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observational gains obtained at WF1 and WF2. Besides, this type of analysis can be useful to define the
density of a station network intended to cover a specific area.

Figure A2 shows the vertical profile of the xa − xb zonal wind difference for test A, at the point of
the horizontal grid in which the increase of zonal wind speed was prescribed. This profile shows the
vertical structure of the covariances of zonal velocity background errors with the background error at
the level chosen for the test. It was found that these covariances increased with the elevation up to
500 m above the ground, and then decreased to values that were close to 0 in the upper atmosphere
(Figure A2a). Figure A2b shows a zoom of the profile shown in Figure A2a for the first 150 m above
the ground, in order to focus on the levels of interest to this work. Although covariances were lower at
lower elevations, their relatively large values indicated that observational gains obtained at elevations
about 100 m could propagate quite directly to lower levels. The analogous vertical profiles from test B
were found to be very similar to those from test A, and are not shown here.

Figure A1. (a) xa − xb zonal wind difference in test A at the 7th layer of the model; (b) xa − xb meridional
wind difference in test B at the same level. Contour interval, 0.1 (dimensionless).

 

Figure A2. (a) Vertical profile of xa − xb zonal wind differences in test A at the horizontal grid point
closest to Vst location (for the first 8000 m above the ground). Abscissa, xa − xb (dimensionless),
ordinate, elevation above ground; (b) zoom of Figure A2, a vertical profile at the first 150 m above the
ground. Dots indicate the model grid points, and the arrow, the grid point at which the perturbation
is prescribed.
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Abstract: Climate extreme indices (CEIs) are important metrics that not only assist in the
analysis of regional and global extremes in meteorological events, but also aid climate modellers and
policymakers in the assessment of sectoral impacts. Global high-spatial-resolution CEI datasets
derived from quality-controlled historical observations, or reanalysis data products are scarce.
This study introduces a new high-resolution global gridded dataset of CEIs based on sub-daily
temperature and precipitation data from the Global Land Data Assimilation System (GLDAS).
The dataset called “CEI_0p25_1970_2016” includes 71 annual (and in some cases monthly) CEIs
at 0.25◦ × 0.25◦ gridded resolution, covering 47 years over the period 1970–2016. The data of
individual indices are publicly available for download in the commonly used Network Common
Data Form 4 (NetCDF4) format. Potential applications of CEI_0p25_1970_2016 presented here include
the assessment of sectoral impacts (e.g., Agriculture, Health, Energy, and Hydrology), as well as
the identification of hot spots (clusters) showing similar historical spatial patterns of high/low
temperature and precipitation extremes. CEI_0p25_1970_2016 fills gaps in existing CEI datasets by
encompassing not only more indices, but also by being the only comprehensive global gridded CEI
data available at high spatial resolution.

Dataset: https://doi.org/10.1594/PANGAEA.898014

Dataset License: CC-BY: Creative Commons Attribution 4.0 International

Keywords: climate extreme indices (CEIs); ClimPACT; GLDAS; Expert Team on Climate Change
Detection and Indices (ETCCDI); Expert Team on Sector-specific Climate Indices (ET-SCI)

1. Introduction

Extremes in climate such as floods, droughts, and cold and heat-waves can have significant
societal, ecological, and economic impacts globally [1]. Since the publication of the third assessment
report of the Intergovernmental Panel on Climate Change (IPCC) in 2000, characterizing extremes
under past and projected future climate has generated rapid interest [2]. The climate modelling
community, for instance, has spent increasing effort to capture high-frequency extreme events in
their simulations of historical and future projected climate. The underlying aim for both regional
and global climate modelling exercises (e.g., CORDEX and PRIMAVERA)1 has been to develop a
better understanding of the evolution of extreme weather events under long-term climate change
and variability.

The impetus to better understand extreme weather events is further driven by the impact
modellers who assess sectoral damages at varying spatial scales. The two vital characteristics of

1 CORDEX: http://www.cordex.org/; PRIMAVERA: https://www.primavera-h2020.eu/.
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climate that are at the core of impact models are (i) mean climate and (ii) the occurrence and
frequency of extreme events [3]. An increasing notion shared within the climate research community
is that even a relatively small change in the frequency or severity of extreme weather events
(i.e., in the tails of the probability distribution function) would have profound impacts on life and
assets [4], thus making it further imperative to analyze extremes at higher temporal and spatial
resolutions. For the scientific community focusing on impacts of climate change and variability,
historical observations of extreme indicators can facilitate a better understanding of the role of extreme
events and sectoral implications [5].

Largely driven by the requirement for a robust definition of climate extreme indicators, the Expert
Team on Climate Change Detection and Indices (ETCCDI)2 in 1999 led the first efforts in defining a set of
climate extreme indices (CEIs) that provide a comprehensive overview of temperature and precipitation
statistics [4,6–8]. The ETCCDI has developed an internationally coordinated set of core climate indices
consisting of 27 descriptive indices for moderate weather extremes3 [9–11]. The preliminary set of these
27 core indices were drawn up keeping the detection and attribution needs of the research community
in mind [10,11]. Noting the limitations of the ETCCDI indices with regard to restricted scope/usage in
assessing sectoral impacts, additional sector-relevant indices were recommended and developed by
the Expert Team on Sector-specific Climate Indices (ET-SCI) [9].

This study introduces a new open-access high-resolution global gridded (0.25◦ × 0.25◦)4 dataset of
71 CEIs (including the original 27 ETCCDI indices), covering the period 1970–2016. The dataset
(hereafter referred to as “CEI_0p25_1970_2016”) aims to contribute to the existing CEI databases by
making available the first comprehensive CEI dataset currently unavailable for the climate community
at a high resolution with worldwide coverage. Moreover, a consistent global CEI dataset covering a
long historical time period can lay a framework for not only analyzing observed changes in extremes,
but also potentially improving information services on extremes at regional scales [10].

The CEI_0p25_1970_2016 are a set of core (Table S1 in Supplementary Materials) and non-core
(Table S2 in Supplementary Materials) indices5 as defined and developed by the ETCCDI/ET-SCI,
and adopted by the World Meteorological Organization (WMO). The set of “core indices” refers to
indices that were developed by ETCCDI targeting the research community focusing on “detection and
attribution” in climate science (details in Section 4).

The rest of the paper is organized as follows. Section 2 describes the CEI_0p25_1970_2016 in detail.
Section 3 discusses the underlying meteorological dataset and the tools/methodology used in the
preparation of the CEI_0p25_1970_2016. Section 4 outlines the novelty, potential scope, application, and
limitations of the CEI_0p25_1970_2016. Dataset availability, ongoing work, and some recommendations
for future research are summarized in Section 5.

2. Dataset Description

2.1. Spatial and Temporal coverage of CEI_0p25_1970_2016

The CEIs included in this study encompass all but two indices6 that are part of the complete
list of 73 ETCCDI/ET-SCI core and non-core indices [9]. The CEI_0p25_1970_2016 is derived
using meteorological variables from the reanalysis data product Global Land Data Assimilation

2 Formed by the World Meteorological Organization (WMO) Commission for Climatology (CCl).
3 Extreme events that by definition typically occur a few times annually rather than severe impact, decadal weather events.

The indices for moderate weather extremes use absolute or percentile thresholds generally set at moderate values (e.g., 25 ◦C,
90th percentile).

4 ~27 km × 27 km at the equator.
5 https://www.wcrp-climate.org/data-etccdi.
6 The two indices Cooling and Heating Degree Days (CDD and HDD) are computed separately as part of another dataset of

additional indices relevant for health and energy sectors, currently under preparation [12]. Further details are provided in
Section 5.2.
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System (GLDAS) [13]. GLDAS is a new generation of reanalysis developed jointly by the National
Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) and National
Centers for Environmental Prediction (NCEP) [14]. Because the spatial extent of GLDAS covers all
land north of 60◦ S, the indices in CEI_0p25_1970_2016 are also computed over the corresponding
1440 (longitude) × 600 (latitude) grid cells. Further description of GLDAS as well as the reasons for
using it as a data source in this study are discussed in Section 3.

