appearance of the test platform is shown in Figure 6b.

Figure 6. (a) Schematic diagram of hot forming test. (b) The appearance of the test platform.

In the HPF test, the box furnace was heated to 750 ◦C and held for 30 min to make the temperature
inside the furnace uniform. The TA32 sheet with a high temperature lubricant sprayed on both sides
was placed in the middle of the upper and lower molds. The temperature was kept for 10 min to
make the temperature of the sheet uniform. Then the upper mold was moved downward at a speed of
50 mm/min, by controlling the computer until it contacted with the lower mold, and kept the pressure
at 4 MPa for 15 minutes to make the sheet fully deform. After the hot forming, the component was
taken out and air cooled to room temperature.

2.6. FEM Simulation Model

ABAQUS (version 6.14) software was used to simulate the HPF process of the TA32 alloy sheet.
The assembly diagram of the model is shown in Figure 7. In the simulation, the sheet was modeled
using a shell element with four integration points (S4R), and about 40,000 elements were divided in
total. The molds, which were obtained by extracting the cavity surfaces of the upper and lower molds,
were regarded as the rigid body. The process of HPF was simulated by way of fixing the lower mold
and controlling the displacement of the upper mold. The whole simulation was calculated by the
dynamic explicit method.

Figure 7. The assembly diagram of the model.
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3. Results and Discussion

3.1. Hot Tensile Behavior and Microstructure Evolution

Considering both hardening and softening effects during hot plastic deformation in TA32, the
Misiolek constitutive equation [15] was used to describe the stress–strain relationship:

σ = Kεn exp(n1ε) (1)

where σ and ε represent the true stress and true strain, respectively, and n and n1 are the hardening
index and the softening coefficient, respectively. The parameter K is the equation coefficient. Taking
the natural logarithm of both sides, the Misiolek equation can be expressed as

lnσ = lnK + nlnε + n1ε, (2)

Then n = dlnσ/dln
.
ε. In order to reduce the error, at the strain rates of 0.1, 0.01, and 0.001 s−1, the

flow stresses with true strains of 0.04–0.15 were extracted for linear fitting, and the n-values of the
different strain rates were averaged. Therefore, the values of n obtained at 700, 750, and 800 ◦C were
0.091, 0.080, and 0.069, respectively. According to Equation (2), using a method similar to the solution
of the n-value, the values of n1 at 700, 750, and 800 ◦C were −0.398, −0.553 and −0.697, respectively.
As shown in Figure 3, the flow stress curves are influenced by temperature and strain rate, wherein the
effect of strain rates are reflected in the K-values, which are calculated from Equation (2) based on the
above results. Therefore, the flow stress equation of the TA32 alloy at temperature of 700, 750, and
800 ◦C, with a strain rate of 0.1, 0.01, 0.001 s−1, respectively, can be denoted as

σ =
(
3419.03337 + 73.10624ln

.
ε − 2.56667T

)
ε0.30506−2.2×10−4Texp((2.519 − 0.003T)ε) (3)

The comparison between the experimental and fitted curve under different strain rates at
700–800 ◦C is shown in Figure 8. It can be seen that the flow curve could be divided into three
stages in the tensile test. At the first stage, the flow stress increases rapidly with the increase of strain.
At the second stage, the flow stress tends to be stable during the deformation process. Since the
stacking fault energy of titanium alloy is relatively low, the softening behavior in this stage could be
attributed to adiabatic deformation heating or the generation of dynamic recrystallization [16]. At the
third stage, the flow stress gradually decreases, and the localized necking occurs at the specimens until
fracture. The fitting curve accurately reveals this flow behavior. Therefore, the Misiolek equation can
represent the flow stress of the TA32 alloy at the temperature range of 700–800 ◦C with the strain rate
of 0.1–0.001 s−1, and could be used for the theoretical computation of forming limits.

The microstructure of the TA32 alloy under different temperatures, with strain rate of 0.001 s−1,
is shown in Figure 9. When the strain rate is constant, the content of the primary α phase decreases
with the increasing of the deformation temperature, and the volume fraction and grain size of the β

phase continue to increase. When the deformation temperature is 700 ◦C, the grain shape of the α

phase is obviously elongated along the tensile direction, and the grain size of the β phase is slightly
larger than that of the as-received microstructure. When the temperature is raised to 750 ◦C, the grains
are uniformly distributed, and finely equiaxed recrystallized grains appear near the grain boundaries,
indicating that dynamic recrystallization occurs at this temperature [17]. As the temperature is further
increased to 800 ◦C, the fine recrystallized grains grow significantly.
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Figure 8. Comparison between the experimental and fitted curve under different strain rates at
(a) 700 ◦C, (b) 750 ◦C, and (c) 800 ◦C.

Figure 9. Microstructure of the TA32 alloy under different temperatures, with a strain rate of 0.001 s−1:
(a) 700 ◦C, (b) 750 ◦C, and (c) 800 ◦C.

The microstructure of the TA32 alloy under different strain rates at 750 ◦C is shown in Figure 10.
When the deformation temperature is constant, with the change of strain rate, the change of α phase
is mainly reflected in the grain shape—the phase content has no obvious change. Moreover, because
the α phase grains are in a hexagonal, close-packed structure (HCP), and the β phase grains are
in a body-centered cubic structure (BCC), the latter lattice structure has better plasticity, due to it
possessing more slip systems. Therefore, the shape of the β grains are elongated more obviously.
When the strain rate is 0.1 s−1, the distortion activation energy can meet the energy requirement
of recrystallization, but the deformation time is too short to allow the atoms to fully diffuse, so the
recrystallization phenomenon is not obvious [17]. When the strain rate is reduced to 0.001 s−1, the
dynamic recrystallization process has enough time to further refine the microstructure, so that the
plasticity of the material is enhanced and the elongation is continuously increased, which reasonably
reflects the macroscopic mechanical properties of the TA32 alloy.
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Figure 10. Microstructure of the TA32 alloy under different strain rates at 750 ◦C: (a)
.
ε = 0.1 s−1,

(b)
.
ε = 0.01 s−1, (c)

.
ε = 0.001 s−1

3.2. The Forming Limit Curve at an Elevated Temperature

After the Nakazima test, the grids near the fracture region of the deformed specimen were selected
to measure the forming limit strain point. In the limit strain evaluation process, the fracture region
should be located near the centerline of the deformed specimen. Furthermore, the distance between
the measured grid and the crack cannot exceed the size of one grid, and the strain points of the selected
grid are measured three times for determining the average value. In this paper, the grid–triangle nodes
method proposed by Vogel and Lee [18] were used to calculate the limit strain. Figure 11 shows the
measured forming limit strain points from each deformed FLC specimen. It can be seen that as the
specimen width increases, the position of the limit strain point in the strain space moves from left to
right, and the major limit strain of the TA32 alloy sheet at the plane strain state was about 0.31.

Figure 11. The measured forming limit strain points from each deformed FLC specimen.

In the M–K model, it is assumed that there is a shallow groove on the sheet surface which causes
the localized necking, as shown in Figure 12. The safe region is called “A” and the groove region
is named “B”. The safe region is subjected to proportional strains, and it is assumed that strains at
the groove direction are equal in the two regions. The initial inhomogeneity factor of the groove
f0 is defined as the thickness ratio f0 = tB0/tA0 , where t represents the thickness and subscript “0”
represents the initial state. This initial inhomogeneity grows continuously with plastic straining to
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form a localized neck eventually [19]. During the deformation process, the strain ratio ρ(ρ = ε2/ε1)

outside the groove is constant, but decreases in the groove region.

Figure 12. Schematic of the Marciniak–Kuczynski (M–K) model.

To start the analysis, a small certain value for dεA (0.001) was applied, with which we could
calculate dεA1 and dεA2, and got value of dεA3 with the volume condition dε1 + dε2 + dε3 = 0.
The equivalent strain εA would be obtained by εnew = εold + dε. For each strain increment dεA in the
safe region, there was a corresponding strain increment dεB in the groove region. Finding the value of
dεB involved an iterative procedure. A force equilibrium equation (σA1tA = σB1tB) and compatibility
condition (dεA2 = dεB2) was used to link region A and region B with the following equation:

KA
ϕA

(εA + dεA)
n exp(n1(εA + dεA)) exp(εA3)

= KB
ϕB

f0(εB + dεB)
n exp(n1(εB + dεB)) exp(εB3)

(4)

where K, n, and n1 are the material coefficients of the Misiolek equation, and ϕ = σ/σ1 can be
determined from the associated yield criterion.

After dεB was obtained in each step, it was compared to dεA, and if dεB/dεA > 10 the necking had
begun and εA1 and εA2 were saved; otherwise, a greater value for dεA was assumed and the process
repeated. This procedure was done for different values of strain ratios until the whole diagram was
computed. The calculation process was programmed by MATLAB software.

According to Equation (4), the determination of ϕ and ε are dependent on the employed yield
criterion, the utilization of different yield criteria results in different critical strains, and correspondingly
different FLCs. Three yield criteria that have been used extensively to study forming limit of sheet
metals, namely Von Mises, Hill48, and Logan–Hosford, were used to predict the FLCs for the TA32 alloy.

The Von Mises yield criterion [20] states that under certain deformation conditions, when the
second invariant of the stress deflection tensor at a point in the stressed object reaches a certain value,
the point begins to enter a plastic state. Its yield function is represented by principal stress as

2σ2
YF = (σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2, (5)

The Hill48 yield criterion [21] considers that the material was supposed to have an anisotropy
property with three orthogonal symmetric planes. The yield criterion can be written as a function of
principal stresses:

(1 + r)σ2
YF = R(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2, (6)

where R is an average anisotropic parameter, determined from hot tensile texts at 0◦, 45◦, and 90◦

to the rolling direction (R = (R0 + 2R45 + R90)/4). The measured R values of the TA32 alloy at the
temperatures of 700 ◦C, 750 ◦C, and 800 ◦C were 0.836, 0.839, and 0.726, respectively.

Independently of Hill, Hosford proposed a yield criterion in the form [22]

(1 + R)σa
YF = R|σ1 − σ2|a + |σ1|a + |σ2|a, (7)
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where the exponent parameter a is an integer greater than two. Hosford associated a to the
crystallographic structure of the material and concluded that the best approximation was given
by a = 6 for BCC materials and a = 8 for FCC materials. However, in this paper, the temperature of
the Nakazima test was 750 ◦C, which is different from the transformation point of TA32 alloy; the
lattice structure was mainly the close-packed hexagonal, and the value of a was not certain. Therefore,
the values of the exponential parameter a were considered to be 4, 6, and 8, respectively, in order to
calculate the theoretical FLC.

By measured the width strain εb and the thickness strain εt at the necking position of the specimens
in the hot tensile test, the strain ε l in the tensile direction was obtained according to the volume
invariance principle, and the necking points (ε l ,εb) under different temperature and strain rates were
obtained. The M–K model based on the Misiolek constitutive equation and Mises yield criterion
was selected to predict the FLCs under the corresponding conditions. In addition, the effect of the
initial inhomogeneity factor to the prediction of forming limits cannot be ignored. By comparing the
distances between the measured necking points and the theoretical FLCs under different strain rates of
a certain temperature, the value of f0 is adjusted to minimize the average distance. Using this method,
the values of f0 at the temperature of 700, 750, and 800 ◦C were determined to be 0.98, 0.993, and
0.996, respectively. Comparisons between the necking points of the hot tensile test and theoretical
FLCs under different strain rates at 700, 750, and 800 ◦C is shown in Figure 13. It can be seen that the
theoretical FLCs can agree well with every necking point.

Figure 13. Comparisons between the necking points of hot tensile test and theoretical FLCs under
different strain rates at (a) 700 ◦C, (b) 750 ◦C, and (c) 800 ◦C.

Figure 14 shows the comparison between theoretical FLCs with different yield criteria and
experimental forming limit strain points at 750 ◦C. For theoretical analysis, yield surfaces were
described by Mises, Hill48, and Logan–Hosford yield functions, and the hardening model was
expressed by the Misiolek equation. In Figure 14, on the left-hand side of the FLD, the application
of different yield criteria has little effect on the theoretical calculation results, while the differences
are obvious on the right-hand side of the FLD. The results of two predicted FLCs based on the Mises
and Hill48 yield criterion are very close. This is because the anisotropic parameter R of the sheet is
0.839 at 750 ◦C, which is close to 1, and the yield function of the two yield criteria is the same when
R = 1. In addition, it can be seen that when the Logan–Hosford yield criterion is used for theoretical
prediction, the change of the exponential parameter a has little effect on the prediction result of the hot
tensile zone—while in the biaxial tensile zone, the theoretical FLCs increase with a decreasing a-value.
The theoretical prediction result is the most consistent with the experimental data when a = 4.
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Figure 14. Comparisons between theoretical FLCs with different yield criteria and experimental
forming limit strain points at 750 ◦C.

3.3. Prediction of Fracture Behavior in Hot Press Forming

This paper adopted the FEM to predict fracture behavior in HPF. The theoretical FLC, based on
the Logan–Hosford yield criterion with a = 4, was imported into the FLD Damage module in the
ABAQUS software, and the calculated forming limit diagram damage initiation criterion (FLDCRT)
chart is shown in Figure 15a. The FLDCRT chart can visually reflect the fracture position of the
component. When FLDCRT = 1, it indicates that the strain state just reaches the limit strain, and
FLDCRT < 1 indicates that the sheet is safe—otherwise, fracture occurs. Therefore, the fracture zone
will be generated at the sharp corner position of the sheet. Figure 15b shows the comparison between
the strain states of the grids of the fracture zone in the model and the theoretical FLC. Obviously, there
are many fracture points above the FLC. Figure 15c shows the actual deformed component, and it can
be found that fracture indeed occurred at the sharp corner of the component, which is consistent with
the simulation result.

 

Figure 15. (a) FLDCRT chart, (b) forming limit diagram (FLD) result, and (c) the deformed component.

The reason for this phenomenon was that the material mobility at the sharp corner position of
the component was restricted by the molds. After optimizing the shape of the sheet, the FLDCRT
chart simulated by ABAQUS software is shown in Figure 16a. It can be seen that the maximum
value of FLDCRT at the sharp corner of sheet is 0.86, which is less than 1, indicating that the complex
component can be properly formed. Figure 16b shows that the strain state of the grids of the fracture
zone in the model are all at the safety point below the predicted FLC. Figure 16c shows the actual
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deformed component after optimizing the sheet. It can be seen that the sharp corner of sheet was well
formed without cracking, which is again consistent with the simulation result.

Figure 16. (a) FLDCRT chart of optimized sheet, (b) FLD result, and (c) the deformed component after
optimizing the sheet.

In this study, the theoretical FLC calculated by the M–K theory was in conjunction with the finite
element simulation to accurately predict the fracture behavior of TA32 alloy sheet during the HPF
process, which can effectively optimize the shape of the sheet and process parameters. This method is
efficient and reliable for the industrial applications of a TA32 titanium alloy rolled sheet.

4. Conclusions

This work focused on the fracture behavior of a TA32 alloy rolled sheet in hot press forming.
The hot tensile behavior, microstructure evolution, and forming limit of a TA32 alloy rolled sheet were
studied in this paper. Furthermore, FEM was used to accurately predict the fracture behavior of the
TA32 alloy sheet during the HPF process, and the qualified complex component was obtained by
optimizing the shape of the sheet. Some conclusions were summarized as follows:

(1) The flow stresses of TA32 alloy at the temperature range of 700–800 ◦C, with the strain rate
of 0.1–0.001 s−1, are accurately characterized by the Misiolek constitutive equation, which is
expressed as σ =

(
3419.03337 + 73.10624ln

.
ε − 2.56667T

)
ε0.30506−2.2×10−4Texp((2.519 − 0.003T)ε);

this equation was used for the calculation of a theoretical FLC. The microstructure evolution of
the TA32 alloy is related to the temperature and the strain rate. The dynamic recrystallization
temperature at the strain rate of 0.001 s−1 is 750 ◦C. When the temperature is constant, the lower
strain rate provides sufficient time for the dynamic recrystallization process to further refine
the microstructure.

(2) The forming limit of a TA32 alloy at the temperature of 750 ◦C was measured and predicted
by the Nakazima test and the M-K theory, respectively. The predicted FLC calculated by the
Logan–Hosford yield criterion with the exponential parameter a = 4 is the optimal result for
predicting the forming limit strain points of the Nakazima test.

(3) The fracture behavior of the TA32 alloy sheet during the HPF process was accurately predicted
by combining the predicted FLC and ABAQUS software, and the qualified complex component
was obtained by optimizing the shape of the sheet. This method can be used to optimize the
initial configuration of a metal sheet in HPF, and provides guidance for the further application of
TA32 alloy in engineering practice.
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Abstract: This study involves performing direct and indirect hot press forming on ultra-high-strength
steel (UHSS) boron steel sheets to determine formability. The indirect hot press process is performed
as a cold deep drawing process, while the direct hot press process is performed as a hot deep
drawing process. The initial blank temperature and the blank holding force are set as parameters to
evaluate the performance of the direct and indirect deep drawing processes. The values of punch
load and forming depth curve were obtained in the experiment. In addition, the hardness and
microstructure of the boron steel sheets are examined to evaluate the mechanical properties of the
material. The forming depth, maximum punch load, thickness, and thinning rate according to blank
holding force were examined. The result shows that a larger blank holding force has a more significant
effect on the variation of the thickness and thinning rate of the samples during the drawing process.
Furthermore, the thinning rate of the deep drawing part in with and without fracture boundary was
respectively examined.

Keywords: hot deep drawing; cold deep drawing; boron steel; deformation characteristics; direct forming;
indirect forming

1. Introduction

Boron steel currently represents the ultra-high-strength steel (UHSS) applied in the automotive
industry because of the demand for higher passive safety and weight reduction. However, ultra
standard high-strength steels, like boron steel, are difficult to manufacture with cold forming because
of disadvantages such as large forming forces, the difficulty of forming complex components, and the
occurrence of serious springback at room temperature [1,2]. Therefore, requirements regarding
complexity and accuracy increase.

Hot press forming is used widely in the automotive industry. Hot forming can vastly improve the
tensile strength of the components. Nowadays, hot press forming at an elevated temperature makes it
possible to produce high strength. Hot stamping is not only an innovative technique that is used to
produce UHSS components like side impact and bumper beams, but it also reduces the springback
under high-temperature forming and achieve good formability. The low springback attributed to
in-die cooling gives boron steel an unparalleled edge in dimension control and subsequent assembly
process [3,4]. Naderi et al. presented hot stamping as a non-isothermal, high-temperature forming
process, in which complex ultra-high-strength parts are produced, with the goal of no springback [5].
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Altan studied the formability of boron-alloyed steels at high temperatures of 650 ◦C to 850 ◦C [6].
The results showed that the material has excellent formability and can be formed into a complex shape
in a single stroke. He also studied the tensile strength and microstructure change during hot stamping.
Xing et al. set up a material model under the hot stamping condition of quenchable steel, based on the
experimental data for the mechanical and physical properties [7].

In addition to the parameters of conventional cold press forming, such as the blank holding force,
punch velocity, punch and die radii, and friction coefficient, the blank temperature and quenching methods
also affect the formability and complicate the hot forming process. So et al. provided information on
cold and warm blanks of the quenchable boron steel 22MnB5 [8]. From their experimental research,
it can be concluded that higher quality and more economical production can be achieved by adjusting the
blanking process parameters for the commonly used ultra-high-strength steel sheet 22MnB5. Nakagawa et
al. examined the springback and the deformation behavior in hot stamping of a steel sheet with 0.6 mm
thickness [9]. Löbbe and Tekkaya investigated the mechanisms influencing the geometrical and mechanical
properties of the products after heat-assisted sheet forming processes [10].

Borsetto et al. investigated the influence of the thermal process parameters on the chemical
behavior of the Al-Si layer coating, in terms of the heating temperature, holding time, and cooling
rate [11]. Naderi et al. described the hot stamping facilities and methods used in experiments [12].
They studied the effect of a hot stamping process on the microstructural and mechanical properties
of boron-alloyed and non-boron-alloyed steels and presented an innovative method to carry out
a metallographic analysis by the application of lateral and surface hardness maps. Ryan et al. reported
on the hot forming die by which various mechanical properties can be partially obtained through
the control of the cooling rate in hot forming [13]. Ouyang et al. proposed a friction coefficient
and heat transfer coefficient between die and blank with cold and hot deep drawing processes [14].
The sheet material is boron sheet with Al-Si coating layer. During the hot press forming, coating layer
is fractured by bending and heating during hot deep drawing. Moon et al. and Seok et al. proposed
the deformation behavior of the coating layer on boron sheet [15,16].

As shown in reported research recently, the comparison study of formability and deformation
behavior considering blank holding force in hot deep drawing (direct hot press forming) and cold
deep drawing (indirect hot press forming) is limited. Therefore, in this study, the relationship between
the forming depth and forming load has been investigated with both deep drawing experimental data
for variation of blank holding force.

This study, using a boron steel as the blank material, investigated the formability of direct and
indirect hot deep drawing under different blank holding forces. Experiments were carried out for
direct and indirect hot deep drawing. In direct hot deep drawing, the drawing process carried out
with different initial blank temperatures ranged from 850–950 ◦C, while in indirect hot deep drawing,
the blanks were firstly pre-formed in room temperature, and then the cold pre-formed parts were
heated to 900 ◦C and quenched in water. After forming, the forming depth and maximum punch loads
for direct and indirect hot deep drawing were examined. Moreover, the thinning rate, microstructure,
and hardness at different positions of the drawn part were examined for direct and indirect hot
deep drawings.

2. Experimental Methods

2.1. Equipment

The deep drawing equipment used in this study consisted of a 50 ton hydraulic cylinder for
moving the forming punch, a 30 ton load cell that was capable of measuring the forming load, a 20 ton
hydraulic cylinder that clamped the upper die, and another 5 ton load cell for measuring the clamping
force. Additionally, the equipment had a computer which has a linear variable differential transformer
(LVDT). When the steel sheet was formed in this equipment, the LVDT measured the punch load
according to punch stroke. For the heating, a heat chamber was used that was capable of maintaining
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1200 ◦C of atmosphere temperature. 22MnB5 material with a thickness of 0.6 mm was used in these
experiments. The chemical composition of 22MnB5 boron steel is shown in Table 1. Figure 1 shows the
engineering stress and engineering strain curve of 22MnB5 boron steel. Yield strength, tensile strength
and elongation are 470 MPa, 650 MPa and 27%, respectively.

Table 1. Chemical composition of 22MnB5 boron steel (wt %).

C Si Mn Cr B

0.2123 0.0806 1.4840 0.4063 0.0016

Figure 1. Engineering stress and engineering strain curve of 22MnB5 boron steel.

Figure 2 shows a schematic diagram of the deep drawing die. As shown in Figure 2, there were
several cartridge heaters in the upper die, lower die, and punch. Hereby, a constant tool temperature
for the dies and punch can be obtained. The blank sheet was Ø75 mm in diameter (D) and 0.6 mm in
thickness (t0). The clearance (CL) between the punch and the die was 1.2 mm. Diameter (d) and radius
(Rp) of punch was Ø37.6 mm and 4 mm, respectively. Die radius (Rd) was 5 mm. The material and
hardness of the die is AISI H13 and 54 HRC, respectively.

Figure 2. Die construction and dimension for deep drawing (unit: mm, Bf: Blank holding force, CL:
clearance between punch and die).

2.2. Process

The hot forming process currently exists in two different main processes: the direct hot forming
method and the indirect hot forming method. In the direct hot forming process, as shown in Figure 3a,

23



Metals 2018, 8, 574

the blanks are austenitized at temperatures between 850 and 950 ◦C for about 5 min inside a furnace and
subsequently transferred to the die set via a transfer unit. Afterwards, the blank is subsequently formed
and quenched in the closed tool. Unlike the direct process, indirect hot forming provides for a part to
be drawn, unheated, to about 90% to 95% of its final shape in a conventional die, sometimes followed
by a partial trimming operation, depending on edge tolerance. The cold pre-formed part is then
heated to austenitization temperature in a continuous furnace, sometimes followed by a calibration
process (also called 2nd forming process), depending on the complexity and accuracy of the part. The
formed part is quenched in the die or water, as shown in Figure 3b. The reason for the additional
step is to extend the forming limits for highly complex shapes by heat-treating the cold pre-formed
parts. Full martensite transformation in the material causes an increase in the tensile strength of up to
1500 MPa.

Figure 3. Procedure of hot press forming and cold press forming: (a) direct hot press forming (hot deep
drawing process); (b) indirect hot press forming (cold deep drawing process).

Table 2 lists the experiment conditions for direct and indirect hot deep drawing, where Ts

represents the initial blank temperature, and Td and Tp represent the die temperature and punch
temperature, respectively. In the direct hot deep drawing, samples were separately heated to 850, 900,
and 950 ◦C for 5 min in the furnace to give the sheet material an austenitic microstructure over the
entire blank. They were then transferred manually to the heated tooling device used for the drawing
process, which were kept at 300 ◦C. After direct hot drawing, the parts were quenched in the closed
die. The total time elapsed before the actual forming process—which included the transfer time and
blank holder moving time was approximately 5 s. On the other hand, in indirect hot deep drawing,
the blanks were firstly pre-formed in room temperature, which is called the cold pre-forming step,
and then the cold pre-formed parts were heated to 900 ◦C and quenched in water. Both in direct and
indirect hot deep drawings, the punch velocity (VP) was fixed at 6 mm/s. Blank holding forces (Bf)
were 5 kN, 15 kN, 30 kN, and 90 kN.

After drawing, the properties of drawn cups, such as thinning rate, microstructure, and hardness,
were examined. Positions for the measurement of the thinning rate, microstructure and hardness
are shown in Figure 4. Position 3© is the middle point between position 2© and position 4©. For the
hardness measurement, Vickers hardness was measured. The load was set to 500 g and measurements
were taken five times in total for each specimen. The results were averaged. In order to investigate
thinning, the cross section of formed specimens was observed using a digital microscope. The thinning
rate shows the amount of change in the thickness after forming compared to the initial thickness.
The thinning rate was calculated by Equation (1).

thinning rate =
t0 − t1

t0
× 100 (1)
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where, t0 is thickness of the blank and t1 is thickness of formed specimens.

Table 2. Experiment conditions for direct and indirect hot deep drawing process.

Parameters Direct Indirect

Blank temperature, Ts (◦C) 850, 900, 950 Room temperature (RT)
Tool (die and punch) temperature, Td, Tp (◦C) 300 RT

Punch speed (mm/s) 6 6
Blank holding force, Bf (kN) 5, 15, 30, 90 5, 15, 30, 90

Figure 4. Position for the measurement of the thinning rate, microstructures and Vickers hardness.

3. Results

Experiments for hot deep drawing with different blank holding forces and initial blank
temperatures were carried out. It was observed from the experiments that fracture started to occur at
the time that the punch load reached close to the maximum value. Figure 5 shows the relationship
between the punch load and the forming depth for cold pre-deep drawing and direct hot deep drawing
at different values of blank holding forces. As shown in Figure 5a, when blank holding force was 5 kN,
the forming depth was 18 mm in cold pre-deep drawing. In direct hot deep drawing, the forming
depth was 7 mm when blank temperatures were 950 ◦C, decreasing to 5 mm as blank temperatures
decreased to 850 ◦C. The maximum punch load in cold pre-deep drawing, which was found to be
42 kN, was much higher than that in direct hot deep drawing, which was 26 kN. As can be seen from
Figure 5, the maximum punch load and forming depth in cold pre-deep drawing were larger than in
direct hot deep drawing. Under the same blank holding forces, as blank temperatures increased from
850 ◦C to 950 ◦C, the forming depth increased and required a lower maximum punch load (less than
26 kN for 950 ◦C). The differences in the forming depth and punch load without any fracture according
to blank holding forces are shown in the following figures.

Figure 5. Cont.
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Figure 5. Punch load versus forming depth for indirect (Ts = RT) and direct (Ts = 850, 900 and 950 ◦C) deep
drawing at different blank holding forces: (a) Bf = 5 kN; (b) Bf = 15 kN; (c) Bf = 30 kN; (d) Bf = 90 kN.

Figure 6 shows the shapes of the drawn cups with fracture and without any fracture at different
blank holding forces. As shown in the figures, in both cold pre-deep drawing and in direct hot deep
drawing, the fracture started to occur at the wall part of the drawn cups, which agrees with the
analyzed results for the thinning rate. In the drawing process, the cup was under a tensile stress state,
and the wall thickness decreased quickly. As blank holding forces increased, a fracture occurred more
easily, and a lower forming depth was obtained. Further experiments need to be executed under
different lubricant conditions and blank holding forces for cold pre-deep drawing and in direct hot
deep drawing. This could also reduce the manufacturing cost by determining the optimal lubricant
and improving the formability.

Figure 6. Shape of drawn cups without fracture and with fracture at different blank holding forces:
(a) direct deep drawing (Ts = 950 ◦C); (b) indirect deep drawing (Ts = RT).
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Figure 7 compares the forming depth versus blank holding forces for cold pre-deep drawing and
direct hot deep drawing at different blank temperatures. The forming depth was much higher in cold
pre-deep drawing than that in direct hot deep drawing. In cold pre-deep drawing (at room temperature),
the forming depth values were 18 mm, 14 mm, 11 mm, and 10 mm when blank holding forces were 5 kN,
15 kN, 30 kN, and 90 kN, respectively. In direct hot deep drawing, the forming depth increased as blank
temperatures increased from 850 ◦C to 950 ◦C. When blank temperatures were 950 ◦C, the forming depth
values were 7 mm, 6 mm, 5 mm, and 5 mm at blank holding forces of 5 kN, 15 kN, 30 kN, and 90 kN,
respectively. In addition, the forming depth was examined with Ts = 850 ◦C and 900 ◦C. Both in cold
pre-deep drawing and direct hot deep drawing, the forming depth decreased with increasing blank holding
forces. On the other hand, when blank holding force was larger than 30 kN, there was negligible difference
in the forming depth regardless of blank holding forces. In deep drawing, fracture occurs at the wall part of
a drawn cup because it lacks ductility under a tensile stress state, and the wall thickness of a drawn cup is
affected by the blank holding force [17,18]. As blank holding forces increased, the wall thickness decreased
quickly. Thus, fracture occurred more easily at a higher blank holding forces and a lower forming depth
was obtained.

Figure 7. Relationship between forming depth and blank holding force at different blank heating temperatures.

Figure 8 compares the relationships between the maximum punch load without any fracture and
the blank holding force for cold pre-deep drawing and direct hot deep drawing at different blank
temperatures. The maximum punch load without any fracture in cold pre-deep drawing was much
higher than that in direct hot deep drawing. In direct hot deep drawing, the maximum punch load
decreased when blank temperatures increased from 850 ◦C to 950 ◦C. In cold pre-deep drawing,
the maximum punch load without any fracture was approximately 45 kN and did not change much
with increasing blank holding force. When Ts = 950 ◦C, the maximum punch loads were 26 kN, 19 kN,
18 kN, and 18 kN, when the blank holding forces were 5 kN, 15 kN, 30 kN, and 90 kN, respectively.
In direct hot deep drawing, the maximum punch load decreased with increasing blank holding force.
The maximum punch load without any fracture was much higher when blank holding force was 5 kN
compared to a higher blank holding force, and the maximum punch load without any fracture was
almost the same under a high blank holding force. A lower blank temperature in the drawing process
led to a higher forming force, which could be expressed as a higher punch load. The cold pre-deep
drawing experiment was executed at room temperature, and the temperature remained almost the
same during the drawing process. On the other hand, in the direct hot deep drawing, the blank
temperature decreased during the drawing process because of the temperature difference between
the blank and the tools. When the blank holding force was 5 kN, the forming depth was deeper than
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when blank holding force was 15 kN to 90 kN, which caused a longer drawing time, leading to a lower
temperature. Consequently, the lower temperature of the blank required a higher punch load.

As stated above, a deeper forming depth can be achieved in cold pre-deep drawing than direct hot
deep drawing. Although cold pre-deep drawing required a higher punch load without any fracture
(43–46 kN), it was lower than the normal values in other drawing processes [19]. Thus, when the
designed components were complicated and could not be finished with one stroke, indirect hot deep
drawing was used widely in the automotive industry. On the other hand, in direct hot deep drawing,
when blank temperatures were 950 ◦C, although a deeper forming depth was achieved, a lower punch
load was required than when blank temperatures was 850 ◦C or 900 ◦C. This implies that Ts = 950 ◦C
was a better condition than Ts = 900 ◦C or 850 ◦C under the same blank holding force by considering
the forming depth and maximum punch load. In addition, in both cold pre-deep drawing and direct
hot deep drawing, a deeper forming depth could be obtained when blank holding force was 5 kN
compared with a higher blank holding force.

Figure 8. Relationship between maximum punch load without fracture and blank holding force at
different blank heating temperatures.

Figure 9 compares the thinning rate at each position for samples without any fracture and with fracture
for direct hot deep drawing (Ts = 950 ◦C) and indirect hot deep drawing (RT) at Bf = 5 kN. As shown in
Figure 9, the thinning rate in position 3©was much higher than the rates at the other positions. This indicated
that in both direct hot deep drawing and in cold pre-deep drawing, the fracture started to occur at the
wall part of the drawn cups. In the drawing process, the cup was under a tensile stress state, and the
wall thickness decreased quickly. In addition, the thinning rate at each position obtained in cold pre-deep
drawing was higher than that in direct hot deep drawing. In the samples without any fracture, at position
3©, the thinning rate was 17% and the thickness of the blank sheet was 0.5 mm in the case of direct hot deep

drawing, whereas the thinning rate was 20% and the thickness of the blank sheet was 0.48 mm in the case
of cold pre-deep drawing. This means that fracture occurred more easily in cold pre-deep drawing than in
direct hot deep drawing considering the thinning rate. In addition, because of the material gathering in the
drawing process, the thickness at position 2©was greater than at positions 1©, 4©, and 5©.
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Figure 9. Thinning rate at each position for deep drawing samples with and without fracture.

The microstructure and hardness at different positions were checked for direct and indirect hot
deep drawing. Figure 10 shows the microstructure at different positions of the drawn parts for direct
hot deep drawing (Ts = 950 ◦C) and indirect hot deep drawing when Bf = 5 kN. Temperature plays
an important role in the microstructure and hardness. The drawn part was quenched more rapidly
in water quenching than in-die quenching. This fast quenching speed ensured the transformation of
austenite to martensite and promoted the generation of the nucleuses, with smaller nucleuses leading
to higher strength and hardness values. Martensite microstructure was not found in direct hot deep
drawing because both Tp and Td were kept at 300 ◦C in direct hot deep drawing, which led to a low
quenching speed. Thus, a better microstructure was obtained in indirect hot deep drawing.

Figure 10. Microstructures at 1©, 3©, and 5©of positions for hot and cold deep drawn samples: (a) hot deep
drawing (Ts = 950 ◦C); (b) cold deep drawing and water quenching after heating temperature to 900 ◦C.

Figure 11 shows the hardness values at different positions of the drawn part for direct hot deep
drawing (Ts = 950 ◦C) and indirect hot deep drawing when Bf = 5 kN. As can be seen, the hardness
after water quenching in indirect hot deep drawing was much higher than the die quenching in direct
hot deep drawing for the measured positions, which was a result of the smaller nucleuses gained from
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water quenching. Both in direct and indirect hot deep drawings, the highest hardness was measured at
a position 4© near the punch round, which was caused by work-hardening during the drawing process.
The strength and hardness of indirect hot deep drawing with water quenching were better than those
of direct hot deep drawing with die quenching.

Figure 11. Vickers hardness at different positions of the drawn part for hot deep drawing (Ts = 950 ◦C)
and cold deep drawing.

4. Conclusions

(1) The forming depth in cold deep drawing was noticeably deeper than that in hot deep drawing.
A much greater maximum punch load was achieved in cold deep drawing than hot deep drawing.
Cold deep drawing was found to be a better forming process.

(2) In hot deep drawing, for Ts = 950 ◦C, a deeper forming depth was achieved. Ts = 950 ◦C was
required a lower maximum punch load than in the case of Ts = 850 ◦C or Ts = 900 ◦C.

(3) The thinning rate at each position obtained in cold deep drawing was higher than that in hot
deep drawing.

(4) The microstructure and hardness in cold deep drawing, with water quenching after heating the
drawn cups to 900 ◦C, were significantly better than those in hot forming at Ts = 950 ◦C.
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Abstract: Increased passenger safety and emission control are two of the main driving forces in
the automotive industry for the development of light weight constructions. For increased strength
to weight ratio, ultra-high-strength steels (UHSSs) are used in car body structures. Prediction of
failure in such sheet metals is of high significance in the simulation of car crashes to avoid additional
costs and fatalities. However, a disadvantage of this class of metals is a pronounced scatter in their
material properties due to e.g., the manufacturing processes. In this work, a robust numerical model
is developed in order to take the scatter into account in the prediction of the failure in manganese
boron steel (22MnB5). To this end, the underlying material properties which determine the shapes
of forming limit curves (FLCs) are obtained from experiments. A modified Marciniak–Kuczynski
model is applied to determine the failure limits. By using a statistical approach, the material scatter is
quantified in terms of two limiting hardening relations. Finally, the numerical solution obtained from
simulations is verified experimentally. By generation of the so called forming limit bands (FLBs),
the dispersion of limit strains is captured within the bounds of forming limits instead of a single FLC.
In this way, the FLBs separate the whole region into safe, necking and failed zones.

Keywords: forming limit curve; inhomogeneity; boron steel; robustness evaluation

1. Introduction

The ability to assess with possibility of the forming limits of sheet metals is critical to avoid
excessive thinning or localized necking. Forming limit curves (FLCs) are one of the highly recognized
tools to foresee the failure in sheet metals. The concept of FLCs was first introduced by Keeler
and Backofen for the tension-tension zone [1] and then further extended to the tension-compression
zone by Goodwin [2]. Over the years, different experimental and numerical methods have been
developed for the accurate determination of FLCs. The Nakazima out-of-plane test and the Marciniak
in-plane test [3] are well-known approaches to experimentally generate FLCs. Besides experimental
methods, numerical methods are used to investigate failure. Thereby, an important aspect is the strain
localization during forming.

The available numerical methods can be divided into three main frameworks: the maximum force
criteria, the Marciniak–Kuczynski (MK) models and the finite element (FE) methods. A basic necking
criterion in a simple tension case was established by Considère [4] which was thereafter extended to

Metals 2018, 8, 631; doi:10.3390/met8080631 www.mdpi.com/journal/metals33



Metals 2018, 8, 631

biaxial stretching by Hill [5] and Swift [6]. Hill [5] expressed the localized necking as a discontinuity
in the velocity and Swift [6] determined the instability condition in the plastic strain by expressing
the yield stress as a function of the induced stress during the deformation of the diffused necking.
Using Considère’s criteria, Hora and Tong [7] introduced ‘modified maximum force criteria’ (MMFC)
taking into account the strain path after diffuse necking. These criteria have been used for the FLC
determination under non-linear strain paths by Tong et al. [8,9]. The enhanced modified maximum
force criterion (eMMFC) was introduced by Hora et al. [10] in 2008 considering the sheet thickness and
the curvatures of the parts. Another approach to determine the necking is the bifurcation analysis that
was discussed by Hill [11].

To overcome the drawback in the maximum force model, Marciniak and Kuczynski [3]
developed a new model considering a pre-existing inhomogeneity in sheet metals. The instability
begins along the inhomogeneity due to a gradual strain concentration under biaxial stretching.
Strain-rate sensitivity and plane anisotropy have been further studied in the later works as additional
influencing parameters [12]. Hutchinson and Neale [13] analyzed an imperfection sensitive MK
model with J2 (von Mises) flow theory for principal strain states varying from uniaxial to equibiaxial
tension. In the work of Chan et al. [14], localized necking is studied for the negative minor strain
region (uniaxial tension to plane strain). Additionally, the inhomogeneity oriented in zero-extension
direction is analyzed in [5]. The complete FLCs of anisotropic rate sensitive materials with orthotropic
symmetry have been predicted for linear and complex strain paths in the work of Rocha et al. [15].

The shape of the FLC depends on the constitutive equations used in the MK model. Yield criteria
as well as the hardening relation can alter the limit strains. Different parameters influencing the FLCs
are studied in the literature. Lian et al. [16] studied the variation of sheet metal stretchability by
varying the shape of the yield surface. A yield function that describes the behavior of orthotropic sheet
metals under full plane stress state was introduced by Barlat and Lian [17]. Cao et al. [18] implemented
the general anisotropic yield criterion for localized thinning in the sheet metals into the MK model.
Additional failure modes in sheet metals, namely ductile and shear failure criteria were included in
CrachFEM (MATFEM, Munich, Germany). Eyckens et al. [19] extended the MK model to predict
localized necking considering through-thickness shear (TTS) during the forming operations.

In addition to MK and MMFC methods, the finite element (FE)-based approach, introduced by
Burford and Wagoner [20], is another way to determine FLCs. Boudeau and Gelin [21] worked on the
prediction of localized necking in sheet metals during the forming processes through FE simulations.
Combining a ductile fracture criterion with finite element simulations, Takuda et al. [22] predicted the
limit strains under biaxial stretching. Different finite element methods for the prediction of FLCs can
be found in [23–26].

Due to the scatter in material properties at different regions of sheet metals, it becomes difficult
to precisely predict the failure strains by a single FLC. Hence, a scatter of material properties has to
be determined and a band of FLCs needs to be defined. Janssens et al. [27] introduced the concept
of forming limit bands (FLBs) to have a reliable estimate of the uncertainty of FLCs. Strano and
Colosimo [28] extended it further with logistic regression analysis to generate FLBs from experimental
data. Chen and Zhou [29] applied percent regression analysis to the curve fitting of experimental
data of limit strains. The above-mentioned studies analyze the experimental data statistically to
obtain FLBs. On the other hand, Banabic et al. [30] was one of the first to incorporate the concept
of FLBs in a theoretical approach to improve the robustness. The MK model with BBC2003 [31]
plasticity criterion and Hollomon and Voce hardening laws were used in the derivation of the limit
strains. Later, Comsa et al. [32] generated an FLB using Hora’s MMFC model with the Hill’48 yield
criterion and Swift’s hardening law.

The aim of this work is to develop a methodology to predict the failure in UHSS sheet metals
during a car crash. To this end, first, the limit strains of a car component are evaluated experimentally.
Then, the scatter of the material properties is considered by defining a range of hardening relations
using curve fitting of the experimental data. A modified MK model with a simplification related to
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the zero extension angle is applied to form the bounds of the limit strains numerically. In this way,
the bounds can capture the material scatter via a parametric study.

The present paper is structured as follows. In Section 2, a modified MK model with an inclined
groove is presented based on the work of Rocha et al. [15]. To solve the discrete equations, an implicit
integration method is employed in Section 3. The obtained results are validated in Section 4 based
on the theory of the method. Furthermore, the experimental data and their post-processing are
described in Section 5 to determine the material scatter. Based on a statistical analysis of the material
scatter, the forming limit bands are generated and discussed in Section 6. Eventually, the results are
summarized and conclusions are drawn.

2. Theory of Forming Limit Curve

A sheet metal is subjected to biaxial stretching under a load given in terms of the principal
stresses σ1 and σ2 as shown in Figure 1. The metal component has two regions with different thicknesses
named as region A and region B. The groove, that is denoted as region B, is considered to make an
angle ψ with respect to the minor principal stress axis as shown in Figure 1. Although the thickness
variation is smooth in reality, a sharp variation is considered to simplify the calculations. Due to its
smaller thickness, region B will represent the necking region during the stretching operation.

Figure 1. Modified MK model with initial in-homogeneity [33].

Marciniak [3] introduced an inhomogeneity parameter expressed in terms of the ratio of the initial
thicknesses of region B (t0B) and A (t0A). In the present work, it is denoted by fi and defined as

fi = 1 − t0B
t0A

, (1)

which implies that, when fi takes the value zero, the sheet is geometrically homogeneous. As stresses
increase, the sheet metal undergoes different strain increments in non-necking and necking regions as
indicated by subscripts A and B, respectively. The ratio of minor to major strain increments is assumed
to remain constant within each load path. It is defined by

γ =
dε2A
dε1A

. (2)

Strain and stress states of both regions (A and B) are monitored separately. In this way, one
can define plastic instability as the increment of the equivalent plastic strain in region B becomes
considerably greater than that of region A. The plastic instability indicator β is expressed as the ratio
between the equivalent plastic strain increments in region A (dε̄A) and region B (dε̄B) [34]:

β =
dε̄A
dε̄B

. (3)

35



Metals 2018, 8, 631

In practice, the value of β is considered as 0.1 to indicate the loss of stability. The model
is derived for an anisotropic material with an orthotropic symmetry. The classical Lankford
coefficients R0, R45 and R90 are considered as measures of anisotropy with respect to different directions
of in-plane loading (angles 0◦, 45◦ and 90◦ with respect to the rolling direction). Additionally, planar
anisotropy is assumed and characterized by a time-independent average R-value defined by

R̄ =
R0 + 2R45 + R90

4
. (4)

In the case of isotropic material, the value of R̄ becomes equal to unity. We define

α = σ2/σ1 (5)

as the ratio of stresses in the principal directions, namely σ1 and σ2 [15]. The Hill’48 yield criterion is
used in combination with an associative flow rule and Swift hardening relation. Hill’s criterion for in
plane stress conditions is expressed as

2 f = σ̄2 = Fσ2
yy + Gσ2

xx + H(σxx − σyy)
2 + 2Pσ2

xy, (6)

where σ̄ denotes the equivalent stress and F, G, H, and P are functions of the Lankford coefficients.
Thus, they are material specific constants. The reader is referred to the Appendix A for more
information about these constants. In the following, strain rate dependent stress relation similar
to the classical MK model [12] is defined:

σ̄ = C1 (ε0 + ε̄)n ˙̄ε m. (7)

In the latter relation, C1 is a strength coefficient and ε0 denotes the initial yield strain.
In addition, ε̄ represents the equivalent plastic strain with n as isotropic hardening exponent.
Furthermore, m is the strain rate exponent. The associated flow rule is given by

dεij = dλ′ ∂ f
∂σij

, (8)

where dλ′ is the hardening parameter being expressed as

dλ′ = dε̄/σ̄

and εij are logarithmic strain components. Similar to the classical MK model, the incompressibility
condition is given by

dε1A + dε2A + dε3A = 0. (9)

Considering the strain in thickness direction, the sheet thickness can be written as

tA = t0A eε3A , tB = t0B eε3B . (10)

The force equilibrium conditions are given by

σnn
A tA = σnn

B tB, (11)

σnt
A tA = σnt

B tB, (12)

where n and t (in Equations (11) and (12)) denote the normal and tangential direction with respect to
the inhomogeneity, respectively. The compatibility condition across the discontinuity is defined by

dεtt
A = dεtt

B. (13)
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First, the force equilibrium in normal direction (Equation (11)) is divided by σ̄. Next, by using
Equations (1) and (7) in (11) and upon simplification, the following relation is derived

cos2ψ + α sin2ψ√
1 + (F + H) α2 − 2H α

= (1 − fi) exp(ε3B − ε3A)

(
ε0 + ε̄B
ε0 + ε̄A

)n (
dε̄B
dε̄A

)m
√

B1 (dε̄A/dε̄B)
2 + B2

B3
. (14)

Equation (14) represents the residual in the algorithm described in Section 3. Strain increments
in the third direction for regions A and B are derived by the application of compatibility and
incompressiblity conditions

dε3A = − G + F α√
1 + (F + H) α2 − 2H α

dε̄A, (15)

dε3B = −
⎡⎣H6

√
B1 (dε̄A/dε̄B)

2 + B2

B3
+ H7

(
dε̄A
dε̄B

)⎤⎦ dε̄B, (16)

where B1, B2, B3, H6 and H7 are functions of R0, R45, R90, ψ and α. For a detailed derivation the reader
is referred to the Appendix A and to Rocha et al. [15].

The above mentioned mathematical model is capable of evaluating the limit strain for both
positive and negative minor strains ε2. There are four different fundamental strain paths, i.e., uniaxial
tension, plane strain, biaxial and equibiaxial tension. The relation between the stress ratio α and the
strain ratio γ for an isotropic material is given by [14,34]

α =
2γ + 1
2 + γ

. (17)

Table 1 shows the corresponding values of α calculated from Equation (17).

Table 1. Incremental strain and stress ratios for four different load paths.

- Uniaxial Plane Strain Biaxial Equibiaxial

γ −0.5 0 0.5 1
α 0 0.5 0.8 1

In the tension-compression quarter of the FLC, the limit strains depend on the (initial) orientation
of the groove. Therefore, an arbitrary angle ψ between the direction of the imperfection and the
direction of the principal minor stresses is considered as described in Figure 1. As FLCs represent the
maximum allowable strains, the minimum limit strains of all the possible orientations of the groove
are to be identified. Upon implementing the rotation of angle from 0◦ to 45◦ to evaluate the minimum
strain, the computational cost of the algorithm is increased. This can be simplified by using the concept
of zero extension direction provided by Hill’s theory [5]. As predicted by this theory, if the imperfection
is oriented along the zero extension direction, there will be a substantial difference in the limit strain
compared to that of ψ = 0◦ [14].

According to the theory of Hill [5], localized necking occurs along the direction of zero extension,
which is determined by [35]

ψ∗ = tan−1 √−γ. (18)

The zero extension angle in case of uniaxial tension for planar isotropic material is found to be
ψ∗ = 35.3◦. From Chan et al. [14], the calculated limit strains using the zero extension direction are
within 2% of the limit strains calculated based on the aforementioned rotation of the imperfection. Thus,
for the purpose of simplification and faster computation the angular orientation of the discontinuity is
set to the zero extension angle, which is investigated later in this work.
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3. Numerical Solution and Algorithm

The numerical solution is performed by means of an implicit integration method. To this end,
the algorithm is implemented using two loops in FORTRAN similar to that of Werner [34]. Here,
the value of β is unknown and evaluated as a function of the equivalent plastic strain in the necking
region. The computation continues until β reaches a critical value of 0.1. The iterative technique
used to solve for β is shown in Figure 2. In the outer loop (n loop), ε̄B is increased by a constant
increment dε̄B. In this work, dε̄B is set to 0.001 (refer to Figure 3). This is given by

ε̄B|n+1 = ε̄B|n + dε̄B. (19)

The inner loop (k loop) is running for a maximum number of 100 times by varying β from 1
to 0 in steps of 0.01. This loop terminates when the sign of the residual represented in Equation (14)
changes. The plastic strain dε̄A in the non-necking region is calculated by arithmetic averaging of two
consecutive β values within the n loop (refer to Equation (22)). To start the algorithm ε̄A, ε̄B, ε3A, ε3B
as well as dε̄A/dε̄B = β must be initialized. Here, the initial conditions as set as follows:

ε̄A|0 = ε̄B|0 = 0,

ε3A|0 = ε3B|0 = 0 and

β0 = 1.

