Water Resource
Variability and
Climate Change

ed by
Yingkui Li and Micha lAUban
ition of the Special Issue P

ished in Water




Yingkui Li and Michael A. Urban (Eds.)

Water Resource Variability and
Climate Change



This book is a reprint of the Special Issue that appeared in the online, open access
journal, Water (ISSN 2073-4441) from 2015-2016, available at:

http://www.mdpi.com/journal/water/special_issues/water-resource-variability

Guest Editors

Yingkui Li

Department of Geography University of Tennessee Knoxville
USA

Michael A. Urban
Department of Geography University of Missouri Columbia
USA

Editorial Office
MDPI AG

St. Alban-Anlage 66
Basel, Switzerland

Publisher
Shu-Kun Lin

Managing Editor
Cherry Gong

1. Edition 2016
MDPI e Basel ¢ Beijing ® Wuhan ® Barcelona ¢ Belgrade

ISBN 978-3-03842-244-0 (Hbk)
ISBN 978-3-03842-230-3 (PDF)

Articles in this volume are Open Access and distributed under the Creative Commons
Attribution license (CC BY), which allows users to download, copy and build upon
published articles even for commercial purposes, as long as the author and publisher are
properly credited, which ensures maximum dissemination and a wider impact of our
publications. The book taken as a whole is © 2016 MDPI, Basel, Switzerland, distributed
under the terms and conditions of the Creative Commons by Attribution (CC BY-NC-ND)
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).


http://www.mdpi.com/journal/water
http://creativecommons.org/licenses/by-nc-nd/4.0/

Table of Contents

List Of CONIIDULOTLS ....c.coveuiiiiiiiiiciiiciecce et VII
About the Guest EQItOrs........cccouiiiiiiiiiiiiiicii XII
Preface to “Water Resource Variability and Climate Change” ..........cccccovvruvunnnee XV

Yingkui Li and Michael A. Urban

Water Resource Variability and Climate Change

Reprinted from: Water 2016, 8(8), 348
http://www.mdpi.com/2073-4441/8/8/348........ccvmemimeiiiiiirnrrceceeeeeee e 1

Qingting Li, Linlin Lu, Cuizhen Wang, Yingkui Li, Yue Sui and Huadong Guo
MODIS-Derived Spatiotemporal Changes of Major Lake Surface Areas in Arid
Xinjiang, China, 2000-2014

Reprinted from: Water 2015, 7(10), 5731-5751
http://www.mdpi.com/2073-4441/7/10/5731.....ccocoeeirrrriiiiciiieereeee e 10

Shaowei Ning, Hiroshi Ishidaira, Parmeshwar Udmale and Yutaka Ichikawa
Remote Sensing Based Analysis of Recent Variations in Water Resources and
Vegetation of a Semi-Arid Region

Reprinted from: Water 2015, 7(11), 6039-6055
http://www.mdpi.com/2073-4441/7/11/6039........cccccevrrrrmiiiiiiinrrreeeeeeeeaene 33

Willibroad Gabila Buma, Sang-Il Lee and Jae Young Seo

Hydrological Evaluation of Lake Chad Basin Using Space Borne and Hydrological
Model Observations

Reprinted from: Water 2016, 8(5), 205
http://www.mdpi.com/2073-4441/8/5/205........cccccecivivirirriiiiiiiiieeee e 52

Chong Jiang, Linbo Zhang, Daiqing Li and Fen Li

Water Discharge and Sediment Load Changes in China: Change Patterns, Causes,
and Implications

Reprinted from: Water 2015, 7(10), 5849-5875
http://www.mdpi.com/2073-4441/7/10/5849........ccocueurrrrrreereeeieeerree e 71