2.2. Other Existing Datasets Incorporating CEIs

While other similar historical gridded CEI datasets do exist, they are either (i) regional in coverage,
(ii) at coarser resolution, or (iii) limited in the number of indices available for research purpose.
Examples include (i) the 30 CEIs made available by E-OBS at 0.10◦ gridded resolution for Europe
http://surfobs.climate.copernicus.eu/dataaccess/access_eobs_indices.php, (ii) the global 0.50◦

gridded resolution S-14 indices dataset of 27 core ETCDDI indices available at http://h08.nies.go.
jp/s14/ [15], and (iii) the global 3.75◦ × 2.5◦ resolution HadEX2 and GHCNDex datasets of 27 core
ETCDDI indices available at https://www.climdex.org/learn/datasets/ [6,7]. To the best of the
author’s knowledge, the present database CEI_0p25_1970_2016 is currently the only comprehensive
high-resolution global-gridded historical dataset of ETCCDI/ET-SCI core and non-core indices.

3. Materials and Methods

3.1. Data Acquisition and Processing

The CEIs used in this study were computed utilizing the WMO ET-SCI recommended and
developed R-software package “ClimPACT2”7 [9]. R [16] is an open-source language and software
environment, developed primarily (but not solely) for statistical computing, and is applied widely in
climate research. Moreover, ClimPACT2 also makes use of several R subroutines, such as SPEI [17],
and is designed for operating on parallel computing infrastructure.

For the computation of CEI, ClimPACT2 requires the following meteorological variables
(i) maximum near-surface air temperature (TX), (ii) minimum near-surface air temperature (TN), and
(iii) near-surface total precipitation (PR), all at daily timesteps. These variables in the native Network
Common Data Form 4 (NetCDF4)8 format were obtained from the GLDAS-version 29 [13,18,19],
available at 3-hourly timesteps and a fine spatial resolution of 0.25◦ × 0.25◦. GLDAS is a global
high-resolution reanalysis dataset that incorporates satellite and ground-based observations, producing
optimal fields of land surface states and fluxes in near-real-time [13].

For the purpose of computing the CEI, the 3-hourly gridded variables (TX, TN, and PR) were
first temporally aggregated to construct daily mean TX and TN, and daily total PR, using a suite of
command line operators from NetCDF Command Operators (NCO ver 4.3.4)10 and Climate Data
Operators (CDO ver 1.9.0)11. Indices based on percentile thresholds (e.g., WSDI and CSDI in Table S1)
were computed using years 1970–2000 as the baseline period. For details on classification of CEIs
(namely “percentiles”, “absolute”, “threshold”, “duration”, and “others”), readers are guided for
further reading in [6–9].

7 R version 3.5.0 (“Joy in Playing”) x86_64 on Linux Centos 6.6 software architecture. ClimPACT2 was accessed on
23 September 2018 from https://github.com/ARCCSS-extremes/climpact2.

8 NetCDF is a set of scientific software libraries, with self-describing and machine-independent data format. https://www.
unidata.ucar.edu/software/netcdf/docs/.

9 Data accessed from https://disc.gsfc.nasa.gov/ on 12 July 2018.
10 NCO [20]: accessed on 14 July 2018 from http://nco.sourceforge.net/.
11 CDO [21] accessed on 14 July 2018 from http://www.mpimet.mpg.de/cdo.

53



Data 2019, 4, 41

3.2. Choice of GLDAS as a Reanalysis Dataset for the Computation of CEIs

Vis-à-vis other global gridded reanalysis datasets, GLDAS offers several advantages. First,
GLDAS provides a consistent quality-controlled long global gridded time-series of the required
variables (i.e., TX, TN, and PR) at a high spatial resolution. Other reanalysis data products available
were found to have either a coarser spatial resolution (e.g., ECMWF-ERA40 and JRA-55, both available
from the mid-1950s but at 1.125◦), or a shorter time series (e.g., newly released ECMWF-ERA5 at 0.281◦

from 1979–present day, and NCEP-CFSv2 at 0.205◦ from 2011–present day). Second, GLDAS runs in
near-real-time, offering the potential to regularly update the database presented here.

The choice of GLDAS for computing the current set of indices was further motivated by its large
number of additional meteorological (e.g., specific humidity, surface pressure), land surface state
(e.g., soil moisture, surface temperature), and flux (e.g., evaporation, sensible heat flux) variables,
not commonly available in other reanalysis data products for a long time-series and at a high
spatial resolution12. While none of these additional variables are required for computing the current
set of indices, another dataset [12] of sectoral indices that are not presently implemented in the
ETCCDI/ET-SCI indices requires a subset of these variables (details in Section 5.2). The two datasets of
indices (current and [12] under prep.) will together comprise a large (~85) number of indices both
based on the same underlying GLDAS data, thus enabling the climate impacts community to access
“ready-to-use” multi-sectoral indices.

GLDAS has been comprehensively evaluated using different regional/global reference datasets
in earlier studies (e.g., see [14] who compare the GLDAS daily surface air temperature at 0.25◦ gridded
resolution with two reference datasets): (a) Daymet data (2002 and 2010) for the conterminous United
States at 1-km gridded resolution, and (b) global meteorological observations (2000) from the Global
Historical Climatology Network (GHCN).

Equally well-documented are certain known limitations of the temperature and precipitation
estimates in GLDAS. Whereas spatial details in high mountainous areas are not sufficiently estimated
by the GLDAS data, the surface air temperature estimates are generally accurate, with some caution
recommended for mountainous areas [14]. Previous studies that have incorporated GLDAS data
include (i) [22] for impact assessment studies in energy sector, and (ii) [23,24] for the analysis of
regional environmental conditions and changes. For a comprehensive list of GLDAS-related references,
readers are referred to https://ldas.gsfc.nasa.gov/gldas/GLDASpublications.php.

4. Key Features, Scope of Application, and Limitations of CEI_0p25_1970_2016

4.1. Novelty of CEI_0p25_1970_2016

The CEI_0p25_1970_2016 is currently the only dataset providing researchers and policymakers
with an exhaustive list of ETCCDI/ET-SCI recommended indices, dating back to the preceding
four decades, covering nearly all global land grid-cells, and assembled using a quality-controlled
reanalysis data product at a high spatial resolution. Considering the computational time and resources
required for assembling a comprehensive dataset of CEIs at a global scale, the biggest asset of
CEI_0p25_1970_2016 from the users’ perspective is the open access to a pre-compiled ready-to-use
set of indices in its native data format, along with a web interface allowing robust statistical analysis
and mapping of the results in a few easy steps (details in Section 5.1).

12 At the time of assembling the current dataset, the newly released ECMWF-ERA5 that also includes a large set of variables
was not publicly available prior to the year 2000.
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4.2. Scope of Application

The CEIs included in this study are not only suited as assessment tools in multiple sectors such as
Agriculture, Health, Energy, Water resource, etc., but also as metrics capable of being aggregated as
composite indicators for risk assessment and vulnerability studies (e.g., as demonstrated and applied
recently by [25] over Italy in the form of a “Climate Risk Index”). A number of earlier studies have
demonstrated the efficacy of the CEIs, both in detection and attribution studies, as well in the impacts
assessment of climate change and variability in key sectors. Examples include (i) [26] who use “Rx1day”
(Table S2) to examine the changes in model-simulated extreme precipitation by decomposing the daily
regional-scale extreme precipitation as contributions from atmospheric thermodynamics and dynamics;
and (ii) [27] who consider a broad range of CEIs (from Tables S1 and S2), for assessing future climate
change impacts on agriculture, human health, ecological ecosystems and utility (energy demand)
in Canada.

Moreover, it is widely known and established in sectoral impact studies employing empirical
methods that a large proportion of variation in the outcome variable is better explained by the
climatic variables accounting for moderate or severe extremes (e.g., the relationship (i) between
crop productivity and a variant of the index “GDDgrown” in Table S1, known as killing degree
days (KDDs) [28], (ii) between electricity consumption and degree-day indices namely “CDD” and
“HDD” [29]). CEI_0p25_1970_2016 for instance provides an instant resource platform for empirical
modellers to download and investigate a number of potential predictor variables that are robust
moderate/severe extreme indicators.

