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Preface to “Agent-Based Modelling and 
Landscape Change” 

The use of agent-based models (ABMs) and modelling for understanding 
landscape change and dynamics continues to grow. One reason for the popularity 
of ABMs is that they provide a framework to represent multiple, discrete, multi-
faceted, heterogeneous actors (human or otherwise) and their relationships and 
interactions between one another and their environment, through time and across 
space. By inviting authors from across various disciplines, with this collection we 
aimed to showcase innovative uses of ABMs for investigating and explaining 
landscape change and dynamics and to explore and identify how researchers in 
different disciplines can learn from one another to further innovate. The diverse 
range of processes and landscapes that ABMs are currently used to examine is 
clearly demonstrated by the final collection. Contributions address issues ranging 
from land-use decision-making in agricultural landscapes, soil erosion in semi-
arid environments and forest change in mountainous landscapes, to trade in the 
1st Century BC in southern France and social adaptations of herders in northern 
Mongolia. The authors use a range of different levels of agent-based 
representation, from the implied presence of agents, through comparing 
heterogeneous vs. aggregated representation of human activity, to alternative 
means of parameterizing individual agent behavior. We hope this collection will 
inform all interested in innovative agent-based modelling to further understand 
landscape change, its causes and consequences for sustainability in the 
Anthropocene. 

James D. A. Millington and John Wainwright 
Guest Editors 

 





Comparative Approaches for Innovation in
Agent-Based Modelling of
Landscape Change
James D. A. Millington and John Wainwright

Reprinted from Land. Cite as: Millington, J.D.A.; Wainwright, J. Comparative
Approaches for Innovation in Agent-Based Modelling of Landscape Change. Land
2016, 5, 13.

In this Special Issue on “Agent-Based Modelling and Landscape Change” we
aimed to bring together articles that showcase innovative uses of agent-based models
(ABMs) for investigating and explaining landscape change and dynamics. The
resulting 10 articles demonstrate the diverse range of processes and landscapes
that ABMs are currently used to examine, including: land-use decision making in
agricultural landscapes; soil erosion in semi-arid environments; forest change in
mountainous landscapes; trade in 1st Century BC southern France; social adaptations
of herders in northern Mongolia; and malaria epidemiology in Kenya. The articles
(Ding et al. 2015 [1], Olabasi et al. 2015 [2], Morgan et al. 2015 [3], Badmos et al. 2015 [4],
Barton et al. 2015 [5], Johnson 2015 [6], Brändle et al. 2015 [7], Crabtree 2015 [8], Clark
and Crabtree 2015 [9] and Arifan 2015 [10]) draw on a range of modelling approaches,
but one common theme among several of the papers is the use of comparative
approaches. Here, we discuss how comparative approaches offer opportunities for
future innovation in modelling landscape change, particularly for addressing the
challenge of understanding the role of human activity in the Anthropocene.

The issue of comparison in ABMs is not new to the studies in this Special Issue
and has been advocated and pursued over many years. Axtell et al. (1996) [11] were
among the earliest to investigate the alignment of computational models, or ‘docking’
as they suggested it might be abbreviated. Docking entailed comparing an ABM to
another model (whether ABM or otherwise) of the same system to see if the models
could reproduce similar results, thereby enabling critical experimentation and the
determination of whether one model was better than another, or if one was a special
case of the other (i.e., could be subsumed). Since then, model-to-model analysis has
continued (e.g., Hales et al. 2003 [12], Rouchier et al. 2008 [13]), although the rate
of comparison has not kept pace with number of ABMs being developed. Robust
comparison of models, to the point of trying to ‘break’ them (i.e., identifying at what
point modelled mechanisms are no longer useful for explaining observations), is
needed to ensure credible and efficient scientific progress in computational modelling
(Thiele and Grimm 2015 [14]). Beyond examining how well different models fit
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the same set of empirical data, model comparison can aim to reproduce others’
models from scratch in new computer code (e.g., Janssen 2009 [15]) or extend
analysis including by exploring the sensitivity of model parameters in greater
detail (e.g., Miodownik et al. 2010 [16], Seagren 2015 [17]). In contrast, articles
in this Special Issue examine variations in agent-based representation, from an entire
absence of agent representation, through comparing heterogeneous vs. aggregated
representation of human activity, to alternative means of parameterizing individual
agent behaviour.

For example, to investigate the effect of agricultural practices on the formation of
deeply incised valley formations in semi-arid Mediterranean landscapes, Barton et al.
(2015) [5] ‘turned off’ the human land-use component of their hybrid ABM-cellular
model. By using the same model with humans represented versus not, this approach
aims to understand the influence of human activity on landscape change (e.g., as
discussed by Wainwright and Millington 2010 [18]). Through this experimental
use of their model, Barton et al. showed that the non-ABM component of their
model that represents climate and natural vegetation change is able to capture
broad-scale (climate-driven) vegetation-change impacts on gulley incision. Including
the agent-based representation of human activity shows how finer-scale, localized
vegetation change can have similar effects without climate change. Thus, this
example shows how drivers of landscape change acting over different scales may
need to be represented through fundamentally different modelling approaches.

Brändle et al. (2015) [7] compared agent-based versus aggregated models
of agricultural change in a contemporary mountain landscape in Switzerland,
examining the trade-offs between model types for considering different temporal
extents of simulation. They found that their ABM, based on recent behavioural data,
was able to simulate landscape change over short and medium durations better than
an aggregated model assuming land optimization, while maintaining equivalent
sensitivity to broader socio-economic drivers. The trade-offs identified are between
the greater demand for more detailed information about (farming) actor behaviour
and decision-making by the agent-based model (making transferability of the model
to other landscapes difficult) versus the more realistic spatially explicit simulation
of land abandonment over the short and medium term due to better representation
of diversity in decision-making. However, over longer simulated durations the
advantages of an agent-based approach are less obvious and the results remind us
that the choice of modelling approach depends on the questions being investigated
and relative advantages of the available approaches.

In a third example from the Special Issue, Morgan et al. (2015) [3] compared
three different approaches for estimating the likelihood of land-use conversion by
agricultural agents in New Zealand: (i) no difference between agents in likelihood
(i.e., assumes universally rational, profit-maximisation agents); (ii) the social and
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geographic network of agents influences likelihood (i.e., representing influence of
endorsement and imitation alongside economic considerations), and (iii) empirical
estimation of likelihood based on an individual agent’s attributes (including age,
education, land holdings, etc.). The different approaches reflect differing perspectives
and traditions in how human activity has been investigated by economists compared
to geographers. Results showed that at some broader units of aggregation (catchment
level) there was little appreciable difference in simulated land uses between the
approaches, whereas at finer units differences were evident.

The Brändle et al. (2015, [7]) and Morgan et al. (2015, [3]) examples are as good
as currently exist for demonstrating how assumptions about agent heterogeneity are
comparable to existing accepted modelling approaches. Comparisons such as these,
and which investigate how and when ABMs are better for improving understanding
than other modelling types, will enable demonstrations of how ABM are useful and
robust for understanding change into the future. However, they also highlight that
differences in modelling approaches are not fully resolved and that the choice of
modelling approach will depend on the scientific and policy questions being asked.
Currently, the primary influence on modelling approach seems to be the scales
and organizational levels at which answers are required. For example, although
ABMs may be designed to provide greater representational fidelity (e.g., fine detail
at the level of individuals) implementing such models often comes with costs of
development (time and data), use (computational resources) and transferability
(between landscapes). In some instances the benefits of developing an ABM may
ultimately not outweigh the costs, particularly if there is limited heterogeneity in
the decision-making context of actors or limited interaction effects between agents
(e.g., O’Sullivan et al. 2012, [19]).

Taking an alternative perspective, in the Special Issue, Johnson (2015, [6])
explores using an ABM as a mediator or “interested amateur” in the process of policy
making. If constructed independently of the policy context (i.e., not co-constructed
with stakeholders), using the model and its output in discussions forces a focus on
assumptions but in an impersonal way, not directed at any particular person. The
comparisons here are between the way in which the model represents the world,
how the policy maker understands the world to be structured, and between expected
and unexpected outcomes as shown by the model. Johnson argues that for this
approach to work there needs to be a degree of transparency about how the model
represents processes (e.g., of landscape change) such that it is not a black box, but also
that a detailed model is an advantage because it provides more assumptions about
which participants can debate and explore the consequences of. More generally then,
Johnson sees ABMs as providing greater benefit than rational utility maximization
approaches both because the latter are more ‘removed from reality’ (e.g., not all
actors are perfectly rational) but also because their more simplified worldview (with
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few assumptions) inhibits discussion about structures and relationships in the real
world and how they could change. Johnson found his own particular ABM useful
for facilitating discussion about policy options for soil and water conservation in
Ethiopia, but more general comparison of ABMs against other model types for policy
discussion would be welcome.

In future, it seems likely that beyond comparing different types of model
(ABM, regression-based models, systems dynamics models), combining ABM with
other modelling types to produce innovative representations will become more
prominent. For example, Verburg et al. (2015, [20]) argue that if modelling is to
assist in designing sustainable solutions to the challenges of the Anthropocene,
innovative model architectures that can represent human-environment interactions
across many scales and levels of organisation will be needed. O’Sullivan et al.
(2015, [21]) advocated hybrid forms of land-use modelling in which competing
and complementary approaches (beyond ABM) are compared and combined in an
iterative approach to improve understanding. O’Sullivan et al. (2015, [21]) suggest
different ‘levels’ of hybridity, from comparing different modelling approaches to
investigate the same substantive domain, through coupling different types of model
to examine a single domain, to actually integrating modelling approaches so that
there is no discernible point at which one model ends and another begins (e.g.,
agents that run regressions dynamically and internally as a proxy for individual
decision-making).

Developing such innovative modelling hybridity in land-change science is
particularly imperative given the recognition that landscape change can be influenced
not only by local circumstances (neighbours’ decisions, local environmental
conditions) but also by decisions and processes that are far remote and operating at
different scales and levels of organization (Liu et al. 2013, [22]). However, careful
thought will need to go into operationalising hybrid model forms for investigating
such systems. Although representing all individual actors in a globalized system
of land use and food trade, for example, might theoretically be possible, it is not
immediately clear that this would be desirable. For example, the heterogeneity of
decision-making and/or interaction at one level of organization (e.g., individual
farmers) may be so low as to make little difference to what decisions mean for other
levels of organization (e.g., food commodity traders). In such cases if the goal is
understanding global interactions, but it is at other levels of organization at which
most uncertainty, heterogeneity or influence occur, then it may be appropriate to
represent local land use decisions in an aggregated manner and focus individual-level
representation at non-global levels or scales. Such considerations for how to structure
future hybrid models are important if we are to ensure the hybrids do not become
‘monster models’—ever more complicated models that are more and more difficult to
evaluate. Such a situation is not an inevitable result of hybridization (nor advocated),
but as usual important consideration needs to go into developing models that are fit
for the desired purpose.
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Pursuing innovative and hybrid modelling approaches through iterative
approaches to scientific inquiry, as advocated by O’Sullivan et al. (2015, [21]), might
be usefully facilitated through online platforms that encourage greater collaboration
between modellers and engagement with policy- and decision-makers. One example
might be an online a community-modelling initiative to act as a clearing house for
models and best practice. Contemporary online resources such as openABM.org
are valuable as a space to present individual models—complete with a peer-review
process—but as structured they currently do little to encourage modellers to think
about how they can combine or build upon one another’s models. A platform that
actively encourages and enables modellers to interact, combine and ‘mash-up’ their
conceptualizations to find synergies and produce novel model architectures that
overcome trade-offs between representational fidelity and development costs would
be particularly valuable going forward. From the perspective of policy-development,
an online space such as this might also host models for policy makers to interact
with as “interested amateurs”. By better enabling modellers to work together to
robustly compare and combine their models, and to discuss with users to learn and
improve models, advantages of hybridity might be more readily realised. In turn, the
models produced should enable more insightful contributions to the comparative
issues discussed above and ensure the continuation of innovative modelling for
understanding landscape change, its causes and consequences for sustainability in
the Anthropocene.
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Simulation vs. Definition: Differing
Approaches to Setting Probabilities for
Agent Behaviour
Fraser J. Morgan, Philip Brown and Adam J. Daigneault

Abstract: While geographers and economists regularly work together on the
development of land-use and land-cover change models, research on how differences
in their modelling approaches affects the results is rare. Answering calls for more
coordination between the two disciplines in order to build models that better
represent the real world, we (two economists and a geographer) developed an
economically grounded, spatially explicit, agent-based model to explore the effects of
environmental policy on rural land use in New Zealand. This inter-disciplinary
collaboration raised a number of differences in modelling approach. One key
difference, and the focus of this paper, is the way in which processes that shape
the behaviour of agents are integrated within the model. Using the model
and a nationally representative survey, we compare the land-use effects of two
disciplinary-aligned approaches to setting a farmer agent’s likelihood of land-use
conversion. While we anticipated that the approaches would significantly affect
model outcomes, at a catchment scale they produced similar trends and results.
However, further analysis at a sub-catchment scale suggests the approach to setting
the likelihood of land-use conversion does matter. While the results outlined here
will not fully resolve the disciplinary differences, they do outline the need to account
for heterogeneity in the predicted agent behaviours for both disciplines.

Reprinted from Land. Cite as: Morgan, F.J.; Brown, P.; Daigneault, A.J. Simulation vs.
Definition: Differing Approaches to Setting Probabilities for Agent Behaviour. Land
2015, 4, 914–937.

1. Introduction

With an increase in demand for strong, evidence-based environmental policy
and management, scientists have called for methods to accurately capture the
complex nature of socio-ecological systems [1,2]. This call is driven by the need to
understand the likely consequences and trade-offs of proposed policies on economic
outcomes, land use, and social well-being [3]. A modelling approach is well suited
to this task because the social, economic, and geographic factors that determine the
choice and impact of land use are in themselves complex [4–7].

Land use and land cover change (LULCC) models represent a well-developed
approach to modelling and understanding processes that shape the environment [8–10]
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and have developed alongside our understanding of wider economic and social
systems. As with most modelling approaches, early implementation of LULCC
models focused on mathematical programming and rational utility theory, i.e.,
individuals are assumed to maximise profits [11–15]. These approaches are still
common, and while these models capture trends in LULCC, they may fail to reflect
accurately the underlying processes driving the change in LULCC [2].

More specifically, more economically focused LULCC models focus on
management practices that maximise net returns for a given land use while omitting
key spatial, bio-physical, and social details [2,16–21]. Such abstractions ignore the
processes, people, and space within the model, thus making the “optimally derived”
solution unrealistic [22]. Geographically defined LULCC models, on the other
hand, typically account for heterogeneity across space and individuals, but often
simplify the level of economic behaviour [23–27]. As such, geographic models
are typically structured to include simplified economic approaches and to exclude
explicit representations of land and commodity markets [23].

Geographers and economists have rarely collaborated in undertaking these
analyses, leading to calls for modellers from these two disciplines to coordinate
efforts in order to build models that better represent the real world [23,28].

LULCC is a complex, adaptive process that can also be explained through the
use of computational tools such as agent-based models (ABMs) [2,29,30]. ABMs
are well suited to analysing decentralised, autonomous decision making such as
that underlying LULCC because they represent complex spatial interactions under
heterogeneous conditions [30–32]. In addition, the ABM approach accounts for space,
distance, and time in decision making.

However, capturing the social and economic behaviour of farmers via ABMs to
analyse LULCC is not without its own complexities and limitations [27,33–36]. For
example, Burton [37] outlines numerous social processes that should be evaluated
when assessing farmer behaviour, including cultural embeddedness [38], social
networks, and technology transfer [39,40], and the dichotomy between social and
economic approaches to farming [41,42]. Therefore, capturing the heterogeneity of
farmer behaviour is essential when modelling rural land-use change. While this
notion is widely supported [38,43], there is significant variation in how heterogeneity
in farmer decision making is accounted in ABMs. Examples of such heterogeneity
include: variation in different production strategies [35,44,45]; dealing with external
factors [46,47]; and simulating key parts of the farming process [48–50]. In all cases,
this variation depends on the objective of the ABM [51].

To answer these calls, the authors (two economists and a geographer) developed
an economically grounded, spatially explicit ABM to explore the effects of
environmental policy on rural land use in New Zealand. The Agent-based Rural
Land Use New Zealand (ARLUNZ) is capable of analysing the impact of a variety of
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policies on land use, net revenue, and environmental indicators such as greenhouse
gas (GHG) emissions, nutrient loadings, and soil erosion [36].

This inter-disciplinary collaboration required that two differences in approach
be resolved. The first is a disciplinary perspective on how individual agents
enter into the model. Geographers have traditionally had a strong preference
for defining types of agents within a population according to a typological
framework [35,38,43,44,46] to limit complexity while still moving agents towards
their predefined goals [52–55]. While economists recognise the need to limit
computational complexity [34], they have also called for empirical calibration and
validation of decision-making hypotheses through surveys, interviews, participatory
modelling, and experimental economics [33,56,57]. Because we have access to a
large-scale, nationally representative survey that accounts for demographics, social
processes, and land use, we side with economists and rely on empirical distributions
of farmer and forester characteristics to simulate a population of agents [58].

The second disciplinary disagreement—and a primary focus of this paper—is
the way in which processes that shape the behaviour of agents are integrated within
the model. Irwin [23] observes that the methods used for modelling land-use
change vary significantly: economists tend to focus on econometric analyses, while
geographers tend to base their analyses on simulations.

Farmers’ information networks are framed around their social interactions and
play a role in shaping their decision making processes [39,40,59,60]. Through the
nationally representative survey, we could define the observable effects of each
farmer’s networks into the agent-based model by directly affecting the likelihood
of a certain type of behaviour, in this case land-use conversion. Conversely, we
could simulate the agent’s interactions with their networks and observe how these
interactions affect the agent’s likelihood of land-use conversion.

Consequently, this paper analyses how each approach affects the resulting land
use, net revenue, and environmental outputs at a catchment scale. We hypothesise
that the two approaches will produce significant differences for each of these metrics.

We note that these disagreements relate to representation of people and the
empirical characterisation of agents within ABMs [1,51,57,58,61,62]. Specifically, the
disagreements relate to how empirical data is used to capture and define the bounds
of decision making available to the agents. Greater variety of on-farm management
options (e.g., reducing stocking rates, fencing streams, and planting riparian buffers)
and more information being made available to farmers (e.g., climate, biophysical and
soils data) increase the complexity associated with defining farmer agents. Because
of the significant empirical data required to inform the use of on-farm management
options and to account for additional information through climate and biophysical
models, we constrain farmer decision making in this manuscript to complete farm
conversion from enterprise to enterprise.
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The remainder of this paper is organised as follows: Section 2 describes the
methodology used in this research and the approaches used to define an agent’s
likelihood of land-use conversion; Section 3 summarises the experimental design for
the research specifically the region the model has been applied on; Section 4 presents
the results from the experiment; and Section 5 concludes.

2. Methods

The ARLUNZ model was designed to analyse complex environmental issues
in the rural landscape, to provide information about how farmers will adapt
to change, and to inform policy that seeks to address vulnerability to resource
scarcity. Specifically, ARLUNZ focuses on variability in decision making among
farmers, moving away from a representative decision-making agent to a spatial and
behaviourally heterogeneous population of farmers whose decision making reflects
the real world.

ARLUNZ is written in Version 5.0.5 of NetLogo [63] using the GIS, String, and
Shell extensions. Python 2.7 is used to facilitate a loose coupling [64] between
ARLUNZ and a modified version of the New Zealand Forest and Agriculture
Regional Model (NZFARM) that provides economic information. NZFARM is a
non-linear, partial equilibrium mathematical programming model of New Zealand
land use operating at the sub-catchment scale [65]. The version used within ARLUNZ
has been refined to produce an economically optimised result for each farm rather
than an optimised landscape for a sub-catchment [66–69].

Morgan and Daigneault [36] provides detailed information on the design,
structure, outputs, and parameterisation of ARLUNZ and its coupling with NZFARM
as well as its use to estimate the impacts of climate change policy on land use in
New Zealand. In addition, Table S1 contains an ODD+D description [70] for the
ARLUNZ model.

2.1. Survey Research

Some parametrisation in the ARLUNZ model is based on the Survey of Rural
Decision Makers (SRDM), a nationally representative survey of land owners and
other decision makers [71]. The survey was conducted online between March and
July 2013.

The survey gathered up to 192 data points on each respondent, land
characteristics and use, current farm practice, demographics, succession plans,
professional networks, sources of information regarding best practice, management
objectives, income, risk tolerance, and values [71]. The questionnaire was developed
in consultation with the Ministry for the Environment, the Ministry of Primary
Industries, Dairy New Zealand, Beef + Lamb New Zealand, HortNZ, regional
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councils, AgResearch, the New Zealand Institute for Economic Research, farmer
discussion groups, and other stakeholders.

The sample was drawn from the AssureQuality AgriBase database [72].
Developed in 1993 to track foot and mouth disease, AgriBase records detailed
information on privately held rural land across New Zealand. Inclusion in AgriBase
is voluntary and entries are updated irregularly. As such, the median address was
entered into the database seven years before the survey and some of the individuals
contacted for the survey had left farming, making the true response rate difficult to
ascertain. However, a total of 1564 responses were collected, yielding a response
rate of at least 21%. Participation was incentivised via a donation made to a charity
of each respondent’s choice and an invitation to view summary results online after
the survey had closed. The primary decision-maker for each property was asked to
complete the survey, which, on average, took approximately 20 min to complete.

Summary statistics for the variables of interest are shown in Table 1. The mean
property comprises 486 hectares, although this high average is driven by a handful of
very large Sheep and Beef stations. The average age of respondents is 56.5, consistent
with ages reported in New Zealand’s Agricultural Census [73]. The average farmer
has 25 years of experience. One-third of farmers hold university degrees, while 27.8%
have completed diplomas or post-secondary technical training in farming and/or
farm management.

The importance of being highly productive was self-evaluated on a scale of 0
to 10, where 0 indicates that being highly productive is “not at all important’ and
10 indicates that being highly productive is “extremely important”. The mean score
for the importance of being highly productive is 6.53. Risk tolerance is measured by
the question “Are you a person who is generally prepared to take risks?”, where 0
indicates “don’t like to take risks” and 10 indicates “fully prepared to take risks”.
The mean score for risk tolerance was 5.44, indicating a moderate level of risk-taking.

Some 78.5% of respondents report that their business is either profitable or that it
breaks even. Having a “large” professional network is defined by visiting more than
the median number of farms (i.e., five) or meeting more than the median of farmers
to discuss productivity (i.e., four); by definition, half of the survey respondents meet
these criteria. The main reported farm enterprises by area include sheep and beef
(44%), dairy (21%), horticulture and viticulture (11%), forestry (8%), dairy support
(4%), deer and other livestock (3%), and arable (3%). The average number of different
enterprises on the farm is 1.68, although a small number of farms have as many as
five different enterprises. Respondents in Canterbury (the region on which this paper
focuses) account for 17.2% of the total sample.
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Table 1. Summary Statistics from the Survey of Rural Decision Makers.

Variables Mean Std. Dev. Min. Max.

intend to intensify over the following 5 years (1–10) 2.678 3.046 0 10
intend to de-intensify over the following 5 years (1–10) 3.569 3.452 0 10
effective land quantity (hectares) 486.440 1932.137 2 34,000
age (years) 56.471 10.098 24 87
experience (years) 25.100 15.812 1 66
high school education (dummy) 0.393 0.488 0 1
diploma/tech training (dummy) 0.278 0.448 0 1
university or higher (dummy) 0.329 0.470 0 1
importance of being highly productive (1–10) 6.535 2.787 0 10
profitable business (dummy) 0.785 0.411 0 1
respondent exceeds median # of farm/farmer visits (dummy) 0.487 0.500 0 1
risk tolerance (1–10) 5.437 2.403 0 10
enterprise = sheep and beef (share) 0.444 0.497 0 1
enterprise = dairy (share) 0.209 0.407 0 1
enterprise = deer and other livestock (share) 0.035 0.183 0 1
enterprise = horticulture and viticulture (share) 0.107 0.309 0 1
enterprise = arable (share) 0.030 0.171 0 1
enterprise = dairy support (share) 0.045 0.207 0 1
enterprise = forestry (share) 0.079 0.270 0 1
enterprise = other enterprise (share) 0.052 0.222 0 1
number of land uses on this operation (#) 1.684 0.884 1 5
region = Auckland (share) 0.031 0.173 0 1
region = Bay of Plenty (share) 0.054 0.226 0 1
region = Canterbury (share) 0.178 0.382 0 1
region = Gisborne (share) 0.024 0.154 0 1
region = Hawke's Bay (share) 0.084 0.277 0 1
region = Marlborough (share) 0.057 0.232 0 1
region = Manuwatu-Whanganui (share) 0.066 0.249 0 1
region = Northland (share) 0.053 0.224 0 1
region = Otago (share) 0.128 0.334 0 1
region = Southland (share) 0.086 0.280 0 1
region = Tasman and Nelson (share) 0.067 0.250 0 1
region = Taranaki (share) 0.043 0.203 0 1
region = Waikato (share) 0.074 0.262 0 1
region = Wellington (share) 0.036 0.186 0 1
region = West Coast (share) 0.020 0.139 0 1

2.2. Defining the Likelihood of Land-Use Conversion

Decision making within the model rests entirely with the farmer agent.
The economic component of the model returns the net revenue-maximising land-use
for each farm along with the expected net revenue for each enterprise that could
be undertaken on each farm. If the economically optimal land use differs from
the enterprise currently undertaken, then the farmer agent chooses whether
or not to convert through an evaluation against each farmer’s “likelihood of
land-use conversion”.

The likelihood of land-use conversion is thus fundamental to decision making
within the model. We adopt several methods for evaluating this value. The first
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(the homogeneous approach) ignores individual attributes of farmers and assigns
an identical likelihood to each farmer. The second (the network approach) allows
farmers to interact with peers and to make decisions that are informed by peer
performance, either via networks or imitation. The third (the survey approach) uses
empirical data from the Survey of Rural Decision Makers to predict this likelihood
based on individual characteristics.

2.2.1. Homogeneous Approach

For this approach, which we class as the baseline, we ignore all farmer attributes
and define the likelihood of land-use conversion at 0.2 (or 20%) for all farmer agents.
We use this approach to represent a common type of economic LULCC model that
uses a single rational, profit-maximising agent to make decisions.

2.2.2. Network Approach

This approach uses social and geographic networks to shape the farmer agent’s
likelihood of land-use conversion. Farmer’s information networks are framed
around their social [39,40,59] and geographical [74,75] interactions and play a role
in decision-making processes [39,50,75]. Two theoretical frameworks inform how
networks influence farmer decision making—endorsements and imitation. While
endorsements and imitation in social networks are understood, the scale and impact
that these processes have on decisions are difficult to quantify in the farming context.

Studies have found that the proximity to the people in one’s network is not as
important as the stature of those people [59,76]. Therefore we assume that two-way
interactions such as endorsements are preferred by farmers and provide a higher level
of information acceptance compared with one-way interactions such as imitation.
Consequently, we specify that endorsements obtained through social networks have
higher weightings than those obtained through imitation.

Specifying these weightings for these network types required additional
experimentation as there was no empirical data on the level of acceptance of
information obtained through them. Sociological opinion in New Zealand suggests
that the relative weighting of the information provided via farmer networks should
range between 0.05 and 0.15 [77]. Based on this, we defined the weightings for the
likelihood of information uptake as 0.10 for Endorsement and 0.05 for Imitation.
To explore the influence that these weightings have on the outputs of the model, we
undertook a local sensitivity analysis (Supplementary Material 2). We found that the
model outputs are relatively insensitive to small variations in the weightings used
for both endorsements and imitation.

Endorsements work on the concept that information about a product, process,
or person (i.e., the endorsed) is transferred from one individual (i.e., the endorser) to
another individual (i.e., the receiver) through a social process. The information that
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is transferred by the endorser is subjective and is validated by the receiver based on
his or her understanding of the endorser and the product, process, or person. Thus,
endorsements capture a “subjective but socially embedded agent’s reasoning process about
cognitive trajectories aimed at achieving information and preferential clarity over another,
endorsed agent” ([78]; p. 1).

With endorsement in ARLUNZ, each farmer agent incorporates information on
the success of the farming operation for ten farmer agents who are located closest to
the decision maker and who undertake the same enterprise as the farmer agent. Each
farmer agent learns the profitability/ha of each of the farmer agents within his or
her social network; using these values, a mean profitability/ha value is derived for
the farmer agent’s network and is then compared to farmer agent’s profitability/ha
value. If the farmer agent’s profitability/ha is higher than the mean profitability/ha
of the farmer agent’s social network, then his or her likelihood of land-use conversion
is decreased by 0.10 percentage points to 10%. If the farmer agent’s profitability/ha is
lower than the mean profitability/ha of the farmer agent’s social network, then his or
her likelihood of land-use conversion increases by 0.10 percentage points to 30%. The
ARLUNZ model assumes that each farmer in the social network has identical stature.

The theory of Social Learning [79,80] describes imitation as a process in which a
person observes another person being rewarded for understandable and reproducible
behaviour. The original person might then imitate that behaviour to try to achieve
the same reward [81]. Imitation transfers knowledge through a one-way network in
which information is “absorbed” from the person’s surroundings and then used to
inform the decisions they make. Farming practices are visible to all, particularly so
to farmers in close proximity because of the regular exposure [75,82].

With imitation in ARLUNZ, the farmer agent incorporates information from
the farms that are geographically adjacent to his or her own farm, regardless of the
enterprise undertaken. If the economic component of the model proposes a change
in land use, then each farmer agent in the geographic network that undertakes the
proposed land use provides his or her profitability/ha value. Using these values, a
mean profitability/ha value is derived for the farmer agent’s network, and this figure
is compared with the farmer agent’s profitability/ha value. If the farmer agent’s
profitability/ha is higher than that of his or her geographic network, then his or
her likelihood of land-use conversion is decreased by 0.05 percentage points to 15%.
If the farmer agent’s profitability/ha is higher than that of his or her geographic
network, then the agent’s likelihood of land-use conversion is increased by 0.05
percentage points to 25%.
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2.2.3. Survey Approach

This approach is based on empirical data from the Survey of Rural Decision
Makers, which accounts for the decision to de-intensify land use as well as the
decision to intensify land use based on the predicted net revenue of each enterprise.

The perceived likelihood of changing your current land use to more intensive or
less intensive uses over the following five years was evaluated using an 11-point scale,
with 0 representing “extremely unlikely” and 10 representing “extremely likely”. The
average reported likelihood of intensification was 2.68, which we interpret to mean
that there is a 26.8% probability of intensifying in the next five years, on average.
Similarly, the average reported likelihood of de-intensification was 3.57, which we
interpret to mean there is a 37.5% probability of de-intensifying in the next five years,
on average.

Importantly, survey participants were asked about intensification and
de-intensification, which could mean a change in management on the farm (such as
an increase in the number of livestock per hectare) rather than wholesale conversion
of a farmer’s land use. As these are the best empirical indicators of intentions,
however, we ignore this possibility in the analysis that follows.

For the purposes of this research, we ranked the three most common land uses
based on the intensiveness of their land use (Figure 1). Dairy farming represents the
most intensive land use, followed by sheep and beef farming. Forestry is the least
intensive land use.
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Figure 1. Land uses within the ARLUNZ model ranked by the intensiveness of
their land use.

Using attributes defined by geospatial information (specifically, predominant
land use and farm size) and empirical data from the Survey of Rural Decision Makers
(specifically, age, experience, education level, importance of productivity, profitability,
and network size), we define the likelihood of a farmer intensifying or de-intensifying
his or her land use econometrically. Specifically, the probabilities of moving from a
low-intensity activity to a high-intensity activity over the subsequent five years and
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vice versa are estimated using Tobit models in which the dependent variables are
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university or higher 0.295 –0.159 
(0.323) (0.373) 

importance of being highly productive 0.140 ** –0.0216 
(0.0605) (0.0657) 

profitable business –0.842 ** –0.342 
(0.373) (0.410) 

respondent exceeds median # of farm/farmer visits 1.272 *** 0.787 ** 
  (0.286) (0.328) 
risk tolerance 0.179 *** 0.0248 
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Constant 6.874 ** –3.812 
 (3.330) (3.988) 
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where y∗i is a latent variable equal to the observed variable, yi, only when the latent
variable falls between the values of 0 and 10, X is a vector of explanatory variables,
and the error term, u, is normally distributed. Thus, we have:

yi =


10 if y∗i ≥ 10

y∗i if 0 < y∗i < 10
0 if y∗i ≤ 0

(2)

In contrast to the ordinary least squares with censored data, the tobit estimator
is consistent [83].

Table 2 presents the tobit estimates based on the national level data. The β

are interpreted as the expected change in the uncensored latent variable, i.e., the
uncensored likelihood of intensification or de-intensification associated with a
marginal change in an explanatory variable. For example, increasing age of the
decision maker by 1% reduces the predicted (uncensored) perceived likelihood
of intensification by 0.034 points on the 11-point scale, an effect that is statistically
significant at the 0.01 level. Similarly, having a diploma or technical training increases
the predicted (uncensored) perceived likelihood of intensification by 0.570 points, also
significant at the 0.01 level. Neither of these explanatory variables has a statistically
distinguishable effect on the perceived likelihood of de-intensification.

To use the likelihood of land-use conversion values as defined above, we
take a random draw from a uniform distribution between 0 and 1. If the value
of the random draw is less than the farmer’s likelihood of land-use conversion,
then the proposed land-use change is accepted by the farmer agent and the farm is
immediately converted to the proposed enterprise. In addition to converting between
enterprises, the farmer agent also realises the predicted net revenue for that land use
as defined by the economic component. If the random draw exceeds the likelihood
of land-use conversion, then the incumbent enterprise is retained until the next time
step of the model.
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Table 2. Predicted intensification and de-intensification for the survey approach
(tobit model).

Variables Intensify De-Intensify

log of effective land quantity 0.206 * 0.150
(0.105) (0.118)

log of age –3.374 *** –0.0697
(0.767) (0.923)

log of experience 0.380 *** 0.352 **
(0.145) (0.164)

diploma/tech training 0.570 * –0.337
(0.329) (0.370)

university or higher 0.295 –0.159
(0.323) (0.373)

importance of being highly productive 0.140 ** –0.0216
(0.0605) (0.0657)

profitable business –0.842 ** –0.342
(0.373) (0.410)

respondent exceeds median # of farm/farmer visits 1.272 *** 0.787 **
(0.286) (0.328)

risk tolerance 0.179 *** 0.0248
(0.0619) (0.0705)

Constant 6.874 ** –3.812
(3.330) (3.988)

Enterprise dummies YES YES
Region dummies YES YES
Observations 1,507 1,507
McFadden’s adjusted R-squared 0.0449 0.0182

Note: * p < 0.10; ** p < 0.05; *** p < 0.01.

3. Experimental Section

To illustrate the variation in the predicted land use, economic outcomes,
and environmental impacts caused by various approaches to assigning farmers’
likelihood of land-use conversion, we explore the effects on landowners in the
Hurunui-Waiau catchment in the Canterbury region of New Zealand’s South Island
(Figure 2). These catchments have a large and diverse set of land uses that are
expected to see significant changes in the future.
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Figure 2. Location of the Hurunui-Waiau catchment. The catchment is located
within the Canterbury region of New Zealand’s South Island. Planners in the
catchment anticipate significant changes in land use over the next several decades.

To provide a sample that encompasses the range of possible outcomes, the model
was run using 50 simulations for each of the three approaches being investigated
(i.e., the homogeneous approach, the network approach, and the survey approach).
The results in the following section are based on the averaged values over all
50 simulations for each of the three approaches.

The model covers a time horizon of 50 years with ten incremental time steps,
each of which represent five years. The scenario assumes a real annual increase in
farm commodity prices (i.e., milk, meat, and timber) of 2%, which is commensurate
with the last 50 years of commodity prices [84]. Climate and available technology are
held constant over the entire model simulation. We note that the economic picture is
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consistent across scenarios and that the strength of milk prices relative to meat and
timber prices produces a trend toward dairy conversion.

The land-use map used in the model was captured in June 2010 [85] (Figure 3a),
and although the map includes seven different land uses, the model focuses on the
three key enterprises that represent 94% of the productive land available within the
catchment: dairy, sheep and beef, and plantation forestry. The cadastral land parcel
boundaries used are derived from Land Information New Zealand and represent
the cadastral structure of the catchments as at August 2012 (Figure 3b), which was
the closest database to the 2010 land use map. Farmer agents are only created for
farms exceeding 100 ha in order to focus on commercially operated enterprises.
Productivity zones are delineated by land use classification [86] and slope and are
classified into productivity zones—flats, foothills, or hills (Figure 3c). Any land
owned by the Crown (e.g., native forest) is assumed to be non-productive in use and
hence no farmer agent is created.
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Figure 3. Detailed map of the Hurunui-Waiau catchment by (a) 2010 land use;
(b) 2012 cadastral land parcels; and (c) productivity zone. The data layers are used
within the model to define the initial land use, farm locations and extents, and the
expected productivity for each farm.
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The landscape provides a range of geospatial information about the catchment
being modelled, such as cadastral boundaries, initial land use, and productivity
zones. Using the cadastral boundaries, a farmer agent is generated at the centre of
each cadastral parcel and makes decisions for the entire cadastral parcel (i.e., farm).
This agent holds a range of social and economic attributes such as age, education,
and the size of social networks. These attributes are defined empirically for all
farmer agents through the Survey of Rural Decision Makers. For the homogeneous
and network approaches, each agent’s initial likelihood of land-use conversion is
set to 20%; in the case of the survey approach, each agent’s likelihood of land-use
conversion is defined econometrically as described above.

For the survey approach, there is significant variation in the farmer agents’
likelihood of land-use conversion between each of the three enterprises. Table 3
summarises this variation over the 50 randomly generated populations used in the
model. Farmers who undertake forestry have the lowest likelihoods of land-use
conversion. These values reinforce two characteristics forestry, namely, its low
intensity (an average likelihood of de-intensification at 0% highlights a lack of
less-intensive options) and that farmers undertaking forestry are less likely to move
to more intensive land uses (13% compared with 26% and 31% for sheep and beef
and dairy farmers, respectively).

Table 3. Mean values across the 50 simulations for the survey approach using
ARLUNZ. Mean values, standard deviation, and confidence intervals for this figure
are available in Supplementary Material 2.

Forestry Sheep and Beef Dairy

Intensify 12.99% 26.12% 31.06%
De-Intensify 0.00% 29.10% 26.99%

The simulated likelihoods of land-use conversion to more and less intensive
enterprises for sheep and beef farmers are more balanced (26.12% vs. 29.10%,
respectively), but sheep and beef farmers are more likely to de-intensify their land
use over the next five years. The simulated likelihoods of land-use conversion for
dairy farmers highlight the production-focused approach commonly associated with
the enterprise: alongside a 27% probability that they will de-intensify their land use,
there is a 31% chance that they would further intensify their land use over the next
five years. However, the model does not include a more intensive land use, so while
this intention is accounted for within the model, it is not currently utilised.
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4. Results

In this section, we compare results obtained after defining the likelihood of
land-use conversion in each of the ways described above. At the catchment level,
we project that the area of both dairy and forestry will increase over time (Figure 4).
At the production zone level, dairy is estimated to increase in both the plains and
foothills, while forestry is estimated to expand in the foothills and hills. The area of
sheep and beef farms is estimated to decline in all three productivity zones.

For the homogenous approach, the area allocated to dairy increases from the
initial 16,900 ha to 100,450 ha over the 50-year period (with a 95% Confidence Interval,
hereafter 95% CI, of 1670 ha). This expansion is split between the highly productive
plains region of the catchment and the less productive foothills.
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Figure 4. Regional land use area for “Homogenous” baseline projection. Mean
values, standard deviation, and confidence intervals for this figure are available in
Supplementary Material 3.

Although such an expansion in dairy is large, it is not unrealistic. For example,
the area of land allocated to dairy in Canterbury increased by 172% between 1996
and 2008, and it is projected to expand by an additional 51% by 2020 [87]. Moreover,
the Hurunui-Waiau catchment have already witnessed conversion to dairy as forests
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in the highly-productive flat areas of the catchment reached harvest age. Third,
there are ongoing discussions of implementing the Hurunui Water Project, which
would expand the area of irrigated land by an additional 41,500 ha, bringing the total
irrigated area of the Hurunui-Waiau catchment to over 72,000 ha [88].

The modelled change in land use relative to the homogeneous approach is
shown in Figure 5. For both dairy and sheep and beef operations, both approaches to
defining the likelihood of land-use conversion trend positively and begin to converge
by 2060 (Figure 5, C4). Divergence between the network and survey approaches by
2060 can only be found in forestry and then only for the network approach which
results in a level of land use similar to the homogeneous baseline.
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Figure 5. Relative change in regional land use area from “Homogenous” baseline
projection. Mean values, standard deviation, and confidence intervals for this figure
are available in Supplementary Material 3.

Using a sub-regional scale by productivity zone, the network approach results
in impacts that are similar to the homogenous approach. In addition, the survey
approach always results in a more rapid change in land use relative to the baseline
and to the network approach. Under the survey approach, farmer agents make
changes to their farms sooner than under the network approach, which may
explain, which explains the rapid growth in dairy in the foothill productivity zone
(Figure 5, A2) and forestry in the hills productivity zone (Figure 5, C3).
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In the model, forestry at a sub-regional scale is significantly affected by the
change in approach to define the farmer’s likelihood of land-use conversion. For
example, the area of forestry within the plains productivity zone significantly reduces
for the network approach when compared with both the survey approach and the
homogenous baseline (Figure 5, C1). This outcome is because the more intensive
land uses on the plains (such as dairy or sheep and beef) are more profitable, which
is translated into the farmer’s networks, particularly their geographic network.
The increased profitability within their geographic network alters the behaviour of
the forestry agents to increase the likelihood of their conversion to more intensive
land uses.

4.1. Farm Net Revenue

For reference, all monetary figures from the model are reported in 2012 New
Zealand dollars. Farm net revenue is estimated to increase over time under all
approaches (Table 4), increasing from $153 million/yr in 2010 to between $745 and
$807 million/yr by 2060 (95% CIs of $8 million and $6.8 million respectively). The
increase over time stems from the assumption that all commodity prices and yield
combinations (i.e., farm revenue per hectare) increase by 2%/yr and the expansion of
dairy. Interestingly, while the survey and network approaches vary, the difference
in net revenue for the two approaches at a catchment scale over time is negligible
($807 vs. $804 million/yr by 2060 respectively, with 95% CI’s of $6.8 million/yr and
$8.2 million/yr respectively).

Table 4. Total annual farm profits for Hurunui-Waiau catchment (million NZD/yr).
Mean values, standard deviation, and confidence intervals for this figure are
available in Supplementary Material 3.

Year
Total Dairy Sheep and Beef Forestry

Homo Networks Survey Homo Networks Survey Homo Networks Survey Homo Networks Survey

2010 $153 0.0% 0.0% $30 0.0% 0.0% $115 0.0% 0.0% $7 0.0% 0.0%
2020 $214 0.9% 6.6% $83 1.2% 15.3% $110 1.8% –6.8% $21 0.0% 25.0%
2030 $308 3.1% 7.8% $156 4.3% 15.7% $118 1.7% –10.3% $34 2.9% 19.0%
2040 $421 4.5% 8.7% $246 7.2% 16.0% $126 1.6% –10.5% $49 –2.1% 9.3%
2050 $568 4.9% 8.4% $369 7.1% 14.0% $139 0.0% –14.9% $60 1.6% 13.0%
2060 $745 7.3% 7.7% $514 11.4% 12.7% $153 –3.4% –15.9% $78 –1.3% 9.3%

While net revenue at a catchment scale is similar, the distribution in net revenue
between the three enterprises differs. Total dairy profits are estimated to increase
from $30 million in 2010 to between $514 and $589 million (95% CIs of $9.1 million
and $8.3 million respectively) in 2060 (Table 4). The largest increases are estimated to
occur under the survey approach, where annual profits are, on average, 15% larger
than under the homogenous approach.
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The expansion of forestry in the catchment also yields increased net revenue
from an initial $7 million in 2010 to between $77 and $86 million (95% CI of $3.4 million
and $3.4 million respectively) in 2060. Again, the survey approach is estimated to
yield increased profits (10% or more/yr) relative to the homogenous approach. Profits
in sheep and beef farming are estimated to increase from $115 million in 2010 to
between $132 and $153 million (95% CI of $2.9 million and $3.3 million respectively)
in 2060 even though the area devoted to this land use is expected to contract because
of yield and commodity price changes that increases the per hectare revenue of sheep
and beef farming.

Interestingly, the distribution in net revenue for sheep and beef under the
network approach is estimated to be higher than under the homogenous approach
up until 2060 (Table 4). The opposite is found for the survey approach, which sees a
reduction in the level of profit for sheep and beef compared with the baseline.

4.2. Environmental Outputs

As land-use change impacts key environmental indicators, the ARLUNZ model
captures a range of environmental outputs such as GHG emissions, forest carbon
sequestration, nitrogen (N) and phosphorus (P) loss [36]. As seen in Table 5, the
expansion of dairy—which often has a higher stocking rate per hectare than sheep
and beef—causes an 18% increase in livestock GHG emissions compared with the
homogeneous approach. The network and survey approaches show additional
livestock GHG emissions of 6% and 3%, respectively.

This growth in livestock GHGs are offset by increases in carbon sequestration
through forestry under two of the three approaches. Specifically, the networks
approach shows a reduction in forest carbon sequestration of 2% relative to the
baseline while the survey approach shows a 9% increase in the amount of carbon
sequestered. This result highlights the detrimental effects of the network approach
on forestry in more marginal production zones. Even so, the overall expansion of
forestry in all three approaches results in a net GHG reduction of between 50% and
68% between 2010 and 2060.

In contrast, the expansion of dairy farming in the plains and foothills, results
in a large increase in nutrient loadings that could impact the environmental quality
of the local waterways (Table 6). We estimate that N and P will increase by 86%
and 43%, respectively, over the next 50 years under the homogenous baseline. The
networks approach predicts increases in both N and P by an additional 8% relative to
the baseline, while the survey approach predicts additional increases of 8% and 5%,
respectively. Consequently, while the expansion of dairy farming in the catchment
produces economic benefits, the negative impacts on water quality are non-negligible.
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Table 5. GHG outputs for Hurunui-Waiau catchment (tons/yr). Mean values,
standard deviation, and confidence intervals for this figure are available in
Supplementary Material 3.

Year
Livestock GHGs Forest Carbon Sequestration Net GHGs

Homogenous Network Survey Homogenous Network Survey Homogenous Network Survey

2010 988,619 988,619 988,619 –200,686 –200,686 –200,686 787,933 787,933 787,933
2020 1,009,062 1,027,099 1,007,832 –517,043 –502,681 –677,464 492,020 524,418 330,368
2030 1,052,232 1,080,009 1,060,729 –682,562 –697,085 –833,184 369,670 382,924 227,545
2040 1,080,496 1,125,738 1,113,336 –807,773 –792,856 –896,421 272,723 332,881 216,915
2050 1,134,640 1,179,598 1,164,413 –810,228 –821,304 –930,562 324,412 358,294 233,851
2060 1,166,265 1,238,713 1,201,127 –867,407 –847,212 –947,868 298,859 391,501 253,259

Table 6. Nitrogen and Phosphorus outputs for Hurunui-Waiau catchment (tons/yr).
Mean values, standard deviation, and confidence intervals for this figure are
available in Supplementary Material 3.

Year
Nitrogen Phosphorus

Homogenous Network Survey Homogenous Network Survey

2010 4039 4039 4039 37 37 37
2020 4899 4970 5171 40 41 41
2030 5701 5882 6115 44 45 45
2040 6339 6652 6899 46 49 49
2050 7009 7370 7599 50 53 53
2060 7517 8136 8111 53 57 56

5. Conclusions

We anticipated that the two different approaches to defining the likelihood of
land-use change would significantly affect model outcomes. However, the results
from this experiment show that the approach has a limited effect at a catchment scale
for both the distribution of land use and the resulting total net revenue. Nevertheless,
the differing distributions of land use across productivity zones suggest that the
approach to estimating the likelihood of land-use change ultimately does matter.

Simulating the social process of information transfer between agents through
the network approach resulted in less economically optimal land use for all three
enterprises. For dairy, the network approach predicts less conversion vis-à-vis the
survey approach. Still, results for both approaches converge by 2060.

The network approach to defining the likelihood of land-use change profoundly
impacts model outcomes for sheep and beef farmers in the hill productivity zone.
Within this zone, it appears that the level of productivity is very similar at a per
hectare level for each sheep and beef farmer. This similarity of profitability for these
farmer agents reduces the likelihood of conversion to the more profitable enterprise
of forestry within the network approach. For the small amount of forestry on the
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highly productive plains in the initial state of the model, the network approach
enabled the farmer agents to easily recognise significant increases in average net
revenue if they converted to different enterprises, primarily dairy. This resulted in a
steady decrease in the area of forestry on the plains. In the foothill zone, many sheep
and beef farms convert to dairy.

Defining the agents’ likelihood of land-use conversion through the survey
approach provides greater deviation from the baseline for all sub-regional results.
This deviation is particularly evident in the early steps of the model simulation, where
variations in area of up to 55% compared with the baseline are observed. This result
highlights the design of the survey approach, where land that suits the two ends of
the spectrum of land-use intensity—dairy and forestry—quickly sees the influx of
new farms, in contrast to the slow changes that occur under the network approach.

The results for the survey approach highlight two interesting observations.
First, even with the significant increase in net revenue when converting forestry to
other enterprises in the plains productivity zone, the amount of forestry in this zone
increases under the survey approach. This result is embedded in the initial land-use
conversion values defined for a move to a more intensive enterprise. For example,
regardless of the significant increase in net revenue, the survey found that foresters
are unlikely to convert to a more intensive enterprise, highlighting the static nature
of the survey approach, which—unlike the dynamic network approach—is unable to
account for changes in preference over time.

A second interesting result is the fact that substantively different approaches
to defining the likelihood of land-use conversion produce similar trends. This
observation raises questions that cannot be fully answered in this paper: If the
attributes of a population can be reliability and accurately captured through surveys,
can the agent-based model that uses these data be simplified by removing the need
to simulate social processes? And would this facilitate greater uptake among end
users because the process used to define behaviour within an agent-based model is
easier to understand?

Malanson and Walsh [29] recently noted the problems of calibration and
validation stemming from complex interactions in agent-based models. While
agreeing that the challenge for applied agent-based models is in correctly
parametrising the agents, we found that the survey approach provided enough detail
to generate reliable populations of agents and did not over parametrise the model.

We believe that model design should be informed by model purpose. Where
comprehensive surveys are available, we advocate using empirical data to define an
agent’s likelihood of a type of behaviour. However, if there is limited information
about the size and importance of a farmer’s social and geographical networks or
if a key purpose of the model is to account for the effects of these networks, then
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developing the structure within the model to simulate, test, and document the effects
of changes in the networks is preferred.

For LULCC models—especially those in applied settings—exploring the impacts
of different approaches to modelling the likelihood of land-use conversion is critical.
Understanding the effects of key model parameters on economic, social, and
environmental factors will facilitate the continued acceptance of ABM of LULCC
among end users and will improve the results generated by both the economic and
geographic ABMs of LULCC. While the results outlined here will not fully resolve
the disciplinary differences, they do outline the need to account for heterogeneity in
the predicted agent behaviours for both disciplines.
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Model with and without Agents to Assess
Land Abandonment and Long-Term
Re-Forestation in a Swiss Mountain Region
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Robert Huber

Abstract: Land abandonment and the subsequent re-forestation are important drivers
behind the loss of ecosystem services in mountain regions. Agent-based models
can help to identify global change impacts on farmland abandonment and can test
policy and management options to counteract this development. Realigning the
representation of human decision making with time scales of ecological processes
such as reforestation presents a major challenge in this context. Models either focus
on the agent-specific behavior anchored in the current generation of farmers at the
expense of representing longer scale environmental processes or they emphasize the
simulation of long-term economic and forest developments where representation
of human behavior is simplified in time and space. In this context, we compare the
representation of individual and aggregated decision-making in the same model
structure and by doing so address some implications of choosing short or long term
time horizons in land-use modeling. Based on survey data, we integrate dynamic
agents into a comparative static economic sector supply model in a Swiss mountain
region. The results from an extensive sensitivity analysis show that this agent-based
land-use change model can reproduce observed data correctly and that both model
versions are sensitive to the same model parameters. In particular, in both models
the specification of opportunity costs determines the extent of production activities
and land-use changes by restricting the output space. Our results point out that
the agent-based model can capture short and medium term developments in land
abandonment better than the aggregated version without losing its sensitivity to
important socio-economic drivers. For comparative static approaches, extensive
sensitivity analysis with respect to opportunity costs, i.e., the measure of benefits
forgone due to alternative uses of labor is essential for the assessment of the impact
of climate change on land abandonment and re-forestation in mountain regions.
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1. Introduction

Land abandonment and the subsequent re-forestation are key developments with
respect to the provision of ecosystem services in European mountain regions [1–5].
Land abandonment is driven by the interaction of environmental and socio-economic
factors, such as climate, topography, soil conditions, lack of road-infrastructure
development, or degree of part-time farming within a region [6–10]. These interactions
result in complex social-ecological systems that can only be investigated by a holistic
approach and integrated research [11–13].

Traditionally, land abandonment has often been modeled with comparative
sector supply models [14–16]. Land management decisions in these long term
modeling studies were usually represented by simplified and uniform mechanisms
(e.g., income maximization) on an aggregated level. More recently, agent-based
models (ABM) in land-use change [17–20] have been introduced as an opportunity to
assess future impacts of land-use change in an integrative framework [21,22]. ABM
allow interpretation of agent-specific behavior covering individual preferences or
motivations beyond income maximization [23–27] which play an important role in
mountain farming [28–34].

Realigning the representation of human decision-making with time scales
of ecological processes however presents a major challenge when modeling land
abandonment, re-forestation and ecosystem services in mountain regions, especially
under climate change [35]. Social-economic behavior, which involves other
than purely economic decision-making, is usually based on empirical data from
surveys, interviews or role playing games, derived from the existing generation of
farmers [36,37]. It therefore has only short and medium term validity. In contrast,
reforestation processes and climate change impacts on forests and grassland are only
visible in the landscape in the long run, i.e., in several decades [38,39].

Coupled socio-ecological models of land abandonment, such as ABM, therefore
often adopt either a short term or a long term perspective. The short term perspective
focuses on the agent-specific behavior anchored in the current generation of land
users, at the expense of adequately representing longer scale ecological processes.
The long-term perspective focuses more on simulating ecological succession, i.e.,
long term forest development under climate change. By doing so the representation
of human behavior is simplified in time and space, also due to large uncertainties
about the behavior of the next generation of land users.

Existing ABM studies that address farmland abandonment and that
consider individual farm decision-making underline the importance of a spatially
explicit examination of the linkage between social behavior and environmental
factors, and consequently the dynamic heterogeneity of land abandonment and
re-forestation [40–45]. None of these studies, however, explicitly discusses the
consequences of implementing a particular representation of decision-making and
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the associated short or long term perspective into their model structure. With this
study, we therefore address the following open research questions: (i) to what
extent do different aggregation levels of decision-making, i.e., agent-specific vs.
sectoral optimization, influence modeling results and (ii) what consequences arise
for model-based policy assessment in the context of farmland abandonment and
ecosystem services in mountain regions?

To address these questions, we present an extensive sensitivity analysis, i.e., an
output space analysis, of two different model versions of the land-use model ALUAM
(Alpine Land-Use Allocation Model). The sensitivity analysis is performed without
the consideration of agents in a comparative static sector supply model approach
based on Briner et al. [16] and then compared to a dynamic agent-based version of
the same model to assess the different impact of each of these key parameters on the
model outcome. We test the importance of exogenous parameters using elementary
effects proposed by Morris and a subsequent analysis of a combination of important
parameters [46,47]. Our ABM is innovative in that we use a comprehensive coupling
of typical farm structures with types of farm decision-making in an economic
framework, i.e., based on a constraint income maximization approach. The agent
characterization is derived from a cluster analysis based on a survey (n = 111) and
interviews (n = 15) with farmers in the case study region and the model is validated
against empirical data.

The study does not intend to solve the problem of decision making processes
over multiple generations. The sensitivity analysis, however, provides a quantitative
assessment of the role of agents in the context of dynamic and medium term ABM
programming models, compared to traditional sector supply modeling approaches
in agriculture using a comparative static perspective. This comparison allows us to
specify the differences and commonalities between two models that address land
abandonment with different time horizons by applying different aggregation levels
of human decision-making. The results help to assess and interpret existing [48–51]
and future model applications as well as to inform model choice in the context of
farmland abandonment and re-forestation in mountain regions.

The manuscript is structured as follows. In Section 2, we present the case
study region and describe methods and data sources. In Section 3, we present
the results of the agent typology and the implementation of this agent-specific
behavior in the existing ALUAM framework. Next, we focus on model performance
and validation of the adopted agent-based model and provide the results from
an extensive sensitivity analysis with and without agents for changes in prices,
direct payments schemes, production costs, labor availability and opportunity costs.
In Section 4, we discuss our findings in comparison to existing literature on the
assessment of land abandonment and re-forestation in mountain regions.
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2. Data and Methods

2.1. Case Study Region

Our study region, the “Visp area”, is located in the Central Valais of Switzerland
and includes the Saas valley (Saas Fee, Stalden), the region around Visp in the main
valley and the Baltschieder valley. It has a total of 15,346 inhabitants and covers
an area of 443.3 km2. Its main economic characteristics are a century-old, strong
industrial sector which is one of the main employers for the whole Upper and
Central Valais region, and a marked dependence on snow-based winter tourism in
the side-valleys [52]. Unproductive land (i.e., rocky, or glaciated terrain) accounts
for 62% of the area, while 20% is covered by forest land and about 16% of the land is
used by agriculture (1878 ha). Agriculture and forest land-use play an important role
as recreation areas and provide habitats for plants and wildlife. Land-use change
is a prominent issue in this region. The importance of agriculture has decreased
strongly in the area over recent years, resulting in a decline of agricultural land and
an increase of forest cover. Overall, forest land-use increased by 252 ha between
1997 and 2009 [53]. The region comprised 161 farmers in 2012. Between 2000 and
2012, the number of farms decreased annually by 2.8%. On average, farmers in the
simulated region currently only cultivate 8 ha of agricultural land and house around
seven livestock units (LU). Less than 10% of the farmers work full-time on their
farm. The main farming activity is the production of livestock based on grassland.
Part-time farming based on small livestock has become a widespread activity and
regional tradition, with almost 50% of the farmers (79 out of 161) keeping sheep only.
Many farmers are members of organized breeding associations that hold exhibitions,
breeding competitions and cow fights. These events are very popular among some
of the farmers, inhabitants, and tourists, and root farming firmly into local village
traditions. Only 7% of the farms cultivate more than 0.5 ha of arable crops [54]. In
this dry, continental inner-Alpine mountain valley region, climate change (rise in
temperature, further decrease in precipitation, shifts from snow to rain, and increased
glacier melt) is expected to have a particularly strong effect both on ecosystems and
tourism [52]. This makes it suitable for studying the combined effects of land-use
and climate changes.