(20)

The inhomogeneity parameter fi is manually input. In every k loop, first dε3B is calculated
using Equation (16) since the values of dε̄A, dε̄B, α and R̄ are already known. In the next step, ε3B is
computed using the equation

ε3B|k = ε3B|n + dε3B|k, (21)

where the variable ε3B|n is already initialized. Next, dε̄A|k is calculated using the arithmetic averaging:

dε̄A|k = 0.5 (βn + βk) dε̄B. (22)

Having initialized β and ε̄A|n, we determine ε̄A|k using the relation

ε̄A|k = ε̄A|n + dε̄A|k. (23)

Next, ε3A is calculated in analogy to the previous equation by using dε3A from Equation (15)

ε3A|k = ε3A|n + dε3A|k. (24)

Hardening relations σ̄A and σ̄B are computed using ε̄A|k, ε̄B|n+1 and the expression

ε̇B|k = ε̇A/βk

which is obtained by
ε̇B

ε̇A
=

dε̄B
dt

dt
dε̄A

. (25)

For different load cases, the value of α is considered in Table 1. Other load cases are set by defining
the value of α between 0 to 1.

In this work, hardening relations are fitted to experiments and implemented in the code.
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Figure 2. Implemented algorithm in FORTRAN.

4. Verification

To verify the convergence properties of the solution method, different step sizes of dε̄B are set
ranging from 2 × 10−5 to 0.2. Without changing the other parameters such as hardening relations,
anisotropy etc., the limit strains in region A are evaluated. It is clearly seen in Figure 3 that the limit
strains (ε̄A) are close to convergence as dε̄B approaches 0.002. Therefore, the step size is set to 0.001.
Henceforth, all strains and stress measures are normalized to the mean ultimate tensile strength (Rm)
and the mean uniform strain of entire samples, respectively.
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Figure 3. Convergence of the numerical method (strain normalized with respect to the mean
uniform strain).

To verify the results, a hardening relation for a manganese boron steel (22MnB5) is applied.
In addition, the material is assumed to be isotropic in this work. Nonetheless, due to the confidentiality
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of the project the parameters of the hardening relation (Equation (7)) are not explicitly revealed.
In Figure 4, the evolution of the equivalent plastic strain (ε̄A) in the non-necking region is plotted
against its counterpart (ε̄B) in the necking region. Initially, the slope of the curve is found to be
approximately 1, since both regions are undergoing the same strain. At some point, the strain in
region B starts to grow significantly faster than the one in region A. This is due to the localized necking
in region B since it has a smaller cross-section. The difference between the strains in regions A and B is
captured vividly for normalized strains in region B greater than 10. In addition, the stress-strain curve
in region B is plotted in Figure 5 for sheet metals subjected to equibiaxial tension. This plot captures
the implemented hardening relation and represents the material behavior in the non-linear regime.
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Figure 4. Normalized equivalent plastic strains in regions A and B (strain normalized with respect to
the mean uniform strain).
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Figure 5. Normalized equivalent plastic stress as a function of normalized equivalent plastic strain
under equibiaxial tension (stress and strain normalized with respect to the mean ultimate tensile
strength and the mean uniform strain, respectively).

The maximum admissible strains that the material can withstand before the onset of necking are
shown in Figure 6. Localized necking is evaluated by considering a constant predefined value of strain
ratio γ during the deformation process. The entire curve is obtained by varying γ from −0.5 to 1 in
steps of 0.5.

The limit strains can also be related to the equivalent plastic strain as shown in Figure 7. In this
figure, the load path dependence of the limit strains is clearly evident. For instance, it is noticeable that
sheet metals can deform to a higher extent under equibiaxial tension compared to uniaxial tension.
Moreover, the choice of the inhomogeneity parameter fi plays a crucial role in the position of an FLC.
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The higher the inhomogeneity parameter, the lower is the entire FLC. In this section, it is set to 0.02 for
all loading paths. A detailed investigation of the aforementioned parameter is discussed in Section 6.
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The effect of the angular orientation of the inhomogeneity in the tension-compression regime
is studied in Figures 8 and 9. It is evident that the choice of ψ = 0◦ leads to an overestimation of
the limit strains as depicted in Figure 9. This signifies the application of the angled groove for the
tension-compression loading regime of the FLC. Furthermore, to compare the strains for any arbitrary
orientation of the angle with that of the zero extension angle (ε̄∗A) from [35], an interval of 0◦–50◦ is
considered, due to the symmetric influence of the orientation of the groove. The minimum equivalent
strain (ε̄A,min) is found at the angle 34◦. On the other hand, the zero extension angle obtained here
is equal to 35.3◦ which yields approximately the same limit strain ε̄∗A as ε̄A,min. This is seen clearly
in Figure 9, where both strains are mostly equal.
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Figure 9. Effect of the groove orientation on the limit strain (strain normalized with respect to the mean
uniform strain) [33].

5. Experiments

Once the numerical method is verified, it needs to be validated with the experimental data. To obtain
a precise and accurate strain measurement, a digital image correlation (DIC) measurement system was
employed in the experiments. This method is able to display full-field strain measurement in the localized
necking region. Simultaneous evaluation of the major and minor strains at any point makes it suitable
for FLC related applications. In this project, the non-contact and material independent measurement
system ARAMIS (v6.3, GOM, Braunschweig, Germany) is used for strain measurements. The stress
values are obtained from the universal testing machine Zwick Z100 (Zwick Roell, Ulm, Germany).

The experiments are performed by extracting samples from structural components of a car.
These body parts are formed/stamped steels which are later heat treated to yield similar material
properties like those of car components. To record the scattered material properties, samples from
ten different batches are considered. Each batch consists of six components and each component
delivers 12 test samples (extracted from six different regions). A total of 720 samples are extracted for
two different test categories, namely notched and A50 specimens (see Figure 10).

42



Metals 2018, 8, 631

Figure 10. Geometry and dimension of the A50 (left) and notched (right) samples.

A selection of the notched samples is applied for the validation of the FLCs whereas the A50
samples are used in uniaxial tensile tests so that the material parameters can be obtained for both,
the scatter determination and fitting purposes. These results are presented batch wise in terms of the
normalized ultimate tensile strengths of the specimens. For the statistical analysis of the tensile test
results, only the results of the A50 samples are considered.

The samples are selected in such a way that they can capture the largest scatter. The ultimate
tensile strength of the material is selected as the decisive parameter since it is associated to the
initiation of the necking. The stress distribution is represented in a box and whisker plot in Figure 11
for the A50 samples.
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Figure 11. Distribution of the normalized stress with respect to the mean ultimate tensile strength (Rm)
in A50 samples [33].

The onset of material instability can be observed from the exhibition of the shear bands as depicted
in Figure 12. These bands correspond to an abrupt loss of homogeneity in deformation. Hereafter, the
localized deformations rapidly intensify, leading to necking and rupture of the specimen. Figure 12a
shows the non-uniform strain distribution along the section length in the pre-failure regime. The closer
to the shear band, the greater the localized strain. Points 0, 1 and 2 in Figure 12b,c illustrate different
major strains under uniaxial loading. Since point zero (P0) lies on the shear band, it undergoes severe
strains. In contrary, points one and two (P1 and P2) show much smaller strain values as they locate far
from the shear bands where the localized necking occurs.
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Figure 12. Strain distribution along the specimen length normalized with respect to the mean uniform
strain (a), experimentally determined strain growth for different points lying on the shear bands and
far from them with strains normalized with respect to the mean uniform strain (b) and the evolution of
shear bands (c) in the pre-failure regime of an A50 sample [33].

According to Werner [34], the ratio β of the increment of the effective plastic strain in the
non-necking region (dε̄Pi , i = 1, 2) to that of the necking region (dε̄P0 ) indicates the plastic instability
expressed as

β =
dε̄Pi

dε̄P0

, i = 1, 2,

where the points P1 and P2 belong to the non-necking region and the point P0 belongs to the necking
region (refer to Figure 12). Additionally, the growth of the major strains at the aforementioned points
are plotted with respect to time in Figure 13.
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Figure 13. Growth of the major strains (normalized with respect to the mean uniform strain) in a
sample in the necking and non-necking regime [33].

In order to guarantee the accuracy of the strains during the abrupt localization phenomenon,
a frequency of 10 frames per second is applied in the tensile tests. At point P0, exponential growth of
strains is observed. This is not the case at other points (P1 and P2) far away from the necking region.
However, this can be better illustrated in terms of the strain rates. Figure 14 shows the last two seconds
before a sample ruptures. At this time, strain rates in the necking region (P0) observe a sharp increment
whereas the ones in the non-necking regions (P1 and P2) end up with a slight decrease. This is due
to the fact that from second 31.5, all plastic strains flow though the shear band where the P0 lies and
the points P1 and P2 behave as though they are unloaded. Notice that the plastic strains remain in the
latter points since they are permanent. Finally, Figure 15 illustrates the corresponding strains over the
strain increment ratio (1/β). From these results, the corresponding values of the major strains for a
specific ratio (here 1/β = 10) are extracted for each sample to prescribe the onset of the instability in
the numerical solution.

 0

 1

 2

 3

 4

 5

 30.5  31  31.5  32

no
rm

al
iz

ed
 m

aj
or

 s
tr

ai
n 

ra
te

 [s
-1

]

time [s]

dε
-
P0

 /dt

dε
-
P1

 /dt

dε
-
P2

 /dt

Figure 14. Major strain rates (normalized with respect to the mean uniform strain) during the onset of
instability in the necking and non-necking regime.
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The plane strain condition occurs in the middle of the notched samples as the dimension of the
sample along one direction is much larger compared to the other two dimensions. Similar to the A50
samples, the strain field is analyzed across the shear bands for determining the onset of necking.
The distribution of the normalized ultimate tensile strengths of the notched samples are depicted
in Figure 16. Limit strains from notched samples are used as a reference in the forming limit curves for
the plane strain loading path.
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Figure 16. Stress distribution normalized with respect to the mean ultimate tensile strength (Rm) in
notched samples [33].

Figure 17a shows the distribution of the normalized major strains along the width of the notch during
necking. The stress state of a point in the middle of a notched sample of this form reflects a plane strain
condition with a small deviation [36] (refer to Figure 17b). This is shown in the experimentally determined
limit strain of the notched sample from ARAMIS in the necking regime (see Figure 17c) as well.
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Figure 17. Strain distribution along the notch width normalized with respect to the mean uniform
strain (a), experimentally determined limit strain with normalized strains with respect to the mean
uniform strain (b) and the evolution of necking (c) in the pre-failure regime of a notched sample.

The flow diagram of the material is produced using the A50 samples to obtain the parameters
related to the hardening relation (see Figure 18). As the initial cross-sectional area is considered for
determining the stress values, the flow diagram typically represents the engineering stress-strain
values. For sufficiently small deformations, the engineering stresses and strains are almost equivalent
to the Cauchy stresses and logarithmic strains (in the sequel called “true” stresses and strains). Since the
forming limit is characterized by large scale permanent plastic deformation, the hardening relations
must be based on the true stress-strain values. Consequently, the engineering stress-strain diagram is
first transformed to the corresponding true stress-strain diagram by the relations.
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σtrue = σeng (1 + εeng),

εtrue = ln (1 + εeng).
(26)

This transformation is illustrated also in the stress strain curve of a sample in Figure 18.
To capture the scatter of the material, 36 different hardening curves are generated from the flow

diagrams of the corresponding samples.
In Figure 18, the necking of the specimen is observed around the normalized strain of 1.4 in

the engineering flow curve (σ̄eng). However, by transferring the latter into the true stress-strain
curve (σ̄true), only the material response until the ultimate tensile strength is considered. Due to
the negligible contribution of the elastic regime (under 2 %) in this material, only the plastic
response of the material (σ̄true−plast) is taken into account in fitting as well as in the numerical
solution (see Figure 18) [34].
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Ultimately, the curve is fitted by minimizing the square of the difference between the experimental
values obtained from the plastic true stress-strain curve and the derived hardening relation
from Equation (7). Figure 19 illustrates the experimental true stress-strain curve and the fitted Swift
hardening relation for a specimen.
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By curve fitting, the set of coefficients is generated for all 36 samples. Since equivalent stresses at
regions A and B are expressed as a ratio in the residual (Equation (14)) of the mathematical model,
the influence of strength coefficient C1 on the limit strains is nullified. Therefore, this coefficient is
kept constant in all computations. On the other hand, the variation of n results in different hardening
relations and consequently different FLCs. Since the material used here is assumed to be close to
rate independent, the variation of the corresponding values are not considered later in the forming
limit band generation. The strain rate ˙̄ε is set manually to 0.0033 s−1 in the experiments (10 mm/min)
whereas the strain rate exponent m is found to be 0.008 from experiments. The evaluation of the
term ˙̄ε m leads to the value ˙̄ε = 0.9553, which confirms the assumption of rate-independence.

6. Forming Limit Bands

Due to the scatter in the material properties, the prediction of the failure limits by a single FLC will
result in either under- or overestimation. Unlike FLCs, forming limit bands are statistical approaches
towards a robust design methodology. By implementation of a band of forming limits instead of
a single curve, it is possible to distinguish among safe, necking and failed zones in the forming
limit diagrams.

In order to generate an FLB, first and foremost, the associated theoretical FLC model is determined.
Various parameters that influence the behavior of the FLCs are identified. The material parameters
are obtained from the experiments and the scatter in the mechanical properties is measured. Next,
the relation between the mechanical properties and the process parameter ( fi) is derived. Finally,
the range of the material parameters is defined by a statistical approach (here standard deviation (± 2σ))
and the FLBs are generated. The generated FLBs are furthermore experimentally validated.

Different parameters obtained here can be categorized as follows:

• mechanical parameters: rolling anisotropy (R0, R45, R90); strength coefficient C1, initial yield
strain (ε0), hardening exponent n, strain rate exponent m,

• process parameter: measure of inhomogeneity fi,
• method parameter: plastic instability indicator β.

Since the material is assumed to be planar isotropic, the influence of Lankford’s coefficients
is eliminated. Moreover, as discussed in the previous chapter, the roll of the coefficient C1 during
the incorporation of stress ratio in the residual (Equation (14)) is omitted. Due to the assumption
of rate-independence, the strain rate exponent m is applied only in the numerical calculations and
therefore not varied in the forming limit curves. Since β is defined by the user, it is not considered
as a material parameter. Finally, the two parameters fi and n are needed to get the FLBs. This can be
established by either fixing one parameter and varying the other or by varying both.

In spite of the fact that the inhomogeneity parameter fi has a physical interpretation, it cannot
be measured in reality and thus is considered as a process parameter. Within the numerical solution,
a pre-defined inhomogeneity value is set as an input for the FLC computation. This is chosen in
a way to fit the FLC and is not obtained from the fitting of the hardening relations. In contrast
to fi, the hardening exponent n is determined through the fitting of the hardening relation to the
experiments. Ultimately, both parameters define the shape of the forming limit curves.

A parameter study is performed to identify the FLB and the influence of the parameters on it.
The strain hardening exponent n is found to be within the range of 0.05645–0.14549 by fitting of the
hardening relations to the 36 A50 samples. From Figure 20a, it is seen that the higher the value of
the hardening exponent, the higher the limit strains are. In addition, experimental limit strains for
uniaxial tension and plane strain states are plotted in Figure 20. The inhomogeneity parameter is kept
constant ( fi = 0.02) while altering the hardening exponent. As it is evident, for a certain value of fi,
two different hardening relations can contain a big range of the material scatter. However, the upper
bound of the FLB corresponding to n = 0.14549 overestimates the limit strains in the uniaxial tension
regime (γ = −0.5).
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Figure 20. (a) Parameter study of strain hardening exponent n with constant fi = 0.02, (b) Parameter
study of inhomogeneity parameter fi with constant n and (c) Influence of plastic instability indicator β

with constant fi = 0.01 and n = 0.08579 (all strains are normalized with respect to the mean
uniform strain).

Similar to the study of the strain hardening exponent, the influence of inhomogeneity parameter fi
is studied in Figure 20b. In this study, the hardening exponent n is set to 0.08579 and fi is varied
from 0.01 to 0.04 so that the FLB can capture the largest range of the the experimental limit strains for
both, uniaxial and plane strain states. Lower inhomogeneity values, i.e., smaller thickness variations,
result in a higher potential to resist necking. Consequently, setting fi to 0.01 results in substantially
higher limit strains than the ones with fi = 0.04 as shown in Figure 20b. Here, by fixing n and
varying fi, the FLB is not only overestimating the strains in the equibiaxial loading but also not
covering the entire scatter from the experiment.

Limit strains are defined as the starting point of material instability. While generating the
numerical FLC, the limiting value of the plastic instability indicator β is considered as 0.1. However,
it is not possible to denote the onset of necking by a single value. In Figure 20c, normalized limit
strains with three different instability criteria are shown. It is apparent that changes in β values do not
have a strong influence on the limit strain values, provided that β is chosen small enough. Therefore,
the change of β from 0.1 to 0.04 yields negligible changes in the limit strains. Nonetheless, the choice
of a large value such as β = 0.5 will lead to an underestimation of the limit strains.

It is observed that fixing a parameter and varying another puts a big constraint either
on the numerical solution or on the form of FLB so that the material scatter is not captured
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anymore (see Figure 20). Therefore, both remaining parameters, namely the hardening exponent n and
the inhomogeneity parameter fi must be set simultaneously.

To this end, the scatter of a data set is quantified using the standard deviation. As the material
scatter is expressed in terms of the hardening exponent n, the standard deviation can provide a
band where most of the n values will lie. Beforehand, the normal distribution of n is checked
using a quantile-quantile plot. As shown in Figure 21, results approximately follow a straight line,
which indicates the distribution to be normal.
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Figure 21. Quantile-quantile plot of sample data n.

With the help of standard deviation (±2σ) of the mean (μ), a band of n can be defined, which
statistically contains 95.45% of all values. The mean of the distribution of n is found to be 0.0791.
Employing standard deviation, the interval of n is found within the interval of [0.0410, 0.1171].
Therefore, these limiting values of n measure the scatter in the material properties. Next, for the
statistically obtained n bounds, the corresponding fi values are set to 0.02 and 0.018 to cover the
experimentally determined limit strains.

In Figure 22, upper and lower bounds of FLB are plotted in terms of normalized major-minor
strains. Experimental results of 72 representative samples are found to be within the range of
numerically generated bands. Evidently, by considering a range for n and fi, the FLBs divide the region
into safe, necking and failed zones. Here, the failed points are captured experimentally immediately
before the rupture of the specimen whereas the safe points present the strains before the onset of the
necking. Figure 23 depicts the numerically determined forming limit band in terms of equivalent
plastic strains.
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mean uniform strain [33].

7. Conclusions

In the present work, a modified Marciniak–Kuczynski model with an inclined groove is
implemented to generate forming limit bands. The model is derived for planar anisotropic rate
dependent material. However, due to the application of manganese boron steel (22MnB5), it is
simplified later to planar isotropy and rate independence. In this model, the concept of zero extension
angle for the tension-compression quarter of the FLCs is applied. The form of the numerically
determined FLCs is governed by different material and numerical input parameters. The material
parameters are obtained by fitting the Swift hardening relation to the material response of the tensile
tests. To this end, different samples are extracted from car body components and subjected to tensile
loading. Since the material properties show a considerable scatter, statistical analysis is established
to incorporate the scatter into the FLCs along with the numerical parameters. In order to capture
the full field strains during the tests, digital image correlation is used in addition to conventional
measuring systems. As expected, manganese boron-steel exhibits a considerable material scatter which
cannot be captured by a single FLC. Hence, a band of FLCs, namely a forming limit band is generated
by incorporating the effects of the material scatter (hardening exponent) as well as the numerical
parameters, namely inhomogeneity and instability parameters. Furthermore, the material scatter is
statistically analyzed to calibrate the bounds of the FLB. From the generated FLB, the limit strains of
the material are segregated into various regimes, i.e., safe, necking and failure. In this way, the necking
of a material during a car crash is not represented by a single curve, but by a band of curves.
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Appendix A

The mathematical formulation of forming limit curve is developed based on the modified
Marciniak–Kuczynski model and written according to the paper of Rocha et al. [15]. To describe
the plastic behavior of the material, the yield criterion, flow rule, and hardening relation are defined
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Hill’s criterion to define the yield surface of the material is given by

2 f = F σ2
yy + G σ2

xx + H (σxx − σyy)
2 + 2 P σ2

xy, (A1)

where material constants are expressed as

F =
R0

R90 (1 + R0)
,

G =
1

1 + R0
,

H =
R0

1 + R0
,

P =
0.5 (R0 + R90)(2R45 + 1)

R90 (1 + R0)
.

(A2)

The Levy-von Mises flow rule is given by

dεij = dλ′ ∂ f
∂σij

, (A3)

where dλ′ is the hardening parameter and expressed as

dλ′ = dε̄/σ̄. (A4)

Finally the material hardening relation with the strain rate dependency is determined by

σ̄ = C1 (ε0 + ε̄)n ˙̄εm. (A5)

Apart from the above-mentioned material behavior, the force equilibrium, compatibility relations
and incompressibility condition specific to the model are used to develop the mathematical model
of FLC. The incompressibility condition is given as

dε1A + dε2A + dε3A = 0. (A6)

The force equilibrium conditions are

σnn
A tA = σnn

B tB,

σnt
A tA = σnt

B tB,
(A7)

where n and t denote the normal and tangential direction with respect to the inhomogeneity, respectively.
The compatibility condition across the discontinuity is defined by

dεtt
A = dεtt

B. (A8)

Force equilibrium equation along the normal direction can be represented as

σ̄A

(
σnn

A
σ̄A

)
tA = σ̄B

(
σnn

B
σ̄B

)
tB. (A9)

Incorporating the material inhomogeneity factor fi and hardening relation (Equation (A5)) in the
above equation, the residual can be derived as

σnn
A /σ̄A

σnn
B /σ̄B

= (1 − fi) exp(ε3B − ε3A)

(
ε0 + ε̄B
ε0 + ε̄A

)n (
dε̄B
dε̄A

)m
. (A10)
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Since anisotropy directions coincide with the principal stress axes in the homogeneous region (A),
the numerator of the left hand side of the above equation can be written as

σnn
A

σ̄A
=

A1

A2
, (A11)

with

A1 = (cosψ)2 + α (sinψ)2

and

A2 =
√

1 + (F + H) α2 − 2 H α.

(A12)

To evaluate the denominator of left-hand side of residual (Equation (A10)), the stress tensor is
transformed to the x-y reference axes, as anisotropy directions do not overlap with the principal stress
axes in inhomogeneous region (B). At first, σnn

B /σ̄B is expressed in terms of material anisotropy
and groove orientation by means of simultaneous division of both force equilibrium equations,
which reads as

σnt
B

σnn
B

=
σnt

A
σnn

A
= K0. (A13)

After tensor transformation, the above equation becomes

σ
xy
B

σxx
B

= K1
σ

yy
B

σxx
B

+ K2, (A14)

with:

K0 =
(sinψ cosψ)(α − 1)

A1
,

K1 =
sinψ cosψ

α (sinψ)2 − (cosψ)2 ,

K2 = −α K1.

(A15)

Using the compatibility relation (Equation (A8)) and stress transformation, the following relation
is established

A3 dε̄A/dε̄B
σxx

B /σ̄B
= sin2ψ − H cos2ψ +

σ
yy
B

σxx
B

[(F + H) cos2ψ − H sin2ψ]− 2 P
σ

xy
B

σxx
B

sinψ cosψ, (A16)

with

A3 =
(1 − H α) sin2ψ + {(F + H) α − H} cos2ψ

A2
. (A17)

Finally, using the above equations, the residual is expressed as

cos2ψ + α sin2ψ√
1 + (F + H) α2 − 2H α

= (1 − fi) exp(ε3B − ε3A)

(
ε0 + ε̄B
ε0 + ε̄A

)n (
dε̄B
dε̄A

)m
√

B1 (dε̄A/dε̄B)
2 + B2

B3
, (A18)
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with

B1 = B4 B8 A2
3 − B6 B5 A2

3,

B2 = B5 B2
7 − B4 B2

9,

B3 = B8 B2
7 − B6 B2

9,

B4 = {(sinψ)2 + 2 K1 sinψ cosψ}2,

B5 = {(cosψ)2 + 2 K2 sinψ cosψ}2,

B6 = F + H + 2 P K2
1,

B7 = (F + H) (cosψ)2 − H (sinψ)2 − 2 P K1sinψ cosψ,

B8 = 1 + 2 P K2
2,

B9 = (sinψ)2 − H (cosψ)2 + 2 P K2 sinψ cosψ.

(A19)

The strain increments in thickness direction in homogeneous region (A) is calculated by using the
flow rule and the incompressibility equation

dε3A = A4 dε̄A, (A20)

where
A4 = −G + F α

A2
. (A21)

Due to the presence of angular groove, the calculation of the strain increment in inhomogeneous
region is lengthy but still straight-forward. Using Levy-von Mises flow rule along with previously
derived equations, thickness strain increments in inhomogeneous region are computed as:

dε3B = −
⎡⎣H6

√
B1 (dε̄A/dε̄B)

2 + B2

B3
+ H7

(
dε̄A
dε̄B

)⎤⎦ dε̄B (A22)

where

H1 = (sinψ)2 − H (cosψ)2,

H2 = (F + H) (cosψ)2 − H (sinψ)2,

H3 = −2 P sinψ cosψ,

H4 = H1 (cosψ)2 + H2 (sinψ)2 + 2 K0 sinψ cosψ (H2 − H1) + H3 (sinψ cosψ)− H3 K0 {(sinψ)2 − (cosψ)2},

H5 = H1 (sinψ)2 + H2 (cosψ)2 − H3 sinψ cosψ,

H6 = G (cosψ)2 + F (sinψ)2 + 2 K0 sinψ cosψ (F − G)− {G (sinψ)2 + F (cosψ)2} H4

H5
,

H7 =
A3{G (sinψ)2 + F (cosψ)2}

H5
.

(A23)
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3. Marciniak, Z.; Kuczyński, K. Limit strains in the processes of stretch-forming sheet metal. Int. J. Mech. Sci.
1967, 9, 609–620. [CrossRef]

4. Considère, M. Memoire sur L’emploi du fer et de L’acier dans les Constructions; Dunod: Malakoff, France, 1885.
5. Hill, R. On discontinuous plastic states, with special reference to localized necking in thin sheets. J. Mech.

Phys. Solids 1952, 1, 19–30. [CrossRef]

55



Metals 2018, 8, 631

6. Swift, H. Plastic instability under plane stress. J. Mech. Phys. Solids 1952, 1, 1–18. [CrossRef]
7. Hora, P.; Tong, L.; Reissner, J. A prediction method for ductile sheet metal failure in FE-simulation.

In Proceedings of the 3rd International Conference and Workshop on Numerical Simulation of 3D Sheet
Metal Forming Processes, Dearborn, MI, USA, 29 September–3 October 1996; Voume 96, pp. 252–256.

8. Tong, L.; Hora, P.; Reissner, J. Prediction of forming limit with nonlinear deformation paths using modified
maximum force criterion. In Proceedings of the 5th International Conference and Workshop on Numerical
Simulation of 3D Sheet Metal Forming Processes, Jeju Island, Korea, 21–25 October 2002.

9. Nurcheshmeh, M.; Green, D.E. Prediction of forming limit curves for nonlinear loading paths using quadratic
and non-quadratic yield criteria and variable imperfection factor. Mater. Des. 2016, 91, 248–255. [CrossRef]

10. Hora, P.; Tong, L. Theoretical prediction of the influence of curvature and thickness on the FLC by
the enhanced modified maximum force criterion. In Proceedings of the 7th International Conference
and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes, Interlaken, Switzerland,
1–5 September 2008; pp. 205–210.

11. Hill, R. A general theory of uniqueness and stability in elastic-plastic solids. J. Mech. Phys. Solids 1958,
6, 236–249. [CrossRef]
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Abstract: Automatic process modeling has become an effective tool in reducing the lead-time and
the cost for designing forming processes. The numerical modeling process is performed on a fully
coupled damage constitutive equations and the advanced 3D adaptive remeshing procedure. Based
on continuum damage mechanics, an isotropic damage model coupled with the Johnson–Cook flow
law is proposed to satisfy the thermodynamic and damage requirements in metals. The Lemaitre
damage potential was chosen to control the damage evolution process and the effective configuration.
These fully coupled constitutive equations have been implemented into a Dynamic Explicit finite
element code Abaqus using user subroutine. On the other hand, an adaptive remeshing scheme
in three dimensions is established to constantly update the deformed mesh to enable tracking of
the large plastic deformations. The quantitative effects of coupled ductile damage and adaptive
remeshing on the sheet metal forming are studied, and qualitative comparison with some available
experimental data are given. As illustrated in the presented examples this overall strategy ensures a
robust and efficient remeshing scheme for finite element simulation of sheet metal-forming processes.

Keywords: continuum damage mechanics; 3D adaptive remeshing; sheet metal forming

1. Introduction

The commercial finite element software has integrated various material models to describe
the thermal-visco-plastic behaviors of sheet metal in different forming processes (deep-drawing,
hydroforming, incremental forming, blanking). However, when materials are formed by these
processes, they experience large plastic deformations leading to the onset of internal or surface
micro-defects as voids and micro cracks. When micro-defects initiate and grow inside the plastically
deformed metal, the thermo-mechanical fields are deeply modified, leading to significant modifications
in the deformation process. On the other hand, the coalescence of micro-voids defects during the
deformation can lead to the initiation of macro-cracks or damaged zones, inducing irreversible damage
inside the formed part and consequently its loss. Taking into account the damage defect in sheet
metal forming necessitates not only the development of a continuum damage theory, but also its
coupling with the other mechanical fields. This is useful to avoid damage initiation to obtain a
non-damaged work-piece (hot forging, stamping, deep-drawing and hydroforming) and develop
the damage initiation and propagation to simulate the machining processes (orthogonal cutting,
blanking, guillotining).
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During the past decades, constitutive models of ductile damaged materials in the finite
deformation range have received considerable attention. An important point in such phenomenological
constitutive models is the appropriate choice of the physical nature of mechanical variables realistically
describing the damage state of materials. Two main methods exist to predict the macro-defect in sheet
metal forming:

(a) The first uncoupled approach aims to calculate the damage (initiation and growth) distribution
without taking into account its effect on the other mechanical fields (elastic, thermal, plastic, and
hardening). This approach is used to predict zones where local failure has taken place inside the
deformed work piece. Generally, this is achieved by post-processing the finite element analysis
for a given time step to calculate the damage distribution using the stress and strain fields [1–3].

(b) In the second fully coupled approach, the damage effect is directly introduced into the overall
constitutive equations and affects all the mechanical fields. In this case, the damage field assumes
that the degradation of structure is due to nucleation and growth of micro defects and their
coalescence into macro-cracks. The fully coupled approach has shown their ability to optimize
the process plane, not only to avoid the damage occurrence, but also to enhance the damage in
order to simulate any metal cutting processes [4–6].

Damage mechanics in metal assumes that the degradation of material due to nucleation
and growth of micro defects (voids and cracks), and their coalescence into macro-cracks [1–3].
McClintock [4] firstly develops the relationship between micro defects and ductile failure. After, three
main approaches based on micro-defects [5] are extensively used to describe the damage mechanics:
fracture mechanics [6], micro-based damage mechanics [7–10], and continuum damage mechanics
(CDM). This somewhat fully coupled approach accounts for the direct interactions between the plastic
flow, including different kinds of hardening, and the ductile damage initiation and growth. In CDM,
the damage is assumed to be one of the internal state variables which relates to material behavior
induced by the irreversible deterioration of microstructure. The function of damage variable works
with effective stress. Kachanov [11] is the pioneer to characterized ductile damage by a scalar to define
the effective stress. Without a clear physical meaning for damage, he introduced a scalar internal
variable to model the creep failure of metal under uniaxial loads. A physical significance for the
damage variable was given later by Rabotnov [12] who proposed the reduction of the cross sectional
area due to micro-cracks as a suitable measure of the state of internal damage.

Lemaitre and Chaboche developed the continuum damage mechanic for ductile damage later [13].
The constitutive equations of damage variables are derived from specific damage potentials by using
the effective state variables. These are defined from the classical state variables using one of the three
following hypotheses: strain equivalence, stress equivalence or energy equivalence. The coupled
constitutive equations of the damaged domain are generally deduced from the same state and
dissipation potentials in which the state variable are replaced by the effective state variables [13–16].

In recent years, sets of constitutive equations for elasticity, plasticity and thermo-visco-plasticity
coupled with ductile damage are given [15]. The works of Bouchard [17], Brünig [18], and Wang [19]
summarized and compared various damage models.

The Johnson–Cook (JC) hardening model is the most attractive among well-known visco-plastic
strain flow. This model takes into account both kinematic strengthening and adiabatic heating of
the material undergoing strains and can describe the dynamic behavior of materials, which works in
different thermal environments. For these advantages, the JC model has been modified in parameters
and various forms to fit the different material behaviors. Peirs [20] used the advanced experiment
method and finite element simulation tools to verify the material parameters in JC model, especially
the strain rate hardening and thermal softening parameters. Through enhancing the thermal softening
effects, the simulation results using corrected parameters agreed with the experiments and some
strain localization phenomena happened. Calamaz [21] directly changed the JC model to the form of
TANH model. A new term, which is controlled by temperature, was added to simulate the serrated
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chips formation in orthogonal cutting process. On the other hand, Zerilli and Armstrong proposed
dislocation-mechanics-based constitutive relations for different crystalline structures, in which the
effects of strain hardening, strain rate hardening, and thermal softening based on the thermal activation
analysis were incorporated into constitutive relations [22–24]. Holmquist et al. [25] and Hor et al.
and [26] propose a comparison of the models to be made independent of the material constants and
procedure for which constants can be determined for different constitutive models using the same test
data base.

In these models, the damage generates and evolves during tensile, shearing and cutting process
had never introduced. This point is not identical to the practical situation. Actually, the stiffness of the
material is deteriorating until to losing the abilities of loading which is following with the evolution
of damage. Johnson and Cook [27] have given out a threshold, which is a function of stress state
(stress triaxiality) for equivalent plastic strain. The damage generates when equivalent plastic strain
reaches to this threshold. The limitation of this damage model is that, it can only predict the onset
of the damage and the material stiffness will reduce to zero directly without any evolution process.
Some phenomena (like strain localization) are hard to obtain and it will also lead the instability into
the simulation system. Therefore, it is necessary to integrate a constitutive damage evolution into the
JC model. Based on this aspect, a constitutive equation which couple fully the ductile damage into
JC isotropic hardening model, is developed. These fully coupled constitutive equations have been
implemented into a Dynamic Explicit finite element code (Abaqus/Explicit) using user subroutine.
The local integration of the plastic-damage constitutive equations is performed using an asymptotic
implicit scheme applied to solve the nonlinear local equations.

Numerical errors are intrinsic in Finite Element Analysis (FEA) of sheet metal forming processes
and possess additional difficulties related to the large inelastic deformations with damage imply
a severe distortion of the computational domain [28,29]. In fact, the deformed domain undergoes
geometrical variation (large displacements and rotations) and are characterized by inhomogeneous
spatial distribution of thermo-mechanical fields with evolving localized zones (stress, plastic strain,
damage, temperature, etc.). In fact, the time and space discretization of the continuous differential
equations governing the physical equilibrium events lead inevitably to numerical errors. In this
case, frequent remeshing of the deformed domain during computation is necessary to obtain an
accurate solution and complete the computation until the termination of the numerical simulation
process. Accordingly, several remeshing have to be performed during the simulation in order to
preserve the reliability of the obtained results by minimizing errors generated by either the geometrical
transformations or the heterogeneous thermo-mechanical fields.

To decide when the remeshing is required during the analysis, some appropriate criteria are
needed and should be automatically executed during the FEA. These are generally based on a priori
and a posteriori error estimators. The main goal of any error estimator is the evaluation of the absolute
global error as an addition of the estimated local error for each element. For metal forming, the error
criteria is classified into three classes:

(1) Geometrical: estimation of the element distortion due to the large transformation of the domain.
Distortion criteria are based on the large variation of the geometry of finite elements with respect
to their reference state.

(2) Curvature: estimation of the element size needed to avoid inter-penetration between the deformed
domain and complex tools. This geometric estimator is based on the curvature of the tools angles
inside the contact zones.

(3) Physical: adaptation of the element size to the local or global variation of some physical fields as
temperature, displacement gradient, stress, plastic strain etc.

Accordingly, the damage growth induces a decrease in the stress-like variables generated by a
decrease in physical properties of the material. When all Gauss points within a given finite element
are fully damaged, the corresponding stiffness matrix is zero. Consequently, this element has no
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more contribution in the global tangent stiffness matrix and should be removed. Accordingly, there is
problem for elements lying in boundaries of the deformed domain need special attention when this
boundary is concerned with the contact zone between different domains (tools and deformable parts).
The best way to treat the fully damaged elements consists in remeshing the domain after dropping the
fully damaged elements and smoothing the newly created boundaries of the deformed part.

In this work the damage potential, introduced by Lemaitre [13], is used and coupled into an
elasto-visco-plastic material model through defining the effective stress and plastic strain like a
Johnson–Cook formulation [27]. 3D adaptive remeshing scheme using linear tetrahedral finite element
is developed in order to simulate the large plastic deformations and crack propagation after damage
occurring [28,29]. This scheme is established to simulate to predict when and where ductile damage
zones may take place inside the deformed part during tensile, compressive, and shearing tests.
The localization phenomenon of damage was illustrated clearly. The formation of the cracks and
its propagation to the final fracture of the specimen are also illustrated. Four various sheet metal
forming processes are proposed to prove that the numerical methodology is an advanced and a reliable
tool to simulate various metal forming processes in order to avoid damage in incremental forming,
deep drawing, and multi-point drawing or to enhance damage in order to simulate some sheet metal
cutting operations.

2. Methods and Constitutive Model

2.1. Visco-Elastoplastic Model Fully Coupled to Isotropic Ductile Damage

This section provides a brief description of the major conception for coupling the ductile damage
into the material elasto-visco-plastic behavior. The ductile damage is presented in the framework
of irreversible processes with state variables. An isotropic ductile damage variable D (0 < D < 1)
is measured in a macroscopic scale way through the surface density of intersection of micro-cracks
and micro-cavities at a representative finite elementary volume. In order to perform the effect of this
damage variable on the mechanical behavior, the effective state variables are introduced [11–16].

To another consideration, the damage caused by the micro-cracks and micro-cavities has a different
evolution processes in tensile and compressive load conditions. In one aspect, the micro-cracks are
opened in the tensile state and the module of elasticity reduces gradually until to zero. In another
aspect, the micro-cracks are closed in compressive state and the module of elasticity could be able to
restore to their initial values before the damage accumulates. This recovery effect of physical properties
after closure of micro-cracks is called the quasi-unilateral effect [30–37]. It demands that the definition
of effective state variable (σ̃, ε̃) should be in the unilateral condition.

According to the theory of energy equivalence, we define the effective variables, which consider
the isotropic ductile damage into state variables [38–42] as follows:

σ̃ =
σ√

1 − D
, ε̃e = εe

√
1 − D, S = σ− σH1 and σH =

1
3

trσ (1)

where εe is the small elastic strain tensor representing the elastic flow associated with the Cauchy
stress tensor σ, (S,σH) are the deviatoric and hydrostatic Cauchy stresses respectively and D is the
ductile damage associated with the potential Y.

The damaged elastoplastic behavior is described in the framework of the thermodynamics of
irreversible processes with state variables. The Helmholtz free energy in which elasticity and plasticity
are uncoupled gives the law of elasticity coupled with damage. Following the 2nd principle of
thermodynamics, non-negativity of the mechanical dissipation, the stress like variables (σ, Y) are
derived from the state potential taken as the classical free energy Ψ(εe , D) in deformation space [15,16],
as follows:
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⎧⎪⎨⎪⎩
σ = (1 − D)

(
2μe I + λe 1 ⊗ 1

)
: εe = (1 − D)Λ : εe

Y = 1
2ε

e : Λ : εe = J2(σ)
2

2E(1−D)2

[
2
3 (1 + ν) + 3(1 − 2ν)

(
σH

J2(σ)

)2
] (2)

where (λe,μe) are the classical Lame’s constants which are a function of Young modulus E and Poison’s
coefficient ν.

In order to couple the damage behavior, a single appropriate dissipation potential F(σ, Y, D) is
defined to govern the evolution law for internal variables in the stress space [39–42]:

F(σ, εp, Y, D)= f p + FY ≤ 0

⎧⎪⎨⎪⎩
fp(σ, εp, D) =

J2(σ)√
1−D

− R(εp)

FY(Y, D) = γ

(1−D)β
1

(α+1)

(
Y−Y0
γ

)α+1 (3)

The parameters (α, β and γ and Y0) are used to control the evolution of damage potential, R(εp)

is the JC isotropic yield stress in various visco-plastic flow and J2(σ) =
√

3
2 S : S is the second invariant

of the deviatoric Cauchy stress S.
For the case of time independent plasticity, the plastic strain rate tensor

.
ε

p and the rate damage
.

D
are obtained from the stationarity conditions as in which the plastic multiplier

.
δ is deduced from the

consistency condition [13]: ⎧⎪⎨⎪⎩
.
ε

p
=

.
λ

∂ fp
∂σ = 3

2

.
λ√

1−D
S

J2(σ)

.
D =

.
λ ∂FY

∂Y =
.
λ
(

Y−Y0
γ

)α 1
(1−D)β

(4)

where
.
ε

p
=

√
2
3

.
ε

p :
.
ε

p (5)

is the effective plastic strain rate.
Failure is assumed to initiate when the damage at a material point reaches the critical damage

value Dc. When this happens, the stiffness of the failed element is significantly reduced and
consequently incapable of carrying any load. The value of Dc for any material must be acquired
through experimental tests. Assuming a fully isotropic material behavior, the plastic multiplier
.
λ is obtained by the consistency condition

( .
f p = fp = 0

)
associated with the loading–unloading

condition [13–15]. It is a strictly positive scalar, which plays the role of Lagrange multiplier for
dissipative phenomena:

.
λ =

1
Hp

〈
3μe

√
1 − D

1
J2(σ)

S :
.
ε

〉
(6)

The non-symmetric fourth order tangent elastoplastic operator LT defining the stress rate
.
σ = LT :

.
ε is defined as [28,29,36,40]:

LT = 2μe(1 − D)− (1−D)
Hp

(
3μe

S
J2(σ)

Ä3μe
S

J2(σ)

)
− 1

Hp(1−D)β+ 1
2

(
Y−Y0
γ

)α(
3μe

S
J2(σ)

)
ÄS (7)

where Hp is the tangent plastic hardening module given by:

Hp = 3μe −
J2(σ)

2(1 − D)
β+ 3

2

(
Y − Y0

γ

)α

+
1√

1 − D
δR
δεp (8)

In this paper, the thermal effects are ignored [30–40] and the visco-plastic hardening yield stress
is written as:

R(εp) =
[
A + B(εp)n][1 + C ln

.
ε
.
ε0

]
(9)
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where εp is the equivalent plastic strain,
.
ε is the equivalent plastic strain rate. The initial strain rate

.
ε0 is

determined by experimental conditions. The parameters A, B and n represent the isotropic hardening
evolution and C represent the material viscosity. The fully isotropic rate formulation assumes the
small strain hypothesis in sheet forming processes where relative slow speeds and inertia effect can be
neglected and dynamic phenomena not occur during the process.

For the constitutive equations, this hypothesis is justified by the fact that the applied load
increments are still very small during remeshing procedure of sheet metal forming. Accordingly, the
total strain rate tensor

.
ε is additively partitioned

.
ε =

.
ε

e
+

.
ε

p with
.
ε

e and
.
ε

p are respectively the elastic
and plastic strain rate components.

2.2. Local Time Integration of the Constitutive Equations

The fully coupled constitutive equations presented above together with an iterative implicit
procedure for the time integration have been implemented using the user’s subroutine. By combining
the Equations (2) and (4) and saving the damage evolution equation one may obtain the following
system of two scalar equations [28,29]:⎧⎪⎨⎪⎩

f1
(
ΔDn+1, Δλn+1

)
= J2(σ)√

1−Dn+1
− 3GΔλn+1√

1−Dn+1
− Rn+1 = 0 (a)

f2
(
ΔDn+1, Δλn+1

)
= ΔDn+1

n n+1 − Δλn+1

(1−Dn)
β

(
Yn−Y0

γ

)α
= 0 (b)

(10)

This simple system is iteratively solved thanks to Newton–Raphson scheme to determine the two
unknowns at the time tn+1. The knowledge of (Δλn+1, Dn+1) allows the updating of the hardening
and damage variables at the end of the time step. The so-called elastic prediction-return mapping
algorithm with an operator splitting methodology is used. For the calculation of stress and plastic
strain tensors, accumulated plastic strain and ductile damage, we use the fully implicit Euler method
since it contains the property of absolute stability and the possibility of appending further equations to
the existing system of nonlinear equations [42,43].

The local numerical integration scheme is known to have important advantages for the constitutive
models with a single yielding surface together with a fully implicit global resolution scheme. This
approach within the coupled problem, consists in splitting it into two parts:

(1) Damaged elastic prediction, where the problem is assumed to be purely elastic affected by the
last damage value.

(2) Damaged-plastic corrector, in which the system of equations includes the damaged elastic relation
as well as the damaged-plastic consistency condition. Newton–Raphson iteration algorithm is
then used to solve the discretized constitutive equations in the damaged plastic corrector stage
around the current values of the state variables (plasticity, hardening, damage) [43].

Two procedures related to the damage coupling have been investigated. The first is the one
discussed above and called the strong coupled procedure is implemented into Abaqus subroutines.
The second one weak approach solves only the equation f1

(
ΔDn+1, Δλn+1

)
= 0 without damage effect

in order to obtain plastic multiplier Δλn+1. After the convergence the Δλn+1 is used to calculate the

damage increment without any iteration procedure ΔDn+1 = Δλn+1

(1−Dn)
β

(
Yn−Y0

γ

)α
.

If the ductile damage variable reaches its maximum value D ≥ Dmax at a given integration
point, the correspondent elastic modulus is set to zero giving zero stresses and no contribution to the
elementary stiffness matrix. This fully damaged integration point is excluded from the integration
domain of the element and has no more contribution in the elementary stiffness matrix. However, when
a node is found to be connected with fully damaged elements, giving a singular global stiffness matrix,
the calculation is terminated. In fact, this situation can be avoided by dropping the corresponding terms
from the stiffness matrix. A new mesh is then generated after removing the fully damaged elements.
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2.3. Global Resolution Strategy

The principal of virtual power written on the current damaged domain configuration with the
volume V and boundary Γ can be written as:

�
∫
V

..
u · δ .

udV = −
∫
V

σ : δ
.
εdV +

∫
V

f · δ .
udV +

∫
Γu

t · δ .
udΓ +

∫
Γc

tc · δ .
ucdΓ (11)

where δ
.
u (kinematically admissible) and δ

..
u are the virtual velocity and acceleration fields respectively

and δ
.
uc is the virtual velocity vector of contact nodes.

The deformed domain at each time is supposed to be discretized on isoparametric finite
elements (C0). By using the classical nodal approximation using displacement based Finite Element
Analysis FEA, Equation (11) can be easily written, on the overall part, under the following nonlinear
algebraic system:

I = ∑
e

Ie =

[
∑
e

(
[Me]

{ ..
uN

e

}
+
{

Fint
e

}
− {

Fext
e

})]{
δ

.
u
}
= 0 (12)

where [Me] is the consistent mass matrix and {Fext
e } and

{
Fint

e
}

are the vector of external and internal
forces defined as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

[Me] =
∫
Ve

�[NN]
T · NNdVe

{Fint
e } =

∫
Ve

[BN
e ]

T : σdVe

{Fext
e } =

∫
Ve

[NN] · {
→
f }dVe +

∫
Γu

[NN] · {
→
t }dΓe +

∫
Γc

[NN] · {
→
tc}dΓe

(13)

[
BN

e
]

is the geometric or strain-displacement matrix in the current configuration and [NN] is the matrix
of the nodal interpolation functions. The index e refers to the eth element.

The system (12) defines a highly nonlinear system expressing the mechanical equilibrium of the
work-piece and the tool at each time step. It can be solved either by iterative static implicit methods or
by explicit methods [44–51].

(1) The static implicit iterative procedure requires, at each time step, the calculation of the
consistent stiffness matrix in order to preserve the quadratic convergence property of the Newton
method. When the inertia effect is neglected, the system (Equation (12)) reduces to:

{Rn+1} =
{

Fint
e

}
n+1

− {
Fext

e
}

n+1 = {0} (14)

The nonlinear problem to be solved over the time increment as follows:

Ri
n+1 +

∂Ri
n+1

∂Uh
n+1

(ΔU)i+1
n+1 + . . . = 0 (15)

where the global tangent stiffness matrix at the time tn+1 and iteration (i) is defined by:

[K]in+1 =

[
∂Ri

n+1

∂Ui
n+1

]
=
[
KStructural

(
Ui

n+1

)]i

n+1
+
[
KContact

(
Ui

n+1

)]i

n+1
+
[
KForce

(
Ui

n+1

)]i

n+1
(16)

represents the contribution of the elastoplastic behavior to the structural stiffness; the contact and
friction stiffness and the external applied body forces.
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Note that the tangent matrix are generally non-symmetric and nonlinear because the material
Jacobian matrix are themselves non-symmetric. Due to its quadratic rates of asymptotic convergence,
this method tends to produce relatively robust and efficient incremental nonlinear finite element
schemes. However, the presence of the damage leads to a softening behavior and poses some difficulties
for the calculation of the consistent matrix. This, together with the evolving contact conditions, induces
some difficulties in the convergence of the iterative procedure. On the other hand, the Newton
type implicit iterative resolution strategies are unconditionally stable and allow using large time or
loading increments.

(2) The discretized dynamic explicit procedure is formulate as:

[M]n+1

{ ..
U
}

n+1
+
{

Fint
e

}
n+1

− {
Fext

e
}

n+1 = {0} ⇒ [M]n+1

{ ..
U
}

n+1
= {Rn+1} (17)

where the degrees of freedom {Un+1} are computed as:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

..
Un+1 = [M]−1

n+1Rn+1
.
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.