The robust characteristics and climatological attributes captured by ETCCDI/ET-SCI indices
can facilitate consistent comparison of results across different climatic zones, different time periods,
and the identification of regions (clusters) with similar characteristics in extremes (e.g., grid cells
with similar trends in annual days when daily maximum temperature is at least 30 ◦C (“TXge30”,
Table S1). The identification of common hot spots can be of potential interest to policymakers, insurance
companies, and country planners for the assessment of the risk and vulnerability of regions to extreme
weather disasters (e.g., flooding, drought, heat waves).

While the mean climatology of a location is invariably well-captured by the state-of-the-art
reanalysis data products and Earth System Models (ESMs), extremes (particularly in precipitation) at
fine spatial scales have been difficult to replicate [30]. CEIs provide the modelling community with a
detailed set of indicators enabling the comparison of different input data sources in their ability to
model extremes [8,9].

Finally, with the planned inclusion of additional indices to the current inventory of
ETCCDI/ET-SCI indices in the near future [9], the development of larger CEI datasets for historical
and future time periods could make valuable instruments available to researchers, policymakers, and
adaptation planners focusing on occurrences and return periods of rarer extreme meteorological events
(e.g., using extreme value theory).

4.3. Limitations of Indices Included in CEI_0p25_1970_2016

While the CEIs included in this study (Tables S1 and S2) were developed by the WMO expert
teams to largely address the growing demands of sectoral impact modellers, certain limitations of
the existing ETCCDI/ET-SCI indices have been recognized, and efforts are ongoing to develop other
robust indices meeting multi-sectoral requirements [9]. For instance, under the current framework of
ET-SCI definitions, the Heat Wave Magnitude (HWM) indices (Table S2 are based on the methodology
developed by either [31] or [32]. The more recently developed HWM Index daily (HWMId) defined

55



Data 2019, 4, 41

by [33] and implemented in various sectoral studies (e.g., [34] for river discharge and [35] for assessing
impacts on wheat yields13) is yet to be included in the inventory of ETCCDI/ET-SCI indices.

Moreover, the ETCCDI/ET-SCI indices are defined largely at annual timescales, and some are
defined at monthly timescales as well. For certain sectoral applications (e.g., in Agriculture and
Energy), the current set of monthly/annual indices may prove less useful, as climate anomalies need
to be computed over different timescales. For instance, the “GSL” index (Table S1) in its current form
defined at annual timescales does not account for heterogeneity in the length of crop-specific growing
season (further details in [35]). In such cases, using indices computed at annual timescales can lead to
misleading results. Some further shortcomings of the existing ETCCDI/ET-SCI indices are discussed
and recommended for future work (details in Section 5.2).

Lastly, it must be emphasized that because CEI_0p25_1970_2016 utilizes temperature and
precipitation data from GLDAS, when using the current set of indices users should keep in mind the
known uncertainties and limitations of the GLDAS data (as discussed in Section 3.2).

5. Dataset Availability and Plans for Future Work

5.1. Data Access, File Naming Convention, and Size

CEI_0p25_1970_2016 can be accessed as individual netCDF4 files from
https://doi.org/10.1594/PANGAEA.89801414. The files follow the naming convention
CEI_timescale_GLDAS_0p25_deg_hist_1970_2016.nc (Figure 1), wherein “CEI” is the abbreviation of
the index (as described in Tables S1 and S2) and “timescale” is either “ANN”, “MON”, or “DAY”,
relating to annual, monthly, or daily timescales15 over which the corresponding CEI is computed.

The size of the individual NetCDF files vary between 156 megabytes (Mb) and 1.9 gigabytes
(Gb), depending on the CEI and time-scales at which it is computed. One exception is the file
“hw_ANN_GLDAS_0p25_deg_hist_1970_2016.nc” which is 3.1 Gb as it includes twenty individual
indices in a single netCDF4 file. GLDAS does not include data over (or near) water bodies. Such grid
cells where the required GLDAS TX, TN, and PR data are not available for computing the CEIs
are identified by missing values “1.e+20f”. Further details of the variables/dimensions in the
individual netCDF4 files can be examined using either NCO or CDO commands, such as “ncdump
-h netcdf_file_name” or “cdo sinfo netcdf_file_name”, respectively. For creating quick plots and
exploratory data analysis of individual netCDF files, open-access data tools such as Panoply (https://
www.giss.nasa.gov/tools/panoply/) or NCview (http://meteora.ucsd.edu/~pierce/ncview_home_
page.html) are recommended. Sample plots using Panoply for the four indices (“TXx”, “HWM_Tx90”,
“CSDI”, and “PRCPTOT”) are shown in Appendix A (Figures A1–A4).

13 The authors use a slightly modified version of HWDId in their study, which they refer to as Heat Magnitude Day (HMD)
in agriculture.

14 The dataset will also be mirrored on KNMI Climate Explorer (http://climexp.knmi.nl/about.cgi?id=someone@somewhere),
a web application interface that can facilitate not only rapid aggregation and robust statistical analysis of the CEI, but also
downloading of spatio-temporal subsets and quick plotting.

15 The dataset includes a total of 89 netCDF4 files (49 on annual, 39 on monthly and 1 on daily timescales). Some indices have
data both on monthly and annual timescales.
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Figure 1. Snapshot of the data repository web interface showing individual files in CEI_0p25_1970_2016
that are available for download at https://doi.org/10.1594/PANGAEA.898014.

5.2. Ongoing Work and Recommendations for Work in Future

The indices in CEI_0p25_1970_2016 are intended to be updated post-2016 years, subject to the
availability of the required GLDAS raw meteorological variables in the coming years. The updated
longer time-series of CEIs of more recent years should prove beneficial to the research community
focusing on recent extreme events (e.g., the droughts of 2017 and 2018 in south-east Australia, the heat
waves of 2018 in California, United States of America, the more recent January–February 2019 extreme
cold wave in North America). Additionally, upon the formal inclusion of any new indices (such as the
“HWMId” and the “Crop-specific GSL” as discussed in Section 4.3) by the WMO expert teams to their
list of ET-SCI indices, the same will be formally included in the existing dataset presented in this study.

While the ETCCDI/ET-SCI core and non-core indices employed in this study encompass a very
large spectrum of sectoral and non-sectoral indices, the list is by no means exhaustive. Motivated by
the suggestions of the R ClimPACT2 [9] package creators, another dataset of indices largely relevant
for health and energy sectors (called “HEI_0p25_1970_2016”) is currently under preparation [12].

Some features of HEI_0p25_1970_2016 will for instance be the inclusion of the two ETCCDI indices
(i.e., CDD and HDD [36]) that are not included in this study16. Moreover, HEI_0p25_1970_2016 will also
account for additional meteorological variables (e.g., near-surface relative humidity and wind speed)
for computing non ETCCDI/ET-SCI indices, such as the Humidex [37,38], the Heat Index (HI) [39,40],
and the Discomfort Index (DI) [41,42]. Together, both CEI_0p25_1970_2016 and HEI_0p25_1970_2016
are aimed to address the growing needs of the climate impact community, by overcoming the current
data scarcity of high-resolution global gridded CEIs in earth science.

16 The R ClimPACT2 used in the present study for computing CEI_0p25_1970_2016 is hard-coded to compute the degree-days
(CDD, HDD) on annual time scales. Degree-days at monthly and seasonal timescales are equally important in the energy
sector. These are developed at various base (threshold) temperatures at the same gridded resolution in HEI_0p25_1970_2016.

57



Data 2019, 4, 41

Supplementary Materials: The following are available online at http://www.mdpi.com/2306-5729/4/1/41/s1,
Table S1: 32 Core ET-SCI indices. Bold indicates index is also an ETCCDI index. (TX: daily maximum near-surface
air temperature, TN: daily minimum near-surface air temperature, PR: daily near-surface total precipitation,
H: Health, AFS: Agriculture and Food Security, WRH: Water Resources and Hydrology); Table S2: 39 non-core
ET-SCI indices. Bold indicates index is also an ETCCDI index. Sectoral abbreviations same as in Table S1.
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Appendix A. Sample Plots of Selective Indices from Tables S1 and S2 Using Panoply

Figure A1. Annual Warmest Day “TXx” (◦C) in 2003.

