
﻿Interactions betw
een Group Theory, Sym

m
etry and Cryptology • M

aría Isabel González Vasco

Interactions
between Group
Theory, Symmetry
and Cryptology

Printed Edition of the Special Issue Published in Symmetry

www.mdpi.com/journal/symmetry

María Isabel González Vasco
Edited by

Interactions between Group Theory,
Symmetry and Cryptology

Interactions between Group Theory,
Symmetry and Cryptology

Special Issue Editor

Marı́a Isabel González Vasco

MDPI • Basel • Beijing •Wuhan • Barcelona • Belgrade

Special Issue Editor

Marı́a Isabel González Vasco

Universidad Rey Juan Carlos

Spain

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal Symmetry

(ISSN 2073-8994) from 2018 to 2020 (available at: https://www.mdpi.com/journal/symmetry/

special issues/Group Theory Symmetry Cryptology).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number,

Page Range.

ISBN 978-3-03928-802-1 (Pbk)

ISBN 978-3-03928-803-8 (PDF)

Cover image courtesy of Marı́a Isabel González Vasco.

c© 2020 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.

Contents

About the Special Issue Editor . vii

Preface to ”Interactions between Group Theory, Symmetry and Cryptology” ix

Jens-Matthias Bohli, Marı́a I. González Vasco, Rainer Steinwandt

Building Group Key Establishment on Group Theory: A Modular Approach
Reprinted from: Symmetry 2020, 12, 197, doi:10.3390/sym12020197 1

Yasir Nawaz and Lei Wang

Block Cipher in the Ideal Cipher Model: A Dedicated Permutation Modeled as a Black-Box
Public Random Permutation
Reprinted from: Symmetry 2019, 1485, , doi:10.3390/sym11121485 12

Maria Bras-Amorós

Ideals of Numerical Semigroups and Error-Correcting Codes
Reprinted from: Symmetry 2019, 11, 1406, doi:10.3390/sym11111406 27

Kenneth Matheis, Rainer Steinwandt and Adriana Suárez Corona

Algebraic Properties of the Block Cipher DESL
Reprinted from: Symmetry 2019, 11, 1411, doi:10.3390/sym11111411 43

Sara D. Cardell, Verónica Requena, Amparo Fúster-Sabater and Amalia Orúe

Randomness Analysis for the Generalized Self-Shrinking Sequences
Reprinted from: Symmetry 2019, 11, 1460, doi:10.3390/sym11121460 59

Maria Bras-Amorós and Michael E. O’Sullivan

The Symmetric Key Equation for Reed–Solomon Codes and a New Perspective on the
Berlekamp–Massey Algorithm
Reprinted from: Symmetry 2019, 11, 1357, doi:10.3390/sym11111357 85

Marı́a Cumplido, Juan González-Meneses and Marithania Silvero

The Root Extraction Problem for Generic Braids
Reprinted from: Symmetry 2019, 11, 1327, doi:10.3390/sym11111327 95

Jorge Martı́nez Carracedo

A Computational Approach to Verbal Width for Engel Words in Alternating Groups
Reprinted from: Symmetry 2019, 11, 877, doi:10.3390/sym11070877 110

Eligijus Sakalauskas, Aleksejus Mihalkovich

MPF Problem over Modified Medial Semigroup Is NP-Complete
Reprinted from: Symmetry 2018, 10, 571, doi:10.3390/sym10110571 122

José I. Escribano Pablos, Marı́a I. González Vasco, Ángel L. Pérez del Pozo,
Misael E. Marriaga

The Cracking of WalnutDSA: A Survey
Reprinted from: Symmetry 2019, 11, 1072, doi:10.3390/sym11091072 135

v

About the Special Issue Editor

Marı́a Isabel González Vasco (Profesor Titular de Universidad) is an Associate Professor at

MACIMTE, Universidad Rey Juan Carlos, where she has worked since 2003. She received her

Diploma and Ph.D. degree in Mathematics from Universidad de Oviedo (1999 and 2003). Her research

interests include provable security for cryptographic constructions, with a special focus on public-key

cryptographic designs for encryption and group key exchange. She has published over 50 papers

in the field, led two international research projects and acts regularly as a reviewer for several

high-quality journals in the area as well as for top conferences. Further, she is involved in teaching

related to mathematical cryptology at all levels. She is currently a member of the Board of Directors

(Junta de Gobierno) of the Royal Spanish Mathematical Society.

vii

Preface to ”Interactions between Group Theory,

Symmetry and Cryptology”

Cryptography lies at the heart of most technologies deployed today for secure communications.

At the same time, mathematics lies at the heart of cryptography, as cryptographic constructions are

based on algebraic scenarios ruled by group or number theoretical laws. Understanding the involved

algebraic structures is, thus, essential to design robust cryptographic schemes.

This Special Issue is concerned with the interplay between group theory, symmetry and

cryptography. It has been organized to highlight several exciting areas of research in which these

fields intertwine: post-quantum cryptography, coding theory, computational group theory and

symmetric cryptography. It is fair to say that all these areas are currently experiencing a resurgence,

catalyzed by the urgent need for cryptographic solutions to resist quantum attacks.

Indeed, since the striking publication of Shor’s quantum algorithms for factoring and computing

discrete logarithms in polynomial time, the cryptographic community has searched for different,

harder computational problems that can be used for cryptographic designs. In this book, three

papers explore the computational hardness of certain group theoretical problems. In “The Root

Extraction Problem for Generic Braids”, by Cumplido et al., it is evidenced that finding the k-th

root of an element in the braid group is generically fast, which, in particular, indicates the limitations

of its cryptographic usage. On the other hand, the so-called MPF problem is proven NP-complete

in the contribution of Sakalauskas et al., as a first step supporting its use for the construction and

validation of related cryptographic primitives. Further, “A Computational Approach to Verbal Width

for Engel Words in Alternating Groups”, is concerned with a rewriting problem in alternating groups.

Rewriting problems in non-abelian groups have inspired different cryptographic constructions since

the eighties, and are still considered to be a promising source for hard computational problems.

Two papers contained in this issue are concerned with concrete cryptographic constructions

for signature and key establishment. “The Cracking of WalnutDSA: A Survey”, reviews the

different attacks on a signature scheme, WalnutDSA, presented at the NIST standardization contest

for post-quantum constructions. The security of WalnutDSA relies on certain rewriting problems

over non-abelian groups, which have extensively been explored as a natural environment for

quantum-resistant cryptographic primitives. The generic framework presented in the contribution

“Building Group Key Establishment on Group Theory: A Modular Approach”, by Bohli et al., aims at

providing a sound design roadmap for the development of group key establishment protocols from

group theoretical problems. Having quantum adversaries in mind, it seems worth exploring hard

problems arising in non-abelian groups.

Coding theory is also understood as a potential arena for post-quantum cryptography. Two

of the contributions in this Special Issue present recent relevant results in the field. The paper by

Bras-Amorós and O’Sullivan establishes new results related to classical decoding algorithms used in

public-key cryptography. Further, new fundamental relations between additive ideals of numerical

semigroups and algebraic-geometry codes are presented in the contribution “Ideals of Numerical

Semigroups and Error-Correcting Codes”.

Finally, several works related to symmetric cryptography are contained in this volume. A nice

algebraic analysis of DESL (a lightweight version of the block cipher DES) is given in “Algebraic

Properties of the Block Cipher DESL” by Matheis et al., while the robustness of a pseudorandom

number generator (used for the construction of stream ciphers) is explored in “Randomness Analysis

ix

for the Generalized Self-Shrinking Sequences” (Cardell et al.). In addition, the analysis of a block

cipher modelled as a public random permutation is displayed in the contribution by Nawaz et al.

These works evidence the usefulness of modelling and understanding the behaviour of symmetric

tools and the permutations related to and induced by them.

Marı́a Isabel González Vasco

Special Issue Editor

x

symmetryS S
Article

Building Group Key Establishment on Group Theory:
A Modular Approach

Jens-Matthias Bohli 1, María I. González Vasco 2,* and Rainer Steinwandt 3

1 Department of Information Technology, Mannheim University of Applied Sciences,
68163 Mannheim, Germany; j.bohli@hs-mannheim.de

2 MACIMTE, U. Rey Juan Carlos, 28933 Móstoles, Madrid, Spain
3 Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA;

rsteinwa@fau.edu
* Correspondence: mariaisabel.vasco@urjc.es

Received: 26 December 2019; Accepted: 19 January 2020; Published: 30 January 2020

Abstract: A group key establishment protocol is presented and proven secure in the common
reference string mode. The protocol builds on a group-theoretic assumption, and a concrete
example can be obtained with a decision Diffie–Hellman assumption. The protocol is derived
from a two-party solution by means of a protocol compiler presented by Abdalla et al. at TCC 2007,
evidencing the possibility of meaningfully integrating cryptographic and group-theoretic tools in
cryptographic protocol design. This compiler uses a standard ring configuration, where all users
behave symmetrically, exchanging keys with their left and right neighbor, which are later combined
to yield a shared group key.

Keywords: group key establishment; group theory; provable security; protocol compiler

1. Introduction

Cryptography is the science of handling, storing, transmitting, and processing information
securely, even in the presence of adversaries. For centuries, cryptographic techniques were developed
for diplomatic or military scenarios, while nowadays individuals and institutions (often obliviously)
make use of cryptographic tools every day. As a complex discipline, cryptography builds upon physics,
mathematics, and different research areas within computer science. Mathematics are the main source
of tools for cryptographic developments, in which, security is often demonstrated using the hardness
of well understood mathematical problems. This paper is concerned with the construction of a widely
used cryptographic tool, a group key exchange, using group theory as a base. Key exchange allows
a number of users to establish a common secret value which will be subsequently used to secure their
communication. Such cryptographic tools are often constructed from number theoretical problems
(described in finite cyclic groups), and a challenging research question is whether secure constructions
can be derived from different problems arising in group theory.

In recent years, not only due to the advent of quantum computation, significant efforts have been
made to identify new mathematical platforms for implementing cryptographic schemes. One of the
explored candidate platforms is the theory of finitely presented groups, where, in particular, a number
of works on key establishment have been published. The first constructions in this direction where
published about twenty years ago [1–3], and different approaches towards secure constructions have
been explored regularly, such as [4–9], and the more recently [10]. Unfortunately, most of the proposed
protocols have not been analyzed in a modern cryptographic security model (like [11–16]), and only
few group-theoretic constructions with a rigorous security analysis seem to be known. This lack of
formalism has resulted in weaknesses being overlooked (see, for instance, [17]).

Symmetry 2020, 12, 197; doi:10.3390/sym12020197 www.mdpi.com/journal/symmetry1

Symmetry 2020, 12, 197

One approach to facilitate the synergy between group-theoretic and cryptographic tools is the
identification of general constructions that under suitable group-theoretic conditions yield an (efficient)
cryptographic scheme with provable security guarantees. As examples for research along this line
of thought, proposals for constructing IND-CCA secure asymmetric encryption schemes can be
mentioned [18,19]. Also, constructions for building provably secure group key establishment schemes
have been proposed (cf. [20,21]), but identifying practical non-abelian instances still appears to be
a challenging problem. In this contribution, we build on [21], and try to extend and simplify their
approach in the following sense:

• Instead of the random oracle model, we use the common reference string model. An (expected)
price we pay for this, is the need of a decisional assumption instead of a computational one that is
used in [21].

• Instead of setting out for a group key establishment directly, we suggest a construction for the
two-party case and thereafter apply a protocol compiler of Abdalla et al. [22].

In terms of round complexity, we lose some efficiency through the modular design approach
we chose. On the other hand, this modular design approach illustrates how an integration of
group-theoretic and cryptographic tools can look like. Moreover, we obtain a comparatively clear
group-theoretic condition which hopefully stimulates further research on finding concrete non-abelian
instances. Concrete examples of our protocol can be derived from a decision Diffie–Hellman
assumption, but we hope that in subsequent work also concrete non-abelian instances can be identified.

2. Preliminaries: Security Model and Protocol Goals

To explore the security of our protocol, we adopt the model used by Abdalla et al. [22], which
can be traced back to [23–27]. Both to formulate our two-party solution and to use the “2-to-n
compiler” from [22], we assume a common reference string (CRS) to be available that encodes the
following information:

• Two values v0, v1. These will be the input for a pseudorandom function at the time of computing
the session identifier and session key;

• The information necessary to implement a non-interactive and non-malleable commitment scheme
(see Section 3.1 for further details);

• Two elements, chosen independently and uniformly at random, each taken from a family of
universal hash functions (one as needed for the compiler in [22] and one for our two-party
solution as detailed in Section 3.1).

This is similar to the constructions for password-authenticated key establishment in [24,27].

2.1. Communication Model and Adversarial Capabilities

As usual, we model protocol participants as probabilistic polynomial time (ppt) Turing machines
(all our proofs hold for both uniform and non-uniform machines). We denote by P the total set of
users which is assumed to be of polynomial size and by U = {U0, . . . , Un−1} ⊆ P the set of protocol
participants. To enable authentication among the protocol participants, we assume that an existentially
unforgeable signature scheme is available with all signing keys being chosen independently in a trusted
initialization phase. The verification keys are assumed to be distributed in a trusted initialization
phase, prior to the protocol execution.

2.1.1. Protocol Instances

We allow each protocol participant Ui ∈ U to execute polynomially many protocols instances in
parallel. Each single instance Πsi

i may be understood as a process executed by participant Ui. We will
denote by Πsi

i (si ∈ N) the si − th instance of user Ui ∈ U , and the following seven variables are
assigned to each instance:

2

Symmetry 2020, 12, 197

used
si
i will indicate whether this instance is or has been used for a protocol run. The used

si
i flag is set

through a protocol message received by the corresponding instance due to a call to the Send

oracle (see below);
state

si
i stores the state information needed during the protocol execution;

term
si
i indicates if the execution has terminated;

sid
si
i denotes a session identifier (which may be public) which may be later use as identifier for

the session key sk
si
i (in particular, the adversary is thus allowed to learn session identifiers);

pid
si
i stores the user identities that Πsi

i aims at establishing a key with. This set includes Ui himself;
acc

si
i indicates that the protocol instance completed a protocol successfully. That is, whether the

involved user accepted the session key or not;
sk

si
i stores a distinguished NULL value in the beginning. After a session key is accepted by Πsi

i ,
this session key replaces the NULL value.

We refer to a paper of Bellare et al. [14] for more details on the usage of these variables.

2.1.2. Communication Network

The network is considered to be fully asynchronous and under complete control of the adversary.
Arbitrary point-to-point connections among users are available, but the adversary may delay,
eavesdrop, insert, and delete messages at will.

2.1.3. Adversarial Capabilities

We restrict to adversaries A running in probabilistic polynomial time, whose capabilities are
made explicit through the four oracles listed below. These oracles formalize the interaction between A
and the protocol instances run by the users. For the description of the Test oracle, we denote by b a bit
that is chosen uniformly at random.

Send(Ui, si, M) This oracle sends a message M to instance Πsi
i and returns the message generated

by this instance. In case the instance Πsi
i is previously unused and the message

M ⊆ P contains a set of user identities, the used
si
i -flag is set, pidsi

i initialized with
pid

si
i := {Ui} ∪M. Πsi

i initiates the protocol with the first message which is returned.
Reveal(Ui, si) This outputs the computed key of the instance stored in sk

si
i .

Test(Ui, si) If the corresponding session key is defined (i. e., accsi
i = true and sk

si
i �= NULL)

and instance Πsi
i is fresh (see Definition 4), A can execute this oracle query at any

time when being activated. Then, if b = 0 the session key sk
si
i is returned, while if

b = 1 a uniformly chosen random session key is returned. An arbitrary number of
Test queries is allowed for the adversary A, but once the Test oracle returned a value
for an instance Πsi

i , the same value will be returned for all instances partnered with
Πsi

i (see Definition 3).
Corrupt(Ui) This oracle models forward secrecy, as this query will output the secret signing key of

user Ui.

2.2. Goals of a Key Establishment Protocol: Correctness, Integrity, and Security

We assume that an instance Πsi
i always accepts the session key constructed at the end of a protocol

run if no deviation from the protocol specification has occurred. The subsequent definition of
correctness captures the protocol goal that, if the adversary is passive, all users involved in the
same protocol session should come up with the same session key. By A being passive, we mean that A
must not use the Corrupt oracle, and may query the Send oracle for the purpose of executing honest
protocol executions only.

3

Symmetry 2020, 12, 197

Definition 1 (Correctness). A group key establishment protocol P is correct, if in the presence of a passive
adversary A the following holds: for all i, j with both sid

si
i = sid

sj
j and acc

si
i = acc

sj
j = true, we have

sk
si
i = sk

sj
j �= NULL and pid

si
i = pid

sj
j .

Unlike correctness, the concept of integrity imposes no restrictions on the adversary’s behavior:

Definition 2 (Key Integrity). A correct group key establishment protocol fulfills key integrity, if all instances
of users that have accepted with the same session identifier sid

sj
j hold with overwhelming probability identical

session keys sk
sj
j and identical partner identifiers pid

sj
j .

Finally, for defining security, we detail our interpretation of partnering and freshness:

Definition 3 (Partnering). Instances Πsi
i and Π

sj
j are partnered if pidsi

i = pid
sj
j , sidsi

i = sid
sj
j , and acc

si
i =

acc
sj
j = true.

The idea of freshness is to characterize those instances where the adversary does not know
the secret session key for trivial reasons. In particular, note that after revealing a session key from
instance Πsi

i , the session keys of all instances partnered with Πsi
i are known, too:

Definition 4 (Freshness). An instance Πsi
i is called fresh provided that none of the following condition holds:

• For some Uj ∈ pid
si
i a query Corrupt(Uj) was executed before a query of the form Send(Uk, sk, ∗) has taken

place where Uk ∈ pid
si
i .

• The adversary queried Reveal(Uj, sj) with Πsi
i and Π

sj
j being partnered.

Now the advantage AdvA(�) of a probabilistic polynomial time adversary A in attacking a key
establishment protocol P is the function

AdvA := |2 · SuccA − 1|

in the security parameter �. Here, SuccA denotes the probability that A queries Test only on fresh
instances and correctly outputs the bit b used by the Test oracle while preserving the freshness of all
instances queried to Test.

Definition 5. We say that an authenticated group key establishment protocol P is secure, if the following
inequality holds for every probabilistic polynomial time adversary A some negligible function negl(�) in the
security parameter �: AdvA(�) ≤ negl(�)

As in [22], our security definition above implies forward secrecy. Specifically, our freshness
definition (Definition 4) allows Test queries to an instances, for which the long term secret key has
been revealed by a Corrupt query (or is partnered with a instance that has be queried Corrupt) as long
as the adversary has not asked a Send query to any of these instances (or their partners) after the
Corrupt query.

3. Building on a Group-Theoretic Assumption

As already indicated, we construct our group key establishment protocol in two steps:
In Section 3.1 we describe a two-party solution, which subsequently is lifted to an n-party solution by
means of the protocol compiler in [22].

3.1. A Two-Party Solution

On the cryptographic side, our two-party solution mainly builds on three technical tools:

4

Symmetry 2020, 12, 197

• A non-interactive non-malleable commitment scheme C, satisfying the following requirements:

– It is perfectly binding in the sense that every commitment can be decommitted to at most
one value.

– It is non-malleable for multiple commitments. This means that an adversary who knows
commitments to a polynomial sized set of values ν, will not be able to output commitments
to a polynomial sized set of values β related to ν in a meaningful way. It is well-known that in
the CRS model such a commitment scheme can be implemented by means of any IND-CCA2
secure public key encryption scheme, for instance.

• A family of universal hash functions UH mapping triples consisting of two elements from G
and a pid

si
i -value onto a superpolynomial sized set {0, 1}L. A universal hash function UH will be

selected by the CRS from this family.
• A collision-resistant pseudorandom function family F = {F�}�∈N(see Katz and Shin [28]). We

assume F� = {F�
η}η∈{0,1}L to be indexed by {0, 1}L and further denote by v0 = v0(�) a publicly

known value such that no ppt adversary can find two different indices λ �= λ′ ∈ {0, 1}L such that
Fλ(v0) = Fλ′(v0). We further use another public value v1, fulfilling the same requirement as v0 for
deriving the session key (this can also be included in the CRS—see [28] for more details).

Our protocol builds on [21], and for the security proof we have to assume that the underlying
group G (respectively, the family of groups G = G(�), indexed by the security parameter) satisfies
a number of conditions. Besides assuming products and inverses of group elements to be computable
by efficient (ppt) algorithms, we further assume G to have a ppt computable canonical representation
of elements. The latter allows us to identify group elements with their canonical representation.
Furthermore, as in [21], we need three algorithms to perform the computations occurring in
a protocol execution:

• DomPar, the domain parameter generation algorithm, is a (stateless) ppt algorithm that, upon input
of the security parameter 1�, outputs a finite sequence S of elements in G. The subgroup of
G spanned by S, 〈S〉, will be publicly known. Note that, for the special case of applying our
framework to a DDH-assumption, S specifies a public generator of a cyclic group.

• SamAut, the automorphism group sampling algorithm, is a (stateless) ppt algorithm that, upon
input of the security parameter 1� and a sequence S output by DomPar, returns a description of
an automorphism φ on the subgroup 〈S〉, so that both φ and φ−1 can be efficiently evaluated.
For example, for a cyclic group, φ could be given as an exponent, or for an inner automorphism
the conjugating group element could be specified.

• SamSub, the subgroup sampling algorithm, is a (stateless) ppt that, upon input of the security
parameter 1� and a sequence S output by DomPar, returns a word x(S) representing an element
x ∈ 〈S〉. Intuitively, SamSub chooses a random x ∈ 〈S〉, so that it is hard to recognize x if we know
elements of x’s orbit under Aut(〈S〉). Thus, our protocol requires an explicit representation of x
in terms of the generators S.

With this notation, we can now define a decision problem, whose supposed difficulty will be
essential for our security proof. As usual, with the notation o ← A(i) we describe that algorithm A

upon receiving input i outputs o:

5

Symmetry 2020, 12, 197

Definition 6 (Decision Automorphism Application). Suppose that we have fixed a quadruple
(G,DomPar, SamAut, SamSub). Then the decision automorphism application (DAA) assumption states
that for all ppt algorithms A the advantage function AdvDAAA = AdvDAAA (�) :=∣∣∣∣∣Pr

(
A(S, x, (φi(S), φi(x))i=1,2) = 0

∣∣∣∣∣ S ← DomPar(1�), x ← SamSub(1�, S),
(φi ← SamAut(1�, S))i=1,2

)
−

Pr

(
A(S, r, (φi(S), φi(x))i=1,2) = 0

∣∣∣∣∣ S ← DomPar(1�), x ← SamSub(1�, S),
(φi ← SamAut(1�, S))i=1,2, r ← SamSub(1�, S)

)∣∣∣∣∣
is negligible.

Example 1 (Building on decision Diffie–Hellman). Let G be a finite cyclic group and S := 〈g〉 a prime
order subgroup with generator g of order q. If we let SubSam choose uniformly at random an exponent
x ∈ {1, . . . , q− 1} and SamAut uniformly at a random exponent φ ∈ {1, . . . , q− 1}, then the DAA problem
just described can be recognized as polynomial-time equivalent to a decision Diffie–Hellman (DDH) problem:

“DDH solution⇒ DAA solution”: When facing, the DAA problem, we obtain as input a tuple
(g, gy, (gφi , gxφi)i=1,2) where either y = x, or y has been chosen uniformly at random from {1, . . . , q−
1}—independently of x and the φis. Given a DDH oracle, we just query it with (g, gy, gφ1 , gxφ1) to see
with non-negligible success probability which is the case.

“DDH solution⇐ DAA solution”: When facing the DDH problem, we obtain as input a tuple
(g, gφ1 , gx, gy), where either y = φ1x mod q, or y has been chosen uniformly at random from
{1, . . . , q − 1}—independently of x and φ1. Choosing another random φ2 ∈ {1, . . . , q − 1}, we can
compute the input

(gφ1 , gy, ((g︸︷︷︸
=(gφ1)φ−1

1

, gx︸︷︷︸
=(gφ1x)φ−1

1

), (gφ2︸︷︷︸
=(gφ1)φ−1

1 φ2

, (gx)φ2︸ ︷︷ ︸
=(gφ1x)φ−1

1 φ2

))

needed for a DAA attacker. Running a successful DAA attacker with this input, we immediately obtain
the desired DDH attacker.

A two-party key establishment protocol building on the DAA assumption is presented in Figure 1.
The figure describes the operations to be performed by instance Πsi

i of Ui. For the sake of readability
we name the users trying to establish a common key as U0 and U1, and here, as in the sequel, we often
omit making explicit the identifiers si of the instances Πsi

i involved in the protocol execution and
just write sidi instead of sidsi

i , for instance. The common reference string is denoted by ρ, and for
a commitment to a value x involving random choices r we write Cρ(x; r). Finally, S denotes the
subgroup generators which are to be fixed prior to the protocol execution by means of DomPar (and
may also be included in the CRS ρ).

In the subsequent section we prove the following result:

Proposition 1 (Security of the Two-Party Protocol). Assume that for each ppt time algorithm A, its
advantage AdvSigA of achieving an existential forgery under the adaptive chosen-message attack for the underlying
signature scheme, and AdvDAAA , its advantage of solving DAA, can be bounded by a negligible function (in �).
Then the protocol in Figure 1 is a correct and secure two-party key establishment protocol fulfilling key integrity.

In Figure 2, we describe the group key establishment protocol obtained from a given two party
group key establishment protocol 2-AKE via the compiler from [22]. We note here that given the result
of Proposition 1, we can apply [22, Theorem 1] (which, as noted by Nam et al. in [29] is only valid if
the underlying two party construction fulfills integrity) to obtain our desired security result:

6

Symmetry 2020, 12, 197

Corollary 1 (Security of the n-Party Protocol). Denoting the two-party key establishment protocol in Figure 1
by 2-AKE, the protocol described in Figure 2 is a secure group key establishment fulfilling key integrity.

Round 1:

Initialization: For i = 0, 1 the variables of involved oracles Πsi
i are set as pidi := {U0, U1},

usedi := true.
Also, for i = 0, 1, choose (φi, (φi)

−1)← SamAut(1�, S), xi ← SamSub(1�, S).
Computation: User Ui, for i = 0, 1 chooses a random ri and constructs a commitment

ci := Cρ(xi; ri).

Communication: User Ui, i = 0, 1, sends m1
i := (Ui, φi(S), ci) to U1−i.

Round 2:

Computation: User Ui, i = 0, 1, computes φ1−i(xi) and a signature σi of (Ui, φ1−i(xi)) (using
the representation of xi = xi(S) in terms of the generators S and the images φi(S) of the
subgroup generators).

Communication: Each user Ui, i = 0, 1, sends m2
i := (Ui, φ1−i(xi), σi) to U1−i.

Key Generation:

Computation: Compute x1−i by applying (φi)
−1 to φi(x1−i), and define the master key

K := (x0, x1, pidi).

Verification: Check the correctness of the commitment c1−i and the signature σ1−i.
If true, set ski := FUH(K)(v1), sidi := FUH(K)(v0) and acci := termi := true.
Else set acci := false, termi := true

Figure 1. A two-party key establishment protocol in the common reference string (CRS) model.

Round 0:

2-AKE: For i = 0, . . . , n− 1 execute 2-AKE(Ui, Ui+1), (where, as customary, all indices are to
be taken mod n, i. e., Un = U0, etc.).

Thus, each user Ui holds two keys
−→
K i,

←−
K i. shared with Ui+1 respectively Ui−1 and

(non-secret) corresponding session identifiers
−→
sidi,

←−
sidi.

Round 1:

Computation: Each Ui computes
Xi :=

−→
K i ⊕

←−
K i

and chooses a random ri to compute a commitment Ci = Cρ(Ui, Xi; ri).

Broadcast: Each Ui broadcasts M1
i := (Ui, Ci)

Round 2:

Broadcast: Each Ui broadcasts M2
i := (Ui, Xi, ri)

Check: Each Ui checks that X0⊕X1⊕ · · · ⊕Xn−1 = 0 and the correctness of the commitments.

Computation: Each Ui sets Ki :=
←−
K i and computes the n− 1 values

Ki−j :=
←−
K i ⊕ Xi−1 ⊕ · · · ⊕ Xi−j (j = 1, . . . , n− 1),

defines a master key
K := (K0, . . . , Kn−1, pidi),

and sets ski := FUH(K)(v1), sidi := FUH(K)(v0) and acci := true.

Figure 2. The protocol compiler from [22].

7

Symmetry 2020, 12, 197

3.2. Security Analysis for the Two-Party Case: Proof of Proposition 1

Correctness and Integrity. Due to the collision-resistance of the family F , all oracles that accept
with identical session identifier use the same index value UH(K) and therewith also obtain the same
session key and have identical pidi-values with overwhelming probability.
Security. Let qs and qt denote the (polynomially bounded) number of adversarial queries to the Send

and Test oracle, respectively.
We consider a simulator simulating all oracles and instances for the adversary. The proof is thus

set up following a sequence of experiments or games, where from game to game the simulator’s
behavior deviates from the previous in a certain controlled way. We follow standard notation and we
denote by Adv(A, Gi) the advantage of the adversary when confronted with Game i and by Succ(A,Gi)

the success probability of A winning in Game i. As usual, the security parameter will be denoted
denoted by �.

Game 0. All oracles are simulated as defined in the model. Thus, Adv(A, G0) is exactly AdvA and
Succ(A, G0) is the probability of violating the security of our key exchange protocol.
Game 1. In this game, the simulator keeps a list with entries (i, M, σM) for every message M and
corresponding signature σM he has produced and returned to the adversary A in a Round 2 message
following a Send query.

By Forge we denote the event that A queries the Send oracle with a message M containing a valid
signature σM of an uncorrupted principal Ui and with (i, M, σM) not being contained in the simulator’s
list. If the event Forge occurs, we abort the simulation and take the adversary A for being successful in
breaking the security of the protocol. Thus,

|Succ(A, G1)− Succ(A, G0)| ≤ P(Forge) (1)

Lemma 1. If the signature scheme used in the above protocol is existentially unforgeable under adaptive
chosen-message attacks, then P(Forge) is negligible: P(Forge) ≤ |P| · AdvSigA .

Proof. Any ppt adversary A provoking the event Forge can be turned into an attacker against the
underlying signature scheme by means of our simulator: The simulator obtains the public verification
key PK and access to a signing oracle. In the initialization phase of the protocol, the simulator assigns
the key PK uniformly at random to one of the at most |P| users the adversary can involve. Whenever
during the subsequent simulation a signature for this user has to be generated, the simulator queries
the signing oracle.

IfA comes up with a message/signature pair that is not stored in the simulator’s list, the simulator
returns this message as existential forgery. If A does not come up with such a message, the simulator
outputs ⊥. Having chosen the party Ui uniformly at random, the simulator’s success probability for
an existential forgery is at least 1/|P| · P(Forge), and we get P(Forge) ≤ |P| · AdvSigA .

Thus, from Equation (1), we get

|Adv(A, G1)− Adv(A, G0)| ≤ negl(�) (2)

Game 2. Now the simulation of the Test oracle is modified, so that, on input of a fresh instance, it will
always output an element selected uniformly at random in the key space. Thus, Adv(A, G2) = 0.

Suppose that A is able to distinguish between Game 2 and Game 1. We construct an attacker D,
that breaks the DAA assumption and uses A as a black-box. The attacker D will start by setting up the
instances with key pairs for the signature scheme and receive a DAA-instance as a challenge. Further,
D will choose an index a ∈ {1, . . . , qt} uniformly at random and select two values u, v ∈ {1, . . . , qs}
chosen independently and uniformly at random subject to the condition u �= v. Then the adversary

8

Symmetry 2020, 12, 197

A is started. D will simulate the model as in Game 1 except for the uth and vth instance activated
by the adversary A and the answers to the Test query. For the uth and vth instances activated by A,
the messages will be constructed from the DAA challenge. If these two instances do not end up in the
same session, D aborts the simulation and starts anew. The same happens, if A does not query his ath
Test query to one of these two instances.

D will simulate the Test oracle as follows: The first a− 1 queries of Test will be answered with the
real session key, in the ath query, D will return the challenge, and from query a + 1 on, D will always
answer with a random element.

By a standard hybrid argument, D will win the challenge in 1/qt of the cases where A
distinguished Game 1 and Game 2. Excluding the necessary aborts (namely, if the instances that
were chosen were not those used in the ath query of Test), we have:

|Adv(A, G2)− Adv(A, G1)| ≤ q2
s qtAdv

DAA (3)

Combining Equations (2) and (3) yields the desired negligible upper bound for AdvA.

4. Conclusions

Our discussion evidences the possibility of meaningfully integrating tools from group theory and
cryptography. Unfortunately, so far we cannot provide a concrete non-abelian example, but a concrete
instance of our protocol can be derived by means of the decision Diffie–Hellman assumption. We hope,
however, that the modular approach taken above facilitates the design of group key establishment
schemes building on group-theoretic tools and fertilizes the exchange of ideas between group theory
and cryptography.

Author Contributions: All authors contributed equally to this paper, and were cooperatively involved in
conceptualization, investigation, formal analysis and writing. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was sponsored in part by the NATO Science for Peace and Security Programme under
grant G5448 and in part by Spanish MINECO under grant MTM2016-77213-R.

Acknowledgments: This paper was written in grateful memory of our advisor and friend Thomas Beth.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Anshel, I.; Anshel, M.; Goldfeld, D. An Algebraic Method for Public-Key Cryptography. Math. Res. Lett.
1999, 6, 287–291. [CrossRef]

2. Ko, K.H.; Lee, S.J.; Cheon, J.H.; Han, J.W.; Kang, J.S.; Park, C. New Public-Key Cryptosystem Using Braid
Groups. In Proceedings of the Advances in Cryptology—CRYPTO 2000, Santa Barbara, CA, USA, 20–24
August 2000; pp. 166–183.

3. Anshel, I.; Anshel, M.; Fisher, B.; Goldfeld, D. New Key Agreement Protocols in Braid Group Cryptography.
In Proceedings of the Topics in Cryptology—CT-RSA 2001, San Francisco, CA, USA, 8–12 April 2001;
pp. 13–27.

4. Grigoriev, D.; Ponomarenko, I. Constructions in public-key cryptography over matrix groups.
In Contemporary Mathematics: Algebraic Methods in Cryptography; American Mathematical Society: Providence,
RI, USA, 2006; Volume 418, pp. 103–119.

5. Lee, H.K.; Lee, H.S.; Lee, Y.R. An Authenticated Group Key Agreement Protocol on Braid groups. Cryptology
ePrint Archive: Report 2003/018. 2003. Available online: http://eprint.iacr.org/2003/018 (accessed on
1 December 2019).

6. Shpilrain, V.; Ushakov, A. Thompson’s Group and Public Key Cryptography. In Proceedings of the ACNS
2005—Third International Conference on Applied Cryptography and Network Security, New York, NY, USA,
7–10 June 2005; Volume 3531, pp. 151–163.

9

Symmetry 2020, 12, 197

7. Shpilrain, V.; Zapata, G. Combinatorial group theory and public key cryptography. Appl. Algebra Eng.
Commun. Comput. 2006, 17, 291–302. [CrossRef]

8. Shpilrain, V.; Ushakov, A. A new key exchange protocol based on the decomposition problem.
In Contemporary Mathematics: Algebraic Methods in Cryptography; American Mathematical Society: Providence,
RI, USA, 2006; Volume 418, pp. 161–167.

9. Anshel, I.; Anshel, M.; Goldfeld, D.; Lemieux, S. Key agreement, the Algebraic EraserTM, and lightweight
cryptography. In Contemporary Mathematics: Algebraic Methods in Cryptography; American Mathematical
Society: Providence, RI, USA, 2006; Volume 418, pp. 1–34. [CrossRef]

10. Anshel, I.; Atkins, D.; Goldfeld, D.; Gunnells, P.E. Ironwood Meta Key Agreement and Authentication
Protocol. arXiv 2017, arXiv:1702.02450.

11. Bellare, M.; Rogaway, P. Entitiy Authentication and Key Distribution. In Proceedings of the CRYPTO
1993—13th Annual International Cryptology Conference on Advances in Cryptology, Santa Barbara, CA,
USA, 22–26 August 1993; Volume 773, pp. 232–249.

12. Bellare, M.; Canetti, R.; Krawczyk, H. A Modular Approach to the Design and Analysis of Authentication
and Key Exchange Protocols. In Proceedings of the 30th Annual ACM Symposium on Theory of Computing
STOC, Dallas, TX, USA, 24–26 May 1998; pp. 319–428.

13. Shoup, V. On Formal Models for Secure Key Exchange (Version 4). Revision of IBM Research Report
RZ 3120 (April 1999). 1999. Available online: http://www.shoup.net/papers/skey.pdf (accessed on 1
December 2019).

14. Bellare, M.; Pointcheval, D.; Rogaway, P. Authenticated Key Exchange Secure Against Dictionary Attacks.
In Proceedings of the EUROCRYPT 2000—Advances in Cryptology, Bruges, Belgium, 14–18 May 2000;
Volume 1807, pp. 139–155.

15. Bresson, E.; Chevassut, O.; Pointcheval, D.; Quisquater, J.J. Provably Authenticated Group Diffie–Hellman
Key Exchange. In Proceedings of the 8th ACM Conference on Computer and Communications Security;
Samarati, P., Ed.; ACM Press: New York, NY, USA, 2001; pp. 255–264.

16. Canetti, R.; Krawczyk, H. Analysis of Key-Exchange Protocols and Their Use for Building Secure
Channels. In Advances in Cryptology—EUROCRYPT 2001; Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 2001; Volume 2045, pp. 453–474.

17. Ben-Zvi, A.; Blackburn, S.R.; Tsaban, B. A Practical Cryptanalysis of the Algebraic Eraser. In Advances in
Cryptology—CRYPTO 2016 Proceedings, Part I; Lecture Notes in Computer Science; Robshaw, M., Katz, J.,
Eds.; Springer: Berlin/Heidelberg, Germany, 2016; Volume 9814, pp. 179–189.

18. Cramer, R.; Shoup, V. Universal Hash Proofs and a Paradigm for Adaptive Chosen Ciphertext Secure
Public-Key Encryption. In Advances in Cryptology—EUROCRYPT 2002; Lecture Notes in Computer Science;
Knudsen, L., Ed.; Springer: Berlin/Heidelberg, Germany, 2002; Volume 2332, pp. 45–64.

19. González Vasco, M.I.; Martínez, C.; Steinwandt, R.; Villar, J.L. A new Cramer-Shoup like methodology
for group based provably secure schemes. In Proceedings of the 2nd Theory of Cryptography Conference (TCC
2005); Lecture Notes in Computer Science; Kilian, J., Ed.; Springer: Berlin/Heidelberg, Germany, 2005;
Volume 3378, pp. 495–509.

20. Catalano, D.; Pointcheval, D.; Pornin, T. IPAKE: Isomorphisms for Password-based Authenticated Key
Exchange. In Advances in Cryptology—CRYPTO 2004; Lecture Notes in Computer Science; Franklin, M.K., Ed.;
Springer: Berlin/Heidelberg, Germany, 2004; Volume 3152, pp. 477–493.

21. Bohli, J.M.; Glas, B.; Steinwandt, R. Towards Provably Secure Group Key Agreement Building on Group
Theory. In Proceedings of VietCrypt 2006; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg,
Germany, 2006; Volume 4341, pp. 322–336.

22. Abdalla, M.; Bohli, J.; González Vasco, M.I.; Steinwandt, R. (Password) Authenticated Key Establishment:
From 2-Party to Group. In Proceedings of the 4th Theory of Cryptography Conference TCC 2007; Lecture Notes in
Computer Science; Vadhan, S.P., Ed.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4392, pp. 499–514.

23. Burmester, M.; Desmedt, Y. A Secure and Efficient Conference Key Distribution System. In Advances
in Cryptology—EUROCRYPT’94; Lecture Notes in Computer Science; Santis, A.D., Ed.; Springer:
Berlin/Heidelberg, Germany, 1995; Volume 950, pp. 275–286.

24. Gennaro, R.; Lindell, Y. A Framework for Password-Based Authenticated Key Exchange. Cryptology
ePrint Archive: Report 2003/032. 2003. Available online: http://eprint.iacr.org/2003/032 (accessed on 1
December 2019).

10

Symmetry 2020, 12, 197

25. Gennaro, R.; Lindell, Y. A Framework for Password-Based Authenticated Key Exchange (Extended Abstract).
In Advances in Cryptology—EUROCRYPT 2003; Lecture Notes in Computer Science; Biham, E., Ed.; Springer:
Berlin/Heidelberg, Germany, 2003; Volume 2656, pp. 524–543.

26. Bohli, J.M.; González Vasco, M.I.; Steinwandt, R. Secure group key establishment revisited. Int. J. Inf. Secur.
2007, 6, 243–254. [CrossRef]

27. Bohli, J.M.; González Vasco, M.I.; Steinwandt, R. Password-authenticated group key establishment from
smooth projective hash functions. Int. J. Appl. Math. Comput. Sci. 2019, 29, 797–815. Available online:
http://eprint.iacr.org/2006/214 (accessed on 1 December, 2019). [CrossRef]

28. Katz, J.; Shin, J.S. Modeling insider attacks on group key-exchange protocols. In Proceedings of the 12th ACM
Conference on Computer and Communications Security (CCS 2005); Atluri, V., Meadows, C.A., Juels, A., Eds.;
ACM: New York, NY, USA, 2005; pp. 180–189. Available online: http://eprint.iacr.org/2005/163 (accessed
on 1 December, 2019).

29. Nam, J.; Paik, J.; Won, D. A security weakness in Abdalla et al.’s generic construction of a group key
exchange protocol. Inf. Sci. 2011, 181, 234–238. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

11

symmetryS S
Article

Block Cipher in the Ideal Cipher Model: A Dedicated
Permutation Modeled as a Black-Box Public
Random Permutation

Yasir Nawaz and Lei Wang

Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
my_nawaz@sjtu.edu.cn (Y.N.); wanglei@cs.sjtu.edu.cn (L.W.)

Received: 3 November 2019; Accepted: 2 December 2019; Published: 5 December 2019

Abstract: Designing a secure construction has always been a fascinating area for the researchers in
the field of symmetric key cryptography. This research aimed to make contributions to the design of
secure block cipher in the ideal cipher model whose underlying primitive is a family of n− bit to n− bit
random permutations indexed by secret key. Our target construction of a secure block ciphers denoted
as E[s] is built on a simple XOR operation and two block cipher invocations, under the assumptions
that the block cipher in use is a pseudorandom permutation. One out of these two block cipher
invocations produce a subkey that is derived from the secret key. It has been accepted that at least two
block cipher invocations with XOR operations are required to achieve beyond birthday bound security.
In this paper, we investigated the E[s] instances with the advanced proof technique and efficient
block cipher constructions that bypass the birthday-bound up to 2n provable security was achieved.
Our study provided new insights to the block cipher that is beyond birthday bound security.

Keywords: pseudorandom permutation; block cipher; ideal cipher model; beyond birthday bound;
provable security

1. Introduction

A block cipher encryption design is called beyond birthday bound (BBB) secure if the proven upper
bound on the adversarial advantage is meaningful even if an adversary can process more than 2n/2 data
blocks, where n is the size of the block of a block cipher. The first time, Iwata proposed a BBB encryption
mode cipher-based encryption (CENC) [1]. This was nonce based construction providing a solution
through the invocation of more than one block cipher and simple XOR operation and achieved 22n/3

security against all nonce respecting adversaries. Later on, Iwata proved CENC construction based on
mirror theory technique [2], and achieved optimal security [3]. Bhattacharya and Nandi also gave the BBB
security of CENC by analyzing the security bound of variable output length using the chi-squared method.

1.1. Pseudorandom Permutation and Pseudorandom Function with BBB

The conventional approach for designing the cryptography primitives based on symmetric cipher
is to behave as a perfectly random function. The vast majority, in this case, is an encryption scheme [4],
MAC encryption schemes [5,6], and authenticated encryption schemes [7], following this paradigm via
pseudorandom functions (PRF). Patarin suggested the construction of permutation sum and proved
that a variant of single permutation indistinguishable from a random function up to BBB [8]. In 2003,
Patarin gave the result 22n/3 security [9], like so, in 2005, achieved up to this security bound [10,11].
However, the PRF provides a solution for increasing the use of cryptography in a real-world application.
The pseudorandom permutation (PRP) is the leading building block of the cryptographic design in
spite of PRF [12–15]. If a block cipher is directly implemented as a PRF, which will have provable
security limit birthday bound with a large block, this is often acceptable. But it is not acceptable

Symmetry 2019, 11, 1485; doi:10.3390/sym11121485 www.mdpi.com/journal/symmetry12

Symmetry 2019, 11, 1485

in practice with a lightweight block cipher, which has relatively small block sizes. The PRF can be
replaced by a PRP up to birthday bound queries [16–19]. Moreover, if the block size of a block cipher
is large enough, then the security loss is sometimes acceptable. Whatever, there are many scenarios,
such as lightweight applications, whose numbers have grown tremendously before some years that
require higher security bound [20–26]. In recent years, various constructions have been proposed that
achieve BBB security against more than 2n/2 queries. We could categorize these constructions into
XOR permutations based and truncation based. The XOR permutations is popular for BBB construction by
taking the XOR of more than one independent PRP [20].

XOREk1
,Ek2

(x) = Ek1
(x) ⊕ Ek2(x)

This construction was analyzed by Lucks [21]. The single key variant of this construction provides
the security up to 22n/3 queries [27]. After that, Patarin revised this construction and improved
the security bound up to 2n/67 [28]. Later on, the results were generated by more than two independent
PRP with XOR operation [29]. Dai et al. [30] using the chi-squared method verified the n− bit security
of XOR construction, but the original proof was provided by Bhattacharya and Nandi [31]. The XOR
construction is acceptable for encryption, but it is not usable for authentication, because domain size
is required to extend. This can be solved through hashing the message, but the XOR construction
needs some precise combination with a double block hash function [32–34]. The truncation based
solution was presented by Hall et al. [17]. Later on, it was proved that truncating n− bit permutation
has security bound up to 22n/3 queries [35]. Stam also derived these results in a non-cryptographic
context [27]. Recently, another construction was proposed, which is known as Encrypted Davies Meyer
(EDM) introduced by Cogliati and Seurin [36].

EDMEk1
, Ek2

(x) = Ek2(Ek1
(x) ⊕ x)

There are two independent permutations and it behaves like random function up to q3/22n [36].
Afterward, Dai et al. [30] achieved q4/23n using the chi-squared method. Now, a novel construction
EDMD improved the security up to 2n/67n by using mirror theory technique, which has almost
an optimal security [37].

EDMDEk1
, Ek2

(x) = Ek2(Ek1
(x)) ⊕ Ek1

(x)

Two independent keys are required for EDMD. The single key setting is significant for higher
security bound and efficient construction, which was also performed in our construction. Anyways,
this construction secures up to q/22n/3. Cogliati and Seurin also extended the EDMD construction
called encrypted Wegman carter with davies meyer (EWCDM), which is nonce based BBB secure.

EWCDMEk1
, Ek2

,Hkh
(N, M) = Ek2(Ek1

(N) ⊕N ⊕HK(M))

where, HK is a universal hash function, N denote the nonce, and M denote the message, which has
an arbitrary length. The EWCDM achieved BBB up to 22n/3 MAC queries when it has nonce respecting
setting. The use of internal state values of EWCDM construction makes their security analysis formally
inapplicable [37]. Mennink presented the rationale relying on the EWCDM function, and simplified
versions of the conversion method applied to the advanced encryption scheme (AES) [38]. The main
proposal of AES-PRF, the AES with a feed forward of the middle state, achieved almost no optimal
security. This construction was applied to GCM and GCM-SIV, and how it entails the significant
security improvements was discussed. A little while back, Mennink presented a heuristic study to
build BBB secure from public random permutation, showing that a single permutation call could not
be secured BBB [39].

The above discussion shows that what to be tackled in PRF for BBB and where the goal is to build
PRF, so that it is indistinguishable from a truly random function. However, our study aimed to build
block cipher in the ideal cipher model, under the assumption that the block cipher is a PRP out of

13

Symmetry 2019, 11, 1485

PRF, achieving full security. Moreover, the sum of even mansour (SoEM) construction achieves BBB up
to 22n/3, that is built from two randomly drawn keys and two independent permutations; if either keys
or permutations are identical, then there is a birthday bound attack.

1.2. Our Construction

In this paper, we focused on a block cipher design based on a single key, which achieved BBB up
to 2n security. The main motivation is by the scenarios where the block cipher only has block size of
32− bit, 48− bit, and 64− bit [40]. The target construction of block cipher depicted in Figure 1, defined
as E[s] : K × P→ P , consists of two block cipher invocations and additional simple XOR operation.
Furthermore, a heuristic approach is carried out to examine the instances of E[s] and, at last, E1− E32
efficient construction is successfully found. In detail, the first invoke of block cipher produces a subkey
y from the secret key k such that y = E(k, 0), y = E(0, k), and y = E(k, k). The second invoke of a block
cipher encrypt and decrypt the plaintext p and ciphertext c, respectively, with a key k or k⊕ y. However,
we stress that the first block cipher invocation is precomputing and storing the subkey y. Thus, our
design only requires one invocation of a block cipher for encryption and decryption when the subkey
y is precomputed and stored. We have designed this construction in the ideal cipher model that has
the main advantage of provable security up to 2n. The previously available block cipher has maximum
provable security up to 22n/3. From the efficiency point of view, previous constructions required
more than one key, s > 2 block cipher invocations [20,36], and universal hash function invocations; in
the absence of these, their efficiency needed to be increased. The minimum number of block cipher
invocation with a single key is good for efficiency. Our design requires just a single secret key and one
block cipher invocation for encryption and decryption when the subkey is precomputed and stored.

2. Preliminaries

2.1. Notations

The {0, 1}n denotes the set of bit strings of length n. We denote the bitwise addition a ⊕ b,

where a, b ∈ {0, 1}n. The Y← Z is the assignment of Z to the variable Y. The x $← X denotes

the uniform random selection of x from X. The |X| denotes the number of elements in X. Let a ∈ {0, 1}
and b ∈ {0 , 1}, a.b denotes the multiplication of a and b, if a = 1, then it is equal to b, and if a = 0,

then a.b equals to 0. The block cipher denotes as E : K × P→ P, where P is a plaintext/message space,
K is the key space. Throughout the paper, we have fixed K = P = {0, 1}n. Let E(k, ·) and E−1(k, ·)
denote the encryption and decryption, respectively, with a secret key k ∈ K. Let E±(k, ·) involves E(k, ·)
and E−1(k, ·). Sometimes, we denote E(k, ·) as Ek(·), E−1(k, ·) as E−1

k (·), and E±(k, ·) as Ek(·) and E−1
k (·),

respectively. The (u, w) are the input and output tuple of E such that w = E(u). The input-output tuple

of Ek is denoted as (p, c) such that Ek(p) = c. Let Perm(n) denote the set of all permutations on {0, 1}n.

The function π is said to be an ideal cipher model if randomly selected that is π R← Perm(n). Similarly,
we define these notations π(·, ·), π−1(·, ·), and π±(·, ·), respectively.

2.2. Security Definition

A computationally unbounded distinguisher D is an algorithm that has adaptive access to
an oracle and outputs a bit 0 or 1. Let the two oracles O1 and O2 have the same interface, we can get
the distinguishing advantage of D as follows.

Adv(D) = Pr[DO1 ⇒ 1] − Pr
[
Pr[DO2 ⇒ 1]

A block cipher with a key space K and message space P is a mapping E : K × P→ P such that for

all key k ∈ K. The E(K, P) is a permutation over P. We denote Ek(P) for E(K, P). The distinguisher D is

having query access to (O1, E±): O1 is either E±k (·, ·) with k $← K or π $← Perm. The E± is an underlying

14

Symmetry 2019, 11, 1485

block cipher. The advantage of distinguisher D in distinguishing E and π is defined as.

Advprp
E (D) =

∣∣∣∣Pr
[
DE±k (·,·),E±(·,·) ⇒ 1

]
− Pr
[
Dπ

±(·,·),E±(·,·) ⇒ 1
]∣∣∣∣

Throughout this paper, we considered information as theoretical with computationally unbounded
distinguishers D sorely limited by the number of queries to the oracle. Overall, maximum is taken by
distinguisher D that makes at most q queries to its oracles.

Advprp
E (q) = maxD

{
Advprp

E (D)
}

2.3. H-Coefficient Technique

Central to our proof is a H-Coefficient technique presented by Patarin [8,41]. As mentioned above, we
considered the information as theoretical, with computationally unbounded distinguisher D. Thus, we
always assumed that distinguisher D is deterministic without the loss of generality. Let distinguisher
D interacts with O1 and O2. The interaction of D with its oracles are recorded in a view v. The XO2

is the probability distribution of v when distinguisher D interacts with O2. The V is the set of all

attainable views v when D interacting with O2, which is V =
{

v
∣∣∣∣Pr
[

XO2 = v
]
>0
}
. The H-Coefficient

technique states as follows:
Let 0 ≤ ε ≤ 1. Consider a partition V = Vgood ∪Vbad set of attainable view such that:

1. Pr
[

XO2 ∈ Vbad
]

2. f or all v ∈ Vgood,
Pr[XO1=v]
Pr[XO2=v]

≥ 1− ε
Then, the distinguishing advantage satisfies

Adv(D) ≤ Pr
[

XO2 ∈ Vbad
]
+ ε

The core idea of the H-coefficient technique is: a large number of views are almost equally likely
in both oracles (real worlds and the ideal world), and the odd ones occur with a small probability.

Note that the partitioning of V into bad and good views is directly reflected in the terms Pr
[

XO2 ∈ Vbad
]

and ε in the bound: if Vgood is too large, εwill become large, whereas if Vbad is too large, Pr
[

XO2 ∈ Vbad
]

will become large.

3. Construction Limitations

In this section, we will discuss the construction limitations of secure block cipher in the ideal cipher
model, which is built on dedicated block cipher invocations and simple XOR operation. The XOR
operation has efficiency benefits. The target construction is denoted as E[s] and is built on s block
cipher invocations. Let E denote the underlying block cipher with n− bit block size and n− bit. key size.
Let p, c, and k denote the plaintext, ciphertext, and key, respectively, where all have n− bit size. Let ai, j

and bi, j be one bit variable of being 0 or 1, where 1 ≤ i ≤ s + 1 and 1 ≤ j ≤ i + 2. The encryption

of E[s] is shown in Algorithm 1. The target construction E[s] is depicted in Figure 1. In detail, this is
a graphical view from which we would acquire the resultant block cipher construction. Moreover, all
the s block cipher invocations are involved in the computation of the ciphertext c. The ciphertext c
must be invertible and efficiently decrypted from plaintext p and key k. There are some limitations for
E[s] to achieve our goal:

• The plaintext p should be involved in exactly one XOR operation. The p involves in XOR operation,
which gives xi and corresponding yi. So, both outputs (xi and yi) are called plaintext dependent
variable. On the other side, if a variable yi is used to compute another variable xj, which depends
on yi, then xj and corresponding yj would also be plaintext dependent variable. So, we cannot

15

Symmetry 2019, 11, 1485

use plaintext dependent variable to produce any key or subkey, otherwise, constructions will not
be efficient.

There should be at most one plaintext dependent variable produced from the XOR operation.
Otherwise, the decryption process cannot efficiently decrypt because there is more than one variable.

Figure 1. E[s] : Target Construction.

If we summarize and satisfy the above limitations, then E[s] can be an efficient block cipher
construction. Moreover, an additional condition is also necessary for efficiency and security. Our first
goal is to achieve full (2n) provable sec urity. The target construction is important to achieve the goal.
Nowadays, AES and SIMON block cipher is utilized in various applications of different block sizes,
such as 128− bit and 64− bit. In some environments, the block size of lightweight block ciphers can
be even shorter. Thus, block cipher construction with a simply birthday bound security may not be
suitable for various applications. Therefore, another construction which provide higher security is
definitely necessary. Particularly, for application design, a block cipher with full security is surely
an interesting research topic. Our second goal is the efficiency, we invoke two block cipher because
minimum number of block cipher invocation led to concern about high efficiency. It is well known
that block cipher invocations are much more time consuming than XOR operation. So, the efficiency
reduces due to a number of block cipher invocation. But, besides this, we aimed to achieve perfect
efficiency under the condition of no security sacrifices, i.e., eliminating the unnecessary input variables.
In fact, this is also a reason in our target construction having simple XOR operation and only necessary
input variables. Algorithm 1 is shown as follow:

Algorithm 1 E[s](·, ·)
input: k, p, E(·, ·), vaiables ai,j and bi,j
Output: ciphertext x1 = a1,1.k, b1,1.k⊕ b1,2.p

1. x1 = a1,1.k, b1,1.k⊕ b1,2.p
2. for i = 1 to s− 1, do

3. yi = E
(
a1,1.k, xi

)

4. xi+1 = ai⊕1,1.k⊕ i+1∑
j=2

ai⊕1,j.yj−1, bi⊕1,1.k⊕ bi⊕1,2.p⊕ i+2∑
j=3

bi⊕1,j.yj−2

5. end for

6. ys = E(ks, xs)

7. c = bs⊕1,1.k⊕ bs⊕1,2.k⊕ s+2∑
j=3

bs⊕1,j.yj−2

8. return ciphertext c

In order to achieve the above goals among the instances of target construction, we adopted a heuristic
approach. For the instances of E[s], we invoked only two block cipher to achieve 2n provable security

16

Symmetry 2019, 11, 1485

because s = 1 for instances of E[s] had most 2n/2 security. Thus, at least two block cipher invocations
are required to bypass the birthday bound barrier.

We continued to examine the instances of E[2] and would not analyze the E[s > 2] instances
unless investigated all the instances of E[2] and none of them achieve 2n security. In fact, if some
instances of E[2] achieves 2n security, then there is no need to examine the other instances of E[2].
To follow the above strategy, we analyzed the target construction E[s] and found 32 instances with 2n

provable security.

3.1. E[2] Instances

According to the previous discussion, the plaintext p should be involved in exactly one XOR
operation. There should be, at most, one plaintext dependent variable produced from the XOR
operation. Otherwise, the decryption process cannot efficiently decrypt because there exists more than
one variable. The plaintext dependent variable cannot be used to produce any key-value; otherwise,
constructions will not be efficient. Following this strategy, we divided E[2] instances into three types
on the basis of when plaintext p is XOR to compute xi and c, respectively.