Un +
Δtn

2

( ..
Un +

..
Un+1

)
Un+1 = Un + Δtn

.
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(Δtn)
2

2

..
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(18)

The dynamic explicit procedure avoids the iteration procedure by performing directly a solution
of linearized algebraic system. It is extremely robust since there is no iterative procedure in solving
the global equilibrium problem and there is no need to construct any consistent tangent matrix. This
will reduce greatly the incremental size and generate a large number of increments to calculate the
applied loading. The computing cost then will increase sharply for calculating the tangent matrices in
each iteration. However, explicit procedure needs to control efficiently and automatically the time step
size in order to satisfy the accuracy and stability requirements [43]. The central difference operator is
conditionally stable according to the time increment Δt and the stability limit for the operator (with no
damping) [47]. Instead, it can be estimated by determining the maximum element dilatational mode
of the mesh, and to estimate the time step by:

Δt ≤ min
(

�

Cd

)
, Cd =

√
E(1 − ν)

�(1 + ν)(1 − 2ν)
(19)

where � is the mesh dependent stability factor and Cd is the current dilatational wave speed of the
material function of material density �, Young module E and Poisson ratio ν.

The unilateral contact with friction has a capital influence in metal forming processes in general
and particularly in cutting operations. In fact, evolving contact with friction takes place between the
formed metal sheet and the tools. The most widely used friction models implemented in FE codes are
supposed isotropic and time independent (Tresca or Coulomb model) or time dependent (Norton–Hoff
model). In this study, we limit ourselves to briefly describe the Coulomb isotropic model available in
Abaqus where finite sliding contact with arbitrary rotation of the surfaces of two contacting bodies
exist in sheet metal forming [22]. The Coulomb’s friction model is defined by:{

τeq < ηP ⇒ .
ut = 0 Sticking

τeq = ηP ⇒ ∃χ ≥ 0/
.
ut = −χτeq Sliding

(20)

where η is the temperature dependent friction coefficient,
.
ut is the relative tangential velocity at the

contact point lying on the contact boundary Γc; P is the normal contact pressure and τeq =
√

τ2
1 + τ2

2
is the equivalent tangential stress in tangential sheet plane. The so-called Signorini unilateral contact
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conditions where governs the contact between the master surface (representing the tool) and the slave
surface (representing the metal sheet deforming plastically):

un ≤ 0, Fn ≤ 0 and un · Fn = 0 (21)

where un =
→
u · →n c and Fn =

(
σ · →n c

)→
n c are the normal components of the displacement and

force vectors expressed in a local orthogonal triad and
→
n c is the normal between the bodies at the

contact node.
Note that conditions in Equation (21) are similar to the Kuhn–Tucker loading–unloading

conditions in classical plasticity. The inequality un ≤ 0 expresses the non-penetration condition,
Fn ≤ 0 expresses the fact that, at each contact point, the normal force is negative in the local triad.
Finally un · Fn = 0 is valid for two cases:

• Case 1: There is contact un ≤ 0 but Fn < 0
• Case 2: There no more contact un < 0 but Fn = 0

In the present work, the Dynamic Explicit resolution procedure is used within the general-purpose
FE code ABAQUS/Explicit. The fully coupled constitutive equations presented above together
with an iterative implicit procedure for the time integration were implemented using the user
subroutine VUMAT.

2.4. 3D Adaptive Remeshing Procedure

In sheet forming, the blank shape, the tools geometry and the forming process parameters define
the final product shape after metal forming. An incorrect design of the tools and blank shape or an
incorrect choice of material and process parameters can yield a product with a deviating shape or with
failures. A deviating shape is caused by spring-back after forming and retracting the tools. The most
frequent types of failure are wrinkling (high compressive strains) and necking (high tensile strains).
During the numerical simulation of sheet metal forming processes, the large plastic deformations
imply a severe distortion of the computational mesh of the domain. In this case, frequent remeshing of
the deformed domain during computation is necessary to obtain an accurate solution and complete
the computation until the termination of the numerical simulation process. In this field, Borouchaki
made great contributions in both 2D and 3D numerical simulations [48–52].

The advent of fast computers over the last few years has reduced the solution time once a mesh
with an acceptable quality is provided as input. Hence, to obtain a cost and time effective solution
to the forming problem is incremental remeshing of the work-piece at each step deformation. ‘When
to remesh?’, and, ‘how to remesh?’ are the two high level issues that must be considered when
automating process simulations. The criteria used to trigger an automatic remesh are collectively
called the remeshing criteria. Four sources of errors that influence the remesh criteria are:

(i) Geometric approximation errors;
(ii) Element distortion errors;
(iii) Mesh discretization errors;
(iv) Mesh rezoning or physical errors.

The impact of the different types of errors encountered based on metrics to measure them will key
a remeshing step. The process of remeshing focuses on controlling these errors so that the simulation
can continue.

• Until recently, the remeshing process was performed manually and potentially took several days
for each remeshing (several are typically needed to model the entire process) of 3D domain. In
addition, manual remeshing can potentially smooth the geometry thus preventing boundary
defects from being detected, or, introduce constraints that result in false prediction of surface
defects from process modeling.
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• Hence, a 3D modeling system, that would automatically generate a new mesh on the deformed
domain and continue the analysis, can dramatically reduce the overall modeling time and result
in this technology being widely used in the design of industrial forming processes.

This section presents 3D adaptive remeshing scheme based on the linear tetrahedral element. The
application environment for this scheme was established by python script, which integrates the 3D
adaptive mesher, the Abaqus/Explicit solver and the point-to-point field transfer algorithm to new
mesh. In order to control the mesh size adaptively and optimize the element quality automatically,
both the geometrical and physical error estimates criteria are developed in our scheme [47–49].

We consider computational deformable domain of R3, each domain Ω being defined from its
boundary Γ which is expressed analytically by G0(Γ). We assume that domains of tool Πk are rigid. Let
us denote by Ωj,k the subset of deformable domains Ω which are in contact with a given rigid domain
Πk. To construct an initial mesh of each deformable domain Ω, at first each boundary of domain Γ
is discretized and then the mesh of domain Ω is generated based on this boundary discretization.
The discretization of boundary Γ is obtained from its analytical definition G0(Γ). The method proposed
in [25] is used to construct the initial “geometric” discretization T0(Γ) of the boundary Γ.

Based on this discretization, an initial tetrahedral coarse mesh T0(Ω) of deformable domain Ω
is generated. This initial mesh can become invalid after a mechanical computation involving large
deformations (zero or a negative Jacobian in one or more elements). The new mesh representation
must preserve the original topology of the mesh and must form a “good” geometric approximation to
the original mesh with respect the criterion related to the shape of the elements.

In the classical Euclidean space, a popular measure for the shape quality of a mesh element K in
three dimensions is:

Q(K) = min
1≤i≤4

[Qi(K)], Q(K) = ξ
V(K)

[∑ 2(e(K))]3/2 (22)

where V(K) denotes the volume of element K, i the vertex of K, e(K) the edges of K and ξ is the
coefficient such that the quality of a regular element is valued by 1. From this definition, we deduce
0 ≤ Q(K) ≤ 1 and that a nicely shaped element has a quality close to 1 while an ill shaped element
has a quality close to 0.

The final deformation after the whole simulation is assumed to be obtained iteratively by “small”
deformations (which is the case in the framework of an explicit integration scheme to solve the
problem). After such a small deformation, rigid domains are moved and deformable domains are
slightly distorted (assuming that each mesh element is still valid).

The new geometry Gj(Γ) of boundary Γ can be defined in two ways, either by preserving a
geometry close to the one before deformation, or by defining a new “smoother” geometry.

(1) In the first case, the new geometry is simply defined by the current discretization Tj−1(Γ) of the
boundary, and the new mesh nodes of Tj(Γ) are placed on the elements of this discretization.

(2) In the second case, the new geometry is defined by a smooth curve interpolating the nodes and/or
other geometric features of the current boundary discretization Tj−1(Γ). The new nodes are then
placed on this curve. The advantage of this second approach (which seems more complicated) is
that the geometry of domain Ω remains smooth during its deformation.

The new geometry Gj(Γ) of the domain includes two types of deformations:

(1) Free node deformations: this type concerns the deformations due to mechanical constraints
(for instance equilibrium conditions), freely in the space. In this case, the new geometry of the
domain after deformation is only defined by the new position of the boundary nodes as well as
their connections.

(2) Bounded node deformations: these are the deformations limited by a contact with another
domain (deformable or rigid tool domains for example). In this case, domain Ω locally takes the
geometric shape of domains in contact Ωk.
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Based on the above classification of deformations, the free and bounded boundary nodes can
be identified using the Hausdorff distance (δ). It consists in associating with each surface of part a
region centered at this surface and in examining the possible intersection between the regions of the
considered domain and those of the other domains. A node of the considered domain is classified as
bounded if it belongs to one of the regions associated with the other domains or vice versa.

Formally, the region Rδ(e) associated with an edge e is defined by:

Rδ(e) =
{

X ∈ R3, d(X, e) ≤ δ
}

(23)

where d(X,e) is the distance from point X to edge e, and δ is the maximum displacement step of
domain Ω.

The above node identification allows us to define the new mesh size of boundary nodes.

1. If the node is free, the size is proportional to the curvature radius of the new domain boundary or
the new geometry Gj(Γ).

2. If the node is bounded, the size is proportional to the curvature radius of the neighboring part of
the related domain Ωk in contact.

The following remeshing scheme is applied to each deformable domain Ωi after each step
increment load j:

(a) Definition of the new geometry Gj(Γ) after computation of the field solution S associated to
mesh T.

(b) A posteriori geometrical error estimation from S including mesh gradation control to define
a new discrete metric map: gap between the new geometry Gj(Γ) and the current boundary
discretization Tk−1(Γ). Definition of a geometric size map hg,j(Γ) necessary to rediscretize the
boundary Γ of the domain Ω.

(c) A posteriori physical error: gap between the physical solution Sj−1(Ω) obtained in Ω and an ideal
“smooth” solution considered as the reference solution. Definition of a physical size map hϕ,j(Ω)
necessary to govern the remeshing of domain Ω.

(d) Calculation of size map hj(Ωj) = minimum (hg,j(Γ) and hϕ,j(Ω)).

(e) Definition of a unique size map with size gradation control parameter (fixed by the users between
1.2 and 2.15) resulting in a modified size map hj(Ωj).

(f) Adaptive rediscretization Tj(Γ) of the domain boundary with respect to the size map hj(Ωj|Γ).

(g) Adaptive remeshing Tj(Ω) of the domain with respect to the size map hj(Ω).

(h) Interpolation of mechanical fields Fj−1(Ω) of the old mesh on the new mesh Tj(Ω).

(i) Loop if necessary.

The overall adaptive methodology is implemented in the Optiform mesher package (see Figure 1).
It includes the remeshing strategy, the interpolation error and the field transfer from the old mesh
to the new one. For the simulations of sheet metal forming processes, a special procedure has been
developed in order to execute Abaqus software [47] step by step. At each load increment, and after the
convergence has been reached, the overall elements are tested in order to detect the fully damaged
elements (elements where the damage variable has reach its critical value in all Gauss points). If so,
the fully damaged element is removed from the structure and a new adaptive meshing of the part is
worked out. The physical fields are interpolated from the old to the new mesh and the next loading
step is worked out.
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Figure 1. Flowchart of the 3D adaptive numerical methodology.

3. Results and Discussion

This section is dedicated to the validation of the proposed numerical methodology to simulate
tensile, shearing, compression, and sheet metal forming processes using Abaqus/Explicit coupled with
adaptive remeshing procedure. The characterization of the behavior of a given structure (titanium,
copper, steel, and aluminum alloys), needs the knowledge of the material parameters. The difficult
and not yet satisfactorily solved problem consists to compute automatically the material parameters
under concern, by comparison with the available experimental database.

From a theoretical point of view, this defines a mathematical optimization problem using
appropriated inverse analysis termed here as an identification procedure. Two different approaches
(deterministic and statistical) exist to relate the problem of parameter identification to a least squares
problem. In the deterministic approach, the inverse problem is expressed in a relaxed form and one
just trying to minimize a distance between the data from a model and the experimental measurements.
In the statistical approach, the inverse problem is seen as the search for the set of parameters which
maximizes the probability of carrying out the experimental measurement.

In this study, the inverse constitutive parameter identification using Nelder–Mead Simplex
algorithm is used [53,54]. The importance of this identification procedure is proportional to the
increasing of the so-called advanced constitutive equations describing many coupled physical
phenomena. The identification of the isotropic, isothermal elastoplastic constitutive equations
accounting for isotropic hardening and ductile damage is based on the following steps [22,55]:

• The used database contains only uniaxial tensile tests conducted on a given specimen until the
final fracture;

• The plastic parameters (A, B, C, n,
.
ε0 = 1) are determined on the hardening stage when damage

effect is very small and can be neglected. The strain velocity is supposed fixed;
• The damage parameters (Y0,α,β,γ, Dc) are determined using the softening stage of the

stress-strain curve;

The inverse identification procedure is performed by integrating the above constitutive equations
on a single material point submitted to the tensile loading path using Matlab Software (Nelder–Mead
Simplex algorithm) and the user’s subroutine. Using material parameters determined above, the real
specimen in tensile, shear or compression test is simulated by FEA and the global force-displacement
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curve is compared to the experimental one. If needed, the material parameters are adjusted and
new FEA simulations are performed until the experimental and numerical force-displacement curves
compares well.

Some obvious phenomena, like strain localization and damage evolutions, were presented in order
to test the capability of the proposed fully coupled model and adaptive remeshing scheme to simulate
the sheet metal forming process like blanking, multi-point drawing, single incremental forming and
deep-drawing. All the numerical simulation are performed on the Dell Precision T7600 Workstation,
2× Intel Xeon E5-2670 2.6 GHz 4 CPU Cores Processors; 128 GB Memory, Ubuntu Linux 64Mbit.

3.1. Uniaxial Tensile Test of XES Steel Sheet

The proposed constitutive equations are used to predict the stress-strain curve of XES steel
which is used in the tensile experiment [20]. The fully coupled damage constitutive equations are
implemented to predict the maximum stress σmax = 383 MPa, the plastic strain at damage initiation
ε

p
c = 0.22 and the plastic strain to fracture ε

p
max = 0.26. The damage evolves from the damage

initiation to the fracture Dmax = 0.99 and the material stiffness degrades from maximum tensile force
to zero. The best parameters found to fit the experiment stress-strain curve are shown in Table 1.
The validation focused on the tensile specimen with the dimension of 8.9 mm × 3.2 mm × 0.5 mm
subject to displacement load of V = 5 mm/s (see Figure 2).

The tensile tests are simulated firstly without remeshing for both coupled and uncoupled damage
with plasticity cases. The 3D hexahedral finite elements with reduced integration (C3D8R) are used
and a fine mesh (size is hmin = 0.01 mm in the region of plastic strain localization) is applied. Secondly,
the remeshing procedure is applied, with the parameters given in Table 2, to simulate the localization
of the equivalent plastic strain and the ductile damage. The iso-values of the damage in the specimen
with/without remeshing procedure using tetrahedral finite elements are shown in Figure 3:

(1) In the coupled model without remeshing procedure (Figure 3b), the damage localization appears
in the middle at a displacement of U = 0.5 mm. Then, two shear bands are formed quickly at a
displacement of U = 1.24 mm. The damage variable reaches to the maximum value Dmax = 0.99
in the cracked zones at a displacement of U = 1.5 mm.

(2) In the uncoupled model (Figure 3a), no damage and shear bands localization exist.
(3) In the coupled model with remeshing procedure the damage focused in the center of the specimen

in Figure 3c and the shear band extended from center to the two sides along the direction of a 45◦.
Then, the crack generates in the center at a displacement of U = 1.0 mm and propagates along
the shear band when the tensile displacement increased from U = 1.586 mm to U = 1.587 mm
(see Figure 4).

The predicted force-displacement curves are compared with the experiment result in Figure 5.
From these figures, one can observe the predicted results fit well the experiment values in the plastic
stage and the effect of the damage-induced softening are clearly in the simulation using fully coupled
damage constitutive equations.

The mesh size sensibility was also studied by comparing the tensile force-displacement curves
for three minimum values hmin = 0.5, 0.1 and 0.05 mm as shown in Figure 6. It is clear that the
damage evolution is sensitive to the element size, and the damage variable accumulates more quickly
in the smaller mesh size. Table 3 presents the time performance (CPU time, number of elements)
of numerical simulation with different mesh size hmin = 0.05, 0.1 and 0.5 mm). It is possible to
confirm remeshing with small mesh (156,847 elements) advantage even for higher adaptive refinement
compared with the coarse mesh (35,128 elements). A significant reduction in the overall error and
CPU time (170%) in tensile stresses force is observed for fine meshes. These results prove that the
proposed numerical methodology using elastoplastic fully coupled ductile damage model and adaptive
remeshing procedure is reliable to predict the material behavior.
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Table 1. Material parameters of the used XES steel [55,56].

E (GPa) ν A (MPa) B (MPa) n C Y0 (MPa) α β γ (MPa)
.
ε0

210 0.29 150 448 0.406 0.025 0 2 1 0.37 1

Table 2. Adaptive remeshing parameters for the tensile test of the XES steel.

hmin (mm) hmax (mm) Physical Adaptive Critical Value Dc Dmax

0.05 2.0 Equivalent plastic strain 0.48 0.99

Table 3. Remeshing time performance of tensile test.

Element Number CPU Global Error Estimation

Coupled model with remeshing: hmin = 0.05 156,847 1 h 13 min 2.1%
Coupled model with remeshing: hmin = 0.1 88,168 55 min 8.5%
Coupled model with remeshing: hmin = 0.5 35,128 41 min 17%

Coupled model without remeshing 29,889 22 min -
Uncoupled model without remeshing 15,289 15 min -

Figure 2. Geometry and dimensions for tensile specimen.

   

(a) Uncoupled model 
without remeshing 

(b) Coupled model 
without remeshing 

(c) Coupled model with 
remeshing 

Figure 3. Ductile damage localization in various cases.
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(a) U = 1.0 mm (b) U = 1.40 mm (c) U = 1.588 mm 

Figure 4. Micro-crack initiation, growth and propagation in shear band localization [57].

Figure 5. Tensile force versus displacement of the XES Steel with and without remeshing.

Figure 6. Mesh size effects on the response of force versus displacement.

3.2. Pure Shear Test of Titanium Alloy Sheet

In the above tensile simulation, a short shear band was already observed after damage localization
and propagation. With respect to the tensile test, there is no sectional reduction in the shear sample
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and pure shear stress conditions are imposed. The application to shearing test is compared with
the Peirs’ work in literature [20]. The shear specimen of Peirs was recently studied and compared
with other shear geometries proposed by Abedini [58] in which its capabilities for constitutive and
fracture characterization of sheet metals was discussed. The low stress triaxiality in shear reduces the
damage-accumulating rate, which can lead to a large strain than that in tensile test. The used shearing
specimen dimension is shown in Figure 7.

The specific center shape of the specimen is adapted in order to concentrate shear stress in this
zone. The titanium alloy was used, but the plastic hardening and damage parameters are estimated
from the experimental shear curve (see Table 4). With these parameters, the maximum equivalent stress
is about σmax = 1340 MPa, and a ductility of εp

max = 0.297 [55,56]. As shown in Figure 8, the coupled
material model had fit the experiment value well when equivalent plastic strain less than εp = 0.21
and the material damage accumulate rapidly to Dmax = 0.99 when equivalent plastic strain εp = 0.297.
The parameters of remeshing procedure are given in Table 5 and the initial coarse mesh for adaptive
remeshing scheme with 3000 linear tetrahedral finite elements is illustrated in Figure 7.

Figure 7. The dimension of shearing specimen and the initial mesh for adaptive remeshing scheme.

The simulation of shear test is also under a load of constant velocity (V = 10 mm/s). Firstly,
the predicted ductile damage generated not in the center of shearing specimen but on both sides
where near to the shear band for U = 0.40 mm (Figure 9a). Afterwards, the damage is initiated in the
center of the specimen for U = 0.60 mm (Figure 8b) and propagated fast until U = 0.72 mm (Figure 9c).
Then, the micro-crack is localized along the shear band when the specimen is completely damaged for
U = 0.74 mm. As seen in Figure 9d, the size of finite mesh was refined adaptively to the minimum
value in the region where micro-crack propagated. Finally, the specimen fractured when the tensile
displacement was between U = 0.74 mm and U = 0.75 mm. The damage variable and the 3D damage
section were illustrated in Figure 9e.

This simulation process described a very clear phenomenon of the shear band formation and
the crack propagation. The shear band and the crack propagation direction in pure shearing stress
condition are in a straight line, which is obviously different comparing with the tensile test. Figure 10
shows the comparison of the predicted force versus displacement curves for this fully coupled
model obtained with adaptive remeshing under a controlled displacement with the constant velocity.
According to this figure, can note that the strong effect of the softening induced by the damage
occurrence giving a final fracture of the specimen around U = 0.75 mm. The maximum force is
Fmax = 1504 N reached for U = 0.68 mm.

Table 4. Material parameters used for shear test of titanium alloy [55,56].

Plastic Hardening Parameters Ductile Damage Parameters

A (MPa) B (MPa) C n Y0 (MPa) α γ (MPa) β

951 892 0.027 0.37 0.15 2 9.3 1
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Figure 8. Experimental and predicted stress–strain curve of the TC4 titanium alloy.

Table 5. Adaptive remeshing parameters for the pure shearing test.

hmin (mm) hmax (mm) Physical Adaptive Critical Value Dc Dmax

0.05 2.5 Equivalent plastic strain 0.3 0.999

(a) U = 0.40 mm (b) U = 0.60 mm: damage localisation 

(c) U = 0.72 mm: damage formation (d) U = 0.74 mm: damage propagation 

Figure 9. Cont.

75



Metals 2018, 8, 991

(e) U = 0.75 mm: Fully damaged specimen 
 

Figure 9. The localization of damage, the formation and propagation of crack in the coupled model
with remeshing.

Figure 10. Comparison of predicted force versus displacement with experimental results.

3.3. Compression of Thin Truncated Aluminum Sheet Cylinder

The third test concerns the study of truncated aluminum alloy 5086 sheet cylinder compression.
The thick truncated cylinder sheet of thickness t = 5 mm and radius R = 22.5 mm is compressed
between rigid flat tools that tend to flatten it a displacement of U = 10 mm (see Figure 11). Following
with the move of the top tool, the localization phenomenon of damage, the formation of a crack and
its propagation to the final fracture of the truncated cylinder was clearly simulated. The aluminum
alloy 5086 is primarily alloyed with magnesium and is a high strength structural alloy. It is not
strengthened by heat treatment, instead becoming stronger due to strain hardening, or cold mechanical
working of the material. The chemical composition of the used alloy is: Al 95.4%, Mg 4%, Cr 0.15%,
and Mn 0.4%. The elastic-plastic and damage parameters of the aluminum alloy (5086) are given in
Table 6. The plastic parameters of the material are obtained, from the experimental curves, in which the
maximum stress is about σmax = 366 MPa for equivalent plastic strain εp = 0.17 and then the material
stiffness deteriorates to zero when equivalent plastic strain equal to ε

p
max = 0.27 (Figure 12) [55,56].

The numerical meshing parameters of the compression test are presented in Table 7. The proposed fully
coupled methodology will be applied to improve compression test by avoiding the ductile damage
occurrence in order to obtain a final part free from any defect.

Firstly, the damage generated at the four corners of the specimen, which contact with the
compressive tools. After the accumulation of the plastic deformation, the damage in the center
of the specimen was appearing as in Figure 13a when the top tool moved to U = 6.0 mm. Initially the
damage is initiated at the four corners of the cylinder that come into contact with the top and bottom
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flat tools. After an accumulation of the plastic deformation is located in the center of the cylinder and
the beginning of damage appeared for a displacement of the upper tool of U = 6.0 mm as shown in
Figure 13a. The damage accumulated is propagated more rapidly from the center to the four corners
of the cylinder at each compression stage. When the top tool move to U = 8.1 mm, the fully damaged
element was generated and deleted firstly in the center as shown in Figure 13b. Two shear bands along
the direction of 45◦ and 135◦ generated quickly after the center elements lost their stiffness. The crack
propagated from center to the four corners along these two shear bands, and one main crack elongated
faster than another as shown in Figure 13c. Finally, the specimen fractured when the top tool moved
from U = 8.7 mm and U = 8.8 mm. The damage variable in the cross section of damaged specimen
illustrated in Figure 13d. The final experiment fracture is presented in Figure 13f and two obviously
cracks elongated from the center to the four corners. It is clear that the macro-crack initiation and
propagation after damage localization were well simulated in the model using adaptive remeshing
procedure for compressive test.

The predicted force-displacement curves using the fully coupled model and adaptive remeshing
procedure under a controlled displacement was compared to the experiment values in Figure 14.
From this figure, the effect of the softening induced by the damage occurrence giving a final fracture
of the specimen around U = 8.7 mm which is a little earlier than that in experiment of U = 9.7mm.
The predicted maximum force for coupled model is Fmax = 105.7 kN which is also a slightly smaller
than that of experiment value Fmax = 106 kN. It is remarkable to see that the maximum force and the
displacement corresponding to the final specimen cutting are predicted with a good precision (0.8%
error) but over estimates the decrease of the compression-force in the softening stage.

However, for uncoupled approach, the total force increased monotonously and had non-degradation
of the structure and the specimen is not completely damaged (see Figure 13e). Under the help of
the adaptive remeshing procedure, only the coupled constitutive equation can predict the damage
behavior clearly for compressive test.

Table 6. Material parameters of aluminum alloy 5086 [55,56].

Elastic Parameters
E (GPa) ν

85 0.38

Plastic Parameters
A (MPa) B (MPa) C n

150 460 0.025 0.41

Damage Parameters
Y0 (MPa) α γ (MPa) β

5 2 0.8 0

Table 7. Adaptive remeshing parameters for the compressive test of aluminum alloy 5086.

hmin (mm) hmax (mm) Kill Element Physical Adaptive Critical Value

0.5 1.0 Dmax = 0.99 εp 0.27

Figure 11. Dimension of truncated cylinder thick sheet and initial mesh.
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Figure 12. The material stress–strain curve obtained by experiment and simulation models.

  

(a) U = 6.0 mm damage localisation (b) U = 8.1 mm damage formation 

  

(c) U = 8.7 mm damage propagation (d) U = 8.8 mm Final fracture (coupled with remeshing) 

 
Coupled model  

 

Figure 13. Cont.
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Uncoupled model   

(e) U = 10 mm uncoupled and coupled models 
without remeshing 

(f) Experimental compression before and after 
compression for U = 9.68 mm 

Figure 13. The localization of damage, the formation and propagation of crack in compressive test.

Figure 14. Comparison of predicted compression force response and experimental values.

3.4. Blanking of Oxygen-Free-High-Conductivity (OFHC) Copper Sheet Metal

The main purpose of the numerical simulation is to “virtually” predict a final sheared edge
free from any defect (ratio of the burnished edge, burr height), to estimate the residual stress profile
through the thickness and the maximum blanking force versus displacement. The punch force and
penetration at fracture are important for tool and machine dimensioning. The shape of the cut edge
and the burr height are crucial for the final product quality. The prediction of these parameters by
numerical adaptive simulation may be very helpful in blanked or sheared part design.

This section focuses on simulating the sheet metal blanking process using the fully coupled model
using the numerical methodology. The sheet metal is oxygen-free-high-conductivity (OFHC) copper.

The numerical model will be validated through comparing the blanking force and the profiles of
sheared edges with the experimental values [59]. The geometrical model and the boundary conditions
of cylindrical sheet metal blanking are described in Figure 15. For the friction of contact, the surface to
surface contacts is defined between tools and piece; the self-contact is defined in the piece when some
fully damage elements are removed. The friction coefficient between the blank and tools is taken as
representing ‘dry’ friction without lubrication is used in both surface to surface contact (punch/die
and work-piece) and self-contact (fractured surface).

The blanking parameters used to blank the sheet of OFHC copper sheet are presented in Table 8.
The material parameters used in this model are listed in Table 9 and it accurately predict the material
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behavior with a maximum stress of σmax = 350 MPa, εp = 0.77 and ε
p
max = 0.9. In order to save

the computing cost, quarter of the round sheet is considered. The round sheet is initially discretized
by a very coarse mesh (453 linear tetrahedral elements as shown in Figure 16a). Geometrical error
estimation and the contact region with tools (punch and die) with respect the minimum size hmin then
control the adaptive mesh (Table 10). In the following steps, the mesh regenerates adaptively according
to the plastic strain and the damage variable. When the damage accumulates Dmax > 0.99, the element
will be removed and a new boundary will be generated. The macro-crack initiation and propagation
during the sheet blanking were analyzed at each punch penetration in Figure 16b for U = 0.01 mm and
in Figure 16c for U = 0.2 mm. The copper sheet was fully cut for U = 0.33 mm.

The predicted force versus displacement with/without adaptive remeshing is compared with the
experiment results in Figure 17. Note that the predicted result without adaptive remeshing deviates to
the experiment values more and more severely with the increasing of the punch displacement. These
differences are due essentially to the qualities of finite elements, despite the used large number of
elements (230,150) and to the convergence of the computational procedure. Also, note that the overall
error is very large (19.0%) in the case without remeshing with significant time calculations (3 h 48 min).
In the case of adaptive remeshing procedure, the predicted curve is in agreement with the experiment
values with a maximum force of Fmax = 3235 N (experimental value Fmax = 3353 N) and displacement
at fracture Uf = 0.34 mm (experimental value Uf = 0.36 mm). Also note that in this case using a number
of elements not high (54,519), the overall error is small (1.23%) with relatively correct time calculation
(2 h 17 min) (see Table 11).

The depth of Rollover (LR), Burnish (LB), Fracture (LF) and Burr (LBurr) define the morphology of
the sheared edge of sheet. Compared to the experimental results given by Husson [60], the predicted
sheared edges with LR = 0.5 mm, LB = 40 μm, LF = 268 μm and LBurr = 260 μm using both the models
with and without adaptive remeshing scheme are shown in Figure 18. It is clear that the morphology
of sheared edge predicted by adaptive remeshing scheme (middle) is similar to experiment one (right).
The rollover depth Lr = 55 mm and burnish depths LB = 271 mm are a little bigger than the experimental
ones (Lr = 40 mm and LB = 268 mm) and there is no burr generate in this blanking condition. The
fracture angle α and rollover radius R are almost the same. Against in the case of a model without
remeshing procedure the sheared edge profile obtained remains unrepresentative of the experimental
result and is not in agreement with experimental profile. For these results, we can nothing that only the
adaptive remeshing scheme is able to predict the sheared edge profile of sheet cutting (see Table 12).

Figure 19 illustrates the damage evolution at the sheared edge during blanking process.
We observe that the damage starts from two sides which contact with the tool tips (U = 0.10 mm)
and extends to the center of sheared edge (U = 0.2 mm). When the punch achieves U = 0.31 mm,
the elements fully damage at the sheared region are removed and a macro-crack is formed.

Figure 15. Geometry parameters and boundary of blanking process.
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Table 8. Geometrical parameters of sheet blanking.

t (mm) RP = RD (mm) J (mm) DP (mm) DD (mm)
Blanking

Frequency
Friction Coefficient

Tools/Sheet μ

0.58 0.01 0.0145 3.5 3.53 700 (stroke/min) 0.02

Table 9. Elasto-plastic and damage parameters of the oxygen-free-high-conductivity copper [55,56].

E
(GPa)

ν
A

(MPa)
B

(MPa)
n C Y0

(MPa)
α β

γ

(MPa)

.
ε0(s−1)

124 0.34 90 292 0.4 0.025 0.38 0.2 0.3 0.37 1

Table 10. Adaptive remeshing parameters for the blanking of the OFHC sheet.

hmin (mm) hmax (mm) Dc Dmax δ (mm)

0.015 5 0.5 0.99 0.026

Table 11. Adaptive remeshing time performance of blanking process simulation.

Element Number CPU (hours) Global Error Estimation

Without remeshing 230,150 3 h 48 min 19%
With remeshing 54,519 2 h 17 min 1%

Table 12. Predicted blanking performance and sheet characterize with and without remeshing.

Fmax (N) Uf (mm) α R (mm) LR (μm) LB (μm) LF (μm) LBurr (μm)

Without remeshing 6640 0.53 - 0.65 56.5 270 248 55
With remeshing 3235 0.35 7◦ 0.53 55 271 242 0

Experiment 3353 0.36 5◦ 0.50 40 268 260 0

 

(a) Initial mesh (b) U = 0.01 mm 

 
(c) U = 0.20 mm (d) U = 0.33 mm (final) 

Figure 16. Iso-values of damage variable at different blanking step.
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Figure 17. Predicted blanking force versus punch displacement with and without remeshing.

 
Figure 18. Sheared edges morphologies of sheet: Experimental–simulation with and without remeshing.

 

Figure 19. Damage initiation and growth in the center of OFHC copper sheet (Point A) during
the blanking.

3.5. Multi-Point Forming of Thick Steel Sheet

Curved sheet metal parts are widely used in automotive and aerospace industries. Traditional
deep-drawing or hydroforming process is difficult to deform plastically thick sheet. The fundamental
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component in the Multi-Point Forming (MPF) press is a pair of matrices of punches, which
approximates to a continuous forming surface of dies [61]. MPF is a flexible forming technology,
which is suitable to produce customized products. The factors influencing the shape accuracy of the
final product are analyzed in order to minimize the spring-back.

The objective of the Multi-Point forming of thick steel sheet simulation is to highlight the abilities
and capacities of numerical procedure to simulate complex shapes and its relative robustness of the
quality of the final product obtained by discrete of the multipoint tool contact. According to the fact
that the MPF operation is axisymmetric, only half of the billet section is modelled. Figure 20a shows
the upper and lower matrices of square punches with curved ends in the MPF press, 100 punches
for an effective forming surface of 1700 mm × 1700 mm. The initial thick sheet of steel material is
1500 × 1500 mm2 and 40 mm of thickness is discretized with linear tetrahedral finite element. Tools
(punch and die) are supposed as rigid surfaces. The output of the simulation is given in terms of
the sheet profile, the strain history as well as the punch forming forces. Comparison between the
simulation results and the experimental data is made.

The materials parameters of the used steel should be determined using the experimental results
obtained from classical tensile tests conducted until the final fracture of the specimens. The damage
parameters have been estimated in order to have a maximum stress σmax = 1200 MPa, for εp = 12%
and a rupture of εp

max = 35%. A master–slave contact approach is used in the analysis where the
tools are considered as the master surfaces, and the top and the bottom surfaces of the blank (surface
facing the punch and the die) constitutes the slave surfaces. Friction (with coefficient η = 0.12) is
introduced using Coulomb model and the interaction between the sheet and the billets is formulated
using finite sliding approach, which allows for the possibility of separation between the two surfaces
during sliding.

The adaptive remeshing simulation is performed under a load of constant velocity (V = 2 mm/s)
and the small punch displacement U = 10 mm of the sheet were loaded by numerous small time steps.
The simulation consists, in the present case, of 230 computational steps such an adaptive remeshing
process ensures a maximum error in the whole computational domain to be limited by the threshold
excepted in the zone where the element size hmin = 0.1 mm and hmax = 5 mm is achieved (see Table 13).

Figure 20b–g illustrates the predicted deformed sheet ate each step with respect to the punch
displacement. Noting that the mesh is only adapted when the punches are close to the sheet for
Rδ(e) ≤ 1 mm. It can also be noted that the plastic strain and damage (Dmax < 0.12) remains very low.
Quantitative comparison with experimental result provides the performance of the proposed approach
(Figure 20h).

The curves of forming force versus punch are presented in Figure 21 with and without remeshing.
It can be seen clearly that the forming force depends on the contact state. During the initial forming
step the punch force is small estimated at Fpunch < 500 kN, and it increases very slowly since only a few
punches contact with sheet (Fpunch < 750 kN). After the displacement of punch reaches a value about
the 3/4 of the total tool move more and more punches get into contact with sheet and the forming
force increases sharply. At the end of MPF process the forming force reaches its maximum since all
punches contact with sheet (Fpunch = 3500 kN).

The formed work-piece profiles, before and after the spring-back, are shown in Figure 22. From
these results, it is concluded that for thick sheet the spring-back during the MPF is very small. Table 14
presents the time performance (CPU time, number of elements) of numerical simulation performed on
Dell Precision T7600 Workstation, 2× Intel Xeon E5-2670 2.6 GHz 4 CPU Cores Processors; 128 GB
Memory with and without remeshing. It is possible to confirm remeshing advantage even for higher
adaptive refinement compared with the very fine mesh used here as reference (700,143 tetrahedral
elements). A reduction of CPU time about approximately 75% has been obtained with the remeshing
procedure (4 h 17 min) compared to the simulation without remeshing obtained with very fine mesh
(700,143 elements).
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Table 13. Adaptive remeshing parameters for Multi-Point Forming (MPF) process.

hmin (mm) hmax (mm) ε
p
c ε

p
max δ (mm)

0.1 5 0.1 0.35 2.5

Table 14. Adaptive remeshing time performance of MPF process simulation.

CPU Time
Number of

Steps/Increments
Initial n◦ of

Elements
Final n◦ of
Elements

Without remeshing 29 h 48 min 100 increments 700,143 700,143
With remeshing 4 h 17 min 230 remeshing steps 15,000 284,700

  
(a) Initial mesh of part and tools (b) Deformed mesh for U = 10 mm (c) Deformed mesh for U = 30 mm 

   
(d) Deformed mesh for U=60mm (e) Deformed mesh for U = 90mm (f) Deformed mesh for U =150 mm 

 
(g) Predicted final sheet shape without and with remeshing for U = 180 mm 

Figure 20. Predicted sheet profile at each punch displacement [61].

 

Figure 21. MPF punch force versus punch displacement after spring-back.
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Figure 22. Sheet profile before and after spring-back.

3.6. Incremental Sheet Forming of Titanium Conical Shape

The study will be focused on Numisheet’2014 benchmark for the manufacturing of a truncated
cone shape made by single point incremental forming process (SPIF). The incremental step-down size
(Δz) is the amount of material deformed for each revolution of the forming tool (similar to depth of cut
in machining) which does not require dies [62]. The advantages of this process are the flexibility of
forming process for the manufacturing of complex shapes. Several applications of this process exist
in the medical field for the manufacturing of personalized titanium prosthesis (cranial plate, knee
prosthesis, etc.) due to the need of product customization to each patient. The CAD package CATIA is
used to create solid models of parts and the tool path is generated according to the obtained profile.
A 3-axis CNC machine is generally used to control the movement of the spherical tool. Tool trajectory
is created and connected using a step or a spiral transition method [63–68].

The internal roughness of SPIF shaped component is influenced primarily by the tool (dp) and
step (ΔZ) sizes, as other factors such as, sheet thickness, material properties, forming angle, feed
rate and etc., may affect both the internal and external roughness [54–58]. The influence of forming
speed, both rotational spindle speed N and feed rate Vf had an important effect on the heat generation
due to the friction with the sheet. Too high friction generates an increase of temperature and sheet
damage [47,48]. In this study, the forming conditions (see Table 15) are adopted for the SPIF with
rotational spindle speed N = 40 revolutions per minute (RPM) and feed rate Vf = 6000 mm/mm.
Truncated cone that was formed using continuous spiral tool paths (Figure 22) also in order to achieve
smaller surface roughness and to avoid tool entry and exit marks.

This section presents simulation results of the SPIF to produce a truncated conical height h = 40 mm
titanium Ti-6Al-4V sheet. The effective working area of the initial circular specimen was ∅D = 130 mm
and thickness ti = 0.5 mm. The forming was made with semi hemispherical punch X160CrMoV12 steel
in order to obtain prototypes according to the desired profiles. The plastic parameters of Ti-6Al-4V
sheet presented in Table 16 was obtained following uniaxial tensile tests [59].

After incremental forming, visual control is performed first with goal to detect potential defects
and estimate surface finish. On the both plates, the only problem identified was a slight increase in
roughness of internal surface in the zone of the maximum deformation. The rest of internal surface was
smooth and without tool marks. Dimensional control of the obtained parts was performed by coupling
with the original one. For that purpose, both replicas were scanned applying the same measuring
procedure. The obtained clouds of points are then transformed to CAD model and compared with the
desired CAD profile.
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Table 15. Single point incremental forming process (SPIF) process parameters.

ti rc h dp ΔZ ØD α N Vf

0.5 mm 5 mm 40 mm 5 mm 0.5 mm 130 mm 50◦ 40 RPM 600 mm/mm

Table 16. Elasto-plastic parameters of Ti-6Al-4V sheet [60,61].

A (MPa) B (MPa) C n
.
ε0(s−1)

968 380 0.0197 0.421 1

The FEA simulation of conical forming design of single point incremental sheet forming SPIF
presented in Figure 23 is performed on Dell Precision T7600 Workstation, 2× Intel Xeon E5-2670
2.6 GHz 4 CPU Cores Processors; 128 GB Memory, with same experimental working conditions.
The friction of contact with coefficient η = 0.14 and the surface-to-surface contact formulation are
defined to characterize the interaction between the punch and the sheet.

The main outputs results are the final shape of the sheet and the evolution of the thickness in
a cross-section along the symmetric axis. The adaptive remeshing simulation is performed with
fully coupled model under a load of constant velocity and the small punch displacement loaded by
numerous incremental path (Table 17). During the SPIF simulation many elements are refined and
coarsened, so as a result 1500 computational steps such an adaptive remeshing process ensures a
maximum error in the whole computational domain to be limited by the threshold excepted in the
zone where the element size hmin = 0.5 mm and hmax = 10 mm is achieved.

Table 17. Adaptive remeshing parameters for SPIF.

hmin (mm) hmax (mm) ε
p
c ε

p
max δ (mm)

0.15 10 0.012 0.30 2.5

Figure 23. Tool path trajectory of incremental process.

Table 18 presents the adaptive remeshing time performance for different level of refinement (CPU
time, final sheet shape profile, convergence and strain thickness distribution). It is possible to confirm
remeshing advantage even for higher adaptive refinement compared with the very fine mesh used
here as reference (300,477 tetrahedral elements). The results are quite similar between the reference
case and the remeshing process using high number nodes per edge.

They are higher with remeshing because the mesh used is coarser than the reference one. It is
notable that the results (CPU time, convergence and sheet strain) are sensitive to the variation of the
number of elements. A reduction of CPU time about approximately 85% has been obtained and at
the same time good simulation results are achieved and compared to reference results. Figure 24b–j
illustrates the deformed sheet at each step with respect to the spherical punch travel and the number of
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element used at the step forming. Noting that the mesh is only adapted when the punches are close to
the sheet for Rδ(e) ≤ 0.12mm. It can also be noted that, the plastic strain (εp

max < 0.3) remains low and
no damage occurs during forming process. Quantitative comparison with experimental result provides
the performance of the proposed approach. Figures 25 and 26 indicate a good prediction of the conical
shape and the cross section thickness along central X-axis for compared with the experimental and the
desired profiles. A lower thickness reduction is observed on the bottom surface of deformed sheet.

Table 18. Adaptive remeshing time performance of SPIF.

CPU Time N◦ Steps/Increments
Initial n◦ of

Elements
Final n◦ of
Elements

Without remeshing
(coarse mesh)

06 days and 19 h Stopped, convergence
problem 100,000 100,000

Without remeshing
(fine reference mesh)

09 days and 15 h 2460 increments 300,477 300,477

With remeshing 18 h and 20 min 1500 remeshing steps 2,853 128,558

(a) Initial mesh of part (2853 elements) (b) Deformed mesh for U = 2 mm (10,782 elts) 

  
(c) Deformed mesh for U = 2.2 mm (18,827 elts) (d) Deformed mesh for U = 2.5 mm (24,370 elts) 

  
(e) Deformed mesh for U = 3.0 mm (38,327 elts) (f) Deformed mesh for U = 8.0 mm (67,618 elts) 

 
(g) Deformed mesh for U = 15 mm (94,312 elts) (h) Deformed mesh for U = 23 mm (108,594 elts) 

Figure 24. Cont.
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(i) Deformed mesh for U=40 mm (128,558 elts) (j) Deformed Reference mesh (300,477 elts) 

  
(k) Plastic strain for U = 40 mm (l) Experimental shape 

Figure 24. Predicted conical profile at each punch displacement and experimental deformed sheet.

Figure 25. Comparison predicted and experimental profiles along the central X-axis.

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

-100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100

X-axis(mm)

t(mm)

Experiment

Simulation (tf)

Initial thickness (ti)

Figure 26. Comparison predicted and experimental final thickness tf distribution along X-axis.

3.7. Deep Drawing Sheet Forming of a Front Door Panel

The last example concerns the numerical simulation of a front door panel proposed at
Numisheet’2002 (Figure 27). The main goal is to illustrate the capability of the proposed fully coupled
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model and the numerical methodology to simulate complex shape part. The material properties used
in the simulation curved mild steel with the initial thickness of ti = 0.78 mm are shown in Table 19.

Solid linear tetrahedral finite elements (2628 elements) are used to discretize initially the curved
blank (Figure 28a). The tools (lower punch, upper die, and blank-holder) whose geometry is presented
on Figure 27 are discretized by rigid surfaces. A master–slave contact approach is used in the analysis
where the tools are considered as the master surfaces, and the top and the bottom surfaces of the blank
(surface facing the punch and the die) constitutes the slave surfaces. Friction (η = 0.15) is introduced
using Coulomb model and the interaction between the blank and the tools is formulated using finite
sliding approach, which allows for the possibility of separation between the two surfaces during
sliding. The punch moves with the total displacement U = 130 mm, die and blank-holder tools are
supposed fixed.

Meshes adapted to the lower punch curvature surface corresponding to different punch
displacement (U = 30, 40, 50, 60, 80, 100, 120, and 130 mm) are given in Figure 28. The simulation is
done using an initial coarse mesh (2628 elements), the deformed mesh is again refined uniformly at
each punch displacement and the refinement is activated in regions of large curvature of tools using
the remeshing parameters (Table 20). The final front door panel sheet is plastically deformed with
small plastic strain ε

p
max < 15% (see Figure 28j) and no damage and wrinkling are occurred.

Figure 27. Geometry of front door panel tools.

Table 19. Elasto-plastic parameters of mild steel [60,61].

A (MPa) B (MPa) C n
.
ε0(s−1)

203.39 645.24 0.010 0.25177 1

 

 
(a) Initial sheet (b) Deformed shape for U = 30 mm 

Figure 28. Cont.
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(c) Deformed shape for U = 40 mm (d) Deformed shape for U = 50 mm 

 
(e) Deformed shape for U = 60 mm (f) Deformed shape for U = 80 mm 

  

(g) Deformed shape for U = 100 mm (h) Deformed shape for U = 120 mm 

Figure 28. Cont.
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(i) Deformed shape for U = 130 mm (j) Plastic strain plotted on the final shape of 

front door panel for U = 130 mm 

Figure 28. Deformed front door panel at different punch displacement.

Table 20. Adaptive remeshing parameters for deep-drawing.

hmin (mm) hmax (mm) ε
p
c ε

p
max δ (mm)

1.0 15.0 10% 42% 2.5

4. Conclusions

The paper is dedicated to the study of the multi-physical coupling in sheet metal forming.
The standard framework of the thermodynamics of irreversible processes with state variables is used
to derive a fully coupled elasto-visco-plastic equations accounting for nonlinear hardening and ductile
damage. First, the proposed model had been validated by comparing predicted force-displacement
curves in tensile, compressive and shearing tests. During the simulation of tensile, shearing and
compression tests, the coupled damage constitutive equations were validated and the damage behavior
in these various stress conditions were well simulated under the help of adaptive remeshing scheme.
In practice, it is not easy to get the convergence of the problem without remeshing, and the elements
that distort will lose their accuracies of reflecting the actual situation. In contrary, the adaptive
remeshing scheme constantly optimized the element quality and refined the mesh size in the whole
model. The finest finite elements (size and quality) were obtained in the front of crack, and the
crack can propagate easily and accurately. The numerical analysis based on geometrical and physical
criteria is integrated in a computational environment using the ABAQUS solver and OPTIFORM mesh.
Applications are made to complex sheet metal forming.

It has been demonstrated that only the strong coupling between elasticity, plasticity and ductile
damage effect at large plastic strain with contact/friction is able to predict the mechanical field in
some dynamic metal forming or machining processes. In addition, the 3D solid finite element adaptive
remeshing procedure of deformable sheet is capable to optimize the element quality and refined the
mesh size in the whole model or in the crack zone.
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Abstract: Springback prediction of sheet metal forming is always an important issue in the industry,
because it greatly affects the final shape of the product. The accuracy of simulation prediction depends
on not only the forming condition but also the chosen material model, which determines the stress and
strain redistributions in the formed parts. In this paper, a newly proposed elastoplastic constitutive
model is used, in which the initial and induced anisotropies, combined nonlinear isotropic and
kinematic hardenings, as well as isotropic ductile damage, are taken into account. The aluminum
alloy sheet metal AA7055 was chosen as the studied material. In order to investigate springback under
non-proportional strain paths, three-point bending tests were conducted with pre-strained specimens,
and five different pre-straining states were considered. The comparisons between numerical and
experimental results highlighted the hard effect of both kinematic hardening and ductile damage on
the springback prediction, especially for a changed loading path case.

Keywords: springback; non-proportional loading paths; mixed hardening; ductile damage;
plastic anisotropy

1. Introduction

In recent years, with the rapid development of the need for lightweight materials,
more high-strength aluminum alloy sheets have been widely used in the products of automotive,
aerospace, and medical health fields. However, some undesirable problems during the forming of
high strength sheet metal have been observed. Springback is one of these important issues, and it
will affect the final appearance and accuracy of the workpiece. Sheet metal forming usually induces
important and complicated plastic strain state, particularly under complex loading paths and large
strain. Understanding these behaviors of sheet metal forming becomes more important, which can give
great help during the tool adjustments in the metal forming process, especially for the new lightweight
and high-strength materials.

The springback can be predicted using many approaches: using Finite Element Analysis
(FEA) [1,2] and some analytical methods [3,4]. Large-scale numerical simulations with FEA are more

Metals 2018, 8, 950; doi:10.3390/met8110950 www.mdpi.com/journal/metals95



Metals 2018, 8, 950

widely used to predict and consequently avoid the effect of springback, especially for the geometrical
complex parts. It can give fast and accurate results. The accuracy of the simulation depends on not
only the forming conditions [5] but also on the material models [6,7], which are used to describe the
forming behavior of the material under different forming conditions.

Li et al. have investigated the influence of element type and size and other physical effects (e.g.,
friction) [8] and showed the importance of accounting Bauschinger effect on the springback prediction.
Oliveira et al. studied the effects of different hardening laws on the final springback prediction [9].
Armstrong and Frederick have ever proposed nonlinear kinematic hardening to improve the accuracy
of springback simulation. The modified Chaboche type model with the combined isotropic-kinematic
hardenings as well as the non-quadratic anisotropic yield potential Yld2000-2d has been used by
Chung et al. to improve the prediction capability [10]. Chun et al. changed the isotropic part of
the Chaboche model to do the simulation by explicit/implicit integral algorithm [11]. Besides the
Yld2000-2d yield function, the influence of Barlat 89’s yield function on springback of sheet metal
forming has also been conducted and investigated [12]. Zang et al. show the hard influence of plastic
anisotropy through comparison between experiments and simulations [13].

