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Abstract: The Data Scarcity problem is repeatedly encountered in environmental research. This may
induce an inadequate representation of the response’s complexity in any environmental system to
any input/change (natural and human-induced). In such a case, before getting engaged with new
expensive studies to gather and analyze additional data, it is reasonable first to understand what
enhancement in estimates of system performance would result if all the available data could be well
exploited. The purpose of this Special Issue, “Overcoming Data Scarcity in Earth Science” in the
Data journal, is to draw attention to the body of knowledge that leads at improving the capacity of
exploiting the available data to better represent, understand, predict, and manage the behavior of
environmental systems at meaningful space-time scales. This Special Issue contains six publications
(three research articles, one review, and two data descriptors) covering a wide range of environmental
fields: geophysics, meteorology/climatology, ecology, water quality, and hydrology.

Keywords: earth-science data; data scarcity; missing data; data quality; data imputation; statistical
methods; machine learning; environmental modeling; environmental observations

1. Introduction

Environmental modeling deals with the representation of processes that occur in the real world in
space and time. Based on differential equations, dynamic models mostly describe the processes that
transform the environment through time. The spatial interactions and topological rules are mostly
managed by geographic information systems (GIS) [1]. These mathematical models heavily rely on
the data collected by direct field observations. However, a functional and complete dataset of any
environmental variable is difficult to collect because of two main reasons: (i) the low reliability in
the measurements (e.g., due to issues related to the equipment location or occurrences of equipment
malfunctions); and (ii) the high cost of the monitoring campaigns [2,3]. The lack of an adequate amount
of Earth-science data may induce an unsatisfactory and not reliable representation of the response’s
complexity of an environmental system to any input/change, both natural and human-induced. In this
case, before undertaking expensive studies to collect and analyze additional environmental data, it is
reasonable to first understand what improvement in estimates of system performance would result if
all the available data could be well exploited [4].

Missing data imputation is a crucial task in cases where it is fundamental to use all available data
and not neglect records with missing values [5]. Since the 1980s, many techniques to impute missing
data have been proposed [6,7]. Generally speaking, the methods for filling in an incomplete dataset
can be divided into two main categories: single imputation and multiple imputations [6]. Single
imputation, i.e., filling in precisely one value for each missing one, intuitively has many appealing
features, e.g., standard complete-data methods can be applied directly, and the substantial effort
required to create imputations needs to be carried out only once. Multiple-imputation is a method of
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generating multiple simulated values for each missing item to reflect appropriately the uncertainty
related to missing data [8].

A well-known and computationally simple method for the imputation of missing data is the
mean substitution. However, it can disrupt the inherent structure of the data considerably, leading to
significant errors in the covariance/correlation matrix and thereby degrading the performance of the
model based on this data set [9]. A slightly better approach is to impute the missing elements from an
ANOVA model [8]. More advanced imputation methods have been developed, and several methods
and algorithms are now available.

The purpose of this Editorial is twofold: (i) combine and address the contributions of this Special
Issue to use them as a basis in this area of science; (ii) encourage communication among the various
disciplines by identifying and grouping complementary research solutions.

2. Summary

The main goal of the Special Issue “Overcoming Data Scarcity in Earth Science” in the Data journal,
was to emphasize the body of knowledge that aims at enhancing the capacity of exploiting the available
data to better characterize, understand, predict, and manage the behavior of environmental systems
at all practical scales. This Special Issue contains six publications (three research articles, one review,
and two data descriptors) covering a wide range of environmental disciplines: hydrology [10], water
quality [11], meteorology/climatology [12,13], ecology [14], and geophysics [15].

2.1. Hydrology

In their article, Abraham et al. presented an application of machine learning for classifying soil into
hydrologic groups [10]. Based on several soil characteristics such as the value of saturated hydraulic
conductivity, and percentages of sand, silt, and clay, the authors trained machine learning models to
classify soil into four hydrologic groups (Group A: soils with high infiltration rate and low runoff;
Group B: soils with a moderate infiltration rate; Group C: soils with a slow infiltration rate; Group D:
a very slow infiltration rate and high runoff potential). Afterward, they compared the results of the
classification obtained using four different algorithms, (i) k-Nearest Neighbors (kNN), (ii) Support
Vector Machine (SVM) with Gaussian Kernel, (iii) Decision Trees, (iv) Classification Bagged Ensembles
and TreeBagger (Random Forest), with those obtained using estimation based on soil texture. Overall,
kNN, Decision Tree, and TreeBagger performed better then SVM-Gaussian Kernel and Classification
Bagged Ensemble. Among the four hydrologic groups, the authors noticed that group B had the
highest rate of false positives.

2.2. Water Quality

Zavareh and Maggioni proposed an approach to analyzing water quality data based on rough set
theory (RST) [11]. They collected six water quality indicators (temperature, pH, dissolved oxygen,
turbidity, specific conductivity, and nitrate concentration) at the outlet of the catchment that contains
the George Mason University campus in Fairfax (VA, United States) over three years (October
2015–December 2017). They evaluated the efficiency of using RST to estimate one water quality
indicator based on other given (known) indicators. The authors stated that RST does not require
any prior information on the dataset and represents a powerful tool able to deal with uncertainty
and vagueness in the sample. Overall, RST was proven capable of finding primary indicators and
discovering decision-making rules. RST-based decision-making rules can be a remarkable aid for
analysts and planners for their decision-making process.

2.3. Meteorology/Climatology

In their work, Cazes Boezio and Ortelli evaluated the use of data-assimilation techniques from field
measurements into initial conditions of atmospheric numerical simulations to obtain wind estimates in
Uruguay (South America), at heights of 100 m above the ground and lower [12]. The wind was assessed
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with hourly frequency in a regular grid that covers the entire country. The field data to be assimilated
was measured with anemometers placed 100 m above the ground in local wind farms. The data was
assimilated into initial conditions for the Weather Research and Forecast regional model (WRF) of the
National Center of Atmospheric Research (NCAR) using the module for data assimilation included in
this model, the WRF-DA module. The authors stated that in addition to its direct use in the numerical
prediction process, the results of data assimilation can be considered as “pseudo-observations” of
atmospheric variables in regular grids.

In his data-descriptor publication, Mistry introduced a new high-resolution global gridded dataset
of climate-extreme indices (CEIs) based on sub-daily precipitation and temperature data from the
Global Land Data Assimilation System (GLDAS) [13]. This dataset, called “CEI_0p25_1970_2016”,
includes 71 annual (monthly in some cases) CEIs at 0.25◦ × 0.25◦ gridded resolution, covering 47
years over the period 1970–2016. The author stated that CEI_0p25_1970_2016 fills gaps in existing
CEI datasets by encompassing more indices and by being the only comprehensive global gridded
CEI data available at high spatial resolution. The data of individual indices are freely downloadable
in the commonly used Network Common Data Form 4 (NetCDF4) format. Potential applications of
CEI_0p25_1970_2016 include the evaluation of sectoral impacts (e.g., hydrology, agriculture, energy,
health), as well as the identification of spatial and temporal patterns that show similar historical of
high/low temperature and precipitation extremes.

2.4. Ecology

In their thorough review, Pascoe et al. identified and discussed how the currently available
environmental Earth data are lacking concerning their applications in species distribution modeling,
mainly when predicting the potential distribution of invasive arthropods that vector pathogens (IAVPs)
at significant space-time scales [14]. The authors examined the issues related to the interpolation
of weather-station data, and the lack of microclimatic data, which is significant to the environment
experienced by IAVPs. Furthermore, they provided some suggestions for filling these data gaps.
The optimal resolution of environmental data relevant to IAVP ecology will likely vary according to
the species under consideration, but they assumed that this resolution would typically be less than 1 m
and hourly. The authors encourage modelers and ecologists to take a proactive approach in collecting
small resolution data using data loggers, crowdsourcing, unmanned aerial vehicles or controlled
environmental studies. They proposed that these proximally-sensed data, as well as remotely-sensed
data, be made open access in a user-friendly database.

2.5. Geophysics

In their work, Bataleva et al. developed a sophisticated geophysical station that collects, processes,
and store geophysical information, in particular, electrical and magnetic components of the natural
electromagnetic field, useful for the study of geodynamic processes occurring in the Earth’s crust
and upper mantle [15]. This station is located in the territory of the Bishkek Geodynamic Proving
Ground, located in the active seismic zone of the Northern Tien Shan (on the border between China
and Kyrgyzstan, Central Asia).

3. Statistics

The following tables (from Tables 1–4) represent some statistics about the publications belonging
to the Special Issue “Overcoming Data Scarcity in Earth Science” in the Data journal.
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Table 1. Brief report of the Special Issue.

Submission Quantity

Received 9
Published after review 6
Rejected 3
Acceptance rate 66.67%
Median publication time 57 days

Table 2. Type of publications belonging to the Special Issue.

Type of Publication Quantity Percentage

Article 3 50
Review 1 17
Data descriptor 2 33
Total 6 100

Table 3. Disciplines covered by the publications of the Special Issue.

Discipline Quantity Percentage

Hydrology 1 17
Water quality 1 17
Meteorology/climatology 2 33
Ecology 1 17
Geodynamics 1 17
Total 6 100

Table 4. Countries of the authors.

Country Quantity Percentage

Czech Republic 1 5
Italy 5 26
Kyrgyzstan 3 16
Netherland 1 5
United States 7 37
Uruguay 2 11
Total 18 100

Author Contributions: Conceptualization, A.G.; writing—original draft preparation, A.G.; writing—review and
editing, A.C., C.C., and L.E. All authors have read and agreed to the published version of the manuscript.
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Classification of Soils into Hydrologic Groups Using
Machine Learning
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Abstract: Hydrologic soil groups play an important role in the determination of surface runoff,
which, in turn, is crucial for soil and water conservation efforts. Traditionally, placement of soil
into appropriate hydrologic groups is based on the judgement of soil scientists, primarily relying on
their interpretation of guidelines published by regional or national agencies. As a result, large-scale
mapping of hydrologic soil groups results in widespread inconsistencies and inaccuracies. This paper
presents an application of machine learning for classification of soil into hydrologic groups. Based on
features such as percentages of sand, silt and clay, and the value of saturated hydraulic conductivity,
machine learning models were trained to classify soil into four hydrologic groups. The results of the
classification obtained using algorithms such as k-Nearest Neighbors, Support Vector Machine with
Gaussian Kernel, Decision Trees, Classification Bagged Ensembles and TreeBagger (Random Forest)
were compared to those obtained using estimation based on soil texture. The performance of these
models was compared and evaluated using per-class metrics and micro- and macro-averages. Overall,
performance metrics related to kNN, Decision Tree and TreeBagger exceeded those for SVM-Gaussian
Kernel and Classification Bagged Ensemble. Among the four hydrologic groups, it was noticed that
group B had the highest rate of false positives.

Keywords: multi-class classification; soil texture calculator; k-Nearest Neighbors; support vector
machines; decision trees; ensemble learning

1. Introduction

Soils play a crucial role in the global hydrologic cycle by governing the rates of infiltration and
transmission of rainfall, and surface runoff, i.e., precipitation that does not infiltrate into the soil
and runs across the land surface into water bodies, such as streams, rivers and lakes. Runoff occurs
when rainfall exceeds the infiltration capacity of soils, and it is based on the physical nature of soils,
land cover, hillslope, vegetation and storm properties such as rainfall duration, amount and intensity.
The rainfall-runoff process serves as a catalyst for the transport of sediments and contaminants, such
as fertilizers, pesticides, chemicals and organic matter, negatively impacting the morphology and
biodiversity of receiving water bodies [1,2]. Flooding and erosion caused by uncontrolled runoff,
particularly downstream, results in damage to agricultural lands and manmade structures [1]. Hence,
modeling surface runoff is an essential part of soil and water conservation efforts, including but not
limited to, forecasting floods and soil erosion and monitoring water and soil quality.

The U.S. Department of Agriculture’s (USDA) agency for Natural Resources Conservation Service
(NRCS), formerly known as the Soil Conservation Service (SCS), developed a parameter called Curve
Number (CN) to estimate the amount of surface runoff. Furthermore, soils are classified into Hydrologic
Soil Groups (HSGs) based on surface conditions (infiltration rate) and soil profiles (transmission rate).
Combinations of HSGs and land use and treatment classes form hydrologic soil-cover complexes,
each of which is assigned a CN [3]. A higher CN indicates a higher runoff potential. Consequently,

Data 2020, 5, 2; doi:10.3390/data5010002 www.mdpi.com/journal/data6
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accurate classification of HSGs is critical for the calculation of CNs that provide a meaningful prediction
of runoff.

In the United States, more than 19,000 soil series have been identified and aggregated into map
unit components with similar physical and runoff characteristics, and assigned to one of four HSGs:
A, B, C or D. The original assignments were based on measured rainfall, runoff and infiltrometer
data [4]. Since then, assignments have been based on the judgement of soil scientists, primarily relying
on their interpretation of criteria published in the National Engineering Handbook (NEH) Part 630,
Hydrology [5]. As with any subjective interpretation, the placement of soils into appropriate hydrologic
groups have been non-uniform and inconsistent over time and across geographical locations. Soils with
similar runoff characteristics were placed in the same hydrologic group, under the assumption
that soils found within a climatic region with similar depth, permeability and texture will have
similar runoff responses. Conventional soil mapping techniques extrapolate these classifications and
geo-reference them with GPS (Global Positioning Systems) and digital elevation models visualized in a
GIS (Geographic Information Systems) [6,7]. However, in addition to the inconsistent classification
of soil profiles, the varying definition of mapping units introduces a certain degree of subjectivity.
Over the past two decades, Pedology research has witnessed an evolution from traditional soil
mapping techniques to methods for ‘the creation and population of spatial soil information systems by
numerical models inferring the spatial and temporal variations or soil types and soil properties from
soil observation and knowledge and from related environmental variables’ [8], also known as Digital
Soil Mapping (DSM) [9–11].

Considering the advances in modern computing and the vastly expanding soil databases, NRCS
and the Agricultural Research Service (ARS) formed a joint working group in 1990 to address
shortcomings attributed to guidelines stated in NEH reference documents [12]. Two among the several
goals identified by the group were to standardize the procedure for the calculation of CNs from
rainfall-runoff data and to reconsider the HSG classifications. A fuzzy model that was developed
using the National Soil Information System (NASIS) soil interpretation subsystem was applied to
1828 unique soils using data from Kansas, South Dakota, Missouri, Iowa, Wyoming and Colorado.
Correlation between the soil’s assigned and modeled HSG was analyzed, and the overall HSG frequency
coincidence exceeded 54 percent [13]. It was observed that the correlation frequencies for soils from
groups A and D were higher than those for groups B and C. These correlation inconsistencies were
attributed to: (1) boundary conditions that occur when soils exhibit properties that do not fit entirely
into a single hydrologic group. The effects of this are more profound for groups B and C considering that
they are each bounded by two groups (2) fuzzy modeling of the subjective HSG criteria. To address the
inconsistencies due to boundary conditions, an improved method that developed an automated system
based on detailed soil attribute data was proposed by Li, R et al. [14]. This work aimed to mitigate
the aggregation effect of HSGs on soil information, and eventually the CNs, due to the assignment of
similar soils into different HSGs (exaggerating small differences between them) or different soils to
the same HSG (omitting differences between them). Furthermore, this work successfully identified
improper placement of HSGs. However, this work used a significantly smaller sample size of 67 soil
types in the Lake Fork watershed in Texas.

Machine learning, a branch of Artificial Intelligence, is an inherently interdisciplinary field that is
built on concepts such as probability and statistics, information theory, game theory and optimization,
among many others. In 1959, Arthur Samuel, one of the pioneers of machine learning, defined
machine learning as a “field of study that gives computers the ability to learn without being explicitly
programmed” [15]. A more recent and widely accepted definition can be attributed to Tom Mitchell:
“A computer program is said to learn from experience E with respect to some class of tasks T and
performance measure P, if its performance at tasks in T, as measured by P, improves with experience
E” [16]. Based on the approach used, type of input and output data, and nature of the problem being
addressed, machine learning techniques can be classified into four main categories: (1) supervised
learning; (2) unsupervised learning; (3) semi-supervised learning; and (4) reinforcement learning.

7
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In supervised learning, the goal is to infer a function or mapping from training data that is labeled.
The training data consist of an input vector X and an output vector Y that is labeled based on available
prior experience. Regression and classification are two categories of algorithms that are based on
supervised learning. Unsupervised learning, on the other hand, deals with unlabeled data, with the
goal of finding a hidden structure or pattern in this data. Clustering is one of the most widely used
unsupervised learning methods. In semi-supervised learning, a combination of labeled and unlabeled
data is used to generate an appropriate model for the classification of data. The reinforcement learning
method uses observations gathered from the interaction with the environment to make a sequence
of decisions that would maximize the reward or minimize the risk. Q-learning is an example of a
reinforcement learning algorithm.

The application of machine learning techniques in soil sciences ranges from the prediction of
soil classes using DSM [17,18] to the classification of sub-soil layers using segmentation and feature
extraction [19]. The predictive ability of machine learning models has been leveraged for agricultural
planning and mass crop yield, the prediction of natural hazards, including, but not limited to, landslides,
floods, drought and forest fires and monitoring the effects of climate change on the physical and
chemical properties of soil [20,21]. Based on high spatial resolution satellite data, terrain/climatic data,
and laboratory soil samples, the spatial distribution of six soil properties including sand, silt, and
clay were mapped in an agricultural watershed in West Africa [22]. Of the four statistical prediction
models tested and compared, i.e., Multiple Linear Regression (MLR), Random Forest Regression (RFR),
Support Vector Machine (SVM) and Stochastic Gradient Boosting (SGB), machine learning algorithms
performed generally better than MLR for the prediction of soil properties at unsampled locations.
In a similar study for a steep-slope watershed in southeastern Brazil [23], the performance of three
algorithms: Multinomial Logistic Regression (MLR), C5-decision tree (C5-DT) and Random Forest (RF)
was evaluated and compared based on performance metrices of overall accuracy, standard error, and
kappa index. It was observed that the RF model consistently outperformed the other models, while
the MLR model had the lowest overall accuracy and kappa index. In the context of DSM applications,
complex models such as RF are found to be better classifiers than generalized linear models such as
MLR. While machine learning offers the added advantage of identifying trends and patterns with
continuous improvement over time, these models are only as good as the quality of the data collected.
An unbiased and inclusive dataset, along with the right choice of model, parameters, cross-validation
method, and performance metrices is necessary to achieve meaningful results.

In this work, we investigated the application of four machine learning methods: kNN,
SVM-Gaussian Kernel, Decision Trees and Ensemble Learning towards the classification of soil into
hydrologic groups. The results of these algorithms are compared to those obtained using estimation
based on soil texture.

2. Background

Soils are composed of mineral solids derived from geologic weathering, organic matter solids
consisting of plant or animal residue in various stages of decomposition, and air and water that fill
the pore space when soil is dry and wet, respectively. The mineral solid fraction of soil is composed
of sand, silt and clay, relative percentages of which determine the soil texture in accordance with the
USDA system of particle-size classification. Sand, being the larger of the three, feels gritty, and ranges
in size from 0.05 to 2.00 mm. Sandy soils have poor water-holding capacity that can result in leaching
loss of nutrients. Silt, being moderate in size, has a smooth or floury texture, and ranges from 0.002
to 0.05 mm. Clay, being the smallest of the three, feels sticky, and is made up of particles smaller
than 0.002 mm in diameter. In general, the higher the percentage of silt and clay particles in soil, the
higher is its water-holding capacity. Particles larger than 2.0 mm are referred to as rock fragments
and are not considered in determining soil texture, although they can influence both soil structure
and soil–water relationships. The ease with which pores in a saturated soil transmit water is known
as saturated hydraulic conductivity (Ksat), and it is expressed in terms of micrometers per second
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(or inches per hour). Pedotransfer functions (PTFs) are commonly used to estimate Ksat in terms of
readily available soil properties such as particle size distribution, bulk density, and organic matter
content [24,25]. Machine Learning-based PTFs have been developed to understand the relationship
between soil hydraulic properties and soil physical variables [26].

Hydrologic Soil Groups

Soils are classified into HSGs based on the minimum rate of infiltration obtained for bare soil after
prolonged wetting [5]. The four hydrologic soil groups (HSGs) are described as follows:

Group A—Soils in this group are characterized by low runoff potential and high infiltration rates when
thoroughly wet. They typically have less than 10 percent clay and more than 90 percent sand or gravel.
The saturated hydraulic conductivity of all soil layers exceeds 40.0 micrometers per second.
Group B—Soils in this group have moderately low runoff potential and moderate infiltration rates
when thoroughly wet. They typically have between 10 and 20 percent clay and 50 to 90 percent sand.
The saturated hydraulic conductivity ranges from 10.0 to 40.0 micrometers per second.
Group C—Soils in this group have moderately high runoff potential and low infiltration rates when
thoroughly wet. They typically have between 20 and 40 percent clay and less than 50 percent sand.
The saturated hydraulic conductivity ranges from 1.0 to 10.0 micrometers per second.
Group D—Soils in this group are characterized by high runoff potential and very low infiltration rates
when thoroughly wet. They typically have greater than 40 percent clay and less than 50 percent sand.
The saturated hydraulic conductivity is less than or equal to 1.0 micrometers per second.
Dual hydrologic soil groups—Certain wet soils are placed in group D based solely on the presence of a
high water table. Once adequately drained, they are assigned to dual hydrologic soil groups (A/D,
B/D and C/D) based on their saturated hydraulic conductivity. The first letter applies to the drained
condition and the second to the undrained condition.