2.2. ALUAM

2.2.1. Sector Supply Modeling Approach (ALUAM)

The ALUAM modeling approach has been described and validated in detail
in Briner et al. [16]. ALUAM is a comparative, static income maximization model
which simulates the competition between forest and a range of agricultural land-uses
to estimate land-use conversions in a spatially explicit manner at high resolution.
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Farmers’ decision-making is aggregated on a regional level. Using a modular
framework, ALUAM was linked with the forest-landscape model LandClim and
a crop yield model that simulate the response of forests and crops to changes
in climate. LandClim is a spatially explicit process based model that incorporates
competition-driven forest dynamics and landscape-level disturbances to simulate forest
dynamics on a landscape scale [55]. The model simulates forest growth in 25 m × 25 m
cells using simplified versions of tree recruitment, growth and competition processes
that are commonly included in forest gap models. Forest development and ecosystem
service indicators can be calculated on the basis of different forest management
regimes [5].

An iterative data exchange between the models allows for a detailed assessment
of the dynamic changes in land-use and the provision of agriculture and forest based
ecosystem services. Land-use and livestock activities on the different levels—parcel,
farm and regional—are optimized by a maximization of aggregated land rent.
Constraints assure that agronomic and socio-economic restrictions on parcel, farm
and sectoral level are met:

(i) At parcel level, location characteristics influence decisions about the choice of
the land-use activities (e.g., extensive or intensive grassland or pasture).

(ii) Grass must be utilized by livestock to generate value. Decisions about animal
husbandry are made on the farm level taking into account fodder and nutrient
balances between livestock and land-use. Since different parcels can belong
to one livestock activity, single parcels must be summed up to calculate
these balances.

(iii) Resources on a regional level—hirable workforce, number of animals available
for grazing on summer pastures, milk quota—are only available to a limited
extent and are therefore balanced over the whole region.

The aggregated land rent also considers farmers’ opportunity costs to measure
benefits foregone due to alternative uses of labor. Working hours are assigned a
threshold value. If aggregated land rent from the corresponding land unit drops
below this value, the parcel will no longer be cultivated. The model has been applied
in various case studies assessing the impact of different climate and socio-economic
scenarios [48–51]. In these model applications, a comparative static approach was
applied because fixed costs of agricultural production are assumed to be independent
from existing structures on a longer term. However, due to its high flexibility for
changes between different agricultural activities, this comparative static approach
is less suitable to represent short and medium term adjustments to market and
policy changes. Abrupt activity switches and corner solutions are typical for this
approach [56] and make model validation with short term data challenging. To allow
for an ex-post model validation, we used flexibility constraints which restrict the
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solution space for year to year adjustments in animal numbers. This means that
upper and lower bounds constrain the increase or decrease in animal numbers
based on the number of animals in the previous simulation year. In addition,
investments are also restricted based on the income in the previous year. While these
restrictions correspond with farm production cycles and empirical observations, the
parameterization of such flexibility constraints is rather subjective [57].

2.2.2. Agent-Based Approach (ALUAM-AB)

The agent-based model is described in Appendix B using the ODD protocol [58,59]
to allow for an improved model comprehension [60]. The implementation of the
agents in the model is analogous to the protocol presented in Huber et al. [45] for
the applications in the pasture-woodlands of the Swiss Jura. However, instead of
individual farms, we treat different groups of farms as one agent and we couple
ALUAM-AB to the forest landscape model LandClim [16,51].

The purpose of ALUAM-AB is to simulate future land-use changes, including
farmland abandonment and corresponding re-forestation in mountain landscapes,
triggered by the combined effects of climate, market and policy changes and
giving due consideration to the individual decision-making of the farmers.
The model is defined by interconnected human and environmental/agronomic
subsystems. Agents represent groups of farms. An agent has (1) its own state
(i.e., land endowment, animal housing capacity, etc.) which is updated after every
simulation period of one year and (2) decision-making mechanisms for managing
farm resources (i.e., a constraint income maximization based on mathematical
programming techniques). The state of the agent includes variables for household
composition and available resources (land, capital and labor) and a specific type of
decision-making based on opportunity costs of labor and a threshold for minimum
income and other characteristics. These decision-making characteristics represent
the model implementation of the actor types detailed under Section 3.1. The
environmental/agronomic subsystem is characterized by the agricultural production
cycle in the case study area. Agronomic variables include plant nutrient requirements
(N, P), manure production and production coefficients such as fodder intake, growth,
birth, deaths of animals and labor requirements that are based on national average
data and are the same as in the aggregated model presented by Briner et al. [16]. In the
modeled farm decision process (income optimization), the environmental variables
are considered as material (fodder and nutrients) balances that link land-use activities
with livestock activities. As a result, land-use intensities can be defined in a spatially
explicit manner. Crop rotation requirements and a labor balance are additional
constraints that link the human and environmental/agronomic subsystems.

Structural change is modeled using a land market sub-model [45,61]. The model
identifies land units that are no longer cultivated under the existing farm structure.
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There are three reasons why fields are attributed to the land market in the model (see
Figure A1): (i) units generate a land rent below zero, (ii) the corresponding agent
does not reach the minimum wage level, therefore the farm is abandoned and all the
assigned land enters the land market or (iii) the farmer retires in the simulation year
and has no successor. The land market sub-model randomly assigns the land units
to one of the other agents. It is then checked to confirm that this agent shows the two
following characteristics: The agent receiving the land unit must want to expand his
cultivated area (stated willingness to grow) and his shadow price for the land unit
must be positive. If these conditions are not met, the land unit is returned to the land
market and assigned randomly to another farm. Once again it is checked to verify
that this agent fulfils the conditions for the assignment of land. This procedure is
repeated until all land units are assigned to a farm or none of the farms is willing to
take the land units left on the market. Land units that are not transferred to other
farms are defined as abandoned and natural vegetation dynamics get under way
on these units (modeled in LandClim). If land-use allocation is optimal, farmland
capacities and livestock are updated and the next annual time step is initialized using
the parameters (prices, costs) of the following year.

There are two main differences between the model versions presented in
Sections 2.2.1 and 2.2.2:

(i) In the aggregated model, land and labor can shift between farm activities
without additional restrictions. Livestock housing capacities are built in every
model run. For model validation, however, flexibility constraints are necessary.
In ALUAM-AB, changes in land-based activities are only possible through the
land market.

(ii) The agents in ALUAM-AB differ with respect to their opportunity costs,
availability of workforce, minimum income, the probability of a successor,
their stated intention to grow or not, available farm land and livestock housing
capacities. In the aggregated model version, all the activities are weighted
with the same amount of opportunity costs and hired labor is restricted on the
regional level. There is no interaction between different farm types.

Please note that the sensitivity analysis focuses on the land-use part and thus
on the effect of different aggregation levels of decision-making in ALUAM. Forest
development is modeled in the forest landscape model LandClim. The two models
can be linked to assess the development of agriculture and forest ES in mountain
regions under land-use and climate change. As we focus here on the effect of different
representations of human decision-making on model performance, we leave the
assessment of changes in re-forestation and corresponding changes in ecosystem
services provision to future research.
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2.3. Developing the Agent Typology

Agent typologies for AMBs should be appropriate to the modeling purpose [37],
and reflect the main characteristics of the decision types under study in a parsimonious
manner. Policy relevance can be increased if the typology is related or embedded in
available farm census data and observed land-use choices [62]. Empirical research
increasingly highlights the importance of considering multiple objectives [28,63–65]
as well as attitudes and preferences towards more nature-friendly farming when
representing farmers’ decision-making [62,65–67]. In addition, farm diversification
and associated constraints on labor availability (and other aspects of part-time
farming) are thought to strongly affect farming system development and decisions
on land abandonment, particularly in mountain regions, and have been highlighted
as important elements in recent farmer typologies [68,69]. Historical accounts
of land abandonment in the study region and interviews with farmers and the
agricultural extension office confirm the importance of this aspect and of considering
socio-economic factors alongside environmental (i.e., parcel) characteristics when
assessing land abandonment and reforestation. Therefore we based our agent
decision typology on three main aspects: Objectives for farming, attitudes towards
extensive land-uses, and attitudes towards taking on off-farm employment.

2.3.1. Farm Household Survey

From October 2011 to January 2012 we conducted both a mail survey and
15 semi-structured interviews to collect data on (i) farming objectives, (ii) farmer
attitudes towards off-farm labor, and extensive land-uses, (iii) management
intentions, and (iv) farm structural characteristics. The mail survey was sent
out in November 2011 to all farmers registered in the livestock census of the
municipalities within the modeled region and also the adjacent Matter valley to
allow for a larger sample size. Of the 121 questionnaires returned (response
rate 25%), 119 contained full decision-making information. Data on farming
objectives and attitudes was collected on five-point Likert scales. The survey data was
subsequently linked to agricultural farm census data. This enabled a cross-validation
of information on livestock types, livestock numbers and farmed area, and also
provided additional parcel-level data on land use, land-use intensities and enrollment
in agri-environmental compensation schemes. After excluding survey responses
where the census data indicated a farming area of 0 (bee keepers, retirees), 111 cases
were retained for further analyses.

2.3.2. Actor Typology and Translation into Model Agent Types

Methodologically, the agent typology generation followed four steps: Firstly,
we performed a principal component analysis (PCA) with a quartimax rotation
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on 19 questionnaire items relating to farming objectives and attitudes. The PCA
served to condense the information in the data to a lower number of dimensions
and to generate uncorrelated components for subsequent cluster analysis. The
number of components retained was determined by analyzing the scree-plot, Very
Simple Structure statistics (VSS) and the total explained variance. Respondents’
scores on each component were computed directly by regression using the principal
function of the “psych package” of the R statistical computing environment [70].
Secondly, PCA regression coefficients were clustered by applying k-means clustering.
Silhouette statistics were employed to select the number of clusters for further
analysis. Thirdly, the typology was refined by describing the resulting clusters
with respect to additional survey data on farm structure and management (labor use,
household income, age, intentions for future management) and farm census data
(land use, livestock types, parcel characteristics, participation in agri-environment
schemes). Fourthly, the characteristics of the actor types were translated into model
agents, including modeling constraints and guidelines for initial allocation of the
decision-making types to model agents.

2.4. Model Validation and Sensitivity

Validation of ABM is a demanding task due to the theoretical as well as empirical
challenges involved [71,72]. There are different methods of validating ABM such as
comparison to real world data [73], an indirect approach [71], role playing games [74]
or extensive sensitivity analysis [22,75,76]. The present study adopts a stepwise
sensitivity analysis of model performance. Firstly, we use error decomposition
as proposed by Sterman [77] to assess the best-performing model outcome of the
agent-based model version and we compare it with modeled values of the aggregated
model version as well as observed values of the number of animals and land-use in
the case study region. Secondly, we use elementary effects (EE) defined by Morris [47]
to determine the most important exogenous factors affecting model outcome and
compare these EE’s between the two model versions. Thirdly, we test the impact of
different policy measures on each model outcome.

2.4.1. Error Decomposition in Single Best-Performance

We perform a behavior reproduction test to assess the model’s ability to
reproduce the behavior of observed data in our case study region. To achieve this,
we describe the error between observed data and simulation output, measured point
by point for each simulation run, and provide a decomposition of the error using
the Theil inequality statistics [77]. The root mean square percentage error (RMSPE)
represents the mean percentage difference between simulation and observed data
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with n as the number of observations, xm as the simulation output and xo as the
values of the observed data.

RMSPE =

√
1
n ∑

(
xm − xo

xo

)2
(1)

The Theil inequality statistics allow this error to be decomposed into
three components, so-called bias (UM), unequal variation (US) and unequal
covariation (UC) based on the mean square error (MSE), see Equations (2) and
(3), with x as the mean value and s as the standard deviation. A bias arises when
simulation output and observed data have different means. A large bias refers to
a systematic error which should be corrected by adjusting parameters. Unequal
variation implies that the variance of the two series differ, i.e., the model and the
observed data have different trends (or amplitude fluctuations). Unequal covariation
(with r = correlation coefficient) indicates that model and data are imperfectly
correlated, i.e., they differ point by point but may have the same mean and trend.
The sum of the three components is 1. Thus, the inequality statistics provide an easy
interpretation breakdown of the sources of error.

MSE =
1
n ∑ (xm − xo)

2 (2)

UM =
(xm − xo)

MSE
; US =

(
s2

m − s2
o
)

MSE
; UC =

2 (1− r) smso

MSE
(3)

For model calibration, we use census data from the Federal Office of Agriculture
containing livestock housing capacities and numbers of farms as well as managed
land, farmer age, livestock numbers and land in slope categories for each farm type
in the year 2000 [78]. Model validation uses the development in exogenous input
parameters, i.e., prices, costs and direct payments between the years 2001 and 2012 to
test model behavior (see Table A1). The modeling results with respect to the number
of animals (cattle and sheep) and land-use intensities (area of intensive and extensive
land-uses) are then compared to the development of these parameters in the census
data to assess the single best performance of the model (validation). To compare the
different grazing animals, we use livestock units (LU) which represents a nutritional
equivalent between sheep (0.17 LU), dairy cows (1 LU), suckler cows (0.8 LU),
calves and heifers (0.4 LU). The total area of extensive grassland and total areas of
intensive land-uses serve as indicators for land-use intensities. Extensive land-use
covers the land-uses entitled to ecological compensation payments in Switzerland,
namely extensively managed hay meadows, less intensively managed meadows and
extensive pastures. Extensively managed meadows and pastures can only be cut or
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grazed after the 15th of July. Only two cuts or grazing rotations are permitted and no
fertilizers are allowed on meadows.

2.4.2. Elementary Effects

The purpose of the concept of elementary effects is to determine those model
factors that have an important impact on a specific output variable and can be
understood as the change in an output y induced by a relative change in an input
xi, e.g., the impact of the milk price on land rent or the number of animals in the
simulation results.

di (X) =

(
y (X1, . . . Xi−1, Xi + ∆, Xi+1, . . . Xk)− y (X)

∆

)
(4)

In Equation (4), X is a vector containing k inputs or factors (x1, . . . , xi, . . . , xk)
in producing the output y. A factor xi can take a value in an equal interval set. The
symbol ∆ denotes a predetermined increment of a factor xi. The number of levels
chosen for each factor can be denoted with p. In the set of real numbers, xi1 and
xip are the minimum and maximum values of the uncertainty range of factor xi,
respectively. Each element of vector X is assigned a rational number or a natural
integer number. The frequency distribution Fi of elementary effects for each factor
xi gives an indication of the degree and nature of the influence of that factor on the
specified output. For instance, a combination of a relatively small mean µi with
a small standard deviation σi indicates that input xi has a negligible effect on the
output. A large mean µi and a large standard deviation σi indicate a strong non-linear
effect or strong interaction with other inputs. A large mean µi and a small standard
deviation σi indicate a strong linear and additive effect.

We calculate the EE for the aggregated land rent, i.e., the objective function of
ALUAM, and of the agents in ALUAM AB four the exogenous parameters presented
in Table 1, i.e., prices, costs, direct payments and agent characteristics. In addition, we
also provide the EE for the number of animals since this output is highly correlated
to ecosystem services provision in our case study region [49].

2.4.3. Sensitivity to Changes in Direct Payments

Various additional techniques are available [80] to capture the sensitivity of
the model. These often involve a specific experimental design or sampling strategy
to reduce the number of model evaluations necessary [22]. EE trajectories are only
viewed as a good way of screening single factors in sensitivity analysis but do not
inform on effects of factor combinations on modeling outcomes. To further test
the sensitivity of ALUAM with respect to policy measures that counteract land
abandonment, we combine the most important factor identified in the EE trajectories
with different levels of direct payments. Direct payments are the most important
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policy measure in Swiss agricultural policy to support mountain farming. In 2014,
Switzerland enacted a new direct payment system [81]. In this context, payments for
animals, i.e., a fixed payment for grazing animals (RFB payments) and animals kept
under difficult production conditions in upland and mountain areas (TEP payments)
were abolished. Direct payments per hectare (area payments) were assigned to
specific objectives such as food security, biodiversity or landscape maintenance.
Thus, we extended the sensitivity analysis by running both model versions, with and
without animal related direct payments, to assess non-linearities and interactions
between policy measures and model behavior.

Table 1. Exogenous input parameters for sensitivity analysis.

Parameters (k); p = 21 Sub-Categories Unit Absolute
Change (∆)

Min.
Values (xi1)

Max.
Values (xip)

Prices

Milk price -
CHF/kg

0.085 0 1.70
Lamb price - 22 0 443
Beef price - 232 0 4650

Costs

Variable costs machines -
CHF in %

0.095 0.1 1.9
Fixed costs machines - 0.095 0.1 1.9

Price of diesel fuel - 0.14 0.1 2.7

Direct payments (DP)

General DP -
CHF/ha

114 1 2280

Ecological compensation areas 1 Production
zone 2 43–143 1 855–2850

DP slope Slope
categories 3 35–48 1 703–970

Animal RFB payments 4 CHF/per
head

86 1 1710
Animal TEP payments 5 92 1 1843

Agent characteristics

Available family labor % of 2800 h 0.095 0.1 1.9
Opportunity costs CHF/hour 0.95 0 19

1 Ecological compensation areas: Extensive meadowland (not more than one cut and no
fertilizers), less intensive meadow-land, extensive pastures (only one rotation in autumn);
2 Administrative zone according to the Federal Office of Agriculture [79]: Valley bottom,
hillside; mountain regions I–IV depending on climate conditions, road infrastructure and
share of steep agricultural land; 3 Administrative category Slope <18%: 0 CHF; 18%–35%:
370 CHF per ha; <35%: 510 CHF per ha; 4 RFB: Payment per roughage livestock unit,
i.e., beef cattle 900 CHF per LU; dairy cows and sheep 400 CHF per LU; 5 TEP: Payment
per livestock unit in remote areas, i.e., 970 CHF per LU in mountain production zones.
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3. Results

3.1. Agent Typology

The PCA yielded six components capturing 71% of the variance (see description
and Table A1). The cluster analysis of the regression based principal component scores
identified five different farming types. Figure A1 shows the relationship between the
factor scores (calculated from items with PCA loadings > 0.5) and the five actor types.
The five types locate farmers on a gradual scale between more production-oriented
full-time and leisure-oriented farming, and varying dependencies on off-farm work
and income opportunities. In the following, we briefly describe the actor types
including the most important results of the cross-tabulation with farm structure and
census data as presented in Table 2.

Type 1: Production-oriented farmers

This type of farmer attaches great importance to generating an adequate income,
high yields and innovative products from their farming activities. They tend to
be less involved in local traditions, breeding competitions, or providing ecosystem
or landscape services. With a few exceptions, farming is their primary source of
income and most or all available labor is devoted to farming. Many also have
access to hired labor. Opportunity costs are low, as they farm largely independent
from work commitments outside of agriculture. Average farm size for this type
is significantly higher than for the other types, both with respect to area farmed
and livestock kept. The farming systems are mostly specialized, consisting of
larger dairy, beef/suckling cattle, mixed or commercial sheep enterprises. Overall,
however, the proportion of small livestock is low. Production-oriented farmers
regard the financial and ecological benefits of extensive land-uses and the provision
of ecosystem services as considerably less attractive than the other farming types.
They have the lowest share of extensive land-use which is consistent with their
attitudes and production-orientation. On average, they farm significantly higher
quality farm land both with respect to slope as well as agricultural production zones.
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Table 2. Key characteristics of farmers, farm structure and land use for the five actor
types. Numbers in brackets refer to median and standard deviation respectively.

Full-Time Farmers Part-Time Farmers Leisure
Farmers

Production-
Oriented
Farmers
(n = 16)

Ecological and
Landscape
Stewards
(n = 19)

Part-Time/Leisure-
Oriented
Breeders
(n = 30)

Traditionalist
Leisure
Farmers
(n = 17)

Leisure-
Oriented
Farmers
(n = 29)

Total managed
land in cluster ha 365.8 275.9 274.2 130.2 200

Farmer’s age y 46 (48; 9.53) 45 (47; 7.58) 50 (52.0; 8.36) 46(47; 10.3) 47 (47; 8.19)

Household income kCHF 60 (55; 27) 82 (85; 30) 66 (55; 22) 68 (55; 23) 76 (85; 16)

Household income
from agriculture % 52 (70; 37) 35 (30; 32) 19 (10; 17) 17 (10; 20) 13 (10; 8)

Labor hours
farm manager h/day 6.5 (7; 2.82) 4.6 (3; 3.26) 4.5 (5; 2.11) 3.7 (3; 1.76) 2.8 (3; 0.89)

Additional
available labour
(family or hired)

h/day 10.2 (2.9; 19.54) 7.4 (5; 7.91) 5.4 (3.6; 7.38) 2.9 (2.5; 3.11) 4.9 (3; 4.95)

Managed
agricultural land ha 22.9 (18.6; 17.82) 14.5 (8.8; 13.40) 9.1 (7.8; 5.12) 7.7 (6.4; 2.43) 6.9 (6.5; 2.89)

Total livestock LU 25.7 (14.8; 32.50) 16 (9.8; 15.85) 8.5 (7.2; 5.52) 6.4 (5.2; 3.15) 6.4 (5.9; 3.63)

of which
small livestock LU 5.2 (4.3; 5.10) 3.5 (2.7; 3.92) 4.9 (4.3; 4.19) 4.1 (4.1; 3.45) 4.1 (4.3; 4.14)

of which
large livestock LU 20.5 (3.6; 35.05) 12.5 (4.4; 16.56) 3.5 (0; 5.91) 2.3 (0; 3.24) 2.3 (1.2; 2.26)

of which
dairy cows LU 14.7 (0; 22.26) 2.1 (0; 4.99) 1.4 (0; 2.91) 0.5 (0; 1.5) 0.8 (0; 1.55)

Small livestock % 20 22 58 64 65

Land in severely
disadvantaged

production zone 54
% 52 83 72 63 58

Land in
production zone 53 % 15 9 26 32 35

Land in best
production zone

(hill zone 41)
% 29 6 1 0 2

Steep land (> 18◦) % 51 74 86 78 82

Extensive
grassland

and pastures
% 20 38 28 30 31

Type 2: Ecological and landscape stewards

Farmers in this cluster place a stronger emphasis on the social, ecological
and landscape aspects of their farming activities than on the achievement of high
yields or profits. They consider extensive land-use and the provision of ecological
services to be both an adequate source of income and an effective measure to increase
biodiversity. Farmers of this type engage mainly in medium sized suckling cow/beef,
mixed, or horse enterprises or small to medium scale sheep and goat farming with
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an increasing focus of their farming activities towards ecological direct payments.
While suckling cow and beef enterprises derive the bulk of their household income
from agriculture, the average share of agricultural income in the overall cluster
amounts to 35%. On average, farmers of this type devote about 4.6 h per day to
farm work, with some variation between farms keeping large or small livestock.
Perceived dependence on off-farm labor and income however is low, indicating a
certain amount of flexibility in labor use due perhaps to extensification of production.
Some of the farmers in this group have access to additional hired labor, and all of
them to family labor. On average, this provides them with an additional 7.4 h per
day of help on the farm. This cluster exhibits the highest proportion of extensive land
uses among the five farming types which is consistent with the stronger ecological
orientation of these farmers.

Type 3: Part-time or leisure-oriented breeders

Farmers in this cluster share a strong interest in being recognized as “good”
farmers or breeders within their respective (farming) communities and like to share
their farming passion by participating in exhibitions, competitions, or cow fights.
By engaging in these activities, they also aim to maintain local traditions and
contribute to village life. They derive their main income off-farm and devote on
average about 4.5 h a day to farming. The stronger off-farm engagement of the
farm manager is also reflected in higher perceived opportunity costs compared to
the “Ecological and landscape stewards”. Most farmers in this group can count on
additional family labor of on average 5.4 h per day (median 3.6 h). On average, this
farm type houses 8.45 LU and manages an area of 9 ha. In addition to many small
to medium scale enterprises focused on breeding small livestock, this cluster also
includes farmers who keep low numbers of a specialized cattle breed often used
for fighting and small to medium scale suckling/beef enterprises. On average, the
proportion of steep land is highest in this cluster.

Type 4: Traditionalist leisure farmers

Farmers of this type undertake small-scale farming as a way to maintain local
traditions. Compared to type 3, they do not aim for such a strong involvement in
breeding, competitions and local decision-making, and perceive their opportunity
costs to be much higher. All of the farmers are employed outside of agriculture
and their farming activities depend strongly on off-farm work commitments and
income. Therefore, labor invested in agricultural activities is low, as is the share of
household income derived from agriculture. Of the 6.4 livestock units housed on
average, the overall proportion of small livestock is high (64%). The main farming
activities include sheep farming, horses and low numbers of suckling or dairy cows.
Farm sizes are among the smallest in the survey.
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Type 5: Leisure-oriented farmers

Farmers in this group place a high importance mainly on being involved in
local decisions and village life. They are significantly less focused on achieving high
income and yields than the other clusters but do not place a strong focus on ecological
or competition objectives either. All of the farmers work outside of agriculture and,
with an average of 2.8 h, labor invested in agricultural activities is very low. It is
however complemented by a few hours of additional family labor (4.9 on average a
day, median 3 h). Agriculture only contributes 13% to the total household income.
Perceived opportunity costs are midway between the two other leisure-oriented
farming types. Farms are small and the majority of the leisure farmers keep sheep
only, occasionally mixed with low numbers of suckling cows or beef cattle. On the
few farms which keep large livestock, the workload is carried by family members
rather than by the farm manager himself.

Table 3 shows how the actor characteristics are implemented into agent types
in ALUAM-AB. For the full parameterization of these characteristics we refer to
Table A2. Consistent with the actor typology, opportunity-cost levels were introduced
as a main proxy to reflect non-economic objectives and attitudes in our income
optimization model. The level of opportunity costs represent a measure of benefits
forgone due to alternative uses of labor. Each agent type is assigned a specific
threshold level as a percentage of a fixed monetary value i.e., the opportunity costs
in the aggregated model version. Low opportunity costs imply that farm activities
are maintained even though the income generated by these activities is low.

Another important restriction for part-time and leisure-oriented farmers is the
available work force. Additional work force, other than the family labor available,
can only be hired by production-oriented farmers. In addition, farm growth in the
model is only possible for the “Production-oriented farmers” and the “Part-time
and leisure breeders” as well as “Ecological and landscape Stewards” since these
agents are either more production-oriented or the survey has shown that they are
more interested in farm growth. An agent type specific minimum income threshold
was introduced as an additional proxy for non-economic farming objectives. In
the optimization process, farms exit if they fail to achieve this minimum income
threshold. For leisure-oriented farm types however this threshold level is set very
low. The succession rate defines the probability that the farm will be taken over
when the farmer retires (at the age of 65) and was derived from the farm survey and
interviews. Farm extensification describes a maximum level of extensive meadows
and pastures on the corresponding farm type. Parameters for farm and livestock
housing capacities are derived from census data. Finally, the agents are assigned
different production system flexibility, based on their stated preferences for specific
farm activities in the survey and the interviews. “Ecological and landscape stewards”
and “Traditionalist leisure farmers” can switch between cattle and sheep production.
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The other farm types, which are currently specialized, may invest in new fixed assets,
i.e., farm buildings but cannot switch their production system. Changes in farm
activities are further mediated through the land market module.

Table 3. Translation of empirical farm type characteristics into parameter levels for
implementation into the agent-based model.

Full-Time
Farmers Part-Time Farmers Leisure Farmers

1. Production
Oriented
Farmers

2. Ecological
and Landscape

Stewards

3. Part-Time/
Leisure

Breeders

4. Traditionalist
Leisure Farmers

5. Leisure
Farmers

Opportunity costs Low Low Medium High Low
Available family labor High Medium Medium Low Low
Farm growth possible Yes Yes/No Yes No No

Additional hired
workforce Yes No No No No

Minimum income High Medium Medium Low Zero
Succession rate % High Medium Medium Low Low

Extensification Low High Low High High
Farm size High Medium Low Low Low

Livestock housing capacity High Medium Small Small Small
Production system

flexibility Specialized Mixed Specialized Mixed Specialized

3.2. Model Validation: Best-Performing Simulation Output

Table 4 shows the results from the error decomposition to assess the single best
output performance of ALUAM-AB with respect to the total number of animals
measured in livestock units (LU), the number of sheep and cattle and the aggregated
areas of intensive and extensive land use. To summarize, the overall errors of
the model performance and the unequal variation error are small, and thus the
model captures the mean and trends of the observed data satisfactorily. The mean
percentage error of the simulation with respect to these output variables ranges
between 1.5% for the number of sheep and 10.9% for the total amount of extensive
land use.

Table 4. Error decomposition in the single best-performing output of ALUAM-AB.

Unit RMSPE % Bias (UM)
Unequal

Variation (US)
Unequal

Covariation (UC)

Animal
production unit LU 0.035 0.808 0.042 0.150

Sheep Nr. 0.015 0.003 0.000 0.997
Cattle Nr. 0.082 0.821 0.059 0.120

Land-use
(intensive) ha 0.057 0.810 0.002 0.188

Land-use
(extensive) ha 0.109 0.092 0.000 0.908

50



The remaining error in the case of sheep production can be attributed to an
unequal covariation, i.e., the simulation shows small lags in the reproduction of
observed data (see also Figure 1a). In contrast, the mean errors in total amount
of animals (3.5%), cattle (8.5%) and intensive land use (5.7%) are associated with
bias. The simulation results for the total amount of cattle and intensive land use
are consistently lower than the actual number of dairy cows, sucklers and beef
cattle (see Figure 1b) and the total amount of intensive grassland in the case study
region (see Figure 1c), i.e., there is a systematic error between simulation results and
observed data.

This bias is associated with the aggregation of agents’ resources, such as livestock
housing capacities and workload, as well as fixed assumptions concerning technical
parameters, such as nutrient requirements or mechanization. These assumptions
are inevitable and could only be replaced by a data intensive expansion of model
parameters to smooth the linear production functions in the model, i.e., by adding
more production activities and sub-types of these activities. The unequal variation
error for these output categories however, is small and thus no deviation from the
trend could be detected.

The largest gap between model and observed data can be found for the
aggregated area of extensive land use (see Figure 1d). The error can be attributed
to the unequal covariation between simulation results and observed data indicating
that the error is unsystematic. The model may not be able to fully capture the
changes in the amount of extensive land use. In general, however, there is no
systematic deviation from the trend. With respect to land abandonment, a year
by year comparison is not possible since observed data on forest regrowth is only
available for the whole period (+252 ha of forest). Compared to the initial distribution
of parcels, ALUAM-AB abandoned 227 parcels (or ha). Thus, land abandonment is
slightly underestimated in our approach.

Figure 1 also illustrates the differences between the sector supply model
ALUAM and the agent-based model ALUAM-AB in the single best performing
output. Without a specification of the agents, lamb production is not profitable and
the number of sheep is continuously decreasing.

The same development can be observed for cattle between the years 2001 and
2008. The increase in prices in 2009 leads to a reversal of this trend. Due to the
flexibility constraints, however, the increase is restricted to 10% of the number of cattle
in the previous year. For intensive grassland use the aggregated model performs
similar to the agent-based model version. In contrast, the amount of extensively
used grassland is much lower in ALUAM. More land is abandoned which does not
correspond well with the observed data. Overall, the agent-based model shows
a better validation to observed data than the sector supply model ALUAM.
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Figure 1. Best-performing model outcome comparing simulation data from
ALUAM and ALUAM-AB with observed changes between 2001 and 2012 in
animal production (sheep and cattle) and land-use intensities. (a) Sheep production;
(b) cattle production; (c) intensive grassland use; (d) extensive grassland use.

3.3. Elementary Effects

Figure 2 visualizes the mean and standard deviation of the elementary effects of
the 13 exogenous parameters on land rent (the objective function of the model) and
the number of animals in both model versions, i.e., with and without agents (n = 520
model runs). A detailed overview of EE effects for all parameters is provided in the
Appendix (Table A3). Figure 2 shows that the same four parameters emerge as the
main exogenous drivers in both model versions: Opportunity costs of labor, milk
and lamb prices and the price for energy (fuel).
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Figure 2. Elementary effects (i.e., mean and standard deviation) of land rent and
livestock units in the two model approaches for exogenous input factors. (a) EE
land rent ALUAM; (b) EE land rent ALUAM-AB; (c) EE livestock units ALUAM;
(d) EE livestock units ALUAM-AB.

Compared to these four main drivers, both the mean and standard deviations
of other parameters are relatively small, indicating that individual changes in these
parameters result in a negligible effect on model outcome (all else being equal). In
the sector supply model ALUAM, the mean and standard deviations are large for the
impact of diesel price, opportunity costs and milk price on the aggregated land rent
(Figure 2a). Simulations imply that the milk price results in the highest variability
with respect to the objective function of the model. The impact of the milk price on
the number of livestock units (Figure 2c) is much smaller since the model can switch
its activities, i.e., from dairy cows to beef and breeding cattle or to sheep production,
which overall compensates for the reduction in dairy cows. Such substitution effects
are smaller for diesel price and opportunity costs which also have a high impact on
the number of livestock. The lamb price has only a small impact on land rent and the
number of livestock units in the aggregated model.

53



In the agent-based model ALUAM-AB, opportunity costs have the highest
impact on land rent with respect to mean and standard deviation (Figure 2b). Milk
price has a large impact on the mean, but exhibits a much lower variability compared
to the sector supply model. The importance of the fuel price decreases in that it has a
lower effect on the variability of the outcome compared to ALUAM. With respect to
livestock units (Figure 2d), the results show that only opportunity costs have a large
impact on mean and standard deviation. The influence of other exogenous inputs
is reduced. This exemplifies the reduced flexibility in the agent-based model: Since
farm types cannot switch to alternative farm activities, the impact of price and costs
on the number of livestock units is small while the effect on the land rent, i.e., their
agricultural income, is still high. The extent of this effect depends on the profitability
of the corresponding farm activity.
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Figure 3. Comparison of changes in the number of dairy cows with one at a time
changes in the milk price between 0 and 1.5 CHF in both model approaches.

The higher the profitability, the larger the impact it has on the objective function.
Since the productivity of sheep rearing is low, changes in lamb prices have a much
lower overall effect on land rent than changes in milk price and diesel costs. Thus, in
contrast to the sector supply model, farmers in the agent-based model continue to
produce even if prices vary strongly from one year to the next.

This effect is also illustrated in Figure 3 which shows the changes in the number
of dairy cows with a one at a time decrease in milk price. In the aggregated model
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ALUAM, the number of dairy cows falls drastically if the milk price drops below
0.4 CHF. In contrast, agents in ALUAM-AB continue to produce milk due to structural
restrictions (sunk costs in livestock housing capacities and availability of farmland
through land market) and farm type characteristics (opportunity costs, intentions to
grow and minimum income). This model behavior smoothes the adaptation of farm
activities to socio-economic drivers and allows for a more subtle representation of
farm structural changes consistent with real world observations (see Figure 1).

3.4. Sensitivity to Changes in Direct Payments

Figure 4 shows the interaction between the three levels of opportunity costs
(10, 20 and 30 CHF) and the impact of two different direct payments schemes, i.e., with
and without payments per livestock unit. Please note that these levels of opportunity
costs are multiplied with the agent-specific levels of opportunity costs (low, medium,
high) in the agent-based model (see Tables 3 and A2). The figure directly compares
the output from the two model versions with respect to the number of cattle and
sheep as well as the amount of intensively and extensively used grassland. The
simulation results of the sector supply and the agent-based model are represented
with the blue and the brown bars respectively. In general, livestock and intensively
used grassland areas in the aggregated model ALUAM are lower compared to the
agent-based version ALUAM-AB and the reaction to changes in the direct payments
is more pronounced. This is illustrated in the four diagrams:

(1) Figure 4a shows that the resulting number of cattle is, in general, higher in the
agent-based model than in the sector supply model. The only exception is the
basic model run with all direct payments and the lowest level of opportunity
costs (10 CHF) where the outputs from ALUAM and ALUAM AB show similar
numbers. This exception can be explained by the fact that both models were
calibrated to this basic combination of input factors. However, with increasing
opportunity costs, the number of cattle decreases in the sector supply model
irrespectively of direct payments (e.g., by 28% from 758 to 540 livestock units in
the simulation runs with direct payments) whereas in the agent-based model
opportunity costs have a smaller impact on the number of cattle. Although
benefits foregone due to alternative uses of labor increase, cattle numbers
remain stable or even increase slightly (e.g., by 3.6% from 611 to 633 livestock
units in the simulation runs without area payments).

(2) With respect to sheep, Figure 4b shows a different simulation behavior of
the agent-based model. As in the sector supply model, the number of sheep
decreases with increasing opportunity costs (e.g., by 46% from 609 to 328 livestock
units in the simulation runs with direct payments). The two models also
respond in a similar direction for both direct payment schemes. The abolishment
of payments for animals leads to a decrease of sheep in both model versions. In
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the sector supply model, the number of sheep even falls to the minimum level,
i.e., only production-oriented farmers still produce lamb.

(3) The same pattern can also be observed for the amount of intensively used
grassland. An increase in opportunity costs generally leads to a decrease in
intensive meadows and pastures in both model versions (e.g., by 40% from
1048 to 632 hectares in the ALUAM simulation runs with direct payments). The
discontinuation of payments for animals leads to a decrease in intensively used
grassland in both model versions.

(4) The change in the amount of extensively used grassland presented in Figure 4d
reflects the opposite pattern of intensively used grassland. In the base
simulations with direct payments, the amount of extensively used grassland
increases with higher opportunity costs. Without payments for animals, the
amount of extensive grassland reaches a threshold level, i.e., a corner solution
in both simulation models. The amount of extensively used grassland does not
exceed a level of 700 and 1000 ha in ALUAM and ALUAM-AB respectively.
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Figure 4. Sensitivity of model outputs ((a) cattle, (b) sheep, and (c,d) land-use
intensities) to the abolition of animal based direct payments with three levels of
opportunity costs. ALUAM = Sector supply model; ALUAM-AB = Agent-based
ALUAM; 10,20,30 = level of opportunity costs in CHF.
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The extent of land abandonment can be calculated by adding up areas of
intensive and extensive land-use. Without animal based payments, the agricultural
surface decreases by 25% in ALUAM whereas simulation results imply land
abandonment of 2% in the ALUAM-AB results.

In conclusion, the simulation results presented in Section 3.3 illustrate that
although the same exogenous inputs drive the outcome of both models, the
interaction of policy measures and opportunity costs strongly influences simulation
results. Analogous to the arguments discussed in Section 3.3, these effects can
be attributed to the integration of agents’ characteristics into the sector supply
model. ALUAM-AB is less flexible since areas and fixed assets, i.e., livestock housing
capacities do not switch directly to more profitable agricultural activities as in the
more aggregated model version. In the agent-based version, land can only be
transferred via the land market module and farm type characteristics constrain
production flexibility. In ALUAM-AB only “Ecological and landscape stewards” and
“Traditionalist leisure farmers” can shift their production from sheep to cattle (or
vice versa). However, based on the agent typology, full-time sheep farmers (farm
businesses) and leisure-oriented farmers still remain in production as long as they
meet their income thresholds. This leads to a more diversified production pattern in
the agent-based model version.

4. Discussion

Socio-economic changes will continue to influence land abandonment in mountain
regions [3,7,16]. Agent-based models offer the opportunity to include non-economic
objectives and attitudes into land-use change models [36,37]. This is of specific
importance when addressing farmers’ behavior in mountain regions [30,32,33].
The analysis of farmers’ decision-making in our case study region in the
Valais, Switzerland confirms earlier findings that farmers have multiple values
and objectives which translate into different farming strategies whereby profit
maximization is only one [62,65–67]. Objectives of part-time and leisure-oriented
farmers are particularly diverse and the aspiration to achieve high production and
income levels through farming, as assumed by mainstream agricultural policy, is
considerably less pronounced. Our analysis also highlights pronounced differences in
availability of farm labor and opportunity costs that strongly affect farmers’ behavior,
in line with findings from other European mountain regions [68]. By relating our
analysis of farming objectives and attitudes to farm census data, we were able to
develop a farmer typology that could be qualitatively integrated within a simulation
framework to assess land-use changes in a mountain region.

To that end, we adapted an existing sector supply model to include specific
farm type agents. The existing model uses constraint income maximization based
on mathematical programming techniques to simulate an optimal allocation of
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agricultural production factors while considering a large number of constraints.
The farm types identified in the survey are used as an empirical foundation for
model restrictions with respect to opportunity costs, farm growth intentions or
farm succession. This procedure allows us to take into account both structural
characteristics (e.g., fixed assets in land and labor) of existing farms and different
types of decision-making separately. Thus, the advantage of this framework is that it
allows the consideration of different forms of management, agronomic conditions
and locally available production factors restricting the flexibility of farmers to
react to socio-economic changes while maintaining the micro-economic footing
of the simulations [22]. The constraint agent behavior allows for a good fit of
the simulations with observed data (see 4.2). Such behavioral validations are
still a challenge in ABM [69,70,72]. In contrast to other ABM studies addressing
farmland abandonment [40–42,45], however, we do not model individual farms and
remain within the structure of traditional normative farm sector supply modeling
approaches [56]. One key challenge in such normative approaches is that corner
solutions emerge and these only change if input parameters vary considerably or
additional restrictions are introduced into the model structure [56]. Although the
integration of agents allows the inclusion of additional constraints, corner solutions
may still translate into our framework (see for example the scope of extensive
land-use under the sensitivity run without animal based payments). In addition, the
integration of empirically grounded data that allows for more flexibility (or more
constraints) in the modeling framework requires the acquisition of information on
farmers’ decision-making. This is very costly and a transfer of the model to other
regions demands a new parameterization of the model. This is a disadvantage that
our approach shares with other ABM studies. Since our results show, however, that
such details are important for model validation, more generic agents [37,82,83] or
more flexible model frameworks [84] should still include context specific agents,
especially in mountain regions.

A comparison of our ABM (ALUAM-AB) with a sector supply modeling
approach [16,48–50], shows that the inclusion of agents allows for a better
representation of the short and medium term developments of farm activity changes
in mountain regions. At the same time, the findings from the assessment of
elementary effects imply that the simulation results are driven by the same exogenous
parameters in both model versions. Opportunity cost, i.e., the measure of benefits
forgone due to alternative uses of labor, is the most influential factor. The importance
of this factor is also supported by other empirical studies which show that farming
in Swiss mountain regions would be unprofitable with high labor costs [85,86]. In
addition, we find that production prices (milk and lamb) and input prices (fuel
price) have a high impact on modeling results. This is in line with other studies that
confirm that profitable agricultural activities in mountain and upland regions are
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very sensitive to these parameters [33,87]. The fact that both simulation approaches
are driven by the same exogenous input parameters supports the use of ALUAM-AB
to assess short and medium term land-use changes and land abandonment in
mountain regions since the economic background of the sector supply model is
maintained. On the other hand, it implies that an in-depth sensitivity analysis of
opportunity costs is needed when using a comparative static approach to assess forest
development in the context of long-term climate change impacts on re-forestation.
Such a sensitivity analysis in the aggregated model would allow considering major
uncertainties regarding the behavior of the next generation of land-users and the
consequences for the provision of forest ecosystem services.

In contrast to Schouten et al. [76], we explicitly focus on exogenous parameters
which vary over the simulation period and do not present the sensitivity of technical
model parameters such as feed required per cow. However, we are aware that the
model may be sensitive to these parameters, too. For example, the level of extensive
land-use in our model also depends on the percentage of extensive biomass that can
be consumed by a cow or sheep without reducing its output i.e., the amount of milk
or meat produced. Thus, additional sensitivity analysis may still be required before
using our modeling approach to answer more specific research questions.

The sensitivity analysis of the abolition of animal based direct payments
presented here reveals that the extent and the form of the direct payment scheme
have an essential impact on land abandonment in our simulations. This is in line with
other ABM studies addressing land abandonment in marginal areas [41,45,88]. This
finding also does not come as a surprise since Switzerland still provides some of the
highest support for the agricultural sector worldwide [89] and farm structural change
has been slow compared to other European alpine regions [28,90]. More importantly,
however, our sensitivity analysis shows that an increase in opportunity costs leads to
different simulation outputs for cattle in the two model versions if animal payments
are abolished. The assessment of policy measures is thus sensitive to the chosen
modeling approach and parameterization. This supports the importance of testing
model sensitivity to different levels of opportunity costs. In addition, the extent of
land abandonment in the aggregated model ALUAM was always more pronounced
compared to the agent-based model version due to higher flexibility in shifts between
production activities. This reflects the constraint development within an agent-based
model framework which results in more diversified production patterns compared
to a purely normative based optimization (see Section 3.3). In our sensitivity
analysis, we did not show the spatially explicit consequences of land abandonment as
presented in other studies [7,43,44]. For the aggregated model, this has been shown
in Briner et al. [16,48]. The agent-based model allows for a more realistic spatially
explicit representation of land abandonment in the short and medium term, as it
better captures the diversity of decision-making in mountain farming. Combined
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with consistent scenario analysis [91] mountain-specific future developments of land
abandonment, re-forestation and ecosystem services can be simulated and compared
to other mountain regions such as the Jura mountains [45].

5. Conclusions

Land abandonment, and the subsequent re-forestation are important drivers
behind land-use change and losses of ecosystem services in mountain regions.
Agent-based models support the development and appraisal of policy and
management options to counteract this development. Realigning the representation
of human decision-making with time scales of ecological processes such as
reforestation presents a major challenge in this context. Our sensitivity analysis
comparing a land-use change model with and without agents cannot ultimately
answer the question whether to implement agent-specific behavior anchored in the
current farming generation or an aggregated optimization model with a focus on
long-term ecosystem succession and forest development. Model choice depends
on the scientific questions addressed and the corresponding (dis-) advantages of
the different approaches. The sensitivity analysis presented here, however, helps to
sensitize the model and parameter choice and shows two important directions for
the interpretation of model results. Firstly, our agent-based model can capture short
and medium term developments in land abandonment better than the aggregated
version without losing its sensitivity to important socio-economic drivers. Therefore,
also more generic or aggregated modeling approaches should maintain some specific
(mountain) characterization of agent types. Secondly, long term and comparative
static approaches should assess the sensitivity to opportunity costs or other relevant
non-economic drivers in their model framework. This would allow considering some
of the variations and uncertainties regarding current and future behavior of mountain
farmers also in comparative static approaches and may reveal different reactions
to policy changes. Overall, the analysis presented helps to (i) sensitize model and
parameter choice (ii) identify important parameters for agent type characterization,
and (iii) better interpret existing and future studies when assessing the impact of
global change on land abandonment and re-forestation in mountain regions.
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Appendix A.

Table A1. Results of the principal component analysis of farming objectives
and attitudes.

REC PROD LOC_INF COMP_TRAD EVAL_EXT OPP_COST Communalities

Farming Objectives

With my farming activities, how important is it for me to . . .

...achieve high
financial profit 0.18 0.74 0.09 0.01 0.00 −0.10 0.60

...earn enough for
a good living 0.03 0.67 −0.11 0.16 0.17 −0.41 0.68

...realize innovative
products, projects,
and ideas

−0.15 0.68 0.02 0.15 0.03 0.07 0.51

...achieve high yield
and production 0.11 0.76 0.14 −0.06 −0.19 0.11 0.67

...have the best/most
beautiful animals, fields 0.88 0.21 0.08 −0.07 −0.07 0.10 0.84

...present my
achievements (e.g., in
breeding animals) and
compete with others in
exhibitions or cow fights

0.88 −0.12 0.05 0.15 0.03 0.09 0.83

...maintain the traditions
of the region and
the family

0.29 0.07 0.48 0.56 −0.03 0.18 0.66

...comply with rules and
regulations of society 0.06 0.07 0.24 0.83 −0.10 0.06 0.77

...fulfil the demands of
the public (e.g., with
respect to providing
additional services)

0.08 0.01 0.10 0.89 0.05 −0.01 0.81

...maintain decision
power for important
issues in the village

0.01 0.11 0.88 0.15 0.03 −0.04 0.82

...contribute actively to
economic/social
activities in the village

0.19 −0.02 0.89 0.18 0.00 0.02 0.85

...earn recognition of
other farmers 0.68 0.10 0.25 0.31 −0.02 0.00 0.63
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Table A1. Cont.

REC PROD LOC_INF COMP_TRAD EVAL_EXT OPP_COST Communalities

Attitudes towards
part-time farming

The time I invest in
farming depends on the
level of income I can earn
outside of agriculture

0.19 0.07 -0.17 0.04 −0.02 0.82 0.75

Without employment
outside of agriculture
which helps support my
farming activities I
would give up farming

0.06 −0.17 0.17 0.08 −0.08 0.81 0.73

Attitudes towards extensive land use

With extensive use of
grassland and pastures I
can achieve an adequate
(financial) yield

0.05 −0.06 0.14 −0.14 0.72 −0.16 0.58

With extensive grass and
pasture I can
considerably improve
biodiversity and
landscape quality

0.08 −0.25 0.04 0.03 0.78 0.01 0.67

Remuneration for the
provision of ecosystem
and landscape services
represents a good
alternative to producing
agricultural goods

−0.18 0.20 −0.10 0.02 0.81 −0.02 0.74

Proportion of explained
variance 0.13 0.13 0.12 0.12 0.11 0.09

Cronbach Alpha 0.8 0.71 0.84 0.8 0.67 0.64
1 The overall KMO value amounted to 0.65 and was considered acceptable for exploratory
analysis, as were the KMO values of individual items. The model with 6 extracted
components showed a fit based on the diagonal of 0.93, and explained 71% of the variance.

The PCA allowed the variance in the data to be summarized into 6 components:
The first component, labeled “Recognition” (REC) reflects the aspiration of farmers
to earn recognition within their own farming community, specifically by showing
their livestock and skills at competitions and exhibitions. The second component,
“Profit and Yield” (PROD), describes the degree to which farmers aim to achieve an
adequate income, high profits and high yields from their farming activities. The third
component, “Local influence” (LOC_INF), relates to maintaining an influence on, and
contributing to, local village life through farming. The fourth component, labeled
“Compliance and Tradition” (COMP_TRAD), summarizes farming motivations
related to maintaining family traditions and to fulfilling societal expectations, e.g.,
with respect to providing additional ecological or landscape services. The fifth
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component, “Evaluation of extensive land-uses” (EVAL_EXT) describes how farmers
perceive financial and non-financial benefits of extensive land-uses. Finally, the
sixth component, “Opportunity costs” (OPP_COSTS), reflects the dependence of the
farming engagement on extra-agricultural work commitments and income sources.Land 2015, 4 500 
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Appendix B.

ODD Protocol for ALUAM-AB

B1. Purpose

The purpose of ALUAM-AB is to simulate future land-use changes, including
farmland abandonment and corresponding re-forestation in mountain landscapes,
triggered by the combined effects of climate, market and policy changes giving due
considering to the individual preferences of the farmers. Thus, the consequences of
changes in prices and policy measures relating to agricultural land-use activities can
be simulated and feedback from climate change impacts on grassland and forestry
can be considered. Spatially explicit information on agricultural land-use activities
allows for a viable linkage with the forest landscape model LandClim.

B2. State Variables and Scale

Agents represent groups of farms. A farm agent has (1) its own state (i.e., land
endowment, animal housing capacity, etc.) which is updated after every simulation
period of one year and (2) decision-making mechanisms for managing farm resources
(i.e., a constraint optimization based on mathematical programming techniques). The
objective function and the set of constraints which define the solution space formally
written as:

Z = ∑
j

(
pj − cj

)
· xj

∑
j

aij · xj ≤ bi ∀i = 1, · · · , I

xj ≥ 0 ∀j = 1, · · · , I

(B1)

With Z = income per farmer; xj = agricultural farm activity (j = 1 to I); pj = returns
on activity j; cj = cost per activity j; aij = technical coefficients required to produce
xj (of constraint i and activity j); bij = available resource. The state of the farm agent
includes variables for household composition and available resources (land, capital
and labor) and a specific type of decision-making based on opportunity costs of labor
and a threshold for minimum income (leisure-oriented, part-time, full-time farmer,
see Figure 1). Information on decision-making types was derived from surveys
and interviews and combined with agricultural census data (see Section 3.1). The
smallest landscape unit in ALUAM-AB is an area of 100 m × 100 m as it is used by
the individual agent-groups. Natural conditions of the different land-use units and
potential fodder production are based on the results presented in Briner et al. [16].
Agronomic variables include yield losses, plant nutrient requirements (N, P), manure
production and production coefficients such as fodder intake, growth, birth, deaths
of animals, labor requirements etc. that are based on Swiss average data. Production
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related variables, e.g., the number of livestock or the amount of hay sold, are
aggregated over farm groups and represent aggregated values over one year. In
the optimization process, these variables are optimized under the consideration of
different fodder and nutrient balances that link land-use activities with livestock
activities. As a result, land-use intensities are, as in the sectoral supply approach,
defined in a spatially explicit manner.

B3. Process Overview and Scheduling

ALUAM-AB proceeds in annual time steps. The agents allocate their available
resources to maximize their income (aggregated land rent). Thereby they consider
natural, farm level and individual constraints as well as incentives and regulations
from the market and policy instruments. Investments in production capacity made
in previous years are considered as sunk costs representing path dependencies of
the individual farm groups. Structural change is modeled using a land market
sub-model [45,61]. The model identifies land units that are no longer cultivated
under the existing farm structure. There are three reasons why fields are attributed
to the land market in the model: (i) units generate a land rent below zero, (ii) the
corresponding agent does not reach the minimum wage level, therefore the farm is
abandoned and all the assigned land enters the land market or (iii) the farmer retires
in the simulation year and has no successor. The land market sub-model randomly
assigns the land units to one of the other agents. It is then checked to confirm that
this agent shows the two following characteristics: The agent receiving the land
unit must want to expand his cultivated area (stated willingness to grow) and his
shadow price for the land unit must be positive. If these conditions are not met, the
land unit is returned to the land market and assigned randomly to another farm
(Figure A1). Once again it is checked to verify that this agent fulfils the conditions
for the assignment of land.

This procedure is repeated until all land units are assigned to a farm or none
of the farms is willing to take the land units left on the market. Land units that
are not transferred to other farms are defined as abandoned and natural vegetation
dynamics get under way on these units (modeled in LandClim). If land-use allocation
is optimal, farm capacities and livestock are updated and the next annual time step
is initialized using the parameters (prices, costs) of the following year.

The environmental feedback is based on a “lightweight” coupling between
ALUAM-AB and LandClim [26] and is modeled in the following sequence: While
each model is driven by a (synchronized) time series of climate or agronomic
constraints, land-use change is passed from ALUAM-AB to LandClim. In response,
forest development is transferred from LandClim to ALUAM-AB. This data exchange
occurs for time steps of 30 years, starting in the year 2010.
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Figure A1. Process overview of land market module in ALUAM-AB. Source:
Adapted from [45]

B4. Design Concepts

Emergence: Changes in farm activities emerge from an endogenous
development that is determined by prices, policies, and decision-making type which
are given exogenously. In addition, land-use patterns (intensity levels of land-use)
emerge from the main outcome of the structural changes on agent level. Climate
induced changes are also taken into account.

Adaptation: Agents respond to climatic, socio-economic and policy changes
by adjusting their production activities, applying new production technologies,
increasing (or reducing) land size and adjusting land-use intensities. In addition,
agents also exit the sector if their income falls below a minimum threshold.

Prediction: The agent’s objectives are characterized by an overall farm income
optimization approach. This dictates the allocation of an agent’s available resources
to production giving due consideration to natural, farm-level and individual
constraints as well as incentives and regulations from the market (yearly price and
cost parameters) and policy scenarios. Thus, the fundamental concept behind our
approach is rational economic behavior (land rent maximization) and no learning
patterns exist. However, the consideration of individual constraints, such as
opportunity costs, minimum income wage and limited time resources, leads to
the inclusion of non-economic goals in the decision-making process.

Interaction: The interaction between the agents is based on the land market
described in the process overview. Interaction between agents and the environment
is based on the model linkage of LandClim and ALUAM-AB. Detailed information
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on spatially explicit natural conditions is provided by the LandClim model.
Although the LandClim model can provide stochastic output, only mean changes
in yields are considered in ALUAM-AB which does not include stochastic variables.
The corresponding maps are used as an input for ALUAM-AB. The spatially
explicit information following the optimization procedure is then re-entered into
the vegetation model. These maps can be used to illustrate the changes in
land-use dynamics.

B5. Initialization

Initial attributes for households were defined using information from the survey
and interviews along with farm census data of the FOAG (see Section 2.3). Based
on the distribution of the farm characteristics in the census data, we assigned the
observed age structure to each farm type. Thus, the retirement of farmers within
each farm type corresponds with the existing age structure in the case study region.
This age structure is updated after every simulation period. The initial allocation
of land-units to agents is based on a random assignment of parcels in which the
share of parcels according to slope corresponds to the real world distribution [72].
The accumulative share of land cultivated by different agent types reported in the
census data was determined for three slope strata (<18◦, 18◦–35◦, >35◦). Within these
strata, the land-units were then allocated to the agents according to their relative land
tenure with the help of a random number. Sensitivity tests with repeated random
assignments showed marginal impact on simulation outcomes. Model versions
initialized with allocation of land-units based on alternative or multiple stratification
criteria (e.g., agricultural zone, municipality, elevation) performed badly compared
to the observed data.

B6. Input

Information with respect to natural conditions is derived from the LandClim
model and the crop model described in Briner et al. [16]. Price and cost developments
in the applications of ALUAM were derived from scenarios for the European
agricultural sector [92]. Policy and climate changes are based on an interdisciplinary
development of scenarios for our case study region [91]. For the validation period,
prices and costs were adopted from federal statistics (see Table A1). Table A2 shows
the parameterization of the agents’ characteristics in ALUAM based on the results
from Section 3.1.
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Table A1. Observed data: Price and cost assumptions for the period 2000–2012.

Parameters
(k)Pric Unit 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Prices

Milk price CHF/kg 89.4 89.9 88.4 85.5 84.6 82.4 81.8 80.0 87.7 74.8 71.8 72.7 70.5
Lamb price 232 232 233 233 217 192 194 194 197 213 193 183 202
Beef price 2446 2446 2423 2491 2677 2787 2968 3051 3197 3197 3197 3197 3197

Costs

Variable
costs % 1 1 1 1 1 1.04 1.05 1.07 1.09 1.11 1.13 1.15 1.17

Fixed costs 1 1 1 1 1 1 1 1 1.01 1.02 1.03 1.04 1.06
Price of
diesel CHF/l 1.44 1.4 1.34 1.36 1.45 1.64 1.74 1.77 2.03 1.6 1.72 1.86 1.93

Direct payments

General DP CHF/ha 1200 1200 1200 1200 1200 1200 1200 1200 1080 1040 1040 1040 1020
ECA 700 700 700 700 700 700 700 700 700 700 700 700 700

DP slope 510 510 510 510 510 510 510 510 510 510 620 620 620
RFB CHF 900 900 900 900 900 900 900 900 860 690 690 690 690
TEP 970 970 970 970 970 970 970 970 970 970 1010 1010 1010

B7. Sub-models

LandClim: Forest dynamics and forest derived ES, such as potential timber
harvest are simulated using the forest landscape model LandClim [93]. LandClim
is a spatially explicit process based model that incorporates competition-driven
forest dynamics and landscape-level disturbances to simulate forest dynamics on a
landscape scale. LandClim was designed to examine the impact of climate change and
forest management on forest development and structure [94]. The model has been
tested in the Central Alps, North American Rocky Mountains, and Mediterranean
forests, and has been used to simulate current, paleo-ecological [95–97] and future
forest dynamics [55,94]. LandClim simulates forest growth in 25 m × 25 m cells
using simplified versions of tree recruitment, growth and competition processes
that are commonly included in forest gap models [98]. Forest growth is determined
by climatic parameters (monthly temperature and precipitation), soil properties
and topography, land-use and forest management and large-scale disturbances.
Individual cells are linked together by the spatially explicit processes of seed
dispersal, landscape disturbances and forest management. Forest succession
processes within each cell are simulated in a yearly time step, while landscape-level
processes are simulated in a decadal time step. Forest dynamics within each cell are
simulated by following tree age cohorts, where cohorts are characterized by the mean
biomass of an individual tree and the number of trees in the cohort. We implemented
a forest management regime to evaluate potential timber production within each

68



landscape cell. Forest stands are evaluated every 20 years to determine if they should
be entered and timber removed. If the average height of the dominant trees within a
stand (largest 100 trees·ha−1) is greater than 15 m, the stand is entered and all trees
with a DBH (diameter at breast height) greater than 20 cm are harvested. This yields
harvested trees that have an average DBH between 25 and 30 cm. This management
routine is used to obtain a timber production value for each cell on the landscape.
This can then be returned to ALUAM and used to inform land-use conversion. For
this study, the data on forest production and forest ecosystem services was taken
from an earlier analysis [16,48–50].