Figure A2. Warmest Day “HWM_Tx90” (◦C) in 2003 (Average temperature across all
individual heatwaves).
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Figure A3. Cold Spell Duration Index “CSDI” (Days) in 2013.

Figure A4. Total wet-day rainfall “PRCPTOT” (mm) in July 2005.
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Abstract: We currently live in an era of major global change that has led to the introduction and
range expansion of numerous invasive species worldwide. In addition to the ecological and economic
consequences associated with most invasive species, invasive arthropods that vector pathogens
(IAVPs) to humans and animals pose substantial health risks. Species distribution models that are
informed using environmental Earth data are frequently employed to predict the distribution of
invasive species, and to advise targeted mitigation strategies. However, there are currently substantial
mismatches in the temporal and spatial resolution of these data and the environmental contexts
which affect IAVPs. Consequently, targeted actions to control invasive species or to prepare the
population for possible disease outbreaks may lack efficacy. Here, we identify and discuss how the
currently available environmental Earth data are lacking with respect to their applications in species
distribution modeling, particularly when predicting the potential distribution of IAVPs at meaningful
space-time scales. For example, we examine the issues related to interpolation of weather station data
and the lack of microclimatic data relevant to the environment experienced by IAVPs. In addition,
we suggest how these data gaps can be filled, including through the possible development of a
dedicated open access database, where data from both remotely- and proximally-sensed sources can
be stored, shared, and accessed.

Keywords: arthropod vector; invasive species; microhabitat; species distribution modeling;
remote sensing

1. Introduction

In an era of major global change (i.e., in climate, land use, habitat fragmentation, and movements
of humans and other species) the introduction of invasive species and the geographic expansion
of endemic species to novel ranges are occurring at unprecedented rates [1,2]. Invasive species
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have extensive negative impacts on the ecosystems they invade, such as losses in both taxonomic
and functional diversity [3], resulting in severe economic consequences. For example, in the USA
invasive insects cost the agricultural sector USD 13 billion per year due to crop loss and damage [4],
routine activities to control Aedes mosquitoes in Cuba cost USD 16.80 per household [5], and Great
Britain spends USD 34.6 million per year on the control of invasive fresh-water species [6]. The stakes
are even higher when invasive species can vector pathogens that cause disease in humans, animals,
or plants. Some arthropod species that are highly invasive are among the most effective vectors of
human pathogens. Mosquitoes, such as Aedes aegypti [Linneaus, 1762] and Aedes albopictus [Skuse,
1895], are invasive arthropods able to vector pathogens (henceforth referred to as IAVPs) and transmit
three globally important viruses to humans: chikungunya, dengue, and Zika [7]. Likewise, the
Asian longhorned tick Haemaphysalis longicornis [Neumann, 1901], which is rapidly expanding across
the east coast of the USA [8], can vector the severe fever and thrombocytopenia syndrome virus,
which has human fatality rates exceeding 30% in Asia [9]. Of veterinary importance, the biting midge
Culicoides imicola [Kieffer, 1913] is currently expanding in range throughout Europe and can transmit
the bluetongue and African horse sickness viruses [10]. Plants are also affected, cotton whiteflies
(Bemisia species, including Bemisia tabaci [Gennadius, 1889]), now present in every continent except
Antarctica, can transmit over 100 different plant viruses [10].

In order to prevent the potentially catastrophic ecological, economical, and health consequences
associated with IAVPs, mitigation methods must be rapidly employed following species introduction
or expansion into a new geographical range [11]. Mitigation methods may include IAVP control
and eradication, or communication of the risks to policy makers, physicians and the public,
and environmental data are often used to inform these different processes. Here, we describe
the benefits and limitations associated with using i) remotely sensed data, which we define as data
acquired by sensors mounted on satellite, airborne, or other distant means, and ii) proximally sensed
data, which we define as having been collected by a ground-based, or other platform, in close proximity
to the variable being measured, in order to inform IAVP mitigation.

2. Linking Environmental Earth Data and IAVPs

As observed by Malanson and Walsh; “detection and eradication [of invasive species] are essentially
spatial problems. They primarily require learning where the invasives are and getting there” [12]. This is a
simplification of a more complex issue, which may also involve a lack of personnel or funding to
efficiently implement detection and eradication, insufficient communication or perception of the IAVP
risk, and even IAVP resistance to control measures. However, environmental data can be used to
address the “spatial problems” by informing predictions on where invasive species may be introduced
and become established.

In some instances, using environmental data in the mitigation of an invasive species can be as
straightforward as directly detecting the species. For example, thanks to the reflectance properties of
vegetation, invasive plants can be mapped using indices such as NDVI (the Normalized Difference
Vegetation Index) or EVI (the Enhanced Vegetation Index) that are derived from remotely sensed data
that measures infrared reflectance (e.g., in [13], and also see [14] for a review on this method). A similar
concept can be applied to invasive arthropods which cause damage to vegetation, and NDVI data has
been used to track the dispersal of invasive insects by monitoring defoliation [15,16]. Although weather
radars have detected mass migrations of invasive insects [17], as yet remotely sensed data cannot
directly characterize IAVP geographical distributions. There are promising proximal sensing methods
that use reflectance data from cameras that can detect and differentiate between multiple fruit fly
species, including those that vector crop pathogens [18] (see also [19] for an interesting application of
proximal sensing of an invasive pathogenic plant bacterium). However, mapping IAVP distribution in
real-time is often less desirable than preempting the potential geographic distribution, as surveillance
and control are more efficient if implemented prior to the establishment of a species [11,12,20].
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Species distribution models (SDMs) are frequently used to predict the current and future geographic
distribution of IAVPs [11,12,20] due to their ability to be applied to species that cannot be directly
detected because they are small, elusive or inhabit remote locations. Typically, correlative SDMs apply an
algorithm, such as maximum entropy, boosted regression trees or random forest, that combines empirical
occurrence data on the species with relevant environmental data (e.g., average temperature and
precipitation) to predict the spatial and temporal distributions of a species [21,22]. Mechanistic models,
such as compartmental or agent-based models have also been developed, alone or in combination
with correlative models, to characterize potential species distributions [23,24]. Here, we adopt a broad
definition of SDMs to include any modeling approach that aims to predict the distribution of a species,
from logistic regression to multi-criteria decision analyses. In the last few decades there has been
a sharp increase in the number of publications on SDMs, with hundreds published each year [25].
This dramatic rise in interest in SDMs is in part due to advances in remote sensing technology, including
new satellites and sensors that have hugely increased the quantity and quality of environmental data
that can be used [26].

3. Gathering Environmental Data for SDMs

The accuracy of SDM predictions is highly dependent on how closely the data used in the model
match conditions relevant to the species and, despite considerable increases in both spatial and temporal
resolution of available environmental data, there is often still a substantial mismatch in the conditions
represented by the available data and those experienced by IAVP species. Environmental data used in
SDMs can be classified as bio-physical or climatic, both of which can be measured by proximal sensing,
but data used in SDMs is typically derived from remote sensing.