Nowadays, more works have noticed the hard impact of Young’s modulus evolution during the
unloading phase. Stoughton et al. have pointed out the difficulties and challenges of constitutive
modelling of metal forming with considering the modulus variation [14]. Lee et al., based on
classical Dafilias/Popov and Krieg concepts, developed a two-surface plasticity model combined
with Bauschinger effect, transient behavior, and permanent softening according to the Chaboche
model [15]. Recently, Govik et al. have investigated the unloading behavior of dual phase steel with
micromechanical FE model exhibited non-linear strain recovery due to local plasticity caused by
interaction between two phases [16]. Gau and Kinzel [17] investigated the difference of the springback
angle with isotropic and kinematic hardenings. The importance of kinematic hardening on springback
prediction has also been proved by the work of Wang et al. [18]. Meanwhile considering the large
strain during forming, the influence of ductile damage on springback has also attracted a lot of
attention [19]. So, through literature studies, it can be found that the constitutive model plays a critical
role in the simulation process, including the equations of the yield surface description, hardening flow,
anisotropies and texture evolution, even the ductile damage, etc. There are a lot of studies which have
concluded that new and more suitable models need to be proposed in order to improve the numerical
prediction accuracy [20,21].

In this paper, a newly proposed model considering initial anisotropy and subsequent yield surface
distortion, non-linear combined isotropic and kinematic hardenings, and fully coupling with ductile
damage [22] is used to predict the springback of aluminum alloy sheet AA7055. The nonlinear elastic
unloading-reloading behavior will not be accounted for, so elastic linear unloading and reloading
behavior will be considered in this model. Also, this can help better investigate the influence of
kinematic hardening and ductile damage on springback. The model has been implemented in ABAQUS
Standard and Explicit through the user subroutines VUMAT/UMAT. The springback phase of AA7055
sheets is investigated through three-point bending with different levels of pre-straining states. Through
the comparison between numerical and experimental results, the influence of kinematic hardening
and ductile damage on final springback results is discussed.

2. Constitutive Equations

The newly proposed elastoplastic constitutive equations coupled with the isotropic ductile
damage, and accounting for non-linear combined isotropic and kinematic hardenings, are used
to predict the springback [22]. The initial anisotropy and hardening induced subsequent yield surface
distortion are also considered in the model. The following couples of state variables: (εe,σ), (α, X),
(r, R), (d, Y) are included in the model, and they represent respectively the elastoplastic flow, kinematic

96



Metals 2018, 8, 950

hardening, isotropic hardening, and isotropic ductile damage, respectively. Detailed description of the
fully coupled relationship can be found in the published research works [22,23].

σ = 2μe
[
(1 − d)〈ee〉+ + (1 − hd)〈ee〉−

]
+ ke[(1 − d)〈tr(εe)〉 − (1 − hd)〈−tr(εe)〉]1 (1)

X = (1 − d)
2
3

Cα (2)

R = (1 − dγ)Qr (3)

Y = Ye + Yα + Yr (4)

where ee denotes the deviatoric part of the elastic strain, 〈·〉+ and 〈·〉− denote positive and negative
parts. μe and Ke are the classical shear and bulk elastic moduli. h is the microcracks closure parameter
0 ≤ h ≤ 1, C and Q are the hardening moduli for kinematic and isotropic hardening, respectively, γ is
the parameter of damage effect on isotropic hardening. Ye, Yα, and Yr are the density energy release
rates corresponding respectively to elastoplastic flow, kinematic hardening, and isotropic hardening.
Details about the state variables and evolution equations are given in Appendix A.

The given model will be implemented in both ABAQUS/Standard and ABAQUS/Explicit finite
element codes through the user subroutines UMAT and VUMAT. The implementation of the developed
model is based on purely local implicit integration scheme used with the elastic predictor-plastic
corrector approach.

3. Experimental Investigations

The AA7055 aluminum alloy sheet with 1.60 mm thickness was used for the experimental study.
In order to investigate the influence of kinematic hardening and ductile damage on springback under
the loading path changing, a series of tests were conducted. Firstly, the simple uniaxial tensile test,
cyclic shear test, and cyclic loading-unloading tensile tests were conducted separately to determine the
material parameters. In order to investigate the springback of AA7055 alloy sheet the tensile specimens
were subjected to five different pre-strain states, and then bent with 25 mm depth. With the neutral
layer as the boundary, the inner sheet material experiences the cyclic tension-compression loading
process during tensile-bending tests. During the bending tests, the internal damage appearing in the
sheet increases with plastic strains and causes the decrease of the rigidity of the material. The increase
of micro-cracks and the micro-voids in the sheet reduces the stress levels in the sheet, which will affect
the final formed shape.

3.1. Uniaxial Tensile Tests

The geometry of the uniaxial tensile test specimen is given in Figure 1. The specimens were
cut along the orientations (0◦, 45◦, 90◦) according to the rolling direction. The tensile velocity was
fixed to 2.0 mm/min. To ensure the repeatability of the results, each test was conducted at least three
times. The uniaxial tensile test is used to identify the material properties, including the yield function,
anisotropy, and hardening laws. The obtained plastic flow curves 0◦, 45◦, and 90◦ according to the
rolling direction are given in Figure 2.

  
(a) (b) 

Figure 1. Specimen geometry for the tensile test (a) (1.6 mm thickness) and cyclic shear tests (b).
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(a) The true stress-strain curves (b) Lankford parameter r values 

Figure 2. Tensile tests of AA7055 aluminum alloy sheet.

3.2. Cyclic Shear Loading Tests

The geometry of the cyclic shear loading test specimen is given in Figure 1. In the proposed model,
the kinematic hardening parameters should be determined through the cyclic loading tests. Through
the literature study, the cyclic shear test can be one valid method to investigate the Bauschinger
phenomenon of sheet metal [24]. In this study, the cyclic shear loading test was conducted with a
butterfly clamp on the universal tensile machine. The Digital image correlation (DIC) system was used
to capture the vertical displacement between point A and point B shown in Figure 3. The engineering
strain and stress can be calculated by:

γe =
Δh
h0

, τe =
F

t0h0
(5)

where Δh denotes the vertical displacement; h0 denotes the initial height of the connect zone; t0 denotes
the initial thickness of the sheet; F denotes the loading force during the tests.

 

Figure 3. Experimental setup for the cyclic shear test.

With the obtained stress-strain curves in uniaxial and cyclic shear tests, the material parameters
suited to aluminum alloy sheet AA7055 can be determined through the use of an appropriate inverse
hybrid numerical-experimental methodology [25]. The relevant numerical and experimental result
are the displacement-load responses. The inverse method here is to search the minimum error value
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between simulation and experiment responses. The Trust Region reflective method is used, which
suits itself to the nonlinear least squares optimization problem. The optimization process involves
the approximate solution of a large linear system based on the method of preconditioned conjugate
gradients. The optimization algorithm is coded within MATLAB and Python script in conjunction
with the FE commercial software ABAQUS.

Note that the use of only these two tests cannot allow the accurate determination of all
model parameters such as the determination of micro-cracks closure parameter h and distortional
parameters (Xc

l1, Xc
l2, Xp

l1). In this study, the micro-cracks closure parameter is assumed to be h = 0.2.
The distortional effect in this study will be ignored by considering Xc

l1 = Xc
l2 = Xp

l1 = ∞. The set of
material parameters for the AA7055 is summarized and given in Table 1.

Table 1. The material parameters of the AA7055 aluminum alloy.

Material t (mm) ρ (g/cm3) E (MPa) ν σy (MPa) σs (MPa) F = F* G = G* H = H* L = L* M = M*

AA7055 1.60 2.86 68439 0.3 290.98 369.19 0.52 0.62 0.38 1.5 1.5
N = N* Q (MPa) b C (MPa) a S s β Y0 γ h dc

1.4 720 14.5 720 14.5 0.75 1.0 4 1 3 0.2 0.99

In this study, the decomposition of kinematic hardening and isotropic hardening was determined
through cyclic shear tests (Figure 4). But they also can be determined with the help of the springback
angle after the bending test with different pre-stretch strain [13]. The initial yield criteria (Hill 48) in
the yield function f and potential equation F are assigned the same values (F = F*, G = G*, H = H*,
L = L*, M = M*). In the coming studies, this decomposition ratio will be changed in order to study the
influence of kinematic hardening on the prediction of the final springback values.

 

Figure 4. Experimental and numerical cyclic loading stress-strain curve.

3.3. Cyclic Loading-Unloading Uniaxial Tension Tests

In order to better investigate the damage initiation and growth during the plastic flow, uni-axial
tensile test with loading-unloading cycles was conducted, and the evolution of elastic modulus was
recorded during the unloading phases (Figure 5). The specimen is prepared following the rolling
direction. The strain levels of unloading are chosen (1.6%, 2.7%, 3.7%, 4.7%, 5.7%, 6.7%). The average
value of elastic moduli during the unloading process and the decrease ratios (Ei/E0) are given in
Figure 6. In this figure, we can observe clearly the decreases of elastic modulus according to the tensile
strain which can be related to the damage evolution during the tensile loading. The decrease ratio
of E can be regarded as the damage value in a way. During the simulation on the prediction of the
springback phenomenon, the E decrease can be taken into account through user subroutine, and this
result can compared with ones obtained with ductile damage model (marked as Simu-E in Figure 13).
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Figure 5. Stress-strain curve during the cyclic loading-unloading process.

Figure 6. Variations of elastic moduli during the cyclic loading-unloading process.

3.4. Bending Test with Pre-Stretch Strain

Three-point bending tests were conducted to investigate the springback phase of AA7055
specimens. The test design and device are given in Figure 7, and also the specimen is prepared
following the rolling direction. Considering the maximum strain of 0.12 (where the local necking
happens after this point) under uniaxial tensile loading path, five pre-straining states are used of 4.6%
(2.4 mm), 6.4% (3.3 mm), 8.0% (4.2 mm), 9.7% (5.1 mm), and 11.3% (6.0 mm) were selected to assign on
the bending specimens. The bending depth is about 25 mm, and the fixed velocity of the upper die is
about 5.0 mm/min. The geometry sizes of the bending dies are shown in Figure 7. The springback
angle is measured for the different specimens including the pre-straining states.
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(a) Bending test design (b) Experiment devices 

Figure 7. Three-point bending test device.

The test design and part of final obtained samples are showed in Figure 8. In Figure 9 the
obtained average springback angles after bending tools unloading are shown. From the comparison
of the results it can be seen that plastic pre-straining affects greatly the resulting springback angles.
We observe that the increase of tensile pre-strain induces an increase of springback angle. On the other
hand, when the plastic pre-strain increases, the increases of hardening stress and plastic strain will be
obtained on one side accompanying the increase of ductile damage. This damage evolution allows
a significant reduction of rigidity of the material so that when the bending tools are unloaded the
critical parts are submitted to the high level of stress with the low rigidity which will contribute to
maximizing the springback phase.

 
(a) Test design (b) Test samples 

Figure 8. Comparison of three-point bending specimens with different pre-strains.

 
Figure 9. Springback angles after bending tools unloading versus pre-straining states.
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Note that when the bending depth is the same, under different pre-strain levels, the stress and
strain distributions across the critical deformed zone situated under the punch radius shall be quite
different. Without considering pre-strains, the normally neutral layer is situated in the central side of
the sheet thickness. Tensile pre-strains shall be added to the bending strain state and causes the sliding
of the neutral layer in the direction of the punch. The movement of the neutral layer will reduce the
volume ratio of the compression stress state in the inner thickness section. This fact will contribute
also to spring back increase.

4. Simulation Results

In the simulation process, the influences of the kinematic hardening and the ductile damage on
the springback were studied. The loading processes include pre-straining and bending phases that
were simulated using ABAQUS/Explicit® with user subroutine (VUMAT), which takes into account
the dynamic process and avoid the non-convergence problem. The unloading process was simulated
using ABAQUS/Standard® with user subroutine (UMAT) in order to reflect the final static shape after
unloading. The decrease of Young’s modulus during the deformation process can be defined using two
approaches: the direct assignment according to the decrease ratios of E given in Figure 6. The second
one is obtained automatically through the full coupling with ductile damage. In the coming sections,
the comparison of these two approaches is analyzed. In order to better investigate the effect of the
stress gradient along thickness, the 2D plane strain geometrical model was chosen in the simulation
process. Constant mesh size 0.1 mm is used in the critical deformation zone, as shown in Figure 10.

Figure 10. Finite element model for bending tests.

4.1. Effect of Kinematic Hardening Fraction on Springback Prediction

The hardening stresses obtained through the uniaxial tensile test combines isotropic and kinematic
hardenings. Without the cyclic loading tests, it is difficult to separate these two hardenings and
determine the exact fraction of every part. In this study, the kinematic hardening fraction is considered
through a parametric study. The fraction ratio of kinematic hardening with respect to total hardening
is defined by:

t = Xsat/(Xsat + Rsat) = C/(C + Q·a/b) (6)

where Xsat is the kinematic hardening saturation value and Rsat is the isotropic hardening saturation
value. In the parametric study, the kinematic hardening fraction values chosen are t = (0.0, 0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0). For all these kinematic hardening fractions, the values of hardening
modulus Q and C are re-identified in order to obtain the same fit with experimental tensile test curves.
In Table 2 are given the obtained sets of hardening parameters corresponding to each considered
kinematic hardening fraction.
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Table 2. Hardening parameters corresponding to the different kinematic hardening fraction.

Kinematic Hardening Fraction
Isotropic Hardening Kinematic Hardening

Q (MPa) b C (MPa) a

0.0 1441

14.53

0

14.53

0.1 1297 144.1
0.2 1153 288.3
0.3 1009 432.4
0.4 864.9 576.6
0.5 720.8 720.8
0.6 576.6 864.9
0.7 432.4 1009
0.8 288.3 1153
0.9 144.1 1297
1.0 0 1441

In order to enhance the stress gradient description through the thickness, element size of 0.1 mm
was considered along with the thickness direction. The simulation was consistent with the experimental
setup, and five different tensile pre-strains 4.6%, 6.4%, 8.0%, 9.7%, and 11.3% were applied during a
step before the bending process.

The friction coefficient between the specimen and the dies was fixed to 0.05. The bending depth of
the upper die was about 25.0 mm. The pre-tension and three-point bending processes were simulated
through the dynamic explicit methodology, while the unloading process after bending was conducted
by the static analysis methodology. The state variables after the bending analysis were imported as the
initial state of the unloading process. After the unloading process, the resulting values obtained of
springback angles are given in Figure 11 with respect to the pre-strain states.

Figure 11. Springback angle obtained after three-point bending test with different considered kinematic
hardening fractions and tensile pre-strains (no damage).

In Figure 11 are given the springback angles obtained after the bending tests applied for different
considered pre-strained specimens without considering ductile damage. When pre-tensile plastic
strain is zero, there is still a gap of 3◦, which can be caused by the friction and the thickness variation
of the sheet, and also the anisotropy following the thickness direction is ignored during the simulation.
In this figure, the results of the simulations using the various kinematic hardening fraction cases
(t = 0.0~1.0) are compared with the experimental results. The case of t = 0.0 value fraction corresponds
to a purely isotropic hardening model; however, the case of t = 1.0 value fraction corresponds to
purely kinematic hardening model. As mentioned before, the springback angle increases when the
pre-strain increases. In this figure, we observe an important effect of kinematic hardening fraction
on the springback predicted angle. It needs to be highlighted that for high kinematic hardening
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fraction (t > 0.8) the increase of pre-strain state induces a decrease of springback angle. For these cases,
the difference among numerical results is important. The stress contours before springback are given
in Figure 12, which clearly present the big effect of kinematic hardening fraction on the final obtained
stress contour on the thickness section during the bending process.

Figure 12. Numerical obtained stress contour with different kinematic hardening fraction.

Through comparing the experimental and numerical obtained springback angles, it is
recommended that the kinematic hardening fraction shall be defined between t = 0.1 and t = 0.5
for Al7050. In the coming section about the ductile damage, the ratio of kinematic hardening in total
hardening was assigned to be 0.5.

4.2. Effect of Damage Coupling on Springback Prediction

The Young’s modulus plays an important role in the springback prediction. In this section, the
decrease of Young’s modulus during the deformation process is considered through the two approaches
of including Young’s moduli variation according to loading strain as discusses in the last section.
The direct evolution of Young’s moduli with respect to accumulating plastic strain is defined with
tabular form according to Figure 6. Linear interpolation is considered between given points. For the
ductile damage model, the material parameters were defined according to Table 2. The corresponding
obtained numerically predicted springback angles are shown in Figure 13. These two methods can both
well predict the tendency of the influence of pre-stretch on the final springback angles. Together with
the increase of the pre-stretch displacement, the springback angles almost increase linearly with the
same slope. Also, it can be found that the obtained springback angle with the ductile damage model
can be closer to the experimental results.

Figure 13. Comparison between the numerical and experimental obtained springback.
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The damage parameters S will be assigned different values of (0.5, 0.75, 1.0, 1.7, 3.4). In Figure 14,
the effect of the damage parameters S on the strain-stress curves is compared. It is found that with
the decrease of the damage parameters S, the ductility of the material highly increased. In Figure 15,
the ductile damage contour across the thickness zone after the bending process with pre-strains of
4 mm was plotted and compared. When S is smaller, more ductile damage appears on the section,
and the springback angle is smaller due to the smaller stress caused by damage. The comparisons with
experimental and other numerical obtained results are also given in Figure 15.

 
Figure 14. The effect of damage parameter S on the stress-strain curve.

Figure 15. Ductile damage contour across the thickness section.

5. Conclusions

In this study, the springback phenomena of AA7055 alloy sheet metal under three points bending
test after pre-stretch were investigated. Under the same bending depth, five different pre-stretch
displacements were conducted on the samples, and the obtained springback angles were discussed
by comparing the experimental and numerical obtained results. Meanwhile, in the numerical aspect,
the influence of the kinematic hardening and ductile damage on the springback was compared and
discussed. The conclusions in this study are given as follows:

• Through the experimental observation, it was found that under the same bending depth the
springback angle increases with the increase of the pre-stretch displacement. The pre-deformation
plays an important role in the final sample shapes.

• The influence of the kinematic hardening on the springback prediction of sheet metal is relatively
large. The numerically obtained springback angle decreases with the increase of the ratio of

105



Metals 2018, 8, 950

kinematic hardening in total hardening. With the increase of pre-stretch displacement, the
influence of kinematic hardening will be enlarged. Meanwhile, though this methodology, the
ratio of kinematic hardening in total hardening can be coarsely determined.

• The ductile damage has a great influence on the springback prediction of sheet metal.
It not only affects the Young’s modulus but the mechanical state of the formed samples.
The numerical simulation with consideration of the ductile damage gives more accurately
predicted springback angles.
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Appendix A

In the framework of non-associative plasticity, the yield criterion f and plastic potential F are
separately defined in Equation (A5). The evolution relations of plastic strain, isotropic and kinematic
hardenings, and ductile damage are given by Equations (A1) to (A4), respectively, by the normality
rule with respect to plastic potential F.
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where σy is the initial yield stress, and the parameters a and b represent the non-linearity of the
kinematic and isotropic hardening respectively. Dp denotes the plastic strain tensor. S′(θ) is function
of lode angle θ [26]. S, s, β, and Y0 are the parameters governing the ductile damage evolution.
The plastic multiplier

.
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with S0 = S − S:X
X:X ·X. These distortion stresses reduce to classical deviatoric stress S for the case of

parameters Xc
l1 = Xc

l2 = Xp
l1 = ∞ which corresponding to the annealing distortion effect giving the

classical Hill 48 yield surface. The outward normal tensors to plastic potential are defined as follows:
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where A
=

is the elastic operator defined as Aijkl = 2μe(δikδjl − 1
3δijδkl) + Keδijδkl .
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Abstract: This study is dedicated to the experimental characterisation and phenomenological
modeling of the bake hardening effect of a thin steel sheet, to predict the static dent resistance and
perform an experimental validation on a bulged part. In a first step, rectangular samples are submitted
to a thermo-mechanical loading to characterise the bake hardening magnitude in tension. A three-step
procedure is considered, involving first a pre-strain in tension up to several values followed by
unloading. Secondly, a heat treatment during a fixed time and a given temperature is performed,
and finally, a reloading in tension in the same direction as the pre-strain is applied. Then, a specific
device is developed to perform dent tests on a bulged specimen, to evaluate the influence of bake
hardening on the dent resistance. A three-step procedure is also considered, with a pre-strain applied
with a hydraulic bulge test followed by a heat treatment and then static dent test at the maximum
dome height. An original phenomenological model is proposed to represent the yield stress increase
after the heat treatment and the second reloading. Material parameters are identified from the tensile
tests and are input data to a finite element model. The numerical prediction of the load evolution
during the dent test is then compared with experimental data and shows an overall good correlation.

Keywords: steel sheet; bake hardening; mechanical modeling; dent resistance

1. Introduction

Outer automotive panels may be subjected during their service life to the high or low velocity
impact of a projectile, the size of which is small compared to the panel dimensions. The resistance
of the part to such an impact, or dent resistance, is a major industrial concern. It has led to several
academic studies, using specific devices to reproduce at the laboratory scale the impact of the projectile
either under static or dynamic conditions. In most of these studies, thin sheet structures are subjected
locally to the action of an indenter under an applied load of a few hundreds newtons. For example,
large and doubly curved drawn parts representative of a roof panel are submitted in their middle
to the action of a flat headed indenter [1]; or a trimmed sample and a hemispherical indenter are
used in [2]. The dent resistance is defined as the load corresponding to a permanent dent depth
of 0.1 mm. In the area in contact with the indenter, the sheet is subjected to stretching and highly
localised plastic strain, whereas the remaining zones are mostly drawn and deformed elastically.
The characteristics load-deflection curve of dent tests is highly non linear and exhibits a significant
hysteresis, highlighting the non-reversibility of the test [2,3]. Such feature is rather difficult to
predict numerically within a classical elasto-visco-plastic scheme especially when considering several
points [4]. Introducing mixed hardening in the material model provides a better description of the dent
resistance of steel panels [5]. However, the highly non-linear evolution during unloading is difficult
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to capture, though the description can be improved by considering the chord modulus degradation
with plastic strain in balanced biaxial tension [6]. Moreover, the dent resistance is affected by the
bake hardening effect, though little evidence or discussion can be found in the literature related to
this dependency.

Bake hardening (BH) is a phenomenon occurring in steel materials corresponding to an increase of
the flow stress after a pre-strain followed by heat treatment (or annealing) within a specific temperature
range. Classical BH magnitudes are from 30 up to 60 MPa [7] after a few percent of pre-strain and
heating at around 170 ◦C (443 K) during 20 min. The magnitude of this phenomenon depends on the
annealing temperature and time [8]. Specific series of materials are concerned by bake hardening,
like series with low carbon contents as E180BH, dual phase and TRIP steels [9–11] and also Mg
alloys [12]. Carbon atoms are in solid solution in the iron matrix. Their capacity to diffuse, even at
room temperature, especially from close-packed areas to areas less close-packed, is at the origin of the
bake hardening. Indeed, after the pre-strain, carbon atoms, forming Cottrell atmospheres, move close
to the core of the dislocations generated during this step, due to a decrease of the elastic energy
of the crystallographic network, leading to a pinning of the dislocations. Secondly, C-rich clusters
lead to the precipitation of coherent precipitates, e.g., [13]. Therefore, upon re-straining after the
heat-treatment, a stress increase is necessary in order to free the dislocations, leading to a Lüders-like
phenomenon of catastrophic slip in macroscopic bands of localised strain. And eventually to overcome
the newly-formed precipitates. After a load stagnation corresponding to the band propagation [10],
hardening is resumed at a higher level than before thermal treatment. The bake hardening magnitude
results both from strain hardening after the pre-strain and thermal ageing. BH magnitude is defined
as the difference between the elastic stress upon reloading, after heat treatment, and the stress level
reached at the end of the pre-strain.

The bake hardening effect has practical applications in the automotive industry [14,15]. Indeed,
the flow stress increase during paint curing, which is a necessary step in outer automotive panel
production, leads to an increase of the dent resistance of the panels without altering the forming
properties. Indeed, the deep drawing corresponds to the pre-strain; the equivalent plastic strain
resulting from this step can differ significantly from one area to the other, e.g., bent areas near the door
handle or windows or the trimming line exhibit highly localised strain whereas the center part is less
deformed. Therefore, after paint curing, usually at a temperature close to 170 ◦C (443 K), the mechanical
properties of the material increase [7,10,16], leading to an improvement of the static dent resistance
of the panel. Within a complete virtual forming of metallic sheet parts, it seems relevant to add bake
hardening and dent resistance to the list of predicted properties, to improve the design of new materials
able to avoid non-aesthetic effects such as the one illustrated in Figure 1.

Berbenni et al. [13] propose a micro-mechanical model of the bake hardening effect that relates
the flow stress increase to the dislocation density, content of solute atoms, volume fraction of C-rich
coherent clusters and time. It depends on three material parameters, which are identified for E180BH
steel using only the homogeneous strain range, after removing the transient part of the stress-strain
curve corresponding to Lüders phenomenon. A BH magnitude of around 80 MPa is measured, after the
two pre-strain values of 0.02 and 0.05 and 20 min annealing at 170 ◦C (443 K). Ballarin et al. [17] develop
also a micro-mechanical model based on the dislocation density and considers also the Piobert-Lüders
phenomenon. They obtained a very close description of the bake hardening effect in tension for several
annealing times and baking temperatures. This model is further extended to strain path changes
between the pre-strain and the subsequent strain path [18]. A neural network approach is proposed
in [19–21] and information such as the baking temperature and the carbon contents are input data.

The aim of this study is to characterise and predict the magnitude of the bake hardening effect on
the dent resistance via a phenomenological approach. In this study, a low carbon steel referred to as
E220BH is considered. Firstly, the magnitude of the bake hardening effect is investigated in tension,
for fixed time and temperature conditions and several pre-strain values ranging from 0.02 to 0.08.
Then, hydraulic bulging of E220BH circular blank is performed and the dent resistance is investigated
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experimentally, for two different pre-strain amounts and after a heat treatment. Finally, an original
phenomenological model is presented, which represents an increase of the stress level after the thermal
treatment. As a first step, the model depends only on the pre-strain magnitude. The numerical
simulation of these tests is then performed and compared with experimental data. The comparison on
the load level and the strain field gives a thorough validation of the numerical model.

Figure 1. Impact of a hard projectile on a metallic panel, illustrating the importance of an improved
dent resistance, in terms of the aesthetics of the product. The impact if highly localised compared to
the size of the outer panel.

2. Materials and Experiments

A low carbon steel referred to as E220BH, that exhibits bake hardening effect, is used in this study.
The chemical composition, as given by the supplier, is of 0.06% (in weight) of C and 0.7% of Mn. It is
provided in sheets with a thickness of 0.74 mm. The mechanical properties were characterised in
tension [22] and are simply recalled in Table 1. Though the influence of anisotropy is out of the scope
of the present study, normal and in-plane anisotropy coefficients (respectively r̄ and Δr) are also given
as general characteristics of the material.

Table 1. Measured mechanical properties of E220BH steel. Rp0.2% is the conventional elastic limit and
Rm is the tensile strength.

Rp0.2% (MPa) Rm (MPa) r̄ Δr

220 350 1.75 0.66

2.1. Tensile Tests and Thermal Treatment

The three-steps necessary to investigate the bake hardening effect are first a tensile pre-strain
followed by a thermal treatment and finally a second tension in the same direction as the previous
one; these steps are detailed below. Tensile tests are performed on samples with a rectangular shape,
of width 20 mm and gauge length 150 mm, in the rolling direction. The local longitudinal strain is
measured with an extensometer (2630 series, INSTRON, Norwood, MA, USA) having a gauge length
of 10 mm. Three pre-strain values, corresponding to a total logarithmic strain of 0.02, 0.04 and 0.08,
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are considered. Tensile tests up to rupture are also performed, in order to characterise the material in
its original state.

Then, the samples are heated at an average value of 165 ◦C during 15 min in an oven.
Three thermocouples are used to record the temperature evolution at different locations in the oven,
one in the middle of the samples and two others on each side. Three different batches are heat-treated,
each of them made of 3 to 5 tensile samples. It can be seen in Figure 2 that the gradient in the oven
is lower than 5 ◦C, whatever the batch of samples. In a first step, the oven is heated up to 170 ◦C
during a time long enough (above 100 min) to reach a stable temperature. Then, samples are settled
inside the oven; the temperature drops down to 80 ◦C and, as soon as the door is closed, goes rapidly
up to 160 ◦C. The samples are then kept during 15 min at a temperature that evolves from 160 ◦C to
a maximum of 170 ◦C, with an average value of 165 ◦C (Figure 2). The sample then slowly cools down
to room temperature.
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Figure 2. Temperature evolution during heating (15 min at an average temperature of 165 ◦C) and then
slow cooling down to room temperature. Each colour corresponds to a batch of samples and three
curves of the same colour represent the signals of the three thermocouples.

The samples are then subjected to a second tensile test in the same direction as the first tension,
up to rupture. The reproducibility is investigated over 2 or 3 samples tested in the same conditions.
As the global mechanical behavior, before and after the heat treatment, as well as the evolution of BH
magnitude with the pre-strain are close, only one test is presented.

2.2. Dent Resistance

The validation test is related to static dent resistance. Indeed, opening parts of cars, like doors
and hoods, are first formed and then painted on the outside surface and submitted to baking.
Materials exhibiting bake hardening effect are then interesting to use, for the static dent resistance
should increase after baking. To reproduce such a multi-step process at an academic laboratory scale,
circular blanks are pre-strained by bulging up to several strain levels or pole heights, then submitted
to the same thermal treatment as for tension. Finally, a dent test is specifically designed in order
to characterise the dent resistance of the bulged blanks after baking. The same procedure is also
carried out without the thermal treatment, to investigate the influence of the bake hardening effect
on dent resistance. The experiments consist of a three-step process: pre-strain in hydraulic bulging,
thermal treatment representative of paint baking and finally static dent test.
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2.2.1. Pre-Strain

A hydraulic bulge test, developed at IRDL and already detailed in [23], is used to apply a pre-strain.
Circular blanks of diameter of 270 mm are clamped by screws between a blank-holder and a die.
A fixed volume of water is pressed under the blank by the displacement of an actuator (Zwick 8803,
Zwick Roell, Ulm, Germany). The blank bends over the die radius of 8 mm and then bulges inside
the die cavity of diameter 184 mm. A pressure sensor (SensorTechnics, BTE6000 / PTU6000 series,
Berlin, Germany) gives the fluid pressure and the strain field is measured by digital image correlation
in an area around the center point corresponding to the maximum displacement. The strain state on
the surface is recorded during the test; an average of the strain components εxx and εyy over a small
area around the specimen center is performed, with �x and �y parallel respectively to the rolling and
transverse directions. The center of the circular specimen is pencil-marked before the bulge test and
checked after bulging and unloading, in order to assess precisely the maximum height of the sample,
also output from Digital Image Correlation (DIC, Aramis 4M, GOM mbH, Braunschweig, Germany)
measures. DIC data is calculated as a post-treatment and cannot be used to control the test. Therefore,
the end criterion of the bulge test is defined on the pressure.

2.2.2. Heat Treatment

In order to highlight the influence of bake hardening, some bulged specimen are then submitted
to the same thermal treatment as the tensile samples. Figure 3 shows the specimen in the oven;
two specimen are heat-treated at the same time. Furthermore, some bulged specimen are not subjected
to the thermal heat-treatment.

Figure 3. Thermal treatment of bulged specimen.

2.2.3. Dent Tests

A dedicated device is designed to characterise the dent resistance using a universal tensile machine
(INSTRON 5566A, Norwood, MA, USA). Figure 4 shows the different components, i.e., a supporting
plate, four clamping devices and a hemispherical punch of radius 12.5 mm connected to the load
cell of maximum capacity 1 kN. The supporting plate lies on a precision positioning table to put the
sample such as its pole is located right beneath the punch. The displacement of the punch and the
applied load are recorded during the test. The stiffness of the device is evaluated by performing tests
using a very rigid block as a sample. The corresponding displacement, which is related to gaps and
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elastic deformation of the tools, is removed from the total displacement, to calculate the real local
displacement—or corrected displacement—d imposed to the bulged specimen. This local value is used
to plot the results. Tests are conducted up to a maximum displacement of 2.4 mm whatever the time
and deformation history. The samples are then unloaded.

(a) (b)

Figure 4. Device designed to characterise the dent resistance. (a) Schematic representation of dent test;
(b) Experimental setup and sample.

Moreover, specific tests are performed with several loadings-unloadings, for samples without or
with a thermal treatment after the pre-strain. DIC is used also to visualise the dent depth, as shown in
Figure 5. The pole after bulging corresponds to the point in the middle and the permanent dent in
clearly seen.

(a) Before dent test (b) After dent test

Figure 5. Visualisation of the dent depth with digital image correlation (DIC): pole geometry after
bulging (a) and visualisation of the dent depth (b). This images correspond to the smallest pre-strain,
with the permanent dent depth around 1 mm.

3. Experimental Results

3.1. Mechanical Behavior in Tension

The influence of heating on virgin samples (without tensile pre-strain) is also investigated and,
as expected (though not presented here), the yield stress is not affected but only the intensity of the
Piobert-Lüders phenomenon, with an increase of the length of the stress stagnation. Heating results in
diffusion of carbon atoms and therefore, to a slight increase of the plateau magnitude.

Figure 6 shows the Cauchy stress-logarithmic strain curves, for both the pre-strain and the
subsequent tension. For the lowest pre-strain of 0.02, an initial stress increase of 46 MPa is recorded,
which represents 17% of the stress reached at the end of the first tension, before the heat-treatment.
The stress then sharply decreases and then, increases again and the stress-strain curve tends towards
the one of the virgin sample. The magnitude of the BH effect decreases slightly with the pre-strain
amount, down to 39 MPa at 0.04 pre-strain (13%) and 38 MPa at 0.08 pre-strain (11%). Similarly to
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previous results, the BH magnitude tends to decrease when the pre-strain increases, both intrinsically
and as the ratio of BH over the yield stress of the virgin sample at the same pre-strain value. A rather
similar evolution is noted for the higher pre-strains, though strain needed to reach back the curve
of the virgin sample is longer and premature rupture takes place very clearly. The BH magnitude is
similar to results obtained for a similar material [7], as well as DP steel [10], but lower than the value
reported for E180BH [13]. Such a difference may arise from different concentrations of solute atoms in
the materials.
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Figure 6. Tensile pre-strain followed by heat treatment and tensile deformation. Bake hardening (BH)
effect is evidenced by the stress jump after the second loading in tension. The curves of the subsequent
tension, after baking, are shifted horizontally by the amplitude of the pre-strain.

3.2. Dent Resistance of Bulged Specimen

The evolution of the pressure with the pole height h is plotted in Figure 7a. It can be seen
that a pressure around 1.5 MPa corresponds to an average height of 13 mm, and respectively 28 mm
and 29.5 mm for pressures of 3.5 MPa and 3.6 MPa. The strain at the pole is also calculated with DIC.
Figure 7b shows the evolution of the fluid pressure with the strain component εxx at the pole. Two main
pre-strain values are achieved, after unloading: around 0.016 and 0.07, though the dispersion is higher
for the higher pre-strain, values ranging from 0.065 up to 0.077. A total of 14 samples are deformed,
both to check the reproducibility and to have enough samples for the subsequent dent test, without and
with a thermal treatment. However, as the pre-strain is not controlled, each test is specific and no
average pre-strain is used in the following.

Figure 8a shows the load evolution with the corrected punch displacement, for a pre-strain
εxx = 0.02. The curves exhibit a first rather linear part followed by an elastic-plastic rounded transition;
the unloading is linear and the permanent displacement is slightly below 1 mm. The load evolution
for two tests is plotted, to highlight the very good reproducibility. Such an evolution is close to results
presented in the literature for mild steel [6].
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Figure 7. Bulge test. Each colour and line type stands for a single test. The tests can be gathered around
the maximum pole height: 13 mm in red, 28 mm in blue and 29.5 mm in green. (a) Evolution of the
fluid pressure as a function of the maximum height, as measured on the outer surface; (b) evolution of
the fluid pressure as a function of the strain component εxx

The influence of the thermal treatment is around 40 N at the maximum displacement,
representing a contribution of 10% of the maximum load. Though the initial slope is the same as for
the non-thermally treated sample, the unloading slope is higher, leading to a residual displacement of
the same order of magnitude, around 1 mm. The reproducibility is also very good.

The load evolution is similar for the higher pre-strain εxx = 0.07 (Figure 8b), though the
unloading becomes more significantly non-linear. The residual displacement is also the same for
both configurations (i.e., without and with a thermal treatment) and is around 1.3 mm.
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Figure 8. Load versus corrected displacement (d) during dent test with (BH) or without bake hardening
(WOBH), after a pre-strain in hydraulic bulging. Continuous and dashed lines represent two tests
having the same pre-strain magnitude. (a) Pre-strain εxx ≈ 0.02; (b) Pre-strain εxx ≈ 0.07.

Concerning the loading-unloading-reloading during the dent tests, the same influence can be
shown in Figure 9, i.e., the load level is increased by the bake hardening effect, which implies that the
dent resistance is increased. Indeed, for a given applied load, the residual displacement is lower for
bake-hardened samples. The hysteresis loop at unloading changes when the displacement increases.
Indeed, Figure 9a clearly shows that a concave unloading is recorded up to applied displacements
of 2.4 mm and then a convex one is noted for a higher displacement of 3.5 mm, for the pre-strain
εxx = 0.02 . The same trend is noticed for the higher pre-strain εxx = 0.07 (Figure 9b).
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Figure 9. Dent test with (BH) or without bake hardening (WOBH), after a pre-strain in hydraulic
bulging. Several loading-unloading-reloading sequences are applied during the tests. Continuous
and dashed lines represent two tests having the same pre-strain magnitude. (a) Pre-strain εxx = 0.02;
(b) Pre-strain εxx = 0.07.

4. Numerical Simulation of the Multi-Step Process

A numerical model to predict the influence of bake hardening on the dent resistance is proposed,
based on a phenomenological description. Constitutive equations, material parameter identification
and validation on dent tests of bulged specimen are presented in the following sections.

4.1. BH Modeling and Material Parameter Identification

The main idea of the model proposed in this study is to take into account both the flow stress
increase after bake hardening, Δσ, and the convergence toward the initial flow stress. Moreover,
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the stress increase should be dependent on the pre-strain amount, represented by the equivalent plastic
strain after the pre-strain ε̄∗. Certainly, the baking temperature Tbake and the duration of the baking
should also be taken into account but are not considered in a first step in this study, for they kept the
same values for all the experiments.

The constitutive model is written within the large transformation framework and isotropic
hardening is considered. The yield function F is given by Equation (1):

F = σ̄ − σY − f Δσ (1)

where σ̄ stands for the equivalent stress according to von Mises yield criterion. The parameter f is set
equal to zero for a test without bake hardening whereas it is set equal to 1 in case of bake hardening.
The evolution of the yield contour with equivalent plastic strain ε̄ is described with a Swift equation
(Equation (2)):

σY = K (ε̄ + ε0)
n and ε0 = (σ0/K)1/n (2)

where K, n and σ0 are material parameters. Finally, the overstress Δσ related to bake hardening is
modelled as given by Equation (3):

Δσ = C1 (2 exp (−γ1 (ε̄ − ε̄∗))− exp (−γ1ε̄)) (3)

where C1 and γ1 are material parameters. The overstress has an initial value higher than the stress
without bake hardening, that depends on C1 and γ1, at the same strain level and then decreases down
to the stress level without heat treatment. Indeed, when considering the reloading after the pre-strain
and the heat treatment, with ε̄ = ε̄∗, the yield stress is given by σY + Δσ , with:

Δσ = C1 (2 − exp (−γ1ε̄∗)) (4)

The first term of the right-hand side of Equation (4) is a constant equal to 2C1 and the second
term is negative and decreases in absolute value when ε̄∗ increases. Therefore, it leads to an increasing
overstress when the pre-strain increases.

Inverse identification of the material parameters is carried out using the in-house Matlab toolbox
SMAT developed at Xi’an Jiaotong University [24]. A cost function L (A) is defined and minimized
iteratively in the least square sense by Equation (5).

L (A) =
N

∑
n=1

Ln(A) =
N

∑
n=1

[
1

Mn

Mn

∑
i=1

Dn |σ(A, ti)− σ∗(ti)|2
]

(5)

where N is the number of tests in the database, A is the set of material parameters. For the variable
n, numbers of 1, 2 and 3 correspond to the cases of tensile pre-strains of 0.02, 0.04 and 0.08 before
thermal treatment. Mn is the number of experimental points of the n-th test, σ(A, ti)− σ∗(ti) is the
gap between experimental value for the stress σ(A, ti) and simulated stress σ∗(ti) at time ti, and Dn is
a weighting coefficient for the n-th test. Material parameters thus identified are given in Table 2.

The constitutive equations presented above are implemented in the finite element code Abaqus
via a user subroutine, for plane stress states σi3 = 0, i = 1, 2, 3. The equivalent plastic strain is
stored at each integration point during the pre-strain, and in particular at the end of the first step.
Then, upon reloading during the subsequent step after bake hardening, the parameter ε̄∗ is set equal
to the last stored value of the equivalent plastic strain during the first step.

Table 2. Material parameters identified from tensile tests for E220BH steel.

E (MPa) ν σ0 (MPa) K (MPa) n C1 (MPa) γ1

219,700 0.29 235.9 607.7 0.23 21.5 22.2

119



Metals 2018, 8, 594

Comparison of experimental and numerical results for the tensile tests are shown in Figure 10.
The numerical model uses only one finite element for the tensile sample, assuming a homogeneous
strain field. Several steps are performed: firstly, a pre-strain in tension followed by unloading, using the
initial mechanical behavior exhibited in Figure 10a ( f = 0). Then, for the following steps, f = 1 and
the overstress Δσ depends on the pre-strain amount. It can be seen that the model captures well the
maximum stress after the thermal treatment as well as the convergence towards the initial flow stress.
However, no effort was dedicated to the work-hardening stagnation, associated to a flow localisation.
Indeed, in this case, the tensile test can no longer be considered as homogeneous. It would be necessary
to model the whole structure in order to reproduce also the localisation in bands. Though it is an
interesting challenge, this modelling is out of the scope of the present article.

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35

σ
 (

M
Pa

)

ε

Exp.
Sim.

(a)

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35

σ
 (

M
Pa

)

ε

Exp.
Sim. BH
Sim. Init.

(b)

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35

σ
 (

M
Pa

)

ε

Exp.
Sim. BH
Sim. Init.

(c)

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35

σ
 (

M
Pa

)

ε

Exp.
Sim. BH
Sim. Init.

(d)

Figure 10. Modeling of the mechanical behavior. (a) Initial; (b) Pre-strain 0.02; (c) Pre-strain 0.04;
(d) Pre-strain 0.08.

Moreover, although some authors note a decrease of the BH magnitude when the pre-strain
increases [13], it seems that predominantly the BH magnitude evolves similarly to the pre-strain,
e.g., it increases when the pre-strain increases [7,10,16]. The dependence of the proposed model to the
pre-strain magnitude follows this trend, as given by Equation (3). Figure 11 compares the magnitude
of the bake hardening effect (BH) calculated from experimental and numerical data. It can be seen that
from the experimental data, BH does not evolve significantly over the strain range, though it tends
slightly to decrease when the pre-strain increases. This slight discrepancy may come from the fact
that material parameters are identified by an inverse procedure over all the tests, and optimisation
leads to a compromise, whereas BH magnitude is evaluated only upon the highest stress reached
upon reloading.
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Figure 11. Comparison of the BH magnitude calculated from experimental and numerical data.

These steps are used out of identification purposes. Therefore, a next step is the validation of the
model, using a different experimental database.

4.2. Numerical Simulation of the Dent Test

The aim is now to develop a numerical model for the multi-step process used in this study with the
software Abaqus. Though the material is assumed isotropic, the initial circular blank (radius 135 mm)
is modelled with one fourth of the geometry. Symmetry conditions are applied on the two straight
edges. The tools are defined as analytical surfaces and are considered rigid. Three-node triangular
shell elements are used to mesh the blank (total number of 9271). The mesh size is of the order of
4 mm on the outer diameter and in the area that remains flat under the die. It decreases down to
1.5 mm and is constant in the circular ring for radii in between 40 mm and 100 mm. Then, it further
decreases down to 0.6 mm close to the pole. Numerical simulations of both the bulge and the dent
tests were performed using axisymmetric elements, 4-node (regular mesh) and 3-node (random mesh)
shell elements. The load-displacement curve during dent test was not sensitive to the type of element.
Therefore, 3-node shell element, with a random mesh, is chosen in this study. The mesh sensitivity is
analysed with regard to both the bulge and the dent tests, to obtain a solution rather independent of
the mesh size.

For the hydraulic bulging, as no sliding of the blank between the die and the blank-holder is
evidenced experimentally, the blank is clamped on the perimeter located at the outer diameter of the
blank; this clamping replaces the blank-holder force applied experimentally and the blank-holder is
therefore not modelled. Only the die is introduced in the model, to give the right shape to the blank
related to the radius of curvature. The fluid pressure is applied on a gauge area of diameter 100 mm
of the blank surface opposite to the die. The die is removed in the dent step whereas the punch is
activated in the dent step.

The calculation is subdivided into 4 steps: (i) bulging under the applied pressure, (ii) unloading
of the blank by removing the applied pressure and the clamping, (iii) dent at the pole by a vertical
movement of the hemispherical punch, of magnitude 2.4 mm as in the experiments, the blank being
only pinned along the vertical direction on the intermediate radius and finally (iv) removal of the
punch and final springback of the blank.

121



Metals 2018, 8, 594

Concerning the mechanical model, the parameter f is set equal to zero for the 2 first steps.
Then, it remains equal to zero when no thermal treatment is performed or is switched to 1, in case of
occurrence of a thermal treatment.

4.3. Sensitivity of Dent Resistance to BH Effect

Concerning the numerical simulation, Figure 12 shows the numerical shape for the two pre-strain
after bulging and after the dent test. Isovalues of the vertical displacement, i.e., normal to the sheet
plane, are displayed. For a pre-strain εxx = 0.02, the maximum height after removing the internal
pressure, corresponding to the shape at the end of the bulge test, a value of 10.4 mm is calculated
(respectively 22 mm for a pre-strain of εxx = 0.07). At the end of the dent test, when the punch is
removed, the maximum height decreases, by 2.6 mm (respectively, 2.9 mm).

(a) End of bulge test (b) After dent test

(c) End of bulge test (d) After dent test

Figure 12. Numerical deformed geometries. Pre-strain intensity εxx = 0.02 for (a,b), and εxx = 0.07 for
(c,d) respectively.

Figure 13 shows a comparison, for the two pre-strain values, of the load evolution during the dent
test. The oscillations on the numerical load, clearly visible for the highest pre-strain, seems to come
from a local structural instability. For the lowest pre-strain value, it can be seen that the predictions
overestimate the loading part, whatever the state of the material, i.e., without or with bake hardening.
The gap at the maximum displacement, with or without BH, is around 6.5%. However, the trend
is different for the highest pre-strain, and the predicted values lie below the experimental ones,
though they converge to exactly the same value at the maximum displacement. The maximum gap,
calculated at the displacement of 1 mm, is around 6.2%. However, the unloading numerical slope is
higher than the experimental value. This effect is also observed during loading-unloading tensile tests
and a decrease of the unloading slope in the constitutive equations, via a dependency of the Young’s
modulus with the equivalent plastic strain, should be taken into account to represent this effect [25–27].
Globally, the model takes account of the bake hardening effect and further efforts should be given to
the numerical simulation of the whole process.

As a whole, the numerical simulation of the dent test with bake hardening gives a close
representation to the experimental data. As it is a two-step process, the quality of the end results depend
on the prediction of the two stages, i.e., the bulge test and the dent test. The bake hardening magnitude
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is identified in tension, as the hardening characteristics and used in the numerical simulation of 3D
tests, like bulge test, using von Mises yield criterion. Neglecting the anisotropy at this stage could
lead to some difficulties to represent correctly the behaviour of the material under a biaxial stress
state. Then, the stress state during the dent test is also fully 3D. However, Figure 13 highlights that the
proposed approach captures rather well the influence of bake hardening on the dent resistance, all the
more that the pre-strain is higher.
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Figure 13. Evolution of load versus displacement during dent test: experiments (dashed lines) and
numerical predictions (solid lines).

5. Conclusions

This study deals with the influence of bake hardening on the experimental and numerical
prediction of dent resistance. In the first part, the bake hardening effect for E220BH steel, for a given
time and temperature of the thermal treatment, is studied in uniaxial tension. In a second step,
specimen of the same material are pre-strained in hydraulic bulging, to shape them into a curved
geometry. Then, the static dent resistance is characterised with a dedicated device designed for this
purpose. An original phenomenological model is proposed, which takes into account the influence of
the pre-strain of the overstress upon reloading. The material parameters are then identified from tensile
data using an inverse methodology and three pre-strain magnitudes are considered. A numerical
model is developed, which uses as input the new constitutive equations implemented in a user
subroutine. The bulge and dent tests are predicted numerically. Results for the dent test show that
the bake hardening influences the load reached for an imposed displacement but that the residual
displacement in nearly the same for virgin and bake-hardened specimen. The numerical model gives
a good prediction of the loading part but tends to overestimate the residual displacement.
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Abstract: Thin stamped bipolar plates (BPPs) are viewed as promising alternatives to traditional
graphite BPPs in proton exchange membrane fuel cells. Metallic BPPs provide good thermal/electrical
conductivity and exhibit high mechanical strength, to support the loads within the stack. However,
BPPs manufactured by stamping processes are prone to defects. In this study, the effect of the tool’s
geometry on the thin sheet formability is investigated through finite element simulation. Despite the
broad variety of flow field designs, most of BPPs comprise two representative zones. Hence, in order
to reduce the computational cost, the finite element analysis is restricted to these two zones, where
the deformation induced by the stamping tools is investigated. The channel/rib width, the punch/die
fillet radii, and the channel depth are the parameters studied. The analysis is conducted for a stainless
steel SS304 with a thickness of 0.15 mm. The results show that the maximum value of thinning occurs
always in the U-bend channel section, specifically in the fillet radius of the die closest to the axis
of revolution.