• Type 1 instances: when p is XOR to compute x1

• Type 2 instances: when p is XOR to compute x2

• Type 3 instances: when p is XOR to compute c

3.1.1. Type 1 Instances

According to the above limitation, the plaintext dependent variables cannot be used to produce
key value, so, a2,2 = 0. The plaintext p should be involved in exactly one XOR operation, so, b2,2 = 0
and b3,2 = 0. We set b2,3 = 1, which is the first block cipher invocation, and set b3,4 = 1, which is second
block cipher invocation. If b2,3 = 0, it means two block ciphers’ invocations are parallel, and these
instances are involved in type 2. It also shows that x2 and y2 are plaintext variables. Then, we set b3,3 = 0
because y2 is already used as a plaintext dependent variable. All of these simplified constructions
of type 1 are shown in Figure 2. We examined the instances of type 1, and ciphertext is computed
as follows.

c = E(a2,1.k, x2) ⊕ b3,1.k

Figure 2. E[2] : Type 1 Construction.

Instances with one block cipher Invocation of type 1.
We would show that any instance that makes only one block cipher invocation of type 1 construction

could not achieve BBB security. Let E : {0, 1}n × {0, 1}n → {0, 1}n be a block cipher, shown in Figure 3.
We showed that there exists a distinguisher D that can distinguish any such block cipher from
random permutation using at most 2n/2 queries.

• When a1,1 = 0 and b1,1 = 1.

In this case, we can see the input or output of E is not related to p or c. When b1,2 = 0, then
distinguisher D selects arbitrary p and p′ to get c and c′. If the event c = c′ occurs, then output is 1;
otherwise, it is 0. The success probability of D is 1 when interacts with 1− 2−n. The results are similar
for b2,3 = 0.

17

Symmetry 2019, 11, 1485

Figure 3. Type 1: One Block cipher invocation.

• When a1,1 = 0 and b1,1 = 0.

In this case, we can see the input or output of E is independent of the key. When b1,2 = 1,

the distinguisher D selects arbitrary x1 and x′1 to get y1 and y′1; then, it puts p = b−1
1,2x1 and p′ = b−1

1,2x′1
to get c and c′. If the event occurs, then output is 1, otherwise 0.

Event =
{

c⊕ c′ = b2,3.y1 ⊕ b2,3. y′1 i f b2,2.x1 = 0
c⊕ c′ = b2,3.y1 ⊕ b2,3. y′1 ⊕ x1 ⊕ x1

′ i f b2,2.x1 � 0

The success probability of D is 1 when interacts with 1− 2−n. Similar is the case for b2,1 = 0.

• When b2,2 = 0.

In this case, there exists a distinguisher D, distinguishing the real world oracle
(
E±k , E±

)
from

the ideal world oracle (π±, E±) with some probability. The distinguisher D makes 2n/2 queries

and operates as follows. For j = 1, . . . , 2n/2, the distinguisher D selects arbitrary p(j) to get c(j).

If c(j) � c(j′) for all queries and its indices j � j′, then output 1, otherwise output 0.
At the end of type 1 instances, we can conclude that the plaintext added in the first XOR operation

and the output value after the first invocation of block cipher are included in second block cipher
invocation as a key that is a plaintext dependent variable, so the advantage of the adversary is at most
around birthday bound.

3.1.2. Type 2 Instances

Following the construction limitations, set b3,5 = 1. The plaintext p should be involved in exactly
one XOR operation, so, b1,2 = 0 and b3,2 = 0. We set b2,3 = 1, that is, the first block cipher invocation,
and thus, we set b3,4 = 1, that is, second block cipher invocation. It also shows that x1 and y1 are not
plaintext dependent variables. All of these simplified constructions of type 1 are depicted in Figure 4.
Here, we examined the type 2 instances. For these instances, we computed ciphertext as follows.

c = E(a2,1.k⊕ b3,3.y1, x2) ⊕ b3,1.k⊕ b3,3.y1

Figure 4. E[2] : Type 2 Construction.

The first block cipher invocation is y1 = E(a1,1.k, b1,1.k). Throughout all the instances of type 2,

we call y1 as a subkey that is obtained from the secret key k for those instances with (a1,1, b1,1) � (0, 0).

18

Symmetry 2019, 11, 1485

However, the computation from p to x2 is x2 = p ⊕ b2,1.k ⊕ b2,3.y1, and Δx2 = Δp always holds
and Δy2 = Δc, respectively. Moreover, for any plaintext and ciphertext pair (p, c) and (p′, c′),
the adversary knows the internal variable differences Δx2 and Δy2. Therefore, according to the above
constraint, we can find some conditions on the type 2 instances to achieve BBB.

• When (a1,1, b1,1) � (0, 0).

If (a1,1, b1,1) = (0, 0), then it means y1 = E(0, 0). Adversary makes a query (0, 0) to E(·, ·) to get
y1, and the first block cipher invocation kicks off. Then, the instances are based on only a single
block cipher invocation in the adversary view. As we discussed in the previous sections, when s < 2,
the construction achieves security up to birthday bound.

• When (a2,1, a2,2) � (0, 0).

If (a2,1, a2,2) = (0, 0), then adversary regards b2,1.k ⊕ b2,3.y1 and b3,1.k ⊕ b3,3.y1. So, the instance
gives essentially one step of [42].

• When (b2,1, b2,3) � (0, 0).

If (b2,1, b2,3) = (0, 0), then p = x2, i.e., the adversary knows and can control the x2 value.

A distinguisher D is launched and fixes two distinct p and p′. The distinguisher D queries to E[2]k(·, ·)
and gets ciphertext c and c′ and stores (c⊕ c′), respectively. The D makes a query for E(·, ·) and receives
ω and ώ, respectively, and matches ω⊕ ώ to stored c⊕ c′. The distinguisher D recovers a2,1.k⊕ a2,2.y1.
For any plaintext-ciphertext pair (p, c) and (p′, c′), the distinguisher D can compute z (such that
a2,1.k ⊕ a2,2.y1 = z) and z′ and query (z, p) and (z′, p′) to E(·, ·), recovering y2 and y′2, respectively.
So, the output of distinguisher D is 1 if c ⊕ c′ = y2 ⊕ y′2, otherwise, compute 0. When interacting
with E[2], then the output of distinguisher D is 1 until it recovers a2,1.k ⊕ a2,2.y1. Thus, the success
probability is 1− (1− 2−n)2n

.

• When (b3,1, b3,3) � (0, 0).

This has a similar analysis which is presented above, where the adversary knows and has control
over the value of y2 and he fixes the ciphertext c and c′ and queries to E[2]−1

k (·, ·).
• When (b2,1, b2,3) � (a2,1, a2,2).

If (b2,1, b2,3) = (a2,1, a2,2), it has (b2,1.k⊕ b2,3.y1) = (a2,1.k ⊕ a2,2.y1), which is denoted by g
and x2 ⊕ z2 = g⊕ p⊕ g = p. Thus, the adversary knows and can control x2 ⊕ z. A distinguisher D is

launched and gives queries to E[2]k(·, ·) and receives c and c′ and stores (c⊕ c′), respectively. Moreover,

D sends distinct queries to E(·, ·) and receives ω and ώ, respectively, and stores (ω ⊕ ώ). Then, he

matches (ω⊕ ώ) and (c⊕ c′). The D can compute x2 and z for any plaintext-ciphertext and receive y2

from E(·, ·). Moreover, the distinguisher D just needs to make some extra queries. Thus, the success
probability is trivially 1− (1− 2−n)2n

.

• When (b3,1, b3,3) � (a2,1, a2,2).

This is also having a similar analysis as shown above.
Putting all the above properties of type 2 instances together, we got 32 instances, denoted by

E1, E2, . . . , E32 and depicted in Figure 5. We investigated these constructions and found 2n provable
security. We used the H-Coefficient technique for proof, which is discussed in Section 4.

19

Symmetry 2019, 11, 1485

Figure 5. Cont.

20

Symmetry 2019, 11, 1485

Figure 5. The E1, E2, . . . , and E32 efficient construction: the internal variable y is referred to as a subkey
for these constructions.

21

Symmetry 2019, 11, 1485

3.1.3. Type 3 Instances

When p is XOR to compute c, then b3,2.p = 1, b1,2.p = 0, and b2,2.p = 0. The constructions of
type 3 are depicted in Figure 6. In this construction, it could be seen that p and c are linearly related,
and distinguisher D can distinguish by only two queries to E[2]k(·, ·) with distinct plaintext p and p⊕Δ,
verifying Δc = Δ. Hence, the discussion of type 3 instances is omitted here.

Figure 6. E[2] : Type 3 Construction.

4. Security Proof

Let E1, E2, . . . , E32 is any instance, and E is an underlying block cipher. Let there be any

distinguisher D that has access to oracles O1 and O2, either E±k (·, ·), E±(·, ·) with k $← K or π±(·, ·), E±(·, ·).
The distinguisher D is computationally unbounded and deterministic, making q queries when
interacting with O1 and O2. We defined distinguisher queries to O1 and O2 as q1 and q2, respectively:
q = q1 + q2 and do not contain duplicate queries. When distinguisher D interacts with O1 and O2,

the queries response are v1 =
{
(p1 , c1), . . . ,

(
pq1 , cq1

)}
and v2 =

{
(u1, w1), . . . ,

(
uq2 , wq2

)}
, respectively.

The v is the view denoting the transcripts, and in the end, the distinguisher D obtains a view v = (v1, v2).
The distinguisher D, based on the v, computes its decision bit. Accordingly, the decision bit probability
distribution of distinguisher D relies on the probability distribution of v. The X and Y are the probability
distribution on v when interacts with (E±k (·, ·), E±(·, ·)) and (π±(·, ·), E±(·, ·)), respectively. We used V

as an attainable view when D interacts with O1, which is V =
{
v
∣∣∣Pr[Y = v] >0

}
and V = Vgood ∪Vbad.

The main goal of the proof is to disclose the subkey y and secret key k after interacting with O1 and O2.

In (π±(·, ·), E±(·, ·)) as (O1,O2), we chose k $← K and got corresponding subkey y by querying E±.

The distinguisher D can easily derive query response (u, w) of E±(·, ·) invocations for each query

response (pi, ci) in view v1. The query responses of a block cipher E for each view v = (v1, v2) ∈ V
is divided into three tables. The first one consists of a single query response of block cipher E:

T1 =
{(
(u1

1, w1
1 = y

)}
. The second table consists of the other queries’ responses of block cipher E derived

from v1: T2 =
{(
(u2

1, w2
1

)
, . . . , u2

q2
, w2

q2

}
. The last table consists of all queries’ responses from v2 : T3:

T3 =
{(
(u3

1, w3
1

)
, . . . , u3

q2
, w3

q2

}
.

4.1. Bad Events

v ∈ Vbad if there are following queries: T1 =
{(
(u1

1, w1
1 = y

)}
, T2 =

{(
(u2

1, w2
1

)
, . . . , u2

q2
, w2

q2

}
,

and T3 =
{(
(u3

1, w3
1

)
, . . . , u3

q2
, w3

q2

}
such that the following condition holds: there exists (ui

j, wi
j) in table

Ti and (ui′
j′ , wi′

j′) in table Ti′ such that (ui
j, wi

j) = (ui′
j′ , wi′

j′) where i � i′, then v causes bad event.

4.2. Pr[Y ∈ Vbad]

According to our construction, we gave here the exact definition of Vbad, which also ensures
the Vgood. The Vgood does not cause bad event. Here, we defined the Vbad of E1 only due to the limited
space. At least, one event defines the Vbad if it exists.

22

Symmetry 2019, 11, 1485

(a) (pi, ci) ∈ v1 such that pi = y;
(b) (pi, ci) ∈ v1 such that ci = k;

(c) (pi, ci) ∈ v1 and
(
uj, wj

)
∈ v2 such that (uj = pi ⊕ y)

(d) (pi, ci) ∈ v1 and
(
uj, wj

)
∈ v2 such that (wj = ci ⊕ y⊕ k)

The subkey y and secret k are uniformly selected at random from a set of size of at least 2n − q− 1.
We get

Pr[(a)] ≤ q/2n − q− 1;

Pr[(b)] ≤ q/2n − q− 1;

Pr[(c)] ≤ q/2n − q− 1;

Pr[(d)] ≤ q/2n − q− 1;

Thus, we get
Pr[Y ∈ Vbad] ≤ Pr[(a)] + Pr[(b)] + Pr[(c)] + Pr[(d)]

Let q < 2n−1 and using above values, we get

Pr[Y ∈ Vbad] ≤
4q

2n−1

4.3. Ratio for Vgood

First of all, Pr[X = v]. The X is a random variable that is defined on the probability space of all
possible underlying block cipher E and all possible secret key k. The probability space of X is denoted

as allX. Correspondingly, the |allX| is equal to 2n (2n!) 2n
. In allX, an element π getting along with v is

taken, if π gives exactly the same responses for all queries. The compX(v) is defined as all the elements
in allX compatible with v.

Pr[X = v] =

∣∣∣compX(v)
∣∣∣

allX
Similarly, Y is defined on the probability space of E1, underlying block cipher E, and key k.

On defining compX(v) and allY, respectively, we have

Pr[Y = v] =

∣∣∣compY(v)
∣∣∣

allY

allY is 2n (2n!) 2n
(2n!) 2n

, that is the number of keys times, the number of block ciphers. We next

computed
∣∣∣compX(v)

∣∣∣ and
∣∣∣compY(v)

∣∣∣. We knew that the view v contains the key k value, that is,

at the end of the interaction, it is disclosed to distinguisher D. A set of input outputs of underlying
block cipher E are derived and separately stored in tables T1, T2, and T3. The number of input-output
of E with the key value i is denoted as αi and βi in T2 and T3, respectively, where 0 ≤ i ≤ 2n − 1. The γ i
denotes the number of queries to O1 with key value. There is no collision between any two tables,
so v is good. Secondly, the distinguisher D never makes duplicate queries. Therefore, all the inputs

and outputs of E in T1, T2, and T3 are distinct, showing that γ i = αi. The query response (u1
1, w1

1) of E
in T1 has u1

1 = k or u1
1 = 0 (E1 to E20 have u1

1 = k and others u1
1 = 0). On assuming u1

1 = k, we got

∣∣∣compX(v)
∣∣∣ = (2n − αk − βk − 1)!

k−1∏
i=0

(2n − αi − βi)!
2n−1∏

i=k + 1

(2n − αi − βi)!

23

Symmetry 2019, 11, 1485

∣∣∣compY(v)
∣∣∣ =

2n−1∏
i=0

(
2n − γ i

)
!

⎛⎜⎜⎜⎜⎜⎝(2n − βk − 1)!
k−1∏
i=0

(2n − βi)!
2n−1∏

i=k + 1

(2n − βi)!

⎞⎟⎟⎟⎟⎟⎠

=
2n−1∏
i=0

(2n − αi)!

⎛⎜⎜⎜⎜⎜⎝(2n − βk − 1)!
k−1∏
i=0

(2n − βi)!
2n−1∏

i=k + 1

(2n − βi)!

⎞⎟⎟⎟⎟⎟⎠

= (2n − αk)!(2
n − βk − 1)!

k−1∏
i=0

(2n − αi)!(2n − βi)!
2n−1∏

i=k + 1

(2n − αi)!(2n − βi)!

From (2n − α)!(2n − β)! ≤ (2n − α− β)!(2n)!, we have
∣∣∣compY(v)

∣∣∣ ≤ (2n − αk − βk − 1)! (2n!)2n

We can compute

∣∣∣compX(v)
∣∣∣∣∣∣compY(v)
∣∣∣ ≥

(2n − αk − βk − 1)!
k−1∏
i=0

(2n − αi − βi)!
2n−1∏

i=k + 1
(2n − αi − βi)!

(2n − αk − βk − 1)! (2n!)2n k−1∏
i=0

(2n − αi − βi)!
2n−1∏

i=k + 1
(2n − αi − βi)!

=
1

(2n!)2n

Finally, we can compute
Pr[X = v]
Pr[X = v]

=

∣∣∣compX(v)
∣∣∣∣∣∣compY(v)
∣∣∣ ×

allY
allX

≥ 1

(2n!)2n ×
2n(2n!)2n

(2n!)2n

2n(2n!)2n = 1

Thus, it gives a ratio for Vgood = 0
Combining both 4.2 and 4.3,

Advprp
E1 (q) ≤

4q
2n−1

Author Contributions: L.W. conceptualized the idea, Y.N. performed analysis, and both the authors wrote
manuscript in coordination with each other.

Funding: National Nature Science Foundation of China, Youth Project.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Iwata, T. New Blockcipher Modes of Operation with Beyond the Birthday Bound Security. In International
Workshop on Fast Software Encryption; Springer: Berlin/Heidelberg, Germany, 2006; pp. 310–327.

2. Patarin, J. Mirror theory and cryptography. Appl. Algebra Eng. Commun. Comput. 2017, 28, 321–338.
[CrossRef]

3. Iwata, T.; Mennink, B.; Vizár, D. Cenc is optimally secure. IACR Cryptol. ePrint Arch. 2016, 2016, 1087.
4. Bellare, M.; Desai, A.; Jokipii, E.; Rogaway, P. A concrete security treatment of symmetric encryption.

In Proceedings of the 38th Annual Symposium on Foundations of Computer Science, Miami Beach, FL, USA,
20–22 October 1997; pp. 394–403.

5. Bellare, M.; Guérin, R.; Rogaway, P. Xor macs: New methods for message authentication using finite
pseudorandom functions. In Annual International Cryptology Conference; Springer: Berlin/Heidelberg,
Germany, 1995; pp. 15–28.

6. Bernstein, D.J. How to stretch random functions: The security of protected counter sums. J. Cryptol. 1999,
12, 185–192. [CrossRef]

24

Symmetry 2019, 11, 1485

7. McGrew, D.A.; Viega, J. The security and performance of the galois/counter mode (gcm) of operation.
In International Conference on Cryptology in India; Springer: Berlin/Heidelberg, Germany, 2004; pp. 343–355.

8. Patarin, J. A Proof of Security in O(2
n

) for the Xor of Two Random Permutations. In International Conference
on Information Theoretic Security; Springer: Berlin/Heidelberg, Germany, 2008; pp. 232–248.

9. Patarin, J. Luby-rackoff: 7 rounds are enough for 2n(1−ε) security. In Annual International Cryptology Conference;
Springer: Berlin/Heidelberg, Germany, 2003; pp. 513–529.

10. Patarin, J. On linear systems of equations with distinct variables and small block size. In International
Conference on Information Security and Cryptology; Springer: Berlin/Heidelberg, Germany, 2005; pp. 299–321.

11. Patarin, J. Introduction to mirror theory: Analysis of systems of linear equalities and linear non equalities for
cryptography. IACR Cryptol. ePrint Arch. 2010, 2010, 287.

12. Daemen, J.; Rijmen, V. Rijndael/aes. Encycl. Cryptogr. Secur. 2005, 520–524. [CrossRef]
13. Bogdanov, A.; Knudsen, L.R.; Leander, G.; Paar, C.; Poschmann, A.; Robshaw, M.J.; Seurin, Y.; Vikkelsoe, C.

Present: An ultra-lightweight block cipher. In International Workshop on Cryptographic Hardware and Embedded
Systems; Springer: Berlin/Heidelberg, Germany, 2007; pp. 450–466.

14. De Canniere, C.; Dunkelman, O.; Knežević, M. Katan and ktantan—A family of small and efficient
hardware-oriented block ciphers. In International Workshop on Cryptographic Hardware and Embedded Systems;
Springer: Berlin/Heidelberg, Germany, 2009; pp. 272–288.

15. Guo, J.; Peyrin, T.; Poschmann, A.; Robshaw, M. The led block cipher. In International Workshop on Cryptographic
Hardware and Embedded Systems; Springer: Berlin/Heidelberg, Germany, 2011; pp. 326–341.

16. Impagliazzo, R.; Rudich, S. Limits on the provable consequences of one-way permutations (invited talk).
In Proceedings on Advances in Cryptology; Springer: Berlin/Heidelberg, Germany, 1990; pp. 8–26.

17. Hall, C.; Wagner, D.; Kelsey, J.; Schneier, B. Building prfs from prps. In Annual International Cryptology
Conference; Springer: Berlin/Heidelberg, Germany, 1998; pp. 370–389.

18. Bellare, M.; Rogaway, P. The security of triple encryption and a framework for code-based game-playing
proofs. In Annual International Conference on the Theory and Applications of Cryptographic Techniques; Springer:
Berlin/Heidelberg, Germany, 2006; pp. 409–426.

19. Chang, D.; Nandi, M. A short proof of the prp/prf switching lemma. IACR Cryptol. ePrint Arch. 2008, 2008, 78.
20. Bellare, M.; Krovetz, T.; Rogaway, P. Luby-rackoff backwards: Increasing security by making block ciphers

non-invertible. In International Conference on the Theory and Applications of Cryptographic Techniques; Springer:
Berlin/Heidelberg, Germany, 1998; pp. 266–280.

21. Lucks, S. The sum of prps is a secure prf. In International Conference on the Theory and Applications of
Cryptographic Techniques; Springer: Berlin/Heidelberg, Germany, 2000; pp. 470–484.

22. Lim, C.H.; Korkishko, T. Mcrypton–a lightweight block cipher for security of low-cost rfid tags and sensors.
In International Workshop on Information Security Applications; Springer: Berlin/Heidelberg, Germany, 2005;
pp. 243–258.

23. Wu, W.; Zhang, L. Lblock: A Lightweight Block Cipher; Springer: Berlin/Heidelberg, Germany, 2011; pp. 327–344.
24. Borghoff, J.; Canteaut, A.; Güneysu, T.; Kavun, E.B.; Knezevic, M.; Knudsen, L.R.; Leander, G.; Nikov, V.;

Paar, C.; Rechberger, C.; et al. Prince—A Low-Latency Block Cipher for Pervasive Computing App. Lications;
Springer: Berlin/Heidelberg, Germany, 2012; pp. 208–225.

25. Beaulieu, R.; Treatman-Clark, S.; Shors, D.; Weeks, B.; Smith, J.; Wingers, L. The simon and speck lightweight
block ciphers. In Proceedings of the 52nd ACM/EDAC/IEEE Design Automation Conference (DAC),
San Francisco, CA, USA, 8–12 June 2015; pp. 1–6.

26. Beierle, C.; Jean, J.; Kölbl, S.; Leander, G.; Moradi, A.; Peyrin, T.; Sasaki, Y.; Sasdrich, P.; Sim, S.M. The skinny
family of block ciphers and its low-latency variant mantis. In Annual International Cryptology Conference;
Springer: Berlin/Heidelberg, Germany, 2016; pp. 123–153.

27. Bellare, M.; Impagliazzo, R. A tool for obtaining tighter security analyses of pseudorandom function based
constructions, with app. lications to prp to prf conversion. IACR Cryptol. ePrint Arch. 1999, 1999, 24.

28. Patarin, J. Security in O(2n) for the xor of two random permutations\-proof with the standard h technique.
IACR Cryptol. ePrint Arch. 2013, 2013, 368.

29. Cogliati, B.; Lampe, R.; Patarin, J. The indistinguishability of the xor of $$ k $$ permutations. In International
Workshop on Fast Software Encryption; Springer: Berlin/Heidelberg, Germany, 2014; pp. 285–302.

30. Dai, W.; Hoang, V.T.; Tessaro, S. Information-theoretic indistinguishability via the chi-squared method.
In Annual International Cryptology Conference; Springer: Berlin/Heidelberg, Germany, 2017; pp. 497–523.

25

Symmetry 2019, 11, 1485

31. Bhattacharya, S.; Nandi, M. Revisiting variable output length xor pseudorandom function. IACR Trans.
Symmetric Cryptol. 2018, 2018, 314–335.

32. Yasuda, K. A new variant of pmac: Beyond the birthday bound. In Annual Cryptology Conference; Springer:
Berlin/Heidelberg, Germany, 2011; pp. 596–609.

33. Datta, N.; Dutta, A.; Nandi, M.; Paul, G.; Zhang, L. Single key variant of PMAC_plus. IACR Trans.
Symmetric Cryptol. 2017, 2017, 268–305.

34. Naito, Y. Blockcipher-based macs: Beyond the birthday bound without message length. In International
Conference on the Theory and App.lication of Cryptology and Information Security; Springer: Berlin/Heidelberg,
Germany, 2017; pp. 446–470.

35. Gilboa, S.; Gueron, S. The advantage of truncated permutations. In International Symposium on Cyber Security
Cryptography and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2019; pp. 111–120.

36. Cogliati, B.; Seurin, Y. Ewcdm: An efficient, beyond-birthday secure, nonce-misuse resistant mac. In Annual
International Cryptology Conference; Springer: Berlin/Heidelberg, Germany, 2016; pp. 121–149.

37. Mennink, B.; Neves, S. Encrypted davies-meyer and its dual: Towards optimal security using mirror theory.
In Annual International Cryptology Conference; Springer: Berlin/Heidelberg, Germany, 2017; pp. 556–583.

38. Mennink, B.; Neves, S. Optimal prfs from blockcipher designs. IACR Trans. Symmetric Cryptol. 2017, 228–252.
39. Chen, Y.L.; Lambooij, E.; Mennink, B. How to build pseudorandom functions from public random

permutations. In Annual International Cryptology Conference; Springer: Berlin/Heidelberg, Germany, 2019;
pp. 266–293.

40. Beaulieu, R.; Shors, D.; Smith, J.; Treatman-Clark, S.; Weeks, B.; Wingers, L. Simon and speck: Block ciphers
for the internet of things. IACR Cryptol. ePrint Arch. 2015, 2015, 585.

41. Chen, S.; Steinberger, J. Tight security bounds for key-alternating ciphers. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques; Springer: Berlin/Heidelberg, Germany, 2014;
pp. 327–350.

42. Even, S.; Mansour, Y. A construction of a cipher from a single pseudorandom permutation. J. Cryptol. 1997,
10, 151–161. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

26

symmetryS S
Article

Ideals of Numerical Semigroups and
Error-Correcting Codes

Maria Bras-Amorós

Department of Computer Science and Mathematics, Universitat Rovira i Virgili, 43007 Tarragona, Catalonia,
Spain; maria.bras@urv.cat

Received: 8 October 2019; Accepted: 11 November 2019; Published: 14 November 2019

Abstract: Several results relating additive ideals of numerical semigroups and algebraic-geometry
codes are presented. In particular, we deal with the set of non-redundant parity-checks, the code
length, the generalized Hamming weights, and the isometry-dual sequences of algebraic-geometry
codes from the perspective of the related Weierstrass semigroups. These results are related to
cryptographic problems such as the wire-tap channel, t-resilient functions, list-decoding, network
coding, and ramp secret sharing schemes.

Keywords: numerical semigroup; Weierstrass semigroup; semigroup ideal; error-correcting code;
algebraic-geometry code

1. Introduction

In a previous survey chapter [1], numerical semigroups were presented together with some of
the related classical problems, and their importance for algebraic-geometry codes was explained. In
particular, numerical semigroups can be used to establish decoding conditions, are useful to define
bounds for the minimum distance of codes, and to improve the code dimension. In this contribution,
which is a continuation of that chapter, we will present some results relating ideals of numerical
semigroups and the set of non-redundant parity-checks, the code length, the generalized Hamming
weights, and the isometry-dual sequences of algebraic-geometry codes. The reader not familiar with
algebraic geometry may be interested in the introductory sections of [1].

The organization of this contribution is as follows. Section 2 introduces numerical semigroups
and states basic notions, in particular the Frobenius number and symmetric semigroups, which will be
important in the following sections. Section 3 presents ideals of numerical semigroups and some results
connecting the maximum gap of an ideal with the size of the complement of the ideal. Maximum
sparse ideals are defined as those ideals for which this maximum gap is maximum restricted to a given
size of the complement, and this connects with symmetric semigroups. Section 4 presents one-point
algebraic-geometry codes and relates redundant checks with ideals of numerical semigroups. Section 5
deals with the Geil–Matsumoto bound for the number of points a curve can have and so with the
length of codes. Section 6 deals with the sequences of one-point algebraic-geometry codes that satisfy
the isometry-dual property and the effects of puncturing such sequences. The results are derived from
the results on maximum sparse ideals of numerical semigroups. Section 7 deals with the generalized
Hamming weights of algebraic-geometry codes by means of Feng–Rao numbers and Weierstrass
semigroups. These results are related to cryptographic problems such as the wire-tap channel or ramp
secret sharing schemes.

Symmetry 2019, 11, 1406; doi:10.3390/sym11111406 www.mdpi.com/journal/symmetry27

Symmetry 2019, 11, 1406

2. Numerical Semigroups

2.1. Basic Notions

A numerical semigroup is a subset Λ of N0 that contains 0, contains any finite sum of its elements,
and its complement in N0 is finite. Weierstrass semigroups are indeed numerical semigroups.

The genus of a numerical semigroup Λ is the amount g = #(N0 \Λ). The elements belonging to
the semigroup Λ are its non-gaps while the positive elements in its complement are its gaps. There is a
unique increasing bijective map λ : N0 −→ Λ. We call it the enumeration of Λ, and the notation λi will
be used for λ(i).

The generators of a semigroup are those nonzero elements in the semigroup that are not the result
of adding two other nonzero elements in the semigroup. The whole set of generators is necessarily
finite and coprime. Conversely, if a finite set G of positive integers is coprime, the set of finite sums of
the elements in G is called the semigroup generated by G and it is denoted by 〈G〉.

2.2. Frobenius Number and Symmetric Semigroups

The conductor of a numerical semigroup Λ is the least integer in the semigroup for which all
integers larger than it belong to the semigroup. The conductor minus one is then the maximum gap
of the numerical semigroup, which is called the Frobenius number of the semigroup. It can be easily
proved using the Pigeonhole Principle that the conductor is at most twice the genus. The semigroups
that attain this bound are called symmetric semigroups. The symmetry of a semigroup Λ comes from
the fact that, if the Frobenius number F and the genus g of the semigroup satisfy F = 2g− 1, then the
semigroup satisfies i ∈ Λ ⇐⇒ F− i �∈ Λ.

2.3. Semigroups Generated by Two Integers

Weierstrass semigroups generated by two integers are very common as is the case in hyperelliptic
curves or Geil’s norm-trace curves [2]. Most important, for any coprime positive integers a and b, one
can find a curve with a point whose Weierstrass semigroup is 〈a, b〉 [3].

Sylvester’s formula [4] states that the Frobenius number of the semigroup 〈a, b〉 is ab− a− b,
while its genus is (a−1)(b−1)

2 . Hence, semigroups generated by two positive integers satisfy the
symmetry property.

Example 1 (Hermitian curveHq). Let q be a prime power. The Hermitian curveHq over Fq2 is defined by the
affine equation xq+1 = yq + y and homogeneous equation Xq+1−YqZ−YZq = 0. The point P∞ = (0 : 1 : 0)
is the unique point of Hq at infinity. It can be proved (see, for instance, [1]) that vP∞(

Z
Y) = q + 1 and

vP∞(
X
Z) = −q. Hence, the Weierstrass semigroup Λ at P∞ contains the semigroup generated by q, q + 1 whose

complement in N0 has q(q−1)
2 = g elements. Since we know that the complement of Λ in N0 also has g elements,

this means that both semigroups are the same. For further details on the Hermitian curve, see [3,5].

3. Ideals of Numerical Semigroups

3.1. Ideals

A subset I of a numerical semigroup Λ is an ideal of Λ if I + Λ ⊆ I. We say that I is a proper ideal
of Λ if I �= Λ. Because of the finiteness of the complement of Λ and the definition of an ideal, the
complement of an ideal (either with respect to the ideal or with respect to N0) must be finite as well.
Hence, we can consider the largest integer in the complement of an ideal (with respect to N0). It is
called the Frobenius number of the ideal.

Next, we will prove an upper bound on the Frobenius number of an ideal which extends the upper
bound for the Frobenius number of a numerical semigroup that is twice the genus minus one. Indeed,
we will see that the Frobenius number of an ideal is less than or equal to the number of elements in

28

Symmetry 2019, 11, 1406

the semigroup which do not belong to the ideal plus the double of the genus of the semigroup minus
one. Notice that, if we take the ideal to be the whole semigroup, then we get the already known bound
for the Frobenius number of a numerical semigroup. Hence, this result, stated in Theorem 1, can be
seen as a generalization of the upper bound for the Frobenius number of the numerical semigroup.
The ideals for which the Frobenius number attains the bound are called maximum sparse ideals. All the
results in this section were first proved in [6].

3.2. The Frobenius Number of an Ideal

Suppose that Λ is a numerical semigroup and that I is an ideal of Λ. The difference of the ideal I
with respect to Λ is the number of elements in Λ \ I. One can prove (see [3], Lemma 5.15) that, in the
case of principal ideals, that is, ideals of the form a + Λ for some nonnegative integer a, the difference
is exactly a. From this, it is straightforward to deduce that the Frobenius number of a + Λ is less than
or equal to twice the genus of the semigroup plus a (which is the difference) minus one. This will
be generalized to the bound in Theorem 1 for any ideal. Furthermore, the semigroups for which the
bound is attained will be characterized.

3.3. Upper Bounding the Frobenius Number of an Ideal

For each nonnegative integer i, define D(i) = {λj ≤ λi : λi − λj ∈ Λ}. The set D(i) is often
called the set of divisors of λi, and its cardinality is denoted νi = #D(i). The sequence νi has many
implications in coding theory. It is fundamental in the computation of bounds for the minimum
distance of algebraic-geometry codes based on a single point as well as in the optimization of the
redundancy of those codes. Its properties and applications can be seen in [7–14] and in the survey [1].
As a curiosity, it was proved in [7,15] that the set of elements of a numerical semigroup is determined
by its ν sequence. However, it was proved in [8] that, given a finite subset of values of the ν sequence,
it is contained in the ν sequence of infinitely many numerical semigroups. We will see how the sets
D(i) are related to ideals of semigroups. Next, we present two lemmas proved by Barucci in [16] and
by Høholdt, van Lint, and Pellikaan in [3], respectively, and the main theorem that can be derived
from the two lemmas.

Lemma 1 ([16]). Every ideal of a numerical semigroup Λ can be expressed as an intersection of finitely many
irreducible ideals and irreducible ideals are expressible as Λ \ D(i) for some i.

Lemma 2 (([3] Theorem 5.24)). Let g(i) be the number of gaps in the interval from 1 to λi − 1 and let G(i) be
the number of pairs of gaps whose sum equals λi. Then, νi = i− g(i) + G(i) + 1.

Theorem 1. Suppose that I is an ideal of a numerical semigroup of genus g so that Λ \ I has d elements. Then,
d + 2g + i ∈ I for all i ≥ 0. Equivalently, the Frobenius number of I is less than or equal to d + 2g− 1.

Proof. It is straightforward to see that the intersection of two ideals satisfying the result also satisfies
the result. Now, by Lemma 1, it will be enough to show that the result holds for the ideals expressible
as I = Λ \ D(i). Equivalently, νi + 2g ≥ max{c, λi + 1}, with c the conductor of Λ. This holds if
c ≥ λi + 1 since c ≤ 2g. Otherwise, if λi + 1 > c, then g(i) = g, λi = i + g, and as a consequence of
Lemma 2, νi + 2g = (i− g + G(i) + 1) + 2g = i + g + 1 + G(i) = λi + 1 + G(i) ≥ λi + 1.

The ideals for which the Frobenius number attains the previous bound will be called maximum
sparse ideals.

3.4. Maximum Sparse Ideals

In next theorem, we characterize the ideals that are maximum sparse.

29

Symmetry 2019, 11, 1406

Theorem 2. The statements that follow are equivalent for an ideal I with difference d > 0 of a semigroup Λ
with genus g:

1. The Frobenius number of the ideal I equals d + 2g− 1.
2. I = Λ \ D(i) for some i such that G(i) = 0.

Proof. On one hand, let the Frobenius number of the ideal I be d + 2g − 1. If I is a non-trivial
intersection of the ideals I′ and I′′, whose differences are, respectively, d′ and d′′, then the difference d
of I is strictly larger than both d′ and d′′. If d+ 2g− 1 is not an element of I, then it is neither an element
of I′ nor an element of I′′, but the value d+ 2g− 1 is strictly larger than both d′+ 2g− 1 and d′′+ 2g− 1.
This contradicts Theorem 1. This implies, by Lemma 1, that I is of the form Λ \ D(i) for some i. Now,
d = νi because I = Λ \ D(i). If λi is smaller than c, then νi + 2g− 1 ≥= 2g ≥ c, hence d + 2g− 1 ∈ I,
contradicting our assumption. Consequently, λi ≥ c and by Lemma 2, νi = i− g + G(i) + 1. Thus,
d + 2g− 1 = i + g + G(i) = λi + G(i). However, d + 2g− 1 �∈ I, and so G(i) = 0.

On the other hand, suppose I is of the form Λ \ D(i) for some i with G(i) = 0, and so d = νi.
By the former remarks, since G(i) = 0, one deduces that λi = i + g and, by Lemma 2, it follows that
d + 2g− 1 = λi �∈ I.

Example 2 (Weierstrass semigroup of H4). The Weierstrass semigroup of H4 is Λ =

{0, 4, 5, 8, 9, 10, 12, 13, . . . }. We wish to find all the maximum sparse ideals of Λ. Since the Frobenius number
of Λ is 11 and 11 + 11 = 22 = λ16, it holds that G(16) > 0 while G(i) = 0 for all i ≥ 17. This implies that
all ideals of the form Λ \ D(i) with i ≥ 17 are maximum sparse. Let us see now whether G(i) = 0 for all i
with 6 ≤ i ≤ 15. On one hand, G(6) > 0 since λ6 = 12 = 11 + 1; G(7) > 0 since λ7 = 13 = 11 + 2;
G(8) > 0 since λ8 = 14 = 11 + 3; G(9) = 0 because the difference between 15 and any gap is a non-gap,
indeed, {15− 1 = 14, 15− 2 = 13, 15− 3 = 12, 15− 6 = 9, 15− 7 = 8, 15− 11 = 4} ⊆ Λ; G(10) = 0
because the difference between 16 and any gap is a non-gap, indeed, {16− 1 = 15, 16− 2 = 14, 16− 3 =

13, 16 − 6 = 10, 16 − 7 = 9, 16 − 11 = 5} ⊆ Λ; G(11) > 0 since λ11 = 17 = 11 + 6; G(12) > 0
since λi = 18 = 11 + 7; G(13) = 0 because the difference between 19 and any gap is a non-gap, indeed,
{19− 1 = 18, 19− 2 = 17, 19− 3 = 16, 19− 6 = 13, 19− 7 = 12, 19− 11 = 8} ⊆ Λ. G(14) = 0 because
the difference between 20 and any gap is a non-gap, indeed, {20− 1 = 19, 20− 2 = 18, 20− 3 = 17, 20− 6 =

14, 20− 7 = 13, 20− 11 = 9} ⊆ Λ. G(15) = 0 because the difference between 21 and any gap is a non-gap,
indeed, {21− 1 = 20, 21− 2 = 19, 21− 3 = 18, 21− 6 = 15, 21− 7 = 14, 21− 11 = 10} ⊆ Λ.

Hence, all maximum sparse ideals are I9 = Λ \ D(9) = {4, 8, 9, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, . . . },
where D(9) = {0, 5, 10, 15}, d = 4, and d + 2g − 1 = 15; I10 = Λ \ D(10) =

{5, 9, 10, 13, 14, 15, 17, 18, 19, 20, 21, 22, . . . }, where D(10) = {0, 4, 8, 12, 16}, d = 5, and d + 2g− 1 = 16;
I13 = Λ \ D(13) = {8, 12, 13, 16, 17, 18, 20, 21, 22, . . . }, where D(13) = {0, 4, 5, 9, 10, 14, 15, 19},
d = 8, and d + 2g − 1 = 19; I14 = Λ \ D(14) = {9, 13, 14, 17, 18, 19, 21, 22, . . . }, where D(14) =

{0, 4, 5, 8, 10, 12, 15, 16, 20}, d = 9, and d + 2g− 1 = 20; I15 = Λ \ D(15) = {10, 14, 15, 18, 19, 20, 22, . . . },
where D(15) = {0, 4, 5, 8, 9, 12, 13, 16, 17, 21}, d = 10, and d + 2g − 1 = 21; I17 = Λ \ D(17) =

{12, 16, 17, 20, 21, 22, 24, . . . }, where D(17) = {0, 4, 5, 8, 9, 10, 13, 14, 15, 18, 19, 23}, d = 12, and d + 2g−
1 = 23; and finally Λ \D(i) for all i > 17. Here, D(i) = {0, 4, 5, 8, 9, 10, 12, 13, . . . , i + 6− 12, i + 6− 10, i +
6− 9, i + 6− 8, i + 6− 5, i + 6− 4, i + 6}, d = i− 5, and d + 2g− 1 = i + 6.

The next corollary characterizes maximum sparse ideals of symmetric semigroups.

Corollary 1. Maximum sparse ideals of a symmetric semigroup are exactly the principal ideals of the semigroup.

Proof. It has already been explained that the difference of the principal ideal a + Λ is exactly a, and so
it is obvious that principal ideals of symmetric semigroups are maximum sparse.

Suppose now that I is a maximum sparse ideal of a symmetric semigroup Λ. If I = Λ, the result
is obvious. Otherwise, by Theorem 2, I = Λ \ D(i) for some i with G(i) = 0. Let a be the minimum

30

Symmetry 2019, 11, 1406

element of I. Since I = Λ \ D(i), the difference λi − a is a gap of Λ. By the minimality of a, the
gap λi − a must be the Frobenius number F of Λ since, otherwise, λi − F would be an element in Λ
(because G(i) = 0) not in D(i) and, so, an element of I smaller than a. Now, it remains to see that any
element μ ∈ Λ \ D(i) belongs to a + Λ. Indeed, μ− a = μ− (λi − F) = F− (λi − μ). Since μ �∈ D(i),
we have (λi − μ) �∈ Λ and, by the symmetry of Λ, we have F− (λi − μ) ∈ Λ. Thus, μ− a ∈ Λ.

Example 3 (Weierstrass semigroup of H4). The Weierstrass semigroup of the point at infinity of H4 is
generated by two integers and so it is symmetric. The previous corollary in this case can be checked for the set of
maximum sparse ideals listed in Example 2.

Remark 1. It is important to remark that the hypothesis in Corollary 1 is necessary. A counterexample
can be found in the semigroup Λ = {0, 4, 8, 9, . . . }, of Frobenius number 7 and genus 6, and so,
not symmetric. The semigroup Λ has the ideal I = {9, 10, 11, 13, 14, 15, 17, . . . }, which equals Λ \ D(10) =
Λ \ {0, 4, 8, 12, 16}. The ideal I has difference d = 5 and Frobenius number 16 = d + 2g− 1. Hence, I is a
maximum sparse ideal, but it is not principal because it is, indeed, I = (9 + Λ) ∪ {10, 11, 14, 15}.

3.5. The Ideal of Frobenius Numbers of Sparse Ideals

The next lemma shows that the Frobenius numbers of the maximum sparse ideals of a numerical
semigroup constitute in turn another ideal of the numerical semigroup.

Lemma 3. The nonzero non-gaps λi such that G(i) = 0 constitute an ideal L of Λ.

Proof. First of all, notice that G(i) = 0 is not satisfied if λi is smaller than the conductor. Indeed,
if λi is smaller than the conductor c, then there must be a gap a smaller than λi with λi − a < λ1,
since, otherwise, λi would not be smaller than the conductor. Now, λi − a must be a positive gap and
λi = (λi − a) + a, a contradiction with G(i) = 0. Hence, the elements in L are equal than or equal to
the conductor of Λ.

It remains to show that, if λi ∈ L, then λi + λj ∈ L for any λj ∈ Λ. Assume that λj �= 0.
Let k be such that λi + λj = λk. Suppose that λk �∈ L, that is, G(k) �= 0. Then, there are two
gaps a, a′ with λk = a + a′. Note that both a, a′ < λi = λk − λj since λi is greater than or equal
to c. From a + a′ = λk, we have λj < a, a′ < λi. Then, a − λj does not belong to Λ because,
otherwise, a = λj + (a− λj) ∈ Λ + Λ ⊆ Λ. In particular, (a− λj) + a′ is a sum of two gaps equal to
a + a′ − λj = λk − λj = λi, a contradiction with G(i) = 0.

4. One-Point Algebraic-Geometry Codes

In coding theory, by a linear code of length n, it is meant a linear subspace C of Fn
q , with Fq the field

of order q, for some prime power q. Its dimension is usually denoted k. The dual code of a linear code is
its orthogonal space. It has the same length than C and dimension n− k. A knowledge of the dual
code is useful in most decoding algorithms. To compare two different vectors of Fn

q , one counts the
number of differing positions and this number is referred to as the Hamming distance between the two
vectors. The weight of a vector is defined as its Hamming distance to the all-zero vector. An important
parameter of a code is its minimum distance, representing the minimum of the Hamming distances
between each pair of different vectors in the code. The correction capability of a code tells how far we
can go from any code vector with the guarantee that we will not get closer to a code vector different
than the originary one. The correction capability is exactly � d−1

2 � if the minimum distance of the code
is d.

An important class of error-correcting codes are the algebraic-geometry codes. Let X be a smooth
irreducible algebraic curve over Fq and let Q be a rational point of X . Let Λ be the Weierstrass
semigroup at Q and let A =

⋃
m≥0 L(mQ) be the ring of rational functions of X only having poles

at Q. There exists a basis z0, z1, . . . , zi, . . . of A such that vQ(zi) = −λi. Now, for each collection

31

Symmetry 2019, 11, 1406

of rational points P1, . . . , Pn, all of them different from Q, and each set of indices B ⊆ N0, define
the one-point code CB =< (zi(P1), . . . , zi(Pn)) : i ∈ B > . The elements in the set B are called parity
checks of CB and the one-point code is said to be classical if B = {0, 1, . . . , m}. We will use Cm to
refer to C{0,...,m}. In the present survey, we consider only the codes Cm. Ref. [1] is a survey on results
related to the minimum distance, the error-correction capability, and the redundancy of the codes CB
from the perspective of Weierstrass semigroups. In that case we considered, though, the dual codes
< (zi(P1), . . . , zi(Pn)) : i ∈ B >⊥.

It can be shown that Cm = {(f (P1), . . . , f (Pn)) : f ∈ L(λmQ)}. Note that it can be the case that
Cm = Cm−1. The next lemma is stated in other words in ([17], Corollary 3.3).

Lemma 4. Suppose that Λ is the Weierstrass semigroup at a rational point Q and define Λ∗ = {0} ∪ {m ∈
N, m > 0 : Cm �= Cm−1} = {m0 = 0, m1, . . . , mn}. Then, the set Λ \Λ∗ is an ideal of Λ.

5. Ideals and the Length of Algebraic-Geometry Codes

From the previous definition of algebraic-geometry codes, we see that the length of a code defined
over an algebraic smooth irreducible curve is conditioned by the number of points of the curve.
Thus, bounding the number of points of smooth irreducible curves becomes an important problem of
algebraic-geometry codes.

5.1. The Geil–Matsumoto Bound

Define Nq(g) as the maximum number of points an irreducible smooth curve of genus g can
have over the finite field of q elements. The Hasse–Weil bound is |Nq(g) − q − 1| � 2g

√
q ([18],

Theorem V.2.3), which is refined by Serre’s bound |Nq(g)− q− 1| � g�2√q� ([18], Theorem V.3.1).
The web page [19] is devoted to give the best known examples of curves with many points for any
fixed pair q, g.

Suppose that, for an irreducible smooth curve X over Fq, we not only know its genus but also
the Weierstrass semigroup Λ at a given point. We may wonder, with this assumption, how many
points X can have. For this goal, we define Nq(Λ) to be the maximum number of possible points.
The first bound is due to Lewittes [20], and it uses only the first element λ1 of Λ different than 0. It is
Nq(Λ) � Lq(Λ) := qλ1 + 1. On the other hand, Geil and Matsumoto [21] proved that

Nq(Λ) � GMq(Λ) := #(Λ \ ∪λi generator of Λ(qλi + Λ)) + 1. (1)

Using the fact that
#(Λ \ (qλ1 + Λ)) = qλ1, (2)

proved in [3,21], one can deduce Lewittes’ bound from the Geil–Matsumoto bound.

Remark 2. The set Λ \∪λi generator of Λ(qλi +Λ) is the complement of an ideal of Λ. Hence, any advance in the
comprehension of ideals of numerical semigroups may result in new bounds for the length of algebraic-geometry codes.

For a numerical semigroup generated by two coprime integers a, b, it can be proved [22] that the
Geil–Matsumoto bound is exactly as follows:

GMq(〈a, b〉) =
a−1

∑
n=0

min
(

q,
⌈

q− n
a

⌉
· b
)
+ 1 (3)

=

⎧⎪⎨⎪⎩
qa + 1 if q � � q

a �b,
(q mod a)q + (a− (q mod a))� q

a �b + 1 if � q
a �b < q � � q

a �b,
ab� q

a � − (a− (q mod a))b + 1 if q > � q
a �b.

(4)

32

Symmetry 2019, 11, 1406

5.2. Coincidences of Lewittes’s and the Geil–Matsumoto Bound

It was proved by Beelen and Ruano in ([23], Proposition 9) that, if q ∈ Λ, then the Lewittes
and the Geil–Matsumoto bounds coincide. For two-generated semigroups, Equation (3) implies that
both bounds coincide if and only if q � � q

a �b. Otherwise, the Lewittes bound is improved by the
Geil–Matsumoto bound. This result for two-generated semigroups can be generalized to semigroups of
any number of generators (larger than or equal to two). This is the goal of this subsection. The results
are taken from [22].

Theorem 3. Let Λ = 〈λ1, . . . , λn〉 with λ1 < λi for all i > 1. The next statements are equivalent

1. GMq(Λ) = Lq(Λ);
2. Λ \ ∪n

i=1(qλi + Λ) = Λ \ (qλ1 + Λ);
3. q(λi − λ1) ∈ Λ for all i > 1.

Proof. By Equation (2), it is straightforward to prove that 2 implies 1. The reverse implication
follows from the inclusion Λ \ ∪n

i=1(qλi + Λ) ⊆ Λ \ (qλ1 + Λ) and the equality GMq(Λ) = Lq(Λ),
which, by Equation (2), implies that #(Λ \ ∪n

i=1(qλi + Λ)) = #(Λ \ (qλ1 + Λ)).
For the equivalence of the last two statements, notice that q(λi − λ1) ∈ Λ for all i > 1⇐⇒ qλi ∈

qλ1 + Λ for all i > 1⇐⇒ qλi + Λ ⊆ qλ1 + Λ for all i > 1⇐⇒ Λ \ ∪n
i=1(qλi + Λ) = Λ \ (qλ1 + Λ).

Notice that Theorem 3 implies Beelen–Ruano’s result since q ∈ Λ implies q(λ− λ1) ∈ Λ for all
λ ∈ Λ.

From Theorem 3, it makes sense to analyze the conditions under which q(λi − λ1) ∈ Λ for some
i > 1. Notice that, if gcd(λ1, λi) = d, then {xλ1 + yλi : x, y ∈ N0} = d〈 λ1

d , λi
d 〉, where, by d〈 λ1

d , λi
d 〉, we

mean the set {dλ : λ ∈ 〈 λ1
d , λi

d 〉}. Obviously, d〈 λ1
d , λi

d 〉 ⊆ Λ. The next lemma is proved in [22].

Lemma 5. If gcd(λ1, λi) = d, then q(λi − λ1) ∈ d〈 λ1
d , λi

d 〉 if and only if qd � � qd
λ1
�λi. In particular, if

q � � q
λ1
�λi, then q(λi − λ1) ∈ d〈 λ1

d , λi
d 〉.

Now, one can deduce the next result.

Proposition 1. Suppose λ1 < λ2 < · · · < λn and let Λ = 〈λ1, λ2, . . . , λn〉. If q � � q
λ1
�λ2 then GMq(Λ) =

Lq(Λ).

Remark 3. We have seen that for two-generated semigroups the converse is also true.
For semigroups with any number of generators, the converse is not true in general. As a
counterexample, let Λ = 〈5, 7, 18〉 = {0, 5, 7, 10, 12, 14, 15, 17, 18, . . . } and consider q = 9.
We have Λ \ ∪λi generator of Λ(qλi + Λ) = {0, 5, 7, 10, 12, 14, 15, 17, 18, 19, 20, 21, 22, 23,

24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 51, 53, 54, 56, 58, 61} =
Λ \ (qλ1 + Λ). Hence, GMq(〈5, 7, 18〉) = 46, which coincides with Lq(〈5, 7, 18〉). Observe though that q,
which is 9 is strictly larger than � q

λ1
�λ2, which is 7.

5.3. Simplified Computation

In [22], it was investigated whether the computation of the number Λ \ ∪λi generator of Λ(qλi +

Λ) could be performed as the simpler computation of Λ \ ∪i∈J(qλi + Λ) for some proper subset of
indices J ⊆ {1, . . . , n}. This is the purpose of the next lemma.

Lemma 6. Suppose that Λ = 〈λ1, . . . , λn〉 and let J ⊆ {1, . . . , n} be an index subset. The following statements
are equivalent

1. Λ \ ∪n
i=1(qλi + Λ) = Λ \ ∪i∈J(qλi + Λ);

33

Symmetry 2019, 11, 1406

2. For all i �∈ J there exists 1 � j � n, j ∈ J such that q(λi − λj) ∈ Λ.

The next lemma is a consequence of the previous one.

Lemma 7. Suppose that Λ = 〈λ1, . . . , λn〉, where λ1 < λ2 < · · · < λn and suppose that λ1 < q.

1. If λj is the maximum of the generators that are strictly smaller than q
� q

λ1
� , then Λ \ ∪n

i=1(qλi + Λ) =

Λ \ ∪j
i=1(qλi + Λ).

2. If λj is the maximum of the generators that are strictly smaller than 2λ1 − 1, then Λ \ ∪n
i=1(qλi + Λ) =

Λ \ ∪j
i=1(qλi + Λ).

Proof. The first statement follows directly from Lemma 5 and Lemma 6. To prove the second statement,
assume that q = xλ1 + y, where x ≥ 1 and y are integers. Then, q

� q
λ1
� = λ1 +

y
x and the statement is a

consequence of the inequalities x � 1 and y � λ1 − 1.

We call Geil–Matsumoto generators those generators that are strictly smaller than 2λ1− 1. As follows
from the previous results, to compute the Geil–Matsumoto bound, one only needs to subtract the
ideals qμ + Λ from Λ for μ a Geil–Matsumoto generator. Because of the fact that, in general, one needs
to subtract the ideals qλ + Λ for all generators λ, this gives a computational improvement. In [22],
we observed that, although it decreases with the genus, the portion of non-Geil–Matsumoto generators
remains still significant for genus 25 with a portion of more than 30%.

We notice that Lemma 7 is a direct consequence of Lemma 6. We leave it as an open research
problem to find other consequences of Lemma 6 to find further computational improvements.

6. Ideals and Isometry-Dual Sequences of One-Point Algebraic-Geometry Codes

6.1. Characterization of Isometry-Dual Sequences of Algebraic-Geometry Codes by Means of Sparse Ideals

We say that the codes C, D ⊆ Fn
q are isometric with respect to x, for x ∈ Fn

q if D = χx(C),
where χx is the map χx : Fn

q → Fn
q defined component-wise by χx(v) = x ∗ v. More generally,

we say that the sequence (C(i))i=0,...,n of codes satisfies the isometry-dual condition if a vector x ∈
(F∗q)

n exists so that C(i) is x-isometric to
(

C(n−i)
)⊥

for every i = 0, 1, . . . , n. Suppose now that
P1, . . . , Pn, Q are different rational points of a projective, smooth, irreducible curve of genus g and
let Cm = {(f (P1), . . . , f (Pn)) : f ∈ L(mQ)}. As it has been previously stated, if Λ is the Weierstrass
semigroup at Q and Λ∗ = {0} ∪ {m ∈ N, m > 0 : Cm �= Cm−1} = {m0 = 0, m1, . . . , mn}, then Λ \Λ∗ is
an ideal of Λ. Furthermore, Geil, Munuera, Ruano, and Torres proved the next lemma for n > 2g + 2
(in a different but equivalent formulation). The strict inequality was improved to a non-strict inequality
in [24].

Lemma 8 (([17] Proposition 4.3.)). Let Λ∗ = {m0, . . . , mn} be as defined with n ≥ 2g + 2. The sequence
of codes Cm0 , Cm1 , . . . , Cmn satisfies the isometry-dual poperty whenever 2g + n− 1 ∈ Λ∗. Equivalently, the
sequence Cm0 , Cm1 , . . . , Cmn satisfies the isometry-dual property if and only if the ideal Λ \Λ∗ is maximum
sparse.

6.2. Inclusion Relationship of Sparse Ideals

As seen in Theorem 2, a proper ideal I of Λ is maximum sparse if and only if I is of the form
Λ \ D(i) for some integer i satisfying G(i) = 0. The next lemma states the relationship between
Frobenius numbers of maximum sparse ideals of a given numerical semigroup when the ideals satisfy
inclusion relationships.

34

Symmetry 2019, 11, 1406

Lemma 9. For two proper maximum sparse ideals I, I′ of a numerical semigroup Λ with Frobenius numbers
λi, λi′ , the following statements are equivalent:

1. I ⊆ I′;
2. Λ \ I′ ⊆ Λ \ I;
3. D(i′) ⊆ D(i);
4. λi − λi′ ∈ Λ;
5. #(Λ \ I)− #(Λ \ I′) ∈ Λ.

Proof. The equivalence of statements (1) and (2) is obvious. Since I, I′ are proper maximum sparse
ideals, D(i) = Λ \ I and D(i′) = Λ \ I′. Hence, statement (2) and statement (3) are equivalent.
Statement (3) is equivalent to λi′ ∈ D(i), which, in turn, is equivalent to statement (4). Statements
(4) and (5) are equivalent since λi = 2g− 1 + #(Λ \ I) and λi′ = 2g− 1 + #(Λ \ I′). Hence, λi − λi′ =

#(Λ \ I)− #(Λ \ I′).

6.3. Puncturing Sequences of Isometry-Dual One-Point Algebraic-Geometry Codes

We wonder now whether the isometry-dual property is inherited after puncturing sequences of
one-point algebraic-geometry codes. We proved in the next theorem a necessary condition for the
inheritance of the isometric-dual property. In particular, in order to mantain the property, the number of
evaluating points that are supressed when puncturing must be a non-gap of the associated Weierstrass
semigroup. This result was proved first in [24].