B8. Crop Model

Projected future yields of relevant crops are calculated using FAO (Food and
Agriculture Organization of the UN) data on optimal and absolute crop growing
conditions. The minimum and maximum temperature and precipitation values that
support optimal crop development and the values that define the crops’ temperature
and precipitation extremes, are extracted from the FAO crop data base EcoCrop (FAO,
online http://ecocrop.fao.org). These four values formed the basis for a relative
crop yield curve for temperature and precipitation values using an incomplete beta
distribution. These species specific crop yield curves are then used to calculate
the relative yield for six crops based on monthly precipitation and temperature
values for each landscape cell (100 m × 100 m) in the case study landscape. The
projected realized yield is taken as the minimum yield value from the temperature
and precipitation responses. If land is irrigated, yield is only deemed to be limited
by temperature responses. The absolute yield of crops is calculated by standardizing
the values against observed yield of crops in 2000.
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Table A3. Elementary effects in two model versions.

ALUAM-AB ALUAM ALUAM-AB ALUAM ALUAM-AB ALUAM

Land Rent (CHF) Animal Total Grassland Intensive

Mean Stdev Mean Stdev Mean Stdev Mean Stdev Mean Stdev Mean Stdev

Prices

Milk price 229,915 131,355 305,040 185,823 33 19 45 44 6 5 8 6
Lamb 35,221 24,010 29,203 13,407 19 10 10 10 9 7 7 7

Price beef 822 1365 1542 2269 0.4 0.6 0.6 0.8 0.3 0.4 0.4 0.6

Costs

Variable costs
machines 8 5 14 8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fixed costs
machines 66 38 88 58 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0

Price of diesel
fuel 112,646 231,293 260,699 333,490 45 33 231 115 61 48 194 99

Direct Payments

General DP 8860 4911 10,533 5910 0.1 0.1 1.0 0.5 0.0 0.0 1.1 0.5
ECA 1315 983 1040 1873 1.0 0.6 1.0 0.5 1.5 0.8 1.2 0.6

DP slope 10,574 5920 11,915 7213 0.0 0.2 0.5 0.4 0.0 0.1 0.8 0.5
RFB Payments 472 514 794 907 0.1 0.0 0.2 0.2 0.1 0.0 0.0 0.1
TEP payments 7371 4407 10,152 6370 3.6 2.0 4.7 3.3 2.8 1.2 2.3 1.2

Agent Characteristics

Workload 1744 3893 0.6 0.9 1583 2644
Opportunity

costs 244,625 329,172 244,625 329,172 160 143 160 143 170 115 170 115

Abbreviations: DP: Direct Payments; ECA: Environmental compensation area; RFB:
Payment per roughage livestock unit, TEP: Payment per livestock unit in remote areas.

Conflicts of Interest: The authors declare no conflict of interest.
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Investigating Impacts of Alternative Crop
Market Scenarios on Land Use Change with
an Agent-Based Model
Deng Ding, David Bennett and Silvia Secchi

Abstract: We developed an agent-based model (ABM) to simulate farmers’ decisions
on crop type and fertilizer application in response to commodity and biofuel
crop prices. Farm profit maximization constrained by farmers’ profit expectations
for land committed to biofuel crop production was used as the decision rule.
Empirical parameters characterizing farmers’ profit expectations were derived from
an agricultural landowners and operators survey and integrated in the ABM. The
integration of crop production cost models and the survey information in the ABM is
critical to producing simulations that can provide realistic insights into agricultural
land use planning and policy making. Model simulations were run with historical
market prices and alternative market scenarios for corn price, soybean to corn
price ratio, switchgrass price, and switchgrass to corn stover ratio. The results
of the comparison between simulated cropland percentage and crop rotations with
satellite-based land cover data suggest that farmers may be underestimating the
effects that continuous corn production has on yields. The simulation results for
alternative market scenarios based on a survey of agricultural land owners and
operators in the Clear Creek Watershed in eastern Iowa show that farmers see
cellulosic biofuel feedstock production in the form of perennial grasses or corn stover
as a more risky enterprise than their current crop production systems, likely because
of market and production risks and lock in effects. As a result farmers do not follow
a simple farm-profit maximization rule.

Reprinted from Land. Cite as: Ding, D.; Bennett, D.; Secchi, S. Investigating Impacts of
Alternative Crop Market Scenarios on Land Use Change with an Agent-Based Model.
Land 2015, 4, 1110–1137.

1. Introduction

Midwestern landscapes are dominated by commodity crops including corn,
soybean, and wheat. Commodity prices and the policies affecting them are the key
drivers of farmers’ decisions about agricultural practices, such as crop rotations and
fertilizer rates. Federal and state policies on renewable energy production interact
with commodity markets to affect decisions about changes in crop type and land
management. These decisions, in turn, have significant environmental impacts in
terms of water quantity and quality, soil erosion, and carbon sequestration in the

79



Midwest [1–4]. Farmers’ involvement in the production of biofuel crops (e.g., corn
stover, miscanthus, and switchgrass) could result in new land use patterns and,
thus, altered environmental outcomes. Due to substantial risk associated with the
adoption of novel agricultural practices, however, farmers may not follow the same
maximum profit rules when considering biofuel crop production as they do when
considering traditional crops. To achieve insight into the potential impact of biofuel
crop markets on agriculture land use, empirical information about farmers’ attitudes
towards novel practices must be integrated into land use models.

Secchi et al. [5] investigated the potential water quality changes associated with
market scenarios of decreasing soybean to corn price ratio in the Upper Mississippi
river basin by integrating an economic-driven land use model and the Soil and Water
Assessment Tool (SWAT), a surface water quality model. Their results showed that
an increase in corn acreage by 14.4% could result in increase in N loadings to the
watershed by 5.4% and P loadings by 4.1%. Another similar study was conducted
to investigate the impacts of different corn price scenarios on crop rotation patterns
and environmental consequences in Iowa, USA, by integrating an economic model
and the edge of field environmental impact model EPIC (Environmental Policy
Integrated Climate) [6]. The authors found that sustained high corn prices might
result in continuous corn in crop rotation patterns on both current cropland and
CRP (Conservation Reserve Program) land. This change in land management is
associated with increased sediment and nitrogen loss from fields to surface water.
Leaving crop residues such as corn stover in field can help recycle nutrients, control
surface runoff and prevent water and wind erosion. Potential biofuel markets
for corn stover feedstock could force further shifts from corn-soybean rotation to
continuous corn and a significant reduction of crop residue, thus, creating further
losses of soil, nitrogen (N) and phosphorus (P) [7]. As an alternative, switchgrass,
a native perennial grass in the Midwest, has been extensively investigated as a
potential feedstock for cellulosic biofuel production. Switchgrass is currently used in
riparian buffer strips to reduce sediment, N and P in surface runoff [8], however, its
production as a biofuel crop requires the use of fertilizers that can make their way to
surface and groundwater [9].

Various approaches, such as statistical techniques, expert models (e.g.,
Bayesian probability), cellular models (cellular automata and Markov models), and
hybrid models that combine multiple techniques have been applied in land use
modeling [10]. These approaches, however, focus mainly on spatiotemporal patterns
of land use change rather than the decision-making process of individual land
managers, despite the fact that these managers are the essential driving force in the
complex land use dynamics [11].

Agent-based model (ABM) is a computer simulation approach that can be
used for land use modeling [10,12]. Agent-based land use models represent system
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complexity using a bottom-up approach that characterizes the decision making
processes of heterogeneous agents as well as feedback processes among agents and
between agents and the biophysical environment. Simulated agents, such as land
owners, ranchers, farmers, and policy makers, act and interact following decision
rules. They are characterized by sets of parameters that can be derived from theory
or empirical data obtained by land use surveys, participatory observations, and
field and laboratory experiments [13,14]. Due to the mechanistic nature of this
approach and its unique perspective concerning agent-agent and agent-environment
interactions, ABMs are often integrated with environment models to explore the
impacts of socio-economic driving forces or alternative policies on land use and
consequent environment outcomes [15–17]. ABM can be used to represent multiple
types or levels of agents (e.g., institutions and individuals) and the co-evolution
of and interaction between biophysical and human decision making processes in a
coupled human-environment system [10,18–22].

In Midwestern agricultural landscapes, ABM has been applied in studies on how
farmer decision making is impacted by agricultural policies, such as the CRP [23],
potential market scenarios of biofuel crops [24], and price incentives for nitrogen and
carbon abatement [25,26]. In the first two studies [23,24], the research is focused on
how land use changes emerge from farmers’ decisions under the assumption that the
natural environment is static through time. In the latter two studies [25,26], the focus
is on the impacts of farmers’ management decisions on water quality. The authors
integrated ABM with SWAT, and analyzed two-way interactions between farmer
agents and the natural environment. The natural environment included two types
of processes: biological and hydrological, both of which interacted with agents but
at different levels. Agents’ decisions on cropping practices not only influenced but
also responded to crop yields. Agents’ decisions affected watershed water quality,
but there was no feedback from water quality into the agents’ decisions. The study
was considered as “semi-hypothetical” since no empirical information was used to
parameterize agents’ risk premiums towards novel agricultural practices.

The research objectives of this study are to: (1) develop an ABM to simulate
farmers’ decisions about land use practices given a risk-averse profit maximization
rule; and (2) investigate the impacts of alternative market scenarios on land use
change by integrating empirical information about farmers’ attitudes into an ABM.
Through this study, we address the following research questions: (1) is the current
land cover pattern economically optimal given declines in crop yield resulting from
continuous corn/soybean rotation? and (2) would biofuel crops be underutilized
given farmers current attitudes towards biofuel crop production?
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2. ABM of Agricultural Land Use

2.1. Mathematical Programming for Modeling Decision Making in ABM

Farm household modeling often relies on mathematical programming (MP)
techniques to simulate land management decision of farmers and their responses
to policy. This approach has several drawbacks [12,23]: (1) it generally assumes
the maximization of a single objective (e.g., profit), which is often not appropriate
when modeling the adoption of new technologies; (2) it ignores the social aspects
of farm households such as communication and interaction among farmers in the
same community; and (3) it does not properly capture the heterogeneity of the social
behaviors and responses of farmers. In ABMs of agricultural land use decision
making, mathematical programming is generally applied at the farm level and
combined with heuristic approaches and Bayesian inference or Bayesian probability
networks [23,25–27]. Heuristic approaches, such as decision trees or rule-based
models, assume limited human cognition, while optimization approaches, such
as MP, assume that inefficiency in human decisions comes from external factors,
such as the failure of institutions, imperfect markets, and lack of infrastructure or
limited information [27]. Though the two approaches appear to be different in
theory, Schreinemachers and Berger [27] argue that in practice they can be converted
into each other. For example, decision rules about production and consumption
in heuristic approaches can be incorporated into MP models as constraints. An
optimization approach is even more appropriate for policy analysis and planning
since it can quantitatively characterize the outcomes of alternative policies.

In the Midwestern U.S., Sengupta et al. [23] employed a hybrid approach to
model land enrollment in an agricultural land set aside conservation program,
CRP. Different types of farmers with distinct decision making rules were modeled
in the Cache River watershed of southern Illinois. In another example of ABM
for agricultural land use, Ng [25] and Ng et al. [26] combined a farm-level
stochastic programming model with a Bayesian updating procedure to represent the
optimization and adaption processes of farmers’ decision in the Salt Creek watershed
in Central Illinois. In Ng’s ABM [25,26], the farmers are assumed to be economically
rational with bounded information. Farmer agents learn new information through
time with Bayesian updating. In this ABM, farmers interact with their geographic
neighbors to exchange information about crop yields and costs.

2.2. Empirical Information for ABM

Empirically-based ABMs for land use simulation construct and parameterize
decision making models from empirical information that characterizes macro-level
patterns and micro-level processes. Information about micro-level processes could
be directly utilized for developing and testing the structure of decision making
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models in ABM, while datasets about macro phenomena are usually applied in
calibrating and validating the model [13]. In this study, we focus mainly on empirical
information about micro-level processes and its use for the parameterization of the
decision making model.

To characterize heterogeneous agents and their behavioral responses, empirical
information needs to be analyzed using statistical methods (e.g., factor or cluster
analysis, regression) and GIS techniques. Based on the statistical descriptions of
agents characteristics derived from observation datasets, different populations of
unique artificial agents can then be generated with Monte Carlo techniques [28].

Smajgl et al. [14] developed a framework for generating and calibrating
the parameters that describe agent attributes and behavioral functions. In their
framework, the parameterization process is composed of five steps: (1) create an
agent typology based on behavioral differences; (2) specify the attribute values
for each agent type; (3) specify the behaviors of each agent type by obtaining the
parameter values for their behavioral functions; (4) develop agent types from agent
attributes or behavior responses; and (5) generate a population(s) of agents based on
the agent typology, and relevant attributes and parameters.

Empirical information can be collected using various methods [10,13,14]. These
methods include role-playing games [29,30], sample surveys [31], participatory
observations [32], field or laboratory experiments [33], and GIS and RS data
collection [34]. Of these five methods, sample survey is the most quantitative
approach and can be carried out at a relatively large spatial scale [13]. Though
qualitative information about agents’ interactions and feedbacks could be obtained
using different methods, it is still challenging to empirically identify and quantify
social, spatial and cross-scale interactions among agents and feedbacks between
agents’ decisions and the biophysical processes [35].

3. Study Area

The study area is the Clear Creek watershed located in Iowa and Johnson
Counties in Eastern-Central Iowa, U.S. (Figure 1). It is a typical Midwestern
agricultural watershed dominated by row crops (corn, soybean), with an area of
about 267 km2. The average annual temperature from 2000 to 2011 was 10 ◦C
and average annual precipitation was 886 mm based on the weather records at the
Iowa City Municipal Airport station. According to the United States Department
of Agriculture National Agricultural Statistical Services (NASS) remote sensing
Cropland Data Layer (CDL) images in 2008, the percentages of the predominant cover
types were respectively 29.77% corn, 20.11% soybean, and 28.17% grassland/pasture.
Additionally, 14.56% of the total watershed was in urban and developed uses and
6.9% was forest including deciduous, evergreen and mixed forest. Urban and forest
areas are located mainly in the eastern part of the watershed. According to the Iowa
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Soil Properties and Interpretations Database (ISPAID), about 54% of the watershed
is covered by soil with slope range of 2%–14%; while soils are distributed among
several soil drainage type ranging from well drained soils (26%), moderate-well
drained soils (23.5%), to poorly drained soils (11.9%). The dominant soil textures of
the surface horizon in the region are silty clay loam (35.8%) and silt loam (35.1%);
about 45% of the total land is highly erodible.
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Figure 1. The Clear Creek Watershed in East-Central Iowa. Figure 1. The Clear Creek Watershed in East-Central Iowa.

According to an agricultural land use survey conducted in 2010 [36,37],
the dominant crop rotation type is corn-soybean and corn-corn-soybean with
conventional tillage used for both corn and soybean. Some farmers adopt
conventional tillage practices for corn but no-till or minimum-till practices for
soybean. Specific information about actual application rates of inorganic N fertilizers
in corn fields is not available for this watershed. According to Iowa State University
Extension [38], the highest N rate is applied for corn after corn (168–224 kg/ha),
followed by corn after soybean if no manure is applied (112–168 kg/ha), and corn on
recently manured soils (0–101 kg/ha), given that all N is applied before corn planting
or crop emergence.
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4. Model Description

In this section, the model is described following the Overview, Design concept
and Details (ODD) protocol [39].

4.1. Overview

4.1.1. Purpose

This model is used to simulate farmers’ decisions on agricultural land use
including crop type, tillage type, and fertilizer rates. We aim to run simulations
to study farmers’ decisions on biofuel crop productions in response to biofuel
crop prices.

4.1.2. Entities, State Variables, and Scales

Agents in the model are farmers. Each farmer agent corresponds to a farm
composed of one or more land parcels that are represented by command land
units (CLUs) in this study. Farmer agents have attributes including farm size, and
parameters about their attitudes towards biofuel crop production are summarized
in Table 1.

We use eight parameters to characterize farmers’ responses to the questions in
Table A1 and thereby to describe their attitudes towards biofuel crop production and
the associated risk premium. Descriptions of the eight parameters are included in
Table 1. Additionally, there is a parameter Area representing the land acreage of the
farm size of each farmer agent.

Each land parcel has attributes including area (in hectares), Corn Suitability
Rate (CSR) (dimensionless) which is an index of land suitability for crop production,
and potential yield of switchgrass (metric ton/ha).

Based on each land unit, farmer agents make CLU-specific decisions on crop
type, tillage type, and fertilizer rates by changing the value of the CLU-specific
(i as index) and year-specific (t as index) state variables: Xi, j, t, and j represents
all available options for crop type, tillage type, and fertilizer rate levels. Xi, j, t is a
binary variable about crop type, tillage type, and N application rate level. Crop types
include corn (with or without stover harvest), soybean, and switchgrass. Tillage
types include conventional tillage, mulch tillage, and no tillage. Fertilizers include
N, P, and K (potassium). For example, Xi, j=1, t = 1 means corn is planted in land
parcel i at year t, Xi, j=2, t = 1 means soybean is planted in land parcel i at year t, and
Xi, j=3, t = 1 means the land parcel i is fallow at year t. Similarly, ∑6

j=4 Xi,j,t = 1 and
j = 4, 5, 6, respectively, mean conventional tillage, mulch tillage, and no tillage. When
j = 7, 8, . . . , 16, Xij is the decision variable of the N application level from the lowest
to the highest. In the biofuel crop market scenarios, crop type decision variables also
have two extra options, switchgrass, and corn with stover harvested.

85



Table 1. Parameters characterizing farmers’ attitudes towards biofuel crop production.

Parameter Value Agent Characteristics

Type

0 Not interested in either marketing corn stover
or planting switchgrass

1 Only interested in marketing corn stover

2 Only interested in planting switchgrass

3 Interested in both

Profit SWG Numeric Profit rate ($/ha) required by the farmer to
plant, harvest and market switchgrass *

Percent1 SWG Numeric
Percent of farm acreage on which the farmer

would plant switchgrass if the Profit
SWG can be achieved

Percent2 SWG Numeric
Percent of farm acreage on which the farmer

would plant switchgrass if 1.5 times the
Profit SWG can be achieved

Profit Stvr Numeric Profit rate ($/ha) required by the farmer to
harvest and market corn stover *

Percent1 Stvr Numeric
Percent of farm acreage on which the farmer
would consider harvesting and marketing

corn stover if the Profit Stvr can be achieved

Percent2 Stvr Numeric
Percent of farm acreage on which the farmer

would harvest, and market corn stover if
1.5 times the Profit Stvr can be achieved

Portion Stvr Numeric Portion of corn stover that the farmer
would harvest

* Given that in 2010 when the survey was conducted, the average price for corn was
$196.85/metric ton and for soybean was $404.14/metric ton).

One simulation step represents one year. Farmer agents make decisions on each
land parcel (CLU) of their farms every year. CLUs are the smallest land units with
common crop choice and management, a continuous boundary and the same owner
and operator. Thus, in the ABM, land parcels represented as CLUs are the smallest
simulation units for which both the physical conditions (soil fertility, slope, etc.)
and farmer’s land use management practices are assumed to be homogeneous.
Generally, a farm is composed of multiple CLUs and each farm corresponds to a
single land use decision maker represented as a farmer agent in the ABM. Data for
CLU boundaries in Iowa are available to the public through the Natural Resources
Geographic Information Systems (NRGIS) Library. However, the information about
farm boundaries is confidential and thus cannot be publically displayed. In this
study, we generate pseudo farm boundaries by utilizing the statistical distribution of
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farm sizes, and the spatial locations of farm centroids based on real information of
farm boundaries.

4.1.3. Process Overview and Scheduling

Each year, farmer agents estimate commodity prices and fuel prices, calculate
crop production costs and returns, and make decisions on crop type, tillage type,
and fertilizer rates. To make these decisions, farmer agents try to maximize farm
profit given the constraints of crop yield drag effect, and their risk aversions towards
biofuel crop production.

More specifically, at each time step, for each farmer agent, the land use
decision making process is implemented in two parts in the model. In Part I, linear
programming is used to look for land use practices that maximize farm profit with
planning horizon of 1 year given the crop choices of corn without stover, soybean
and fallow. The 1-year planning horizon is used in biofuel crop market scenarios. In
model verification, 1-year, 2-year, and 3-year planning horizons are used. In Part II, a
decision-tree based algorithm is designed for comparing the profit rates determined
from Part I with the profit rate from corn with stover at the simulation step, and
with the average yearly profit rate from corn with stover and switchgrass calculated
within a 10-year planning horizon (discount rate = 0.05). If the risk premium for
biofuel crops is met and expected profits exceed those of traditional crops, the profit
maximizing biofuel crop will be selected and planted. Total biofuel production
is limited by farm specific acreage constraints. For next time step, the same two
processes are implemented except that the land parcel that was previously enrolled
in switchgrass is be excluded from the farm profit maximization until it is out of the
10-year enrollment limit.

4.2. Design Concepts

4.2.1. Principles

We assume that farmers are risk averse profit maximizers, and that there is
little risk associated with the choice between corn and soybeans, since they are both
well-established annual crops. Therefore, in the case of these crops the decision rule
collapses to profit maximization. However, there is substantial risk associated with
new markets and crops. Further, if these crops are perennials, they lock in farmers
for substantial periods of time, thereby increasing both market and production risk.

In all cases, farm profit depends on yield potential for corn, soybean, and
switchgrass specific to each land parcel. Corn and soybean yields are lower if the
crops are not rotated, and corn yield responds to different levels of N rates. Because
of the additional risk associated with cellulosic ethanol markets, farmer agents might
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require higher profits from biofuel crops than they do from traditional crops and
limit the total acreage allocated to biofuel crops.

4.2.2. Emergence

Watershed-scale agricultural land use acreages and fertilizer application rates
are modeled as an emergent property of farmer agent decisions. For model results,
we expect to observe insensitivity of cropland switched to switchgrass and corn
stover harvest in response to the price change due to farmers’ risk aversions towards
biofuel crop production.

4.3. Details

4.3.1. Initialization

We use NASS CDL data from 2001 to 2011 for initializing the land cover in
the first two years of simulation and compare with the simulation results in the
remaining years. NASS CDL is a raster data set at 30 meter spatial resolution. It
contains land cover information of specific crop types including corn and soybean.
We use the majority zonal operator in ArcGIS 10.0 to aggregate the pixel-specific crop
type into the CLU level.

4.3.2. Input Data

The ABM inputs include prices and land parcel information. The price file
contains annual time series of prices for crops (corn, soybean, switchgrass, corn
stover), fertilizers (N, P, K), and fuels (diesel, LPG-liquid petroleum gas). The parcel
information file contains land parcel specific data about acreage, CSR, yield potential
for switchgrass, and land cover types for the previous two years. These data were
used to construct net returns for each field in the watershed for each crop rotation [6].
In addition, a parameter file characterizing farmer agents’ attitudes towards biofuel
crop production (as in Table 1) is a necessary input into this model. The price
data was based on United States Department of Agriculture’s (USDA’s) Economic
Research Service, U.S. Energy Information Administration and Iowa State University
Extension’s budgets [38,40,41], the CSR data was obtained from the soil database
ISPAID, the historical landcover was constructed using the CDL, and the attitudes
of farmers were parameterized from a land use and attitudes survey conducted in
2010 [36,37].
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4.3.3. Submodels

As mentioned, there are two parts of the decision making processes. In Part I,
for current iteration year, the farm based objective function is:

maximize P =
n

∑
i=1

(Si − Ci) (1)

where i is the land parcel index, n is the total number of land parcels within a farm, P
is the profit, S is revenue from crop sale, and C is crop production cost. Equation (1)
illustrates that the farm agents’ objective is to maximize farm profit each year. With
decision variables included, Equation (1) can be expressed as:

maximize P =
n

∑
i=1

m

∑
j=1

f
(
cijXij

)
(2)

where cij is the objective function coefficient corresponding to the jth variable for
land parcel i, and Xij is the jth decision variable for land parcel i, n is the total number
of land parcels within a farm, and m is the total number of decision variables. As
illustrated in Equation (2), the farm profit maximization for corn and soybean is a
linear programming problem, which is scripted in the mathematical programming
software (AIMMS) and implemented as an ABM using C++.

After the implementation of Part I, the decision variable values and the resulting
profit rates from the AIMMS optimization component are passed to the decision-tree
based algorithm in Part II. In this part, profit rates for biofuel crops (corn with stover
harvest, and switchgrass) are evaluated with the agent-specific risk premiums and
compared to commodity crop profit rates obtained from the Part I algorithm. The
biofuel crop is chosen for a land parcel when the risk premium for biofuel crops is
met and expected profits exceed those of traditional crops. Empirical parameters
characterizing farmers’ risk premiums about biofuel crops are incorporated in the
decision-tree based algorithm. The parameters are derived from the land use survey
and applied in the land use decision rule for switchgrass and corn stover production.
The parameters and the sampling strategy of parameter values derived from the land
use survey database are described in Table 1 and the Appendix B.

5. Data and Simulation Settings

5.1. Agricultural Landowners and Operators Survey

A survey of agricultural landowners and operators in the Clear Creek watershed
was conducted in 2010 to obtain information about current farming practices
and farmers’ willingness to participate in conservation practices and biofuel crop
production [36,37]. The survey questions were sent by mail to all non-urban
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landowners and agricultural operators (about 998) within the watershed. Responses
were received from 397 of them (response rate 41.1%). A survey database was
developed based on those responses. The database covers multiple topics including
personal information, farm characteristics, and farmers’ information sources and
their attitudes towards watershed conservation and growing biofuel crops. For this
study, we are interested in questions about (1) farm size; (2) minimum net profit
rates that farmers require from biofuel crop production; (3) the acreage on which
farmers would plant, harvest, and market corn stover and/or switchgrass; and (4) the
proportion of corn stover harvested if such profits were realized (Table A1 in the
Appendix B).

5.2. Price Scenarios and Simulation Settings

Price inputs to the model include commodity prices of corn, soybean, corn
stover, switchgrass, fertilizers (N, P, K) and fuels (LPG and diesel). In this study,
we run the ABM simulations with four different input datasets for commodity and
biofuel crop prices to investigate: (1) the land use pattern resulting from profit
maximization (Simulation Set I); (2) the sensitivity of land use pattern to commodity
crop prices (Simulation Set II); (3) the impacts of biofuel crop prices on land use
patterns given the risk associated with biofuel crop production (Simulation Set III,
and Simulation Set IV).

5.2.1. Historical Market Prices

Simulation Set I is based on historical market prices from 2003 to 2011 (Table 2).
The corn and soybean prices are the average prices in the calendar year (ISU cash
corn and soybean prices) [42]. From 2003 to 2006, corn prices are replaced with
the target prices of the counter-cyclical payments for corn. The fertilizer prices are
the average U.S. farm prices of selected fertilizers in March or April published by
USDA’s Economic Research Service. The LPG price is the weekly Iowa propane
residential price in the middle of March and the diesel price is the price of Midwest
No. 2 diesel retail sales by all sellers. The data is published by the U.S. Energy
Information Administration.

5.2.2. Price Scenarios for Corn and Soybean

Simulation Set II (Table 3) is based on price scenarios for 360 combinations of
corn prices and soybean prices. By confining the price ranges within the historical
records and the ten year baseline projections for U.S. agricultural markets by the Food
and Agricultural Policy Research Institute, University of Missouri (FAPRI-MU) [43],
we determine 24 levels of corn prices and 15 levels of soybean to corn price ratios
(Table 3). The 24 levels of corn price start from 360 (24 × 15) combinations of corn
price and the price ratio are used for generating price inputs into the model. For the
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360 price input files, the other prices including switchgrass, corn stover, fertilizers
(N, P, and K), and fuels (diesel and LPG) are held constant. Switchgrass and corn
stover are not taken into account and so their prices are considered as zero. Prices of
fertilizers and fuels are the average values of FAPRI-MU projections.

5.2.3. Price Scenarios for Switchgrass and Corn Stover

Simulation Set III (Table 3) is based on 16 levels of switchgrass prices. By
referring to the projected prices of warm season grasses and corn stover for biofuel
markets by FAPRI-MU [44], we determine 16 levels of switchgrass prices from
58 $/metric ton to 224 $/metric ton with an interval of 11 $/metric ton. The price
ratio of switchgrass to corn stover is fixed as 1.31 according to the average value
in FAPRI-MU (2011). The other price inputs for corn, soybean, fertilizers and fuels
are fixed as the average prices for Year 2012 to 2021 in the FAPRI-MU projections.
In Simulation Set III, simulations are run for each of the 16 price levels with the
30 samples of the empirical parameter set. The model is run for a total of 480
(16 × 30) simulations. The last set of simulations (Simulation Set IV) (Table 3) uses
the same price settings as Simulation Set III except that the price ratio of switchgrass
to corn stover varies from 1.1 to 2.1 with interval of 0.2 (a total of 6 levels) Therefore,
in Simulation Set IV, price scenarios are 96 (16 × 6) combinations of switchgrass and
corn stover prices. Similarly to Simulation Set IV, simulations are run for each of the
96 combinations with 10 samples of the empirical parameter set. The model is run
for totally 960 (96 × 10) simulations.
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6. Results and Discussions

6.1. Model Verification

The yield drag incorporated in the ABM model on the basis of agronomic
data effectively precludes the choice of continuous corn for the simulated farmers.
Thus, farmers are de facto constrained to think in terms of corn-soybeans or
corn-corn-soybeans in the model. In practice farmers may not behave as if the
yield drag matters, which is verified by the crop rotation pattern comparison below.

6.1.1. Crop Rotation Pattern

Figure 2 compares the simulated crop rotations with the NASS CDL based
crop rotations using graphs that summarize the land area percentage and the CLU
count percentage corresponding to the maximum number of continuous crop years
during the 11-year time period. In Figure 2a, we see that about 74% of the simulated
land is in corn-corn-soybean and about 26% of land is in corn-soybean during any
of the 11 years. In reality, however, less land is in corn-corn-soybean (about 39%)
while about the same percentage of land (25%) is in corn-soybean; and there are
some fields (about 36%) which were in continuous corn for three or more years. For
soybean (Figure 2b), the simulated and real landscapes are very similar: Single-year
soybean is predominant (more than 80%). This indicates that in reality farmers do
not necessarily follow the rotation patterns of corn-corn-soybean or corn-soybean,
and that the continuous corn years could be longer than two, but soybean is grown
almost always only in rotation with corn.

Assuming the NASS CDL is reality, we can conclude the inclusion of yield drag
in the model and the likely underestimate of the effect of yield drag by actual farmers
causes the model to underestimate the amount of continuous corn, because simulated
farmers are in practice restricted in their options. For example, after two years of
corn a simulated farmer will plant soybeans even if relative crop prices suggest that
corn is the more profitable crop because of the effects of yield drag on productivity.
Yield drag is, however, hard for actual farmers to ascertain because they do not run
long term controlled experiments in their fields, many factors change simultaneously
from year to year, and yield drag is affected by tillage and weather. Unfortunately,
though there is anecdotal evidence [45,46] that farmers may underestimate yield
drag, there are no peer-reviewed studies that compare perception and reality on
this issue.

Overall though, the model gives a reasonable approximation of the behavior of
farmers in the watershed for the study period. For example, the average acreage of
cropland in corn according to the CDL dataset was 56.7% and the simulated average
using the one year planning horizon was 52.2%. Again, the underestimation of corn
acreage is related to the yield drag issue.
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Figure 2. Maximum number of continuous corn (a); and soybean (b) years during
an 11-year time period.

6.1.2. Field and Farm Scale Statistics

At the field scale, box plots are made for the cost and profit rates of corn and
soybean throughout the 11 simulation years (Figure 3a–d). Generally, the simulated
cost and profit rates increase through the years, and corn (Figure 3a,c) has higher
cost and profit rates than soybean (Figure 3b,d). The box heights are generally larger
in Figure 3c than Figure 3d, which indicates that the spatial variability (across fields)
of the simulated cost rate of corn is much higher than soybean. The reason is that
nitrogen fertilizer is only applied for corn and the N application rate varies across
different corn fields depending on the physical characteristics of land (e.g., yield
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potential). At the farm scale, a box plot is made for the simulated profit rate over
all simulation years (Figure 3e). The simulated average net farm income rates from
2008 to 2011 is about 694 $/ha, which is comparable to the overall average of typical
cash rents from 2008 to 2011 for corn and soybean fields (respectively 460, 477, 484,
and 541 $/ha) in the corresponding agricultural district (District 6) in Iowa [47]. The
lower cash rent is likely due to the fact that cash rent is generally built as the average
of recent past net returns and therefore lags.
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Figure 3. Box plots of simulated profit rate ((a) corn; (b) soybean); and cost rate
((c) corn; (d) soybean); and of farm-level profit rate (e).6.2. Model Results: Corn
and Soybean Price Scenarios (Simulation Set II).
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With the second set of simulation results, we plotted watershed-scale crop area
percentages (Figure 4a,b) and fertilizer rates (Figure 4c,d) against changes in corn
price and soybean to corn price ratio. As illustrated by Figure 4a, the percent of
land in corn increases as corn price increases and/or as the ratio of soybean to corn
price decreases. The percent of land in soybean changes with the opposite trends
(Figure 4b). Corn and soybean lands stabilize at 50/50 within the corn price range of
about 181.1–283.5 $/metric ton and the range of soybean to corn price ratio of about
2.8–3.2. Beyond this range, the percent of the landscape in corn and soybean is very
sensitive to changes in corn price and/or soybean to corn price ratio.
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corn and soybean planting but dominated by corn since corn requires more P input than soybean. Figure 
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Figure 4. Simulated crop area percentage ((a) corn; (b) soybean); and fertilizer rates
averaged over the whole watershed ((c) N; (d) P; (e) K) for 360 combinations of
corn prices and soybean to corn price ratios.

According to Figure 4c, nitrogen responds to the changes in corn price and
soybean to corn price ratio in a very similar way to corn acreage since N fertilizer
is only applied for corn. The shape of the P surface is more similar to the corn
land percentage surface than to the soybean, except that the lowest value of the
average P application rate occurs when corn price is at the lowest (181.1 $/metric ton)
and soybean to corn price ratio is at the lowest (2.8). This is because the average P
application rate is related to both corn and soybean planting but dominated by corn
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since corn requires more P input than soybean. Figure 4e characterizes the response
of K application rate to changes in corn price and the soybean to corn price ratio.
The K surface has a shape more similar to that of the percent of the land in soybean
than to corn, except that the lowest value of the average K application rate occurs at
the same position as P. This is reasonable because the average K application rate is
related to both corn and soybean planting but dominated by soybean since soybean
requires more K input than corn. Within similar ranges (181.1–283.5 $/metric ton
corn prices, and 2.8–3.2 of soybean to corn price ratio), the average N, P, and K rates
stabilize respectively at around 65, 56, and 71 kg/ha.

6.2. Model Results: Switchgrass and Corn Stover Price Scenarios

6.2.1. Simulations with vs. without Land Use Survey Information Included
(Simulation Set III)

We run the model with positive switchgrass prices as defined in Simulation
Set III under two scenarios:

Scenario 1. The agricultural landowners and operators survey information is
not included in the model, and agents do not appreciate that there is additional
risk in planting perennial crops for a new market. In this scenario farmer agents
follow the same rule of farm profit maximization as they do in Simulation Set I (profit
maximization unaffected by farmer risk perception);

Scenario 2. Information from the farmer survey is incorporated into the
model and used to parameterize the perceived risks associated with planting a
new perennial crop. In this scenario, agent-specific constraints are incorporated into
the model which stipulate the minimum expected economic return required before a
farmer would consider biofuel crops and the maximum percent of their farm they
would allocate to biofuel crop production if such returns could be realized.

As illustrated in Figure 5, the incorporation of farmer attitudes about risk
has a significant impact on land use. Considerably more land is allocated to
switchgrass and corn stover in scenario 1 (profit maximization, triangles in Figure 5)
than in scenario 2 (constrained by perceived risk, circles in Figure 5). Even with
30 simulations for each of switchgrass price levels, the variations are low (in Figure 5,
the dispersion of 30 circles is small compared to the discrepancy between the
circles and triangles). Figure 5a–d shows that when perceived risk is modeled, the
simulated crop composition starts to change at switchgrass price of $88.16/metric ton
(switchgrass to corn stover ratio fixed at 1.31) and above: Corn (no stover) (Figure 5a)
and soybean (Figure 5b) acreages start to decrease and switchgrass (Figure 5c) and
corn (stover) (Figure 5d) start to increase. The crop area percentage curves approach
a stabilization stage at switchgrass prices of about 132–165 $/metric ton. The crop
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composition stabilizes at about 32% corn (no stover), 38% soybean, 22% switchgrass,
and 8% corn (stover).
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Figure 5. Crop area percentages ((a) corn—no stover; (b) soybean; (c) switchgrass;  
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land use survey information included. 
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shaped while the P curve mirrors the sigmoid shape. As the switchgrass price increases within a certain 

range, the average N rate and K rate increase while the average P rate decreases. This is reasonable 
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Figure 6. Watershed-averaged fertilizer rates ((a) N; (b) P; and (c) K) from 36 simulations 

(36 SWG price levels and fixed switchgrass to corn stover price ratio of 1.31) on the basis 

of with (dots) vs. without (triangles in dashed line) land use survey information included. 

The two runs in Simulation Set II correspond to the commodity crop price settings in Simulation Set 

III, corn price is 186.6 $/metric ton and the price ratio of soybean to corn is 2.25. The two runs are (1) corn 

price is 181.1 $/metric ton, and the soybean to corn price ratio is 2.4; and (2) corn price is 188.98 $/metric 

ton, and the soybean to corn price ratio is 2.24. Considering the two runs in Simulation Set II as baseline 

Figure 5. Crop area percentages ((a) corn—no stover; (b) soybean; (c) switchgrass;
(d) corn—stover) from 36 simulations (36 SWG price levels and fixed switchgrass
to corn stover price ratio of 1.31) on the basis of with (dots) vs. without (triangles in
dashed line) land use survey information included.

Similarly, there is a large discrepancy in simulated watershed level fertilizer
application rates between scenario 1 and 2 (Figure 6). The variation of the fertilizer
rates with scenario 2 given 30 random samples from the empirical distribution is
small. Under scenario 2 the simulated N and K curves are sigmoid shaped while the
P curve mirrors the sigmoid shape. As the switchgrass price increases within a certain
range, the average N rate and K rate increase while the average P rate decreases.
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This is reasonable because P rate for switchgrass is relatively low compared to corn
(stover or no stover) and soybean.
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Figure 6. Watershed-averaged fertilizer rates ((a) N; (b) P; and (c) K) from 36
simulations (36 SWG price levels and fixed switchgrass to corn stover price ratio
of 1.31) on the basis of with (dots) vs. without (triangles in dashed line) land use
survey information included.

The two runs in Simulation Set II correspond to the commodity crop price
settings in Simulation Set III, corn price is 186.6 $/metric ton and the price ratio
of soybean to corn is 2.25. The two runs are (1) corn price is 181.1 $/metric ton,
and the soybean to corn price ratio is 2.4; and (2) corn price is 188.98 $/metric ton,
and the soybean to corn price ratio is 2.24. Considering the two runs in Simulation
Set II as baseline scenarios, the watershed-average N rate in Simulation Set III
(ranging from 62.77 to 71.14 kg/ha) is higher than in the baseline (between 60.53 and
62.77 kg/ha). So is the watershed-average K rate in Simulation III (ranging from 67.25
to 84.07 kg/ha) compared to the baseline (68.37 kg/ha). The watershed-average P
rate in Simulation III (ranging from 47.08 to 56.04 kg/ha) is lower than in the baseline
(56.04 kg/ha). These results show that biofuel crop markets may potentially result in
more N and K inputs and less P inputs into the watershed. This is understandable
because (1) in the baseline scenario, corn-soybean rotation only needs N input in corn
years, while once enrolled in switchgrass planting, it requires N input every year;
(2) switchgrass requires more K input than corn and soybean do. Since switchgrass
potentially has beneficial effects of reducing nutrient and sediment runoff [48,49]
while commodity crops management and harvesting corn stover may have adverse
effects [50], it would therefore be very interesting to investigate the impacts of
potential biofuel crop markets on watershed water quality in a further study.

6.2.2. Impacts of Corn Stover and Switchgrass Price (Simulation Set IV)

In Simulation Set IV, both the switchgrass price and the price ratio of
switchgrass to corn stover vary. Switchgrass price varies from 58.41 $/metric ton to

99



223.71 $/metric ton, and the price ratio of switchgrass to corn stover varies from 1.1
to 2.1. For each combination of the two variables, we run the simulation 10 times and
plotted the average of the 10 as a response “surface” (Figures 7 and 8).

Figure 7c,d shows that within the price ranges in Simulation Set IV, switchgrass
occupies at most about 22%–24% of the watershed and corn stover occupies at most
10%. These numbers are consistent with those in Simulation Set III. In Figure 7a–d, at
any fixed ratio of switchgrass: Corn stover (1.1–2.1), the crop area percent responds
similarly to the curves represented by circles in Figure 6a–d except for corn (stover).
At any fixed ratios greater than about 1.4, the corn (stover) area percentage curve
does not stabilize within the switchgrass price range from 58.41 to 223.71 $/metric
ton. Instead, it still keeps increasing even at the very high switchgrass price of
223.71 $/metric ton.
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Figure 7. Crop area percentages ((a) corn—no stover; (b) soybean; (c) switchgrass;  

(d) corn—stover) from 960 simulations (16 levels of switchgrass price by 6 levels of 

switchgrass to corn stover price ratio, average of the 10 random samples based simulations 

for each combination). 

(a) (b) 

(c) 

Figure 8. Watershed-averaged fertilizer rates ((a) N; (b) P; and (c) K) from 960 simulations 

(16 levels of SWG price by 6 levels of switchgrass to corn stover price ratio, average of the 

10 random samples based simulations for each combination) 

Figure 7. Crop area percentages ((a) corn—no stover; (b) soybean; (c) switchgrass;
(d) corn—stover) from 960 simulations (16 levels of switchgrass price by 6 levels
of switchgrass to corn stover price ratio, average of the 10 random samples based
simulations for each combination).
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Figure 8. Watershed-averaged fertilizer rates ((a) N; (b) P; and (c) K) from
960 simulations (16 levels of SWG price by 6 levels of switchgrass to corn
stover price ratio, average of the 10 random samples based simulations for
each combination).

Overall, the crop area percentage in Figure 4a,b (corn and soybean scenarios)
responds more rapidly to the change of price ratio than in Figure 7a–d (switchgrass
and corn stover scenarios). We may conclude that the price ratio of switchgrass to
corn stover does not influence the crop composition as much as the price ratio of
soybean to corn.

In Figure 8a–c, we plotted watershed-averaged N, P, and K rates in response to
the change of switchgrass prices and switchgrass to corn stover price ratios. Similarly
to Figure 6a–c, the watershed-averaged N and K rates increase as switchgrass prices
increase but the watershed-averaged P rate decreases as switchgrass prices increase.
N, P, and K rates stabilize, respectively, at 67.25–73.98 kg/ha, 44.83–49.32 kg/ha,
and 81.82–87.43 kg/ha when switchgrass price reaches 132.24–165.3 $/metric ton
and higher. The fertilizer rates in the switchgrass-corn stover scenarios (Figure 8a–c)
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respond more rapidly to the change of switchgrass price than to the change of price
ratio. At fixed level of switchgrass price, fertilizer rates hardly respond to the change
of switchgrass to corn stover ratio within the range of 1.1 to 2.1.

7. Conclusions

The major findings in this research include: (1) discrepancies exist between
simulated and satellite-derived land acreages and crop rotation patterns, with
implications in terms of farmers’ estimation on crop yield drag effects; (2) the
simulated biofuel crop land acreage response surface starts to plateau at prices
beyond $150/ton for switchgrass; and (3) simulated biofuel crop land acreages
and fertilizer application rates in response to alternative crop market scenarios
differ significantly depending on whether or not the risk averse behavior of farmers
towards biofuel crop production is considered. These findings help define the
decision space for future biofuel production, and provide insights for different
stakeholders, such as agricultural policy makers who are concerned about commodity
and biofuel crop land use and inputs of fertilizer into the agricultural system. Since
currently no crop insurance is available for biofuel crops, our results also indicate
the importance of creating such a program if biofuel crops are to be promoted.

The simulated corn and soybean land percentages respond to market prices
(commodity crop, fertilizers, and fuel) more strongly than would be suggested by
satellite imagery. The simulations strictly follow the rotation pattern of corn-soybean
or corn-corn-soybean while according to the satellite data, about 36% of the crop
land were in more than two-year continuous corn. The discrepancy between
the simulations and satellite data suggests that farmers are underestimating the
yield drag associated with continuous corn. The topic of farmers’ yield drag
perception and estimation versus agronomic evidence is worth further investigation
and verification since misperceptions can result in non-optimal economic and
environmental consequences.

The simulated corn and soybean land acreage and fertilizer rates responses to
corn price change and/or soybean to corn price ratio changes are realistic. Those
responses stabilize within 181.10–283.46 $/metric ton and the range of soybean to
corn price ratio of about 2.61–2.99: Corn and soybean area percentages stay 50/50;
average N, P, and K rates stabilize at respectively about 65.01, 56.04, and 70.61 kg/ha.

Given farmers’ attitudes towards biofuel crop production, large scale cellulosic
biofuel crop production is likely to require some mechanism to reduce risk for
farmers. Our results indicate that if risk for planting switchgrass is eliminated and
farmers only follow a farm-profit maximization rule, given a switchgrass to corn
stover price ratio of 1.31, switchgrass would occupy the whole watershed when
its price is about 179.63 $/metric ton and higher. However, in the perceived risk
case, switchgrass would occupy at most about 22%–24% of the watershed when
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switchgrass price is about 132.24–165.3 $/metric ton or higher, and corn stover would
occupy at most about 10%. Correspondingly, average N, P, and K rates stabilize
respectively at 67.25–73.98 kg/ha, 44.83–49.32 kg/ha, and 81.82–87.43 kg/ha when
switchgrass price reaches 132.24–165.3 $/metric ton and higher. The 2014 Farm bill
eliminates crop subsidies, though temporary establishment subsidies for dedicated
biomass feedstocks were maintained in the Energy title of the bill under the Biomass
Crop Assistance Program (up to five years for a maximum of $111.2/ha). However,
this is unlikely to suffice. Some type of subsidized crop insurance would also have to
be developed.
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Appendix

Appendix A. Crop Yield Drag Coefficients and Fertilizer Rates

The effects of crop rotation, tillage type, and nitrogen fertilizer rates (corn
only) are accounted for when calculating crop yields. Crop yield drag coefficients
that capture the rates at which the crop productivity declines as a function of
continuous planting, are derived from corn and soybean yield functions [7] and
represented in Figure A1. Given the impact of the previous year’s crop, continuous
corn (CC) corresponds to lower yield than corn in annual rotation with soybean (SC).
Soybean yields in the present year are influenced by the previous two years crops.
Among the crop rotation series (corn-corn-soybean: CCS, corn-soybean-soybean:
CSS, soybean-corn-soybean: SCS), CCS corresponds to the highest soybean yield,
followed by SCS, and then CSS. The impacts of tillage types on crop yields are taken
into account for both corn and soybean. Among the three tillage types (conventional
tillage, mulch tillage, and no tillage), the crop with conventional tillage has the
highest yield and no till has the lowest. Instead of using a quadratic function [7] to
characterize corn yield response to nitrogen, ten different levels of nitrogen rates
and corresponding corn yield drag coefficients are sampled from the response curve.
This implementation reduces the optimization problem from a nonlinear into a linear
programming problem.

103



Land 2015, 4 1131 

 

 

 
(a) 

 
(b) 

Figure A1. Corn yield drag coefficients (a) for different rotation, tillage, and N fertilizer rate 

levels, and soybean yield drag coefficients; (b) for different rotation types: Corn is denoted 

as “C” and soybean as “S”, the last letter in a rotation pattern means the current crop (e.g., 

CCS means corn-corn-soybean, and soybean is in the current year). 

In the model, it is assumed that soybean does not need nitrogen fertilizer. The fertilizer rates of 

phosphorus (P) and potassium (K) are fixed for soybean: Respectively, 44.83 kg/ha and 84.07 kg/ha. 

According to Iowa State University Extension [38,51], corn after corn requires lower fertilizer input of 

phosphorus (P) and potassium (K) than corn after soybean. For corn after corn, the P rate is 61.65 kg/ha 

and the K rate is 50.44 kg/ha; for corn after soybean, the rates are 67.25 kg/ha and 56.04 kg/ha. 

Switchgrass is a perennial with an establishment period. Therefore, we assume that the switchgrass 

starts to be harvested from the second year. Switchgrass yields depend on soil type. We scale the tall 

introduced grasses yield (TIGRSYLD) in the Iowa Soil Properties and Interpretations Database 

(ISPAID) into the data range from 4.48 to 14.35 metric ton/ha to represent the switchgrass yield for 

different soil types. According to Duffy (2008) [40], in the first year when switchgrass is established 

Figure A1. Corn yield drag coefficients (a) for different rotation, tillage, and N
fertilizer rate levels, and soybean yield drag coefficients; (b) for different rotation
types: Corn is denoted as “C” and soybean as “S”, the last letter in a rotation pattern
means the current crop (e.g., CCS means corn-corn-soybean, and soybean is in the
current year).

In the model, it is assumed that soybean does not need nitrogen fertilizer.
The fertilizer rates of phosphorus (P) and potassium (K) are fixed for soybean:
Respectively, 44.83 kg/ha and 84.07 kg/ha. According to Iowa State University
Extension [38,51], corn after corn requires lower fertilizer input of phosphorus (P) and
potassium (K) than corn after soybean. For corn after corn, the P rate is 61.65 kg/ha
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and the K rate is 50.44 kg/ha; for corn after soybean, the rates are 67.25 kg/ha and
56.04 kg/ha.

Switchgrass is a perennial with an establishment period. Therefore, we assume
that the switchgrass starts to be harvested from the second year. Switchgrass yields
depend on soil type. We scale the tall introduced grasses yield (TIGRSYLD) in the
Iowa Soil Properties and Interpretations Database (ISPAID) into the data range from
4.48 to 14.35 metric ton/ha to represent the switchgrass yield for different soil types.
According to Duffy (2008) [40], in the first year when switchgrass is established
nitrogen fertilizer is not required, but 33.63 kg/ha of P and 44.83 kg/ha of K are
applied. 112.09 kg/ha of N is applied from the second year on to compensate for the
harvest of switchgrass. The amount of P and K applied depends on the amount of
switchgrass biomass harvested. For each ton of switchgrass that is harvested, 0.88 kg
of P and 10.34 kg of K are applied.

Corn stover yield is estimated as the product of the portion of corn stover
harvested and corn yield (we assume that dry weight of corn grain is equal to corn
stalk weight). Additional amounts of N, P, and K fertilizers are applied to compensate
for the nutrients removed from the soil system by corn stover harvest. 9.07 kg of N,
2.68 kg of P, and 11.34 kg of K are applied per ton of dry matter stover harvest [41].

Appendix B. Empirical Parameters and Parameterization

To generate samples from the agricultural landowners and operators survey
database for the eight parameters above, we performed the following analysis on
the survey responses. Firstly, we considered the respondents who self-identified as
farmers. Concerning the parameter Type, the farmer respondents were classified into
the four types based on whether they responded to Question 48 and/or 56 (Table A1).
Secondly, we performed one-way ANOVA test on the farm sizes (Area) of the four
types of farmers. The results showed that there is sufficient evidence (significance
level: 0.001) to reject the hypothesis that the farm size means are all equal among the
four farmer types. Thirdly, we analyzed the correlation among the other parameters
(Table A2). The results do not support the conclusion that Percent1 SWG and Profit
SWG are correlated for Type 2 and 3 farmers. Neither is there evidence to suggest
that Percent1 Stvr and Profit Stvr are correlated for Type 1 and 3 farmers. But for both
Type 2 and 3 farmers, Percent1 SWG and Percent2 SWG are significantly correlated.
Similarly, Percent1 Stvr and Percent2 Stvr are significantly correlated for Type 1 and 3
farmers. For Type 3 farmers, Profit SWG and Profit Stvr are significantly correlated as
are Percent1 SWG and Percent1 Stvr.
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Table A1. Land use survey questions adopted for model parameterization.

Question # Question

3 Do you consider yourself a farmer?

18c Number of acres you own that you farmed in 2009

18d Number of acres you leased or rented to other people to farm in 2009

18e Number of acres you rented from others to farm in 2009

18f Number of acres in the Conservation Reserve Program (CRP) in 2009

48 What is the minimum net profit per acre you would
need to get in order to consider marketing corn stover?

49 If you could get that profit per acre, how many
acres of corn stover would you consider harvesting?

50 If you supplied corn stover to a bio-refinery, would you prefer to
harvest 30%, 50%, or 70% of the corn stover in your fields?

51
If you could get a net profit 50% higher than what you indicated in

question 48, how many acres of corn stover in total
would you consider harvesting?

56 What is the minimum net profit per acre you would
need to get in order to consider growing switchgrass?

57 If you could get that profit per acre, how many
acres of switchgrass you consider planting?

58
If you could get a net profit 50% higher than what you

indicated in question 55, how many acres of switchgrass
in total would you consider growing?

Based on the results of this analysis, we used the following strategy to
empirically draw 30 samples using the bootstrap sampling method. First, farmer
respondents and farmer agents are respectively classified into five groups based on
the land acreages they reported (≤40.47, 40.47–121.41, 121.41–202.34, 202.34–303.51,
and >303.51 ha). Second, for all agents in a certain group, the sample of parameter
Type is drawn from the empirical distribution of Type for farmers in the corresponding
group. Third, the remaining parameter values are generated for farmer agents in each
group and of each type. For Type 1 agents, parameter values of Profit Stvr, Percent1
Stvr and Portion Stvr are independently generated; parameter values of Percent2 Stvr
are associated with Percent1 Stvr. For Type 2 agents, parameter values of Profit SWG,
Percent1 SWG are independently generated; parameter values of Percent2 SWG are
associated with Percent1 SWG. For Type 3 agents, parameter values for Profit Stvr,
Percent1 Stvr, and Portion Stvr are independently generated; parameter values of
Profit SWG are associated with Profit Stvr; Percent2 Stvr, Percent1 SWG and Percent2
SWG are associated with Percent1 Stvr.
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Table A2. Pearson’s r (p-value) between the parameters characterizing
farmers’ attitudes.

Type Profit
SWG

Percent1
SWG Percent2 SWG Profit Stvr Percent1

Stvr Percent2 Stvr Portion
Stvr

Profit
SWG

1 or 2 1 0.4145
(0.1407) na * na na na na

3 1 −0.2488
(0.1560) na 0.8471

(2.03 × 10−11) na na na

Percent1
SWG

1 or 2 1 0.9687
(4.18 × 10−11) na na na na

3 1 0.8885
(1.06 × 10−12) na 0.6822

(3.31×10−6) na na

Percent2
SWG

1 or 2 1 na na na na

3 1 na na na na

Profit Stvr 1 or 2 1 0.1918
(0.4768) na −0.0525

(0.8526)

3 1 −0.1714
(0.3248) na −0.0648

(0.7033)

Percent1
Stvr

1 or 2 1 0.8897
(9.01 × 10−6) na

3 1 0.8952
(1.76 × 10−13) na

Percent2
Stvr

1 or 2 1 na

3 1 na

Portion
Stvr

1 or 2 1

3 1

* No Data.
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Why Don’t More Farmers Go Organic?
Using A Stakeholder-Informed Exploratory
Agent-Based Model to Represent the
Dynamics of Farming Practices in
the Philippines
Laura Schmitt Olabisi, Ryan Qi Wang and Arika Ligmann-Zielinska

Abstract: In spite of a growing interest in organic agriculture; there has been relatively
little research on why farmers might choose to adopt organic methods, particularly
in the developing world. To address this shortcoming, we developed an exploratory
agent-based model depicting Philippine smallholder farmer decisions to implement
organic techniques in rice paddy systems. Our modeling exercise was novel in its
combination of three characteristics: first, agent rules were based on focus group data
collected in the system of study. Second, a social network structure was built into
the model. Third, we utilized variance-based sensitivity analysis to quantify model
outcome variability, identify influential drivers, and suggest ways in which further
modeling efforts could be focused and simplified. The model results indicated an
upper limit on the number of farmers adopting organic methods. The speed of
information spread through the social network; crop yields; and the size of a farmer’s
plot were highly influential in determining agents’ adoption rates. The results of this
stylized model indicate that rates of organic farming adoption are highly sensitive to
the yield drop after switchover to organic techniques, and to the speed of information
spread through existing social networks. Further research and model development
should focus on these system characteristics.

Reprinted from Land. Cite as: Schmitt Olabisi, L.; Wang, R.Q.; Ligmann-Zielinska, A.
Why Don’t More Farmers Go Organic? Using A Stakeholder-Informed Exploratory
Agent-Based Model to Represent the Dynamics of Farming Practices in the
Philippines. Land 2015, 4, 979–1002.

1. Introduction

Acreage under organic farming methods is increasing globally, as government
support for organic farmers and market demand for organic products grows [1].
A major driving force behind both of these trends is the recognition of the
negative impacts of chemically-intensive farming methods on the environment
and human health [2,3]. Approximately one-third of global land under organic
production is located in the developing world [1]. In many developing nations,
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agricultural production is dominated by smallholder farmers, who often lack
access to crop insurance or inexpensive credit. Some have argued that organic
agriculture can benefit smallholder farmers by eliminating their reliance on expensive,
fossil fuel-derived chemical inputs [4]. Organic farming therefore could make
smallholder farmers more resilient to input price shocks, which are a significant
source of insecurity for them [5]. This argument is bolstered by research from
the United States, which indicates that organic farmers spend less on inputs than
conventional farmers [6]. Policy makers, extension agents, and non-governmental
organizations that serve developing-world farmers need a clear understanding of
farmers’ motivations and challenges in converting to organic agriculture, so that
efforts to promote organic farming will be maximally effective.

Few organic adoption studies to date have portrayed a dynamic and complex
decision environment, rather than a static snapshot of farmer decision-making [7].
Farmers’ demographic characteristics, their economic motivations, their concern
for the environment and for their families’ health, all interact in complex and
heterogeneous ways as they consider their options and choose their production
method. Moreover, farmers’ choices may be different year to year, depending on
the decision context. They may choose to convert to organic, and then return to
conventional methods when their situation changes. Most previous studies have not
taken advantage of modeling tools that could portray this type of decision-making
in dynamic contexts, such as agent-based modeling (ABM).

ABM has been used extensively in studying land-use conversion decisions, and
has provided insights into how decision/environment feedback loops operate to
produce non-intuitive outcomes [8–15]. Another advantage of ABM is its ability to
represent the dynamics of social influences and information propagation through
social networks via peer-to-peer, or “word-of-mouth”, communications [16,17].
Previous studies have found that a farmer’s source of information about farming and
organic techniques influences his or her decision to adopt organic methods [18].
Peer-to-peer sharing through social networks can be an important source of
information for farmers [19]. Modeling the spread of information about organic
agricultural techniques through social networks could therefore provide insight into
how best to promote these technologies and support farmer adoption.