Keywords: numerical simulation; stamping; formability; metallic bipolar plate; fuel cells

1. Introduction

In the last years, fuel cell technology has received increasing attention due to the growing concerns
about the depletion of fossil fuels and climate changes [1]. The proton exchange membrane (PEM) fuel
cells emerged as one promising candidate to replace internal combustion engines in the automotive
industry, producing electricity from the electrochemical reaction between hydrogen and oxygen [2].
They are characterised by: (i) low operation temperatures (<100 ◦C); (ii) quick start-up; (iii) high power
density; (iv) high efficiency; and (v) low greenhouse gas emissions [3]. The main drawbacks of the
fuel cells are the high manufacturing cost and the low durability, which prevent their widespread
commercialization [4]. For transportation applications, the 2015 US Department of Energy (DOE)
targets for the fuel cell cost and lifetime are $30/kW and 5000 h, respectively, which are in line with
the automotive internal combustion engine systems [5]. The key components of a PEM fuel cell are
the bipolar plates (BPPs) and the membrane electrode assembly (MEA). The last comprises the PEM,
the gas diffusion layer (GDL), and a catalyst layer, as presented schematically in Figure 1.

The BPPs are key elements of a PEM fuel cell, comprising about 60–80% of the stack weight and
up to 30–50% of the stack manufacturing cost [6]. They are multifunctional components responsible
for: (i) supplying a uniform distribution of the reactant gases (H2 and O2) over the electrodes via flow
channels; (ii) removing the heat and reaction products (water) from the cell assembly; (iii) connecting
electrically the cathode of one cell to the anode of the adjacent cell (that is why they are called BPPs);
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and (iv) providing structural support for the thin and mechanically weak MEA. Therefore, an ideal
material for BPPs should comprise the following properties: high electrical conductivity, low gas
permeability, high corrosion resistance in acidic environments, high mechanical strength, and low
cost [7]. The earlier BPPs were fabricated from high-density graphite, which is chemically stable
(excellent corrosion resistance) and possesses high thermal/electrical conductivity [8]. Nevertheless,
the graphite plates are brittle, exhibit low mechanical strength, and present high manufacturing
cost, resulting from the need to mill the flow field channels [3]. Accordingly, several studies have
been performed in order to develop more suitable and cost-effective materials for the fabrication of
BPPs, such as metals and composites [9]. Further, the adoption of metallic materials allows for the
application of other manufacturing techniques, including stamping [10], hydroforming [11], rubber pad
forming [12], micro-electrical discharge machining (μEDM) [13], electrochemical micro-machining [14],
and vacuum die casting [15].

 
Figure 1. Schematic representation of a proton exchange membrane fuel cell composed by the bipolar
plates (BPPs) and the membrane electrode assembly (not to scale).

Among the metals candidates for BPPs, stainless steels, Ni-based alloys, Ti-based alloys, and Al-based
alloys have been considered for PEM fuel cells [6]. The stainless steel is presently a consensual material
for BPPs, due to its relatively high strength, high chemical stability, high electrical conductivity, low gas
permeability, and much lower manufacturing cost in comparison with graphite [7]. The main drawbacks
of metals are the high density and the weak corrosion resistance [16]. Regarding the high density, it can
be alleviated by using ultra-thin sheets (51 μm of thickness) [17], which requires the adopting of different
forming methods to produce the BPPs [18]. The corrosion of the BPPs leads to a release of metal ions,
which contaminate the PEM [19,20]. In addition, a passive film of oxides is generated on the BPP surface
during the fuel cell operation, which increases the interfacial contact resistance between the BPPs and
the GDL [21]. Both previously mentioned conditions significantly reduce the stack performance and
lifetime [22]. Thus, several studies have been carried out in the last years to improve the corrosion
resistance (eliminate the passive film) using coatings [23]. Some corrosion-resistant-treated metal BPPs
show a 12% saving in hydrogen consumption and higher efficiency in relation to graphite [24].

The metallic BPPs manufactured by forming processes received raised interest in the last years,
namely the stainless steels, since they are promising candidates to replace the graphite at low cost
for massive production of fuel cells [7]. However, different forming defects can occur in the forming
of ultra-thin BPPs, such as springback, wrinkles, thinning, and fracture [10]. Accordingly, several
strategies have been proposed to improve the formability and reduce the forming defects. In order
to obtain deeper channels on the BPPs, dynamic loads (sine and square waves) are applied in the
stamping process of the 0.1 mm-thick austenitic stainless steel SS304 [25]. The forming depth of
the BPP increases up to 10%, in comparison with the static load, when the number of cycles is over
five. On the other hand, Park et al. [26] explored the use of solution heat treatment to improve the
formability of two stainless steels (SS304 and SS316). Since the ductility increases after applying the
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heat treatment, the channel depth achieved in the stamping process doubles for the heat-treated sheet.
Recently, Bong et al. [27] proposed the adoption of a multi-stage forming approach to improve the
formability of ultra-thin ferritic stainless steel.

Since the flow field configuration of BPPs is usually defined by a channel pattern (see Section 2),
most of the numerical studies of the stamping process reported in the literature consider plane strain
conditions and they are restricted to the analysis of a single channel. Nevertheless, the accurate modelling
of the forming conditions requires the study of different regions, which comprise distinct strain paths.
Therefore, the purpose of this study is to assess the formability of BPPs manufactured by stamping,
considering two representative zones of the BPPs (straight and the U-bend channel sections), which are
analysed in detail using finite element simulation. The developed numerical model aims to provide a
reference for optimizing stamping process of BPPs. Section 2 contains a brief presentation of the flow
field configurations currently used in PEM fuel cells, in order to highlight their common geometrical
features. The proposed finite element model adopted in the analysis of the stamping process is presented
in Section 3, namely the model adopted to describe the mechanical behaviour of the stainless steel
and the process conditions. Section 4 comprises the results for the straight channel section, where the
effect of the cross-section geometry on the deformation is analysed considering plane strain conditions.
The results regarding the U-bend channel section are presented in Section 5, highlighting the influence of
tools geometry on the formability of stamped BPPs, as well as the importance of the adopted boundary
conditions. The main conclusions of this study are discussed in Section 6.

2. Flow Field Configurations

The main functions of the flow field in a BPP is to distribute evenly the reactant gases (H2 and O2)
over the respective GDL and remove the water produced during the reaction. Since the performance
of the PEM fuel cell is strongly affected by the flow field design, several numerical models have been
developed to analyse the coupled transport process and electrochemical reaction in PEM fuel cells [28].
Typically, the flow field configurations can be divided into five types: parallel, interdigitated, pin-type,
spiral, and serpentine, which are schematically illustrated in Figure 2. The serpentine flow field, either
containing single (Figure 2e) or multiple channels (Figure 2f), is the most commonly used design in
commercial fuel cells [29]. The effect of the gas flow fields design on the fuel cell performance was
investigated experimentally by Dhahad et al. [30]. On the other hand, the modelling of an optimum flow
field design was presented by Kahraman and Orhan [31], including a parametric study with respect to
different design and performance parameters in a flow field plate. In addition to the conventional flow
field patterns, some nature-inspired flow field designs have been studied recently [32]. The results
show that the bio-inspired interdigitated designs improve the fuel cell performance by about 20–25%,
in comparison with the conventional designs [33]. However, the manufacturing complexity leads to
significant costs because typically these BPPs are made from graphite composite and produced by a
selective laser sintering process.

In addition to the gas flow field configuration, several studies have been carried out to optimise
the channel geometries (dimensions and shape) in order to achieve better fuel cell’s performance [34].
Since originally the channels of the BPPs were milled on graphite plates, most of the studies are focused
on the rectangular channel geometry [35]. The influence of the channel cross-section aspect ratio
(height/width) on the performance of a PEM fuel cell was numerically investigated by Manso et al. [36].
They concluded that fuel cell models with high channel cross-section aspect ratios present better
performance, due to the increasing mass transport. On the other hand, the effect of the channel/rib width
ratio on PEM fuel cell performance was assessed by Shimpalee and Van Zee [34], using computational
fluid dynamics simulation. The results show that for automotive applications the performance is
higher for a wider channel with narrower rib spacing, indicating that the heat removal from the MEA
is less important than the water management.
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(a) (b) (c) 

   
(d) (e) (f) 

Figure 2. Scheme of typical flow field configurations: (a) straight parallel; (b) interdigitated; (c) pin-type;
(d) spiral; (e) single-channel serpentine; (f) multiple-channel (triple) serpentine.

The adoption of graphite BPPs or thick metallic BPPs fabricated by milling allows obtaining
independent flow field configurations on each side of the plate. Nevertheless, for thin metallic BPPs
manufactured by a stamping process, the flow field configuration of one side of the plate is always
determined by the configuration of the opposite side, because both sides are formed simultaneously.
Indeed, it is difficult to obtain two continuous channels on both sides of a single BPP to provide reactant
and cooling flow field, respectively [37]. Thus, typically the reactant flow channel is continuous,
with exception to the interdigitated channel (Figure 2b). Moreover, the cross-section of the flow
channels in BPPs manufactured by a stamping process is shaped like a trapezoidal with fillets. Hence,
Xu et al. [38] recently established a model to calculate the influence of the tapered channel geometry
on the pipe resistance and flow distribution.

3. Finite Element Model

In order to analyse the stamping process used to manufacture metallic BPPs, the influence of
the tools geometry on the formability was assessed using finite element simulation. The numerical
simulations of the stamping process were carried out with the in-house static implicit finite element
code DD3IMP [39], specifically developed to simulate sheet metal forming processes [40,41]. Its main
characteristic is the use of a fully implicit algorithm of Newton–Raphson type to solve, within a single
iterative loop, the non-linearities related with the frictional contact problem and the elastoplastic
behaviour of the deformable body. All simulations were performed on a computer machine equipped
with an Intel® Core™ i7-4770K Quad-Core processor (3.5 GHz frequency) and the Windows® 10 (64-bit
platform) operating system.

3.1. Material Properties

The metal sheet considered in this study is of austenitic stainless steel SS304 with a thickness
of 0.15 mm, which is commonly used in the sheet metal forming of BPPs [25]. The mechanical
behaviour of this ultra-thin sheet of stainless steel was experimentally evaluated by Pham et al. [42].
The stress–strain curve recorded in the experimental uniaxial tensile test (initial strain rate of 10−3

s−1) is used in the present study to define the material parameters in the numerical model. Hence,
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the elastic behaviour of the stainless steel is considered isotropic and constant, which is described by
the Hooke’s law with an Young’s modulus of 206.2 GPa and a Poisson ratio of 0.30 [42]. Regarding the
plastic response, the work hardening behaviour is described by the phenomenological Swift hardening
law, where the flow stress, Y, is given by:

Y = K(ε0 + ε
p)

n with ε0 =
(Y0

K

)1/n
, (1)

where εp denotes the equivalent plastic strain, while K, ε0, and n are the material parameters.
The parameters of the Swift hardening law were identified using the stress–strain curve of the

experimental tensile test, presented in Figure 3. The identification procedure is based on the minimization
of a cost function, which evaluates the difference between numerical and experimental stress values,
using least squares estimation. The obtained material parameters for the isotropic hardening law are
listed in Table 1, which are identical to the ones adopted in the numerical model used by Hu et al. [10].
The comparison between the experimental and numerical stress–strain curves is presented in Figure 3,
highlighting the accurate description of the work hardening behaviour by the Swift law.

Figure 3. Comparison between experimental and numerical stress–strain curves from the uniaxial
tensile test in the rolling direction (stainless steel SS304).

Table 1. Material parameters used in the isotropic Swift hardening law to describe the SS304
stainless steel.

Y0 (MPa) K (MPa) n

255.02 1481.84 0.508

The plastic anisotropy coefficients of the stainless steel SS304 were experimentally calculated
by Pham et al. [43] in the rolling and transverse directions. They obtained similar values for both
directions, close to 0.9, which are in agreement with the values presented by Raj [44] for the SS304 with
a thickness of 0.5 mm. However, in the present study, the behaviour of the metal sheet is assumed
isotropic and modelled by the von Mises yield function, in order to avoid the influence of the orientation
of the sheet. In fact, the experimental study conducted by Park et al. [26] shows that the influence of
the sheet orientation (channel parallel or perpendicular to the rolling direction of the sheet) on the
maximum channel depth is insignificant.

3.2. Stamping Process

The high productivity and the low cost of mass production are the main advantages of the
stamping process for BPPs manufacturing. The desired geometry of the ultra-thin BPP (flow field
and channel geometry) is obtained by plastic deformation induced by the forming tools operation
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(displacement control). Typically, the forming tools are assumed rigid in the numerical simulation,
while the deformation of the metallic sheet is described by an elastoplastic material model (strain
rate-insensitive), as described in the previous section. Hence, in the present study, the tools surface is
discretized with Nagata patches [45,46]. The blank sheet is discretized with linear hexahedral finite
elements using a selective reduced integration technique [47] to avoid volumetric locking. In order to
accurately capture the through-thickness gradients (stress and strain), all simulations use six finite
elements in the thickness direction. Despite the large computation time associated with the solid finite
elements, they are required for accurate predictions when the ratio between the tool fillet radius and
the sheet thickness is lower than five [48]. The friction between the blank and the forming tools is
modelled through the classical Coulomb’s law. The value of the constant friction coefficient adopted in
the finite element model is selected as μ = 0.1, which is within the range of values commonly used in
the numerical simulation of BPPs stamping [10,27].

Due to the large geometric complexity of the ultra-thin BPPs (see the example shown in Figure 4 [49]),
the finite element simulation of the stamping process is commonly carried out under plane strain
conditions, i.e., simplified two-dimensional (2D) finite element models are used to study locally a few
numbers of channels [50]. In fact, the number of finite elements required to describe accurately the entire
BPP is very high, since the minimum fillet radius of the channel is considerably smaller in comparison
with the BPP size. Therefore, in the present work, specific areas of the BPP are studied by finite element
simulation, namely the straight and the U-bend channel sections indicated in Figure 4. Despite the
variety of flow field configurations (see Figure 2), these two channel sections are usually present in the
BPPs, allowing evaluating different deformation mechanisms existent in the BPPs stamping process.

Figure 4. Example of a bipolar plate manufactured by forming, indicating both the straight and the
U-bend channel sections: a BPP with an interdigitated flow field for reactant gases and a serpentine
flow field for the coolant fluid on the opposite side [49].

4. Straight Channel Section

Since the main region of a flow channel is straight (see Figure 4), the effect of the cross-section
geometry on the deformation is numerically analysed using plane strain conditions. The geometry
of the trapezoidal channel obtained by sheet metal forming (see Figure 5a) is usually defined by five
key parameters: (i) channel depth (h); (ii) channel width (w1); (iii) rib width (s); (iv) draft angle (θ);
and (v) fillet radii (r and R). These dimensions are dictated mainly by the geometry of the forming tools
(punch and die) and the stamping process conditions. Hence, the influence of the tool dimensions (see
Figure 5a) on the formability of stamped BPPs was assessed in the present study through the thinning
and the equivalent plastic strain predicted by numerical simulation. The fillets in the trapezoidal shape
of the channel cross-section are defined by the fillet radius of the punch and die (see Figure 5b). For a
predefined channel height, the angle between the walls of the channel (draft angle θ) is directly related
to the ratio between the channel width w1 and the dimension w2, as shown in Figure 5. Since the die
position is fixed in the numerical model, the channel depth is simply dictated by the prescribed vertical
displacement of the punch.
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(a) (b) 

Figure 5. Stamping process used to manufacture BPPs: (a) cross-section of the obtained trapezoidal
channel with key dimensions; (b) cross-section of the tools (punch and die including the main
dimensions).

Regarding the stainless steel BPPs manufactured by a stamping process, the review carried out
by Peng et al. [7] summarizes the range of values currently used for each key parameter that defines
the flow channel (cross-section). The initial thickness of the stainless steel sheets used in the forming
process of BPPs ranges between 0.051 mm [18] and 0.15 mm [10]. Based on the previous studies, the
values of channel width range from 0.75 mm [18] to 1.5 mm [10]. On the other hand, since the channel
cross-section aspect ratio is usually lower than 0.5, the channel depth ranges between 0.20 mm [18]
and 0.60 mm [51]. In fact, the channel depth reached by forming (before fracture) is always inferior
to 5 times the initial thickness. In order to simplify the sensitivity analysis performed in this study,
some simplifications are introduced in the geometry of the forming tool. Hence, the rib width is
selected to be equal to the channel width (w1 = s) and the fillet radius of the punch and die are assumed
identical in the 2D plane strain finite element model, i.e., r = R.

4.1. Multiple Channels

Although the numerical simulation of the forming process is usually restricted to a single channel [50],
BPPs are composed by a set of parallel channels (see Figure 4). The proximity of the channel to the
blank edges can change the local process conditions in terms of restraining force. The border effect on
the channel geometry was experimentally studied by Mahabunphachai et al. [18] for stamped BPPs.
They show that for a BPP with 26 parallel channels, the height of each one varies according to its
position, presenting variations of about 25% (higher values of channel height closer to the blank edges).
Therefore, in order to quantify the influence of the adopted boundary conditions on the numerical results,
a stamped BPP composed by 25 parallel channels is analysed under plane strain conditions. Due to
symmetry conditions, only half BPP width is simulated (see Figure 6), which is discretized with 3000 × 6
= 18,000 finite elements. In order to account for the border effect, the rib width is extended (10 mm)
and a blank-holder is added to allow clamping the blank during the forming, as shown in Figure 6a.
The dimensions of the forming tools (punch and die) are presented in Table 2.

 
(a) 

 
(b) 

Figure 6. Finite element model (plane strain conditions and half width) of a stamped BPP composed
by 25 parallel channels: (a) initial position; (b) final configuration.

Table 2. Reference values for the main dimensions of the forming tools (punch and die) adopted in the
analysis of the straight channel section.

w1 w2 S r R d = (w2 + s)/2

1.2 mm 2.2 mm 1.2 mm 0.3 mm 0.3 mm 1.7 mm
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The predicted final geometry of the BPP is presented in Figure 6b assuming a channel depth of
h = 1.0 mm (punch displacement), highlighting the trapezoidal shape of the channel cross-section in
stamped BPPs. In order to cover a wide range of experimental clamping conditions, applied during
the stamping process, three distinct boundary conditions are adopted in the numerical model. They
are defined by: (i) an unconstrained free edge of the flange with the blank-holder placed over the
flange with a fixed gap (initial thickness of the blank); (ii) an unconstrained free edge of the flange and
application of a constant force on the blank-holder (initial contact pressure of 10 MPa); (iii) a free edge
of the flange constrained in the x-direction with the blank-holder placed over the flange with a fixed
gap (initial thickness of the blank). They are denoted by an unconstrained free edge, a fixed free edge,
and a clamped flange, respectively.

The predicted cross-section geometry of the two channels closest to the flange is presented in
Figure 7, comparing the three boundary conditions applied to the flange. The shape of channel #1
(see Figure 6) is strongly affected by the boundary conditions adopted, as highlighted in Figure 7.
Since the flange is completely free to slide (≈2.29 mm length) when the free edge is unconstrained
while the blank-holder presents a fixed gap, the bottom of channel #1 is curved, while the fillet
radii of the trapezoidal shape are larger. This induces differences in the height of the channels and
consequent dimensional errors of the metallic BPP, which creates variations in the GDL assembly
pressure distribution [52]. On the other hand, when the free edge of the flange is fixed in the x-direction,
the geometry of all channels is identical, as shown in Figure 7. The application of a constant blank-holder
force on the flange allows for a controlled sliding of the flange (≈1.16 mm length), providing a channel
shape sited between the other two conditions.

z

x

Figure 7. Cross-section of the BPP (2 channels closest to the flange) using three different boundary
conditions in the flange region and considering plane strain conditions.

The predicted thickness distribution on the BPP along the x-direction is presented in Figure 8,
comparing the three different boundary conditions applied on the flange. The effect of the boundary
conditions on the final thickness is negligible in the central region of the BPP, i.e., the three finite
element models provide identical results for the channels away from the boundary. On the other hand,
the predicted thickness distribution of the channels adjacent to the flange is strongly influenced by
the boundary conditions adopted, as shown in Figure 8. The thinning is lower in this region of the
BPP due to the sliding of the flange, particularly when the free edge of the flange is unconstrained.
In contrast, the minimum value of thickness arises in the central region of the BPP, specifically in the
fillet radii of the flow channels.

x

Figure 8. Thickness distribution on the BPP along the x-direction using three different boundary
conditions in the flange region and considering plane strain conditions.

134



Metals 2019, 9, 810

Since both the cross-section geometry of the flow channels (Figure 7) and the thickness distribution
(Figure 8) present cyclic symmetry along the BPP width direction, particularly for channels away from
the border, most of the studies are focused on a single channel [50]. Moreover, the maximum value of
thinning occurs in the central region of the BPP, which dictates the formability analysis of the stamping
process. Therefore, the analysis of a single channel is representative of the deformation occurring in
the straight channel section of the BBPs. Hence, the sensitivity analysis carried out in the present
study considers only a single channel in the finite element model, allowing reducing significantly the
computational cost.

4.2. Single Channel

Due to symmetry conditions, only half-channel width is simulated under plane strain conditions,
as shown in Figure 9. The displacement of the nodes located at the mid-width of the channel/rib is
constrained in the x-direction, providing the cyclic symmetry conditions observed in the thickness
distribution (Figure 8). Since the symmetry conditions are applied in both extremities of the channel,
only the punch and the die are required in the numerical simulation (see Figure 9). Regardless of
the tool dimensions tested during the sensitivity analysis, the half-distance between two consecutive
channels d = 1.7 mm is fixed in all simulations (see Figure 5). The blank is discretized with 100 × 6 =
600 finite elements.

 
(a) (b) 

Figure 9. Finite element model of the stamping process (half-channel) assuming plane strain conditions:
(a) initial configuration; (b) final configuration.

The reference values for the dimensions of the forming tools (punch and die) are presented in
Table 2. The die is fixed, while the punch presents a prescribed displacement in the vertical direction,
providing a maximum channel depth of h = 1.0 mm (see Figure 5b). In order to study the influence of
the tools geometry on the formability, the channel/rib width, the punch/die radius, and the channel
depth are selected as variable parameters in the present numerical model.

Effect of Tool Dimensions

The channel/rib width is dictated by the punch/die width (assumed identical: w1 = s), while the
fillet radius of the trapezoidal shape of the channel is defined by the fillet radius of the punch/die
(assumed identical: r = R), as shown in Figure 5. The predicted geometry of the channel cross-section
is presented in Figure 10, comparing three values of punch/die width, namely w1 = s = 1.0 mm,
w1 = s = 1.2 mm, and w1 = s = 1.4 mm, and three values of punch/die fillet radius, namely r = R = 0.2
mm, r = R = 0.3 mm, and r = R = 0.4 mm. The maximum value of plastic strain (fillet zones) increases
when the channel/rib width rises and when the fillet radius of the punch/die decreases. Both conditions
lead to a decrease of the draft angle, as shown in Figure 10. The maximum value of equivalent plastic
strain increases by approximately 40% from the narrow to the broad channel and increases by about
50% from the largest to the lower fillet radius.
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Figure 10. Equivalent plastic strain distribution plotted on the deformed configuration of the channel
for three values of channel/rib width (left side) and for three values of punch/die fillet radius (right
side) and h = 1.0 mm.

The predicted thickness distribution is presented in Figure 11 (half-channel), for the three different
values of channel/rib width and the three values of punch/die fillet radius (h = 1.0 mm). The thickness is
roughly constant in the wall, presenting a value slightly lower than the one measured in the rib/bottom
of the channel. The minimum value of thickness occurs in the fillet zones of the flow channel, which is
in agreement with the equivalent plastic strain distribution shown in Figure 10. Using the lower
fillet radius, the minimum thickness is approximately 0.092 mm, while the adoption of the highest
fillet radius leads to a minimum thickness of about 0.114 mm. Increasing the channel/rib width leads
to a reduction of the minimum thickness, as shown in Figure 11. The comparison of the thickness
distribution presented in Figure 11 with the thickness distribution in a BPP composed by 25 parallel
channels (Figure 8) shows that the boundary conditions adopted in the single channel model allow
representing accurately the process conditions.

x

Figure 11. Thickness distribution in half-channel for three values of channel/rib width and three values
of punch/die fillet radius (h = 1.0 mm).

The evolution of the maximum thinning in the channel is presented in Figure 12 for the three
different values of channel/rib width and the three values of punch/die fillet radius. The increase of the
maximum thinning is approximately linear for a punch displacement larger than 0.5 mm. However,
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considering either the lower fillet radius (r = R = 0.2 mm) or the broader channel (w1 = s = 1.4 mm),
the thinning rate increases gradually after 0.8 mm of punch displacement (see Figure 12). This behaviour
can indicate the occurrence of necking in the fillet radius of the flow channel, which is in agreement
with the larger thickness strain predicted in this region (see Figure 11). For this channel geometry
and considering the depth of 1.0 mm, the predicted maximum thinning is nearly 40%. Therefore,
the formability of stamped BPPs is strongly affected by both the channel/rib width and the punch/die
fillet radius.

Figure 12. Evolution of the maximum thinning in the channel with the punch displacement for three
values of channel/rib width and three values of punch/die fillet radius (plane strain conditions).

Since the draft angle of the flow channel is dictated by the channel width w1, the dimension
w2, and the channel depth (see Figure 5a), its value decreases with the punch displacement rising.
The evolution of the draft angle with the punch displacement is presented in Figure 13, for the three
different values of channel/rib width and the three values of punch/die fillet radius. For all channel
geometries analysed, the decrease of the draft angle is approximately linear up to a channel depth of
0.5 mm However, the draft angle is always smaller for wider channel/rib and for smaller fillet radii of
the punch/die, as shown in Figures 10 and 13. In fact, considering a channel depth of 1.0 mm and r = R
= 0.3 mm, the draft angles are about 51◦ and 91◦ in the broader and narrower channel, respectively.

Figure 13. Draft angle evolution obtained for three values of channel/rib width and three values of
punch/die fillet radius (plane strain conditions).

The punch force required for the stamping of a single channel, assuming plane strain conditions,
is presented in Figure 14, for three different values of channel/rib width and three different values of
punch/die fillet radius. Since the thinning is significantly higher in wider channels with smaller fillet radii
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(see Figure 12), the required punch force is also considerably higher. Indeed, the punch force required
for forming the wider channel is at least 40% higher than the one necessary for forming the narrowest
channel, as shown in Figure 14. Besides, the slowest increase of the punch force after 0.7 mm of punch
displacement indicates the onset of necking in the fillet radius of the flow channel (see Figure 11).

Figure 14. Punch force evolution obtained for three values of channel/rib width and three values of
punch/die fillet radius (plane strain conditions).

The last analysis considers different values for the channel and rib widths, i.e., w1 � s, but the
summation of them is always 2.4 mm in order to keep d = 1.7 mm (see Table 2). Assuming r = R = 0.3
mm and h= 1.0 mm, the final geometry of the channel cross-section is presented in Figure 15, comparing
three different configurations. The predicted equivalent plastic strain distribution is identical in all
channel configurations, because the draft angle is the same. Indeed, the flat zone in the bottom of the
channel is reduced while the flat zone in the rib top is enlarged in the same proportion, as shown in
Figure 15. Accordingly, this leads only to a shift in the thickness distribution, preserving the maximum
thinning value during the punch force evolution.

Figure 15. Equivalent plastic strain distribution plotted on the deformed configuration of the channel
for three different values of channel width and rib width (plane strain conditions) and h = 1.0 mm.

5. U-bend Channel Section

In addition to the straight channel section, the BPP manufactured by forming is also composed
by U-bend channel sections, as indicated in Figure 4. Indeed, the straight channel sections are
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connected between them by U-bend channel sections, leading to different flow field configurations
(see Figure 2). Nevertheless, the modelling of the U-bend channel section requires the development of
three-dimensional (3D) finite element models. This section contains the numerical analysis of this zone
of the BPP, namely the effect of the tools geometry on the BPP deformed configuration.

5.1. Boundary Conditions

Besides the geometrical dimensions that describe the cross-section geometry of the channel, the
U-bend section requires the definition of other dimensions. Anyway, revolving the cross-section
geometry is the simplest way to create a U-bend channel section. Figure 16 presents the finite element
model of the forming tools obtained by revolving the cross-section geometry (half-model), previously
used as a reference in Section 4. The square blank (3.4 mm width) is discretized with 150 × 150 × 6
= 135,000 finite elements. Besides, symmetry conditions are applied in each of the four blank edges,
in order to take into account the effect of the neighbouring channels, as illustrated in Figure 16.

Figure 16. Finite element model adopted to simulate the stamping of the U-bend channel section
(revolved tool geometry).

Considering the dimensions of the cross-section geometry listed in Table 2, the thickness distribution
in the flow channel at y = 0 (see Figure 16) is presented in Figure 17. Figure 17 also shows the
thickness distribution for a straight channel with the same geometrical dimensions, assuming plane
strain conditions. Note that the 3D model considered has a total length of 3.4 mm, instead of the 1.7 mm
(half) used in the previous section (see Figure 9). The thickness is substantially different from the one
obtained with the finite element model previously presented in Section 4.2 (plane strain conditions).
Since the thinning is considerably higher in the U-bend channel section than in the straight section,
the channel depth (vertical displacement of the punch) is limited to 0.7 mm in this analysis. The thinning
is significantly larger in the fillet radius of the channel close to the axis of revolution (near axisymmetric
boundary conditions), as shown in Figure 17. On the other hand, the thicknesses predicted by both models
are similar in the punch fillet radii. Besides, the computational time is higher than 10 h, when assuming
3D conditions, while when considering plane strain conditions, it is less than half-minute.

In order to assess the effect of the adopted boundary conditions on the deformation behaviour,
the straight channel section is included in the revolved tool geometry. The finite element model of
the forming tools is presented in Figure 18, using 5.0 mm as the length of the straight channel section.
The blank is rectangular with dimensions 3.4 × 8.4 mm2 and discretized with 150 × 167 × 6 = 150,300
finite elements. The symmetry conditions are applied on all edges of the blank (see Figure 18), as shown
in the previous model.
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x

Figure 17. Thickness distribution in a single channel at y = 0 for the three different models.
The parameters are w1 = s = 1.2 mm, r = R = 0.3 mm, and h = 0.7 mm.

 
Figure 18. Finite element model adopted to simulate the stamping of the U-bend channel section
(revolved tool geometry with a straight section).

Using the finite element model presented in Figure 18 (labelled revolved + straight channel) with
the dimensions listed in in Table 2, the predicted thickness distribution in the flow channel at y = 0
is presented in Figure 17. Since this numerical model is composed by the revolved tool geometry
(Figure 16) and the extruded cross-section geometry (Figure 9), the predicted thickness is in-between
the values obtained with the two previous models, as shown in Figure 17. Since the U-bend channel
section is always connected to the straight channel (see Figure 4), the blank deformation is better
predicted using this model, namely in the transition between the U-bend and the straight sections
(y = 0). In fact, the maximum thinning occurs always in the region of the U-bend channel [49].

5.2. Bent Geometry

Considering the numerical model shown in Figure 18, the equivalent plastic strain distribution is
presented in Figure 19a. The maximum value of equivalent plastic strain arises in the fillet radius of the
die close to the axis of revolution. On the other hand, considering the fillet radius furthest away from
the axis of revolution, the equivalent plastic strain increases from the U-bend to the straight channel
section (see Figure 19a). This tool geometry leads to a cross-section profile (trapezoidal) which remains
the same along the flow channel.
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(a)  (b) 

Figure 19. Equivalent plastic strain distribution plotted on the deformed configuration of the channel: (a)
revolved tool geometry in the U-bend channel section; (b) rounded bend in the U-bend channel section.

Since the lowest values of equivalent plastic strain (almost zero) are located in the exterior rib of
the U-bend channel section (Figure 19a), the tool geometry (punch and die) was modified according to
Figure 20. The revolved radius in the exterior rib of the die is 1.2 mm, while the revolution radius of
the interior rib is kept identical (0.6 mm). The cross-section profile of the punch geometry is constant,
while the clearance between the punch and die, measured along the diagonal direction, is equally
distributed on both sides (see Figure 20). Thus, the U-bend channel section is composed of straight
sections of the punch and die.

 
(a) 

 
(b) 

Figure 20. Finite element model of the tools adopted in the stamping of the U-bend channel section
(rounded bend): (a) lateral view; (b) top view.

Considering the tool geometry presented in Figure 20, the equivalent plastic strain distribution
plotted on the deformed configuration of the stamped channel is illustrated in Figure 19b. The area
with larger values of equivalent plastic strain is reduced in comparison with the one obtained with
the model given in Figure 18. Therefore, the formability of the stamped BPP is improved using the
rounded bend tool geometry (Figure 20). Nevertheless, the cross-section profile of the flow channel is
not constant along the entire U-bend section. The draft angle is larger in the diagonal direction (see
Figure 19b), which results from the large clearance between the punch and the die in this zone of the
channel, as highlighted in Figure 20b.

The final thickness distribution at x = 0 is presented in Figure 21, comparing the finite element
models presented in Figures 18 and 20. According to the axis system indicated in Figure 20, the negative
values of y-coordinate correspond to the straight channel section. The minimum value of thickness
occurs in the symmetry plane (x = 0) of the U-bend channel section (compare Figures 17 and 21),
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specifically in the fillet radius of the die. However, the maximum thinning predicted with the tool
geometry defined in Figure 20 (rounded bend) is lower than the one obtained using the model present
in Figure 18. Besides, the tool geometry with rounded bend provides a flow channel with more uniform
thickness, i.e., the final thickness ranges between 0.143 mm and 0.101 mm in this section, as shown in
Figure 21. This improves the contact pressure distribution in the assembly due to the low dimensional
error in terms of channel height of the metallic BPP [52].

y

Figure 21. Thickness distribution in a single channel at x = 0, for the two different models.
The parameters are w1 = s = 1.2 mm, r = R = 0.3 mm, and h = 0.7 mm.

5.3. Effect of Tool Dimensions

The rib width adjacent to the axis of revolution dictates the maximum value for the revolution
radius of the cross-section geometry (see die in Figure 20b). Taking into account the results obtained
assuming plane strain conditions (see Figures 11 and 12), the thinning decreases with the reduction of
the channel/rib width. Therefore, a new model was analysed, for which the rib width is increased to
s = 1.4 mm in comparison with the tool geometry illustrated in Figure 20, while the other dimensions
are kept constant (see in Table 2). In another model, the fillet radius R of the die is increased to
R = 0.4 mm because, according to the straight channel results, the thinning decreases by increasing of
the punch/die fillet radii (see Figures 11 and 12). Finally, a model was built that takes into account both
the rib width and the fillet radius of the die, which are increased to 1.6 mm and 0.5 mm, respectively.

The predicted thickness distribution in the stamped flow channel at x = 0 is presented in Figure 22,
comparing the three die geometries previously described. The punch dimensions considered in the
simulation are w1 = 1.2 mm and r = 0.3 mm, and the channel depth is h = 0.7 mm. Considering the
U-bend channel section, the minimum value of thickness arises always in the fillet radius of the die
closest to the axis of revolution, as shown in Figure 22. Indeed, the change of the die geometry, namely
the rib width and the fillet radius, affects predominantly the thinning in this zone of the channel.
The increase of both parameters leads to a reduction of the thinning. Considering the largest values for
the rib width and fillet radius (s = 1.6 mm and R = 0.5 mm), the minimum thickness is about 0.11 mm,
i.e., the maximum thinning is approximately 27% for h = 0.7 mm.

The equivalent plastic strain distribution is presented in Figure 23, comparing the three die
geometries adopted in the finite element simulation. Although the distribution seems similar for all
conditions, the maximum value of equivalent plastic strain is reduced from about 0.53 to approximately
0.43, which occurs always in the elliptic surface of the U-bend channel section (see Figure 23). Therefore,
the increase of both the rib width and the fillet radius leads to a significant reduction of the equivalent
plastic strain in this zone of the channel. Despite the modification of the die geometry, the flow channel
cross-section areas are identical for all conditions. The obtained draft angle is approximately 95◦ in the
trapezoidal shape of the channel cross-section.
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y

Figure 22. Thickness distribution in the flow channel at x = 0, comparing three different geometries of
the die. The parameters are w1 = 1.2 mm, r = 0.3 mm, and h = 0.7 mm.

 

 

(a) 

 
(b) 

 
(c) 

Figure 23. Equivalent plastic strain distribution plotted on the deformed configuration of the channel
for different die dimensions: (a) s = 1.4 mm and R = 0.3 mm; (b) s = 1.4 mm and R = 0.4 mm;
(c) s = 1.6 mm and R = 0.5 mm. The other parameters are w1 = 1.2 mm, r = 0.3 mm, and h = 0.7 mm.

The draft angle decreases when the punch width increases (Figure 13), due to the reduction
of the gap between the punch and the die (see Figure 9b). The results obtained assuming plane
strain conditions indicate that the channel width and the punch fillet radius have opposite effects
on the thinning (see Figure 11). Thus, both the channel width and the fillet radius of the punch
are increased. Considering the punch dimensions of w1 = 1.4 mm and r = 0.4 mm, the equivalent
plastic strain distribution plotted on the deformed configuration of the channel is presented in
Figure 24. The maximum value of equivalent plastic strain arises on the upper surface of the flow
channel, specifically in the fillet radius of the die closest to the axis of revolution. On the other hand,
the maximum value of equivalent plastic strain on the lower surface of the flow channel is located in
the punch fillet radii (straight section), as shown in Figure 24b. In fact, regarding the straight channel
section, the largest values of equivalent plastic strain occur always in the fillet radii, namely in the die
fillet (upper surface) and in the punch fillet (lower surface).

The minor–major strain plot is presented in Figure 25, comparing the predictions obtained for
the upper and lower surface of the flow channel. The strain paths of the points located on the upper
surface are different from the one predicted for the lower surface of the channel, which is in accordance
with the equivalent plastic strain gradient through the thickness (Figure 24). The deformation mode
conditions in the BPP are predominantly between plane strain and equi-biaxial stretching, as shown in
Figure 25. Nevertheless, the upper surface of the flow channel presents several points with nearly
equi-biaxial stretching (large strain), which corresponds to the fillet radius of the die closest to the axis
of revolution (see Figure 24a). On the other hand, the lower surface of the flow channel is mainly under
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plane strain conditions. Indeed, the largest value of major strain arises in that surface (see Figure 25),
namely in the straight channel section.

  
(a)  (b) 

Figure 24. Equivalent plastic strain distribution plotted on the deformed configuration of the channel
parameters considering w1 = 1.4 mm, s = 1.6 mm, r = 0.4 mm, R = 0.5 mm, and h = 0.7 mm: (a) upper
surface of the flow channel; (b) lower surface of the flow channel.

Figure 25. Minor–major strain plots for both surfaces of the channel (upper and lower) considering
w1 = 1.4 mm, s = 1.6 mm, r = 0.4 mm, R = 0.5 mm, and h = 0.7 mm.

The predicted thickness distribution is presented in Figure 26 for three different cross-sections of
the stamped flow channel. The minimum value of thickness occurs in the fillet radius of the die (closest
to the axis of revolution), specifically in the cross-section at x = 0. On the other hand, the predicted
thickness distribution in the cross-section at y = −5 mm is identical to the one obtained considering
plane strain conditions (straight channel section). Therefore, the formability analysis of this stamping
process requires the study of the U-bend channel section, where the thinning is larger, as highlighted
in Figure 26. Indeed, the maximum thinning (arising in the U-bend channel section) decreases by
increasing the rib width, whereas assuming plane strain conditions (straight channel section) the
increase of the rib width leads to increase of the thinning (see Figure 12).
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x y

Figure 26. Thickness distribution in three different localizations of the flow channel considering
w1 = 1.4 mm, s = 1.6 mm, r = 0.4 mm, R = 0.5 mm, and h = 0.7 mm.

6. Conclusions

This study presents the finite element analysis of the stamping process used in the manufacturing
of metallic BPPs for PEM fuel cells. The effects of the geometrical dimensions of the forming tools on
the formability and final thickness were discussed considering the stainless steel SS304 with a thickness
of 0.15 mm. In order to reduce the computational cost of the simulation, only two representative zones
of the BPP were studied, namely the straight and the U-bend channel sections.

Considering the finite element model composed by several parallel flow channels, the predicted
geometry of each stamped channel varies according to its relative position, which results from the
border effect. Both the height and the cross-section of the flow channel closest to the free edge are
substantially different from the one adjacent to the symmetry condition. Nevertheless, the geometry
of most flow channels was accurately predicted by the numerical model that considers half-channel
width under plane strain conditions. Regarding the influence of the tools (punch and die) geometry
on the formability, the amount of thinning decreases with the reduction of the channel/rib width and
increase of the punch/die fillet radii. On the other hand, the predicted thinning increases as the channel
depth increases.

The deformation mode changes gradually from plane strain in the straight channel section to
biaxial strain in the U-bend section. Therefore, the accurate analysis of this zone requires the inclusion
of a portion of the straight channel section in addition to the revolved cross-section geometry. In fact,
the thinning is considerably overestimated when the model comprises only the revolved cross-section
geometry. The maximum value of thinning occurs always in the U-bend channel section, namely in
the fillet radius of the die closest to the axis of revolution. This zone presents the highest value of
equivalent plastic strain, which increases by reducing both the rib width and the fillet radius.

The validation of the presented numerical model with experimental results will allow improving
the reliability of the numerical results. The conclusions obtained from the numerical results should be
attested using an experimental design of experiences.
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Abstract: Gas detonation forming is a high-speed forming method, which has the potential to form
complex geometries, including sharp angles and undercuts, in a very short process time. Despite many
efforts being made to develop detonation forming, many important aspects remain unclear and have
not been studied experimentally, nor numerically in detail, e.g., the ability to produce sharp corners,
the effect of peak load on deformation and damage location and its propagation in the workpiece.
In the present work, DC04 steel cups were formed using gas detonation forming, and finite element
method (FEM) simulations of the cup forming process were performed. The simulations on 3D
computational models were carried out with explicit dynamic analysis using the Johnson–Cook
material model. The results obtained in the simulations were in good agreement with the experimental
observations, e.g., deformed shape and thickness distribution. Moreover, the proposed computational
model was capable of predicting the damage initiation and evolution correctly, which was mainly
due to the high-pressure magnitude or an initial offset of the workpiece in the experiments.

Keywords: gas detonation forming; finite element method; Johnson–Cook material model; damage

1. Introduction

Sheet metal forming basically consists of stretching and bending a thin sheet into the desired shape.
The produced parts can be stiff and have good strength-to-weight ratios; therefore, these products are
widely used for automobiles, domestic appliances, aircraft and food and drink cans. A large number
of techniques is used to make sheet metal parts. In recent years, many aspects of sheet metal forming
processes have been widely studied using electromagnetic forming, especially with regard to the
behavior of materials under a high strain rate, the possible future applications and numerical modeling
of the process, with several works dedicated to these topics [1–7]. Moreover, a detailed review of
numerical simulations in sheet metal forming and potential developments is presented by Tekkaya [8].

DC04 steel has a good ductility level, which facilitates the production of complicated component
shapes where required and even allowing deep pressing processes to be carried out. Here, cup
formation of DC04 steel sheets was studied using the gas detonation forming technique. It is a highly
dynamic manufacturing method, which involves the release of the stored energy in a very short
interval of time. There are various high-speed forming processes, which are classified based on the
type of energy transfer. This can be done by active media, accelerated mass or by active energy.
Here, the high kinetic energy of a fluid medium is exploited, and it is used to collide the sheet-metal
workpiece in the form of a shock front, which is produced as a result of the detonation of a mixture
of gases like oxyhydrogen [9,10]. This forming process has many well-known advantages, namely
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high degree of formability, capability to form complex geometries, including undercuts for high strain
rate-dependent materials, and fine embossing without relief angle. The process consists of a clean
combustion, having the advantages of easy automation and fewer safety regulations. The overall
process and tooling costs are significantly reduced due to simplified tooling requirements compared to
electromagnetic forming [11].

In previous works, Yasar and Yasar et al., conducted both experimental and numerical investigations
of aluminum cup drawing using gas detonation. In the first work, 2D and 3D simulations were
performed using both explicit and implicit dynamic analysis. The thickness and the final shape were
compared to the experiments. Based on the term of deformed shape, the spring back predictions by
explicit and implicit methods were discussed. In the second study, gas detonation forming experiments
were performed using a mixture of acetylene and oxygen with an equal volume ratio. They also
did the explicit dynamic simulations using ANSYS/LS-DYNA. The strain, thickness and volume of
cup formation were compared [12,13]. Mokadem developed a dynamic forming limit diagram for this
process [14]. Wijayathunga and Webb also developed a finite element model to simulate the experimental
tests for the impulsive deep drawing of a brass square cup with the presence of a soft lead plug [15].
In the implementation of the finite element simulation, the effects of the medium impedance, wave
reflection and refraction were considered to be negligible in order to improve the simplicity of the
modeling procedure [15]. Mousavi et al., studied free underwater explosive forming of aluminum
circular plates experimentally and analytically, using a central explosive charge on 2024 aluminum
sheets [16]. In this study, numerical simulation results concluded that the friction coefficient and blank
holder force must be sufficient and optimized in order to prevent uneven drawing and wrinkling [16].

Khalegi et al., worked on gas detonation forming of clamped circular mild steel with three conical
dies having apex angles of 60◦, 90◦ and 120◦. They studied the influence of the initial ratio of
the oxyhydrogen mixture and also the effect of three different initial pressures of 3, 4 and 5 bar.
Moreover, FEM simulations were performed, and the results of thickness strain, hoop strain, thickness
variation and deformed geometry were compared with the experiments [17]. Hashem Babaei et al.,
conducted experiments on clamped circular plates of mild steel, using impulse loading from the
detonation of the oxygen and acetylene mixture at various volume ratios and different initial pressures.
They developed an analytical and empirical model for their experiments to demonstrate the effect of
the mechanical properties of the plate and gas, the impulse of applied load, plate geometry, the velocity
of sound in different gases and the strain-rate sensitivity on the large deformation of circular plates in
high rate energy forming [18,19]. Mirzababaie Mostofi et al., investigated the effect of the detonation of
different oxyacetylene mixtures on the dynamic response of aluminum alloy and mild steel plates with
different thicknesses. They examined the ductile transverse deformation of the clamped rectangular
plates. Theoretical analysis was conducted, according to an upper bound solution and energy method,
with theoretical models assuming a zero-order Bessel function of the first kind in the x and y directions
for a transverse displacement profile to predict permanent deflections. To account for material strain
rate sensitivity, a Cowper–Symonds model has been used and was compared to Jones’ theoretical
model [20]. In other works, they suggested new dimensionless numbers based on the dimensionless
governing equations and using a new mathematical method, namely the singular value decomposition
method. Their empirical model was validated against the experiments. The study revealed that the
empirical model using the Cowper–Symonds constitutive equation predicted the ratio of midpoint
deflection to the thickness more accurately than Jones’ theoretical equation [21].

These studies are important to shed light on the gas detonation forming process. However, some
of the important aspects of the experiments, as well as the simulations of sheet metal forming by this
technique have not yet been studied in detail, e.g., the observation of sharp edges in the deformation
process, the influence of the peak load, the reproduction of the sharp corners in the numerical analysis
and, more importantly, damage. In the gas detonation forming process, fracture occurs in the sheet
metal by ductile damage due to the development of micro-cracks associated with large straining or due
to plastic instabilities associated with the sheet materials’ micro-structure and boundary conditions.
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Therefore, one of the main objectives of this work is to predict when and where the cracks can appear
in the workpiece during the forming.

The present work investigates the gas detonation forming of DC04 steel cups. The 3D explicit dynamic
finite element analyses are carried out using the LS-DYNA explicit solver [22]. The material description
considered for this study is the Johnson–Cook plasticity material model. The deformed geometry of
the cup and thickness distributions are compared with the experimentally-obtained values. The relative
differences found between the experimental and simulation results are discussed. Finally, the fractured
specimens in the experiments are studied using adapted damage parameters for the numerical simulations.

2. Methods and Setup

2.1. Experimental Setup

Figure 1 depicts the apparatus, and Figure 2 shows a schematic representation of the experimental
setup of the gas detonation forming process. It consists of four major parts, i.e., detonation tube,
die holder, die and sheet metal or workpiece. The detonation tube of 700 mm in length is clamped
to the die holder, forming a tight seal between them. A small hole is drilled through both the die
holder and die, which is connected to a vacuum pump. This is done to prevent the formation of an
air cushion between the sheet metal and the die, enabling the sheet metal to perfectly sit into the die.
Figure 3 shows the inner dimensions of the die. The diameter of the circular metal blank was 54 mm
with a thickness of 1 mm. The inner diameter of the die was 30 mm. The detonation tube contains
two piezo-electric sensors oriented coaxially and connected to the gas space by radial bores. The types
of sensors used were Kistler 603B (closer to workpiece) and Kistler 601H.

Figure 1. Gas detonation forming apparatus with peripheral equipment.
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Figure 2. Schematic representation of the experimental setup of the gas detonation forming process.

Figure 3. Internal dimensions of the die.

In the gas detonation process, the detonation tube is filled with oxyhydrogen. The gas mixture
is compressed in the tube to the initial pressure. The mixture is ignited at the other end of the tube,
causing the detonation wave to travel in the tube at constant supersonic velocity. A detonation wave
is a joint complex of shock waves and reaction zones, implying shock waves that are strong enough
to induce an immediate chemical reaction. The shock compression of the gas is sufficient to cause
an instantaneous reaction of the oxyhydrogen mixture, which quickly leads to a chemical equilibrium.
The released heat sustains the wave. The wave speed is approximately 3000 m/s; the thickness of
wave is less than 1 mm; and the pressure directly behind it is about 20-times the initial pressure [23].
For this case study, the initial pressure in the tube was kept at 30 bar (3 MPa). The maximum pressure
acting on the metal sheet was observed to be approximately 1500 bar (150 MPa). This maximum
pressure loading, which occurs just at the beginning of the interaction of the detonation wave with the
workpiece, is caused by the reflection of the detonation wave at the workpiece. This wave reflection is
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so fast that during this very short interval of time, no or only a very small deformation of the metal
sheet occurs [23]. For the prevention of overheating of the workpiece from hot detonated gas, moist
filter paper was placed on the blank as thermal insulation.

The averaged pressure record of the sensor (close to the workpiece) is shown in Figure 4, which
was obtained during the forming of DC04 specimens. The measured signals from the two sensors
have been smoothed with a half-width of 10 μs to eliminate extreme oscillations. The second pressure
rise is caused by the reflection at the end wall. The forming of the cup leads to a faster and further
pressure drop following the detonation wave because of the increasing volume. All experiments were
conducted at the Shock Wave Laboratory, RWTHAachen University.