Theorem 4. Suppose now that P1, . . . , Pn, Q are different rational points of a projective, smooth, irreducible
curve of genus g. Let Λ be the Weierstrass semigroup at Q, let Cm = {(f (P1), . . . , f (Pn)) : f ∈ L(mQ)},
and let Λ∗ = {0} ∪ {m ∈ N, m > 0 : Cm �= Cm−1} = {m0 = 0, m1, . . . , mn}. Suppose that the
sequence Cm0 , . . . , Cmn holds the isometry-dual property. Consider a subset {Pi1 , . . . , Pin′ } ⊆ {P1, . . . , Pn},
with 2g + 2 ≤ n′ < n, the punctured codes C′m = {(f (Pi1), . . . , f (Pin′)) : f ∈ L(mQ)}, and the associated
index set (Λ∗)′ = {0} ∪ {m ∈ N, m > 0 : C′m �= C′m−1} = {m′1 = 0, m′2, . . . , m′n′ }. If the code sequence
{0}, C′m′1

, C′m′2
, . . . , Cm′

n′
also holds the isometry-dual property, then n− n′ ∈ Λ.

Proof. By hypothesis, the set Λ \Λ∗ is a maximum sparse ideal. If the sequence {0}, C′m′1
, . . . , Cm′

n′
also holds the isometry-dual preperty, then so is Λ \ (Λ∗)′. We have (Λ∗)′ ⊆ Λ∗ because C′m �= C′m−1
implies Cm �= Cm−1. Consequently, Λ \ (Λ∗)′ ⊇ Λ \ Λ∗. Using Lemma 9, we can conclude that
#Λ∗ − #(Λ∗)′ = n− n′ ∈ Λ.

7. Ideals and Generalized Hamming Weights

The number of nonzero coordinates of a word coincides with the cardinality of the support of
the one-dimension vector it generates. Hence, the minimum distance of a linear code can be thought
as the minimum number of elements the support of a one-dimension linear space can have. This is
generalized to the so-called Hamming weights, which are defined, for each given dimension as the
minimum size of the support of the linear subspaces of that dimension. The generalized Hamming
weights for algebraic-geometry codes have been analyzed in [25–27]. Applications of generalized
Hamming weights appear in a variety of fields of communications. Wei [28] first used the notion to
analyze the performance of Ozarow–Wuyner’s wire-tap channel of type II [29] and in connection to
t-resilient functions. In [30], there is an update of the connections of generalized Hamming weights
with the wire-tap channel using network coding. The reference [31] generalizes the notion for network
coding. Generalized Hamming weights have applications also in the area of list decoding [32,33].
In particular, Guruswami showed that his (e, L)-list decodibility notion in the case of erasures is
equivalent to the generalized Hamming weights for linear codes. Generalized Hamming weights have
also been used to bound the covering radius of linear codes [34] and for secure secret sharing based

35

Symmetry 2019, 11, 1406

on linear codes [35,36]. One further related notion is that of relative generalized Hamming weights,
where only the support of subspaces with no intersection with a given subspace are considered. They
are applied to bound the information leakage in linear ramp secret sharing schemes. They were
proposed in [37] and analyzed for algebraic-geometry codes in [38,39].

Heijnen and Pellikaan introduced in [40] the generalized order bounds for the generalized
Hamming weights of dual one-point algebraic-geometry codes in terms of Weierstrass semigroups.
Farrán and Munuera showed the existence of a constant, which they named the Feng–Rao number,
depending only on the dimension of the Hamming weights and the Weierstrass semigroup,
which completely determined the order bounds for codes of rate low enough. The references [41–44]
deal with the generalized order bounds and the Feng–Rao numbers related to particular classes
of semigroups.

We will present a new bound on the generalized Hamming weights that was first proved in [6].
It uses a lower bound on the Feng–Rao numbers derived from the upper bound for the Frobenius
number of an ideal of a semigroup that we presented in Theorem 1. It is obtained through the analysis
of intervals of consecutive gaps of Weierstrass semigroups. The idea of consecutive gaps was already
used in [45] to bound the minimum distance of one-point codes and in [46] to bound the generalized
Hamming weights for primal codes.

7.1. Feng–Rao Numbers

In Section 3.3, we introduced the ν sequence of a numerical semigroup Λ counting the number of
pairs of non-gaps whose sum equals a given non-gap. The minimum distance of the dual one-point
code C⊥m associated with a rational point Q with Weierstrass semigroup Λ and associated sequence ν is
bounded by the order (or Feng–Rao) bound defined as δ(m) = min{νi : i > m} [3,10,47]. Some results
about the computation of the order bound can be found in [3,7,11–14,48].

The order bound for the minimum distance is generalized to any dimension r by the r-th order
bound for the generalized r-th generalized Hamming weight. In this case, define D(i1, . . . , ir) =

D(i1) ∪ · · · ∪ D(ir). Then, the r-th order bound is defined as δr(m) = min{#D(i1, . . . , ir) : i1, . . . , ir >
m}. This definition was introduced in [40]. Farrán and Munuera proved in [49] that, for each integer
r ≥ 2 and for each numerical semigroup Λ, there exists a constant Er = E(Λ, r), the so-called r-th
Feng–Rao number, satisfying that

1. δr(m) = m− g + Er + 2 for every m with λm ≥ 2c− 2 ([49], Theorem 3),
2. δr(m) ≥ m− g + Er + 2 for every m with λm ≥ c ([49], Theorem 8),

where g and c stand respectively for the genus and the conductor of Λ. This is indeed an extension of
the Goppa bound in which case r = 1 and Er = 0 ([3], Theorem 5.24). The constant Er satisfies

3. r ≤ Er ≤ λr−1 if g > 0 (and r ≥ 2) ([49], Proposition 5),
4. Er = λr−1 if r ≥ c ([49], Proposition 5),
5. Er = r− 1 if g = 0.

In [41,49,50], one can find more results related to the Feng–Rao numbers.
We will use Theorem 1 to describe a new lower bound for the Feng–Rao number Er. The new

bound is strictly better than the bound Er ≥ r for semigroups having more than two intervals of gaps
and dimensions r > 2.

7.2. Bound on the Feng–Rao Numbers

To prove the new bound, we first need the next lemma, whose proof can be found in [6], and then
we can state the theorem with the bound. The proof of the theorem uses that δr(m) counts the number
of elements of a numerical semigroup not belonging to an ideal and the bound of Theorem 1.

36

Symmetry 2019, 11, 1406

Lemma 10. Let

A(r, �, a1, ar) = {A ⊂ N0 : #A = r, min(A) = a1, max(A) = ar, A contains at least � consecutive integers}.

For every A ∈ A, let α(A) = max{a ∈ A : a + 1− �, . . . , a ∈ A}. Then, min α(A) = max{a1 + �− 1, a1 +

(�− 1)(a1 − ar) + �(r− 1)}.

Theorem 5. Suppose that n�−1 is the number of intervals of at least �− 1 consecutive gaps of Λ, for � an
integer larger than 1. Then,

Er ≥ min
{

r +
⌈

r
�− 1

⌉
− 2, r +

⌈
(�− 1)n�−1

�

⌉
− 1
}

. (5)

Proof. By definition of δr(m), there exist integers i1, . . . , ir with m < i1 < · · · < ir such that δr(m) =

#D(i1, . . . , ir). The integers i1, . . . , ir minimize #D(i1, . . . , ir). Denote A the set {i1, . . . , ir}. Suppose
that the integer m is at least 2c− g− 1. From the definition of Er, we have δr(m) = m− g + Er + 2.

As the set A minimizes the amount #D(i1, . . . , ir), then i1 = m + 1. Now, one can apply Theorem 1
to the ideal Λ \D(i1, . . . , ir), and obtain (m− g+ Er + 2) + (2g− 1) ≥ λir = g+ ir. One can reorganize
the inequality and obtain

ir ≤ m + Er + 1. (6)

If we assume that A has no � consecutive integers, then

ir ≥ m + r +
⌈

r− (�− 1)
�− 1

⌉
. (7)

Then, by inequality (6), Er ≥ r +
⌈

r
�−1

⌉
− 2. On the other hand, assume that A has

at least � consecutive integers. Suppose that ij is the maximum integer belonging
to A so that ij − � + 1, . . . , ij ∈ A and so ij−�+1 = ij − � + 1, . . . , ij−1 = ij − 1 and
λij−�+1

= λij − � + 1, . . . , λij−1 = λij − 1. Let Γ = {λ ∈ Λ : λ + 1, . . . , λ + �− 1 �∈ Λ}. In particular,
if λ is an element of Γ, it must be strictly smaller than the conductor c of Λ. Obviously,
#Γ = n�−1. If λ ∈ Γ, then (λij − 1)− λ ∈ D(ij−1) \ D(ij), . . . , (λij − �+ 1)− λ ∈ D(ij−�+1) \ D(ij),
and so {λij − λ− 1, λij − λ− 2, . . . , λij − λ− �+ 1} ⊆ D(ij−�+1, . . . , ij−1) \ D(ij). In fact,
∪λ∈Γ{λij − λ− 1, . . . , λij − λ− �+ 1} ⊆ D(ij−�+1, . . . , ij−1) \ D(ij) and the sets in
this union are disjoint. Indeed, for λ, λ′ ∈ Γ, with λ > λ′, it holds
λ− λ′ ≥ �. Then, min{λij − λ′ − 1, . . . , λij − λ′ − �+ 1} = λij − λ′ − �+ 1 ≥ λij − λ + 1 >

max{λij − λ− 1, . . . , λij − λ− �+ 1}. Hence,

#D(i1, . . . , ir) ≥ #D(ij−�+1, . . . , ij) ≥ (�− 1)n�−1 + νij = (�− 1)n�−1 + ij − g + 1. (8)

Since D(i1, . . . , ir) = m− g + Er + 2, we get that m− g + Er + 2 ≥ (�− 1)n�−1 + ij − g + 1, so

Er ≥ (�− 1)n�−1 + ij −m− 1. (9)

Now, by Lemma 10, and by the maximality of j,

ij ≥ max{i1 + �− 1, i1 + (�− 1)(i1 − ir) + �(r− 1)}. (10)

This implies
ij ≥ i1 + �− 1, (11)

and
ij ≥ i1 + (�− 1)(i1 − ir) + �(r− 1). (12)

37

Symmetry 2019, 11, 1406

On one side, we can use inequality (9) and inequality (11), and obtain Er ≥ (�− 1)(n�−1 + 1).
On the other side, we can use inequality (9) and inequality (12), and then inequality (6), as follows:

Er ≥ (�− 1)n�−1 + i1 + (�− 1)(i1 − ir) + �(r− 1)−m− 1

= (�− 1)n�−1 + (�− 1)(i1 − ir) + �(r− 1)

≥ (�− 1)n�−1 − (�− 1)Er + �(r− 1),

from where we can conclude that Er ≥ r− 1 +
⌈
(�−1)n�−1

�

⌉
.

At this point, we have shown that either Er ≥ r +
⌈

r
�−1

⌉
− 2 or Er ≥ max{(� − 1)(n�−1 +

1), r +
⌈
(�−1)n�−1

�

⌉
− 1}, depending on whether A has or does not have � consecutive integers.

Hence, we deduce the bounds that follow:

Er ≥ min{r +
⌈

r
�− 1

⌉
− 2, (�− 1)(n�−1 + 1)},

Er ≥ min{r +
⌈

r
�− 1

⌉
− 2, r +

⌈
(�− 1)n�−1

�

⌉
− 1}.

Let us see that the second bound is always at least as good as the first one. Hence, the first bound
can be ignored. Indeed, if r +

⌈
r

�−1

⌉
− 2 ≤ r +

⌈
(�−1)n�−1

�

⌉
− 1, then we are done. Otherwise, if r +⌈

r
�−1

⌉
− 2 > r +

⌈
(�−1)n�−1

�

⌉
− 1, then we need to prove that r +

⌈
(�−1)n�−1

�

⌉
− 1 ≥ (�− 1)(n�−1 + 1).

If r +
⌈

r
�−1

⌉
− 2 > r +

⌈
(�−1)n�−1

�

⌉
− 1, then

⌈
r

�−1

⌉
>
⌈
(�−1)n�−1

�

⌉
+ 1, which implies that

r
�−1 >

(�−1)n�−1
� + 1, and so r > (� − 1)((�−1)n�−1

� + 1) = (� − 1)((n�−1 + 1) − n�−1
�). This implies

r + (�−1)n�−1
� > (�− 1)(n�−1 + 1), and so r +

⌈
(�−1)n�−1

�

⌉
− 1 ≥ (�− 1)(n�−1 + 1), as desired.

Remark 4. The bound in Theorem 5 only improves the bound Er ≥ r when � < r/2 + 1 and n�−1 > 0.

7.3. Bound on the Generalized Hamming Weights

Corollary 2. Let � ≥ 2 and let m satisfy λm ≥ c. Then, δr(m) ≥ m + 2 − g +

min
{

r− 2 +
⌈

r
�−1

⌉
, r− 1 +

⌈
(�−1)n�−1

�

⌉}
.

Remark 5. From bound (5), taking � = 2, we deduce that, if n is the number of intervals of (at least one) gaps
of Λ, then

Er ≥ min{2(r− 1), r + �n/2� − 1}. (13)

Remark 6. If n ≤ 2 or r = 2, the bound in the previous remark equals the bound Er ≥ r. In any other case,
this new bound is better.

Corollary 3. If the Weierstrass semigroup Λ has n intervals of gaps and its conductor is c, then, for every
integer m such that λm ≥ c,

δr(m) ≥
{

m− g + 2r, if r ≤ �n/2�+ 1,
m− g + r + �n/2�+ 1 otherwise.

7.4. Sharpness of the Bound

If one analyzes the proof of Theorem 5, it can be seen that the bound (5) may only be sharp if

1. The inequality (6) is indeed an equality. That bound is obtained when one applies Theorem 1
to the ideal Λ \ D(i1, . . . ir). The inequality being an equality means applying Theorem 2 to the
same ideal that D(i1, . . . , ir) = D(ir). Hence, i1, . . . , ir−1 ⊆ ir −Λ and so, ir − ir−1 ≥ λ1.

38

Symmetry 2019, 11, 1406

2. Either inequality (7) or both inequality (8) and inequality (10) are indeed equalities. In this case,
ir − ir−1 ≤ 2.

From these observations, one can conclude that the bound may be sharp only if the Weierstrass
semigroup Λ is a hyperelliptic semigroup, that is, a semigroup containing 2. For hyperelliptic
semigroups, it was proved in ([50], Theorem 1) that Er = λr−1 = 2(r − 1). On the other hand,
the bound (5) for the unique hyperelliptic semigroup of genus g is

Er ≥

⎧⎪⎨⎪⎩
r− 1, if � > 2,
2(r− 1), if � = 2 and r− 1 ≤ �g/2�,
r + �g/2� − 1, if � = 2 and r− 1 > �g/2�.

Thus, we conclude that the bound is sharp if and only if � = 2, the Weierstrass semigroup Λ is
hyperelliptic, and r ≤ �g/2�+ 1.

7.5. The Bound Applied to the Hermitian Curve

The weight hierarchy of Hq has already been studied in [27,51]. However, for its simplicity,
we wanted to give a description of n�. As we have seen before, the Weierstrass semigroup at the rational
point at infinity is generated by q and q + 1. Its weight hierarchy was studied in [42]. The semigroup
generated by q and q + 1 is {0} ∪ {q, q + 1} ∪ {2q, 2q + 1, 2q + 2} ∪ · · · ∪ {(q− 2)q, . . . , (q− 2)q + (q−
2)} ∪ {k ∈ N0 : k ≥ (q − 1)q}. In this case, the lengths of the intervals of consecutive gaps are
q− 1, q− 2, . . . , 1. Thus,

n� =

{
q− �, if 1 ≤ � ≤ q,
0, if � ≥ q.

It is left as an open question to compare the results in [41] with the bound proved in Theorem 5, using
these values of n�.

8. Further Reading

It was our purpose to cite within the text the bibliography related to each specific section. However,
the reader may be interested in some more general references. The books [52–54] have many results on
numerical semigroups. Algebraic-geometry codes have been widely explained in different books such
as [18,55,56] or in chapter [57]. For a general theory of one-point codes, their decoding, and also some
of their relationships with Weierstrass semigroups, chapter [3] is probably the most important reference.
Finally, chapter [1] is a survey of results on numerical semigroups, their classification, characterization
and counting, and their relationship with algebraic-geometry codes from the perspective of decoding
algorithms, their parameters such as the minimum distance, and the optimization of their redundancy
under particular decoding restrictions.

9. Conclusions

Numerical semigroups play an important role in the analysis of error-correcting codes. More
specifically, additive ideals of numerical semigroups are involved in determining non-redundant
parity-checks, the code length, the generalized Hamming weights, and the isometry-dual sequences of
algebraic-geometry codes. These results have been presented in this survey in a unified framework.

Funding: This work was partly supported by the Catalan Government under grant 2017 SGR 00705, by the
Spanish Ministry of Economy and Competitivity under grant TIN2016-80250-R, and by Universitat Rovira i Virgili
under grant OPEN2019.

Acknowledgments: The author would like to thank Michael E. O’Sullivan and Kwankyu Lee for many helpful
discussions. She would also like to thank the coauthors of the main papers involved in this contribution: Kwankyu
Lee, Albert Vico-Oton, Euijin Hong, and Iwan Duursma.

Conflicts of Interest: The author declares no conflict of interest.

39

Symmetry 2019, 11, 1406

References

1. Bras-Amorós, M. Numerical semigroups and codes. In Algebraic Geometry Modeling in Information Theory;
Volume 8 of Ser. Coding Theory Cryptol.; World Science Publisher: Hackensack, NJ, USA, 2013; pp. 167–218.

2. Geil, O. On codes from norm-trace curves. Finite Fields Appl. 2003, 9, 351–371. [CrossRef]
3. Høholdt, T.; van Lint, J.H.; Pellikaan, R. Algebraic geometry codes. In Handbook of Coding Theory;

North-Holland: Amsterdam, The Netherlands, 1998; Volumes I and II, pp. 871–961.
4. Sylvester, J.J. Mathematical questions with their solutions. Educ. Times 1884, 41, 21.
5. Stichtenoth, H. A note on Hermitian codes over GF(q2). IEEE Trans. Inform. Theory 1988, 34, 1345–1348.

[CrossRef]
6. Bras-Amorós, M.; Lee, K.; Vico-Oton, A. New lower bounds on the generalized Hamming weights of AG

codes. IEEE Trans. Inform. Theory 2014, 60, 5930–5937. [CrossRef]
7. Bras-Amorós, M. Acute semigroups, the order bound on the minimum distance, and the Feng-Rao

improvements. IEEE Trans. Inform. Theory 2004, 50, 1282–1289. [CrossRef]
8. Bras-Amorós, M. A note on numerical semigroups. IEEE Trans. Inform. Theory 2007, 53, 821–823. [CrossRef]
9. Bras-Amorós, M.; O’Sullivan, M. On semigroups generated by two consecutive integers and improved

Hermitian codes. IEEE Trans. Inform. Theory 2007, 53, 2560–2566. [CrossRef]
10. Kirfel, C.; Pellikaan, R. The minimum distance of codes in an array coming from telescopic semigroups.

IEEE Trans. Inform. Theory 1995, 41, 1720–1732. [CrossRef]
11. Munuera, C.; Torres, F. A note on the order bound on the minimum distance of AG codes and acute

semigroups. Adv. Math. Commun. 2008, 2, 175–181.
12. Oneto, A.; Tamone, G. On numerical semigroups and the order bound. J. Pure Appl. Algebra 2008, 212,

2271–2283. [CrossRef]
13. Oneto, A.; Tamone, G. On the order bound of one-point algebraic geometry codes. J. Pure Appl. Algebra 2009,

213, 1179–1191. [CrossRef]
14. Oneto, A.; Tamone, G. On some invariants in numerical semigroups and estimations of the order bound.

Semigroup Forum 2010, 81, 483–509. [CrossRef]
15. Bras-Amorós, M. Addition behavior of a numerical semigroup. In Arithmetic, Geometry and Coding Theory

(AGCT 2003); Volume 11 of Sémin. Congr.; Société Mathématique de France: Paris, France, 2005; pp. 21–28.
16. Barucci, V. Decompositions of ideals into irreducible ideals in numerical semigroups. J. Commut. Algebra

2010, 2, 281–294. [CrossRef]
17. Geil, O.; Munuera, C.; Ruano, D.; Torres, F. On the order bounds for one-point AG codes. Adv. Math. Commun.

2011, 5, 489–504.
18. Stichtenoth, H. Algebraic Function Fields and Codes; Universitext; Springer: Berlin, Germany, 1993.
19. Geer, G.V.; Howe, E.W.; Lauter, K.E.; Ritzenthaler, C. Tables of Curves with Many Points. Available online:

http://www.manypoints.org (accessed on 4 November 2019).
20. Lewittes, J. Places of degree one in function fields over finite fields. J. Pure Appl. Algebra 1990, 69, 177–183.

[CrossRef]
21. Geil, O.; Matsumoto, R. Bounding the number of Fq-rational places in algebraic function fields using

Weierstrass semigroups. J. Pure Appl. Algebra 2009, 213, 1152–1156. [CrossRef]
22. Bras-Amorós, M.; Vico-Oton, A. On the Geil-Matsumoto bound and the length of AG codes. Des. Codes Cryptogr.

2014, 70, 117–125. [CrossRef]
23. Beelen, P.; Ruano, D. Bounding the number of points on a curve using a generalization of Weierstrass

semigroups. Des. Codes Cryptogr. 2013, 66, 221–230. [CrossRef]
24. Bras-Amorós, M.; Duursma, I.; Hong, E. Isometry-dual flags of AG codes. 2019, submitted.
25. Munuera, C. On the generalized Hamming weights of geometric Goppa codes. IEEE Trans. Inform. Theory

1994, 40, 2092–2099. [CrossRef]
26. Munuera, C. Generalized Hamming weights and trellis complexity. In Advances in Algebraic Geometry Codes;

Martinez-Moro, E., Munuera, C., Ruano, D., Eds.; World Scientific: Singapore, 2008; pp. 363–390.
27. Yang, K.; Kumar, P.V.; Stichtenoth, H. On the weight hierarchy of geometric Goppa codes. IEEE Trans.

Inform. Theory 1994, 40, 913–920. [CrossRef]
28. Wei, V.K. Generalized Hamming weights for linear codes. IEEE Trans. Inform. Theory 1991, 37, 1412–1418.

[CrossRef]

40

Symmetry 2019, 11, 1406

29. Ozarow, L.H.; Wyner, A.D. Wire-tap channel II. In Advances in Cryptology (Paris, 1984); Volume 209 of
Lecture Notes in Comput. Sci.; Springer: Berlin, Germany, 1985; pp. 33–50.

30. Rouayheb, S.E.; Soljanin, E.; Sprintson, A. Secure network coding for wiretap networks of type II. IEEE Trans.
Inform. Theory 2012, 58, 1361–1371. [CrossRef]

31. Ngai, C.K.; Yeung, R.W.; Zhang, Z. Network generalized Hamming weight. IEEE Trans. Inform. Theory 2011,
57, 1136–1143. [CrossRef]

32. Gopalan, P.; Guruswami, V.; Raghavendra, P. List decoding tensor products and interleaved codes.
In Proceedings of the 2009 ACM International Symposium on Theory of Computing, Bethesda, MD, USA,
31 May–2 June 2009; ACM: New York, NY, USA, 2009; pp. 13–22.

33. Guruswami, V. List decoding from erasures: bounds and code constructions. IEEE Trans. Inform. Theory
2003, 49, 2826–2833. [CrossRef]

34. Janwa, H.; Lal, A.K. On generalized Hamming weights and the covering radius of linear codes. In Applied
Algebra, Algebraic Algorithms and Error-Correcting Codes; Volume 4851 of Lecture Notes in Comput. Sci.;
Springer: Berlin, Germany, 2007; pp. 347–356.

35. Cruz, R.D.; Meyer, A.; Sole, P. An extension of Massey scheme for secret sharing. In Proceedings of the
Information Theory Workshop, Dublin, Ireland, 30 August–3 September 2010.

36. Kurihara, J.; Uyematsu, T. Strongly-secure secret sharing based on linear codes can be characterized by
generalized Hamming weight. In Proceedings of the 49th Annual Allerton Conference Communication,
Control, and Computing, Monticello, IL, USA, 28–30 September 2011.

37. Luo, Y.; Mitrpant, C.; Vinck, A.J.H.; Chen, K. Some new characters on the wire-tap channel of type II.
IEEE Trans. Inform. Theory 2005, 51, 1222–1229. [CrossRef]

38. Geil, O.; Martin, S.; Matsumoto, R.; Ruano, D.; Luo, Y. Relative generalized Hamming weights of one-point
algebraic geometric codes. IEEE Trans. Inform. Theory 2014, 60, 5938–5949. [CrossRef]

39. Lee, K. Bounds for generalized Hamming weights of general AG codes. Finite Fields Appl. 2015, 34, 265–279.
[CrossRef]

40. Heijnen, P.; Pellikaan, R. Generalized Hamming weights of q-ary Reed-Muller codes. IEEE Trans.
Inform. Theory 1998, 44, 181–196. [CrossRef]

41. Delgado, M.; Farrán, J.I.; García-Sánchez, P.A.; Llena, D. On the generalized Feng-Rao numbers of numerical
semigroups generated by intervals. Math. Comp. 2013, 82, 1813–1836. [CrossRef]

42. Delgado, M.; Farrán, J.I.; García-Sánchez, P.A.; Llena, D. On the weight hierarchy of codes coming from
semigroups with two generators. IEEE Trans. Inform. Theory 2014, 60, 282–295. [CrossRef]

43. Farrán, J.I.; García-Sxaxnchez, P.A.; Heredia, B.A. On the second Feng-Rao distance of algebraic geometry
codes related to Arf semigroups. Des. Codes Cryptogr. 2018, 86, 2893–2916. [CrossRef]

44. Farrán, J.I.; García-Sxaxnchez, P.A.; Heredia, B.A.; Leamer, M.J. The second Feng-Rao number for codes
coming from telescopic semigroups. Des. Codes Cryptogr. 2018, 86, 1849–1864. [CrossRef]

45. García, A.; Kim, S.J.; Lax, R.F. Consecutive Weierstrass gaps and minimum distance of Goppa codes. J. Pure
Appl. Algebra 1993, 84, 199–207. [CrossRef]

46. Tang, L. Consecutive Weierstrass gaps and weight hierarchy of geometric Goppa codes. Algebra Colloq. 1996,
3, 1–10.

47. Feng, G.L.; Rao, T.R.N. A simple approach for construction of algebraic-geometric codes from affine plane
curves. IEEE Trans. Inform. Theory 1994, 40, 1003–1012. [CrossRef]

48. Campillo, A.; Farrán, J.I. Computing Weierstrass semigroups and the Feng-Rao distance from singular plane
models. Finite Fields Appl. 2000, 6, 71–92. [CrossRef]

49. Farrán, J.I.; Munuera, C. Goppa-like bounds for the generalized Feng-Rao distances. Discrete Appl. Math.
2003, 128, 145–156. [CrossRef]

50. Farrán, J.I.; Sánchez, P.A.G.A.; Llena, D. On the Feng-Rao numbers. In VII Jornadas de Matemática Discreta y
Algorítmica; CIEM: Castro Urdiales, Spain, 7–9 July 2010.

51. Barbero, A.I.; Munuera, C. The weight hierarchy of Hermitian codes. SIAM J. Discrete Math. 2000, 13, 79–104.
[CrossRef]

52. Assi, A.; García-Sánchez, P.A. Numerical Semigroups and Applications; Volume 1 of RSME Springer Series;
Springer: Cham, Switzerland, 2016.

53. Alfonsín, J.L.R. The Diophantine Frobenius Problem; Volume 30 of Oxford Lecture Series in Mathematics and
its Applications; Oxford University Press: Oxford, UK, 2005.

41

Symmetry 2019, 11, 1406

54. Rosales, J.C.; García-Sánchez, P.A. Numerical Semigroups; Volume 20 of Developments in Mathematics;
Springer: New York, NY, USA, 2009.

55. Pretzel, O. Codes and Algebraic Curves; Volume 8 of Oxford Lecture Series in Mathematics and its Applications;
The Clarendon Press Oxford University Press: New York, NY, USA, 1998.

56. Van Lint, J.H.; van der Geer, G. Introduction to Coding Theory and Algebraic Geometry; Volume 12 of DMV
Seminar; Birkhäuser: Basel, Switzerland, 1988.

57. Munuera, C.; Olaya-León, W. An introduction to algebraic geometry codes. In Algebra for Secure and Reliable
Communication Modeling; Volume 642 of Contemp. Math.; American Mathematical Society: Providence, RI,
USA, 2015; pp. 87–117.

c© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

42

symmetryS S
Article

Algebraic Properties of the Block Cipher DESL

Kenneth Matheis 1,†, Rainer Steinwandt 2,† and Adriana Suárez Corona 3,*,†

1 Institute for Mathematics and Computer Science, Boca Raton, FL 33428, USA; kmatheis@imacs.org
2 Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA;

rsteinwa@fau.edu
3 Department of Mathematical Sciences, Universidad de León, 24071 León, Spain
* Correspondence: asuac@unileon.es
† These authors contributed equally to this work.

Received: 14 October 2019; Accepted: 12 November 2019; Published: 15 November 2019

Abstract: The Data Encryption Standard Lightweight extension (DESL) is a lightweight block cipher
which is very similar to DES, but unlike DES uses only a single S-box. This work demonstrates that
this block cipher satisfies comparable algebraic properties to DES—namely, the round functions of
DESL generate the alternating group and both ciphers resist multiple right-hand sides attacks.

Keywords: lightweight cryptography; permutation group; block cipher

1. Introduction

Lightweight cryptography provides solutions tailored for devices with energy or computational
constraints, which are increasingly present with the rapid increase of sensors and IoT devices. These
requirements should not be met at the cost of losing security properties. Therefore, lightweight ciphers
should ensure they offer similar security guarantees to their counterparts.

One of the protocols designed following these principles is DESL, a lightweight cipher very
similar to the Data Encryption Standard (DES) [1], proposed by Leander et al. [2]. The proposed
cipher introduces one radical change: all substitution boxes in the DES are replaced with a single new
S-box. As detailed by Leander et al., this DES Lightweight extension (DESL) has very attractive features
in terms of implementability on low-cost platforms. The obvious cryptanalytic question is whether
these features might have been paid for with a loss of security. In other words, is the security of DESL
comparable to that of the original DES? Leander et al.’s original paper [2] shows that DESL offers
resistance against several common attack techniques, including certain types of linear and differential
cryptanalyses. Finding structural weaknesses in DESL’s design remains a challenge, so despite its
short key length, DESL continues to attract interest and keeps getting cited [3–5]. Just a few days
before submitting this manuscript, Ji et al. used DESL as a testing ground for proposed improvements
of Matsui’s algorithm [6]. In this contribution, we compare two algebraic properties of DESL with
those of DES.

First we show that the round functions of DESL generate the same permutation group as the
round functions of DES, namely the alternating group on 264 points. Our proof strategy is the same
as taken by Wernsdorf for DES [7], the core part being to establish 3-transitivity for the group in
question. It is not surprising that the replacement of DES’s S-boxes in DESL necessitates modifications
of Wernsdorf’s proof, and one might be tempted to hope that facing only one S-box (instead of several
as in DES) simplifies the analysis—this did not seem to be the case for the S-box in question.

In the second part of the paper, we compare the resistance of full and reduced round versions of
DES and DESL against an algebraic attack technique known as multiple right-hand sides (MRHS) [8].
This type of attack seems particularly interesting for Feistel ciphers like DES and DESL MRHS
equations allow a fairly compact encoding of non-linear equations for the secret key, obtained from a

Symmetry 2019, 11, 1411; doi:10.3390/sym11111411 www.mdpi.com/journal/symmetry43

Symmetry 2019, 11, 1411

known plaintext–ciphertext pair. The operations for solving such equations are in principle suitable
for being accelerated through hardware [9], but establishing run-time estimates for such an attack
against genuine ciphers is (perhaps unsurprisingly) challenging. While being devised as a tool for
cryptanalysis, Raddum and Zajac recently demonstrated that a cipher representation derived from
MRHS equations may yield a faster encryption than a reference implementation of a cipher [10]. In [11],
Zajac leveraged MRHS equations as a tool to study the connection between the cost of algebraic attacks
and the multiplicative complexity of lightweight ciphers. Here we consider the original cryptanalytic
application of MRHS equations. The experimental results we found indicate that DESL offers resistance
to this type of algebraic attack that is comparable to DES. As an aside, our results falsify a conjecture
by Schoonen [12] (Hypothesis 5.1).

To keep our presentation reasonably self-contained, the next section presents the relevant details
on the block cipher in question as well as the main ideas underlying an MRHS-based algebraic attack.

2. Preliminaries

With the exception of two modifications, DESL is identical to the Data Encryption Standard;
in particular, plaintexts and ciphertexts are elements of {0, 1}64 and the key can be taken for an element
of {0, 1}56. The first difference between DES and DESL is not relevant for the group-theoretic property
and the algebraic attack we explore: unlike for DES, there is no initial permutation and no final
permutation of the data processed in the cipher. The implications of the second modification is less
obvious: DESL replaces all eight S-boxes in DES with a single new S-box.

2.1. Description of DESL

Figure 1 illustrates the basic data flow in DESL, and we refer to the DES specification [1] and
Leander et al.’s paper [2] for a detailed specification. For our purposes it is enough to be aware of
the following:

• There are 16 rounds, each round i implementing a permutation πi ∈ S264 which depends on a
round key Ki ∈ {0, 1}48. The latter is derived from the secret key K ∈ {0, 1}56 through a suitable
key schedule.

• Each of the 16 rounds involves a round-key-dependent function F′Ki
(Ri) = P ◦⊕ ◦S ◦⊕ ◦E where

– E : {0, 1}32 −→ {0, 1}48 is an injective map specified in [1].
–

⊕
: {0, 1}48 −→ {0, 1}48, x �−→ x⊕ Ki adds (xor) the round key Ki to the input.

– S : {0, 1}48 −→ {0, 1}32 splits the input (a1, . . . , a48) ∈ {0, 1}48 into 6-bit blocks and for each
j = 1, . . . , 8 substitutes (a6j−5, . . . , a6j) ∈ {0, 1}6 with the corresponding 4-bit value obtained
from Table 1.

– P ∈ S232 is a permutation on 32-bit strings as specified in [1].

• In each round, the 64-bit input is split into a left half Li ∈ {0, 1}32 and a right half Ri ∈ {0, 1}32.
Then the value L′i := F′Ki

(Ri)⊕ Li is computed, where ⊕ is addition in {0, 1}48. The output of
round i for i ∈ {1, . . . , 15} is (Ri, L′i). In the last round there is no swap, that is, the value (L′16, R16)

is output.

Table 1. The substitution function S : {0, 1}6 −→ {0, 1}4 of DESL is given by this S-box from [2];
(a1, . . . , a6) ∈ {0, 1}6 is mapped to the 4-bit binary representation of the table entry in row no.
a1a6 and column no. a2a3a4a5 (both interpreted as binary representation of a number in {0, . . . , 3}
resp. {0, . . . , 15}).

14 5 7 2 11 8 1 15 0 10 9 4 6 13 12 3
5 0 8 15 14 3 2 12 11 7 6 9 13 4 1 10
4 9 2 14 8 7 13 0 10 12 15 1 5 11 3 6
9 6 15 5 3 8 4 11 7 1 12 2 0 14 10 13

44

Symmetry 2019, 11, 1411

……

Figure 1. Data Encryption Standard Lightweight extension (DESL) overview.

For the group-theoretic part of our discussion of DESL, we make use of an observation about DES
by Davio et al. [13] which has also been exploited in [7]. Namely, we rewrite DESL as shown in Figure 2,
that is, by applying P−1 respectively P before the first round and after the last round, we combine E
and P into a single function EP such that P no longer has to be applied after the application of the
S-box. The composition of and E and P is given in Table 2.

……

Figure 2. Equivalent description of DESL with the permutation P being applied before the expansion
function E.

45

Symmetry 2019, 11, 1411

Table 2. The function EP : {0, 1}32 −→ {0, 1}48, mapping (a1, . . . , a32) to aEP(1), . . . , aEP(32) where
EP(j) is the j-th entry in the table, reading from left to right, top to bottom (e.g., EP(7) = 21).

25 16 7 20 21 29
21 29 12 28 17 1
17 1 15 23 26 5
26 5 18 31 10 2
10 2 8 24 14 32
14 32 27 3 9 19
9 19 13 30 6 22
6 22 11 4 25 16

2.2. Multiple Right-Hand Sides (MRHS)

DESL, DES, and many other block ciphers can be modeled as series of polynomial equations over
the binary field F2, therewith suggesting algebraic attacks as a possible attack vector. MRHS offers an
alternative to algebraic attacks using SAT solvers or Gröbner bases. Instead of working with ordinary
polynomials, equations are represented in a different way, which for several block ciphers, including
DESL and DES, can be derived conveniently. For a detailed discussion of MRHS, we refer to Raddum
and Semaev’s work [8]. Here we restrict ourselves to an informal review of those aspects needed for
our application. In particular, we do not discuss specifics of the implementation of the algorithm and
refer to [8] (Section 6) for more details (cf. also [12,14]).

2.2.1. Basic Terminology

For a column vector x = (x1 x2 . . . xy)T ∈ F
y
2, a k× y binary matrix A of rank k, and column

vectors b1, b2, . . . , bs ∈ Fk consider the following type of equation:

Ax = b1, b2, . . . , bs. (1)

We refer to such an equation as an MRHS system of linear equations with right hand sides b1, b2, . . . , bs.
By a solution to (1) we mean a vector in F

y
2 satisfying at least one particular linear system of equations

Ax = bi. The set of all solutions to (1) is obtained by forming the union of the solutions to the individual
systems Ax = bi (1 ≤ i ≤ s). To work with MRHS systems of linear equations, we juxtapose the above
column vectors bi to form a matrix L and rewrite Equation (1) as Ax = [L]. The pair (A, L) is called a
symbol, and when writing equations, the brackets around L emphasize that we are not working with
an ordinary equation of matrices.

For example, the following is an MRHS system of linear equations:

⎛⎜⎝ 1 1 0 0 0
1 0 1 0 0
1 0 0 1 0

⎞⎟⎠
⎛⎜⎜⎜⎜⎜⎝

x1
x2
x3
x4
x5

⎞⎟⎟⎟⎟⎟⎠ =

⎡⎢⎣ 1 0 0 1
0 1 0 0
0 0 1 1

⎤⎥⎦
and algebraically, it corresponds to the nonlinear equation

x1x4 + x1x2 + x2x4 + x2 + x3 + x4 + 1 = 0.

Given a system of symbols
S1 : A1x = [L1]

...
Sn : Anx = [Ln]

, (2)

46

Symmetry 2019, 11, 1411

a solution to such a system is defined in the obvious way: it is a vector x ∈ F
y
2 satisfying all of the

underlying n MRHS systems of linear equations, and the goal of the procedure discussed next is to
identify all solutions of (2).

2.2.2. Solving a System of Symbols

There are three main components to MRHS: agreeing, gluing, and extracting equations. Since memory
is finite in any actual implementation of the algorithm, it may also happen that we have to guess
variables, and sometimes an equation symbol is made use of. Each of these parts is discussed below,
and we start with a description of the main components.

Agreeing

The basic idea of an agreeing phase is to remove columns b in a right hand side Li if no solution of
Aix = b can be a solution to the system (2). To achieve this, pairwise agreeing of symbols is employed.
Namely, let Si : Aix = [Li] and Sj : Ajx = [Lj] be two symbols; we say that Si and Sj agree if for every
b ∈ Li, there exists a b′ ∈ Lj such that the linear system(

Ai
Aj

)
x =

(
b
b′

)
(3)

is consistent, and, vice versa, for each b′ ∈ Lj there exists a b ∈ Li such that (3) is consistent.
In a situation where Si and Sj do not agree, we remove those columns b from Li for which the

linear system Aix = b is inconsistent with Ajx = [Lj]. Dually, those columns b′ from Lj are removed,
for which Ajx = b′ is inconsistent with Aix = [Li]. Different strategies can be used to realize this basic
idea, but for our purposes it is not necessary to go into further detail on this.

However, it is important to note that if two symbols Sh and Si agree but Si and Sj disagree,
columns may be deleted in one or both of Li and Lj. After this happens, it may well happen that Sh
does not agree with either of the modified symbols, and it becomes necessary to re-agree Sh with them.
During the latter agreement, columns from Lh may have to be deleted, and so on, possibly resulting in
a chain reaction of column deletions. To ensure that a system of symbols reaches a pairwise-agreed
state, we perform the Agreeing1 algorithm in Figure 3 (see [8] (Section 3.1)).

While the symbols in a System (2) do not pairwise agree,

1. Find Si and Sj which do not agree.
2. Agree Si and Sj.

Figure 3. Agreeing1 algorithm.

Gluing

When a system of symbols is in a pairwise-agreed state, we may choose to apply a different
operation: The gluing of two symbols Si = (Ai, Li) and Sj = (Aj, Lj) results in a new symbol Bx = [L]
whose set of solutions is the set of common solutions to Aix = [Li] and Ajx = [Lj]. After having
formed this new symbol, it is inserted into the system at hand and the two symbols Si and Sj which
formed (B, L) are no longer necessary and are removed from the system.

Gluing a matrix Li of width si with a matrix Lj of width sj may yield a matrix L with as many as
si · sj columns. In an implementation, computing certain glues might therefore turn out to be infeasible,
and one restricts to gluing only pairs of symbols where the number of columns in the resulting symbol
does not exceed a certain threshold.

47

Symmetry 2019, 11, 1411

Once several glues have been performed, the symbols in the resulting system will usually no
longer be pairwise-agreed, so the algorithm in Figure 3 can be run again, initiating another round of
agreeing and gluing. The eventual goal of iterated agreeing and gluing steps is to obtain a system of
symbols which consists of a single symbol.

Extracting Equations

From a given symbol S : Ax = [L] we can try to extract unique right-hand side (URHS) equations,
and if this is done, the resulting linear equations are placed in a dedicated symbol S0 to which we
refer as an equation symbol. The equation symbol is checked for consistency and size. The A-part of
S0 has the same number of columns as the A-parts of the other symbols, but its L-part has only one
column. The equation symbol is not considered a proper part of the system (2) and does not take part
in the Agreeing1 algorithm, nor is it removed after being glued to a symbol in the system. However,
various implementations will involve S0 in an agreement or gluing step. Furthermore, information
from guessing variables may also be reflected by S0.

Guessing Variables

It may happen that all symbols in a system are pairwise-agreed, no new URHS equations can
be extracted, and no pair of symbols can be glued without exceeding the threshold. Lacking a better
alternative, in such a situation one can guess the (one-bit) value of a variable. Before performing a
guess, the system of symbols—to which we will refer as the state—is stored. After the guess has been
made, pairwise agreeing, gluing, and equation extraction are performed as normal. If after some steps
the state, again, does not allow for any new URHS equation to be computed or pair of symbols to be
glued, the state is saved again, and we guess the value of another variable.

Obviously a guess for a variable can be incorrect, and this discovery manifests as follows: during
the agreement of two symbols, all right-hand sides of at least one of the symbols get removed, indicating
that the system has no solution. When this happens, the state can be rolled back to a previously saved
state, so that a different guess can be made.

3. The Group Generated by DESL’s Round Functions

In this section we show that the round functions of DESL generate the same group as the round
functions of DES. The main part of the argument is to establish 3-transitivity of the group generated by
DESL’s round functions. To present the (somewhat technical) proof it will be convenient to introduce
some notation.

3.1. Notation

The inputs for the S-box of DESL are bitstrings of length 6, outputting bit strings of length 4,
as detailed in Table 1. The bitstring inputs are obtained by dividing a 48 bit string into eight blocks
of equal length. To refer to the latter, given a ∈ {0, 1}48, we set [a]j := (ai)

6j
i=6j−5 (j = 1, . . . , 8).

Analogously, for a ∈ {0, 1}32, we write [a]j := (ai)
4j
i=4j−3 (j = 1, . . . , 8) for the selection of 4-bit blocks.

It will be clear from the context when we are dealing with 48-bit, respectively 32-bit values. Finally,
as manifested in the balanced Feistel structure, splitting a bitstring of even length into two halves is
a common operation in DESL, and for (a1, . . . , a2m) ∈ {0, 1}2m we define aL := (ai)

m
i=1 ∈ {0, 1}m and

aR := (ai)
2m
i=m+1 ∈ {0, 1}m.

Furthermore, for ease of readability, we will often represent bitstrings by the decimal number
they represent in binary (again, the length of the bitstring will always be clear from the context).
Accordingly, we write A264 and S264 for the alternating and symmetric group respectively on {0, 1}64.
Given a set of permutations Π, we denote by 〈Π〉 the group generated by them. Specifically we are
interested in the group G generated by the round functions FK of DESL, where K ranges over all

48

Symmetry 2019, 11, 1411

possible values in {0, 1}48. As in Wernsdorf’s analysis of DES in [7], we ignore any restrictions imposed
by the key schedule and allow the round keys to be chosen freely.

Using the description and notation from Section 2.1, for a given round key K ∈ {0, 1}48 we can
represent FK ∈ S264 as

FK : {0, 1}32 × {0, 1}32 −→ {0, 1}32 × {0, 1}32

(a, b) �−→
(
b, ([a]i ⊕ S([K]i ⊕ [EP(b)]i))8

i=1
) .

We can therefore state our result in terms of these functions, proving that

G =
〈
{FK ∈ S264 |K ∈ {0, 1}48}

〉
= A264 .

3.2. Establishing 3-Transitivity of G

Before proving the main result, we will prove some previous lemmas.

Lemma 1. The round functions of DESL generate a subgroup of A264 that acts transitively on {0, 1}64.

Proof. Verifying the transitivity of G is straightforward, and the work of Even and Goldreich [15]
ensures that G is contained in the alternating group.

As an intermediate step, we will show the transitivity of G0 := {g ∈ G| g(0) = 0} on {0, 1}64 \
{(0, . . . , 0)} and transitivity of G0,d := {g ∈ G|g(0) = 0 and g(d) = d} on {0, 1}64 \ {(0, . . . , 0), d},
where d := (δ31,i)

64
i=1 has a single non-zero entry at the 31st position.

Before doing so, let us have a closer look at G0 and G0,d:
In view of the Feistel structure of DESL, it is perhaps not very surprising that we deal with pairs

of round functions when exploring the transitivity of G0 and G0,d. We define four sets of key pairs,
where the last two depend on the auxiliary value d′ := (0, 0, 0, 1, 0, 0) ∈ {0, 1}6:

M := {(k, k′) ∈ {0, 1}6 × {0, 1}6|S(k) = S(k′)}
M := {(K, K′) ∈ {0, 1}48 × {0, 1}48|∀ j ∈ {1, . . . , 8} : ([K]j, [K′]j) ∈ M}

Md′ := {(k, k′) ∈ M|S(k⊕ d′) = S(k′ ⊕ d′)}
Md′ := {(K, K′) ∈M|([K]4, [K′]4) ∈ Md′ .}

The elements in G we are mainly interested in are of the form FL
K,K′ := F−1

K′ FK or FR
K,K′ := FK′F

−1
K

with the key pair (K, K′) being chosen from M. For input pairs (a, b) ∈ {0, 1}32 × {0, 1}32 we have

FL
K,K′(a, b) = ([a]1 ⊕ S([K]1 ⊕ [EP(b)]1)⊕ S([K′]1 ⊕ [EP(b)]1), . . . ,

[a]8 ⊕ S([K]8 ⊕ [EP(b)]8)⊕ S([K′]8 ⊕ [EP(b)]8), b) and

FR
K,K′(a, b) = (a, [b]1 ⊕ S([K]1 ⊕ [EP(a)]1)⊕ S([K′]1 ⊕ [EP(a)]1), . . . ,

[b]8 ⊕ S([K]8 ⊕ [EP(a)]8)⊕ S([K′]8 ⊕ [EP(a)]8)).

In other words, when evaluating FL
(K,K′)(a, b), the right half of the input does not vary and its left half

is XORed with the value (S([K]i ⊕ [EP(b)]i)⊕ S([K′]i ⊕ [EP(b)]i))8
i=1 to the left half of the input.

For FR
(K,K′) the situation is similar, with the left half of the input being stabilized.

The following proposition helps in understanding the effect of repeatedly applying a map of the
form FR

K,K′ , respectively FL
K,K′ .

49

Symmetry 2019, 11, 1411

Proposition 1. The functions FL
K,K′ and FR

K,K′ defined above satisfy the following:

(a) ∀(K, K′) ∈M : FL
K,K′ ∈ G0,d and FR

K,K′ ∈ G0.

(b) ∀(K, K′) ∈Md′ : FL
K,K′ ∈ G0,d and FR

K,K′ ∈ G0,d.

(c) Let n ∈ N. Then, for all (K1, K′1), . . . , (Kn, K′n) ∈ M and for all (a, b) ∈ {0, 1}32 × {0, 1}32,
the following hold:

FR
K1,K′1

◦ · · · ◦ FR
Kn ,K′n

(a, b) =

(
a, [b]1⊕

n⊕
i=1

(S([Ki]1 ⊕ [EP(a)]1)⊕ S([K′i]1 ⊕ [EP(a)]1)), . . . ,

[b]8⊕
n⊕

i=1

(S([Ki]8 ⊕ [EP(a)]8)⊕ S([K′i]8 ⊕ [EP(a)]8))
)

and, analogously,

FL
K1,K′1

◦ · · · ◦ FL
Kn ,K′n

(a, b) =

(
[a]1 ⊕

n⊕
i=1

(S([Ki]1 ⊕ [EP(b)]1)⊕ S([K′i]1 ⊕ [EP(b)]1)), . . . ,

[a]8 ⊕
n⊕

i=1

(S([Ki]8 ⊕ [EP(b)]8)⊕ S([K′i]8 ⊕ [EP(b)]8)), b
)

.

Proof. The proof is immediate from the definition of FL
K,K′ and FR

K,K′ .

To understand better which values can be obtained in the left and right 32-bit halves of the output
through repeated application of a map of the form FR

K,K′ (respectively FL
K,K′), given some 64-bit input,

it is helpful to take a look at some F2-vector subspaces of F4
2:

Lemma 2. For y ∈ {0, 1}6 \ {(0, 0, 0, 0, 0, 0)} let

U(y) := 〈S (k⊕ y)⊕ S
(
k′ ⊕ y

)
|(k, k′) ∈ M〉 ⊆ F

4
2

be the F2-vector space spanned by {S (k⊕ y)⊕ S (k′ ⊕ y) |(k, k′) ∈ M}.
Similarly, denote by Ud′(y) the F2-vector space

Ud′(y) := 〈S (k⊕ y)⊕ S
(
k′ ⊕ y

)
|(k, k′) ∈ Md′ 〉.

Then, the following statements hold:

(a) ∀ y ∈ {0, 1}6 \ {(0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 1)} : U(y) = {0, 1}4.

(b) U(0, 0, 0, 0, 0, 1) = {0, 2, 4, 6, 8, 10, 12, 14}.

(c) ∀ y ∈ {2, 6, 17, 18, 21, 22, 41, 45, 49, 53, 58, 62} : Ud′(y) = {0, 1}4.

(d) ∀ y ∈ {0, 1}6 \ {(0, 0, 0, 1, 0, 0)} : Ud′(y) �= {0}.

Proof. The proof is by direct computation, e.g., using a programming language like Python [16].

Remark 1. Bringing the notation in Lemma 2 to use, from Proposition 1 we obtain the following statements
which for the case U([EP(a)]i) = {0, 1}4 (respectively U([EP(b)]k) = {0, 1}4) may be regarded as “hinting
at transitivity”:

50

Symmetry 2019, 11, 1411

• For i = 1, . . . , 8 let ui ∈ U([EP(a)]i) be a bitstring. Then, there exist (K1, K′1), . . . , (Kn, K′n) ∈M such
that FR

K1,K′1
◦ · · · ◦ FR

Kn ,K′n
(a, b) = (a, [b]1 ⊕ u1, . . . , [b]8 ⊕ u8) for all (a, b) ∈ {0, 1}32 × {0, 1}32.

• For i = 1, . . . , 8 let ui ∈ U([EP(b)]i) be a bitstring. Then, there exist (K1, K′1), . . . , (Kn, K′n) ∈M such
that FL

K1,K′1
◦ · · · ◦ FL

Kn ,K′n
(a, b) = ([a]1 ⊕ u1, . . . , [a]8 ⊕ u8, b) for all (a, b) ∈ {0, 1}32 × {0, 1}32.

• For i ∈ {1, . . . , 8} \ {4} let ui ∈ U([EP(a)]i) be a bitstring and let u4 ∈ Ud′([EP(a)]4). Then, there
exist (K1, K′1), . . . , (Kn, K′n) ∈Md′ such that FR

K1,K′1
◦ · · · ◦ FR

Kn ,K′n
(a, b) = (a, b1 ⊕ u1, . . . , b8 ⊕ u8) for

all (a, b) ∈ {0, 1}32 × {0, 1}32.

• For i ∈ {1, . . . , 8} \ {4} let ui ∈ U([EP(b)]i) be a bitstring and let u4 ∈ Ud′([EP(b)]4). Then there
exist (K1, K′1), . . . , (Kn, K′n) ∈Md′ such that FL

K1,K′1
◦ · · · ◦ FL

Kn ,K′n
(a, b) = (a1 ⊕ u1, . . . , a8 ⊕ u8, b) for

all (a, b) ∈ {0, 1}32 × {0, 1}32.

Therefore, if we know that the equality U([EP(a)]k) = {0, 1}4 holds for some 1 ≤ k ≤ 8, then for each
bitstring c ∈ {0, 1}4 we can find a sequence of key pairs (K1, K′1), . . . , (Kn, K′n) ∈M with[[

FR
K1,K′1

◦ · · · ◦ FR
Kn ,K′n

(a, b)
]

R

]
k
= c.

For instance, we can choose pairs (K1, K′1), . . . , (Kn, K′n) with ([Kj]k, [K′j]k) ∈ M corresponding to the
linear combination of c⊕ [b]k, and the rest of the positions being 0. This ensures that all (Kj, K′j) are contained
in M, and if Ud′([EP(a)]k) = {0, 1}4 or k �= 4, we can also ensure (K1, K′1), . . . , (Kn, K′n) ∈Md′ .

Similarly, in case U([EP(b)]k) contains all bitstrings of length 4, we can obtain a sequence of key pairs with[[
FL

K1,K′1
◦ · · · ◦ FL

Kn ,K′n
(a, b)

]
L

]
k
= c.

The subsequent lemmata enable us to argue that G0,d acts transitively on {0, 1}64 \ {0, d}. In other
words, we prove that for all x, y ∈ {0, 1}64 \ {0, d} the equivalence x ∼ y holds, where x ∼ y ⇐⇒
∃g ∈ G0,d : g(x) = y. The proofs exploit in particular the transitivity of ∼.

Lemma 3. Let e := (1, 0, 1, . . . , 1) ∈ {0, 1}32 be the 32-bit vector which has a single 0-entry at the second
position and 1-entries everywhere else, and let (z, z′) ∈ {0, 1}32 × {0, 1}32 be arbitrary. Then (e, z) ∼ (e, z′).

Proof. Let (z, z′) ∈ {0, 1}32 × {0, 1}32 be arbitrary, but fixed. From Table 2 we see that

[EP(e)]i =

⎧⎪⎨⎪⎩
(1, 1, 1, 1, 1, 1) , if i ∈ {1, 2, 3, 6, 7, 8}
(1, 1, 1, 1, 1, 0) , if i = 4
(0, 1, 1, 1, 1, 1) , if i = 5

Hence, by properties (a) and (c) of Lemma 2 we obtain U((EP(e))i) = {0, 1}4 for all i = 1, . . . , 8
as well as Ud′((EP(e))4) = {0, 1}4.

Therefore, because of Remark 1 for c = (z′1, z′2, z′3, z′4) we get:

(e, z) ∼ (e, (z′1, z′2, z′3, z′4, z5, . . . , z32)), since (e, (z′1, z′2, z′3, z′4, z5, . . . , z32)) = FR
K1,K1′ ◦ · · · ◦

FR
Kn ,Kn′ (e, z), for the corresponding (Ki, Ki′), i ∈ {1, . . . , n}.

Analogously, since U((EPe)2) = {0, 1}4, we can obtain:

(e, (z′1, z′2, z′3, z′4, z5, . . . , z32)) ∼ (e, (z′1, . . . , z′8, z9, . . . , z32)).

If we continue carrying out the same procedure, since all the subspaces considered are {0, 1}4,
we can finally see that (e, z) ∼ (e, z′).

51

Symmetry 2019, 11, 1411

Lemma 4. ∀ a ∈ {0, 1}64 \ {0, d} , ∃ a′ ∈ {0, 1}64 \ {0, d} : a′ ∼ a and ∃ i ∈ {1, . . . , 32} \
{2, 5, 10, 18, 26, 31} : a′i = 1.

Proof. If ∃ i ∈ {1, . . . , 32} \ {2, 5, 10, 18, 26, 31} : ai = 1, then we obtain the lemma with a′ := a.

Otherwise, we distinguish two cases:

• If ∃ i ∈ {33, . . . , 64} : ai = 1:

Then ∃ l ∈ {1, . . . , 8} such that [EP(a)64
i=33]l �= 0:

– If [EP(a)64
i=33]l �= 1, then U([EP(a)64

i=33)]l) = {0, 1}4. Therefore, because of Remark 1, we can
show a′ = FL

K1,K1′ ◦ · · · ◦ FL
Kn ,Kn′ (a) such that ([a′]L)j = 1 for j ∈ {4l − 3, . . . , 4l}. Thus,

∃ i ∈ {1, . . . , 32} \ {2, 5, 10, 18, 26, 31} : a′i = 1.

– If [EP(a)64
i=33]l = 1, then U([EP(a)64

i=33]l) = {0, 2, 4, 6, 8, 10, 12, 14}. With an argument similar
to the previous one, we can get an element a′ = FL

K1,K1′ ◦ · · · ◦ FL
Kn ,Kn′ (a), such that (a′L)i = 1

for i ∈ {4l − 3, . . . , 4l − 1}. Therefore, ∃ i ∈ {1, . . . , 32} \ {2, 5, 10, 18, 26, 31} : a′i = 1.