3.1. Bio-Physical Variables

Bio-physical variables generally include land-use, land cover, primary productivity, and vegetation
phenology and fragmentation. Bio-physical variables are almost exclusively derived from Earth
observation satellites which measure either reflectance at various wavelengths in the electromagnetic
spectrum, or emitted radiances in the thermal spectrum. These reflectance data can be used to calculate
NDVI and NDWI (Normalized Difference Water Index), which are applied instead of, or alongside,
other satellite imagery/reflectance data to ascertain variables such as land-use and land cover (Table 1).
Satellite data are available in a wide range of spatial (<1 m to >5 km) and temporal (hourly to yearly)
resolutions, and allow for some user flexibility based on the scale at which the model is applied
(e.g., eco-region, county, national, global). Given technological limitations due to on-board storage
media or limited opportunity for data transmission, spatial and temporal resolution of remote sensing
tools are inversely correlated [27]. As the majority of bio-physical variables remain static or exhibit very
gradual changes over time, spatial resolution is often prioritized over temporal resolution. For example,
since 1972 the NASA-USGS Landsat series has provided uninterrupted data on the Earth’s surface at a
relatively high resolution of 30 m, but measurements are only taken once every 16 days, although this
will increase to every eight days starting from 2020. NOAA VIIRS provides a series of environmental
data, as well as monthly cloud-free composites of visible infrared emittance for the entire Earth during
night at a resolution of 15 arcsec (<500 m at the equator) [28], which can be used as a proxy for human
settlements to inform the possible human contact risk associated with IAVP presence [29,30]. Since the
1980’s, satellite remote sensors such as AVHRR and, many years later, MODIS, have allowed the
derivation of more spatially and temporally continuous vegetation and surface temperature data at a
moderate spatial resolution (250–1000 m), but with more frequent (daily) observations, thus greatly
enriching the available datasets [31]. In addition, the more recent Sentinel missions (2A, 2B, 3) from the
European Space Agency (ESA) have offered optical data at 10–300 m spatial resolution every 3–7 days
since 2016.
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The accuracy of satellite data is generally strongly linked to the method of derivation, geographical
region, climatic condition, and availability of in-situ data for calibration, which in turn affect SDM
results. For example, cloud cover often hinders satellite optical data, especially in inter-tropical
regions, but there are multiple statistical approaches that can fill these gaps over space or time [32].
Remotely sensed data on bio-physical Earth observations can be combined with ground-based (in-situ)
data to provide crucial information on habitat structure, and are therefore commonly used in SDMs.
Large extent datasets for bio-physical variables, such as the Global Copernicus Land Cover maps
(spatial resolution = 100 m) [33], the pan-European Corine Land Cover (100 m) [34], the USA National
Land Cover Datasets (30 m) [35] and the global MODIS Land Cover Type/Dynamics (500 m–1 km) [36],
are derived using a combination of satellite and ground (in-situ) sensors [35]. However, these data are
typically presented as a single multi-annual “snapshot” using a composite of several observations over
time, and thus, provide very limited information on temporal variation.

3.2. Climatic Variables

Climatic data, which is often fundamental in the physiology of arthropods, includes variables
such as land surface temperature (LST) or air temperature and precipitation. Such data are commonly
derived from remote sensing and are frequently used in SDMs. Precipitation can be measured by
active satellite sensors in the micro-wave region and offer high temporal (hourly) but coarse spatial
resolution data (e.g., GPM and TRMM; Table 1). As for bio-physical variables, the spatial and
temporal resolution of satellite data for climatic variables are also inversely related, which results
in a lack of high spatial resolution data at higher temporal frequencies of measurement. In the case
of climatic variables, which can vary minute-by-minute, temporal resolution is highly important.
This trade-off often plays a significant role in attaining high accuracy results from SDMs. To fill
these temporal gaps, recent satellite missions that measure radiance in the thermal spectrum bands
(i.e., which measure temperature) are focused on providing higher spatial resolution climatic data
with frequent measurements (e.g., Sentinel 2A/B data at 10 m with weekly acquisitions).

In addition to satellite-derived Earth data, data collected by ground-based weather stations, or a
combination of both, such as the WorldClim, PRISM, Daymet and ECA&D datasets, are perhaps the
most widely used climatic data in SDMs due to the user friendly format that requires comparatively
little pre-processing compared with satellite data (e.g., [37–42]). As weather stations measure variables
at discrete geographic locations these data must be interpolated to create a continuous spatial layer
before being used in SDMs. There are multiple methods by which weather station data can be
interpolated, but all are limited by the density of weather stations in the study area, and are confounded
by topographical features and spatial gradients, although satellite or other remotely sensed data can
help to remedy some of these shortcomings [37,43,44].

For regional SDM applications high resolution datasets are required, but the availability of such
data remains a challenge also for current satellite missions, despite considerable improvements during
the last few years with the advent of the new Landsat and Sentinel missions.

4. Issues Faced When Using Environmental Data in IAVP Models

As described, there are many environmental datasets available that can inform SDMs.
However, these datasets are often of limited relevance in the context of IAVP modeling, not least due to
substantial mismatches between the spatial resolution at which predictions are made and the resolution
at which the predictions are interpreted, communicated or applied. The spatial resolution of model
predictions are constrained by the resolution of the environmental data used, which is typically in the
order of kilometers. However, the subsequent predictions are often used to inform actions applied at
spatial scales in the order of meters, such as informing which neighborhoods should be targeted for
surveillance and control, where to install deer fences to control tick abundances, or communicating
IAVP presence. Although some inaccuracies in SDM outputs may seem trivial in the context of
a scientific paper, they can pose a serious issue when accurate predictions are required for use in
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“real world” scenarios. For example, SDMs and model-derived data are used by the Centers for Disease
Control and Prevention (CDC) in the USA to inform administrative regions on the likelihood of Aedes
mosquito invasion, in order to distribute vector control resources (e.g., intensive surveillance and
insecticide application) [45,46]. Consequently, disparities between the spatial resolution of the data
used to inform the model and that at which model outputs are applied will result in model outputs
that are inaccurate for their intended applications. At best, IAVP distributions may be over-estimated,
leading to unnecessary use of resources, and at worst, distributions can be underestimated such that
no, or insufficient, actions are employed to control IAVPs in an area that is actually at risk. Indeed, an
economic evaluation of biological invasions states that “uncertainty prevails concerning what ecosystems
will be invaded and what impacts an invasion will have within these ecosystems”, highlighting that accurate
ecological and economic analyses are crucial in the allocation of finite resources to control invasive
species [47].

There is also a mismatch in spatial resolution between environmental data used in SDMs, and that
at which the IAVP is affected. Indeed, many arthropods, such as mosquitoes and ticks are small
and poikilothermic, and are therefore heavily affected by microclimatic conditions, which vary at
fine spatial scales (in the order of centimeters to meters) and differ to the surrounding macroclimatic
conditions [48–50]. For example, potentially invasive ticks, especially nidicolous (nest-dwelling)
species, spend almost their entire life-cycle within a limited spatial radius; following a bloodmeal
they detach from the host and remain within the host’s nest or a nearby sheltered area, such as a
cave or crevice, in order to metamorphose [51]. Within these isolated and sheltered microhabitats
environmental conditions can be very different to those in the surrounding environment. In the
same way, IAVPs can be sensitive to extreme environmental conditions, for example the lone star
tick (Amblyomma americanum [Linnaeus, 1758]), which is invasive across much of the north east of the
USA, dies within just 2 h of exposure to temperatures of ≤−3 ◦C in the laboratory [52] and rapidly
desiccates when exposed for several hours to temperatures exceeding 30 ◦C [53]. Likewise, mortality
of Culicoides brevitarsis [Kieffer, 1917] (Diptera: Ceratopogonidae), a vector of the bluetongue virus,
is high in the laboratory when temperatures are greater than 35 ◦C, even if just for a few days [54].
Consequently, high temporal resolution of data is required to accurately capture the variance and
range in environmental variables [44], but at present the most accessible remotely sensed data are only
available for 1–6 day interval measurements, thus do not capture data at the same hourly temporal
resolution that can affect IAVP survival. There is a wealth of literature demonstrating that if species
were theoretically subjected to the macroclimate as measured by remote sensing, rather than the
microclimate which they truly experience, their behavior, reproduction, growth, survival, and both
phenotypic and genotypic adaptations would all be profoundly impacted [55].

In addition to issues of resolution in environmental data, some factors that impact IAVP distribution
cannot be directly measured, and instead other measurements are used as a proxy, or are interpolated,
for the variable of interest. Due to its importance in the IAVP life cycle, temperature is among the most
broadly applied variables in IAVP species distribution modeling. However, land surface temperature
is generally used as a proxy for ambient temperature [27,56,57], whilst relative humidity, which is vital
to arthropod survival, is often calculated from temperature and dew point measurements, or minimum
day-time air temperature [58]. SDMs are made further complex when the species of interest has multiple
life stages, each of which may exploit a different microhabitat. Mosquitoes have an “amphibious” life
history, throughout which they experience air, below-water, and water-surface temperatures, by having
terrestrially fixed or floating eggs, aquatic immature larvae and flying adults [59]. Researchers have
measured air temperature, water temperature, and precipitation to understand whether air temperature,
usually used to determine mosquito distribution or life cycle, provides an appropriate direct measure for
determining Anopheles [Diptera: Culicidae] larval development in water [48]. The authors of one such
study concluded that their results “suggest that although widely used, air temperature alone does not provide
an appropriate variable for estimating immature mosquito development or for setting threshold temperatures”.
Another study that measured temperature in microhabitats suitable for Aedes mosquitoes found that
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when utilizing temperature from remote sensors or weather stations instead of from proximal data
loggers, model outputs predicted that Ae. albopictus developmental rates were delayed and population
growth rates were under-estimated (Figure 1) [60]. Thus, the environmental characteristics important
to the survival of an IAVP vary considerably compared to those that can be measured or interpolated by
currently available data [59,61], and the obliged use of sub-optimal proxy data may result in erroneous
model outputs [48,61].