Figure 4. Averaged detonation pressure records from experiments.

2.2. Numerical Modeling

Gas detonation is a transient dynamic process involving shock waves transferring energy into the
workpiece. The process simulation is based on the solution of dynamic equilibrium equations [24].
Hence, the simulations were done using an explicit time integration in the LS-DYNA solver (version:
ls971 R7.1.1) [22]. Since we are interested in the deformation process of the workpiece and not in the
shock wave propagation in the detonation tube, the problem was simplified by directly applying the
detonation pressure as a load in the finite element (FE) models.

Figure 5 shows one-quarter section view of the 3D FE model. Due to the axial symmetry of the
problem, only a quarter of the whole system with symmetric boundary conditions was considered to
reduce the computational time. The model includes the die, the top plate (bottom part of the detonation
tube) and the sheet metal workpiece. The one-quarter FE model was used to study the deformation of
the workpiece into the cup with no misalignment. However, to study damage in the workpiece during
forming, we considered the complete (full) model because the symmetry boundary conditions would
highly influence the prediction of the damage areas. Moreover, offsets or improper alignment of the
workpiece in experiments can be very well studied using the full model in order to capture workpiece
formability in all directions.
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(a) (b)

Figure 5. (a) One-quarter section view of the 3D finite element model; (b) FE meshed workpiece.

The die and the top plate were modeled using solid elements and rigid material (MAT_020),
because of their high stiffness compared to the blank and as they are not the active components during
the forming process. Belytschko–Tsay shell elements with five integration points [22] were used to
create the meshed workpiece, which resulted in a total of 11,076 elements. The die and the holder
were considered to be fixed, and the contact between them was defined using the surface-to-surface
segment-based contact formulation [22], assuming planer segments. The pressure load was applied
only on the free surface of the blank. According to the EN 10130-2006 standards, DC04 steel contains
carbon, manganese, phosphorus and sulfur at 0.08% , 0.04% , 0.03% and 0.03% by weight, respectively.
The mechanical properties of the blank DC04 are given in Table 1.

Table 1. Mechanical properties of DC04.

Property Value

Young’s modulus (GPa) 180
Poisson’s ratio 0.3
Density (kg/m3) 7870
Tensile strength (MPa) 210

The material model used for the workpiece was the Johnson–Cook phenomenological material
model (MAT_015) [25], which is probably the most used and available in most of the commercial finite
element commercial codes. This material model reproduces several important material responses
observed in the forming, impact and penetration of metals. In this model, the three key plastic
material responses are considered strain hardening, strain rate sensitivity and thermal softening.
These three effects are combined in a multiplicative manner, such that the Johnson–Cook constitutive
stress reads:

σy =
(

A + Bε̄pn
)(

1 + C ln
˙̄εp

ε̇0

)(
1 −

[ T − Troom

Tmelt − Troom

]m)
, (1)

where ε̄p is the effective plastic strain, Troom the ambient temperature, Tmelt the melting point or solidus
temperature, T the effective temperature, A the yield stress, B the hardening modulus, n the strain
exponent, m the temperature exponent and C the strain rate factor. Furthermore, ε̇0 represents the
strain rate for the quasi-static reference loading ε̇0 = 5.6 × 10−4 s−1 [26].

However, in this work, using the proposed strain rate by Verleysen et al. [26], we observed that
there were no sharp corners at the bottom of the deformed cup; the final diameter of the cup did not
match with the experimental value; and also, the formability for different loading profiles was not
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similar to that of the experiments. All the above-mentioned numerical issues were due to the highly
dynamic process. Schwer et al., introduced optional strain rate forms calibrated to laboratory data for
A36 steel [27]. Comparing the calibrated model response to quasi-static A36 steel data, they illustrated
the role of the ε̇0 parameter in the Johnson–Cook material model. This is not simply a parameter for
making the effective plastic strain-rate non-dimensional, as is often incorrectly cited, but this parameter
must be specified as the effective plastic strain rate of the quasi-static testing. Therefore, in order to get
the experimental shapes, the value of ε̇0 was increased by two times, and the obtained results were
close to the experimental ones. Hence, the different trial simulations were performed with increasing
values of ε̇0, and the results were compared with the experiments. Therefore, we propose a strain rate
of ε̇0 = 7.3 × 10−3 s−1 for the gas detonation process.

The first bracketed term of the right-hand side of Equation (1) describes the isothermal static
material behavior, i.e., the strain hardening of the yield stress. Consequently, the parameters A, B and
n are determined using static tensile tests. The second term expresses the strain rate hardening with
the parameter C. The last term represents a softening of the yield stress due to local thermal effects.
In the experiments, a moistened filter paper was placed on the workpiece, in order to prevent the
heating by contact with the hot detonated gas. Hence, the material surface remains unaffected despite
the gas temperature. Therefore, in the Johnson–Cook material model, the thermal softening effect was
not considered. The required material parameters for the simulations are given in Table 2 [26].

Table 2. Values for the Johnson–Cook material model parameters [26].

Property Value

Yield stress, A (MPa) 162
Strength coefficient, B (MPa) 598
Deformation hardening, n 0.6
Strain rate coefficient, C 2.623
Deformation sensitivity, m 0.009

The ductile rupture of materials is described by three phases, namely void nucleation, growth
and coalescence [28,29]. The void growth depends not only on the equivalent plastic strain, but
also on triaxiality, which is defined as the ratio of the mean stress to the von Mises effective stress.
Therefore, the damage behavior of a material depends strongly on the load type and on the geometry.
In addition, the damage behavior is influenced by the strain rate.

To simulate the damage in the workpiece, damage parameters were included in the Johnson–Cook
material model. Damage in the material tries to take path dependency into account by accruing the
incremental effective plastic strain as the forming process proceeds [30]. In this material model, the
failure strain is a function of the effective stress, the strain rate and the temperature. The equation of
the fracture strain is given as:

ε f = [D1 + D2exp(D3σ∗)][1 + D4lnε̇∗][1 + D5T∗] , (2)

where D1 to D5 are five constants. σ∗ is the ratio of pressure divided by effective stress:

σ∗ = P
σe f f

. (3)

where P is the average of the normal stresses and σe f f is the von Mises equivalent stress. ε̇∗ is
normalized effective plastic strain, given by:

ε̇∗ =
˙̄εp

ε̇0
. (4)
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and T∗ is the homologous temperature:

T∗ = T − Troom

Tmelt − Troom
. (5)

The expression in the first set of brackets in Equation (2) represents that the strain to fracture
decreases as the average normal stresses, P, increase. The second set of brackets represents the effect of
the strain rate, and that in the third set of brackets represents the effect of temperature [30]. In this
numerical simulation work, only D1 to D4 are considered, since we are assuming the temperature of
the workpiece to be constant during the forming process.

The damage to an element is defined as:

D = ∑
Δε̄p

ε f (6)

where Δε̄p is the increment of the equivalent plastic strain, which would occur during the integration
cycle, and ε f is the equivalent strain to fracture under the current condition of pressure, equivalent
stress, strain rate and temperature. Fracture occurs when the damage parameter D reaches the value
of one, and the corresponding failed elements are deleted.

3. Results and Discussion

3.1. Cup Formation

A number of gas detonation experiments of cup formation were carried out using a DC04
steel sheet of 1 mm in thickness and 54 mm in diameter. The shock wave acting on the blank was
approximately 1500 bar (150 MPa). The blank sits perfectly into the die seat, with a depth of 15 mm.
In our previous work [31], as well as Yasar [12], it is clear that when the applied load is triangular, i.e.,
load increases with a lower slop than that of the experiments, the spring-back effects are observed.
In the present work, load was instantaneously (high slop of pressure loading profile) like that in the
experiments, and hence, the spring-back effect was not observed. Since the process takes place in a
very short period of time and at a very high-pressure, sharp corners were observed at the bottom of
the cup. There were no observable wrinkles on the flange or on the skirt of the cup.

Figure 6 shows the qualitative comparison between the deformed shape of cups in the experiment
and the numerical simulation. In the numerical simulations, the one-quarter section was considered
with symmetry boundary conditions. The experimental pressure profile was the input loading curve
for the simulations.

(a) (b) (c)

Figure 6. (a) Detonation formed cup in the shock tube; (b) Cup formation predicted by numerical
simulations; (c) One-quarter section view of the FE model after the application of load.

Our numerical simulation studies produced remarkably similar results compared to the
experiments. The numerical simulation shows no wrinkles on the flange or skirt of the formed
cup (Figure 6). Furthermore, very sharp corners were observed at the bottom of the cup.

Figure 7 shows a comparison of the final diameters of the deformed cups in the experiment and
simulation. The mean value of the final diameter of the workpiece was 44 mm, which was obtained
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from eight samples in the experiment, and 44.6 mm was the diameter of the cup in the numerical
simulation. In the experiments, it was unclear what caused the flange diameter to be 44 mm, i.e.,
friction or the inertia effects of the blank.

Figure 7. Diameter comparison of numerically- and experimentally-formed DC04 cups.

Therefore, different static and dynamic friction coefficients were considered between the
workpiece and the top plate, as well as between the workpiece and the die. The detailed analysis is
discussed in the Supplementary Materials. Initially, a static coefficient of friction of 0.6 and a dynamic
coefficient of friction of 0.7 were considered between the workpiece and the top plate, as well as
between the workpiece and die [32]. However, the outer diameter was nearly 53.9 mm, and also, the
bottom corners were not sharp. In case the friction parameters were zeros, the outer diameter was
nearly matched to the experimental diameter of 44.6 mm. Moreover, the bottom corners were sharp
like the experimentally-formed cup. Therefore, we concluded that the final flange diameter is the
result of the inertia effects.

Figure 8 depicts the shape of the deformed blank with respect to the loading time. The analysis of
the blank shape with respect to the time highlights the fact that the whole deformation process takes
place within the first approximately 60 μs, and the reflective waves do not play a major role in the
formation of the cup.

Figure 8. Cup shape formation during the simulation of the gas detonation forming process.

Figure 9 depicts the displacement of the center point of the blank over the time. From the graph,
it is clear that the workpiece took some time initially to deform, and then, there is instantaneous
deformation. There is no kink or decrease in the displacement of the center point of the workpiece;
therefore, there was no spring back effect observed in the simulations.
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Figure 9. Displacement of the center point during cup formation in the simulations.

Thickness Variation

In our previous work [31,33], we concluded that the loading rate, i.e., the time instant at which
the peak pressure acts on the blank, has a significant influence on the thickness distribution and the
radial strain of the blank. The work highlighted the fact that the obtained results from the numerical
model were very sensitive to the loading rate. Therefore, it is necessary to get an accurate experimental
loading curve using well-calibrated measuring devices and to consider it in the numerical simulations.

The parameters of the Johnson–Cook material model can significantly affect the deformation
behavior and the thickness distribution. One of the aims of this work was to correctly predict the
thickness distribution in the numerical simulations along the base and the wall of the deformed cup.
Figure 10 shows the thickness distribution along the initial radius of the workpiece. The obtained
results from the numerical simulation were in good agreement with the experiments. The model
was clearly able to predict a local minimum in the thickness value close to the 90◦ bend, which was
towards the center of the cup (approximately 10 mm in radius). The minimum thickness obtained was
nearly 0.6 mm. However, the area that stays between the die and top plate, which does not go into the
cavity, experiences pure radial pulling. Moreover, due to the circumferential stresses, the thickness
was increased [12,34].

In the literature, the thickness distribution has been studied using finite element models;
however, experimental loading rates were not considered, and smooth variations of the thickness were
observed [12,13]. In this work, an experimental loading rate was considered, and the simulations were
competent to predict the experimental thickness variation pattern.

Along the wall of the cup, lower strain was observed suggesting preservation of wall thickness.
On the outer area of the workpiece, a strain of approximately 0.1 was predicted due to material
concentration, resulting in increased thickness. However, close to the center (approximately 5 mm
radius), the radial strain was constant, where the thickness distribution was also nearly constant.
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Figure 10. Thickness variation in the deformed cup with respect to the initial radius of the workpiece.
Inset: half cut section view of the formed cup in the experiment (all the marked thickness values are
in mm).

3.2. Damage in the Cup

Damage has a significant effect on the mechanical properties of a metal during deformation.
The internal defects in the material act as nucleation sites and induce damage. The evolution of
damage is essentially related to the dominant deformation mechanism. This mechanism depends
on the deformation temperature, effective stress, strain rate, material micro-structure and chemical
composition. In this work, the Johnson–Cook material model was considered; therefore, the focus was
on the damage occurring in the forming process due to the effective stress and strain rate.

In 1985, the damage parameters of 4340 steel were investigated by Johnson and Cook [30].
Furthermore, the Johnson–Cook material model parameters were studied for Ti-6Al-4V and 7075-T6
aluminum alloy by Wang and Shi [35] and Zhang et al. [36], respectively. Recently, Buchkremer et al. [37]
focused on the damage parameters of the Johnson–Cook material model of AISI 1045 steel. However, to
the best of our knowledge, the damage parameters of DC04 steel have never been investigated for
such a highly dynamic process. We have a number of fractured cups for different pressures, as well
as misalignment of the workpiece from the experiments. The goal was to reproduce the experimental
fracture patterns using the Johnson–Cook material model. Initially, the numerical simulations were
performed using the proposed damage parameters of 4340 steel [30]. Then, we changed all the
damage parameters in such way that the changed parameters can reproduce the experimental results.
The damage parameters used in the Johnson–Cook material model are shown in Table 3.

Table 3. Damage parameters used in the Johnson–Cook material model.

Property Value

D1 0.02
D2 3.9
D3 −4.6
D4 0.002
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3.2.1. Pressure Magnitude

Figure 11 shows the variation in the pressure load curves acting on the blank to study its influence
on the cup formation. As is clear from the Johnson–Cook damage material model, the fracture strain
depends on the effective stress and strain rate. Therefore, in this work, the pressure load profile has
been scaled, and we studied the resultant shape of the deformed cups with damage evolution.
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Figure 11. Pressure load curves acting on the workpiece in the experiments and simulations.

In the case of the low-pressure load profile, the workpiece was unable to deform completely.
Figure 12 depicts the final shape of the workpiece when only 60% of the optimum experimental load,
i.e., approximately 90 MPa peak pressure was applied. As mentioned earlier, the detonation process
is highly inertia dependent, and low peak pressure was insufficient to introduce the required energy
into the system. Hence, a dome-shaped output has been observed in the experiments, as well as the
numerical simulations.

Figure 12. Comparison of the final shape obtained in the experiments (top) and numerical simulations
(bottom) due to low-pressure load (60% of the optimum experimental load).

Figure 13 depicts the minor damage along the corner at the bottom. This kind of fracture was
observed when pressure loading was increased up to 110% of the optimum experimental load. In the
numerical simulations, a minor fracture was observed at the corners.
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Figure 13. Damage occurring due to scaled load (110% of the optimum experimental load).
Minor damage was observed along the corner. Comparison of the snapshots obtained in the numerical
simulations (top) and experiments (bottom).

Figure 14 compares the simulation results at high pressure with those of the experiments. In the
case of the high-pressure load, i.e., 130% of experimental optimum pressure load, the workpiece fails
along the 90◦ bend; as a result, we observed a through hole in the workpiece. Similar observations
were made in the simulations.

Figure 14. Damage caused by the high-pressure load profile (130% of experimental load). Snapshots of
the fully damaged samples: numerical simulations (left) and experiments (right).

Figure 15 depicts the damage parameter distribution just before the fracture starts. In the vicinity
of the bend, there was the highest stress concentration, as well as the maximum change in the effective
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plastic strain observed. Ultimately, the highest (close to 1.0) value of the damage parameter D was
observed in this region. Therefore, the cup failed along the corner at the bottom.

Figure 15. Distribution of damage parameter D in the high-pressure load profile simulation
(the snapshot was taken just before D = 1).

3.2.2. Effect of Offset

A workpiece is properly placed between the die and the top plate, i.e., the center of the workpiece
matches with the center of the die, as well as the top plate. This alignment is very important in order
to apply the pressure load at the central part of the workpiece, and it deforms equivalently in all radial
directions to form a perfect cup.

Offsetting of a workpiece, i.e., misalignment while placing of the workpiece in between the die
and the top plate, can greatly affect the final shape. In this work, the offset influence on the final
shape of the cup for the optimum experimental pressure load was investigated. For this purpose,
we considered 3 mm of center offset of the workpiece in the experiments, as well as the numerical
simulations. Figure 16 depicts the fracture occurring in the workpiece due to an initial misalignment
of 3 mm between the blank and the die. A tearing effect was observed along the side where the
material was less. This was because the amount of material available was less, and the strain value
was high in this region. Subsequently, due to high energy in the process, the material failed along the
skirt, as well as in the corners of the die, where the high local strain was concentrated.

Figure 16. Initial misalignment of 3 mm between the blank and the die. Fractured workpieces in
numerical simulations (top) and specimen in the experiment (bottom).
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Figure 17 shows the distribution of the damage parameter D in the simulation of a misaligned
workpiece before damage. As previously mentioned, failure occurs when this parameter reaches 1.0.
For the offset or misaligned workpiece simulation, it was observed that D increased rapidly in the
region of high strain, where less material was available. Hence, the change in equivalent plastic strain
was higher, implying that in Equation (6), the ratio would reach 1.0 more quickly, compared to the
other regions. Therefore, failure occurred in this region.

Figure 17. Distribution of damage parameter D in the simulation of the misaligned workpiece
(the snapshot was taken just before the damage initiation; as the simulation continues, we obtained the
final shape of the cup as shown in Figure 16).

4. Conclusions and Future Work

The experimental investigations of forming by gas detonation have shown the ability to produce
sharp corners at the bottom of the formed DC04 steel cup without observable wrinkles on the flange or
skirt. Furthermore, experiments conclude that the magnitude of the peak load has a high influence on
the deformation.

Numerical simulations of the dynamic forming process were carried out with the Johnson–Cook
plasticity model, which can mimic metal behavior on a wide range of strains, strain rates and
temperatures. This plasticity model is the best choice to predict deformation during the forming
process due to its moderate complexity and well-established methods to predict the material
constants. Furthermore, damage parameters were included in this material model in order to study
fracture behavior.

The proposed computational model was able to predict experimental results accurately, e.g., the
shape of the cup and thickness distribution along the radius of the cup. Moreover, the model was
capable of predicting damage initiation and evolution areas in the workpiece, which was mainly due
to the high peak pressure magnitude and the initial misalignment of the same between the die and the
top plate.

Further improvements can be made to the model by systematically performing a number of
experiments of differently-shaped geometries. Furthermore, in the numerical study, temperature
effects can be included and compared to the experiments. Moreover, the Johnson–Cook damage
parameters can be studied in detail using more experiments and different sheet materials. This will
help to approach more accurate results for a specific forming process.

Supplementary Materials: The supplementary materials are available online at www.mdpi.com/2075-4701/7/
12/556/s1.
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Abstract: To compare with quasi-static uniaxial tensioning, researchers designed an electromagnetic
uniaxial tension method using a runway coil. However, the requirements to obtain a uniformly
deformed sample and the ways the stress changes on the sample using a runway coil have not been
studied in the past. In this study, a three-dimensional (3D) sequential coupling method was developed
to analyze the factors affecting on-sheet deformation inhomogeneity under electromagnetic uniaxial
tension. Two main process parameters, comprising the die type and the relative position of the
coil and sheet, were evaluated. Under the optimal parameters, the experiment and simulation
both obtained uniformly deformed samples with different discharge conditions, and the simulation
method had a high accuracy in modeling the deformation process. The stress state of the sample
is approximately unidirectional tensile stress before 240 μs. After 240 μs, the three main stresses
showed significant oscillations.

Keywords: magnetic-pulse forming; high-frequency oscillation; uniform deformation

1. Introduction

Both the automobile and aerospace industries use large-scale, advanced manufacturing methods
that ideally minimize energy consumption and environmental impact in general. Low-density
materials with good strength properties, such as aluminum alloys, help to achieve these goals. The main
disadvantage of aluminum alloys is their poor formability relative to steel in conventional forming
processes. Several studies have indicated that the formability of aluminum alloy increases dramatically
when it is formed by high-speed processes.

Electromagnetic forming (EMF) is one of the most widely used high-speed forming methods,
which can accelerate workpiece deformation by applying a magnetic force according to the
electromagnetic induction theorem. A detailed review by Psyk et al. [1] showed that EMF has several
advantages compared with conventional quasi-static forming, such as increased forming limits. Many
scholars have proven that the formability of various materials can be dramatically increased under
EMF, such as aluminum [2], steel [3], magnesium [4], copper [5], and titanium [6].

To obtain bidirectional tensile stress on a sheet, the flat spiral circular coils were used to make
the sheet bulge. Imbert et al. [2] performed EMF experiments with AA5754 and AA6111 sheets, and
found that strain states beyond the quasi-static forming limit diagram could be achieved using EMF.
Li et al. [6] found that the forming limit of Ti-6Al-4V sheets increased by 24.37% when subjected to
electromagnetic free bulging compared with quasi-static methods. Fang et al. [7] used electromagnetic
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pulse-assisted incremental drawing to obtain a large height-diameter ratio. Compared with the
conventional drawing method, the height of the drawn cylinder was increased by 116% relative to the
cylinder drawn by a conventional process.

To obtain uniaxial tensile stress on a sheet, different coil structures were developed. Li et al. [8]
designed special specimens to obtain a state of uniaxial tension by EMF using a single-turn
coil. Li et al. [9] experimentally investigated the formability of AA5052 sheets in a combined
quasi-static-dynamic tensile process using a flat coil containing two square spiral coils. It was found
that the formability of the aluminum alloy sheets after the combined quasi-static-dynamic tensile
process dramatically increased compared with quasi-static-processed tensile tests. Xu et al. [10,11]
designed a flat spiral coil, which can be named a “runway coil”, to make AZ31 sheets uniaxially
tensioned by EMF. Based on the experimental results, the strain state of uniaxial tension can be
obtained. However, a deformed sample with incomplete symmetry can also be obtained.

Therefore, determining the factors that affect uniform uniaxial tension in a sample by EMF using a
runway coil is a key problem. Further, determining how the stress changes in a sample during EMF is
another question that should be answered. In this study, a three-dimensional (3D) sequential coupling
method was used to analyze the factors affecting a sample’s deformation uniformity and to obtain the
optimum process parameters for electromagnetic uniaxial tension.

2. Experimental and Finite Element Simulation

The relative positions of the specimen, coil, and die are shown in Figure 1. A five-turn runway
coil, combined with a capacitor bank, was used to obtain a unidirectional tensile stress state in the sheet
material. The main parameters of the EMF equipment were the rated voltage (10 kV) and capacitance
(1000 μF). The detailed experimental conditions were (1) the material (pure aluminum sheets with a
high hardness; the elasticity modulus was taken as 0.68 GPa, Poisson’s ratio was taken as 0.33, and the
density was taken as 2.7 × 103 kg/m3) and (2) the gauged width and length of the tensioned specimens,
which were 12.5 and 50 mm, respectively. The materials making up the coil core were a glass epoxy
board with a rectangular-shaped groove and a copper wire with a section area of 3 × 10 mm2, which
was imbedded in the coil core. The length and width of the coils were 165 and 68 mm, respectively.
The sheet was placed above a rectangular die. The length, width, and height of the die were 280, 280,
and 30 mm, respectively. The die had an open rectangle window with dimensions of 70 × 50 mm2

and an entry radius of 10 mm. To facilitate subsequent analysis, we defined path 1 and path 2 on the
sample, as shown in Figure 1b.

Figure 1. Schematic diagram of magnetic-pulse bending: (a) sample structure, (b) relative position of
coil and sample, and (c) 3D structure of the forming process. Units: mm.
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Figure 2 shows the finite-element model established for magnetic-pulse uniaxial tension.
ANSYS/EMAG software was used to calculate the magnetic force acting on the sheet.
The electromagnetic field model consists of the far air region, air region, coils, die, and sheet. The sheet
and coil were meshed into eight-node elements with the SOLID97 element type. The air region was
meshed into tetrahedrons with the SOLID97 element type. In the mechanical model, ANSYS/LSDYNA
software was used to simulate the dynamic deformation. During the forming process, the die and
holder were treated as rigid bodies. Contact conditions were considered between the die and sheet, as
well as between the sheet and holder.

Figure 2. Finite-element models for magnetic pulse forming: (a) electromagnetic field model and (b)
structure model.

For the EMF process, there are two main simulation methods for electromagnetic forming [12]:
(1) the loose coupling method and (2) the sequential coupling method. If the magnetic forces are
calculated based on the updated EM (electromagnetic) model, the simulation approach can be deemed
to be the sequential coupling method. Thus, the sequential coupling method was adopted in this paper
due to its higher accuracy. According to the electromagnetic induction theorem, the formula for the
induced current and electromagnetic force on the sheet is as shown in Equations (1)–(3) [13]:

1
μ
(∇× B) = ∇× H = J (1)

f = J × B =
1
μ
(∇× B)× B (2)

F =
1
μ

∫
(∇× B)× B · dV (3)

where μ is the permeability (H/m), B is the magnetic flux (Wb/m2), H is the magnetic intensity (A/m),
J is current density (A/m2), f is the magnetic force per unit volume (N/m3), V is the volume (m3), and
F is the magnetic force (N).

Pure aluminum sheets with a high hardness were used in all the experiments. One millimeter
thick standard specimens were used. Table 1 shows the chemical composition of the main impurities
of a pure aluminum sheet. The engineering stress and strain can be obtained by tensile tests at room
temperature. The true stress and strain can be calculated by Equations (4) and (5). Thus, the true
stress-strain curve of pure aluminum under quasi-static conditions can be seen in Figure 3.

σT = σe(1 + εe) (4)

εT = ln(1 + εe) (5)

where σT is the true stress, σe is the engineering stress, εT is the true strain, and εe is the
engineering strain.
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Table 1. Chemical composition of the main impurities of a pure aluminum sheet.

Element Fe Cu Mg Mn Ga Cr K

wt. % 0.24 0.013 0.011 0.0055 0.019 0.0099 0.01

Figure 3. Stress-strain curve.

To consider the effect of a high strain rate on forming, the behavior of a viscoplastic material
was modeled with a rate-dependence law (the Cowper-Symonds constitutive model) in the
ANSYS/LSDYNA finite-element analysis software. Thus, the Cowper-Symonds constitutive model
was used to model the high-speed forming, as shown in Equation (6):

σ = σs(1 + (

.
ε

P
)

m

) (6)

where σ is the dynamic flow stress, σs is the quasi-static constitutive behavior of the sheet (cf. Figure 3),
.
ε is the strain rate, P = 6500 s−1, and m = 0.25 is the specific parameter of the aluminum alloy.

3. Results

3.1. Effect of Die on Current Distribution and Magnetic Force

To prove that the effect of the die shown in Figure 1 can significantly affect the current distribution
on the sample, two sets of dies were selected: (1) a conductive die made of Q235 steel and (2) a
nonconductive die made of epoxy plate. Figure 4a shows the current curves through the coil, measured
using a Rogowski coil. A higher current amplitude and the same pulse width were obtained at a
higher discharge voltage by using a nonconductive die made of epoxy plate. Compared with the
nonconductive die made of epoxy plate, the current amplitude and pulse width obtained by using
the steel die were larger and smaller at 1250 V, respectively. This is because coil discharging not only
produces electromagnetic induction to the sheet, but also to the steel die. As the induction current
on the steel die is opposite to the current passing through the coil, the steel die will generate mutual
inductance with the coil, reducing the inductance of the entire system. Thus, the current amplitude
obtained using the steel die was higher than that obtained using the epoxy die. Figure 4b shows a
schematic diagram of counterclockwise current loaded on the coil. To facilitate subsequent analysis,
we defined the distance between the right-end face of sample and the coil’s inner turn as h, as shown
in Figure 4b.
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Figure 4. Current through the coil: (a) current curves measured by Rogowski coil and (b)
counterclockwise current loaded on the coil.

Figure 5 shows the current density and current direction distributions on the sheet and die at
20 μs. In the case of the steel die, the sample and die constituted a clockwise current loop, the current
in the middle of the sample was almost equal, and the current in the two side ends is slightly larger
in the sample. In the case of the epoxy die, the induced current on the sample itself constituted a
clockwise current loop within the sample because the epoxy die is not conductive. The current near
the edge of the side arc was larger than that in the central area of the sheet, and the current directions
on each side end of the sheet were opposite.

Figure 5. Current distribution after coil discharge at 20 μs: (a) using the conductive die and (b) using
the nonconductive die.

Figure 6 shows the magnitude and direction of the magnetic force on the sheet at 20 μs. In the
case of the steel die, the magnetic force acting on the sample was generally in the positive direction
of the Z-axis, and the magnetic force on the central region of the sample was evenly distributed. In
the case of the epoxy die, the magnetic force acting on the middle of the sample was too small. This
is because the magnetic force is related to the current distribution on the sheet. According to the
simulation results shown in Figure 5; Figure 6, a steel conductive die made of Q235 steel was used in
the following simulation and experiment.
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Figure 6. Magnetic force distribution on the sample at 20 μs: (a) using the conductive die and (b) using
the nonconductive die.

3.2. Effect of the Relative Position of the Coil and Sample on the Deformation

Figure 7 shows the relative position of the sample to the coil. The width of the left half of the coil
is 27 mm, and the width of the sample is 12.5 mm. If h = 14.5 mm, the left side of the straight edge
of the sample overlaps with the leftmost side of the coil, as shown in Figure 7a. Figure 7e shows the
current flow direction and current in the middle of the sample. The current density on the left side of
sample was far less than that on the right side of sample. This is because there were more wires on
the right side of the sample. If h = 0 mm, the right side of the straight edge of the sample coincides
with the right side of the left part of the coil, as shown in Figure 7b. Figure 7f shows the current flow
direction and intensity in the middle of the sample shown in Figure 7b. The current density on the
left side of the sample was much higher than that on the right side of the sample. If h = 7.25 mm, the
middle axis of the sample overlaps with the middle axis of the left half of the coil. Figure 7g shows
the current flow direction and intensity in the middle of the sample, using the condition shown in
Figure 7c. The current density on the left side of the sample was higher than that on the right side of
the sample. This is because the right side of the coil was close to the left side of the coil, and the current
flowing through the right side of the coil was opposite to the current flowing through the left side of
the coil; therefore, the current density on the left side of the sample was higher than that on the right
side of the sample. When h = 9.45 mm, the current densities on both sides of the straight edge of the
sample were the same and higher than the current density in the middle of the sample. Therefore, the
entire current density was symmetrically distributed on the sheet, as shown in Figure 7d,h.
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Figure 7. Effect of the relative position of the coil and sample on the current density with
(a) h = 14.5 mm, (b) h = 0 mm, (c) h = 7.25 mm, and (d) h = 9.45 mm (e) current value with h = 14.5 mm
(f) current value with h = 0 mm, (g) current value with h = 7.25 mm, (h) current value with h = 9.45 mm.

Figure 8 shows the relative position of the sample and coil and the effect of the magnetic force
on path 1. The distribution of magnetic force was similar to the current density shown in Figure 7.
Therefore, the higher the current density, the higher the magnetic force acting on the sample. Only
when h = 9.45 mm, the magnetic force on Path 1 became symmetrically distributed.

Figure 8. The relative position of the sample affected by the magnetic force on path 1.
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Figure 9 shows the effect of the relative positions of the sheet and coil on the final sheet shape.
When h = 0, 7.25, and 14.5 mm, because of the asymmetric distribution of magnetic force on the sheet,
the sheet shape was distorted. In particular, when h = 0 mm, the magnetic force acting on the left side
of the sheet was significantly higher than that on the right side of the sheet, and the deformation on the
left side of the strip was significantly higher than that on the right side of the strip. When h = 14.5 mm,
the deformation on the right side was significantly higher than that on the left side. When h = 9.45 mm,
the displacements of the left, middle, and right ends of the highest point of the sheet were 19.3, 19, and
19.3 mm, respectively. The central deformation of the sheet was ~1.5% smaller than that of the left and
right ends of sheet.

Figure 9. Effect of relative position on final shape: (a) h = 14.5 mm, (b) h = 9.45 mm, (c) h = 7.25 mm, (d)
h = 0 mm.

Figure 10 shows the effect of the relative position of the sheet and coil on path 1. When h = 0, 7.25,
and 14.5 mm, the deformation on Path 1 was linear. When h = 9.45 mm, the sheet was symmetrically
distended on both sides, and the deformation was symmetrical.

Figure 10. Deformation profiles on Path 1.
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3.3. Comparison of Experimental and Simulation Results

Based on the above simulation results, the steel conductive die made of Q235 steel and the relative
distance h = 9.45 mm were chosen. Figure 11 shows the profiles of path 2 and the maximum heights
obtained from the experiment and simulation at different discharge voltages. The profiles between the
experiment and simulation showed only a slight deviation and a small error at the sheet peak under
different discharge voltages. Therefore, the simulation method had a high accuracy to predict the
dynamic deformation from electromagnetic uniaxial tension.

Figure 11. Experimental and simulation results: (a) the final profiles on path 2 and (b) the maximum
height of the sample peak.

4. Discussion

At a discharge voltage of 1250 V, Figure 12a shows the equivalent plastic strain distribution on
the sample when the deformation was terminated. The maximum equivalent plastic strain was 0.193.
To facilitate subsequent analysis, the special nodes and elements shown in Figure 12a were extracted.
Figure 12b–d shows the changes in the equivalent plastic strain, deformation height, and velocity with
time at the special nodes. At time t = 240 μs, the equivalent plastic strain at special nodes reached a
maximum and no longer changed. It can be considered that t = 240 μs represents the end of deformation.
However, after t = 240 μs, the velocity and displacement of nodes on the sample still varied slightly.
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Figure 12. Dynamic deformation: (a) 3D shape and equivalent plastic strain, (b) plastic strain with
time, (c) height with time, and (d) velocity with time.

Figure 13 shows the changes in the three principal stresses at special nodes with time. Some
phenomena can be found at 0–240 μs: (1) the first principal stress at the three special nodes gradually
increased, and the direction of the first principal stress is the tangential direction on the sample; (2) the
second principal stress at the three special nodes was very small, and the direction of second principal
stress was the width direction on the sample; (3) the third principal stress at the three special nodes was
less than zero due to the magnetic pressure acting on these nodes. The magnitude of the third principal
stress was much less than the first principal stress and the direction of the third principal stress was
normal to the sample. Due to the second and third principal stresses both being much smaller than the
first principal stress, the deformation process can be approximately considered as a uniaxial tensile
stress state. After 240 μs, the three main stresses at the special nodes showed significant oscillations.
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Figure 13. Relationship between time and principal stress at special nodes: (a) node 305, (b) node 313,
and (c) node 321.

When the sheet was bent, the maximum stress of the sheet was usually at a tangent to the sheet.
However, when the high-frequency shock occurred, the stress on the plate was disordered. To analyze
the magnitude and direction of the principal stress on the sheet at different times more clearly, six
elements in Figure 12a were extracted for the following analysis. Figure 14 shows the changes in
stresses with time at six special elements. At a time of 180 μs, all the six elements were subjected to
tangential tensile stress above 240 MPa, and the stresses in the width and thickness directions were
very small. Therefore, the sheet deformation can be considered as a unidirectional tensile state. At
260 μs, the sheet top element (ELEM 468, 460) was still subjected to tangential tensile stress; however,
the tangential tensile stress decreased to 33.5 MPa and 30 MPa. However, the elements (ELEM 612,
604, 756, and 748) were subjected to a higher tangential compressive stress. At 320 μs, the sheet top
elements (ELEM 468 and 460) were subjected to the tangential tensile stress; however, the tangential
tensile stress increased to 205 MPa and 219 MPa, respectively. At 360 μs, the stress direction of top
element (ELEM 468 and 460) changed from tensile stress to compressive stress; however, the tangential
compressive stresses were 84 and 27 MPa, respectively. At 360–500 μs, the stress on the top elements
(ELEM 468 and 460) was still a lengthwise compressive stress; however, the value of the compressive
stress continuously changed. Comparing the other elements (ELEM 612, 604, 756, and 748), the stress
direction on each unit still alternately changed from tensile to compressive stress, and the magnitude
also changed constantly. The dynamic changes in the stress generally significantly decreased the
lengthwise stress on the sheet compared with that at 180 μs. At 2000 μs, the residual lengthwise stress
on the sheet was not only small, but also both lengthwise tensile and compressive stresses existed on
the outer surface of the sheet.
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Figure 14. Stress and direction at different times: (a) 180 μs, (b) 260 μs, (c) 320 μs, (d) 360 μs, (e) 420 μs,
(f) 500 μs, (g) 1000 μs, and (h) 2000 μs.
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5. Conclusions

In this study, a 3D sequential coupling method was developed to analyze the factors affecting
on-sheet deformation inhomogeneity using runway coils. Compared with the experimental results
under different voltages, the simulation results had high accuracy and precision. Some conclusions
can be obtained as follows:

(1) The die has a significant effect on the current distribution in the sample. Compared with a
nonconductive die, the same current direction with similar current intensity in the sample can be
obtained with a steel die.

(2) The symmetrical distribution of magnetic force on path 1 can be obtained by adjusting the relative
position of the sample and coil. Subsequently, the sheet deforms with a uniform 3D shape.

(3) The deformation process can be approximately considered as a uniaxial tensile stress state before
240 μs. After 240 μs, the three main stresses at the special nodes showed significant oscillations.
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Abstract: Numerical simulation is an important tool which can be used for designing parts and
production processes. Springback prediction, with the use of numerical simulation, is essential for the
reduction of tool try-outs through the design of the forming tools with die compensation, therefore,
increasing the dimensional accuracy of stamped parts and reducing manufacturing costs. In this work,
numerical simulation was used for performing the springback analysis of car body stamping made of
aluminium alloy AA6451-T4. The finite element analysis (FEM) based software PAM-STAMP 2G was
used for performing the forming and springback simulations. These predictions were conducted with
various combinations of material models to achieve accurate springback prediction results. Six types
of yield functions (Barlat89, Barlat2000, Vegter-Lite, Hill90, Hill48 isotropic, and Hill48 orthotropic)
were used in combination with the Voce hardening model. Springback analysis was conducted in
three sections of the formed part; the numerical results were compared with the experimental values.
It was found that the combinations of Barlat’s yield functions and the Voce hardening law were most
accurate in terms of springback prediction. Additionally, it was found that the phenomena that were
investigated, which are required for the determination of the kinematic hardening model, such as the
change of Young’s modulus E, the transient behaviour, work-hardening stagnation, and permanent
softening, were not observed in the aluminium alloy studied.

Keywords: springback; numerical simulation; yield function; aluminium alloy formability

1. Introduction

Automobile manufacturers have started to use new types of high strength steels (HSS, AHSS,
and UHSS) at the end of the last century, with the aim of increasing the passive safety of vehicles
and to reduce vehicle weight to decrease fuel consumption [1–3]. However, these types of steels have
a lower formability in comparison with steels used for deep drawing. The main reason for this is
the higher values of the yield strength and lower ductility of high strength steels [2]. In addition,
aluminium alloys are now widely used in the automotive industry due to advantages, including the
low density, high specific strength, good corrosion resistance, exceptional specific stiffness, and so
forth [1]. The implementation of aluminium alloys in car body production can reduce fuel consumption
and emissions [4]. Both high strength steels and aluminium alloys are more prone to wrinkling and
springback than mild steels [1,5].

Springback in the present refers to a change of shape which is elastically driven. Springback occurs
following a sheet-forming operation when the forming loads are removed from the workpiece—sheet
metal blank. It is usually unwanted, causing problems in the next forming operations, in assembly,
and in the final product. These problems usually degrade the accuracy, appearance, and quality of the
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products being manufactured [2,3,6]. The most common counter measurement against the springback
of car body parts is to design a forming tool with anticipation of springback, thus compensating
springback by die design. However, the amount of compensation is a difficult question even for skilled
tool designers. In practice, this compensation of die is still sometimes done by the “trial and error”
method. This method can be replaced by FEA (finite element analysis)—numerical simulation. With
the use of FEA, it is possible to achieve a more accurate prediction of springback [6–8]. There are other
counter measurements against springback, for example, the stiffening of pressings (use of beads or
embossing), crash forming with pressure pads, the use of variable blank holder force, and so forth [7].

In general, two types of methods are used for springback prediction—finite element analysis
and the analytical model. For example, the analytical model for springback prediction of aluminium
alloys can be found in the work by Gau and Kinzel [9]. Analytical methods usually use simplified
models of real processes. Thus, analytical models are usually not as accurate in predicting springback
as numerical simulations and their use is limited, especially for stampings with complex geometry [10].
The finite element method (FEM) is a well-known tool for the prediction and analysis of sheet metal
deformation. Springback prediction with the use of numerical simulation is not limited by the
geometrical complexity of the stamped part like in the case of the analytical model. However,
the numerical simulation of springback is more sensitive to the accuracy of the input data than
the analytical method. Thus, it is very important to choose the correct input and numerical parameters
in the FEA analysis of springback [11].

Numerical parameters involve the through-thickness integration scheme (which can be implicit,
explicit, or a combination of both), the number of integration points, the used elements (type, size,
and count), and so forth. Trzepiecinski and Lemu [12] studied the effect of a number of integration
points and integration rules on the springback amount. Their results indicate that at least 5 integration
points must be used to achieve accurate springback prediction. The input parameters involve geometry
(sheet thickness, tool and sheet dimensions, and so forth), process conditions (type of forming method,
tribology, forming forces, forming temperature and speed, and so forth), and material characteristics
(Young’s modulus, yield strength, hardening behaviour, yield function, and so forth) [10,11]. Slota,
Siser, and Dvorak [13] studied the effects of yield functions (isotropic and orthotropic) on the springback
prediction accuracy of aluminium alloys. Their results showed that the orthotropic yield function is
more accurate in predicting springback than the isotropic function. In addition, the effect of the die
radius on springback was studied. They found out that the increase of the bending radius caused a
higher springback of the bend materials. Seo et al. [14] conducted a study to evaluate the effect of
constitutive equations on the springback prediction accuracy. They used two yield functions, Hill48
and Yld2000, in combination with the Yoshida-Uemori hardening model in the finite element (FE)
simulation to predict the springback of the U-bend part and drawn T-shape part. Both parts were
made of TRIP steel. They found out that it is essential to choose the right yield function to get an
accurate prediction of springback. Mulidran et al. [15] conducted a numerical simulation of the
drawing hat-shaped part made of the DP600 and DC04 steels with the use of two forming methods:
drawing with a blank holder and crash forming with a pressure pad. They studied the effect of forming
methods and the various process parameters on springback amount. Their results indicated that the
higher blank holder and pad pressure have positive effects on reducing springback. Additionally,
crash forming with a pressure pad showed lower springback in comparison with drawing with a
blank holder. The work by Jung et al. [16] aimed at studying anisotropic hardening behaviour and
the springback of AHSS steels. They proposed the modified isotropic-kinematic hardening model,
which they used in the simulation of U-bending. Their model showed better results in the predicting
springback in comparison with the isotropic hardening model.

The novelty of this work lies in findings which indicate that the isotropic hardening model is
sufficient for predicting the springback of formed parts made of aluminium alloy. This model is
simpler, and does not need cyclic shear tests. In addition, isotropic hardening models do not use as
many parameters as kinematic hardening models. The accuracy of springback prediction with use
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of the isotropic hardening model was high. In addition, we found out that the phenomenon of the
degradation of Young´s modulus is not present for aluminium alloys which are precipitation hardened,
and that the degradation is not as significant as in AHSS steels (max. 2% degradation of Young´s
modulus for aluminium alloys). Villuendas et al. [17] and Roca et al. [18] studied the effect of plastic
deformation on the changes of Young´s modulus of metallic alloys. They reported that, in aluminium
alloys, there were no appreciable changes in the E value. This conclusion is consistent with our findings.
These changes are related to the dislocation density changes. However, even though the dislocation
density is high, the values of parameter l (length of dislocations) are very low, due to the interaction
between nanometric precipitates and dislocations in the aluminium alloys. The Mott model then
shows that the change of Young´s modulus E is very small. Kinematic hardening models also take
into account other phenomena, such as the transient behaviour, work-hardening stagnation, and the
permanent softening. These phenomena were not observed in the material studied in this work.

These findings have a significant financial impact. For example, it is not necessary to conduct
time-consuming tests on special (expensive) equipment, which are used to determine the parameters
for kinematic hardening models.

In addition, the detailed analysis of a complex shaped part made of aluminium alloy with a
significant thickness of 3 mm, mainly used in car production, was conducted. In most of the studied
literature, the research was done on simply shaped parts.

In this research work, a FEM was used to predict the springback of a car body part made of
aluminium alloy AA6451-T4. The finite element analysis (FEA) was conducted to investigate the
influence of the used yield functions in the numerical simulation on springback prediction accuracy.
Three sections were used for springback evaluation; in these sections, the thickness and part profile
were measured and compared with the experimental results. The experimental results were given
by the automobile manufacturer. Additionally, the computation times for the various yield functions
were compared.

2. Materials and Methods

In the presented work, aluminium alloy AA6451-T4 with a thickness of 3.00 mm was used as
the blank. Mechanical properties were measured by uniaxial and biaxial tensile tests. To obtain the
required data for the FEM model, the specimens for the uniaxial tensile test were cut in three different
orientations (0◦, 45◦, and 90◦ to the rolling direction). Specimens for the uniaxial tensile test were
produced according to the EN 10002-1:2002-11 standards. Several specimens were tested for each
orientation, and the average values of the basic mechanical properties (displayed in Table 1) were
obtained by the formula

Xav =
X0 + 2X45 + X90

4
(1)

where X is the mechanical parameter, and the subscripts denote the orientation of the specimen with
respect to the rolling direction of the sheet. The elastic mechanical properties of the aluminium alloy
are shown in Table 2.

Table 1. The uniaxial tensile test data of the AA6451-T4 sheet [19].

Orientation Yield Strength σy (MPa) Normal Anisotropy r (–)

0◦ 151.28 0.62
45◦ 171.20 0.33
90◦ 163.60 0.80

Average value 164.32 0.52
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Table 2. The elastic mechanical properties of AA66451-T4 [19].

Sample Density, ρ (g·cm−3) Young´s Modulus, E (GPa) Poisson´s Ratio, v

AA6451-T4 2.7 70.0 0.3

The true stress–strain curves obtained in three different orientations (0◦, 45◦, and 90◦ with
respect to the rolling direction) are shown in Figure 1. The tension-compression test (Figure 2)
was started by the tension load as the first part of the full cycle. After a specific crosshead stroke
corresponding to a defined pre-strain level, the load was reversed to compression until it reached the
crosshead displacement according to a given compression strain. Next, reloading in tension direction
was introduced until the crosshead stroke was equal to that in the first tension. The investigated
phenomena, such as the change of Young’s modulus E, transient behaviour, work-hardening stagnation,
and permanent softening, were not observed in the material studied in this work, as we can see from
Figure 2.

 

Figure 1. The experimental stress-strain curves from the tensile test.

Figure 2. The cyclic tension-compression experimental curve of AA6451-T4 [19].

The equal biaxial tensile yield stress and the biaxial anisotropy rb are given in Table 3.
The parameters obtained from this test are necessary to determine the advanced yield functions.
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Table 3. The equal biaxial tension test data [19].

Biaxial Yield Stress σb (MPa) Biaxial Anisotropy rb (-)

153.60 0.55

3. Numerical Model

The springback computation was performed using the dynamic explicit code in the PAM-Stamp
2G software. The tool setup imported in the simulation software is shown in Figure 3. The tool consists
of punch, blankholder, and die. The tool is aligned with the global z- axis without a plane of symmetry.
The blank was positioned between the die and blankholder.

Figure 3. The tool geometry in the PAM-Stamp 2G software.

The blank was meshed by the quadrilateral shell elements which were 23 mm in size.
The refinement level of the elements was set to 4 so that the smallest elements after refinement
had a size of 2.875 mm. The number of integration points was set to 11, which is recommended
for springback computation. The friction coefficient was set to 0.08, which responded to the grease
lubrication. The initial meshed blank with a rolling direction is illustrated in Figure 4.

Figure 4. The rolling direction on the initial meshed blank.

The obtained values of the mechanical properties were used as the basic input for the material
model in the FEM simulation. The accuracy of the springback prediction for several yield functions
was investigated by the FEM simulation. The yield function describes the material transition from
the elastic state to the plastic state. It can be described as a function of the area that limits the elastic
area of the multi-axis stress plane. In 1948, Hill introduced the concept of material anisotropy in yield
functions. According to Hill’s plasticity conditions [20], in case of uniaxial load, a local thickness
reduction occurs in a direction sensitive to the sample load. Hill assumed that the direction of the
compression is in line with the direction of zero extension and, therefore, the deformation of the
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narrowed areas is only reflected as a reduction in thickness. This is assumed for the plane strain
(σ1—major stress, σ2—minor stress, and σ3 = 0). If we assumed that the anisotropy axes are identical
with the main guideline strain tensor (σx = σ1, σy = σ2, τxy = 0), it is possible to describe the Hill48
yield function by the formula

2 f (σ) = (G + H)σ2
xx + (F + H)σ2

yy − 2Hσxxσyy + 2Nσ2
xy = 1 (2)

where σxx, σyy, and σzz are stresses in the RD (x), TD (y), and thickness (z) directions, respectively; σxy,
σyz, and σzx are the shear stresses in xy, yz, and zx directions. Parameters F, G, H, and N are material
parameters that describe the anisotropy of the material. If F = G = H = 1, and N = 3, the Hill48 function
is reduced to the von Mises criterion, or as it is called in FEM code, the Hill48 isotropic criterion.
A more common description is based on normal anisotropy in the 0◦, 45◦, and 90◦ directions to the
rolling direction. Then, the material parameters F, G, H, and N can be described by

F =
r0

r90(r0 + 1)
, G =

1
r0 + 1

, H =
r0

r0 + 1
, N =

(r0 + r90)(1 + 2r45)

2r90(1 + r0)
. (3)

For orthotropic hardening law and the values of anisotropy under 1.0, the Hill90 yield function is
more suitable. This function is considered to be more suitable for aluminium alloys, and it is based on
a non-quadratic transition function. In order to construct this function, the values from the uniaxial
tensile test are deficient. For a complete description of this function, the biaxial test data are also
required. The function can be described as(

σ1

σ2

)2
+

(
σ2

σ90

)2
+

[
(p + q + c)− pσ1 + pσ2

σb

](
σ1σ2

σ0σ90

)
= 1, (4)

where σ0 is uniaxial tensile stress in the rolling direction, σ90 is uniaxial tensile stress in the direction
normal to the rolling direction, σb is the stress under the balanced biaxial stress, and the c, p, and q
parameters are defined as follows [21]:

c =
σ0

σ90
+

σ90

σ0
− σ0σ90

σ2
b

, (5a)

(
1
σ0

+
1

σ90
− 1

σb

)
p =

2R0(σb − σ90)

(1 + R0)σ
2
0

− 2R90σb

(1 + R90)σ
2
90

+
c

σ0
, (5b)

(
1
σ0

+
1

σ90
− 1

σb

)
q =

2R90(σb − σ0)

(1 + R90)σ
2
90

− 2R0σb

(1 + R0)σ
2
0
+

c
σ90

, (5c)

where R0 is the anisotropy value for the uniaxial tension in the rolling direction and R90 is the anisotropy
value for the uniaxial tension in the in-plane direction, perpendicular to the rolling direction.