3. Methods

3.1. Soil Survey Data

The dataset used for this work was obtained from USDA’s NRCS Web Soil Survey (WSS), the
largest public-facing natural resource database in the world [27]. The Soil Survey Geographic Database
(SSURGO) developed by the National Cooperative Soil Survey was used to identify Areas of Interests
(AOI) in the State of Washington the Idaho Panhandle National Forest. Tabular data corresponding to
Physical Soil Properties and Revised Universal Soil Loss Equation, Version 2 (RUSLE2) related attributes
for various AOIs were retrieved from the Microsoft Access database and compiled into Microsoft
Excel spreadsheets. Features of interest include the map symbol and soil name, its corresponding
hydrologic group, percentages of sand, silt and clay, depth in inches and Ksat in micrometers per
second. The initial dataset comprised of 4468 unique soil types.

As with most survey-based datasets, there were incomplete or missing data, inconsistencies in
formatting and undesired data entries. The compiled dataset was preprocessed to remove samples
corresponding to: missing data points, dual hydrologic groups (A/D, B/D and C/D), and soil layers
beyond a water impermeable depth range of 20 to 40 inches. This reduced the dataset to 2107 unique
soil types. MATLAB® programming environment was used for all data preparation and processing.

3.2. Estimation Based on Soil Texture

Based on the percentages of sand, silt, and clay, soils can be grouped into one of the four major
textural classes: (1) sands; (2) silts; (3) loams; and (4) clays. The soil textural triangle shown in
Figure 1 illustrates twelve textural classes as defined by the USDA [28]: sand, loamy sand, sandy
loam, loam, silt loam, silt, sandy clay loam, clay loam, silty clay loam, sandy clay, silty clay, and
clay. These classifications are typically named after the primary constituent particle size, e.g., “sand”,
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or a combination of the most abundant particles sizes, e.g., “sandy clay”. One side of the triangle
represents percent sand, the second side represents percent clay, and the third side represents percent
silt. Given the percentages of sand, silt and clay in the soil sample, the corresponding textural class can
be read from the triangle. Alternately, the NRCS soil texture calculator [28] can be used to determine
textural class based on specific relationships between sand, silt and clay percentages as shown in
Table 1. In this work, the method used to assign HSGs based on soil texture was adopted from Hong
and Adler (2008) [29], which was modified from the USDA handbook [30] and National Engineering
Handbook Section 4 [5]. MATLAB® was used to assign HSGs based on soil texture calculations.

Figure 1. The soil textural triangle is used to determine soil textural class from the percentages of sand,
silt and clay in the soil [28].

Table 1. Soil texture calculations and mapping to hydrologic soil groups [28,29].

Relationship between Sand, Silt and Clay Percentages Textural Class Hydrologic Soil Group

((silt + 1.5 * clay) < 15) SAND A

((silt + 1.5 * clay ≥ 15) AND (silt + 2 * clay < 30)) LOAMY SAND A

((clay ≥ 7 && clay < 20) AND (sand > 52) AND ((silt + 2 * clay) ≥ 30) OR
(clay < 7 && silt < 50 AND (silt + 2 * clay) ≥ 30)) SANDY LOAM A

((clay ≥ 7 AND clay < 27) AND (silt ≥ 28 AND silt < 50) AND (sand ≤ 52)) LOAM B

((silt ≥ 50 AND (clay ≥ 12 AND clay < 27)) OR ((silt ≥ 50 AND silt < 80)
AND clay < 12)) SILT LOAM B

(silt ≥ 80 AND clay < 12) SILT B

((clay ≥ 20 AND clay < 35) AND (silt < 28) AND (sand > 45)) SANDY CLAY
LOAM C

((clay ≥ 27 AND clay < 40) AND (sand > 20 AND sand ≤ 45)) CLAY LOAM D

((clay ≥ 27 AND clay < 40) AND (sand ≤ 20)) SILTY CLAY LOAM D

(clay ≥ 35 AND sand > 45) SANDY CLAY D

(clay ≥ 40 AND silt ≥ 40) SILTY CLAY D

clay ≥40 AND sand ≤ 45 AND silt < 40 CLAY D

3.3. Machine Learning Algorithms

A common problem encountered in machine learning and data science is that of overfitting, where
the model does not generalize well from training data to unseen data. Cross validation techniques are
generally used to assess the generalization ability of a predictive model, thus avoiding the problem
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of overfitting. In this work, a Monte Carlo Cross-Validation (MCCV) method [31] was used by
randomly splitting the dataset into equal-sized training and test subsets, training the model, predicting
classification and repeating the process 100 times. The overall prediction accuracy (or other performance
metrics) is the average over all iterations.

A machine learning algorithm can be classified as either parametric or non-parametric. Parametric
methods assume a finite and fixed set of parameters, independent of the number of training examples.
In non-parametric methods, also called instance-based or memory-based learning, the number of
parameters is determined in part by the data, i.e., the number of parameters grows with the size
of the training set. Due to the availability of a large dataset with labeled data, in this work, we
considered four non-parametric supervised learning algorithms: (1) kNN (2) SVM Gaussian Kernel (3)
Decision Trees (4) Random Forest. A qualitative introduction to these algorithms is presented in the
following subsections.

3.3.1. k-Nearest Neighbors (kNN) Algorithm

kNN algorithm, an instance-based method of learning, is based on the principle that instances
within a dataset will generally exist in close proximity to other instances that have similar properties.
If the instances are tagged with a classification label, then the value of the label of an unclassified
instance can be predicted based on the labels of its nearest neighbors.

The Statistics and Machine Learning Toolbox from MATLAB® was used to create a Classification
kNN model using function ‘fitcknn’, followed by the function ‘predict’ to predict classification for
test data.

knn_model = fitcknn (features, labels, ‘NumNeighbors’, k)
predict_HSG = predict (knn_model, features_test)

where features is a numeric matrix that contains percent sand, percent silt, percent clay and Ksat;
label is a cell array of character vectors that contain the corresponding HSGs; and k represents the
number of neighbors.

3.3.2. Support Vector Machines (SVMs) with Gaussian Kernel

Support Vector Machines are non-parametric, supervised learning models that are motivated by a
geometric idea of what makes a classifier “good” [32]. For linearly separable data points, the objective
of the SVM algorithm is to find an optimal hyperplane (or a decision boundary) in an N-dimensional
space (where N is the number of features) that distinctly classifies data points. Support vectors are the
data points that lie closest to the hyperplane. The SVM algorithm aims to maximize the margin around
the separating hyperplane, essentially making it a constrained optimization problem.

For data points that are not linearly separable, which is true of most real-world data, the features
can be mapped into a higher-dimensional space in such a way that the classes become more easily
separated than in the original feature space. A technique commonly referred to as the ‘kernel trick’,
uses a kernel function that defines the inner product of the mapping functions in the transformed
space. One of the most popular kernels are the Radial Basis Functions (RBFs), of which, the Gaussian
kernel is a special case.

The Statistics and Machine Learning Toolbox from MATLAB® was used to create a template for
SVM binary classification based on a Gaussian kernel function using function ‘templateSVM’, followed
by the function ‘fitcecoc’ that trains an Error-Correcting Output Codes (ECOC) model based on the
features and labels provided. t is specified as a binary learner for an ECOC multiclass model. Finally,
the function ‘predict’ is used to predict classification for test data.

t = templateSVM (‘KernelFunction’, ‘gaussian’)
SVM_gaussian_model = fitcecoc (features, labels, ‘Learners’, t);
predict_HSG = predict (SVM_gaussian_model, features_test)
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3.3.3. Decision Trees

Decision Trees are hierarchical models for supervised learning in which the learned function is
represented by a decision tree [16,33]. The model classifies instances by querying them down the tree
from the root to a leaf node, where each node represents a test over an attribute, each branch denotes its
outcomes and each leaf node represents one class. Based on the measure used to select input variables
and the type of splits at each node, decision trees can be implemented using statistical algorithms such
as CART (Classification And Regression Tree), ID3 (Iterative Dichotomiser 3) and C4.5 (successor of
ID3), among many others.

The Statistics and Machine Learning Toolbox from MATLAB® was used to grow a fitted binary
classification decision tree based on the features and labels using function ‘fitctree’, followed by the
function ‘predict’ to predict classification for test data. Function ‘fitctree’ uses the standard CART
algorithm to grow decision trees.

decisiontree_model = fitctree (features, labels);
predict_HSG = predict (decisiontree_model, features_test)

3.3.4. Ensemble Learning

While decision trees are a popular choice for predictive modeling due to their inherent simplicity
and intuitiveness, they are often characterized by high variance. Consequently, decision trees can be
unstable because small variations in the data might result in a completely different tree and hence, a
different prediction. Ensemble learning methods that combine and average over multiple decision
trees have been used to improve predictive performance [32]. Bagging (or bootstrap aggregation) is a
technique that is used to generate new datasets with approximately the same (unknown) sampling
distribution as any given dataset. Random forests, an extension of the bagging method, also selects
a random subset of features. In other words, random forests can be considered as a combination of
‘bootstrapping’ and ‘feature bagging’.

The Statistics and Machine Learning Toolbox from MATLAB® was used to grow an ensemble
of learners for classification using function ‘fitcensemble’’, followed by the function ‘predict’ to predict
classification for test data.

ensemble_model = fitcensemble (features, labels);
predict_HSG = predict (ensemble_model, features_test);

The function ‘TreeBagger’ bags an ensemble of decision trees for classification using the Random
Forest algorithm, followed by the function ‘predict’ to predict classification for test data. Decision trees
in the ensemble are grown using bootstrap samples of the data, with a random subset of features to
use at each decision split.

treebagger_model = TreeBagger (50, features, labels, ‘OOBPrediction’, ‘On’, ‘OOBPredictorImportance’, ‘On’);
predicted_HSG = predict (treebagger_model, features_test);

‘OOBPrediction’ and ‘OOBPredictorImportance’ are set to ‘on’ to store information on what
observations are out of bag for each tree and to store out-of-bag estimates of feature importance in the
ensemble, respectively.
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4. Performance Metrics

A Confusion matrix is commonly used to visualize the performance of a classification algorithm.
Figure 2 illustrates the confusion matrix for a multi-class model with N classes [34]. Observations on
correct and incorrect classifications are collected into the confusion matrix C

(
cij
)
, where cij represents

the frequency of class i being identified as class j. In general, the confusion matrix provides four types
of classification results with respect to one classification target k:

• True Positive (TP)—correct prediction of the positive class (ck,k)
• True Negative (TN)—correct prediction of the negative class (

∑
i, j∈N\{k}

cij)

• False Positive (FP)—incorrect prediction of the positive class (
∑

i∈N\{k}
cik)

• False Negative (FN)—incorrect prediction of the negative class (
∑

i∈N\{k}
cki)

Figure 2. Confusion matrix for a multi-class model with N classes [34].

Several performance metrics can be derived from these four outcomes. The ones of interest to us
are listed below, for per-class classifications:

• Accuracy: This metric simply measures how often the classifier makes a correct prediction.

Overall Accuracy =

∑N
i=1 ci,i∑N

i=1
∑N

j=1 ci, j
(1)

• Recall (Sensitivity or True Positive Rate): This metric denotes the classifier’s ability to predict a
correct class

Recallclass =
TPclass

TPclass + FNclass
(2)

• Precision: This metric represents the classifier’s certainty of correctly predicting a given class

Precisionclass =
TPclass

TPclass + FPclass
(3)

• False Positive Rate (FPR): This metric represents the number of incorrect positive predictions out
of the total true negatives

FPRclass =
FPclass

FPclass + TNclass
(4)
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• True Negative Rate (TNR or Specificity): This metric represents the number of correct negative
predictions out of the total true negatives

TNRclass =
TNclass

FPclass + TNclass
(5)

• F1-Score: This metric is a harmonic mean of precision and recall. Although the F1-score is not as
intuitive as accuracy, it is useful in measuring how precise and robust the classifier is.

F1− Scoreclass =
2 ∗ TPclass

2 ∗ TPclass + FNclass + FPclass
(6)

• Matthews Correlation Coefficient (MCC): For binary classification, MCC summarizes into a single
value the confusion matrix. This is easily generalizable to multi-class problems as well.

MCCclass =
TPclass ∗ TNclass − FPclass ∗ FNclass√

(TPclass + FPclass) ∗ (TPclass + FNclass) ∗ (FPclass + TNclass) ∗ (FNclass + TNclass)
(7)

• Cohen’s Kappa (κ): This metric compares an Observed Accuracy with an Expected Accuracy
(random chance)

κclass =
po − pe

1− pe
(8)

where po represents the accuracy and pe represents a factor that is based on normalized
marginal probabilities.

For multi-class classification problems, averaging per-class metric results can provide an overall
measure of the model’s performance. There are two widely used averaging techniques: macro-averaging
and micro-averaging.

• Macro-average: Macro-averaging reduces the multi-class predictions down to multiple sets of
binary predictions. The desired metric for each of the binary cases are calculated and then averaged
resulting in the macro-average for the metric over all classes. For example, the macro-average for
Recall is calculated as shown below:

Recallmacro =

∑N
i=1 Recalli

N
(9)

• Micro-average: Micro-averaging uses individual true positives, true negatives, false positives and
false negatives from all classes to calculate the micro-average. For example, the micro-average for
Recall is calculated as shown below:

Recallmicro =

∑N
i=1 TPclass∑N

i=1 TPclass +
∑N

i=1 FNclass
(10)

Macro-averaging assigns equal weight to each class, whereas micro-averaging assigns equal
weight to each observation. Micro-averages provide a measure of effectiveness on classes with
large observations, whereas macro-averages provide a measure of effectiveness on classes with
small observations.

5. Results and Discussions

Following data preparation and pre-processing in MATLAB®, soil data samples were classified
into one of the four hydrologic groups using soil texture calculations, followed by classifications using
the following algorithms: (a) k-Nearest Neighbor (kNN), (b) SVM Gaussian Kernel, (c) Decision Tree,
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(d) Classification Bagged Ensemble, and (e) TreeBagger. A Monte Carlo Cross-Validation (MCCV)
method was used to avoid the problem of overfitting [31]. A measure of overall accuracy was first
computed to compare all five algorithms with the soil texture-based classification. Table 2 shows
that overall accuracy for the latter is significantly lower than those for the machine learning-based
classification algorithms. In fact, none of the HSG C occurrences were correctly classified using soil
texture calculations. The TreeBagger (Random Forest) algorithm has the highest overall accuracy
of 84.70 percent, closely followed by the Decision Tree and kNN algorithms with 83.12 percent and
80.66 percent, respectively. Although applied for an entirely different dataset, the fuzzy system
hydrologic grouping model [13] results in an overall correlation frequency of 60.5 percent for HSGs A,
B, C and D, with higher correlation between assigned and modeled results for HSGs A and D.

Table 2. Comparison of overall accuracy.

Method Overall Accuracy

Soil Texture Calculator 0.54
k-Nearest Neighbor (kNN) 0.81

SVM Gaussian Kernel 0.72
Decision Tree 0.83

Classification Bagged Ensemble 0.79
TreeBagger 0.85

For datasets in which the classes are not represented equally (also known as imbalanced classes),
accuracy is typically not a good measure of performance. Out of the 2107 unique soil samples in the
observed group, 337 belong to HSG A, 1142 to HSG B, 511 to HSG C and 117 to HSG D. Given that
our dataset is relatively imbalanced, we further evaluate the performance of all five algorithms based
on metrics of Recall, Precision, FPR, TNR, F1-Score, MCC and Kappa. It is important to account for
chance agreement when dealing with highly imbalanced classes since a high classification accuracy
could result from classifying all observations as the largest class [35,36]. Table 3 lists per-class results
and macro- and micro-averages of these metrics for classification using kNN, SVM and Decision Trees.
Table 4 presents the same for two Ensemble Learning algorithms. A graphical comparison of individual
classes (HSGs) for each metric is shown in Figure 3.

Table 3. Comparison of performance metrics for classification using k-Nearest Neighbors (kNN),
Support Vector Machine (SVM) and decision trees.

k-Nearest Neighbor (kNN); k = 4

Recall Precision FPR TNR F1 Score MCC Kappa

HSG A 0.84 0.86 0.03 0.97 0.84 0.82 0.69
HSG B 0.85 0.84 0.20 0.80 0.84 0.65 0.08
HSG C 0.72 0.73 0.09 0.91 0.72 0.63 0.56
HSG D 0.73 0.83 0.01 0.99 0.77 0.76 0.89

Macro Average 0.78 0.81 0.08 0.92 0.79 0.72 0.56

Micro Average 0.80 0.80 0.07 0.93 0.80 0.73 0.73

Support Vector Machines (SVM) Gaussian Kernel

HSG A 0.90 0.79 0.05 0.95 0.84 0.81 0.67
HSG B 0.86 0.71 0.42 0.58 0.77 0.46 0.09
HSG C 0.35 0.65 0.06 0.94 0.45 0.36 0.66
HSG D 0.54 0.98 0.00 1.00 0.69 0.72 0.91

Macro Average 0.66 0.78 0.13 0.87 0.69 0.59 0.58

Micro Average 0.74 0.74 0.09 0.91 0.74 0.65 0.65

Decision Tree

HSG A 0.88 0.84 0.03 0.97 0.86 0.83 0.68
HSG B 0.91 0.83 0.22 0.78 0.87 0.70 0.03
HSG C 0.67 0.82 0.05 0.95 0.74 0.67 0.59
HSG D 0.66 0.85 0.01 0.99 0.74 0.73 0.90

Macro Average 0.78 0.84 0.08 0.92 0.80 0.73 0.55

Micro Average 0.79 0.79 0.07 0.93 0.79 0.72 0.72
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Table 4. Comparison of performance metrics for classification using ensemble learning algorithms.

Classification Bagged Ensemble

Recall Precision FPR TNR F1 Score MCC Kappa

HSG A 0.89 0.79 0.05 0.95 0.83 0.80 0.67
HSG B 0.91 0.77 0.32 0.68 0.83 0.61 0.04
HSG C 0.49 0.82 0.04 0.96 0.61 0.55 0.64
HSG D 0.59 0.96 0.00 1.00 0.73 0.74 0.91

Macro Average 0.72 0.83 0.10 0.90 0.75 0.68 0.57

Micro Average 0.79 0.79 0.07 0.93 0.79 0.73 0.73

TreeBagger; N = 50

HSG A 0.89 0.85 0.03 0.97 0.87 0.85 0.68
HSG B 0.93 0.84 0.21 0.79 0.88 0.73 0.02
HSG C 0.69 0.86 0.04 0.96 0.76 0.71 0.59
HSG D 0.65 0.87 0.01 0.99 0.74 0.74 0.90

Macro Average 0.79 0.86 0.07 0.93 0.81 0.76 0.55

Micro Average 0.78 0.78 0.08 0.92 0.78 0.70 0.70

It should be noted that micro-averages for Recall, Precision and F1-Sscore are equal, as expected
in multi-class classification problems. Moreover, micro-averages for MCC and Kappa are equal. It can
be observed that for all five algorithms, the ability of the classifiers to correctly predict (Recall) HSGs A
and B are relatively higher when compared to HSGs C and D. This is in line with results obtained for
three-class and seven-class classification of soil types using Decision Trees and SVM in [19], wherein
sandy soils had higher classification accuracy. On the other hand, the certainty with which the
classifiers predict correct classes (Precision) is relatively higher for HSG D in our work. A comparison
of macro- and micro-averages of F1-Scores among the five classifiers shows that kNN, Decision Tree and
TreeBagger have scores close to 0.8, while SVM-Gaussian Kernel lags with a score close to 0.7. Among
the four soil groups, HSG B has the highest rate of False Positives, with the highest being 57.8 percent
for SVM-Gaussian Kernel and lowest being 19.83 percent for kNN. The fact that HSG B is the largest
class in the dataset, and bordered by two other groups, explains the high FPR. A comparison of macro-
and micro-averages of MCCs among the five classifiers shows comparable results (~0.72) for kNN,
Decision Tree and TreeBagger. Yet again, SVM-Gaussian kernel has the lowest score (~0.6). The results
of Cohen’s Kappa coefficient for HSG B shows some discrepancy that is consistent across all five
classifiers. This may be related to the corresponding high FPRs. Regardless, the micro-average Kappa
value is consistent with that of MCC, possibly accounting for any class imbalance. An interesting
observation is that the micro- and macro-averages of Kappa coefficients for all five classifiers are similar
in value. The macro-averages range from 0.55 (RF and DT) to 0.58 (SVM) and micro-averages range
from 0.65 (SVM) to 0.73 (kNN and CBE), all within the moderate to substantial agreement range [37].
This similarity is observed in studies related to machine learning techniques for DSM, suggesting
that the quality and robustness of datasets is of greater importance than the classifier itself [38,39].
In the context of predicting soil map units on tropical hillslopes in Brazil, an RF model yielded an
overall accuracy of 78.8 percent and a Kappa index of 0.76, while a Decision Tree model had an overall
accuracy of 70.2 percent and a Kappa value of 0.66 [39]. In contrast, for classification based on soil
taxonomic units in British Columbia, Canada, kNN and SVM resulted in the highest accuracy of
72 percent; however, models such as CART with bagging and RF were preferred due to the speed of
parameterization and the interpretability of the results, while resulting in similar accuracies ranging
from 65 to 70 percent [40].
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Figure 3. A graphical representation of per-class performance metrics for kNN, SVM-Gaussian Kernel,
Decision Trees and Ensemble Learning Algorithms (CBE and TB).