Figure 1. Temperature time series in an area invaded by Aedes albopictus mosquitoes in Italy (11.13◦N,
46.2◦E). Grey points and smoothed trends represent temperature measured at the microhabitat
scale (i.e., an artificial, hard plastic, water filled container typically used for egg laying by this
species) in different environmental settings: full-shadow, half-shadow, and full sun conditions.
Temperatures were recorded inside (mosquito larvae habitat) and outside water (mosquito adult
and egg habitat) using iButton® (Maxim Integrated, US) DS1923 data loggers at one hour intervals.
Blue points and smoothed trends depict four-daily Land Surface Temperature (LST; MOD11A1 and
MYD11A1 MODIS data) values, derived from the Moderate Resolution Imaging Sensor (MODIS)
instruments, on-board the Terra and Aqua satellites. MODIS data were downloaded from a NASA
server (https://lpdaac.usgs.gov/data_access), imported into GRASS GIS, and temperature values were
extracted for each pixel (1 km resolution) where iButton sensors were placed (this figure was produced
using data reported in [60]).

Strictly related to the low spatial resolution at which remotely sensed data are acquired, ecotones,
i.e., where two macrohabitats intersect, for instance at the edge of a river, between mountains and
valleys, green areas in a city or in catch-basins, are not currently well-captured by environmental
data. However, ecotones can create microhabitat refugia in a macrohabitat that would otherwise be
unsuitable. For example, Hoogstraal demonstrated that in the Nile Valley which is otherwise too dry
for ticks, the soft tick Ornithodoros sonrai [Sautet and Witkowski, 1943] was able to colonize rodent
burrows close to a permanent river, which provided adequate water and humidity [62]. Research has
identified general patterns and mathematical relationships in the “buffering effect” of the physical
structure of a microhabitat and has determined that, in general, within the microhabitat experienced by
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the tick, temperature and relative humidity are lower than that of the external environment typically
measured for environmental data [63]. However, these patterns are influenced by a variety of factors,
including the structure of the microhabitat and surrounding hydrography [63].

5. Attempting to Overcome the Lack of Microhabitat Data

Methods to capture, interpret, and produce remotely-sensed data that can be applied to SDMs are
continually improving. In March 2019, Planet announced that they can provide satellite imagery from
which NDVI can be derived at a resolution of 3–5 m, every 3 days (https://www.planet.com/pulse/
developing-the-worlds-first-indicator-of-forest-carbon-stocks-emissions/). Additionally the project
can gain NDVI at 0.8 m using Light Detecting and Ranging (LiDAR) sensors mounted on aircraft,
but for only a single time point due to the costliness of this data collection process. Despite these
improvements, there may be a considerable lag time between such data being available and being used
in SDMs, which typically require time series data spanning multiple years to truly capture adequate
information on the climate. In addition, high resolution data at such a large scale require intense
computational power and expertise for use in SDMs, as high resolution satellite data brings with it
challenges related to differentiating details between variables within the imagery, as well as new sources
of noise [64]. For instance, a project attempted to use NDWI calculated from QuickBird satellite imagery
at 2.44 m spatial resolution to locate potential habitat for invasive mosquitoes (e.g., swimming pools).
However, ground truthing of the data showed that shadows cast upon swimming pools by surrounding
trees or structures resulted in decreased NDWI values and reduced the ability to detect water bodies [65].

We understand that improving the quality of the remotely sensed data processing chain,
including geometric and radiometric corrections, is a complex discipline in itself and takes time
and an organized effort. However, we can take better ownership of the data that are currently
available to us, and can follow the lead of other disciplines in doing this. A set of Essential
Biodiversity Variables (EBV) have been identified to support biodiversity monitoring under the
framework of the Group on Earth Observations Biodiversity Observation Network (GEO BON). Out of
21 candidate EBVs suggested by GEO BON, 14 EBVs have been identified as directly or indirectly
measurable by remote sensing (https://geobon.org/ebvs/what-are-ebvs/) [66–68]. Two subsets of EBVs,
focusing on Species Abundance (SA EBV) and Species Distribution (SD EBV), have been introduced
and defined as a space-time-species-gram (cube), which can address species distribution or abundance
irrespective of the taxonomy or scale [69]. This classification is facilitated by the availability of global,
high-resolution, remotely-sensed data on environmental conditions and ecological species attributes.
The framework has been optimized for biodiversity monitoring, but an equivalent product could
be developed for relevant data pertaining to invasive species monitoring. Similarly, other areas
of research have identified the need for environmental data that better meet the requirements of
modelers, and have built high resolution and user friendly databases. For example, Bio-ORACLE
(Ocean Rasters for Analysis of Climate and Environment) is a global dataset of environmental
data which has been tailored for, and successfully implemented in, the distribution modeling of
marine species [70–73]. Creating similar datasets that include environmental (both remotely and
proximally sensed) data relevant to IAVP species at a fine spatial scale and a user friendly format
could greatly improve the way in which currently available environmental data are used in IAVP
SDMs. In addition, online data repositories, that include microhabitat data are available, such as
DataONE (Data Observation Network for Earth, https://www.dataone.org/), JaLTER (Japan Long-Term
Ecological Research Network; http://db.cger.nies.go.jp/JaLTER/metacat/style/skins/jalter-en/index.jsp)
and the VLIZ: IMIS (The Flanders Marine Institute: Integrated Marine Information System,
http://www.vliz.be/en/imis for example see [74]). Whilst these databases represent a great resource,
people must be made aware that microclimatic data do exist, and centralization of microhabitat
data in a well-structured repository could greatly facilitate data dissemination and utilization by the
scientific community.
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On a smaller scale, unmanned aerial vehicles (UAVs) and drones can be equipped with visible
light, near-infrared, and/or thermal sensors to measure environmental variables, producing NDVI
and surface temperature data at high resolution and at the desired scale [75,76]. UAVs have also been
used to survey for bird and primate nesting and resting sites to estimate population numbers [77,78],
and although this method is not currently suitable for the direct detection of IAVPs, host nesting sites,
e.g., woodrat middens, or water bodies suitable for mosquito egg laying, could be surveyed using
these techniques and used as a parameter for host availability in SDMs.

Environmental data at the microhabitat level can also be measured using data loggers; small sensors
able to measure a range of variables paralleling those that can be remotely sensed, such as temperature,
light, air velocity, barometric pressure, and relative humidity (e.g., see HOBO® U30 USB Station
(U30-NRC) data logger; Bourne, MA). Many data loggers are small enough to be placed in almost any
microhabitat, and can be programmed to record measurements at multiple intervals throughout a 24 h
period. Data derived from such data loggers has been successfully used to model the extirpation and
persistence of mammals (American pika, Ochotona princeps [Richardson, 1828]) [79,80] and thermal
ecology potentially related to butterfly distribution (Aglais urticae Lepidoptera: Nymphalidae [Linnaeus,
1758], Inachis io Lepidoptera: Nymphalidae [Linnaeus, 1758] and Polygonia c-album, Lepidoptera:
Nymphalidae [Linnaeus, 1758]) [81], and could no doubt also be applied to IAVP distributions.
While a large number of data loggers need to be employed to collect sufficient data for species
distribution modeling, requiring considerable resources to deploy and manage, these data could be
supplemented by crowd-sourced means. Environmental data can now be collected from sensors within
smart phones that can measure multiple variables, including temperature, pressure, and light, as well
as from privately owned amateur weather stations and apps that ask citizens to report climatic data,
such as amount of precipitation [82].