• If ∀ i ∈ {33, . . . , 64} : ai = 0.

Since a �= 0, then ∃ i ∈ {1, . . . , 32} : ai = 1. Therefore, ∃ l ∈ {1, . . . , 8} such that [EP(a)32
i=1]l �= 0

and, like before (but using “right-functions”) we prove that we can get an element a′ = FR
K1,K1′ ◦

· · · ◦ FR
Kn ,Kn′ (a), where (Ki, Ki′) ∈ Md′ , such that ∃ i ∈ {33, . . . , 64} : a′i = 1. Notice that in this

case the pairs (Ki, Ki′) must be not only in M, but in Md′ , so that a ∼ a′ (Proposition 1(b)).

– If l �= 4

∗ If (EP(a)32
i=1)l �= 1, then U([EP(a)32

i=1)]l) = {0, 1}4.
Therefore, because of Remark 1, we can have a′ = FR

K1,K1′ ◦ · · · ◦ FR
Kn ,Kn′ (a), where

(Ki, Ki′) ∈Md′ , with a′i = 1 for some i ∈ {33, . . . , 64}.
∗ If [EP(a)32

i=1]l = 1, then U([EP(a)32
i=1)]l) = {0, 2, 4, 6, 8, 10, 12, 14}. With the same

argument as before, we can get an element a′ = FR
K1,K1′ ◦ · · · ◦ FR

Kn ,Kn′ (a), such that

a′i = 1 for i = 32 + j, where j ∈ {4l − 3, . . . , 4l − 1}.
– If l = 4: Since a �= d, according to Table 2, (EPa)4 �= (0, 0, 0, 1, 0, 0). Therefore, we have

Ud′((EPa)4) �= 0 (Lemma 2(d)) and we can obtain, as in the previous cases, an element
a′ := FL

K1,K1′ ◦ · · · ◦ FR
Kn ,Kn′ (a) ∼ a, with a′i = 1 for some i ∈ {33, . . . , 64}.

Hence, this case is traced back to the case ∃ i ∈ {33, . . . , 64} : ai = 1 and the proof is complete.

Lemma 5. ∀ a′ ∈ {0, 1}64 \ {0, d} : a′ ∼ a and ∃ i ∈ {1, . . . , 32} \ {2, 5, 10, 18, 26, 31} : a′i = 1, ∃ a′′ ∈
{0, 1}64 \ {0, d} : a′′ ∼ a′ and ∀ i ∈ {1, . . . , 32} \ {13, . . . , 16} : a′′i = ei.

Proof. If ∀ i ∈ {1, . . . , 32} \ {13, . . . , 16} : a′′i = ei, then we immediately obtain the Lemma with
a′′ := a′.

Otherwise, we choose an index j ∈ {1, . . . , 32} \ {2, 5, 10, 18, 26, 31} : a′j = 1 and we will prove that

∃ a0 ∈ {0, 1}64 \ {0, d} : a0 ∼ a′ , [a0]L = [a′]L and ∀ i ∈ I(j) : (a0)32+i = 1, where the sets I(j)
are defined in Figure 4.

52

Symmetry 2019, 11, 1411

j I(j)
1 {5, . . . , 12} \ {8}

3 or 27 {21,. . . , 24}
4 or 11 {29,. . . , 32}

6 {25,. . . , 32}
7 or 20 {1,. . . , 4}
8 or 24 {17,. . . , 20}

9 {21,. . . , 29}
12 or 28 {5,. . . , 8}
13 or 30 {25,. . . , 28}

14 {17,. . . , 24}
15 or 23 {9,. . . ,12}

16 {1, . . . , 4} ∪ {29, . . . , 31}
17 {5,. . . , 12}
19 {21, . . . , 28} \ {24}
21 {1,. . . , 8}
22 {25, . . . , 32} \ {28}
25 {1, . . . , 4} ∪ {29, . . . , 32}
29 {1, . . . , 8} \ {4}
32 {17, . . . , 24} \ {20}

Figure 4. Definition of I(j).

We define a0 := FR
K1,K1′ ◦ FR

K2,K2′ ◦ · · · ◦FR
Kn ,Kn′ (a′), with (Ki, Ki′) ∈ Md′ . Therefore, [a0]L = [a′]L,

and we will see that if (Ki, Ki′), i ∈ {1, . . . , n} have been chosen appropriately, we can have (a0)32+i =

1,∀ i ∈ I(j).
For j = 1:
According to Table 2, [EP(a′)L]2 �= 0 and [EP(a′)L]3 /∈ {0, 1}, since the corresponding positions

for a′1 are 12 and 14, which are in blocks 2 and 3. Therefore, we have:

• If [EP(a′)L]2 �= 1, then U([EP(a′)L]2) = {0, 1}4. Hence, because of Remark 1, ∃ (Ki, Ki′) ∈ Md′

such that [[a0]R]2 = [FL
K1,K1′ ◦ FL

K2,K2′ ◦ · · · ◦FL
Kn ,Kn′ (a′)]2 = (1, 1, 1, 1). Therefore, (a0)32+i = 1 for

all i ∈ {5, . . . , 8}.

• If [EP(a′)L]2 = 1, then U([EP(a′)L]2) = {0, 2, 4, 6, 8, 10, 12, 14}. With a similar argument,
∃ (Ki, Ki′) ∈ Md′ such that [[a0]R]2 = [FL

K1,K1′ ◦ FL
K2,K2′ ◦ · · · ◦FL

Kn ,Kn′ (a′)]2 = (1, 1, 1, 0). Therefore,

(a0)32+i = 1 for all i ∈ {5, . . . , 7}.

Since [EP(a′)L]3 /∈ {0, 1}, then U([EP(a′)L]3) = {0, 1}4 and therefore ∃(Ki, Ki′) ∈ Md′ such
that [[a0]R]3 = [FL

K1,K1′ ◦ FL
K2,K2′ ◦ · · · ◦FL

Kn ,Kn′ (a′)]3 = (1, 1, 1, 1). Therefore, (a0)32+i = 1 for all i ∈
{9, . . . , 12}.

Thus, considering the composition of the functions involved, we obtain a0 such that (a0)32+i =

1 , ∀ i ∈ {5, . . . , 12} \ {8}.
A similar argument applies to the other values of j ∈ {1, . . . , 32} \ {13, . . . , 16}.
Now, we will see that ∃ a1 ∈ {0, 1}64 \ {0, d} : a1 ∼ a0 , [a1]R = [a0]R and ∀ i ∈ J(j) : (a1)i = ei,

where the sets J(j) are defined in Figure 5.
We define a1 := FL

K1,K1′ ◦ · · · ◦ FL
Kn ,Kn′ (a′), with (Ki, Ki′) ∈ M. Therefore, [a0]R = [a′]R, and we

will see that choosing adequate elements (Ki, Ki′), we can have (a1)i = ei, ∀ i ∈ J(j).
For j = 1, I(1) = {5, . . . , 12} \ {8}:
According to Table 2, let us see which positions EP(([a0]R)i) are in for the different values of

i ∈ I(1). We can see EP(([a0]R)5) is in position 18 (block 3) and 20 (block 4), EP(([a0]R)6) is in position
41 (block 7) and 43 (block 8), EP(([a0]R)7) is in position 3 (block 1), EP(([a0]R)9) is in position 35 and
37 (blocks 6 and 7), EP(([a0]R)10) is in position 23 and 25 (block 4 and 5), EP(([a0]R)11) is in position
45 (block 8), and EP(([a0]R)12) is in position 9 (block 2).

53

Symmetry 2019, 11, 1411

j ({1, . . . , 32} \ {13, . . . , 16}) \ J(j)
1 or 17 {12}
3 or 27 {21, . . . , 24} ∪ {28}
4 or 11 {4} ∪ {9, . . . , 12} ∪ {20} ∪ {29, . . . , 32}
6 or 22 {20}
7 or 20 {1, . . . , 4} ∪ {8} ∪ {25, . . . , 28}
8 or 24 {17, . . . , 20} ∪ {24} ∪ {29, . . . , 32}

9 {28}
12 or 28 {5, . . . , 8} ∪ {12} ∪ {21, . . . , 24}
13 or 30 {17, . . . , 20} ∪ {25, . . . , 28}
14 or 32 {24}
15 or 23 {1, . . . , 4} ∪ {9, . . . , 12}
16 or 25 {4}

19 {17, . . . , 20} ∪ {28}
21 or 29 {8}

Figure 5. Definition of J(j).

In all blocks j, for j ∈ {1, . . . , 8} \ {3}, we have [EP[a0]R]j /∈ {0, 1} and then U([EP[a0]R]j) =

{0, 1}4. Therefore, as discussed in the previous proofs, ∃(Ki, Ki′) ∈ M such that [[a1]L]j := [FL
K1,K1′ ◦

FL
K2,K2′ ◦ · · · ◦FL

Kn ,Kn′ (a′)]j = [e]j ∀ j ∈ {1, . . . , 8} \ {3}. For block 3, we have [EP[a0]R]3 = 1, therefore

∃ (Ki, Ki′) ∈M such that (a1)i := (FL
K1,K1′ ◦ FL

K2,K2′ ◦ · · · ◦FL
Kn ,Kn′ (a′))i = ei ∀ i ∈ {9, . . . , 11}.

Therefore, the only position we cannot assure is equal to e is i = 12, therefore J(1)c = {12}.
For the rest of the indices j, we use similar arguments to compute sets J(j).

• If j ∈ {1, 6, 9, 14, 16, 17, 21, 22, 25, 29, 32}, the set ({1, . . . , 32} \ {13, . . . , 16}) \ J(j) has only one
element. Therefore, as ((a1)L)i = ei ∀ i ∈J(j), [EP(a1

L)]i /∈ {0, 1} ∀ i ∈ {1, . . . , 8} \ {4}, so
U([EP(a1

L)]i) = {0, 1}4. Therefore, choosing appropriate (Ki, Ki′) ∈ Md′ we get a2 := FR
K1,K1′ ◦

· · · ◦ FR
Kn ,Kn′ (a1), such that ([a2]R)i = ei ∀ i ∈ {1, . . . , 32} \ {13, . . . , 16} (Remark 1).

Therefore, we have [EP(a2
R)]i /∈ {0, 1} ∀ i ∈ {1, . . . , 8} \ {4}, so U([EP(a2

L)]i) = {0, 1}4. Now,
choosing adequate (Ki, Ki′) ∈ Md′ , we can have a3 := FL

K1,K1′ ◦ · · · ◦ FL
Kn ,Kn′ (a2), such that

(a3)i = ei ∀ i ∈ {1, . . . , 32} \ {13, . . . , 16}. Therefore, for a′′ := a3 we have the desired result.

Hence, we have seen that the lemma holds if a′j = 1 for j ∈ {1, 6, 9, 14, 16, 17, 21, 22, 25, 29, 32}.
• For indices j ∈ {1, . . . , 32} \ {2, 5, 10, 18, 26, 31}, we have J(j) ∩

{1, 6, 9, 14, 16, 17, 21, 22, 25, 29, 32} �= ∅. Therefore, we are in the case where
∃ j ∈ {1, 6, 9, 14, 16, 17, 21, 22, 25, 29, 32} such that (a1)i = 1, and carrying out the same procedure
as the one to get a3 from a′, we get a′′ satisfying (a′′)i = ei ∀i ∈ {1, . . . , 32} \ {13, . . . , 16}.

Lemma 6. ∀ a′′ ∈ {0, 1}64 \ {0, d} : a′′i = ei ∀ i ∈ {1, . . . , 32} \ {13, . . . , 16} , ∃ z ∈ {0, 1}32 : a′′ ∼ (e, z).

Proof. According to Table 2, [(EP(a)L)]4 corresponds to positions 26, 5, 18, 31, and 2.
Since {2, 5, 10, 18, 26, 31} ∩ {13, . . . , 16} = ∅, we know (a′′L)i = ei, ∀ i ∈ {2, 5, 10, 18, 26, 31}. Therefore,
[(EP(a)L)]4 = (1, 1, 1, 1, 1, 0) = 62 and because of Lemma 2 (c), U([EP((a′′)L)]j) = {0, 1}4. Thus,
considering appropriate (Ki, Ki′), we get (e, z) = FL

K1,K1′ ◦ · · · FL
Kn ,Kn′ (a′′), for some z ∈ {0, 1}32.

Corollary 1. ∀a ∈ {0, 1}64 \ {0, d} ∃ z ∈ {0, 1}32 : a ∼ (e, z).

Proof. Considering the chain a ∼ a′ ∼ a′′ ∼ (e, z), where these elements are as described in the
previous lemmata, the result follows.

Corollary 2. G0,d is transitive on {0, 1}64 \ {0, d}.

54

Symmetry 2019, 11, 1411

Proof. Let a, a′ ∈ {0, 1}64 \ {0, d}, by Lemma 6 and Corollary 1, ∃ z, z′ ∈ {0, 1}32 : a ∼ (e, z) ∼
(e, z′) ∼ a′.

Corollary 3. G0 is transitive on {0, 1}64 \ {0}.

Proof. Because of Corollary 1, it is enough to show that ∃g ∈ G0 such that g(d) �= d.
Note that since g ∈ G0, then g(d) �= 0.
Let (K, K′) ∈ M \Md′ , then S(K) = S(K′) and S(K ⊕ d′) �= S(K′ ⊕ d′). Therefore, FR

K,K′(d) =

(dL, dR⊕)S(K⊕ d′)⊕ S(K′ ⊕ d′) �= d, and FR
K,K′ ∈ G0.

Lemma 7. If G0 is transitive on {0, 1}64 \ {(0, . . . , 0)} and G0,d is transitive on {0, 1}64 \ {(0, . . . , 0), d},
then G is 3-transitive on {0, 1}64.

Proof. It follows immediately from [17] (Theorem 9.1).

Once we have shown that G is a 3-transitive subgroup of A264 , it is not particularly difficult to
verify that G is actually equal to the alternating group on 264 points.

Theorem 1. The round functions of DESL generate the alternating group, i.e., G = A264 .

Proof. We refer to the proof of Theorem 1 in [7], since the same proof applies here.

4. Applying MRHS to DESL and DES

The previous section focuses on a structural group-theoretic property which does not take the
actual number of DESL rounds into account. Subsequently, we studied an algebraic attack against
reduced and full round versions of DESL and compared the behavior of the attack with the situation
for DES. The underlying question is, to what extent does the modified S-box change the complexity of
an algebraic attack?

4.1. Symbol Creation for DESL

Since the structure of DES and DESL is the same, the process for creating the A-parts of MRHS
symbols for DESL is the same as that for DES, which is described nicely in [12] (pp. 50–53). The only
difference is that the L-part of each symbol will not correspond to a DES S-box, but instead to the DESL
S-box. This L-part is given as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 F F F F F F F F
0 0 0 0 F F F F 0 0 0 0 F F F F
0 0 F F 0 0 F F 0 0 F F 0 0 F F
0 F 0 F 0 F 0 F 0 F 0 F 0 F 0 F
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
8 5 E 3 6 9 6 9 6 6 9 9 A C 3 5
E 9 4 3 1 6 F 8 9 7 2 C 6 C 9 3
8 B D 6 7 4 8 3 1 E 6 1 C 9 3 E
6 9 9 A 5 9 6 6 6 5 6 9 5 A A 9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where each entry is written as standard hex notation to save space. Note that the top six rows
correspond to each of the possible inputs to an S-box, and the bottom four rows correspond to the
output of the S-box. For example, if the input to the S-box is 000000, then the output is 1110, both being
readable from the first column of this matrix. If the input is 000001, then the output is 0101, both being
readable from the second column. Further, if the input is 000010, the output is 0101, and if the input is
000011, the output is 0000.

55

Symmetry 2019, 11, 1411

4.2. Results

For serious ciphers, very often the first MRHS action cycle of agreeing, gluing, and equation
extracting (that is, until a guess is called for) will not be sufficient to discover the key, so guesses of
the key variables must be committed. Naturally, the fewer guesses required, the better an attack is
deemed to be. We give the name δ to the number of key bits we must guess before we discover the
whole key through an MRHS attack.

For our attacks, we use a machine called Blue with the following specifications: two quad-core
Xeon E5520 2.26 GHz processors (though only one core was used), 24 GB of RAM, using Windows 7
Server (Standard Edition). The ciphertext was 0123456789ABCDEF, and the key was the first 56 bits of
the SHA-1 hash of “Katalina” (without quotes).

Under these conditions, DESL was attacked on Blue, varying both the number of rounds of the
cipher and the threshold of MRHS. The results are summarized in Table 3, with the note that the
threshold listed is actually the base 2 logarithm of the actual threshold, so we always choose a power
of 2 for the number of columns each L-part is allowed to grow to.

Table 3. DESL δ on Blue, for varying rounds and thresholds.

Rounds of DESL

Threshold 4 6 8 10 12 14 16

20 0 34 36 36 40 38 40

21 0 34 39 37 39 39 42

22 0 33 39 37 38 43 38

23 0 33 38 45 46 48 46

We can see from this data that four rounds of DESL could be handled in the initial turn of an
MRHS attack, but things became more complicated with more rounds. For more than six rounds it
was not at all guaranteed that an increased threshold would actually help with the computation. Only
for twelve rounds did we see an improvement with increased threshold, but once we moved to a
threshold of 23, δ increased dramatically.

By way of contrast, DES was attacked on Blue varying the number of rounds and threshold.
The results are summarized in Table 4.

Table 4. DES δ on Blue, varying rounds and thresholds.

Rounds of DES

Threshold 4 6 8 10 12 14 16

20 1 (+1) 35 (+1) 36 (+0) 36 (+0) 41 (+1) 41 (+3) 40 (+0)

21 0 (+0) 35 (+1) 39 (+0) 37 (+0) 39 (+0) 40 (+1) 39 (−3)

22 0 (+0) 32 (−1) 39 (+0) 37 (+0) 38 (+0) 40 (−3) 38 (+0)

23 0 (+0) 33 (+0) 39 (+1) 43 (−2) 46 (+0) 48 (+0) 46 (+0)

Overall, DESL was about as secure as DES from an MRHS perspective, though there were two
occasions where DESL required three more bits to guess before recovering the entire key.

We remark in passing that it was conjectured by Schoonen in [12] (Hypothesis 5.1) that for
7–16 rounds of DES, δ would always be 56 minus the (base 2 logarithm of the) threshold, but Table 4
makes it plain that this was not the case.

5. Conclusions

Unlike DES, the DES Lightweight extension (DESL) uses a single S-box. The security of DESL
against a number of common types of attacks has already been argued in the literature. In this work

56

Symmetry 2019, 11, 1411

we establish that the round functions of DESL generate the same permutation group as the round
functions of DES, namely, the alternating group on 264 points. Moreover, based on our work, DESL
appeared to offer comparable resistance to MRHS-based algebraic attacks as DES. Therefore, from these
algebraic points of view, DESL has no disadvantage compared to DES, and the structural properties of
DESL remain an interesting cryptanalytic topic of study.

Author Contributions: Individual contributions to this article: conceptualization, K.M, R.S., and A.S.C.;
methodology, K.M., R.S., and A.S.C.; validation, K.M., R.S., and A.S.C.; formal analysis, A.S.C.; software, K.M. and
R.S.; investigation, K.M., R.S., and A.S.C.; resources, R.S. and A.S.C.; writing—original draft preparation, K.M.,
R.S., and A.S.C.; writing—review and editing, K.M., R.S., and A.S.C.; project administration, R.S. and A.S.C.;
funding acquisition, R.S. and A.S.C.

Funding: This research was funded in part by the NATO Science for Peace and Security Programme under grant
G5448 and through research project MTM2017-83506-C2-2-P by the Spanish MICINN.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to
publish the results.

References

1. Daley, W.M.; Kammer, R.G. Data Encryption Standard (DES). In Federal Information Processing Standards
Publication; National Institute of Standards and Technology: Gaithersburg, MD, USA 1999.

2. Leander, G.; Paar, C.; Poschmann, A.; Schramm, K. New Lightweight DES Variants. In Fast Software
Encryption, 14th International Workshop, FSE 2007; Lecture Notes in Computer Science; Biryukov, A., Ed.;
International Association for Cryptologic Research, Springer: New York, NY, USA, 2007; Volume 4593,
pp. 196–210.

3. Priyanka, A.A.; Saibal, K.P. A Survey of Cryptanalytic Attacks on Lightweight Block Ciphers. Int. J. Comput.
Sci. Inf. Technol. Secur. 2012, 2, 472–481.

4. Sun, S.; Hu, L.; Qiao, K.; Ma, X.; Shan, J.; Song, L. Improvement on the Method for Automatic Differential
Analysis and Its Application to Two Lightweight Block Ciphers DESL and LBlock-s. In Proceedings of the
2015 10th International Workshop on Security Advances in Information and Computer Security, IWSEC,
Nara, Japan, 26–28 August 2015; pp. 97–111.

5. Hatzivasilis, G.; Fysarakis, K.; Papaefstathiou, I.; Manifavas, C. A review of lightweight block ciphers.
J. Cryptogr. Eng. 2018, 8, 141–184. [CrossRef]

6. Ji, F.; Zhang, W.; Ding, T. Improving Matsui’s Search Algorithm for the Best Differential/Linear Trails and
its Applications for DES, DESL and GIFT. Cryptology ePrint Archive, Report 2019/1190. 2019. Available
online: http://eprint.iacr.org/2019/1190 (accessed on 14 November 2019).

7. Wernsdorf, R. The One-Round Functions of the DES Generate the Alternating Group. In Advances in
Cryptology—EUROCRYPT ’92; Lecture Notes in Computer Science; Rueppel, R.A., Ed.; Springer: New York,
NY, USA, 1993; Volume 658, pp. 99–112.

8. Raddum, H.; Semaev, I. Solving Multiple Right Hand Sides linear equations. Des. Codes Cryptogr. 2008,
49, 147–160. [CrossRef]

9. Geiselmann, W.; Matheis, K.; Steinwandt, R. PET SNAKE: A Special Purpose Architecture to Implement
an Algebraic Attack in Hardware. In Transactions on Computational Science X; Lecture Notes in Computer
Science; Springer: New York, NY, USA, 2010; Volume 6340, pp. 298–328.

10. Håvard, R.; Zajac, P. MRHS solver based on linear algebra and exhaustive search. J. Math. Cryptol. 2018,
12, 143–157.

11. Zajac, P. Upper bounds on the complexity of algebraic cryptanalysis of ciphers with a low multiplicative
complexity. Des. Codes Cryptogr. 2017, 82, 43–56. [CrossRef]

12. Schoonen, A.C.C. Multiple Right-Hand Side Equations. Master’s Thesis, Department of Mathematics and
Computer Science, Eindhoven University of Technology, Eindhoven, The Netherlands, 2008. Available online:
http://alexandria.tue.nl/extra1/afstversl/wsk-i/schoonen2008.pdf (accessed on 14 November 2019).

13. Davio, M.; Desmedt, Y.; Fosséprez, M.; Govaerts, R.; Hulsbosch, J.; Neutjens, P.; Piret, P.; Quisquater, J.J.;
Vandewalle, J.; Wouters, P. Analytical Characteristics of the DES. In Advanves in Cryptology—CRYPTO ’83;
Chaum, D., Ed.; Plenum Press: New York, NY, USA, 1984; pp. 171–202.

57

Symmetry 2019, 11, 1411

14. Raddum, H. MRHS Equation Systems. In Selected Areas in Cryptography—SAC 2007; Lecture Notes in
Computer Science; Carlisle Adams, A.M., Wiener, M., Eds.; Springer: New York, NY, USA, 2007; Volume 4876,
pp. 232–245.

15. Even, S.; Goldreich, O. DES-Like Functions Can Generate the Alternating Group. IEEE Trans. Inf. Theory
1983, 29, 863–865. [CrossRef]

16. Foundation, P.S. Python Programming Language—Offical Website. 2010. Available online: http://www.
python.org (accessed on 14 November 2019).

17. Wielandt, H. Finite Permutation Groups; Academic Press: Cambridge, MA, USA, 1964.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

58

symmetryS S
Article

Randomness Analysis for the Generalized
Self-Shrinking Sequences

Sara D. Cardell 1, Verónica Requena 2 , Amparo Fúster-Sabater 3,* and Amalia B. Orúe 3

1 Instituto de Matemática, Estatística e Computação Científica, UNICAMP, 13083-859 Campinas-SP, Brazil;
scardell@unicamp.br

2 Departamento de Matemáticas, Universidad de Alicante, 03690 Alicante, Spain; vrequena@ua.es
3 Instituto de Tecnologías Físicas y de la Información, CSIC, 28006 Madrid, Spain; amalia.orue@iec.csic.es
* Correspondence: amparo@iec.csic.es

Received: 30 September 2019; Accepted: 23 November 2019; 28 November 2019

Abstract: In cryptography, the property of randomness in pseudo-random generators is very
important to avoid any pattern in output sequences, to provide security against attacks, privacy and
anonymity. In this article, the randomness of the family of sequences obtained from the generalized
self-shrinking generator is analyzed. Moreover, the characteristics, generalities and relationship
between the t-modified self-shrinking generator and the generalized self-shrinking generator are
presented. We find that the t-modified self-shrunken sequences can be generated from a generalized
self-shrinking generator. Then, an in-depth analysis of randomness focused on the generalized
sequences by means of complete and powerful batteries of statistical tests and graphical tools is done,
providing a useful vision of the behaviour of these sequences and proving that they are suitable to be
used in cryptography.

Keywords: generalized self-shrinking generator; t-modified self-shrinking generator; pseudo-random
number generator; statistical randomness tests; cryptography

1. Introduction

In cryptography, randomness plays an important role in multiple and diverse applications.
Random numbers are employed to generate cryptographic keys, challenges, nonces, to encrypt
messages and at different steps of cryptographic algorithms and protocols [1–4].

A pseudo-random number generator is an algorithm for creating a sequence of numbers that
is supposed to be indistinguishable from a uniformly chosen random sequence. The sequence is
not really random, since it is completely determined by a small set of initial values, called the seed.
However, in cryptography, where the security of many cryptographic schemes lies in the quality of
pseudorandom generators, it is necessary that the sequences meet the following requirements—(1) the
generated sequence must not be distinguished from a truly random sequence; (2) the sequence must be
unpredictable; (3) the sequence period must be very large; (4) the key space must be large enough for a
brute or exhaustive force attack to be impossible; (5) the design of the generator should be resistant to
the specialized attacks reported in the literature.

There is no mathematical proof that ensures the randomness of a bit sequence; however,
there exists a huge number of empirical tests to determine if a sequence is random enough and
secure to be used in cryptography [5]. If the sequences of a generator pass the statistical tests, then
this could be accepted as a generator of random sequences. Otherwise, if several tests fail, it means
that the generator is not good and must be rejected. Choosing the correct number of these tests to
determine whether the sequence in question can be considered random is a very difficult task since we
cannot assure how many tests are needed for it. We have chosen some of those that are considered the
most complete randomness tests, like the FIPS (Federal Information Processing Standard) test 140-2 [6],

Symmetry 2019, 11, 1460; doi:10.3390/sym11121460 www.mdpi.com/journal/symmetry59

Symmetry 2019, 11, 1460

Diehard Battery of Tests [7], the NIST-SP-800-22 battery test [8] and other tests from the chaos theory,
that were presented in References [9,10].

The Generalized Self-Shrinking Generator (GSSG) [11] is fast, easy to be implemented and
generates good cryptographic sequences, so it seems suitable for its use in lightweight cryptography
and, in general, in low-cost applications. However, the randomness of these sequences has never been
analysed with such a complete battery of tests.

In this article, the randomness of the family of sequences obtained from the generalized
self-shrinking generator is analyzed. First, the characteristics and generalities of this family of
pseudorandom generators have been considered in detail. Then, an in-depth analysis of randomness
focused on the generalized sequences by means of complete batteries of statistical tests was done.
Tables, figures and graphical representations illustrate the obtained results.

2. Related Work

One of the most accepted designs of Pseudo-Random Number Generator (PRNG) is based on
Linear Feedback Shift Registers (LFSR) because LFSRs’ sequences can have good statistical properties
and their good efficiency in hardware designs. Linear feedback shift registers have been used as basic
component of such PRNG but they all have been successfully cryptanalyzed by means of different
attacks such as algebraic and correlation attacks, to name a few. Its main weakness is its linearity,
which allows the building of a system of equations that solves the parameters used in its design [12].

To avoid these cryptanalytic attacks, new designs use non-linear operations, such as non-linear
filtering and sequence decimation, for example. The shrinking generator and the self-shrinking
generators are good examples of how to convert a linearly generated sequence into a non-linear
one. To do that, different rules, which decimate the LFSR produced sequence in an irregular way,
are used. The Shrinking Generator (SG) was firstly proposed in 1993 by Coppersmith, Krawczyk and
Mansour [13] and the Self-Shrinking Generator (SSG) in 1994 by Meier and Staffelbach [14].

In Reference [15] a novel generator based on the generalized self-shrinking stream sequence
generator (called F-GSS) was proposed, the sequences generated by the F-GSS were analyzed using
the NIST statistical test suite, showing that it has good pseudo-random properties.

The Modified Self-Shrinking Generator (MSSG) was proposed by Kanso in Reference [16].
The study of the randomness of this generator was carried out by the NIST statistical test suite
and it was demonstrated that sequences of the MSSG have better randomness properties than those of
the SSG. In Reference [17] the authors present a new non-periodic random number generator based
on the shrinking generator. The randomness of the sequences of the new generator was analyzed by
means of Diehard battery of tests, verifying that this new design performs well in this statistical battery
of tests.

Tasheva et al. in Reference [18] proposed a variant of the SSG called the p-ary Generalized
Self-Shrinking Generator (pGSSG). The authors have studied its randomness using the NIST statistical
test suite, later in Reference [19] the balance property of the previously proposed p-ary Generalized
Self-Shrinking Generator was studied and it was shown that the generated sequences could be
considered as balanced. Erkek and Tuncer in Reference [20] have implemented the SG and Alternating
Step Generator on an FPGA Altera Cyclone IV board. Generated numbers in the real time were tested
using the NIST statistical test suite. The results have shown that both generators have good statistical
properties. In Reference [21] the authors have studied the randomness of the Self-Shrinking generator
by means of the d-Monomial test. They have found that there exist some statistical dependencies on
certain randomness properties of the generalized SSG and polynomial used in its design. For this
reason, they recommend to take special care when choosing the polynomial for the SSG in order to
the generator be cryptographically secure. In Reference [22] the author have analyzed a keystream
produced by Generalized Shrinking Multiplexing Generator controlled by Ternary m-sequences
(GSMG-3m). For randomness analysis they use the NIST statistical test suite, the spectral test and,

60

Symmetry 2019, 11, 1460

approximate entropy test. The authors have presented some cryptanalytic work of the proposed
generator that prove that GSMG-3m is more secure than the Shrinking Generator.

As can be seen, there are few works that have deeply studied the randomness of the sequences
generated by the different families of shrinking generators through several statistical test batteries
such as those presented in this paper.

3. Preliminaries

In order to the work be self-contained, some basic concepts concerning binary sequences as
well as sequence generators based on irregular decimation are introduced. All of them will be used
throughout the paper.

As has been said previously, the security of many cryptographic algorithms is based on a well
designed random and pseudorandom generators. It is worth mentioning that the design of reliable
and secure pseudorandom number generators is an open problem and an intensive field of research
in cryptography nowadays [23–28]. The family of shrinking generators is one of the most analyzed
PRNG in the literature due to its performance and security when it is well designed [4,21,22,29–31].

3.1. PN-Sequences

Let F2 = {0, 1} be the Galois field. Consider {ai}i≥0 = {a0, a1, a2 . . .} a binary sequence
with ai ∈ F2, for i = 0, 1, 2, . . . We say the sequence {ai}i≥0 is periodic if there exists an integer
T, called period, such that ai+T = ai, for all i ≥ 0. In the sequel, all the sequences considered will be
binary sequences and the symbol + will denote the Exclusive-OR (XOR) logic operation.

Let r be a positive integer and let d1, d2, d3, . . . , dr be constant coefficients with dj ∈ F2. A binary
sequence {ai}i≥0 satisfying the relation:

ai+r = drai + dr−1ai+1 + · · ·+ d3ai+r−3 + d2ai+r−2 + d1ai+r−1, i ≥ 0, (1)

is called a (r-th order) linear recurring sequence (LRS) in F2. The terms {a0, a1, . . . , ar−1} are referred
to as the initial terms and define the construction of the sequence uniquely.

The monic polynomial:

p(x) = dr + dr−1x + · · ·+ d3xr−3 + d2xr−2 + d1xr−1 + xr ∈ F2[x]

is called the characteristic polynomial of the linear recurring sequence and {ai}i≥0 is said to be
generated by p(x).

Linear recurring sequences can be generated using Linear Feedback Shift Registers
(LFSRs) [5,12,32]. In fact, an LFSR can be defined as an electronic device with r memory cells (stages)
with binary content. At every clock pulse, the binary element of each stage is shifted to the adjacent
stage as well as a new element is computed through the linear feedback to fill the empty stage
(see Figure 1). The LFSR has maximal-length if the characteristic polynomial of the LFSR is primitive.
Its output sequence is called PN-sequence (Pseudo-Noise sequence) and has period T = 2r − 1,
see Reference [32].

ai+r−1 ai+r−2 ai+r−3 · · · ai+1 ai

d1 d2 d3 · · · dr−1 dr

+ + · · · + +

ai+r

Figure 1. LFSR of length r.

61

Symmetry 2019, 11, 1460

The linear complexity, LC, of a sequence {ai}i≥0 is defined as the length of the shortest LFSR
that generates such a sequence or, equivalently, as the lowest order linear recurrence relationship that
generates such a sequence.

In cryptographic terms, the linear complexity must be as large as possible as LC defines the
minimum piece of the sequence needed to get the whole sequence.

A simple result that will be useful in the next section is introduced below.

Lemma 1. Let {ai}i≥0 be a PN-sequence with period T. Then, the sequence {ui} such that ui = ∑t−2
k=0 at·i+k is

again a PN-sequence with the same period T iff gcd(T, t) = 1.

Proof. The sequence {at·i} is a PN-sequence iff gcd(T, t) = 1, see Reference [32] (pag. 78).
The sequences {at·i+k} for k = 0, . . . , t− 2 are shifted versions of {at·i} with different starting points.
If we XOR a PN-sequence with a shifted sequence of itself, then we have the same PN-sequence but
starting at a different bit [32] (Theorem 4.3–4.5). Thus, {ui} is the same sequence as {at·i} except for
the starting point, that is, {ui} =

{
∑t−2

k=0 at·i+k

}
= {at·i+D} where D < T is a positive integer.

3.2. Modified Self-Shrinking Generator (MSSG)

Decimation is a very habitual technique to produce pseudo-random sequences with cryptographic
applications [33,34]. In practice, the underlying idea in this kind of generators is the irregular
decimation of a PN-sequence according to the bits of another.

The Modified Self-Shrinking Generator (MSSG) introduced by Kanso in Reference [16] is a
modification of the well-known Self-Shrinking Generator (SSG) [14]. Indeed, in the MSSG the
PN-sequence {ai}i≥0 generated by a maximal-length LFSR is self-decimated. The decimation rule
is very simple and can be described as follows: given three consecutive bits {a3i, a3i+1, a3i+2},
i = 0, 1, 2, . . ., the output sequence {sj}j≥0 is computed as{

If a3i + a3i+1 = 1 then sj = a3i+2,

If a3i + a3i+1 = 0 then a3i+2 is discarded.

The output sequence {sj}j≥0 is known as the Modified Self-Shrunken sequence (MSS-sequence).
If L is the length of the maximal-length LFSR that generates {ai}i≥0, then the linear complexity LC of
the corresponding MSS-sequence satisfies:

2�
L
3 �−1 ≤ LC ≤ 2L−1 − (L− 2),

and the period T of the sequence, when L is odd, satisfies:

2�
L
3 � ≤ T ≤ 2L−1,

as proved in Reference [16]. As usual, the key of this generator is the initial state of the LFSR that
generates {ai}i≥0. The characteristic polynomial of such a register is also recommended to be part of
the key.

Example 1. Consider the LFSR of length L = 4 with characteristic polynomial q(x) = x4 + x + 1 and
the initial state {1 1 1 1}. The corresponding PN-sequence is given by {111100010011010 . . .} with period
T = 24 − 1.

The MSS-sequence is obtained as follows:

R
+ :

: 1 1︸︷︷︸
0

��1 1 0︸︷︷︸
1

000 0 1︸︷︷︸
1

000 0 1︸︷︷︸
1

111 0 1︸︷︷︸
1

0 1 1︸︷︷︸
0

��1 1 0︸︷︷︸
1

000 . . .

62

Symmetry 2019, 11, 1460

The obtained sequence {sj} = {0 0 1 0 . . .} (encircled bits) has period T = 4 and it can be checked that its
characteristic polynomial is p4(x) = 1 + x4. Thus, the linear complexity of this MSS-sequence is LC = 4.

In Reference [30], the authors showed that the sequences produced by this generator are contained
in the family of sequences generated by the generalized self-shrinking generator.

3.3. The Generalized Self-Shrinking Generator (GSSG)

In this subsection, we introduce the most representative generator in this family of
decimation-based sequence generators, that is, the Generalized Self-Shrinking Generator (GSSG) [11].
In fact, the sequences produced by this generator include the sequences produced by the generators
previously described.

Let {ai}i≥0 be an PN-sequence produced by a maximal-length LFSR with L stages.
Let G = [g0, g1, g2, ..., gL−1] ∈ FL

2 be an L-dimensional binary vector and {vi}i≥0 a sequence defined as:
vi = g0ai + g1ai−1 + g2ai−2 + · · ·+ gL−1ai−L+1. For i ≥ 0, the decimation rule is defined as follows:{

If ai = 1 then sj = vi,

If ai = 0 then vi is discarded.

The output sequence generated {sj}j≥0 associated with G, denoted by s(G), is called the
Generalized Self-Shrunken sequence (GSS-sequence).

When G ranges over FL
2 , then {vi} corresponds to the 2L − 1 possible shifts of {ai}, that is,

the sequence {vi} is a shifted version of the PN-sequence {ai}. Moreover, we obtain the family of
generalized self-shrunken sequences based on the PN-sequence {ai}i≥0 given by the set of sequences
denoted by S(a) = {s(G)|G ∈ FL

2}. In Table 1, the algorithm to compute these sequences is shown
(Algorithm 1).

Table 1. Algorithm to compute the GSS-sequences.

Algorithm 1: Constructing the family of GSS-sequences

Input: Primitive polynomial p(x) and initial state aaa
01: Compute the PN-sequence {ai}.
02: Set T = 2L − 1 the period of the PN-sequence
03: for p = 1 to T do
04: Set {vi} the shifted version of {ai} by p positions
06: for k = 0 to T − 1 do

06 Initialize sequence {sp
j }

07: if ak = 1 do

08: Add vk as new bit of the sequence {sp
j }

09: endif
10: end for
11: end for

Output: {sp
j } GSS-sequences, p = 1, . . . , T.

Example 2. Consider the primitive polynomial p(x) = 1 + x3 + x4 and the corresponding PN-sequence
{ai}i≥0 = {111101011001000}. We can construct the GSS-sequences shown in Table 2. The underlined bits in
the different sequences {vi}i≥0 are the digits of the corresponding {s(G)} sequences. The PN-sequence {ai}i≥0
is written at the bottom of the table.

63

Symmetry 2019, 11, 1460

Table 2. Family of Generalized Self-Shrunken sequences generated by p(x) = 1 + x3 + x4.

G G {vi} Sequence Generalized Sequence

0 0000 0000000000000000000000000000000 00000000
1 0001 0001000100011111101010101111001 00011011
2 0010 0011001100111111010101011000010 00111100
3 0011 0010001000100000111111110111011 00100111
4 0100 0111011101111000101010110000100 01110010
5 0101 0110011001100111000000011111101 01101001
6 0110 0100010001000111111111101000110 01001110
7 0111 0101010101011000010101000111111 01010101
8 1000 1111111111110111011111100111000 11111111
9 1001 1110111011101000110101001000001 11100100
10 1010 1100110011001000001010111111010 11000011
11 1011 1101110111010111100000010000011 11011000
12 1100 1000100010001111110101010111100 10001101
13 1101 1001100110010000011111111000101 10010110
14 1110 1011101110110000100000001111110 10110001
15 1111 1010101010101111001010100000111 10101010

1111111111110111011111100111000

4. The t-Modified Self-Shrinking Generator

A generalization of GSSG, the t-Modified Self-Shrinking Generator (t-MSSG) was introduced
by Cardell et al. in Reference [31] and can be described as follows. Consider a maximal-length
LFSR with L stages that generates the PN-sequence {ai}i≥0. The t-modified self-shrinking generator,
with (t = 2, 3, . . . , 2L − 2), can be constructed making use of a very simple decimation rule.

Given t consecutive bits {at·i, at·i+1, at·i+2, . . . , at·i+(t−1)} of the PN-sequence, the output sequence
of this generator {sj}j≥0 is known as the t-Modified Self-Shrunken sequence (t-MSS-sequence) and
computed as follows: ⎧⎨⎩If ∑t−2

j=0 at·i+j = 1 then sj = at·i+(t−1),

If ∑t−2
j=0 at·i+j = 0 then at·i+(t−1) is discarded.

(2)

Notice that the value t = 2 gives rise to the self-shrinking generator [14] while the value t = 3
defines the modified self-shrinking generator. In Table 3 the algorithm to compute this sequence is
presented (Algorithm 2). Characteristics and generalities of the t-MSS-sequences can be found in
Reference [31].

Table 3. Algorithm to compute the t-MSS-sequence.

Algorithm 2: Constructing the t-MSS-sequence

Input: Primitive polynomial p(x), initial state aaa and t
01: Compute the PN-sequence {ai}.
02: Set T = 2L − 1 the period of the PN-sequence
03: for k = 0 to T − 1 do
04 Initialize sequence {sj}
05: if ∑t−2

j=0 at·k+j = 1 do

06: Add at·k+(t−1) as new bit of the sequence {sj}
07: endif
08: end for
Output: {sj} t-MSS-sequence.

64

Symmetry 2019, 11, 1460

Relationship between t-Modified Self-Shrunken Sequences and Generalized Self-Shrunken Sequences
(GSS-Sequences)

Now, we analyse the close relationship between t-Modified Self-Shrunken sequences
(t-MSS-sequences) and Generalized Self-Shrunken sequences (GSS-sequences).

In Theorem 1 of Reference [30], they analyse the relationship between modified self-shrunken
sequences and generalized self-shrunken sequences with a result similar to the following:

Theorem 1. The t-MSS-sequence as a result of self-decimating a PN-sequence with characteristic polynomial
q(x) of degree L and gcd(T, t) = 1, can be generated from a generalized self-shrinking generator with a primitive
polynomial p(x) of the same degree L.

Proof. Let {ai} be a PN-sequence with characteristic polynomial q(x) of degree L which is
self-decimated. In order to generate the t-MSS-sequence, sets of t bits {at·i, at·i+1, at·i+2, . . . , at·i+(t−1)},
(i ≥ 0) have to be taken. Applying the decimation rule defined in 2, if ∑t−2

k=0 at·i+k = 1, the bit
at·i+(t−1) is kept. Otherwise, it is discarded. According to Lemma 1, the sequence {ui} defined as
ui = ∑t−2

k=0 at·i+k = at·i+D is obtained by decimating the sequence {ai} by distance t.
Since gcd(T, t) = 1, according to Reference [32], we have that {ui} is a PN-sequence generated by

a primitive polynomial p(x) of the same degree, L.
Also, if the sequence {vi} is taken, with vi = at·i+(t−1), this means that the sequence {ai} is being

decimated again by the distance t. As before, we have that {vi} is also a PN-sequence with primitive
polynomial p(x) [32].

In order to obtain the t-MSS-sequence, the t-MSSG decimation rule is applied to the sequences
{ui} and {vi}. As both sequences are shifted versions of the PN-sequence {ai}, we can generate such
a t-MSS-sequence by a GSSG with characteristic polynomial p(x).

As a result of the previous theorem, we have that:

Corollary 1. If t = 2, 4, . . . , 2L−1, then the t-MSS-sequence is generated as a generalized sequence with the
same primitive polynomial q(x).

Proof. It follows from the following idea: the sequence {at·i} is a shifted version of the PN-sequence
{ai} when t = 1, 2, . . . , 2L−1, see Reference [32] (pag. 76).

The next theorem gives us the primitive polynomial p(x) that we need in Theorem 1 in order to
the GSSG generates the t-MSS-sequence obtained with a characteristic polynomial q(x) .

Theorem 2. When gcd(T, t) = 1, the primitive polynomial p(x) in Theorem 1 is:

p(x) =
(

x + αt) (x + α2t
) (

x + α4t
)
· · ·
(

x + αt·2L−1
)

,

where α ∈ F2L is a root of q(x).

Proof. The primitive polynomial q(x) can be expressed as:

q(x) = (x + α)(x + α2)(x + α4) · · · (x + α2L−1
),

where α ∈ F2L is a primitive element in such a field as well as a root of q(x). Furthermore, any element
of the PN-sequence {ai} is obtained as:

ai = A0αi + A2
0α2i + A4

0α4i + · · ·+ A2L−1

0 α2L−1i,

with A0 ∈ F2L [35]. When A0 = 1, it is said that the PN-sequence is in its characteristic phase.

65

Symmetry 2019, 11, 1460

The following sequence is obtained:

{a0, at, a2t, . . . , at·2L−1 , . . .} ,

decimating the sequence {ai} by distance t. That is a PN-sequence (since gcd(T, t) = 1) and each one
of its bits can be computed as:

at·i = A0αt·i + A2
0α2t·i + A4

0α4t·i + · · ·+ A2L−1

0 αt·2L−1i.

If ui = at·i and β = αt, then any element of the PN-sequence {ui} can be computed as follows:

ui = A0βi + A2
0β2i + A4

0β4i + · · ·+ A2L2−1

0 β2L2−1i.

Therefore, the characteristic polynomial of the PN-sequence {ui} is,

p(x) = (x + β)(x + β2)(x + β4) · · · (x + β2L−1
),

or, equivalently,
p(x) = (x + αt)(x + α2t)(x + α4t) · · · (x + αt·2L−1

).

Lemma 2. Given a PN-sequence {ai} of prime period T = 2L − 1 and characteristic polynomial q(x) of degree
L, then sequence {at·i} is a PN-sequence of period T, for any t.

Proof. According to Reference [32], {at·i} is a PN-sequence of period T if gcd(T, t) = 1. Since T is
prime, then gcd(T, t) = 1 for any t.

Theorem 3. Given a PN-sequence with period prime T = 2L − 1 and q(x) characteristic polynomial of degree
L, then the t-MSS-sequence obtained for any t is a generalized sequence generated with a primitive polynomial
of degree L.

Proof. The proof follows the same reasoning used in Theorem 1 and Lemma 2.

Example 3. Given p(x) = 1+ x2 + x5, the period of the PN-sequence {ai} is T = 31, which is a prime number.
Table 4 shows all the t-MSS-sequences generated with this polynomial. All of them are generalized sequences
obtained from a primitive polynomial q(x) of degree 5. It is important to mention that some generalized
sequences can be generated using different primitive polynomials. For example, the generalized sequence
{101010101010101} can be obtained using any primitive polynomial of degree 5.

66

Symmetry 2019, 11, 1460

Table 4. t-MSS-sequences obtained with q(x) = 1 + x2 + x5.

t t-MSS-Sequence LC p(x)

2 1101100110100001 13 1 + x2 + x5

3 1100100101110010 12 1 + x2 + x3 + x4 + x5

4 1000111001011100 13 1 + x2 + x5

5 1000111011000101 13 1 + x + x2 + x4 + x5

6 0100111011011000 13 1 + x2 + x3 + x4 + x5

7 0001011111001010 12 1 + x + x2 + x3 + x5

8 0110101111010000 12 1 + x2 + x5

9 1111000001011010 10 1 + x + x2 + x4 + x5

10 0110001001011110 13 1 + x + x2 + x4 + x5

11 0011010010110011 13 1 + x + x3 + x4 + x5

12 1010000101111100 12 1 + x2 + x3 + x4 + x5

13 0010011001001111 13 1 + x + x3 + x4 + x5

14 1001000110111100 13 1 + x + x2 + x3 + x5

15 1110010000110110 13 1 + x3 + x5

16 1101000010100111 12 1 + x2 + x5

17 0100111110100001 12 1 + x2 + x3 + x4 + x5

18 1111010011001000 13 1 + x + x2 + x4 + x5

19 0111101011000001 12 1 + x + x2 + x3 + x5

20 1110011000110100 13 1 + x + x2 + x4 + x5

21 0101111100001010 10 1 + x + x3 + x4 + x5

22 1001100001011011 13 1 + x + x3 + x4 + x5

23 0001011011011010 11 1 + x3 + x5

24 0110011110100100 13 1 + x2 + x3 + x4 + x5

25 0011011011100100 13 1 + x + x2 + x3 + x5

26 1100011001110010 13 1 + x + x3 + x4 + x5

27 0010111100011100 11 1 + x3 + x5

28 0111000100111010 13 1 + x + x2 + x3 + x5

29 1010000111000111 11 1 + x3 + x5

30 1010101010101010 2 1 + x3 + x5

Next, the relationship between t-MSS-sequences and GSS-sequences is analyzed from other point
of view, using the cyclotomic cosets given in Reference [32].

Next, we introduce the concept of cyclotomic coset mod(2L − 1) [32] and some of its properties:

Definition 1 (Cyclotomic cosets mod (2L − 1)). : Let Z2L = {0, 1, 2, . . . , 2L− 1}. We define the equivalence
relation R between t1, t2 ∈ Z2L as follows: t1 R t2 if there exists an integer j, 0 ≤ j ≤ L− 1, such that

2j · t1 = t2 mod (2L − 1).

Z∗2L is partitioned into resultant equivalence classes called the cyclotomic cosets mod (2L − 1).

The smallest integer i in any equivalence class is defined as the leader of the coset and is denoted
by Ci. The cardinal of a coset is L or a proper divisor of L. The characteristic polynomial of a cyclotomic
coset Ci is the polynomial PCi (x) = (x + αi)(x + α2i)... (x + α2r−1i), where the degree r (r ≤ L) equals
the cardinal of the coset Ci and α is a root of the LFSR characteristic polynomial.

Following [32] (Chapter 4), Ci is a proper coset if gcd(2L − 1, i) = 1, therefore in this case, PCi(x) is
a primitive polynomial, which is a remarkable property because if PCi(x) is a primitive polynomial the
sequence generated by the basic LFSR is as large as possible.

67

Symmetry 2019, 11, 1460

Example 4. Consider the set Z∗25 . Notice that 25 − 1 is a primer integer. There are six cyclotomic cosets
given by:

C1 = {1, 2, 4, 8, 16} C5 = {5, 10, 20, 9, 18} C11 = {11, 22, 13, 26, 21}
C3 = {3, 6, 12, 24, 17} C7 = {7, 14, 28, 25, 19} C15 = {15, 30, 29, 27, 23}

In this case, all cosets are proper cosets and have cardinal 5. If q(x) = 1 + x2 + x5 is considered the
characteristic polynomial of the LFSR, then the corresponding characteristic polynomial of the cosets are given in
Table 5. Since all cosets are proper, all the characteristic polynomials are primitive of degree 5.

Table 5. Characteristic polynomial of cyclotomic cosets.

Ci PCi(x)

C1 1 + x2 + x5

C3 1 + x2 + x3 + x4 + x5

C5 1 + x + x2 + x4 + x5

C7 1 + x + x2 + x3 + x5

C11 1 + x + x3 + x4 + x5

C15 1 + x3 + x5

Theorem 4. Consider a PN-sequence of period prime T = 2L − 1 and its characteristic polynomial q(x) of
degree L, then both t-MSS-sequences obtained for any t1 and t2 are generalized sequences produced by the same
polynomial of degree L iff t1 and t2 belong to the same coset.

Proof. According to the proof of Theorem 1, a t-MSS-sequence is obtained decimating the sequence
{at·i}with a shifted version of itself, that is, as a generalized sequence. According to [32] (Theorem 5.5),
{at1·i} and {at2·i} are shifted versions of the same PN-sequence iff t1 and t2 belong to the same coset.
Thus, the decimation rule is applied to two shifted versions of the same PN-sequence and, consequently,
a generalized sequence has been generated.

As already mentioned, Table 4 shows all the t-MSS-sequences generated by q(x) = 1 + x2 + x5

and t = 2, 3, . . . , 30. Notice that when t1 and t2 are in the same coset, then the corresponding
t-MSS-sequences are generalized GSS-sequences produced by the same polynomial (characteristic
polynomial of the LFSR).

Furthermore, reciprocal polynomials generate sometimes the same sequences with different
starting points. For example, the generalized sequence produced with t = 29 can be also generated as
a generalized sequence using q(x) = 1 + x2 + x5.

In the following example (Example 5), notice that when 2L − 1 is not prime, different types of
cyclotomic cosets can be obtained [31].

Example 5. Consider the set Z∗24 . Notice that 24 − 1 is not a prime number. There are 4 cyclotomic cosets
given by:

C1 = {1, 2, 4, 8} C5 = {5, 10}
C3 = {3, 6, 12, 9} C7 = {7, 14, 13, 11}

In this case, C1 and C7 are proper cosets and C5 and C3 are improper cosets. Therefore, we know that the
PC1(x) and PC7(x) are primitive polynomials. Consider q(x) = 1 + x + x4 as the characteristic polynomial of
the LFSR. Then, the characteristic polynomial of the cosets are given in Table 6. We can check that PC1(x) and
PC7(x) are primitive polynomials of degree 4 and PC3(x) is an irreducible polynomial of degree 4. The polynomial
PC5(x) is a primitive polynomial of degree 2.

68

Symmetry 2019, 11, 1460

Table 6. Characteristic polynomial of cyclotomic cosets.

Ci PCi(x)

C1 1 + x + x4

C3 1 + x + x2 + x3 + x4

C5 1 + x + x2

C7 1 + x3 + x4

Theorem 5. Given a PN-sequence of period T = 2L − 1 and characteristic polynomial q(x) of degree L,
then both t-MSS-sequences obtained for any t1 and t2 are GSS-sequences generated by the same primitive
polynomial of degree L iff t1 and t2 belong to the same proper coset.

Proof. If the coset Ci, such that t1, t2 ∈ Ci is proper, it means that gcd(t1, T) = gcd(t2, T) = 1. The rest
follows from previous results.

Remark 1. When gcd(t, T) �= 1, the corresponding t-MSS-sequence is a generalized sequence iff PCt(x) is a
primitive polynomial of degree equal to |Ci| (cardinal of Ci).

Since, under not very restrictive conditions, the GSS-sequences include the other sequences
produced by decimation-based generators, our randomness analysis focuses on this class of
binary sequences.

In Table 7, we summarize the three more popular decimation-based sequence generators with the
bounds for their periods and their linear complexities that were discussed in this work.

Table 7. Summary of the main characteristics of the three decimation-based generators discussed in
this work.

Generator Decimation Rule Period LC

Modified
self-shrinking
(MSSG), [16]

Given three consecutive bits, the output sequence {sj}j≥0
is computed as: If a3i + a3i+1 = 1 then, sj = a3i+2.
If a3i + a3i+1 = 0 then, a3i+2 is discarded.

2�
L
3 � ≤ T ≤ 2L−1

When L odd:
2�

L
3 �−1 ≤ LC ≤

2L−1 − (L− 2).

Generalized
self-shrinking
(GSSG), [11]

Let {ai}i≥0 be an PN-sequence generated by a
maximal-length LFSR with L stages. Let G be an
L-dimensional binary vector G = [g0, g1, g2, ..., gL−1] ∈ FL

2
and {vi}i≥0 a sequence defined as:
vi = g0ai + g1ai−1 + g2ai−2 + · · ·+ gL−1ai−L+1. For i ≥ 0,
the decimation rule is: If ai = 1 then sj = vi.
If ai = 0 then vi is discarded.

T = 2r, with r ≤
L− 1 LC ≤ 2L−1 − (L− 2).

t-modified
self-shrinking
(t-MSSG), [31]

Given t consecutive bits, the output sequence {sj}j≥0 is
computed as: If ∑t−2

j=0 at·i+j = 1 then, sj = at·i+(t−1).

If ∑t−2
j=0 at·i+j = 0 then, at·i+(t−1) discarded.

If gcd{2L − 1, t} = 1
or PCt is primitive
with degree
|Ci| : T =
2r, with r ≤ L− 1.
Other cases are not
cryptographic
relevant.

If gcd{2L − 1, t} = 1
or PCt is primitive
with degree |Ci| :
LC ≤ 2L−1 − (L− 2).
Other cases are not
cryptographic
relevant.

5. Statistical Randomness Analysis

In this section, an exhaustive analysis of randomness of the proposed GSS-sequences is presented
by using different batteries of statistical tests to study their behaviour. Some graphical tools from chaos
theory have been used [9,10], for example, return maps, chaos game, Lyapunov exponent, and so forth.
The generator and the battery of tests were implemented with Matlab 9.1 (2017) in a Windows 10
environment in a 64 bits PC with CPU Intel Core i7-870, at 2.93 GHz.

For our study, GSS-sequences s(G) are generated from PN-sequences coming from
maximal-length LFSRs with characteristic polynomials of degree less than or equal to 27. Every one of

69

Symmetry 2019, 11, 1460

these sequences has passed perfectly the Diehard battery of tests, considered one of the most important
and powerful tool for randomness study.

Furthermore, the family of GSS-sequences is analysed with the family of statistical tests FIPS
140-2, provided by the National Institute of Standards and Technology (NIST), as well as with the
Lempel-Ziv Compression Test. In both cases the sequences have passed the tests.

5.1. Graphical Testing

In this section, the main graphical tests used in Reference [9], are applied to the GSS-sequences,
from which their cryptographic properties can be analyzed.

The results obtained for GSS-sequences s(G) of length 223 bits, is presented. These sequences are
generated by the GSSG from a maximal-length LFSR with the 24-degree characteristic polynomial
p(x) = x24 + x20 + x17 + x13 + x10 + x7 + x4 + x2 + 1 and whose initial state is the identically 1 vector
of length 24.

The tests were performed with 223 bit sequences. Most of the tests works associating every eight
bits in an octet, obtaining sequences of 220 samples of 8 bits; with the exception of the Linear complexity
test that works with just one bit and the Chaos game that works associating the bits two by two.

Next, the results of graphical tests to study the randomness of our sequences is shown.