6. Conclusions

This work presents the application of machine learning towards classification of soil into hydrologic
groups. The machine learning models tested were kNN, SVM-Gaussian Kernel, Decision Trees and
Ensemble Learning (Classification Bagged Ensemble and Random Forest). It was observed that for all
five classifiers, Recall for HSGs A and B were relatively higher when compared to HSGs C and D, but
precision was relatively higher for HSG D. Overall, performance metrics related to kNN, Decision Tree
and TreeBagger exceeded those for SVM-Gaussian Kernel and Classification Bagged Ensemble.

As part of future work, the effects of class imbalance will be investigated by comparing datasets
with varying degrees of imbalance and using various cross-validation techniques with proportional

17



Data 2020, 5, 2

stratified random sampling. Deep learning methods that address this classification problem will also
be explored.
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Abstract: This work proposes an approach to analyze water quality data that is based on rough set
theory. Six major water quality indicators (temperature, pH, dissolved oxygen, turbidity, specific
conductivity, and nitrate concentration) were collected at the outlet of the watershed that contains
the George Mason University campus in Fairfax, VA during three years (October 2015–December
2017). Rough set theory is applied to monthly averages of the collected data to estimate one indicator
(decision attribute) based on the remainder indicators and to determine what indicators (conditional
attributes) are essential (core) to predict the missing indicator. The redundant attributes are identified,
the importance degree of each attribute is quantified, and the certainty and coverage of any detected
rule(s) is evaluated. Possible decision making rules are also assessed and the certainty coverage
factor is calculated. Results show that the core water quality indicators for the Mason watershed
during the study period are turbidity and specific conductivity. Particularly, if pH is chosen as a
decision attribute, the importance degree of turbidity is higher than the one of conductivity. If the
decision attribute is turbidity, the only indispensable attribute is specific conductivity and if specific
conductivity is the decision attribute, the indispensable attribute beside turbidity is temperature.

Keywords: rough set theory; water quality; attribute reduction; core attribute; rule extraction

1. Introduction

Since water quality is affected by complex factors like animal/human activities and weather
events, its continuous sampling and monitoring is of paramount importance for human health [1].
The United States Geological Survey (USGS) has been continuously monitoring the quality of surface
water across the U.S. over the past decades [2]. The most common water quality indicators suggested
by the USGS are temperature, specific conductance, dissolved oxygen concentration (DO), pH, and
turbidity. Collecting and analyzing water quality data is a challenging task. First off, water quality
monitoring techniques are different in different water bodies like streams, lakes, bays, and estuaries,
characterized not only by different microscopic and macroscopic organisms, but also by different
ecosystems, flow rate, and accessibility. Additional common challenges include uncertainty in water
quality observations and instrument failure. In the instance of instrument malfunctioning or stop
recording, one or more values in the time series may be missing. Popular methods to recover gaps
in time series are divided into two major groups: deterministic and stochastic [3]. Examples of
deterministic approaches are nearest-neighbor interpolation, polynomial interpolation, and methods
based on distance weighting. Regression methods, auto regressive methods, and machine learning
methods fall under the stochastic category [3].

Sampling water quality is further complicated by the development of an effective method to
analyze and evaluate the collected data. Water quality data are usually characterized by non-Gaussian
distributions. Also, the presence of outliers and missing values are very common [4]. As a result,
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finding an appropriate analytical method is key. Some popular classical methods are graphical
analysis (e.g., boxplots, scatter plots, and Q-Q plots), probability distribution analysis, and trend
analysis. However, when dealing with excessive amount of data, it is easy to miss hidden patterns
and information. In the past two decades, several studies have proposed novel approaches to analyze
water quality data, including fuzzy theory [5], maximum likelihood methods [6], principal component
analysis [7], cascade correlation artificial neural network [8], interactive fuzzy multi-objective linear
programming [9], linear regression [10], inexact chance-constrained quadratic programming [11], and
Dempster-Shafer methods [12]. All these methods have the ability to deal with large datasets and
investigate relationships among water quality indicators. However, to take advantage of the above
tools, prior and/or additional information about the data is needed. For example, the fuzzy set theory
requires a grade of membership (that defines how each data point is mapped to a membership value)
or a value of possibility (e.g., possible, quite possible, slightly possible, impossible). Similarly, the
Dempster-Shafer theory necessitates basic probability analysis [13].

Rough Set Theory (RST), introduced by Pawlak in 1982 [13], represents a valid alternative to
overcome these issues. RST is a powerful tool to deal with large amounts of information, does not
require preliminary or additional information about the data, and considers vagueness and uncertainty
in the dataset [14]. RST is commonly used in classification, ranking, multi-criteria decision analysis,
and decision rules [15]. One of the applications of RST is pattern recognition by attribute reduction.
By reducing unnecessary features, RST is capable of discovering hidden patterns in high dimensional
datasets [16]. The philosophy of rough set is based on the assumption that some information is
associated to every object in the universe. Objects sharing the same information are called indiscernible
and the indiscernibility relation is the mathematical basis of rough set theory [17]. This tool has been
successfully applied to areas like healthcare, banking, medicine, engineering, environmental science,
among others [17].

In this work, we investigate the potential of applying RST to water quality analysis. RST is
useful when dealing with complexity and vagueness in a dataset, which is always the case when
analyzing water quality field data. Although a few attempts exist in the field of environmental and
water resources engineering [18,19], the application of RST for assessing water quality indicators has
not been widely explored. For example, Shen and Chouchoulas [20] proposed a hybrid system called
fuzzy-rough estimator to assess the size of algae population based on water characteristics. Although
their attribute reduction method (going from eleven original attributes to seven) was demonstrated
to be successful, their approach was not capable of extracting high accuracy sets of rules. Another
application of RST in water resources engineering is the one investigated by Barbagallo et al. [21]
who studied reservoir operating rules. This study employed the integrated RST and Rose application,
a software developed by the University of Poznan in Poland [22], to provide the minimal condition
attributes and reveal the relevance of each attribute. Dong et al. [18] proposed a model to forecast
annual runoff from a reservoir using RST. Their results showed that the larger the samples was, the
more accurate the model. In a study performed by Ip et al. [23], RST was employed to identify the
significant water quality indicators in a decision-making system. Specifically, RST was able to reduce
the number water quality indicators and quantify the importance degree of each core indicator.

Other studies combined RTS with other approaches, such as the one by Pai and Lee [19] that
introduced the Multinomial Logistics Regression (MLR) model. MLR was used to investigate the
relationship between different degrees of water pollution and environmental factors, like the one
between the concentration of SO2 emitted by car and motorcycle exhausts and ozone density in the
atmosphere. This framework was shown to be capable of predicting water quality using environmental
factors rather than monitoring the processes of chemical elements. Another example is the work by
Karimi et al. [24] who employed the variable consistency dominance-based rough set approach to
explore the complex relationship between water quality and environmental indicators. They explored
the relationship between total dissolved solids (TDS) and environmental indicators used as explanatory
variables, such as precipitation, river water temperature, runoff, normalized difference vegetation
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index (NVDI), land surface temperature, river water temperature. Using a moving average filter in
the TDS data, they decreased the noise and reduced the width of the boundary region between the
lower approximation (all elements in a subset belong to the set) and upper approximation (all elements
possibly belong to the set).

The main goal of this work is to assess the efficiency of using RST to estimate one water quality
indicator based on given (known) indicators. Evaluating the overall quality of the stream water is
outside the scope of this work. What we consider here is a comprehensive approach that looks at
several water quality indicators rather than providing a generic assessment of the stream healthiness.
Our hypothesis is that, when observations in a time series are missing, RST is capable of providing
information regarding the missing indicator based on the other recorded indicators. RST also identifies
the dispensable indicators. By eliminating the dispensable (redundant) indicator or indicators, the
complexity of the dataset is reduced. The strength of each indicator in finding an unknown indicator is
assessed and dispensable attributes are identified to discover hidden patterns. Section 2 introduces the
basics of rough set theory and its application to a water quality dataset collected in Fairfax, VA during
2015 to 2017. Section 3 presents the results, whereas Section 4 discusses the results and summarizes
the main conclusions.

2. Materials and Methods

2.1. Rough Set Theory

In RST, data are represented by an information system or information table consisting of
non-empty sets of finite objects (rows) and non-empty finite set of attribute (columns). More formally:

S = (U, A) (1)

where S is the decision system, U is the universe, and A is an attribute.
The central concept in RST is the indiscernibility relation, a relationship between two (or more)

objects where all the values are identical (equivalent) with respect to a subset of considered
attributes [25]. The indiscernibility relation is defined as any subset B of A with a binary relation I
(B) on U. For every a ∈ A: (x, y) ∈ I(B) if and only if a(x) = a(y), where the value of attribute a is for
element x (or y).

Approximation is another fundamental concept in RST. On one hand, lower approximation refers
to the domain of objects that are known with certainty to belong to the subset of interest. The lower
approximation is also called B-positive region, posB(X). On the other hand, upper approximation refers
to objects that possibly belong to the subset of interest [26].

Suppose X ⊂ U, and B ⊂ A, the Blower and Bupper approximation of X, respectively, are:

Blower (X) = ∪ {B(x):B(x) ⊂ X} (2)

Bupper (X) = ∪ {B(x):B(x) ∩ X �= ∅}. (3)

Therefore, the B-boundary region of X is defined as:

BNB(X) = Bupper (X) − Blower (X). (4)

If the boundary region is empty, then X is exact (or crisp). Otherwise, X is inexact and is classified
as rough. The approximation method is a valuable method to express data topological properties [14].
The decision-making (DM) rule is another helpful tool to discover hidden patterns in a dataset and is
defined as follows:

S = (U, C, D) (5)
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where C is a disjoint set of condition attributes and D is the decision attribute. For every x ⊂ U, there
exist C1(x), . . . , Cn(x), d1(x), . . . , dm(x). The decision rule induced by x in S is:

C1(x), . . . , Cn(x) → d1(x), . . . , dm(x) or C →D. (6)

where the arrow implies the decision D is based on condition C. The importance degree of attributes
relative to the decision is calculated as:

γcd (c) = {|posc(D)|/|U|} − {|pos(c − {c})(D)|/|U|}. (7)

This way the most important attributes are selected and if the importance degree equals zero, the
attribute is unimportant. The larger γcd (c), the higher the attribute degree of importance is. Please
note that the importance degree is not a percentage and has no units. If |x| is the number of element
in a set (i.e., cardinality of x), then the support of decision is defined as:

suppx(C,D) = |A(x)| = |C(x) ∩ D(x)| (8)

and the strength of the decision is quantified as:

σx(C,D) = suppx(C,D)/|U|. (9)

In other words, the support of the decision corresponds to the number of times that a certain rule
is observed within the dataset and the strength of the decision is the support of the decision divided
by the total number of decision rules. So, if the support of a decision is high, it means that the number
of times that the specific decision rule is repeated is high and consequently, this decision rule is strong.

Also, the certainty of the decision rule is calculated as:

cerx(C,D) = [|C(x) ∩ D(x)|]/|C(x)| = suppx(C,D)/|C(x)| = σx(C,D)/π|C(x)| (10)

where π|C(x)| = |C(x)|/|U|. When cerx equals to one, then C→xD is a certain decision rule.
Another useful factor in the DM rule concept is the coverage of decision rule defined as:

covx(C,D) = [|C(x) ∩ D(x)|]/|D(x)| = suppx(C,D)/|D(x)| = σx(C,D)/π|D(x)| (11)

where π|C(x)| = |D(x)|/|U|. The coverage coefficient is the conditional probability of reasons for a
given decision.

When C→xD is a decision rule, then D→xC is called the inverse decision rule and can be used to
give explanations (reasons) for a decision. Please note that the certainty factors for inverse decision
rules are coverage factors for the original decision rule [14].

2.2. Study Area and Dataset

In this study, we evaluate the chemical and physical quality of water at the outlet of the
watershed that contains the George Mason University campus in Fairfax, VA. Figure 1 shows the
watershed boundaries and the location where water quality indicators were sampled. This urbanized
watershed contains two small creeks and one retention pond and is located within the larger Pohick
Creek Watershed. Moreover, it consists of generally flat to sloping topography with most drainage
(approximately 90%) flowing towards the south central portion of the campus and Pohick Creek.

A water quality monitoring instrument (the Eureka Manta2 Waterprobe) with six sensors
automatically records six water quality indicators (listed in Table 1): dissolved oxygen concentration
(DO), nitrate concentration, pH, specific conductivity, temperature, and turbidity. These water quality
indicators were chosen for several reasons. First off, they are listed by the Environmental Protection
Agency (EPA) to define water quality standards for surface water [27]. Secondly, since George
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Mason University complies with the Clean Water Act and EPA storm water regulations, its Facilities
Department monitors these indicators across the campus every year [28]. The water quality probe
recorded each indicator every hour from October 2015 to December 2017. However, the probe was out
for calibration and repairs occasionally and there have been some frequent network issues with the
data logger. As a result, only 14 months of data are used in this work.

Figure 1. Location of study site.

Most data have been collected during 2016 and 2017. Both years are characterized by monthly
mean temperature and precipitation that are similar to the 30-year mean values for the region [29].
Specifically, the average temperature during the past 30-year in Fairfax, VA is 13 ◦C and the yearly
average temperature both in 2016 and 2017 is 14 ◦C. The average 30-year cumulative precipitation is
107 cm and the average precipitation for 2016 and 2017 is 90 cm and 104 cm, respectively. This indicates
that 2016 and 2017 are not anomalous years in terms of regional climatology [29]. The collected data,
summarized in Table 1, show that water temperature fluctuates from about 5 ◦C in winter to almost
30 ◦C in summer. The average pH is 6.75 and it falls in the range identified by EPA water quality
standards for the Commonwealth of Virginia [27]. The average DO is 6.14 mg/L and it is also within
the EPA water quality standards. The level of nitrate (average of 136.11 mg/L-N) shows that the
runoff water possibly traveled through lands with fertilizers. Another possible source of nitrate is the
atmosphere containing nitrogen compounds derived from automobiles [30]. According to EPA, the
natural level of nitrate from wastewater effluent can range up to 30 mg/L. Finally, the high standard
deviations in conductivity and turbidity are also common because of the frequent storms in this region.

The collected data are then discretized into three categories (low, medium and high): (i) any value
lower than the 25th quartile is classified as low (L); (ii) any value between the 25th and 75th quartiles
is classified as medium (M); and (iii) any value higher than the 75th quartile is classified as high (H).
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Table 1. Units, average, standard deviation, 25th and 75th quartiles of water quality indicators collected
during the study period at the location shown in Figure 1.

Dissolved
Oxygen

Nitrate
Concentration

Specific
Conductivity

Temperature Turbidity pH

Symbol DO NO3 K T Tu pH
Units mg/L mg/L uS/cm ◦C NTU -
Average 6.14 136 342 20.7 40.9 6.75
St. Deviation 1.23 46.4 126 3.63 95.7 0.16
25th Quartile 5.58 128 280 18.4 5.67 6.65
75th Quartile 6.72 158 384 23.3 36 6.82

A plot of time series of all the water quality indicators during the study period is shown in
Figure 2. The inverse correlation between pH and temperature is clearly notable. However, it is
important to mention that correlations between water quality indicators (as shown in [31]) at monthly
scales are affected by several parameters, including environmental conditions and anthropogenic
factors (e.g., rainfall events, construction sites).

Figure 2. Time series for the six water quality indicators during the study period: (a) DO; (b) NO3;
(c) specific conductivity; (d) temperature; (e) turbidity; and (f) pH.

The shape of the frequency distributions for the water quality indicators considered in this study
demonstrates the difficulty of fitting a known distribution to these datasets (Figure 3). For instance,
the turbidity frequency distribution—shown in Figure 3e—is clearly non-normal and skewed towards
lower values, with a long tail at higher values. On the other hand, some indicators (e.g., DO, specific
conductivity) show more symmetrical distributions.
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Figure 3. Frequency distribution histograms for: (a) DO; (b) NO3; (c) specific conductivity;
(d) temperature; (e) turbidity; and (f) pH during the study period.

3. Results

The information table is set up to apply RST to the data collected at the Mason watershed outlet.
Specifically, five water quality indicators are chosen as the conditional attributes and the sixth one
as the decision attribute. The water quality probe reads each water quality indicator every hour.
However, in order to introduce rough set theory to water quality analysis, coarse resolution (monthly
average) data are examined. This not only helps with showing a limited amount of condition and
decision attributes in the following tables, but also helps to reduce the random noise in the data
sample. Numerical values are assigned to each of the 14 months and presented as time codes in Table 2.
The following analysis is based on the scenario in which pH is chosen as the decision attribute (D) and
the rest of the indicators as condition attributes (C). In set theory formalism, this corresponds to U = {1,
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}, C = {DO, NO3, K, T, Tu}, and D = {pH}, where C and D can be
either L, or M, or H.

The first step is to identify redundant (or identical) time codes. After analyzing each time code, {7}
and {8} are the only ones found identical, not only in terms of attributes, but also in terms of decision.
This means that every single conditional and decision attribute is the same for time codes {7} and {8}.
The fact that they are identical not only in terms of condition attributes but also in terms of decision
attributes shows that if DO and K are medium, NO3 and T are low, and Tu is high, pH is certainly
high. This is the first certain decision rule concluded from Table 2. No other time codes are found to be
identical in terms of condition and/or decision attributes. Thus, since all the other codes are unique in
terms of both condition and decision attributes, each one of them represents a unique rule. As a result,
13 unique rules are identified in Table 2.
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Table 2. Attributes and decision values where pH is the decision attributes and the other indicators are
condition attributes.

Time Code Date (M-Y) DO NO3 K T Tu pH

1 October-15 M M H L L M
2 April-16 H M H L H M
3 May-16 H M M L H M
4 June-16 M M M M M M
5 July-16 L M M H M M
6 August-16 M H M H M M
7 April-17 M L M L H H
8 May-17 M L M L H H
9 June-17 L L M M H L
10 August-17 L L L H M L
11 September-17 L L M M M L
12 October-17 L L M L H M
13 November-17 L L L L H L
14 December-17 L L L L M L

The second step explores the discernibility relation by eliminating one condition attribute at the
time. There are 6 tables in Table 3 and each table except the first one is missing one attribute. Firstly,
as discussed above, time codes {7} and {8} are identical and they are highlighted. Secondly, if DO,
NO3, and T were removed, discernibility would be the same, as shown in Table 3(b),(c),(e). As a result,
these three attributes are deemed dispensable. Thirdly, if K and Tu were removed, new decision rules
would appear. These new rules are highlighted in Table 3(d),(f) as well. In Table 3(d), time codes {2}
and {3} are identical both in terms of condition and decision attributes, however, time codes {12} and
{13} are just identical in terms of condition attribute. In Table 3(f), time codes {9} and {11} and time
codes {13} and {14} are alike in terms of condition and decision attributes. Hence, there is a change in
discernibility making both K and Tu indispensable.

The formal process of identifying dispensable attributes is further investigated in Table 4. The first
column represents the attribute that is removed, whilst the second column represents the unique
condition attribute combination in the absence of the corresponding attribute. When K and Tu are
removed, the unique condition attribute combinations are different than when other indicators are
removed in the other cases. In the third column, the unique decision making rules are displayed.
If column 3 is not identical to the rules found in the presence of all attributes (conditional and decision),
then the removed attribute is deemed dispensable (column 5). More specifically, the posc(D) is
equal to {(1), (2), (3), (4), (5), (6), (7,8), (9), (10), (11), (12), (13), (14)}. If column 3 does not match
posc(D), the removed attribute is indispensable. As a result of the analyses shown in Tables 3 and 4,
the indispensable attributes are specific conductivity and turbidity. Clearly, in the absence of K,
decision rules {2} and {3} are identical, in the absence of Tu, decision rules {9} and {11} are identical,
and decision rules {13} and {14} are also identical. These attributes are defined as the core attributes.
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Table 3. Analysis of the discernibility relation with identical time code highlighted for the following
cases: (a) all attributes; (b) DO eliminated; (c) NO3 concentration eliminated; (d) specific conductivity
eliminated; (e) temperature eliminated; (f) turbidity eliminated.