Despite the generalized application of coarse resolution data for modeling the distribution of
IAVPs, overcoming the lack of data at a microhabitat scale has been attempted, although not necessarily
for SDMs. An alternative and empirical strategy to improve our understanding of microhabitat thermal
properties can be in the implementation of controlled experiments, that allow us to characterize
microhabitat properties [83,84]. For example, studies have directly measured temperature within
aquatic mosquito egg laying sites [48], and have recorded environmental variables in catch basins
known to be egg laying sites for Ae. albopictus in Italy [58]. Both studies found that modeling mosquito
population dynamics using these variables, rather than air temperature which is typically used,
changes, and likely improves, the estimated development of the mosquito. An increasing number of
scientific studies call for a better estimation of the thermal characteristics of mosquito microhabitats,
specifically in order to achieve more reliable SDMs [48,58,85].

The strategies to overcome the lack of microhabitat data proposed above require intense use of
resources, and we propose that microhabitat data collected by data loggers, crowd-sourcing, unmanned
aerial vehicles, and/or controlled environmental studies are maintained in a database which can be
freely contributed to, and be used by all those studying IAVP ecology. An open access database of
microhabitat data could greatly facilitate the propagation of both collection and use of this type of
environmental data.

6. Conclusions

Currently, environmental data that is used to inform ecological niche models largely relies
on remotely sensed data, which is at a relatively course temporal and spatial resolution and does
not accurately represent the microhabitat experienced by the species of interest, nor that at which
activities informed by the prediction are executed. The predicted distribution of invasive arthropods
resulting from models are therefore likely to be insufficient for direct application. The subsequent
over- and/or under-estimations in IAVP distribution can have considerable consequences on control
efforts, which may be informed by such predictions. We posit that consequently, efficiency and efficacy
in the allocation of resources to control IAVPs are sub-optimal. The optimal resolution of environmental
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data relevant to IAVP ecology will likely vary according to the species under consideration, but we
assume that this resolution will typically be <1 m and hourly. The scientific community may be far
from having, for example, remotely-sensed measured temperature data at a 1 m spatial resolution or
hourly temporal resolution for large extensions. However, we argue that any effort to improve the
availability of data at a finer resolution than currently available will be of great benefit for modeling
the distribution, abundance, or demographic rates of IAVP species. In the meantime we encourage
modelers and ecologists to take a proactive approach in collecting fine resolution data using data loggers,
crowd-sourcing, unmanned aerial vehicles and/or controlled environmental studies. We propose that
these proximally-sensed data, as well as remotely-sensed data, be made open access in a user friendly
database. We also hope that the suggestions made here for overcoming issues in environmental data
for modeling IAVP distributions can be adapted and applied to species distribution modeling in other
areas of research.
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Abstract: On the basis of the Research Station of the Russian Academy of Sciences in Bishkek,
a unique scientific infrastructure—a complex geophysical station—is successfully functioning,
realizing a monitoring of geodynamic processes, which includes research on the network of points of
seismological, geodesic, and electromagnetic observations on the territory of the Bishkek Geodynamic
Proving Ground located in the seismically active zone of the Northern Tien Shan. The scientific and
practical importance of monitoring the geodynamical activity of the Earth’s crust takes place not only
in seismically active regions, but also in the areas of the location of particularly important objects,
mining, and hazardous industries. Therefore, it seems highly relevant to create new software and
hardware to study geodynamic processes in the earth’s crust of seismically active zones, based on
integrated monitoring of the geological environment in the widest possible depth range. The use of
modern information technology in such studies provides an effective data management tool. The
considering system for collecting, processing, and storing monitoring electromagnetic data of the
Bishkek geodynamic proving ground can help overcome the scarcity of experimental data in the field
of Earth sciences.

Dataset: For general use, a center for collective use of scientific equipment “Integrated geodynamic
research” (CCU IGR) was created, on the basis of the Research Station of the Russian Academy of
Sciences in Bishkek (RS RAS) (http://ckp-rf.ru/auth/). Through it, you can register and get access to
data that is laid out for general use. In open access on the Internet, EDI-files on the MANAS profile
are posted at http://ds.iris.edu/spud/emtf.

Dataset License: CC-BY

Keywords: database; geophysical monitoring; magnetotelluric monitoring; processing

1. Summary

The complex of regional geophysical works, including magnetotelluric studies, is carried out in
almost all major tectonic provinces worldwide. One of the tasks of such a complex is to study the
geodynamic state of the regions and assess the development and distribution of hazardous geological
processes. Tien Shan region is one of the most tectonically active. This paper discusses the information
aspects of the developed technology of multidisciplinary geophysical monitoring of geodynamic
processes in the Earth’s crust seismically active regions. The approach to the created technology is
based on the integrated use of structural-functional and object-oriented information models. The
developed structural-functional information model describes the processes of obtaining, storing and
converting raw electromagnetic data, measured by magnetotelluric soundings method (MTS), and the
object-oriented model used for describing the data itself (initial, intermediate, and final) and the
relationships between them. The models are built using CASE tools All Fusion (Business Process
Modeler—BPwin) and Power Designer, to define the boundaries and hierarchical structure of the
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developed system. The created technology provides an effective information system for integrated
geophysical monitoring of geodynamic processes originating in the earth’s crust of the seismically
active zone of the Northern Tien Shan (the territory of the Bishkek geodynamic polygon) [1–3]. The
main element of the complex geophysical monitoring is electromagnetic observations with a natural
source of electromagnetic fields, which include magnetotelluric (MT) continuous observations of
changes in the electrical parameters of the geoelectric cross-section at stationary points, continuous
geomagnetic observations of the full vector T of the geomagnetic field at stationary points of the
network and periodic observations at controlled points served by mobile stations. MT observations are
used to determine variations of electromagnetic parameters in the Tien Shan lithosphere to a depths of
100 km and to study their relationship with geodynamic processes, occurring at these depths.

This work represents the results of research related to the development of azimuthal
magnetotelluric monitoring techniques, which consists of analyzing the obtained time series of
electromagnetic parameters in order to determine the contribution of each of the components of the
impedance tensor to the informativeness of monitoring studies [3]. On the basis of the correlation
analysis of gravitational tidal effects and the results of magnetotelluric monitoring, an additional test is
carried out, the previously identified azimuthal dependence of the environmental stress sensitivity.
When performing modern monitoring studies, scientists have to face an unprecedented amount of data
that is subject to orderly storage, processing, graphical visualization and analysis [4]. Both stations
are located on the territory of the Bishkek geodynamic proving ground, which in turn is part of the
Northern Tien Shan seismic zone (Figure 1), and data is recorded around the clock in the period
of 0.01–1000 s. Over the years of research, a catalog of geoelectrical data based on magnetotelluric
soundings (MTS) and magnetovariational soundings (MVS) made in a series of regional and local
profiles in the range of periods from 0.06 to 1800 s, created in the Tien Shan region, has been constantly
updated. The catalog also includes the results of deep magnetotelluric soundings (periods up to
10,000 s). Information characterizing the parameters of the network of magnetotelluric observations
(observation points and their coordinates) is contained in the catalog of the regional network of
MTS, MVS cost center. To date, the established regional network of MTS and MVS for stationary
observation points and profiles covers almost the entire territory of Tien Shan, within Kyrgyzstan and
the surrounding areas.
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Figure 1. Location map of points of the geophysical monitoring, performed on the territory of the Central
Tien Shan: 1—modern alluvial boulder-pebble deposits; 2—alluvial boulder-pebble deposits of the first
above-flood terrace; 3—blocky-pebble glacial deposits; 4—Early and Middle Ordovician granodiorite;
5—Miocene pebble-crumbly-sandy strata; 6—Riphean complexes (undivided); 7—Pliocene–Pleistocene
alluvial boulder deposits of the Sharpyldak series; 8—Shamsi fault; 9—activated faults and fracture
zones of the basement: a—main; b—secondary; 10—activated faults assumed under the cover of
modern sediments: a—main; b—secondary; 11—points of regime magnetotelluric soundings (MTS);
12—points of stationary and profile magnetotelluric observations; 13—settlements; 14—main fault
structures; 15—the border of Kyrgyzstan; 16—points of regime deep MTS; 17—points of regime deep
MTS of 2018; 18—points of electromagnetic monitoring; 19—points of the network of GPS observations;
20—KNET teleseismic network sites.