I


http://www.mdpi.com/search?authors=Qingting%20Li&orcid=
http://www.mdpi.com/search?authors=Linlin%20Lu&orcid=
http://www.mdpi.com/search?authors=Cuizhen%20Wang&orcid=
http://www.mdpi.com/search?authors=Yingkui%20Li&orcid=0000-0002-3722-8960
http://www.mdpi.com/search?authors=Yue%20Sui&orcid=
http://www.mdpi.com/search?authors=Huadong%20Guo&orcid=
http://www.mdpi.com/search?authors=Shaowei%20Ning&orcid=
http://www.mdpi.com/search?authors=Hiroshi%20Ishidaira&orcid=
http://www.mdpi.com/search?authors=Parmeshwar%20Udmale&orcid=0000-0002-1558-231X
http://www.mdpi.com/search?authors=Yutaka%20Ichikawa&orcid=
http://www.mdpi.com/search?authors=Willibroad%20Gabila%20Buma&orcid=
http://www.mdpi.com/search?authors=Sang-Il%20Lee&orcid=
http://www.mdpi.com/search?authors=Jae%20Young%20Seo&orcid=
http://www.mdpi.com/search?authors=Chong%20Jiang&orcid=
http://www.mdpi.com/search?authors=Linbo%20Zhang&orcid=
http://www.mdpi.com/search?authors=Daiqing%20Li&orcid=
http://www.mdpi.com/search?authors=Fen%20Li&orcid=

Hejia Wang, Weihua Xiao, Jianhua Wang, Yicheng Wang, Ya Huang,

Baodeng Hou and Chuiyu Lu

The Impact of Climate Change on the Duration and Division of Flood Season in

the Fenhe River Basin, China

Reprinted from: Water 2016, 8(3), 105
http://www.mdpi.com/2073-4441/8/3/105........cccovvurrmiririiiiiirrrreeeeeeeceeeeeas 101

Jaewon Kwak, Soojun Kim, Gilho Kim, Vijay P. Singh, Jungsool Park and

Hung Soo Kim

Bivariate Drought Analysis Using Streamflow Reconstruction with Tree Ring
Indices in the Sacramento Basin, California, USA

Reprinted from: Water 2016, §(4), 122
http://www.mdpi.com/2073-4441/8/4/122........cococvvivrriiiiiiiiirrreee e 115

Ilias G. Pechlivanidis, Jonas Olsson, Thomas Bosshard, Devesh Sharma and

K. C. Sharma

Multi-Basin Modelling of Future Hydrological Fluxes in the Indian Subcontinent
Reprinted from: Water 2016, 8(5), 177

http://www.mdpi.com/2073-4441/8/5/177 .....cvoveeueerrrreeerereeeirrerereee e ereeeeeene 136

Tianhong Li and Yuan Gao

Runoff and Sediment Yield Variations in Response to Precipitation Changes: A
Case Study of Xichuan Watershed in the Loess Plateau, China

Reprinted from: Water 2015, 7(10), 5638-5656
http://www.mdpi.com/2073-4441/7/10/5638........ccccerrrrererereerrerrrreeeeeeeeeenene 164

Mayzonee Ligaray, Hanna Kim, Suthipong Sthiannopkao, Seungwon Lee,
Kyung Hwa Cho and Joon Ha Kim

Assessment on Hydrologic Response by Climate Change in the Chao Phraya River
Basin, Thailand

Reprinted from: Water 2015, 7(12), 6892-6909
http://www.mdpi.com/2073-4441/7/12/6665.........cccorrrreeeeiriererrreeee e 186