(a) (b)

Time Code DO NO3 K T Tu pH Time Code DO NO3 K T Tu pH

1 M M H L L M 1 M H L L M
2 H M H L H M 2 M H L H M
3 H M M L H M 3 M M L H M
4 M M M M M M 4 M M M M M
5 L M M H M M 5 M M H M M
6 M H M H M M 6 H M H M M
7 M L M L H H 7 L M L H H
8 M L M L H H 8 L M L H H
9 L L M M H L 9 L M M H L

10 L L L H M L 10 L L H M L
11 L L M M M L 11 L M M M L
12 L L M L H M 12 L M L H M
13 L L L L H L 13 L L L H L
14 L L L L M L 14 L L L M L
(c) (d)

Time Code DO NO3 K T Tu pH Time Code DO NO3 K T Tu pH

1 M H L L M 1 M M L L M
2 H H L H M 2 H M L H M
3 H M L H M 3 H M L H M
4 M M M M M 4 M M M M M
5 L M H M M 5 L M H M M
6 M M H M M 6 M H H M M
7 M M L H H 7 M L L H H
8 M M L H H 8 M L L H H
9 L M M H L 9 L L M H L

10 L L H M L 10 L L H M L
11 L M M M L 11 L L M M L
12 L M L H M 12 L L L H M
13 L L L H L 13 L L L H L
14 L L L M L 14 L L L M L
(e) (f)

Time Code DO NO3 K T Tu pH Time Code DO NO3 K T Tu pH

1 M M H L M 1 M M H L M
2 H M H H M 2 H M H L M
3 H M M H M 3 H M M L M
4 M M M M M 4 M M M M M
5 L M M M M 5 L M M H M
6 M H M M M 6 M H M H M
7 M L M H H 7 M L M L H
8 M L M H H 8 M L M L H
9 L L M H L 9 L L M M L

10 L L L M L 10 L L L H L
11 L L M M L 11 L L M M L
12 L L M H M 12 L L M L M
13 L L L H L 13 L L L L L
14 L L L M L 14 L L L L L
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Table 4. Calculating the discernibility and dispensability.

Attribute C U/Ind(C-{c}) Pos(c-{c})(D) Pos(c-{c})(D) = Posc(D)? Indispensability

DO
(1), (2), (3), (4), (5),
(6), (7,8), (9), (10),

(11), (12), (13), (14)

(1), (2), (3), (4), (5),
(6), (7,8), (9), (10),

(11), (12), (13), (14)
Y N

NO3

(1), (2), (3), (4), (5),
(6), (7,8), (9), (10),

(11), (12), (13), (14)

(1), (2), (3), (4), (5),
(6), (7,8), (9), (10),

(11), (12), (13), (14)
Y N

K
(1), (2,3), (4), (5), (6),
(7,8), (9), (10), (11),

(12,13), (14)

(1), (2,3), (4), (5), (6),
(7,8), (9), (10), (11),

(12), (13), (14)
N Y

T
(1), (2), (3), (4), (5),
(6), (7,8), (9), (10),

(11), (12), (13), (14)

(1), (2), (3), (4), (5),
(6), (7,8), (9), (10),

(11), (12), (13), (14)
Y N

Tu
(1), (2), (3), (4), (5),

(6), (7,8), (9,11),
(10), (12), (13,14)

(1), (2), (3), (4), (5),
(6), (7,8), (9,11),

(10), (12), (13,14)
N Y

The application of RST to the water quality data sampled at the Mason campus that was
discussed above identified the fundamental and redundant water quality indicators. Their importance
degree as conditional attributes in determining the other indicators (decision) is then quantified
using Equation (7). Table 5 shows the indispensable attributes for each decision attribute and their
corresponding importance degree. There are only two indispensable attributes identified for each
decision attribute. Specifically, two indispensable attributes are identified for pH, DO, T, and K,
whereas only one indispensable attribute is identified for Tu (i.e., specific conductivity). This also
means that several attributes are redundant and not necessary to fill in possible gaps in time series.
This kind of conclusion is extremely useful when obtaining ground observations is complicated by
impervious terrain, financing constraints, and/or extreme atmospheric conditions.

Results in Table 5 demonstrate that turbidity is equally important in every scenario considered in
the study with an importance degree of 0.14. Specific conductivity is the next important factor with
an importance degree of 0.07. If the decision attribute is turbidity, the only indispensable attribute is
specific conductivity and if the specific conductivity is the decision attribute, the indispensable attribute
beside turbidity is temperature. According to the foregoing analysis, if any of the six water quality
indicator needs to be retrieved because of a missed measurement, turbidity and specific conductivity
are the core values that would provide useful information about the missing information. Moreover,
the decision in every scenario is weighted towards turbidity since the importance degree of turbidity
is higher than the importance degree of conductivity.

Table 5. Importance degree of C attributes relative to the decision attribute D.

Decision Attribute
Indispensable Attribute 1

(Importance Degree)
Indispensable Attribute 2

(Importance Degree)

pH Tu (0.14) K (0.07)
DO Tu (0.14) K (0.07)

NO3 Tu (0.14) K (0.07)
T Tu (0.14) K (0.07)

Tu K (0.07) -
K Tu (0.14) T (0.07)

There is a direct relationship between temperature and all the other water quality indicators.
Furthermore, conductivity has an effect on turbidity and turbidity influences dissolved oxygen
concentration, which also affects nitrate concentration. However, there is no direct relation between pH
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and other indicators. Therefore, we start our analysis by selecting pH as a decision attribute. Based on
the dispensability analyses shown above, conductivity and turbidity are the core condition attributes
(Table 6). There is a strong relationship between these two core attributes in stormwater runoff across
the Mason campus watershed, as previously shown by [32].

Table 6. Indicators of decision-making (DM) rules.

Decision Rule K Tu pH N Strength Certainty Coverage

1 H L M 1 0.07 1 0.14
2 H H M 1 0.07 1 0.14
3 M H M 2 0.14 0.4 0.29
4 M M M 3 0.21 0.75 0.43
5 M H H 2 0.14 0.4 1.00
6 M H L 1 0.07 0.2 0.20
7 L M L 2 0.14 1 0.40
8 M M L 1 0.07 0.25 0.20
9 L H L 1 0.07 1 0.20

Table 6 shows the DM rules together with their strength, certainty, and coverage, computed
according to Equations (9)–(11), respectively. Table 6 also shows the support of each DM rule (N).
As mentioned above, N is the number of times that each DM rule was recorded. Table 6 shows that N
is larger than 1 for DM rules 3, 4, 5, and 7. As a result, their strengths are higher than the strengths of
the rules for which N = 1.

If the conditional attributes are identical and the decision attributes are not equal, the certainty of
the DM rule is less than one. Thus, the certain DM rules are 1, 2, 7, and 9. In other words, if specific
conductivity is high and turbidity is either low or high, then pH is certainly medium (according to
DM rule 1 and 2). If specific conductivity is low and turbidity is either medium or high, then pH is
certainly low (according to DM rule 7 and 9).

In order to explain the decision attribute in terms of condition attributes, the conditions and
decision attributes need to be mutually replaced in every DM rule. The only certain inverse rule is DM
rule 5, which indicates that if pH is high, then turbidity is high and specific conductivity is medium.
Moreover, rule number 5 is a unique case. Since there is only one rule with a high pH value, the
coverage for this rule is equal to 1 and, as a result, the certainty for inverse DM rule 5 is one.

The same analysis is repeated five times by selecting a different attribute as a decision attribute
and setting the rest of the attributes as a condition attributes every time. Table A1 shows the DM rules
and strength, certainty, and coverage for all the other cases. The highest strength factor (0.29) belongs
to the rule in which the conditional attributes are specific conductivity and turbidity and the decision
attribute is temperature. On the other hand, five rules show a certainty factor equal to 1 when the
conditional attributes are specific conductivity and turbidity and the decision attribute is dissolved
oxygen. Moreover, the coverage factor equals to 1 in one of the rules when the specific conductivity
and turbidity are conditional attributes and the nitrate is decision attribute.

A similar analysis was performed also at weekly scale, by averaging the water quality indicators
for each week of the study period. However, because of the high temporal variability in water quality,
no redundant attribute was identified. Hence, at finer temporal resolutions, more attributes play an
important role. Since this work is meant as an attempt to apply rough set theory to water quality data
analysis, it would not be feasible to effectively display the step-by-step procedure using a larger dataset
(e.g., weekly). Nevertheless, the developed approach based on rough set theory could be applied to
data at any temporal resolution and to time series of any length.

The developed methodology can also be used to compare different months or the same month
in different years. For instance, the months of April, May, June, and August of 2016 (case 1) can be
compared to the same months in 2017 (case 2). In case 1, the indispensable attribute would be specific
conductivity. However, in case 2, there is no indiscernible attribute. This shows that indiscernible
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attributes may vary depending on environmental and/or anthropogenic conditions. This kind of
comparison highlights possible changes in the stream water quality conditions, whose sources can be
potentially investigated by the analyst.

4. Discussion

This study investigates the application of RST to water quality analysis. RST does not require
any prior information on the dataset and represents a powerful tool to deal with uncertainty and
vagueness in the sample. Moreover, RST is capable of finding indiscernible attributes and extracting
rules based on core attributes. This work presents the basic concepts of rough set theory and its
application to six water quality indicators collected during a 3-year-long study period at the George
Mason University campus in Fairfax, VA. More specifically, monthly averages for each water quality
indicator are calculated and 14 months are considered.

It is important to mention that the streamflow velocity at the watershed outlet where data were
collected is particularly high during and after rainfall events. As a result, the common relationships
among water quality attributes are not observed in this case study that focuses on the monthly scale.
For example, when water temperature is low, DO concentration is commonly high [33]. However, we
cannot observe this rule at the monthly resolution. When a storm happens, even during summer when
temperatures are high, the rapidly moving water contains more DO than stagnant water in winter
days (when the temperature is lower).

Coarse temporal resolution (i.e., monthly) data are selected here in order to present a novel
methodology in the field of water quality analysis. The coarse resolution helps with showing a
limited number of attributes and decision values. Six different scenarios are studied here and in each
scenario one attribute is assigned to be a decision attribute and the rest are reflected as conditional
attributes. In most cases, specific conductivity (with an importance degree of 0.07) and turbidity (with
an importance degree of 0.14) are the core conditional attributes. In addition, we generate DM rules
for each scenario and calculate the strength, certainty, and coverage of each rule. The certain rules
show that if specific conductivity is high and turbidity is either low or high, then pH is medium.
Also, if specific conductivity is low and turbidity is either medium or high, then pH is certainly low.
However, the coverage of these DM rules is the lowest among all DM rules. Five other possible DM
rules with certainty lower than one are identified as well. There is one DM rule with coverage factor of
one (DM 5), which means that there is only one DM rule with a unique pH value (high). As a result,
the certainty for the inverse DM rule 5 is one.

Overall, RST was proven capable of finding core indicators and discovering DM rules.
Considering more attributes and more data entries could increase the certainty of the identified
DM rules and possibly identify additional DM rules. RST-based DM rules can be of tremendous help
to planners and analysts in their decision making process. For instance, results from this study can be
useful for university facility managers that monitor water quality across campus. If applied to a larger
scale, the proposed methodology has the potential of providing timely, relevant, and essential water
quality information.

Future work should look at the raw data at their native resolution (one hour). Although no
difference in the DM rules was observed in the weekly analysis with respect to the monthly one,
increasing the resolution to one hour may result in higher certainty in the DM rules. Moreover, other
locations should be investigated to verify the efficiency of the proposed methodology and possibly
sampling additional indicators (i.e., conditional attributes). Further conditional attributes can be
related to atmospheric conditions, like the amount and duration of precipitation events and land
cover/land use.
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and V.M.; Project administration, M.Z. and V.M.; Resources, V.M.; Supervision, V.M.; Writing—original draft, M.Z.;
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Appendix A

Table A1. DM rules for various scenarios, with different decision attributes: (a) DO; (b) Tu; (c) NO3;
(d) T; and (e) k.

(a) (b)

K Tu DO N Strength Certainty Coverage DO K Tu N Strength Certainty Coverage

H L M 1 0.07 1.00 0.20 H H H 1 0.07 1.00 0.14
H H H 1 0.07 1.00 0.50 H M H 1 0.07 1.00 0.14
M H H 1 0.07 1.00 0.50 L M H 2 0.14 0.50 0.29
M M M 2 0.14 0.50 0.40 L L H 1 0.07 0.33 0.14
M M L 2 0.14 0.50 0.29 M M H 2 0.14 0.50 0.29
M H M 2 0.14 0.40 0.40 M H L 1 0.07 1.00 1.00
M H L 2 0.14 0.40 0.40 L M M 2 0.14 0.50 0.33
L M L 2 0.14 1.00 0.40 L L M 2 0.14 0.67 0.33
L H L 1 0.07 1.00 0.20 M M M 2 0.14 0.50 0.33
(c) (d)

K Tu NO3 N Strength Certainty Coverage K Tu T N Strength Certainty Coverage

M M H 1 0.07 0.25 1.00 L M H 1 0.07 0.50 0.33
M H L 2 0.14 0.40 0.25 M M H 2 0.14 0.50 0.67
L M L 2 0.14 1.00 0.25 H L L 1 0.07 1.00 0.13
M H L 1 0.07 0.20 0.13 H H L 1 0.07 1.00 0.13
L H L 1 0.07 1.00 0.13 L H L 1 0.07 1.00 0.13
M H L 1 0.07 0.20 0.13 L M L 1 0.07 0.50 0.13
M M L 1 0.07 0.25 0.13 M H L 4 0.29 0.80 0.50
H L M 1 0.07 1.00 0.20 M M M 2 0.14 0.50 0.67
H H M 1 0.07 1.00 0.20 M H M 1 0.07 0.20 0.33
M H M 1 0.07 0.20 0.20
M M M 2 0.14 0.50 0.40
(e)

T Tu K N Strength Certainty Coverage

L L H 1 0.07 1.00 0.50
L H H 1 0.07 0.17 0.50
H M L 1 0.07 0.33 0.33
L H L 1 0.07 0.17 0.33
L M L 1 0.07 1.00 0.33
M M M 2 0.14 1.00 0.22
H M M 2 0.14 0.67 0.22
L H M 3 0.21 0.50 0.33
M H M 1 0.07 1.00 0.11
L H M 1 0.07 0.17 0.11
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Abstract: This work assessed the quality of wind speed estimates in Uruguay. These estimates were
obtained using the Weather Research and Forecast Model Data Assimilation System (WRF-DA) to
assimilate wind speed measurements from 100 m above the ground at two wind farms. The quality
of the estimates was assessed with an anemometric station placed between the wind farms. The
wind speed estimates showed low systematic errors at heights of 87 and 36 m above the ground. At
both levels, the standard deviation of the total errors was approximately 25% of the mean observed
speed. These results suggested that the estimates obtained could be of sufficient quality to be useful
in various applications. The assimilation process proved to be effective, spreading the observational
gain obtained at the wind farms to lower elevations than those at which the assimilated measurements
were taken. The smooth topography of Uruguay might have contributed to the relatively good quality
of the obtained wind estimates, although the data of only two stations were assimilated, and the
resolution of the regional atmospheric simulations employed was relatively low.

Keywords: data assimilation; 3D-Var

1. Summary

This work evaluated the use of techniques for assimilation of data from field measurements into
initial conditions of atmospheric numerical simulations in order to obtain wind estimates in Uruguay,
at heights of 100 m above the ground and lower. The wind was estimated with hourly frequency in
a regular grid that covers the country. The field data to be assimilated was operatively measured in
wind farms installed in Uruguay, using anemometers placed 100 m above the ground. The data was
assimilated into initial conditions for the Weather Research and Forecast regional model (WRF) of the
National Center of Atmospheric Research (NCAR), [1] using the module for data assimilation included
in this model, the WRF-DA module [2].

The data assimilation process, also called analysis, is an essential component of numerical
atmospheric forecasts, and its main purpose is to generate initial conditions for the predictions. The
variables that compose an initial condition are called prognostic variables because the model uses
their values at a given instant to compute their values at a later time. To generate an initial condition
for a specific numerical model at a given time, a first approximation is generally used. This first
approximation, called “background condition”, usually consists of a prediction for the same instant,
obtained with the same model, from previous initial conditions. The data assimilation system must
combine the information from the background condition with the information from measurements
of atmospheric variables (or variables of systems related to it; for example, the ocean, the soil, or the
cryosphere). This combination of information is done in a way that optimizes the quality of the result in
statistical terms, either minimizing the expected value of the sum of its quadratic errors or maximizing
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its likelihood. Note that the short-term predictions used as background values are, in turn, affected by
field measurements that were assimilated during previous times. This allows considering information
from regions or atmospheric levels in which few measurements are available since measurements,
done earlier in other regions or at other levels, can propagate their influence through atmospheric
dynamical processes into the zones that have relatively fewer observations.

Kalnay [3] described the main techniques for data assimilation that are currently used, such as
optimal interpolation, 3D-Var, Kalman filters, ensemble Kalman filters, and 4D-Var. The WRF-DA
system implements the 3D-Var [4] and 4D-Var techniques [5], and a technique that combines the
ensemble Kalman filter with 3D-Var [6,7]. Harlim [8] pointed that the referred techniques assume that
the errors from the background conditions and the field measurements are unbiased and normally
distributed, although numerical models inevitably have systematic errors. These assumptions can
provide reasonable estimates of the first-order statistics while being practical to implement. However,
these methodologies require caution for interpreting their higher-order statistical estimates, and an
important challenge in data assimilation is to use existing methods in the presence of model systematic
errors. The author proposed methodologies to mitigate the effects of model systematic errors on
the results of the assimilation process. Rao and Sandu [9] proposed an a-posteriori error estimation
methodology that quantifies the impact of model and data errors on the inference results of inverse
problems, including the 4D-Var assimilation process. The model and data errors considered include
both unbiased noise and systematic biases. The authors found that the proposed methodology could
be useful to reduce and quantify uncertainties in a real-time system with feedback. Besides, the error
estimates can be used to locate faulty sensors and to determine areas of maximum sensitivity, where
improvements in the stations network or an increase in model resolution may be required.

In addition to its direct use in the numerical prediction process, the results of data assimilation
can be considered “pseudo-observations” of atmospheric variables in regular grids. Note that these do
not consist purely of interpolations of field measurements in a regular grid since they also consider the
information from short-term predictions. The uses of the pseudo-observations obtained from a data
assimilation process can be very broad, but they require an evaluation of their quality by comparison
with field measurements not used in the assimilation process.

The current work used the rather conventional 3D-Var assimilation technique. In Section 2,
we described the data used, both from field measurements and from numerical predictions used as
background conditions, and we referred to the quality control method used for the field data from the
wind farms. In Section 3, we described the main aspects of the 3D-Var assimilation technique and its
implementation in this work using the WRF DA system. In Section 4, we described the main results,
and in Section 5, we presented the conclusions.

2. Data Description

The wind data used in the data assimilation process was obtained from two anemometers installed
in the “Rosendo Mendoza” (WF1) and “Valentines” (WF2) wind farms. The geographic locations of
these wind farms are shown in Figure 1. The anemometers were placed 100 m above the ground,
and they recorded mean velocities for successive periods of 15 min, which were transmitted to the
National Dispatch of Electric Charges of Uruguay, operated by the Electricity Market Administration
(Administración del Mercado Eléctrico; ADME) and the National Administration of Electric Power
Plants and Transmissions (Usinas y Trasmisiones del Estado; UTE), and Uruguayan National Public
Electricity Utility Organizations. In addition to the wind measurements, the mean electric power
generated in the same 15-min periods and the corresponding quantity of aerogenerators that were
effectively active were also transmitted by each wind farm. These additional data allowed for a quality
control analysis of the measurements, as described by Orteli and Cazes Boezio [10]. With the historical
information of wind velocity and electric power generated, the authors built an empirical wind-power
curve for each wind farm. In those cases in which not all the aerogenerators of the wind farm were
active, the power generation that would correspond to a condition of full availability was estimated by
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linear extrapolation. The authors considered that those combinations of wind and generated power
that depart from the empirical curve beyond certain thresholds were suspicious of being affected by
malfunctioning of the measurement or recording systems, or by occasional interference of the wake of
an aerogenerator with the anemometer. The data from WF1 and WF2 available for this study were
from the months from January to May and from November to December of 2017 (seven months).

Figure 1. The geographic location of anemometers used for data assimilation (WF1 and WF2) and
validation (Vst).

To evaluate the quality of the pseudo-observations obtained through the implemented data
assimilation process, an independent station was used (“validation station”, VSt), which is located at
Colonia Arias, Uruguay. The station location is also shown in Figure 1. The station measures wind
speed and direction at heights of 87 and 36 m above the ground and is part of a network of stations that
measures wind velocity and solar radiation that has been operated by UTE since 2009. This network is
described by Cornalino and Draper [11], and its measurements (that include wind velocities averaged
every 10 min) are made available online by UTE. In recent years, many of the anemometric stations
operated by UTE have become affected by wind farms. The VSt of Colonia Arias has been active since
2011, and during the period studied in this work, it was not affected by any wind farm. Figure 2
shows the wind speed at the WF1, WF2, and Vst sensors averaged for each local hour during the seven
months considered.

The assimilation process uses regional simulations computed with the WRF model from NCAR,
as shown by Cazes Boezio and Orteli [12]. The regional simulations take their initial and boundary
conditions from global predictions made by the Global Forecast System (GFS) of the National Ocean
and Atmosphere Administration (NOAA) of the Unites States. The horizontal grid of the regional
simulations has a resolution of 30 km in the zonal and meridional directions, as shown in Figure 3. The
vertical direction is discretized in 54 levels, 7 of which are within the first 100 m of height above the
ground. In Appendix A, we indicated the parameterizations of physical processes employed, and we
defined in detail the vertical discretization. The regional simulations have two purposes: first, they
generate the background conditions into which the data measured in WF1 and WF2 are assimilated;
and second, they allow for the estimation of the matrix of covariances of the errors of these background
conditions. In Section 3, the hours of initialization and the simulated periods used for each one of
these purposes were specified.

37



Data 2019, 4, 142

Figure 2. Mean wind velocity, as a function of the local hour, for the WF1 (a), WF2 (b), and VSt stations
(c). At the VSt station, the solid line shows the mean velocity for the anemometer 87 m above the
ground, and the dotted line shows the anemometer 36 m above the ground.