ABM has been successfully applied to agricultural systems all over the world [20–22],
to study the complex interactions between farmers, global and regional crop markets,
and biophysical (especially hydrological and crop-soil) systems [8,13,20,23,24].
Agricultural applications vary from new practice adoption [8,14,20,24–27], changes
in agricultural production and its viability [14,25,28], the impact of different decision
making practices on agricultural land use/land cover change [14,23,25,28],evaluation
of landscape structure [13,28], farmers’ imitative behavior [8,29], and explicit
analysis of agricultural policies [8,20,30]. For example, Berger [8] uses the
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concept of innovation diffusion to study various farming production alternatives
and their influence on local hydrology in Chile. Happe et al. [30] present an
ABM for agricultural policy analysis of different farm structures in Germany,
Schreinemachers et al. [31] build an ABM to analyze the diffusion of greenhouse
agriculture in Thailand, and Evans et al. [25] develop an empirically-rich ABM
to explore the transition from shifting cultivation to rubber production in Laos.
Many researches stress the usefulness of ABM to represent the diversity of farmer
decision-making [13,20,27,30].

Of particular interest to our study are ABM applications that simulate organic
farming adoption [26,27]. For example, Kaufmann et al. [27] develop an agent-based
model of agricultural decision making that utilizes the theories of planned behavior
and innovation diffusion, coupled with a survey-informed social network sub-model,
to evaluate the diffusion of organic farming in Latvia and Estonia. The goal of
their modeling exercise is to test how the economic changes are intertwined with
agent-agent interactions in the formation of beliefs concerning the transition to
organic farming. They conclude that mere social influence is not sufficient when
modeling conversion from traditional to organic farming. Without exogenous
economic factors, in the form of subsidies, “organic farmers remain organic, and
conventional farmers remain conventional” (p. 2589). In a comparable study,
Deffuant et al. [26] develop an ABM to model organic farming in a selected region of
France. The novelty of their approach lies in introducing an auxiliary institution agent
that evaluates the farm potential and assists the farmer in the decision to go organic.
Similarly to Kaufmann et al. [27], they conclude that organic farming adoption results
from complex interactions between economic and social processes.

In this paper, we define ABM as a simulation environment composed of
heterogeneous computational entities (called agents) that represent Philippine
smallholder farmers, for the purpose of exploring group dynamics around organic
agriculture adoption. The agents are situated in a common agricultural environment
of an upland paddy rice system, where organic farming practices are being actively
promoted by a local non-governmental organization (NGO). Agents’ decision
making to adopt and maintain organic agriculture is constrained by limited
access to information about the optimal farming strategies and the economic
resources available. The agents are driven by their individual goals and social
behaviors, and they constantly adapt to changing agro-economic and ecological
conditions [8,12,32]. Previous agricultural ABM research suggests that, to account for
a fuller complexity of farmer decision making and provide room for experimentation
aimed at sustainable resource use, agent behavior should be informed by both
normative science (economics) and social science that more realistically represents
the actual resource-use decision making [33]. Thus, in our model, the socioeconomic
micro-decisions of agents, strengthened by the interactions among them, generate
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macro-structures of the system including the level of organic farming adoption.
The goal of this structure is to determine how landscape-scale patterns of adoption
emerge from individual farmer decision-making.

2. Study Area and Research Questions

The Philippines, like many countries in the developing world, has passed
legislation supporting organic agriculture, citing its benefits to human health and
the environment [34]. Acreage under organic agriculture has risen steeply in recent
years, from approximately 3500 hectares in 2004 to 52,400 hectares in 2009 [35]. This
represents only 0.6% of the country’s 9.2 million hectares of cultivated land area.
The Philippine commitment to organic agriculture is nonetheless significant, given
the country’s history of promoting chemically intensive technologies to raise yields
of rice, a staple crop [36]. Achieving self-sufficiency in rice production is another
important goal of the Philippine government (the country consistently ranks as one
of the top five rice importers) [37]. This necessitates the country increasing rice yields
to the levels of some of its more productive Asian neighbors [38]. Achieving both
higher rice yields and greater amounts of land under organic production will require
investments in programs that target smallholder farmers, who constitute the majority
of rice producers in the Philippines.

We chose Negros Island, in the central Philippines, as a study site (Figure 1).
The island is located in the country’s agricultural belt; major crops include sugarcane,
maize, rice and coconut. While the rice-growing areas just north of Manila are known
as the country’s rice bowl, rice lands on Negros are also highly productive, according
to the Philippine Bureau of Agricultural Statistics (www.bas.gov.ph); three harvests
per year are standard.

The Negros Institute for Rural Development (NIRD) is an internationally
funded and locally governed NGO, which has been promoting organic agricultural
techniques in an upland rice producing area on Negros since 1999. The municipality
of Canlaon, where NIRD is located, is therefore an ideal location for studying the
spread of organic technology adoption. According to NIRD staff, some farmers in
the area have adopted organic techniques and used them consistently, while a larger
number of farmers converted to organic methods but then went back to conventional
methods after some time. This presents an intriguing research question which we
addressed in our model: Why do some farmers on Negros go organic, while others
do not? Put another way, what are the driving factors determining the rate of organic
adoption over time which Negros has experienced?
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Figure 1. Map of the Philippines showing location of Negros Island where the
farmer focus groups were conducted in an upland rice-growing area.

3. Data Collection

Focus Group Discussions and Model Parameterization

We collected both qualitative and quantitative data from the study site to
parameterize the model. We organized focus groups in November, 2010, to assess
the state of organic agriculture adoption in the Canlaon region, and to identify
barriers to adoption. Because NIRD introduced organic methods to this region
and conducts periodic workshops and trainings in organic techniques, they are in
contact with most of the organic farmers in the area. Ten farmers who had practiced
organic methods for at least the past three years were able to attend the focus group
sessions, and we constructed groups of similar size to represent conventional farmers
(eight participants) and farmers who had tried organic farming but had returned to
conventional methods (ten participants). Organic farmers were over-represented in
this sample compared to their presence on the landscape, because the purpose of
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the focus group exercise was to examine the motivations and decision processes of
farmers who choose to go organic.

The groups were asked to discuss the questions: (1) Why do you farm using
your chosen method (organic/conventional)? (2) What are the benefits of using
your chosen farming method? and (3) What are the challenges of using your chosen
farming method? A note-taker was present in each group to record key concepts
as the discussions took place. Afterward, the three groups were brought together
in a common forum to share their observations and ask one another questions.
These sessions were recorded and coded using three categories (Farm Characteristics,
Organic Adoption, and Challenges) and fifteen sub-categories (farm size; family size;
years farming; general history (any information about the farm not covered under
other categories); markets (where farm products are sold); off-farm income; livestock;
fertilizer use; history using organic; perceived benefits of organic; characteristics of
organic (aspects of organic technologies that farmers discussed, other than benefits);
pest management; yield; knowledge of organic; labor). All conversations took place
in Cebuano-Visayan, the local language. The model decision structure represented
in Figure 2 was developed to reflect, as closely as possible, the decision-making
process around organic conversion described to us by farmers. Both organic and
conventional farmers agreed on the importance of an “experimentation” period for
organic conversion, in which they would grow organically on one portion of land
to test the efficacy of this method. In addition, all farmers agreed that, in order to
farm organically, one has to know how to use organic methods and be able to bear
the initial cost of changeover from conventional to organic methods.

From June 2010 through December 2010 (the length of one cropping season),
NIRD field staff assisted the authors in collecting information on crop yields and farm
size from the farmers who participated in the focus groups. A total of twenty-eight
farmers participated in this data collection (ten organic farmers, eight conventional
farmers, and ten mixed-method farmers). “Mixed-method” refers to farmers who
at some point have tried organic farming, but do not do so consistently and may
have reverted to conventional farming at the time of data collection. This sample
was not intended to be statistically representative for the larger population of rice
farmers; rather, the information was to be used to develop the farm characteristics
represented in the model.

The average farm size of the participants was 0.9 hectares (0.63 ha for the organic
group; 0.85 ha for the conventional group, and 1.1 ha for the mixed-methods group).
This is smaller than the 2.8 ha average farm size for the island [39]. Given the highly
unequal distribution of farm acreage between large-scale sugarcane plantations and
smallholder rice and vegetable farms on Negros Island, the average farm size of
the study participants represents the landholdings of small-scale farmers [40]. The
average yield for one cropping season reported by the organic group was 3.0 MT/ha;
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for the conventional farmers it was 5.4 MT/ha; and for the mixed-methods farmers
it was 4.5 MT/ha. We believe the organic yields were lower for two reasons: first,
some of the organic farmers reported that access to organic fertilizers was a problem,
and they may not have been adding adequate levels of nutrients to ensure yields.
Secondly, some of the farmers who converted to organic methods in the recent past
may have been suffering from the initial yield loss at changeover (see below for more
information). However, we would caution against using one cropping season’s data
from a limited sample of farmers to depict an overall pattern. For this reason, we
used a wider yield distribution drawn from regional datasets to parameterize our
model simulation.Land 2015, 4 984 
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Figure 2. The decision-making process used by farmer agents in the agent-based
modeling (ABM). In order to experiment with organic agriculture (plant half of their
land using organic methods), farmers must have knowledge of organic techniques.
Once they begin an experiment with organic techniques, they wait a certain number
of rice seasons to compare their yields under organic production with their yields
under conventional production. The number of seasons they are willing to wait
is designated by “patience”, a characteristic of each farmer agent that describes
his/her dedication to organic production. After the finished experiment, they
evaluate both methods while considering the risk imposed by external climatic and
economic conditions. Then they chose which method to adopt.
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Among organic farmers who participated in the focus group, concern for the
environment and for their family’s health were agreed to be key reasons for choosing
organic methods. Participants also noted that organic methods reduce input costs
and therefore improve net profit. In addition, ducks and fish can be integrated
into paddy rice production when organic methods are used, while chemical
herbicides and pesticides are harmful to these animals. The incorporation of animal
agriculture/aquaculture with rice production was clearly seen as desirable by organic
farmers, who mentioned the enhanced productivity that this integration affords,
and the weed and pest-controlling characteristics of ducks. These observations are
consistent with literature studies of paddy rice agriculture elsewhere in Asia [41].
Price premium for organic rice was not a determinant in the choice of organic
methods for focus group participants, because the farmers do not have access to
customers who might be willing to pay a premium.

Farmers who used conventional techniques, or who had switched between
organic and conventional techniques, were not as strongly devoted to their method
of production as the organic farmers. In fact, most of the farmers in these groups
stated that they try to incorporate some organic techniques, such as mixing animal
manure with chemical fertilizer, or using organic pest control methods. The
most significant barriers to organic farming mentioned were labor requirements
(mainly for composting and weeding), lack of nutrient inputs (particularly for
farmers without animals), and lack of information about organic techniques. Some
conventional farmers, but not all, believed that high-yielding varieties of rice (HYVs)
were preferable to traditional varieties for their consistent high yields, and these
HYVs require chemical pest control. Farmers also stated that they are sometimes
forced to use chemical inputs by creditors, who view these inputs as necessary to
guarantee their return on investment. Although we didn’t explicitly model this
requirement as part of the simulation, we noted that without access to credit, most
farmers would not be able to produce. This statement is therefore well worth further
examination in the context of promoting organic agriculture.

4. Methods

4.1. Agent-Based Model

The ABM simulates a virtual farming area containing 2500 farmer agents
who must choose between organic and conventional farming methods over the
course of 100 cropping seasons (approximately 33 years). We chose the number
2500 because this is a reasonable approximation of the number of rice farmers that
live in the Canlaon region; this number therefore represents the “upper limit” of
organic diffusion, if all farmers were to adopt organic technologies [39]. Each farmer
agent represents a farm household, and all agents operate in a virtual “social space”

118



(a concept which is relevant for the social network learning described below), but
the model is not spatially explicit. We built the model using Repast Simphony
software and programmed it using Java language. The farmer agents all have the
same decision-making rule (see Figure 2), but since their attributes are different,
their decision outcomes are also different. This decision-making framework was
developed based on the focus group discussions, and reflects the considerations of
the farmers as described in the groups.

4.1.1. Farmer Agent Specification

The literature on organic farming adoption indicates that economic benefits
can be a significant driver in farmers’ decisions to convert to organic methods [42].
Several studies have also pointed to farmer characteristics that influence whether
farmers choose to convert to organic methods. These include age, gender and
education of the producer [18,43]; farmers’ social and ecological values [44,45];
sources of information about farming [18]; and, possibly, the desire to become
more resilient to input price shocks or climatic shocks [46]. All of these empirical
observations were used during agent conceptualization of our ABM of organic
farming, together with the focus group results.

The agents were assigned values for land area, animal ownership, and number
of people in the household (corresponding to household food demand and labor
availability), taken from the range of observed values for these variables in the field
and in Philippine agricultural statistics, and assuming a uniform distribution across
the range [47] (See Table 1 for range of values assigned to agent characteristics; more
details about the model and its parameterization can be found in Supplementary
Section 1). We used uniform distributions for all our input variables because the
small sample of participants that served as the source of input to our agent attributes
was insufficient to generate more complex empirical probability density functions.
The rationale behind this distribution is that it requires at most two parameters
(i.e., upper/lower bounds) identified from data. Initial capital assets were also
randomly distributed across a uniform range, but after the start of model simulation
capital assets were calculated for each time step based on yield.

We constructed a stylized social network for the farmer agents to represent
the ways in which farmers influence their social connections and share information
about organic techniques. The structure of the network was informed by qualitative
data (i.e., how farmers described receiving information). The farmer agents were
assigned values for “social reach”, the unitless maximum distance between nodes
which, in this case, were connected farmers (i.e., the extent of influence). Any two
farmers within each other’s social reach were connected by a link. Each link creates
a dyad and each farmer in the dyad is a social connection to the other. These
links were the channels through which the model passed information about organic
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methods; farmers could not experiment with organic techniques unless they were
connected to a farmer who already used them. The links represent the farmer’s social
influence on his/her networks. The values of social reach were initially set at 5, and
then drawn from a uniform distribution during our computational experiment of
sensitivity analysis, because we did not collect information on the structure of the
social network at the field site [48].

Table 1. Factors (parameters) used in the model with their respective probability
distributions (U—continuous uniform, D—discrete uniform).

Input Factor Definition and Units Distribution

Area of land (a) Hectares U = (0.25, 10)
Labor availability (la) People in household D = {1, 2, 3, . . . , 8}

Social reach (sr) Distance in agent’s social space (unitless) U = (5, 25)
Social influence (si) Density of social connections among agents D = {1, 2, 3, . . . , 30}

Animal ownership (ao) Proportion of farmers owning animals (unitless) U = (0, 1)
Patience (p) Number of farming seasons (3 seasons/year) D = {1, 2, 3, . . . , 15}

Risk taken (r) Attitude towards risk related with the
adoption of organic farming (unitless) U= (0, 1)

Cost of conventional fertilizer (ccf) Philippine Pesos per kilo U = (40, 400)
Cost of organic fertilizer (cof) Philippine pesos per kilo U = (40, 400)

Average cost of other conventional input (coci) Philippine pesos per hectare U = (3000, 7500)
Average cost of other organic input (cooi) Philippine pesos per hectare U = (1100, 2900)

Average cost of labor (cl) Philippine pesos U = (6000, 13,000)
Average price of rice (p) Philippine pesos per kilo U = (7.44, 17.86)

Average yield (y) Kilos per hectare U = (1200, 6000)
Organic fertilizer threshold (oft) Hectares U = (0,10)

Land area for one labor (lal) Hectares/person U = (0.1,10)

Farmer agents were initially randomly distributed in unitless social space. To
initialize the model, we set up the network structure by applying Hamil and Gilbert’s
methods [48]. A virtual grid space is created with the dimension of 100 × 100.
Therefore, the space is divided into 10,000 grid cells. Then 2500 agents are created,
and each of them occupies a cell. Each cell can only contain one agent. The values
of the social attributes are initialized following the distributions mentioned above.
After the attributes are set, agents are connected based on the values of social reach.
Any two agents a and b are connected if Equation (1) is satisfied.

distance (a, b) =
√
(xa − xb)

2 + (ya − yb)
2 ≤ min(social reach (a) , social reach (b)) (1)

The model was “seeded” with between 5 and 10 organic farmer agents. This is
representative of the pioneer smallholder farmers in the Canlaon region who learned
organic farming through NIRD when the NGO first was established there. Figure 3
depicts the social network for one model run.

Farmer agents were also assigned a value for the attribute “patience”, and
a value for “risk attitude”. The patience attribute represented the number of
rice cropping seasons a farmer was willing to experiment with organic methods
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before comparing his or her net profit under organic farming with net profit under
conventional methods. “Patience” therefore represented all of the values a farmer
might hold that might prompt him or her to consider organic farming, even if it was
not initially as productive as conventional farming.Land 2015, 4 988 
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Figure 3. Social network depicted at the end of a model run with the “social
reach” variable set at 20. The agents are distributed randomly in social space;
circles represent farmer agents, and lines represent social connections between the
farmer agents.

“Risk attitude” was an index assigned to each farmer agent reflecting their
willingness to try a new farming method after their field experiment (in this case,
organic farming). This index varied between 0 and 1 for each agent, and was
compared to a randomly generated “risk index” between 0 and 1 for each farming
season, representing the time-dependent environmental riskiness of trying a new
technology (encompassing, for example, weather and economic conditions, political
instability, etc.). Notice that “risk attitude” was only used to determine which
farming method to choose when a given farmer agent expected profit from both
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organic farming and conventional farming. If a farmer had a relatively low risk
attitude, indicating he/she was risk taking, he/she would be willing to try new
technologies when expected profits were both positive. Conversely, if a farmer had
a relatively high risk attitude, indicating risk aversion, he/she would almost never
be willing to try organic farming. The qualitative and quantitative evidence from
the field support this depiction of conversion to organic methods as a significant
risk. Studies suggest an initial yield loss associated with organic conversion, which
represents a risk to a farmer’s income stream and household food supply [4].

4.1.2. Decision Algorithm

Before the start of each time step, a farmer agent must decide whether to
experiment with organic farming (Figure 2). This can only take place if the farmer is
connected to other farmer agents with adequate knowledge of organic techniques.
The model assumes that this knowledge is disseminated through the social network,
so if a farmer agent is connected to a certain number of organic farmers or farmers
experimenting with organic techniques, he/she is able to begin an experiment. We
assumed the number, which is called “influence threshold”, could be drawn from
a discrete uniform distribution between 1 and 8, representing a minimum and
maximum number of people a farmer might reasonably turn to for farming advice.
Once the condition was satisfied, the farmer agent would begin his/her experiment.
This means that he/she plants half of his/her land using the organic techniques and
half using the conventional techniques.

Input costs were calculated for each farmer agent using a given farming
technique at each model time step. These costs included the cost of fertilizer, the
cost of other inputs, and the cost of labor (if labor provided by the household was
not sufficient). To simulate the fluctuation of input costs across the model run time,
the amount in Philippine pesos assigned to labor, fertilizer and input costs for a
given time step was drawn randomly from a uniform distribution based on data
collected in the field and from the Philippine Bureau of Agricultural Statistics (see
Table 1). Conventional farmers must purchase all of their fertilizer, but organic
farmers may derive some of their fertilizer from composting agricultural waste (such
as manure and rice straw), and purchase organic fertilizer for their remaining needs.
We assumed that farmers with at least one hectare of land and one animal were able
to produce all of their fertilizer on-farm, up to 10 hectares (this threshold was based
on empirical observations, and tested with the sensitivity analysis described below).
The amount of fertilizer applied was assumed to be up to 1.5 times the average
nitrogen application for the region recorded in 2010 agricultural statistics (organic
and conventional fertilizer types are adjusted by their respective nitrogen contents),
based on what the farmer-agent could afford.
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Yield was calculated as a function of the nitrogen application for either
conventional or organic methods, using a Michaelis-Menten equation applied to rice
yields and fertilizer application rates from provincial statistics:

yield = (land area × 1.0045seasoncount × 4800× f ertilizer amount)/( f ertilizer + 6.1) (2)

where fertilizer amount is the maximum nitrogen application rate a farmer can afford,
and seasoncount is the model time step [49]. Data from the region indicate that
conventionally grown rice yields increase at a rate of 0.45% per season, and this
annual increase was simulated in the model. When a farmer agent switched their
land to organic methods (or planted half of their land in organic methods as an
experiment), the modeled yield initially dropped by 50% before recovering at a
rate of 5% per season to the yields described by the Michaelis-Menten equation
above. Therefore, after approximately 10 seasons (or three years), yields for a farmer
who had converted to organic methods would be no different than if he/she had
continued to farm conventionally. This initial yield drop represents a high estimate
of initial yield losses reported in field experiments by organic farmers, due to the
need for soil organic matter and soil chemistry to recover post-chemical fertilizer
application [4].

A farm household consumes part of the rice (enough to feed the household
members during the cropping season) and sells the remainder, if any. The price of
rice was also drawn randomly from a uniform distribution based on recent farmgate
prices reported by the Bureau of Agricultural Statistics (see Table 1). The sale of
the rice provides the capital input necessary for the rice season that follows. It
is important to note that organic rice is sold at the same price as conventionally
grown rice in our modeled environment, because farmers in the Canlaon region
do not have access to markets at which organic rice might fetch a premium due to
transportation constraints.

As mentioned above, each farmer agent was randomly assigned a value for the
variable “patience”, which represents the length of the experiment he/she conducts
before comparing the net profit from conventional farming methods to the net profit
from organic farming methods and choosing the method that is more profitable. In
the model, this number ranged from one to 15 farming seasons (based on the farmer
focus groups, we thought five years would be the maximum amount of time a farmer
would experiment with an organic technology). The more “patience” an agent has,
the more likely he/she is to choose organic farming, because once the yields have
recovered from the initial loss caused by switching to organic methods, input costs
tend to be lower for organic farmers, who can produce inputs on-farm rather than
buying them.
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Based on the presented specification, our model can be placed somewhere
on the continuum between the highly abstract agricultural ABM that result in
stylized simulations [29] and empirically-rich ABM equipped with microeconomic
mechanisms and complex agricultural markets [20,30]. This mixed approach,
combining observational and simulated data in computational experimentation,
has been successfully applied in other agricultural ABM [14,23].

4.2. Exploring Model Outcome Variability with Sensitivity Analysis

Sensitivity analysis of agricultural ABM is rarely undertaken. Notable examples
include Happe et al. [30] and Schouten et al. [50] where regression-based metamodels
are developed to evaluate the influence of the uncertain model inputs on outputs. In
their study, Schouten et al. [50] also employ a simple one-parameter-at-a-time (OAT)
sensitivity analysis and compare it with the regression metamodel.

The ABM described above is an example of a dynamic model that emulates
a complex agricultural system. It is, therefore, imperative to apply a simulation
procedure appropriate to complex nonlinear models, which would account for
input and output variability as well as the potential input interactions. Neither
regression nor OAT meet these requirements. Crosetto et al. [51], Gomez-Delgado and
Tarantola [52], Chu-Agor et al. [53], and Ligmann-Zielinska et al. [11] among others,
postulate the use of Monte Carlo simulation that incorporates global sensitivity
analysis (GSA) as a part of computational experiments. GSA is a method of
experimentation in which the variability of model results is quantified based on
simultaneous sampling of the whole set of input variables, which are then examined
individually and in combinations [54].

The most comprehensive method of GSA is based on model-independent output
variance decomposition, in which model outcome variability (represented using
variance V) is apportioned to various model inputs [54,55], so that the underlying
causes of variable outcomes can be explicitly identified. The procedure starts from
generating M samples of input variable values using a selected experimental design.
The model is then executed for each sample m ∈ M and the result is recorded.
These output values form a distribution which can be summarized using descriptive
statistics like mean and variance (V). GSA then uses output variance decomposition
which partitions V based on the contribution of each input variable to V. This
partitioning (aka decomposition) is accomplished by estimating the conditional
variances of every input variable k. By calculating the ratio of conditional variance
due to k to the total V, we obtain a first order sensitivity index (Sk). If a given
variable k has a relatively high value of Sk, its single influence on output variability
is substantial. To express the interactions among variables, which are ubiquitous in
complex system models, we also compute a total effect index for every k (STk), which
accounts for all higher-order effects of inputs [56]. Consequently, variables with

124



relatively low values of the (Sk,STk) pairs are deemed unimportant in shaping
output variability and, in the consecutive experiments, can be set to constant
values contributing to model simplification. In addition, the (Sk,STk) pairs provide
valuable information on the mechanisms that affect the dynamics of the model and,
consequently, can serve as quantitative indicators explaining model drivers. For
details on (Sk,STk) calculation the reader is referred to Saltelli et al. [54].

To calculate the (Sk,STk) pairs we employed the quasi-random Sobol
experimental design described in Saltelli (2002), which proved to be the most effective
in approximating the values of sensitivity indices [57]. To compute the indices, we
used SimLab open source software (http://ipsc.jrc.ec.europa.eu/?id=756).

4.3. Computational Experiments

Following the quasi-random experimental design mentioned above, we
employed Monte Carlo simulation and executed the model M times, where M was set
to 17,408 runs based on the procedure described in Ligmann-Zielinska and Sun [58].
At the end of each simulation, we recorded the number of agents who adopted
organic farming (N) and compared that to the total number of farmers (T) in the
model using a simple ratio N/T, referred to as RATIO in the following sections.
Given that the focus of our experimentation is organic farming adoption, we set the
number of farmers to 2500 (i.e., T = 2500), with a time step of one cropping season,
and ran the model for 100 seasons. The results were analyzed in two ways. First,
we compiled the RATIO values into a probability distribution and summarized it
using descriptive statistics (including average and variance). Second, we performed
variance decomposition of the RATIO distribution, and calculated Sk and STk for each
of the 16 input variables (a total of 32 indices plus an interaction index) to investigate
the overall model behavior and determine its critical drivers. The interpretation of
the pairs of indices (Sk, STk) followed the procedure described in Ligmann-Zielinska
and Sun [58].

5. Results

Agent-Based Model

By the end of the model simulation, all farmer agents had the opportunity
to experiment with organic techniques, as the knowledge of organic agriculture
spread throughout the social network. Experimentation concluded by rice season 23,
at which point all farmer agents selected a farming type. The number of organic
adopters in the model leveled out after experimentation in the model run using
default parameter values (Table 1, Supplementary Section 1) (Figure 4). This ratio
of organic farmers to total farmers was robust to the seasonal variation in labor,
fertilizer, and input prices, as well as model-simulated seasonal variation in yields,
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as indicated by the fact that after the initial decision period, the ratio of organic to
total farmers did not change significantly. This result is qualitatively similar to the
patterns of adoption reported to us by the NGO operating in the Canlaon region, and
by the farmers who participated in the focus group. Both NGO workers and farmers
confirmed that, after an initial period when many farmers seemed to be adopting
organic methods, the adoption rate leveled off and most farmers did not switch to
organic despite learning about organic methods. This observation is similar to the
conclusion derived from the study by Deffuant et al. [26] which suggests that, while
sympathetic to organic agriculture, farmers did not convert to organic even though
they were exposed to positive messages from the public.

Land 2015, 4 992 

 

 

organic agriculture, farmers did not convert to organic even though they were exposed to positive 

messages from the public. 

 

Figure 4. Model output depicted number of organic farmers and number of conventional 

farmers over the 100 cropping seasons simulated in the model, at default parameter values 

(see supplementary for description). 

The box plot in Figure 5 summarizes the distribution of RATIO. The Monte Carlo simulations result 

in RATIO ranging from 0% adoption of organic farming to the maximum of 60% organic farming 

adoption. The mean adoption of organic farming equals 31% of the total agent population, with a substantial 

level of variability (std = 33%), which we analyze in the following section. 

Sensitivity Analysis: Variance Decomposition of Model Results 

The results of variance decomposition of the ratio of organic farmers to total farmer agents (RATIO) 

are depicted in Figure 6. As mentioned above, model sensitivity to different inputs is analyzed separately 

for their individual influence (Sk) and their total (STk) influence. With the first order sensitivity index 

(Sk) we look for important input variables that, if fixed independently, would reduce the variance of 

RATIO the most. In other words, the variables with relatively high S values have the most impact on the 

variability of the adoption of organic farming. In our experimentation, the social reach (defined in 

Section 4.1.1) scores highest (Ssr = 20% of total variance), followed by yield (Sy = 15%), and area of 

land under cultivation (Sa = 12%). 

Figure 4. Model output depicted number of organic farmers and number of
conventional farmers over the 100 cropping seasons simulated in the model, at
default parameter values (see supplementary for description).

The box plot in Figure 5 summarizes the distribution of RATIO. The Monte Carlo
simulations result in RATIO ranging from 0% adoption of organic farming to the
maximum of 60% organic farming adoption. The mean adoption of organic farming
equals 31% of the total agent population, with a substantial level of variability
(std = 33%), which we analyze in the following section.

Sensitivity Analysis: Variance Decomposition of Model Results

The results of variance decomposition of the ratio of organic farmers to total
farmer agents (RATIO) are depicted in Figure 6. As mentioned above, model
sensitivity to different inputs is analyzed separately for their individual influence
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(Sk) and their total (STk) influence. With the first order sensitivity index (Sk) we
look for important input variables that, if fixed independently, would reduce the
variance of RATIO the most. In other words, the variables with relatively high S
values have the most impact on the variability of the adoption of organic farming.
In our experimentation, the social reach (defined in Section 4.1.1) scores highest
(Ssr = 20% of total variance), followed by yield (Sy = 15%), and area of land under
cultivation (Sa = 12%).Land 2015, 4 993 
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Figure 5. Distribution of the ratio of organic farmer agents to total farmer agents at
the end of the model run (100 cropping seasons), over all Monte Carlo sensitivity
simulations. This ratio ranges from 0% of farmer agents adopting organic methods
to a maximum of 60% of farmer agents adopting organic methods, with a mean
adoption rate of 31%.

The model’s nonlinear behavior is expressed by the relatively high level of
variable interactivity, which is derived from the percentage sum of all first order
indices. In our simulation, this sum amounts to 71% of RATIO variability (Figure 6).
Therefore, only 71% of the variance in organic farming adoption rates can be
explained by analyzing the variables in isolation. The remaining 29% of V is
attributed to variable interdependence, which is expressed using the total effect
index (STk).
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Figure 6. Variance decomposition of variable effects on model output (ratio of
organic-adopting farmer agents to total farmer agents). Model sensitivity to
different input variables is analyzed separately for their first order influence (Sk)
and their total effects (STk) influence, in which variable interactions are explicitly
quantified. The variables with relatively high S values have the most impact on the
variability of the proportion of farmer agents who adopt organic methods.

Over half of the variables (9 out of 16) contribute substantially to the complex
behavior of the model. The highest interaction effect can be observed for social reach
(STsr = 17%), yield (STy = 14%), area of farmland (STa = 11%), and influence threshold
i.e., the density of social connections of any given agent (STsi = 9%). Consequently,
not only do these four variables individually contribute to the variability of the
RATIO, but they also have a strong influence when analyzed as a group.

Other variables that somewhat contribute to RATIO variability include the cost
of fertilizer (both conventional, where STccf = 5%, and organic, where STcof = 5%),
labor availability (STlal = 6%), attitude to risk taking (STr = 6%), and patience
(STp = 6%).
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6. Discussion

There appears to be an upper limit on the number of farmers choosing to go
organic that is fairly robust to fluctuations in prices and the external risk environment.
The results of the sensitivity analysis, which reveal how influential the various model
variables are in determining the ratio of organic adopting farmers to total farmers,
gives us insight into why this limit exists. The sensitivity analysis suggests that the
decision to shift from traditional to organic farming is mainly driven by yield, and by
imitative behavior, that is, by the number of farmer agents that have already adopted
organic farming, as indicated by the strong effects of social reach and influence
threshold on the organic adoption ratio (Figure 6). Consequently, our ABM is a
classic example of simulating innovation diffusion, where the decision made by
agent (A) is influenced by the decisions of proximal agents in A’s social space [59–61].
The fact that social reach and influence threshold account for 26% of output variance
corroborates our postulate about the role of diffusion of innovation in explaining
organic farming adoption in our ABM.

Particularly, social reach and influence threshold affect the rate at which farmers
“learn” about organic farming, a prerequisite to their experimentation with organic
technologies. This is important in the model context because of the assumption
that conventional yields rise over time. The more rice cropping seasons that go by
before a farmer agent learns about organic technologies and is able to experiment
with them, the higher the baseline conventional yields to which he/she compares
organic yields—therefore, the less likely it is that he/she will choose to switch
to organic. When yields are higher, the loss of 50% of yield during switchover
is a greater absolute yield loss compared to when yields are lower. For example,
if conventional yields are one ton/ha, upon switchover organic yields would be
0.5 ton/ha. Given the lower costs of organic farming, the farmer might be able
to make up this 0.5 ton/ha difference between organic and conventional yields in
net profit by going organic. However, if yields are 5 tons/ha, the yield loss upon
switchover would be 2.5 tons/ha—a greater profit gap to make up.

We can also conclude that the adoption decision is dependent on the land area
an agent farms. Land area constraints on organic farming adoption were discussed
in the farmer focus groups, and the model’s sensitivity to this variable confirms that
farmers with limited land may not be able to generate the nutrients they need to
use as inputs for organic production. However, the model was not sensitive to the
“organic threshold”, or the amount of land required to produce on-farm organic
fertilizer. This provides evidence for rejecting our hypothesis that only farmers
who can produce their own fertilizer on-farm will be able to use organic methods.
Interestingly, none of the variables that would seem to have a direct influence on
the variability of organic farming (like cost of organic fertilizer and cost of other
organic inputs) drive the switch from conventional to organic farming, suggesting
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that cost comparisons between farming methods may not comprise a farmer’s main
motivation for adopting organic.

Patience and fertilizer costs play particularly intriguing roles in determining
organic adoption rates. When treated independently, these variables have negligible
influence on the adoption of organic farming (their Sk values equal zero). However,
their influence becomes much more pronounced when analyzed in interactions
with other variables, suggesting that they play a complex intertwined role in
the decision to switch cultivation to organic farming. This suggests that value
orientations towards promoting family health and health of the environment, which
were prominent topics of discussion in the focus groups, do not by themselves
determine whether a given farmer will choose to adopt organic methods. Rather,
knowledge of organic methods and the ability to produce organic fertilizer may
be pre-requisites for a farmer putting his or her pro-health or pro-environment
values into action. Farmers who have not been able to practice organic methods may
nonetheless be interested in integrated pest management techniques, and this was a
major topic of discussion in the focus group sessions [62].

Based on the sensitivity analysis we can also suggest the direction of ABM
simplification. In particular, animal ownership, labor availability, crop price, labor
costs, the amount of land needed to produce organic fertilizer on-farm (organic
threshold) and other organic and conventional costs proved to be unimportant
in shaping the variability of the RATIO statistics. Consequently, an equivalent
simplified model would have these variables set to constant average values, reducing
the dimensionality of the model from 16 to 9 uncertain inputs. This simplified model
would be equivalent to its predecessor in that it would maintain the variability of
RATIO (i.e., with V unchanged) [11,54]. This property can be of value in policy
analysis where a certain level of result variability is required to account for any
unanticipated events (surprises) in the target system. At the same time, a model with
a smaller number of variables can be easier for stakeholders and decision-makers to
understand. The drawback of our model simplification is that it is dependent on the
type and form of the output variable. Every time we substitute RATIO with a different
output of interest (e.g., we introduce different categories of organic farmers based on
their land management practices or household income), we should revisit the initial
ABM formulation and perform a separate variance-based model simplification.

Implications and Limitations

Quantitative data on organic adoption over time, which would allow for more
extensive validation of the model, is not yet available from this region. However,
these model results are consistent with anecdotal observations collected by NIRD
and expert opinion of in-region farmers—for example, the NGO has observed that,
despite a long-term presence in the region, the number of farmers who have decided
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to convert to organic methods remains limited. Similarly, the model depicted nearly
all farmers experimenting with organic methods after encountering these methods
through their social network, but only a minority of the farmer agents ended the
model run by adopting organic. This confirms the model’s usefulness as a scoping
exercise that can shed light on where future research and farmer support activities
should be focused.

We can suggest that further research would be warranted into the social network
among farmers in this region, and farmers’ means of sharing information, since social
reach and influence threshold were both found to be significant in determining rates
of organic adoption. Our model simulation used a uniform, random social network
to represent information sharing, which obviously does not reflect the network
topology in a typical community [27]. Moreover, there is no feedback effect from
farmers observing organic experiments which have been abandoned—it is possible
that if a significant number of these occurred in their social network, they might be
more reluctant to try organic agriculture in the first place. However, it is worth noting
that this dynamic was not mentioned in the focus groups as a factor in determining
organic experimentation.

An interesting implication of the model output seems to be that, as conventional
yields rise due to improved crop varieties and other variables, at some point it
may be “too late” for farmers to consider going organic, because conventional
yields would be high enough that the 50% loss occasioned by organic switchover
would represent too large of a yield gap for the farmer. The significance of the
yield variable in determining organic adoption rates confirms this interpretation of
the model. Therefore, if organic adoption is desirable in a given area, informing
interested farmers about organic techniques relatively quickly (possibly through
strategic use of social networks), while minimizing the initial yield losses from
switching to organic methods and boosting organic yields as quickly as possible
to compete with conventional yields (for example, through intensive soil fertility
amendments), would seem to be the best set of strategies. To return to the original
research question proposed by our NGO partner NIRD, we seem to have identified
two major drivers of organic adoption: yield and information sharing through social
networks. Additional research on how these variables change over time should help
to confirm this determination.

We did not collect detailed demographic data on the farmers who participated
in the focus groups, which limited the degree to which we were able to assess how
organic adoption rates may differ by gender, age, years spent farming, etc. It is likely
that these demographic variables also affect the nature of the social networks in
which farmers are embedded. The topology of the social networks represented in the
model was therefore totally under-developed, and warrants further exploration in a
more sophisticated modeling framework. In addition, our data collection was limited
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to one rice cropping season by the time and budget available for this study. Given
that we are simulating a dynamic system, observing empirical trends over multiple
seasons would give us more insight into whether the behavior simulated in the
model is similar to the behavior of the real-world system. One of the reasons organic
adoption is being promoted worldwide is for resilience to climate change-induced
drought and other extremes in precipitation and temperature patterns [63]. An
improved version of this model would include such shocks, in order to observe their
effects on organic adoption and yields compared to conventional yields. In addition,
economic shocks such as restriction to credit or large spikes in prices (larger than
we modeled here) could shed light on the relative resilience of organic techniques
compared to conventional techniques.

Another shortcoming of our model is its lack of spatial information. Clearly,
many aspects of farm production are highly dependent on that farm’s location in
the landscape, and one would expect organic adoption to be affected by spatial
characteristics such as farm slope, proximity to roads and water sources, soil
characteristics, etc. We hope to include spatial aspects in a future version of
this model.

Importantly, we were using the ABM as an exploratory, rather than a predictive,
model [64,65]. Given the complex and uncertain nature of the simulated upland
farming system, and the paucity of data from the region, we believe a traditional
quantitative model that seeks to make predictions about systemic outcomes is
inappropriate [66]. Rather, our goal was to shed light on the dynamic aspects of the
system described in questions 1 and 2 in the introduction, so that we might target
future research and modeling efforts. This approach is philosophically different
from the traditional use of statistical or optimization techniques to design a “best”
model which produces a “right” answer [66], but it is no less powerful. Systems
modelers have argued for decades that an optimization approach to a complex
system with high levels of uncertainty can lead to incomplete consideration of
system drivers at best [67], and misleading or erroneous conclusions at worst [68].
A dynamic simulation of a complex system, as undertaken here, can be used for
theory development and hypothesis testing [69]. With more empirical data with
which to calibrate and validate the model, however, this model could be used to
make more targeted projections to inform policy in a given location.

7. Conclusions

We built a stylized agent-based model to explore the reasons behind low
adoption rates of organic agriculture in a productive rice-growing region in the
upland Philippines, where organic agriculture has been promoted for fourteen
years. The model was run for multiple input variable sets that denote different
socioeconomic, behavioral, and ecological characteristics of the farmers and the
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agricultural system. Given the uncertainty of the system, we explored the variability
of the results using a variance-based sensitivity analysis framework to identify the
core drivers of the decision to adopt organic farming. We found that the speed
of information spread through the social network was highly influential in agents’
decisions to adopt organic agriculture, because the longer it takes for them to hear
about organic techniques and experiment with them, the more progress conventional
varieties and techniques achieve in boosting yields, leading to opportunity costs
for farmers who convert to organic. Land area is a constraint to organic adoption,
because farmers with small fields are not able to generate on-farm organic inputs that
are sufficient to maintain yields. The model revealed a high degree of complexity
in farmers’ decision-making, with interactive effects between decision variables
explaining one-third of the variation in organic adoption rates. Yield improvements
and information spread through social networks appear to be the major drivers
of organic adoption, warranting further research and modeling attention, and
perhaps programmatic targeting by our partner NGO. In addition, more research on
farmers’ decision-making processes is warranted, as these processes are complex and
driven by interactions between economic, social and ecological factors. Continued
interaction with farmers in the region will allow us to gain more insight into their
decision-making environment and constraints.
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An Approach for Simulating Soil Loss from
an Agro-Ecosystem Using Multi-Agent
Simulation: A Case Study for
Semi-Arid Ghana
Biola K. Badmos, Sampson K. Agodzo, Grace B. Villamor and Samuel N. Odai

Abstract: Soil loss is not limited to change from forest or woodland to other land
uses/covers. It may occur when there is agricultural land-use/cover modification or
conversion. Soil loss may influence loss of carbon from the soil, hence implication
on greenhouse gas emission. Changing land use could be considered actually
or potentially successful in adapting to climate change, or may be considered
maladaptation if it creates environmental degradation. In semi-arid northern
Ghana, changing agricultural practices have been identified amongst other climate
variability and climate change adaptation measures. Similarly, some of the policies
aimed at improving farm household resilience toward climate change impact might
necessitate land use change. The heterogeneity of farm household (agents) cannot be
ignored when addressing land use/cover change issues, especially when livelihood
is dependent on land. This paper therefore presents an approach for simulating
soil loss from an agro-ecosystem using multi-agent simulation (MAS). We adapted
a universal soil loss equation as a soil loss sub-model in the Vea-LUDAS model
(a MAS model). Furthermore, for a 20-year simulation period, we presented the
impact of agricultural land-use adaptation strategy (maize cultivation credit i.e.,
maize credit scenario) on soil loss and compared it with the baseline scenario i.e.,
business-as-usual. Adoption of maize as influenced by maize cultivation credit
significantly influenced agricultural land-use change in the study area. Although
there was no significant difference in the soil loss under the tested scenarios, the
incorporation of human decision-making in a temporal manner allowed us to view
patterns that cannot be seen in single step modeling. The study shows that opening
up cropland on soil with a high erosion risk has implications for soil loss. Hence,
effective measures should be put in place to prevent the opening up of lands that
have high erosion risk.

Reprinted from Land. Cite as: Badmos, B.K.; Agodzo, S.K.; Villamor, G.B.; Odai, S.N.
An Approach for Simulating Soil Loss from an Agro-Ecosystem Using Multi-Agent
Simulation: A Case Study for Semi-Arid Ghana. Land 2015, 4, 607–626.
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1. Introduction

Erratic rainfall is a major challenge facing agricultural practice in the semi-arid
regions of West Africa. The quality as well as the amount of land and water resources
accessible for agriculture and other climate-dependent sectors such as forestry and
fisheries are affected by climate change [1,2]. Farmers are changing their agricultural
practices and devising ways to modify livelihoods in light of the changing climate
and other multiple stresses. In some cases, the changes could be considered actual or
possible successes in adapting to climate change. It could also be just coping, or it may
be considered maladaptation where they create environmental degradation [3]. In
semi-arid northern Ghana, changing agricultural practices (e.g., crop diversification)
have been identified amongst other climate variability and climate change adaptation
measures [4–6]. Various policy instruments have been introduced to enhance farmers’
resilience towards the impact of climate change, for example, fertilizer subsidies,
farm credit, training in alternative sources of livelihood, etc. Some of these policies
might require change in the agricultural land use/cover.

Soil is directly linked to many ecosystem services, hence conserving the soil
will preserve and maintain the availability of these ecosystem services, such as
food production, water filtration, carbon storage, etc. Soil loss is a process caused
by erosion and its prepositional power [7]. The combination of climate, steep
slopes, and inappropriate land use/cover patterns triggers soil erosion [8]. Various
human activities, for example, population growth, removal of forest, land cultivation,
overgrazing, and higher demands for firewood often cause soil erosion [9]. Soil loss
may result in a decline in soil fertility and a decrease in the volume of reservoirs
and water bodies due to siltation. When productivity of soil is reduced, the outputs
derived from renewable natural resource systems of the biosphere are affected [10].
Soil carried by erosion also moves pesticides, soil nutrients, and other harmful
chemicals into water bodies as well as ground water resources [11,12]. Soil erosion
is also a channel through which carbon is lost from the ecosystem [13], hence the
implication for greenhouse gas emissions. In Africa, decreases in productivity due to
soil loss have been estimated to be between 2% and 40%, with an average of 8.2% for
the whole continent [14], and about 19% of the reservoir storage volumes of Africa
are silted [15]. In Ghana, about 30%–40% of the total land area, most of which is
concentrated in the northern, drier part of the country, is experiencing some form
of land degradation. The soils of northern Ghana are erodible due to low organic
matter content, in the range of 1.8%–3.2% [16,17].

In this part of the world, soil loss due to agricultural land use change has
not been adequately addressed. Agriculture is a primary source of livelihood in
the semi-arid northern Ghana [18], and human decision-making will play a vital
role when it comes to agricultural land use change (ALUC). We cannot ignore the
heterogeneity of farm households (agents) when addressing issues on land use/cover
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change, especially when livelihood is primarily dependent on land. Multi-agent
simulation (MAS) modeling is a data-demanding modeling approach and soil
erosion/soil loss study is a resource-demanding field of study. These may have
contributed to fewer applications of MAS model in the domain of soil erosion as
compared to other fields. This paper therefore presents an approach for simulating
soil loss from an agro-ecosystem using a multi-agent simulation (MAS) model. We
simulated the impact of agricultural land use change adaptation strategy (maize
cultivation credit-maize credit scenario) on soil loss and we compared the impact
with the baseline scenario, i.e. business-as-usual.

2. Methods

2.1. Study Area

This study was conducted in the Vea catchment (Figure 1) in the Upper East
Region (UER) of Ghana. The region is located in the northeast corner of Ghana
between latitudes 10◦30′ and 11◦8′ North and longitudes 1◦15′ West and 0◦5′ East.
The UER, together with the Upper West Region and Northern Region, constitute
the three regions of northern Ghana. The region is bordered by Burkina Faso in
the north and Togo to the east. Most parts of the region belong to the West African
semi-arid Guinea Savannah [19]. The region covers a total land area of 8842 km2

and this represents about 3.7% of the total area of Ghana [20]. In the 2010 national
census report [18], the UER of Ghana has a population of about 1,046,545 habitants
(~48.4% male and 51.6% female), which constitutes about 4.2% of the total population
of Ghana. The average household size in the region is 5.8 persons per household,
rural locality is about 79%, and about 70% of the economically active population
(ages 15 years and above) are involved in agricultural activities [18].

Rainfall in the region is mono-modal and the peak of the rainy season is around
July–September. The average annual rainfall is about 1044 mm and this is suitable
for a single wet season crop [21]. About 60% of the annual rain falls between July
and September. The wet period in the region is relatively short and is further marked
by variations in the arrival time, duration, and intensity of rainfall [21]. The annual
temperature is around 28–29 ◦C, whereas the absolute minimum temperature is
around 15–18 ◦C [22].

The region has experienced a series of climate change impacts, such as a
shift in seasons and irregular climatic conditions. The real problem for farmers
in the northern part of Ghana is the unreliability of rainfall caused by inter-annual
variability of both the total amounts and distribution of rainfall [23]. In the study
area, rainfall is a key underlying factor influencing farmers’ agricultural land use
change options [24]. Erratic rainfall makes agricultural planning very difficult and is
one of the principal sources of risk for rain-fed agriculturalists in the Sahel [23].
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2.2. Household Agricultural Land Use Choice

Seven main categories of agricultural land-use choices were identified (Table 1)
from the household survey. They include traditional cereals (guinea corn culture,
late millet culture, mixed-traditional culture), groundnut (monoculture groundnut,
mixed-culture groundnut), rice, and maize.

Table 1. Agricultural land-use choice classes.

Sub-Category/Description Code

1 Traditional cereals culture, where Guinea corn (GC) is main crop GC_CULT
2 Traditional cereals culture, where Late millet (LM) is main crop LM_CULT
3 Traditional cereals culture, where there is an equal ratio of GC and LM MIX_TRAD_CULT
4 Groundnut in a mixture of other crops MIX_GNUT
5 Groundnut in a mono culture MONOGNUT
6 Rice is the main crop. RICE
7 Maize is the main crop. MAIZE

2.3. Model Description: Vea-LUDAS

The Vea-LUDAS model (Figure 2) adapted the framework of Land-Use Dynamic
Simulator (LUDAS) [25]. The Vea-LUDAS model is mainly based on the existing
versions of LUDAS models [25–28]. The new feature of this version of the LUDAS
model (i.e., Vea-LUDAS) is the incorporation of soil loss, which was parameterized
in the context of the Vea catchment in the Upper East Region of Ghana.

LUDAS is a MAS model that was first applied to an upland watershed of
about 90 km2 in central Vietnam. LUDAS was first applied by Le et al. [25]
because of the heterogeneous nature of biophysical conditions, the diverse livelihood
patterns of local farming households, and the need to formulate policies balancing
nature conservation and economic development purposes. The description of
the Vea-LUDAS model using the ODD protocol (overview, design concept, and
details) [29,30] is presented in Appendix A. The ODD protocols of the Vea-LUDAS
model followed similar steps to other versions of the LUDAS model. Vea-LUDAS
model programming and simulation was carried out in NetLogo [31].

The human (household) agent and environmental (landscape) agent are the
two agents in the Vea-LUDAS model and each of these agents has numerous
state variables. Human agents are represented in the model as farm households
(i.e., household agent) and each farm household has its spatial location, hence it can
be identified with respect to its position. The state variables of human agent are
household characteristics (age of household head, household size, household labor,
household dependency ratio), human-plot characteristics (land holding per capita,
rain-fed land holding, land area cultivated for different crops, household proximity
to plots, river and irrigation area), household financial characteristics (income
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per capita, income from rain-fed crop). Landscape agents consist of biophysical
spatial raster layers and other variables in the form of GIS-raster layers. Landscape
agent is also referred to as patch and this includes biophysical features (land cover,
elevation, upslope contributing area, wetness index, and soil texture components)
and proximity features (plot distance to river and plot distance to irrigation area).
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Figure 2. Vea-LUDAS framework. Adapted from [25].

2.3.1. Key Sub-Model Adapted for This Study: Soil Loss Sub-Model

The Universal Soil Loss Equation (USLE) [32] was adapted for a soil loss
estimation sub-model (Figure 3) in the Vea-LUDAS model. The USLE (Equation (1))
has been used extensively to estimate soil loss and it has also found usage in Africa.
Kaolinite is the dominant clay in soils of West Africa, thus permitting the use of
USLE [33]. The soil loss estimation sub-model was embedded inside the landscape
module of the Vea-LUDAS model. The erosivity (R), erodibility (K), slope factor (LS),
and cover factor (C) layers were imported into Vea-LUDAS. The C layer is linked
to land-use/cover layer. As the farm households make their cropping decisions
in terms of agricultural land-use, the C layer updates and soil loss is determined
through the following equation:

A = R × K × LS × C × P (1)

where A = Mean annual soil loss (t·ha−1·yr−1), R = Rainfall/runoff erosivity
(MJ mm·ha−1·h−1·yr−1), K = Soil Erodibility (t·h·MJ−1·mm−1), LS = Slope length
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and steepness factor (Unitless), C = Cover and management factor (Unitless),
P = Conservation/support practice (Unitless).
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2.3.2. Variable Specification for Soil Loss Estimation

Rainfall Erosivity Factor (R)

This factor gives an indication on how erosive the rainfall is. The conventional
method of estimating rainfall erosivity is the use of Erosion Index-EI30 [32]. However,
this is difficult to obtain in developing countries where continuous data availability
has been a major challenge. Hence, several other methods have been developed in
different parts of the world, for example, [34–38]. In some locations in West Africa,
the relationship between annual rainfall and erosivity (Equation (2)) was tested and
verified by [35] with 20 rainfall recording station in Cote d’Ivoire, Burkina Faso,
Senegal, Niger, and Chad, excluding stations located around the mountains as well
as near the sea. The Fournier index (FI) [34] has also been used to estimate rainfall
erosivity, but has been improved upon with the modified version i.e., Modified
Fournier index (MFI) (Equation (3)) [36]. We generated the MFI for the study
area using time series rainfall data provided by the Ghana Meteorological Service
Department. MFI was determined for the rainy season period of each year (April to
October) and the average for the years was used. We obtained the estimated monthly
Erosivity (Ri) using Equation (4).

R = [(0.5 ± 0.05) P] (2)
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where R = Rainfall erosivity, P = Annual rainfall

MFI =
12

∑
i=1

Pi2/P (3)

where MFI = Modified Fournier index, i = Months, Pi = average rainfall in month
i (mm), P = Annual rainfall.

Ri = a + b (MFI) (4)

where Ri = Monthly erosivity, MFI = Modified Fournier Index, and a (21) and b (1.96)
are site-specific empirical constants.

Soil Erodibility (K-value)

The K-value represents the soil loss per unit of EI30 as measured in the field on a
standard plot with a length of 22 m and 9% slope [32]. There are three popular
methods [32,39,40] used in the estimation of erodibility [41]; soil particles play
an essential role in all cases. A soil erodibility nomograph was developed by
Wischmeier et al. [42] to read K-value. In using the nomograph, % silt content,
% sand content, % organic matter, soil structural class, and soil permeability are
required. In Williams et al. [39], the fine sand, silt, clay, and organic carbon content
of the soil were used to estimate soil erodibility. In a data-scarce environment, an
alternative method for estimating soil erodibility, i.e., ERFAC-K (Equation (5)), was
proposed by Geleta [43]. In deriving the ERFAC-K, soil particles of different ratios,
such as (i) silt to clay, (ii) silt to sand, and (iii) silt to sand and clay were compared with
the measured K-value, and the highest coefficient of correlation (0.88) was obtained
using the silt to sand and clay ratio [43]. Furthermore, soil characteristics from FAO
soil database [44] were tested and a correlation coefficient of (0.82) was obtained [43].
Hence, the ERFAC-K method was adapted for the estimation of K-value as follows:

ERFAC-K = a
[

% Silt
% Sand + %Clay

]b
(5)

where ERFAC-K = Proposed alternative soil Erodibility factor, % Silt = % silt content
of the soil, % Clay = % clay content of the soil, % Sand = % sand content of the soil,
a = 0.32, and b = 0.27.

Slope Length and Steepness Factor (LS)

Slope length and steepness are usually combined in USLE. The LS-factor
represents the ratio of soil loss on a given slope length and steepness to soil loss from
a 22.1 m slope length and a steepness of 9% under otherwise identical conditions [45].
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LS factor can be calculated in various ways, for example [32,46–48]. According to Van
der Knijff et al. [49], the LS equation (Equation (6)) described in Moore et al. [46,48]
has the advantage over the original equation [32] because it uses specific contributing
area as a slope length estimate, and this is more amenable to three-dimensional
landscapes. We therefore used the method described in [49] for the estimation of the
LS factor:

LS = m + 1
[

As
22.13

]m [
SinB

0.0896

]n
(6)

where As is upslope contributing area, B is the slope in degrees, and m and n are
empirical exponents.

C- and P-Factor

C-factor is the ratio of soil loss from land cropped under specific conditions to
the corresponding loss from clean-tilled continuous fallow [32]. P-factor describes
the erosion conservation practice put in place. The value of C-factor depends on
vegetation type, stage of growth, and cover percentage [8]. C-factor is the most
important conditional factor, and if vegetation cover is uninterrupted, erosion
and runoff are small despite the erosivity of the rainfall, slope steepness, and soil
instability [35]. C-factor can be estimated on the field by comparing soil loss on
clean-tilled, continuous fallow with other types of land-use/cover [50]. A normalized
vegetation index has also been used to estimate crop factor, for example, [51,52]. The
study area is primarily agriculture based, and agriculture constitutes the main source
of livelihood. Very few studies we are aware of have looked at the C-factor for
different crop types in West Africa, for example [35]. In Roose [35], C-factors for
different crops were presented based on the yield of crops, but the study did not
provide the standard yield used in the estimation of C-factor. However, Henao
and Baanante [53] summarized the C-factor for some selected cover types in Africa
(Table 2). Hence we adapted C-factors presented in [53].

Table 2. Crop Cover and Management Factor for selected crops [53].

Cover Type Cover and Management Factor (C)

Millet and sorghum 0.3–0.9
Cotton 0.5–0.7

Groundnuts 0.4–0.8
Cowpea 0.2–0.4
Maize 0.4–0.7

Rice (paddy) 0.3–0.5
Bare land 0.8–1.0
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2.4. Scenario Exploration

Two scenarios were tested in this study, namely (i) Baseline (BS) and (ii) maize
credit scenario (MCS). BS describes the business-as-usual situation whereby the
behavior of agents on the ground is that there is no policy intervention. On the
other hand, MCS operates on the grounds that credit is offered to farmers for maize
cultivation. The concept of MCS arose because in the northern part of Ghana, maize
has been identified as an agricultural land-use adaptation practice [4,24,54]. Also, a
program promoting maize cultivation was observed in the study area. For example,
in the block farm program, farmers are provided with support to enable them to
improve their production, and they pay back the credit in kind at the time of harvest.
Maize is one of the target crops under the block farm program [55]. Hence, this
study opted for maize as an agricultural land-use change option influenced by credit.
The choice of household agents to accept maize cultivation followed the maize
credit adoption sub-model (Figure 4). This sub-model adapted the decision-making
sub-model for willingness to accept payment for ecosystem services in [28,56] by
following a process-based decision [56,57]. The sub-model is linked with the crop
decisions of the household agent. At each time step and with respect to preferences
coefficient generated using binary logistic regression, the sub-model randomly
determines the probability of whether a household will accept maize credit to
cultivate maize; otherwise the household uses the choice probability of his land
holding. A yearly household increment of 1.2% for the study area [18] was specified
in the model.
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Figure 5. Rainfall erosivity.

3.2. Agricultural Land-Use Change

The change in area cultivated for different crops between year 1 and year 20
under the two scenarios is presented in Figure 7. Under the BS, the steady increase
in the land area cultivated for different crops was attributed to the 1.2% yearly
household increment specified in the model. In the case of MCS, the change in area
cultivated for different crops was linked to the 1.2% yearly household increment
specified in the model, as well as the influence of maize adoption rate (influenced by
maize cultivation credit) at the expense of other agricultural land uses.
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(b) MCS scenarios.
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3.3. Soil Loss

The impact of MCS on soil loss in comparison with BS showed a mixed pattern.
Between year 4 and 15, simulated annual soil loss was higher under MCS as compared
to BS. On the other, between year 15 and 20, simulated annual soil loss was higher
under BS as compared to MCS (Figure 8). There was however no statistical difference
(p < 0.05) (Figure 9) in the average simulated annual soil loss under MCS and BS.