v


http://www.mdpi.com/search?authors=Hejia%20Wang&orcid=
http://www.mdpi.com/search?authors=Weihua%20Xiao&orcid=
http://www.mdpi.com/search?authors=Jianhua%20Wang&orcid=
http://www.mdpi.com/search?authors=Yicheng%20Wang&orcid=
http://www.mdpi.com/search?authors=Ya%20Huang&orcid=
http://www.mdpi.com/search?authors=Baodeng%20Hou&orcid=0000-0001-7139-9723
http://www.mdpi.com/search?authors=Chuiyu%20Lu&orcid=
http://www.mdpi.com/search?authors=Jaewon%20Kwak&orcid=
http://www.mdpi.com/search?authors=Soojun%20Kim&orcid=0000-0002-9825-2462
http://www.mdpi.com/search?authors=Gilho%20Kim&orcid=
http://www.mdpi.com/search?authors=Vijay%20P.%20Singh&orcid=
http://www.mdpi.com/search?authors=Jungsool%20Park&orcid=
http://www.mdpi.com/search?authors=Hung%20Soo%20Kim&orcid=0000-0001-8345-0610
http://www.mdpi.com/search?authors=Ilias%20G.%20Pechlivanidis&orcid=
http://www.mdpi.com/search?authors=Jonas%20Olsson&orcid=
http://www.mdpi.com/search?authors=Thomas%20Bosshard&orcid=
http://www.mdpi.com/search?authors=Devesh%20Sharma&orcid=
http://www.mdpi.com/search?authors=K.C.%20Sharma&orcid=
http://www.mdpi.com/search?authors=Tianhong%20Li&orcid=
http://www.mdpi.com/search?authors=Yuan%20Gao&orcid=
http://www.mdpi.com/search?authors=Mayzonee%20Ligaray&orcid=
http://www.mdpi.com/search?authors=Hanna%20Kim&orcid=0000-0003-4774-187X
http://www.mdpi.com/search?authors=Suthipong%20Sthiannopkao&orcid=
http://www.mdpi.com/search?authors=Seungwon%20Lee&orcid=
http://www.mdpi.com/search?authors=Kyung%20Hwa%20Cho&orcid=
http://www.mdpi.com/search?authors=Joon%20Ha%20Kim&orcid=

Rashid Mahmood, Shaofeng Jia and Mukand S. Babel

Potential Impacts of Climate Change on Water Resources in the Kunhar River
Basin, Pakistan

Reprinted from: Water 2016, 8(1), 23
http://www.mdpi.com/2073-4441/8/1/23........cccoovvinniiiiiiiiiiinininnccn 210

Cornelia Hesse and Valentina Krysanova

Modeling Climate and Management Change Impacts on Water Quality and In-
Stream Processes in the Elbe River Basin

Reprinted from: Water 2016, 8(2), 40
http://www.mdpi.com/2073-4441/8/2/40.......cococeivmriiiiiiiiiirereree e 241

Wen-Cheng Liu and Wen-Ting Chan

Assessment of Climate Change Impacts on Water Quality in a Tidal Estuarine
System Using a Three-Dimensional Model

Reprinted from: Water 2016, 8(2), 60
http://www.mdpi.com/2073-4441/8/2/60..........cocoevvivrirriiiiiiiiirrree e 283

Hsiao-Ping Wei, Keh-Chia Yeh, Jun-Jih Liou, Yung-Ming Chen and

Chao-Tzuen Cheng

Estimating the Risk of River Flow under Climate Change in the

Tsengwen River Basin

Reprinted from: Water 2016, 8(3), 81
http://www.mdpi.com/2073-4441/8/3/81.......ccocoeiiviviririiiiiiiiiireree e 313

Ken Okamoto, Kazuhito Sakai, Shinya Nakamura, Hiroyuki Cho,

Tamotsu Nakandakari and Shota Ootani

Optimal Choice of Soil Hydraulic Parameters for Simulating the Unsaturated Flow:
A Case Study on the Island of Miyakojima, Japan

Reprinted from: Water 2015, 7(10), 5676-5688
http://www.mdpi.com/2073-4441/7/10/5676..........ccorrrreeereirrrrerrreeeeeeeeenenne 332

Francis Ndamani and Tsunemi Watanabe

Farmers’ Perceptions about Adaptation Practices to Climate Change and Barriers
to Adaptation: A Micro-Level Study in Ghana

Reprinted from: Water 2015, 7(9), 4593-4604
http://www.mdpi.com/2073-4441/7/9/4593.......ccoceeimrrrrreeceeieeee e 346