1. Return map

Return map [10] tries to measure visually the entropy of the sequence, that is, allows to detect
the existence of some useful information about the parameters used in the design of pseudo-random
generators [36]. This test, that customarily is used in theory of dynamic systems, is also a powerful
tool in cryptanalysis.

Basically, it consists of a graph of the points of the sequence xt as a function of xt−1 and,
under certain conditions, allows us to obtain the value of the parameters of a pseudo-random sequence,
defeating the security of the cryptosystem under analysis. The result should be a distribution of points
where you cannot guess neither trends, nor figures, nor lines, nor symmetry, nor patterns.

Figure 2 shows the return map of our GSS-sequence as a disordered cloud, which does not provide
any useful information for its cryptanalysis.

Figure 3a,b are the return applications of two imperfect generators where the lack of randomness
can be neatly observed. Indeed, these maps present clear patterns that permit to determine the
generator function and the parameter values.

Figure 2. Return map of GSS-sequence of 223 bits. It provides no information about the parameters of
the generator.

70

Symmetry 2019, 11, 1460

(a) Return map of logistic generator. (b) Return map of quadratic generator.
Figure 3. Return maps of imperfect generators. The parameter values can be deduced by inspection of
the return map.

2. Linear Complexity

The linear complexity (LC) is considered as a measure of the unpredictability of a pseudo-random
sequence and is a widely used metric of the security of a keystream sequence [37]. We have used the
Berlekamp-Massey algorithm [38] to compute this parameter. If the characteristic polynomial of the
LFSR is primitive [32], then it is known as maximal-length LFSR; moreover, its output sequence has
period T = 2L − 1, where L is the degree of the characteristic polynomial.

LC must be as large as possible, that is, its value has to be very close to half the period [39],
LC T/2. From Figure 4a, it can be deduced that the value of the linear complexity of the first 20,000
bits of the sequence is just half its length, 10,000 and, from Figure 4b is observed that LC is irregularly
close to the l

2 -line, being l the length of the sequence.

(a) Linear Complexity of s(G). (b) Zoom of the graphic of LC for s(G).
Figure 4. Linear Complexity of s(G) for the first 20,000 most significant bits.

3. Shannon Entropy and Min-Entropy

71

Symmetry 2019, 11, 1460

The entropy of a sequence is defined as a measure of the amount of information of a process
measured in bits or as a measure of the uncertainty of a random variable. From these two possible
interpretation, the quality of the output sequence or the input of a random number generator can be
described, respectively.

Shannon’s entropy is measured based on the average probability of all the values that the variable
can take. A formal definition can be presented as follows,

Definition 2. Let X be a random variable that takes on the values x1, x2, . . . , xn. Then the Shannon’s entropy
is defined as

H(X) = −
n

∑
i=1

Pr(xi) · log2(Pr(xi)),

where Pr(·) represents probability.

If the process is a sequence of integers modulo m perfectly random, then its entropy is equal to n.
As in the case at hand m = 2n, the entropy of a random sequence must be close to n = 8 bit per octet.

The min-Entropy is only measured based on the probability of the more frequent occurrence
value of the variable. It is recommended by the NIST SP 800− 90B standard for True Random Number
Generators (TRNG).

In order to determine if the proposed generator is considered perfect from these entropies values,
according to Reference [40] for a sequence of 220 octets, it must obtain a Shannon entropy value greater
or equal than 7.976 bits per octet and a min-entropy greater or equal to 7.91 bits per octet. In this case
the following values are obtained:

Shannon entropy (measured) = 7.9999 bits per octet.
Min-entropy (measured) = 7.9457 bits per octet,

then, it can be considered that this generator is correct using entropies. Note that the Shannon’s
entropy value of 7.9999 bits per octet fits close to the theoretical perfection of 8 bits per octet.

4. Lyapunov exponent

Lyapunov exponent measures the rate of divergence of nearby trajectories, which is a key
component of chaotic dynamics. It is used as a quantitative measure for the sensitive dependence
on initial conditions. It is desirable that two very close initial conditions (for instance, seeds or
keys) provide very different trajectories (sequences). If Lyapunov exponent is greater than zero, the
distance between two close initial conditions rapidly increases in the time, which means there exists an
exponential divergence of the trajectories of a chaotic system. This value gives an idea of how different
are the sequences generated by similar seeds, a very important feature to avoid attacks on the key of
the generator. So, Lyapunov exponent is, in this case, a useful tool to evaluate the key space.

Next, a formal definition of Lyapunov exponent [41] is given.

Definition 3. Consider d0 the measure of the initial distance between two sequences and dt the measure of the
distance between the same sequences but after t iterations. We define Lyapunov exponent as:

LE =
1
t

ln
(∣∣∣∣ dt

d0

∣∣∣∣) .

If LE = 0, the sequences decrease their distance, tend to join and confused in one. The system converges
and it is not at all random. If LE > 0, the distance increases, there is dependence sensitive to initial conditions,
there is an exponential divergence of the orbit and randomness grows as higher is the value of LE.

Note that the Lyapunov exponent uses the natural logarithm of the Euclidean distance.
Nevertheless, in information theory, other type of distances for measuring the distance between

72

Symmetry 2019, 11, 1460

two sequences are used, for example Hamming distance, which indicates the number of bit positions
in which both sequences differ.

If the Lyapunov exponent is modified simply by using the Hamming distance instead of the
logarithm of the Euclidean distance, then it is called the Lyapunov Hamming exponent (LHE). If two
numbers are identical, then its LHE value will be 0. Nevertheless, if all the bits of both numbers are
different, then its LHE will be LHE = log2 m = log2 2n = n, where n is the number of bits with which
the numbers are encoded.

Obtaining the Lyapunov Hamming exponent for the chosen sequence is done by calculating the
average of the LHE between every two consecutive numbers of the sequence. The best value will
be n/2.

For this case, the best value is 4; we show the value obtained for our particular sequence analyzed:
Lyapunov Hamming exponent, ideal = 4.
Lyapunov Hamming exponent, real = 4.
Absolute deviation from the ideal = −1.0014× 10−5.

hence, the proposed generator passes perfectly this test.

5. Samples in increasing order

The samples of 8 bits are ordered by increasing value and are represented by a graph. They should
give a continuous straight line (red), with an inclination of 45 degrees, which must cover the blue
reference line.

This representation means that all the numbers are generated (if it is continuous) and that the
density is uniform (if its inclination is 45 degrees). In Figure 5a, we observe that the samples are
perfectly represented by a continuous straight line with the perfect inclination of 45 degrees.

From Figure 5b, the deviation between the increasing samples is analysed and the values −1, 0 or
1 are obtained.

(a) Samples in increasing order. (b) Deviation from increasing order.
Figure 5. Samples ordered by increasing value.

6. Chaos game

Chaos game is a method that allows converting a one-dimensional sequence into a two dimensions
sequence providing a very provocative visual representation, which reveals some of the statistical
properties of the sequence under study. From this graphical technique is easy to look for, visually,
patterns in the sequences generated by a random number generator. Furthermore, it allows us to find
non-randomness within pseudo-random sequences.

73

Symmetry 2019, 11, 1460

Chaos game can be described mathematically by an Iterated Functions System (IFS) [10,42,43]
and through which the transition to chaos associated with fractals can be studied. The result of chaos
game is called attractor and not always is a fractal, it may be any compact set. If the output is a graph
with fractals or patterns, then it means that the sequence cannot be considered random.

In Figure 6, it cannot be observe any pattern or fractal, it is a messy (or unordered) cloud of points,
which does not provide any useful information for analysis, which implies good randomness.

Figure 6. GSS generator Chaos game.

In order to better understand this graphical test, we present in Figure 7a,b two Chaos
Game representations, which appeared in Reference [10], which are not cryptographically secure.
Their graphics are fractal which indicates that the design depends on a pattern (denoting the lack
of randomness) and it is also worth mentioning that this pattern could be used to obtain important
information for cryptanalysis.

(a) Logistic generator. (b) Recursive generator.
Figure 7. Chaos game representations of imperfect generators. The observed patterns indicate a lack of
randomness in the sequence.

7. Autocorrelation

The analysis of autocorrelation is a mathematical tool for finding repeating patterns analysing
different sections of a message and compares them to find similarities. The autocorrelation function is
defined as the crosscorrelation of the sequence with itself and allows measuring the linear relationship
between random variables of processes separated a certain distance. It is very useful for finding
periodic patterns within a signal.

74

Symmetry 2019, 11, 1460

Figure 8 represents the autocorrelation index of our GSS-sequence, for all samples available. It can
be seen that the sequence has a very long period, larger than the size of the sequence analyzed since
the repetition frequency is not reached in the graph.

Figure 8. Autocorrelation function of a GSS-sequence.

The first autocorrelation coefficient is always equal to 1, while the other coefficients must have the
smallest possible amplitude so that the sequence can be considered random before finding the period
in which it begins to repeat itself. In the case at hand, values close to 0 are obtained, which means that
the proposed sequence can be considered random for this study.

8. Fast Fourier Transform

The goal of Fast Fourier Transform test is the peak heights in the discrete Fast Fourier Transform.
It consists of detecting repetitive patterns in the sequence analysed which would indicate a deviation
from the assumption of randomness [8].

If the sequence is random, then all the maximum harmonics of Fast Fourier Transform have
approximately the same horizontal level without an up or down trend.

Figure 9 shows that all amplitude values are included in the same range, which means that the
test is passed.

Figure 9. Fast Fourier Transform of s(G).

9. Distribution of identical samples

75

Symmetry 2019, 11, 1460

In this subsection, the distance of occurrence between samples of equal value is studied,
because this measure is an important property of random sequences. The most probable distance
between two identical samples of a perfect sequence is zero. If this distance increases, then the probability
of coincidence between the two identical samples decreases following a Poisson distribution.

Figure 10 shows that the distribution of samples of the proposed sequence is close to the ideal.

Figure 10. Distribution of samples with equal values a function of their distance: GSS-sequence (red)
and a perfect random sequence (green).

10. Collisions of the sequence

Collisions are an intrinsic property of random sequences. If one has a sequence of integers module
m, the amount of different integer numbers will be m. When a number appears repeated, we say that a
collision has occurred. In Reference [44] an analysis of the collisions problem is presented based on the
birthday paradox which states that in a group of k people chosen at random, at least a pair of them will
have the same birthday with probability:

pk = 1−
(

1− 1
m

)(
1− 2

m

)
. . .
(

1− k− 1
m

)
, (3)

where m is the number of days of the year and k is the number of people in the living room.
This paradox can be applied to hash functions. One of the desirable properties of cryptographic

hash functions is that it is computationally impossible for a collision to occur; that is, given two
different inputs, hash function does not produce the same output.

Suppose that we have a hash function of n bits, so we have m = 2n output possible values.
From this idea, it can be deduced the inequality:

k ≥ 1
2
+

√
2 m ln(2) +

1
4

,

which provides an estimated value of the quantity k of rolls of a random sequence that must be
extracted to have a probability of a first collision greater than or equal to 0.5.

From Equation (3) it can be deduced the collision probability density distribution Dpk as a function
of k,

Dpk =
k− 1

m

(
1− 1

m

)(
1− 2

m

)(
1− 3

m

)
· · ·
(

1− k− 2
m

)
. (4)

In Figure 11 is represented the first collision probability density distribution function for a
sequence of octets, that is, n = 8, m = 256 as a red line. It can be seen that the mode of the distribution
is k = 17 = 1 +

√
m and for a quantity of rolls k = 4

√
m = 64 the collision probability density is

practically zero.

76

Symmetry 2019, 11, 1460

Any sequence with a perfect randomness must fit the first collision probability density distribution
function corresponding to Equation (4).

The Figure 11 represents also a bar graph, with one bar for each value of k, of a GSS-sequence of
220 octets. It can be seen the perfect fitting with the expected theoretical distribution.

Figure 11. Distribution of the first collisions (blue bars) and collision probability density distribution
function (red line).

As a curiosity, the first collision probability density distribution function coincides with a Weibull
distribution function for the variable k, that is, the distribution which is most used to model data
from reliability against catastrophes; in the present case, it models the amount of random number
generation rolls needed for a first collision to appear, which is also a catastrophe for a hash function.

5.2. Diehard Battery of Tests

Diehard battery of tests [7] is a reliable standard and a powerful instrument for practical evaluation
of the randomness of sequences of pseudo-random number generators. This tool is the first step in the
evaluation process of cryptographic primitives. It cannot guarantee if your generator can be considered
perfectly random, but if it does not pass the test suite, then it is not suitable for cryptographic
applications.

Diehard battery consists of 15 different independent statistical tests, some of them repeated but
with different parameters. The Diehard tests employ chi-squared goodness-to-fit technique to calculate
a p-value, which should be uniform on [0, 1) if the input file contains truly independent random bits.
It is considered that a bit stream really fails when it is gotten p-values of 0 or 1 to six or more places.

The GSS-sequences with characteristic polynomial of degree ≤ 27 have passed all tests in the
Diehard battery. In Table 8 we show the results obtained with the Diehard battery from a s(G) sequence
with characteristic polynomial p(x) = x27 + x23 + x22 + x17 + 1.

77

Symmetry 2019, 11, 1460

Table 8. Diehard battery of tests results for a GSS sequence with characteristic polynomial of degree 27.

Test Name p-Value Result Test Name p-Value Result

0.854161 0.6612

0.128374 0.1300

0.350541 0.7321

0.843946 0.7540

Birthday spacing 0.820384 Pass 0.7276

0.751627 0.0776

0.669644 0.2807

0.263248 0.2276

0.274206 0.5481

Overlapping 0.973492 Pass 0.0144

permutations 0.998474 0.7242

0.460374 0.7410

Binary ranks 0.607801 Pass 0.6259

0.470376 0.5815

0.59389 OQSO 0.3380 Pass

0.95088 0.8546

0.84285 0.5279

0.99576 0.3305

0.91144 0.1022

0.06885 0.3367

0.69611 0.8353

0.28168 0.6487

0.60022 0.5748

Bit stream 0.93126 Pass 0.8688

(Monkey tests) 0.77314 0.2946

0.91404 0.4309

0.81248 0.8943

0.60022 0.1388

78

Symmetry 2019, 11, 1460

Table 8. Cont.

Test Name p-Value Result Test Name p-Value Result

0.84285 0.6424

0.94645 0.1627

0.96610 0.5008

0.83486 0.6695

0.52578 0.2392

0.99599 0.7181

0.9170 0.5722

0.9852 0.9521

0.6537 0.9762

0.3155 0.3309

0.2258 0.9433

0.9600 0.2852

0.6056 0.7472

0.9116 0.3780

0.7067 0.4109

0.8025 0.8180

0.9201 0.3395

OPSO 0.9671 Pass 0.2346

0.2808 DNA 0.5149 Pass

0.5257 0.9901

0.8779 0.0708

0.9751 0.0209

0.9980 0.9450

0.3569 0.9835

0.1756 0.2135

0.8006 0.0099

0.9974 0.9157

0.4474 0.0761

0.9458 0.9593

Count-the-1’s 0.923369 Pass 0.1119

(stream of bytes) 0.375390 0.5837

0.069242 Parking lot 0.357527 Pass

0.453489 Minimum distance 0.752286 Pass

0.531694 3D Spheres 0.947691 Pass

0.476337 Squeeze 0.990622 Pass

0.115181 Overlapping sums 0.276467 Pass

0.238283 0.276783

0.248038 Runs 0.893007 Pass

0.170200 0.908305

0.595302 0.913183

79

Symmetry 2019, 11, 1460

Table 8. Cont.

Test Name p-Value Result Test Name p-Value Result

0.167417 Craps 0.995956 Pass

0.574701 105661

Count-the-1’s 0.384873 Pass

(specific bytes) 0.944743

0.955924

0.210026

0.142320

0.717744

0.191102

0.728247

0.297792

0.971290

0.323464

0.408101

0.013264

0.859849

5.3. FIPS Test 140-2. Security Requirements for Cryptographic Modules

FIPS (Federal Information Processing Standard) Publication 140-2, is a U.S. government computer
security standard [6] used to approve cryptographic modules. The National Institute of Standards
and Technology (NIST) issued the FIPS 140-2 publication series to coordinate the requirements
and standards for cryptography modules that include both hardware and software components
(last updated 2002).

In FIPS 140-2 there are 4 statistical random number generator tests—The Monobit Test, The Poker
Test, The Runs Test and The Long Runs Test. The proposed GSS-sequences with characteristic
polynomials of degree ≤ 27 pass all these tests. Below we detail the results:

1. LONG RUNS TEST(PRS): Passed. There are no runs of more than 25 equal bits.
2. MONOBIT TEST(PRS): Passed. The test is passed if (9725 < number of ones < 10275). Our result

was: 9954.
3. X= POKER TEST(PRS): Passed. The test is passed if 2.16 < X < 46.17;. Our result was:

X = 10.0736.
4. RUNS TEST(PRS): Passed. The test is passed if the runs (for both the runs of zeros, red line, and

the runs of ones, blue line) that occur (of lengths 1 through 6) are each within the corresponding
interval specified in the Figure 12 by the green line.

80

Symmetry 2019, 11, 1460

Figure 12. Run test for a GSS-sequence with characteristic polynomials of degree ≤ 27. Observe that
the test is passed both for the runs of zeros (red line) and for the runs of ones (blue line) since they all
fall within the corresponding range specified by the green line.

5.4. Lempel-Ziv Compression Test

The goal of this test is the number of cumulatively distinct patterns in the sequence. This test
consists of determining how much is possible to compress the analysed sequence. If the sequence can
be significantly compressed, it is considered to be non-random. The proposed GSS-sequences with
characteristic polynomials of degree ≤ 27, pass this test with perfect results.

As can be seen throughout this section, the analyzed generator meets all the requirements needed
to be used in the field of cryptography, according to points 1–4 mentioned in Section 1. Further work
would be to study the resistance of this generator against the cryptographic attacks reported in the
literature (Section 1, point 5).

6. Conclusions

In this article, we have found a relationship between two families of binary sequences belong to
the class of decimation-based sequence generators, that is, the t-modified self-shrunken sequences
can be generated from a generalized self-shrinking generator. We have analysed this relationship
from two different points of view—one of them as binary sequences and other using the cyclotomic
cosets. Furthermore, we have considered one of the most complete statistical test batteries for the
study of randomness of sequences generated by the GSSG. In addition, we have reviewed some
important graphical tests and basic and recent individual randomness tests found in the cryptographic
literature. From the study of the last section, we can conclude that our random number generator
(GSSG) produces good pseudo-random sequences since all the family of the sequences generated with
characteristic polynomials of degree less than or equal to 27 pass satisfactorily the most important
batteries of tests. The obtained results confirm the potential use of the generalized self-shrunken
sequences for cryptographic purposes.

With regard to future work on this subject, the concatenation of GSS sequences from different
primitive polynomials of different degrees could be analysed and studied, as well as the resistance
of this generator against cryptographic attacks reported in the literature. Another important future
work would be to do a comparative study of our generator with other well-known generators used in
cryptographic applications nowadays.

Author Contributions: All the authors have equally contributed to the reported research in conceptualization,
methodology, software and manuscript revision.

81

Symmetry 2019, 11, 1460

Funding: This research received no external funding.

Acknowledgments: This research has been partially supported by Ministerio de Economía, Industria y
Competitividad (MINECO), Agencia Estatal de Investigación (AEI), and Fondo Europeo de Desarrollo Regional
(FEDER, UE) under project COPCIS, reference TIN2017-84844-C2-1-R, and by Comunidad de Madrid (Spain) under
project CYNAMON (P2018/TCS-4566), also co-funded by FSE and European Union FEDER funds. The first author
was supported by CAPES (Brazil). The second author was partially supported by Spanish grant VIGROB-287 of
the Universitat d’Alacant. We would like to thank Fausto Montoya for his help with the analysis of the sequences.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bhowmick, A.; Sinha, N.; Arjunan, R.V.; Kishore, B. Permutation-substitution architecture based image
encryption algorithm using middle square and RC4 PRNG. In Proceedings of the 2017 International
Conference on Inventive Systems and Control (ICISC), Coimbatore, India, 19–20 January 2017; pp. 1–6.

2. Wortman, P.; Yan, W.; Chandy, J.; Tehranipoor, F. P2M-based security model: Security enhancement using
combined puf and PRNG models for authenticating consumer electronic devices. IET Comput. Digit. Tech.
2018, 12, 289–296. [CrossRef]

3. Bikram, P.; Trivedi, G.; Jan, P.; Nemec, Z. Efficient PRNG design and implementation for various high
throughput cryptographic and low power security applications. In Proceedings of the 2019 29th International
Conference Radioelektronika (RADIOELEKTRONIKA), Pardubice, Czech Republic, 16–18 April 2019;
pp. 1–6.

4. Moufek, H.; Guenda, K.; Gulliver, T.A. A new variant of the McEliece cryptosystem based on QC-LDPC and
QC-MDPC codes. IEEE Commun. Lett. 2017, 21, 714–717. [CrossRef]

5. Gong, G.; Helleseth, T.; Kumar, P.V. Solomon W. Golomb–Mathematician, Engineer, and Pioneer. IEEE Trans.
Inf. Theory 2018, 64, 2844–2857. [CrossRef]

6. FIPS PUB 140-2. Security Requirements for Cryptographic Modules. In Federal Information Processing
Standards Publication 140-2; U.S. Department of Commerce, NIST, National Technical Information Service:
Springfield, VA, USA, 2001.

7. Marsaglia, G. The Marsaglia Random Number CDROM including the DIehard Battery of Tests of Randomness;
Florida State University: Tallahassee, FL, USA, 1995. Available online: http://www.stat.fsu.edu/pub/
diehard (accessed on 3 November 2019).

8. National Institute of Standards and Technology. A Statistical Test Suite for Random and Pseudorandom Number
Generators for Cryptographic Applications; NIST800-22, SP 800-22Rev 1a; 2010, U.S. Department of Commerce:
Gaithersburg, MD, USA.

9. Orúe López, A.B. Contribución al Estudio del Criptoanálisis y Diseño de los Criptosistemas
Caóticos. Ph.D. Thesis, Universidad Politécnica de Madrid, Escuela Técnica Superior de Ingenieros
de Telecomunicación, Madrid, Spain, 2013.

10. Orúe, A.B.; Fúster-Sabater, A.; Fernández, V.; Montoya, F.; Hernández, L.; Martín, A. Herramientas gráficas
de la criptografía caótica para el análisis de la calidad de secuencias pseudoaleatorias. In Proceedings of the
Actas de la XIV Reunión Española sobre Criptología y Seguridad de la Información, RECSI XIV; Menorca,
Illes Balears, Spain, 26–28 October 2016; pp. 180–185.

11. Hu, Y.; Xiao, G. Generalized self-shrinking generator. IEEE Trans. Inf. Theory 2004, 50, 714–719. [CrossRef]
12. Klein, A. Linear Feedback Shift Registers. In Stream Ciphers; Springer: London, UK, 2013; Chapter 2, pp. 1–13.
13. Coppersmith, D.; Krawczyk, H.; Mansour, Y. The shrinking generator. In Proceedings of the 13th Annual

International Cryptology Conference on Advances in Cryptology (CRYPTO ’93), Santa Barbara, CA, USA,
22–26 August 1993; Springer: Berlin/Heidelberg, Germany, 1994; pp. 22–39.

14. Meier, W.; Staffelbach, O. The self-shrinking generator. In Advances in Cryptology, Proceedings of EUROCRYPT
1994; Cachin, C., Camenisch, J., Eds.; Lecture Notes in Computer Science; Springer, Berlin/Heidelberg,
Germany, 1984; Volume 950, pp. 205–214.

15. Dong, L.; Zeng, Y.; Hu, Y. F-gss: A novel fcsr-based keystream generator. In Proceedings of the First
International Conference on Information Science and Engineering, Nanjing, China, 26–28 December 2009;
pp. 1737–1740.

16. Kanso, A. Modified self-shrinking generator. Comput. Electr. Eng. 2010, 36, 993–1001.
doi:10.1016/j.compeleceng.2010.02.004. [CrossRef]

82

Symmetry 2019, 11, 1460

17. Berzina, I.; Bets, R.; Buls, J.; Cers, E.; Kulesa, L. On a non-periodic shrinking generator. In Proceedings of
the 2011 13th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing,
Timisoara, Romania, 26–29 September 2011; pp. 348–354.

18. Tasheva, A.T.; Tasheva, Z.N.; Milev, A.P. Generalization of the self-shrinking generator in the Galois Field
GF(pn). Adv. Artif. Intell. 2011, 2011, doi:10.1155/2011/464971. [CrossRef]

19. Tasheva, A.; Nakov, O.; Tasheva, Z. About balance property of the p-ary generalized self-shrinking generator
sequence. In Proceedings of the 14th International Conference on Computer Systems and Technologies
(CompSysTech ’13), Ruse, Bulgaria, 28–29 June 2013; ACM: New York, NY, USA, 2013; pp. 299–306.

20. Erkek, E.; Tuncer, T. The implementation of asg and sg random number generators. In Proceedings of the
2013 International Conference on System Science and Engineering (ICSSE), Budapest, Hungary, 4–6 July 2013;
pp. 363–367.

21. Boztas, S.; Alamer, A. Statistical dependencies in the self-shrinking generator. In Proceedings of the
2015 Seventh International Workshop on Signal Design and its Applications in Communications (IWSDA),
Bengaluru, India, 14–18 September 2015; pp. 42–46.

22. Savova-Tasheva, Z.; Tasheva, A. Analysis of keystream produced by generalized shrinking multiplexing
generator controlled by ternary m-sequence. In Proceedings of the 9th Balkan Conference on Informatics
(BCI’19), Sofia, Bulgaria, 26–28 September 2019; ACM: New York, NY, USA, 2019; pp. 1–7.

23. Gergely, A.M.; Crainicu, B. A succinct survey on (pseudo)-random number generators from a cryptographic
perspective. In Proceedings of the 2017 5th International Symposium on Digital Forensic and Security
(ISDFS), Tirgu Mures, Romania, 26–28 April 2017; pp. 1–6.

24. Bikram, P.; Khobragade, A.; Sai, S.; Goswami, S.S.P.; Dutt, S.; Trivedi, G. Design and implementation of
low-power high-throughput PRNGs for security applications. In Proceedings of the 2019 32nd International
Conference on VLSI Design and 2019 18th International Conference on Embedded Systems, Delhi, NCR,
India, 5–9 January 2019; pp. 535–536.

25. Prokofiev, A.O.; Chirkin, A.V.; Bukharov, V.A. Methodology for quality evaluation of PRNG, by investigating
distribution in a multidimensional space. In Proceedings of the 2018 IEEE Conference of Russian Young
Researchers in Electrical and Electronic Engineering (EIConRus), Moscow, Russia, 29 January–1 February
2018; pp. 355–357.

26. Dalai, D.K.; Maitra, S.; Pal, S.; Roy, D. Distinguisher and non-randomness of grain-v1 for 112, 114 and 116
initialisation rounds with multiple-bit difference in ivs. IET Inf. Secur. 2019, 13, 603–613. [CrossRef]

27. Avaroglu, E.; Çavdar, T. Quantum random number generators. In Proceedings of the 2018 International
Conference on Artificial Intelligence and Data Processing (IDAP), Malatya, Turkey, 28–30 September 2018;
pp. 1–4.

28. Zhu, S.; Ma, Y.; Li, X.; Yang, J.; Lin, J.; Jing, J. On the analysis and improvement of min-entropy estimation
on time-varying data. IEEE Trans. Inf. Forensics Secur. 2019, 1, doi:10.1109/TIFS.2019.2947871. [CrossRef]

29. Liu, Y.; Tong, X. Hyperchaotic system-based pseudorandom number generator. IET Inf. Secur. 2016, 10,
433–441. [CrossRef]

30. Cardell, S.D.; Fúster-Sabater, A. Discrete linear models for the self-shrunken sequences. Finite Fields
Their Appl. 2017, 47, 222–241. [CrossRef]

31. Cardell, S.D.; Fúster-Sabater, A. The t-Modified Self-shrinking Generator. In Computational Science—ICCS
2018, Proceedings of the International Conference on Computational Science (ICCS 2018), Wuxi, China,
11–13 June 2018; Shi, Y., Fu, H., Tian, Y., Krzhizhanovskaya, V.V., Lees, M.H., Dongarra, J., Sloot, P.M.A., Eds.;
Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2018; Volume 10860, pp. 653–663.

32. Golomb, S.W. Shift Register-Sequences; Aegean Park Press: Laguna Hill, CA, USA, 1982.
33. Fúster-Sabater, A. Linear Solutions for Irregularly Decimated Generators of Cryptographic Sequences. Int. J.

Nonlinear Sci. Numer. Simul. 2014, 15, 377–385.[CrossRef]
34. Todorova, M.; Stoyanov, B.; Szczypiorski, K.; Kordov, K. SHAH: Hash Function based on Irregularly

Decimated Chaotic Map. Int. J. Electron. Telecommun. 2018, 64, 457–465, doi:10.24425/123546. [CrossRef]
35. Lidl, R.; Niederreiter, H. Introduction to Finite Fields and Their Applications; Cambridge University Press:

New York, NY, USA, 1986.
36. Alvarez, G.; Montoya, F.; Romera, M.; Pastor, G. Cryptanalyzing an improved security modulated chaotic

encryption scheme using ciphertext absolute value. Chaos Soliton. Fract. 2005, 23, 1749–1756. [CrossRef]
37. Paar, C.; Pelzl, J. Understanding Cryptography; Springer: Berlin/Heidelberg, Germany, 2010.

83

Symmetry 2019, 11, 1460

38. Massey, J.L. Shift-register synthesis and BCH decoding. IEEE Trans. Inf. Theor. 1969, 15, 122–127.
doi:10.1109/TIT.1969.1054260. [CrossRef]

39. Rueppel, R.A. Linear Complexity and Random Sequences. In Advances in Cryptology—EUROCRYPT 1985;
Pichler, F., Ed.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1986; Volume 219,
pp. 167–188.

40. Killmann, W.; Schindler, W. AIS 20/AIS 31, A Proposal for: Functionality Classes for Random Number Generators;
Bundesamt für Sicherheit in der Informationstechnik (BSI): Frankfurt am Main, Germany, 2011.

41. Romera, M. Técnica de los Sistemas Dinámicos Discretos; 27 CSIC, Madrid II-C; Textos Universitarios:
Madrid, Spain, 1997.

42. Peitgen, H.O.; Jurgens, H.; Saupe, D. Chaos and Fractals: New Frontiers of Science; Springer: New York, NY,
USA, 2004.

43. Barnsley, M. Fractals Everywhere, 2nd ed.; Dover Publications, Inc.: Mineola, NY, USA, 2012.
44. Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Introduction to Algorithms, 2nd ed.; The MIT Press:

Cambridge, MA, USA, 2001.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

84

symmetryS S
Article

The Symmetric Key Equation for Reed–Solomon
Codes and a New Perspective on the
Berlekamp–Massey Algorithm

Maria Bras-Amorós 1,* and Michael E. O’Sullivan 2

1 Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Av. Països Catalans 26,
43007 Tarragona, Catalonia

2 Department of Mathematics and Statistics, San Diego State University, 5500 Campanile Drive, San Diego,
CA 92182-7720, USA; mosullivan@sdsu.edu

* Correspondence: maria.bras@urv.cat

Received: 19 September 2019; Accepted: 25 October 2019; Published: 2 November 2019

Abstract: This paper presents a new way to view the key equation for decoding Reed–Solomon
codes that unites the two algorithms used in solving it—the Berlekamp–Massey algorithm and the
Euclidean algorithm. A new key equation for Reed–Solomon codes is derived for simultaneous
errors and erasures decoding using the symmetry between polynomials and their reciprocals as
well as the symmetries between dual and primal codes. The new key equation is simpler since it
involves only degree bounds rather than modular computations. We show how to solve it using the
Euclidean algorithm. We then show that by reorganizing the Euclidean algorithm applied to the new
key equation we obtain the Berlekamp–Massey algorithm.

Keywords: Reed–Solomon codes; key equation; Berlekamp–Massey algorithm; Sugiyama et al.
algorithm; euclidean algorithm

1. Introduction

Reed–Solomon codes are the basis of many applications such as secret sharing [1], distributed
storage [2,3], private information retrieval [4] and the analysis of cryptographic hardness [5]. The most
used tool for decoding Reed–Solomon codes is the key equation by Berlekamp [6] and the milestone
algorithms that solve it are the Berlekamp–Massey algorithm [7] and the Sugiyama et al. adaptation
of the Euclidean algorithm [8]. Their connections are analyzed in [9–12]. This paper is meant to
bring a new unified presentation of the key equation, the Sugiyama-Euclidean algorithm and the
Berlekamp–Massey algorithm for correcting errors and erasures for Reed–Solomon codes.

Section 2 presents a revisited key equation for both erasures and errors using the symmetry
between polynomials and their reciprocals as well as the symmetries between dual and primal codes.
In the new key equation, as opposed to the classical equation, there is no need to reference computations
modulo a power of the indeterminate, and the correction polynomials reveal error locations rather
than their inverses. Section 3 gives a way to solve the new key equation using the Euclidean algorithm.
We show how the Berlekamp–Massey algorithm can be obtained by reorganizing the Euclidean
algorithm. Hence, the whole paper is, in fact, a simple presentation of the Berlekamp–Massey algorithm
as a restructured Euclidean algorithm.

Symmetry 2019, 11, 1357; doi:10.3390/sym11111357 www.mdpi.com/journal/symmetry85

Symmetry 2019, 11, 1357

2. Symmetric Key Equation

2.1. Reed–Solomon Codes

Suppose that F is a finite field of q elements and suppose that α is a primitive element of F.
Let n = q − 1. Each vector u = (u0, . . . , un−1) ∈ Fn is identified with the polynomial u(x) =

u0 + u1x + · · ·+ un−1xn−1. The evaluation of u(x) at a is then denoted u(a). The cyclic code C∗(k)
of length n generated by the polynomial (x− α)(x− α2) · · · (x− αn−k) is classically referred to as a
(primal) Reed–Solomon code. Its dimension is k. On the other hand, the cyclic code C(k) of lenth n
generated by the polynomial (x− αn−(k+1))(x− αn−(k+2)) · · · (x− α)(x− 1) is referred to as a dual
Reed–Solomon code. Its dimension is k as well. The minimum distance of both codes is d = n− k + 1.
The codes are related by the equality C(k)⊥ = C∗(n− k).

The vector space Fn is naturally bijected to itself through a map c �→ c∗ taking C(k)
to C∗(k). For a vector c = (c0, c1, . . . , cn−1) ∈ Fn the vector c∗ is defined componentwise
as c∗ = (c0, α−1c1, α−2c2, . . . , αcn−1). Symmetrically, if c∗ = (c∗0, c∗1, . . . , c∗n−1), then c =

(c∗0, αc∗1, α2c∗2, . . . , αn−1c∗n−1). In particular, c(αi) = c∗0 + αc∗1αi + α2c∗2α2i + · · · + αn−1c∗n−1α(n−1)i =

c∗(αi+1).
Due to this bijective map, algorithms for correcting errors and erasures for primal Reed–Solomon

code are also applicable for dual Reed–Solomon codes and vice versa. Indeed, if the codeword c ∈ C(k)
at minimum distance of a received vector u differs from u by a vector of errors e, then the codeword
c∗ ∈ C∗(k) at minimum distance of a received vector u∗ differs from u∗ by a vector of errors e∗.

2.2. Decoding for Errors and Erasures

Suppose that a noisy channel adds t errors and erases s other components of a transmitted
codeword c ∈ C(k) with 2t + s < d. Let u be the received word after replacing the erased positions by
0 and let e = u− c. The erasure locator polynomial is defined as Λr = ∏i:ciwas erased(x− αi) while the error
locator polynomial is defined as Λe = ∏i:ei �=0,cinot erased(x− αi). The product ΛrΛe is called Λ. We remark
that while Λr is known driectly from the received word, the Λe is not a priori known. The error evaluator

polynomial is defined as Ω = ∑ i:ei �=0
or ci erased

ei ∏j:ej �=0 or cj erased,

and j �=i
(x− αi) = ∑n−1

i=0 ei
Λ

x− αi The error positions can

be identified by Λe(αi) = 0 while the error values can be derived, as well as the erased values, from
the analogue of the Forney formula [13]

ei =
Ω(αi)

Λ′(αi)
.

Notice that in the traditional setting, the roots of the locator polynomial are not related to the error
positions but to their inverses. Hence, in the new setting we take the reciprocals of the polynomials of
the traditional setting thus establishing a symmetry between the different versions. Also, the classical
Forney formula involves the evaluator polynomial and the derivative of the locator polynomial
evaluated at the inverses of the error positions, while with the new settings we use directly the
error positions.

Finally, the polynomial S = e(αn−1) + e(αn−2)x + · · ·+ e(α)xn−2 + e(1)xn−1 is called the syndrome
polynomial of e.

Lemma 1. Ω(xn − 1) = ΛS.

86

Symmetry 2019, 11, 1357

Proof. We can compute directly,

Ω(xn − 1) = (xn − 1)
n−1

∑
i=0

ei
Λ

x− αi

= Λ
n−1

∑
i=0

ei
xn − 1
x− αi

= Λ
n−1

∑
i=0

ei

n−1

∑
j=0

xn−1−j(αi)j

= Λ
n−1

∑
j=0

xn−1−j
n−1

∑
i=0

ei(α
j)i

= Λ
n−1

∑
j=0

xn−1−je(αj)

= ΛS

The general term of S is e(αn−1−i)xi, but we only know from a received word the values e(1) =
u(1), . . . , e(αn−k−1) = u(αn−k−1). For this reason we use the truncated syndrome polynomial defined as
S̄ = e(αn−k−1)xk + e(αn−k−2)xk+1 + · · ·+ e(1)xn−1. The degree of the polynomial Ω(xn − 1)−ΛS̄ =

Λ(S− S̄) is at most t+ s+ k− 1 < d−s
2 + s+ n− d = n− d−s

2 . One consequence of this bound is that the
reciprocal polynomials Ω∗ = xt+s−1Ω(1/x), Λ∗ = xt+sΛ(1/x) and the polynomial S̄∗ = xn−1S̄(1/x)
satisfy the well known Berlekamp key equation Λ∗S̄∗ = Ω∗ mod xn−s−k. Theorem 1 uses the bound
on the degree of Ω(xn − 1)−ΛS̄ to derive a symmetric key equation for dual Reed–Solomon codes.
To prove it, we first need the next two lemmas.

Lemma 2. Suppose that f is a polynomial of F[x] with deg(f) < n. Suppose that for a given α ∈ F∗ the
polynomial f (x) xn−1

x−α has no term of degree n− 1. Then α is a root of f .

Proof. The Euclidean division of f by x− α gives a polynomial g ∈ F[x] of degree smaller than n− 1
that satisfies f (x) = f (α) + g(x)(x − α). Then f (x) xn−1

x−α = f (α) xn−1
x−α + g(x)(xn − 1). On one hand,

the product g(x)(xn − 1) has no term of degree n− 1. On the other hand, the coefficient of f (α) xn−1
x−α

of degree n − 1 is exactly f (α). Hence, if f (x) xn−1
x−α has no term of degree n − 1, then necessarily

f (α) = 0.

Lemma 3. Suppose that f is a polynomial of F[x] with deg(f) ≤ n − s − t such that the terms of degree
n− t, . . . , n− 1 of f ΛrS are all zero. Then Λe is a divisor of f .

87

Symmetry 2019, 11, 1357

Proof. Suppose that the terms of degree n − t, . . . , n − 1 of f ΛrS are all zero. Suppose cj was not
erased and ej �= 0. Consider g(x) = Λe/(x− αj). We have deg(g) = t− 1 and consequently the term
of degree n− 1 of f gΛrS is 0. Then,

f gΛrS = f (x)g(x)Λr(x)
Ω(x)(xn − 1)

Λ(x)

= ∑
k:ek �=0

ek f (x)g(x)Λr(x)
xn − 1
x− αk

= ej f (x)g(x)Λr(x)
xn − 1
x− αj

+ ∑
k:ek �=0,

cknot erased

k �=j

ek f (x)
g(x)

x− αk
Λr(x)(xn − 1)

+ ∑
k:ckerased

ek f (x)g(x)
Λr(x)
x− αk

(xn − 1).

Because of the restriction on the degree of f , none of the last two summands has term of degree
n− 1. Since the term of degree n− 1 of f gΛrS is 0, so is the term of degree n− 1 of f (x)g(x)Λr(x) xn−1

x−αj
.

By Lemma 2, x− αj must be a divisor of f . Since j was chosen arbitrarily such that ej �= 0 and cj was
not erased, we conclude that Λe must divide f .

Theorem 1 (Symmetric key equation). Suppose that a number s of erasures occurred together with a number
of at most � d−s−1

2 � errors. Then the polynomials Λe and Ω are uniquely determined by the conditions

1. f is monic
2. f , ϕ are coprime
3. deg(f) ≤ d−s

2
4. deg(f ΛrS̄− ϕ(xn − 1)) < n− d−s

2

Proof. It is easy to see that Λe and Ω satisfy conditions 1, 2, 3. It follows from the previous lemmas
that Λe and Ω satisfy condition 4. Conversely, suppose that f , ϕ satisfy the conditions 3 and 4. We will
prove that the terms of degrees n− t, . . . , n− 1 of f ΛrS are all zero. Then, by Lemma 3, and because
deg(f) ≤ d−s

2 ≤ n − d+s
2 = n − s − d−s

2 < n − s − t, it can be deduced that Λe is a divisor of f .
Indeed, write

f ΛrS = (f ΛrS̄− ϕ(xn − 1)) + f Λr(S− S̄) + ϕ(xn − 1).

By consition 4, the degree of the first term in this sum is less than n− d−s
2 < n− t. By condition 3,

deg(f Λr(S− S̄)) ≤ d−s
2 + s+ k− 1 = n− d−s

2 < n− t. By condition 4, deg(ϕ) + n ≤ deg(f) + s+ n−
1. Consequently deg(ϕ) < deg(f) + s and by condition 3, deg(ϕ) < d−s

2 + s = d+s
2 ≤ n− d−s

2 < n− t.
So, the terms of degrees n− t, . . . , n− 1 of ϕ(xn− 1) are all zero. Suppose now that there exists g ∈ F[x]
such that f = gΛe. Then

f ΛrS̄− ϕ(xn − 1) = f Λr(S̄− S) + f ΛrS− ϕ(xn − 1)

= f Λr(S̄− S) + gΛS− ϕ(xn − 1)

= f Λr(S̄− S) + gΩ(xn − 1)− ϕ(xn − 1)

= f Λr(S̄− S) + (gΩ− ϕ)(xn − 1).

By condition 4, deg(f ΛrS̄− ϕ(xn − 1)) < n− d−s
2 and as just seen, deg(f Λr(S̄− S)) < n− t.

Consequently, ϕ = gΩ. Now condition 1 and condition 2 imply g = 1 and so ϕ = Ω and f = Λe.

88

Symmetry 2019, 11, 1357

3. Solving the Symmetric Key Equation

We first approach the case in which only erasures occurred. In this case Λ = Λr, Λe = 1, and Ω
can be directly derived from the key equation of Theorem 1. Indeed, the polynomial Ω is exactly the
sum of those monomials of ΛrS̄ of degree at least n− d−s

2 , divided by the monomial xn− d−s
2 .

Suppose now the case in which errors and erasures occured simultaneously. The extended
Euclidean algorithm applied to the quotient polynomial ΛrS̄ and the divisor polynomial −(xn −
1) gives gcd(ΛrS̄, xn − 1) and two polynomials λ(x) and η(x) satisfying that λΛrS̄ − η(xn − 1) =

gcd(ΛrS̄, xn − 1). A new remainder ri and two polynomials λi(x) and ηi(x) such that λiΛrS̄− ηi(xn −
1) = ri are computed at each intermediate step of the Euclidean algorithm, in a way such that the
degree of ri decreases at each step. Truncating at a proper point the Euclidean algorithm we can obtain
two polynomials λi and ηi satisfying that the degree of λiΛrS̄− ηi(xn − 1) is smaller than n− d−s

2 .
The next algorithm is a truncated version of the Euclidean algorithm. It satisfies that, for all i ≥ 0,
deg(ri) ≤ deg(ri−1) and deg(fi) ≥ deg(fi−1).

Algorithm 1: Euclidean Algorithm
Initialize:

r−2 = ΛrS̄, f−2 = 1, ϕ−2 = 0,
r−1 = −(xn − 1), f−1 = 0, ϕ−1 = 1,

while deg(ri) ≥ n− d−s
2 :

qi = Quotient(ri−2, ri−1)

ri = Remainder(ri−2, ri−1)

fi = fi−2 − qi fi−1
ϕi = ϕi−2 − qi ϕi−1

end while

Return fi/LC(fi), ϕi/LC(fi)

or, equivalently, in matrix form,

Initialize:(
r−1 f−1 ϕ−1

r−2 f−2 ϕ−2

)
=

(
−(xn − 1) 0 1

ΛrS̄ 1 0

)
while deg(ri) ≥ n− d−s

2 :

qi = Quotient(ri−2, ri−1)(
ri fi ϕi

ri−1 fi−1 ϕi−1

)
=

(
−qi 1

1 0

)(
ri−1 fi−1 ϕi−1
ri−2 fi−2 ϕi−2

)
end while

Return fi/LC(fi), ϕi/LC(fi)

For every integer i larger than or equal to −1 consider the matrix
(◦

Ri
◦
Fi

◦
Φi

◦
R̃i

◦
F̃i

◦
Φ̃i

)
=(

1/LC(ri) 0
0 −LC(ri)

)(
ri fi ϕi

ri−1 fi−1 ϕi−1

)
It is easy to check that the polynomial

◦
Ri is monic. In the

algorithm one can replace the update step by the next multiplication.(◦
Ri

◦
Fi

◦
Φi

◦
R̃i

◦
F̃i

◦
Φ̃i

)
=

⎛⎝ 1

LC(
◦
R̃i−1−Qi

◦
Ri−1)

0

0 −LC(
◦
R̃i−1 −Qi

◦
Ri−1)

⎞⎠(−Qi 1
1 0

)(◦
Ri−1

◦
Fi−1

◦
Φi−1

◦
R̃i−1

◦
F̃i−1

◦
Φ̃i−1

)
,

where the polynomial Qi is the quotient of the division of
◦
R̃i−1

by
◦
Ri−1. Furthermore, if Qi = Q(0)

i + Q(1)
i x + · · · + Q(li)

i xli , then

89

Symmetry 2019, 11, 1357

(
−Qi 1
1 0

)
=

(
1 −Q(0)

i
0 1

)(
1 −Q(1)

i x
0 1

)
. . .

(
1 −Q(l)

i xl

0 1

)(
0 1
1 0

)
and the update

step becomes(◦
Ri

◦
Fi

◦
Φi

◦
R̃i

◦
F̃i

◦
Φ̃i

)
=

⎛⎝ 1

LC(
◦
R̃i−1−Qi

◦
Ri−1)

0

0 −LC(
◦
R̃i−1 −Qi

◦
Ri−1)

⎞⎠(1 −Q(0)
i

0 1

)(
1 −Q(1)

i x
0 1

)
. . .

. . .

(
1 −Q(l)

i xl

0 1

)(
0 1
1 0

)(◦
Ri−1

◦
Fi−1

◦
Φi−1

◦
R̃i−1

◦
F̃i−1

◦
Φ̃i−1

)
,

One can see that LC(
◦
R̃i−1 − Qi

◦
Ri−1) and the Q(j)

i ’s are the leading coefficients of the left-most,
top-most polynomials in the previous product of all the previous matrices. This follows from the fact
that

◦
Ri is monic. Define μ as the (changing) leading coefficients of the left-most, top-most element in

the product of all the previous matrices. It follows that

(◦
Ri

◦
Fi

◦
Φi◦

R̃i

◦
F̃i

◦
Φ̃i

)
=

(
1
μ 0
0 −μ

)(
1 −μ

0 1

)(
1 −μx
0 1

)
. . .
(

1 −μxli

0 1

)(
0 1
1 0

)(◦
Ri−1

◦
Fi−1

◦
Φi−1◦

R̃i−1

◦
F̃i−1

◦
Φ̃i−1

)

=

(
1
μ 0
0 −μ

)(
1 −μ

0 1

)(
1 −μx
0 1

)
. . .
(

1 −μxli

0 1

)(
0 1
1 0

)
(

1
μ 0
0 −μ

)(
1 −μ

0 1

)(
1 −μx
0 1

)
. . .
(

1 −μxli−1

0 1

)(
0 1
1 0

)(◦
Ri−2

◦
Fi−2

◦
Φi−2◦

R̃i−2

◦
F̃i−2

◦
Φ̃i−2

)

=

(
1
μ 0
0 −μ

)(
1 −μ

0 1

)(
1 −μx
0 1

)
. . .
(

1 −μxli

0 1

)(
0 −μ

1/μ 0

)
(

1 −μ

0 1

)(
1 −μx
0 1

)
. . .
(

1 −μxli−1

0 1

)(
0 1
1 0

)(◦
Ri−2

◦
Fi−2

◦
Φi−2◦

R̃i−2

◦
F̃i−2

◦
Φ̃i−2

)

=

(
1
μ 0
0 −μ

)(
1 −μ

0 1

)(
1 −μx
0 1

)
. . .
(

1 −μxli

0 1

)(
0 −μ

1/μ 0

)
(

1 −μ

0 1

)(
1 −μx
0 1

)
. . .
(

1 −μxli−1

0 1

)(
0 −μ

1/μ 0

)
...

(
1 −μ

0 1

)(
1 −μx
0 1

)
. . .
(

1 −μxl0

0 1

)(
0 1
1 0

)(◦
R−1

◦
F−1

◦
Φ−1

◦
R̃−1

◦
F̃−1

◦
Φ̃−1

)
,

Let us label the matrices in the previous product:

(
1
μ 0
0 −μ

) Mm︷ ︸︸ ︷(
1 −μ

0 1

) Mm−1︷ ︸︸ ︷(
1 −μx
0 1

)
. . .
(

1 −μxli−1

0 1

)(
1 −μxli

0 1

)(
0 −μ

1/μ 0

)
...

(
1 −μ

0 1

)(
1 −μx
0 1

)
. . .

Ml0+3︷ ︸︸ ︷(
1 −μxl1−1

0 1

) Ml0+2︷ ︸︸ ︷(
1 −μxl1

0 1

) Ml0+1︷ ︸︸ ︷(
0 −μ

1/μ 0

)
Ml0︷ ︸︸ ︷(

1 −μ

0 1

) Ml0−1︷ ︸︸ ︷(
1 −μx
0 1

)
. . .

M1︷ ︸︸ ︷(
1 −μxl0−1

0 1

) M0︷ ︸︸ ︷(
1 −μxl0

0 1

)(
0 1
1 0

)
.

(◦
R−1

◦
F−1

◦
Φ−1◦

R̃−1

◦
F̃−1

◦
Φ̃−1

)

90

Symmetry 2019, 11, 1357

Now, we define(
R−1 F−1 Φ−1

R̃−1 F̃−1 Φ̃−1

)
=

(
0 1
1 0

)(◦
R−1

◦
F−1

◦
Φ−1

◦
R̃−1

◦
F̃−1

◦
Φ̃−1

)
=

(
Λr S̄ 1 0

xn − 1 0 −1

)
(

Ri Fi Φi
R̃i F̃i Φ̃i

)
= Mi ·Mi−1 · · · · · M0 ·

(
R−1 F−1 Φ−1

R̃−1 F̃−1 Φ̃−1

)

Lets us see now that, for all i ≤ m, the polynomials R̃i and Fi are monic. Indeed, R̃−1 = xn − 1
is monic, and it follows by induction and by the definition of the matrices Mi, that R̃i is monic for
all i. Now, all the matrices Mi have determinant equal to 1. This implies that RiF̃i − FiR̃i is constant
for all i and it equals −(xn − 1). In particular, since LC(RiF̃i − FiR̃i) = −LC(Fi)LC(R̃i) = −LC(Fi),
we deduce that for every i, the polynomial Fi is monic.

Algorithm 2 computes the matrices
(

Ri Fi Φi
R̃i F̃i Φ̃i

)
until deg(Ri) < n− d−s

2 .

Algorithm 2: Single Coefficient Euclidean Algorithm.
Initialize:(

R−1 F−1 Φ−1

R̃−1 F̃−1 Φ̃−1

)
=

(
ΛrS̄ 1 0
xn − 1 0 −1

)

while deg(Ri) ≥ n− d−s
2 :

μ = LC(Ri)

p = deg(Ri)− deg(R̃i)

if p ≥ 0 then(
Ri+1 Fi+1 Φi+1
R̃i+1 F̃i+1 Φ̃i+1

)
=

(
1 −μxp

0 1

)(
Ri Fi Φi
R̃i F̃i Φ̃i

)
else (

Ri+1 Fi+1 Φi+1
R̃i+1 F̃i+1 Φ̃i+1

)
=

(
0 −μ

1/μ 0

)(
Ri Fi Φi
R̃i F̃i Φ̃i

)
end if

end while

Return Fi, Φi

Due to the fact that the polynomials R̃i are monic, after each step with a negative value of p the
new updated value p coincides with the previous one but with opposite sign and so happens for μ.
Taking this into account we join each step with a negative value of p with the next step. We obtain(

Ri+1 Fi+1 Φi+1
R̃i+1 F̃i+1 Φ̃i+1

)
=

(
1 μx−p

0 1

)(
0 −μ

1/μ 0

)(
Ri Fi Φi
R̃i F̃i Φ̃i

)
This adjustment keeps Fi, Φi unaltered. It can be stated as follows
At this point we observe that we only need to keep the polynomials Ri (and R̃i) because we

need their leading coefficients (the μi’s). The next lemma proves that these leading coefficients can be
obtained independently of the polynomials Ri. This allows the computation of the polynomials Fi, Φi
iteratively while dispensing with the polynomials Ri.

Lemma 4. LC(Ri) = LC(FiΛrS̄)

91

Symmetry 2019, 11, 1357

Proof. The result is obvious for i = −1. Since we joined two steps, before Algorithm 3, the degree
of the remainder Ri = FiΛrS̄ − Φi(xn − 1) = FiΛrS̄ − xnΦi + Φi is at most n − 1 for every i ≥ 1.
Consequently all terms of xnΦi cancel with terms of FiΛrS̄ and Ri must have leading term equal to
either a term of Φi or a term of FiΛrS̄ or a sum of a term of Φi and a term of FiΛrS̄.

On the other hand, the algorithm computes LC(Ri) only while deg(Ri) ≥ n− d−s
2 . In particular,

2deg(Ri) = 2n − d + s ≥ n + s. Leu us show that in this case the degree of the leading term of
Ri is strictly larger than the degree of Φi. Indeed, since all the matrices Mi in the algorithm have
determinant equal to 1, this implies that deg(Φi) = deg(ΛrS̄) − deg(R̃i) ≤ n + s − deg(R̃i) <

2deg(Ri)− deg(Ri) = deg(Ri).

Algorithm 3: Refactored Single Coefficient Euclidean Algorithm
Initialize:(

R−1 F−1 Φ−1

R̃−1 F̃−1 Φ̃−1

)
=

(
ΛrS̄ 1 0
xn − 1 0 −1

)

while deg(Ri) ≥ n− d−s
2 :

μ = LC(Ri)

p = deg(Ri)− deg(R̃i)

if p ≥ 0 or μ = 0 then(
Ri+1 Fi+1 Φi+1
R̃i+1 F̃i+1 Φ̃i+1

)
=

(
1 −μxp

0 1

)(
Ri Fi Φi
R̃i F̃i Φ̃i

)
else (

Ri+1 Fi+1 Φi+1
R̃i+1 F̃i+1 Φ̃i+1

)
=

(
x−p −μ

1/μ 0

)(
Ri Fi Φi
R̃i F̃i Φ̃i

)
end if

end while

Return Fi, Φi

We transform now Algorithm 3 in a way such that isntead of keeping the remainders we keep
their degrees. For this we use the values di, d̃i satisfying, at each step, that di ≥ deg(Ri), d̃i = deg(R̃i).

Algorithm 4 is exactly the Berlekamp–Massey algorithm applied to the recurrence
∑t

j=0 Λje(αi+j−1) = 0 for all i > 0. This linear recurrence is a consequence of the equality
S

xn−1 = 1
x

(
e(1) + e(α)

x + e(α2)
x2 + · · ·

)
and the fact that Λ S

xn−1 is a polynomial and, hence, its terms of
negative order in its expression as a Laurent series in 1/x are all zero.

92

Symmetry 2019, 11, 1357

Algorithm 4: Berlekamp-Massey Algorithm
Initialize:

d−1 = s + deg(S̄)
d̃−1 = n(

F−1 Φ−1

F̃−1 Φ̃−1

)
=

(
1 0
0 −1

)

while di ≥ n− d−s
2 :

μ = Coefficient(FiΛrS̄, di)

p = di − d̃i

if p ≥ 0 or μ = 0 then(
Fi+1 Φi+1
F̃i+1 Φ̃i+1

)
=

(
1 −μxp

0 1

)(
Fi Φi
F̃i Φ̃i

)
di+1 = di − 1
d̃i+1 = d̃i

else (
Fi+1 Φi+1
F̃i+1 Φ̃i+1

)
=

(
x−p −μ

1/μ 0

)(
Fi Φi
F̃i Φ̃i

)
di+1 = d̃i − 1
d̃i+1 = di

end if

end while

Return Fi, Φi

4. Conclusions

By working with error/erasure locator polynomials whose roots correspond to the error positions
rather than to their inverses and with an evaluator polynomial that gives the error values when we
evaluate it at the error positions instead of evaluating it at the inverses of the error positions we get
to a symmetric key equation for Reed–Solomon codes. We showed that the symmetric key equation
can be solved by an adapted Euclidean algorithm whose steps can be refined leading naturally to the
Berlekamp–Massey algorithm.

Author Contributions: The authors contributed equally to the theoretical framing and algorithms and the
corresponding author took principle responsibility for writing the article.