Figure 3. Grid points of the horizontal discretization used in the regional simulations.

3. Methods

Next, we described the main aspects of the 3D-Var assimilation technique, which was used in
this work and is available in the WRF-DA system. A complete description of this technique and
its implementation in the WRF-DA system can be found in the NCAR Technical Note 453 [13], in
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Barker et al. [4] and Barker et al. [2], while the corresponding operational details are given in the
WRF-DA User Guide [14].

The background condition information is displayed as a vector called xb, which contains the
values of all the different prognostic variables that compose the background condition in a certain
conventional order. This information is displayed for each variable and each point of the grid. The
field measurements that are to be assimilated, obtained at the same instant that corresponds to xb,
are displayed as a vector called y, also in a conventional order. The initial condition determined by
the assimilation system is expressed as a vector called xa, with a structure analogous to that of xb. xa

combines the information from the background condition xb and the field measurements contained
in y, as expressed in Section 1. The 3D-Var technique determines the vector xa as that of maximum
likelihood, conditioned to the information of the background condition and the field measurements,
and is the vector x that minimizes the following expression [3]:

J(x) =
1
2
(x− xb)

TB−1(x− xb) +
1
2
(y−H(x))TR−1(y−H(x)) (1)

that is, J(xa) must be minim. In this formula, B and R are the matrices of error covariances of the
background condition xb and the field measurements y, respectively. It is assumed that these errors
are normal variables and are unbiased. The B matrix is thus related to the accidental errors of xb, while
the model systematic errors or biases are assumed to be zero, as pointed out in [8]. Matrix B is defined
as follows:

B ≡ E
(
(xb − xt)·(xb − xt)

T
)

(2)

where E represents the expected value of the elements of the matrix (xb − xt)·(xb − xt)
T, and xt is the

vector of the true values of the variables contained in xb. Note the actual values of xt are unknown, so
it becomes necessary to define a technique to estimate the values of B from available information.

H(x) is an operator that yields results analogous to the variables y from the model prognostic
variables included in x. As an example, if an element of y represents the measurement of the meridional
wind at a certain geographical location and a certain height, H(x) interpolates the values of the
meridional wind field obtained from the numerical model at the geographical location and the height
of this measurement. The H operator is generally non-linear, but it is possible to linearize it with the
following approximation:

H(x) = H(xb + x− xb) ≈ H(x) + ∇H(x− xb), (3)

where ∇H is the gradient of H(x). If the linearized expression for H(x) is used, J(x) assumes a
quadratic form.

It is assumed that the errors of the field measurements contained in vector y are statistically
independent of each other, so R is a diagonal matrix; its diagonal contains the variances of the errors of
each field measurement.

The matrix B is essential to this assimilation system. First, its non-diagonal terms contain the
covariances of xb errors at different grid points and also the covariances of errors of different variables.
These covariances are necessary to propagate the information related to any field measurement through
the horizontal and vertical directions and allow measurement of a specific variable to affect the analysis
of others. In addition to this, the matrices B−1 and R−1 together determine the relative importance of
the background conditions xb and the field measurements y to determine the analysis xa.

The WRF-DA system offers two methods to estimate B: the National Meteorological Center
method (NMC), described by Parrish and Derber [15], and a method based on ensembles of predictions
([1], Chapter 9). Due to the availability of computer resources, we used the NMC method, which is
relatively more economic. This method requires a database of pairs of xb; each pair has two short-term
predictions for the same hour obtained with different forecast horizons (for example, 12 and 24 h), and
consequently with different initial conditions. The pairs of predictions correspond to certain hours of
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the day (for example, 0:00 and 12:00 GMT), and cover a certain period (for example, one year). It is
assumed that the differences between the forecasts of each pair have statistical properties analogous to
those of the background condition errors, and in particular, to estimate B, the following approximation
can be used:

B = E
(
(xb − xt)

T·(xb − xt)
)
≈ E
((

x12hs
b − x24hs

b

)T·(x12hs
b − x24hs

b

))
(4)

where x12hs
b and x24hs

b are a generic pair of predictions with 12 and 24 h time horizons, respectively. The
validation of this technique to estimate B is empirical.

Note that, if n is the length of the xa, and xb vectors, the size of B is nxn. This implies a matrix
of very large dimensions that would cause important technical difficulties to operate with B or B−1,
and even to store them in the computer memory. The 3D-Var technique implemented in the WRF-DA
system solves this problem by factoring B as a product of certain matrices that have clear physical
interpretations, allowing certain assumptions about their structures to be made and making them
computationally tractable [2,4].

As a final remark in this subsection, we noted that both for the simulations of the background
conditions and the estimation of the B matrix, a specific configuration of the WRF model was used,
which here is the one described in Section 2.

WRF-DA Implementation for This Work

To apply the NMC method to estimate the matrix B, we used WRF-GFS simulations extended for
24 h and initialized at 0:00 GMT and 12:00 GMT during the entire year of 2016. The results obtained
for 12 and 24 h after the initial conditions were used to estimate the matrix B, as indicated in the
previous section. In order to gain insight into the spatial structure of the covariances contained in B,
Decombes et al., [16] and Rivi [17] proposed “pseudo-single observation tests”. Such tests consist of
choosing a particular variable of xb in a particular grid point and suppose a hypothetical observation
that increments in a fixed amount the background value of this variable at the selected grid point. The
data assimilation process is carried on considering this single pseudo observation and prescribing a
hypothetical value of the standard deviation of its error. Rivi [17] showed that the xa − xb difference
was proportional to the covariance between the errors of the background variable in question at the
chosen grid point and the errors of the rest of the background variables at all the grid points. The plots
of the xa − xb differences for selected variables illustrate how the B matrix spreads the information of
field measurements. In Appendix B, we summarized the fundamentals of the pseudo observation
tests, and we showed some selected results for the B matrix estimated here.

The background conditions xb were obtained from WRF-GFS simulations initiated at 0:00, 6:00,
12:00, and 18:00 GMT, during those months of 2017 for which information from the WF1 and WF2
stations was available. We used the hourly results of these simulations from 4 to 9 h since the
initialization of each simulation. In this way, four consecutive simulations could cover the 24 h of each
day. The selected forecast horizon was the earliest for which the GFS prediction results were available
in real-time, with some time left to carry out the processes described in this work. In this way, it is
possible to implement these processes in an operative mode. For each local hour in Uruguay, Table 1
shows which WRF-GFS initialization cycle was used, and which hour within its forecast horizon
corresponded to the background condition for that local hour.
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Table 1. Hours within the WRF simulations used to define the background conditions as a function of
the initialization cycle and local time in Uruguay. Each row corresponds to an initialization cycle, and
each column corresponds to a local hour in Uruguay. The hours used within each cycle are indicated,
considering the hours elapsed since its initialization.

Local UY Hour

Initialization
Cycle

0* 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0:00 4 5 6 7 8 9
6:00 4 5 6 7 8 9

12:00 4 5 6 7 8 9
18:00 9* 4 5 6 7 8

*: Local time 0 uses the results at the ninth hour of the simulation started at 18:00 GMT on the previous day as a
background condition.

In the present study, the assimilation made for each hour was independent of the previous
assimilations; the corresponding background condition only incorporated information from the GFS
global simulation. This is called a “cold start”. Alternatively, the background conditions could also
have considered the field measurements made in previous hours. This alternative is called a warm
start. The warm start method was tested in the context of the present work and obtained results of
equivalent quality to those obtained with the cold start, so here we showed only the latter results. The
similarity of the results from both methods might be because the assimilated information was very
local; the assimilation of data in a wider region could influence the simulations in the area of interest
over more hours and thus increase the relevance of assimilation from previous hours. The verification
of this hypothesis requires a database of field measurements more complete than the one that was
available for this work.

Each field measurement is specified to the WRF-DA system in a file that contains the day and time
of the measurement, the geographic coordinates, and ground elevation of the corresponding station,
the height of the measurement sensor, and the records of wind speed and direction. This information
is used to generate the vector of field observations, y. Considering that the topography of the regional
model has some degree of smoothing, the elevation of the specified terrain is not the actual elevation,
but the elevation corresponding to the topography of the model interpolated to the station’s location
coordinates. The height specified for the sensors is the elevation of the station plus 100 m. The specified
module of wind speed is the average of the anemometer record for two consecutive 15-min periods
centered on the hour for which the assimilation will be performed.

The specified wind direction is deduced from the background condition, interpolating each
component of the wind vector to the geographical position and elevation of the anemometer. Although
vanes are available at the stations, it was found that using their records produces results that are not as
satisfactory as those obtained by deducing the wind direction from the background condition. This
suggests that the quality of data obtained from these weathervanes is relatively poor, while regional
short-term predictions are reasonably good with regard to this variable. It may be of interest to evaluate
the effect of the assimilation of atmospheric pressure measurements on the wind direction obtained in
the analysis, but no such observations were available to complete this analysis.

In addition, to estimate the R matrix, the WRF-DA system uses a file that specifies the standard
deviations of the errors of the different kinds of field observations (obserr.txt). In the present work,
we adjusted the errors specified in this file, proposing a value of 0.1 m/s for wind speed, which is
reasonable for the type of sensors installed in the stations considered here [18]. For wind direction,
we kept the default value proposed in the obserr.txt file, 5◦. We also pointed out that the WRF-DA
system uses two “namelist” files to prescribe parameters to be set for the B matrix estimation and the
computation of the resultant analysis (xa vector). In this work, we used the default values for these
parameters, which are indicated in the WRF-DA user guide [14].
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4. Results

To evaluate the quality of the obtained pseudo-observations, we interpolated each component of
the wind vector to the geographic location of VSt and the levels of 87 and 36 m above the ground, and
then we computed the wind speed at these levels. Figure 4a shows the systematic error or bias of the
two levels for each hour of the day. The bias is defined as the average of the wind estimate at a given
level and hour minus the corresponding observed value over all the studied days:

b ≡ sa − sobs (5)

where sa is the wind speed interpolated from the analysis to the location and level of each Vst sensor,
and sobs is the correspondent measured wind speed. The overline represents the average over all the
studied days. Figure 4b shows the relative bias, defined as the bias divided by the observed mean
wind speed at the corresponding hour:

brel ≡ sa − sobs

sobs
(6)

Figure 4. (a) Bias and (b) relative bias of wind estimates, which are 87 m above ground (red solid line)
and 36 m above ground (blue dotted line), at VSt as a function of the local hour.

At 87 m, the bias was moderate, generally smaller than 0.5 m/s, while relative bias was generally
smaller than 5%. At 36 m, the bias and the relative bias were similarly moderate: the bias was generally
smaller than 0.5 m/s, while the relative bias during some hours was slightly larger than that found at
87 m. Note that 87 m above the ground was similar to the elevation of the assimilated observations,
while the 36-m elevation was significantly closer to the ground. The moderate systematic errors found
at both elevations indicated that the data assimilation technique effectively combined the information
from short-term WRF predictions and wind measurements. The wind measurements from the wind
farms lacked information about elevations relatively close to the ground, e.g., at 36 m, while the WRF
simulations did include this information since they considered several elevations within the first 100 m
above the ground but had errors of their own. The assimilation process corrected these errors at the
locations and elevations of the anemometers in the wind farms and also transmitted the effects of
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these gains to other regions and elevations. The information that allowed these gains to spread was
contained in the background error matrix B. To further illustrate this point, Figure 5 shows the bias of
the background conditions 36 m above the ground at VSt and the bias resulting from the assimilation
process (also included in Figure 4a). The background bias was larger for all hours. Since both biases
were means of errors, it was possible to compute the significance of their difference with a two-tailed
Student t-test [19]. It was found that these biases were different with a significance value lower than
0.05 for the local hours from 0:00 to 16:00, and from 21:00 to 23:00 (the hours with significant differences
are indicated with a green bar in Figure 5).

Figure 5. The bias of two wind estimates 36 m above ground at VSt, as a function of the local hour. The
solid line indicates the wind estimates from the background conditions, and the dotted line indicates
the wind estimates from the assimilation process. The green bar indicates the hours for which the
difference between both biases was significant at the 5% level, computed as indicated in the text.

Next, we presented two statistical parameters related to accidental errors. Figure 6 shows the
Pearson correlation of estimated versus observed wind speeds at the VSt station. At 87 m above the
ground, there were correlations generally larger than 0.75 during the night hours, and generally larger
than 0.80 during the day. At 36 m, the values were slightly smaller at nighttime and very similar
during the day. Figure 7 shows the standard deviation of the error (estimated minus observed values)
divided by the mean observed wind speed at each hour (RSTD). RSTD was approximately 25% for
both elevations considered.

 
Figure 6. Pearson correlation of estimated wind versus observed wind as a function of the local hour at
VSt. The red solid line shows the correlation at 87 m above the ground, and the blue dotted line shows
at 36 m.
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Figure 7. The relative standard deviation of wind estimate error as a function of the local hour at VSt.
The red solid line shows the correlation at 87 m above the ground, and the blue dotted line shows at
36 m.

Figure 8 shows scatter plots of estimated versus observed wind speeds at 7:00 and 12:00 and 87
and 36 m above the ground. These hours were chosen because they represent the periods of the day
with the relatively worst and best adjustments, as assessed in Figures 6 and 7. Samples of assimilated
values and the corresponding observed wind speed values, including those shown in Figure 8, made it
possible to estimate probability distributions of the errors, such as empirical percentiles, from which
confidence intervals for the wind speed estimates could be calculated.

Figure 8. Estimated wind versus observed wind 100 m above the ground at VSt at (a) 7:00 and (b) 12:00.
Estimated wind versus observed wind 30 m above ground at VSt at (c) 7:00 and (d) 12:00.

5. Summary and Conclusions

This work assessed the quality of wind speed estimates in Uruguay obtained with the WRF-DA
system, which was used to assimilate wind speed measurements 100 m above the ground at two wind
farms. The quality of the estimates was assessed with an anemometric station placed between the wind
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farms, that measured wind speed at 87 and 36 m above the ground. The information to be assimilated
from field measurements was minimal, not only because it included only two stations but also because
it lacked records of other atmospheric variables that are related to wind, such as atmospheric pressure.
It was interesting to assess the extent to which these minimum field measurements could generate
useful interpolations and evaluate the quality of the wind estimates at elevations both similar and
different to those of the assimilated records. The measurement station used to validate the wind speed
assessments was placed between those used for the assimilation process, so the conclusions of the
assessment are applicable only to regions between the two main stations.

Wind speed estimates showed a low systematic error at the verification station, generally below
0.5 m/s at both 87 and 36 m above the ground. A relative systematic error was generally less than 5%
of the average speed. This result indicated that the data assimilation technique effectively combined
information from field measurements and background conditions. The assimilated measurements
did not include information from elevations as low as 36 m. The background conditions did contain
information from these low elevations, but with systematic errors of their own. The assimilation
technique managed to propagate the gain from the observations at 100 m above the ground in the wind
farms to other regions and to lower elevations. The covariance matrix of the background condition
error was essential to the propagation of these observational gains.

As for the total error, the correlation values between observed and estimated wind speed and the
standard deviation of the total error of each estimate, generally about 1 m/s to 1.5 m/s, suggested that
the obtained estimates could be of sufficient quality to be useful in various applications. Some examples
of applications in which such estimates are valuable are the estimation of wind climatology within the
range of the considered height levels, retrospective simulations of transport processes and dispersion of
air pollutants, or real-time estimation of environmental conditions in which systems whose operation
can be affected by the wind are being used. In any case, the effective use of pseudo-observations in
a specific application requires the estimation of their confidence intervals, which are necessary both
to assess whether the accuracy of pseudo-observations is acceptable for the application in question
and to take into account the effects of the uncertainty of these data if they are used. The generation of
databases of pseudo-retrospective observations, such as the one presented in this work, allows for the
estimation of these confidence intervals.

For future studies, we are interested in quantifying the effects of including atmospheric pressure
observations on the quality of the results. We are also interested in evaluating the effect of expanding
the region in which observations are collected for the assimilation of data on the results of the hot
start option.

Finally, we pointed out that the topography of the studied region is not completely flat but
is relatively smooth. This can contribute to the quality of results obtained by assimilating a few
observations in numerical simulations with relatively low resolution. In the case of regions with
relatively complex topography, the numerical simulation may require finer spatial resolution to
properly take into account the effects of topography on the wind field. The proper quantity and
location of measurement stations should also be evaluated in each case.
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Appendix A

The setting of the WRF model used in this work is analogous to that of the work by Cazes Boezio
and Ortelli [12] which evaluates short-term forecasts of wind power generated in Uruguay. The
horizontal resolution was 30 km in the zonal and meridional direction. Figure 3 shows the grid points
used to compute air temperature, pressure, density, and vertical velocity. The grid points used to
compute the zonal and meridional velocities (not shown) were staggered one half of the horizontal
resolution in the zonal and the meridional directions, respectively, according to the Arakawa C-grid
arrange [1].

The model setting employed considered 54 layers in the vertical direction. The model vertical
coordinate is η [1], defined as

η =
pd − pT

pS − pT
(A1)

where pd is the hydrostatic component of dry air pressure at a particular atmosphere level, and pS and
pT are the analogous pressures at the Earth’s surface and the atmosphere conventional top, respectively.
In this work, the atmosphere top was set to 50 hPa. Table A1 gives the values of h at each layer interface.

Table A1. η values at the top of each layer of the vertical discretization.

Layer
Number

h Value at
Layer Top

Layer
Number

h Value at
Layer Top

Layer
Number

h Value at
Layer Top

1 0.9880 19 0.9240 37 0.7135

2 0.9969 20 0.9165 38 0.6911

3 0.9950 21 0.9088 29 0.6668

4 0.9935 22 0.9008 40 0.6406

5 0.9935 23 0.8925 41 0.6123

6 09910 24 0.8840 42 0.5806

7 0.9899 25 0.8752 43 0.5452

8 0.9861 26 0.8661 44 0.5060

9 0.9821 27 0.8567 45 0.4630

10 0.9777 28 0.8471 46 0.4161

11 0.9731 29 0.8371 47 0.3656

12 0.9682 30 0.8261 48 0.3119

13 0.9629 31 0.8141 49 0.2558

14 0.9573 32 0.8008 50 0.1982

15 0.9513 33 0.7863 51 0.1339

16 0.9450 34 0.7704 52 0.0804

17 0.9382 35 0.7531 53 0.0362

18 0.9312 36 0.7341 54 0.0000

The horizontal velocities and the air temperature were computed inside each layer, while
the vertical velocity was computed at the layer interfaces, according to the Lorenz vertical grid
arrangement [1].

The WRF model allowed us to choose several parameterizations of physical processes, especially
for atmospheric boundary layer processes, surface layer processes, short and long wave radiative
heat transfers, convective precipitation, clouds microphysics, and drag associated with gravity waves.
Table A2 shows the parameterizations chosen in the current work and indicates references for them.
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Table A2. Parameterization of physical processes used.

Physical Process Scheme Used

Short Wave Radiation Dudhia scheme [20]

Long Wave Radiation RRTM schene [21]

Surface Layer Revised MM5 surface layer scheme [22]

Atmospheric Boundary Layer Yonsei University scheme [23]

Microphysics Hong et al. scheme [24]

Cumulus Precipitation Simplified Arakawa Schubert scheme [25]

Gravity Wave Drag Kim Arakawa scheme [26]

Land Processes Noah land surface model [27]

Appendix B

Kalnay [3] showed the result of the optimization indicated in Equation (A1), that yields the 3D-Var
analysis xa and is equivalent to the result of the optimal interpolation procedure,

xa − xb = B(∇H)T·[∇H·B·(∇H)T + R]
−1·[y− (∇H)(xb)] (A2)

We chose a particular variable and a particular grid point that corresponds to the kth element of
xb or xa, according to the conventional order of these vectors. We defined the synthetic observation y

at the chosen grid point as the kth value of xb plus a conventional increment Δ,

y = xb(k) + Δ (A3)

Since the ∇H operator produces analogous variables to those of the vector of observations y

from xb, and the analogous to the synthetic observation y in the background condition is xb(k), the
correspondent ∇H is a vector with all its terms equal to 0, except the kth element, which is equal to 1, so

H(xb) = xb(k), and y−H(xb) = Δ (A4)

The matrix R of covariance of observation errors has a single element, which is the covariance of
the synthetic observation y. We chose a conventional value s2 for this covariance. Rizvi [17] showed
that with these choices, Equation (A2) yields

xa − xb =
Bk

bkk + σ2 (A5)

where Bk is the k column of B. Equation A5 indicates that the xa − xb difference is proportional to a
vector that gives all the covariances of the error of xb(k) with the errors of all the other variables of xb.
Note that the xa − xb difference is independent of the xb condition chosen. Plots of xa − xb fields for a
selected variable at a selected level of the numerical domain can help to understand the geographical
structure of the error covariances of that variable at that level.

Here, we chose to increase in 1 m/s the zonal (”test A”) and the meridional (“test B”) wind of a
particular xb condition at the grid point and level closest to the location of the Vst station and the level
of 87 m above ground. s was chosen as 1 m/s. Figure A1a shows the xa − xb field for zonal velocity
resulting from test A, at the same model level of the selected grid point (level 7 from the ground).
Figure A1b shows the xa − xb field for the meridional velocity at the same level, for “test B”. These
results indicated that WF1 and WF2 were located in regions, where the zonal and meridional winds
are well correlated with those of the Vst, and, therefore, wind estimates at this location benefit from
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observational gains obtained at WF1 and WF2. Besides, this type of analysis can be useful to define the
density of a station network intended to cover a specific area.