\Y%


http://www.mdpi.com/search?authors=Rashid%20Mahmood&orcid=0000-0003-3364-5297
http://www.mdpi.com/search?authors=Shaofeng%20Jia&orcid=0000-0001-7472-2434
http://www.mdpi.com/search?authors=Mukand%20S.%20Babel&orcid=
http://www.mdpi.com/search?authors=Cornelia%20Hesse&orcid=
http://www.mdpi.com/search?authors=Valentina%20Krysanova&orcid=
http://www.mdpi.com/search?authors=Wen-Cheng%20Liu&orcid=
http://www.mdpi.com/search?authors=Wen-Ting%20Chan&orcid=
http://www.mdpi.com/search?authors=Hsiao-Ping%20Wei&orcid=
http://www.mdpi.com/search?authors=Keh-Chia%20Yeh&orcid=
http://www.mdpi.com/search?authors=Jun-Jih%20Liou&orcid=
http://www.mdpi.com/search?authors=Yung-Ming%20Chen&orcid=
http://www.mdpi.com/search?authors=Chao-Tzuen%20Cheng&orcid=
http://www.mdpi.com/search?authors=Ken%20Okamoto&orcid=
http://www.mdpi.com/search?authors=Kazuhito%20Sakai&orcid=
http://www.mdpi.com/search?authors=Shinya%20Nakamura&orcid=
http://www.mdpi.com/search?authors=Hiroyuki%20Cho&orcid=
http://www.mdpi.com/search?authors=Tamotsu%20Nakandakari&orcid=
http://www.mdpi.com/search?authors=Shota%20Ootani&orcid=
http://www.mdpi.com/search?authors=Francis%20Ndamani&orcid=
http://www.mdpi.com/search?authors=Tsunemi%20Watanabe&orcid=

Vivek Shandas, Rosa Lehman, Kelli L. Larson, Jeremy Bunn and Heejun Chang
Stressors and Strategies for Managing Urban Water Scarcity: Perspectives from

the Field

Reprinted from: Water 2015, 7(12), 6775-6787
http://www.mdpi.com/2073-4441/7/12/6659...........cccecevriiiiininininiriniiiiiiiienns 359

VI


http://www.mdpi.com/search?authors=Vivek%20Shandas&orcid=
http://www.mdpi.com/search?authors=Rosa%20Lehman&orcid=
http://www.mdpi.com/search?authors=Kelli%20L.%20Larson&orcid=
http://www.mdpi.com/search?authors=Jeremy%20Bunn&orcid=
http://www.mdpi.com/search?authors=Heejun%20Chang&orcid=

List of Contributors

Mukand S. Babel Water Engineering and Management, Asian Institute of
Technology, Pathumthani 12120, Thailand.

Thomas Bosshard Swedish Meteorological and Hydrological Institute,
Norrkoping 60176, Sweden.

Willibroad Gabila Buma Department of Civil and Environmental Engineering,
Dongguk University, Seoul 04620, Korea.

Jeremy Bunn Herrera Inc., Seattle, WA 98121, USA.

Wen-Ting Chan Department of Civil Disaster Prevention Engineering,
National United University, Miaoli 36063, Taiwan.

Heejun Chang Department of Geography, Portland State University,
Portland, OR 97201-0751, USA.

Yung-Ming Chen National Science and Technology Center for Disaster Reduction,
New Taipei City 23143, Taiwan.

Chao-Tzuen Cheng National Science and Technology Center for Disaster
Reduction, New Taipei City 23143, Taiwan.

Hiroyuki Cho Faculty of Agriculture, Saga University, 1 Honjo-machi,
Saga 840-8502, Japan.

Kyung Hwa Cho School of Urban and Environmental Engineering,
Ulsan National Institute of Science and Technology, Ulsan 689-798, Korea.

Yuan Gao Key Laboratory of Water and Sediment Sciences, Ministry of Education,
Beijing 100871, China; College of Environmental Sciences and Engineering,
Peking University, Beijing 100871, China.