4. Discussion

The application of MAS model for research has shown a tremendous increase
in the last two decades [58], and this cuts across several disciplines. A key strength
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of the MAS model is the ability to clearly simulate the implications of human
decision-making processes [59,60].

In Ghana, rainfall model simulation results have showed more uncertainty
compared to temperature model simulation [61]. The uncertainty in the rainfall will
influence erosivity, which is the rainfall indicator for soil loss estimation. Similarly,
inter-seasonal variation in rainfall will also influence rainfall erosivity and this in turn
will influence the soil loss. In semi-arid Ghana, rain-fed agriculture predominates
and rainfall plays a very important role in influencing agricultural land-use choice
and alternatives [24]. An increase in spatial patterns of rainfall has been reported
in the study area. For example, close-by locations that usually have similar rainfall
patterns are now experiencing varying patterns. This situation has implications on
soil loss because the cover factor will vary at different times of the year. However,
this study did not consider inter-seasonal and spatial variation in rainfall and cover
between different locations in the study area due to limited availability of widespread
rainfall data across the study area. Furthermore, the primary farming practice in the
study area is subsistence and the majority of the farmers are small holders, hence
the difficulty in collecting data on the sowing and harvesting time for each type of
crop cultivated. As a result of data scarcity, we settled for an alternative method of
estimating the K-factor due to data limitation, which has been a huge challenge for
research in Sub-Saharan Africa.

In Roose [33], C-factor is described as the most important conditional factor
influencing soil loss. On the other hand, the mixed pattern observed in soil loss
under the BS and MCS is associated with the fact that as farm households clear new
land for crop cultivation, the type of crop cultivated on the land is not the only factor
contributing to the soil loss; the influence of other biophysical characteristics (e.g.,
erodibility and topographic factors) of the newly cleared land also counts. This also
points out the importance of incorporating farm household crop decision-making
into soil loss estimation in the agro-ecosystem. It is well known that soil loss is also
driven by various human activities, such as overgrazing, higher demands for fire, etc.
However, this study only captured the implications of agricultural land-use change
on soil loss.

5. Conclusions

Land-use change is second to fossil fuel burning in terms of contribution
to greenhouse gas emissions. It has been reported that in the coming years, the
contribution of land-use change to climate change will increase considerably. Africa
will contribute significantly to the projected 9 billion people by 2050, and this
implies an increase in the demand for land resources. Therefore, Africa might
play a major role in future climate change. Soil erosion has an important impact
on the loss of carbon from the soil into the atmosphere. We presented an approach
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for simulating soil loss from an agro-ecosystem using a multi-agent simulation
model (the Vea-LUDAS model). Following a process-based decision approach,
we simulated the impact of maize cultivation credit (maize credit scenario) on
agricultural land-use change and subsequently the impact on soil loss. This impact
was compared with the baseline scenario, i.e., business-as-usual. The Vea-LUDAS
model has shown its potential to explicitly simulate soil loss from an agro-ecosystem.
The temporal modeling suitability of the Vea-LUDAS model and the incorporation
farm household decision-making allowed us to view patterns that cannot be seen
in single step modeling. Although there was no statistical difference in the soil loss
under the two tested scenarios, the simulation shows that converting high erosion
risk soil to cropland has implications for soil carbon loss (i.e., climate change), which
we propose to apply in areas with high erosion risk soils. Consequently, policy
should be elaborated to prevent further land degradation of high erosion risk soils.
Furthermore, sufficient infrastructure needs to be put in place so that reliable climatic
data will be available and accessible. This is important so that farmers can have
reliable information on expected weather patterns, thus enabling them to effectively
plan their cultural practices and not having bare soil during the period of higher
rainfall erosivity.
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Appendix A. ODD Protocol for Vea-LUDAS

In this section, we describe the Vea-LUDAS using the ODD (overview, design
concept, and details) protocol [29,30]. The Vea-LUDAS adopts/follows most of the
functionalities with other LUDAS models [25–28].

A1. Overview (O)

Purpose: This study applied the Vea-LUDAS model to assess the impact of
maize cultivation credits on agricultural land-use change and farm household
livelihood in Vea catchment, Upper East Region of Ghana.
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Figure A1. Main simulation steps for Vea-LUDAS (Note: Under the maize credit
scenario simulation, step 5 is replaced with Maize credit adoption sub-model;
dashes indicate the annual cycle of the agent-based process).
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Agents and their state variables and scales: Human (household) agent and
environmental (landscape) agent are the two agents in Vea-LUDAS, and each
agent has numerous state variables. The human agent (i.e., household agent) is
represented in the model as farm household. Each household has its spatial location
and can be identified with respect to its position. The state variables of human
agent are household characteristics (e.g., age of household head, household size,
household labor, household dependency ratio), human-plot characteristics (e.g., land
holding per capita, rain-fed land holding, land area cultivated for different crops,
household proximity to plots, and river and irrigation area), and household financial
characteristics (e.g., income per capita, income from rain-fed crop). The landscape
agent comprises the biophysical spatial raster layers and other variables in the form
of GIS-raster layers. Landscape agent is also referred to as patch, and this includes
biophysical features (e.g., land cover, elevation, upslope contributing area, wetness
index, and soil texture components), and proximity layers (e.g., plot distance to river
and plot distance to irrigation area).

Vea-LUDAS captures the whole Vea catchment (286 km2) in the upper east
region of Ghana, and is represented by grid or pixel layers (30 m × 30 m = 900 m2).
A 900-m2 grid was used because of the form in which other spatial data were available
and to avoid unnecessary delay in model computation. One year is equivalent to a
time step; this is equivalent to one calendar cropping season in the study area where
most of the crops cultivated are annual crops.

Process overview and scheduling: One simulation consists of 12 main steps
(Figure A1). Each major time loop of the simulation program is referred to as an annual
production cycle. Each cycle integrates agent-based and patch-based processes.

A2. Design Concepts (D)

The Vea-LUDAS model is designed to take into account variation of human
behavior with respect to agricultural land-use change decision-making. The design of
the model also considered the possible implications of policy scenarios on household
agricultural land-use change decision and household lielihood.

Emergence: Land-use change is caused by household agents, as well as human
agents’ willingness to adopt maize cultivation credit. Annual change experienced in
the total area cultivated is associated with increasing household number in the study
area [18]. Crop yield is a result of household inputs’ (e.g., seed, labor, and fertilizer)
interaction with landscape features (e.g., upslope, wetness index). Farm income is
estimated from crop yield generated by each household.

Adaptation/learning: A household agent chooses the best agricultural land-use
with respect to preference coefficient. The behavior of the closest agent group is
adopted by the household agent [62,63]. Furthermore, household status is updated
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at the end of every time step and this influences their preference coefficient, hence
their subsequent decision.

Prediction: A household agent is able to optimize spatial land-use choices only
within his parcels.

Sensing: In evaluating land-use alternatives, it is assumed that household
agents have absolute knowledge of the uniqueness of each landscape agent within
their neighborhood spaces.

Interaction: Household agents interact directly when two or more households
find their best land-use alternative in the same location. In this case, in a random
manner one of them will have to leave that location and search for another plot [25].
Further, when a new household is created, information that will be useful for the
new household agent is transferred from another household.

Stochasticity: Application of stochasticity in Vea-LUDAS occurs in four different
processes, i.e., (i) choosing plot locations for household agents (initialization), as
well as the new household created at each time step; (ii) preference coefficients in
the land-use choice function; (iii) ecological sub-models that produce variability in
the process; and (iv) some status variables not affected by agent-based processes
(all defined by even distribution and pre-defined bounds).

Observation: This includes annually successive charts that describe temporal
patterns of land-use/cover coverage, landholdings, yield and components, income
and income components, and soil loss.

A3. Details (D)

Initialization: Vea-LUDAS followed initialization steps similar to those of
VN-LUDAS [62]. Simulation and analysis were based on the sample households
(186). The data on the sampled household are imported first, followed by the spatial
data (land cover, elevation, upslope contributing area, wetness index, soil texture
components, plot distance to river, and plot distance to irrigation area). This is
followed by the land holding generation of the household agents, and each patch is
assigned to a household.
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How to Make a Barranco: Modeling Erosion
and Land-Use in Mediterranean Landscapes
C. Michael Barton, Isaac Ullah and Arjun Heimsath

Abstract: We use the hybrid modeling laboratory of the Mediterranean Landscape
Dynamics (MedLanD) Project to simulate barranco incision in eastern Spain under
different scenarios of natural and human environmental change. We carry out a
series of modeling experiments set in the Rio Penaguila valley of northern Alicante
Province. The MedLanD Modeling Laboratory (MML) is able to realistically simulate
gullying and incision in a multi-dimensional, spatially explicit virtual landscape. We
first compare erosion modeled in wooded and denuded landscapes in the absence
of human land-use. We then introduce simulated small-holder (e.g., prehistoric
Neolithic) farmer/herders in six experiments, by varying community size (small,
medium, large) and land management strategy (satisficing and maximizing). We
compare the amount and location of erosion under natural and anthropogenic
conditions. Natural (e.g., climatically induced) land-cover change produces a
distinctly different signature of landscape evolution than does land-cover change
produced by agropastoral land-use. Human land-use induces increased coupling
between hillslopes and channels, resulting in increased downstream incision.

Reprinted from Land. Cite as: Barton, C.M.; Ullah, I.; Heimsath, A. How to Make a
Barranco: Modeling Erosion and Land-Use in Mediterranean Landscapes. Land 2015,
4, 578–606.

1. Introduction

Characteristic features of many Mediterranean landscapes are deeply incised,
intermittent watercourses, termed barrancos in Spanish. These can range from modest
gullies a meter deep to extensive drainage systems that extend over tens of kilometers
and tens of meters deep. While some deeper barrancos may intersect local water
tables, most only carry water periodically during or after significant precipitation.
Some barrancos are old and are related to characteristics of underlying lithologies,
bedrock structure, long-term climate-driven changes in vegetation cover, and regional
drainage networks [1]. However, many are clearly much younger, and are incised
into unconsolidated sediments or soft calcareous bedrock [2–4]. Many older bedrock
barrancos also show evidence of recent incision [1,5,6].

There is a widespread consensus that anthropogenic factors—especially
agropastoral land-use—played a significant role in Holocene erosion and soil loss
throughout the Mediterranean, although there remains considerable debate over the
relative causal importance of human and natural processes at different temporal and
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spatial scales [6–10]. Certainly, the Mediterranean region today and in the recent past
is characterized by high sediment transport levels, as a result of both sheet erosion
and incision [4,6]. There is also evidence of significant episodes of erosion, including
incision, at various times in the historic and prehistoric past that seem coeval with
changes in agropastoral land-use patterns [7,11–13].

While there has been considerable study of the impacts of land-use on and
hillslope and rill erosion in the Mediterranean, the relationships between land-use
and gullying and barranco formation are less well understood [4,6,14]. Moreover,
quantitative studies of the effects of farming and herding practices on gully incision
have been largely empirical and limited to short-term processes (from single events
to several decades) that are observable (e.g., [2–4,6,15,16]). Some of the larger,
and more areally extensive barranco systems have been forming over centuries or
longer. Increased channel incision, along with increased sheet and rill erosion, is
generally viewed as evidence of severe landscape degradation (sensu [17]). Yet,
the creation or exacerbation of incision in barrancos is but one of many potential
consequences of complex interactions between social and biophysical drivers of
surface dynamics that have been shaping Mediterranean landscapes for millennia.
The specific land-use histories of these coupled human and natural landscapes
feedback into the earth-surface processes that shape them, in turn offering new
constraints and opportunities for subsequent agropastoral and other land-uses [11].
It is therefore important to understand the potential long-term co-evolution between
human land-use and barranco formation, however, the centuries-long time scales of
these processes makes direct observation impossible. Proxy records of landscape
change are widely and irregularly distributed in space and time, and often contain
significant lacunae, allowing for multiple interpretations of the same evidence
(e.g., [7,8]). Fortunately, advances in computational surface process modeling
offer a way to investigate the complex, long-term interaction of anthropogenic and
biophysical drivers of land-scape dynamics [18–20].

We describe the results of a series of modeling experiments, using a digital
laboratory developed in the Mediterranean Landscape Dynamics (MedLanD) project,
designed to explore the long-term consequences of small-holder agropastoral
land-use for the evolution of barrancos in Mediterranean Spain. The MedLanD
Modeling Laboratory (MML) is an open-source, integrated modeling environment
that has the ability to couple spatially explicit (cellular automata) models of landscape
evolution, agent-based and GIS-based models of human land-use, and regression or
cellular models of vegetation and climate change to study the long-term dynamics of
coupled human and natural landscapes [19,21–26]. In these experiments, we model
the effects of increasing population, reducing fallowing intervals, and resource
management strategies on barranco incision (Table 1). We situate these experiments
in the real-world landscape of the Penaguila Valley in northern Alicante Province,
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Spain, which is the location of one of the earliest farming settlements (i.e., Neolithic)
in the region [27,28]. Today, the valley is dissected by deeply entrenched barrancos
containing incised sections that appear to postdate early Neolithic occupation of
the valley.

Table 1. Table of modeling experiments conducted.

Experiment Number Number of People Land Tenure Type

1 30 Satisfice
2 30 Maximize
3 60 Satisfice
4 60 Maximize
5 120 Satisfice
6 120 Maximize

2. MedLanD Modeling Laboratory (MML)

2.1. Surface Process Model

Many of the details of the surface process model component of the
MML—r.landscape.evol—are described in Mitasova and colleagues [19]. (See
Table A1 for a description of the input parameters of the module). In brief,
r.landscape.evol is written in Python to run within the open-source GRASS GIS
environment, where it can take advantage of fast computational hydrology tools,
a parallelized map calculator, and special Python library. It uses a 3D implementation
of the Unit Stream Power Erosion/Deposition (USPED) equation [29–31] to estimate
transport capacity on hillslopes and rills (Equation (1)), and the Stream Power
equation [19] to estimate transport capacity in channels (Equation (2)):

T(hillslopes) = R K C Am (sin β)n (1)

T(channels) = Kt n−1 gw hm (tan β)n (2)

where R, K, and C are the rain, soil erodibility, and land cover coefficients of the
well-known RUSLE equation [32], A is the upslope accumulated area (per contour
width), β is the local slope (in degrees), Kt is a coefficient of substrate erodibility
in stream channels, n is Manning’s coefficient, gw is the gravitational power of
flowing water, h is the depth of flow, and m and n are empirically derived transport
coefficients (both 1 for sheetwash on hillslopes, and 1.5 and 1.6, respectively, for
flow in channels). The implementation of r.landscape.evol used here does not use
soil creep or shear stress equations mentioned in Mitasova and colleagues [19], but
these are alternative modes that exist in the module, and which may be implemented
if desired.
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The model estimates meters of erosion or deposition (ED) in each cell of a DEM
on the basis of 2D divergence in transport capacity across topography (Equation (3)):

ED =
d (T·cos (α))

dx
+

d (T·sin (α))

dy
(3)

where α is the topographical aspect (in degrees). A map of ED is converted to
elevation changes by normalizing to sediment bulk density, and then added back to
the DEM to create a new DEM to be the base layer for subsequent modeling. This
process is iterated repeatedly to evolve the digital landscape. The model is transport
capacity limited, but erosion is not unlimited. The model also requires a digital map
of estimated bedrock elevations, and so tracks the amount of soil/regolith available
for erosion. Erosion in excess of the available sediment in a given cell is not allowed.
Although not implemented in the experiments presented here, bedrock erosion can
be simulated by artificially deepening “soils” in places likely to experience significant
erosion, and then “indurating” these soils with smaller values of K or Kt.

Sediment transport capacity can be altered by land cover, surface characteristics,
or the amount of water available for runoff through the process equation
coefficients [32,33] (Figure 1, see also Table A1). In the modeling experiments
described here, K and R are kept constant, and take values empirically calculated
for Mediterranean terra rossa soils [34] and mid-Holocene precipitation [22] (see
Section 3.3, below). Human land-use activities, described below, can alter land
cover. Land cover affects the calculation of erosion or deposition in two ways. On
hillslopes the protective effect of vegetation on a plot of land is accounted for by C,
affecting localized changes in transport capacity as estimated by the USPED equation.
Additionally, the vegetation traps water, reducing runoff from a cell proportionally
to the type of vegetation cover present (currently, runoff percentage is estimated
from a linear regression of C vs. runoff water infiltration.). This changes the amount
of water flowing though the downstream portions of the drainage, changing the
estimated value of stream power in downstream reaches, and thereby affecting the
calculation of erosion and deposition in those portions of the drainage. The input
parameters of the surface process model are summarized in Table A1.

Finally, we parameterize the model to operate at a yearly interval to match
better with the human agricultural cycle. This means that input parameters such as
rainfall, storm frequency, vegetation growth, and land-use are all annualized, and
that we do not explicitly model the occasional, very short term, extreme events that
can have significant impacts on sediment transport (e.g., [14]). If these events were
of significant effect in the formation of barrancos, then we may be underestimating
the impact of human activity on barranco formation.
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2.2. Human Land-Use Model

Although the MML contains a sophisticated Agent-Based land-use simulation
engine, in this research we have chosen to use a more generalized model of Neolithic
farming that simplifies land-use decisions with stochastic modeling techniques.
This approach is more appropriate for modeling questions that do not require
sophisticated agents (e.g., [22]), or that, as we do here, focus primarily on non-social
aspects of socio-natural systems (but see [21,25,35] for modeling problems that
do benefit from the ABM approach). Our simplified land-use model nevertheless
encompasses a large range of human behaviors, however, and allows for several
different land-use strategies to be modeled within a simple over-arching modeling
framework that allows for faster simulation times.
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Figure 1. A schematic representation of the effect of topographic and vegetation
change on the calculation of erosion and deposition in the MML surface process
model. Our modeling approach assumes that the sediment load in flowing water is
normally near transport capacity (a spatially and temporally dynamic equilibrium
influenced by factors like the quantity of water, slope, and land-cover). In a
three-dimensional landscape, changes in one of these factors will alter transport
capacity. Sediment will then be entrained or deposited until a local equilibrium
between sediment load and transport capacity is reached. Hence, increases in
slope (or, convexity) will tend to result in erosion; decreases in slope (or, concavity)
will tend to result in deposition. Reduction of vegetation (shown as green bushes)
will tend to result in increased erosion or decreased deposition, depending on the
localized change in slope. (Length of blue arrows schematically represents transport
capacity of overland flow).
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The simplified land-use model amalgamates the decisions of individuals
(or households) at the coarser social level of a village, which we here take to mean a
group of individuals that cohabit in a community, and that generally communicate
or coordinate subsistence and land-use decisions. The model is divided into three
sequential components: (1) land-use planning; (2) enactment of a land-use plan; and
(3) calculation of direct land-use impacts. The land-use plan for the village is updated
on annual basis, and balances rudimentary information about mean productivity in
the village’s catchments against a particular subsistence plan (ratio of agriculture
to pastoralism), land choosing strategy (no land tenure with random allocation,
satisficing subsistence needs, or maximizing agropastoral returns), and population,
which are variables parameterized by the modeler at the start of a simulation run.
Village labor availability and requirements, the general productivity and ecological
characteristics of crops and herd animals, and the severity and spatial patterning
of land-use impacts for herding or farming can all be parameterized to suit specific
case-study conditions (see Table 2 for all land-use options of the model). Land-use
occurs within predefined agricultural and pastoral catchments, which are created
by the method described in [36], and which allows land above a slope threshold to
be ignored (in our case, >10◦). Each year, the village acquires new knowledge of the
productivity of the landscape from the previous year’s returns. These data are added
to a “memory bank” of variable length, and the subsistence plan for the upcoming
year is created using the averaged values over a predetermined number of previous
years. This information is subjected to a Gaussian random perturbation to prevent
perfect knowledge of past events, which more realistically simulates the vagaries of
human memory and human ability to estimate averages [37,38].

The village agent then uses this information to derive the number of farm plots
and grazing patches that it believes are required to sustain the target population
level (which does not change during the simulation). The land-use plan is enacted
via spatially-explicit stochastic farming and grazing land-use choice procedures.

Three different procedures may be employed for farming land-use behavior,
depending on the style of land-tenuring strategy desired for a particular model run.
In the case of a non-tenuring farming strategy, new plots are randomly chosen from
within the farming catchment every year. For a satisficing strategy, plots are randomly
chosen the first year, and are never relinquished. If more plots are needed, they are
randomly selected from the unused portion of the catchment as needed, and remain
under cultivation for the remainder of the simulation. For a maximizing strategy,
plots are also randomly chosen the first year, but may be dropped in subsequent
years if their productivity falls below a predetermined proportion of the average
yield. Randomly chosen new fields are then added as necessary in order to meet
farming goals. Previously used-and-relinquished fields are available for reuse in the
future. Farming returns are calculated per-plot by the average of three regression
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formulas, each calculated from empirical data about the effect of soil depth, soil
fertility, and rainfall on wheat and barley yields in Mediterranean climate regimes,
and calibrated to typical yields of ancient wheat and barley varieties [39–48].

Grazing occurs within a subset of the grazing catchment that is determined by
the current number of grazing patches required and a least-cost routing algorithm.
The number of grazing patches is calculated by the village agent each year based
on the current village population, the parameterized herding ratio, the fodder
requirements of herd animals, and the agent’s current knowledge of average grazing
patch fodder yields. Optionally, grazing can be allowed on the fallowed portions
of the farming catchment as well. Thus, non-denuded grazing patches near the
village are always grazed, but farther patches may be added as necessary. Although
all patches within the delimited subset of the grazing catchment will be grazed in
a given year, some patches are grazed more intensively than others. The spatial
patterning of this grazing intensity is determined by a Gaussian random function
with tunable spatial autocorrelation that creates a patchy impact pattern. This more
realistically simulates actual grazing patterns for site-tethered pastoralism [49–51].
Grazing returns are calculated from the known amount of digestible matter for given
vegetation types, and the intensity of grazing [52–59]. People then gain calories from
the milk and meat produced by the herds that were supported by the current grazing
plan [60–64].

Once the amount and location of land-use activities are decided by the village
agent for a given simulation-year, the model enacts the plan, assesses the amount
of agricultural and pastoral returns that were gained, calculates the impacts of the
land-use to vegetation and soil fertility, updates the landscape with the effect of these
impacts, and then passes those new parameters to the surface process model. Impacts
of farming a new plot include reduction of its vegetation cover to a value appropriate
for cereals (i.e., dense grassland), and all farmed plots also experience reduction
in soil fertility. Soil fertility is reduced according to a Gaussian random function
with tunable spatial autocorrelation, with mean and standard deviation set at the
start of the modeling run. Grazing reduces land-cover by the amount determined
by the grazing intensity map discussed in the previous paragraph. Grazing also
affects soil fertility in that manure from grazing animals is added to the soil at a rate
commensurate to the intensity of grazing on that patch [65].

The map of land cover (converted to values of C) for a given year is passed
as input into the r.landscape.evol surface process model as described above. The
calculated erosion or deposition changes the surface topography, affecting the depth
of soils and local slopes, which feeds back into the farming and grazing planning
process for the next year.
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3. Modeling Experiment Design

3.1. Creating the Digital Landscape

We focus the experiments for studying the long-term impacts of land-use
practices on barranco formation in a digital representation of the real-world landscape
of the Rio Penaguila Valley, near the town of Benilloba, Alicante (Figure 2). We use the
early Neolithic archaeological site of Mas d’Is [27,66] as the location of a small-holder
farmer/herder village. Today, this area is dissected by five large barrancos that
probably did not exist, or were much less deeply incised, in the mid-Holocene.
Hence we need to initiate our surface process models on a landscape that lacked these
erosional features. To do so, we conducted geomorphological and geoarchaeological
fieldwork in the project area, compiling a variety of temporal data for the different
landforms to create a landscape chronology. These data included the date of the
earliest archaeological material recovered during pedestrian surveys, stratigraphic
information, and OSL dates where possible. We were able to delineate terraces
and other areas that were likely present during the Neolithic period (“Terrace A”
in Figure 3), as well as those areas that are more recent. In general, post-Neolithic
surfaces were located in the bottoms of the barrancos and on low alluvial terraces in
barranco-bottoms. We masked these more recent surfaces in a GIS to remove them
from the digital landscape (i.e., DEM), and interpolated new terrain into the masked
areas using the topographic information from the adjacent, older remnant landforms
(e.g., “Terrace A”). The interpolation routine was tuned to also reduce the sharpness
of slope curvatures (terrace edges), making slope breaks more natural. Any artificial
internally-draining basins that were created in the valley floors by the interpolation
routine were then filled so that the valley-bottoms were hydrologically continuous.
This produced a landscape of broad U-shaped valleys, very different from the highly
incised modern landscape (Figure 4).

3.2. Modeling Past Climate

We retrodicted climate variables for the late Neolithic I period of southern Spain
(7550-6450 cal. BP) with a regional downscaling method that localizes paleoclimate
retrodictions from large-scale Global Climate Models (GCM) based on a regression
relationship between the GCM output for the 30-year climate norm, and the actual
observed climate information observed at a weather station [67–69]. We have used
this method in several other research projects with the MML (e.g., [21,25,34,70]).
We used the average climate values derived across the entire Neolithic I period,
downscaled at a weather station in Benifallim, a town close to the Penaguila valley
project area. The specific climate values that we used are shown in Table A1.
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Figure 3. Reconstructed mid-Holocene topography in the Penaguila valley project
area. The Neolithic site of Mas d’Is is shown, as are terraces near the site that are of
Neolithic, or earlier, age (all labeled as “Terrace A”). The main watercourse passing
by Mas d’Is is shown as a thick blue line, and the other portions of the extracted
stream network are shown as thin blue lines. High elevations are shown in reds
and brown, and lower elevations are shown in greens and yellows.
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Figure 4. A comparison of the modern topography of a section of (a) the upper
Rio Penaguila; and (b) the reconstructed Neolithic topography in the same area.
The paleotopographic reconstruction resulted in a landscape of broad, U-shaped
valleys, markedly different from the modern terrain.

3.3. Modeling Land-Use

We sited a small farming village at the location of the Mas d’Is archaeological
site on the reconstructed mid-Holocene digital landscape, and performed a set of
six experiments with the village population initialized at 30, 60, or 120 individuals
using two different land-use strategies (Table 1). We constrained the area a village
can use for cultivating cereal crops so that the villagers must reduce the fallow
interval to produce sufficient food as the population grows. We also invoke two
different strategies to guide agropastoral land use: satisficing and maximizing. With
both strategies, a model begins by identifying all land that fits a set of basic criteria
of suitability for cultivation and ovicaprine herding. In the experiments reported
here, we parameterized the village based on ethnographic and archaeological data
about small-scale, subsistence-focused, village-based Mediterranean agropastoralism.
Neolithic subsistence in southern Europe was largely based on cereals [71]; therefore,
we set 80% of a villages caloric needs to be met by consuming plants and 20%
to be met by consuming animal products. Based on information about Neolithic
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agricultural practices [71–73], we parameterized 25% of the plant portion of the diet
to be met by barley, and the remainder by wheat. Herds were parameterized as
a 2:1 mix of goats and sheep, with the average herd animal requiring about 680 kg of
fodder per year [36].

All together, this corresponds to a need of about six herd animals and about
230 kg of cereals per person per year. Herd animals were allowed to graze on fallowed
portions of the agricultural catchment, as well as on the stubbles left after harvest of
the farmed fields. Their manure contributed fertility gains of about 0.2% per year
to the areas they grazed (including agricultural fields grazed for stubbles). Farm
plots are modeled as discrete rectangular 20 m by 50 m regions, which are on par
with the size of traditional, hand-worked historic peasant farm-plots in the southern
Mediterranean region [74]. Farming reduced fertility at an average rate of 3% per
year, and herd animals reduced land cover by an amount that would require about
three years to regrow. Herds were parameterized as a 2:1 mix of goats and sheep,
with the average herd animal requiring about 680 kg of fodder per year [36]. We kept
the size and configuration of the farming and grazing catchments constant between
all six experiments. This is not unreasonable, since real-world farming settlements are
geographically constrained by the presence of other farmers in a region. Catchment
modeling was conducted using a least-cost surfaces method described by Ullah [36].
For cereal cultivation, this included all land with slopes ≤ 10◦ within a 30 min
walking distance of the village. Land suitable for herding was not limited by slope
and extended to include all land within the Penaguila drainage (up to about an 8-h
walk from the village).

Oversizing the farm catchment allows for the possibility of fallowing
(particularly in maximizing strategies) on a time scale determined dynamically by
the ratio of in-use fields to the catchment size. Initially, landscape cells are allocated
to a village “agent” by randomly selecting enough suitable cells for cereal cultivation
and enough suitable cells for animal pasturing to meet the caloric needs of the village
(i.e., depending on the initial village population). The total number of fields under
cultivation can change over time, depending on the productivity of previously used
fields within the time span of the agent memory (five years). For example, with a
village population of 120 and a 313 ha farming catchment (used in the experiments
reported here), about 3.5% of the possible farming catchment, would be cultivated
initially. But as farming returns from the initially-used fields declines, the same
village will need to increase the farmed area to 6%–7% of the total to meet their needs.
In the same way, the percentage of the grazing catchment under use can change
over time. The same 120 people would use between 10% and 17% of the grazing
catchment, depending upon their perception of the current grazing productivity of
vegetation within the catchment.
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With a “satisficing” strategy, a village will compare land in use with caloric
needs each subsequent annual time-step of the model. If caloric needs are exceeded,
some land (with the lowest returns from cereal cultivation and animal herding) will
be fallowed. If caloric needs are not met, then additional suitable landscape cells
will be selected randomly to be put into use. With a “maximizing” strategy, at each
time-step, the village will evaluate the performance of all land with regard to its
caloric returns. Underperforming land (that is, fields that produce less than 80%
of the current average yield) will be relinquished to fallow and will be replaced
with new land chosen randomly from among the suitable and currently unused
landscape cells. Table 2 summarizes the range of values used to parameterized the
social portions of our simulation experiment.

3.4. Sensitivity Testing and Experiment Repetition

The stochasticity embedded in modeling procedure, and the complex
interactions between land-use and landscape change means that the results differ in
each model run, even if the initial parameters are the same. To more accurately
assess the impacts of agropastoral land-use on barranco erosion, it is necessary
to repeat every experiment (i.e., model scenario with a particular set of initial
parameters) multiple times, and calculate central tendencies and variance measures
across multiple dimensions. While this does mean that the current research cannot
focus on infrequent, “extreme” results (which may be important drivers of barranco
evolution in some cases) the use of central tendencies allows us to understand the
base-line (averaged) affects of human-land use on barranco formation under different
land-use scenarios. The number of repetitions needed to adequately encompass
the range of variation in land-use and landscape interactions can vary greatly with
different model algorithms and model designs. Hence, we carried out a series of
tests to assess model sensitivity to variation in initial parameters and estimate an
optimum number of repetitions needed.

We carried out an initial run of the 60-person satisficing model, with 100 repetitions
of 500 years each. We extracted several types of statistics from each model run (e.g.,
average amount of erosion/deposition per year, village population, proportion of
different vegetation classes over time), and calculated the standard error of these
statistics for all permutations of repetitions (1 through 100 repetitions). We repeated
this process 100 times, shuffling and re-sampling the set of runs between each repeat
using Monte Carlo methods. Example results of this sensitivity analysis show how
the standard error for mean erosion/deposition in the stream channels changes
as the number of run repetitions (n) increases (Figure 5). These tests indicated
that error ceases to significantly improve after about 40 repetitions, and so we
limited our other experiments to this number of repetitions. We also observed
that the initial runs of 500 model years did not yield significantly different results
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from shorter runs. Additional experiments, therefore, ran for a total of 300 model
years, significantly reducing processing-time and storage requirements. Running
the model for 300 years still allowed for a period of about 50 years in which village
land-use stabilized, followed by 250 years in which the land-use pattern of each
experiment impacted erosion and deposition in the watershed. The combination of
six experiments, repeated 40 times resulted in a total of 240 individual model runs
of 300 years each (Table 1). These produced 40 time series of 300 maps for annual
erosion/deposition, soil depth, land-cover, and topography for each experiment.
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represent surface processes across the different landforms of small watersheds [19]. 
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Figure 5. Results of sensitivity analysis about the effect of the number of experiment
repetitions on the error surrounding mean estimates of erosion in the main Barranco
near Mas d’Is. Red line is the mean of all recombinations at the specified number of
repetition. The dark grey shaded region denotes 1 SD, and the lighter grey shaded
region denotes 2 SD, based on the range of values from all 100 recombinations at
each number of repetitions. The rate at which the standard error decreases with
sample size (n) greatly tapers off after about 40 repetitions (indicated by the arrow).

Because landscapes are also dynamic in the absence of any human presence,
we conducted two additional experiments without any human land-use. In one
experiment, we covered the landscape with “typical” Mediterranean woodland as
would be present under mild climatic conditions with no farming or grazing; in
the other one, we mantled it with sparse grass/herb cover as might be present
under harsher climatic conditions. These provide points of comparison of human
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impacts with extremes of non-anthropogenic climate-induced landscape changes
in this region.

For all experiments, we calculated total, cumulative maps of landscape change,
as well as statistical maps of central tendencies and variance. The results of all
repeated runs were statistically combined for each of the six experiments as maps
and summary values, to allow comparison of the landscape consequences of different
land-use configurations. We refer to these syntheses of landscape change in the
discussions below. The results of these computational experiments in socio-ecological
system dynamics are summarized below.

4. Simulation Results

4.1. Erosion and Deposition in Barrancos

In order to use quantitative modeling to investigate the potential impacts of
rural land-use on gullying and barranco incision it is necessary to have a surface
process model that can accurately represent incision. While we have been developing
the surface process model of the MML for nearly a decade, our focus was more on
hillslope processes than incision [21,34,35]. Recently, we enhanced this model to
better represent erosion and deposition in channels, combining well-known formulas
to represent surface processes across the different landforms of small watersheds [19].

The results are encouraging. An oblique detailed view of the final topography
for one run of one experiment, colored by the 300-year sum-total erosion/deposition
for each map pixel, shows that the surface process model is capable of creating
significant erosional dynamics in stream channels (Figure 6). Streams incise at the
outer edge of channel bends, and at places where the channel gradient rapidly
increases. Material is deposited where the gradient decreases and at the inside of
channel bends. Flat areas are characterized by meanders and channel levies, and
there are several remnants of abandoned channels throughout the stream course.

We sampled one of these digital landscapes through time at four cross sectional
transects of the middle reaches of the major barranco that passes near Mas D’is, from
its upstream to downstream reaches, indicated by the labeled horizontal lines in
Figure 6. We recorded elevation cross-sections at these sampling transects at 50-year
intervals in the 300 model-year time series at each of these transects (Figure 7). These
cross-sections show the temporal dynamics of downcutting in different places along
the drainage network. Barranco incision increases from upstream to downstream
in the middle reaches of the barranco. This is to be expected as a result of increased
water flow through the channel. Lateral incision is more prominent than absolute
downcutting, but distinct channelization and incision did occur in all experiments.
This is similar to empirical observations of the process of erosion in real barrancos [5].
Channel bar and levy development may offset some of the total erosion over time,
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however, particularly as the main channel of the barranco migrates within the
valley-bottom. This indicates that incision and erosion of these barrancos may be a
temporally complex phenomenon, with time-lag in sediment transport obscuring
the observability of the total incision that is occurring in the system. This would
mean that barranco downcutting would not have been immediately obvious to local
farming peoples.
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Figure 6. An oblique, three-dimensional view of a portion of the region shown in Figure 4. 
Warm colors (yellow through red) indicate cumulative erosion, and cool colors (green 
through blue) indicate cumulative deposition. The locations of the four cross-sections are 
indicated, as is the position of the Neolithic site of Mas D’is. Note that channel erosion 
occurs most intensively where narrowing of the channel bottom, coincides with a rapid 
convex change in slope in the channel gradient (e.g., points “c” and “d”). These are similar 
to the process of “head cuts” in real channels (e.g., [5]). 
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Figure 6. An oblique, three-dimensional view of a portion of the region shown in
Figure 4. Warm colors (yellow through red) indicate cumulative erosion, and cool
colors (green through blue) indicate cumulative deposition. The locations of the
four cross-sections are indicated, as is the position of the Neolithic site of Mas D’is.
Note that channel erosion occurs most intensively where narrowing of the channel
bottom, coincides with a rapid convex change in slope in the channel gradient
(e.g., points “c” and “d”). These are similar to the process of “head cuts” in real
channels (e.g., [5]).
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This indicates that incision and erosion of these barrancos may be a temporally complex phenomenon, 
with time-lag in sediment transport obscuring the observability of the total incision that is occurring in 
the system. This would mean that barranco downcutting would not have been immediately obvious to 
local farming peoples. 

 

Figure 7. (a–d) Four cross-sections of the main Barranco: two profiles upstream from Mas 
d’Is, near Mas d’Is, and downstream from Mas d’Is. The red line shows the starting 
reconstructed mid-Holocene cross-section, and the green lines show the cross-section at  
50-year intervals during one run of the maximizing large-population experiment. Incison and 
lateral erosion are apparent at all cross sections, although the absolute amount of incision is 
greater in the downstream cross sections. The locations of the cross-sections are shown in 
Figures 5 and 8.  

Figure 7. (a–d) Four cross-sections of the main Barranco: two profiles upstream
from Mas d’Is, near Mas d’Is, and downstream from Mas d’Is. The red line shows
the starting reconstructed mid-Holocene cross-section, and the green lines show the
cross-section at 50-year intervals during one run of the maximizing large-population
experiment. Incison and lateral erosion are apparent at all cross sections, although
the absolute amount of incision is greater in the downstream cross sections. The
locations of the cross-sections are shown in Figures 5 and 8.
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Over the total length of a barranco channel, however, erosion should decrease
in the furthest downstream section, as local base-level is approached, to create a
graded profile. We kept track of the longitudinal profile of the main Mas D’is barranco
(indicated by the thick blue line in Figure 3) as it changed over the 300 model-years
of the simulation experiments (Figure 8). The barranco profile elongates, and does
become increasingly graded over time. The elongation is likely due to increased
channel sinuosity as meanders form in the flats, and as lateral incision cuts into the
valley walls. Overall, erosion tends to occur in punctuated stretches of the channel,
producing a stepped longitudinal profile similar to head cuts in real-world gullies
(Figures 5 and 8).
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Figure 8. The longitudinal profile of the main watercourse near Mas d’Is (see Figure 2). 
The red line indicates the profile as extracted from the starting reconstructed mid-Holocene 
topography. The green lines show the profile in 50-year increments during one run of the 
maximizing large-population experiment. The overall length of the profile increases over 
time due to changes in channel morphology (such as the growth of meanders and lateral 
incision). The profile also becomes more graded over time, although erosion seems to 
occur mainly in punctuated stretches of the channel bottom. 

The range of values for average channel incision after 300 model-years varies from 0.062 to 0.083 m 
(or, 0.21 to 0.28 mm/yr), with a mean value for average channel incision of 0.07 m (0.23 mm/yr)  
for all experiments combined. These rates are similar to those observed for recent erosion in  
barrancos [3,15,16]. In each of the experiments, there were locations in the channel that were eroded 
to depths of 5 to 6 m at the end of the simulation period, again similar to rates of head cutting in 
modern barrancos [3,15,16]. To be clear, although we initialized the MML surface process model with 
realistic values, we have not yet attempted to fine-tune the internal model dynamics to match those of 
real-world landscapes. In part, this is a function of the lack of detailed, quantitative data on barranco 
erosion rates at century to millennial scales. What we have tested here is whether our modeling 
environment can simulate real-world erosional processes, even if the simulations of specific quantities 
of sediment moved may not match those of Mediterranean barrancos in the Holocene. In fact, the tests 

Figure 8. The longitudinal profile of the main watercourse near Mas d’Is (see
Figure 2). The red line indicates the profile as extracted from the starting
reconstructed mid-Holocene topography. The green lines show the profile in
50-year increments during one run of the maximizing large-population experiment.
The overall length of the profile increases over time due to changes in channel
morphology (such as the growth of meanders and lateral incision). The profile
also becomes more graded over time, although erosion seems to occur mainly in
punctuated stretches of the channel bottom.

The range of values for average channel incision after 300 model-years varies
from 0.062 to 0.083 m (or, 0.21 to 0.28 mm/yr), with a mean value for average
channel incision of 0.07 m (0.23 mm/yr) for all experiments combined. These rates
are similar to those observed for recent erosion in barrancos [3,15,16]. In each of the
experiments, there were locations in the channel that were eroded to depths of 5 to
6 m at the end of the simulation period, again similar to rates of head cutting in
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modern barrancos [3,15,16]. To be clear, although we initialized the MML surface
process model with realistic values, we have not yet attempted to fine-tune the
internal model dynamics to match those of real-world landscapes. In part, this
is a function of the lack of detailed, quantitative data on barranco erosion rates at
century to millennial scales. What we have tested here is whether our modeling
environment can simulate real-world erosional processes, even if the simulations
of specific quantities of sediment moved may not match those of Mediterranean
barrancos in the Holocene. In fact, the tests summarized here indicate that the surface
process component of the MML creates realistic patterns of channel incision in both
the longitudinal and lateral dimensions of barrancos. This improves our confidence
in the results when we use this environment to examine interactions between human
land-use and landscape change. We review these socio-ecological interactions below.

4.2. Effects of Land-Use on Barranco Incision

As noted above, we evaluated the consequences for landscape change of
six combinations of population size and decision strategies (Table 1). We parsed
the landscape into three socio-ecological meaningful units: the Mas D’is barranco
valley-bottom (Figure 9, transparent outlined area), the portions of the landscape
outside of this barranco (mostly hillslopes and smaller channels), and the modeled
Mas D’is farming catchment (Figure 9, grey outlined area). Partitioning the landscape
in this way helps us to better understand the connection between human land use
and the spatial patterning of erosive impacts. We do this by separately calculating
the cumulative amount of sediment eroded and deposited in each of these three
regions after 300 simulated years in each experiment.

At the scale of the watershed (Figure 10), 300 years of human farming and
animal herding produces erosion rates on hillslopes and small channels that slightly
exceed those for the natural wooded landscape (transparent yellow line), but are
considerably less than erosion in natural sparse, open vegetation (solid yellow
line). The difference between these two control runs simulates large-scale shifts
in vegetation cover that would accompany climate change, and provide interesting
benchmarks to compare to the simulations that included agropastoral activity.
Sediment deposited on hillslopes in human-occupied landscapes is roughly the same
as in an unoccupied wooded landscape. Overall, small-holder agropastoralism has
limited effects on hillslope dynamics, at least initially. Unsurprisingly, the simulated
community with the largest population and following a returns-maximizing strategy
had the strongest impact, but only by a comparatively small amount. Population
makes a slightly larger difference than satisficing vs. maximizing strategy.
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Figure 9. Map of cumulative erosion and deposition after 300 simulated years for one run 
of the maximizing large population scenario (see Table 1). The farming catchment is 
shown as a shaded region surrounding the site of Mas d’Is (indicated by the red star). The 
outline of the main Barranco that passes near Mas d’Is is also shown, as are the locations 
of the four cross-sections shown in Figure 6. Warm colors (yellow through red) indicate 
cumulative erosion, and cool colors (green through blue) indicate cumulative deposition. 
Scale is in meters. 

Figure 9. Map of cumulative erosion and deposition after 300 simulated years for
one run of the maximizing large population scenario (see Table 1). The farming
catchment is shown as a shaded region surrounding the site of Mas d’Is (indicated
by the red star). The outline of the main Barranco that passes near Mas d’Is is also
shown, as are the locations of the four cross-sections shown in Figure 6. Warm
colors (yellow through red) indicate cumulative erosion, and cool colors (green
through blue) indicate cumulative deposition. Scale is in meters.

Within the farming catchment (Figure 11), anthropogenic erosion from all
scenarios exceeds that of natural vegetation change, while anthropogenically-driven
deposition falls between the wooded and open landscapes. Interestingly, a
maximizing strategy and medium sized population (solid blue line) produces
considerably more erosion than other agropastoral land-use scenarios, including
those with higher populations. In other words, small-holder agropastoral land-use
has significant impact at local scales, but is less important than large-scale vegetation
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change (e.g., due to climate change). Additionally, while the degree of impact seems
to scale with the number of people and their subsistence activities at the watershed
scale, at the local level, the strategy used to make land-use decisions can exceed the
landscape impacts of increased population density alone.
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of deposited sediment are above the center lines for the 300 year modeling interval. We 
show erosion and deposition separately because sediment removal and accumulations often 
happen in different landscape contexts, with different consequences for agropastoral and 
other land-use. 

Within the farming catchment (Figure 11), anthropogenic erosion from all scenarios exceeds that of 
natural vegetation change, while anthropogenically-driven deposition falls between the wooded and 
open landscapes. Interestingly, a maximizing strategy and medium sized population (solid blue line) 
produces considerably more erosion than other agropastoral land-use scenarios, including those with 
higher populations. In other words, small-holder agropastoral land-use has significant impact at local 
scales, but is less important than large-scale vegetation change (e.g., due to climate change). Additionally, 

Figure 10. Cumulative amount of sediment eroded or deposited (tons/ha) on
hillslopes for each of the six experiments and two control runs during the 300-year
modeling interval. Values are averaged across the 40 repetitions of each experiment.
The cumulative tons/ha of eroded sediment are shown below the center lines of
each graph, and cumulative tons/ha of deposited sediment are above the center
lines for the 300 year modeling interval. We show erosion and deposition separately
because sediment removal and accumulations often happen in different landscape
contexts, with different consequences for agropastoral and other land-use.

The natural and human effects on barranco incision are much different from
those on the rest of the watershed. Whereas a large-scale shift from natural woodland
to open vegetation on the hillslopes and small channels increases both erosion and
deposition by roughly equal amounts within the watershed (Figure 10), within the
barranco valley, non-anthropogenic vegetation change has disproportionate effects on
erosion and deposition. That is, at the temporal scale of 300 model years, the effect of
large-scale denudation is to increase the overall sedimentary dynamics of hillslopes,
but not in the main channel. Erosion does increase slightly in the main barranco valley
(at a level more or less equivalent to that in the rest of the watershed) but deposition
increases by several orders of magnitude. The major effects of climate-induced
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large-scale devegetation, then, would be hillslope erosion and valley alluviation,
agreeing with observations of field geomorphologists (e.g., [75]).
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The major effects of climate-induced large-scale devegetation, then, would be hillslope erosion and 
valley alluviation, agreeing with observations of field geomorphologists (e.g., [75]). 

Anthropogenic impacts on the main barranco differ significantly from non-human vegetation 
changes (Figure 12). Starting with a wooded landscape, both erosion and deposition are greatly 
increased by small-holder agropastoral land-use of all kinds modeled here. Anthropogenic deposition 
rates exceed those of non-human open woodland, and anthropogenic erosion rates in barrancos exceed 

Figure 11. Cumulative amount of sediment eroded or deposited (tons/ha) in
the delineated Mas d’Is farming catchment (see Figure 4) for each of the six
experiments and two control runs during the 300-year modeling interval. Values
are averaged across the 40 repetitions of each experiment. The cumulative tons/ha
of eroded sediment are shown below the center lines of each graph, and cumulative
tons/ha of deposited sediment are above the center lines for the 300 year modeling
interval. We show erosion and deposition separately because sediment removal
and accumulations often happen in different landscape contexts, with different
consequences for agropastoral and other land-use.

Anthropogenic impacts on the main barranco differ significantly from
non-human vegetation changes (Figure 12). Starting with a wooded landscape,
both erosion and deposition are greatly increased by small-holder agropastoral
land-use of all kinds modeled here. Anthropogenic deposition rates exceed those
of non-human open woodland, and anthropogenic erosion rates in barrancos exceed
by order of magnitude those driven by non-human vegetation change, as well as
all erosion rates in the rest of the watershed. So, human activity contributes little
in the way of sediment to these watercourses, but greatly increases the dynamics
of sediments already in the floors and banks of barrancos. This effect seems more
strongly affected by the number of people engaged in agropastoral activities than
the strategy they use, at least for erosion. However, the overall rate of erosion slows
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over time in the anthropogenic cases, while the rate of deposition does not. This
may indicate that incision in barranco systems begins to occur relatively quickly after
initial anthropogenic land cover changes, but, without further changes in land-use
or climate, may eventually achieve a metastable equilibrium (balance of erosion
and deposition).
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5. Conclusions 

The MedLand Modeling Laboratory provides a useful tool to examine surface dynamics and  
the impacts of rural land-use on landscapes [19,21,34]. The inclusion of separate hillslope- and  
stream-process models allow it to achieve reasonable results on slopes, while also more realistically 
simulating erosion and deposition in intermittent watercourses like barrancos that dissect landscapes 
of the western Mediterranean. The results presented here show that the MML can simulate 
simultaneous vertical and lateral erosion, generate head-cuts, and produce graded profiles over time 

Figure 12. Cumulative amount of sediment eroded or deposited (tons/ha) in the
Mas d’Is Barranco for each of the six experiments and two control runs during
the 300-year modeling interval. Values are averaged across the 40 repetitions of
each experiment. The cumulative tons/ha of eroded sediment are shown below
the center lines of each graph, and cumulative tons/ha of deposited sediment are
above the center lines for the 300 year modeling interval. We show erosion and
deposition separately because sediment removal and accumulations often happen
in different landscape contexts, with different consequences for agropastoral and
other land-use.

5. Conclusions

The MedLand Modeling Laboratory provides a useful tool to examine
surface dynamics and the impacts of rural land-use on landscapes [19,21,34].
The inclusion of separate hillslope- and stream-process models allow it to
achieve reasonable results on slopes, while also more realistically simulating
erosion and deposition in intermittent watercourses like barrancos that dissect
landscapes of the western Mediterranean. The results presented here show
that the MML can simulate simultaneous vertical and lateral erosion, generate
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head-cuts, and produce graded profiles over time (Figures 6–8). This allows us
to investigate the impacts of the spread of agropastoral communities and associated
land-use practices in the western Mediterranean, and clarifies the potential role
of humans in barranco formation. Whereas our simulation experiments show that
large-scale (climate-driven) vegetation change does greatly increase incision in these
watercourses, they also show that smaller-scale, localized vegetation changes brought
about by human land-use can have similar effects on barranco erosion rates, without
climate change (Figures 10–12).

McClure and colleagues [76,77] suggest on the basis of archaeological evidence
that the earliest Neolithic agropastoralists in Mediterranean Spain preferentially
cultivated the alluvial soils of valley bottoms, but subsequently shifted to upland
localities. They hypothesize that a combination of expanding agropastoral land-use
and changing climate made these valley-bottom locales vulnerable to severe
erosion, forcing a reorganization of settlement and agricultural practices that appear
archaeologically as the Late Neolithic (Neolithic II-b locally). Using an earlier version
of the MML, Barton and colleagues [34,35] show how modest increases in the size of
small-holder agropastoral communities in northern Jordan, engaged in wadi-bottom
farming, could have triggered a phase shift in erosion/deposition ratios, leading to
declining agricultural productivity.

The modeling results presented here appear to confirm these earlier studies
and offer a more nuanced view of the relationships between human activity, climate
change, and the location and intensity of landscape change. Climate-driven decrease
in vegetation cover can increase the surface dynamics and sediment transport
rates on hillslopes and within watersheds (Figure 10), with increased alluviation in
intermittent watercourses like barrancos and wadis (Figure 12). While small-holder
agropastoralism can have significant local effects on hillslopes within the catchment
actively cultivated (Figure 11), its impacts on the broader landscape are minimal
(Figure 10)—at least until farms and pasturage cover significant proportions of a
region. However, even very limited settlement and agropastoral land-use appears to
have impacts on the local and downstream dynamics of intermittent watercourses
that are orders of magnitude greater than non-anthropogenic vegetation change
at regional scales (Figure 12). The greatly increased sedimentary dynamics in the
farming catchment erodes farmed fields in some locales and buries them in others,
with the potential for significant loss of productivity and greatly increased risk for
subsistence farmer/herders (both in terms of uncertainty and potential for loss).
The easily-cultivated and fertile soils of these watercourses, which are so common
in Mediterranean landscapes, would have made them especially attractive to the
earliest farmers of the region, who relied on hoes and digging sticks instead of
plows. Cultivating these valley-bottoms, however, could lead to their increasing
unsuitability for agriculture within a few generations—potentially with correlated
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impacts spanning areas much larger than just that of the farming communities or
their catchments of active use. The increased downstream incision that results from
valley-bottom farming would decrease the number of viable fields in the alluvial
zone, limiting future options for valley-bottom cultivation when the fertility of the
local catchment is depleted, or when local agricultural soils have themselves been
severely eroded. McClure and colleagues suggest that the loss of these initially highly
productive patches of the Mediterranean landscape created strong socioeconomic
incentives for significant reorganization of both subsistence practices and society
toward greater complexity [76,77].

The kinds of processes that we have presented here also exemplify the
kinds of non-linear dynamics that typify human-environmental interactions in
complex, coupled socio-natural systems. The difficulty of predicting these non-linear
dynamics through normal reductionist science or empirical statistical analyses
underscores the importance of the kinds of modeling illustrated in this Special Issue
of Land. Computational modeling allows investigation of feedbacks between the
human and natural components of earth-systems processes with reproducible and
controlled experiments that have tangible implications for the way we understand
the empirical record of landscape change. We wish to stress that computational
and empirical research techniques complement, rather than compete with, each
other, and integrating the two approaches is essential for a holistic approach to
understanding earth-surface change. For example, the simulations discussed in
this paper were designed to extend information gained from empirical observation
of human land-use and barranco erosion over short periods to gain insight into
socio-ecological processes that play out over centuries. Ultimately, we learn not only
that relatively moderate changes to vegetation by small populations of agropastoral
villagers can greatly affect the capacity for incision in barrancos, but that very deep
barranco incision may require continual changes to land-use (or climate) over long
periods of time. It may also be that self-amplifying feedback processes between
land-use and erosion of easily cultivated land in barranco bottoms could have driven
the kinds of increases in social complexity and land-management that would have
continually reinforced erosive regimes, producing the deeply incised landscapes that
exist throughout southern Europe today. These insights were made possible by the
combination of traditional and simulation research approaches.
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Examining Social Adaptations in a Volatile
Landscape in Northern Mongolia via the
Agent-Based Model Ger Grouper
Julia K. Clark and Stefani A. Crabtree

Abstract: The environment of the mountain-steppe-taiga of northern Mongolia
is often characterized as marginal because of the high altitude, highly variable
precipitation levels, low winter temperatures, and periodic droughts coupled with
severe winter storms (known as dzuds). Despite these conditions, herders have
inhabited this landscape for thousands of years, and hunter-gatherer-fishers before
that. One way in which the risks associated with such a challenging and variable
landscape are mitigated is through social networks and inter-family cooperation.
We present an agent-based simulation, Ger Grouper, to examine how households
have mitigated these risks through cooperation. The Ger Grouper simulation takes
into account locational decisions of households, looks at fission/fusion dynamics
of households and how those relate to environmental pressures, and assesses how
degrees of relatedness can influence sharing of resources during harsh winters. This
model, coupled with the traditional archaeological and ethnographic methods, helps
shed light on the links between early Mongolian pastoralist adaptations and the
environment. While preliminary results are promising, it is hoped that further
development of this model will be able to characterize changing land-use patterns as
social and political networks developed.

Reprinted from Land. Cite as: Clark, J.K.; Crabtree, S.A. Examining Social
Adaptations in a Volatile Landscape in Northern Mongolia via the Agent-Based
Model Ger Grouper. Land 2015, 4, 157–181.

1. Introduction

Sharing and cooperation between individuals and among groups can increase
carrying capacity and survivability [1,2]. However, sharing and cooperation can take
many forms [1,3–5], some more beneficial to the group, or individuals, than others.
Here we ask “How do different sharing strategies impact survivability in a mobile
pastoralist case?”

This work is built on theory developed in the U.S. Southwest among sedentary
farming populations, which we adapt and apply to mobile pastoralists of Mongolia.
Specifically, we use theory developed by Hegmon [6] who simulated the rationale
for exchange among Hopi based on three forms of logic: pooling of resources,
independence (or hoarding of resources), and restricted sharing [6]. Her research
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showed that in general restricted sharing is the best strategy, often working better
than the other two strategies for both low- and high-production years. By creating
rules for whom to share with and when, the Hopi are able to take control of their own
needs first before assessing the needs of the community [6,7]. We hypothesize that
similar mechanisms were at play with Mongolian pastoralists in prehistory and that
rules for whom to share with and when structure modern household configurations.

Seasonal mobility is a common strategy employed primarily by hunter-gatherers
and pastoralists living in highly variable, low productivity environments. These
environments are characterized by little precipitation, high altitude/latitude, and/or
extreme temperature (cold or hot). In these environments, people migrate within the
landscape to take advantage of spatially dispersed, seasonally available resources.
These patterns are not random, but rather the culmination of generations of
accumulated traditional ecological knowledge [8,9]. Mobility can be a wise economic
adaptation with many variant forms (i.e., degree, frequency) [10,11], allowing mobile
groups to inhabit regions that are not easily occupied by settled groups. Since the
individual household units of a group are willing and able to move easily, the group
by default is flexible, able to adapt or react to changing environmental, political
and social challenges on short notice. In moments of crisis (i.e., high risk), adaptive
solutions can be immediately implemented that will carry the household units
through until the previously established habitation pattern can be resumed or a new
pattern developed.

In central and northern Mongolia, it has been noted [12] that following years of
environmental catastrophe (usually resulting in great losses of livestock) household
units, which usually numbered from two to four households, clustered into larger
groups of five to seven—a cluster similar in size to Hegmon’s ideal restricted sharing
group [7]. Over time, after households had recovered from herd losses, the units
once again dispersed. This temporary fission-fusion cycle is an adaptation to the
inherent risk of the low-productivity, highly variable environment in which these
populations live. Because these households move every few months anyway, this
fission-fusion cycle can occur rather rapidly. However, cooperation was not random,
though the rules about who would help whom and under what circumstances were
not immediately apparent. While this has been observed anecdotally, ethnographic
data continues to be compiled to more rigorously characterize these cycles [12].

In patchy environments (i.e., environments where productivity is spatially
and/or temporally variable), the ability to count on kin and neighbors during
years of low productivity is essential for survival. Sahlins [5] demonstrated
that cross-culturally there are distinct rules for the sharing of resources, and that
small-scale societies worldwide have tactics for surviving bad years. Hegmon [6,7]
has shown that restricted-sharing tactics are reliable for most years when both the
pooling of resources and hoarding of resources are not optimal. Such strategies
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appear to be employed by mobile pastoral groups of modern Mongolia. The decision
to aggregate with some groups as a form of risk management, while still excluding
other groups from aggregation, exemplifies a strategy of counting on trusted kin or
neighbors when times are difficult.

For this research, developing agent-based models that imbue agents with
decisions on where to locate and how to form cohesive groups will enable the
examination of individual-level processes as reactions to environmental pressures.
Costopoulos, Lake and Gupta tell us that “simulations can surprise us. Whether the
surprises are due to our faulty understanding of the reality we are modeling or to our faulty
modeling of the reality we are seeking to understand, they can force us to reexamine our
assumptions and to push beyond the intuitive models of the past for which we often settle
too easily” [13].

While decades of research have focused on cross-cultural studies of human
systems, model building and theory testing provide a novel way to examine the
world, helping to answer questions that would be unanswerable from traditional
approaches [14]. Instead of seeing the panoply of human culture and searching for
patterns, we create theory, build models based on theory, and then compare output
to data. Simulation enables us to test theories developed by anthropologists and
historians from years of cross-cultural research [14]. Lake estimates that works based
on 54 different archaeological simulations were published between 2001 and 2010,
showing the increasing value of agent-based modeling in archaeology [14], and
the increasing ability for agent-based modeling to assess archaeological theories.
Simulation does not more correctly address the archaeological record, but can
address different questions than cross-cultural research can, and can easily help
refine hypotheses of the archaeological record.