Figure A2 shows the vertical profile of the xa − xb zonal wind difference for test A, at the point of
the horizontal grid in which the increase of zonal wind speed was prescribed. This profile shows the
vertical structure of the covariances of zonal velocity background errors with the background error at
the level chosen for the test. It was found that these covariances increased with the elevation up to
500 m above the ground, and then decreased to values that were close to 0 in the upper atmosphere
(Figure A2a). Figure A2b shows a zoom of the profile shown in Figure A2a for the first 150 m above
the ground, in order to focus on the levels of interest to this work. Although covariances were lower at
lower elevations, their relatively large values indicated that observational gains obtained at elevations
about 100 m could propagate quite directly to lower levels. The analogous vertical profiles from test B
were found to be very similar to those from test A, and are not shown here.

Figure A1. (a) xa − xb zonal wind difference in test A at the 7th layer of the model; (b) xa − xb meridional
wind difference in test B at the same level. Contour interval, 0.1 (dimensionless).

 
Figure A2. (a) Vertical profile of xa − xb zonal wind differences in test A at the horizontal grid point
closest to Vst location (for the first 8000 m above the ground). Abscissa, xa − xb (dimensionless),
ordinate, elevation above ground; (b) zoom of Figure A2, a vertical profile at the first 150 m above the
ground. Dots indicate the model grid points, and the arrow, the grid point at which the perturbation
is prescribed.
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Abstract: Climate extreme indices (CEIs) are important metrics that not only assist in the
analysis of regional and global extremes in meteorological events, but also aid climate modellers and
policymakers in the assessment of sectoral impacts. Global high-spatial-resolution CEI datasets
derived from quality-controlled historical observations, or reanalysis data products are scarce.
This study introduces a new high-resolution global gridded dataset of CEIs based on sub-daily
temperature and precipitation data from the Global Land Data Assimilation System (GLDAS).
The dataset called “CEI_0p25_1970_2016” includes 71 annual (and in some cases monthly) CEIs
at 0.25◦ × 0.25◦ gridded resolution, covering 47 years over the period 1970–2016. The data of
individual indices are publicly available for download in the commonly used Network Common
Data Form 4 (NetCDF4) format. Potential applications of CEI_0p25_1970_2016 presented here include
the assessment of sectoral impacts (e.g., Agriculture, Health, Energy, and Hydrology), as well as
the identification of hot spots (clusters) showing similar historical spatial patterns of high/low
temperature and precipitation extremes. CEI_0p25_1970_2016 fills gaps in existing CEI datasets by
encompassing not only more indices, but also by being the only comprehensive global gridded CEI
data available at high spatial resolution.

Dataset: https://doi.org/10.1594/PANGAEA.898014

Dataset License: CC-BY: Creative Commons Attribution 4.0 International

Keywords: climate extreme indices (CEIs); ClimPACT; GLDAS; Expert Team on Climate Change
Detection and Indices (ETCCDI); Expert Team on Sector-specific Climate Indices (ET-SCI)

1. Introduction

Extremes in climate such as floods, droughts, and cold and heat-waves can have significant
societal, ecological, and economic impacts globally [1]. Since the publication of the third assessment
report of the Intergovernmental Panel on Climate Change (IPCC) in 2000, characterizing extremes
under past and projected future climate has generated rapid interest [2]. The climate modelling
community, for instance, has spent increasing effort to capture high-frequency extreme events in
their simulations of historical and future projected climate. The underlying aim for both regional
and global climate modelling exercises (e.g., CORDEX and PRIMAVERA)1 has been to develop a
better understanding of the evolution of extreme weather events under long-term climate change
and variability.

The impetus to better understand extreme weather events is further driven by the impact
modellers who assess sectoral damages at varying spatial scales. The two vital characteristics of

1 CORDEX: http://www.cordex.org/; PRIMAVERA: https://www.primavera-h2020.eu/.
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climate that are at the core of impact models are (i) mean climate and (ii) the occurrence and
frequency of extreme events [3]. An increasing notion shared within the climate research community
is that even a relatively small change in the frequency or severity of extreme weather events
(i.e., in the tails of the probability distribution function) would have profound impacts on life and
assets [4], thus making it further imperative to analyze extremes at higher temporal and spatial
resolutions. For the scientific community focusing on impacts of climate change and variability,
historical observations of extreme indicators can facilitate a better understanding of the role of extreme
events and sectoral implications [5].

Largely driven by the requirement for a robust definition of climate extreme indicators, the Expert
Team on Climate Change Detection and Indices (ETCCDI)2 in 1999 led the first efforts in defining a set of
climate extreme indices (CEIs) that provide a comprehensive overview of temperature and precipitation
statistics [4,6–8]. The ETCCDI has developed an internationally coordinated set of core climate indices
consisting of 27 descriptive indices for moderate weather extremes3 [9–11]. The preliminary set of these
27 core indices were drawn up keeping the detection and attribution needs of the research community
in mind [10,11]. Noting the limitations of the ETCCDI indices with regard to restricted scope/usage in
assessing sectoral impacts, additional sector-relevant indices were recommended and developed by
the Expert Team on Sector-specific Climate Indices (ET-SCI) [9].

This study introduces a new open-access high-resolution global gridded (0.25◦ × 0.25◦)4 dataset of
71 CEIs (including the original 27 ETCCDI indices), covering the period 1970–2016. The dataset
(hereafter referred to as “CEI_0p25_1970_2016”) aims to contribute to the existing CEI databases by
making available the first comprehensive CEI dataset currently unavailable for the climate community
at a high resolution with worldwide coverage. Moreover, a consistent global CEI dataset covering a
long historical time period can lay a framework for not only analyzing observed changes in extremes,
but also potentially improving information services on extremes at regional scales [10].

The CEI_0p25_1970_2016 are a set of core (Table S1 in Supplementary Materials) and non-core
(Table S2 in Supplementary Materials) indices5 as defined and developed by the ETCCDI/ET-SCI,
and adopted by the World Meteorological Organization (WMO). The set of “core indices” refers to
indices that were developed by ETCCDI targeting the research community focusing on “detection and
attribution” in climate science (details in Section 4).

The rest of the paper is organized as follows. Section 2 describes the CEI_0p25_1970_2016 in detail.
Section 3 discusses the underlying meteorological dataset and the tools/methodology used in the
preparation of the CEI_0p25_1970_2016. Section 4 outlines the novelty, potential scope, application, and
limitations of the CEI_0p25_1970_2016. Dataset availability, ongoing work, and some recommendations
for future research are summarized in Section 5.

2. Dataset Description

2.1. Spatial and Temporal coverage of CEI_0p25_1970_2016

The CEIs included in this study encompass all but two indices6 that are part of the complete
list of 73 ETCCDI/ET-SCI core and non-core indices [9]. The CEI_0p25_1970_2016 is derived
using meteorological variables from the reanalysis data product Global Land Data Assimilation

2 Formed by the World Meteorological Organization (WMO) Commission for Climatology (CCl).
3 Extreme events that by definition typically occur a few times annually rather than severe impact, decadal weather events.

The indices for moderate weather extremes use absolute or percentile thresholds generally set at moderate values (e.g., 25 ◦C,
90th percentile).

4 ~27 km × 27 km at the equator.
5 https://www.wcrp-climate.org/data-etccdi.
6 The two indices Cooling and Heating Degree Days (CDD and HDD) are computed separately as part of another dataset of

additional indices relevant for health and energy sectors, currently under preparation [12]. Further details are provided in
Section 5.2.
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System (GLDAS) [13]. GLDAS is a new generation of reanalysis developed jointly by the National
Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) and National
Centers for Environmental Prediction (NCEP) [14]. Because the spatial extent of GLDAS covers all
land north of 60◦ S, the indices in CEI_0p25_1970_2016 are also computed over the corresponding
1440 (longitude) × 600 (latitude) grid cells. Further description of GLDAS as well as the reasons for
using it as a data source in this study are discussed in Section 3.

2.2. Other Existing Datasets Incorporating CEIs

While other similar historical gridded CEI datasets do exist, they are either (i) regional in coverage,
(ii) at coarser resolution, or (iii) limited in the number of indices available for research purpose.
Examples include (i) the 30 CEIs made available by E-OBS at 0.10◦ gridded resolution for Europe
http://surfobs.climate.copernicus.eu/dataaccess/access_eobs_indices.php, (ii) the global 0.50◦

gridded resolution S-14 indices dataset of 27 core ETCDDI indices available at http://h08.nies.go.
jp/s14/ [15], and (iii) the global 3.75◦ × 2.5◦ resolution HadEX2 and GHCNDex datasets of 27 core
ETCDDI indices available at https://www.climdex.org/learn/datasets/ [6,7]. To the best of the
author’s knowledge, the present database CEI_0p25_1970_2016 is currently the only comprehensive
high-resolution global-gridded historical dataset of ETCCDI/ET-SCI core and non-core indices.

3. Materials and Methods

3.1. Data Acquisition and Processing

The CEIs used in this study were computed utilizing the WMO ET-SCI recommended and
developed R-software package “ClimPACT2”7 [9]. R [16] is an open-source language and software
environment, developed primarily (but not solely) for statistical computing, and is applied widely in
climate research. Moreover, ClimPACT2 also makes use of several R subroutines, such as SPEI [17],
and is designed for operating on parallel computing infrastructure.

For the computation of CEI, ClimPACT2 requires the following meteorological variables
(i) maximum near-surface air temperature (TX), (ii) minimum near-surface air temperature (TN), and
(iii) near-surface total precipitation (PR), all at daily timesteps. These variables in the native Network
Common Data Form 4 (NetCDF4)8 format were obtained from the GLDAS-version 29 [13,18,19],
available at 3-hourly timesteps and a fine spatial resolution of 0.25◦ × 0.25◦. GLDAS is a global
high-resolution reanalysis dataset that incorporates satellite and ground-based observations, producing
optimal fields of land surface states and fluxes in near-real-time [13].

For the purpose of computing the CEI, the 3-hourly gridded variables (TX, TN, and PR) were
first temporally aggregated to construct daily mean TX and TN, and daily total PR, using a suite of
command line operators from NetCDF Command Operators (NCO ver 4.3.4)10 and Climate Data
Operators (CDO ver 1.9.0)11. Indices based on percentile thresholds (e.g., WSDI and CSDI in Table S1)
were computed using years 1970–2000 as the baseline period. For details on classification of CEIs
(namely “percentiles”, “absolute”, “threshold”, “duration”, and “others”), readers are guided for
further reading in [6–9].

7 R version 3.5.0 (“Joy in Playing”) x86_64 on Linux Centos 6.6 software architecture. ClimPACT2 was accessed on
23 September 2018 from https://github.com/ARCCSS-extremes/climpact2.

8 NetCDF is a set of scientific software libraries, with self-describing and machine-independent data format. https://www.
unidata.ucar.edu/software/netcdf/docs/.

9 Data accessed from https://disc.gsfc.nasa.gov/ on 12 July 2018.
10 NCO [20]: accessed on 14 July 2018 from http://nco.sourceforge.net/.
11 CDO [21] accessed on 14 July 2018 from http://www.mpimet.mpg.de/cdo.
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3.2. Choice of GLDAS as a Reanalysis Dataset for the Computation of CEIs

Vis-à-vis other global gridded reanalysis datasets, GLDAS offers several advantages. First,
GLDAS provides a consistent quality-controlled long global gridded time-series of the required
variables (i.e., TX, TN, and PR) at a high spatial resolution. Other reanalysis data products available
were found to have either a coarser spatial resolution (e.g., ECMWF-ERA40 and JRA-55, both available
from the mid-1950s but at 1.125◦), or a shorter time series (e.g., newly released ECMWF-ERA5 at 0.281◦

from 1979–present day, and NCEP-CFSv2 at 0.205◦ from 2011–present day). Second, GLDAS runs in
near-real-time, offering the potential to regularly update the database presented here.

The choice of GLDAS for computing the current set of indices was further motivated by its large
number of additional meteorological (e.g., specific humidity, surface pressure), land surface state
(e.g., soil moisture, surface temperature), and flux (e.g., evaporation, sensible heat flux) variables,
not commonly available in other reanalysis data products for a long time-series and at a high
spatial resolution12. While none of these additional variables are required for computing the current
set of indices, another dataset [12] of sectoral indices that are not presently implemented in the
ETCCDI/ET-SCI indices requires a subset of these variables (details in Section 5.2). The two datasets of
indices (current and [12] under prep.) will together comprise a large (~85) number of indices both
based on the same underlying GLDAS data, thus enabling the climate impacts community to access
“ready-to-use” multi-sectoral indices.

GLDAS has been comprehensively evaluated using different regional/global reference datasets
in earlier studies (e.g., see [14] who compare the GLDAS daily surface air temperature at 0.25◦ gridded
resolution with two reference datasets): (a) Daymet data (2002 and 2010) for the conterminous United
States at 1-km gridded resolution, and (b) global meteorological observations (2000) from the Global
Historical Climatology Network (GHCN).

Equally well-documented are certain known limitations of the temperature and precipitation
estimates in GLDAS. Whereas spatial details in high mountainous areas are not sufficiently estimated
by the GLDAS data, the surface air temperature estimates are generally accurate, with some caution
recommended for mountainous areas [14]. Previous studies that have incorporated GLDAS data
include (i) [22] for impact assessment studies in energy sector, and (ii) [23,24] for the analysis of
regional environmental conditions and changes. For a comprehensive list of GLDAS-related references,
readers are referred to https://ldas.gsfc.nasa.gov/gldas/GLDASpublications.php.

4. Key Features, Scope of Application, and Limitations of CEI_0p25_1970_2016

4.1. Novelty of CEI_0p25_1970_2016

The CEI_0p25_1970_2016 is currently the only dataset providing researchers and policymakers
with an exhaustive list of ETCCDI/ET-SCI recommended indices, dating back to the preceding
four decades, covering nearly all global land grid-cells, and assembled using a quality-controlled
reanalysis data product at a high spatial resolution. Considering the computational time and resources
required for assembling a comprehensive dataset of CEIs at a global scale, the biggest asset of
CEI_0p25_1970_2016 from the users’ perspective is the open access to a pre-compiled ready-to-use
set of indices in its native data format, along with a web interface allowing robust statistical analysis
and mapping of the results in a few easy steps (details in Section 5.1).

12 At the time of assembling the current dataset, the newly released ECMWF-ERA5 that also includes a large set of variables
was not publicly available prior to the year 2000.
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4.2. Scope of Application

The CEIs included in this study are not only suited as assessment tools in multiple sectors such as
Agriculture, Health, Energy, Water resource, etc., but also as metrics capable of being aggregated as
composite indicators for risk assessment and vulnerability studies (e.g., as demonstrated and applied
recently by [25] over Italy in the form of a “Climate Risk Index”). A number of earlier studies have
demonstrated the efficacy of the CEIs, both in detection and attribution studies, as well in the impacts
assessment of climate change and variability in key sectors. Examples include (i) [26] who use “Rx1day”
(Table S2) to examine the changes in model-simulated extreme precipitation by decomposing the daily
regional-scale extreme precipitation as contributions from atmospheric thermodynamics and dynamics;
and (ii) [27] who consider a broad range of CEIs (from Tables S1 and S2), for assessing future climate
change impacts on agriculture, human health, ecological ecosystems and utility (energy demand)
in Canada.

Moreover, it is widely known and established in sectoral impact studies employing empirical
methods that a large proportion of variation in the outcome variable is better explained by the
climatic variables accounting for moderate or severe extremes (e.g., the relationship (i) between
crop productivity and a variant of the index “GDDgrown” in Table S1, known as killing degree
days (KDDs) [28], (ii) between electricity consumption and degree-day indices namely “CDD” and
“HDD” [29]). CEI_0p25_1970_2016 for instance provides an instant resource platform for empirical
modellers to download and investigate a number of potential predictor variables that are robust
moderate/severe extreme indicators.

The robust characteristics and climatological attributes captured by ETCCDI/ET-SCI indices
can facilitate consistent comparison of results across different climatic zones, different time periods,
and the identification of regions (clusters) with similar characteristics in extremes (e.g., grid cells
with similar trends in annual days when daily maximum temperature is at least 30 ◦C (“TXge30”,
Table S1). The identification of common hot spots can be of potential interest to policymakers, insurance
companies, and country planners for the assessment of the risk and vulnerability of regions to extreme
weather disasters (e.g., flooding, drought, heat waves).

While the mean climatology of a location is invariably well-captured by the state-of-the-art
reanalysis data products and Earth System Models (ESMs), extremes (particularly in precipitation) at
fine spatial scales have been difficult to replicate [30]. CEIs provide the modelling community with a
detailed set of indicators enabling the comparison of different input data sources in their ability to
model extremes [8,9].

Finally, with the planned inclusion of additional indices to the current inventory of
ETCCDI/ET-SCI indices in the near future [9], the development of larger CEI datasets for historical
and future time periods could make valuable instruments available to researchers, policymakers, and
adaptation planners focusing on occurrences and return periods of rarer extreme meteorological events
(e.g., using extreme value theory).

4.3. Limitations of Indices Included in CEI_0p25_1970_2016

While the CEIs included in this study (Tables S1 and S2) were developed by the WMO expert
teams to largely address the growing demands of sectoral impact modellers, certain limitations of
the existing ETCCDI/ET-SCI indices have been recognized, and efforts are ongoing to develop other
robust indices meeting multi-sectoral requirements [9]. For instance, under the current framework of
ET-SCI definitions, the Heat Wave Magnitude (HWM) indices (Table S2 are based on the methodology
developed by either [31] or [32]. The more recently developed HWM Index daily (HWMId) defined
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by [33] and implemented in various sectoral studies (e.g., [34] for river discharge and [35] for assessing
impacts on wheat yields13) is yet to be included in the inventory of ETCCDI/ET-SCI indices.

Moreover, the ETCCDI/ET-SCI indices are defined largely at annual timescales, and some are
defined at monthly timescales as well. For certain sectoral applications (e.g., in Agriculture and
Energy), the current set of monthly/annual indices may prove less useful, as climate anomalies need
to be computed over different timescales. For instance, the “GSL” index (Table S1) in its current form
defined at annual timescales does not account for heterogeneity in the length of crop-specific growing
season (further details in [35]). In such cases, using indices computed at annual timescales can lead to
misleading results. Some further shortcomings of the existing ETCCDI/ET-SCI indices are discussed
and recommended for future work (details in Section 5.2).

Lastly, it must be emphasized that because CEI_0p25_1970_2016 utilizes temperature and
precipitation data from GLDAS, when using the current set of indices users should keep in mind the
known uncertainties and limitations of the GLDAS data (as discussed in Section 3.2).

5. Dataset Availability and Plans for Future Work

5.1. Data Access, File Naming Convention, and Size

CEI_0p25_1970_2016 can be accessed as individual netCDF4 files from
https://doi.org/10.1594/PANGAEA.89801414. The files follow the naming convention
CEI_timescale_GLDAS_0p25_deg_hist_1970_2016.nc (Figure 1), wherein “CEI” is the abbreviation of
the index (as described in Tables S1 and S2) and “timescale” is either “ANN”, “MON”, or “DAY”,
relating to annual, monthly, or daily timescales15 over which the corresponding CEI is computed.

The size of the individual NetCDF files vary between 156 megabytes (Mb) and 1.9 gigabytes
(Gb), depending on the CEI and time-scales at which it is computed. One exception is the file
“hw_ANN_GLDAS_0p25_deg_hist_1970_2016.nc” which is 3.1 Gb as it includes twenty individual
indices in a single netCDF4 file. GLDAS does not include data over (or near) water bodies. Such grid
cells where the required GLDAS TX, TN, and PR data are not available for computing the CEIs
are identified by missing values “1.e+20f”. Further details of the variables/dimensions in the
individual netCDF4 files can be examined using either NCO or CDO commands, such as “ncdump
-h netcdf_file_name” or “cdo sinfo netcdf_file_name”, respectively. For creating quick plots and
exploratory data analysis of individual netCDF files, open-access data tools such as Panoply (https://
www.giss.nasa.gov/tools/panoply/) or NCview (http://meteora.ucsd.edu/~pierce/ncview_home_
page.html) are recommended. Sample plots using Panoply for the four indices (“TXx”, “HWM_Tx90”,
“CSDI”, and “PRCPTOT”) are shown in Appendix A (Figures A1–A4).

13 The authors use a slightly modified version of HWDId in their study, which they refer to as Heat Magnitude Day (HMD)
in agriculture.

14 The dataset will also be mirrored on KNMI Climate Explorer (http://climexp.knmi.nl/about.cgi?id=someone@somewhere),
a web application interface that can facilitate not only rapid aggregation and robust statistical analysis of the CEI, but also
downloading of spatio-temporal subsets and quick plotting.

15 The dataset includes a total of 89 netCDF4 files (49 on annual, 39 on monthly and 1 on daily timescales). Some indices have
data both on monthly and annual timescales.
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Figure 1. Snapshot of the data repository web interface showing individual files in CEI_0p25_1970_2016
that are available for download at https://doi.org/10.1594/PANGAEA.898014.