Huadong Guo Key Laboratory of Digital Earth Science, Institute of Remote
Sensing and Digital Earth, Chinese Academy of Sciences, No. 9 Dengzhuang
South Road, Haidian District, Beijing 100094, China.

Cornelia Hesse Potsdam-Institute for Climate Impact Research, Post Box 601203,
Potsdam 14412, Germany.

Baodeng Hou State Key Laboratory of Simulation and Regulation of Water Cycle
in River Basin, China Institute of Water Resources and Hydropower Research,
1-A Fuxing Road, Haidian District, Beijing 100038, China.

vl


http://www.mdpi.com/search?authors=Mukand%20S.%20Babel&orcid=
http://www.mdpi.com/search?authors=Thomas%20Bosshard&orcid=
http://www.mdpi.com/search?authors=Willibroad%20Gabila%20Buma&orcid=
http://www.mdpi.com/search?authors=Jeremy%20Bunn&orcid=
http://www.mdpi.com/search?authors=Wen-Ting%20Chan&orcid=
http://www.mdpi.com/search?authors=Heejun%20Chang&orcid=
http://www.mdpi.com/search?authors=Yung-Ming%20Chen&orcid=
http://www.mdpi.com/search?authors=Chao-Tzuen%20Cheng&orcid=
http://www.mdpi.com/search?authors=Hiroyuki%20Cho&orcid=
http://www.mdpi.com/search?authors=Kyung%20Hwa%20Cho&orcid=
http://www.mdpi.com/search?authors=Yuan%20Gao&orcid=
http://www.mdpi.com/search?authors=Huadong%20Guo&orcid=
http://www.mdpi.com/search?authors=Cornelia%20Hesse&orcid=
http://www.mdpi.com/search?authors=Baodeng%20Hou&orcid=0000-0001-7139-9723

Yicheng Wang Ya Huang College of Civil Engineering and Architecture, Guangxi
University, Nanning 530004, China; State Key Laboratory of Simulation and
Regulation of Water Cycle in River Basin, China Institute of Water Resources and
Hydropower Research, 1-A Fuxing Road, Haidian District, Beijing 100038, China.

Yutaka Ichikawa Department of Civil and Earth Resources Engineering,
Kyoto University, C1, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto-shi,
Kyoto 615-8540, Japan.

Hiroshi Ishidaira International Research Center for River Basin Environment
(ICRE), University of Yamanashi, Takeda 4-3-11, Kofu, Yamanashi 400-8511, Japan.

Shaofeng Jia Institute of Geographic Science and Natural Resources Research, and
Key Laboratory of Water Cycle and Related Land Surface Processes, Chinese
Academy of Sciences, Beijing 100101, China.

Chong Jiang College of Global Change and Earth System Science, Beijing Normal
University, Beijing 100875, China; Joint Center for Global Change Studies,

Beijing 100875, China; Key Laboratory of Regional Eco-Process and Function
Assessment and State Environment Protection; State Key Laboratory of
Environmental Criteria and Risk Assessment, Chinese Research Academy of
Environmental Sciences, Beijing 100012, China.

Gilho Kim Department of Hydro Science and Engineering, Korea Institute of Civil
Engineering and Building Technology, Goyang-si, Gyeonggi-do 10223, Korea.

Hanna Kim Water Institute, 1689beon-gil 125, Yuseong-Daero, Yuseong-gu,
Daejeon 305-730, Korea.

Hung Soo Kim Department of Civil Engineering, Inha University, Incheon 22212,
Korea.

Joon Ha Kim Department of Environmental Science and Engineering,
Gwangju Institute of Science and Technology, Gwangju 500-712, Korea.

Soojun Kim Columbia Water Center, Columbia University, New York, NY 10027,
USA.

Valentina Krysanova Potsdam-Institute for Climate Impact Research,
Post Box 601203, Potsdam 14412, Germany.

Jaewon Kwak Forecast and Control Division, Nakdong River Flood Control
Office, Busan 49300, Korea.