Funding: The first author was partly supported by the Catalan Government under grant 2017 SGR 00705, by the
Spanish Ministry of Economy and Competitivity under grant TIN2016-80250-R, and by Universitat Rovira i Virgili
under grant OPEN2019.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. McEliece, R.J.; Sarwate, D.V. On sharing secrets and Reed-Solomon codes. Commun. ACM 1981, 24, 583–584.
[CrossRef]

2. Dimakis, A.G.; Ramchandran, K.; Wu, Y.; Suh, C. A Survey on Network Codes for Distributed Storage.
Proc. IEEE 2011, 99, 476–489. [CrossRef]

93

Symmetry 2019, 11, 1357

3. Tamo, I.; Ye, M.; Barg, A. The repair problem for Reed-Solomon codes: Optimal repair of single and
multiple erasures with almost optimal node size. IEEE Trans. Inf. Theory 2019, 65, 2673–2695. [CrossRef]

4. Tajeddine, R.; Gnilke, O.W.; Karpuk, D.; Freij-Hollanti, R.; Hollanti, C. Private information retrieval from
coded storage systems with colluding, Byzantine, and unresponsive servers. IEEE Trans. Inf. Theory 2019,
65, 3898–3906. [CrossRef]

5. Kiayias, A.; Yung, M. Cryptographic hardness based on the decoding of Reed-Solomon codes. IEEE Trans.
Inf. Theory 2008, 54, 2752–2769. [CrossRef]

6. Berlekamp, E.R. Algebraic Coding Theory; McGraw-Hill Book Co.: New York, NY, USA, 1968; pp. xiv+466.
7. Massey, J.L. Shift-register synthesis and BCH decoding. IEEE Trans. Inf. Theory 1969, 15, 122–127.

[CrossRef]
8. Sugiyama, Y.; Kasahara, M.; Hirasawa, S.; Namekawa, T. A method for solving key equation for decoding

Goppa codes. Inf. Control 1975, 27, 87–99. [CrossRef]
9. Dornstetter, J.L. On the equivalence between Berlekamp’s and Euclid’s algorithms. IEEE Trans. Inf. Theory

1987, 33, 428–431. [CrossRef]
10. Heydtmann, A.E.; Jensen, J.M. On the equivalence of the Berlekamp-Massey and the Euclidean algorithms

for decoding. IEEE Trans. Inf. Theory 2000, 46, 2614–2624.
11. Mateer, T.D. On the equivalence of the Berlekamp-Massey and the Euclidean algorithms for algebraic

decoding. In Proceedings of the 12th Canadian Workshop on Information Theory (CWIT), Kelowna, BC,
Canada, 17–20 May 2011; pp. 139–142.

12. Ilani, I. Berlekamp–Massey Algorithm: Euclid in Disguise. In Proceedings of the 2018 IEEE International
Conference on the Science of Electrical Engineering in Israel (ICSEE), Eilat, Israel, 12–14 December 2018;
pp. 1–5. [CrossRef]

13. Forney, G.D., Jr. On decoding BCH codes. IEEE Trans. Inf. Theory 1965, 11, 549–557. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

94

symmetryS S

Article

The Root Extraction Problem for Generic Braids

María Cumplido 1,2,*, Juan González-Meneses 3,* and Marithania Silvero 4,*

1 Institut de Mathématiques de Bourgogne, UMR 5584, CNRS, Univ. Bourgogne Franche-Comté,
21000 Dijon, France

2 Department of Mathematics, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, UK
3 Departamento de Álgebra, Universidad de Sevilla, 41012 Sevilla, Spain
4 Departamento de Ciencias Integradas, Universidad de Huelva, 21007 Huelva, Spain
* Correspondence: M.Cumplido@hw.ac.uk (M.C.); meneses@us.es (J.G.-M.); marithania@us.es (M.S.)

Received: 24 September 2019; Accepted: 17 October 2019; Published: 23 October 2019

Abstract: We show that, generically, finding the k-th root of a braid is very fast. More precisely, we provide
an algorithm which, given a braid x on n strands and canonical length l, and an integer k > 1, computes
a k-th root of x, if it exists, or guarantees that such a root does not exist. The generic-case complexity
of this algorithm is O(l(l + n)n3 log n). The non-generic cases are treated using a previously known
algorithm by Sang-Jin Lee. This algorithm uses the fact that the ultra summit set of a braid is, generically,
very small and symmetric (through conjugation by the Garside element Δ), consisting of either a single
orbit conjugated to itself by Δ or two orbits conjugated to each other by Δ.

Keywords: braid groups; algorithms in groups; group-based cryptography

1. Introduction

Group theory is ‘the language of symmetry’, as it is beautifully explained by Marcus du Sautoy in his
book Symmetry. In this paper we will deal with a fascinating family of groups discovered by Emil Artin:
Braid groups.

There are several computational problems in braid groups that have been proposed for their potential
applications in cryptography [1]. Initially, the conjugacy problem in the braid group Bn was proposed
as a non-commutative alternative to the discrete logarithm problem [2,3]. Later, some other problems
were proposed, including the k-th root extraction problem: given x ∈ Bn and an integer k > 1, find a ∈ Bn

such that ak = x.
The interest of braid groups for cryptography has decreased considerably, mainly due to the

appearance of algorithms which solve the conjugacy problem extremely fast in the generic case [4–6].
The main problem with the proposed cryptographic protocols turns out to be the key generation. Public
and secret keys are chosen ‘at random’, and this implies that the protocols are insecure against algorithms
which have a fast generic-case complexity.

While the future of braid-cryptography depends on finding a good key-generation procedure, there
are some other problems in braid groups whose generic-case complexity is still to be studied. This is the
case of the k-th root (extraction) problem.

A priori, the study of the generic case for the k-th root problem could be though to be nonsense as,
generically, the k-th root of a braid x does not exist. But we should think of the braid x as the k-th power of
a generic braid: in protocols based on this problem, a secret braid a is chosen at random, and the braid
x = ak is made public. Hence we are dealing with braids for which a k-th root is known to exist. In any
case, the algorithm in this paper not only shows that root extraction in braid groups is generically very

Symmetry 2019, 11, 1327; doi:10.3390/sym11111327 www.mdpi.com/journal/symmetry

95

Symmetry 2019, 11, 1327

fast, but can also be used by those mathematicians needing a simple algorithm for finding a k-th root of
a braid (or proving that it does not exist), which works in most cases.

There are already known algorithms to solve the k-th root problem in braid groups and, more
generally, in Garside groups [7,8]. But these algorithms can be simplified a lot in the generic case, as we
will show in this paper.

The plan of this paper is as follows. In Section 2 we provide the necessary tools to describe the
situation and attack the problem. Then in Section 3, we prove the theoretical results needed for our
proposed algorithm, which is given in Section 4, together with the study of its generic-case complexity.

This generic-case complexity turns out to be quadratic on the canonical length l of the braid, if the
number n of strands is fixed. More precisely, the generic-case complexity is O(l(l + n)n3 log n) (Theorem 6).

2. Preliminaries

2.1. Garside Structure of Bn

A group G is said to be a Garside group [9] if it admits a submonoid P (whose elements are called
positive) such that P ∩ P−1 = {1}, and a special element Δ ∈ P , called Garside element, satisfying the
following properties:

• The partial order � in G defined by a � b if a−1b ∈ P is a lattice order. If a � b we say that a is a prefix
of b. The lattice structure implies that for all a, b ∈ G there exists a unique meet a ∧ b and a unique
join a ∨ b with respect to �. Notice that this partial order is invariant under left-multiplication.

• The set of simple elements S := {s ∈ G | 1 � s � Δ} is finite and generates G.
• Conjugation by Δ preserves P , that is, Δ−1PΔ = P .
• P is atomic: the atoms are the indivisible elements of P (elements a ∈ P for which there is no

decomposition a = bc with non-trivial elements b, c ∈ P). Then, for every x ∈ P there is an upper
bound on the number of atoms in a decomposition of the form x = a1a2 · · · an, where each ai is
an atom.

One of the main examples of Garside groups is the braid group on n strands, denoted by Bn.
This group has a standard presentation due to Artin [10]:

Bn =

〈
σ1, σ2, ..., σn−1

∣∣∣∣∣ σiσjσi = σjσiσj if |i− j| = 1
σiσj = σjσi if |i− j| > 1

〉
.

Attending to the above presentation, a braid is said to be positive if it can be written as a product of
positive powers of the generators {σi}n

i=1. The set of positive braids forms the monoid P corresponding to
the classical Garside structure of Bn. We will denote this monoid by B+

n .
The usual Garside element in B+

n , which we denote Δn, is defined recursively setting Δ2 = σ1 and

Δn = Δn−1σn−1σn−2 · · · σ1,

for all n > 2. We will often write Δ and omit the subindex n when there is no ambiguity.
Consider now the inner automorphism τ : Bn → Bn determined by Δ. That is, τ(x) = Δ−1xΔ.

One can easily show from the presentation of Bn that τ(σi) = σn−i for 1 ≤ i ≤ n− 1. Hence τ has order 2
and Δ2 is central. In fact, the center of Bn is cyclic, generated by Δ2 [11].

The set S of simple elements and the automorphism τ will be very important in the sequel.

96

Symmetry 2019, 11, 1327

2.2. Normal Forms, Cyclings and Decyclings

It is well-known that Garside groups have solvable word problem, as one can compute a normal form
for each element.

Let us first define the right complement of a simple element s ∈ S as ∂(s) = s−1Δ. That is, ∂(s) is
the only element t ∈ P such that st = Δ. Let us see that ∂(s) = t is also a simple element. Recall that
the simple elements are the positive prefixes of Δ. Since τ preserves P (by definition of Garside group),
we have that τ(s) is positive. Now

stτ(s) = Δτ(s) = sΔ,

hence tτ(s) = Δ, which implies that t is a positive prefix of Δ, that is, t ∈ S . It follows that we have a map
∂ : S → S . Notice that, by definition, ∂2 ≡ τ.

Given two simple elements s, t ∈ S , we say that the decomposition st is left weighted if s is the biggest
possible simple element (with respect to �) in any decomposition of the element st as a product of two
simple elements. This condition can be restated as ∂(s) ∧ t = 1, i.e., ∂(s) and t have no non-trivial prefixes
in common.

Definition 1 ([12,13]). The left normal form of an element x ∈ Bn is the unique decomposition x = Δpx1 · · · xl so
that p ∈ Z, l ≥ 0, xi ∈ S \ {1, Δ} for i = 1, . . . , l, and xixi+1 is a left weighted decomposition, for i = 1, . . . , l− 1.

Given such a decomposition, we define the infimum, supremum and canonical length of x as inf(x) = p,
sup(x) = p + l and �(x) = l, respectively. Equivalently, the infimum and supremum of x can be defined
as the maximum and minimum integers p and s so that Δp � x � Δs (see [12]).

It is important to notice that conjugation by Δ preserves the Garside structure of Bn. Hence, if the
left normal form of a braid x is Δpx1 · · · xl , then the left normal form of τ(x) is Δpτ(x1) · · · τ(xl). We will
make use of this property later.

Garside groups also have solvable conjugacy problem. One of the main tools to solve problems
related to conjugacy in braid groups are the summit sets, which are subsets of the conjugacy class of
a braid. Throughout this article we are going to use two of them: the super summit set [12] and the ultra
summit set [4]. Let us first introduce some concepts:

Definition 2. Let x = Δpx1 · · · xl be in left normal form, with l > 0. Notice that we can write:

x = τ−p(x1)Δpx2 · · · xl .

We define the initial factor of x as ι(x) = τ−p(x1), and the final factor of x as ϕ(x) = xl. We can then write:

x = ι(x)Δpx2 · · · xl and x = Δpx1 · · · xl−1 ϕ(x).

If l = 0, we set ι(x) = 1 and ϕ(x) = Δ.

Notice that, as τ2 is the identity, we actually have either ι(x) = x1 if p is even, or ι(x) = τ(x1) if p is
odd. This happens in braid groups, but not in other Garside groups in which the order of τ is bigger.

Definition 3 ([12]). Let x = Δpx1 · · · xl be in left normal form, with l > 0. The cycling and decycling of x are the
conjugates of x defined, respectively, as

c(x) = Δpx2 · · · xl ι(x) and d(x) = ϕ(x)Δpx1 · · · xl−1.

97

Symmetry 2019, 11, 1327

Thus c(x) is the conjugate of x by ι(x), and that d(x) is the conjugate of x by ϕ(x)−1.
Cyclings and decyclings were defined in [12] in order to try to simplify the braid x by conjugations.

Usually, if l ≥ 2, the decomposition Δpx2 · · · xl ι(x) is not the left normal form of c(x). So c(x) could
a priori have a shorter normal form (with less factors). A similar situation happens for d(x).

If Δpx2 · · · xl ι(x) is actually the left normal form of c(x) (when l ≥ 2), we say that the braid x is rigid.
This happens if and only if xl ι(x) (that is, ϕ(x)ι(x)) is a left weighted decomposition. We can extend this
definition to every case, when l ≥ 0:

Definition 4. We say that x ∈ Bn is rigid if ϕ(x)ι(x) is a left weighted decomposition.

If x is rigid, neither cycling nor decycling can simplify its normal form x = Δpx1 · · · xl . Actually, the
normal forms of the iterated cyclings of x are, if p is even:

c(x) = Δpx2 · · · xl x1, c2(x) = Δpx3 · · · xl x1x2, . . .

so cl(x) = x in this case. In the case when p is odd we have:

c(x) = Δpx2 · · · xlτ(x1), c2(x) = Δpx3 · · · xlτ(x1)τ(x2), . . .

so c2l(x) = x in this case.
In the same way, if x is rigid we have, for p even:

d(x) = Δpxl x1 · · · xl−1, d2(x) = Δpxl−1xl x1 · · · xl−2, . . .

so dl(x) = x in this case. If p is odd we get:

d(x) = Δpτ(xl)x1 · · · xl−1, d2(x) = Δpτ(xl−1)τ(xl)x1 · · · xl−2, . . .

so d2l(x) = x in this case. We then see that, if x is rigid, iterated cyclings and decyclings correspond to
cyclic permutations of the factors in the normal form of x (possibly conjugated by Δ, if p is odd); moreover,
when applied to rigid braids, c and d are inverses of each other.

2.3. Summit Sets

Let now x ∈ Bn be an arbitrary braid (not necessarily rigid). Consider the conjugacy class of x,
denoted xBn , and write infs(x) (resp. sups(x)) for the maximal infimum (resp. the minimal supremum)
of an element in xBn . These numbers are known to exist [12], and are called the summit infimum and the
summit supremum of x, respectively. Set �s(x) = sups(x)− infs(x), the summit length of x. It is shown
in [12] that the elements in xBn having the shortest possible normal form are those whose canonical length
is precisely �s(x), and they coincide with the elements whose infimum and supremum are equal to infs(x)
and sups(x), respectively. The set formed by these elements is called the supper summit set of the braid x:

SSS(x) =
{

y ∈ xBn | �(y) = �s(x)
}
=
{

y ∈ xBn | inf(y) = infs(x), sup(y) = sups(x)
}

.

Starting from x, it is possible to obtain an element in SSS(x) by applying cyclings and decyclings
iteratively. It is known [12] that if inf(x) < infs(x) then the infimum of x can be increased by iterated
cycling. Actually, in this case inf(x) < inf(ck(x)) for some k < n(n−1)

2 (see [14]). Hence, every n(n−1)
2

iterations either the infimum has increased, or one is sure to have an element whose infimum is the
summit infimum.

98

Symmetry 2019, 11, 1327

In the same way, if sup(x) > sups(x), then the supremum of x can be decreased by iterated
decycling [12], and in that case sup(x) > sup(dk(x)) for some k < n(n−1)

2 [14]. Hence, every n(n−1)
2

iterations either the supremum has decreased, or we are sure to have an element whose supremum is the
summit supremum. Since decycling can never decrease the infimum of an element, it follows that starting
with any x ∈ Bn and applying iterated cycling (until summit infimum is obtained) followed by iterated
decycling (until summit supremum is obtained) yields an element y ∈ SSS(x).

The super summit set SSS(x) is a finite set, but it is usually huge, so smaller subsets of the conjugacy
class of x were defined in order to solve the conjugacy problem of x more efficiently. Namely, the ultra
summit set of x, denoted by USS(x), is a subset of SSS(x) defined as follows [4]:

USS(x) = {y ∈ SSS(x) | cm(y) = y for some m > 0}.

Since SSS(x) is finite, the subset USS(x) is also finite. It is then clear that one obtains an element
is USS(x) by iterated application of cycling, starting from an element in SSS(x), when a repeated element
is obtained. Actually, the whole orbit under cycling of an element in USS(x) belongs to USS(x). So USS(x)
is a finite set of orbits under cycling.

Notice that every rigid braid belongs to its ultra summit set, as cylings and decyclings are basically
cyclic permutations of its factors. It is shown in [15] that, if x is conjugate to a rigid braid and �s(x) > 1,
then USS(x) coincides with the set of rigid conjugates of x.

There is actually a simpler way, in the general case, to obtain an element in USS(x) starting from x.
Instead of using cyclings and decyclings, one can use the following single type of conjugation:

Definition 5 ([5]). Given x ∈ Bn, the cyclic sliding of x is defined as s(x) = p(x)−1x p(x), where p(x) =

ι(x) ∧ ∂(ϕ(x)).

Theorem 1 ([5]). Given x ∈ Bn, there are integers 0 ≤ k < t such that sk(x) = st(x). For every such pair of
integers, one has sk(x) ∈ USS(x).

By the above result, one can obtain an element in USS(x) by iterated cyclic sliding starting form x.
Furthermore, if x is conjugate to a rigid element (this will be the generic situation, as we will see in
Section 2.4), iterated cyclic sliding yields the shortest positive conjugating element from x to a rigid element.

Theorem 2 ([5]). Let x ∈ Bn and suppose that x is conjugate to a rigid braid. Then there is an integer k > 0 such
that sk(x) is rigid. Moreover, the conjugating element α from x to sk(x), that is,

α = p(x) p(s(x)) p(s2(x)) · · · p(sk−1(x))

is the smallest positive element (with respect to �) conjugating x to a rigid element, meaning that for every positive
element β such that β−1xβ is rigid, one has α � β.

After obtaining one element in USS(x), it is possible to compute all elements in USS(x) together
with conjugating elements connecting them. In this way, one solves the conjugacy problem in Bn, as two
elements x and y are conjugate if and only if USS(x) = USS(y) or, equivalently, if USS(x) ∩USS(y) �= ∅.
Then, in order to check whether x and y are conjugate, one can compute the whole set USS(x), and one
element ỹ ∈ USS(y). Then, x and y are conjugate if and only if ỹ ∈ USS(x). By construction, one can even
compute a conjugating element from x to y.

In order to understand the forthcoming proofs in this paper, we will need to describe some conjugating
elements connecting the elements of USS(x).

99

Symmetry 2019, 11, 1327

Definition 6 ([4]). Let x ∈ Bn and y ∈ USS(x). A simple non-trivial element s ∈ S is said to be a minimal
simple element for y if ys ∈ USS(x) and yt /∈ USS(x), for every 1 ≺ t ≺ s.

In [4], Gebhardt showed that for any two elements y, z ∈ USS(x) there exists a sequence

y = y1
c1−→ y2

c2−→ · · · → yt
ct−→ yt+1 = z,

where ci is a minimal simple element for yi, and yi+1 = c−1
i yici, for i = 1, . . . , t. Moreover, he introduced

an algorithm to compute all minimal simple elements for a given y ∈ USS(x). This allows to construct
a directed graph Γx, whose vertices correspond to elements of USS(x), and whose arrows correspond to
minimal simple elements, in such a way that for every minimal simple element s for y, there is an edge
with label s from y to ys = s−1ys. By the above discussion, it follows that Γx is a connected graph, and this
is why USS(x) can be computed starting with a single vertex, iteratively computing the minimal simple
elements corresponding to each known vertex, until all vertices are obtained.

We will later see that, generically, ultra summit sets are really small. Actually, they usually have
a very simple structure, that we explain now.

Lemma 1 ([16]). Let y ∈ USS(x) with �(y) > 0 and let s be a minimal simple element for y. Then, s is a prefix of
either ι(y) or ∂(ϕ(y)), or both.

The above lemma allows us to classify the arrows in Γx into two groups: a directed edge labelled
by s starting at y ∈ USS(x) is black (resp. grey), if s is a prefix of ι(x) (resp. of ∂(ϕ(y))). In principle,
an edge could be of both colors at the same time (a bi-colored arrow, whose label is a prefix of both ι(x)
and ∂(ϕ(x))), but not in the case of rigid braids, as ι(x) ∧ ∂(ϕ(x)) = 1 if x is rigid. Actually, this is
a necessary and sufficient condition:

Lemma 2 ([16]). A braid y ∈ USS(x) with �(y) > 0 is rigid if and only if none of the edges starting at y is
bi-colored.

Definition 7. Given a braid x ∈ Bn, its associated USS(x) is minimal if �s(x) > 1 and, for every vertex y in the
graph Γx, there are exactly two directed edges starting at y, a black one labeled ι(y) and a grey one labeled ∂(ϕ(y)).

Notice that, as a consequence of Lemma 2, if USS(x) is minimal then all elements in USS(x) are
rigid. Moreover, the arrow labeled ι(y) corresponds to a cycling of y, and the arrow labeled ∂(ϕ(y))
corresponds to a twisted decycling of y, meaning a decycling followed by the automorphism τ. This implies
that, if USS(x) is minimal, the elements of USS(x) are obtained from y by applying c and τ ◦ d in every
possible way. Since y is rigid, cyclings and decyclings basically correspond to cyclic permutations of the
factors. Therefore, if USS(x) is minimal, it consists of either two orbits under cycling (conjugate to each
other by Δ), or one orbit under cycling (conjugate to itself by Δ). If the infimum of y is even, the orbit of y
has at most �(y) = �s(x) ≤ �(x) elements, so the size of USS(x) is at most 2�(x). If the infimum of y is
odd, the orbit of y has at most 2�(y) ≤ 2�(x) elements, and it is conjugate to itself by Δ, so it is the only
orbit. Therefore, in any case, if USS(x) is minimal it has at most 2�(x) elements.

Remark 1. In order to see whether USS(x) is minimal, one should a priori check the condition in Definition 7 for
every element in USS(x). But it is actually shown in ([17], Theorem 4.6) that, given y ∈ USS(x), the set USS(x)
is minimal if and only if �(y) > 1 and the minimal simple elements for y are precisely ι(y) and ∂(ϕ(y)). Hence, one
just needs to compute the minimal elements for a single arbitrary element y ∈ USS(x).

100

Symmetry 2019, 11, 1327

Let us see that this case, in which USS(x) is so small and has such a simple structure, is generic.

2.4. Generic Braids

Since Bn is an infinite set, it is necessary to explain what we mean by ‘picking a random braid’ or by
saying that a braid is ‘generic’. Even if we fix the subset of braids of a given length, we must specify if we
choose braids from the subset with a uniform distribution, or if we pick braids by choosing a random walk
in the Cayley graph, which are the two usual situations.

We will consider the Cayley graph of the braid group Bn, taking as generators the simple braids, and
assume that each edge of the Cayley graph has length 1, so it becomes a metric space. Let us point out that
left normal forms of braids are closely related to geodesics in this Cayley graph [18].

Now let B(r) denote the ball of radius r centered at the trivial braid 1. As the number of simple braids
is finite, the set B(r) is a finite subset of Bn. We will consider the uniform distribution within this set.
It turns out that ‘most’ elements in B(r) have a very simple ultra summit set:

Theorem 3 ([17]). The proportion of braids in B(r) whose ultra summit set is minimal tends to 1 exponentially
fast, as r tends to infinity.

This is why we can say that the ultra summit set of a ‘generic braid’ is minimal. Moreover, the above
result was obtained by refining the following theorem, which gives some important information concerning
the elements in B(r). We have simplified the statement to adapt it to our situation:

Theorem 4 ([19]). The proportion of braids x in B(r) which are conjugate to a rigid braid y = α−1xα, in such a
way that α is a positive braid with �(α) < �(x), tends to 1 exponentially fast, as r tends to infinity.

Therefore, not only generic braids have minimal ultra summit sets (made of rigid braids), but one
can also obtain a rigid conjugate of a generic braid x very fast, applying iterated cyclic sliding to x.
By Theorem 2, the obtained conjugating element will be the smallest possible positive conjugator, so its
canonical length will be smaller than �(x). Once that a rigid conjugate y (which belongs to USS(x)) is
obtained, one can compute the whole USS(x) very fast, as it consists of at most 2�(x) elements, connected
by cyclings and twisted decyclings. This is why solving the conjugacy problem in braid groups is
generically very fast.

We will also be interested in the centralizer Z(x) of a braid x. Notice that if y = α−1xα, then
Z(y) = α−1Z(x)α. Therefore, knowing Z(y) is equivalent to knowing Z(x), via α. We will then be
interested in Z(y) for y ∈ USS(x).

Definition 8. Let x ∈ Bn and y ∈ USS(x), and let t be the smallest positive integer such that ct(y) = y. Denote
pi := ι(ci−1(y)) the positive element conjugating ci−1(y) to ci(y), for i = 1, . . . , t. Then the preferred cycling
conjugator of y is defined as

PC(y) = p1 p2 · · · pt.

In other words, PC(y) corresponds to the conjugating element along the whole cycling orbit of y. By construction,
PC(y) commutes with y.

In the generic case (when USS(x) is minimal), it turns out that Z(x) is isomorphic to Z2, and one can
describe the generators of Z(y) for any y ∈ USS(x) (and thus of Z(x)) in a very explicit way:

101

Symmetry 2019, 11, 1327

Theorem 5 ([17]). Let x ∈ Bn and y ∈ USS(x). Let PC(y) = p1 · · · pt as above. If USS(x) is minimal, then all
elements in USS(x) are rigid, Z(x) Z(y) Z2, and one of the following conditions holds:

(i) USS(x) has two orbits under cycling, conjugate to each other by Δ, and Z(y) = 〈Δ2, PC(y)〉.
(ii) USS(x) has one orbit under cycling, conjugate to itself by Δ, and:

– If τ(y) = y, then Z(y) = 〈Δ, PC(y)〉.
– If τ(y) �= y, then t is even and Z(y) = 〈Δ2, p1 · · · p t

2
Δ−1〉.

3. k-th Root Problem

Now we come to the central problem in this paper: given x ∈ Bn and an integer k > 1, find a k-th
root of x. In other words, we want to either find a ∈ Bn such that ak = x, or show that such a braid does
not exist.

Notice that if ak = x then a belongs to Z(x), the centralizer of x. It is interesting to know that finding
a single solution a to the k-th root equation is basically the same as finding all possible solutions, as the
complete set of solutions coincides with the conjugacy class of a in Z(x):

Proposition 1. Let a, x ∈ Bn be such that ak = x for some integer k > 1. Then the set k
√

x of k-th roots of x is
precisely

k
√

x = aZ(x) =
{

b ∈ Bn | b = u−1au, u ∈ Z(x)
}

.

Proof. In [20], the second author proved that the k-th root of a braid is unique, up to conjugacy. That is,
if a, b ∈ Bn satisfy ak = bk = x, then a = u−1bu for some u ∈ Bn. Then one has x = bk = u−1aku = u−1xu,
and hence u ∈ Z(x). This proves that k

√
x ⊂ aZ(x).

On the other hand, if b = aZ(x) and we write b = u−1au for some u ∈ Z(x), we have bk = u−1aku =

u−1xu = x, so b ∈ k
√

x.

Observe that ak = x if and only if (α−1aα)k = α−1xα for any α ∈ Bn. Hence, given x, it suffices to
solve the k-th root problem for any conjugate of x, for instance for some y ∈ USS(x).

We will focus our attention in the generic case in which USS(x) is minimal. Recall from Theorem 5
that in this case Z(x) Z(y) Z2. If we express the centralizer of y as Z(y) = 〈v, w〉, where v and w
commute, we know that y has the form y = vcwd, for some c, d ∈ Z (and that this expression is unique,
as any other expression would yield a different element of Z(y)). If we are able to express y in this way,
then the k-th root problem is trivially solved:

Proposition 2. Let x ∈ Bn. Let y ∈ USS(x) and suppose that USS(x) is minimal. Let Z(y) = 〈v, w〉 and let
c, d ∈ Z be such that y = vcwd. Then y admits a k-th root if and only if both c and d are multiples of k, and in this
case the only k-th root of y is:

a = v
c
k w

d
k .

Proof. We know from Theorem 5 that Z(y) Z2, so it is abelian. Hence, by Proposition 1, if a k-th root a
of y exists then k

√
y = aZ(y) = {a}. Therefore, if a k-th root exists, it is unique.

102

Symmetry 2019, 11, 1327

Suppose that the k-th root problem for y has a solution a ∈ Bn. Then a ∈ Z(y), and hence a = vrws

for some r, s ∈ Z. But since v and w commute, we have:

vcwd = y = ak = (vrws)k = vrkwsk.

This implies that c and d are multiples of k, and that a = vrws = v
c
k w

d
k .

Conversely, if c and d are multiples of k, we write c = rk and d = sk for some integers r, s, and we
consider the element a = vrws. Since v and w commute, it follows that ak = y.

By the above result, it follows that the only difficulty in solving the k-th root problem, in the generic
case in which USS(x) is minimal, is to express some y ∈ USS(x) in terms of the generators of Z(y).
We know from Theorem 5 that there are three possible cases, depending on whether USS(x) has two orbits
under cycling, or has one orbit with τ(y) = y, or has one orbit with τ(y) �= y. The three following results
address each case:

Proposition 3. Let x ∈ Bn, and let y = Δpy1 · · · yl ∈ USS(x), written in left normal form. Suppose that USS(x)
is minimal. Suppose also that USS(x) has two orbits under cycling, conjugate to each other by Δ. Let v = Δ2 and
w = PC(y) = p1 · · · pt, so:

Z(y) = 〈v, w〉 = 〈Δ2, PC(y)〉.

If we write c = p/2 and d = l/t, then c and d are integers and we have: y = vcwd.

Proof. We know that, since USS(x) is minimal, it consists of rigid elements. Hence iterated cycling
corresponds to a cyclic permutation of the factors in the normal form of y (with possible conjugations by Δ,
if p is odd).

Suppose that p is odd. Then cl(y) is obtained from y by cyclically permuting all its l factors,
conjugating all of them by Δ. Hence cl(y) = τ(y). This implies that τ(y) = Δ−1yΔ is in the same
orbit of y under cycling, but this is a contradiction with the hypotheses, as USS(x) has two distinct orbits
(the one containing y and the one containing τ(y)). Therefore p is even.

Since p is even, iterated cyclings of y correspond exactly to cyclic permutations of the factors of y.
By definition, t is the smallest positive integer such that ct(y) = y, and it is then clear that cm(y) = y
for some positive integer m if and only if m is a multiple of t. Since cl(y) = y, we finally obtain that l is
a multiple of t. Then the normal form of y is as follows:

y = Δpy1 · · · yl = Δp(y1 · · · yt)(y1 · · · yt) · · · (y1 · · · yt),

where PC(y) = y1 · · · yt, and there are l/t parenthesized factors.
Now, if we write c = p/2 and d = l/t, these numbers are integers and we have:

vcwd = (Δ2)c(PC(y))d = Δ2c(y1 · · · yt)
d = Δpy1 · · · yl = y.

103

Symmetry 2019, 11, 1327

Proposition 4. Let x ∈ Bn, and let y = Δpy1 · · · yl ∈ USS(x), written in left normal form. Suppose that USS(x)
is minimal. Suppose also that USS(x) has one orbit under cycling, conjugate to itself by Δ, and that τ(y) = y.
Let v = Δ and w = PC(y) = p1 · · · pt, so:

Z(y) = 〈v, w〉 = 〈Δ, PC(y)〉.

If we write c = p and d = l/t, then c and d are integers and we have: y = vcwd.

Proof. We know that the left normal form of τ(y) is Δpτ(y1) · · · τ(yl). Since τ(y) = y, the normal forms
of y and τ(y) must coincide, hence τ(yi) = yi for i = 1, . . . , l.

This implies that iterated cyclings correspond to cyclic permutations of the factors of y. We do not
care about the parity of p, as every factor of y is invariant under τ. It then follows that PC(y) = y1 · · · yt,
that t divides l and that the normal form of y is:

y = Δpy1 · · · yl = Δp(y1 · · · yt)(y1 · · · yt) · · · (y1 · · · yt),

where there are l/t parenthesized factors.
Now, if we write c = p and d = l/t, these numbers are integers and we have:

vcwd = Δc(PC(y))d = Δc(y1 · · · yt)
d = Δpy1 · · · yl = y.

Proposition 5. Let x ∈ Bn, and let y = Δpy1 · · · yl ∈ USS(x), written in left normal form. Suppose that USS(x)
is minimal. Suppose also that USS(x) has one orbit under cycling, conjugate to itself by Δ, and that τ(y) �= y.
Let v = Δ2, PC(y) = p1 · · · pt and w = p1 · · · p t

2
Δ−1 (recall from Theorem 5 that t is even), so:

Z(y) = 〈v, w〉 = 〈Δ, p1 · · · p t
2
Δ−1〉.

If we write c = pt+2l
2t and d = 2l

t , then c and d are integers and we have: y = vcwd.

Proof. We know from Theorem 5 that t is even, but let us see why this holds. We know that there exists
some m > 0 so that τ(y) = cm(y); we take m as small as possible, and this implies that cr(y) �= y for
0 < r < m. Now, it follows from their own definitions that τ and c commute, and therefore y = τ2(y) =
τ(cm(y)) = cm(τ(y)) = c2m(y). This implies that the length of the cycling orbit of y is a divisor of 2m.
It cannot be m (as cm(y) = τ(y) �= y), and it cannot be smaller than m (as cr(y) �= y for every r < m).
Therefore, the length of the orbit is precisely t = 2m. The generators of Z(y) are then v = Δ2 and
w = p1 · · · pmΔ−1.

We consider now two cases, depending on the parity of p. If p is even, since the first m cyclings
transform y into τ(y), it follows that the left normal form of y is:

y = Δp (y1 · · · ym) (τ(y1) · · · τ(ym)) · · · (y1 · · · ym) (τ(y1) · · · τ(ym)) .

Then l = 2rm for some positive integer r.

104

Symmetry 2019, 11, 1327

Recall that PC(y) is the product of the first t = 2m conjugating elements for cycling. The first
m conjugating elements are y1, . . . , ym, so pi = yi for i = 1, . . . , m. The following m conjugating elements
are τ(y1), . . . , τ(ym). Hence, we have that

PC(y) = p1 · · · pt

= y1 · · · ymτ(y1) · · · τ(ym)

= y1 · · · ym τ(y1 · · · ym)

= p1 · · · pmΔ−1 p1 · · · pmΔ

=
(

p1 · · · pmΔ−1
) (

p1 · · · pmΔ−1
)

Δ2

= w2v.

Therefore, if p is even:

y = ΔpPC(y)r = v
p
2

(
w2v
)r

= v
p
2 +rw2r = vcwd,

where c = pt+2l
2t and d = 2l

t (recall that l = 2rm = rt).
Consider now the case when p is odd. In this case, the left normal form of y is:

y = Δp (y1 · · · ym) (τ(y1) · · · τ(ym)) · · · (y1 · · · ym) (τ(y1) · · · τ(ym)) (y1 · · · ym) .

Then l = (2r + 1)m for some positive integer r.
As before, PC(y) is the product of the first t = 2m conjugating elements for cycling, but this time

the first m conjugating elements for cycling are τ(y1), . . . , τ(ym), and therefore pi = τ(yi) for i = 1, . . . , m.
The following m conjugating elements are y1, . . . , ym, so we have:

PC(y) = p1 · · · pt

= τ(y1) · · · τ(ym)y1 · · · ym

= p1 · · · pm τ(p1 · · · pm)

= p1 · · · pmΔ−1 p1 · · · pmΔ

=
(

p1 · · · pmΔ−1
) (

p1 · · · pmΔ−1
)

Δ2

= w2v.

Hence PC(y) = w2v also when p is odd. Finally, we have:

y = Δp(y1 · · · ym)(τ(y1) · · · τ(ym)) · · · (y1 · · · ym)(τ(y1) · · · τ(ym))(y1 · · · ym)

= (τ(y1) · · · τ(ym))(y1 · · · ym) · · · (τ(y1) · · · τ(ym))(y1 · · · ym)Δp(y1 · · · ym)

= PC(y)rΔp(y1 · · · ym)

= PC(y)rΔp+1Δ−1(y1 · · · ym)

= PC(y)rΔp+1(p1 · · · pm)Δ−1

= (w2v)rv
p+1

2 w

= v
2r+1+p

2 w2r+1

= vcwd,

105

Symmetry 2019, 11, 1327

where c = pt+2l
2t and d = 2l

t (recall that 2l = 2(2r + 1)m = (2r + 1)t in this case).

4. An Algorithm to Find the k-th Root of a Braid

We end this paper by providing a detailed algorithm that summarizes the results from the previous
section, together with a study of its complexity.

The results of the previous section are valid when USS(x) is minimal (which is the generic case).
In order to have an algorithm which always succeeds in finding the k-th root of a braid x, we need to
include instructions on what to do if USS(x) is not minimal. In those cases, one can use the algorithm
in [7], which finds the k-th root of x in any case, considering the Garside group G = Z� (Bn)

k, where
Z = 〈δ〉 acts on (Bn)

k by cyclic permutation of the coordinates. S. J. Lee shows that the braid x has a k-th
root if and only if the ultra summit set of δ(x, 1, . . . , 1) in G has an element of the form δ(h, . . . , h). Hence,
computing an ultra summit set in such a group also solves the root extraction problem in Bn. It is not clear
to us how big these ultra summit sets are in generic cases, while the algorithm presented in this paper is
very simple, and generically very fast.

If one is not interested in programming the algorithm in [7], one could tell our algorithm to return
‘fail’ when USS(x) is not minimal, obtaining an algorithm which will succeed only in the generic case.
In any case, we present now the main result:

Theorem 6. There is an algorithm that takes as input a braid x = Δpx1 . . . , xl ∈ Bn written in left normal form,
and a positive integer k > 1, and finds a braid a ∈ Bn such that ak = x, or guarantees that such a braid does not
exist, whose generic-case complexity is O(l(l + n)n3 log n).

Proof. Algorithm 1, which uses the results from the previous section, constitutes a proof of the theorem.
Let us describe it in detail.

The input is a braid x = Δpx1 · · · xl ∈ Bn in left normal form and an integer k > 1. First (lines 2–5),
the algorithm applies iterated cyclic sliding to x, checking at each iteration whether the resulting braid y is
rigid. As we will now see, if the algorithm applies cyclic sliding l

(
n(n−1)

2 − 1
)

times and no rigid braid is
obtained, then we are not in the generic case stated in Theorem 4, hence the algorithm in [7] is applied.
The number l

(
n(n−1)

2 − 1
)

is precisely l times the length of Δ minus one. Recall from Theorem 4 that in
the generic case there is a positive element α conjugating x to a rigid braid, such that �(α) < �(x) = l. If α

is the smallest possible one, there is no Δ in its normal form. Hence, the length of α in terms of atoms
(σi’s) is at most l

(
n(n−1)

2 − 1
)

. Now, from Theorem 2 we know that the smallest positive conjugator to
a rigid braid is obtained by iterated cyclic sliding. Since at every iteration the conjugating element gets
bigger, if we are in the generic case we must obtain a rigid element in at most l

(
n(n−1)

2 − 1
)

iterations,
as we claimed.

If the braid y obtained after the loop in lines 2-5 is rigid, as the algorithms stores the conjugating
elements for cyclic sliding at each iteration, we will have a braid α such that α−1xα = y.

Now the algorithm checks whether USS(y) is minimal (the generic case we are interested in),
as explained in Remark 1, checking whether the minimal simple elements for y are precisely ι(y)
and ∂(ϕ(y)).

In general, it is not known how fast it is to compute the minimal simple elements for a given arbitrary
braid y. But if y is rigid, one can easily find the minimal simple elements for y. We know that every such
element must be a prefix of either ι(y) or ∂(ϕ(y)). For every generator σi, one can consider σ−1

i yσi and
apply iterated cyclic sliding to it, until it becomes rigid. The obtained conjugating element is the smallest
conjugating element from y to a rigid braid, having σi as a prefix. We do this for all σi which are prefixes
of ι(y), and either we find a conjugating element which is a proper prefix of ι(y) (in which case ι(y) is

106

Symmetry 2019, 11, 1327

not minimal), or we have shown that ι(y) is minimal. Then we do the same for all generators which are
prefixes of ∂(ϕ(y)). The number of iterations in each case is bounded by the length of ι(y) (resp. ∂(ϕ(y))),
which are simple elements, while the total number of generators is n− 1. So the total number of cyclic
slidings used to check whether ι(y) and ∂(ϕ(y)) are minimal (and hence whether USS(y) is minimal)
is O(n3).

If USS(y) is not minimal, we are not in the generic case stated in Theorem 4, hence the algorithm
in [7] is applied. Otherwise, we are in one of the situations described in Propositions 3–5. The rest of the
algorithm just applies these propositions together with Proposition 2: after decomposing y in the form
y = vcwd, it checks whether both c and d are multiples of k. If this is the case, then v

c
k w

d
k is the (unique)

k-th root of y, and since x = αyα−1, it follows that αv
c
k w

d
k α−1 is the desired k-th root of x; otherwise,

the algorithm returns the sentence “A k-th root does not exist”.
We study now the complexity of our algorithm, assuming that we are in the generic case in which

USS(x) is minimal, and we can quickly conjugate x to a rigid braid. Computing the complement
or applying τ to a simple element is O(n), and computing s ∧ t for two simple elements s and t
is O(n log n) ([13], Proposition 9.5.1). Starting with an element y in left normal form, computing s(y)
consists of computing a complement (∂(ϕ(y))), a meet (ι(x) ∧ ∂(ϕ(x))) and the normal form of the
conjugate of y by a simple element of length at most l (which is O(ln log n)). Hence the total complexity of
applying a cyclic sliding is O(ln log n).

The first loop (lines 2–5) is repeated O(ln2) times, checking the condition takes O(n log n) and the
body of the loop takes O(ln log n). Hence the total complexity of the loop in lines 2–5 is O(l2n3 log n).

The “If” statement in lines 6–7 is negligible compared with the previous “while” loop.
Next, in lines 8–9 the algorithm checks whether ι(y) and ∂(ϕ(y)) are minimal, for the rigid element y.

By the arguments above, this applies O(n3) cyclic slidings, hence the total complexity of this step
is O(ln4 log n).

In line 11 and in the loop in lines 12–15, some cyclings are applied. Since the involved braids are
rigid of canonical length at most l, and cycling is just a cyclic permutation of the factors with a possible
application of τ to a simple element, this final part of the algorithm is negligible with respect to the
previous one.

Therefore, the generic-case complexity of Algorithm 1 is O(l(l + n)n3 log n).

Remark 2. Although the integers p and k are part of the input, the computed complexity does not involve them,
as treating with these integers is usually negligible, in reasonable examples, with respect to the calculated complexity.
If p is really big, one should take into account the number log p. The case of k is somehow different, as one would
have a positive answer only if k is a divisor of the integers c and d (with d �= 0), which are O(p + l), so it makes no
sense to ask for a k-th root of x, in the generic case, if k is too big compared with p and l.

107

Symmetry 2019, 11, 1327

Algorithm 1: Find a k-th root of a braid x.
Input :A braid x ∈ Bn given in left normal form, and an integer k > 1.
Output : A braid a ∈ Bn such that ak = x, or the message “A k-th root does not exist.”.

1 y := x; l = �(x); α = 1 ∈ Bn; r = 0 ∈ Z;

2 while ι(y) ∧ ∂(ϕ(y)) �= 1 and r < l
(

n(n−1)
2 − 1

)
do

3 α := α p(y);
4 y := s(y);
5 r := r + 1;

6 if ι(y) ∧ ∂(ϕ(y)) �= 1 then

7 y is not rigid. Apply the algorithm in [7];

8 else if {Minimal simple elements for y} �= {ι(y), ∂(ϕ(y))} then

9 USS(y) is not minimal. Apply the algorithm in [7];

10 else

11 y′ := τ(y); z := c(y); PC := ι(y) ∈ Bn; t := 1 ∈ Z; p := inf(y); l := �(y); selfConjugateOrbit := 0;
12 while z �= y and z �= y′ do

13 PC := PC ι(z);
14 z := c(z);
15 t := t + 1;

16 if z = y′ then

17 selfConjugateOrbit := 1;

18 if selfConjugateOrbit = 0 then

19 c := p/2;
20 d := l/t;
21 if k|c and k|d then

22 v := Δ2;
23 w := PC;

24 return αv
c
k w

d
k α−1;

25 else

26 return “A k-th root does not exist.”;

27 else if selfConjugateOrbit = 1 and y = y′ then

28 c := p;
29 d := l/t;
30 if k|c and k|d then

31 v := Δ;
32 w := PC;

33 return αv
c
k w

d
k α−1;

34 else

35 return “A k-th root does not exist.”;

36 else if selfConjugateOrbit = 1 and y �= y′ then

37 t := 2t;

38 c := pt+2l
2t ;

39 d := 2l
t ;

40 if k|c and k|d then

41 v := Δ;
42 w := PC Δ−1;

43 return αv
c
k w

d
k α−1;

44 else

45 return “A k-th root does not exist.”;

108

Symmetry 2019, 11, 1327

Author Contributions: Investigation and writing: M.C., J.G.-M. and M.S.

Funding: Authors partially supported by the Spanish research project MTM2016-76453-C2-1-P and FEDER. First
author was also supported by EPSRC New Investigator Award EP/S010963/1. Third author was also supported by
the Basque Government grant IT974-16 and Centro de Estudios Avanzados en Física, Matemáticas y Computación de
la Universidad de Huelva.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Dehornoy, P. Braid-based cryptography. In Group Theory, Statistics, and Cryptography; Volume 360 of
Contemporary Mathematics; American Mathematical Society: Providence, RI, USA, 2004; pp. 5–33.

2. Anshel, I.; Anshel, M.; Goldfeld, D. An algebraic method for public-key cryptography. Math. Res. Lett. 1999, 6,
287–291. [CrossRef]

3. Ko, K.H.; Lee, S.J.; Cheon, J.H.; Han, J.W.; Kang, J.; Park, C. New public-key cryptosystem using braid groups.
In Advances in Cryptology — CRYPTO 2000; Bellare, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2000;
pp. 166–183.

4. Gebhardt, V. A new approach to the conjugacy problem in Garside groups. J. Algebra 2005, 292, 282–302.
[CrossRef]

5. Gebhardt, V.; González-Meneses, J. Solving the conjugacy problem in Garside groups by cyclic sliding. J. Symb.
Comput. 2010, 45, 629–656. [CrossRef]

6. Gebhardt, V.; González-Meneses, J. The cyclic sliding operation in Garside groups. Math. Z. 2010, 265, 85–114.
[CrossRef]

7. Lee, S.-J. Garside groups are strongly translation discrete. J. Algebra 2007, 309, 594–609. [CrossRef]
8. Sibert, H. Extraction of roots in Garside groups. Comm. Algebra 2002, 30, 2915–2927. [CrossRef]
9. Dehornoy, P. Foundations of Garside Theory; Volume 22 of EMS Tracts in Mathematics; Digne, F., Godelle, E.,

Krammer, D., Michel, J., Eds.; European Mathematical Society (EMS): Zürich, Switzerland, 2015.
10. Artin, E. Theory of Braids. Ann. Math. 1947, 48, 101–126. [CrossRef]
11. Chow, W.-L. On the algebraical braid group. Ann. Math. 1948, 49, 654–658. [CrossRef]
12. Elrifai, E.A.; Morton, H.R. Algorithms for positive braids. Q. J. Math. 1994, 45, 479–497. [CrossRef]
13. Epstein, D.A.; Cannon, J.W.; Holt, D.F.; Levy, S.V.; Paterson, M.S.; Thurston, W.P. Word Processing in Groups;

A. K. Peters, Ltd.: Natick, MA, USA, 1992.
14. Birman, J.S.; Ko, K.H.; Lee, S.J. The Infimum, Supremum, and Geodesic Length of a Braid Conjugacy Class.

Adv. Math. 2001, 164, 41–56. [CrossRef]
15. Birman, J.S.; Gebhardt, V.; González-Meneses, J. Conjugacy in Garside groups. I. Cyclings, powers and rigidity.

Groups Geom. Dyn. 2007, 1, 221–279. [CrossRef]
16. Birman, J.S.; Gebhardt, V.; González-Meneses, J. Conjugacy in Garside groups II: Structure of the ultra summit

set. Groups Geom. Dyn. 2008, 2, 13–61. [CrossRef]
17. González-Meneses, J.; Valladares, D. On the centralizer of generic braids. J. Group Theory 2018, 21, 973–1000.

[CrossRef]
18. Charney, R. Artin groups of finite type are biautomatic. Math. Ann. 1992, 292, 671–683. [CrossRef]
19. Caruso, S.; Wiest, B. On the genericity of pseudo-Anosov braids II: Conjugations to rigid braids. Groups Geom.

Dyn. 2017, 11, 549–565. [CrossRef]
20. González-Meneses, J. The n-th root of a braid is unique up to conjugacy. Algebraic Geom. Topol. 2003, 3, 1103–1118.

[CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

109

symmetryS S
Article

A Computational Approach to Verbal Width for Engel
Words in Alternating Groups †

Jorge Martínez Carracedo

School of Computing, Jordanstown Campus, Ulster University, Northern Ireland BT37 0QB, UK;
j.martinez-carracedo@ulster.ac.uk
† This paper is an extended version of our paper published in Lecture Notes of the XVII ’Jacques-Louis Lions’

Spanish-French School. Computational Mathematics, Numerical Analysis and Applications (Springer, 2017).

Received: 18 June 2019; Accepted: 2 July 2019; Published: 3 July 2019

Abstract: It is known that every element in the alternating group An, with n ≥ 5, can be written as a
product of at most two Engel words of arbitrary length. However, it is still unknown if every element
in an alternating group is an Engel word of Arbitrary length. In this paper, a different approach to
this problem is presented, getting new results for small alternating groups.

Keywords: group theory; symmetry; Engel words; alternating group

1. Introduction

In recent times, many novel cryptosystems based on Group Theory have been proposed.
Even when the ideas behind these group-based cryptosystems are interesting in their own right,
these cryptosystems cannot yet compete with more standardized schemes such as Diffie-Hellman
or RSA.

The word problem and the conjugacy problem are two of the fundamental decision problems in
group theory proposed by Max Dehn in 1911 [1]. The study and understanding of these problems in
particular groups have played an important role on group-based cryptosystems.

Braid groups (see Reference [2]), for example, are the mathematical structures behind many
cryptographic schemes proposed in the last thirty years. One of the main reasons why these groups are
suitable to be used in cryptography is the existence of normal forms that facilitates an efficient solution
of the word problem [3].

The conjugacy search problem (i.e., given two elements x and y of a group G that are conjugated,
find the element z ∈ G such that x = yz) is the ground from which it is possible to build an scheme
similar to ElGalmal in braid groups ([4]).

Solving the conjugacy problem in braid groups is the most direct way to attack this scheme.
Garside ([5]) proposed the first algorithm in 1969 to solve this problem in a braid group. However,
Garside’s proposal is not efficient and a polynomial time algorithm has not been found yet. Heuristics
algorithms (as proposed by Hofheinz and Steinwandt in Reference [6]) have achieved a large quota of
success though.

Another example of key agreement protocol where the conjugacy search problem plays an
important role was proposed by Anshel et al. [7] in 1999. Broadly speaking, in this protocol the two
parties agree on a common key by computing a commutator. It was first proposed for braid groups
for two reasons: the existence of normal forms and the fact that the conjugacy search problem is
considered difficult in these groups.

Cryptography based on group theory has brought about new and interesting pure mathematical
questions. The word problem and the conjugacy problem play an important role in some cryptographic
schemes based in group theory. Therefore, its study in particular groups seems unavoidable.

Symmetry 2019, 11, 877; doi:10.3390/sym11070877 www.mdpi.com/journal/symmetry110

Symmetry 2019, 11, 877

Let us consider now an arbitrary group G and a word in the free group of rank r, ω ∈ Fr, with r a
natural number. We can define the map

ω :

r︷ ︸︸ ︷
G× · · · × G −→ G

where each tuple (g1, g2, ..., gr) is mapped to ω(g1, g2, ..., gr).
We denote the image of the map ω by ω(G). The verbal subgroup of G related to ω is defined as

the subgroup generated by ω(G).
The surjectivity of the map ω, the cardinality of the set ω(G), if the verbal subgroup 〈ω(G)〉 = G

or if it is possible to find a constant k for which ω(G)k = 〈ω(G)〉 are essential questions to answer.
In 1951, O. Ore proved ([8]) that every element in an alternating group An, with n ≥ 5, can be

written as a commutator in An.
In other words, Ore’s result states that if we consider the word τ := x−1

1 x−1
2 x1x2 in the free group

of rank 2, F2, then τ(An) = An, for every n ≥ 5.
In the same work, he proposed a conjecture: “Every element in a finite simple group G is

a commutator in G”. This is known as the Abstract Ore’s Conjecture and was an open question
until 2010.

One initial progress on this conjecture was done in 1994 by Wilson [9]. He proved that for any
finite simple group, there exists a constant k such that, τ(G)k = G.

In this line of work, some new results were obtained considering the word ξ := xn, with n a
natural number. In 1996, Martínez and Zelmanov [10] and in 1997, Saxl and Wilson [11] proved,
independently, that for every finite simple group big enough, there exists a constant k such that
ξ(G)k = G.

In 2010, M. W. Liebeck, E. A. O’Brien, A. Shalev and P. H. Tiep [12] published the proof of the
Ore Conjecture. They proved that for every finite simple group G, G = τ(G), where τ := x−1

1 x−1
2 x1x2

denotes the commutator. The proof of this result is highly non trivial and makes use of Character
Theory and computation where algebraic computer programs were specially designed.

Once this conjecture was proved, it seems natural to consider Engel words of arbitrary length
instead of the commutator τ. That is considering the word Em = [...[x, y], y], ..., y]. Ore’s Conjecture
can be easily extended to Engel words, is it still true that G = Em(G) for every finite simple group G
and any natural number m?

In Reference [13], a first approach was given for alternating simple groups. The author proved
that every element in An, with n ≥ 5, can be written as a product of at most two Engel words of
arbitrary length, that is

An = Em1(An)Em2(An),

for any natural numbers m1, m2 ≥ 2 and n ≥ 5. However, the general case for alternating groups
(if An = Em(An) for any natural numbers m ≥ 2 and n ≥ 5) remains unknown.

In Sections 2 and 3 two new approaches to this problem are presented. First, in Section 2, we study
special sequences of Engel words, getting interesting properties about their length. In Section 3 we
define a graph, depending on an alternating group and a fixed permutation and study the relation
between this graph and the fact of an element y ∈ An being an Engel word of arbitrary length.

In Section 4, we work with an alternating group An, 5 ≤ n ≤ 14 and a fixed permutation y in An.
We build a graph related to them in order to empirically study the Engel words Em(·, y) in An.

2. Engel Chains

In this section, we define a particular type of sequence of Engel words and study some of
their properties. We also analyze computationally the maximal length of these sequences for small
alternating groups.

111

Symmetry 2019, 11, 877

Let y be a fixed element in the alternating group An, n ≥ 5. For each element x ∈ An we can
consider the following sequence of Engel words

Ey(x) := {x, E1(x, y), E2(x, y), ...}.

There always exist two integers 1 ≤ k1 < k2 such that Ek1(x, y) = Ek2(x, y) in Ey(x). Let us
consider the first occurrence of k1 and k2 and the set

By(x) := {Ek1(x, y), ..., Ek2−1(x, y)}.

Definition 1. Let x and y be two fixed elements in An. The set Ey(x) is called the y-Engel Chain associated to
the element x and By(x) is called y-Engel Loop associated to the element x.

The length of the Chain Ey(x) is l(Ey(x)) = k2 − 1 and the length of the loop is l(By(x)) = k2 − k1.

Lemma 1. Given n ≥ 5 we have that for every m ∈ N

Em(x, y)Em+1(x, y) = Em(xy, y).

Proof. Given y ∈ An, for every m ∈ N we have that

Em(x, y)y = Em(xy, y).

Then
Em(xy, y) = Em(x, y)(Em(x, y))−1y−1Em(x, y)y = Em(x, y)Em+1(x, y).

That is, the product of two consecutive Engel words in the Chain Ey(x) is an Engel word of the
Chain Ey(xy).

Definition 2. Given two elements x, y ∈ An, with n ≥ 5, the Engel loop By(x) is stable by y-conjugation if
(By(x))y = By(x).

We give now a characterization of an y-Engel loop stable by y-conjugation.

Lemma 2. Given x, y ∈ An, with n ≥ 5, the loop By(x) is stable by y-conjugation if an only if for every
Em(x, y) ∈ By(x) we have that

Em(x, y)Em+1(x, y) ∈ By(x).

Proof. It is enough to see that

(By(x))y := {Em(x, y)y | Em(x, y) ∈ By(x)},

and that Em(x, y)y = Em(xy, y).
Applying Lemma 1 we get the result.

Let G be a group and let us consider an element g ∈ G. From now on, o(g) denotes the order of
the element g and CG(g) denotes the centralizer of g of the group G.

Lemma 3. Let y be a cycle with maximal length in An and By(x) a loop stable by y-conjugation. Let us take
δ ∈ By(x), we have that

1. For every z ∈ CAn(y)δ we have that [δ, y] = [z, y].
2. For every z ∈ δCAn(y) we have that [z, y] ∈ By(x).

112

Symmetry 2019, 11, 877

Proof. (1) is evident. To prove (2), as CAn(y) = 〈y〉 we have that

[δ, y]y = y−1δ−1y−1δyy = [δy, y],

and therefore, it is also true for every power of y.

Using Lemma 3, we know that if we consider an element δ in a loop By(x) stable by y-conjugation,
every element in the set CAn(y)δ produces the same element when it is commuted by y. Note that δ is
the only element in the set CAn(y)δ which belongs to By(x).

Furthermore, every element in the set δCAn(y) belongs to the loop By(x) when it is commuted by
y and since y is a cycle with maximal length in An, we have that

δCAn(y) = {[δ, y]y
j | j = 1, ..., o(δ)}.

Therefore condition (2) in Lemma 3 is necessary and sufficient to guarantee that the loop By(x) is
stable by y-conjugation.

Let us study the amount of conjugated loops in an alternating group Ap, with p prime.

Lemma 4. Let p be a prime number and y ∈ Ap a p-cycle. If the loop By(x) is not stable by y-conjugation,
it has exactly p conjugated loops in the set S := {By(x) | x ∈ Ap}.

Proof. Let us consider the following action

φ : 〈y〉 × S −→ S

(y, By(x)) �→ (By(x))y

We have that | Orb(By(x)) | is exactly 〈y〉/ | Stab〈y〉(By(x)) |.
Then if By(x) is not stable by y-conjugation, we have that Stab〈y〉(By(x)) = e and then

| Orb(By(x)) |= p.