5.2. Ongoing Work and Recommendations for Work in Future

The indices in CEI_0p25_1970_2016 are intended to be updated post-2016 years, subject to the
availability of the required GLDAS raw meteorological variables in the coming years. The updated
longer time-series of CEIs of more recent years should prove beneficial to the research community
focusing on recent extreme events (e.g., the droughts of 2017 and 2018 in south-east Australia, the heat
waves of 2018 in California, United States of America, the more recent January–February 2019 extreme
cold wave in North America). Additionally, upon the formal inclusion of any new indices (such as the
“HWMId” and the “Crop-specific GSL” as discussed in Section 4.3) by the WMO expert teams to their
list of ET-SCI indices, the same will be formally included in the existing dataset presented in this study.

While the ETCCDI/ET-SCI core and non-core indices employed in this study encompass a very
large spectrum of sectoral and non-sectoral indices, the list is by no means exhaustive. Motivated by
the suggestions of the R ClimPACT2 [9] package creators, another dataset of indices largely relevant
for health and energy sectors (called “HEI_0p25_1970_2016”) is currently under preparation [12].

Some features of HEI_0p25_1970_2016 will for instance be the inclusion of the two ETCCDI indices
(i.e., CDD and HDD [36]) that are not included in this study16. Moreover, HEI_0p25_1970_2016 will also
account for additional meteorological variables (e.g., near-surface relative humidity and wind speed)
for computing non ETCCDI/ET-SCI indices, such as the Humidex [37,38], the Heat Index (HI) [39,40],
and the Discomfort Index (DI) [41,42]. Together, both CEI_0p25_1970_2016 and HEI_0p25_1970_2016
are aimed to address the growing needs of the climate impact community, by overcoming the current
data scarcity of high-resolution global gridded CEIs in earth science.

16 The R ClimPACT2 used in the present study for computing CEI_0p25_1970_2016 is hard-coded to compute the degree-days
(CDD, HDD) on annual time scales. Degree-days at monthly and seasonal timescales are equally important in the energy
sector. These are developed at various base (threshold) temperatures at the same gridded resolution in HEI_0p25_1970_2016.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2306-5729/4/1/41/s1,
Table S1: 32 Core ET-SCI indices. Bold indicates index is also an ETCCDI index. (TX: daily maximum near-surface
air temperature, TN: daily minimum near-surface air temperature, PR: daily near-surface total precipitation,
H: Health, AFS: Agriculture and Food Security, WRH: Water Resources and Hydrology); Table S2: 39 non-core
ET-SCI indices. Bold indicates index is also an ETCCDI index. Sectoral abbreviations same as in Table S1.
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Appendix A. Sample Plots of Selective Indices from Tables S1 and S2 Using Panoply

Figure A1. Annual Warmest Day “TXx” (◦C) in 2003.

Figure A2. Warmest Day “HWM_Tx90” (◦C) in 2003 (Average temperature across all
individual heatwaves).
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Figure A3. Cold Spell Duration Index “CSDI” (Days) in 2013.

Figure A4. Total wet-day rainfall “PRCPTOT” (mm) in July 2005.
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Abstract: We currently live in an era of major global change that has led to the introduction and
range expansion of numerous invasive species worldwide. In addition to the ecological and economic
consequences associated with most invasive species, invasive arthropods that vector pathogens
(IAVPs) to humans and animals pose substantial health risks. Species distribution models that are
informed using environmental Earth data are frequently employed to predict the distribution of
invasive species, and to advise targeted mitigation strategies. However, there are currently substantial
mismatches in the temporal and spatial resolution of these data and the environmental contexts
which affect IAVPs. Consequently, targeted actions to control invasive species or to prepare the
population for possible disease outbreaks may lack efficacy. Here, we identify and discuss how the
currently available environmental Earth data are lacking with respect to their applications in species
distribution modeling, particularly when predicting the potential distribution of IAVPs at meaningful
space-time scales. For example, we examine the issues related to interpolation of weather station data
and the lack of microclimatic data relevant to the environment experienced by IAVPs. In addition,
we suggest how these data gaps can be filled, including through the possible development of a
dedicated open access database, where data from both remotely- and proximally-sensed sources can
be stored, shared, and accessed.

Keywords: arthropod vector; invasive species; microhabitat; species distribution modeling;
remote sensing

1. Introduction

In an era of major global change (i.e., in climate, land use, habitat fragmentation, and movements
of humans and other species) the introduction of invasive species and the geographic expansion
of endemic species to novel ranges are occurring at unprecedented rates [1,2]. Invasive species
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have extensive negative impacts on the ecosystems they invade, such as losses in both taxonomic
and functional diversity [3], resulting in severe economic consequences. For example, in the USA
invasive insects cost the agricultural sector USD 13 billion per year due to crop loss and damage [4],
routine activities to control Aedes mosquitoes in Cuba cost USD 16.80 per household [5], and Great
Britain spends USD 34.6 million per year on the control of invasive fresh-water species [6]. The stakes
are even higher when invasive species can vector pathogens that cause disease in humans, animals,
or plants. Some arthropod species that are highly invasive are among the most effective vectors of
human pathogens. Mosquitoes, such as Aedes aegypti [Linneaus, 1762] and Aedes albopictus [Skuse,
1895], are invasive arthropods able to vector pathogens (henceforth referred to as IAVPs) and transmit
three globally important viruses to humans: chikungunya, dengue, and Zika [7]. Likewise, the
Asian longhorned tick Haemaphysalis longicornis [Neumann, 1901], which is rapidly expanding across
the east coast of the USA [8], can vector the severe fever and thrombocytopenia syndrome virus,
which has human fatality rates exceeding 30% in Asia [9]. Of veterinary importance, the biting midge
Culicoides imicola [Kieffer, 1913] is currently expanding in range throughout Europe and can transmit
the bluetongue and African horse sickness viruses [10]. Plants are also affected, cotton whiteflies
(Bemisia species, including Bemisia tabaci [Gennadius, 1889]), now present in every continent except
Antarctica, can transmit over 100 different plant viruses [10].

In order to prevent the potentially catastrophic ecological, economical, and health consequences
associated with IAVPs, mitigation methods must be rapidly employed following species introduction
or expansion into a new geographical range [11]. Mitigation methods may include IAVP control
and eradication, or communication of the risks to policy makers, physicians and the public,
and environmental data are often used to inform these different processes. Here, we describe
the benefits and limitations associated with using i) remotely sensed data, which we define as data
acquired by sensors mounted on satellite, airborne, or other distant means, and ii) proximally sensed
data, which we define as having been collected by a ground-based, or other platform, in close proximity
to the variable being measured, in order to inform IAVP mitigation.

2. Linking Environmental Earth Data and IAVPs

As observed by Malanson and Walsh; “detection and eradication [of invasive species] are essentially
spatial problems. They primarily require learning where the invasives are and getting there” [12]. This is a
simplification of a more complex issue, which may also involve a lack of personnel or funding to
efficiently implement detection and eradication, insufficient communication or perception of the IAVP
risk, and even IAVP resistance to control measures. However, environmental data can be used to
address the “spatial problems” by informing predictions on where invasive species may be introduced
and become established.

In some instances, using environmental data in the mitigation of an invasive species can be as
straightforward as directly detecting the species. For example, thanks to the reflectance properties of
vegetation, invasive plants can be mapped using indices such as NDVI (the Normalized Difference
Vegetation Index) or EVI (the Enhanced Vegetation Index) that are derived from remotely sensed data
that measures infrared reflectance (e.g., in [13], and also see [14] for a review on this method). A similar
concept can be applied to invasive arthropods which cause damage to vegetation, and NDVI data has
been used to track the dispersal of invasive insects by monitoring defoliation [15,16]. Although weather
radars have detected mass migrations of invasive insects [17], as yet remotely sensed data cannot
directly characterize IAVP geographical distributions. There are promising proximal sensing methods
that use reflectance data from cameras that can detect and differentiate between multiple fruit fly
species, including those that vector crop pathogens [18] (see also [19] for an interesting application of
proximal sensing of an invasive pathogenic plant bacterium). However, mapping IAVP distribution in
real-time is often less desirable than preempting the potential geographic distribution, as surveillance
and control are more efficient if implemented prior to the establishment of a species [11,12,20].
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Species distribution models (SDMs) are frequently used to predict the current and future geographic
distribution of IAVPs [11,12,20] due to their ability to be applied to species that cannot be directly
detected because they are small, elusive or inhabit remote locations. Typically, correlative SDMs apply an
algorithm, such as maximum entropy, boosted regression trees or random forest, that combines empirical
occurrence data on the species with relevant environmental data (e.g., average temperature and
precipitation) to predict the spatial and temporal distributions of a species [21,22]. Mechanistic models,
such as compartmental or agent-based models have also been developed, alone or in combination
with correlative models, to characterize potential species distributions [23,24]. Here, we adopt a broad
definition of SDMs to include any modeling approach that aims to predict the distribution of a species,
from logistic regression to multi-criteria decision analyses. In the last few decades there has been
a sharp increase in the number of publications on SDMs, with hundreds published each year [25].
This dramatic rise in interest in SDMs is in part due to advances in remote sensing technology, including
new satellites and sensors that have hugely increased the quantity and quality of environmental data
that can be used [26].

3. Gathering Environmental Data for SDMs

The accuracy of SDM predictions is highly dependent on how closely the data used in the model
match conditions relevant to the species and, despite considerable increases in both spatial and temporal
resolution of available environmental data, there is often still a substantial mismatch in the conditions
represented by the available data and those experienced by IAVP species. Environmental data used in
SDMs can be classified as bio-physical or climatic, both of which can be measured by proximal sensing,
but data used in SDMs is typically derived from remote sensing.

3.1. Bio-Physical Variables

Bio-physical variables generally include land-use, land cover, primary productivity, and vegetation
phenology and fragmentation. Bio-physical variables are almost exclusively derived from Earth
observation satellites which measure either reflectance at various wavelengths in the electromagnetic
spectrum, or emitted radiances in the thermal spectrum. These reflectance data can be used to calculate
NDVI and NDWI (Normalized Difference Water Index), which are applied instead of, or alongside,
other satellite imagery/reflectance data to ascertain variables such as land-use and land cover (Table 1).
Satellite data are available in a wide range of spatial (<1 m to >5 km) and temporal (hourly to yearly)
resolutions, and allow for some user flexibility based on the scale at which the model is applied
(e.g., eco-region, county, national, global). Given technological limitations due to on-board storage
media or limited opportunity for data transmission, spatial and temporal resolution of remote sensing
tools are inversely correlated [27]. As the majority of bio-physical variables remain static or exhibit very
gradual changes over time, spatial resolution is often prioritized over temporal resolution. For example,
since 1972 the NASA-USGS Landsat series has provided uninterrupted data on the Earth’s surface at a
relatively high resolution of 30 m, but measurements are only taken once every 16 days, although this
will increase to every eight days starting from 2020. NOAA VIIRS provides a series of environmental
data, as well as monthly cloud-free composites of visible infrared emittance for the entire Earth during
night at a resolution of 15 arcsec (<500 m at the equator) [28], which can be used as a proxy for human
settlements to inform the possible human contact risk associated with IAVP presence [29,30]. Since the
1980’s, satellite remote sensors such as AVHRR and, many years later, MODIS, have allowed the
derivation of more spatially and temporally continuous vegetation and surface temperature data at a
moderate spatial resolution (250–1000 m), but with more frequent (daily) observations, thus greatly
enriching the available datasets [31]. In addition, the more recent Sentinel missions (2A, 2B, 3) from the
European Space Agency (ESA) have offered optical data at 10–300 m spatial resolution every 3–7 days
since 2016.
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The accuracy of satellite data is generally strongly linked to the method of derivation, geographical
region, climatic condition, and availability of in-situ data for calibration, which in turn affect SDM
results. For example, cloud cover often hinders satellite optical data, especially in inter-tropical
regions, but there are multiple statistical approaches that can fill these gaps over space or time [32].
Remotely sensed data on bio-physical Earth observations can be combined with ground-based (in-situ)
data to provide crucial information on habitat structure, and are therefore commonly used in SDMs.
Large extent datasets for bio-physical variables, such as the Global Copernicus Land Cover maps
(spatial resolution = 100 m) [33], the pan-European Corine Land Cover (100 m) [34], the USA National
Land Cover Datasets (30 m) [35] and the global MODIS Land Cover Type/Dynamics (500 m–1 km) [36],
are derived using a combination of satellite and ground (in-situ) sensors [35]. However, these data are
typically presented as a single multi-annual “snapshot” using a composite of several observations over
time, and thus, provide very limited information on temporal variation.

3.2. Climatic Variables

Climatic data, which is often fundamental in the physiology of arthropods, includes variables
such as land surface temperature (LST) or air temperature and precipitation. Such data are commonly
derived from remote sensing and are frequently used in SDMs. Precipitation can be measured by
active satellite sensors in the micro-wave region and offer high temporal (hourly) but coarse spatial
resolution data (e.g., GPM and TRMM; Table 1). As for bio-physical variables, the spatial and
temporal resolution of satellite data for climatic variables are also inversely related, which results
in a lack of high spatial resolution data at higher temporal frequencies of measurement. In the case
of climatic variables, which can vary minute-by-minute, temporal resolution is highly important.
This trade-off often plays a significant role in attaining high accuracy results from SDMs. To fill
these temporal gaps, recent satellite missions that measure radiance in the thermal spectrum bands
(i.e., which measure temperature) are focused on providing higher spatial resolution climatic data
with frequent measurements (e.g., Sentinel 2A/B data at 10 m with weekly acquisitions).

In addition to satellite-derived Earth data, data collected by ground-based weather stations, or a
combination of both, such as the WorldClim, PRISM, Daymet and ECA&D datasets, are perhaps the
most widely used climatic data in SDMs due to the user friendly format that requires comparatively
little pre-processing compared with satellite data (e.g., [37–42]). As weather stations measure variables
at discrete geographic locations these data must be interpolated to create a continuous spatial layer
before being used in SDMs. There are multiple methods by which weather station data can be
interpolated, but all are limited by the density of weather stations in the study area, and are confounded
by topographical features and spatial gradients, although satellite or other remotely sensed data can
help to remedy some of these shortcomings [37,43,44].

For regional SDM applications high resolution datasets are required, but the availability of such
data remains a challenge also for current satellite missions, despite considerable improvements during
the last few years with the advent of the new Landsat and Sentinel missions.

4. Issues Faced When Using Environmental Data in IAVP Models

As described, there are many environmental datasets available that can inform SDMs.
However, these datasets are often of limited relevance in the context of IAVP modeling, not least due to
substantial mismatches between the spatial resolution at which predictions are made and the resolution
at which the predictions are interpreted, communicated or applied. The spatial resolution of model
predictions are constrained by the resolution of the environmental data used, which is typically in the
order of kilometers. However, the subsequent predictions are often used to inform actions applied at
spatial scales in the order of meters, such as informing which neighborhoods should be targeted for
surveillance and control, where to install deer fences to control tick abundances, or communicating
IAVP presence. Although some inaccuracies in SDM outputs may seem trivial in the context of
a scientific paper, they can pose a serious issue when accurate predictions are required for use in
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“real world” scenarios. For example, SDMs and model-derived data are used by the Centers for Disease
Control and Prevention (CDC) in the USA to inform administrative regions on the likelihood of Aedes
mosquito invasion, in order to distribute vector control resources (e.g., intensive surveillance and
insecticide application) [45,46]. Consequently, disparities between the spatial resolution of the data
used to inform the model and that at which model outputs are applied will result in model outputs
that are inaccurate for their intended applications. At best, IAVP distributions may be over-estimated,
leading to unnecessary use of resources, and at worst, distributions can be underestimated such that
no, or insufficient, actions are employed to control IAVPs in an area that is actually at risk. Indeed, an
economic evaluation of biological invasions states that “uncertainty prevails concerning what ecosystems
will be invaded and what impacts an invasion will have within these ecosystems”, highlighting that accurate
ecological and economic analyses are crucial in the allocation of finite resources to control invasive
species [47].

There is also a mismatch in spatial resolution between environmental data used in SDMs, and that
at which the IAVP is affected. Indeed, many arthropods, such as mosquitoes and ticks are small
and poikilothermic, and are therefore heavily affected by microclimatic conditions, which vary at
fine spatial scales (in the order of centimeters to meters) and differ to the surrounding macroclimatic
conditions [48–50]. For example, potentially invasive ticks, especially nidicolous (nest-dwelling)
species, spend almost their entire life-cycle within a limited spatial radius; following a bloodmeal
they detach from the host and remain within the host’s nest or a nearby sheltered area, such as a
cave or crevice, in order to metamorphose [51]. Within these isolated and sheltered microhabitats
environmental conditions can be very different to those in the surrounding environment. In the
same way, IAVPs can be sensitive to extreme environmental conditions, for example the lone star
tick (Amblyomma americanum [Linnaeus, 1758]), which is invasive across much of the north east of the
USA, dies within just 2 h of exposure to temperatures of ≤−3 ◦C in the laboratory [52] and rapidly
desiccates when exposed for several hours to temperatures exceeding 30 ◦C [53]. Likewise, mortality
of Culicoides brevitarsis [Kieffer, 1917] (Diptera: Ceratopogonidae), a vector of the bluetongue virus,
is high in the laboratory when temperatures are greater than 35 ◦C, even if just for a few days [54].
Consequently, high temporal resolution of data is required to accurately capture the variance and
range in environmental variables [44], but at present the most accessible remotely sensed data are only
available for 1–6 day interval measurements, thus do not capture data at the same hourly temporal
resolution that can affect IAVP survival. There is a wealth of literature demonstrating that if species
were theoretically subjected to the macroclimate as measured by remote sensing, rather than the
microclimate which they truly experience, their behavior, reproduction, growth, survival, and both
phenotypic and genotypic adaptations would all be profoundly impacted [55].

In addition to issues of resolution in environmental data, some factors that impact IAVP distribution
cannot be directly measured, and instead other measurements are used as a proxy, or are interpolated,
for the variable of interest. Due to its importance in the IAVP life cycle, temperature is among the most
broadly applied variables in IAVP species distribution modeling. However, land surface temperature
is generally used as a proxy for ambient temperature [27,56,57], whilst relative humidity, which is vital
to arthropod survival, is often calculated from temperature and dew point measurements, or minimum
day-time air temperature [58]. SDMs are made further complex when the species of interest has multiple
life stages, each of which may exploit a different microhabitat. Mosquitoes have an “amphibious” life
history, throughout which they experience air, below-water, and water-surface temperatures, by having
terrestrially fixed or floating eggs, aquatic immature larvae and flying adults [59]. Researchers have
measured air temperature, water temperature, and precipitation to understand whether air temperature,
usually used to determine mosquito distribution or life cycle, provides an appropriate direct measure for
determining Anopheles [Diptera: Culicidae] larval development in water [48]. The authors of one such
study concluded that their results “suggest that although widely used, air temperature alone does not provide
an appropriate variable for estimating immature mosquito development or for setting threshold temperatures”.
Another study that measured temperature in microhabitats suitable for Aedes mosquitoes found that
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when utilizing temperature from remote sensors or weather stations instead of from proximal data
loggers, model outputs predicted that Ae. albopictus developmental rates were delayed and population
growth rates were under-estimated (Figure 1) [60]. Thus, the environmental characteristics important
to the survival of an IAVP vary considerably compared to those that can be measured or interpolated by
currently available data [59,61], and the obliged use of sub-optimal proxy data may result in erroneous
model outputs [48,61].

Figure 1. Temperature time series in an area invaded by Aedes albopictus mosquitoes in Italy (11.13◦N,
46.2◦E). Grey points and smoothed trends represent temperature measured at the microhabitat
scale (i.e., an artificial, hard plastic, water filled container typically used for egg laying by this
species) in different environmental settings: full-shadow, half-shadow, and full sun conditions.
Temperatures were recorded inside (mosquito larvae habitat) and outside water (mosquito adult
and egg habitat) using iButton® (Maxim Integrated, US) DS1923 data loggers at one hour intervals.
Blue points and smoothed trends depict four-daily Land Surface Temperature (LST; MOD11A1 and
MYD11A1 MODIS data) values, derived from the Moderate Resolution Imaging Sensor (MODIS)
instruments, on-board the Terra and Aqua satellites. MODIS data were downloaded from a NASA
server (https://lpdaac.usgs.gov/data_access), imported into GRASS GIS, and temperature values were
extracted for each pixel (1 km resolution) where iButton sensors were placed (this figure was produced
using data reported in [60]).

Strictly related to the low spatial resolution at which remotely sensed data are acquired, ecotones,
i.e., where two macrohabitats intersect, for instance at the edge of a river, between mountains and
valleys, green areas in a city or in catch-basins, are not currently well-captured by environmental
data. However, ecotones can create microhabitat refugia in a macrohabitat that would otherwise be
unsuitable. For example, Hoogstraal demonstrated that in the Nile Valley which is otherwise too dry
for ticks, the soft tick Ornithodoros sonrai [Sautet and Witkowski, 1943] was able to colonize rodent
burrows close to a permanent river, which provided adequate water and humidity [62]. Research has
identified general patterns and mathematical relationships in the “buffering effect” of the physical
structure of a microhabitat and has determined that, in general, within the microhabitat experienced by
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the tick, temperature and relative humidity are lower than that of the external environment typically
measured for environmental data [63]. However, these patterns are influenced by a variety of factors,
including the structure of the microhabitat and surrounding hydrography [63].