Our paper explores the extent to which sharing practices would have helped
the survival of mobile pastoralists in Mongolia and the surrounding regions of
northeast Asia, and how a patchy environment led to the profusion of fission/fusion
dynamics in Mongolia. In this model we define sharing and cooperation very simply:
the likelihood that one household will merge with another household in need of
assistance for one timestep, dividing resources equally between households. Seasonal
movements characteristic of the semi-nomadic inhabitants of the region provide
ample opportunity to examine such fusion and fission events. Groups fuse together
when it is beneficial to do so, and then part ways when this approach becomes more
advantageous. The presented model will help us to understand when fusion, fission,
and sharing may be sought as a risk management strategy.

Computer modeling is not a new approach for Mongolian case studies [15,16].
However, these models approach the question of the emergence of empires and
other large political formations based on a number of environmental and historical
parameters. The model presented here is of an entirely different scale and is based in
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ethnographic and historical data. While previous models are designed to investigate
political processes on an inter-regional scale, the model we are presenting here
approaches the economic sphere from the domestic (i.e., household) viewpoint with
the intention of creating results that are compatible with available ethnographic and
archaeological data from the region.

This paper is structured in the following way. First, we present the necessary
background for how sharing strategies structure populations in northern Mongolia.
We discuss ethnographic and archaeological evidence for sharing both in our study
area and in other small-scale societies worldwide. We then present how agent-based
modeling can help to examine sharing strategies, exploring how four different
sharing strategies create different population levels in a variable environment. In
the conclusion, we discuss the significance of our findings from employing a simple
agent-based model and suggest ways in which this model may be refined for further
future use.

1.1. Background

Mongolia is located in northeast Asia and is home to a primarily pastoralist
population. In this study we focus on the inhabitants of the steppe and forest
steppe in the central and northern portions of the country. These individuals
primarily keep sheep and goats, with horses, cows, yaks and camels making up
lesser percentages of their stock. Mongolian pastoralists derive much of what they
consume from their livestock, and spend considerable time and energy ensuring the
survival of their flocks. They rely on extensive traditional ecological knowledge that
has been passed from generation to generation in order to minimize herd deaths
during the difficult winter months. This knowledge includes ways to navigate both
environmental landscapes and social networks. These modern day herders provide a
useful ethnographic analogy, when applied cautiously, for the semi-nomadic nature
of the early herders of Mongolia [12,17,18].

Today, Mongolian pastoralists move seasonally between summer and winter
pastures. During summer, grazing conditions are good and herds are fattened for
the long winters when grazing conditions are poor because of extended cold periods,
little forage, and snow cover. These movements vary from a few kilometers to over
100 km between camps, though in central and northern Mongolia, where the authors
have collected data, the average is usually 10–20 km [12]. Typically households
move two to five times annually following a similar mobility pattern year after
year, returning to the same location at roughly the same time each season [12,19–22].
However, this pattern may shift from time to time in order to address a number of
factors, including social conventions and environmental degradation or disaster.

Ethnographic observation has shown that group size is not consistent from
season to season or year-to-year [19]. Each group of households, known as a khot ail,
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is made up of a number of nuclear families, each occupying their own dwelling
called a ger (a round tent made of wood, felt and canvas or hides—also known by
the Russian term “yurt”). The size of the khot ail may vary from a single ger to more
than 20 [23], although most never exceed 10 households. Average camp size appears
to increase following environmental disasters as individual khot ails band together
utilizing kinship and social ties as a failsafe to help recover from the losses of herd
animals following these events. Gers from the same valley may group together, but
larger risk mitigating groups that extend beyond valleys are also normal [12]. If the
individual khot ails are able to rebuild their herds, they may once again disband into
smaller groups.

A number of environmental conditions might present risk to the herds of
Mongolia’s rural populations. These include drought, bad winter storms locally
known as dzuds, and the outbreak of epizootic diseases [24,25]. Dzuds come in
several varieties depending upon the particular environmental conditions. Types of
dzuds include: deep snows, no snows, ice sheets, extended or extreme cold spells,
and extreme overgrazing and trampling. These events occur periodically–every
5–10 years according to some studies [25]. Dzuds may not impact regions equally
creating a “patchy” environment on the large scale. While much of the discussion
about mitigating the effects of dzuds has focused on aid efforts and observed rural to
urban migration, a few sources have attempted to document the local adaptations
and coping methods used by herders [25,26]. Shelter may be improved including:
alterations to structures, tunneling, insulating structures with dung, and bringing
animals into the family ger. Of interest to this project are those strategies that rely
upon social and kin networks to mitigate the impact of dzuds. Such adaptations
include movement to other, less impacted areas (known as Otor, the movement
from adjacent valleys up to hundreds of kilometers away), or joining forces with
local family or friends in which mutual assistance may increase the chances of
survival. Though these are short-lived events, they can be devastating. Cooperation
is needed not to survive the Dzud itself, but to recover after great losses following
the event. While there are clear advantages to the “movers”, the “hosts” are willing
participants in this coping method because of expected future reciprocity (much like
insurance) and cultural expectations (e.g., an expectation to help out extended family
members) [5].

It is clear that modern day Mongolia has a culturally dictated set of rules
regarding sharing and cooperation. But how do these sharing strategies develop?
A study by Fitzhugh et al. [27] helps inform us of the development of sharing
strategies. They suggest that hunter-gatherer populations use exchange to build
information networks that help establish relationships among different bands. These
information networks connect households to an expanded pool of bands and/or
tribes, allowing for group survival during catastrophic events. Additionally, they

201



argue that high cost and low predictability/low productivity landscapes exhibit
higher network connectivity than highly predictable landscapes. Furthermore, as
populations become entrenched in an area they adapt to the environment and will
rely on information networks only for highly unpredictable and catastrophic events,
not for more predictable events. The high climatic variability of Mongolia combined
with the potential for (and reality of) catastrophic failure would make the region
more reliant on networks, according to this model [27].

Fitzhugh et al. [27] also state that groups should rely on more proximal bands
for regularly occurring crises, such as low food production and droughts, while more
irregular crises, such as earthquakes, would require a longer temporal memory
of alliances with more distant allies. Therefore, since dzuds are unpredictable,
but frequently recurring disasters, we can infer from Fitzhugh et al.’s model that
Mongolian households would rely more on their neighbors for economic stability
than on more distant allies.

1.2. The Model

A model is an idealized microcosm of a real system and is built on theory,
or, as Clarke [28] states “models are pieces of machinery that relate observations
to theoretical ideas.” Using models built on simple rules can help eliminate poor
hypotheses, and can help enable better understanding of a system. Even when a
model is wrong (as “all models are wrong, but some are useful” [29] we can glean a
better understanding of the system by slowly building the model up and studying
simplified processes of complex systems.

The agent-based model detailed in this paper was generated in NetLogo,
although could have easily been written for any other modeling platform. The
agents in this model represent an economic production unit, in this case a household
(sensu [30]). There are twenty agents randomly seeded on the landscape at the
beginning of the simulation. Each agent represents one of four distinct sharing
scenarios, discussed below. The landscape is 40-cells by 40-cells wide, making a total
of 1600 cells for the simulation window; each of these cells correspond to a catchment
area (the area within which most household activities will take place) of a typical
household of two square kilometers.

The simulation window is divided into two sections—a summer landscape and
a winter landscape. Each of these comprises 800 cells. This is admittedly reduced
(modern herders may move several times in a single year) in order to preserve the
simplicity of the model. The agents themselves migrate between the summer and
winter landscapes each season (represented by one timestep, or tick in the model).
In summer all land is productive. In winter, however, only half of the landscape
(400 cells) has the possibility of being productive, with the other half of the landscape
being composed of barren patches. These barren patches are populated in random
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locations at the beginning of the simulation. Additionally, 2/3 of the remaining
winter cells (264 cells) begin as “brown” and regenerate according to the parameter
“grass regrowth time”, which was set at five timesteps for this simulation (five
timesteps being the equivalent of five seasons, so if a patch dies during summer, it
will regenerate five seasons later in winter. The decision for five timesteps is not
based on any ethnographic fact, but was used for simplicity in this simulation. Future
studies may test and alter this parameter.) While five timesteps may seem long, in
northern Mongolia, at least, areas of intense utilization are still visible one or more
years after a household has abandoned that area.

To summarize, green patches are productive, brown patches are currently
unproductive and symbolize those areas that can regenerate with time, while barren
patches are never productive and symbolize those areas that will always be dead
in winter. Both summer and winter patches can become brown with use, while
only some winter patches will be barren. Barren and brown patches are not only
representative of the absence of grass, but by logical extension, any reduction in
productivity. For example, a dzud may not have a long term impact on grass growth,
but the impact on productivity is great due to herd loss.

When an agent lands on a cell, the agent automatically takes the resources that
grow on that patch—in the simulation we call these resources “energy” and energy
gained from patches is set by the parameter “ger gain from food”. In this sweep
energy was set to five. Here we have the logical proxy that a household is dependent
on its herd, and herds depend on grass, so the quantity of energy (as measured
by converting grass to stock) equals the quantity of sheep a household could have.
While there may be more sophisticated ways of modeling energy as it moves through
trophic levels, the correlation of herd size and grass was maintained in order to
preserve the simplicity of the model. When a patch has all of its grass eaten, the
patch turns brown and is unproductive; it will regrow the grass when agents move
off of it according to the parameter “grass regrowth time”.

There is one final parameter related to patch productivity: the parameter “energy
loss from dead patches”. If at the end of an agent’s move but before the end of the
timestep an agent lands on a brown patch, that agent is charged energy according
to that parameter. In this sweep that parameter was also set at 5. For clarification,
while an agent will, in the end, be on a brown patch (because it eats the grass
there) the agent is only penalized if it lands on a patch where there was no grass to
begin with (if the patch was brown or barren upon landing there). This penalty is
meant to simulate the costs that herders who are unable to find suitable locations in
patchy environments may have to endure, which may include camping in less than
ideal locations.

Agents move each summer and each winter (mimicking Mongolian
semi-nomadic seasonal shifts) by randomly choosing an unoccupied patch on the
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opposite side of their current simulation window (in summer they move to winter,
and vice versa). If the agent lands on an unproductive patch, it checks its Moore
neighborhood radius (each adjacent cell) and moves to a green patch in the radius; if
there are no productive cells in the Moore radius the agent stays put until the next
season. Agents are charged one energy unit to move, but are penalized five energy
units if they stay on an unproductive patch. In the system we are simulating here,
Mongolian pastoralists choose to move seasonally as the long term benefits of fresh
pasture outweigh the relatively low, short term costs associated with moving.

Agents in this simulation are incredibly myopic and have limited memory.
However, agents do track the productive patches they have visited in winter and
will choose to move to a previously visited patch (as long as that patch is empty,
as only one agent can be on a patch at a time). If a productive patch they have
previously visited is not available, the agent will simply move to an empty winter
patch. Since half of the winter landscape is composed of patches that cannot produce
food, remembering (and moving to) a patch that previously was productive gives
the agents the ability to avoid accidentally landing on a completely unproductive
patch. In this sense the agents are reactive to their environmental conditions, and
can only work to improve their quest for energy in two ways: moving, or asking a
neighbor of a similar strategy for help.

Each winter, agents move from the summer cells to the winter cells. This
migration is costless as long as a ger lands on a productive patch. If they land on an
unproductive patch they are charged one energy unit to move in their Moore radius
to a productive patch. Agents get five energy units each time they eat grass, and if
they land on an unproductive patch they are charged five energy units at the end of
the timestep. A lucky ger, landing regularly on good winter pasture, will be able to
sustain and grow its energy stock.

In summer, if agents have stored more than 20 energy units they have a
5% chance of reproduction by fissioning. When agents reproduce, the daughter
household is spawned one cell distant from the parent cell and the stored energy of
the parent household is divided evenly between parent and daughter households.

Agents are initially created with four distinct sharing strategies. These strategies
are related to the storage of resources and are tracked based on lineage. When agents
are created they track their strategy as their lineage, and they never change strategies
(agents do not learn). They pass these strategies on to their daughter households.

Strategy A—agents will always merge with another household when asked
Strategy B—agents have a 50% likelihood of accepting an offer of merger
Strategy C—agents have a 25% chance of accepting an offer of merger
Strategy D—agents will never merge
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When agents have less than 10 energy units they know they are approaching
death. Agents that have less than 10 energy units will search within a radius of five
cells for others in their same lineage—that is, the same cooperation strategy. The
agent that is close to starvation will ask one of their lineage for help. Those that
always share (Strategy A) will always say yes; Strategy B will only say yes with a
50% probability, and Strategy C only will say yes with a 25% probability. Those in
Strategy D never ask for help, because help will never be given.

Upon the acceptance of an offer of a merger, the merging agent donates all of its
resources to the agent that accepted the offer of merger, and then households merge
together. The combined households will then have more total energy, and perhaps a
greater potential for fissioning the following summer.

This method of merging has been observed ethnographically in the region.
For example, during ethnographic interviews conducted in northern Mongolia
in 2012, a recently merged household was encountered. Only one week before
interviews a child had set their family’s ger on fire. The family took their belongings
and joined their herds with another household. The households would remain
merged until they were able to acquire or build another ger, and accumulate enough
resources to move out on their own once again.

The simulation stops when either: (a) the simulation reaches 500 ticks (timesteps
or seasons); or (b) there are no more agents on the landscape. Those households
that survive to the end of the simulation, via luck and compassionate neighbors,
represent the propagation of a kin descent group. As illustrated in the figures that
follow, the most dynamic results occur in the first few hundred ticks. However, the
simulation was run to 500 ticks in order to show the stability of the strategies over
the long term.

2. Results and Discussion

For this study we examined how the variable “patch variability” affects the
population of agents following the four different strategies. Patch variability reflects
the likelihood at any timestep that a portion of the productive winter landscape will
be unproductive. The different portions of unproductive landscape modeled can be
related to both winter severity and differences in landscape in two or more compared
regions. Seven values for patch variability were examined, displayed in Table 1.

In addition to testing each of these values for patch variability we examined
how each of the strategies fared when just one strategy was present per patch
variability (for example, only strategy A was practiced), versus when all strategies
were present simultaneously. In this way we can examine the direct effects of patch
variability on one strategy, as well as the effects of different competing strategies and
patch variability.
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Table 1. Description of key parameter “patch variability” and what each of the
values corresponds to. When patches are set to 0% all patches during winter can be
productive, while each increment decreases the productivity by that percentage.

Variability Description

0 During the winter all patches can be productive
5 During the winter, 5% of all patches can be unproductive

10 During the winter, 10% of all patches can be unproductive
15 During the winter, 15% of all patches can be unproductive
20 During the winter, 20% of all patches can be unproductive
25 During the winter, 25% of all patches can be unproductive
30 During the winter, 30% of all patches can be unproductive

While multiple parameters were written in to the simulation (such as how much
energy can be gained from grass, how much lost when grass is dead, what percentage
to reproduce) the main question in this research is: “How well do the different sharing
practices cope with impact of variable weather (such as localized temperature and
precipitation)?” The parameter patch variability takes the simulation window and
every year makes patches unproductive according to the values in Table 1. This
creates unpredictable patchiness of the environment. The list of other parameters in
this simulation and their values is reported in Table 2.

Table 2. List of key parameters and values that were swept across in this simulation.
To note the parameter “winter patch variability” was the key parameter varied,
with most other variables set to 5 for consistency.

Parameter Name Value

Ger reproduction likelihood 5%
Random Number seed 197, 312, 414, 599, 822

Number of initial agents 0, 5
Winter Patch Variability 0, 5, 10, 15, 20, 25, 30

Ger gain from food 5
Grass regrowth time 5

Energy loss from dead patches 5

In total, 1750 runs of the simulation were completed for this study. For each
of the seven values for the key parameter of patch variability, 10 runs were done
with each of the five random number seeds so that outliers could be accounted for.
Two separate experiments were done: looking at how each of these strategies fares
when it is the only strategy represented on the landscape, and examining how these
strategies fare when each strategy is represented on the landscape at the same time.
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2.1. Single Strategies

As displayed in Figure 1, when only one strategy is present, regardless of
which strategy is represented, population reaches carrying capacity and the mean
population curve follows a regular logistic growth curve [31]. The most striking
difference in this graphic is the difference between Column A (100% sharing) and the
rest of the columns (50%, 25% and 0% sharing). While the mean population curve for
column A is similar to the mean population curves for each of columns B, C, and D,
the variance around the mean is much more pronounced. This is true even in row 1,
which represents 0% patch variability.

The means for each value of patch variability are reported in Supplementary
Figures S1–S7 so that means could be compared. With the means graphed in the
same graphs the similarities among strategies are even more apparent. While there is
some difference, those differences are small. The differences become larger as patch
variability becomes higher—by the time patch variability is 30% the detriment of the
all-sharing strategy becomes apparent. If agents always share, overall populations
are lower, while restricted sharing strategies have higher populations. But even
the difference between all share and the other strategies is minimal. As we will see
below, this is in contrast to when each strategy is represented at the same time on
the landscape.

Hegmon [6] found in her simulation of Hopi food sharing strategies that 100%
cooperation was rarely the optimal strategy, but rather restricted sharing seemed to
benefit the overall population the most. The results presented here compare positively
with Hegmon’s findings. While the mean of each of the sharing strategies reported
here is similar, the variance in the 100% sharing strategy suggests that sharing with
no restrictions could be detrimental, even in favorable conditions. While the mean of
the all-share strategy is similar to all the other strategies (Figures S1–S7), the variance
(Figure 1) belies the fact that an all-share strategy could have highly unpredictable
outcomes. The tighter variance around the mean in the other strategies suggests that
those strategies would have more predictable outcomes.

Hegmon also suggests that hoarding (here represented at 0% sharing) is only a
good option in the years of the worst productivity. When looking at graphs S1–S7
there appears to be no functional difference between any of the strategies, so this
finding is not necessarily echoed in our results at this stage.
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Figure 1. Figure showing how each individual strategy responds to environmental pressures 

when no other lineage is present. Each tile is as follows: Columns marked A correspond to 

the 100% sharing strategy. Columns marked B correspond to the 50% sharing strategy. 

Columns marked C correspond to the 25% sharing strategy. Columns marked D correspond 

to 0% sharing strategy. Row 1 is 0% winter patch variability. Row 2 is 5% winter patch 

variability. Row 3 is 10% winter patch variability. Row 4 is 15% winter patch variability. 

Row 5 is 20% winter patch variability. Row 6 is 25% winter patch variability. Row 7 is 30% 

winter patch variability. Thus, tile c3 is the 25% sharing strategy under 10% patch variability. 

Y-axis goes from 0 to 150 households, X axis goes from 0 to 500 ticks. Red-dotted line 

corresponds to the standard deviation from the mean, while the gray lines show each strategy. 

Black central line corresponds to the mean of each strategy. 

Figure 1. Figure showing how each individual strategy responds to environmental
pressures when no other lineage is present. Each tile is as follows: Columns marked
A correspond to the 100% sharing strategy. Columns marked B correspond to the
50% sharing strategy. Columns marked C correspond to the 25% sharing strategy.
Columns marked D correspond to 0% sharing strategy. Row 1 is 0% winter patch
variability. Row 2 is 5% winter patch variability. Row 3 is 10% winter patch
variability. Row 4 is 15% winter patch variability. Row 5 is 20% winter patch
variability. Row 6 is 25% winter patch variability. Row 7 is 30% winter patch
variability. Thus, tile c3 is the 25% sharing strategy under 10% patch variability.
Y-axis goes from 0 to 150 households, X axis goes from 0 to 500 ticks. Red-dotted
line corresponds to the standard deviation from the mean, while the gray lines
show each strategy. Black central line corresponds to the mean of each strategy.
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2.2. Multiple Strategies

Here we examine how populations respond to environmental stressors when
each of the different strategies coexist in the same landscape. At the beginning of the
simulation five agents of each strategy are seeded on the landscape. Experiments
followed the same trajectory as above: with seven variables for patch variability and
five random number seeds.

First of note is the scale: when only one strategy is represented the sum of that
strategy is higher than the sum of that individual strategy when there are multiple
strategies present. In Figure 1 the scale is set to 150 agents, while in Figure 2 the
scale is set to 60 agents. Because of this, in Figure 2 the variability might seem higher
than it is when compared to Figure 1, but variance around the mean is only ever
approximately 40 agents in both Figures 1 and 2 (Figure 1 strategy A excluded).

Comparing the means of each strategy against one another on one graphic
provides more helpful information. In Figures 3–9 each of the mean strategies are
graphed on top of one another without the variance surrounding the mean as in
Figures 1 and 2. This allows us to directly compare the mean strategies without
surrounding noise.

Figure 3 shows how each strategy fared against one another when the
environment did not have any variability. To note, the 100% sharing strategy is
never the best performing strategy. In these runs of the simulation, hoarding (0%
sharing) is the highest performing strategy early in the simulation, while through
time those gers that subscribe to a hoarding strategy decrease in number. The strategy
of sharing 50% of the time, however, is very stable, and eventually becomes the most
populous strategy.

In a situation of stable population we may expect to see a convergence upon
the mean as agents coalesce upon stable landscapes. A population under stress,
however, will see a wide range of variation around the mean as agents attempt to
maximize their resource acquisition while dealing with a volatile landscape (as seen
above when only one strategy is represented). While the landscape in these runs
of the simulation does not have year-to-year variability, the use of the land will
create barren patches for five timesteps. Thus, early on gers that do not share do
well on the landscape because there is little environmental impetus for sharing.
With a predictable environment from year-to-year, independence can be a viable
strategy. However, as the simulation progresses and gers create barren patches on
the landscape from over-use, sharing can help gers avoid the variable productivity in
the landscape they themselves have created.
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Figure 2. Figure showing how each individual strategy responds to environmental pressures 

when all other lineages are present. Each tile is as follows: Columns marked A correspond 

to the 100% sharing strategy. Columns marked B correspond to the 50% sharing strategy. 

Columns marked C correspond to the 25% sharing strategy. Columns marked D correspond 

to 0% sharing strategy. Row 1 is 0% winter patch variability. Row 2 is 5% winter patch 

variability. Row 3 is 10% winter patch variability. Row 4 is 15% winter patch variability. 

Row 5 is 20% winter patch variability. Row 6 is 25% winter patch variability. Row 7 is 30% 

winter patch variability. Thus, tile c3 is the 25% sharing strategy under 10% patch variability. 

Y-axis goes from 0 to 150 households, X-axis goes from 0 to 500 ticks. Red-dotted line 

corresponds to the standard deviation from the mean, while the gray lines show each strategy. 

Black central line corresponds to the mean of each strategy. 

Figure 2. Figure showing how each individual strategy responds to environmental
pressures when all other lineages are present. Each tile is as follows: Columns
marked A correspond to the 100% sharing strategy. Columns marked B correspond
to the 50% sharing strategy. Columns marked C correspond to the 25% sharing
strategy. Columns marked D correspond to 0% sharing strategy. Row 1 is 0%
winter patch variability. Row 2 is 5% winter patch variability. Row 3 is 10% winter
patch variability. Row 4 is 15% winter patch variability. Row 5 is 20% winter patch
variability. Row 6 is 25% winter patch variability. Row 7 is 30% winter patch
variability. Thus, tile c3 is the 25% sharing strategy under 10% patch variability.
Y-axis goes from 0 to 150 households, X-axis goes from 0 to 500 ticks. Red-dotted
line corresponds to the standard deviation from the mean, while the gray lines
show each strategy. Black central line corresponds to the mean of each strategy.
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Figure 3. Means of each of the strategies for 0% patch variability. Means correspond to 

Row 1 of Figure 2. This figure reflects those runs when all strategies were present in 

the simulation.  

 

Figure 4. Means of each of the strategies for 5% patch variability. Means correspond to 

Row 2 of Figure 2. This figure reflects those runs when all strategies were present in 

the simulation.  

Figure 4 follows a similar trajectory to Figure 3, with 100% sharing never being the best performing 

strategy of the four strategies, no sharing performing the best early on, and restricted sharing performing 

the best toward the end of the simulation. Figure 5, however, begins to diverge from Figures 3 and 4. In 

this figure the winter landscape had 10% variability. The sharing strategies are each fairly stable, 

reaching their own respective carrying capacities of 20 to 25 households on the landscape. In these runs 

Figure 3. Means of each of the strategies for 0% patch variability. Means correspond
to Row 1 of Figure 2. This figure reflects those runs when all strategies were present
in the simulation.
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Figure 4. Means of each of the strategies for 5% patch variability. Means correspond
to Row 2 of Figure 2. This figure reflects those runs when all strategies were present
in the simulation.
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Figure 4 follows a similar trajectory to Figure 3, with 100% sharing never being
the best performing strategy of the four strategies, no sharing performing the best
early on, and restricted sharing performing the best toward the end of the simulation.
Figure 5, however, begins to diverge from Figures 3 and 4. In this figure the winter
landscape had 10% variability. The sharing strategies are each fairly stable, reaching
their own respective carrying capacities of 20 to 25 households on the landscape. In
these runs of the simulation hoarding (0% sharing) is early on the highest performing
strategy. However, this strategy has high variability, likely due to the unpredictability
of the landscape, and the similar effect of overuse. However, as only 10% of the
landscape is variable (due to the environment), independent gers can make a living
on the landscape with the simple rules created for this simulation.
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Figure 5. Means of each of the strategies for 10% patch variability. Means
correspond to Row 3 of Figure 2. This figure reflects those runs when all strategies
were present in the simulation.

Once the environmental unpredictability of the landscape reaches 15%, hoarding
is no longer the strategy with the highest population, and will only become optimal
again when the landscape’s carrying capacity becomes very low (unpredictability
of 25%). In Figure 6 we can see that the means of the restricted sharing strategies
(50% and 25% sharing) perform the best. Early in the simulation the 25% sharing
strategy has the highest mean, while later in the simulation the 50% sharing
strategy has the highest mean. This holds true for Figure 7 as well. When the
environmental landscape exhibits 20% unpredictability in winter patches, restricted
sharing strategies perform well. Note, however, that in the final years of these
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simulations, the mean of the 100% sharing strategy performs well, while the other
strategies remain relatively stable.
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Figure 6. Means of each of the strategies for 15% patch variability. Means
correspond to Row 4 of Figure 2. This figure reflects those runs when all strategies
were present in the simulation.Land 2015, 4 171 
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Figure 7. Means of each of the strategies for 20% patch variability. Means
correspond to Row 5 of Figure 2. This figure reflects those runs when all strategies
were present in the simulation.
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In Figure 8 hoarding once again is the highest performing strategy. While above
we suggest that hoarding is a good strategy when the landscape is productive enough
that sharing is not necessary, Figure 8 echoes Hegmon’s [6] finding that hoarding is a
viable strategy when the landscape is so poor that sharing will be detrimental for the
overall population. Please note, however, that the difference in this graph between
the restricted sharing strategies and the hoarding strategy is one household. In fact,
many of the differences are rather small. Over the long term, however, even small
differences in survivability (small adaptive advantages) may impact decision making.
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Figure 8. Means of each of the strategies for 25% patch variability. Means
correspond to Row 6 of Figure 2. This figure reflects those runs when all strategies
were present in the simulation.

In Figure 9, when the landscape exhibits 30% unpredictability in winter patches,
the averages of all of the four strategies are within one household. However, the 25%
sharing strategy seems to have the highest mean on average. These results, when
compared with Figure 2(c7) show that this strategy also has the least variance (and
thus might have the most predictable outcome).

Hegmon [6] found in her simulations that the all-share strategy was never the
optimal strategy, and that hoarding is an optimal strategy for a population when
the environment is highly unpredictable. These findings are comparable to our
study results, although we show that there is little necessity for sharing in a highly
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predictable landscape. Only when the landscape becomes changed due to use, or the
environmental predictability becomes great, do sharing strategies become necessary.

Land 2015, 4 172 

 

 

in a highly predictable landscape. Only when the landscape becomes changed due to use, or the 

environmental predictability becomes great, do sharing strategies become necessary. 

 

Figure 8. Means of each of the strategies for 25% patch variability. Means correspond to 

Row 6 of Figure 2. This figure reflects those runs when all strategies were present in 

the simulation. 

 

Figure 9. Means of each of the strategies for 30% patch variability. Means correspond to 

Row 7 of Figure 2. This figure reflects those runs when all strategies were present in 

the simulation. 

Figure 9. Means of each of the strategies for 30% patch variability. Means
correspond to Row 7 of Figure 2. This figure reflects those runs when all strategies
were present in the simulation.

Comparing Figures 1 and 2 we can see that some similar patterns are
apparent—an “all share” strategy never outperforms the other strategies, but there
appears to be little functional difference among the other strategies. Each strategy
reaches the logistic population curve (the carrying capacity) in Figure 1, but in
Figure 2 there is greater variability. When comparing the means in Figures 3–9 we see
that restricted sharing seems to be the most beneficial strategy when environmental
conditions are unpredictable.

For a final means of comparison, we examined the statistical difference among
the strategies with a Kolomgorov-Smirnov analysis. Kolomgorov-Smirnov analyses
allow for direct comparability of each of the simulated means to see if there are
statistical differences between each of the strategies. We simplified these data into
five time slices: 100 ticks (50 years), 200 ticks (100 years), 300 ticks (150 years), 400
ticks (200 years), and 500 ticks (250 years). Further, we compared the pair-wise
difference between the following means: Strategy A to Strategy B, Strategy B to
Strategy C, Strategy C to Strategy D, and Strategy A to Strategy D.
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Frequency differences as well as p-values to the 0.05 level are reported in Tables 3
and 4. Table 3 corresponds to Figure 1 (single strategies modeled) while Table 4
corresponds to Figure 2 (all strategies present).

As can be seen in Table 3, when only one lineage is represented, 31 of the 140 K-S
statistic values show clear statistical significance in their difference. In Table 4 we can
see that 21 of the 140 values show clear statistical significance in their difference. Thus
we can say that in 22% of the cases when only one lineage is represented there are
real differences in the number of surviving households on the landscape, while when
all lineages are represented 15% of the cases show real differences in the number of
surviving households on the landscape. It is worth noting, the strongest difference
is between strategy A (all share) and strategy D (no share) in both solo lineages
and all lineages, with 17 and 11 cases showing statistical significance respectively.
Little difference is seen in the restricted sharing strategies (50% and 25%) potentially
showing that both of these are viable in most years and may be functionally the same.

In Table 3, the highest and most significant variation seems to be related to
reaching the environmental carrying capacity, which generally is reached between
100 and 200 ticks. Most other times variation is not significant except between
extreme strategies in less variable landscapes. In Table 4, however, variation is
related to the end of the simulation, potentially showing that as sharing strategies
stabilize the differences among them become more pronounced.

From Figure 1 through Figure 8 and Tables 3 and 4 we may be able to interpret
that during years of middling unpredictably, those households that do not freely
share their resources with everyone (but do share with a select few) are likely to
have their caloric needs met, are likely to reproduce, and are likely to survive into
the next year. The significance in variation among the strategies suggests that there
are real differences in all sharing, restricted sharing, and hoarding and, potentially,
that individuals using those strategies would be able to see how well their strategy
compared to other strategies. These findings are also echoed in Crabtree [1]. Only
during exceptional years would households want to horde their resources, potentially
insuring their own survival at the detriment of others.
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2.3. Discussion

Winterhalder and Leslie [32] have shown that long-term stochastic processes
may affect how individuals react to environmental conditions and how they approach
risk. In their model, demographic response to an unpredictable environment will,
by nature, be nonlinear. For example, people cannot predict exactly how many
children to have so that four children will grow into adulthood. The results of our
above analysis echo those of Winterhalder and Leslie and show that individuals
may indeed seek risk when environments are highly unstable in order to have the
chance of surviving, and may be risk-averse when environments are stable. The
high levels of variance observed in the model presented in this paper are at least
partially reflective of the unpredictable, highly unstable environments in which
this simulation occurs. While Hegmon [6] found that restricted sharing will be the
most beneficial strategy for overall populations (restricted sharing should decrease
variance), Winterhalder and Leslie’s findings may highlight why highly variance
will be beneficial in unpredictable environments. People may need to try multiple
strategies to survive.

Powers and Lehman [2] found that sharing increases the carrying capacity of a
system. Such a result is potentially visible in our results as well. When environmental
pressures become great, and households group together, the environmental pressures
can become mitigated by the social sharing strategy. However, despite sharing
strategies lessening environmental pressures, households are never outside of
those environmental pressures, and the use of the landscape creates environmental
pressures as well due to patch degradation.

Pastoralists have long been blamed for environmental degradation from
overgrazing [33]. The “tragedy of the commons” theory states that unmonitored
common-pool resources, as is the case in Mongolia with individual ownership of
herds, but not land, leads to irresponsible usage of resources. However, critics of
this theory point to various formal and informal social adaptations that oversee and
regulate resource use [34]. The same cooperation and sharing networks modeled here
may parallel the social networks ensuring sustainable resource utilization through
traditional ecological knowledge.

The problem of common-pool resources is evident in the model. When agents
land on patches they extract the resources from those patches, and must wait multiple
timesteps until those patches regenerate. It is possible that all winter patches in one
area could become used during one timestep, causing future households to have
no opportunities for productive patches. If agents land on dead patches they are
charged energy. Once agents have fewer than 10 energy stored, those agents with a
sharing strategy must rely on other agents in their network for survival. In this way
we can see how agents react to a simulated tragedy of the commons. Once resources
are over-exploited in an area, households must call upon their networks for help. As
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we see in this simulation, agents are doubly burdened by both simulated dzuds and
by simulated resource over-use. Those agents that are able to rely on their greater
social network fare better overall than those agents with no social network when
both climatic and overuse pressures affect the environment.

One final issue addressed by this model is the poor resolution of the
archaeological record. While research is ongoing in household studies in Mongolia
(e.g., [12]) most studies in Mongolia have focused on monumental archaeology. This
is coupled with poor resolution of household archaeology (centimeters of deposition
equating to centuries of occupation). Consequently, our understanding of the past can
be blurred. Simulations, therefore, help us to address these gaps in our knowledge.

Notably missing from our study is a goodness-of-fit exercise between the model
and the real settlement patterns [1,35]. This is due in part to there not being many
complete archaeological datasets in the region to do goodness-of-fit tests against
yet. Consequently, we must make do and use models as a way to inform our
understanding of the limited archaeological information available at this time.

This model, while not meant as a reproduction of reality, presents a plausible
scenario based on developed theory and hopes to address key questions of how
semi-nomadic Mongolians address local weather events, such as drought and heavy
winters. While this model is highly simplified, it presents a plausible suite of
directions that people in this highly unpredictable environment could face. Therefore
the outcome of our study can be used to make some conclusions of a much more
complicated system.

3. Conclusions

The mobility of Mongolia’s pastoralists presents a unique case rather different
than the settled, Ancestral Pueblos investigated by Hegmon [6,7]. Household
units, which are moving frequently anyway, can fission and fusion without large
disruptions to the social, economic or political order. Rather than reaching a breaking
point, temporary solutions can mitigate risk and catastrophe, followed by a return to
the normal order.

So which of the above cooperation strategies works best for Mongolia? This is
a tricky question to answer with a single straightforward answer. All of Mongolia
is hit by dzuds, but they do not impact different regions of the country equally;
one area will be more susceptible to them than others for various natural and
socio-cultural reasons. For instance, the weather in southern Mongolia’s Gobi Desert
is quite different than that of northern Mongolia’s Taiga-Mountain-Steppe ecotones.
Therefore, which strategy is most beneficial may vary geographically as well as
temporally. Additionally, the availability of other risk-mitigating adaptations is
different by region. There may be many more types of wild resources available
in the northern ecotones than in the more homogenous steppe or desert zones in
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central and southern Mongolia. In regions where it is more difficult to fall back on
wild resources, this may place much more importance on social or kin networks to
mitigate risk. This might be seen archaeologically in Mongolia by looking at facets of
the ritual landscape as a reflection of the strength of social and kin networks [12].

Ger Grouper is a very simplified model. However, this “wrong” model
(sensu [29]) is useful in that it helps us to understand how individuals might react
to catastrophic events. We began with a highly simplified model to examine how
variables interact with one another, so that in future we can truly examine the
effects of variables in a realistic setting. Future development of this model will
include bringing real world variables into the model. The rates of environmental
catastrophes (e.g., dzuds and droughts) can be reconstructed using historical weather
data which can then be added to create a more realistic “patchy” element to the
model. In addition, realistic GIS landscapes can be created based on real locations
within Mongolia and the surrounding regions. As more detailed archaeological
and paleoenvironmental data become available, the parameters of the model will
improve. The results from multiple regions can then be compared, illuminating any
differences in socially adaptive risk management responses due to environmental
variation. The Ger Grouper model was designed to work at a landscape-scale
compatible with the annual seasonal rounds of mobile pastoralists in Mongolia.
Agent-based-modeling, when implemented at this scale, will allow for explicit
connections between computer-aided models and archaeological project design.
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Simulating Littoral Trade: Modeling the
Trade of Wine in the Bronze to Iron Age
Transition in Southern France
Stefani A. Crabtree

Abstract: The Languedoc-Roussillon region of southern France is well known today
for producing full-bodied red wines. Yet wine grapes are not native to France.
Additionally, wine was not developed indigenously first. In the 7th century B.C.
Etruscan merchants bringing wine landed on the shores of the Languedoc and
established trade relationships with the native Gauls, later creating local viticulture,
and laying the foundation for a strong cultural identity of French wine production
and setting in motion a multi-billion dollar industry. This paper examines the
first five centuries of wine consumption (from ~600 B.C. to ~100 B.C.), analyzing
how preference of one type of luxury good over another created distinctive artifact
patterns in the archaeological record. I create a simple agent-based model to examine
how the trade of comestibles for wine led to a growing economy and a distinctive
patterning of artifacts in the archaeological record of southern France. This model
helps shed light on the processes that led to centuries of peaceable relationships with
colonial merchants, and interacts with scholarly debate on why Etruscan amphorae
are replaced by Greek amphorae so swiftly and completely.

Reprinted from Land. Cite as: Crabtree, S.A. Simulating Littoral Trade: Modeling the
Trade of Wine in the Bronze to Iron Age Transition in Southern France. Land 2016,
5, 5.

Niketas then asked for some wine and poured a cup for Baudolino. “See if you
like this. It’s a resinous wine that many Latins find disgusting; they say it tastes of
mold.” Assured by Baudolino that this Greek nectar was his favorite drink, Niketas
settled down to hear his story. — from Baudolino [1]

1. Introduction

Understanding the choices that people made in the past is difficult, if not
impossible, without written sources directly telling us why people chose specific
courses of action. Yet it is these choices that led to the archaeological record; today
we can see the aggregate of these decisions. The following model presents a simple
case of examining prehistoric economies. Through using an agent-based model on a
heterogeneous population it is suggested that the economy of this area was driven
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by the choices of Gauls as consumers, and not by the availability of goods; this work
articulates with longstanding debates in the prehistory of France.

This research specifically asks the question: what caused the complete switch
in wine amphorae from Etruscan to Greek styles in the Languedoc when clearly
both groups were present on the landscape? This model aims to examine the abrupt
transition from Etruscan amphorae to Greek amphorae as discovered by Py [2]
and reported in Figure 1 by modeling strictly local processes. A pattern oriented
modeling approach [3] was used to examine the overall process and validate the
model with the archaeological record. Validation in this model is via a complete shift
in artifact types from Etruscan to Greek amphorae—output from the simulation is
directly compared against output from the archaeological record. This research is
one of the first forays into formal modeling of the archaeological record in France,
thus this article represents both the utility of agent-based modeling for examining
the prehistory in France, and also acts as a first step for more complex models on
French prehistory.

Figure 1. Redrawn from Py [2], curves of artifact percentages through time.
(1) represents Etruscan amphorae, which make up almost 100% of the assemblage at
that time. (2) represents archaic Greek amphorae, which have a small percentage of
the assemblage. (3) represents Greek amphorae. Note that while Greek amphorae
are the dominant form of wine vessels after 500 B.C. that amphorae of Etruscan type
(1) are still present into the 3rd millennium B.C. (4) represents Roman amphorae,
which are not examined in this paper.
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The article is organized as follows. First, a brief background situates the research
and the research question. Next, methods and then the model is presented; please
note that much of the model detail is described in the supplementary ODD protocol
to allow for a streamlined description. Results follow, focusing on those outputs that
directly facilitate comparison with observed archaeological phenomena. Following
the results of the model, a lengthy discussion of the cultural history of southern
France is presented, showing exactly how this model articulates with research in
this area. Much of the data on this region is published in French; thus this article
provides a summary of the culture history in English, advancing understanding for
this area for the Anglophone audience. Finally, the archaeological data are discussed
in conjunction with the results presented here, and suggestions to future directions
are presented.

1.1. Background

The Languedoc-Roussillon region of southern France (Figure 2) is well known
today for producing full-bodied red wines. Yet wine grapes were introduced in
antiquity. In the 7th century B.C. wine-bearing Etruscan merchants landed on the
shores of the Languedoc and established trade relationships with the native Gaulish
elite. In fact, most wine consumed in southern France was not even grown by Gauls,
instead being imported to Gaulish settlements [4,5]. In complement to this, some
argue that certain colonial settlements were so large they outstripped their local
carrying capacities, and thus had to import grain and other comestibles [5]. Complex
economic partnerships linking Gauls to Etruscan and later to Greek merchants were
essential, yet these trade relationships had far-reaching effects for the household
economies of both indigenous and colonist populations. “Greek [colonist] towns
in general and Greek houses in particular, constitute evidence of a new type of
materialism, individualism and consumer display, where patron-client relations were
negotiated in semi-public homes, in which creators of wealth were linked to local
and international business opportunities” [6]. In this paper, I examine how the trade
relationships between colonist merchants and the indigenous Gaulish elite facilitated
the development of complex economies and created distinctive artifact patternings
in the archaeological record.

This model examines three processes: (1) the arrival of wine-bearing merchants
in Gaul; (2) the establishment of trade relationships between these merchants and
native Gauls; and, (3) the replacement of Etruscan wine amphorae by Greek wine
amphorae. To understand the establishment of trade between Gauls and colonial
merchants we need to understand why Gauls would engage in trading grain for
wine. Then, to understand the replacement of one amphora type by another, we need
to examine the choices made by the Gaulish elite at home. After all, Gauls were the
agents of demand in the supply chain. As in the above quote, the preference for one
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type of wine over another would influence how people would choose to consume
wine. Agent-based modeling is a perfect method for examining how local decisions
could affect overarching patterns of artifact distributions.

The agent-based model presented here looks at the distribution of artifact
types over time across a simplified landscape. By reducing the model to a few
key parameters, I am able to directly examine how a preference for one type of wine
over the other might affect archaeological assemblages. This model articulates with
current debates over the nature of trade within this region. As I discuss below, ethnic
identities in the past are difficult to identify, but patterns of artifacts across space and
through time can be identified. This simple agent-based model acts as a first step to
understanding economies in prehistory and sets up studies that can further examine
land use in the past.

Existing models for the interaction between Gaulish inhabitants and colonial
traders along the littoral (the region abutting the Mediterranean) of southern
France are descriptive. According to Py [7] the paradigms underlying research by
proto-historians working in these contexts can be summarized as follows: indigenous
Gauls living along the littoral zone were forced to abandon some of their traditional
practices, such as semi-nomadic pastoralism, to generate the agricultural surplus
required to develop their economies and engage in trade with outsiders [7]. Yet these
descriptive models have not been formally tested; thus, the research here formally
examines how early colonialism can create distinctive economic partnerships and
artifact patterns.

The terms “colonist,” “colonizer,” and “colonialism” come with academic
baggage. To avoid confusion, and differentiate the colonization in southern Gaul
from Colonialism in the 1600s–1900s, I will use the term “settled nonlocal merchants,”
“settled merchants,” or simply “merchants” henceforth to refer to the Etruscan and
Greek merchants. Settled, because in general the colonizers who arrived in southern
Gaul settled in colonies, or in already established Gaulish settlements, as is argued
for the Etruscans at Lattara [5]. Nonlocal, because the first wave of Etruscans and
Greeks were born in other areas. (Through time this becomes debatable, as later
generations of merchants may have been born in Gaul [5].) And finally I use the
term merchants, because the Etruscans and Greeks who came to southern Gaul are
characterized by engaging in trade with the locals.

How the development of agricultural surplus could lead to trade relationships
with merchants is directly examined in the model presented here. By creating
multiple parameters related to flows of exchange and the ability to extract resources
(discussed in more detail below) and sweeping across values for these parameters I
can directly examine existing conceptual models for southern Gaul. To state it simply,
this model directly examines how trade affects the survivability of agents on the
landscape and allows for the examination of the percent of different artifacts on the
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landscape. I examine this model in two steps: (1) a simple model allowing for the
exchange of wine for grain; and (2) a model that allows for two types of merchant
populations, Etruscans and Greeks, to trade with the Gauls for grain.

Figure 2. Area of interest for this study. This study specifically examines the
development of viticulture and trade in the Languedoc Roussillon region, but
map includes surrounding areas of interest to this study. Here I show those cities
that are specifically mentioned in this manuscript, as well as the three shipwrecks
mentioned that show integration of ethnic identities.

1.2. Methods

The agent-based model developed in this paper was created in NetLogo [8],
though could have easily been created in any other modeling platform; figures were
created in R [9]. The modeling framework consists of a simple resource extraction
model coupled with a trade model (see below). Each timestep of the model represents
one year and the model is run for 500 timesteps. Two types of output are generated:
populations of agents (Gauls and merchants) and populations of artifacts (Etruscan
and Greek wine amphorae).

This model is meant to reproduce patterns for validation. While no reliable
population estimates exist for this area, patterns of agent survival are helpful in
calibrating whether or not exchange of grain for wine would have enabled merchant
survival in prehistory. Patterns of artifacts, however, are more reliable in this study
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area. Output of the quantity of Etruscan and Greek amphorae are compared against
real archaeological patterns of artifacts (Figure 1) to determine if local processes
could have led to the archaeological record.

1.3. The Model

Here I ask two questions: (1) could visiting merchants have survived in the
littoral without farming grain? and, (2) can a transition in the number and type of
amphorae be generated through modifying a simple set of parameters? I examine
these questions through the simple agent-based model detailed below. Following I
describe the base of the model to provide a background for the questions answered
in this paper, then I detail each of the models.

1.3.1. The Landscape

The landscape is 80-cells by 80-cells wide, creating a total of 6400 cells for the
simulation window. In this model the landscape is created in three portions: the sea
to the south (2400 cells), the littoral region abutting the sea (320 cells; light green
in Figure 3), and the rest of the land (3680 cells; medium green in Figure 3). Grain
(energy) can only be grown on green patches.

At simulation instantiation a random 33% subset of the farming landscape is
unproductive. Regrowth “clocks” are set on each cell randomly between 0 and
60 years and the patches regenerate during this time. While the model presented
here does not use realistic paleoproductivity estimates [10], the random generation
of unproductive cells creates a patchy environment that farming Gauls likely faced
when they began cultivating wheat. As stated above, the conceptual model used
by proto-historians [7] suggests that Gauls abandoned semi-nomadic pastoralism
to create surplus for trade. It is likely that not all Gauls would have abandoned
this way of life immediately, suggesting that some parts of the landscape would
still be in use for pastoralism and foraging. Moreover, lanscape productivity may
have been effected by generations of landscape use before settled farming took hold.
Thus it is reasonable to expect that not all of the land was available for farming right
away. Further, agent actions degrade the landscape (see below) which makes Gaulish
agents need to learn to be able to farm, reproduce, and trade.

The decision to abstract the landscape to a rectangular space was made to
enable an examination of the simple process of exchange without having to model
multiple historical details. Archaeology and historical study has been ongoing in
this region for decades. An agent-based model would not be able to encapsulate all
of the specifics of the historical record of this region. Moreover, as this is the first
agent-based model to be made in this region, it was determined that it would be best
to create a highly simplified model with the goal of adding complexities later.
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1.3.2. The Agents

There are two main types of agents in this model: Gaulish agents and Merchant
agents. In this model, agents correspond to the economic production unit of a
household [10]. The composition of households may have been slightly different for
Gauls than for the Etruscan and Greek visiting merchants, and may have differed
depending on social status. For example, on arrival in southern France many of
the visiting merchants were likely single men who later may have married locally
to create a family or returned home and brought their families from their home
countries to the west [5]. For simplicity, in this model it is assumed that agents
are independent economic production units. As such, each agent produces goods
specific for its type: Gauls produce grain, and Etruscans and Greeks produce wine.

In this model households can be of varying size, and this is tied to production
(see below). It is assumed here that the basic household may begin with only one
agent—for example, when merchants land, a household consists of one merchant. As
households increase their grain storage, they can support more individuals. Then, as
households fission and split their grain storage, they can support fewer individuals
within their own household from their storage. So household size fluctuates as
storage fluctuates, and as daughter households bud off of the parent household. This
is explored below in the discussion of grain consumption rates.

To examine how the trade of grain for wine helped the survival of visiting
merchants, we need to understand consumption rates of grain in the Gaulish world.
Gras [11] identified average consumption rates of roughly six hectoliters (hl) of grain
per year for adults. I use this as a base value for consumption by the agents, with
four hl of grain as the base for juveniles. In the simulation, if a Gaulish agent has
below 10 hl of grain, the household can only support one individual. This scales
up as agents store more grain (Table 1). Average annual yields of fields have been
suggested to be up to eight hl per hectare [5], so I use this upper bound to calibrate
consumption rates and field productivity in the simulation. To calculate the size of
family farms I use estimates by White [12] who reports that small farms in the Roman
republic, which used similar farming techniques, were between 18 and 108 iugera or
4.5 to 27 hectares during the 5th century B.C. (contemporaneous to this study). The
amount of grain harvested also scales with the size of the family; a small family can
harvest from 5 hectares, while a large family can harvest up to 15 hectares. This is
explained below in Table 1.

Wine cultivation, however, does not scale with a larger family. In this simulation
individuals can harvest 10 amphorae of wine per cell and do not create more
viticulture cells with increased family size. Rather, an agent owns one cell of wine
production. While amphorae in antiquity varied in size, in this simulation I assume
that the amphorae are the standard Attic size of roughly 50 liters of wine per transport
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amphora [13]. When I discuss trade rates below, the optimum trade is 40 hl of grain
for 5 hl (10 amphorae) of wine.

Table 1. How storage level affects the number of individuals in a household and
their consumption rates. This enables agents to increase their family size, and thus
the productivity of their land, as well as increasing the ability to trade. However,
once an agent trades, its storage level will be cut in half (as half is donated to the
daughter household) decreasing the household size in the process. Merchants have
a higher storage level because they cannot grow their own food, and thus need to
plan more to be able to raise daughter households.

Storage
Level

Merchants

Storage Level
Gauls

Size of Plots
Gauls

Size of Harvest
Gauls

Consumption
Rates Gauls and

Merchants

Corresponding
Number of

Individuals per
Household

< 45 hl ď 10 hl 5 ha 40 hl 6 hl 1
ě 46, <50 hl >10, ď 30 hl 5 ˆ 1.5 (7.5 ha) 60 hl 12 hl 2
ě 50, <60 hl ě 31, ď 40 hl 5 ˆ 2 (10 ha) 80 hl 16 hl 3
ě 61, <70 hl ě 41, ď 50 hl 5 ˆ 2.5 (12.5 ha) 100 hl 20 hl 4
ě 71 hl ě 51 hl 5 ˆ 3 (15 ha) 120 hl 24 hl 5

Consumption rates are tied to various parameters, including the basic
consumption of grain (6 hectoliters per year, per adult) plus the quantity of grain
required for planting and harvesting (see below). While farming yield, amount
consumed, and exchange rate are all parameterized, in this run of the simulation
these parameters were fixed for simplicity. Fixed parameters are reported in Table 2.
Of note, planting calories and harvest calories are both set to 4 hectoliters. Gauls
would have needed to store seed to plant their fields each year, and planting would
be energetically costly. Thus the parameter “planting calories” encapsulates both
the stored grain, and the cost to plant a large field. Harvests, on the other hand,
are known to come in at once and need to be harvested rapidly before the grain
falls off the stalk. Thus Gauls likely relied on neighbors (and potentially slaves,
see Discussion) to help with harvest, and may have fed them to help with this cost.
Further, some grain that grew may be lost in harvest, due to improper techniques,
harvesting too late, or storing improperly. Thus “harvest” encapsulates the costs
associated with harvest and storage. Swept parameters are reported in Table 3.

At the beginning of the simulation—here set to year 0, but corresponding to
roughly year 700 B.C.—Gaulish agents are distributed randomly on the land portion
of the landscape. Each Gaulish agent is created with a storage of grain set to 20
hectoliters. The initial number of Gaulish households is set to 150. Colonist agents
are seeded on the landscape during their birth years (Table 2) with 60 hl of grain in
storage, and the initial number of colonists is set to 100.
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In this model agents have yearly basic metabolic needs which are met by
consuming grain (Table 1). If agents get to zero energy, they die. There is an additional
parameter, “life expectancy,” that ensures agents—the natal household—do not live
too long. If an agent reaches above the number of timesteps set by “life-expectancy”
they have a 50% chance of dying every timestep. (Note that agents can die before
that due to lack of resources.) In this sweep life expectancy was set to 80 timesteps
since birth; while this is likely a high estimate for antiquity, this allowed many agents
to die of “natural” causes (e.g., having too few grain) before being killed off by the
simulation. Reproduction in this model is via fission (see Supplementary materials).
Daughter households form near their parent household, and storage is divided
evenly between daughter and parent households.

Consuming wine decreases harvest costs (and is consumed at a rate of one unit
per year). Elsewhere, beer parties are used as a form of payment to help in collective
labor [14]. Alcohol mobilizes workers at work-parties, and was likely used in Gaul
for harvest, since crops would mature and need to be harvested quickly. Historians
have suggested that beer parties indeed aided in Gaulish grain harvest [15]. For
this simulation I apply the concept of beer parties and assume that consuming wine
would decrease costs to the harvester. Therefore, having wine is beneficial for farming
agents, as it makes harvesting less costly for them.

Table 2. Fixed parameters used in this simulation. Many of these were tested in
earlier sweeps, which are not reported here.

Parameter Name Value Explanation

Grain Storage (Gauls at birth) 20 hl Amount of grain per Gaul when seeded on landscape
Grain Storage (Merchants at arrival) 60 hl Amount of grain per merchant when seeded on landscape
Wine Storage (Merchants at arrival) 20 amphora Amount of wine per merchant when seeded on landscape

Number Gauls Seeded 150 Number of Gauls at start of simulation
Number merchants seeded (both types) 100 Number of merchants upon arrival

Life expectancy 80 Year after which agent has 50% probability
of mortality per timestep

Etruscan arrival Year 34 Year Etruscans arrive
Greek arrival Year 100 Year Greeks arrive

Grain harvest amount 20 Amount of grain (in hectoliters) harvested per farmed cell
Wine harvest amount 10 Amount of wine (in amphora) harvested per cultivated cell

Planting calories 4 hl How much it costs to plant each year
Harvest calories 4 hl How much it costs to harvest each year

Wine decay rate 1
amphora/yr How much wine rots per year

Wine drinking rate 1
amphora/yr How much wine an agent can consume per year, per type

Reproduction 3% Probability of reproduction per timestep
Probability of selling wine (merchants) 5% Probability a merchant will be able to sell wine each time step

Probability of buying wine (Gauls) 1% Probability a colonist will be able to buy wine each time step
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Table 3. Parameters swept across in two models. Grain Trade Rate was swept
across in first model. Preference was swept across in second model.

Parameter Name Values Swept Across Explanation

Grain Trade Rate
(examined in part 2.1) 20:10; 30:10; 40:10; 50:10, 60:10 Amount of hectoliters of grain

traded per 10 amphorae of wine

Preference
(examined in part 2.2) 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

Weighted value for when two
types of wine are available.
Explained further in Table 3

Agents trade wine for grain, and trade is costly. Both the wine and grain traded
would need to be transported between exchanging agents, so agents are charged
calories for the trade of these goods across the simulation in a manner similar to
Crabtree [16]. Further, wine was likely an elite drink, and so the trade of grain for
wine could only be accomplished by the elite. Thus, agents must account for costs
when trading. In this model agents calculate the distance between themselves and
their trading partner. The agent that is buying is charged 0.25 hl per cell traveled.
This, then, ties to the agent’s move algorithm.

In this model cells degrade after 5 years of farming use; cells become productive
again after up to 5 years lying fallow, set randomly. If a Gaulish agent’s farm cell has
become unproductive, the agent must move to another cell. When Gauls move, they
will look at their most recent trading costs and assess how costly they were. If the
trading costs were greater than 1/4 of the gain in storage, the agent will move to a
productive cell closer to the merchant settlements. If the costs were less than 1/4 of
the agent’s grain storage, the agent will simply look for another productive cell in a
radius of 10 cells to begin a new farm. The Gaulish agent is charged 1 hl to move to a
new farm.

Trade in this model is simple, but occurs both from the Gaulish side and from
the Merchant side (see Supplementary Material: ODD Protocol, Scheduling). Gaulish
agents trade before merchant agents do (demand for goods comes first). When
Gaulish agents have stored twice the trade rate in the simulation (in Section 2.2 set
to 40 hl) they may choose to trade for wine. This threshold is so that if an agent
reproduces (dividing energy equally) it will have 40 energy to divide between itself
and offspring after trading energy for wine; this threshold minimizes agent-death.
Merchant agents require grain to survive and reproduce; thus a merchant will always
trade for grain when approached by a Gaulish agent asking for wine. The agent that
instantiates trade pays the cost for trading as described above [16]. After Gaulish
agents trade and complete their scheduling, merchant agents trade.

Second, merchant agents trade wine for grain. When colonist agents have
greater than 10 wine-units, they ask a Gaulish agent to trade following the above
logic. The merchant agent asks a Gaulish agent to trade; the Gaulish agent then has a
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50% probability of accepting this trade. If the trade is accepted, the merchant agent
pays the cost of trading (0.25 energy multiplied by the number of cells separating it
from the Gaulish agent).

Following I now describe the differences in each model, building from the
simplest base model that examines the trade of grain for wine with one type of
merchant-agent, to the more complicated model that examines the trade of two
types of wine for grain. I additionally discuss the results from running sweeps of
each model-type.

2. Results

2.1. Base Model

In this section I use the base model to establish the trade rate of grain to wine
to be used in the subsequent model. While future applications of this model may
enable agents to barter for an appropriate trade rate [17], this model sought to reduce
variables, so a global exchange rate was determined in this first step. This model
examines the verbal model as explained by Py [2], that Etruscan merchants arrived in
Gaul and influenced an intensification of agriculture in the area, with Gaulish people
creating surplus to engage in trade for wine with the Etruscans. Here I specifically
examine population of Etruscan agents, since their survival depends on their ability
to trade with Gaulish agents. In this model I calibrate the amount of grain traded,
which then feeds into the following models. For this model I specifically ask:

Could Gauls have generated enough surplus to feed visiting merchants, while
still enabling their own survival?

Here only farming Gauls and Etruscan merchants exist, so only grain (energy)
and one type of wine are traded.

Five exchange rate values were examined (Table 2): a rate of 2:1, 3:1, 4:1, 5:1, and
6:1. Value of 1:1 and 7:1 were examined; at 1:1, Etruscan merchants died out quickly
(as they do in 2:1), while at 7:1 Gaulish agents died out quickly, which caused the
simulation to stop. The basal amount of trade each year is 10 amphorae of wine, so
the amount of grain scales accordingly (e.g., 40:10, which equals 40 hl of grain for
5 hl of wine). In summary, colonist agents cannot survive unless they trade wine for
grain. Figure 3 reports the response of population to these trade values.