The data acquisition and information processing system of magnetotelluric monitoring allows
collecting and accumulating data from a variety of monitoring observation points—stationary, regime,
and profile (Figure 1). Monitoring was performed to study geodynamic processes in the Earth’s crust
and upper mantle based on the calculation of the transfer functions between the components of the
magnetotelluric field with high temporal resolution in order to study their temporal dynamics. The final
result of such monitoring, from a formal point of view, is a set of time series of various data [5,6]. In the
practice of monitoring geodynamical processes, statistical methods of data analysis are widely used.
In particular, a correlation analysis is used to determine the degree of the interrelation of the observed
data series. Time series are formed, which are used to study changes in the recorded parameters over
time and to isolate anomalies associated with the preparation of strong earthquakes [7,8]. Programs
are designed for visualization, processing, and analysis of time series. They have a convenient user
interface. They implemented arithmetic, statistical, and other functions for working with time series.
It is possible to edit drawings (graphs) on the screen, save, and print them.

2. Data Description

According to the results of continuous monitoring of electromagnetic, geomagnetic, GPS,
gravimetric, and seismic observations, banks of primary data of the territory of the Bishkek geodynamic
proving ground are formed and a catalog of earthquakes is compiled. As an example, consider the
procedure for collecting data from magnetotelluric monitoring.

2.1. Data Collection Procedure

The monitoring network continuously records the MT field on the embedded flash memory of
the Phoenix MTU-5D instrumentation. The duration of the recording depends on the amount of flash
memory and registration parameters. The registration parameters indicate the polling frequency and
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the duration of the recording. At the maximum polling frequency, the recording time is about 20 days,
after which data is copied from the flash memory to a laptop, and the equipment is serviced and
restarted. When working on the MTS profile, the measurement mode depends on the objectives of
the study and is seasonal. In an ordinary observation point on a profile, the duration of an MT-field
recording is a time interval from several hours to several days, which is determined by the depth of
soundings. To check the performance of the station, a test recording of about an hour is made. The
most informative is the night registration.

2.2. Structure and Data Processing of the Magnetotelluric Sounding (MTS) Method

The primary time series files of magnetotelluric data are stored in two binary files one of which
saves the data of high and middle-frequency band (2400 and 150 Hz) at intervals of a few seconds from
the beginning of the minute, while the second file continuously saves low-frequency data (24 Hz).

Time series are accompanied by a small binary file which saves registration parameters. To process
time series data, use the SSMT 2000 program from the standard set of Phoenix software. As a result
of this processing, average daily MT monitoring records are obtained stored as binary files. Work
with these files is performed using the GSPlot (General Spectra Plot) program from the standard set of
Phoenix software. The GSPlot program allows to visually view the transformants of the MT data and
also presents them in a table form.

The data storage scheme of magnetotelluric soundings processing is based on the data storage
scheme in the international data exchange standard MT. In this standard, sensing data at a point is
written to a file with the extension EDI (Electrical Data Interchange). EDI files are obtained using the
MT-Correct processing application program developed by the North-West geophysical company and
saved in ASCII format, in contrast to the primary binary files.

2.3. Structure and Storage of Magnetotelluric (MT) Data

All MT sounding material, both source material and processing results, are placed in archives on
working computers, in a database and in an external archive on CDs. In the MT database, the material
is classified by year of observation, by profiles and measurement points.

The data of the MT-monitoring are located in the directories corresponding to the names of the
items—Aksu-mon and Chon-mon, in which folders with the number of years of monitoring are created.

The data on the MT-profiles are in the directories with the name of the profile and year of work.

3. Methods

The geophysical monitoring database (DB) of the RS RAS includes an electromagnetic observation
database with an artificial source of electromagnetic field, electromagnetic observations with a natural
source of electromagnetic field, geodetic GPS observations on a local network and geomagnetic
observations and can be considered as a single distributed database (Distributed DataBase—DDB) [9]
of geophysical monitoring. These databases play the role of local databases located in different nodes
of the corporate and/or global computer network. DDB, as defined by Data [10], can be considered as a
loosely coupled network structure whose nodes are local databases.

Local databases are autonomous, independent, and self-defined; access to them is provided
through the DBMS. Connections between nodes are replicated data streams. DDB topology is a
star structure.

For organizing the collection, storage of data, and processing of the results of MT monitoring,
the As IS model was developed. The model was developed in the BPWin [11] environment in the form
of data flow diagrams (DFD-diagrams) and is presented in Figure 2.
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Figure 2. Data streams in magnetotelluric (MT)-monitoring (Model As IS).

For on-line access to the results of MT monitoring, a model of a distributed interactive system of
access to the results of magnetotelluric monitoring in the form of a data flow diagram (DFD diagrams)
was developed. This model is essentially an As To Be model and is presented in Figure 3.

Figure 3. Model of a distributed interactive system of access to the result of magnetotelluric
(MT)-monitoring (Model As To Be).

On the system model, the main process is allocated: distributed interactive system of access to
the results of monitoring MT and two external entities: User and Storage. The repository is a storage
medium on the external medium with respect to the system, on which the primary Phoenix station
files, the average daily (processed) files, and EDI files are stored. Figure 4 shows an example of the MT
data outputs that was obtained from the database.
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Figure 4. The example of the magnetotelluric (MT) data outputs that was obtained from database. The
left side shows the time series source data—5 components of the electromagnetic field. In the right side
sample processed data. Blue and green dots show processed curves that are obtained in binary format,
red and yellow solid lines—smooth curves in EDI format.

The detailing of the main process is carried out in the form of a 1-level DFD, including 3 main
subprocesses (Processing of primary files, Processing of daily average files, Processing of EDI files) and
2 auxiliary subprocesses (Construction of correlation diagrams and MT time-frequency monitoring),
interacting with the Server.

Description of the Main Functions of the System

Based on the models discussed above, a logical database structure was developed in the ERwin
environment [10]. Visual Basic .Net 2008 and SQL Server 2000 DBMS are selected as programming tools.
The developed distributed interactive system of access to the results of magnetotelluric monitoring has
the following functionalities.

1. Creating a database. To create a database of MT monitoring files, you must enter the name
of the server on which the database will be created and the name of the future database, as well as
select the type of authentication for the server on the local computer or to create a database on the
remote computer.

2. Setting up the software system and filling the database. At this point, you can select or enter:
the name of the server to which you want to connect, and the name of the database created by the
program, in which the data about the MT monitoring files will be stored. In addition, you can choose
the path to the files, up to folders with stations.

3. Database update.
4. Search for files by date and coordinates. The file search is possible by date, based on the type

of the files you are looking for, the time period in which the necessary files are located, the station
number from which the files were received. The search by coordinates implies the search for files by
the latitude and longitude of the location of the stations.

5. Copying files.
6. Processing MT monitoring data.
7. Construction of time-frequency series of MT monitoring.
8. Construction of correlation diagrams.
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4. User Notes

Usage: for collecting and processing geophysical information, in particular for measuring,
recording, and processing the electrical and magnetic components of the natural electromagnetic field,
in the study of geodynamic processes occurring in the Earth’s crust and upper mantle using electrical
survey methods. Thus, the developed software system makes it possible to increase the efficiency of
processing MT monitoring data by significantly reducing the time spent searching for the necessary
information, the ability to quickly view the newly received data, and create a distributed database
of monitoring MT observations over a period of about 15 years. Currently, the system is in the trial
operation of the Research Station of the Russian Academy of Sciences.

5. Patents

As part of these studies, the database “Local database of magnetotelluric data in the system of
geophysical monitoring of geodynamic processes in the Earth’s crust of seismically active regions”
was registered. Certificate No. 2012621291, issued on 07.12.2012. Copyright holder FGBUN Research
Station of the Russian Academy of Sciences in Bishkek. Authors: Rybin A.K., Matiukov V.E., Desyatkov
G.A., Lychenko N.M., Manzhikova S.T. At the present, this database is actively used and developed.
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