Kelli L. Larson Schools of Geographical Sciences and Urban Planning and
Sustainability, Arizona State University, AZ 85287-5302, USA.

VIII


http://www.mdpi.com/search?authors=Yicheng%20Wang&orcid=
http://www.mdpi.com/search?authors=Ya%20Huang&orcid=
http://www.mdpi.com/search?authors=Yutaka%20Ichikawa&orcid=
http://www.mdpi.com/search?authors=Hiroshi%20Ishidaira&orcid=
http://www.mdpi.com/search?authors=Shaofeng%20Jia&orcid=0000-0001-7472-2434
http://www.mdpi.com/search?authors=Chong%20Jiang&orcid=
http://www.mdpi.com/search?authors=Gilho%20Kim&orcid=
http://www.mdpi.com/search?authors=Hanna%20Kim&orcid=0000-0003-4774-187X
http://www.mdpi.com/search?authors=Hung%20Soo%20Kim&orcid=0000-0001-8345-0610
http://www.mdpi.com/search?authors=Joon%20Ha%20Kim&orcid=
http://www.mdpi.com/search?authors=Soojun%20Kim&orcid=0000-0002-9825-2462
http://www.mdpi.com/search?authors=Valentina%20Krysanova&orcid=
http://www.mdpi.com/search?authors=Jaewon%20Kwak&orcid=
http://www.mdpi.com/search?authors=Kelli%20L.%20Larson&orcid=

Sang-Il Lee Department of Civil and Environmental Engineering,
Dongguk University, Seoul 04620, Korea.

Seungwon Lee Environmental and Plant Engineering Research Institute,
Korea Institute of Civil Engineering and Building Technology (KICT), 283,
Goyangdae-Ro Ilsanseo-Gu, Goyang-5i, Gyeonggi-Do 10223, Korea.

Rosa Lehman Toulan School of Urban Studies and Planning, Portland State
University, Portland, OR 97201-0751, USA.

Daiqing Li Key Laboratory of Regional Eco-Process and Function Assessment and
State Environment Protection, Chinese Academy of Environmental Sciences,
Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk
Assessment, Chinese Research Academy of Environmental Sciences,

Beijing 100012, China.

Fen Li Key Laboratory of Regional Eco-Process and Function Assessment and
State Environment Protection, Chinese Academy of Environmental Sciences,
Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk
Assessment, Chinese Research Academy of Environmental Sciences,

Beijing 100012, China.

Qingting Li Key Laboratory of Digital Earth Science, Institute of Remote Sensing
and Digital Earth, Chinese Academy of Sciences, No. 9 Dengzhuang South Road,
Haidian District, Beijing 100094, China.

Tianhong Li Key Laboratory of Water and Sediment Sciences, Ministry of
Education, Beijing 100871, China; College of Environmental Sciences and
Engineering, Peking University, Beijing 100871, China.

Yingkui Li Department of Geography, University of Tennessee, Knoxville,
TN 37996, USA.

Mayzonee Ligaray School of Urban and Environmental Engineering,
Ulsan National Institute of Science and Technology, Ulsan 689-798, Korea.

Jun-Jih Liou National Science and Technology Center for Disaster Reduction,
New Taipei City 23143, Taiwan.

Wen-Cheng Liu Taiwan Typhoon and Flood Research Institute, National Applied
Research Laboratories, Taipei 10093, Taiwan; Department of Civil Disaster
Prevention Engineering, National United University, Miaoli 36063, Taiwan.

Chuiyu Lu State Key Laboratory of Simulation and Regulation of Water Cycle in
River Basin, China Institute of Water Resources and Hydropower Research,
1-A Fuxing Road, Haidian District, Beijing 100038, China.