In Figure 3a. I examine the trade of 20 hectoliters of grain for 10 amphorae of
wine. Note that merchant-agents die out almost immediately. In Figure 3b. the trade
rate (3:1) is more favorable to merchant populations, and their population trajectory
reflects this. Note there is large variance around the mean. In Figure 3c. the trade
rate (4:1) is increasingly favorable for merchant populations, with their population
trajectories more-or-less overlapping by year 300. In Figure 3d. the trade rate (5:1) is
again favorable to merchant populations, and the two population trajectories have
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significant overlap, as with Figure 3c. However, the variance around the mean is
larger in Figure 3d. than Figure 3c. In Figure 3e. Gaulish agent populations begin to
die out due to the unfavorable trade rate (6:1). This may reflect the trade-rates that
some merchants attempted to achieve reported by Diodorus Siculus [18]. This poor
trade rate negatively effects merchant populations as well; with fewer Gauls to trade
with, the quantity of available grain diminishes, decreasing merchant population.

Figure 3. Population response in the simulation, tied to the consumption of grain
(grey lines). Solid lines denote the mean population for the scenario being examined,
dotted lines denote one standard deviation of the mean above and below the mean.
Scenarios a through e represented different trade rates examined in this simulation.

While many of the trade rates examined here would have enabled the survival of
merchant populations in southern France, a trade rate of 40 hl of grain for 5 hl of wine
(4:1) creates a favorable exchange rate for both merchant and Gaulish populations,
while reducing variance around the mean (reducing path dependence). Thus a trade
rate of 4:1 was set for the subsequent models examined in this paper.

Though this model is highly simplified, by using historically reported yield rates
(8 hl of grain per hectare, with family farms from 4.5 to 27 hectares, consumption
of 6 hl of grain annually per adult, and 4 hl per child, 50 l of wine per amphora) it
shows that Gauls would have been able to grow enough grain to support themselves
and a burgeoning economy. This has important ramifications, and will be discussed
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below (Discussion). Using these historical rates reported above for average field
productivity and average farm size, it is completely feasible that a household would
be able to produce enough grain for immediate consumption, storage, and trade.
Then, through the trade of wine for grain, merchant populations were able to
reproduce and grow their numbers, establishing colonies along the littoral, and
engaging in long-term trade with Gaulish farmers. This model verifies Py’s first
hypothesis [7]. Next, I build on this simple model to examine how the inclusion of
two different types of merchant populations effects the distribution of artifact types
across the landscape, and the survivability of each type of agent.

2.2. Multiple-Colonist Model

At the beginning of this article I quote Eco [1], who illustrates the preference of
one type of wine for another. While Eco writes of 12th century Italy, the preference
for red wines from Etruria, or for wines that are “bitter” and “tasting of mold” would
have governed purchasing tactics by prehistoric consumers. In this second simple
model I show how these preferences create distinctive artifact patternings that can
then be compared to real archaeological data. The model presented in this section
builds on the simple trade model presented in Section 2.1. In this model Gaulish
agents choose to trade for either Etruscan or Greek wine.

Gaulish agents will favor buying wine according to the parameter, “preference.”
Preference governs the choice between Etruscan and Greek wine, weighting the
probability of choosing a Gaulish or Etruscan wine depending on the perceived value
by Gauls. Of course, before Greek agents arrive, Gaulish agents will only purchase
Etruscan wine, and thus preference has no effect. Preference can take many forms.
Preference could be for the taste of the wine, the rarity of it (causing it to have higher
prestige status), or in mimicking the elite [19]. When preference is set to 50, Gaulish
agents have a 50% chance of choosing Etruscan or Greek wine (they don’t prefer
either, they just want wine). The closer the value is to 0, the more weighted it is in
favor of Etruscans, while the closer it is to 100 the more weighted it is in favor of
Greeks. These are explained below in Table 4.

Eleven preference values were swept across (reported in Tables 3 and 4) to
examine how a simple change of preference could influence both the survival of
agents on the landscape and the artifact assemblage across the landscape. Each of
these models was run for a total 30 runs per preference value, creating a sweep
of 330 runs. Results are reported in Figures 4 and 5. In these figures the average
population per each preference value is reported along the left column while the
average number of artifacts of each type through time is reported along the right
column; solid lines indicate the mean of all runs, while the dotted lines indicate the
high and low standard deviations around the mean. It should be noted, however,
that even though Gaulish agents may prefer one type of wine over the other when
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they initiate purchase, each merchant agent initiates trade with a Gaulish agent after
the Gaulish agent has finished its scheduling (see Supplementary Information). The
Gaulish agent then has a 50% chance of choosing to trade with the merchant or not.
Thus, while preference should affect the results, it should not completely control
the assemblage types, and even when Gaulish agents prefer one type of wine over
another, due to the logic in this simulation, merchant agents should be able to survive,
albeit in low numbers, since merchants can initiate trade as well.

Table 4. Preference Values swept across in this study.

Preference Explanation

0 Weight is entirely in favor of Etruscan Wine
10 Weight is strongly in favor of Etruscan Wine
20 Weight is in favor of Etruscan Wine
30 Weight is slightly in favor of Etruscan Wine
40 Weight is very slightly in favor of Etruscan Wine
50 There is no weighted preference between Greek or Etruscan wine.
60 Weight is very slightly in favor of Greek wine.
70 Weight is slightly in favor of Greek wine.
80 Weight is in favor of Greek wine.
90 Weight is strongly in favor of Greek wine.
100 Weight is entirely in favor of Greek wine.

In Figure 4, preference is set initially so that Gaulish agents prefer Etruscan wine
(preference 0, Figure 4a,b). In this model, Greek agents have difficulty establishing
trade relationships with native Gauls (Figure 4b) and die out essentially upon
arrival (Figure 4a). The same occurs when preference is set to 10 (Figure 4c,d);
when preference is set to 20, Greek agents survive slightly longer, but still die
out (Figure 4e,f). This type of situation may be expected when a strong economic
partnership develops between two entities, making it difficult, if not impossible, for
a new competitor to enter the market. The new goods may be seen as “strange” (e.g.,
they may “taste of mold” [1]) and thus not desirable. Moreover, the new product
may not offer anything better than the older products, and the lack of a relationship
between the new sellers and the buyers may influence the sale of those products [20].

As we move down preference values in Figure 4, Greek agents are able to
survive easier as the preference value approaches 40%. Yet even in Figure 4i the
population of Etruscans holds strong even after Greek agents arrive. In Figure 4j it is
evident that the slight preference for Etruscan wine over Greek wine influences the
distribution of artifacts so that Etruscan amphorae are more prevalent.
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Figure 4. (a–j) Response of population and artifact type based on preference value,
beginning with a preference of 0 (in favor of Etruscans) and ending at a preference
value of 40 (almost equal preference, still in favor of Etruscans). Preference values
are reported in the middle of each tile, corresponding to the values on the left and
the right. Left side of tiled figure corresponds to population, while the right side
corresponds to the artifact assemblage. Solid colored lines denote the mean, while
dotted colored lines denote one standard deviation above and below the mean.
Grey lines indicate overall variation of output in simulations.
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In the next set of tiled figures, response of population when preference is set
at 50% is examined (Figure 5a,b). When Gauls weight Etruscan and Greek wine
evenly, both Etruscan and Greek wine are present. However, since Etruscans arrive
sooner in this simulation (during year 34) they have a longer time to establish trade
relationships with Gauls and reproduce along the littoral. Thus, when Greek agents
arrive, Etruscan agents outnumber them. The low proportion of Greek wine in the
assemblage shows that, while Greek merchants can (and do) trade wine for grain, the
quantity reflects the challenge for Greek merchants to gain a foothold in the region.

When preference values begin to favor Greek merchants (Figure 5c,d) the
average number of Etruscan agents and Greek agents stays similar, yet because
Etruscans were on the landscape longer they maintain the majority of amphorae
(Figure 5d). Only when preference reaches a value of 80, and Greek agents
dramatically outpace Etruscan agents (Figure 5g) do the mean number of Greek
amphorae begin to be more numerous than Etruscan amphorae (Figure 5h). When
preference is set to a value of 90, the mean number of Etruscan amphorae levels
out (Figure 5i) showing that the growth of grapes and trade of wine is at a strict
replacement rate for the amphorae that are being discarded. Finally, when preference
values are set to 100, we see both Etruscan population dying out (Figure 5k) and
attrition of Etruscan vessels decrease their presence in the simulated assemblage
(Figure 5l).

Figure 5. Cont.
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Figure 5. (a–l) Response of population and artifact type based on preference value,
beginning at preference of 50 (no preference for Greek or Etruscan wine) and ending
at 100 (preference for Greek wine). Preference values are reported in the middle
of each tile, corresponding to the values on the left and the right. Left side of tiled
figure corresponds to population, while the right side corresponds to the artifact
assemblage. Solid colored lines denote the mean, while dotted colored lines denote
one standard deviation above and below the mean. Grey lines indicate overall
variation of output in simulations.

242



In Figures 4 and 5 each of the 11 preference values is displayed, demonstrating
how preference affects both the distribution of artifacts on the landscape and the
survival of each of the agents types on the landscape. Here a phase transition at
preference value 30 is evident (Figure 4g,h), after which Greek agents are able to
survive and trade. Below this value it is difficult for Greek agents to survive since
Gaulish agents have a strong preference for Etruscan wine. Further, since Etruscans
arrive first on the landscape, they are able to monopolize the market and establish
their own territories.

The next phase transition occurs at a preference value of 70 (Figure 5e,f) where
the mean quantity of Greek wine begins to approach that of Etruscan wine by year
400 (Figure 5f); in this scenario the mean population of both Etruscans and Greeks
is quite similar from year 250 onward. Then, when preference values are set to
80 and 90 Greeks do well, yet Etruscans do not die out. While their populations
diminish, they still exist. This is in stark contrast to when preference was set to 10
or 20; in those scenarios, since Etruscans had already established a monopoly on
the economy, Greeks were unable to trade enough (or quickly enough) to reproduce.
When preference values are set to 80 and 90, in contrast, Etruscans have already lived
on the landscape long enough to create storage and establish trade relationships
with the Gauls. They can weather a few years of bad trade relationships due to their
longevity in the region. It is only when a preference value of 100 is used that Etruscan
merchants completely die out. Indeed, their die off is precipitous and complete by
year 250 (Figure 5k).

When Figures 4 and 5 are compared to Figure 1, we can see that it is Figure 5h–l
that most closely resemble Figure 1; when Gauls “prefer” Greek wine, Greek wine
amphorae begin to outnumber Etruscan amphorae even though Etruscans can still
trade wine for grain. While it should be noted that the consumption/decay rate
built into the simulation decreases the amphorae at a rate of 1 amphora per agent
per year, these rates likely reflect use (and discard) in prehistory. Many amphorae
were reused, yet many more were recycled when they became cracked or chipped
(or perhaps even unfashionable).

Prehistoric France was littered with amphora sherds, and not necessarily
because of the ravages of time. (Indeed, modern France is still littered with these
amphora sherds). Instead, archaeological evidence suggests that humans who lived
during the time examined here (~700 B.C. to ~100 B.C.) recycled amphorae as paving
gravel, as chips for building walls, as fill for creating land (such as building an
artificial hill), or as roof tiles for buildings [21]. If objects were cherished, they would
be preserved; consequently, we should see those objects lasting for generations in
the archaeological record. Yet if objects are not cherished, and instead are utilitarian,
utilitarian objects that outlasted their utility (or became unfashionable) would be
discarded. In the simulation amphorae are discarded when the wine is drunk, but
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also there is no inheritance when an agent dies. Consequently, when an agent
dies all of its amphorae are discarded (metaphorically recycled into roof tiles or
paving sherds). Thus the new generation will drive the demand for certain types
of amphorae due to the practicality of recycling. The artifact curves examined in
Figure 1, and recreated in Figure 5h–l, reflect an evolving preference by Gaulish
consumers for Greek wine.

However, even though Greek wine replaces Etruscan wine in the simulation,
the discard rate of Etruscan sherds in Figure 5h–l is much slower than in Figure 1.
This suggests that the use and discard rate in prehistory is much faster than what
was used in the simulation. In reality, Etruscan amphorae were used and discarded
quickly, suggesting that these amphorae were not treasured objects, but utilitarian
vessels that had more use when recycled than being reused in their original form.

This pattern—of a replacement of one type of amphora by another—has been
mystifying archaeologists in this region for decades. The model presented here
provides a way forward to examine how Gauls drove the economy, and created
the archaeological assemblage seen today by their preference for one type of wine
over another. Thus, pattern oriented modeling, where I sought to create a virtual
artifact assemblage through simple rules of exchange, helps to illuminate the complex
processes of prehistoric decision-making and prehistoric economies. Further, as will
be discussed below, while archaeologists can identify the amphora, the objects the
amphorae were traded for are missing. This model proves that merchant agents, if
they did not engage in farming practices (which was likely, see below) could trade
local farmers for grain, and through this trade they could survive along the littoral.
Thus through creating patterns of artifacts, and examining how the trade of grain
for wine effects the survival of merchant agents, I conclude that Gauls drove the
economy, but their desire for luxury wine and their willingness to farm enough grain
for trade enabled the survival of merchant agents (both Eturscan and Greek) along
the littoral.

Of interest, however, is the fact that Etruscan merchants do not die out in
Figure 5g,i. Rather, they persist until the end of the simulation. This is explored
below with archaeological data on the persistence of different ethic identities of
merchants well into the Iron Age in Southern France.

3. Discussion

When an entity creates a monopoly on a type of good, a dramatic and complete
switch to another type of that good is suspect. From archaeological data what is clear
is that Etruscan amphorae become replaced by Greek amphorae in a rapid amount of
time. In the following data (Section 3.2, Trade with Outsiders) I suggest that this is not
because Etruscan merchants were not present along the littoral. Rather, Etruscans
were present, and their wares were represented alongside those brought by Greek
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merchants. If these were both present, how would one dominant type of amphora
become completely replaced by another?

If one artifact type is technologically superior it may gain a higher quantity
of the market share; it may be tempting to suggest that Greek wine, or at least
Greek amphorae, were superior. However, it is not necessarily always the case that
a technologically superior good will become dominant. Technologically superior
goods can be expensive, and if other more readily accessible goods are still at hand,
replacement makes little sense. Rather I suggest that it is the desire for a different
type of material that creates the switch. Otherwise, both should be present, since
some individuals will continue to use (consume) the older material.

In the above model I show phase transitions at 30% and 80%. Here, it is not
necessary for 100% of Gauls to prefer one type of wine over another. Rather, when
an individual prefers Greek wine 1 out of every 5 times, Grecian merchants are able
to stake a stronghold along the littoral. Thus, this model demonstrates that it is not
necessary for 100% of the populace to prefer buying one type of wine over another,
but rather that critical transitions happen at percentages much less than 100%.

Further, recall that these results are for the demand side. Etruscan and Greek
merchants can still approach Gaulish agents and ask to sell. While Gauls will only
accept buying 50% of the time when they are approached, even then this pattern of
complete artifact replacement is present. This shows how important the demand side
is for the supply-demand chain of Gaulish consumption (discussed further below)
and demonstrates the agency Gauls had in shaping their economies.

3.1. Archaeological Evidence: Mixing of Colonial Entities

Modern conceptions of nationalist trade ventures likely do not hold for trading
in antiquity; Greek and Etruscan merchants likely coexisted and traded each others’
wares. This is evident in recovered vessels from shipwrecks. De Hoz [22] notes that
the El Sec shipwreck (Figure 2), dating to the 4th century B.C., contained a vast array
of types of amphorae, 30 percent of which came from Samos (Figure 2), with Punic
and Greek graffiti present on the recovered vessels [22,23]. This mixing is present in
other contexts, such as the Grand Ribaud F shipwreck (Figure 2) where Etruscan and
Greek goods are both represented [24], and on a lead tablet inscribed with both Greek
and Etruscan text, recovered at Pech Maho in western Languedoc (Figure 2 [5,25]).
The replacement of amphorae from Etruscan-type to Greek-type does not necessarily
mean that ethnically identified Etruscans were no longer present in Gaul, or that
Etruscans were no longer producing goods to trade. The replacement rather indicates
that there was a cultural shift from wanting Etruscan wine vessels to wanting Greek
wine vessels, and likely the contents within them, too. Etruscans and Greeks were
present simultaneously, yet vessel-type changed rapidly. Understanding Gauls as
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drivers of the economy may help illuminate the transition to Roman amphorae that
occurred much later (Figure 1).

3.2. Trade with Outsiders

The Gaulish littoral was not isolated, but had contact with traders well before the
development of the complex exchange networks noted archaeologically. For example,
Punic traders interacted with Gauls in the Languedoc since at least the 8th century
B.C. [7,26]. However, these interactions were short and established no high-intensity
trade relationships. Objects of Punic origin, including amphorae, vases, and glass
objects are present in Gaul beginning in the 7th century B.C. However, no evidence
for Punic settlement is present. While Punic boats likely made frequent trips across
the Mediterranean to Languedoc [7], these interactions left ephemeral traces. Further,
Villard [26] notes that Gauls in a small settlement in what would become Massalia
likely had contact with merchants from Phocaea, an Ionian Greek city on the western
coast of Anatolia, a half century before the founding of Massalia as a Greek city
(contemporary Marseille, see Figure 2; Villard [26] places the foundation of Massalia
between 600 and 596 B.C.)

Ceramics for the transportation and drinking of wine arrive in southern Gaul
by the late seventh century B.C. These ceramics are composed primarily of Etruscan
wine amphorae, although Etruscan bucchero nero pottery, as well as a small quantity of
Greek ceramics (likely imported by Etruscans) are also present (Villard notes roughly
30 of these in Marseille [26]).

Once Massalia was founded, locally produced fine-wares called “Pseudo-Ionian”
and “Grey Monochrome” began to be produced (although Villard remarks that the
massaliote and imported ceramics are fundamentally the same, just made in different
areas [26]). Some of these wares were traded to indigenous peoples. Villard [26]
finds a wider range of fine-ware ceramic vessels in Massalia than in indigenous
settlements; it appears that ceramics at indigenous sites include only wine-related
vessels to complement indigenous bowl forms, while in Massalia ceramics take on
more numerous forms. Additionally, wine begins being produced locally in the
littoral, such as at Massalia by Greeks [27]. After c. 525 B.C., local imports of Etruscan
amphorae fell off sharply as Massalian-produced amphorae replaced them [27].
However, Villard also notes that the imported amphorae from Greece are much more
abundant in Massalia than locally made amphorae, postulating that “imported wine
was more or less consumed where it arrived, even while locally grown and produced
wine was largely exported [locally] into the indigenous market” [26] (my translation).

Thus, the pattern of trade between Gauls and visiting nonlocal merchants shows
that Gauls received almost exclusively pottery related to drinking wine. These
included amphorae and wine-drinking apparatus. Yet ceramic assemblages from
other areas that traded with Etruscan and Greek merchants show a higher diversity
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of objects. If Gauls drove the demand for Greek wine, we may be able to expect to see
in the archaeological record evidence for Gauls driving other areas of their economy.
This is examined below.

3.3. Supply and Demand

Morel [28] states that contemporary trade between Etruscans and North Africans
does not follow the same pattern as that between Etruscans and Gauls. Rather,
southern Gaul’s limited type of imports likely reflects consumer demand more than
the range of artifacts available. Specifically, the artifact type “amphorette,” a ceramic
object used for storing high quality wines less than half the size of an amphora [29],
makes up approximately half of the bucchero nero pottery in Carthage, almost 100%
of pottery in Tharros (a city on the western coast of Sardinia, see Figure 2), but is
“practically inexistent” in Gaul [28]. Table wine and wine amphorae are the objects
the Gauls desired and do not reflect the variety of objects offered for trade by the
Etruscans; rather the makeup of Gaulish assemblages reflect a cultural preference for
drinking materials. As Dietler [15] states, Gauls “avidly adopted this foreign form of
drink while at the same time rejecting other cultural borrowings.”

The trade of amphorae seems to be one-way—evidence for Gaulish products
in merchant settlements is thin—so secondary measures for identifying the goods
traded are often used. For example, historians suggest that Massalia was so large
it would have outstripped its local carrying capacity, and only through trade were
inhabitants of Massalia able to eat [5]. Coupling this with primary sources, such
as Strabo [30] who describes Massalian land as too poor to produce grain, and the
suggestion that Etruscan and Greek traders would not have engaged in subsistence
farming due to it being seen as below their station [31], grain was likely produced
by Gauls and traded to settled merchants. However, this statement had never been
tested formally. The model presented above illustrates how the trade of grain could
have enabled merchant survival. Further evidence of ships bearing large quantities
of grain are recorded as arriving in Greek and Etruscan homelands, and this grain
likely came from Gaul [5].

Metal and salt are two other commodities likely to have originated in Gaul and
traded to settled merchants. Copper, gold, iron, tin and silver are all found within
France, and sources for these are noted in antiquity [4]. These metals would have
been essential for the creation of objects during the Iron Age, and salt would have
been essential for food preservation. Overland transalpine exchange of metals and
salts from Gaul to northern Italy began in the early Bronze Age [4], so it is likely
that Etruscan traders knew that minerals could be obtained in Gaul, thus influencing
their decision to trade in Gaul.

As suggested above in discussion of harvest (Section 2.2), enslaved people were
likely present along the littoral. Briggs [4] suggests that Etruscans commonly used
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enslaved people as servants, and that women and children especially would have
been brought to the colonizer homeland as household slaves [4]. While “one of
the most elusive of all prehistoric objects of exchange is human labour” [4], the
importance of slaves in Etruscan households may suggest that Gaulish women and
children were some of the “objects” that enabled the trade system to function [4,5].
Indeed Diodorus Siculus [18] writes that some brazen merchants would attempt
exchanging one amphora of wine for one slave. (Though this anecdote relates to the
first century BC, and this exchange value was likely not the norm.)

So, while wine amphorae are plentiful in Gaulish settlements [2], the objects for
which they were traded remain elusive. Indirect evidence suggests that grain, metals,
salt, and slaves were traded to the settled merchants. The model presented above
intervenes in these debates. While the objects that were traded may be invisible, the
survival of merchants along the littoral suggests that they were able to trade their
goods for foodstuffs. This model shows that a simple economic model can enable
merchant survival, and can lead to distinctive artifact patterns. While this model is
highly simplified, it enables a first step into using agent-based modeling in Southern
France, and will be expanded upon the in future to examine expanded economies
(such as the trade of metal or salt) and the aggregation of Gauls into oppida.

4. Future Directions

I began this article by proposing that a simple preference for one type of wine
over another could cause the empirical artifact distribution recognized by Py [2] and
reported in Figure 1. To do that, historically-based farming production rates were
employed on a simplified landscape to enable the intensification of agriculture and
the trade of surplus wine for grain. In this we can examine landscape use in antiquity
and see how it could lead to the establishment of complex economies in the past.

Results in this model showed that when Gaulish agents did not prefer one type
of wine over another (when preference was set to 50%) that both Etruscan and Greek
wine were present in the simulation, but that Etruscan wine was more common due
to being present in the area longer. When preference was set to 20 (Table 4) or below
it was very difficult for Greek merchants to trade wine for grain and to exist on the
landscape. Additionally, when preference was set to 70 or higher (Table 4), Greek
wine supplanted Etruscan wine as the more common type in the simulation (after
Greek merchant arrival). However, it was only when preference was set to a value
of 100 that Etruscan died off. Even when this occurred, however, Etruscan wine
amphorae were still present for the remainder of the simulation due to a slow use
and decay rate.

These findings have important implications for the archaeological record. First,
these results suggest that when Greek merchants arrived in southern Gaul that their
product was found as desirable. If it was not, the archaeological record may reflect
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those results in Figure 4f–h. Instead, Figure 1 resembles most closely Figure 5i–k,
where Greek wine arrived and became common along the littoral. In these figures
Etruscan amphorae make up the early assemblage, but are quickly supplanted by
a second type of amphora. In the simulation, not only were Greek wines seen
as desirable, but upon their arrival they were preferred by Gauls and became the
largest part of the assemblage. However, these results also suggest that artifacts
can have a long uselife. Archaeological assemblages may not reflect the presence of
a population, but may reflect instead the storage and use of those artifacts after a
population moves on.

The work begun here is ongoing, as this simple model was a first step in
establishing an agent-based model for the development of colonial interactions in
southern France. As mentioned above, multiple other types of resources besides grain
were traded for wine. While these scenarios are not examined in this publication, this
model is being developed to enable the trade of two types of wine for two types of
resources—grain and metal. Future research will examine how the incorporation of
diverse resources effects the survival of agents on the landscape and the distribution
of materials on the landscape. Research is also being pursued into using realistic
GIS dataplanes in the simulation, instead of using a simple patchy and regenerating
landscape, as was used in the model presented here. This will enable the development
of aggregation models based on least-cost path analysis to help agents trade resources
across the landscape and establish settlements at optimal locations to enable trade.

5. Conclusions

What drove the preference of Greek over Etruscan wine? Was it the desire for a
less expensive product? Was it because Gauls liked the taste of Greek wine better?
Did Greek merchants treat Gaulish farmers better than their Etruscan counterparts
had? These are not questions that can be answered with an agent-based model,
but would rather need to be examined through the archaeological record and
through primary texts. However, the model presented here enables us to begin
to ask these open questions, since we now know through systematic analysis that
preference can drive artifact assemblages. Gauls preferred Greek amphorae, and
likely the contents within them, over Etruscan amphorae, and it was through this
demand that the artifact assemblage changed so rapidly and completely. If Etruscan
amphorae signaled wealth or prestige, archaeologists should see them much later in
the archaeological record. Instead they are discarded and recycled to make way for
new Greek ceramics.

Debates about the causes of the complete replacement of Etruscan amphorae
by Greek amphorae, as reported in Figure 1, are longstanding for this area. This
research directly intervenes in these debates. The importance of this work is that the
replacement event might be understood from internal, rather than external, processes.
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While further studies would need to take into account economic decisions—such as
Greek amphorae being less costly to produce—this work begins these debates and
allows for a thorough and systematic study of the distribution of wine types across
the littoral. Further, this simple model shows that using a modeling approach can
help shed light on complex processes. This model provides a useful tool to support
the hypothesis that it is the demand for wine that drove these artifact patterns, not
necessarily the availability of products [26]. Gaulish people were the creators of
the economy of southern France, and their preferences drove what we see in the
archaeological record.

This model is meant as a first step toward understanding the complexities
of early colonist interactions in southern France, as well as a first step toward
understanding how France became a viniculture powerhouse. The modern wine
industry in France has roots that date back to the founding of the wine trade between
Etruscans, Gauls and Greeks, and it is through the development of this complex
economy that the wine industry exists today [27]. Even though this model may be
simple, it helps advance our understanding of local populations as drivers of the
economy of a globalizing antique world.
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Landscape Epidemiology Modeling Using
an Agent-Based Model and a Geographic
Information System
S. M. Niaz Arifin, Rumana Reaz Arifin, Dilkushi de Alwis Pitts, M. Sohel
Rahman, Sara Nowreen, Gregory R. Madey and Frank H. Collins

Abstract: A landscape epidemiology modeling framework is presented which
integrates the simulation outputs from an established spatial agent-based model
(ABM) of malaria with a geographic information system (GIS). For a study area in
Kenya, five landscape scenarios are constructed with varying coverage levels of two
mosquito-control interventions. For each scenario, maps are presented to show the
average distributions of three output indices obtained from the results of 750 simulation
runs. Hot spot analysis is performed to detect statistically significant hot spots
and cold spots. Additional spatial analysis is conducted using ordinary kriging
with circular semivariograms for all scenarios. The integration of epidemiological
simulation-based results with spatial analyses techniques within a single modeling
framework can be a valuable tool for conducting a variety of disease control activities
such as exploring new biological insights, monitoring epidemiological landscape
changes, and guiding resource allocation for further investigation.

Reprinted from Land. Cite as: Arifin, S.M.N.; Arifin, R.R.; de Alwis Pitts, D.; Rahman,
M.S.; Nowreen, S; Madey, G.R.; Collins, F.H. Landscape Epidemiology Modeling
Using an Agent-Based Model and a Geographic Information System. Land 2016, 4,
378–412.

1. Introduction

Spatial epidemiology, medical geography, and geographical epidemiology are all
effectively synonymous terms for the study of the geographical distribution of
disease spread or population at risk [1–3]. A closely related research field, landscape
epidemiology, studies the patterns, processes, and risk factors of diseases across
time and space. It describes how the spatio-temporal dynamics of host, vector,
and pathogen populations interact within a permissive environment to enable
transmission [4–6]. The emergence and spread of infectious diseases in a changing
environment require the development of new methodologies and tools. As such,
disease dynamics models on geographic scales ranging from village to continental
levels are increasingly needed for quantitative prediction of epidemic outcomes and
design of practicable strategies for control [7,8].
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Understanding a landscape epidemiology system requires more than an
understanding of the different types of individuals (host, vector, and pathogen) that
comprise the system. It also requires understanding how the individuals interact with
each other, and how the results can be more than the sum of the parts. In this regard,
agent-based models (ABMs), also known as individual-based models (IBMs), have
become very popular in recent years. ABMs are computational models for simulating
the actions and interactions of autonomous agents with a view to assessing their
effects on the system as a whole. An ABM often exhibits emergent properties arising
from the interactions of the agents that cannot be deduced simply by aggregating the
properties of the agents. Thus, an ABM can be a very practical method of analysis of
the dynamic consequences of agents for a landscape epidemiology model.

In recent years, despite the proliferation of spatial models which acknowledge
the importance of spatially explicit processes in determining disease risk, the use
of spatial information beyond recording spatial location and mapping disease risk
is rare [9]. Although numerous recent tools have been developed using geographic
information systems (GIS), global positioning systems (GPS), remote sensing and
spatial statistics, there is still a lack of and hence a serious need to develop efficient
and useful tools for research, surveillance, and control programs of vector-borne
diseases (VBDs).

In this paper, we present a landscape epidemiology modeling framework by
integrating an established spatial ABM of malaria with a GIS (preliminary results of
integrating an earlier version of the ABM with a GIS were described in a conference
paper in [10]). Malaria is one of the largest causes of global human mortality and
morbidity. According to the World Health Organization (WHO), half of the world’s
population (about 3.4 billion people) are currently at risk of malaria, with about
207 million cases and an estimated 627, 000 deaths in 2012 [11]. The ABM describes
the population dynamics of the malaria-transmitting mosquito species Anopheles
gambiae. To account for three output indices and five scenarios (that represent two
coverage levels of the two interventions being modeled), a total of 750 simulations
are run for two years, and the average results are reported in this paper. Using
spatial statistics tools, hot spot analysis is performed for all scenarios and two output
indices in order to determine the statistical significance of the simulation results.
Additionally, we have applied ordinary kriging with circular semivariograms on
all three output indices considering all the scenarios. To allow the viewers for an
improved spatial analysis perspective, the kriged maps are presented along with
other results for a better insight for the unmeasured (i.e., not simulated) locations on
the maps.

Besides being useful for simulation modelers in different branches of science
and engineering, this work can provide important insights from the epidemiological
perspective, and thus would be valuable for epidemiologists, disease control
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managers, and public health officials for research as well as in practical fields. In
particular, we believe that the insights gained through this study can assist these
stakeholders in refining further research questions and surveillance needs, and
in guiding control efforts and field studies. Additionally, although the landscape
epidemiology modeling framework described in this paper utilizes an ABM of
malaria-transmitting mosquitoes, it is applicable to a wider range of other infectious
VBDs (e.g., dengue, yellow fever, etc.), and hence may find its use in a much
wider scenario.

Although the work presented in this paper builds upon a previous work [10] of
a subset of the authors, is new and different (from the previous work) in a number of
dimensions. In particular, the current work presents the following new features:

• Use of improved models: Although the current paper builds upon the
exploratory ideas presented in [10], much improved versions of both the core
model and the spatial agent-based model (ABM) have been used for this paper.
Over the last few years, we have developed several versions of the core model
and the corresponding ABMs. The earlier versions, including the one used
for [10], mostly dealt with exploratory features [12–14]. Many of those results
were not tested using the verification & validation (V&V) and replication
features/techniques of the models.
On the other hand, the version described and used in this paper reflects the
most recent updates in an attempt to enrich the models with features that
reflect the population dynamics of An. gambiae in a more comprehensive way,
as described in [15,16]. Since the most recent ABM is tested using the rigorous
V&V and replication techniques, the results presented in this paper entail
much higher confidence from both the epidemiological and the simulation
perspectives. A summary of major improvements incorporated in the current
ABM used for this paper is presented in Table 1.
• Modeling malaria-control interventions: From an epidemiological point of

view, one of the most important roles of modeling is to quantify the effects of
major malaria-control interventions such as insecticide-treated nets (ITNs) or
long-lasting impregnated nets (LLINs), indoor residual spraying (IRS), larval
source management (LSM), etc. Recent malaria control efforts have seen an
unprecedented increase in their coverages. Impact of these interventions,
often applied and assessed in isolation and in combination, is the focus of
investigation of numerous recent and ongoing studies. In this study, the
combined impacts of LSM and ITNs have been evaluated. Notably, the scope
of the work in [10] did not cover the study of mosquito control interventions
and hence, naturally, no results thereof were reported therein. To this end, the
scope of the current study is much broader and more meaningful from the
epidemiological perspective.
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• Reporting aggregate measures by replicating all simulations: Replicability
of the in silico experiments and simulations performed by various malaria
models bear special importance. Replication is treated as the scientific gold
standard to judge scientific claims and allows modelers to address scientific
hypotheses [17,18]. In agent-based modeling and simulation (ABMS),
replication is also known as model-to-model comparison, alignment, or
cross-model validation. It falls under the broader subject of V&V. As
highlighted by recent simulation research, most simulation models (including
the one presented in the current paper) that involve substantial stochasticity
should conduct sufficient number of replicated runs, and some form of
aggregate measures of these replicated runs should be reported as results
(as opposed to reporting results from a single run). Sufficient number of
replications is required to ensure that, given the same input, the aggregate
response can be treated as a deterministic number, and not as random variation
of the results. This allows modelers to obtain a more complete statistical
description of the model variables.

Table 1. Updated reatures for the models used for this paper. Each row represents
a specific model feature. The second column refers to the exploratory features
from the previous versions [12–14]. The third column refers to the most recent
features from [15,16], which are used for this paper. Resource-seeking includes both
host-seeking and oviposition. For fecundity, N indicates a normal distribution with
mean and standard deviation. LSM and ITNs refer to the two interventions, larval
source management and insecticide-treated nets, respectively.

Feature Previous Versions Current Versions

Combined interventions No Yes
Coverage scheme for ITNs Not applicable Complete coverage

Egg development time Constant Temperature-dependent
Fecundity (eggs per oviposition) Constant N(170, 30)

Interventions modeled None LSM, ITNs
Modeling human population No Yes (static)

Replication of simulations No Yes
Resource-seeking Anytime Only at night
Stage transitions Anytime Only in permitted time-windows

Time step resolution Daily Hourly

Since the spatial ABM involves considerable stochasticity in the forms of
probability-based distributions and equations, performing sufficient number
of replicated runs is extremely important for validation of the results. In the
ABM, mosquito agents’ decisions are often simulated using random draws
from certain distributions. These sources of randomness are used to represent
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the diversity of model characteristics, and the behaviour uncertainty of the
agents’ actions, states, etc. For example, when a host-seeking mosquito agent
searches for a blood meal in a ITN-covered house, a 20% ITN coverage would
mean that it may find a blood meal with a probability of 0.2, which can be
simulated using random draws from a uniform distribution. The randomness
has significant impact on the results of the simulation, and different simulation
runs can therefore produce significantly different results (due to a different
sequence of pseudo-random numbers drawn from the distributions). As a
consequence, in this study, 50 replicated runs for all simulations are performed,
and their averages are reported.

• Kriging analysis: In addition to hot spot analysis, spatial analysis has been
conducted using ordinary kriging with circular semivariograms for all scenarios
for all the output indices using ArcGIS 9.3 [19]. For the entire study area, kriging
analysis produces predicted values for unmeasured (i.e., not simulated) spatial
locations, which are derived from the surrounding weighted measured values.
Interpolation (prediction) for spatial data for all the three output indices is
performed by kriging.

These new dimensions allowed us to present new results in this paper,
which entail much higher confidence from both the epidemiological and the
simulation perspectives.

2. Experimental Section

2.1. The Core Model

In this section, we present a brief overview of the conceptual biological core
model (hereafter referred to as the core model) from which the spatial agent-based
model (ABM) was developed. The core model describes the population dynamics
of An. gambiae, which is regarded as one of the most efficient mosquito species that
transmits malaria. Due to its pivotal role in malaria transmission, modeling its
population dynamics can assist in finding factors in the mosquito life cycle that
can be targeted to decrease malaria transmission to a lower level. The An. gambiae
complex, a closely related group of eight named mosquito species found primarily
in Africa, includes three nominal species, An. gambiae, An. coluzzii, and An. arabiensis
that are among the most efficient malaria vectors known (in this paper, the terms
‘vector’ and ‘mosquito’ are used interchangeably). The model described in this paper
has been designed specifically around the mosquito An. gambiae. While the respective
ecologies and involvement in malaria transmission among other members of the
An. gambiae complex differ in important ways, this model could effectively apply
to all three and even to many of the several dozen other major malaria vectors in
the world.
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The complete An. gambiae mosquito life cycle consists of aquatic and adult
phases, as shown in Figure 1. The aquatic phase (also known as the immature phase)
consists of three aquatic stages: Egg (E), Larva (L), and Pupa (P). The adult phase
consists of five adult stages: Immature Adult (IA), Mate Seeking (MS), Blood Meal
Seeking (BMS), Blood Meal Digesting (BMD), and Gravid (G) (the term gravid denotes
the egg-laying stage). The development and mortality rates in all eight stages of the
life cycle are described in terms of the aquatic and adult mosquito populations.
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Figure 1. Life Cycle of Mosquito Agents. The An. gambiae mosquito life cycle
consists of aquatic and adult phases. The aquatic phase consists of three aquatic
stages: Egg (E), Larva (L), and Pupa (P). The adult phase consists of five adult stages:
Immature Adult (IA), Mate Seeking (MS), Blood Meal Seeking (BMS), Blood Meal
Digesting (BMD), and Gravid (G). Each oval represents a stage in the model. Stages
in which agents move through the landscape are marked in red. The rectangles
represent durations for the fixed-duration stages. The symbol h denotes hour.
Permissible time transition windows (from one stage to another) are shown next
to the corresponding stage transition arrows as rounded rectangles. Note that
adult males, once reaching the Mate Seeking stage, remain forever in that stage until
they die; adult females cycle through obtaining blood meals (in Blood Meal Seeking
stage), developing eggs (in Blood Meal Digesting stage), and ovipositing the eggs (in
Gravid stage) until they die. By Arifin et al. [16], used under a Creative Commons
Attribution 4.0 International License.

The core model addresses several important features of the An. gambiae life
cycle, including the development and mortality rates in different stages, the aquatic
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habitats, oviposition, etc. Another important feature, vector senescence, is adopted
to account for the age-dependent aspects of the mosquito biology, and implemented
using density- and age-dependent larval and adult mortality rates. Further details
about the core model can be found in [16].

The Anopheles mosquitoes need to access human blood meals (in houses) and
aquatic habitats (various water bodies) to complete their life cycle. Thus, the
houses and aquatic habitats can be termed as important ecological resources for the
mosquitoes. These resources have a direct impact on the spatial heterogeneity of
the landscapes being modeled, and their availability has long been recognized as a
crucial determinant for malaria transmission [20].

2.2. Aquatic Habitats and Oviposition

The core model assumes simplistic, homogeneous aquatic habitats for all
mosquitoes. All habitats are uniform in size and capacity (this assumption is relaxed
for this study by including five different types of habitats with varying habitat
capacities, as described in Table 2), and the water temperature of a habitat is assumed
to be the same as the air temperature. To account for the combined seasonality
factor, each aquatic habitat is set with a carrying capacity that can be below or above a
baseline capacity, representing low or high precipitation/rainfall, respectively. The
carrying capacity essentially represents the density-dependent oviposition mechanism
by regulating an age-adjusted biomass that the habitat can sustain.

Table 2. Feature types and counts for the ABM. A total of 975 aquatic habitats and
941 houses are used. The last column represents the assigned capacity per feature.

Type Count Assigned Capacity

Pool 4 2000
Puddle 13 1000

Pit latrine 395 500
Borehole 4 300
Wetland 559 10
House 941 5

Oviposition is the process by which gravid female mosquitoes lay new eggs.
The oviposition behavior of An. gambiae mosquitoes can be affected by a variety of
factors, as demonstrated by several studies [21–28]. In the core model, all larvae are
categorized into different age groups, or cohorts, according to the common age of the
cohort. The model keeps track of the age-adjusted biomass in each aquatic habitat,
which is defined as the sum of the eggs, the pupae, and the one-day old equivalent
larval population in the habitat (for details, see [16]).
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2.3. The Spatial Agent-Based Model (ABM)

The spatial ABM, described in detail in [14,15], simulates the life cycle of the
mosquito vector An. gambiae by tracking attributes relevant to the vector population
dynamics for each individual mosquito. It is developed in the Java [29] object-oriented
programming (OOP) language using the Eclipse Software Development Kit (SDK,
Version: 3.5.2, freely available from [30]). In this section, we present a brief overview.

The three major components of the spatial ABM are the mosquito agents, their
environment, and rules. An. gambiae mosquitoes are modeled as autonomous agents
with explicit spatial locations (however, once within a cell, a mosquito agent’s spatial
location does not vary until it moves to another cell). An agent’s life in the ABM
evolves in artificial, well-defined environments modeled as landscape environments.
A landscape environment can be thought of as a medium on which the agents
operate and with which they interact. Agents have internal attributes (states) to store
relevant attributes and data represented by discrete variables. The major attributes
of a mosquito agent include its age, life cycle stage, environment, spatial location,
movement counter, id (identifier), sex (gender), available eggs counter, egg batch
identifier, etc. Some attributes (e.g., id, sex) may remain fixed throughout the agent’s
lifespan in the ABM, while others (e.g., age, life cycle stage, spatial location) may
change through interaction with the environment and/or other agents.

In the ABM, An. gambiae mosquitoes are the only dynamic agents (humans are
included as static agents, i.e., human agents do not move in space). A new mosquito
agent begins its life cycle in the aquatic phase as an egg, and then proceed through larva
and pupa stages. When the aquatic phase completes, the agent emerges as an adult
mosquito into the adult phase, and advances through the five adult stages (see Figure 1).
To account for the limited flight ability and perceptual ranges of Anopheles mosquitoes,
the cell resolution in the selected landscape is chosen as 50 m × 50 m, yielding a total
area of ≈25 km2 (for this study). Note that at every time step of the BMS and G
stages, the agent needs to search the cell-based landscape by moving from one cell
to another until the desired resource is found (the search event is guided by several
flight heuristics, as described in Section 2.5). A male adult mosquito, after reaching
the MS stage, stays in this stage for the rest of its life. The stage transitions (from
one stage to another), development rates, and mortality rates are governed by rules
as described by the core model. The number of eggs that a gravid mosquito agent
can lay is governed by the density-dependent oviposition rules (see [16] for details).
New agents, in the form of eggs, possess the same spatial locations as that of the
aquatic habitat in which they are oviposited.

The GIS-processed data layers are synthesized in the spatial ABM with a
landscape-based approach, where each landscape comprises discrete and finite-sized
cells (grids). A landscape is used to represent the coordinate space necessary for the
spatial locations of the environments and the adult mosquito agents. Resources,
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in the forms of aquatic habitats and houses, are contained within a landscape.
Each cell, with its spatial attributes, may represent a specific habitat environment
(human or aquatic), or be part of the (adult) mosquito environment. Landscapes are
topologically modeled as 2D torus spaces with a non-absorbing (periodic) boundary
(with a non-absorbing (periodic) boundary, when mosquitoes hit an edge of a landscape,
they re-enter it from the edge directly opposite of the exiting edge, and thus are not
killed due to hitting the edge).

2.4. Event Action List (EAL) Diagram

In order to capture the major daily events of a simulation for the ABM in a
standard, canonical manner, a new type of descriptive diagram, called the Event
Action List (EAL) diagram, is proposed and presented. It depicts the simulation events
(occurring on a daily basis), the corresponding actions triggered by those events, and
the list(s) of agents (data structures) affected by them. In an EAL diagram, each
event represents a biological phenomenon, and the corresponding action represents
the programmatic task(s) performed by the simulation. Optionally, some list(s) of
agents may be modified as a direct result of the performed action. Thus, an EAL
diagram summarizes the daily events of the simulation model by listing all major
events, actions, and lists. For example, when the simulation is started, it needs
to create initial adult mosquito agents. The biological phenomenon “create initial
adults”, termed as an event, is realized by the (simulation) action “add agents”; this
event-action pair affects the list of adult agents in the simulation. An EAL diagram
for the ABM is shown in Figure 2.

2.5. Flight Heuristics for Mosquito Agents

In the spatial ABM, movement of adult female mosquito agents in a landscape is
restricted: they move only when in BMS and G stages (marked in red in Figure 1) in
order to seek for resources. Since each landscape comprises discrete and finite-sized
(50 m× 50 m) cells, the landscape-based modeling approach appeared to be especially
suitable to capture the details of the resource-seeking process. In summary, the
resource-seeking process is modeled with random non-directional flights with limited
flight ability and perceptual ranges until the agents can perceive resources at close
proximity, at which point, the flight becomes directional.

A mosquito agent’s neighborhood is modeled as an eight-directional Moore
neighborhood. The maximum distance that an agent may travel in a day is controlled
by a movement counter, which is reset to 5 at the beginning of each day for a moving
agent (thus, the counter controls the maximum daily range of movement, which
translates to 250 2

√
2 m). The flight heuristics, depicted in the form of flow-charts in

Figure 3, are described below.
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Figure 2. An Event Action List (EAL) diagram for the ABM. Each squashed rectangle
represents an event-action pair, in which the event is denoted at the upper-half, and
the action is denoted at the lower-half. Each rectangle represents the list(s) (data
structures) of agents affected by the event-action pair.

The host-seeking event starts when a female adult mosquito agent enters the
BMS stage and searches for a human blood meal in a house. If the current cell
contains a house, it immediately gets a blood meal, and enters the BMD stage to
digest the meal, rest, generate new eggs, and eventually enter the G stage to search
for an aquatic habitat (if the current cell contains multiple houses, one is chosen at
random). If the current cell does not contain any house, a new search event starts
as follows. First, the agent’s movement counter is checked. If the agent is permitted
to move, its Moore neighborhood M is checked. If M contains multiple cells that
have houses, a random cell C (from these cells) is selected, and the agent moves to
cell C. If cell C contains multiple houses, a random house is selected, the agent gets
a blood meal, and continues as before. However, if the current cell and its Moore
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neighborhood do not contain any house, the agent starts a random flight and moves
randomly into one of the adjacent eight cells (following a previous study [31], the
probability of a random move into a diagonally-adjacent cell is set as half that of
moving into a horizontally- or vertically-adjacent cell).
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Figure 3. Flight heuristics for mosquito agents.

In an oviposition event, an agent searches for an aquatic habitat. If the current
cell contains an aquatic habitat, it’s current capacity is checked to see if it has any
remaining capacity for new eggs, in which case, the agent lay the eggs (again, if the
current cell contains multiple aquatic habitats, one is chosen at random). Once all of
the eggs are laid, it goes to the BMS stage, thus initiating a new gonotrophic cycle.
If the current cell does not contain any aquatic habitat, the search continues in the
same fashion as described above.

As evident from the above, in case of a directional flight, if multiple resources
(houses or aquatic habitats) are found within a single cell, a random resource is
selected. Note that this strategy can be easily extended/modified for future work to
select a resource based on some preference criterion, e.g., to select the house which
has the fewest number of mosquitoes visited or to select the aquatic habitat which
has the largest remaining capacity.
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As evident from the above, in case of a directional flight, if multiple resources
(houses or aquatic habitats) are found within a single cell, a random resource is
selected. Note that this strategy can be easily extended/modified for future work to
select a resource based on some preference criterion, e.g., to select the house which
has the fewest number of mosquitoes visited or to select the aquatic habitat which
has the largest remaining capacity.

2.6. The Study Area

The study area is located within a subsection of the Siaya and Bondo Districts
(Rarieda Division, Nyanza Province) in western Kenya. It comprises a village which
is selected from a set of 15 villages with an area of approximately 70 km2. The
greater area is locally known as Asembo, which covers an area of 200 km2 with
a population of approximately 60, 000 persons [32]. It lies on Lake Victoria and
experiences intense, perennial (year-around) malaria transmission [33]. The primary
reason for selecting Asembo is the availability of relevant data from the Asembo
Bay Cohort Project [34] and the Asembo ITN project [32]. In a series of 23 articles,
these studies reported important public health findings from a successful trial of
ITNs in western Kenya [35]. The study area is shown in Figure 4: Figure 4A shows
the boundary and administrative units for Kenya, Figure 4B shows the selected data
layers within the village cluster, and Figure 4C shows the selected village cluster in
Asembo, Kenya.

The ABM, without explicit parallelization or multiple runs, can handle a
landscape with finite maximum dimensions. Hence, a subset of villages with
95 × 96 cell dimensions is selected for all simulation runs in this study, as outlined
by the polygons in Figure 4B,C.

2.7. GIS Processing of Data Layers

ArcGIS Desktop 10 [36] is used to produce, process, and analyze the relevant
data layers. Different types of water features and villages (including houses) are
identified, extracted and projected to the Arc 1950 UTM Zone 36S projection system
for all over Kenya. The selected water features include rivers, lakes, wetlands,
wells/springs, falls/rapids, lagoons, etc. Each water feature type is assigned a
unique ID.

The selected features are scaled down to a village cluster around Asembo. Water
features for different types of aquatic sites are included. Since the spatial ABM deals
with spatial features at the habitat levels, the study area is further scaled down to
village and household levels, and then to subsets of villages levels. Some of the
water features are ranked by precedence by sub-grouping the water source data
layers based on their attributes. Similar types of water features in the same data layer
are combined.
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The selected data layers are then converted to the raster format, with a cell
resolution of 50 m × 50 m. All point shapefiles for aquatic habitats and houses are
converted using the Point to Raster tool. Since pit latrines are usually found inside the
household boundaries, the shapefile for pit latrines is created from the shapefile for
houses. It is possible to have more than one feature type within a single cell. In these
cases, to calculate the number of features (of each type) in each cell, the summation
of value fields of the corresponding data features is used. Finally, the raster files are
converted to the ASCII format, and are ready to be used as input to the spatial ABM.
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Figure 4. The Study Area. (A) Kenya Boundary and Administrative Units (Provinces);
(B) Study Area with Selected Data Layers; the outlined polygon represents a subset of
villages selected for the simulation runs in this study; (C) Village Cluster in Asembo;
(D) Legends.

2.8. Feature Counts

A total of 975 aquatic habitats, categorized into five different types, are identified
in the selected area as follows: (1) pools (large); (2) puddles (small); (3) pit latrines;
(4) boreholes; and (5) wetland. Boreholes, also known as borrow pits, have significant
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potential as breeding sites in the area. They represent man-made holes or pits in
the ground when local people use clay or soil for building houses, making pots,
etc., thereby leaving depressions in the ground that easily get filled with rain water.
Pit latrines are very common to the households in the area. The wetland represents
a stretch of marsh lying to the northwest corner of the area which is dominated by
herbaceous plant species.

As mentioned before, each aquatic habitat is set with a predefined carrying
capacity (CC), which regulates the aquatic mosquito population that the habitat can
sustain, and reflects the habitat heterogeneity (e.g., in terms of productivity) to
some degree (see [15] for details). A total of 941 houses, each having a mean of five
occupants, are also identified. These feature counts and their assigned values are
summarized in Table 2. Note that for wetland, which covers multiple cells in the
northwest corner of the study area, the same CC value is assigned to each cell.

2.9. Vector Control Interventions

The last decade (2000–2010) of worldwide malaria control efforts has seen an
unprecedented increase in the coverage of vector (mosquito) control interventions for
malaria, with ITNs/LLINs, IRS, and LSM as the front-line vector control tools [37].
These interventions are often applied in isolation and in combination, and their
impacts have been investigated by numerous early and recent studies [38–45].
In addition to these time-tested, established tools, new and novel intervention tactics
and strategies such as new drugs, vaccines, insecticides, improved surveillance
methods, etc., are also being investigated [46]. Some of the promising approaches
include genetically engineered mosquitoes through sterile insect technique (SIT)
or release of insects containing a dominant lethal [47,48], fungal biopesticides that
increase the rate of adult mosquito mortality [49], the development of genetically
modified mosquitoes (GMMs) or transgenic mosquitoes manipulated for resistance
to malaria parasites [50], transmission blocking vaccines (TBVs) which are intended
to induce immunity against the malaria parasites [51], etc.

As mentioned before, the combined impacts of two vector control interventions
(LSM and ITNs) are evaluated for this study. Both interventions have been extensively
used as intervention tactics to reduce and control malaria in sub-Saharan Africa, as
reported by numerous early and recent studies [37,39,41,43]. LSM (also known as
source reduction) is one of the oldest tools in the fight against malaria. It refers to the
management of aquatic habitats in order to restrict the completion of immature stages
of mosquito development. ITNs, particularly LLINs, are considered among the most
effective vector control strategies currently in use [39,52]. ITNs offer direct personal
protection to users as well as indirect community protection to non-users (through
insecticidal and/or repellent effects). For this study, LSM refers to the permanent
elimination of targeted aquatic habitats. For ITNs, the household-level complete coverage
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scheme is used, which ensures that if a house is covered, all persons in the house
are protected by bed nets; the two other relevant variables, killing effectiveness and
repellence, are both fixed at 50%. Killing effectiveness refers to an increased mortality
(increased probability of death of a mosquito), toxicity, or killing efficiency due to
the insecticidal killing effects of the ITNs; the insecticide kills the mosquitoes that
come into contact with the ITNs. Repellence refers to the insecticidal excito-repellent
properties of the ITNs which repel the blood meal seeking mosquitoes; it adds a
chemical barrier to the physical one, further reducing human-mosquito contact and
increasing the protective efficacy of the ITNs (see [15,16] for details).

Four different scenarios are constructed by using two coverage (C) levels of low
(20%) and high (80%). For a specific coverage, aquatic habitats and houses which
will be covered by the corresponding intervention are selected by using random
sampling. The actual numbers of objects covered approximate the desired coverage
levels. A baseline scenario (with no intervention) is also added for comparison. The
scenarios are summarized in Table 3.

Table 3. Scenarios obtained by applying the two vector control interventions LSM
and ITNs. A total of 975 aquatic habitats and 941 houses are used to calculate
the desired coverage (C) levels of low (20%) and high (80%). The first column
denotes the scenario (interventions applied). The actual coverage (C) levels are
given in the last two columns for aquatic habitats and houses covered in the
landscape, respectively.

Scenario Coverage (C) %

% Aquatic Habitats Covered % Houses Covered

Baseline 0 0

LSMLow − ITNsLow 208/975 = 0.21 204/941 = 0.22
LSMLow − ITNsHigh 215/975 = 0.22 751/941 = 0.8
LSMHigh − ITNsLow 774/975 = 0.79 195/941 = 0.21
LSMHigh − ITNsHigh 781/975 = 0.8 736/941 = 0.78

2.10. Simulations

For each of the five scenarios (Baseline, LSMLow − ITNsLow, LSMLow −
ITNsHigh, LSMHigh − ITNsLow, and LSMHigh − ITNsHigh), 50 replicated simulation
runs are performed and the average results are reported (in order to rule out any
stochasticity effects). Each simulation runs for 730 days (2 years) (in this paper, all
time units related to the simulation runs refer to simulated time as opposed to physical
time or wall clock time; thus, a 2 years run indicates a virtual simulation run within
the computer which represents an imitation of operations in the real-world for the
same time duration), and reaches a steady state (equilibrium) at around day 50.
Interventions are applied on day 100 and continued up to the end of the simulation.
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Initially, all simulations start with 1000 female adult mosquito agents (no male
agents). Each female agent is assigned to a randomly-selected aquatic habitat. The
maximum daily range of movement for mosquito agents is set to 5 cells per day,
which translates to 250 2

√
2 m. Biological aging (senescence) of the mosquitoes is

assumed. The ABM implements age-specific mortality rates for the adult mosquitoes
and the larvae (i.e., the probability of death for mosquito agents increases with
their age).

2.11. Output Indices

Mosquito abundance is the primary output index of the ABM. However, the
spatial model also allows us to explore some spatial indices by overlaying these
on the entire landscape. These indices capture the spatial heterogeneity of various
objects (aquatic habitats and houses) in the landscape. Some of these indices are
generated as cumulative aggregates at the end of each simulation run, and represent
measures on a per object basis. The output indices are listed below:

1. Mosquito Abundance: represents a spatial snapshot of the female adult mosquito
population distribution at the end of simulations (see Figures 5 and 6)

2. Oviposition Count per Aquatic Habitat: for each aquatic habitat x, it represents
the cumulative number of female adult mosquitoes which have oviposited (laid
eggs) in x; depicted spatially at the end of simulations by overlaying on top of
the aquatic habitats (see Figures 7 and 8)

3. Blood Meal Count per House: for each house y, it represents the cumulative
number of blood meals successfully obtained by female adult mosquitoes in y;
depicted spatially at the end of simulations by overlaying on top of the houses
(see Figures 9 and 10)

Note that for all output indices, the average measures of 50 replicated simulation
runs are reported (in order to rule out any stochasticity effects). The spatial indices
are sampled across all daily time steps throughout the entire simulations. The
output maps are produced by overlaying the averaged indices on top of the relevant
data layers.

All output indices are mapped using the graduated symbology. The graduated
symbol renderer is one of the common renderer types used to represent quantitative
information. Using a graduated symbols renderer, the quantitative values for the
output indices are separately grouped into ordered classes, so that higher values
cover larger areas on the map. Within a class, all features are drawn with the same
symbol. Each class is assigned a graduated symbol from the smallest to the largest.
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2.12. Hot Spot Analysis

Using spatial statistics tools, hot spot analysis (spatial cluster analysis) is
performed for all scenarios for the last two indices (oviposition count per aquatic
habitat and blood meal count per house) in order to determine whether a specific value is
statistically significant or not [53]. In hot spot analysis, if a higher value is surrounded
by similar magnitude of other higher values, it is considered a hot spot (with 95% or
99% confidence intervals). The cold spots are determined using the same principle.
The values (or cluster of values) between the statistically significant hot spots and
cold spots are considered as random samples of a distribution. The hot spot analysis
tool calculates the Getis-Ord Gi* statistic (z-scores and p-values) for each feature in a
dataset [36]. Z-scores are measures of standard deviations, and define the confidence
intervals (in this case, 95%–99%). A p-value represents the probability that the
observed spatial pattern was created by some random process.

The null hypothesis for pattern analysis essentially states that the expected pattern
is just one of the many possible versions of complete spatial randomness. If the
z-score is within the 95%–99% confidence interval or beyond, the exhibited pattern is
probably too unusual to be of random chance, and the p-value will be subsequently
small to reflect this. In this case, it is possible to reject the null hypothesis and proceed
to determine the cause of the statistically significant spatial pattern. On the other
hand, if the z-score lies below the 95% confidence interval, the p-value will be larger,
the null hypothesis cannot be rejected, and the pattern exhibited is more likely to
indicate a random pattern. Thus, a high z-score and small p-value for a feature
indicates a significant hot spot. Conversely, a low negative z-score and small p-value
indicates a significant cold spot.