Fix an element y in an alternating group An, n ≥ 5 and consider the loop By(x) associated to the
element x in An, we have that

By(x) := {Ek1(x, y), ..., Ek2−1(x, y)},

where Ek2(x, y) = Ek1(x, y).
Let us fix z an element in the loop By(x), since z = [τ, y] for some element τ ∈ By(x), we have that

z = [στ, y] for every σ ∈ CAn(y). Therefore, the set of elements that, when commuted by y, produces z
as a result is

A := {στ | σ ∈ CAn(y)}.

Since z and τ are elements in By(x), we have that there is only one element in A which also
belongs to By(x): τ.

Then, for every element z1 in the loop By(x), we have that there is only one element z2 in By(x)
such that, when commuted by y, the result is z1 and there are | CAn(y) | −1 elements outside of the
loop By(x) such that commuted by y gives as a result z1.

Definition 3. Given an element y in an alternating group An, n ≥ 5, we define the annihilator of y as the set
of elements x in An such that there exists k ∈ N with Ek(x, y) = e. We denote this set by Ty.

113

Symmetry 2019, 11, 877

The annihilator of y is the set of elements in An whose chain ’finishes’ in the identity element.
If Cy defines the set of elements in An whose chain goes to a loop different from the identity element,
we have that

An = Ty ∪ Cy.

We also know that Cy = ∪α(y)
i=0 C i

y, where C0
y is the set of non-identity elements that belong to the

loop By(x), C1
y is the set of elements in An which do not belong to C0

y but its commutator with y belongs
to C0

y and, inductively,
C i+1

y := {x ∈ An\C i
y | [x, y] ∈ C i

y}.

Note that there exists an index α(y) ∈ N such that Cα(y)+1
y = ∅.

We performed a brute-force search (using GAP) to study the length of the y-Engel chains that
finishes in the identity element for small alternating groups An, 5 ≤ n ≤ 14.

The results we obtained were that the maximal length of these chains were 2 or 3 for the considered
alternating groups. We summarize all the information in Table 1.

Table 1. Computational results for Engel Chains’ length.

Alternating Group Max. Length

A5 2
A6 2
A7 2
A8 2
A9 3
A10 3
A11 2
A12 2
A13 2
A14 2

This output is quite interesting as it seems to indicate that the y-Engel Chains that finish in the
identity element are usually short.

In the following lines, we prove that under certain conditions, the maximal length of an Engel
Chain that end in the identity element is 2. Note that NAn(CAn(y)) denotes the normalizer of CAn(y)
in An.

Lemma 5. Let us consider the group An, n ≥ 5 odd and take y = (1, 2, ..., n), a cycle with maximal length in
An. We have that CAn(y) = 〈y〉 and that | NAn(CAn(y)) | is either nϕ(n) or nϕ(n)/2, where ϕ is the Euler’s
totient function.

Proof. The number of conjugated elements of an n-cycle in Sn is (1/n)Vn
n = (n− 1)!. Then, | Sn :

CSn(y) |= (n− 1)!. We have that

| CSn(y) |=
| Sn |

| ClSn(y) |
=

n!
(n− 1)!

= n.

Since | 〈y〉 |= n, we have that CSn(y) = 〈y〉. In the group 〈y〉, there exist exactly φ(n) elements with
the same decomposition as a product of disjoint cycles as y, so we have that | NSn(〈y〉) |= nϕ(n).

By definition, NAn(〈y〉) = {x ∈ An | yx ∈ 〈y〉}. If for every i with gcd(i, n) = 1 we have that
the elements y and yi are conjugated in An, the number of groups in An conjugated to the group 〈y〉
would be half of the number of groups in Sn conjugated to 〈y〉. So NAn(〈y〉) = NSn(〈y〉) and then

| NAn(〈y〉) |= nϕ(n).

114

Symmetry 2019, 11, 877

If half of the powers of y are conjugated to y in An, we have that there exists σ ∈ Sn\An such that
σ ∈ NSn(〈y〉). Then,

| NAn(〈y〉) |=
| NSn(〈y〉) |

2
=

nϕ(n)
2

.

Lemma 6. Let p be a prime number greater than 3. Let us consider y, a cycle of maximal length in Ap.
The annihilator of y, Ty, in Ap is the group NAp(〈y〉).

Proof. Consider Z = 〈y〉 = CAp(y) and N1 = NAp(Z). We define N2 := {x ∈ An | Zx ⊂ N1} and
inductively

Nr := {x ∈ An | Zx ⊂ Nr−1}.

Note that E3(x, y) = 1 if and only if E2(E1(x, y), y) = e, that is, E1(x, y) ∈ N1. Then, x−1y−1xy is
an element of N1 and therefore y ∈ Z ⊂ N1; (y−1)x is an element of N1, that is, Zx ⊂ N1.

We have proved that x ∈ N2 if an only if E3(x, y) = 1. We will prove by induction that
Er+1(x, y) = 1 if an only if x ∈ Nr.

Er+1(x, y) = 1 if and only if Er(E1(x, y), y) that is (by induction), E1(x, y) ∈ Nr−1 and therefore,
[x, y] ∈ Nr−1.

Then (y−1)x ∈ Nr−1, that is, Zx ⊂ Nr−1 and by definition we have that x ∈ Nr.
We have two chains:

• Z ⊂ N1 ⊂ N2 ⊂ N3 ⊂ ...
• Z ⊂ NAp(Z) = N1 ⊂ NAp(N1) = Ñ2 ⊂ NAp(N2) = Ñ3 ⊂ ...

Since p is a prime number we have that Z ∈ Sylp(Ap) and, since N1 is selfnormalizer, we have
that Ñ2 = N1.

If we take x an element in N2, we have that Zx ⊂ N1 and Z, Zx ∈ Sylp(N1). Then we have that
Z = Zx and therefore x ∈ N1. So, N1 = N2.

Since Ty = ∪i≥1Ni, we have that

Ty = N1 = NAp(〈y〉).

Lemma 7. Let n be a positive integer such that gcd(n, ϕ(n)) = 1 and let y be a n-cycle in An. The annihilator
of y, Ty, in An is the group NAn(〈y〉).

Proof. Let pi be a prime divisor of n. Given Pi ∈ Sylpi (〈y〉), we have that Pi � NAn(〈y〉) and since
gcd(n, ϕ(n)) = 1 we have that 〈y〉 is the only subgroup of NAn(〈y〉) with order n.

Using the arguments from Lemma 5, we have that N1 = N2.

Corollary 1. Let n be a positive integer such that gcd(n, ϕ(n)) = 1 and y be a cycle of maximal length in An.
Then the maximal length of an Engel Chain Ey(x) ⊂ Ty which ends in the identity element is 2.

Proof. If Em(x, y) = e we have that Em−1(x, y) ∈ 〈y〉. Also we have that Em−2(x, y) ∈ NAn(〈y〉).
Thanks to Lemma 7, we have that NAn(〈y〉) is self-normalizing. Then the maximal length of the

chain Ey(x) is m− (m− 2) = 2.

115

Symmetry 2019, 11, 877

3. Engel Graphs

Let y be a fixed element in an alternating group An, with n ≥ 5 and a m ≥ 1, let us consider the
following set of Engel words of length m:

Em(y) := {Em(x, y) | x ∈ An}.

Since for every m ≥ 1 we have that Em+1(y) ⊂ Em(y), {Em(y)}m≥0 is a descending chain of
subsets in An.

Let us fix m ≥ 1 and consider the set Em(y) as {[x, y] | x ∈ Em−1(y)}, where E0 = An. Then,
if x, z ∈ Em−1(y) we have that

[x, y] = [z, y] if and only if CAn(y)x = CAn(y)z.

Let us consider the set Ωy
m := {CAn(y)x | x ∈ Em−1(y)}. We can define the following map

ϕm : Ωy
m −→ Em(y)

CAn(y)x �→ [x, y]
(1)

It is easy to see that for every m ≥ 1 and every element y ∈ An, n ≥ 5, the map ϕm is well defined
and bijective.

Then, we can study the sets Em(y) by working with the set Ωy
1 of all right cosets of CAn(y) in An.

Note that as {Ωy
m}m≥1 is a descending chain of sets and An is a finite group, there exists m ∈ N

such that Ωy
m = Ωy

m+1.
We are going to define a directed graph which will allow us the study of Engel words in An. Let us

consider the set of nodes Vy
n := Ωy

1 and let us define the set of arrows A by the following relation:

• Given z1, z2 ∈ Vy
n , there exists an arrow from z1 to z2 if an only if CAn(y)[z1, y] = CAn(y)z2.

Definition 4. Let y be an element in an alternating group An, the graph (Vy
n ,A) is called Engel graph

associated to the element y and the group An.

It is possible to use this graph in the study of Engel words in an alternating group as:

• If we consider a path of length k in the graph, starting in the node CAn(y)z1 and finishing in the
node CAn(y)zk+1, we have that Ek(z1, y) = [zk+1, y]. Once the graph is built, it is possible to easily
compute Engel words of high lengths.

• Reciprocally, if we want to compute Ek(x, y), it is enough to consider a path of length k starting in
the node CAn(y)x and commute by y any element of the coset associated to the last node of the
path CAn(y)zk1 . We have that

Ek(x, y) = [zk−1, y].

• We can study the ’dynamic’ of the set {Em(·, y)}m≥0 by studying the ’dynamic’ of the graph
(Vy

n ,A).

Once the graph is constructed, we want to use it to know whether or not an element in the
alternating group An, n ≥ 5, can be written as an Engel word of type Em(·, y) for m ≥ 1. The following
lemma shows the relation between the graph (Vy

n ,A) and the fact of an element in the alternating
group being an Engel word of arbitrary length.

Lemma 8. Let ϕ1 be the map defined in (1) with m = 1. If (W, β) is a directed cycle of (Vy
n ,A), every element

in the set ϕ1(W) can be written as an Engel word of arbitrary length.

Proof. Consider (W, β), a directed cycle in the Engel graph (Vy
n ,A).

116

Symmetry 2019, 11, 877

Fixing an arbitrary element CAn(y)x in W, we have that

ϕ1(W) := {Ek(x, y) | k ∈ N}.

As W is a directed cycle, there exists k1 ∈ N such that [x, y] = Ek1(x, y).
Take an arbitrary m ∈ N and a permutation σ in ϕ1(W). We have that σ = [z, y] for z ∈ CAn(y)x

and there exists k2 ∈ N such that [z, y] = Ek2(z, y) = E2k2(z, y) = ...Erk2(z, y), with r ∈ N.
It is enough to take k2 > m to get that σ = Em(τ, y) for some τ ∈ An.

Lemma 8 implies that given an alternating group An, n ≥ 5 and y an element in An, if we compute
ϕ1 of the directed cycles in the Engel graph we get a subset of An in which every element can be
written as an Engel word of arbitrary length.

Corollary 2. If (W, β) is a directed cycle of (Vy
n ,A) and ϕ1 the map defined in (1) with m = 1, every element

ϕ1(W)Sn can be written as an Engel word of arbitrary length in An.

Proof. This result can be directly deduced from Reference [13] and Lemma 8.

The following results shows some of the properties that Engel Graphs have.

Lemma 9. If m ≥ n and φ : An −→ Am is the natural embedding, the image by φ of a directed cycle in an
Engel graph (Vy

n ,A), is a directed cycle in the Engel graph (Vy
m,B).

Proof. Fix y ∈ An and let W1 be a directed cycle of the Engel graph (Vy
n ,A). Given a node CAn(y)x of

W1, we can consider the directed cycle W2 of (Vy
m,B) that contains the node CAm(y)x.

If there exists an arrow between two nodes x, z of W1, we have that

CAn(y)[x, y] = CAn(y)z.

Then [x, y]z−1 ∈ CAn(y) ⊂ CAm(y) for every m ≥ n. Then there is an arrow between the nodes
φ(x) and φ(y) in W2. As W1 is a directed cycle, we have that W2 is also a directed cycle of the same
length that W1.

Corollary 3. Every element in An that can be written as an Engel word of arbitrary length in An, is also an
Engel word of arbitrary length in Am, for every m ≥ n.

A sufficient condition for two Engel graphs to be isomorphic is presented in the following result.

Lemma 10. If z ∈ ClSn(y) we have that the Engel graphs (Vy
n ,A) and (Vz

n ,B) are isomorphic.

Proof. Denote z := yx for some x ∈ Sn. We define the next map

φ : Vy
n −→ Vz

n

CAn(y)σ �→ CAn(z)σ
x

If CAn(y)x1 = CAn(y)x2, we have that x1x−1
2 ∈ CAn(y). Then

(x2x−1
1)xyx(x1x−1

2)x = yx,

so CAn(z)xx
1 = CAn(z)xx

2 and then φ is injective.
Surjectivity is obvious, so φ is a bijection.
Consider two nodes CAn(y)x1 and CAn(y)x2 in (Vy

n ,A), such that there is an arrow from CAn(y)x1

to CAn(y)x2, that is CAn(y)[x1.y] = CAn(y)x2.

117

Symmetry 2019, 11, 877

We have that
x2[x1, y]−1y[x1, y]x−1

2 = y,

and then
(x2[x1, y]−1)xyx([x1, y]x−1

2)x = yx,

so
CAn(z)[x

x
1 , z] = CAn(z)xx

2 .

If there is an arrow between two nodes in (Vy
n ,A), there is also an arrow between the image of

these nodes by φ in (Vz
n ,B). Then φ is a isomorphism of graphs.

4. Engel Graphs for Small Alternating Groups

In this section, we use an Engel graph to prove that An = Em(An) for every m ≥ 1 and every
n ≤ 14. We show here the explicit method performed for the alternating group A5. For 6 ≤ n ≤ 14,
the procedure is analogous and we show the computational results at the end of this section.

Some results from Reference [13] are necessary to prove Theorem 2. We summarize those results
in the following lemma.

Lemma 11. Let σ ∈ An, n ≥ 5, be a permutation of one of the following types: a product of two transpositions,
a 3-cycle or a product of two 3-cycle . Then σ is an Engel word of arbitrary length in An.

Consider y := (1, 2, 3, 4, 5) a 5-cycle in A5. We have that CA5(y) = 〈y〉, the cyclic group of order 5,
so Vy

5 = {〈y〉x | x ∈ A5} is a set of order | A5/〈y〉 |= 12.
Let us build the Engel graph (Vy

5 ,A) in Figure 1. As we know, each node is associated to a coset
module CA5(y). We denote each node CA5(y)σ by a permutation of the set {yjσ | 1 ≤ j ≤ 4}.

〈y〉

(2, 5, 3)

(2, 4, 5)

(2, 5, 4)

(2, 3, 5)

(2, 3)(4, 5)

(2, 3, 4)

(3, 4, 5)

(3, 4, 5)

(2, 5)(3, 4)

(3, 5, 4)

(2, 4, 3)

Figure 1. Engel Graph (V(1,2,3,4,5)
5 ,A).

The graph has two directed cycles. The first one, W1, is a cycle with five elements and the other
one, W2, is only the identity node, CA5(y).

By using Lemma 8, we just need to compute the sets ϕ1(W1) and ϕ1(W2) to get another set of
elements in A5 which can be written as an Engel word of arbitrary length in A5. We have that:

118

Symmetry 2019, 11, 877

ϕ1(W2) := {e},

ϕ1(W1) := {(1, 3, 2, 5, 4), (1, 3, 5, 4, 2), (1, 4, 3, 5, 2), (1, 5, 2, 4, 3), (1, 5, 3, 2, 4)}.

Thanks to Corollary 2 we have that every 5-cycle in A5 can be written as an Engel word of
arbitrary length in A5.

This result together with Lemma 11 allows us to prove the following theorem:

Theorem 1. Every element in A5 can be written as an Engel word of arbitrary length. That is, for every n ≥ 1
we have that A5 = En(A5).

It is also possible to use the adjacency matrix of the Engel graph to study which nodes belong to a
directed cycle. If we consider Λ the adjacency matrix of the Engel graph (Vy

n ,A), it is known that the
element aij of the matrix Λk gives us the number of directed paths of length k from the node i to the
node j in the graph.

Computing the powers of the adjacency matrix and looking for the elements in the diagonal of
Λk that are different to 0, we can compute which elements of the graph belong to a cycle.

Let us consider the graph (Vy
5 ,A), with y := (1, 2, 3, 4, 5). Its associated adjacency matrix Λ is:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
If we compute Λ5, the result is:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
It is possible to see that there are 6 nodes in the Engel graph (Vy

5 ,A) that belong to a directed cycle.
However, as the size of the matrix corresponds to the number of nodes in the Engel graph, working
with these kinds of matrices becomes impractical when we consider alternating groups of higher order.
As an example, for y = (1, 2, 3, 4, 5) in A6 the set Vy

6 has | A6 | / | CA6(y) |= 72 elements. For A7 and
y a 7-cycle, we get 360.

119

Symmetry 2019, 11, 877

To study bigger alternating groups, we used GAP to compute the directed cycles {Wk} of the
Engel graph associated to the group An and the element y ∈ An.

Later, we computed the set ϕ1(Wk) for each directed cycle Wk in the graph (Vy
5 ,A). Then, we find

out which types of permutations belongs to ∪k ϕ1(Wk). To finish, we list every type of permutations in
An that does not belong to ∪k ϕ1(Wk).

This final list contains every type of permutation that cannot be written as an Engel word of
arbitrary length of type Em(x, y)σ = Em(xσ, yσ).

Let us fix a cycle y of maximal length in An, 5 ≤ n ≤ 14. We use the previous algorithm to
search the directed cycles of the Engel graph (Vy

n ,A) in order to see if Theorem 1 is also true for bigger
alternating groups.

We will compute the set Ω := ∪k ϕ1(Wk), where {Wk | 1 ≤ k ≤ r} is the set of directed cycles in
the Engel graph and we will see what types of permutations do not appear in Ω.

• Using the algorithm described above in GAP for A6 and y = (1, 2, 3, 4, 5), we get that the types of
permutations in A6 which do not appear in Ω are

{(1, 2)(3, 4), (1, 2, 3), (1, 2, 3)(4, 5, 6)}.

Applying Lemma 11, we can get Theorem 1 for the group A6.
• If we take An, with 7 ≤ n ≤ 14 and we repeat the same process for y = (1, 2, 3, ..., n), if n is odd

but y = (1, 2, 3, ..., n− 1) if n is even, there is only one type of permutation that does not appear
in the set Ω: {(1, 2)(3, 4)}.

And again, we can easily get the Theorem 1 for the groups An, with 7 ≤ n ≤ 14.

We summarise all the results we have got computationally in Table 2.

Table 2. Computational results for Engel graphs

Group Conj. Cl. Not Found Run Time

A5 {(1, 2)(3, 4)S5 , (1, 2, 3)S5} 7 ms
A6 {(1, 2)(3, 4)S6 , (1, 2, 3)S6 , 18 ms

(1, 2, 3)(4, 5, 6)S6}
A7 {(1, 2)(3, 4)S7} 40 ms
A8 {(1, 2)(3, 4)S8} 201 ms
A9 {(1, 2)(3, 4)S9} 4 s 12 ms
A10 {(1, 2)(3, 4)S10} 40 s 809 ms
A11 {(1, 2)(3, 4)S11} 5 min 37 s 139 m
A12 {(1, 2)(3, 4)S12} 63 min 38 s 210 m
A13 {(1, 2)(3, 4)S13} 21 h 6 min 54 s
A14 {(1, 2)(3, 4)S14} approx. 12 days

Theorem 2. Every element in an alternating group An, 5 ≤ n ≤ 14, can be written as an Engel word of
arbitrary length in An. That is,

An = Em(An),

for every m ≥ 1.

In this work, we have provided two new approaches that can be used in the study of Engel
words in alternating groups: Engel chains and Engel graphs. Using them (and GAP), we have also
proved that every element in an alternating group An, 5 ≤ n ≤ 14, can be written as an Engel word of
arbitrary length.

It is still unknown whether Theorem 2 holds for n > 14. However, computational results seems
to indicate some consistency in the “behaviour” of the Engel words in an alternating group and it is

120

Symmetry 2019, 11, 877

possible that a similar theorem holds for any alternating group An, n ≥ 5. The techniques proposed in
this paper might be helpful in the further study of the general problem.

Funding: This work has been partially supported by BES-2011-044790 (research fellowship associated to project
MTM2010-18370-C04-01) and GRUPIN 14-142.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Dehn, M. Uber die topologie des dreidimensionalen raumes. Math. Ann. 1910, 69, 137–168. (In German)
[CrossRef]

2. Artin, E. The theory of braids. Ann. Math. 1947, 48, 101–126. [CrossRef]
3. David B.A.; Epstein, M.S.; Paterson, J.W.; Cannon, D.F.; Holt, S.V.; Levy, W.P. Thurston. In Word Processing in

Groups, 1st ed.; A K Peters/CRC Press: Boca Raton, FL, USA, 1992.
4. Ko, K.H.; Lee, S.J.; Cheon, J.H.; Han, J.W.; Kang, J.; Park, C. New public-key cryptosystem using braid group.

In Advances in Cryptology—CRYPTO 2000; Bellare, M., Ed.; Lecture Notes in Computer Science 1880; Springer:
Berlin, Germany, 2000; pp. 166–183.

5. Garside, F.A. The braid group and other groups. Quart. J. Math. Oxf. 1969, 20, 235–254. [CrossRef]
6. Hofheinz, D.; Steinwandt, R. A practical attack on some braid group based cryptographic primitives.

In Public Key Cryptography—PKC2003; Desmedt, Y.G., Ed.; Lecture Notes in Computer Science 2384; Springer:
Berlin, Germany, 2002; pp. 176–189.

7. Anshel, I.; Anshel, M.; Goldfeld, D. An algebraic methodfor public-key cryptography. Math. Res. Lett. 1999,
6, 287–291. [CrossRef]

8. Ore, O. Some Remarks on Commutators. Proc. Am. Math. Soc. 1951, 2, 307–314. [CrossRef]
9. Wilson, J.S. First-Order Group Theory; Infinite Groups (1994); Gruyter: Berlin, Germany, 1996; pp. 301–314.
10. Martinez, C.; Zelmanov, E.I. Product of powers in finite simple groups. Isr. J. Math. 1996, 96, 469–479.

[CrossRef]
11. Saxl, J.; Wilson, J.S. A note on powers in simple groups. Math. Proc. Camb. Philos. Soc. 1997, 122, 91–94.

[CrossRef]
12. Liebeck, M.W.; O’Brien, E.A.; Shalev, A.; Tiep, P.H. The Ore Conjecture. J. Eur. Math. Soc. 2010, 12, 939–1008.

[CrossRef]
13. Carracedo, J.M. Engel Words in Alternating Groups. J. Algebra Appl. 2017, 16, 1750021. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

121

symmetryS S
Article

MPF Problem over Modified Medial Semigroup Is
NP-Complete

Eligijus Sakalauskas †and Aleksejus Mihalkovich *

Department of Applied Mathematics, Kaunas University of Technology, LT-44249 Kaunas, Lithuania;
eligijus.sakalauskas@ktu.lt
* Correspondence: aleksejus.michalkovic@ktu.lt; Tel.: +370-600-14070
† Current address: Studentu str. 50-324.

Received: 21 September 2018; Accepted: 22 October 2018; Published: 1 November 2018

Abstract: This paper is a continuation of our previous publication of enhanced matrix power function
(MPF) as a conjectured one-way function. We are considering a problem introduced in our previous
paper and prove that tis problem is NP-Complete. The proof is based on the dual interpretation of
well known multivariate quadratic (MQ) problem defined over the binary field as a system of MQ
equations, and as a general satisfiability (GSAT) problem. Due to this interpretation the necessary
constraints to MPF function for cryptographic protocols construction can be added to initial GSAT
problem. Then it is proved that obtained GSAT problem is NP-Complete using Schaefer dichotomy
theorem. Referencing to this result, GSAT problem by polynomial-time reduction is reduced to the
sub-problem of enhanced MPF, hence the latter is NP-Complete as well.

Keywords: cryptography; non-commutative cryptography; one-way functions; NP-Completeness;
key agreement protocol

1. Introduction

It is very natural to look for a new conjectured one-way functions (OWFs) for cryptographic
applications in connection with new challenges caused by quantum cryptanalysis. This paper is
a continuation of research in this field and is dealing with so called matrix power function (MPF).
Some cryptographic primitives were built on the basis that MPF is a conjectured OWF in [1–5].
Furthermore, some results were published considering the security of presented primitives in [6–8].
The security of these primitives is based on the complexity of MPF inversion named as MPF problem.

So far, it is thought that OWF security based on the NP-Complete problem is not vulnerable to
the quantum cryptanalysis, while the cryptosystems based on conjectured OWFs such as factoring and
discrete logarithm problems are vulnerable due to [9]. Therefore, it is very desirable to try to prove
NP-Completeness of MPF problem. In [6] the NP-Completeness of a more general problem named as
multivariate quadratic power problem is presented. However, the question of NP-Completeness of
MPF problem remained open so far.

In [10] our efforts were directed toward the increasing expectable complexity of MPF problem by
choosing more complicated algebraic structures for MPF definition but at the same time preserving the
necessary properties for the cryptographic primitives construction. In that paper, we presented a key
agreement protocol in Section 2, Construction 1 as well as an example of its realization with artificially
small parameters in Section 6.

In this paper we present a proof of NP-Completeness of sub-problem of enhanced MPF problem
previously considered in [10]. The notion of sub-problem is defined as follows:

Definition 1. The decision problem P1 is a sub-problem of problem P2 if every assignment to input values,
which provides the answer YES to problem P2, also implies the answer YES to the problem P1.

Symmetry 2018, 10, 571; doi:10.3390/sym10110571 www.mdpi.com/journal/symmetry122

Symmetry 2018, 10, 571

The proof is based on the duality of multivariate quadratic MQ problem interpretation as a
system of MQ equations over Z2 = {0, 1} [11,12] and according to Schaefer dichotomy theorem [13] as
a general satisfiability (GSAT) problem.

The main benefit of such approach is the opportunity to include some constraints to MPF necessary
to construct cryptographic primitives as an additional GSAT equations.

The proof is based on proving that this GSAT is NP-Complete and on polynomial-time reduction
from GSAT to the sub-problem of enhanced MPF problem.

2. Matrix Power Function

MPF was first introduced in [4]. To be self-contained, we present here MPF in the following way:

Definition 2. Symbolically MPF corresponds to matrix Wm×m =
{

wij
}

powered by matrix Xm×m =
{

xij
}

on the left and by matrix Ym×m =
{

yij
}

on the right with MPF value equal to matrix Em×m =
{

eij
}

and is
expressed in the following way

XWY = E, eij =
m

∏
k=1

m

∏
l=1

w
xik ·ylj
kl . (1)

The matrix W that is powered is named the base matrix and the matrices X and Y that are powering
the base matrix are named power matrices. In general, we define the base matrix over the multiplicative
(semi)group S and power matrices over some numerical (semi)ringR. We call semigroup S a platform
(semi)group, which according to the MPF definition, is multiplicative, andR–an exponent (semi)ring.
The appropriate matrix semigroupsMS and matrix semiringMR contain base matrices and power
matrices respectively.

The exact MPF definition depends on the type of sets over which matrices are defined.
In [3] authors proved, that if platform semigroup and power semiring are commutative, then the

following associative properties of MPF takes place:

Definition 3. MPF is one-side associative, (left-side and right-side associative, respectively) if the following
identities hold:

Y (XW
)
= (YX)W = YXW;(

WX)Y
= W(XY) = WXY.

(2)

Definition 4. MPF is two-side associative if the following identities hold:(
XW
)Y

= X
(

WY
)
= XWY. (3)

In [3] authors proved, that if platform semigroup S and power semiringR are commutative, then
MPFRS is one and two-side associative.

It follows from Equation (1), that in general, MPF is a function

MPF : MR ×MS ×MR �→ MS .

Definition 5. The direct MPF value computation is to find matrix E, when matrices X, W, Y are given.

Definition 6. The inverse MPF value computation is to find matrices X and Y, when matrices W and E
are given.

Definition 7. MPF problem is its inverse value computation.

Definition 8. MPF presented in 1 is a candidate one-way function (OWF) if the following necessary (but not
sufficient) conditions are satisfied:

123

Symmetry 2018, 10, 571

1. The direct MPF value computation is easy;
2. The MPF problem is polynomially equivalent to a certain hard problem with not known polynomial

time algorithm.

Assume, that the base matrix W in Expression 1 is defined over a platform semigroup denoted by
S and the power matrices X and Y are defined over a power semiring denoted byR. We denote the
MPF problem defined by these structures by MPFRS . Assume, that power matrices X and Y have to
satisfy some constrains denoted by C. In this case we denote the MPF problem by MPFR,C

S .
To build cryptographic primitives, e.g., key agreement protocol, based on MPFRS the following

additional property must be satisfied: square matrices of m-th order X and Y defined over the
power semiringRmust be elements of two subsetsMR,1 andMR,2 of commuting matrices inMR
respectively, i.e., for any U ∈ MR,1 and V ∈ MR,1 the following identities take place

C :
XU = UX;
YV = VY.

. (4)

This defines a constrained MPF that we previously denoted by MPFR,C
S . Further we will use the

single subset of commuting matrices inMR, namely the subset of circulant matrices i.e., matrices of
the following general form [14]:

X =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 xm
. x2

x2 x1 xm
.

x3 x2 x1
.

. xm

xm
. . . x3 x2 x1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (5)

Any circulant matrix X can be represented by its column vector �x, which transposed form is
expressed by the following row vector �xT = (x1, x2, ..., xm). If MPFR,C

S satisfies the conditions of
Definition 8, then the following secret-key agreement protocol can be executed as proposed in [10]:

Both parties agree on a public information: the modified medial semigroup S and a public
base matrix W with its entries randomly chosen from S . Alice and Bob can agree on a common key
as follows:

1. Alice chooses two secret circulant matrices X and Y at random of size m. Using these matrices
she computes the MPF value A = XWY and sends it to Bob;

2. Bob chooses two secret circulant matrices U and V at random of size m. Using these matrices he
computes the MPF value B = UWV and sends it to Alice;

3. Alice and Bob compute the same secret key in the following way:

KA = XBY = X
(

UWV
)Y

= U
(

XWY
)V

= KB = K. (6)

The Identity (6) is true due to the fact, that circulant matrices are commuting and associativity
Conditions (2) and (3).

Remark 1. In general two-sided association Condition (3) will be not necessary, if we agree upon on the order
of operations, e.g., from the left to the right.

In our previous research the base matrix W was defined over the multiplicative platform
group Z∗p = {1, 2, ..., p − 1} and power matrices X and Y over the numerical power ring Zp−1 =

124

Symmetry 2018, 10, 571

{0, 1, 2, ..., p−2}. This kind of MPF is denoted by MPF
Zp−1
Z∗p and constrained version by MPF

Zp−1,C
Z∗p .

It represents the MPF defined over commutative algebraic structures considered in [1,2,5,7,15].

However, recently a linear algebra attack to the protocol presented in [3] based on MPF
Zp−1,C
Z∗p was

found by [16]. This attack to MPF
Zp−1,C
Z∗p problem runs in polynomial time and hence can be used to

break the algorithms presented in [1,3]. The authors of [16] also suggested some improvements of our
protocols to resist the proposed attack. In [7] we fixed this flaw for the asymmetric encryption protocol,
presented in [1].

The intriguing idea was to extend MPF construction to non-commutative algebraic structures,
namely S andR, hence expecting higher complexity of MPF problem and achieving a higher potential
security for the construction of cryptographic primitives. The main problem of this approach was the
loss of associativity of MPF, which made its application in cryptography impossible.

This approach was successful and is presented in [10], when platform semigroup S is a modified
medial semigroup and power semiring is a special kind of so called near semiring NSR. In this study
as a power semiring we use a semiring of non-negative integers denoted by N 0 = {0, 1, 2, 3, ...}. So we
deal with the MPF denoted by MPFN

0

S . If power matrices satisfies commutation Constraints in (4),

then we denote corresponding MPF by MPFN
0,C

S .

In this paper we consider a class of MPFN
0,C

S problems when power matrices are circulant matrices
over the N 0 and hence they are commuting and satisfying Conditions (4). Interestingly enough,
matrices X and Y are almost never invertible due to the fact, that both fractions and negative numbers
are not contained in N 0. This is essential to our proof of NP-Completeness of the MPFN

0,C
S problem.

In earlier work, the proof that random generated multivariate quadratic power problem over Zn

is NP-Complete is presented. This proof is insufficient to prove the NP-Completeness of MPFN
0,C

S
problem due to fact that we are considering a partial case of this problem. Our multivariate quadratic
power system of equations is predetermined by the matrix power equations. Hence this special case is
not random generated. Therefore, the aim of this paper is to fill this gap.

In general, it is hard to prove that a problem with arbitrary constraints is NP-Complete (NP-Hard).
We present here an approach to prove it based on Schaefer dichotomy theorem [13]. This theorem is
formulated for the GSAT problem, represented by arbitrary finite set of Boolean relations (formulas)
with respect to the finite set of Boolean variables. The theorem defines six criteria when either GSAT is
in P or in NP-Complete complexity class.

In this paper, we construct a certain sub-problem of GSAT problem which is a one-to-one mapping
of certain sub-problem of MPFN

0,C
S problem. We show, that this GSAT problem satisfies the Schaefer

criteria to be NP-Complete. Hence, using polynomial-time reduction, we will prove that decision
version of MPFN

0,C
S problem is also NP-Complete.

We revise the definition and basic properties of modified medial semigroup in the next section
and present the main result in Section 4.

3. Modified Medial Semigroup as Platform Semigroup of MPF

Let us consider medial semigroup SM, which was previously introduced by [17]. Assume, that the
presentation of this semigroup consists of two generators a and b and a relation RM written in the
following way:

SM = 〈a, b|RM〉 ; (7)

RM : ω1abω2 = ω1baω2. (8)

where ω1 and ω2 are arbitrary non-empty words in SM, written in terms of generators a and b.
Let us now present an important identity, which is useful to us for application of medial semigroup

SM to MPF:
(ω1ω2)

e = ωe
1ωe

2. (9)

125

Symmetry 2018, 10, 571

This identity is based on the Relation (8) and is valid for all words ω1, ω2 ∈ SM and any exponent
e ∈ N 0.

To prevent the growth of powers of generators when exponentiation takes place we introduce
a modified medial semigroup S with two extra relations R1 and R2 in the following general form:

R1 : bap+2bp+1 = ba2b;
R2 : abp+2bp+1 = ab2a.

(10)

Thus, modified medial semigroup S has the following presentation:

S = 〈a, b|RM, R1, R2〉 , (11)

with relations RM, R1 and R2 defined above.
Note, that we define S as a multiplicative, non-commuting, non-cancellative and infinite

semigroup which is a non-symmetric algebraic structure.

Remark 2. The modified medial semigroup is well defined if relations R1 and R2 are symmetric, i.e., they link
both generators in such a way, that the order of generators is symmetric and exponents of each generator add
up to the same number. In our case the sum of exponents of generators a and b on the left side of R1 and R2 in
Realtions (10) equals p + 2 and on the right side it equals 2.

Remark 3. In our previous paper we considered a special case of p = 3.

Semigroups SM and S are made monoids by introducing an empty word as a multiplicatively
neutral element, denoted by 1. Then conveniently, the following identities hold for all ω ∈ SM:

ω1 = 1ω = ω, w0 = 1, 0 ∈ N 0. (12)

The normal form for the words in SM was also defined in the following way:

Definition 9. The normal form ωM,n f of any word ω0 in semigroup SM is expressed as follows:

ωM,n f = max
αa ,βb

bβb ara bsb aαa = bβaia bjb aα, (13)

where α, β ∈ {0, 1} and αa, βb, ra, sb, ia, jb ∈ N .
To obtain the normal form for the word ω we consider its first and last literals. Using Relation (9)

we can determine the values of α and β. For example the normal form for the word b7a8b2a6 is ba13b8a.
The word b6a7b3a7 has the same normal form and hence we consider all these words equivalent.
The normal form for the word a7b8a2b6 is b0a9b14a0. Hence in the last case we have α = 0 and β = 0.
Evidently for the normal form of the word a5b7a3 we have α = 1 and β = 0 whereas in case of the
word b5a7b3 we have α = 0 and β = 1. In fact, the normal forms for the presented words are b0a7b7a
and ba7b7a0 respectively. We generally omit zeroth powers when writing normal forms.

On the base of ωM,n f the normal form in S is defined as follows:

Definition 10. The normal form ωn f of any word ω0 in semigroup S is expressed by the following expression:

ωn f = min
ia ,jb

max
β,α

bβaia bjb aα. (14)

Let T be an additive non-commuting semigroup consisting of the tuples (β, i, j, α) , where α, β ∈
{0, 1} ⊂ N 0 and i, j ∈ N 0, with the following addition operation:

(β1, i1, j1, α1) + (β2, i2, j2, α2) =

126

Symmetry 2018, 10, 571

= (β1, i1 + α1 + i2, j1 + β2 + j2, α2) ,

then there is an isomorphism ϕ : SM,n f �→ T, which can be expressed by the following relation for any
word ωn f

ϕ(ωn f) = ϕ(bβaibjaα) = (β, i, j, α). (15)

Hence, using our notation, we defined MPFN
0

S , where S is modified medial semigroup. It is
important to note, that MPFN

0

S satisfies associativity conditions in Definitions (2) and (3) due to the
properties of medial semigroup.

Adding the commutation Constraints (4) to the power matrices X and Y defined over N 0,
constrained MPFN

0

S problem we denoted by MPFN
0,C

S .

In the next section we prove, that MPFN
0,C

S problem is NP-Complete.

4. Proof of NP-Completeness

Let us consider the following binary matrix equation:

XQY = A, (16)

where all matrices Q, A, X and Y are defined over the field Z2 = {0, 1} with multiplication operation
denoted by ∧ (logical AND) and addition operation by ⊕ (logical XOR). This equation corresponds to
binary matrix multivariate quadratic (BMMQ) equation and associated problem to BMMQ problem.

Definition 11. The binary matrix MQ (BMMQ) problem is to find matrices X and Y in Equation (16), when
matrices Q and A are given.

Remark 4. Throughout this paper we assume, that matrix Q is well-balanced, i.e., the quantity of 1’s is close to
m2/2. Furthermore all the 1’s are distributed uniformly in the rows and columns of matrix Q.

If at least one of square matrices X or Y is invertible, then BMMQ Problem (16) is solvable in
polynomial time due to one the following transformations:

XQ⊕ AY−1 = 0;
QY⊕ X−1 A = 0,

(17)

since XOR operation is inverse to itself.
It is clear, that both transformations represent the system of m2 homogeneous linear equations

with 2 m2 unknown variables.
However, if both binary matrices X and Y are singular, then Transformations (17) are not possible

and hence the initial Problem (16) bears a resemblance to the well known multivariate quadratic (MQ)
problem. It is known, that random generated MQ problem is NP-Complete over any field [11,12].

Hence, we define the following problem:

Definition 12. The singular binary matrix MQ problem (SBMMQ) is to solve BMMQ problem, when matrices
X and Y in Equation (16) are singular.

It is important to note, that we are interested in this particular problem, since in case of MPFN
0,C

S
power matrices are defined over the semiring N 0 and hence any randomly chosen power matrix is not
invertible with overwhelming probability. Here and onwards we say that a random event happens
with overwhelming probability if its probability of failure is negligible.

We begin from the complexity consideration of CSBMMQ problem.

127

Symmetry 2018, 10, 571

Our proof is based on Schaefer dichotomy theorem [13]. Let us define a set of Boolean relations
{r1, r2, . . . , rM} with variables defined by two vectors �xT = (x1, x2, ..., xm) and �yT = (y1, y2, ..., ym).
Then the following generalized satisfiability problem GSAT can be formulated:⎧⎪⎪⎪⎨⎪⎪⎪⎩

r1(�x,�y) = 1;
r2(�x,�y) = 1;

· · ·
rM(�x,�y) = 1,

(18)

where 1 is a true value assignment to the relations.

Definition 13. The decision GSAT problem is to answer YES/NO to the question: are there any assignment to
the variables �x and �y that all Boolean relations in Problem (18) are true?

Theorem 1. (Schaefer dichotomy theorem [13]). If at least one of the following criteria is satisfied, then the
satisfiability problem GSAT is in P, otherwise it is NP-Complete :

(a) Every relation in S is satisfied when all the variables are 0 (0-valid clause);
(b) Every relation in S is satisfied when all the variables are 1 (1-valid clause);
(c) Every relation in S is definable by a CNF formula in which each conjunct has at most one negated variable

(dual Horn clause);
(d) Every relation in S is definable by a CNF formula in which each conjunct has at most one unnegated

variable (Horn clause);
(e) Every relation in S is definable by a CNF formula having at most two literals in each conjunct

(bijunctive clause);
(f) Every relation in S is the set of solutions of a system of linear equation over the two element field {0, 1}

(affine clause).

As it was mentioned above, to satisfy the commutation Conditions (4), matrices X and Y are chosen
to be circulant. Then matrix Equation (16) can be transformed to the following system of equations:⎧⎪⎪⎪⎨⎪⎪⎪⎩

�xTQ11�y = a11;
�xTQ12�y = a12;

· · ·
�xTQmm�y = amm,

(19)

where vectors �xT and �yT are row vectors of the first row and first column of matrix Q respectively, and
matrices Q11, Q12, ..., Qmm are obtained by cyclic permutations of matrix Q. For example, Q11 = Q and
Q12 =

(
�q2 �q3 · · · �qm �q1

)
, where the vector�qj denotes the j-th column of matrix Q. All matrices

Qij are obtained from the initial matrix by performing shifts of rows and/or columns.
The latter system consist of m2 quadratic equations with 2 m variables being a components of

vectors �x and �y. System (19) is a special type of random generated MQ problem over Z2 defined
by special type of matrices Q11, Q12, ..., Qmm, generated by deterministic permutations of random
generated matrix Q in Equation (16). Every equation in System (19) represents a Boolean relation
written in terms of logical operations AND and XOR.

To choose a suitable GSAT problem to prove NP-Completeness of the initial MPFN
0,C

S problem
the set of logical Relations (18) must be supplemented by logical relations defining the singularity
constraints of matrices X and Y. Since System (19) is defined over Z2 = {0, 1} , these constraints can
be expressed by the following Boolean relations:

det X = 0;
det Y = 0,

(20)

128

Symmetry 2018, 10, 571

where 0 is a false value assignment to the relations. The actual expressions of (20) are determined by
the format of matrices X and Y. Hence, here and onwards we consider square matrices of m-th order
X and Y with even values of determinants.

Definition 14. The constrained singular binary matrix MQ problem (CSBMMQ) is to solve SBMMQ problem,
when matrices X and Y in Equation (16) are singular and hence satisfy Conditions (4) and (16) while also
satisfying Condition (20).

Theorem 2. Decision CSBMMQ problem is NP-Complete.

Proof. To prove the theorem, we use the Schaefer dichotomy theorem. System of binary Equation (19)
and Relations (20) represent the system of generalized satisfiability relations in Problem (18) and
corresponds to GSAT problem with M = m2 + 2. Then to prove NP-Completeness of CSBMMQ we
need to verify inconsistency of Schaefer criteria (a)–(f).

The first two criteria (a) and (b) are not satisfied due to the fact, that we are choosing matrix Q at
random and hence the satisfiability of these criteria has a negligible probability.

To verify Schaefer criteria (c)–(e) we denote three pairs of vectors satisfying Equations (19) and (20)
by (�x1,�y1), (�x2,�y2) and (�x3,�y3). Note, that we generate circulant matrices from selected vectors to
check the validity of Equation (20). Schaefer criteria (c)–(e) can be reformulated as follows [18]:

(c′) For all pairs (�x1,�y1) and (�x2,�y2), satisfying System (19) and Equation (20), the pair (�x1 ∨�x2,�y1 ∨
�y2) is a solution of System (19) and Equation (20);

(d′) For all pairs(�x1,�y1) and (�x2,�y2), satisfying System (19) and Equation (20), the pair (�x1 ∧�x2,�y1 ∧
�y2) is a solution of System (19) and Equation (20);

(e′) For all pairs (�x1,�y1), (�x2,�y2) and (�x3,�y3), satisfying System (19) and Equation (20), the pair
((�x1 ∨�x2) ∧ (�x1 ∨�x3) ∧ (�x2 ∨�x3), (�y1 ∨�y2) ∧ (�y1 ∨�y3) ∧ (�y2 ∨�y3)) is a solution of System (19)
and Equation (20).

Remark 5. All logical operations in criteria (c′)-(e′) are performed component-wise.

Then applying criterion (c′) to the single equation in System (19) in vector form and assigning
arbitrary values to the vectors (�x1,�y1), (�x2,�y2) we obtain the corresponding values bij satisfying the
following equation in every case

(�x1 ∨�x2)
TQij(�y1 ∨�y2) = bij.

Evidently, in most cases bij �= aij. Note, however, that for this criterion to be valid the identity
bij = aij has to hold for all i, j = 1, 2, . . . , m. Hence, dual Horn clause in System (19) is not satisfied and
criterion (c′) is inconsistent.

Analogously, verifying Horn clause we obtain

(�x1 ∧�x2)
TQij(�y1 ∧�y2) = cij,

where cij �= aij. Hence, Horn clause in System (19) is not satisfied for all i, j = 1, 2, . . . , m and criterion
(d′) is inconsistent.

Inconsistency of criterion (e′) follows directly from the latter three expressions. Note, that the key
point which allows us to claim the desired result is Remark 5 since no distributive law can be applied
to the latter two expressions.

Criterion (f) is not satisfied since, in general, relations in System (19) are non-linear.
So, CSBMMQ problem is NP-Complete.

129

Symmetry 2018, 10, 571

Remark 6. Two additional Relations (20) are needed to ensure that matrices X and Y are singular and hence to
ensure the inconsistency of Schaefer criteria.

Now we turn to constrained singular matrix multivariate quadratic (CSMMQ) problem defined
over the semiring of integers N0 which we denote by CSMMQN0 . This means that Equation (16) and
corresponding Conditions (19) and (20) are defined over N0.

Theorem 3. CSBMMQ problem is a sub-problem of CSMMQN0 .

Proof. Let us consider all matrices in Equation (16) defined over N0. Then they can be rewritten in the
following way:

X = 2U + X′;
Y = 2V + Y′;
Q = 2P + Q′;
A = 2T + A′.

By substituting these expressions in Equation (16) we obtain the following result:(
2U + X′

) (
2P + Q′

) (
2V + Y′

)
= 2T + A′

and hence
X′Q′Y′ ≡ A′ mod 2.

Let us consider the following decision problem: does there exist assignments to matrices X and
Y defined over the semiring N0 satisfying Equation (16), which adding commutation constraints
corresponds to Relations (19), (20) and is a CSMMQN0 problem? Assume, that we have an answer
YES to decision CSMMQN0 problem. Due to penultimate equation, it implies the answer YES to
CSBMMQ problem.

In computational CSMMQN0 version its transformation to CSBMMQ requires the reduction of
the solution modulo 2. This is done in polynomial time.

We proved, that CSBMMQ problem is a sub-problem of CSMMQN0 problem, when semiring N0

is homomorphically mapped to the field Z2.

Since Theorem 3 is valid, every solution of CSMMQN0 problem has to satisfy CSBMMQ problem
as well. Clearly, this problem is non-trivial and was proven to be NP-Complete.

Let us consider the following system of equations{
XΛY = B;

XΣY ≡ C mod (2p) .
(21)

where p is an odd prime, matrices X, Y, Σ and C are defined over the semiring of positive integers N 0,
and matrices Λ and B over the ring Z . Furthermore, the parity of matrices Λ and Σ is the same, i.e.,
Λ− Σ = 2T, where T ∈ MZ .

Theorem 4. The decision CSMMQ problem, defined by System (21), is NP-Complete.

Proof. It is easy to assume also with overwhelming probability, that matrices X and Y defined over
the N 0 are not invertible. We define the following sub-problem of Problem (21) by reducing its first
equation modulo 2p: {

XΛY ≡ B mod (2p) ;
XΣY ≡ C mod (2p) .

(22)

130

Symmetry 2018, 10, 571

Clearly, if the answer to the initial Problem (21) is YES, then the same answer applies also to
Problem (22), since to obtain the solution of the Problem (21) extra matrices T and S in the relations

X = (2p)T + X̃2p;

Y = (2p)S + Ỹ2p

have to be found. Here matrices X̃2p and Ỹ2p satisfy the Problem (22).
We can rewrite the System (22) in the following way by using Chinese Remainder Theorem:{

XΛY ≡ B mod p;
XΣY ≡ C mod p.

(23)

{
XΛY ≡ B mod 2;
XΣY ≡ C mod 2;

(24)

It is important to note, that, due to Chinese Remainder Theorem, Systems (23) and (24) must be
considered separately. These systems of equations provide two different and mutually independent
components of solution of Problem (22). Matrices X̃2p and X̃2p satisfying System (22) are calculated
as follows:

X̃2p = pX̃2 + (p + 1)X̃p;

Ỹ2p = pỸ2 + (p + 1)Ỹp,

where matrices X̃p and Ỹp satisfy System (23) and X̃2 and Ỹ2 satisfy System (24).
We can assume, that solution of (23) can be found in polynomial time if at least one of matrices X

or Y are invertible modulo p. However, nevertheless we cannot recover the solution of (22) from the
one component (X̃p, Ỹp), i.e., the component (X̃2, Ỹ2) is required. It is directly implied by the Chinese
Remainder Theorem isomorphism.

Furthermore, since matrices Λ and Σ have the same parity the following congruence is valid:

Λ ≡ Σ mod 2.

Hence we have B ≡ C mod 2, since otherwise the answer to Problem (22) is NO. However in this
case we can remove either one of equations of System (24) and hence we obtain a CSBMMQ problem.
This problem was proven to be NP-Complete in Theorem 2.

We have shown, that the proof of complexity of Problem (21) relies on the complexity of CSBMMQ
problem. Since CSBMMQ is NP-Complete and is a sub-problem of CSMMQ Problem (21), then the
latter is also NP-Complete.

Remark 7. Theorem 3 is the key factor, which allows us to claim the correctness of Theorem 4. However, based
on our logic presented here, we cannot claim, that the singular MMQ problem is NP-Complete over Zp, where p
is prime, due to the fact that CSBMMQ problem is not a sub-problem of the latter problem.

To demonstrate the relation of CSMMQ Problem (21) to modified medial semigroup S let us
define the following mappings:

λ
(

bβaibjaα
)
= (i + α)− (j + β) ; (25)

σ
(

bβaibjaα
)
= (i + α) + (j + β) . (26)

Remark 8. Obviously Mappings (25) and (26) define functions of powers i and j if we preset the values of α

and β.

131

Symmetry 2018, 10, 571

Remark 9. In general we have λ(w) ∈ Z and σ(w) ∈ N 0. Furthermore, if σ(w) = 0, then w is an empty
word, i.e., w = 1.

It is clear that if we preset two exponents α, β ∈ {0, 1}, then the pair (λ (w) , σ (w)) defines a
unique element w if these elements have the same parity and satisfy inequality |λ (w) | < σ (w).
Clearly, this reduction is polynomial since for a fixed pair ϕ(α0,β0) (λ, σ) we have:{

i = λ+σ
2 − α0;

j = σ−λ
2 − β0.

(27)

Then the following theorem can be formulated:

Theorem 5. The mapping λ (w) is an invariant of the reduction, i.e., λ (w) = λ
(

wn f

)
, and the mapping

σ (w) is an invariant modulo 2p of the reduction, i.e., σ (w) ≡ σ
(

wn f

)
mod (2p), where wn f is the any word

in S reduced to its normal form.

The proof of this theorem follows from the definition of the reduction and thus we omit it.
The defined mappings have the following important property:

λ
(

wk
)
= kλ (w) ; (28)

σ
(

wk
)
= kσ (w) . (29)

Let us assume that the entries of matrices Λ and Σ satisfy the conditions presented in Problem (21).
Then the following one-to-one-mapping mapping can be defined:

ϕ(α0,β0) (λ, σ) = bβ0 aibjaα0 , (30)

where the values of α0 and β0 are fixed.

Example 1. Assume, that λ = 3 and σ = 7. Then we have:

ϕ(0,0)(3, 7) = a5b2;
ϕ(0,1)(3, 7) = a4b2a;
ϕ(1,0)(3, 7) = ba5b;
ϕ(1,1)(3, 7) = ba4ba.

Furthermore, if λ = −3 and σ = 7, then:

ϕ(0,0)(−3, 7) = a2b5;
ϕ(0,1)(−3, 7) = ab5a;
ϕ(1,0)(−3, 7) = ba2b4;
ϕ(1,1)(−3, 7) = bab4a.

However, ϕ(α0,β0)
(3, 6) and ϕ(α0,β0)

(7, 3) are undefined for any values of α0 and β0.

If we apply mapping ϕ(α0,β0)
to the pair of matrices (Λ, Σ) elementwise then we obtain a matrix

W = {wij}, where the entries wij are defined as follows:

wij = ϕ(α0,β0)

(
λij, σij

)
. (31)

132

Symmetry 2018, 10, 571

Now we introduce the following expression:

X (Λ, Σ)Y = (XΛY, XΣY) ,

and apply the mapping ϕ(α0,β0)
to it. Due to Properties (28) and (29) we have:

ϕ(α0,β0) (XΛY, XΣY) = XWY. (32)

where the entries of matrix W are defined by Expression (31). Furthermore, we apply the mapping
ϕ(α0,β0)

to the pair of matrices (B, C) in Problem (21) to obtain the following matrix:

ϕ(α0,β0) (B, C) = D,

where the entries of matrix D are defined by Expression (31). The two latter equations can be combined
to yield MPFN

0,C
S problem, symbolically presented in Definition 1.

Theorem 6. MPFN
0,C

S is NP-Complete.

Proof. Due to the properties of mappings λ (w) and σ (w) in Expressions (25)–(27), the property
of bijective mapping ϕ(α0,β0)

and Theorem 4, we find that CSBMMQ is a sub-problem of MPFN
0,C

S .

Since, according to Theorem 2, CSBMMQ is NP-Complete, then the MPFN
0,C

S problem is NP-Complete
as well.

Remark 10. In fact, circulant MPF problem is NP-Complete in more general case, since for matrices X and
Y with no zero entries only the upper left corner and bottom right corner entries of the base matrix W play an
important role. More precisely the first and the last literal of the specified entries produce fixed values α0 and β0.
Normal forms of other entries of the base matrix W are irrelevant.

5. Conclusions

1. The proof of NP-Completeness of author’s constructed MPF in previous Symmetry journal
publication is presented. It is a new evidence, that this type of MPF can be considered for
construction of a non-commuting cryptography primitive as a conjectured OWF.

2. The proof is based on two main approaches: we prove that certain GSAT is NP-Complete using
modified Schaefer criteria, and, using this result, we prove that this GSAT is a sub-problem of the
considered MPF problem. Hence this type of MPF problem is NP-Complete.

3. It is a new step to prove that KAP presented in our previous publication mentioned above has
a provable security property.

Author Contributions: This article was supervised by E.S. who proposed the methology later improved by
both authors. A.M. performed the investigation and analyzed the obtained results together with his supervisor.
Both authors collected resources for the paper. A.M. wrote the paper.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

MPF Matrix power function
OWF one-way function
MQ problem Multivariate quadratic problem
MMQ problem Matrix MQ problem

133

Symmetry 2018, 10, 571

BMMQ problem Binary matrix MQ problem
SBMMQ problem Singular binary matrix MQ problem
CSBMMQ problem Constrained singular binary matrix MQ problem
GSAT problem General satisfiability problem
NP-Commplete problem Non-deterministic polynomial complete problem
CNF Conjuntive normal form

References

1. Mihalkovich, A.; Sakalauskas, E. Asymmetric cipher based on MPF and its security parameters
evaluation. In Proceedings of the Lithuanian Mathematical Society, Klaipeda, Lithuania, 11–12 June 2012;
VU Matematikos ir Informatikos Institutas: Vilnius, Lithuania, 2012; Ser. A, Volume 53, pp. 72–77.

2. Mihalkovich, A.; Sakalauskas, E.; Venckauskas, A. New asymmetric cipher based on matrix power function
and its implementation in microprocessors efficiency investigation. Elektron. Elektrotech. 2013, 19, 119–122.
[CrossRef]

3. Sakalauskas, E.; Listopadskis, N.; Tvarijonas, P. Key Agreement Protocol (KAP) Based on Matrix Power
Function. In Advanced Studies in Software and Knowledge Engineering; International Book Series “Information
Science and Computing”; World Scientific: Singapore, 2008; pp. 92–96.

4. Sakalauskas, E.; Luksys, K. Matrix Power S-Box Construction. IACR Cryptology ePrint Archive 2007.
Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.78.2327&rep=rep1&type=pdf
(accessed on 26 October 2018).

5. Sakalauskas, E.; Mihalkovich, A. New asymmetric cipher of non-commuting cryptography class based on
matrix power function. Informatica 2014, 25, 283–298. [CrossRef]

6. Sakalauskas, E. The multivariate quadratic power problem over Zn is NP-Complete. Inf. Technol. Control
2012, 41, 33–39. [CrossRef]

7. Sakalauskas, E.; Mihalkovich, A. Improved Asymmetric Cipher Based on Matrix Power Function Resistant
to Linear Algebra Attack. Informatica 2017, 28, 517–524. [CrossRef]

8. Sakalauskas, E.; Mihalkovich, A.; Venčkauskas, A. Improved asymmetric cipher based on matrix power
function with provable security. Symmetry 2017, 9, 9. [CrossRef]

9. Shor, P.W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum
computer. SIAM Rev. 1999, 41, 303–332. [CrossRef]

10. Sakalauskas, E. Enhanced Matrix Power Function for Cryptographic Primitive Construction. Symmetry
2018, 10, 43. [CrossRef]

11. Garey, M.R.; Johnson, D.S. Computers and Intractability; WH Freeman: New York, NY, USA, 2002.
12. Patarin, J.; Goubin, L. Trapdoor one-way permutations and multivariate polynomials. In Proceedings of the

International Conference on Information and Communications Security, Beijing, China, 11–14 November
1997; Springer: Berlin, Germany, 1997; pp. 356–368.

13. Schaefer, T.J. The complexity of satisfiability problems. In Proceedings of the Tenth Annual ACM Symposium
on Theory of Computing, San Diego, CA, USA, 1–3 May 1978; ACM: New York, NY, USA, 1978; pp. 216–226.