The Barlat’s material models describe the plastic behaviour of a material in a more detailed way
than Hill’s functions, but the higher number of parameters increases the calculation time. The Barlat89
model needs three parameters for its complete formulation, by which it is possible to describe the
plane strain behaviours. Those parameters are defined in Table 4. The formulation is the following:

f = a|k1 + k2|M + a|k1 − k2|M + (2 − a)|2k2|M = 2σM
e , (6)

where M is the exponent related to the crystallographic structure of the material, and k1 and k2 can be
described as

k1 =
σx + hσy

2
, k2 =

[(
σx − hσy

2

)
+ p2τ2

xy

]1/2

, (7)

where a, h, and p are the material model parameters.
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Table 4. The material constants for the Barlat89 yield function (m = 8.0).

a c h p

1.3033 0.9556 0.9247 0.8465

A more precise function was presented by Barlat in 2003, called Barlat2000, where the linear
transformation method was used. In the FEM software, this function is described by the eight
parameters shown in Table 5. The formulation for this model is as follows:

φ = φ′(X′)+ φ′′ (X′′ ) = 2σa, (8)

where a is an exponent related to the crystallographic structure of the material and φ′ and φ′′ are two
isotropic functions described as follows [22]:

φ′ =
∣∣X1

′ − X2
′∣∣α; φ′′ = |2X2

′′ + X1
′′ |α + |2X1

′′ + X2
′′ |α. (9)

Table 5. The material constants for the Barlat2000 yield function (a = 8.0).

a1 a2 a3 a4 a5 a6 a7 a8

1.065173 0.841891 0.960059 0.958652 1.034037 1.027112 0.838988 0.877033

According to several works [23–25], the Vegter yield function should be more suitable for special
steels and aluminium alloys due to its more convenient results. The Vegter criterion describes the
yield locus more accurately from a series of physically tested points. According to Vegter, it is
possible to establish the first quadrant of the yield function on the basis of the basic experimental
measurement. To construct the ellipses, the Bezier interpolations between each point need to be
performed. Every point requires three parameters to be defined, the main stresses σ1 and σ2, and the
strain vector ρ = dε2/dε1. For a complete description of planar anisotropy, it is necessary to obtain
17 parameters from 9 mechanical tests. The mathematical expression of this function is(

σ1

σ2

)
= (1 − λ)2

(
σ1

σ2

)r

i

+ 2λ(1 − λ)

(
σ1

σ2

)h

i

+ λ2

(
σ1

σ2

)r

i+1

, (10)

where λ is the parameter for the Bezier interpolation subscript, i refers to the first reference point, r and
h refer to a reference point and hinge point, respectively [26].

It is possible to use a simplified formula—Vegter-Lite. For this optional model, only 7 parameters
from three mechanical tests (uniaxial tensile test, hydraulic bulge test, and the measurement of
anisotropy) need to be defined. In this model, the second order Bezier interpolation is replaced by the
second order NURBS interpolation, and the weight factor w—that controls the position of the curve
between the points—is introduced. The formula for this model is

(
σ1

σ2

)
=

(1 − λ)2

(
σ1

σ2

)r

i

+ 2λ(1 − λ)

(
σ1

σ2

)h

i

+ λ2

(
σ1

σ2

)r

i+1

(1 − λ)2 + 2wλ(1 − λ) + λ2
. (11)

To fully define the material behaviour, the hardening curve of the material is also required.
The Voce hardening curve gives the best correlation with the experimental results at an orientation of
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0◦ from the rolling direction. This law provides a sufficient description of the elastic behaviour for
aluminium alloys. The Voce hardening law is given by the equation

σy
(
εp
)
= A − Be−Cεp , (12)

where A, B, and C are parameters defined in Table 6.

Table 6. The parameters for the Voce hardening curve.

A (MPa) B (MPa) C (–)

359.093260 169.310139 9.374256

To determine the failure criteria, Keller´s and Goodwin´s forming limit curve (FLC) model
was used [27]. This empirical formula was obtained from experimental trials, and requires only
two parameters: the thickness of the material and the strain hardening coefficient. The formula can be
written as follows:

ε10 =
(23.3 + 14.13t0)n

0.21
, (13)

where t0 is the initial thickness of the sheet and n is the strain hardening coefficient.
The simulation process consisted of three operations (stamping, trimming, and springback).

Stamping was carried out as one continuous process in which the die moved at a speed of 100 mm/s.
The blank was positioned between the die and the blankholder during holding. The die movement
was set in the −z-direction at 300 mm until the blank was clamped. Subsequently, a blankholding
force of 1900 kN was applied. The die and blankholder moved in the −z-direction until the tool was
closed. After the part was fully formed, the trimming operation was performed. The trimming curve
is shown in Figure 5.

Figure 5. The trimming curve on the punch.

4. Results

The results obtained from the numerical simulation were compared with the experimental ones.
The springback was measured using locked nodes of the model. The stamped part profile and thickness
were evaluated in three sections displayed in Figure 6. Section 1 is located on the right side of the part.
This section passes through the hole, and due to the complex shape of the stamped part, the effect of
the springback is quite significant in this area. The hole also runs through Section 2; this section is
located on the left side of the part. The third section is located between section one and two. Figure 6
also shows the centres of the coordination systems used for profile evaluation. These centres were key
for assembly purposes.
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Figure 6. The sections used for profile and thickness evaluation.

4.1. Profile Analysis

The profile of the part was measured before and after springback. Since the stamped part copies
the shape of the die, the profiles after stamping were almost identical for every material model. Good
correlation of the experimental and numerical results can be observed after stamping. The comparison
of the experimental results and the FEM simulation after springback for each section is shown in
Figure 7. Subsequently, the FEM results for each yield function after springback were also compared.

 

Figure 7. The comparison of the part profile from FEM simulation after springback with the
experimental results after stamping and springback in (a) Section 1; (b) Section 2; (c) Section 3.

The deviations from the experimental results were measured on the left and on the right side of
the sections. For assembly purposes, the deviation was measured in mm. Due to the difficulty of using
conventional methods for springback measurement, the MATLAB system was implemented into the
evaluation process. A simple program in the MATLAB environment was developed by the authors,
which made it possible to measure the springback more accurately and easily. At first, a section was
imported into the program, and the coordinate system was defined. Then, by selecting one point on
the arm, a straight line parallel to the X-axis was created. Further points could only be created on this
line, and the distance between each point was evaluated.
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Figure 8 shows the experimental results and results from the numerical simulation in Section 1.
Deviation from the experimental results for every yield function is shown in Table 7. A positive
value means that the numerical simulation predicted a higher springback value than the experimental
ones, and a negative value means that the simulation value was lower than the experimental ones.
From these values, the average value of springback was calculated by the following equation:

Xav =
|XL|+ |XR|

2
, (14)

where XL is the offset for the left side of the part and XR is the offset for the right side of the part.

Figure 8. The comparison of the yield functions in Section 1.

Table 7. The results of springback in Section 1.

Yield Function
Left Side Offset

(mm)
Right Side Offset

(mm)
Yield Function

Left Side Offset
(mm)

Right Side Offset
(mm)

Barlat2000 +3.36 +0.88 Barlat89 −1.28 +1.15
Hill90 −2.14 +3.77 Hill48 isotropic −9.29 +3.53

Hill48 orthotropic −1.85 +4.51 Vegter-Lite −1.67 +1.59

The lowest average deviation of 1.21 mm was measured when the Barlat89 yield function was
used. Yield functions Barlat2000 and Vegter-Lite had average deviations of 2.12 and 1.63, also showing very
good correlation with the experimental results. The highest average deviation of 5.44 mm was measured
for the isotropic Hill48 yield function. In this function, the anisotropy of the material was not considered.

In Section 2 (Figure 9), greater deviation of the numerical springback values from the experimental
ones can be seen on the right side of the profile. The reason is the shape of the part. Springback did not
appear so significantly on the left side of the part where the material is compressed. The results are
displayed in Table 8. In this section, the material model with the Vegter-Lite yield function showed
the lowest average value of deviation: 2.65 mm. The Barlat89 yield function with 2.68 mm average
deviation also shows good correlation. The other material models show very similar results, but the
isotropic Hill48 method shows the highest deviation (3.51 mm) from the experimental results.

Figure 9. The comparison of yield functions in Section 2.
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Table 8. The results of springback in Section 2.

Yield Function
Left Side Offset

(mm)
Right Side Offset

(mm)
Yield Function

Left Side Offset
(mm)

Right Side Offset
(mm)

Barlat2000 +0.45 +5.79 Barlat89 −0.20 +5.15
Hill90 +1.62 +4.48 Hill48 isotropic +1.56 +5.46

Hill48 orthotropic +3.78 +2.21 Vegter-Lite +0.04 +4.90

In the third section, the deviation was measured only on the right side because, on the left side,
the deviation was too low, as shown in Figure 10. In this section, the best correlation was achieved
with the Barlat yield functions, where the Barlat2000 deviation was 0.21 mm and the Barlat89 deviation
was 0.32 mm. The highest deviation of 5.26 mm was measured for the isotropic Hill48 yield function.
The results for all the material models are shown in Table 9.

 

Figure 10. The comparison of yield functions in Section 3.

Table 9. The results of springback in Section 3.

Yield Function Right Side Offset (mm) Yield Function Right Side Offset (mm)

Barlat2000 −0.21 Barlat89 −0.32
Hill90 −0.75 Hill48 isotropic +5.26

Hill48 orthotropic +0.37 Vegter-Lite +1.97

4.2. Thickness Analysis

The next investigated parameter in this work was thickness, which was also measured in
mentioned sections. The thickness of the material can significantly influence the accuracy of the FEM
prediction. Since shell elements, which were used in this work, are suitable for thicknesses up to 1 mm,
the volume element should give better results. However, in the FEM software, it is possible to define
the volume elements for only the Hill48 and Barlat2000 yield functions. For comparison purposes of
all previously mentioned yield functions, the models must have shell elements. Figures 11–13 show
comparisons of the experimental and FEM results in each section.

 

Figure 11. The thickness distribution in Section 1.
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Figure 12. The thickness distribution in Section 2.

  

Figure 13. The thickness distribution in Section 3.

From the results of the thickness distribution in the individual sections, it is clear that the material
models with the Barlat (Barlat89 and Barlat2000) yield functions, and the Vegter-Lite yield function
shows very similar results. Although the description of the yield function and the amount of data
needed for their definition is different between those models, the results of the thickness distribution
were practically the same. The Hill48 model, either isotropic or orthotropic, exhibited significant
deviations. The average values of thickness are shown in Table 10. The experimental results show a
higher average thickness than the thickness data obtained by the FEM simulation.

Table 10. The comparison of the average thickness of each section.

Barlat2000 Barlat89 Vegter-Lite Hill90 Hill48 Orthotropic Hill48 Isotropic Experiment

Section 1 2.825 2.828 2.826 2.828 2.834 2.858 2.980
Section 2 2.856 2.847 2.853 2.852 2.847 2.859 2.991
Section 3 2.809 2.810 2.792 2.798 2.797 2.809 2.990

4.3. Computation Time

With the increased complexity of the yield function formulation and, thus, with the increased
number of necessary variables, the calculation time was increased. For the Hill48 isotropic model,
where the anisotropy of material was not considered, the computation took around 13 h and 47 min.
For the Hill48 orthotropic and Hill90 models, where the anisotropy of the material was considered,
the computation time took 14 h. In the Barlat yield functions, where the material’s crystallographic
structure was considered, the computation time increased significantly to around 15 h and 20 min.
The Vegter-Lite yield function achieved a similar accuracy and computation time as the Barlat material
models. Figure 14 shows the comparison of the computation times for each yield function.
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Figure 14. The computation time comparison.

5. Conclusions

The accuracy of the springback prediction is one of the most challenging problems in the
numerical simulation of forming processes. In the present article, the influence of the yield function
on the accuracy of springback prediction with the use of numerical simulation was investigated.
Three sections were defined on the formed part. In these sections, the thicknesses of the profile of
the stamped part after springback calculation were evaluated. After the stamping operation, for all
the examined yield functions, the sheet metal copied the shape of the die. Visible differences can be
seen after cutting and springback calculation. The results of the Barlat2000, Barlat89, and Vegter-Lite
yield functions were in good correlation with the experimental results. Hill’s yield functions (Hill90,
isotropic Hill48, and anisotropic Hill48) were not as accurate as the yield functions mentioned above.
Barlat’s yield functions takes into account the material’s crystallographic structures. The Barlat89
yield function, with an average deviation of 1.40 mm from experimental results of springback, is not
suitable for materials with strong anisotropy [26]. Additionally, this model cannot capture the change
of yield stress and the Lankford coefficient values. However, the advantage of this function lies in
its simple mathematical description, and in the ability of the accurate plastic behaviour prediction
(yield locus) of aluminium alloys, thus, the results of the Barlat89 model are more accurate than the
results obtained with the use of Hill’s yield functions. The Barlat2000 yield function is an improved
version of the Barlat89 model, but the description of this improved model in the numerical simulation
is more difficult. This is the reason why this function is not used as much in industrial practice.
The experimental thickness values were higher than the predicted ones in all cases. From the results of
the thickness distribution in the individual sections, it is clear that the yield functions of the Barlat’s
family and Vegter-Lite yield function show very similar results. Although the description of the yield
function and the amount of data needed for their definition is different between those models, the
results of the thickness distribution were practically the same. The Hill48 model, either isotropic
or orthotropic, exhibited significant deviations. This can be attributed to the shell elements used in
the numerical simulation or to the Voce isotropic hardening law. However, the Voce hardening law
exhibited good correlation with the experimentally measured FLC (forming limit curve). One of the
results of the work is that the combination of the isotropic hardening law with the isotropic yield
function did not achieve accurate springback prediction results. The combination of more advanced
yield functions (Barlat2000, Barlat89 and Vegter-Lite) with the isotropic Voce hardening law improved
the accuracy of the springback prediction, but the computation time was increased by approximately
an hour. Additionally, it was found out that the investigated phenomena which are required for the
determination of the kinematic hardening model, such as the change of Young’s modulus E, transient
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behaviour, work-hardening stagnation, and permanent softening, were not observed in the aluminium
alloy studied in this work. Our research confirmed that in aluminium alloys, there are no appreciable
changes in the Young’s modulus value.
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Abstract: Metal forming is the most used technique to manufacture complex geometry pieces in the
most efficient way, and the technological progress related to the various application fields requires
increasingly higher quality standards. In order to achieve such a requirement, people are forced
to perform quality and compliance tests finalized to guarantee that these standards are met; this
often implies a waste of material and economic resources. In the case of welded stainless steel
pipes, several critical points affecting the general trend of subsequent machining need to be taken
into account. In this framework, the aim of the paper is to study the effects of different process
parameters and geometrical characteristics on various members of the stainless steel family during
finite elements method (FEM) simulations. The analysis of the simulation outputs, such as stress,
strain, and thickness, is reported through mappings, in order to evaluate their variation, caused
by the variation of the simulation input parameters. The feasibility of the simulated process is
evaluated through the use of forming limit diagrams (FLD). An experimental validation of the model
is performed by comparison with real cases. Major parameters that mainly guide the outcome of the
simulations are highlighted.

Keywords: numerical simulation; modeling; hardening; anisotropy; parameters identification;
damage; mechanical properties

1. Introduction

Stainless steels represent a quite interesting material family, both from the scientific and
commercial point of view, following to their excellent combination in terms of strength and ductility,
together with corrosion resistance [1–5]. Thanks to such properties, stainless steels have been
indispensable for the technological progress during the last century, and their annual consumption
has increased with a rate of 5% during the last 20 years, faster than other materials [6]. They find
application in all these fields, requiring good corrosion resistance together with ability to be worked
into complex geometries [7,8].

Metal forming is the most used technique to manufacture complex geometry pieces in the
most efficient way, and the technological progress related to the various application fields requires
increasingly higher quality standards. In order to face such a requirement, people are forced to perform
quality and compliance tests, finalized to guarantee that these standards are met; this often implies a
waste of personnel, time, and resources, both material and economic. From the prospective of plastic
forming, the plastic processing of welded pipes is characterized by a poor homogeneity of the behavior,
especially in the case of ferritic steels [9]. This involves a certain percentage of unreliability in the
tests, carried out on random samples, because of the nature of the steel itself, whose behavior can be
completely modified by defects and inhomogeneity. Therefore, these checks, generally carried out by
means of tensile tests according to specifications, are not sufficient to guarantee the required standards.
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Many researchers are focused on solving such problems through the implementation of predictive
simulations using a finite element method (FEM) numerical analysis [10–12], to predict the behavior of
various pipes’ geometries in different processing areas, such as hydroforming and bending, or the cold
metal forming of steel sheets. Many relevant industrial applications, where a proper procedure of pipe
bending and a correct simulation of pipe yielding after bending turns out to be critical, are found in the
literature (e.g., [13,14]). All of these applications require the analysis of the steel mechanical properties,
both at the macroscopic level, and at the crystalline structure and grain level, such as stress–strain
curves and hardening, and with particular attention to the anisotropic characteristics [15] caused by
the plastic processing that led to the pipe manufacturing.

As far as the pipes manufactured are concerned, starting from rolled and welded steel plates,
several critical points affecting the general trend of subsequent machining need to be taken into account,
especially regarding high strength materials for application in the structural field. For example, the
geometry of the pipe itself or the operating parameters that are used during the plastic processing,
such as used speed and bending angle, have a strong impact on the influence of the aforementioned
defects and on the final outcome of the process carried out on the same type of stainless steel.

In this framework, the aim of the paper is to study the effects of different process parameters and
geometrical characteristics on various types of stainless steel (both ferritic and austenitic).

2. Material Properties and Modelling

2.1. Materials

The following steel grades and pipe geometries are considered:

• AISI 304 and AISI 316 (austenitic stainless steel)

- Diameter: 35, 40, 50 and 60 mm
- Thickness: 1.0, 1.2, 1.5 mm

• AISI 409 and AISI 441 (ferritic stainless steel)

- Diameter: 35, 40, 50 and 60 mm
- Thickness: 0.8, 1.0, 1.2, 1.5 and 1.8 mm

The mean experimental stress–strain curves at room temperature for the considered materials are
reported in Figure 1.

 
(a) (b) 
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(c) (d) 

Figure 1. Examples of experimental stress–strain curves for the considered materials, obtained from
tensile tests at room temperature on the pipes for the following grades of stainless steel: (a) AISI 304;
(b) AISI 316; (c) AISI 409; and (d) AISI 441.

All of the considered steels were characterized by a sigma–epsilon curve calculated according to
the specification for the tensile tests for pipes (UNI EN ISO 6892), for each combination of diameter
and thickness.

2.2. Model

A commercial software package integrated with its own solver, commonly used by automotive
engineers, was adopted for the numerical calculations. Inside the software framework [16,17] the Hill
48' yield function was adopted, ideal for small-sized tubular geometries [11], as a constitutive equation
for stainless steels’ behavior.

The following parameters are taken into account in order to simulate the bending process:

• Bending radius
• Bending angle
• Rotational speed

Based on the above assumptions/inputs, it is possible to simulate the pipe bending behavior.
A typical model for such an approach is as reported in Figure 2.

 

Figure 2. Geometry and working parts of the machinery simulated inside the software.
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2.3. Methodology of Analysis

The analysis of the simulation outputs is carried out through mappings of the values calculated
by the solver (such as internal stress, thinning, and deformation). Specifically, the stress analyzed is an
equivalent stress calculated by the solver on the basis of the Hill criterion, which is a mathematical
form optimized for the Finite Element Analysis (FEA) and developed starting from the Von Mises
criterion. In order to analyze the influence that the parameters have on the final process and on the
feasibility, the maximum values obtained on the mappings will be considered in order to consider the
critical points on the geometry.

Usually, however, above all in the industrial field, a diagram defined as formability limit diagram
(FLD) is used to describe the deformation paths along the whole sample. This diagram, as shown in
the Figure 3, contains the formability limit curve (FLC), showing the maximum capacity of a material
to be deformed, calculated by carrying out repeated Nakazima tests. The strains obtained from this
test are measured with a conventional grid method, creating a pattern of circles on the surface of the
specimen, which are deformed during the process obtaining ellipses. On these ellipses, the strains on
the minor and major dimensions are measured, identifying the deformation state points of the material
on the FLD diagram.

 
(a) (b) 

Figure 3. Typical shape of the formability limit curve (a); example of Nakazima’s experimental test
results on the formability limit diagram (FLD) with deformation state points for an AISI 304 stainless
steel sheet (b).

3. Results and Discussion

The influence of the different input parameters are reported below.

3.1. Diameter Influence

The typical ratio between the curvature radius and the pipe diameter (R/D) for industrial
application is in the range between 1.0 and 1.5. Therefore, considering the various diameter cases,
it was decided that R/D = 1 as a constant value, which aimed to consider cases that are actually
representative of the real processes, and to have results, in terms of stress, that can be compared with
each other.

Figure 4 shows the stress mapping for smaller and larger diameters, while Figure 5 shows the
stress reached for each diameter.

The results show that by varying the diameter and always keeping the ratio R/D = 1, a variation
of the maximum stresses in a range between −2% and 3% is found; such an effect can be considered
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negligible. Furthermore, it is also evident that the distribution of the internal stresses is not particularly
modified with the increase in diameter.

Additionally, in order to evaluate the deformation capacity of the various samples, the FLD
diagrams were compared, and Figure 6 shows the extreme cases of the analyzed range of stainless
steel AISI 304 with a 35 and 60 mm diameter. Furthermore, from the FLD diagrams, it can be deduced
that the deformation path of the various elements of the geometry are not particularly modified by
this parameter.

 
(a) 

 
(b) 

Figure 4. Equivalent stress mapping for diameters of 35 mm (a) and 60 mm (b) for AISI 304,
1.5 mm thickness.

 
(a) (b) 

Figure 5. Trend of maximum equivalent stress according to the diameter for AISI 304, 1.5 mm thickness
(a); percent variation of maximum equivalent stress according to the diameter for AISI 304, 1.5 mm
thickness (b).

 
(a) 

 
(b) 

Figure 6. FLD diagrams of 35 mm (a) and 60 mm (b) for AISI 304, 1.5 mm thickness.
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3.2. Influence of Thickness

As for the study carried out for the diameter, the same cases have been analyzed, however varying
the thickness of the tube and keeping all the other parameters constant and equal to the case studies of
the diameter, such as R/D = 1. Figure 7 shows stress mapping for smaller and larger thickness and in
Figure 8 their distribution as before.

 
(a) 

 
(b) 

Figure 7. Equivalent stress mapping for a thickness of 1 mm (a) and 1.8 mm (b) for AISI 304,
50 mm diameter.

 
(a) (b) 

Figure 8. The trend of maximum equivalent stress according to thickness for AISI 304, 50 mm
diameter (a); percent variation of maximum equivalent stress according to the thickness for AISI
304, 50 mm diameter (b).

While from the graphs of the maximum stresses there is not a substantial difference, except
for an oscillating decreasing trend, depending on the thickness, it is noticed in the images of the
distributions that there is a processing failure for the thickness of 1 mm. Therefore, to deepen the
analysis, the thinning caused by the working on the tube geometry was considered, as shown in
Figure 9. From these graphs, it is more evident how the initial thickness of the geometry has a strong
impact on the success of the bending process. In fact, we can see, first of all, the decreasing trend,
even if it does not appear to be monotonic, confirming what was supposed before, but above all,
the variation that this parameter involves, having a percentage difference of about 30% in the final
thickness of the most stressed area.
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(a) (b) 

Figure 9. Trend of maximum thinning according to thickness for AISI 304, 50 mm diameter (a); percent
variation of maximum thinning according to thickness for AISI 304, 50 mm diameter (b).

3.3. Influence of the R/D Ratio

The R/D ratio, defined as the radius of curvature/diameter, as previously mentioned, is a
parameter not present within the simulation model, but is widely used in industrial applications. It is
primary used as a feasibility index for processing and is generally between 1.0 and 1.5 in standard
conditions. Already, in the case R/D = 1 (radius of curvature equal to diameter), the tube undergoes
a considerable stress, and for lower values, there is a breakage of the piece in almost all of the cases
with the standard processing conditions; therefore, in this case, particular precautions are necessary.
For this reason, no cases of R/D < 1 have been studied and values of R/D greater than 1.5 are instead
used for larger pipes, ducts, or special cases that are not present in the application fields of the pipes
produced by the company.

Then, by performing the simulations (with a constant diameter and then varying the radius of
curvature) and analyzing the results, we see how, in Figure 10, the stresses achieved do not vary
significantly by increasing the R/D ratio, but, as also seen for the other case studies, the maximum
internal stress results are not sufficient to correctly describe the influence of the parameter. In fact, as can
be seen in Figure 11, as the R/D ratio increases, the maximum thinning obtained decreases, therefore,
although one would expect a decrease in stress, an increase in the ratio (obtained by increasing the
radius of curvature or decreasing the diameter) causes minor forces in the tube and, at the same time,
a minor thinning (as seen in Figure 11), thus significantly attenuating their decrease. It is also useful to
observe the FLD diagrams in order to be able to make further considerations. Therefore, in Figure 12,
it can be observed that both for the austenitic and ferritic steels, the increase in the R/D ratio leads to
an increase in the feasibility of bending, which is very important, especially for AISI 409, because of its
low plastic deformability compared with other families of the stainless steels considered.

 
(a) (b) 

Figure 10. Trend of maximum equivalent stress according to the curvature radius and the pipe diameter
(R/D) ratio for AISI 304 (a); percent variation of maximum equivalent stress according to the R/D ratio
for AISI 304 (b).
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(a) (b) 

Figure 11. Trend of maximum thinning according to the R/D ratio for AISI 304 (a); percent variation of
maximum thinning according to the R/D ratio for AISI 304 (b).

 
(a) (b) 

Figure 12. Percentage reached of the formability limit (red dashed line) according to the R/D ratio for
AISI 304 (a) and AISI 409 (b).

3.4. Influence of Velocity Based on the Bend Angle

In this case, for the study of velocity, the effect of its variation for each bend angle, which is
generally set during the common forming processes (specifically, angles between 30◦ and 90◦), has
been analyzed. Furthermore, angles of more than 90◦ have been considered for completeness, and in
order to verify the trend that involves the variation of speed, up to a maximum of 180◦.

So, it can be initially observed, in Figure 13, how the percentage reached of the formability limit is
mapped for each combination of the speed and angle.

Figure 13. Percentage reached of the formability limit for every combination of speed and angle for
AISI 304.
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Moreover, in order to more advantageously evaluate the influence of the speed variation, it was
decided to report the variation between percentage obtained for minimum and maximum speed of
each considered angle, according to the Equation 1, in a graph (Figure 14), thus obtaining a graph
purely from the variation itself.

ΔFLD = FLDv-max − FLDv-min (1)

Therefore, as can be observed from Figure 14, it is noted that for the region of angles between 30◦

and 90◦, which is the range of interest for common industrial processes, the influence of speed variation
assumes an approximate linear trend against the bend angle. Instead, considering the whole range of
study, it can be observed that the variation tends to reach a maximum at about 120◦ of bending, then
returning to decrease with the increasing angle. The motivations that lead to this particular behavior
can be studied in more detail, but currently, we can hypothesize, also observing Figure 15, that this is
due to the concentration of stress that is more localized in the first 90◦ of bending, where the machine
actually deforms the tube continuously and applies the forces involved in forming.

Figure 14. Percentage of formability limit variation in the minimum–maximum speed range as a
function of the bending angle for AISI 304 steel.

(a) (b) (c) (d) 

Figure 15. Equivalent stress mapping for bending angle of 90◦ (a); 120◦ (b); 150◦ (c); and 180◦ (d), at
2.7 rad/s for AISI 304.

205



Metals 2018, 8, 519

3.5. Experimental Validation

3.5.1. Validation Methods

In order to be able to consider these results correctly, it is necessary to validate the simulation
model by comparing it with the corresponding real case in the same conditions. Six samples of tubes,
for each of the following stainless steels families, were then examined:

• AISI 304
• AISI 316
• AISI 409
• AISI 441

All of the samples have the same dimensions corresponding to the simulation performed, a
diameter 60 mm and thickness 1.2 mm. For each steel family, one of the six samples, for each group,
were used to obtain, through tensile tests as before, the specific stress–strain curves, in order to
eliminate the uncertainty due to the use of a mean curve. Both the tests and the simulations have been
carried out with the settings, the rotational velocity and bending radius, that are actually used by the
industries for the typical finishing process.

For the comparison, we decided to measure both of the thicknesses reached during the bend
along the backbone at specific angles, as shown in Figure 16.

 
(a) 

 
(b) 

Figure 16. Thicknesses measuring grid on the backbone (a,b).

3.5.2. Validation Results

The values of the thicknesses were measured for each marked angle, and the average has been
calculated. The values obtained are shown in Tables 1–4, in millimeters.

The same measures were extracted from the simulation result in the same points. The thickness
variation and the percentage variation of the simulation, with respect to the real case, were then
calculated to have a first feedback on the goodness of the predictive model adopted. Tables 5–8 show
the calculated data and Figure 17 shows the trends of the four families of stainless steels considered.

Table 1. Thickness for the AISI 304 samples.

Measurement
Angle

Sample
n◦ 1

Sample
n◦ 2

Sample
n◦ 3

Sample
n◦ 4

Sample
n◦ 5

Sample
n◦ 6

Mean
Value

0◦ 1.169 1.200 1.180 1.124 1.250 1.235 1.108
22.5◦ 1.003 1.019 1.026 1.023 1.023 1.101 1.037
45◦ 0.982 0.993 1.002 1.058 1.157 1.016 1.039

67.5◦ 1.086 1.016 1.050 1.029 1.166 1.052 1.042
90◦ 1.200 1.146 1.180 1.152 1.149 1.161 1.149
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Table 2. Thickness for the AISI 316 samples.

Measurement
Angle

Sample
n◦ 1

Sample
n◦ 2

Sample
n◦ 3

Sample
n◦ 4

Sample
n◦ 5

Sample
n◦ 6

Mean
Value

0◦ 1.091 1.131 1.290 1.119 1.119 1.123 1.119
22.5◦ 1.023 1.010 1.028 1.014 1.048 1.032 1.026
45◦ 1.016 0.999 1.004 0.986 0.987 1.021 1.002

67.5◦ 1.028 1.015 1.021 1.030 1.071 1.017 1.030
90◦ 1.135 1.101 1.149 1.128 1.192 1.143 1.140

Table 3. Thickness for the AISI 409 samples.

Measurement
Angle

Sample
n◦ 1

Sample
n◦ 2

Sample
n◦ 3

Sample
n◦ 4

Sample
n◦ 5

Sample
n◦ 6

Mean
Value

0◦ 1.080 1.067 1.070 1.075 1.083 1.079 1.076
22.5◦ 0.959 0.961 0.950 0.963 0.942 0.962 0.956
45◦ 1.011 0.970 0.936 0.911 1.026 0.937 0.965

67.5◦ 0.987 0.971 0.968 0.990 1.010 0.989 0.986
90◦ 1.200 1.092 0.097 1.107 1.079 1.096 1.112

Table 4. Thickness for the AISI 441 samples.

Measurement
Angle

Sample
n◦ 1

Sample
n◦ 2

Sample
n◦ 3

Sample
n◦ 4

Sample
n◦ 5

Sample
n◦ 6

Mean
Value

0◦ 1.169 1.200 1.180 1.124 1.250 1.235 1.193
22.5◦ 1.003 1.019 1.026 1.023 1.123 1.101 1.049
45◦ 0.982 0.993 1.002 1.058 1.157 1.016 1.035

67.5◦ 1.086 1.016 1.050 1.029 1.166 1.052 1.067
90◦ 1.200 1.180 1.180 1.152 1.149 1.161 1.166

Table 5. Thickness for the AISI 304 samples.

Measurement
Angle

Simulation
Thickness [mm]

Sample mean
Thickness [mm]

Δ Thickness [mm]
Percentage

Variation [%]

0◦ 1.138 1.108 0.031 2.80
22.5◦ 0.958 1.037 −0.079 −7.62
45◦ 0.850 1.039 −0.188 −18.10

67.5◦ 0.880 1.042 −0.162 −15.55
90◦ 1.160 1.149 0.010 0.87

Table 6. Thickness for the AISI 316 samples.

Measurement
Angle

Simulation
Thickness [mm]

Sample mean
Thickness [mm]

Δ Thickness [mm]
Percentage

Variation [%]

0◦ 1.135 1.118 0.007 0.62
22.5◦ 0.952 1.025 −0.073 −7.12
45◦ 0.840 1.002 −0.160 −16

67.5◦ 0.800 1.030 −0.230 −22.3
90◦ 1.135 1.140 −0.005 −0.43
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Table 7. Thickness for the AISI 409 samples.

Measurement
Angle

Simulation
Thickness [mm]

Sample Mean
Thickness [mm]

Δ Thickness [mm]
Percentage

Variation [%]

0◦ 1.170 1.076 0.094 8.7
22.5◦ 1.000 0.956 0.044 4.6
45◦ 0.880 0.965 −0.085 −8.8

67.5◦ 0.200 0.986 −0.786 −79.7
90◦ 1.170 1.112 0.058 5.2

Table 8. Thickness for the AISI 441 samples.

Measurement
Angle

Simulation
Thickness [mm]

Sample Mean
Thickness [mm]

Δ Thickness [mm]
Percentage

Variation [%]

0◦ 1.166 1.193 −0.027 −2.26
22.5◦ 1.013 1.049 −0.036 −3.43
45◦ 0.874 1.035 −0.161 −15.56

67.5◦ 0.814 1.067 −0.253 −23.71
90◦ 1.171 1.166 0.005 0.42

 
(a) (b) 

 
(c) (d) 

Figure 17. Thickness trend for the simulation case (blue) and real case (orange) for AISI 304 (a);
AISI 316 (b); AISI 409 (c); and AISI 441 (d).

The above figures show that the simulation results are in agreement with the real case. It is noted
that the major deviation occurs in all four of the cases for 67.5◦ of measurement, and a maximum
deviation of −79.7% for AISI 409 and 18–24% for the other stainless steels is reached. As a matter of
fact, it is important to note that there is a huge difference between the two cases, specifically for the
67.5◦ of AISI 409 ferritic stainless steel, but this is due to the fact that for this particular case there is a
localized break near the considered angle on the simulation results, and furthermore, the maximum
variation for AISI 304, 316 and 441 corresponds to a value in the range of 0.16–0.25 mm. The difference
between realty and simulation, for both the failure of AISI 409 and for the general variation of the other
three stainless steels families, is due to the presence of an additional support element present in most of
the bending machines, called a ‘booster’, which was not present in the simulation model. Its function is
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precisely that of pushing the tube during bending, in order to avoid the deformations or failure caused
by the friction between the element and the machine or by the concentration of stresses. Its action also
affects the distribution of the thinning, caused by the deformation, in fact, of the tube being pushed
by the booster, which will have more evenly distributed the stresses on itself, and consequently, the
deformations and the thinning will take place on a wider area and will not lead to failure of the piece.

4. Conclusions

In this paper, the bending process of stainless steel pipes has been studied. The experimental
investigations coupled with simulations highlighted the importance of each parameter, both
operational and geometric, on the final results.

In particular, it has been observed that the pipe diameter does not prove to be a decisive parameter
for the success of the working process, while the pipe thickness appears to be a determinant factor
for failure and/or unwanted deformation of the formed piece. The R ratio is extremely important; in
fact, its variation within the standard range (between 1.0 and 1.5) identified the transition between the
failure and success of the operation, both for the AISI 304 austenitic stainless steel and for AISI 409
ferritic stainless steel, of which for the latter led to a 90% increase in feasibility.

The combined study of the rotational speed and bending angle allowed us to define a trend of
influence for these operating parameters, showing how there is a linear increase in the influence of the
speed in the range between 30◦ and 90◦ of bending, while for the angles higher than around 120◦, this
tendency is reversed.

The overall experimental validation showed a deviation of the model from the reality, between
an overestimation of 8% to an underestimation of 20%, with the maximum displacement generally
located on the back of the bending, probably due to the presence in the experimental tests of an
additional element support of the machinery, called a booster, which was not contemplated in the
simulation model. Furthermore, the maximum deviation recorded corresponds to a deviation in
thickness between the two cases in the order of 10−2 mm, thus resulting in a good starting point for
the refinement and optimization of the final model.

Moreover, thanks to this analysis and the preliminary experimental tests, the FEM simulation has
proved to be a useful tool in order to predict the industrial deformation processes, where there are
currently no means to characterize the processes generally carried out on these components, but only
of the empirical methods to define its overall feasibility.
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Abstract: Depth-sensing indentation (DSI) technique allows easy and reliable determination of two
mechanical properties of materials: hardness and Young’s modulus. Most of the studies are focusing
on the Vickers, Berkovich, and conical indenter geometries. In case of Knoop indenter, the existing
experimental and numerical studies are scarce. The goal of the current study is to contribute for
the understanding of the mechanical phenomena that occur in the material under Knoop indention,
enhancing and facilitating the analysis of its results obtained in DSI tests. For this purpose, a finite
element code, DD3IMP, was used to numerically simulate the Knoop indentation test. A finite element
mesh was developed and optimized in order to attain accurate values of the mechanical properties.
Also, a careful modeling of the Knoop indenter was performed to take into account the geometry and
size of the imperfection (offset) of the indenter tip, as in real cases.

Keywords: depth-sensing indentation; Knoop indenter; hardness; Young’s modulus; numerical simulation

1. Introduction

Depth-sensing indentation (DSI) tests are typically used to evaluate the hardness and Young’s
modulus of materials. They can also be used to extract the uniaxial mechanical properties of bulk
and composite materials, such as the yield stress and the strain hardening parameter (see, e.g., [1–4]).
The most common hardness testing methods were developed in the early twentieth century. They are
typically performed using spherical, conical and pyramidal indenters with Vickers and Berkovich
geometries. In addition, the Knoop pyramid geometry is also used [5].

Hardness tests with the Knoop indenter have been valuable in the mechanical characterization of
some materials, such as thin coatings [6,7] and biological materials (e.g., dental tissue [8]). Another
important application of this hardness tests is in the field of the gradient materials obtained by severe
plastic deformation (see, e.g., [9–11]), for which it is required to determine the mechanical properties
in thin samples and/or thin surface layers of the samples.

In fact, the Knoop indenter geometry leads to wider and shallower indentations for a given applied
load than the Vickers and Berkovich geometries. This makes the Knoop hardness test particularly
attractive in some cases as for the determination of the near-surface properties and the characterization
of brittle materials. Moreover, the results obtained in the Knoop hardness test are sensitive to the
indenter orientation, making it a useful tool to analyze the materials anisotropy (e.g., [12]).

Although Knoop indenter is relatively common to use, it has not received suitable attention with
respect to the study of some of the peculiarities of the test itself. One of the first studies using numerical
simulation of the Knoop indentation test was performed by Rabinovich and Sarin [13], in their study,
the Knoop indentation was analyzed in the context of linear elasticity. Giannakopoulos [14] presented
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analytical results on the response of frictionless and adhesionless contact of flat, linear elastic and
visco-elastic isotropic surfaces penetrated by pyramidal indenters including the Knoop geometry.
Giannakopoulos and Zisis [15] studied the Knoop indentation of elastic and elastoplastic materials
with and without strain hardening. More recently, Giannakopoulos and Zisis [16] presented a finite
element study on the adhesionless contact of flat surfaces by Knoop indenter. Only a few experimental
studies, such as those by Riester et al. [17,18] were performed in order to clarify the analysis procedure
of DSI tests with the Knoop geometry. Recently, Ghorbal et al. [19] performed an experimental work
on ceramic materials in order to compare the conventional Knoop and Vickers hardness.

In this context, the present study intends to contribute to clarify some aspects of the Knoop
indentation, particularly those related to the analysis of depth sensing indentation (DSI) results.
For this purpose, three-dimensional numerical simulations of the indentation tests were performed,
using various pyramidal indenter geometries, from Vickers to Knoop. A systematic study is
accomplished using materials with different mechanical properties whose ratio between the residual
indentation depth after unloading (hf) and the indentation depth at maximum load (hmax) is in the
range 0.022 < hf/hmax < 0.984. The correction factor, β, required to determine the Young’s modulus,
is evaluated as a function of the indenter geometry, from Vickers to Knoop. In addition, numerical
simulations using flat indenters with equivalent lozenge geometries were performed, in order to better
understand the role of the pyramidal geometry.

2. Theoretical Aspects

The ability of the ultramicrohardness equipment to register the load versus the depth indentation,
during the test, enables us to evaluate not only the hardness, but also other properties, such as the
Young’s modulus. Based on the Sneddon relationship [20] between the indentation parameters and
Young’s modulus, Doerner and Nix [21] have proposed an equation that relates the Young’s modulus
with the compliance, C, of the unloading curve at the point of the maximum load and the contact area,
Ac, such as:

Er =

√
π

2β

1√
Ac

1
C

, (1)

where β is the geometrical correction factor for the indenter geometry. The specimen’s Young’s
modulus, Es, is obtained using the equation:

1
Er

=

(
1 − ϑ2

s
)

Es
+

(
1 − ϑ2

i
)

Ei
, (2)

where E and ϑ are the Young’s modulus and the Poisson’s ratio, respectively, of the specimen
(s) and of the indenter (i). When performing numerical simulations, the indenter can in a first
approximation considered as rigid for simplicity (e.g., [22]), and so

(
1 − ϑ2

i
)
/Ei = 0. The accuracy of

the Young’s modulus results, obtained with the above equations, depends on the correct evaluation of
the contact area and compliance. The contact area, Ac, can be evaluated by two different procedures.
One procedure uses the contour of the indentation in the finite element mesh, in order to make
the results independent of the formation of pile-up or sink-in. The other is the usual experimental
procedure, which makes use of the compliance, C, evaluated by fitting the unloading part of the
load–indentation depth curve, (P − h), using the power law [22]:

P = P0 + T(h − h0)
m, (3)

where T and m are constants obtained by fit and h0 is the lower value of the indentation depth, h,
used in the fitted region, corresponding to a load value P0, during unloading. The upper part of the
unloading curve taken into account in the fits is 70% [22]. Once the value of compliance, C, is known,
the contact indentation depth, hc, that allows the calculation of the contact area according to the
geometry of the indenter (Ac = f (hc)), is determined by the equation hc = hmax − εPmaxC, where hmax
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is the indentation depth at the maximum load, Pmax, and ε is a parameter equal to 0.72 for conical or
pyramidal (Berkovich [23], Vickers [22] and Knoop [18] indenters).

An approach that can be used for evaluating the correction factor, β, was proposed by Joslin and
Oliver [24], combining the hardness and Young’s modulus equations:

P
S2 =

π

4β2
HIT

E2
r

, (4)

where H = P/Ac is the hardness, P the maximum applied load and S the stiffness (S = 1/C). The ratio
between the maximum applied load and the square of the stiffness, P/S2, is an experimentally
measurable parameter that is independent of the contact area and so of the penetration depth [24].

3. Numerical Simulation and Materials

Three-dimensional numerical simulations of the hardness tests were carried out, using a finite
element (FE) in-house code DD3IMP. This FE code, which has already been tested in the case of
Vickers, Berkovich and conical indentation of bulk materials and thin films (see, e.g., [22,25,26]), allows
simulating the hardness tests with any type of indenter shape, taking into account contact with friction
between the indenter and the sample [22,27,28]. The mechanical model, which is the basis of the
DD3IMP code, considers the hardness test as a quasi-static process that occurs in the large plastic
deformations domain. In DD3IMP, the contact with friction problem is modeled using a classical
Coulomb’s law. To relate the static equilibrium problem to the contact with friction, an augmented
Lagrangean method is applied to the mechanical formulation. This leads to a system of non-linear
equations, where the kinematic (material displacements) and static variables (contact forces) are the
final unknowns [27,28]. To solve this problem, the code uses a fully implicit Newton–Raphson-type
algorithm. All non-linearities, induced by the elastoplastic behavior of the material and by the contact
with friction, are treated in a single iterative loop [27,28].

In the current study, the friction between the indenter and the deformable body was assumed to
have a friction coefficient of 0.16. This is a commonly used value and leads to a better description of
the indentation process than if frictionless contact is assumed [22,26].

3.1. Indenters

The Knoop indenter has a pyramidal geometry, with a lozenge-shaped base having one diagonal
(L) 7.11 times longer than the other (m). The angles between the edges (apical angles) are 172.5o for the
long edges and 130o for the short edges, as shown in Figure 1.

Figure 1. Schematic representation of the Knoop indenter geometry.

The ideal (in the absence of pile-up or sink-in) indentation contact area, Ac, of the Knoop indenter
as function of the indentation contact depth is given by:

Ac = 2h2
c tan θ1 tan θ2 = 65.4h2

c , (5)
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where hc is the ideal indentation contact depth, θ1 = 65o and θ2 = 86.25o are the semi-apical angles of
the Knoop indenter.

The Knoop indenter geometry was modeled using parametric Bezier surfaces, which allows a
satisfactory description of the indenter tip, namely an imperfection such as occurs in the real geometry,
similar to the case of offset in the Vickers indenter [25,29]. The modeled Knoop indenter, shown in Figure 2,
has a tip imperfection consisting of a plane normal to the indenter axis with an area equal to 0.0032 μm2

(this value is the same as the experimentally found, for the Vickers indenter, by Antunes et al. [29]).

 
(a) 

 
(b) 

Figure 2. Knoop indenter modeled with Bezier surfaces: (a) general view; (b) detail of the indenter
tip imperfection.

Due to the tip imperfection, the indenter area function does not match the ideal area function above
mentioned (Equation (5)). Table 1 shows the area function of the Knoop indenter (ratio, R = L/m = 7.11)
used in the numerical simulations. This table also shows four others area functions of pyramidal
indenters, used in this study, with different values of the ratio, R, between the diagonals of the indenter
(R = 1, 2.5, 4 and 5.5), where the ratio R = 1 corresponds to the Vickers indenter.

Table 1. Area function of the indenters used in the numerical simulations.

R = L/m θ1 θ2 Area Function

1 (Vickers) 74.0546 74.0546 A = 24.5000h2 + 0.5600h + 0.0032

2.5 69.1723 81.3478 A = 34.5500h2 + 0.6650h + 0.0032

4 67.0462 83.9559 A = 44.6000h2 + 0.7556h + 0.0032

5.5 65.8369 85.3366 A = 54.6500h2 + 0.8364h + 0.0032

7.11 (Knoop) 64.8379 86.2199 A = 65.4377h2 + 0.9152h + 0.0032

For pyramidal indenters, other than Vickers and Knoop, the angles θ1 and θ2 were chosen such
that the tangents of θ1 and θ2 follows a quasi-linear evolution with R, as shown in Figure 3. In this
way it is possible to study the extent to which the deviation of Vickers geometry towards the Knoop
geometry influences the indentation results obtained with DSI experiments.

Figure 3. Evolution of the tangents of θ1 and θ2 as function of the R-ratio values.
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In order to better understand some aspects related with the influence of the indenter geometry on
the mechanical properties evaluation, numerical simulations using lozenge-shaped flat indenters were
also performed. The flat indenters were modulated with five values of the ratio, R = L/m, between the
diagonals of the lozenge, as for the pyramidal indenters (R = 1, 2.5, 4, 5.5, and 7.11).

3.2. Finite Element Mesh

The test sample used in the numerical simulations has both radius and thickness equal to 40 μm.
Its discretization was performed using three-linear eight-node isoparametric hexahedrons. Due to
geometrical and material symmetries in the X = 0 and Z = 0 planes, only a quarter of the sample was
used in the numerical simulation, as shown in Figure 4.

 
(a) 

 

 
(b) 

Figure 4. Finite element mesh used in the numerical simulations: (a) global view; (b) detail of the
central region where indentation occurs.

The FE mesh is composed by 17,850 elements. The size of the elements in the indentation region
is 0.055 μm. This refinement has proven to provide accurate values of the indentation contact area,
when measured using the contour of the indentation, in case of Vickers and Berkovich geometries,
with equal value of offset area (see, e.g., [22,26]). In fact, the Young’s modulus values obtained from
the indentation contact area, evaluated using the contour of nodes in the FE mesh in contact with the
indenter at maximum load presents an error less than 1%, when compared with the values used as
input in the numerical simulation (e.g., [26]). In the present study, the size of the central region of
the finite element mesh, especially refined, is larger than in these cases, and thus the total number of
elements is approximately three times greater, in order to take into account the elongated geometry of
the Knoop indenter.

3.3. Materials

Three-dimensional numerical simulations of depth-sensing indentation with pyramidal indenters
were carried out using 45 fictitious materials, whose mechanical properties are shown in Table 2.
In order to cover a wide range of materials used in engineering applications, five values of yield
stress (0.2, 2, 6, 10, and 20 GPa), three values of Young’s modulus (70, 200 and 400 GPa) and of strain
hardening parameter of the Swift law (0.01, 0.15 and 0.3), were taken into account.

The plastic behavior of the materials is described by the von Mises yield criterion and the Swift
hardening law: σ = k(ε + ε0)

n where σ and ε are the equivalent stress and plastic strain, respectively,
and k, ε0 and n (strain hardening coefficient) are the material parameters (the yield stress is: σy = kεn

0);
the parameter ε0 was considered to be equal to 0.005. The elastic behaviour is isotropic and described
by the generalised Hooke’s law; the Poisson’s ratio, ϑ is 0.3, for all simulations.
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Table 2. Mechanical properties of the materials used in the numerical simulations.