2.13. Kriging Analysis

Kriging, also known as Gaussian process regression, is a popular method of
interpolation (prediction) for spatial data. It is an interpolation technique in which
the surrounding measured values are weighted to derive a predicted value for an
unmeasured location. Weights for the measured values depend on the distance
between the measured points, the prediction locations, and the overall spatial
arrangement among the measured points [54]. Various kriging techniques provide
a framework for predicting values of a variable of interest at unobserved locations
given a set of spatially distributed data, incorporating spatial autocorrelation and
computing uncertainty measures around model predictions [55,56].

In recent years, kriging has been extensively used in public heath and
epidemiology modeling for variable mapping to interpolate estimates of occurrence
of a variable or risk of disease [57–59]. For example, de Carvalho Alves and Pozza
characterized the spatial variability of common bean anthracnose using kriging
and nonlinear regression models [60]. Alexeeff et al. evaluated the accuracy of
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epidemiological health effect estimates in linear and logistic regression when using
spatial air pollution predictions from kriging and land use regression models [61].
For malaria modeling, the Malaria Atlas Project (MAP) [62] developed several
Bayesian geostatistical kriging models for spatial prediction of Plasmodium falciparum
prevalence, estimated human populations at risk, vector distribution, etc., generating
malaria maps of many endemic countries in sub-Saharan Africa [63–65].

The basic idea of kriging is to predict the value of a function at a given point
by computing a weighted average of the known values of the function in the
neighborhood of the point. To this end, kriging is closely related to the method
of regression analysis. The data represent a set of observations of some variable(s) of
interest, with some spatial correlation. Usually, the result of kriging is the expected
value, referred to as the kriging mean and the kriging variance computed for every
point within a region of interest. If kriging is done with a known mean, it is then
called simple kriging. On the other hand, in ordinary kriging, estimating the mean and
applying (simple) kriging are performed simultaneously.

Kriging uses semivariogram functions to describe the structure of spatial
variability. A semivariogram is one of the significant functions to indicate spatial
correlation in observations measured at sample locations, and plays a central
role in the analysis of geostatistical data using kriging. The effect of different
semivariograms on kriging has also been a focus of interest in different branches of
the literature (e.g., [66]). In this paper, spatial analysis is conducted using ordinary
kriging with circular semivariograms for all scenarios for all the output indices using
ArcGIS 9.3 [19]. We note that similar analyses have also been conducted for other
insects in the literature (e.g., for fig fly [67]).

3. Results

In this section, we describe the results by categorizing them according to the
output indices. For the output indices and scenarios (see Table 3), simulation results
are presented along with hot spot analysis and kriging results. For clarity, houses
and pit latrines are not shown in the output maps. Each scenario (in the output maps)
represents the average results of 50 replicated simulations.

3.1. Mosquito Abundance

The mosquito abundance maps are shown in Figure 5. These maps depict the
mosquito abundances index, which represent a spatial snapshot of the female adult
mosquito population distribution at the end of simulations. Figure 5A shows the
abundance map for the baseline scenario (in which no intervention was applied).
Figure 5B depicts the symbols used in the maps: it shows the village boundary,
different types of aquatic habitats, and the graduated symbols for abundances.
Note that for the aquatic habitats, the symbol sizes vary according to the assigned
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carrying capacities of the habitats (see Table 2). The symbol sizes for abundances
also vary depending on the magnitudes. Figure 5C–F show the abundance maps for
the four different scenarios with control interventions LSM and ITNs having two
coverage levels: LSMLow− ITNsLow, LSMLow− ITNsHigh, LSMHigh− ITNsLow, and
LSMHigh − ITNsHigh, respectively. The corresponding kriged maps for mosquito
abundance are illustrated in Figure 6.

As shown in Figure 5, with increasing coverage levels of both interventions, the
mosquito abundances are significantly reduced, as evident from the progressively
lower number of “Above 40” symbols (which denote the highest abundances) in
the series of figures. The changes are more clear and evident from the kriged maps
(Figure 6).

It is interesting to note that ITNs are more effective in reducing abundances
than LSM (compare Figure 5D,E as well as the kriged maps in Figure 6D,E): covering
80% of the houses has more impact than removing a total of 80% different types
of the aquatic habitats. This is partially due to the fact that the household-level
complete coverage scheme (used for ITNs, see Experimental Section) prohibits a
blood meal-seeking female mosquito to obtain a blood meal from any person in
any house which is covered by ITNs. As coverage of ITNs increases, more houses
fall within the range of coverage, and the probability of finding an unprotected
human in another house (during the blood meal-seeking stage) decreases. Thus, with
increasing coverage of ITNs, abundances are reduced more effectively.

The low (20%) coverage levels for both interventions do not produce significant
reduction in abundances, as evident from the baseline and LSMLow − ITNsLow maps
(compare Figure 5A,C). In general, higher abundances are observed near the pools
(which have the highest carrying capacities) and in the north east and the south east
portions of the map.

When either of the interventions has a high (80%) coverage level, abundances
are significantly reduced, as evident from the LSMLow − ITNsHigh and LSMHigh −
ITNsLow maps. For these two scenarios, the highest abundances observed are
significantly lower than the baseline (compare Figure 5D,E with Figure 5A). However,
for the LSMLow − ITNsHigh scenario higher abundances do not always coincide with
the spatial locations of aquatic habitats with higher carrying capacities, while for the
other scenario this expected trend is observed for some cases.

Not surprisingly, when both interventions have high (80%) coverage levels,
abundances are reduced to the lowest level, as evident from the LSMHigh− ITNsHigh
map shown in Figure 5F. For this scenario very few higher abundances are observed;
these occur at greater distances from the spatial locations of aquatic habitats with
higher carrying capacities, since most of them are eliminated by LSM.
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Figure 5. Maps for all scenarios for the mosquito abundances index. Each scenario
represents the average results of 50 replicated simulations. (A) Abundance map
for baseline; (B) Legends: symbol sizes are proportional to the carrying capacities
of the aquatic habitats (see Table 2); graduated symbol sizes are proportional
to the magnitudes of abundances. For clarity, houses and pit latrines are not
shown; (C) Abundance map for LSMLow − ITNsLow; (D) Abundance map for
LSMLow − ITNsHigh; (E) Abundance map for LSMHigh − ITNsLow; (F) Abundance
map for LSMHigh − ITNsHigh.
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(A) Baseline (B) Legends

(C) LSMLow - ITNsLow (D) LSMLow - ITNsHigh

(E) LSMHigh - ITNsLow (F) LSMHigh - ITNsHigh

Figure 6. Kriged maps for all scenarios for the mosquito abundances index. (A) Kriged
abundance map for baseline; (B) Legends; (C–F) The four intervention scenarios.
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3.2. Oviposition Count per Aquatic Habitat

Results for the oviposition count per aquatic habitat index are shown in Figure 7.
These maps depict the cumulative number of female adult mosquitoes which have
oviposited (laid eggs) in the aquatic habitats, as well as the predicted hot spots
and cold spots identified by hot spot analysis. For the five scenarios, oviposition
counts for the aquatic habitats are placed into three ordered classes of 1–20, 000,
20, 001–50, 000 and above 50, 000 using the same quantitative scale, and are shown
using graduated symbols. Hot spots and cold spots are spatially clustered using two
confidence interval (CI) levels of 95% and 99%. The legends denote the color-coding
for the classes, the hot spots, the cold spots, and the CIs.

Figure 7A shows a higher frequency of higher values for the oviposition count
per aquatic habitat index in the baseline map. Significant number of these appear to
be statistically significant, and hence considered as hot spots. Notable clustering of
lower values can also be seen over the wetland area (where each cell is assigned a
tiny CC), which are categorized as cold spots.

Figure 7C shows a drop in frequency of higher values in the LSMLow− ITNsLow
map for the same index, about half of which are considered as hot spots. In addition,
more cold spots can be seen over the wetland area. Both of these results can be
explained as the effects of low coverage levels for both interventions.

When either of the interventions has a high coverage level, frequencies of higher
values are further reduced, as evident from the LSMLow − ITNsHigh and LSMHigh −
ITNsLow maps in Figure 7D,E, respectively. For the LSMLow − ITNsHigh scenario,
some moderate oviposition counts become statistically significant, fewer hot spots
are detected, and most of the cold spots are eliminated from the wetland area. On
the other hand, the LSMHigh − ITNsLow scenario has higher frequencies of higher
oviposition counts, hot spots, and cold spots. These observations confirm to our
previous results (for abundances) that ITNs are more effective in reducing oviposition
counts than LSM. As before, when both interventions have high coverage levels,
frequencies of higher oviposition counts, hot spots, and cold spots are reduced to the
lowest level, as evident from the LSMHigh − ITNsHigh map shown in Figure 7F.

Similar deductions can be made from the kriged maps presented in Figure 8.
For example, when both interventions are applied with higher coverages (Figure 8F),
areas with the light blue and green colors representing the two highest levels
of oviposition counts are simply non-existent from the map, and the third one
(light brown) is greatly diminished. This illustrates the drastic reductions in the
oviposition counts.
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Figure 7. Maps for all scenarios for the oviposition count per aquatic habitat
index. Each scenario represents the average results of 50 replicated simulations.
Oviposition counts are categorized using the same quantitative scale, and are
shown using graduated symbols which are proportional to the magnitudes. For
clarity, houses and pit latrines are not shown. Hot spots and cold spots are spatially
clustered using two confidence intervals (CIs) of 95% and 99%. (A) Baseline;
(B) Legends; (C–F) The four intervention scenarios.
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(A) Baseline (B) Legends

(C) LSMLow - ITNsLow (D) LSMLow - ITNsHigh

(E) LSMHigh - ITNsLow (F) LSMHigh - ITNsHigh

Figure 8. Kriged maps for all scenarios for the oviposition count per aquatic habitat
index. (A) Baseline; (B) Legends; (C–F) The four intervention scenarios.

3.3. Blood Meal Count per House

Results for the blood meal count per house index are shown in Figure 9. These maps
depict the cumulative number of blood meals obtained by female adult mosquitoes
in the houses, as well as the predicted hot spots and cold spots identified by hot spot
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analysis. For the five scenarios, blood meal counts for the houses are placed into three
ordered classes of 1–3000, 3001–9000, and above 9000 using the same quantitative
scale, and are shown using graduated symbols. Hot spots and cold spots are spatially
clustered using two confidence interval (CI) levels of 95% and 99%. The legends
denote the color-coding for the classes, the hot spots, the cold spots, and the CIs.
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Figure 9. Maps for all scenarios for the blood meal count per house index. Each
scenario represents the average results of 50 replicated simulations. Blood meal
counts are categorized using the same quantitative scale, and are shown using
graduated symbols which are proportional to the magnitudes. For clarity, houses
and pit latrines are not shown. Hot spots and cold spots are spatially clustered
using two confidence intervals (CIs) of 95% and 99%. (A) Baseline; (B) Legends;
(C–F) The four intervention scenarios.
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(A) Baseline (B) Legends

(C) LSMLow - ITNsLow (D) LSMLow - ITNsHigh

(E) LSMHigh - ITNsLow (F) LSMHigh - ITNsHigh

Figure 10. Kriged maps for all scenarios for the blood meal count per house index.
(A) Baseline; (B) Legends; (C–F) The four intervention scenarios.
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The blood meal count per house index results show similar trends as observed
for the oviposition count per aquatic habitat index results. Similar trends are also
noticed from the kriged maps presented in Figure 10. The baseline map possesses
the highest frequencies of higher values, hot spots, and cold spots (Figure 9A), all
frequencies are reduced (with the introduction of a few cold spots in the lower-left
area) when both interventions have low coverage levels (Figure 9C), ITNs (high
coverage level) are more effective than LSM with further reduction in frequencies of
higher values (Figure 9D,E), and very few higher values, hot spots, and cold spots
remain when both interventions have high coverage levels (Figure 9F). Interestingly,
the LSMLow − ITNsHigh map shows some cold spots in an area where a few aquatic
habitats with higher carrying capacities exist, and the LSMHigh − ITNsLow map
possesses very few cold spots. Similar trends are also observed in the corresponding
kriged maps (Figure 10).

In general, statistically significant higher values are detected over the north east
and the south east portions of the maps, as these portions contain more number of
houses (hence more blood meal counts per house). This is also evident from the
kriged maps. The central portions depict mostly random distribution of values which
are not detected as hot spots.

4. Discussion

This study has presented a landscape epidemiology modeling framework
to integrate the simulation results from a spatial ABM of malaria-transmitting
mosquitoes with a GIS and then to apply spatial statistics techniques on the model
outputs. Some of the key features, characteristics, and limitations of the framework
are highlighted below.

4.1. Stochasticity and Initial Conditions

The ABM involves substantial stochasticity in the forms of probability-based
distributions and equations. The mosquito agents’ decisions and actions are
often simulated using random draws from certain distributions. These sources
of randomness are used to represent the diversity of model characteristics. To rule
out any stochasticity effects introduced by these probabilistic events, 50 replicated
simulation runs are performed for each simulation in each of the five scenarios, and
their aggregate measures are reported in the form of averages.

To verify whether 50 replicated runs are enough for each simulation, we ran as
many as 120 replicates of each simulation (using the versions of the ABM available at
that point in time) in the earlier phases of model development (to be specific, during
the verification, validation, and replication phases). After analyzing the results, it
became apparent that roughly 30 replicates were enough to rule out most issues
regarding stochasticity, initial seed bias, bifurcation, and other chaos factors. We
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also verified that the average could be treated as a deterministic measure for the
mosquito abundance outputs of the ABM. In addition, the replication study also
helped in model-to-model comparison and cross-model validation of the different
versions (developed by individual authors) of the ABMs. Some of these results were
presented in [14,15,68,69].

The initial uniform random assignment of female agents to arbitrary aquatic
habitats does not affect the current emerging outcomes of the ABM. This was
previously ensured as part of the verification and validation (V&V) studies of the
ABMs by considering longer running times and with multiple initial random seeds
to check for robustness [13,14,68,69]. In fact, this holds true for both cases of with
and without the landscape approach, i.e., when the simulations are run in spatial and
non-spatial modes, respectively (these results are not included in the current paper).

4.2. Emergence

In general, an important characteristic of an ABM is its capability to capture
emergent phenomena resulting from the interactions of the individual agents from
the bottom up (after the simulation reaches equilibrium or steady state). To this
regard, our ABM exhibits the emerging spatial distribution of mosquito agents
once the simulations reach equilibrium on or after day 50. The emergence is
primarily governed by two factors: (1) the assigned carrying capacities of the aquatic
habitats; and (2) the spatial heterogeneity of the landscapes, which translates to the
distributions and densities of houses and aquatic habitats. In the simulations, the
50-days warm-up period ensures that the model has reached steady state, and should
not be treated as an absolute value. Each generation of the mosquitoes requires
≈15 days to become mature, and it takes ≈2–3 generations for the initial model to
reach equilibrium. Thus, a 50-days warm-up period would have been sufficient in
most cases. Note that the interventions (LSM and ITNs) are applied after day 100,
and continued up to the end of the simulation. This longer period (100-days) also
guards against oscillatory spikes in the abundance, which may occur due to several
factors such as generation-to-generation oscillation tendency, density-dependence
and skip-oviposition effects, short hiatus in egg-laying, etc. [15,16].

4.3. Complexity

In many complex systems, cause and effect relationships are usually not
proportional to each other; as a result, manipulation attempts are often resisted,
which may lead to an unexpected systemic shift or phase transition (the so-called
tipping points or critical points) [70]. In the spatial ABM, such tipping points may occur
with certain combinations of the intervention parameters. For this study, the coverage
levels of 0.2 and 0.8 were used for both interventions. They should be treated as
representative sample points which resemble two points closer to the opposite ends

280



of the 0.0–1.0 coverage continuum (hence, representing coverage levels on the two
extremes of low and high, respectively). Earlier, we tested the ABM by running
simulations with varying levels of coverages including 0.2, 0.4, 0.6, 0.8, etc. (along
with varying levels of repellence and mortality/insecticidal effect for the ITNs) [15].
Within these ranges and parameter settings, the simulations approached several
tipping points with specific combinations of the three parameters. For example, in
a landscape with high density of houses, 90% reductions in mosquito abundance
were achieved with LSM coverage of 0.6, ITNs coverage of 0.87, and ITNs mortality
of 0.5 [15].

4.4. Data Resolution (Granularity)

The choice of spatial, temporal, and spectral resolutions determines the degree
of precision, realism, and general applicability of the models [7]. Even with the recent
rapid advances in computing power, these factors cannot always be maximized
simultaneously. Although the resolution of the co-ordinates recorded in a modern
GIS may now be of the order of only a few metres, the modeled resolution must be
carefully decided so that it reflects the specific study, its objectives, and the objects
being mapped: it should be sufficiently high to allow meaningful inferences to be
made from the results, but not too high to include irrelevant details. For this study,
the spatial resolution (granularity) of the landscapes is chosen as 50 m × 50 m.
This selection is based on several factors, some of which include the spatial GIS
data availability, the number of maximum cells which can be practically processed
by the ABM (within bounded run-time), the limited flight ability and perceptual
ranges of mosquitoes, etc. The selected granularity may seem to be low (with
a cell-size of 50 m × 50 m), particularly given the other assumptions on the
distances that a mosquito agent can fly. However, in the future, with the availability
of higher resolution spatial data and an advanced version of the current ABM
capable of processing multiple spatial nodes in parallel (e.g., by using the message
passing interface (MPI) technique), we plan to simulate landscapes with higher
spatial resolution.

Due to the lack of detailed spatial data for aquatic habitats and demographic
data for human populations and houses, arbitrary carrying capacities and occupants
are assigned to the habitats and houses, respectively. However, the current study
does ensure that the relative magnitudes of aquatic capacities follow the biological
reality of the environment being modeled; for example, a pool cell possesses higher
CC than a wetland cell, as described in Table 2. The flexible architecture of the
modeling framework also provides an easy plug-in mechanism of such data from
relevant future studies into the models.
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4.5. Spatial Analysis

In hot spot analysis, the higher frequency of cold spots for the oviposition
counts and blood meal counts along the wetland may seem counter-intuitive (see
Figures 7 and 9). However, this anomaly can be explained by considering two
primary factors: (1) the distributions of and the relative distances between the two
types of resources (houses and aquatic habitats) along the wetland; and (2) the tiny
carrying capacities assigned to each wetland cell (10 per cell, see Table 2). Both these
indices (oviposition and blood meal counts) will have higher values depending on
the successful completion of the cycles of alternate feeding and laying of eggs by
adult female mosquito agents (the gonotrophic cycle). However, along the wetland
(more noticeably along the western edge of the wetland where a larger density of
cold spots are present), despite the presence of a few nearby houses, the lack of
any nearby higher-capacity water bodies and the collective lower capacity (of the
wetland cells and a few pit latrine cells, see Figure 4B) prevent the female mosquitoes
to complete their gonotrophic cycles. As a result, higher frequencies of cold spots
are generated along the wetland for both indices. Also, in most cases, cold spots
are absent along the south east portion of the wetland since it is closer to both types
of resources (in this case, large pools and houses). Eventually, this translates to the
degree of ease with which adult female mosquitoes may find resources, and can also
be quantitatively measured by considering the average travel time (ATT) required by a
female mosquito to complete each gonotrophic cycle (ATT is inversely proportional
to resource-densities; for more details, see, e.g., [13]).

As the spatial distribution results show, there is a strong correlation between
the a priori distribution of houses and aquatic habitats and the emerging distribution
of hot and cold spots. Thus, in general, the hot spots of our output indices occur near
the clusters of houses and aquatic habitats. Since there are 395 pit latrines distributed
almost all over the study area (in fact, covering almost all the house clusters), in
effect, there are indeed some aquatic habitats near almost every house-habitat cluster.
Recall that the flight heuristics do not distinguish among the types of aquatic habitats
(i.e., mosquito agents select the habitats randomly), and the agents do not engage in
a directional flight during the simulations until and unless the aquatic habitats are
found in the neighboring cells (see Section 2.5).

The strong spatial correlation, although not quantitatively measured in this
study, is evident at some portions of the study area where there are some houses
with no aquatic habitat in the vicinity (i.e., without enough pit latrines nearby). For
example, as shown in Figure 4B, both the eastern portion of the south-west quadrant
and most of the eastern edge of the wetlands portray two house clusters with very
few or no aquatic habitats (including pit latrines) in the vicinity. As a consequence,
these areas contain almost no hot spots, as depicted in the hot spot analysis results
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(see Figures 5, 7, and 9), which hold true for both cases of with and without the
mosquito control interventions.

For the entire study area, kriging analysis produces predicted values for
unmeasured spatial locations, which are derived from the surrounding weighted
measured values. Most of the spatial trends observed by the hot spot analysis are
also visible in the kriging analysis results.

4.6. Habitat-Based Interventions

In this study, habitats and houses were selected using random sampling for the
vector control interventions. However, given the power of ABMs, other sophisticated,
habitat-based strategies for interventions are also equally applicable. For example,
latrines and boreholes for LSM, or a firewall of ITNs at the village boundary can be
excellent choices to target first or in a limited-resource setting.

Some of the habitat-based strategies were investigated by using targeted and
non-targeted LSM in a previous work [15]. The targeted interventions removed
the aquatic habitats within 100, 200, and 300 m of surrounding houses, while the
corresponding non-targeted interventions randomly removed the same numbers
of habitats. In general, with LSM applied in isolation, the results agreed with
the findings of previous research that LSM coverage of 300 m surrounding all
houses can lead to significant reductions in abundance, and, while targeting aquatic
habitats to apply LSM, distance to the nearest houses can be an important measure.
Similar research questions are also being investigated with spatial repellents (e.g.,
mosquito coils). However, given the constraints, we did not include the results of
habitat-targeted interventions in this paper.

4.7. Miscellaneous Issues

In the ABM, the human population is modeled as static (i.e., humans do not
move in space), all humans are assumed to be identical, and human mortality is not
implemented. This may be one of the reasons for the unusually high blood meal
counts per house (in the range of thousands). In the future, with the inclusion of
explicit parasite population (as agents) and the availability of detailed demographic
data of human populations and houses in Asembo, we plan to parameterize and
calibrate the model to reflect a more realistic scenario for the specific region.

The oviposition count per aquatic habitat output index is designed to reflect the
aquatic habitat heterogeneity in the landscapes. In this regard, alternative choices
are available (e.g., eggs count per aquatic habitat). However, the former is a better
representative of habitat heterogeneity, because it intrinsically considers the degree
of ease with which mosquitoes can find the aquatic habitats (distance-based foraging),
rather than merely focusing on the size or carrying capacity of a habitat.
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Although the modeling framework described in this paper utilizes an ABM of
malaria-transmitting mosquitoes, the approach is generally applicable to a wider
range of other infectious vector-borne diseases (VBD) including dengue, yellow fever,
etc., provided that the disease epidemiology has already been modeled using some
standard mechanisms (e.g., mathematical, agent-based, etc.). In addition to the three
output indices used in this study, other widely used disease epidemiology variables
such as incidence, prevalence or mortality can also be mapped and spatially analyzed
using the current framework.

In general, robustness of a modeling framework depends on several factors,
including the choices for model parameters. For the current model, these may
include the flight ability and perceptual ranges of mosquitoes, the carrying capacity
of aquatic habitats, the detailed demographic data for human populations and houses,
etc. In the future, once the models are fully calibrated, we envisage the modeling
framework to become more robust.

5. Conclusions

In this paper, a landscape epidemiology modeling framework is presented which
integrates the outputs of simulation runs from an established spatial malaria ABM
with a GIS. For a study area in Kenya, five landscape scenarios are constructed with
varying coverage levels of two mosquito-control interventions. For each scenario,
maps are presented to show the average distributions of three output indices obtained
from the results of 750 simulation runs. Hot spot analysis detects statistically
significant hot spots and cold spots, and kriging analysis produces predicted
values for unmeasured spatial locations for the entire study area. The integration
of epidemiological simulation-based results with the GIS-based spatial analyses
techniques within a single modeling framework can be a valuable tool for simulation
modelers, epidemiologists, disease control managers, and public health officials
by assisting these stakeholders in refining research questions and surveillance
needs, and in guiding control efforts and field studies. The integrated modeling
framework combines expert knowledge bases from entomological, epidemiological,
simulation-based, and geo-spatial domains. Although it utilizes an ABM of
malaria-transmitting mosquitoes, the approach is generally applicable to a wider
range of other infectious vector-borne diseases.
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ABMS: Agent-Based Modeling and Simulation
ATT: Average Travel Time
CC: Carrying Capacity
CI: Confidence Interval
EAL: Event Action List (diagram)
GIS: Geographic Information System
GMMs: Genetically Modified Mosquitoes
GPS: Global Positioning System
IBM: Individual-Based Model
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Agent-Based Models as “Interested
Amateurs”
Peter George Johnson

Abstract: This paper proposes the use of agent-based models (ABMs) as “interested
amateurs” in policy making, and uses the example of the SWAP model of soil
and water conservation adoption to demonstrate the potential of this approach.
Daniel Dennett suggests experts often talk past or misunderstand each other, seek
to avoid offending each other or appearing ill-informed and generally err on
the side of under-explaining a topic. Dennett suggests that these issues can be
overcome by including “interested amateurs” in discussions between experts. In the
context of land use policy debates, and policy making more generally, this paper
suggests that ABMs have particular characteristics that make them excellent potential
“interested amateurs” in discussions between our experts: policy stakeholders. This
is demonstrated using the SWAP (Soil and Water Conservation Adoption) model,
which was used with policy stakeholders in Ethiopia. The model was successful in
focussing discussion, inviting criticism, dealing with sensitive topics and drawing
out understanding between stakeholders. However, policy stakeholders were still
hesitant about using such a tool. This paper reflects on these findings and attempts to
plot a way forward for the use of ABMs as “interested amateurs” and, in the process,
make clear the differences in approach to other participatory modelling efforts.

Reprinted from Land. Cite as: Johnson, P.G. Agent-Based Models as “Interested
Amateurs”. Land 2016, 4, 281–299.

1. Introduction

Policy making is a complex process [1–3] involving many actors. This is
especially true of land use policy in which many different stakeholders interact.
In any policy domain, individual actors often have little control over the process [4].
Most, if not all, of these actors are experts in their policy area; their (and their
organisation’s) combination of experience in policy making and the domain area
mean that they often have detailed knowledge and strong opinions on what policies
may and should be pursued and which actors should be included in the process.
Despite this, we know policy making and policies themselves are not always
successful. Why might this be?

There are, of course, many reasons for this, but one may be that these “policy
experts” are not working together as effectively as may be possible or necessary. New
ideas may be consistently ignored or out-of-date assumptions may go unscrutinised.
Why might experts be unable to interact successfully? Dennett [5] suggests that
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when experts on a subject debate or discuss that subject, they assume the expertise
of others and do not discuss basic concepts. The result is that they often “talk past”
each other and fail to identify differences in assumptions and key understandings
of the topic or system under discussion. This can also be the result of experts not
wanting to offend one another or appearing ill-informed by asking for explanations
of basic positions and assumptions. In either case, the experts end up erring on the
side of under-explaining or discussing the topic at hand.

Dennett’s proposed solution to this general problem is to use lay audiences,
or curious non-experts (here called “interested amateurs”), to force the discussion
to be focussed on assumptions and to err on the side of over-explaining issues
under discussion. For Dennett, an academic philosopher, this means bringing
undergraduate students into discussions and debates and asking them to query
anything they find unclear.

This paper suggests that it is agent-based models (ABMs), via their overall
design, agent rules, assumptions and results, that can play the role of “interested
amateur” in policy making and, thus, potentially aid the interaction of policy experts.
Moreover, it is suggested that they have an unusual combination of characteristics,
such as specificity, intuitive appeal and representation of causation, that makes them
excellent candidates for this role. Their specificity encourages detail in discussions,
whilst their intuitive appeal keeps ideas tractable and the bigger picture within reach.
As models are not people expressing opinions, but artefacts without emotions, it is
suggested that participants in discussions are more likely to make strong critiques
of a model than an expert or a person playing the role of an “interested amateur”.
It is this critique that brings otherwise hidden beliefs and assumptions into the
open. These assertions will be explored using the example of the SWAP (Soil and
Water Conservation Adoption) model of soil and water conservation (SWC) adoption
amongst small-scale farmers in developing countries. The SWAP model was used
with SWC policy stakeholders in Ethiopia (a policy area with well-documented
interaction problems [6,7]). A workshop with policy stakeholders was held and
a qualitative analysis used to understand if and how an ABM could act as an
“interested amateur”.

There is already a considerable literature on the use of models, and specifically
ABMs, in participatory policy making contexts. This increasingly diverse field [8]
is excellently overviewed by Voinov and Bousquet [9] and Matthews et al. [10].
Most relevant and notable within this literature is the companion modelling
(or ComMod) approach developed at the French Agricultural Research Centre
for International Development (see [11,12] for overviews of the approach). The
approach’s “charter” [13] outlines the principles upon which it is based. The
approach places the utmost importance on interaction between modellers and
stakeholders from the beginning of a project, with many iterations. The focus is
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placed on learning between researchers and stakeholders, and between stakeholders
themselves, and using the process to come to decisions and/or build decision-making
capacity. There are numerous examples of the application of ComMod, including
water management in Bhutan [14], natural resource management [15] and forest
management [16] in the Philippines and fishery management in Thailand [17].

ComMod has been very popular and successful in a range of contexts. However,
there are some situations in which it may not be the best approach to take.
Models created using the ComMod methodology are co-constructed by a group
of stakeholders who, as a result, all have ownership of a model. This means that
the model is an “insider”; it is part of their work and likely reflects their view of
the world. In this sense, a ComMod model cannot play the role of an “interested
amateur”, as it is not an “outsider”. This means that stakeholders are less likely to
make strong criticisms of the model or include elements in its design that they do not
see as relevant, but that others, outside the ComMod process, may view as important.
Furthermore, any model created by stakeholders is likely to reflect and reinforce
their current thinking. A diverse group of stakeholders can share and influence
each other’s thinking, but it is unlikely ideas from outside these bounds will be
included in the model. This lack of both “outsiderness” and an inclusion of critique
and thinking from outside the stakeholder group are not typically considered as
weaknesses of the ComMod approach, and in many circumstances with specific aims,
they are not. It is not the intention here to suggest that they are problematic in all
situations, but to suggest that it is worthwhile considering what value a model, that
is an “outsider” and that contains thinking from outside the current policy practice,
may have in participatory contexts. This underpins the aim of this paper to explore
the potential of ABMs to be used in participatory contexts in a different way: as
“interested amateurs”.

The rest of this paper is structured as follows. In Section 2, the SWAP model and
the context it was used in are presented alongside findings from a workshop with
stakeholders in Ethiopia. This serves as a demonstration of the use of an ABM as an
“interested amateur”. In Section 3, a more general discussion is put forward on when
and how we might use ABMs as “interested amateurs”. Finally, Section 4 concludes.

2. The SWAP Model

This section presents both the SWAP model itself and the approach and findings
of a stakeholder workshop used to explore its use as an “interested amateur”.

2.1. Model Description

A description of the model is given here which is sufficient for the purpose
of this article; however, in the interest of space, this is not comprehensive. A
complete description, including an ODD (Overview, Design Concepts, Details)
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protocol [18,19], is given by Johnson [4], and the model can be downloaded with the
full code at http://modelingcommons.org/browse/one_model/4117. The model
was developed in the open source environment NetLogo [20]. Using NetLogo
enabled the model to be built in an environment with a well-established community
and in a relatively naturalistic programming language. The SWAP model is a
relatively simple ABM. There are two types of agents: farmer agents and extension
agents. Farmer agents make a decision between using two generic farming methods:
non-SWC methods or SWC methods. This decision and the design of the agent rules
more broadly are based on a framework developed and tested in the literature by
DeGraaff et al. [21]. This framework breaks up the decision into multiple steps and
attaches different factors to these. It also allows for the intensity of adoption, rather
than a simple dichotomous choice. First, farmers must accept the need for SWC,
then they must decide on how much of their farm to adopt SWC, and finally, once
adopted, they must continue to decide to maintain adoption (see Figure 1). The
agents’ basic decision is intended to be as close an implementation of the DeGraaff
framework as possible.

Figure 1. Farmer agents’ basic decisions.

The acceptance decision is the most complex, based on the DeGraaff et al.
framework [21], and requires the following eight steps given in pseudo-code:

(1) Run symptoms recognised?
if ( farm soil quality is low )
and ( decision maker works on farm )
and ( farmer knows the land well )
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then [ recognise symptoms ]

(2) Run effects recognised?
if ( farmer not too old )
and ( farmer knows the land well )
and ( farmer is well educated )
and ( farmer has extension contact )
and ( farmer has low cultural inertia )
then [ recognise effects ]

(3) Run degradation taken seriously?
if ( farmer has extension contact )
and ( farmer owns the land )
then [ take degradation seriously ]

(4) Run aware of SWC methods?
if ( farmer has knowledge of methods )
and ( farmer has extension contact )
then [ be aware of methods ]

(5) Run able to undertake SWC?
if ( farmer can hire labour )
and ( farmer not too old )
and ( farmer has extension contact )
and ( farmer can access credit )
and ( farmer owns the land )
then [ able to undertake SWC ]

(6) Run willing to undertake SWC?
if ( discount rate is low )
and ( farmer has low cultural inertia )
and ( farmer sympathetic to gov/NGOs )
and ( farmer has a family successor )
and ( farmer is not too old )
and ( decision maker works on farm )
then [ willing to undertake SWC ]

(7) Run ready to undertake SWC?
if ( not too risk averse )
and ( farmer has enough savings )
and ( farmer has enough income )
then [ ready to undertake SWC ]

(8) Run accept SWC
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set acceptance score to
[ accepted but not adopted ]

The various parameters required to implement this pseudo-code are either
dichotomous (e.g., the decision maker works on the farm, the farmer has an extension
contact, the farmer owns their land, the farmer can access credit or labour, the farmer
has a successor), assigned a score between zero and one hundred (e.g., cultural
inertia, knowledge of methods, sympathy to non-governmental organizations or
government) or given an appropriate value (e.g., age is in years, years of education is
in years, the discount rate, which denotes the rate at which farmers discount future
costs and benefits against current costs and benefits, is given as a number between
zero and one). These are then set using real-world data where available.

Each of the eight steps must be met for the farmer to proceed to the next stage
of the decision. However, at each time step, there is a 10% chance that the agent will
jump straight through the acceptance decision without meeting its criteria and move
onto the adoption decision; this represents an element of chance in the decisions.
This figure was reached after the calibration and sensitivity analysis.

Once they have accepted the need for SWC, farmers must decide on the intensity
of their adoption, i.e., how much of their farm they wish to adopt. The amount of
land they adopt conservation on is determined by their level of savings (intended to
represent an abstract form of capital, savings must meet a minimum threshold), their
contact with extension workers (a contact is required for any adoption) and their risk
aversion score (less risk-averse agents will adopt at a higher level).

Finally, if they have already adopted SWC measures, farmers must decide
whether to increase or decrease adoption or indeed stop using SWC. If their “income”
is higher than their “consumption requirement”, they will increase adoption by
20%. If their “income” is lower than their “consumption requirement”, they will
reduce their adoption by 20%. If adoption falls at a very low level, they will simply
stop using SWC. The presence of adoption will increase soil quality, which, in turn,
will increase an agents “income” parameter. “Consumption requirement” in the
model is a constant (per individual) multiplied by the number of people in a farmer’s
household, and “income” is a function of the soil quality and farmer knowledge.

Farmers also interact in the model, either: in farmer peer-groups, such as church
or community groups, through influential individuals, such as community leaders
or government chosen “model” farmers, or through extension agents (see Figure 2).

In farmer groups, farmers become more similar, all influencing each other
equally as peers. Via influential individuals, those with higher “influence scores”
make those near them more like themselves. Extension agents (representing
development agents, as described in the next section) move around the model
space increasing the chance of farmers adopting SWC when they are nearby, as
extension contact is key to several of the decision stages. These interaction types are
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not described in the DeGraaff et al. framework, but are derived from a wider reading
of the SWC literature. They are included, as it was felt it was important to represent
the social interaction of farmers, as well as their individual decision making.

Figure 2. Farmer interactions.

During each time step, the agents take it, in turn, to make decisions in a
randomised order. In one time step, an agent can start a decision and carry it
out, but only one stage at a time; they cannot cycle through all of the decision stages
at once (i.e., an agent can decide that they recognise the existence of degradation,
but cannot then also suddenly be aware of methods to combat it; or an agent can
decide that they do accept the need for SWC, but then cannot also decide how much
to adopt). This separation of the decision process over time reflects the idea that
farmers do not go from not being aware of or considering SWC to suddenly adopting.
The time step is intended to represent a period of around one to three months. This
is a reasonable period for which to assume agents would make these decisions in the
real world (i.e., a farmer does not consider whether to change practices every day
or week).

The spatial environment represents a non-specific area of land made up of many
“patches”. Each patch of land represents a field, with the collection of patches closest
to each farmer agent being their farm. The environment is modelled in this way
so that farmers can decide on the intensity of adoption on their farm, rather than
making a simple dichotomous choice. Each patch has a parameter reflecting its soil
quality, with a score out of one hundred. This is used to allow the feedback between
decisions and soil quality and vice versa.

Though not the focus here, and not presented at the workshop, the model has
been calibrated and validated against three case studies using real-world data and a
pattern-oriented modelling approach [22–24]. A presentation of this process can be
found in Johnson [4].
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2.2. The Workshop

The workshop was held on 20 June 2013, at the International Livestock Research
Institute (ILRI) Info-Centre in Addis Ababa, Ethiopia. In Ethiopia, as in much
of Sub-Saharan Africa, land and soil degradation are increasingly problematic
environmental, social and economic problems [25,26]. In the face of stagnating
agricultural productivity, farmers have tended to expand production onto
inappropriate and steep land, resulting in soil degradation and erosion [7]. Ethiopia’s
population now exceeds 80 million, with 75%–85% of the population making a
livelihood in an agriculture industry characterised by low input-low output rainfed
systems focussed on subsistence [7]. This has resulted in a strong perception that
soil erosion poses a serious threat to Ethiopia’s future despite widespread awareness
amongst policy makers both in the country and externally. Policies in Ethiopia
intended to increase farmers’ adoption of SWC measures are understood to have
been unsuccessful owing to:

“misguided policy, authoritarian and top-down approaches guided by
targets and coercion to mobilise labour, blanket approaches across vastly
different agro-ecological and socio-economic contexts, or inappropriate
technologies” [6] (p. 5).

This reflects Ethiopia’s political past under the Derg and, more recently, slow
progress in moving towards more participatory policy making [7]. Ludi et al. [6] also
highlight the difficulty of the work of “development agents” that are intended to
provide a bridge between government and farmers, stating that they are:

“caught between farmers and government, with the difficult task of reconciling
top-down plans and quotas with local concerns and needs. They transmit
information down to farmers but struggle to pass ideas and reflections back from
farmers to higher levels” (p. 19).

This second quote provides an excellent summary of the motivation for the
use of the SWAP model as an “interested amateur” in this example. It is suggested
that the model, via its overall design, agent rules, assumptions and results, can help
to address this struggle in passing ideas and information up the policy hierarchy,
between different “experts” on the system at hand. In a hierarchical and often
sensitive policy landscape, the model can ease tensions by being the artefact that
takes the criticism and critique of stakeholders, but still allows for focused, detailed
and tractable discussion on various levels of the system. The workshop aimed, using
a qualitative approach, to explore how the model performed in this role and how
participants viewed the potential for the model to be used as an “interested amateur”.
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2.2.1. Participants

Potential participants were identified based on their positions in the regional
Bureaus of Agriculture (responsible for agricultural policy implementation,
coordination and evaluation) and the non-governmental organisations (NGOs)
working with them. This “mid-level” position was ideal for the workshop aims,
as the participants had experience working with stakeholders both at the local and
national levels and, so, were well positioned to comment and reflect on the potential
for poor interaction amongst stakeholders “up” and “down” the policy process.
Table 1 outlines the participants’ positions and expertise.

Table 1. List of workshop participants. SWC, soil and water conservation.

No. Organisation Expertise/Position

1 ORDA Project Design and Action Research Officer

2 BoA Amhara Region Soil and Water Conservation Specialist

3 BoA Amhara Region Livestock Expert in Watershed Study Case Team

4 BoA Amhara Region Agronomist in Integrated Watershed Planning team

5 BoA Amhara Region Livestock and Forage Development Advisor

6 GIZ-SLM Amhara Region SWC Engineering Specialist

7 GIZ-SLM Oromia Region Senior Cluster Advisor

8 BoA Oromia Region Watershed Development Planning Expert

9 BoA Oromia Region Agricultural Engineer for SWC

NB: ORDA = Organisation for Rehabilitation and Development in Amhara; NGO.
BoA = Bureau of Agriculture. GIZ-SLM = Deutsche Gesellschaft fur Internationale
Zusammenarbeit (Sustainable Land Management Project); a non-Ethiopian
Government Programme.

The Amhara and Oromia regions were well represented, as they are the two
most populated regions. The main omission was participants from Tigray, the
Ethiopian region with arguably the most political influence and with a long history
of soil degradation. This may because the distance from Tigray to Addis Ababa
deterred potential participants. Though there was a majority of Bureau of Agriculture
participants, there were also enough non-Ethiopian government programme and
NGO participants, such that their voices would not be drowned out or ignored. It
was the general characteristic of a mix of participants, rather than specific groups
or types of participant, that was important for the aims of the workshop. A mixed
group meant it was unlikely the participants would all have very similar views. Had
the group been more homogeneous, it is unlikely that the approach would have had
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a fair chance of drawing out misunderstandings and differences of opinion, as they
would be much less likely to exist.

It is possible that the findings from the workshop are biased by the characteristics
of the group of participants that took part. The fact that they were willing to take part
and travel quite far in some cases suggests that they were already interested in visiting
ILRI, in the researchers’ work and/or tools, like the SWAP model. Generally, it is fair
to assume that they are more engaged with researchers and interested than a typical
mid-level policy stakeholder. The final participant list was also not comprehensive in
the sense that it covered all regions or types of organisation working on SWC. This
means that it is difficult to attempt to generalise the findings beyond government and
large NGO actors or to other regions. Despite these potential drawbacks, the findings
of the workshop can still be used to demonstrate the potential of the “interested
amateur” approach, make attempts at understanding how policy stakeholders view
tools, such as the SWAP model, and how they might fit into their work.

All of the participants spoke English to a functional level, and most spoke well.
There were very few occasions during which translation into Amharic was required.
However, the participants did on occasion switch to talking in Amharic with each
other. This was obviously more convenient and natural for them, but meant that
the non-Amharic speaking organisers could not understand what they were saying.
There did not appear any obvious reason for this change in language in terms of the
content of the discussion (e.g., a sensitive or complex topic); rather, it appeared that
the participants did this when they wanted to say something quickly or with more
clarity, though it is impossible to be 100% certain. When this persisted for more than
a few sentences, humour was used to attempt to return to English, though this was
rarely necessary.

2.2.2. Workshop Structure

The workshop was split into four substantive sessions, in addition to an
introduction and wrap-up. The sessions were in the format of an initial short
(approximately ten minutes) presentation, an extended discussion in break-out
groups of four to five participants and a final whole-group “report-back” on
discussions. Participants were asked to make notes on their discussions using
flip-charts. These were used to refer back to after the workshop and as prompts
during the whole-group feedback sections. Though timing slots were detailed in the
workshop materials given to participants, they were left intentionally flexible, and
where possible, time was extended or shortened to accommodate the natural flow of
discussion. Indeed, on the day, the timings were not stuck to closely.

Of the four sessions, two were generic in nature, relating to experiences of the
policy process, and two were directly related to the SWAP model. The first of these
introduced participants to the model and built a discussion on SWC using the model.
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The aim of this session was two-fold: first, to get a basic sense of the views of the
participants on the model and, second, to demonstrate the use of the model as an
“interested amateur”. This was done by asking the participants to critique the model
and explore their views, both when they agreed or differed. The framework and
underlying assumptions were used as the main focus here, rather than the results or
live “running” of the model. The second of the two sessions introduced the envisaged
use of the SWAP model and built discussion on the participants’ view of this. The
aim was to understand whether the participants agreed that the SWAP model could
be used as an “interested amateur”, explore any other potential uses and understand
what barriers there may be to its use.

2.2.3. Presenting the Model

If we are to suggest that ABMs have particular characteristics that make them
good “interested amateurs”, it is important to carefully consider how a model is
presented to stakeholders. For this workshop, it was decided to present the SWAP
model in two ways: first, to give an overview of the purpose, assumptions and
results of the model in a short presentation, including videos of the model running
“live”. Figures 3 and 4 give a sense of what was presented in this section, showing a
screenshot of the model interface and some of the results of the model when different
interaction type scenarios are compared. Secondly, the framework of individual
farmer decisions and interaction using handouts with diagrams (using Unified
Modelling Language), pseudo-code and text (not dissimilar to those used in this
paper) was presented. The most detailed attention was given to exploring the
individual farmer decision making and interaction rules, rather than exploring
model results or different analyses of outputs.

The participants were then given the task of critiquing the model in small groups.
This meant that the participants received a focussed introduction to the model in a
presentation and, then, a self-led critical exploration of the model using the handout
materials. Giving the presentation first meant that the participants were able to get
a sense of the overall purpose of the model, its components and results. Beyond
this, they were also able to get a sense of what information on the model was being
handed out and to what level of detail they could consider the model, but without
having to actually go through all of the information themselves.
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Figure 3. Screen shot of the model being run “live” for the participants.

Figure 4. An example of model results shown to the participants: this graphs shows
the percent of farmers adopting SWC under different interaction type scenarios for
multiple runs of the model.
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It was this premise of a quick overview, followed by a self-led task with depth
available when required, that inspired the approach taken. It was during the
break-out group discussions that the detail of the model really came to the fore.
As the participants asked questions and made comments, the handouts were used to
give the finer-level granular detail. Much use was made of the handout materials,
which suggests that the participants did engage with the detail of the model.

2.3. Workshop Findings

This section first reports on the atmosphere at the workshop, using this to give
a sense of how participants engaged with the model. Next, it addresses three specific
questions key to the use of an ABM as an “interested amateur”.

2.3.1. Atmosphere

In the first session, the participants engaged with the model in a lively
way; discussion started quickly, with minimal prompting. The vibrant discussion
continued throughout the session, with only minor prompting, and indeed continued
beyond the allotted time. The session overran by approximately thirty minutes.
The buoyant and sustained discussion was an excellent sign of the participants’
engagement with the model and its detail. They appeared interested in the model,
and fears of difficulty with facilitation were quickly dispelled.

The discussions were good natured and friendly. Humour was used to deal
with the organiser’s position as a clear outsider. This made the discussion open, if
a little informal. Arguably, the lack of formality was as positive as the setting (on a
Western NGO campus), and the political and cultural sensitivity of some of the issues
under discussion (e.g., land tenure, ethnicity) meant the discussion may have become
difficult and constrained. Furthermore, the informality maximised the chance that
the participants would be less guarded about their opinions, and the model could
begin to become the “interested amateur” as envisaged. The organisers presented
themselves clearly as a non-expert on SWC, hoping to get help from the participants.
In this sense, continued inspiration was drawn from the concept of the “interested
amateur”: not only was the model playing this part, but so were they.

It is important to note that the participants seemed to like ABM in general. They
did not show any apprehension or distaste for the methodology, which was likely
unfamiliar to all. It was not required to go into a detailed discussion or defence of
ABM in general. The participants’ positive reaction to ABM supports the idea that
ABM has an intuitive appeal. The participants also appeared to gain a strong grasp
of what an ABM was and what it can do; though they asked many questions about
the approach and model, they did not ask any (or make comments) that showed
misunderstanding of the methodology. Again, this could easily not have been the
case and was encouraging from the start.
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The second session, aimed at gathering direct opinions on how the SWAP model
could be used, had been planned in a similar way to the previous sessions, with
the group breaking into smaller discussion groups before coming back together.
However, as time had run over in the morning, the session was streamlined into
one larger group discussion. This meant that the session seemed more formal, with
the participants all facing the front as notes were taken on a flip-chart. This format
appeared to inhibit the discussion; the participants were less engaged than when in
smaller groups. The subject matter may have played a role in this, too; the topic was
more hypothetical and removed from the participants’ current work and experience.
The topic was more explicitly selfish in terms of the organisers getting information
from the participants without much potential benefit for the participants. This is
likely to have also reduced the participants’ engagement in discussions. Having the
session after lunch also gave the session a sense of lethargy that was not present in the
morning. Perhaps of most note was that this session, though focused on discussion
about the model’s use, did not make use of the model itself, as in the other session.
This could provide the perfect example of how, without the model to aid discussion,
the same group of participants were less engaged and discussion was less buoyant.
Despite this change in atmosphere, the discussions did bring out some interesting
points and were certainly of use.

2.3.2. Can An ABM Be Used as an “Interested Amateur” in the Context of
SWC Policy?

The participants recognised the vast majority of the factors in the farmers’
behaviour framework and recognised the forms of interaction under which the model
assumes that farmers act. The participants agreed that all of the factors identified
in the framework were relevant, but to varying degrees. They felt some were less
important than others, because, as a generic set of factors, some were less applicable
to their specific region or Ethiopia as a whole. The participants were critical of
some parts of the model, particularly the factors that they felt were inappropriate
or less important, such as the use of the word “tribe” (one of the socio-economic
factors identified in the DeGraaff framework) and the lack of a detailed biophysical
representation.

There were some areas of discussion on which the participants did not come to
a consensus. These included the prevalence of off-farm employment and/or activity
and the prevalence of rented or short-term use of land. These differences became
clear due to the explicit causation detailed in the model assumptions; they were
challenged by some participants, but not others. It was the resulting debate on the
direction of causation and the current status of these parameters (i.e., how many
farmers rent or own land) that brought out the differences in beliefs. There were also
many contradictions in the discussion. For example, the same participant expressing
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one opinion early in the first session and, then, a mutually exclusive opinion later.
This occurred because the presence of the model led participants to discuss a range
of topics and to return and shift between topics in a way that they did not choose.
Had the participants been in more control of the direction of discussion, without
the model to lead them, it is possible that they could have easily avoided exposing
these inconsistencies.

These differences and inconsistencies in opinion were clearly highlighted by the
presence of the model in the participants’ discussions. Whilst it is entirely possible
that they may have reached these issues without the model, it is certain that the
framework of agent behaviours, the granular detail it provides and participants’
willingness to criticise the model led the participants directly to the main issues of
contention. Having the model as the focus of discussion gave the participants an
easy target at which to make their criticisms and assertions, in the full sight of others.
In this sense, the model served as an excellent “interested amateur”.

2.3.3. Can An ABM’s Level of Detail Focus Discussion, whilst Still Keeping Concepts
and Ideas Tractable?

The participants were quick to use the step-by-step and line-by-line nature of
the agent rules as a guide for their discussion. This meant that they went through
each step and its associated factors in a systematic manner. This certainly gave the
discussion a level of detail that was valuable. At times, the discussion became very
focussed on specific issues, and the participants made a lot of notes on each element
of the model. The participants also went off on tangents on occasion. However,
they appeared to never lose sight of the basic question of why farmers adopt SWC,
returning to it without the need of prompting. Very little effort was required to keep
the discussion on track, or on topic, as the model served as a natural chairperson.
The main problem with the level of detail was that it meant that the session overran.
This was mainly due to the depth to which the participants went through the model
rules and assumptions. This highlighted the models’ ability to force participants
into a detailed discussion. Despite the overrun in time, all of the planned topics of
discussion were covered. This was in part due to the model lending a clear structure
to the discussions, allowing the participants to identify the next area of discussion
easily. Once it was clear that time was overrunning, the participants appeared to
check for the upcoming areas of discussion indicated by the model and insist that
they wished to cover them also. In this sense, the model was successful in keeping
the concepts and discussion tractable, if not concise.

2.3.4. Did Stakeholders See Value in the SWAP Model as An “Interested Amateur”?

The participants did recognise the value of the model as an “interested
amateur”, and agreed that it had shown differences in opinion amongst them and
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inconsistencies in their beliefs. Despite this, they were quick to suggest that the
real value of using the model would be to those nearer the “bottom” of the policy
process and working closely with farmers on a more regular basis. This appeared to
be based on two beliefs. First, as the the model represents farmers’ decision making,
the participants appeared to see an intuitive appeal in using the model with farmers.
Secondly, they seemed less keen on the idea that those “further up” the policy process
needed to understand, or discuss, farmer behaviour in such detail; appearing to
believe this was beneath them in some sense.

Of all the topics covered during the workshop, the only one for which almost
completely negative views were expressed was the question of whether participants
could use the SWAP model themselves. Beyond suggesting the model would be
most useful to those nearer the “bottom” of the policy process, they were quick to
suggest that it was not in their remit to “innovate” in the methods they use and that
they would need to be instructed by their superiors to use such a tool as the SWAP
model. It is not clear whether this is a genuine bureaucratic/administrative barrier
to their use of such tools or whether this is a polite excuse, which avoids the need to
be more critical of the potential to use the model as an “interested amateur”.

3. Discussion

The SWAP model has shown us one example of how ABMs might be used as
“interested amateurs” and begun to identify the barriers that may stand in the way of
their use. This section will now attempt to outline more generally when and how
this approach may be appropriate and consider some of the main challenges.

3.1. When to Use “Interested Amateurs”

There are two key issues that should help identify when using the “interested
amateur” approach will be appropriate: firstly, when interaction, and the quality of
interaction, between different policy stakeholders has been identified as problematic.
This is a commonly-cited problem, in many policy domains, both in developing and
developed countries. In land use policy, with a relatively high number of policy
stakeholders, this is a particularly relevant issue. The approach has clear benefits
in bringing together stakeholders and focussing discussions. However, this is true
of other participatory approaches, namely companion modelling. Thus, secondly,
what differentiates the “interested amateur” approach is that it allows the use of
the model as an outsider, which can be an object for critique. The model becomes a
“guess” at the behaviour of a system, which is easy to attack, both because it is an
outsider (an amateur), but also because it is clearly not perfect or overly complex.
Other participatory approaches may not allow for this type of attack or critique, as
the simulation has been co-constructed, so that participants may be more hesitant
to criticise it, because it is constructed by themselves and other stakeholders and is
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also less easily dismissed as an outsider. A model developed outside the immediate
policy process is also more likely to contain thinking that is not being included in
that process and so provoke criticism or new discussion. It is also this outsider status
that allows a model, which can be perceived as a sophisticated technical object, to
be an “amateur”. The main challenge in this case is that the benefits of stakeholders
having ownership of the model are lost. This was reflected in the experience with
the SWAP model; it was critiqued, but participants were hesitant about using it
themselves (i.e., longer term engagement was non-existent). This decision between
using an approach that allows being an outsider and encouraging critique and that
which allows ownership and encourages future use will be the second key starting
point for any researcher or practitioner considering when to use the “interested
amateur” approach.

3.2. How to Use “Interested Amateurs”

At this point, having suggested that researchers and practitioners may wish
to use the “interested amateur” approach, it is helpful to make a few suggestions
of how to go about doing this. Firstly, it is likely a sensible strategy to base the
agent behaviour on a theory users may be familiar with or a middle-range theory
with a strong intuitive appeal; for example, a theory that has been developed in
the literature for the topic at hand or a theory that has been developed for the
central type of decision the agents in a model are making. For the SWAP model,
this meant using the DeGraaff et al. framework of farmers’ decision to adopt SWC
measures [21]. Alternatively, a middle-range type framework, such as the Consumat
approach [27,28], could have been used, because it closely relates to the decision
process that the agents in the ABM are going through and has an intuitive appeal
(i.e., it makes conceptual sense to beginners). Using theories like this will give
the model an immediate and intuitive appeal, making the model not appear as a
“black box”. This will suit its use as an ‘interested amateur” and make it easier to
communicate to stakeholders. The alternative of using more probabilistic or rational
utility maximisation type behaviour rules will be less useful in discussions, as they
will appear further removed from reality and make discussions more technical.

A less common tactic in designing an ABM, but one that will improve the use of
an “interested amateur” type model, is to include (and use in the decision rules) many
parameters; indeed, more than one might typically hope to include in a relatively
simple model. This goes against the KISS (keep it simple stupid) principle [29],
which advocates keeping a model simple, with as few parameters as possible. This
approach is intended to make a model more tractable when seeking to understand
results, emergent phenomena or running experiments. However, in the context of
using a model as an “interested amateur”, it is likely to focus discussions on those
few parameters included, at the expense of others. If it is our goal to draw out
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false assumptions and misunderstanding, this lack of breadth in the discussion will
hamper the likelihood of success. Thus, it is suggested that those using an ABM as an
“interested amateur” seek to include more parameters, so that the model has more
detail on which to focus participants’ discussions and, thus, enhances the granularity
that makes an ABM such an excellent “interested amateur”. This suggestion also
reflects the focus on the design and assumptions of agent rules rather than model
outputs, as seen in the SWAP example.

Finally, a key area of consideration should be how to communicate the model to
stakeholders. In the example of the SWAP model, we saw how a presentation was
combined with a self-led task and handouts. This allowed for a clear overview, with
detail accessible when discussion and critique required. However, if the benefits of
using an ABM are to be gained fully, we must constantly reconsider how our models
may be communicated, to capture their intuitive appeal, but also the level of detail
in factors and their interaction. They must also be presented in a way that makes
them amenable to critique. It is not our job as model developers to imbue our models
with a sense of overt or undeniable credibility. Indeed, the more unimpressive a
model appears, without actually being so poor that stakeholders dismiss it, the more
likely it is to invite the critique that can be so valuable in its role as an “interested
amateur”. Giving users the chance to “play” with the model may also be a fruitful
choice in some cases. Finally, one element that was not explored with the SWAP
model, but that may be worthwhile, is considering how to communicate emergent
phenomena and/or the results of the model more comprehensively and show how
the micro-level assumptions of the model link to its macro-level results. Using
various simple scenarios and comparing results is one potential avenue. Again, any
approach used should be aimed at using the detail and intuitive appeal of the model,
whilst keeping the model amenable to criticism.

By basing model development on existing academic literature, using many
model parameters and considering carefully how the model can be positioned and
presented to users, we will be able to maximise the chance that the model is accepted
as a credible outsider and, thus, invite critique, but also contain thinking from outside
the immediate policy process in which it is being used.

4. Conclusions

This paper has suggested that policy makers are experts in their policy area and
that experts often have problems interacting effectively, owing to various pressures,
which lead them to under-explain issues under discussion. It is suggested this is
particularly true of land use policy in which there are many different stakeholders
with a range of experiences and goals. The concept of the “interested amateur”
has been used as inspiration for how ABMs might be used to help counter this
problem. Dennett [5] suggests that “interested amateurs” can be included in experts’
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discussions to encourage the over-explaining of issues, with resulting benefits
to the quality and effectiveness of discussions. This paper’s main argument is
that ABMs have the potential to play the role of “interested amateurs” in policy
making processes. This is because of their unusual combination of characteristics;
offering a high level of detail, intuitive appeal and explicit representation of causality.
Furthermore, as models, they are more amenable to criticism resulting in debate than
human facilitators.

This novel approach to the use of ABMs has been demonstrated with the
example of the SWAP model of SWC. The use of the SWAP model at a workshop with
SWC policy stakeholders showed how an ABM can be successful in generating and
focussing discussion, inviting critique and allowing for the recognition of points of
contention. However, the example also highlights the barriers to the use of a model
over which policy stakeholders have no ownership.

Finally, some suggestions for when and how researchers and practitioners
might wish to use an ABM as an “interested amateur” have been put forward. These
highlight a key challenge for future research: to resolve the tension between the
ownership and amenability to critique of a model. Both have benefits, but they
appear mutually exclusive. Participatory modelling approaches that bridge this gap
would be of great potential benefit to policy making processes.
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