14. Davis, P.J. Circulant Matrices; Wiley: New York, NY, USA, 1970.
15. Sakalauskas, E.; Mihalkovich, A. Candidate One-Way Function Based on Matrix Power Function with

Conjugation Constraints. In Proceedings of the Conference proceedings Bulgarian Cryptography Days 2012,
Sofia, Bulgaria, 20–21 September 2012; pp. 29–37.

16. Liu, J.; Zhang, H.; Jia, J. A linear algebra attack on the non-commuting cryptography class based on matrix
power function. In Proceedings of the International Conference on Information Security and Cryptology,
Beijing, China, 4–6 November 2016; Springer: Berlin, Germany, 2016; pp. 343–354.

17. Chrislock, J.L. On medial semigroups. J. Algebra 1969, 12, 1–9. [CrossRef]
18. Dechter, R.; Pearl, J. Structure identification in relational data. Artif. Intell. 1992, 58, 237–270. [CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

134

symmetryS S
Article

The Cracking of WalnutDSA: A Survey

José Ignacio Escribano Pablos 1,2, María Isabel González Vasco 1, Misael Enrique Marriaga 1 and

Ángel Luis Pérez del Pozo 1,*

1 MACIMTE, U. Rey Juan Carlos, 28933 Móstoles, Spain
2 BBVA Next Technologies, 28050 Madrid, Spain
* Correspondence: angel.perez@urjc.es

Received: 8 July 2019; Accepted: 20 August 2019; Published: 23 August 2019

Abstract: This paper reports on the Walnut Digital Signature Algorithm (WalnutDSA), which is an
asymmetric signature scheme recently presented for standardization at the NIST call for post-quantum
cryptographic constructions. WalnutDSA is a group theoretical construction, the security of which
relies on the hardness of certain problems related to an action of a braid group on a finite set.
In spite of originally resisting the typical attacks succeeding against this kind of construction,
soon different loopholes were identified rendering the proposal insecure (and finally, resulting
in it being excluded from Round 2 of the NIST competition). Some of these attacks are related to
the well-structured and symmetric masking of certain secret elements during the signing process.
We explain the design principles behind this proposal and survey the main attack strategies that have
succeeded, contradicting its claimed security properties, as well as the recently-proposed ideas aimed
at overcoming these issues.

Keywords: WalnutDSA; digital signatures; post-quantum cryptography; cryptanalysis

1. Introduction

The (seemingly close) advent of quantum computing is urging the cryptographic community to
search for new constructions that may withstand attacks arising from this new computing paradigm.
Post-quantum cryptography is a bursting research area in which tools are designed for a scenario
where honest users are restricted to classical computation, while the adversary may eventually have
access to quantum computing resources. The American National Institute of Standards and Technology
(NIST) initiated in December 2016 “a process to develop and standardize one or more additional public-key
cryptographic algorithms [...] that are capable of protecting sensitive government information well into the
foreseeable future, including after the advent of quantum computers” (see [1]).

Walnut Digital Signature Algorithm (WalnutDSA) was one of the 20 public key signature schemes
presented for standardization at the recent NIST call for post-quantum cryptographic constructions.
Different mathematical objects were used in these proposals such as lattice theory, coding theory,
algebraic geometry (see for instance [2–4]), and, in the case of WalnutDSA, braid groups. After a first
round of evaluations, only nine of these proposals remained under consideration. WalnutDSA failed to
enter the second round, mostly due to a number of attacks that were reported during the one-year
evaluation phase.

While it is not unusual that post-quantum cryptographic proposals lack a formal security
evaluation within the theoretical framework known as provable security, the lack of a rigorous security
analysis of WalnutDSA has been particularly damaging for the scheme’s credit. In particular, it makes
it difficult to identify the critical points to fend off in an implementation. As a result, ad-hoc fixes have
been proposed by the scheme designers after each published attack. Nevertheless, the effectiveness of
these fixes is somewhat hard to judge. Moreover, the actual hardness of the underlying mathematical
problems is not well understood. The signature process is simple and symmetric, having two secret

Symmetry 2019, 11, 1072; doi:10.3390/sym11091072 www.mdpi.com/journal/symmetry135

Symmetry 2019, 11, 1072

group elements acting on the encoded message to be signed. However, this simplicity has been
exploited in many of the attacks against the scheme. Unfortunately, several computational problems
defined over the main algebraic environment of WalnutDSA (i.e., braid groups) have turned out to be
hard to exploit cryptographically, mainly because the computational complexity of such problems may
be high in a worst-case definition, while it is unclear how to produce hard instances effectively.

In this document, we give a self-contained review of WalnutDSA, detailing the proposal and
describing the main attacks that have been presented against this construction, as well as the possible
fixes, currently under discussion, towards a secure implementation of this signature scheme.

Paper roadmap: We start with a short section reviewing the history of braid group cryptography,
followed by a section explaining the basics on signature schemes. Then, we give a comprehensive
description of WalnutDSA in Section 4. Section 5 is devoted to the various attack strategies
deployed against WalnutDSA; from the early factoring attacks (see Section 5.1), to collision attacks
(Section 5.2), attempts to undermine the (claimed) one-wayness of the underlying E-multiplication
function (Section 5.3), and finally, the recent (and probably the most devastating) attack aiming at
the recovery of an alternative secret key by solving a certain rewriting problem (see Section 5.4).
The survey wraps up with a short conclusion section.

2. Braid Group Cryptography

Cryptography based on braid groups was born almost 20 years ago and attracted plenty of
attention from group theorists, as well as the cryptographic community. The reasons for this are
diverse: the schemes were mathematically appealing and the constructions likely to be efficient enough
to be practical. Unfortunately, many problems were brought to light after a thorough scrutiny carried
out by pure mathematicians and cryptographers. In this section, we briefly review two of the most
prominent proposals within this area and refer the interested reader to the survey on the topic by
David Garber [5].

2.1. Cryptographic Constructions Using Braid Groups

The two flagship proposals made for deriving cryptographic constructions using braid groups
are a key exchange protocol and a public key encryption scheme.

In 1999, Anshel, Anshel, and Goldfeld [6] introduced a generic two-party key
establishment protocol. Their presentation could be translated into various implementations with
different algebraic structures as a base (and, of course, security levels). The one using braid groups
attracted the most attention. The security of this construction relied on the hardness of the so-called
multiple simultaneous conjugacy search problem (see below) in the braid group.

Later, at CRYPTO 2000, Ko et al. [7] put forward a braid-based version of the Diffie–Hellman
two-party key exchange protocol, as well as an encryption scheme á la ElGamal derived from such a
protocol. The main idea behind this construction is as follows: Fix a public braid g. Using this public
information and exchanging messages through a public channel, two users may establish a shared high
entropy secret. This secret is derived from a braid of the form (ab)g(ab)−1, which is constructed by
letting each user choose a secret conjugating element (a and b respectively) and publicly interchanging
the elements aga−1 and bgb−1. Indeed, for this idea to work, the conjugating braids a and b should
commute. Furthermore, the hardness of the underlying conjugacy search problem (see below) in the
braid group is crucial for the security of the scheme, since extracting a or b from the public messages
aga−1 and bgb−1 is enough to deduce the exchanged key.

2.2. Computational Problems in Braid Groups

Many cryptographic proposals (like the ones mentioned above) based their security in
computational problems related to the so-called conjugacy problem in Bn, the braid group on
n > 0 strands. However, assuming that these problems are hard is not always reasonable. Indeed,

136

Symmetry 2019, 11, 1072

efficient algorithms for special cases of these problems have been behind the cryptanalysis of most of
the cryptographic proposals designed using braid groups. Some examples of such problems are:

• Conjugacy Decision Problem (CDP). Given A, B ∈ Bn, determine whether they are conjugate, i.e.,
whether there exists X ∈ Bn such that A = X−1BX.

• Conjugacy Search Problem (CSP). Given A, B ∈ Bn, known to be conjugate, compute X ∈ Bn such
that A = X−1BX.

• Braid Diffie–Hellman Decision Problem (BDHDP). Given A, B, C, D ∈ Bn, such that there exist
X, Y ∈ Bn satisfying B = X−1 AX and C = Y−1 AY, with XY = YX, determine whether
D = Y−1X−1 AXY.

• Braid Diffie–Hellman Search Problem (BDHSP). Given A, B, C ∈ Bn, such that there exist X, Y ∈ Bn

satisfying B = X−1 AX and C = Y−1 AY, with XY = YX, compute D = Y−1X−1 AXY.
• Multiple Simultaneous Conjugacy Search Problem (MSCSP). Given k pairs of elements (Ui, Wi) ∈ B2

n,
such that they are all conjugates with respect to the same braid, find such a conjugating braid, i.e.,
compute X ∈ Bn such that Wi = X−1UiX, for all i = 1, . . . , k.

• Decomposition Problem (DP). Let G be a fixed subgroup of Bn. Given A, B ∈ Bn, find X, Y ∈ G such
that B = XAY.

• Root Extraction Problem (REP). For A ∈ Bn and r ∈ N such that there exists B ∈ Bn with A = Br,
compute such a braid B.

It is easy to see that there are close relations among the above problems. Let us focus on how to
solve CSP and CDP. As explained in detail in [5], the basic idea that has proven more fruitful towards
a solution for the CSP and CDP problems involves a set Ix for each braid x (typically a subset of the
conjugacy class of A), which characterizes the conjugacy class (i.e., A and B are conjugates if and only
if IA = IB). Furthermore, there should be an efficient algorithm to compute a representative Â ∈ IA
and a witness X ∈ Bn, such that X−1 AX = Â. Last, it should be possible to construct the full set IA
in a finite number of steps, starting from any representative Â. Now, given two braids A, B ∈ Bn,
specifying an instance of CSP or CDP, one should:

(i) find representatives Â ∈ IA and B̂ ∈ IB;
(ii) compute elements of IA (storing the corresponding witnesses) until either:

(a) B̂ is found as an element of IA, proving A and B to be conjugate and providing a conjugating
element or

(b) the entire set IA is constructed without finding B̂, proving that A and B are not conjugate.

Several choices of the special sets IA can be found in the literature: summit sets, super summit sets,
ultra summit sets, reduced supper summit sets, etc. All of them are subsets of the conjugacy class of
the corresponding braid A. Of course, choosing a simpler and smaller set results in a more efficient
algorithm derived from the above strategy. Using the above technique and other sophisticated
geometric techniques, Birman, Gebhardt, and González Meneses [8] provided a polynomial-time
algorithm to solve the CSP involving the so-called periodic braids. Furthermore, the same authors
proved that the problem would be solved for all instances if a polynomial-time algorithm for a special
type of braid (rigid braids) was found.

However, not only full theoretical solutions for the conjugacy problems have been of interest
in the cryptographic context; indeed, heuristic algorithms with a significant success rate suffice to
thwart the security of a scheme that is based on one of the above problems (we refer again to [5]
for details). As a consequence, all cryptographic proposals built around the above problems are
currently considered problematic.

137

Symmetry 2019, 11, 1072

3. Basics on Signature Schemes

In this section, we recall some basic concepts related to public key digital signature schemes and
the assessment of provable security for these cryptographic tools. Many of the definitions below are
taken from [9,10].

Definition 1. A digital signature scheme is a triplet of algorithms (G, Σ,V) where:

• G , the key generation algorithm, is a probabilistic algorithm that takes as input 1λ (for a security parameter
λ ∈ N) and returns a pair (pk, sk) of public and secret keys, from a designated key space of polynomial
size in λ.

• Σ, the signing algorithm, is a probabilistic algorithm that takes as input a given message m ∈ Mλ (for
a fixed message space) and a secret key sk and returns a signature sig (also assumed to belong to a
prescribed set of polynomial size in λ). ss of generality, we can assume that eachMλ consists of bitstrings
of polynomial size in λ. In the sequel, we often drop the subscript λ for the sake of readability

• V , the verification algorithm, is a deterministic algorithm that takes as input a given signature sig,
a message m ∈ Mλ, and a public key pk and outputs a bit in {0, 1}, checking if sig is a valid signature
of m with respect to pk.

Typically, a correctness requirement is imposed, establishing that V outputs one if it gets a valid
signature as the input. The fact that it should output zero for an invalid signature is typically captured
by the different definitions of security.

3.1. Security Notions for Signature Schemes

Prior to giving formal definitions of security notions, we informally list the different adversarial
goals and attack models, which attempt to capture the main attack strategies that should be prevented
for each specific adversary. Let A denote a (probabilistic polynomial-time) adversary. We assume that
A pursues one of the following adversarial goals:

• Existential Forgery (EF): A tries to produce a valid signature for a message m, not necessarily
adversarial chosen.

• Selective Forgery (SF): A tries to produce a valid signature for some adversarial chosen fixed
message m.

• Universal Forgery (UF): A aims at producing a valid signature for any given message.
• Total Break (TB): A tries to retrieve, from the public information, a legitimate signer’s secret key.

Similarly, in order to capture adversarial capabilities, we distinguish among the following
attack models:

• No Message Attack (NMA): A only knows the public parameters (in particular, the public
signing key).

• Random Message Attack (RMA): A is given signatures on a sequence of messages selected
uniformly at random.

• Chosen Message Attack (CMA): A is given access to a signing oracle, which signs any message
chosen by A. Queries to this oracle can be adaptive, i.e., Amay adapt the input messages based
on previous output signatures.

Formal security notions are introduced by combining adversarial goals and capabilities.
For instance, a signature scheme is secure in the sense of UF-NMA if given any probabilistic
polynomial-time adversary A, there exists a negligible function of the security parameter bounding
the probability of success of a UF attack, provided that A has access only to public information (NMA).
Other security notions are defined analogously; for instance, EUF-CMA captures the fact that a CMA
adversary will not be able to produce an existential forgery.

Now, we give precise definitions for the three security notions, which are relevant throughout
this work.

138

Symmetry 2019, 11, 1072

Definition 2. A signature scheme (G, Σ,V) with message space M and security parameter λ is said to be
universally unforgeable under no-message attacks (UF-NMA) if for any probabilistic polynomial-time adversary
A and ∀m ∈ M, then:

Pr

⎡⎢⎢⎣
(pk, sk)← G(1λ);

sig← A(pk, m);

V(m, sig, pk) = 1

⎤⎥⎥⎦ ≤ negl(λ).

Definition 3. A signature scheme (G, Σ,V) with message space M and security parameter λ is said to be
universally unforgeable under random-message attacks (UF-RMA) if for any probabilistic polynomial-time
adversary A and ∀m ∈ M, then:

Pr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

(pk, sk)← G(1λ);

{mi}k
i=1

$←−M\ {m};

{sigi}k
i=1 ← Σ(sk, {mi}k

i=1);

sig← A(pk, {(mi, sigi)}k
i=1, m);

V(m, sig, pk) = 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
≤ negl(λ).

The above definition states that when given a list of message-signature pairs, where the messages
are selected uniformly at random, the adversary should still have only a negligible probability of
constructing a new valid signature pair.

Definition 4. A signature scheme (G, Σ,V) with message space M and security parameter λ is said to
be existentially unforgeable under adaptive chosen-message attacks (EUF-CMA) if for any probabilistic
polynomial-time adversary A with polynomial access to a signing oracle Osk that produces valid signatures
with respect to a certain secret key sk, then:

Pr

⎡⎢⎢⎢⎢⎢⎣
(pk, sk)← G(1λ);

{sigi}k
i=1 ← Osk({mi}k

i=1);

(m, sig)← A(pk, {(mi, sigi)}k
i=1);

V(m, sig, pk) = 1 and m �∈ {m1, . . . , mk}

⎤⎥⎥⎥⎥⎥⎦ ≤ negl(λ).

In the above definition, the adversary is given access to a signing oracle that produces valid
signatures with respect to the key pair under attack and faces the challenge of producing a valid
signature for a message. This model is particularly relevant for capturing malleability attacks,
which exploit the possibility of deriving new valid signatures from legitimate ones.

The standard security definition for signature schemes is EUF-CMA, which is the strongest among
the three notions we have introduced. More precisely, every EUF-CMA scheme is UF-RMA, and in turn,
every UF-RMA scheme is UF-NMA.

4. Scheme Description

In this section, we describe the Walnut Digital Signature Algorithm (WalnutDSA) introduced in [11].
This construction relies on certain computational properties of nonlinear operations in the Artin braid
group BN [12] combined with operations in GLN(Fq), the group of non-singular N × N matrices with
entries in the finite field Fq with q elements.

Informally, in WalnutDSA, the message to be signed is hashed and encoded as a braid in BN ,
(see Section 4.1). The private key consists of a pair of braids, while an ordered set of N elements in
Fq and a pair of elements of the set GLN(Fq)× SN form the public key (As usual, SN is the group
of permutations of {1, 2, . . . , N}). Key generation is described in detail in Section 4.2. In order to

139

Symmetry 2019, 11, 1072

render brute force attacks ineffective, the key space is made sufficiently large by choosing N ≥ 8
and q ≥ 32. A signature is built from the encoded message, the private keys, and two additional
braids used to obscure the private key. Valid signatures must verify a certain equation involving the
public key, the encoded message, and E-multiplication, a group-theoretic one-way function introduced
in [13]. All these algorithms are precisely described in Section 4.3. Let us start here by describing the
mathematical ingredients needed to understand them.

4.1. Message Encoding

WalnutDSA encodes messages as elements in the Artin braid group, which is a nice algebraic and
computational habitat.

4.1.1. Braids

Informally, the braid group with N strands BN is a non-Abelian group whose elements can be
described as a configuration of N non-intersecting vertical or horizontal strands in three-dimensional
space, with ends fixed on two parallel disks. Moreover, the strands flow in one direction without
turning back, so that any plane parallel to the disks will intersect each strand exactly once.
Multiplication of two braids is defined as concatenation of strands, and two braids are considered
equal if one can be continuously transformed into the other, keeping the ends fixed and without
intersecting the strands.

More precisely, the braid group with N strands is defined as follows [12]. For N ≥ 2, BN is a
group generated by the Artin generators {b1, b2, . . . , bN−1}, subject to the following relations:

bi bi+1 bi = bi+1 bi bi+1, 1 ≤ i ≤ N − 2,
bi bj = bj bi, |i− j| ≥ 2.

(1)

The Artin generator bi represents the braid where the ith strand crosses over the (i + 1)th strand.
The relation bi bi+1 bi = bi+1 bi bi+1 for 1 ≤ i ≤ N − 2, corresponds to moving the ith strand over the
crossing of the (i + 1)th and the (i + 2)th strand, and the relations bi bj = bj bi for |i− j| ≥ 2 correspond
to the fact that crossings that do not share strands commute.

Any braid b ∈ BN can be expressed as a product of the Artin generators and their inverses, that is,

b = be1
i1

be2
i2
· · · bek

ik
, (2)

where 1 ≤ in ≤ N − 1 and en ∈ {−1, 1}. Clearly, the expression for b is not unique since applying (1)
yields infinite equivalent expressions.

Let SN be the symmetric group of order N. There exists a group homomorphism σ : BN → SN
defined as follows. For each Artin generator bi, σbi

(i) = σb−1
i
(i) = i + 1 and σbi

(j) = σb−1
i
(j) = j

for 1 ≤ j ≤ N − 1, such that i �= j. That is, bi and b−1
i are mapped into the element in SN , which

interchanges the ith and the (i + 1)th elements of {1, 2, . . . , N} and leaves the rest fixed. Notice that
σ−1

bi
= σbi

for 1 ≤ i ≤ N − 1. Moreover, for 1 ≤ i, j ≤ N − 1, σb±1
i b±1

j
= σbi

σbj
. Hence, for any braid

b ∈ BN as in (2), we have:
σb = σbi1

σbi2
· · · σbik

.

If σb is the identity element of SN , then b is called a pure braid. In other words, a braid is a pure braid if
and only if it is in the kernel of σ.

4.1.2. Encoding

WalnutDSA requires the permutation linked to each encoded message to be the identity. Thus, the
encoded message must be a pure braid.

The encoding algorithm utilizes the following collection of pure braids:

140

Symmetry 2019, 11, 1072

gN,i = bN−1 bN−2 · · · bi+1 b2
i b−1

i+1 · · · b−1
N−2 b−1

N−1, 1 ≤ i ≤ N − 1.

This collection of pure braids generates a free subgroup of BN [14],that is the set of products of gN,i,
1 ≤ i ≤ N − 1, that satisfy no relations except those implied by the group axioms (e.g., a b = a c c−1 b,
but a �= b−1 for a, b, c ∈ BN) ([15], Chapter 7). Any subset of the above collection of pure braids will
generate a free subgroup.

Let m ∈ {0, 1}∗ be a message, and let H : {0, 1}∗ → {0, 1}4�, � ≥ 1, denote a
cryptographically-secure hash function. Fix any four generators gN,j1 , gN,j2 , gN,j3 , gN,j4 , and denote
by CN,4 the free subgroup generated by these four generators. Define the encoding function
E : {0, 1}4� → CN,4 as follows. The hashed message H(m) is broken into � 4-bit blocks. For the
kth block, the first two bits determine a generator gN,jnk

, 1 ≤ nk ≤ 4, and the next two bits determine
an integer 1 ≤ pk ≤ 4. Then,

E(H(m)) = gp1
N,jn1

gp2
N,jn2

· · · gp�
N,jn�

,

written in its reduced form, that is products of the form bi b−1
i and b−1

i bi, 1 ≤ i ≤ N − 1, are erased
from the braid (see [16,17] for examples of reduction algorithms). This encoding algorithm ensures
that each message is mapped to a unique reduced element of the free subgroup generated by
gN,j1 , gN,j2 , gN,j3 , gN,j4 .

4.2. Key Generation

The security of WalnutDSA relies on E-multiplication, a function that maps braids in BN to
elements in the set GLN(Fq)× SN . This mapping is based on the colored Burau representation of BN .
We provide some preliminaries before describing the public and private keys in WalnutDSA.

4.2.1. Colored Burau Representation of the Braid Groups

Let LFq ≡ LFq [t1, t2, . . . , tN] denote the ring of Laurent polynomials in the variables t1, t2, . . . , tN
with coefficients in Fq, that is,

LFq =

{
k

∑
j=0

aj t
n1,j
1 t

n2,j
2 · · · tnN,j

N : ni,j ∈ Z, aj ∈ Fq, k ≥ 0

}
.

For each Artin generator, we define the following N × N matrices [18]:

CBb1
(t1) =

⎛⎝ −t1 1 0

0 1 0

0 0 IN−2

⎞⎠ ,

CBb−1
1
(t2) =

⎛⎝ −t−1
2 t−1

2 0

0 1 0

0 0 IN−2

⎞⎠ ,

CBbi
(ti) =

⎛⎜⎜⎜⎜⎜⎝
Ii−2 0 0 0 0

0 1 0 0 0

0 ti −ti 1 0

0 0 0 1 0

0 0 0 0 IN−i−1

⎞⎟⎟⎟⎟⎟⎠ , 2 ≤ i ≤ N − 1,

CBb−1
i
(ti+1) =

⎛⎜⎜⎜⎜⎜⎝
Ii−2 0 0 0 0

0 1 0 0 0

0 1 −t−1
i+1 t−1

i+1 0

0 0 0 1 0

0 0 0 0 IN−i−1

⎞⎟⎟⎟⎟⎟⎠ , 2 ≤ i ≤ N − 1,

where In is the identity matrix of size n× n and 0 is the zero matrix of adequate size.

141

Symmetry 2019, 11, 1072

Let M ∈ GLN(LFq) and π ∈ SN . We define:

π M(t1, t2, . . . , tN) = M(tπ(1), tπ(2), . . . , tπ(N)).

The product of (A, π) and (B, τ) in GLN(LFq)× SN is defined as:

(A, π) · (B, τ) = (A · π B, πτ).

We have that the elements of GLN(LFq)× SN form a group under this product operation.
Now, we define the colored Burau representation:

ΠCB : BN → GLN(LFq)× SN .

For any Artin generator bi, 1 ≤ i ≤ N − 1,

ΠCB(b±1
i) = (CBb±1

i
, σbi

),

and for all bi and bj, 1 ≤ i, j ≤ N − 1,

ΠCB(b±1
i b±1

j) = ΠCB(b±1
i) ·ΠCB(b±1

j).

More generally, for any braid b ∈ BN as in (2),

ΠCB(b) = ΠCB(b
e1
i1
) ·ΠCB(b

e2
i2
) · · ·ΠCB(b

ek
ik
).

It can be verified that ΠCB is a homomorphism that preserves the braid relations (1) and, hence, defines
a representation of BN .

4.2.2. E-Multiplication

The key generation in WalnutDSA is based on E-multiplication, a group-theoretic one-way
function introduced in [13]. Here, we recall its definition.

Fix a finite field Fq and a set of N non-zero elements in Fq,

T = {y1, y2, . . . , yN} ⊂ Fq.

For every M ∈ GLN(LFq), we define:

M ↓T = M(y1, y2, . . . , yN) ∈ GLN(Fq).

Now, we define E-multiplication.

Definition 5. E-multiplication, denoted by �, is a right action of the group ΠCB(BN) on the set GLN(Fq)× SN,
defined inductively as follows. Given (M, π) ∈ GLN(Fq)× SN,

(M, π) � ΠCB(b±1
i) = (M · πCBb±1

i
↓T , πσbi

) ∈ GLN(Fq)× SN , 1 ≤ i ≤ N − 1.

More generally, for any braid b ∈ BN as in (2),

(M, π) � ΠCB(b) = (M, π) � ΠCB(b
e1
i1
) � ΠCB(b

e2
i2
) � · · · � ΠCB(b

ek
ik
),

where the operations are done from left to right. Furthermore, for convenience, we will write (M, π) � b instead
of (M, π) � ΠCB(b).

142

Symmetry 2019, 11, 1072

4.2.3. Key Generation Mechanism

The signer’s private key consists of two random braids s1 and s2, written in reduced form,
such that s1, s2, and s1 s2 are not pure braids. No further prerequisites were made explicit in the
original proposal of WalnutDSA.

Let b ∈ BN be a braid and T ⊂ Fq a fixed set of N non-zero elements. Define:

P(b) ≡ PT (b) = (IN , ιN) � b ∈ GLN(Fq)× SN ,

where IN is the identity N × N matrix and ιN ∈ SN is the identity permutation. The signer’s public
key consists of:

• T = {y1, y2, . . . , yN} ⊂ Fq such that yi �= 0, 1 ≤ i ≤ N, and ya = yb = 1 for some 1 ≤ a, b ≤ N,
• P(s1), and
• the matrix component of P(s2), denoted by mat(P(s2)), that is, mat(P(s2)).

4.3. Signature Generation and Verification

We now describe WalnutDSA in detail.

4.3.1. Cloaking Elements

First, we discuss elements in the subgroup of pure braids that essentially disappear when
performing E-multiplication. The purpose of these elements is to cloak, or hide, the private key
used to construct the signature.

Definition 6. Let (M, π) ∈ GLN(Fq)× SN, and let T be a fixed set of N non-zero elements of Fq. A pure
braid v ∈ BN is called a cloaking element of (M, π) if:

(M, π) � v = (M, π).

It is clear from this definition that the set of cloaking elements of (M, π) depends on the set T .
The existence of cloaking elements is discussed in the following proposition.

Proposition 1. Fix integers N ≥ 2, 1 ≤ a, b ≤ N, and fix a set of N non-zero elements
T = {y1, y2, . . . , yN} ⊂ Fq such that ya = yb = 1. Let (M, π) ∈ GLN(Fq)× SN, bi, 1 ≤ i ≤ N − 1,
an Artin generator of BN, and w ∈ BN such that:

πσw(i) = a, and πσw(i + 1) = b.

Then,
v = w b2

i w−1,

is a cloaking element of (M, π).

4.3.2. Signature Generation

Fix a hash function H : {0, 1}∗ → {0, 1}4�, � ≥ 1, and let s1, s2 ∈ BN be the braids in the private
key. In WalnutDSA, a signature for the message m ∈ {0, 1}∗ is the braid:

sig = v1 · s−1
1 · v · E(H(m)) · s2 · v2 ∈ BN ,

written in reduced form, where v, v1, v2 ∈ BN are cloaking elements of (IN , ιN), P(s1),
and P(s2), respectively.

143

Symmetry 2019, 11, 1072

4.3.3. Signature Verification

The verification algorithm calculates the matrix component of P(s1) � sig and P(E(H(m))),
denoted by mat(P(s1) � sig) and mat(P(E(H(m)))), respectively, and accepts the signature if the
following equation holds:

mat(P(s1) � sig) = mat(P(E(H(m)))) · mat(P(s2)).

5. Cryptanalysis of WalnutDSA

5.1. Factoring Attacks

The essential idea behind these attacks is to forge a signature for any given message m solving a
factorization problem in groups, defined as follows:

Definition 7 (Factorization problem in groups). Let G be a group; let Γ = {g1, . . . , gγ} be a generating set
for G; and let h ∈ G. Find an integer L and sequences (k1, . . . , kL) ∈ {1, . . . , γ}L and (ε1, . . . , εL) ∈ {±1}L

such that:

h =
L

∏
i=1

gεi
ki

.

A solution to a specific instance of this problem has been exploited by several authors [19,20]
to construct a new valid signature from several valid signatures, in order to violate UF-CMA.
More precisely, Hart et al. presented in [19] an efficient method to compute, given a couple of
signatures on random messages, a new signature on an arbitrary message. However, these forged
signatures were significantly longer than those constructed by the honest signer. The design of
WalnutDSA was modified by the authors in order to defeat this attack, yet a refinement of this method,
presented in Section 3 of [20], rendered this modification insufficient.

5.1.1. Factoring For Universal Forgeries: The Attacks by Hart Et Al., and Beullens and Blackburn

The strategy behind [19] allows for constructing a valid signature for any arbitrary message m
(and is thus a universal forgery). More precisely, Proposition 4 in [19] states that, given a finite set
of signatures:

S = {(mi, sigi) : i ∈ I}

and taking gi as the matrix part of P(E(H(mi))) for all i ∈ I, it holds that, if the matrix part h of
P(E(H(m))) can be factored with respect to the generating set {gi | i ∈ I}, then constructing the very
same word replacing each gi with the corresponding braids si from S yields a valid signature for m.

Beullens and Blackburn explained how to exploit this malleability property through the following
simple theorem:

Theorem 1 (Theorem 1 from [20]). Consider the version of WalnutDSA, where it holds that s1 = s2. Suppose
m, m1, m2 are three messages. Let h, h1, h2 be the matrix part of P(E(H(m))), P(E(H(m1))), P(E(m2)),
respectively. Then,

1. If h = h−1
1 and sig1 is a valid signature for m1, then sig−1

1 is a valid signature for m.
2. If h = h1 · h2 and sig1, sig2 are valid signatures for m1 and m2, respectively, then sig1 · sig2 is a valid

signature for m.

However, the above result is only valid if the public braids s1 and s2 coincide, which was only
the case in the first versions of the proposal [11]. All in all, a simple variant of the above theorem,
presented in [20], evidences that choosing s1 �= s2 does not amend the strong malleability inherent
to WalnutDSA:

144

Symmetry 2019, 11, 1072

Theorem 2 ([20]). Suppose m, m1, m2 are three messages. Let h, h1, h2 be the matrix part of P(E(H(m))),
P(E(H(m1))), P(E(H(m2))), respectively. Let s1, s2, s3 ∈ BN be three braids. Then,

1. If h = h−1
1 and sig1 is a valid signature for m1 under the public key (P(s1),P(s2)), then sig−1

1 is a
valid signature for m under the public key (P(s2),P(s1)).

2. If h = h1 · h2 and sig1 · sig2 are valid signatures for m1 and m2 under the public keys (P(s1),P(s2))

and (P(s2),P(s3)), respectively, then sig1 · sig2 is a valid signature for m under the public key
(P(s1),P(s3)).

Note that the above theorems do not impose a practical restriction on the forged message m,
for suitable m1, m2 can be constructed for any m in order to mount the UF attack. Still, the forged
signatures obtained through these factoring strategies are many orders of magnitude longer than
legitimate signatures; thus, imposing length limits on the output signatures (as the authors did in the
implementation submitted to the NIST PQCstandardization call) is enough to dodge these attacks.

5.1.2. Factoring Using the Garside Normal Form

Recently, in [21], it was noticed that whenever a product of braids ABC ∈ BN is represented in
the Garside normal form, parts of the corresponding form of the individual factors A, B, and C are
somewhat easy to extract. In particular, the authors of this paper presented an algorithm for recovering,
given B, elements A′ and C′ such that:

• A = A′, C = C′ up to multiplications with elements in the center of BN
• AC = A′C′.

Note that the center of the group BN is a cyclic group generated by the square of the so-called
Garside’s fundamental braid, Δ, which is the only positive braid for which any two strands cross
exactly once (see [14,22] for a classical introduction and a comprehensive survey on braid groups).
This decomposition strategy allows for constructing a universal forgery, as stated in the following result:

Theorem 3 ([21]). Let W1 · E(H(m)) ·W2 ∈ BN be a valid signature for some message m, and let W ′
1,

W ′
2 ∈ BN such that W ′

1 ≡ W1 mod Δ2, W ′
2 ≡ W2 mod Δ2, and W1 ·W2 = W ′

1 ·W ′
2. Then,

W ′
1 · E(H(m′)) ·W ′

2

is a valid signature for any message m′.

Note that since the replaced braids W1 and W2 are in principle independent of the message m, the
forged signature need not be longer than a legitimate signature. Furthermore, the complexity of this
procedure is essentially that of computing Garside normal forms, which can be done in time O(k2N),
where k is the number of Artin generators encoding the input braid.

Furthermore, this method fends off the colored Burau representation used in the implementation
of WalnutDSA; thus, it cannot be prevented by modifying the size of the underlying finite field. The
authors of this cryptanalysis suggest that the only way to dodge this attack is to add many concealed
cloaking elements to the encoding, which has a significant cost both in signature length and computing
time for the generation of signatures. Furthermore, in [23], the authors of the scheme claimed to have
experimentally demonstrated that inserting cloaking elements every 7–12 generators into the braid
E(H(m′)) blocked this attack. However, no details were given on how this strategy was theoretically
or empirically assessed.

5.2. Collision Attacks

Imposing implicit limits on the output signature sizes is indeed a valid strategy for preventing
factoring attacks, and so, it was promptly noticed by the authors of WalnutDSA. However, in Section 4

145

Symmetry 2019, 11, 1072

of [20], it was demonstrated that, through a simple collision method, it was possible to compute short
forged signatures, yet not on arbitrary messages.

In Section 4 of [20], it was observed that if there exist two messages m1, m2 such that
P(E(H(m1))) = P(E(H(m2))), then a valid signature for m1 is valid for m2 and vice versa. Breaking
the EUF-CMA security notion (see Definition 4) is as simple as finding such two messages m1 and m2,
since an adversary could query a signature for m1 and then obtain a signature for m2.

A generic collision attack is expected to require |P(E({0, 1}∗))|1/2 evaluations of function P ◦ E.
In order to evaluate the feasibility of this attack, it is necessary to estimate the size of |P(E({0, 1}∗))|.
The authors of WalnutDSA considered qN(N−3) · N! a conservative lower bound for values of P .
For 128-bit and 256-bit security levels, these values were 2216 and 2336, respectively, so it is expected to
find a collision after 2108 and 2168 evaluations of P ◦ E. Hence, a generic collision attack is not practical.

In [20], it was shown (by means of computer experiments) that |P(E({0, 1}∗))| is at most q13

(lying in an affine subspace over Fq), so a collision is expected to be found after q13/2 evaluations
of P ◦ E. With this new estimate, 232.5 and 252 evaluations of P ◦ E are necessary for 128-bit and 256-bit
security levels, respectively. Therefore, collision attack is practical in this case.

In order to implement this attack, the authors used a generic collision finding algorithm: the
distinguished point algorithm of Van Oorschot and Wiener [24].

This algorithm finds collisions in any function f : S → S that behaves like a random function [24].
The time complexity for finding a single collision is O(

√
|S|). A distinguished point is an element of S

satisfying some easily testable property (e.g., a fixed number of leading zero bits). The distinguished
point algorithm selects a starting point x0 ∈ S at random and produces a chain of points xi = f (xi−1)

for i = 1, 2, . . . , until a distinguished point is reached. Then, the starting point x0, the distinguished
point xk, and the length of the chain are stored. It is expected that after O(

√
|S|), the current chain

will collide with one of the stored chains. Following the chain from that point, the same distinguished
point will be reached.

In [20], this algorithm was applied to the function f = g ◦ P ◦ E instead of to f = P ◦ E, where g
is a function that crafts plausible messages, given an output of P . However, no implementation or
description of how to build the function g was provided.

Using a standard PC, the algorithm found a collision after 232.2 evaluations of f (232.5 evaluations
were expected). This took approximately one hour. The two messages found by the algorithm were{

m1 = “I would like to receive 7181666883746416503free samples of delicious cookies”.

m2 = “I pledge to donate 3519533052089988469 USD to Ward Beullens”.

In order to mitigate this practical attack, Beullens and Blackburn [20] recommended to increase
the value of q up to q = 220 and q = 240 to accomplish 128-bit and 256-bit security levels, respectively.
With these new parameters, the size of the public key is five-times larger and the verification algorithm
is 25-times slower for 256 bit.

A better mitigation of this attack is to change the encoding algorithm to output pure braids
not restricted to the subgroup generated by gN,1, gN,2, gN,3, and gN,4. This change would require
q((N−2)2+1)/2 evaluations of P ◦ E, and only a minor increase of parameters is needed. It was pointed
out in [20] that a 256-bit security level could be accomplished by setting q = 28 and N = 8, making the
key size 50%, the signature size 25% larger, and the verification algorithm two-times slower.

The authors of WalnutDSA pointed out that any braid output by the encoding mechanism E
(see Section 4.1.2) is a product of the image (under P) of the encoding braids used, and thus, it is
essential that the subspace spanned by said images is sufficiently large [23]. They further depicted two
design strategies towards defeating this attack (see Table 1).

146

Symmetry 2019, 11, 1072

Table 1. Examples of sequences to defeat collision attack (see [23]).

NNN Periodic Sequence SPeriodic Sequence SPeriodic Sequence S dim Sdim Sdim S Recommended qRecommended qRecommended q

10 {(3, 5, 7, 9), (2, 4, 6, 8), (1, 3, 5, 7), (2, 4, 6, 8), . . . } 82 —

12
{(5, 7, 9, 11), (4, 6, 8, 10), (3, 5, 7, 9), (2, 4, 6, 8), (1, 3, 5, 7),

(2, 4, 6, 8), (3, 5, 7, 9), (4, 6, 8, 10), . . . } 122 32, 256

5.3. Reversing E-Multiplication

A fundamental hard problem underlying the security of the Walnut signature scheme is to break
the one-wayness of the function:

P : BN → GLN(Fq)× SN

s �→ (IN , ιN) � s.

Here, we write P instead of PT with the understanding that the set T ⊂ Fq of non-zero elements is
arbitrary, but fixed.

More precisely, the underlying problem is defined as follows.

Definition 8 (Reversing E-Multiplication (REM) problem [20]). Given a pair (M, σ) ∈ GLN(Fq)× SN,
such that (M, σ) = P(s) for some braid s ∈ BN, find a braid s′ ∈ BN such that P(s′) = (M, σ).

Observe that if brute force is used to solve the REM problem, then it would take O(|P(BN)|)
E-multiplications to find a solution, where |P(BN)| is the size of the orbit of (IN , ιN).

Recall that the private key consists of two braids s1, s2 ∈ BN , and the corresponding public key
consists of P(s1) and mat(P(s2)), the matrix component of P(s2). In [20], it was observed that a valid
signature sig for a message m also satisfies:

P(s1) � sig = P(E(H(m))) � s2. (3)

Therefore, not knowing the permutation component of P(s2) poses no problem to the attacker since it
can be recovered from the permutation component of (3) without necessarily knowing the encrypted
message (no message attack). Indeed, since cloaking elements and E(H(m)) are required to be pure
braids, we have:

σs1 σsig = σs2 .

Once σs2 has been computed, an attacker can solve two instances of the REM problem by finding two
braids s′1, s′2 ∈ BN such that P(s1) = P(s′1) and P(s2) = P(s′2), which can be used to sign any message
(universal forgery). Hence, solving the REM problem means that UF-NMA security (Definition 2) can
be violated.

In this section, we describe two algorithms proposed in [20] that solve the REM problem. The
first algorithm is a generic birthday attack, while the second exploits the structure of the braid group
BN and is more efficient than the first one.

5.3.1. Generic Birthday Attack

Given a pair (M, σ) ∈ GLN(Fq)× SN , if we can find two braids s1, s2 ∈ BN such that:

(M, σ) � s1 = (IN , ιN) � s2,

then the solution of the REM problem is s′ = s2 s−1
1 . In [20], it was argued that a naive way of finding

s1 and s2 by constructing tables with values (M, σ) � s1 and checking if (IN , ιN) � s2 for random s2 lying
in the table would take O(

√
|P(BN)|) E-multiplications, making this method more efficient than a

brute force approach. Nevertheless, a naive approach may require too much storage memory.

147

Symmetry 2019, 11, 1072

This inconvenience can be circumvented by using a distinguished point algorithm (see Section 5.2).
In this case, the algorithm is applied to the function:

f (x) =

{
(IN , ιN) � s(x) if b(x) = 0,
(M, σ) � s(x) if b(x) = 1,

where b and s are hash functions that take elements in the orbit of (IN , ιN) as input and output a bit or
a braid, respectively.

The idea is to find collisions:

f (x1) = f (x2) such that b(x1) �= b(x2).

Hence, if a collision is found such that b(x1) = 1, then b(x2) = 0 and (M, σ) � s(x1) = f (x1) = f (x2) =

(IN , ιN) � s(x2). In this case, a solution of the REM problem is s(x2) s(x1)
−1. On the other hand,

if b(x1) = 0, then a solution of the REM problem is s(x1) s(x2)
−1.

As noted in [23], this attack is exponential in running time and can be thwarted by choosing the
correct parameters for WalnutDSA, in this case N = 10, q = 231 − 1 for 128-bit security, and N = 10,
q = 261 − 1 for 256-bit security.

5.3.2. Subgroup Chain Attack

This attack exploits the fact that the restriction of P to pure braids is a group homomorphism,
which maps the chain of subgroups:

{ιN} = P1 ⊂ P2 ⊂ · · · ⊂ PN ⊂ BN ,

to a nice chain of subgroups of GLN(Fq). Here, Pk denotes the intersection of the subgroup of pure
braids in BN and the subgroup generated by b1, b2, . . . , bk−1, that is the subgroup of pure braids
such that only the first k strands cross over each other. More precisely, for each 1 ≤ k ≤ N, P is a
homomorphism from Pk into the subgroup:

Ak =

⎧⎪⎨⎪⎩
⎛⎜⎝X Y 0

0 1 0

0 0 IN−k

⎞⎟⎠ : X ∈ GLk−1(Fq), Y ∈ F
k−1
q

⎫⎪⎬⎪⎭ .

In contrast to the birthday attack, this method solves the REM problem for a pair (M, σ) ∈
GLN(Fq)× SN , by finding in iterative steps a braid s ∈ BN such that (M, σ) � s = (IN , ιN), as follows.
First, choose any braid s′ ∈ BN such that σs′ = σ−1. Therefore, (M, σ) � s′ = (M′, ιN) ∈ AN × SN .
Next, find a pure braid sN ∈ PN such that (MN , ιN) = (M′, ιN) � sN = (M, σ) � s′sN ∈ AN−1 × SN .
The iterative step consists of randomly choosing a target matrix Mi ∈ P(Pi) ∩ Ai−1 and then finding a
pure braid si ∈ Pi such that:

(M, σ) � s′ sN sN−1 · · · si ∈ Ai−1 × SN .

Notice that in each iterative step, the permutation component is ιN since si is a pure braid, and thus,
σsi = ιN . This process yields a braid s = s′ sN sN−1 · · · s2 such that (M, σ) � s = (IN , ιN). Then,
the solution to the REM problem is s−1.

In [20], it was pointed out that if Mi �∈ P(Pi−1) for some 2 ≤ i ≤ N, then it is not possible to
complete the attack, and thus, assuming:

P(Pi) ∩ Ai−1 = P(Pi−1) (4)

148

Symmetry 2019, 11, 1072

for each 2 ≤ i ≤ N, guarantees that the attack will work. This assumption is not too restrictive since
it seems to hold for the proposed parameters for WalnutDSA. With (4) in mind, the ith iterative step
of this attack can be solved by performing a collision search in the space cosets of Ai−1 in Ai−1 P(Pi)

with a cost of
√
|P(Pi)|/|P(Pi−1)| E-multiplications (see Sections 5.2 and 5.3 of [20] for details).

In [20], the running time of this attack was estimated to be qN/2−1 whenever E-multiplication
uses the set of invertible elements T = {y1, y2, . . . , yN} ⊂ Fq with ya = yb = 1 for some 1 ≤ a, b ≤ N
(see Section 4.2.2). It was noted in [23] that if ya and yb are chosen such that ya · yb = −1, then the
running time of the attack is increased to at least

√
x q(N−1)/2, where x = 60 for N = 8 and x = 96

for N = 10. Moreover, this attack is defeated by taking N = 10, q = 231 − 1 for 128-bit security,and
N = 10, q = 261 − 1 for 256-bit security.

5.4. Uncloaking Signatures

Kotov, Menshov, and Ushakov presented in [25] a powerful attack against WalnutDSA. It
is a heuristic attack that works exclusively with braids and does not need to take into account
E-multiplication. The authors reported experiments with one hundred random protocol instances with
a 100% success rate. It is worth pointing out that the experiments were carried out for three different
settings: the 128 and 256-bit security levels from the official specification [26] (where N = 8) and the
256-bit security version with N = 11, proposed in [27].

In a nutshell, the attack works as follows: An adversary, which collects several arbitrary pairs of
messages and valid signatures, is able to compute an alternative secret key such that, when used to
sign any message, it produces the same signature as the real secret key. Therefore, this is a very strong
attack as it violates a rather weak security notion for signatures (UF-RMA; see Definition 3), that is an
adversary with access to signatures for random messages (not adversarially chosen) can produce a
valid signature for any message of its choice; that is, it achieves a universal forgery.

Next, we provide a high-level description of the attack:

• Step 1. The attacker collects k pairs {(mi, sigi)}k
i=1 where each sigi is a valid signature for mi

computed with the same secret key (s1, s2). Each signature is a braid with the form:

sigi = v(i)1 · s−1
1 · v(i) · E(H(mi)) · s2 · v(i)2

where v(i), v(i)1 , v(i)2 are cloaking elements.
• Step 2. The attacker, using a heuristic procedure described in [25], is able to remove the cloaking

elements from the signatures, that is compute braids Pi = s−1
1 · E(H(mi)) · s2. It is worth pointing

out that Kotov, Menshov, and Ushakov reported a high success rate for their uncloaking algorithm,
close to 80% or 100%, depending on the type of cloaking elements used (see Table 2).

• Step 3. The attacker computes the k− 1 products PiP−1
i+1. Note that these are:

P1P−1
2 = s−1

1 E(H(m1))E(H(m2))
−1s1

...
Pk−1P−1

k = s−1
1 E(H(mk−1))E(H(mk))

−1s1

obtaining a system of conjugacy equations in BN where only s1 is unknown. In [25],
another heuristic algorithm to obtain a solution s′1 of the system (not necessarily equal to s1)
was developed.

• Step 4. The attacker sets s′2 = E(H(mi))
−1 s′1 Pi for i of its choice. Under certain conditions,

(s′1, s′2) works as an alternative secret key to (s1, s2), in the sense that it produces a valid
signature for any message. Moreover, as a braid word, this signature equals the one produced
with the original key. This implies that the attack cannot be avoided by limiting the size of
accepted signatures. In order to decide if the alternative key (s′1, s′2) works as intended, Kotov,
Menshov, and Ushakov generated signatures for 10 random messages and checked their validity.

149

Symmetry 2019, 11, 1072

Table 2. Percentage of properly-identified cloaking elements v1, v, v2 according to [25].

Encoding Cloaking Elements 128-Bit 256-Bit 256-Bit with N = 11256-Bit with N = 11256-Bit with N = 11

Original wb±2
i w−1 80% 77% 76%

Original wb±4
i w−1 100% 100% 100%

Alternative proposed in [27] wb±2
i w−1 77% 81% 81%

Alternative proposed in [27] wb±4
i w−1 97% 98% 100%

In [25], a 100% success rate of the full attack was reported. One interesting fact is that the attack
did not need many message/signature pairs in order to succeed: Kotov, Menshov, and Ushakov
affirmed that, in all their experiments, six successfully uncloaked signatures were enough to get five
conjugacy equations and a valid alternative secret key. Average running times for the full attack are
shown in Table 3.

Table 3. Average running time (in seconds) for the full attack according to [25].

Encoding Cloaking Elements 128-Bit 256-Bit 256-Bit with N = 11256-Bit with N = 11256-Bit with N = 11

Original wb±2
i w−1 18.8 120.8 213.0

Original wb±4
i w−1 17.4 112.4 185.6

Alternative proposed in [27] wb±2
i w−1 78.7 264.9 1674.9

Alternative proposed in [27] wb±4
i w−1 66.2 224.6 1323.3

With respect to possible countermeasures against their attack, Kotov, Menshov, and Ushakov
themselves made several proposals. The first one is to artificially introduce many so-called critical letters
in the secret braids (locating critical letters is one of the main ingredients in the uncloaking algorithm).
In addition, they proposed using many more cloaking elements (around 30) on each side of the
signature. Nevertheless, they pointed out that it is not even clear if this measure would be useful as
it does not neutralize their attack [28] against Kayawood [29], another braid-based protocol. Finally,
Kotov et al. recommended short conjugators for constructing cloaking elements, making them
less visible.

The proponents of WalnutDSA recognize the weakness of their original implementation against
the uncloaking attack and put forward in [23] a countermeasure against it. Namely, they introduced
the concept of concealed cloaking elements and proposed to add six of them to the computation
of each signature, which translated into a 6.7% increase of the signature size. Kotov, Menshov,
and Ushakov questioned the effectiveness of the approach in the NIST PQC project discussion
forum [27], pointing out that their algorithms were designed taking into account the existence of
precisely three cloaking elements, but could be modified to deal with more of them.

6. Final Remarks

WalnutDSA is a beautifully-designed signature scheme, conceived in the remarkable mathematical
scenario of braid groups. Despite the inspiring ideas involved in the construction of this scheme,
the many attacks explained in this survey demonstrate that there is still a long way to go before a
suitable key generation/parameter selection process is identified. We believe that it will be rather
difficult to fix the security problems described, which may be an unavoidable consequence of the adept
and symmetric signature procedure. A formal security analysis, as well as a deeper understanding
of the actual relation between the cryptanalytic goals and the affiliated mathematical problems are
essential ingredients for a secure implementation of WalnutDSA. Maybe a promising idea is to start by
identifying the concrete cost of a forgery. For instance, a first step would be to assess whether a forger
can be used in a black-box manner to reverse the related E-multiplication procedure (i.e., to solve the
REM problem). Once such a result is at hand, the next step would be to look for solid instances of REM
that could be used for secure key generation.

150

Symmetry 2019, 11, 1072

Author Contributions: All authors contributed equally to this survey, searching for related results, selecting
relevant information and writing and reviewing the draft.

Funding: This research was funded by NATO Science for Peace and Security Programme, grant number G5448
and by MINECO under Grant MTM2016-77213-R.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Announcing Request for Nominations for Public-Key Post-Quantum Cryptographic Algorithms.
Available online: https://csrc.nist.gov/News/2016/Public-Key-Post-Quantum-Cryptographic-Algorithms
(accessed on 19 December 2016).

2. Persichetti, E. Efficient One-Time Signatures from Quasi-Cyclic Codes: A Full Treatment. Cryptography 2018,
2, 30. [CrossRef]

3. Hoffstein, J.; Howgrave-Graham, N.; Pipher, J.; Whyte, W. Practical Lattice-Based Cryptography:
NTRUEncrypt and NTRUSign. In The LLL Algorithm—Survey and Applications; Nguyen, P.Q., Vallée, B.,
Eds.; Information Security and Cryptography; Springer: Berlin, Germany, 2010; pp. 349–390. [CrossRef]

4. Jalali, A.; Azarderakhsh, R.; Kermani, M.M.; Campagna, M.; Jao, D. Optimized Supersingular Isogeny Key
Encapsulation on ARMv8 Processors. IACR Cryptol. ePrint Arch. 2019, 2019, 331.

5. Garber, D. Braid Group Cryptography; World Scientific: Singapore, 2007
6. Anshel, I.; Anshel, M.; Goldfeld, D. An algebraic method for public-key cryptography. Math. Res. Lett. 1999,

6, 287–292. [CrossRef]
7. Ko, K.; Lee, S.; Cheon, J.; Han, J.; Kang, J.; Park, C. New Public-Key Cryptosystem using Braid Groups.

In Advances in Cryptology, Proceedings of CRYPTO 2000; Lecture Notes in Computer Science; Springer:
Santa Barbara, CA, USA, 2000; Volume 1880, pp. 166–183.

8. Birman, J.; Gebhardt, V.; González-Meneses, J. Conjugacy in Garside groups I: Periodic braids. J. Algebra
2007, 2, 746–776. [CrossRef]

9. Katz, J. Digital Signatures; Springer: Berlin, Germany, 2010.
10. Goldwasser, S.; Bellare, M. Lecture Notes on Cryptography; MIT: Hong Kong, China, 2001.
11. Anshel, I.; Atkins, D.; Goldfeld, D.; Gunnells, P.E. WalnutDSATM: A Quantum Resistant Digital

Signature Algorithm. IACR Cryptol. ePrint Arch. 2017, 2017, 58.
12. Artin, E. Theory of braids. Ann. Math. 1947, 48, 101–126. [CrossRef]
13. Anshel, I.; Anshel, M.; Goldfeld, D.; Lemieux, S. Key agreement, the Algebraic EraserTM,

and Lightweight Cryptography. In Algebraic Methods in Cryptography, Contemp. Math.; American
Mathematical Society: Providence, RI, USA, 2006; Volume 418, pp. 1–34.

14. Birman, J.S.; Cannon, J. Braids, Links, and Mapping Class Groups, Annals of Mathematics Studies; Princeton
University Press: Princeton, NJ, USA, 1974.

15. Artin, M. Algebra; Prentice Hall: Upper Saddle River, NJ, USA, 1991.
16. Birman, J.S.; Ko, K.H.; Lee, S.J. A new approach to the word and conjugacy problems in the braid groups.

Adv. Math. 1998, 139, 322–353. [CrossRef]
17. Dehornoy, P. A fast method for comparing braids. Adv. Math. 1997, 125, 200–235. [CrossRef]
18. Morton, H.R. The multivariable Alexander polynomial for a closed braid. In Lower Dimensional Topology,

(Funchal, 1998); American Mathematical Society: Providence, RI, USA, 2006; Volume 233, pp. 167–172.
19. Hart, D.; Kim, D.; Micheli, G.; Pascual-Perez, G.; Petit, C.; Quek, Y. A Practical Cryptanalysis of

WalnutDSA TM. In Proceedings of the Public-Key Cryptography—PKC 2018—21st IACR International Conference
on Practice and Theory of Public-Key Cryptography, Rio de Janeiro, Brazil, 25–29 March 2018; Part I—Lecture
Notes in Computer Science; Abdalla, M., Dahab, R., Eds.; Springer: Berlin, Germany, 2018; Volume 10769;
pp. 381–406. [CrossRef]

20. Beullens, W.; Blackburn, S.R. Practical Attacks Against the Walnut Digital Signature Scheme. In Proceedings
of the Advances in Cryptology—ASIACRYPT 2018—24th International Conference on the Theory and Application
of Cryptology and Information Security, Brisbane, QLD, Australia, 2–6 December 2018; Part I—Lecture Notes in
Computer Science; Peyrin, T., Galbraith, S.D., Eds.; Springer: Berlin, Germany, 2018; Volume 11272, pp. 35–61.
[CrossRef]

151

Symmetry 2019, 11, 1072

21. Merz, S.; Petit, C. Factoring Products of Braids via Garside Normal Form. In Public Key Cryptography (2);
Lecture Notes in Computer Science; Springer: Berlin, Germany, 2019; Volume 11443, pp. 646–678.

22. Paris, L. Braid groups and Artin groups. arXiv 2007, arXiv:math.GR/0711.2372
23. Anshel, I.; Atkins, D.; Goldfeld, D.; Gunnells, P.E. Defeating the Hart et al, Beullens-Blackburn,

Kotov-Menshov-Ushakov, and Merz-Petit Attacks on WalnutDSA (TM). IACR Cryptol. ePrint Arch. 2019,
2019, 472.

24. van Oorschot, P.C.; Wiener, M.J. Parallel Collision Search with Cryptanalytic Applications. J. Cryptol. 1999,
12, 1–28. [CrossRef]

25. Kotov, M.; Menshov, A.; Ushakov, A. An attack on the Walnut digital signature algorithm. Des. Codes Cryptogr.
2019, 1–20. [CrossRef]

26. Anshel, I.; Atkins, D.; Goldfeld, D.; Gunnells, P.E. The Walnut Digital Signature AlgorithmTM Specifcation.
Submitted to NIST PQC Project. 2017. Available online: https://csrc.nist.gov/Projects/Post-Quantum-
Cryptography/Round-1-Submissions (accessed on 7 July 2019).

27. Comments to WalnutDSATM Proposal to NIST PQCProject. Available online: https://csrc.nist.gov/CSRC/
media/Projects/Post-Quantum-Cryptography/documents/round-1/official-comments/WalnutDSA-
official-comment.pdf (accessed on 7 July 2019).

28. Kotov, M.; Menshov, A.; Ushakov, A. Attack on Kayawood Protocol: Uncloaking Private Keys. IACR Cryptol.
ePrint Arch. 2018, 2018, 604.

29. Anshel, I.; Atkins, D.; Goldfeld, D.; Gunnells, P.E. Kayawood, a Key Agreement Protocol. IACR Cryptol.
ePrint Arch. 2017, 2017, 1162.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

152

MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Symmetry Editorial Office
E-mail: symmetry@mdpi.com

www.mdpi.com/journal/symmetry

MDPI
St. Alban-Anlage 66
4052 Basel
Switzerland

Tel: +41 61 683 77 34
Fax: +41 61 302 89 18

www.mdpi.com ISBN 978-3-03928-803-8

	Blank Page
	Interactions between Group Theory, Symmetry and CryptologyREVIEWEDVASCO.pdf
	Blank Page