5. Attempting to Overcome the Lack of Microhabitat Data

Methods to capture, interpret, and produce remotely-sensed data that can be applied to SDMs are
continually improving. In March 2019, Planet announced that they can provide satellite imagery from
which NDVI can be derived at a resolution of 3–5 m, every 3 days (https://www.planet.com/pulse/
developing-the-worlds-first-indicator-of-forest-carbon-stocks-emissions/). Additionally the project
can gain NDVI at 0.8 m using Light Detecting and Ranging (LiDAR) sensors mounted on aircraft,
but for only a single time point due to the costliness of this data collection process. Despite these
improvements, there may be a considerable lag time between such data being available and being used
in SDMs, which typically require time series data spanning multiple years to truly capture adequate
information on the climate. In addition, high resolution data at such a large scale require intense
computational power and expertise for use in SDMs, as high resolution satellite data brings with it
challenges related to differentiating details between variables within the imagery, as well as new sources
of noise [64]. For instance, a project attempted to use NDWI calculated from QuickBird satellite imagery
at 2.44 m spatial resolution to locate potential habitat for invasive mosquitoes (e.g., swimming pools).
However, ground truthing of the data showed that shadows cast upon swimming pools by surrounding
trees or structures resulted in decreased NDWI values and reduced the ability to detect water bodies [65].

We understand that improving the quality of the remotely sensed data processing chain,
including geometric and radiometric corrections, is a complex discipline in itself and takes time
and an organized effort. However, we can take better ownership of the data that are currently
available to us, and can follow the lead of other disciplines in doing this. A set of Essential
Biodiversity Variables (EBV) have been identified to support biodiversity monitoring under the
framework of the Group on Earth Observations Biodiversity Observation Network (GEO BON). Out of
21 candidate EBVs suggested by GEO BON, 14 EBVs have been identified as directly or indirectly
measurable by remote sensing (https://geobon.org/ebvs/what-are-ebvs/) [66–68]. Two subsets of EBVs,
focusing on Species Abundance (SA EBV) and Species Distribution (SD EBV), have been introduced
and defined as a space-time-species-gram (cube), which can address species distribution or abundance
irrespective of the taxonomy or scale [69]. This classification is facilitated by the availability of global,
high-resolution, remotely-sensed data on environmental conditions and ecological species attributes.
The framework has been optimized for biodiversity monitoring, but an equivalent product could
be developed for relevant data pertaining to invasive species monitoring. Similarly, other areas
of research have identified the need for environmental data that better meet the requirements of
modelers, and have built high resolution and user friendly databases. For example, Bio-ORACLE
(Ocean Rasters for Analysis of Climate and Environment) is a global dataset of environmental
data which has been tailored for, and successfully implemented in, the distribution modeling of
marine species [70–73]. Creating similar datasets that include environmental (both remotely and
proximally sensed) data relevant to IAVP species at a fine spatial scale and a user friendly format
could greatly improve the way in which currently available environmental data are used in IAVP
SDMs. In addition, online data repositories, that include microhabitat data are available, such as
DataONE (Data Observation Network for Earth, https://www.dataone.org/), JaLTER (Japan Long-Term
Ecological Research Network; http://db.cger.nies.go.jp/JaLTER/metacat/style/skins/jalter-en/index.jsp)
and the VLIZ: IMIS (The Flanders Marine Institute: Integrated Marine Information System,
http://www.vliz.be/en/imis for example see [74]). Whilst these databases represent a great resource,
people must be made aware that microclimatic data do exist, and centralization of microhabitat
data in a well-structured repository could greatly facilitate data dissemination and utilization by the
scientific community.
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On a smaller scale, unmanned aerial vehicles (UAVs) and drones can be equipped with visible
light, near-infrared, and/or thermal sensors to measure environmental variables, producing NDVI
and surface temperature data at high resolution and at the desired scale [75,76]. UAVs have also been
used to survey for bird and primate nesting and resting sites to estimate population numbers [77,78],
and although this method is not currently suitable for the direct detection of IAVPs, host nesting sites,
e.g., woodrat middens, or water bodies suitable for mosquito egg laying, could be surveyed using
these techniques and used as a parameter for host availability in SDMs.

Environmental data at the microhabitat level can also be measured using data loggers; small sensors
able to measure a range of variables paralleling those that can be remotely sensed, such as temperature,
light, air velocity, barometric pressure, and relative humidity (e.g., see HOBO® U30 USB Station
(U30-NRC) data logger; Bourne, MA). Many data loggers are small enough to be placed in almost any
microhabitat, and can be programmed to record measurements at multiple intervals throughout a 24 h
period. Data derived from such data loggers has been successfully used to model the extirpation and
persistence of mammals (American pika, Ochotona princeps [Richardson, 1828]) [79,80] and thermal
ecology potentially related to butterfly distribution (Aglais urticae Lepidoptera: Nymphalidae [Linnaeus,
1758], Inachis io Lepidoptera: Nymphalidae [Linnaeus, 1758] and Polygonia c-album, Lepidoptera:
Nymphalidae [Linnaeus, 1758]) [81], and could no doubt also be applied to IAVP distributions.
While a large number of data loggers need to be employed to collect sufficient data for species
distribution modeling, requiring considerable resources to deploy and manage, these data could be
supplemented by crowd-sourced means. Environmental data can now be collected from sensors within
smart phones that can measure multiple variables, including temperature, pressure, and light, as well
as from privately owned amateur weather stations and apps that ask citizens to report climatic data,
such as amount of precipitation [82].

Despite the generalized application of coarse resolution data for modeling the distribution of
IAVPs, overcoming the lack of data at a microhabitat scale has been attempted, although not necessarily
for SDMs. An alternative and empirical strategy to improve our understanding of microhabitat thermal
properties can be in the implementation of controlled experiments, that allow us to characterize
microhabitat properties [83,84]. For example, studies have directly measured temperature within
aquatic mosquito egg laying sites [48], and have recorded environmental variables in catch basins
known to be egg laying sites for Ae. albopictus in Italy [58]. Both studies found that modeling mosquito
population dynamics using these variables, rather than air temperature which is typically used,
changes, and likely improves, the estimated development of the mosquito. An increasing number of
scientific studies call for a better estimation of the thermal characteristics of mosquito microhabitats,
specifically in order to achieve more reliable SDMs [48,58,85].

The strategies to overcome the lack of microhabitat data proposed above require intense use of
resources, and we propose that microhabitat data collected by data loggers, crowd-sourcing, unmanned
aerial vehicles, and/or controlled environmental studies are maintained in a database which can be
freely contributed to, and be used by all those studying IAVP ecology. An open access database of
microhabitat data could greatly facilitate the propagation of both collection and use of this type of
environmental data.

6. Conclusions

Currently, environmental data that is used to inform ecological niche models largely relies
on remotely sensed data, which is at a relatively course temporal and spatial resolution and does
not accurately represent the microhabitat experienced by the species of interest, nor that at which
activities informed by the prediction are executed. The predicted distribution of invasive arthropods
resulting from models are therefore likely to be insufficient for direct application. The subsequent
over- and/or under-estimations in IAVP distribution can have considerable consequences on control
efforts, which may be informed by such predictions. We posit that consequently, efficiency and efficacy
in the allocation of resources to control IAVPs are sub-optimal. The optimal resolution of environmental
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data relevant to IAVP ecology will likely vary according to the species under consideration, but we
assume that this resolution will typically be <1 m and hourly. The scientific community may be far
from having, for example, remotely-sensed measured temperature data at a 1 m spatial resolution or
hourly temporal resolution for large extensions. However, we argue that any effort to improve the
availability of data at a finer resolution than currently available will be of great benefit for modeling
the distribution, abundance, or demographic rates of IAVP species. In the meantime we encourage
modelers and ecologists to take a proactive approach in collecting fine resolution data using data loggers,
crowd-sourcing, unmanned aerial vehicles and/or controlled environmental studies. We propose that
these proximally-sensed data, as well as remotely-sensed data, be made open access in a user friendly
database. We also hope that the suggestions made here for overcoming issues in environmental data
for modeling IAVP distributions can be adapted and applied to species distribution modeling in other
areas of research.
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Abstract: On the basis of the Research Station of the Russian Academy of Sciences in Bishkek,
a unique scientific infrastructure—a complex geophysical station—is successfully functioning,
realizing a monitoring of geodynamic processes, which includes research on the network of points of
seismological, geodesic, and electromagnetic observations on the territory of the Bishkek Geodynamic
Proving Ground located in the seismically active zone of the Northern Tien Shan. The scientific and
practical importance of monitoring the geodynamical activity of the Earth’s crust takes place not only
in seismically active regions, but also in the areas of the location of particularly important objects,
mining, and hazardous industries. Therefore, it seems highly relevant to create new software and
hardware to study geodynamic processes in the earth’s crust of seismically active zones, based on
integrated monitoring of the geological environment in the widest possible depth range. The use of
modern information technology in such studies provides an effective data management tool. The
considering system for collecting, processing, and storing monitoring electromagnetic data of the
Bishkek geodynamic proving ground can help overcome the scarcity of experimental data in the field
of Earth sciences.

Dataset: For general use, a center for collective use of scientific equipment “Integrated geodynamic
research” (CCU IGR) was created, on the basis of the Research Station of the Russian Academy of
Sciences in Bishkek (RS RAS) (http://ckp-rf.ru/auth/). Through it, you can register and get access to
data that is laid out for general use. In open access on the Internet, EDI-files on the MANAS profile
are posted at http://ds.iris.edu/spud/emtf.

Dataset License: CC-BY

Keywords: database; geophysical monitoring; magnetotelluric monitoring; processing

1. Summary

The complex of regional geophysical works, including magnetotelluric studies, is carried out in
almost all major tectonic provinces worldwide. One of the tasks of such a complex is to study the
geodynamic state of the regions and assess the development and distribution of hazardous geological
processes. Tien Shan region is one of the most tectonically active. This paper discusses the information
aspects of the developed technology of multidisciplinary geophysical monitoring of geodynamic
processes in the Earth’s crust seismically active regions. The approach to the created technology is
based on the integrated use of structural-functional and object-oriented information models. The
developed structural-functional information model describes the processes of obtaining, storing and
converting raw electromagnetic data, measured by magnetotelluric soundings method (MTS), and the
object-oriented model used for describing the data itself (initial, intermediate, and final) and the
relationships between them. The models are built using CASE tools All Fusion (Business Process
Modeler—BPwin) and Power Designer, to define the boundaries and hierarchical structure of the
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developed system. The created technology provides an effective information system for integrated
geophysical monitoring of geodynamic processes originating in the earth’s crust of the seismically
active zone of the Northern Tien Shan (the territory of the Bishkek geodynamic polygon) [1–3]. The
main element of the complex geophysical monitoring is electromagnetic observations with a natural
source of electromagnetic fields, which include magnetotelluric (MT) continuous observations of
changes in the electrical parameters of the geoelectric cross-section at stationary points, continuous
geomagnetic observations of the full vector T of the geomagnetic field at stationary points of the
network and periodic observations at controlled points served by mobile stations. MT observations are
used to determine variations of electromagnetic parameters in the Tien Shan lithosphere to a depths of
100 km and to study their relationship with geodynamic processes, occurring at these depths.

This work represents the results of research related to the development of azimuthal
magnetotelluric monitoring techniques, which consists of analyzing the obtained time series of
electromagnetic parameters in order to determine the contribution of each of the components of the
impedance tensor to the informativeness of monitoring studies [3]. On the basis of the correlation
analysis of gravitational tidal effects and the results of magnetotelluric monitoring, an additional test is
carried out, the previously identified azimuthal dependence of the environmental stress sensitivity.
When performing modern monitoring studies, scientists have to face an unprecedented amount of data
that is subject to orderly storage, processing, graphical visualization and analysis [4]. Both stations
are located on the territory of the Bishkek geodynamic proving ground, which in turn is part of the
Northern Tien Shan seismic zone (Figure 1), and data is recorded around the clock in the period
of 0.01–1000 s. Over the years of research, a catalog of geoelectrical data based on magnetotelluric
soundings (MTS) and magnetovariational soundings (MVS) made in a series of regional and local
profiles in the range of periods from 0.06 to 1800 s, created in the Tien Shan region, has been constantly
updated. The catalog also includes the results of deep magnetotelluric soundings (periods up to
10,000 s). Information characterizing the parameters of the network of magnetotelluric observations
(observation points and their coordinates) is contained in the catalog of the regional network of
MTS, MVS cost center. To date, the established regional network of MTS and MVS for stationary
observation points and profiles covers almost the entire territory of Tien Shan, within Kyrgyzstan and
the surrounding areas.
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Figure 1. Location map of points of the geophysical monitoring, performed on the territory of the Central
Tien Shan: 1—modern alluvial boulder-pebble deposits; 2—alluvial boulder-pebble deposits of the first
above-flood terrace; 3—blocky-pebble glacial deposits; 4—Early and Middle Ordovician granodiorite;
5—Miocene pebble-crumbly-sandy strata; 6—Riphean complexes (undivided); 7—Pliocene–Pleistocene
alluvial boulder deposits of the Sharpyldak series; 8—Shamsi fault; 9—activated faults and fracture
zones of the basement: a—main; b—secondary; 10—activated faults assumed under the cover of
modern sediments: a—main; b—secondary; 11—points of regime magnetotelluric soundings (MTS);
12—points of stationary and profile magnetotelluric observations; 13—settlements; 14—main fault
structures; 15—the border of Kyrgyzstan; 16—points of regime deep MTS; 17—points of regime deep
MTS of 2018; 18—points of electromagnetic monitoring; 19—points of the network of GPS observations;
20—KNET teleseismic network sites.

The data acquisition and information processing system of magnetotelluric monitoring allows
collecting and accumulating data from a variety of monitoring observation points—stationary, regime,
and profile (Figure 1). Monitoring was performed to study geodynamic processes in the Earth’s crust
and upper mantle based on the calculation of the transfer functions between the components of the
magnetotelluric field with high temporal resolution in order to study their temporal dynamics. The final
result of such monitoring, from a formal point of view, is a set of time series of various data [5,6]. In the
practice of monitoring geodynamical processes, statistical methods of data analysis are widely used.
In particular, a correlation analysis is used to determine the degree of the interrelation of the observed
data series. Time series are formed, which are used to study changes in the recorded parameters over
time and to isolate anomalies associated with the preparation of strong earthquakes [7,8]. Programs
are designed for visualization, processing, and analysis of time series. They have a convenient user
interface. They implemented arithmetic, statistical, and other functions for working with time series.
It is possible to edit drawings (graphs) on the screen, save, and print them.

2. Data Description

According to the results of continuous monitoring of electromagnetic, geomagnetic, GPS,
gravimetric, and seismic observations, banks of primary data of the territory of the Bishkek geodynamic
proving ground are formed and a catalog of earthquakes is compiled. As an example, consider the
procedure for collecting data from magnetotelluric monitoring.

2.1. Data Collection Procedure

The monitoring network continuously records the MT field on the embedded flash memory of
the Phoenix MTU-5D instrumentation. The duration of the recording depends on the amount of flash
memory and registration parameters. The registration parameters indicate the polling frequency and
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the duration of the recording. At the maximum polling frequency, the recording time is about 20 days,
after which data is copied from the flash memory to a laptop, and the equipment is serviced and
restarted. When working on the MTS profile, the measurement mode depends on the objectives of
the study and is seasonal. In an ordinary observation point on a profile, the duration of an MT-field
recording is a time interval from several hours to several days, which is determined by the depth of
soundings. To check the performance of the station, a test recording of about an hour is made. The
most informative is the night registration.

2.2. Structure and Data Processing of the Magnetotelluric Sounding (MTS) Method

The primary time series files of magnetotelluric data are stored in two binary files one of which
saves the data of high and middle-frequency band (2400 and 150 Hz) at intervals of a few seconds from
the beginning of the minute, while the second file continuously saves low-frequency data (24 Hz).

Time series are accompanied by a small binary file which saves registration parameters. To process
time series data, use the SSMT 2000 program from the standard set of Phoenix software. As a result
of this processing, average daily MT monitoring records are obtained stored as binary files. Work
with these files is performed using the GSPlot (General Spectra Plot) program from the standard set of
Phoenix software. The GSPlot program allows to visually view the transformants of the MT data and
also presents them in a table form.

The data storage scheme of magnetotelluric soundings processing is based on the data storage
scheme in the international data exchange standard MT. In this standard, sensing data at a point is
written to a file with the extension EDI (Electrical Data Interchange). EDI files are obtained using the
MT-Correct processing application program developed by the North-West geophysical company and
saved in ASCII format, in contrast to the primary binary files.

2.3. Structure and Storage of Magnetotelluric (MT) Data

All MT sounding material, both source material and processing results, are placed in archives on
working computers, in a database and in an external archive on CDs. In the MT database, the material
is classified by year of observation, by profiles and measurement points.

The data of the MT-monitoring are located in the directories corresponding to the names of the
items—Aksu-mon and Chon-mon, in which folders with the number of years of monitoring are created.

The data on the MT-profiles are in the directories with the name of the profile and year of work.

3. Methods

The geophysical monitoring database (DB) of the RS RAS includes an electromagnetic observation
database with an artificial source of electromagnetic field, electromagnetic observations with a natural
source of electromagnetic field, geodetic GPS observations on a local network and geomagnetic
observations and can be considered as a single distributed database (Distributed DataBase—DDB) [9]
of geophysical monitoring. These databases play the role of local databases located in different nodes
of the corporate and/or global computer network. DDB, as defined by Data [10], can be considered as a
loosely coupled network structure whose nodes are local databases.

Local databases are autonomous, independent, and self-defined; access to them is provided
through the DBMS. Connections between nodes are replicated data streams. DDB topology is a
star structure.

For organizing the collection, storage of data, and processing of the results of MT monitoring,
the As IS model was developed. The model was developed in the BPWin [11] environment in the form
of data flow diagrams (DFD-diagrams) and is presented in Figure 2.
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Figure 2. Data streams in magnetotelluric (MT)-monitoring (Model As IS).

For on-line access to the results of MT monitoring, a model of a distributed interactive system of
access to the results of magnetotelluric monitoring in the form of a data flow diagram (DFD diagrams)
was developed. This model is essentially an As To Be model and is presented in Figure 3.

Figure 3. Model of a distributed interactive system of access to the result of magnetotelluric
(MT)-monitoring (Model As To Be).

On the system model, the main process is allocated: distributed interactive system of access to
the results of monitoring MT and two external entities: User and Storage. The repository is a storage
medium on the external medium with respect to the system, on which the primary Phoenix station
files, the average daily (processed) files, and EDI files are stored. Figure 4 shows an example of the MT
data outputs that was obtained from the database.
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Figure 4. The example of the magnetotelluric (MT) data outputs that was obtained from database. The
left side shows the time series source data—5 components of the electromagnetic field. In the right side
sample processed data. Blue and green dots show processed curves that are obtained in binary format,
red and yellow solid lines—smooth curves in EDI format.

The detailing of the main process is carried out in the form of a 1-level DFD, including 3 main
subprocesses (Processing of primary files, Processing of daily average files, Processing of EDI files) and
2 auxiliary subprocesses (Construction of correlation diagrams and MT time-frequency monitoring),
interacting with the Server.

Description of the Main Functions of the System

Based on the models discussed above, a logical database structure was developed in the ERwin
environment [10]. Visual Basic .Net 2008 and SQL Server 2000 DBMS are selected as programming tools.
The developed distributed interactive system of access to the results of magnetotelluric monitoring has
the following functionalities.

1. Creating a database. To create a database of MT monitoring files, you must enter the name
of the server on which the database will be created and the name of the future database, as well as
select the type of authentication for the server on the local computer or to create a database on the
remote computer.

2. Setting up the software system and filling the database. At this point, you can select or enter:
the name of the server to which you want to connect, and the name of the database created by the
program, in which the data about the MT monitoring files will be stored. In addition, you can choose
the path to the files, up to folders with stations.

3. Database update.
4. Search for files by date and coordinates. The file search is possible by date, based on the type

of the files you are looking for, the time period in which the necessary files are located, the station
number from which the files were received. The search by coordinates implies the search for files by
the latitude and longitude of the location of the stations.

5. Copying files.
6. Processing MT monitoring data.
7. Construction of time-frequency series of MT monitoring.
8. Construction of correlation diagrams.
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4. User Notes

Usage: for collecting and processing geophysical information, in particular for measuring,
recording, and processing the electrical and magnetic components of the natural electromagnetic field,
in the study of geodynamic processes occurring in the Earth’s crust and upper mantle using electrical
survey methods. Thus, the developed software system makes it possible to increase the efficiency of
processing MT monitoring data by significantly reducing the time spent searching for the necessary
information, the ability to quickly view the newly received data, and create a distributed database
of monitoring MT observations over a period of about 15 years. Currently, the system is in the trial
operation of the Research Station of the Russian Academy of Sciences.

5. Patents

As part of these studies, the database “Local database of magnetotelluric data in the system of
geophysical monitoring of geodynamic processes in the Earth’s crust of seismically active regions”
was registered. Certificate No. 2012621291, issued on 07.12.2012. Copyright holder FGBUN Research
Station of the Russian Academy of Sciences in Bishkek. Authors: Rybin A.K., Matiukov V.E., Desyatkov
G.A., Lychenko N.M., Manzhikova S.T. At the present, this database is actively used and developed.
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