Materials Studied Cases n σy (GPa) E (GPa)

Without strain hardening
5

≈0

0.2, 2, 6, 10 and 20

70
5 200
5 400

With strain hardening

5
0.15

70
5 200
5 400
5

0.30
70

5 200
5 400

4. Results

4.1. Indentation Geometry and Equivalent Plastic Strain Distributions

A study of the indentation geometry with the Knoop indenter (R = 7.11) was performed using
only three of the materials in Table 2, covering different values in the possible range of hf/hmax.
Table 3 shows the mechanical properties of these materials, which have two Young’s modulus values,
200 and 400 GPa, yield stress of 0.2, 6, and 20 GPa, and two values of the strain hardening parameter,
n ≈ 0 and n = 0.3. Table 3 also includes the value of the ratio between the indentation depth after
unloading and the indentation depth at maximum load, hf/hmax. This ratio, which can be easily
obtained from the experimental load-unloading curve, is independent of the maximum indentation
depth, for a given material in cases of conical [30] and Vickers [22] indentations. Its range of values is
from 0 to 1, which corresponds to materials with purely elastic and rigid-plastic behaviors, respectively.
All numerical simulations of the hardness test were performed up to the same maximum indentation
depth, hmax = 0.2 μm.

Table 3. Mechanical Properties of The Materials Used in the Study of The Knoop Indentation Geometry.

Material σy (GPa) n E (GPa) ν hf/hmax

M1 0.2 0.01
200 0.3

0.97
M2 6

0.3
0.40

M3 20 400 0.25

Figure 5 shows the indentation profiles, obtained for the three materials at maximum load
(Figure 5a,c) and after unloading (Figure 5b,d), along the two diagonals, the shorter, m, and the longer,
L, respectively. Figure 5a shows that for the shorter diagonal, the indentation profile obtained at the
maximum load depends on the material mechanical properties. In case of materials M2 and M3 the
indentation surface sink-in. This behavior can be associated with the value of the ratio hf/hmax that
is equal to 0.40 and 0.25 (for the materials M2 and M3, respectively), and with the high value of the
strain hardening parameter, n. In case of M1 material, with a ratio hf/hmax equal to 0.97, i.e., close
to 1, the indentation surface does not present sink-in or pile-up. On the other hand, the indentation
profile obtained at maximum load for the longer diagonal, almost does not depends on the materials
mechanical properties (Figure 5c).
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(a) (b) 

 
(c) (d) 

Figure 5. Surface indentation profiles obtained along the two diagonals, the shorter, m (z-axis) and the
longer, L (x-axis), respectively: (a,c) obtained at maximum load; (b,d) after unloading.

After unloading, the indentation profiles corresponding to the materials M2 and M3 shown elastic
recovery in both diagonals (Figure 5b,d). Moreover, the amount of elastic recover increases with the
decrease of the ratio hf/hmax. In case of M1 material, with a ratio hf/hmax = 0.97 and without strain
hardening, the indentation profile along the short diagonal shows pile-up (Figure 5b). In fact, for other
indenter geometries (conical and Vickers), the pile-up appears for values of the ratio hf/hmax higher
than 0.8 in materials without strain hardening (see, e.g., [22,30]). It should be noted that, for a given
material, the hf/hmax ratio correlates with the value of the H/E ratio between the hardness and the
Young’s modulus, and slightly depends on the strain hardening parameter.

Figure 6 shows the comparison between the Knoop indentation diagonals at maximum load.
To make possible this comparison, the indentation profiles were normalized by considering the value
of the R-ratio between the indenter diagonals (R equal to 7.11). Figure 6a shows that in the material M1
the two diagonal exhibit a similar behavior. In the case of the materials M2 and M3 sink-in is observed
along the short diagonal. Moreover, the sink-in slightly increases with the value of the ratio hf/hmax.

 
(a) (b) 

Figure 6. Cont.
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(c) 

Figure 6. Surface indentation profiles at maximum load, obtained from the results of Figure 5a,c, where
z is multiplied by R = 7.11, in order to easily compare the profiles along the two diagonals, the longer,
L, and the shorter, m: (a) Material M1; (b) Material 2; (c) Material M3.

The effect of the indenter geometry on the equivalent plastic strain distribution of the indentations
was also studied. Figure 7a,c shows the equivalent plastic strain distributions obtained at the maximum
load in the numerical simulations of the materials M1 (hf/hmax = 0.97) and M3 (hf/hmax = 0.25) using
the Knoop indenter. For comparison, the same figure also shows the same distributions obtained with
the Vickers indenter (Figure 7b,d).

 

(a) (b) 

 

(c) 

 

(d) 

Figure 7. Equivalent plastic strain distributions obtained at maximum load in the numerical simulations
using the Knoop and Vickers indenters: (a,b) Material M1; (c,d) Material M3.

For each material, the maximum values of the equivalent plastic strain are quite similar for the
Knoop and Vickers indenters. However, in the case of Knoop, the equivalent plastic strain distributions
are asymmetric with respect to the indenter axes. The maximum values of the equivalent plastic strain
are observed along the longest diagonal. For M1 material (hf/hmax = 0.97), the maximum value of the
equivalent plastic strain is slightly higher in the Vickers indentation (≈0.686) than for Knoop (≈0.674).
The maximum plastic strain region is located just at the surface in the edge regions of the indentation
(Figure 7a,b). In case of the M3 material (hf/hmax = 0.25), as shown in Figure 7c,d, the maximum
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value of equivalent plastic strain is also somewhat higher for the Vickers indentation (≈0.159), than for
the Knoop (≈0.149). However, for this material, the region with maximum equivalent plastic strain is
located beneath the indentation surface, whatever the indentation geometry.

4.2. Indentation Contact Area and Young’s Modulus

The results of the numerical simulation of the hardness tests with the Knoop indenter, for all
materials in Table 2, were used to study the influence of the mechanical properties on the evaluation
of the indentation contact area and, consequently, on the Young’s modulus. As mentioned above,
the indentation contact area was determinate using two different procedures: one of them uses the
load-unloading curve as in the experimental DSI procedure for evaluating this area, Ahc , and the other
considers the contour of nodes of the FE mesh in contact with the indenter at maximum load, AFE

(numerical contact area).
Figure 8 shows the evolution of the indentation contact areas, Ahc and AFE, as a function of the ratio

hf/hmax. These contact areas are normalized with respect to the reference area, AREF, corresponding to
the obtained with the area function of the indenter (Equation (5), with hc equal to the indentation depth,
which does not take into account the pile-up or sink-in formation). Figure 8a shows that the contact area,
Ahc , is independent of the strain hardening parameter and Young’s modulus, whatever the value of the
ratio hf/hmax. Moreover, the ratio Ahc/AREF is always less than 1. Figure 8b shows that the numerically
calculated contact area, AFE, is nearly independent from the strain hardening parameter and Young’s
modulus, for the ratio hf/hmax < 0.6. However, for hf/hmax > 0.6 the normalized contact area depends on
the strain hardening parameter. The ratio AFE/AREF is even higher than 1 after a value of hf/hmax that
depends on the strain hardening parameter (hf/hmax equal to 0.85, 0.90 and 0.95 for n equal to 0, 0.15 and
0.3, respectively), indicating pile-up formation. For both cases, Ahc/AREF and AFE/AREF, similar behaviors
were previously observed for the case of the conical, Vickers and Berkovich indenters (see, e.g., [22,26,30]).

 
(a) (b) 

Figure 8. Normalized contact area results obtained in the numerical simulation of the materials with
the values of the strain hardening parameter, yield stress and Young’s modulus shown in Table 2, using
the Knoop indenter. (a) Contact area Ahc /AREF; (b) Contact area AFE/AREF.

Figure 9 shows the evolution of the Young’s modulus Ehc and EFE normalized by the input
value used in the numerical simulation, EREF, as a function of the ratio hf/hmax. The average ratio of
Ehc /EREF is close to 1.419, except for values of hf/hmax approaching 1, for which the ratio Ahc /AREF

increases for low values of the strain hardening parameter of the materials (n = 0 and 0.15). This is a
consequence of the pile-up formation during the indentation of these materials, as was also observed
for Vickers indenters [25]. The ratios of EFE/EREF are slightly higher than those of Ehc /EREF, being in
average close to 1.469. Slight differences between both ratios, Ehc /EREF and EFE/EREF, were already
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observed for the Vickers indenter [25]. Under these conditions, in the experimental indentation tests,
a value for the correction factor β of 1.419 is required to be used for the contact area evaluation (hc)
from the unloading curve, in case of the Knoop indentation. This value is essentially different from
other indenter geometries such as conical, Vickers and Berkovich, which require β values around 1.034,
1.055, 1.081, respectively (see, e.g., [22,26]).

 
(a) (b) 

Figure 9. Normalized Young’s modulus results obtained in the numerical simulation of the materials
with the values of the strain hardening parameter, yield stress and Young’s modulus shown in Table 2,
using the Knoop indenter: (a) Young’s modulus Ehc /EREF; (b) Young’s modulus EFE/EREF.

Equation (4) was used in order to confirm the above correction factor β. Figure 10 shows the ratio
P/S2 versus H/E2

r obtained by numerical simulation of all materials in Table 2, for the case of the
Knoop and Vickers indenters. The reduced Young’s modulus, Er, was determined considering the
input Young’s modulus and Poisson ratio, H, determined using the contact area evaluated from the
contour of the indentations.

Figure 10. Evolution of the ratio P/S2 as a function of H/E2
r , obtained in the numerical simulations of

all materials in Table 2, using the Knoop and Vickers indenters.

The straight-lines in Figure 10 pass through the origin of the axes as indicated by Equation (4)
(independently of the indenter geometry, curves match for H/E2

r = 0, i.e., for materials with
rigid-plastic behaviour, which corresponds to the ratio hf/hmax = 1). The β factor is evaluated
from the slope, ρ, of the straight line, related with β through ρ = (π/4β2). Using this procedure,
for the values of the R-ratio of 1, 2.5, 4, 5.5, and 7.11, the β correction factor obtained were 1.054, 1.141,
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1.232, 1.351, and 1.473, respectively. The value of 1.473 for the Knoop indenter is very close to that
mentioned above (1.469), obtained from the ratios EFE/EREF (Figure 9b).

4.3. Flat Indenter

In order to understand if the value of the β factor is affected by the plastic deformation beneath
the indenter, five flat-ended punches were considered having the same R-ratio values between the
diagonals (L and m) as for pyramidal indenters (Table 1). Also, the flat-ended punches were modeled
using parametric Bezier surfaces and the finite element mesh is shown in Figure 4. This study allows an
understanding of to what extent the evolution of the β factor values with R is related to the pyramidal
geometry of the indenter and/or to the loss of symmetry of the flat punches, when R evolves from 1
to 7.11.

Using flat indenters, numerical simulations were performed up to a 0.025 μm displacement
imposed so that only elastic deformation occurs in the material beneath the indenter. Five values of
Young’s modulus were used: 30, 200, 400, 600 and 800 GPa. Figure 11 shows the evolution of the
load as a function of the indentation depth, he, obtained in the numerical simulations with the flat
indenters for values of the R-ratio equal to 1 (as for the Vickers indenter), 4 and 7.11 (as for the Knoop
indenter). The figure shows that, for a given indentation depth, the load increases with the increase of
the Young’s modulus and the R-value.

As above mentioned, Equation (1) comes from the Sneddon’s equation [20] that relates the applied
load, P, with the elastic deflection of the surface of the material, he, and can be written as follows:

P =
2βE

1 − ϑ2 ahe, (6)

where E and ϑ are de Young’s modulus and Poisson ratio of the material, respectively; a is the radius
of the rigid Sneddon cylindrical flat indenter, or an equivalent value for other rigid indenter geometry
with the same area; and β is a parameter that takes into account the geometry of the indenter (β = 1,
for cylindrical flat indenter).

The Young’s modulus results obtained by the data such as in Figure 11 indicate that, in case of
the flat punches, the value of the β parameter in Equation (6) is different from 1 and depends on the
R-ratio, whatever the Young’s modulus, as shown in Table 4.

Table 4. Values obtained for the correction factor β in the numerical simulations with flat indenters.

R = L/m

E (GPa)

Average Values of β30 200 400 600 800

β

1.00 1.055 1.054 1.053 1.054 1.054 1.054
2.50 1.125 1.123 1.124 1.125 1.124 1.124
4.00 1.215 1.214 1.214 1.214 1.215 1.214
5.50 1.269 1.266 1.267 1.267 1.266 1.267
7.11 1.374 1.372 1.371 1.371 1.372 1.372

The values of β for R = 1 (as for the Vickers indenter) is in agreement with those obtained in
previous studies (see, e.g., [22,26]). In the case of R = 7.11 (as for the Knoop indenter), β is equal
to 1.372. The increase of the value of β with R is certainly related with the loss of symmetry of the
flat punches with the increase of the ratio R. Indeed, the same was observed in case of the conical,
Vickers and Berkovich indenters, whose values of the factor β increase in this order (1.034, 1.055, 1.081,
respectively), although on a smaller scale [26].
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(a) (b) 

 

(c) 

Figure 11. Evolution of load as a function of the elastic indentation depth obtained in the numerical
simulations using flat indenters with different ratio R: (a) R = 1; (b) R = 4; (c) R = 7.11.

Figure 12 shows that the evolution of β with R for the flat punches is a quasi-linear function, quite
close to that observed for the case of the pyramidal indenters (obtained with Equation (4): 1.054, 1.141,
1.232, 1.351 and 1.473). Moreover, the values of β for the pyramidal indenters are slightly higher than
those determined for the flat indenters, except the R-ratio equal to 1.

Figure 12. Evolution of β as a function of the R-ratio obtained in numerical simulations using the five
flat and pyramidal indenters with different values of the R-ratio.
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The dissimilarity between the β values obtained for the flat and the pyramidal indenters is
certainly because, in the case of pyramidal indenters, not only elastic deformation occurs, but also
plastic deformation appears, which significantly distorts the material surface. Moreover, the increase
of the value of R-ratio leads to the lowering of the symmetry of the plastic strain distribution along
two axes of the indenter (see Figure 7).

4.4. Correlation with Experimental Results

In order to check the performance of the correction factor β proposed in this study, experimental
results of five materials were used to calculate the Young’s modulus. They are fully dense brittle
materials, covering a wide range of mechanical properties, whose experimental data were obtained
from bibliography [19]. Table 5 presents the Young’s modulus results of these materials determined
by Grobal et al. [19], using two different methods proposed by: (i) Grobal et al. [19] (EG); (ii) and
Marshall et al. [31] and Riester et al. [18] (EM). The results obtained by the method proposed in the
current study (E), using β equal to 1.419 as defined above for the Knoop indenter, are also shown in
this table. For comparison, nominal values of the Young’s modulus, Enom, evaluated by ultrasonic
method [19] are presented and used to calculate the errors. To evaluate the Young’s modulus,
Grobal et al. [19] make use of the plot of the contact stiffness, C, as a function of 1/

√
AC, whose

values of the slopes of the fitted straight lines (
(√

π/2βEr
)

in Equation (1)), are also used in current
study to assess the value of E, for all materials.

Table 5. Experimental Young’s modulus results.

Materials
Enom (GPa)

[19]
EG (GPa)

[19]
Error (%)

EM (GPa)
[19]

Error (%)

√
π

2β
1
Er

(μm/N2)

[19]
E (GPa) Error (%)

Si3N4 317 ± 4 316.5 ± 4.24 −0.16 300 ± 20.0 −5.36 2.548 ± 0.029 302.8 ± 4.40 −4.48
Ceramic-glass 82 ± 2 85.0 ± 0.36 3.66 85 ± 4.0 3.66 7.930 ± 0.031 82.1 ± 0.35 0.15

Alumina 385 ± 6 386.0 ± 7.75 0.26 380 ± 18.5 −1.30 2.233 ± 0.032 359.4 ± 6.90 −6.64
β-TCP 130 ± 2 129.0 ± 0.85 −0.77 142 ± 14.0 9.23 5.568 ± 0.032 120.7 ± 0.70 −7.12

Fused silica 68 ± 1 65.0 ± 0.30 −3.00 70 ± 4.0 2.94 9.221 ± 0.034 69.9 ± 0.25 2.80

Average of the absolute value of the error 1.57 4.50 4.27

The results in Table 5 show that the proposed β coefficient enables relatively good accuracy of
the Young’s modulus. The average of the absolute value of the error is equal to 4.27%. This is higher
than that obtained by the method of Grobal et al. [19] and slightly lower than that achieved using the
method by Marshall et al. [31].

5. Conclusions

A finite element study using the three-dimensional numerical simulation of hardness tests of
elastic–plastic materials is performed. Pyramidal indenters with geometry from Vickers to Knoop
were used. Also flat-ended punches were considered. This allowed us to obtain important information
about the geometry of the indentation surface (sink-in and pile-up formation) and the distribution
of plastic deformation beneath the pyramidal indenters. Both types of tests, with pyramidal and flat
punch indenters, allow an assessment of the values of the geometrical parameter β to be used in the
Sneddon’s equation [20], for flat-ended punches, and the Doerner and Nix equation [21], for pyramidal
indenters. This permits to determine the reduced Young’s modulus of the indented material when
using depth-sensing indentation (DSI) equipment. In the case of the Knoop indenter, the correction
factor β of at about 1.419 is required, in order to accurately obtain the Young’s modulus. This makes
the procedure for analyzing the results of the Knoop indenter more expeditious than it currently is.
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Abstract: Similitude theory helps engineers and scientists to accurately predict the behaviors of real
systems through the application of scaling laws to the experimental results of a scale model related to
the real system by similarity conditions. The theory was applied when studying the deep drawing
process of a bathtub made from cold rolled low carbon aluminum-killed steel from the point of view
of material limits. The bathtub model was created on the basis of geometric, physical, and mechanical
similarity on a scale of 1:5. Thus, simulations and physical models were created. The simulation
model was used to verify the combination yield locus/hardening law on the basis of comparing the
thickness change. As a result, Hill 48/Krupkowski showed the minimal deviation by comparing
data evaluated from numerical simulations and that measured on the physical model. Additionally,
material anisotropy was modelled when virtual materials were defined from experimentally measured
values of the plastic strain ratio. As an outcome, extra deep drawing quality steel with an average
plastic strain ratio of rm ≥ 1.47 and an average strain hardening exponent of nm ≥ 0.23 must be used
for the deep drawing of the bathtub.

Keywords: similitude; the bathtub model; numerical simulation; physical experiment; yield locus;
hardening law; anisotropy

1. Introduction

The deep-drawing process is widely used in automotive, transport, household, and other industries
when metal sheets are processed. The optimization of process parameters, such as the blank shape,
material, lubrication, gaps, drawbead dimensions, etc. requires good knowledge of the process and
parameters influencing the quality of the drawn part [1]. Thus, the die design process for the drawing
of stampings with complicated shapes is time- and cost-consuming due to testing of the concepts
designed [2].

Manufacturing processes are tested either on physical models or by numerical simulations [3].
The real production process is difficult to test during its exploitation, so physical experiments are
usually based on the scale model [4]. Similitude theory helps engineers or scientists to predict the
behavior of a researched system through a scaled model. Langhaar [5] presented the general definition
of similarity in mathematical terms for two functions. Szucs [6] widened the theory of similarity from
functions to systems. Coutinho summarized the state-of-the-art knowledge on similitude theory and
methodologies used to create reduced scale models, including those based on the use of dimensional
analysis, differential equations, and energetic methods [7]. The theory of similarity and dimensional
analysis in mechanics was also elaborated by Sedov [8].
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Focusing on the metal forming processes, analysis of the similarity concept based on scaled
model testing and dimensional analysis has taken place. Gronostajski proposed the plastic similarity
condition for physical modelling of the axisymmetric backward extrusion of lead [9]. Davey introduced
a novel scaling methodology using transport equations for the scaling of mass, momentum, energy,
and entropy, as well as any associated material-constitutive relationships [10]. Al-Tamimi applied and
validated the approach by means of scaled experimental and numerical and analytical solutions of
scaled cold upsetting tests for cylindrical and ring samples for three trial materials [11]. Krishnamurthy
applied the theory for the hot forging of the disk using numerical simulations of the real process
and the scaled one. All the characteristics of the metal flow remained identical at all stages of the
process [12]. Keran presented a study of the correlation between the workpiece size and forming force
for a case of cylindrical body upsetting by using a numerical simulation. As a result, a difference of
less than 3% compared with the results of the calculation using similarity theory was reached [13].
Ajiboye used the dimensional analysis based on the Buckingham π theorem for a sensitivity study of
the frictional behavior in cold forging [14].

Accordingly, the deep drawing processes of the model need to be researched and designed under
strictly defined conditions. The similarity criteria that must be considered when physically modelling
the deep drawing process based on scaled models are

(a) the geometry similarity—the corresponding dimensions of the model and object have to be
proportional; thus, the length scale factor is constant;

(b) the mechanical similarity—equal pressures, strain rates, press ram weights, and deformation
works; and

(c) the physical similarity—the same material chemical composition, structure, temperature, friction,
distribution of stress, strain, etc. [3,10,15].

Numerical simulations were used when designing the manufacturing processes in the 1990s
to reduce time and costs. Silva utilized Pam-Stamp software to re-evaluate the stamping process
for a rear seat and a structural reinforcement when changing the blank thickness and conventional
steel to high strength steel [16]. Choudhury optimized the die geometry and determined the safe
limit of the blankholder forces for plain carbon steel, reinforced steel, and aluminum alloy [17].
Padmanabhan numerically simulated the deep drawing process of bottles for LPG (bottled gas) by
using DD3IMP FE code. The optimization of the variable blank holder force and friction condition
at specific locations during deep drawing resulted in an increased minimum thickness in the deep
drawn part [18]. Vafaeesefat proposed an algorithm to predict the initial blank shape from the desired
part in the sheet metal forming process using LS-DYNA software [19]. Fracz used eta/Dynaform
software when optimizing sheet metal forming of a cylindrical part made from AMS 5512 steel [20].
Čada used Dynaform software to evaluate the influences of the shape, size, and location of rectangular
and semicircular draw beads on the sheet-metal forming process [21]. Labergere employed Abaqus
software to propose and validate a global methodology to simulate the stamping of the embossed
sheet and the capacity of the model to predict severe folds and the final shape of the part [22]. Using
LS-Dyna software, Schrek researched the deep drawing process of tailor welded DP 600 and BH220
materials in tools with an elastic blankholder. They determined the values and points of application of
the blankholder forces to achieve minimal movement of the weld interface [23].

As Roll presented in [15], it is important to describe material behavior and tribological factors
in numerical simulations using proper mathematic models. This includes both yield loci definition
and the hardening law. The use of the standard von Mises model to describe material behavior is not
enough, and it needs to be widened to describe effects such as anisotropy and kinematic hardening.
The problem is more emphasized when the simulation of springback is performed and new advanced
high-strength steels or aluminum alloys are applied. Consequently, correct models for the material
and friction coefficient must still be verified by experiments. Neto et al. numerically simulated the
anisotropic behavior of the mild steel sheet used in the reverse deep drawing process of a cylindrical cup.
The effect of the yield criterion on the numerical results was analyzed using three yield functions—von
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Mises, Hill’48, and Barlat Yld’91—combined with the Swift hardening law. The cup wall thickness
distribution was strongly influenced by the yield criteria [24]. Other work by Neto et al. focused to
the experimental and numerical analysis of a rail component made of mild steel and dual phase steel.
They used the Swift hardening law to describe isotropic hardening and the Frederick–Armstrong law to
describe the kinematic part of the work hardening combined with the Hill’48 yield criterion to describe
the orthotropic plastic behavior of both metallic sheets. The results showed that the wrinkling behavior
was strongly affected by the blank’s material as well as by the symmetry conditions ( 1

4 of blank, full
blank) defined in the numerical model [25]. Mulidran et al. focused on the springback prediction of
a car body stamping made from aluminum alloy. The springback simulations were conducted with
six yield functions (Barlat89, Barlat2000, Vegter-Lite, Hill90, Hill48 isotropic, and Hill48 orthotropic)
combined with the Voce hardening model. Springback analysis was done in three sections, and the
results were compared with the experimental values [26].

Chen researched the bathtub deep drawing process using numerical simulation [27]. It is supposed
that he used the Hill isotropic definition of the yield locus and the point definition of the hardening
curve. As a result, he determined an optimum drawbead distribution on the die face to avoid the
formation of both fractures and wrinkles. Hojny [28] numerically simulated the stamping of the W1200
bathtub when the effects of the blank holder pressure and friction on the occurrence of fracture and
wrinkling were investigated. He used the anisotropic Barlat model and point defined flow stress to
define the material behavior.

In the article, numerical simulations based on the finite element method were performed to
evaluate the influences of both the yield locus and the hardening law when deep drawing the model of
box-shaped pressing—the bathtub model. The model pressing designed on the principle of similitude
theory was numerically simulated for verification. The combination of the yield locus/hardening
law was validated experimentally when compared with the thickness change in the selected sections.
Simulations and experiments on the drawing quality of mild steel for enameling were performed,
which is used in the production of real box-shaped pressing. Additionally, material anisotropy was
modelled and verified using numerical simulation to determine the limit value from the point of view
of fractures during deep drawing.

2. Materials and Methods

2.1. The Press-Die-Pressing System

Bathtub model pressing was considered here as a box-shaped pressing. The model was designed
according to similitude theory in order to verify the material parameters when deep drawing the real
bathtub produced by Festap Ltd., Filakovo, Slovakia. The real bathtub pressing was scaled to the
model (Figure 1) to meet the similarity criteria shown in Table 1. During real production, the steel sheet
thickness decreases over the years from 2.5 to 1.63 mm; thus, the formability criteria of the material
should be verified.

Based on the model dimensions and drawing die used for the real bathtub, the drawing die for
the model pressing was designed. To reduce the material flow in the straight parts, drawbeads were
used, and their positions, dimensions, and lengths were also scaled. An experimental drawing of the
die is shown in Figure 2.

2.2. Material

The bathtubs used in the experiment were made from cold rolled steel sheet for enameling, which
is produced by U.S. Steel Kosice. The deep drawing of the bathtub model was done using a Kosmalt
190 (i.e., DC06EK according to EN 10209) steel sheet with a thickness of 0.5 mm. This special steel had
to meet two opposing requests: good formability and good enameling properties in the aspects of
both the fishscale and the pinhole resistance. The steel belongs to a group of cold rolled low carbon
aluminum-killed and annealed steel. This type of steel has a good hydrogen storage ability due to the
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numerous micro-voids generated after cold-rolling, which still exist after annealing [29]. The chemical
composition of the steel is shown in Table 2; its microstructure and texture are shown in Figure 3.

 
(a) (b) 

Figure 1. The box-shaped pressing—bathtub model: (a) 2D sketch; (b) 3D view.

Table 1. Similarity criteria for the box-shaped pressing—bathtub model.

Parameter Real Bathtub Bathtub Model

Geometry similarity (scale 1:5)

Length [mm] 1695 339
Width [mm] 710 142
Height [mm] 400 80

Wall to bottom radius [mm]
(i.e., Punch radius [mm]) 130 26

Wall to flange radius [mm]
(i.e., Die radius [mm]) 28 5.6

Mechanical similarity

Press Hydraulic
Fritz Muller BZE 2000

Hydraulic
Fritz Muller BZE 100

Ram working velocity [mm·s−1] 25 15
Die and punch material Cast steel Cast steel

Physical similarity

Material Enameling steel Kosmalt Enameling steel Kosmalt
Lubricant Vantol S Vantol S

 

(a) 

 

 

(b) (c) 

Figure 2. Experimental drawing of the die: (a) overview; (b) details of drawbeads and grooves;
(c) dimensions of the drawbeads [mm].

Table 2. Chemical composition of the Kosmalt 190 material [wt %].

C Mn P S Al N Cu Ni Cr

0.030 0.140 0.009 0.008 0.042 0.003 0.014 0.015 0.013
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(a) 

 
(b) 

Figure 3. Microstructure and texture of the Kosmalt 190 material in the rolling direction: (a) microstructure;
(b) texture.

The experimental material, Kosmalt 190, has a typical recrystallization structure. The density of
the orientation components (111)<110> and (111)<112> is 10. The texture of the material is suitable
for deep drawing. The structure is ferrite-pearlite-cementitic with a polyedric grain grade of 7 or
occasionally grade 5. The cementite segregation is type 1A2, mainly on the grain boundaries in a few
isolated cases in short rows.

For the numerical and physical experiments, Kosmalt 190 material with a nominal thickness of
a0 = 0.5 mm was used. From the point of view of formability, the material properties are shown in
Table 3. These were measured according to the following standards: mechanical properties by STN EN
ISO 6892-1, the normal anisotropy ratio by STN EN ISO 10113, and the strain hardening exponent by
STN EN ISO 10275 using the TIRAtest 2300 testing machine (TIRA Maschinenbau GmbH, Rauenstein,
Germany) controlled by a PC.

Table 3. Formability parameters of Kosmalt 190 material.

Dir.
[◦]

Rp0.2
[MPa]

Rm
[MPa]

A80
[%]

r
[–]

rm
[–]

Δr
[–]

n
[–]

nm
[–]

Δn
[–]

0 158 ±0.9 280 ±1.3 45.5 ±0.3 1.58 ±0.036 0.226 ±0.002

45 159 ±1.1 286 ±0.9 42.4 ±0.5 1.33 ±0.032 1.57 0.47 0.227 ±0.001 0.226 –0.001
90 155 ±1,0 279 ±0.5 45.4 ±0.5 2.02 ±0.052 0.225 ±0.001

Note: Rp0.2—yield strength; Rm—ultimate tensile strength; A80—elongation (80 mm initial gage length); r—plastic
strain ratio (r-value); rm—average r-value; Δr—planar anisotropy of r-value. n—strain hardening exponent (n-value);
nm—average n-value; Δn—planar anisotropy of n-value.

Five specimens were measured in each rolling direction for each test. The elongation was measured
by the length extensometer and the width reduction was measured by the width extensometer, both with
a precision level of ±0.001 mm. The plastic strain ratio was calculated at the engineering strain level
of 20% using automatic determination. The strain hardening exponent was evaluated within an
engineering strain level of 5% to 20%. The average values and planar anisotropy were calculated
as follows:

rm =
1
4
(r0◦ + 2·r45◦ + r90◦), (1)

Δr =
1
2
(r0◦ − 2·r45◦ + r90◦), (2)

nm =
1
4
(n0◦ + 2·n45◦ + n90◦), (3)

Δn =
1
2
(n0◦ − 2·n45◦ + n90◦). (4)
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2.3. Numerical Simulation Model

Numerical simulations were done using Pam-Stamp 2G software from the ESI Group (Paris,
France). The simulation model was created using the 3D CAD/CAM software Creo, and its components
were exported in neutral igs format. The die, punch, and blankholder were meshed using the
Pam-Stamp 2G meshing module when importing CAD data. The meshed die components are shown
in Figure 4a. To shorten the computing time, the symmetry of the blank along the longitudinal axis of
the model was used. The blank shape (Figure 4b), dimensions, and its positioning against the die were
also the same as for the real process and were scaled 1:5 to reach geometry similarity. The steel sheet
rolling direction (0◦) was positioned in the longitudinal axis of the bathtub model pressings.

 

 

(a) (b) 

Figure 4. Simulation model and blank: (a) meshed components of the drawing die; (b) shape and
dimensions of the blank.

There are two ways to represent drawing beads in a simulation model: (a) using a physical
model—drawing beads need to be physically modelled on the CAD model of the blankholder and
grooves on the die. This concept is a complicated way to simulate the blankholding stage individually
before the drawing stage. Changing the restrictions on the bead geometry is complicated due to
importation of a new blankholder model and meshing procedure; (b) using a numerical model—there
is a macro within simulation software that can be used for drawbead action through restriction and the
blankholing forces [27,30]. This property enables the actions of the drawbead on the blank and the
blankholder to be represented without creating the geometry of the drawbead on the mesh. Thus, it is
much easier to represent and modify a drawbead’s shape and dimensions. Drawbeads are represented
by nodes and lines that are positioned against the die and the blankholder. Restriction and opening
forces are calculated through the drawbead macro calculator with respect to its geometry. A simulation
concept with a physical model of drawing beads was used, and its geometry (drawbead length, width,
height, number, and position) was the same as the drawbead geometry of the experimental drawing die.

The validation meshing strategy was applied with a minimum element size of 0.1 and a maximum of
30, a chordal error of 0.15, and a maximum angle of 15◦ for radii and curved surfaces. Belytschko–Tsay
shell 3-node and 4-node elements (triangles, squares, and rectangles) with the Gauss thickness
integration rule were applied to the objects (punch, die, blankholder) and blank as well. The small
radii on the drawbead and groove were meshed to six rectangular elements with a height of 0.25 mm;
the die radius was meshed to six rectangular elements with a height of 1.45 mm. Both fulfilled the
maximum angle of 15◦ between shells.

Because the size of blank mesh influences the results, it should be optimized to offer accurate
results and the lowest time of calculation possible. Hence, an initial blank mesh size of 10 mm was
applied along with the adaptive meshing strategy. This allowed the mesh size of the object in contact to
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be refined when necessary, especially in small radii on the drawbeads and the die. Thus, the refinement
level was set to 5, and the final blank mesh size was 0.625 mm.

2.3.1. Material Hardening Model

Nowadays, different mathematical models are used to describe the plastic behavior of steel
sheets: Hollomon (or Ludwik), Krupkowski (or Swift), Hocket-Sherby, Gosh, Voce, Johnson-Cook,
Cowper-Symonds etc. Some of these are strain rate and/or temperature dependent [30,31]. These were
reached by fitting experimentally acquired data from tensile tests or other non-standardized tests, and
they differ in terms of the effort required to calibrate the model and to reach the model’s constants.
Two isotropic material hardening models were tested during the numerical simulation:

• Hollomon
σ = K·ϕn (5)

• Krupkowski
σ = K·

(
ϕ0 + ϕpl

)n
(6)

where σ is the true stress, ϕ is the true strain, K is the strength coefficient, n is the strain hardening
exponent, ϕ0 is the pre-strain, and ϕpl is the plastic strain.

The Hollomon hardening model was measured within the strain levels of 5% to 20%. The Krupkowski
model was determined on the basis of Hollomon’s model parameters using the numerical iteration
method. The models’ constants are shown in Table 4.

Table 4. Hollomon and Krupkowski model constants.

Model K [MPa] n [–] ϕ0 [–]

Hollomon 496 0.226 -
Krupkowski 505 0.248 0.00899

2.3.2. Material Yield Locus

The most important criterion in the numerical simulation is the yield locus, which describes the
transition from an elastic state to a plastic one. The yield locus also expresses the relationships between
stress components at the moment of yielding due to the multiaxial stress state during metal forming.
Thus, the yield point measured during uniaxial tension in the tensile test is not enough to describe the
yield locus even if it is easily measured. [32]

The most widely used yield criteria for isotropic materials are Tresca (the “maximum shear stress
criterion”) and von-Mises (the “strain energy criterion”). However, the sheet metal exhibits a significant
anisotropic property due to its crystallographic structure and the characteristics of the rolling process.
Hence, in 1948, Hill [33] proposed an anisotropic yield criterion involving three orthogonal symmetry
planes, which is expressed by the following quadratic function:

2 f
(
σi j
)
= F
(
σy − σz

)2
+ G(σz − σx)

2 + H
(
σx − σy

)2
+ 2Lτ2

yz + 2Mτ2
zx + 2Nτ2

xy = 1, (7)

where F, G, H, L, M, and N are constants specific to the anisotropy state of the material, and x, y,
and z are the principal anisotropy axes [30,33]. Because the plane stress is assumed in numerical
simulations of the sheet metal forming processes, the stress in the thickness direction is ignored due to
its insignificance compared with that in the other two orthogonal directions. Furthermore, assuming
that the principal directions of the stress tensor are coincident with the anisotropic axes, this criterion
can be written as follows:

σ2
1 −

2r0

1 + r0
σ1σ2 +

r0(1 + r90)

r90(1 + r0)
σ2

2 = σ2
0. (8)
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In 1990, Hill stated that the range of validity of Hill 48 had been explored through numerous
experiments, and that it is well suited to specific metals and textures. For more recently developed
steels of higher grades, Hill 90 was developed [34]. This is a yield criterion for metal sheets with
planar anisotropy, and it is based on a non-quadratic yield function. This criterion takes into account
different behaviors during the bending/unbending phase. The model is a generalization of Hill 48 with
non-integer powers of the principal values of the deviatoric stresses. Its constitutive relation for plane
stress conditions in terms of principal stress components can be written as follows: [30,34]

|σ1 + σ2|m + α·|σ1 − σ2|m +
∣∣∣σ2

1 − σ2
2

∣∣∣m2 −1·cos(2Φ)
[
β·
(
σ2

1 − σ2
2

)
+ γ·(σ1 − σ2)

2·cos(2Φ)
]
= 2·σm

Y , (9)

where α, β, γ, and m are constants derived from the measured material data, Φ is the angle between
the principal axes of the in-plane stress and the principal axes of anisotropy, and σY is the equi-biaxial
yield stress.

The Hill 48 yield locus was defined by Lankford’s coefficients r0, r45, r90 (i.e., plastic strain ratios),
and these were measured using tensile tests performed on the specimens taken at 0◦, 45◦, and 90◦ to
the rolling direction (see Table 3).

To calculate the coefficients α, β, γ, and m for the Hill 90 yield locus, the Pam-Stamp 2G wizard
was used. This calculation is based on an iterative method that minimizes a function whose variables
are the yield stresses and the anisotropy coefficients (least-squares method). The user must define
the uniaxial yield values Rp0.2 for each Lankford’s coefficient rα and either the Hill 90 coefficient m
or the equi-biaxial yield stress σy. An equi-biaxial yield stress of σy = 220 MPa was used for the
calculations, which was obtained from a hydraulic bulge test using the HYDROTEST device. Uniaxial
yield values Rp0.2 and Lankford’s coefficients for the rolling directions of 15◦, 30◦, 60◦, and 75◦ were
additionally tested according to standards shown previously (Table 5). The values of the Hill 90 yield
locus constants α, β, γ, and m are shown in Table 6.

Table 5. Additional values of yield strength and the plastic strain ratio.

Direction Rp0.2 [MPa] r [–]

15 166 ±1.1 1.56 ±0.037

30 166 ±1.3 1.46 ±0.041

60 168 ±0.9 2.03 ±0.029

75 165 ±1.2 2.14 ±0.040

Table 6. Calculated values of the Hill 90 yield locus.

α β γ m

1.56158 1.19317 20.2109 3.02902

2.3.3. Failure Criteria

Keeler-Brazier’s model of forming limit curve was used to determine the material fracture in a
numerical simulation. The model was implemented in Pam-Stamp 2G software, and the value of ϕ1

when ϕ2 = 0 was calculated as follows: [30,35]

ϕ1(0) = ln
[
1 + (23.3 + 14.13a0)

n
0.21

]
(10)

when ϕ2 < 0 ϕ1 = ϕ1(0) −ϕ2 (11)

when ϕ2 > 0 ϕ1 = ϕ1(0) + 0.6[exp(ϕ2 − 1)] (12)

where a0 is the material thickness, and n is the strain hardening exponent. The left side of the FLC
curve was calculated from Equation (11) and the right side from Equation (12).
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2.3.4. Boundary Conditions

To perform numerical simulations, other boundary conditions or process parameters such as
the blankholder force, friction, punch speed, and blankholder speed needed to be defined. Based on
recommendations in the software manual, the blankholder speed was set to 2 m·s−1, and the punch
speed was set to 5 m·s−1. In the z direction, both increased linearly from zero to the final value
to prevent dynamic effects at contact. This was defined as the imposed velocity by the curve [30].
Contact conditions were defined by the friction coefficient and the Coulomb laws defined the friction.
Water-based lubricant is used when real bathtubs are produced, so the friction coefficient was set to a
constant value of 0.09 due to the friction between the steel sheet and tool steel [28,36]. The blankholder
force was set to 340 kN when the bathtub model pressing free of wrinkles and fracture was drawn.

3. Results

Within the numerical simulations, each hardening model was combined with each yield criterion.
Overall, four simulation concepts were done by changing the material hardening law and the yield
locus. These combinations are shown in Table 7.

Table 7. Minimal thicknesses evaluated from numerical simulations and measured in the experiment.

Simulation
Number

Yield Locus/Hardening
Law

Minimal Thickness [mm]

Section A-A Section B-B

C-E G-H D-E

S1 Hill 48/Hollomon 0.421 0.330 0.380
S2 Hill 48/Krupkowski 0.417 0.363 0.375

S3 Hill 90/Hollomon 0.405 0.398 0.416
S4 Hill 90/Krupkowski 0.412 0.396 0.417

Experiment 0.413 ± 0.006 0.368 ± 0.008 0.363 ± 0.006

Qualitative evaluation of the numerical simulations was done using the FLD diagram in order to
evaluate the deep drawing process from the point of view of both the wrinkles appearance and fracture.
In all simulation concepts, fracture did not occur, while a wrinkle tendency was identified in the same
areas. However, on the physical model, wrinkles were not identified. The result for simulation 2 is
shown in Figure 5. The material is appeared to have very good formability, as shown by the value of
the strain hardening exponent and the plastic strain ratios presented in Table 3.

  

(a) (b) 

Figure 5. Results of simulation 2: (a) qualitative evaluation; (b) forming limits diagram.
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To validate the material hardening law/yield locus combination, the wall thickness change was
evaluated in selected sections. The sections used to measure the wall thickness change are shown
in Figure 6. On the bathtub model pressing reached by the physical experiment, the thickness was
measured using a micrometer (conical tips with flat spot of Ø 1 mm) three times at a single point,
and the average thickness value was calculated. There was a distance of 5 mm between measurement
points along the bathtub wall’s length.

 
 

Figure 6. Section of the bathtub model used to measure the thickness (the rolling direction 0◦ was on
the longitudinal axis).

The minimal thicknesses for the individual simulations and measured on the physical model are
shown in Table 7. The minimal thickness was identified in the G-H area in the longitudinal section
A-A for each simulation, i.e., at the radius of the inclined wall to the bottom. The second minimal
thickness was identified in the D-E area, i.e., at the radius of the wall to the bottom for Hill 48 yield
locus, but in the C-D area, i.e., at the wall, for Hill 90 yield locus. The minimal thickness in section
B-B was found in the D-E area too. There was good agreement between the numerical simulation and
the real measurement of thickness for each simulation representing the material hardening law/yield
locus combination when considering the minimum thickness position. A comparison of the relative
thickness change evaluated from the numerical simulations and measured on the bathtub model
pressing is shown in Figure 7.

 

(a) 

 

(b) 

Figure 7. Relative thickness change of the bathtub model: (a) Sec. A-A; (b) Sec. B-B.

To assess the hardening law/yield locus combination, the deviation of the thickness evaluated
from the numerical simulation and measured on the physical model was calculated as follows:

Dev =
(Thsimul − Threal)

Thnom
·100[%] (13)

where Thsimul is the thickness evaluated from the numerical simulation, Threal is the thickness measured
on the physical model, and Thnom is the nominal steel sheet thickness. The results are shown in Table 8
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and in Figure 8. Based on the evaluation using the minimal thickness criterion, the best combination
seems to be the Hill 48 yield locus and the Krupkowski material hardening law. The values of thickness
at both critical regions were the closest to the thicknesses measured on the bathtub model pressing.
The graph on Figure 8 shows the deviation of thickness evaluated from the numerical simulation
and the thickness measured on the bathtub model pressing for each combination material hardening
law/yield locus.

Table 8. Deviation of the local minimal thicknesses for the simulation and physical experiment.

Simulation Number
Section A-A Section B-B

C-E G-H D-E

S1 1.7% –7.6% 3.4%
S2 0.7% –1.0% 2.4%
S3 –1.7% 5.9% 10.6%
S4 –0.3% 5.7% 10.8%

 
Figure 8. Thickness deviation calculated for the local minima in selected sections.

As mentioned previously, enameling steel must meet two opposing requests: good drawability
and good enameling properties. Steel used in the physical experiment and numerical simulation
belongs to the group of cold rolled low carbon aluminum-killed and annealed steel. From the point of
view of drawability, this steel shows anisotropy due to its production process [37]. Thus, the effect of
anisotropy was researched by numerical simulation to determine the minimal values when pressing
free of fracture was reached in the model.

Based on the material properties shown in Table 3, other two materials were modelled from the
point of view of its anisotropy. Directional values of plastic strain ratios were lowered, as shown in
Table 9: about 0.1 in the rolling direction, about 0.05 at 45◦, and about 0.2 at 90◦. The differences in
each direction were chosen on the basis of the formability evaluation of different grades of Kosmalt
steel sheet, as presented in [37]. Then, the deep drawing process was numerically simulated, and the
results are shown in Figures 9 and 10.
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Table 9. Anisotropy parameters of the models used in the numerical simulation.

Material r0 r45 r90 rm Result

Kosmalt 190 1.58 1.33 2.02 1.57 Ok
Virtual B 1.48 1.28 1.82 1.47 Necking
Virtual C 1.38 1.23 1.62 1.37 Fracture

Note: nm = 0.226.

 

Figure 9. Results of the numerical simulation for virtual B material with rm = 1.47.

  

Figure 10. Results of the numerical simulation for virtual C material with rm = 1.37.

When analyzing the results, the critical area of the bathtub model pressings was found to be the
bottom radii at the corner. Thus, localized necking or fracture occurred when the plastic strain ratios
were lowered in the 0◦, 45◦, and 90◦ directions. Considering the blank positioning (rolling direction of
0◦ in the longitudinal axis) and the directional dependence of the plastic strain ratio, i.e., its anisotropy,
it is the location of r45 where the lowest value was measured. The results comply with those of [37],
because the plastic strain ratio expresses the steel sheet’s resistance to thinning. Thus, greater thinning
of the thickness appears in the direction of the lowest plastic strain ratio.
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4. Discussion

Previously published research on the bathtub deep drawing process by numerical simulation
was focused on determining an optimum drawbead distribution on the die face [27] and the effects
of the blankholder pressure and friction on the occurrence of fracture and wrinkling [28], but the
material model definition was not clear. The bathtub model deep drawing process was researched in
the presented study from the point of view of, firstly, mathematic modelling of the yield locus and the
hardening law and, secondly, modelling the material anisotropy limit.

The bathtub model deep drawing process was designed to reach geometric and physical similarity by
using scaled modelling die and the same material, deformation process, and friction characteristics [7,9–13].
Thus, the Buckingham π theorem was applied and a physical model of the drawing die was designed
at a scale of 1:5. Consequently, the simulation model was defined in PamStamp 2G software when the
friction was set to 0.09 [30,36] and the blankholder force was 340 kN (the specific blankholder pressure
was 6 MPa) to reach a model pressing free of wrinkles and fractures.

Because special steel for enameling is used for the production of bathtubs, four simulations were
done to verify the combination yield locus/hardening law. It is desirable to note that the hardening
curves described in Equations (5) and (6) are consistent with experimental ones only at a certain strain
stage, and with large strains, the flow curve reaches saturation [38]. Thus, necking and fracture were
judged by a forming limit curve [39]. Concerning the yield locus, both anisotropic criteria came from
directionally measured plastic strain ratios, while Hill 48 is well adapted for strongly anisotropic
materials (r > 1) and Hill 90 is used for materials with planar anisotropy (r < 1) [40]. The validity of the
combination yield locus/hardening law was judged by comparing the thickness change in selected
sections [16,18,20]. As a result, the Hill 48 yield locus combined with the Krupkowski hardening law
offered the lowest thickness deviation (2.4%) when values calculated from numerical simulations and
the physical model were compared. The results comply with [24] and were also used for mild steel
and drawing quality steel when the deep drawing process was numerically simulated [16,17,21,25].
The selection of a proper mathematical model for the yield locus and hardening law is even more
important for metal sheets and processes, especially when new types of steel or springback phenomena
are simulated [17,25,26]. To define these models, more tests than just measuring uniaxial tension with
a tensile test or biaxial tension with the Bulge test are necessary [15,32].

Keeler-Brazier’s model determined the fracture limit and necking (marginal zone) in numerical
simulations. Because it outcomes from a large number of experiments, it is well adopted in the
numerical simulation of low carbon steels. It is easy to define using the strain hardening exponent
and the thickness of material, while both influence the formability of the material [41–43]. However,
constant strain paths are required during deep drawing, and their linearity was confirmed using
software. This is also supported by the fact that the strain pathways in the first drawing of axisymmetric
and uniform sectioned parts are satisfactorily linear, and the FLD for the as-received condition can be
used comfortably when making formability assessments [39].

As an outcome of numerical simulations done for virtual materials, cold rolled low carbon
aluminum-killed steel used for enameling must meet the conditions of rm ≥ 1.47 and nm ≥ 0.23 to
obtain bathtub model pressings free of fracture. To improve the deep drawing process of the bathtub
model pressing or the real bathtub in production, it is recommended that these values are higher.
This is because the plastic strain ratio improves the steel sheet’s resistance to thinning of the thickness,
while the strain hardening exponent unifies the strain distribution during deformation and prevents
necking [37].

To improve the drawability, new steels have been developed such as ultra-low carbon Ti-IF steel,
decarbonized (De-C) steel [29], and boron-microalloyed steel [44,45]. These possess excellent deep
drawability with a lower yield stress and a higher elongation, plastic strain ratio, and strain hardening
exponent compared with those of low carbon Al-killed steels. For Ti-IF and De-C steel, this is because
of the very low carbon component when Ti is added, which stabilizes all of the carbon and nitrogen
atoms, eliminates ageing, and improves elongation in the rolling direction [29,44–46]. Modern ideas to
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improve the ductility and preserve the high strength of sheet metal for deep drawing lies in the use of
materials with ultrafine grained structures when complemented with coarse grained elements [47].

5. Conclusions

The bathtub model deep drawing process was researched in the presented study from the point of
view of, firstly, mathematic modelling of the yield locus and hardening law and, secondly, modelling of
the material anisotropy limit. Based on the numerical simulations and physical experiment performed,
the following outputs can be concluded:

• The Hill 48 and Hill 90 yield locus mathematical models and the Hollomon and Krupkowski
hardening law mathematical models for cold rolled low carbon aluminum-killed steel for enameling
were determined from tensile tests at angles of 0◦, 45◦, and 90◦ to the rolling direction and bulge
tests. Experimental Kosmalt 190 steel with a thickness of a0 = 0.5 mm showed extra deep drawing
quality with rm = 1.57 and nm = 0.226.

• In all numerical simulations and physical experiments, the bathtub model pressing was drawn
free of fracture and wrinkles when simulated at the same blankholder force (340 kN) and friction
(0.09) values. Keeler-Brazier’s mathematic model was used to define the forming limit curve and
to determine material fracture in numerical simulations.

• The best yield locus/hardening law combination appeared to be Hill 48/Krupkowski. This was
determined by comparing the wall thicknesses of model pressing in selected sections after
simulations and physical experiments. The deviations at the local minima were 0.7% and −1.0% in
section A-A (longitudinal) and 2.4% in section B-B (corner). The course of relative thickness change
evaluated from numerical simulations and experimental measurements showed good conformity.

• The material’s anisotropy limits were found to be rm = 1.47 and nm = 0.23 when the model
pressing free of fracture was drawn in a numerical simulation. Virtual materials were defined
from experimentally measured values of the plastic strain ratio.
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