IX


http://www.mdpi.com/search?authors=Sang-Il%20Lee&orcid=
http://www.mdpi.com/search?authors=Seungwon%20Lee&orcid=
http://www.mdpi.com/search?authors=Rosa%20Lehman&orcid=
http://www.mdpi.com/search?authors=Daiqing%20Li&orcid=
http://www.mdpi.com/search?authors=Fen%20Li&orcid=
http://www.mdpi.com/search?authors=Qingting%20Li&orcid=
http://www.mdpi.com/search?authors=Tianhong%20Li&orcid=
http://www.mdpi.com/search?authors=Yingkui%20Li&orcid=0000-0002-3722-8960
http://www.mdpi.com/search?authors=Mayzonee%20Ligaray&orcid=
http://www.mdpi.com/search?authors=Jun-Jih%20Liou&orcid=
http://www.mdpi.com/search?authors=Wen-Cheng%20Liu&orcid=
http://www.mdpi.com/search?authors=Chuiyu%20Lu&orcid=

Linlin Lu State Key Laboratory of Remote Sensing Science, Institute of Remote
Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China;
Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital
Earth, Chinese Academy of Sciences, No. 9 Dengzhuang South Road,

Haidian District, Beijing 100094, China.

Rashid Mahmood Institute of Geographic Science and Natural Resources
Research, and Key Laboratory of Water Cycle and Related Land Surface Processes,
Chinese Academy of Sciences, Beijing 100101, China.

Shinya Nakamura Faculty of Agriculture, University of the Ryukyus, 1 Senbaru,
Nishihara-cho, Okinawa 903-0213, Japan.

Tamotsu Nakandakari Faculty of Agriculture, University of the Ryukyus,
1 Senbaru, Nishihara-cho, Okinawa 903-0213, Japan.

Francis Ndamani Graduate School of Engineering, Kochi University of
Technology, 2-22 Eikokuji, Kochi City, Kochi 780-8515, Japan.

Shaowei Ning International Research Center for River Basin Environment (ICRE),
University of Yamanashi, Takeda 4-3-11, Kofu, Yamanashi 400-8511, Japan.

Ken Okamoto United Graduate School of Agricultural Sciences, Kagoshima
University, 1-21-24 Korimoto, Kagoshima-shi, Kagoshima 890-0065, Japan.

Jonas Olsson Swedish Meteorological and Hydrological Institute,
Norrkoping 60176, Sweden.

Shota Ootani Eight-Japan Engineering Consultants Inc.; 33-11 Honcho 5 Chome,
Nakano-ku, Tokyo 164-0012, Japan.

Jungsool Park Forecast and Control Division, Nakdong River Flood Control
Office, Busan 49300, Korea.

Ilias G. Pechlivanidis Swedish Meteorological and Hydrological Institute,
Norrkoping 60176, Sweden.

Kazuhito Sakai Faculty of Agriculture, University of the Ryukyus, 1 Senbaru,
Nishihara-cho, Okinawa 903-0213, Japan.

Jae Young Seo Department of Civil and Environmental Engineering,
Dongguk University, Seoul 04620, Korea.

Vivek Shandas Toulan School of Urban Studies and Planning, Portland State
University, Portland, OR 97201-0751, USA.

Devesh Sharma Department of Environmental Science, Central University of
Rajasthan, Kishangarh, Dist-Ajmer, Rajasthan 305817, India.


http://www.mdpi.com/search?authors=Linlin%20Lu&orcid=
http://www.mdpi.com/search?authors=Rashid%20Mahmood&orcid=0000-0003-3364-5297
http://www.mdpi.com/search?authors=Shinya%20Nakamura&orcid=
http://www.mdpi.com/search?authors=Tamotsu%20Nakandakari&orcid=
http://www.mdpi.com/search?authors=Francis%20Ndamani&orcid=
http://www.mdpi.com/search?authors=Shaowei%20Ning&orcid=
http://www.mdpi.com/search?authors=Ken%20Okamoto&orcid=
http://www.mdpi.com/search?authors=Jonas%20Olsson&orcid=
http://www.mdpi.com/search?authors=Shota%20Ootani&orcid=
http://www.mdpi.com/search?authors=Jungsool%20Park&orcid=
http://www.mdpi.com/search?authors=Ilias%20G.%20Pechlivanidis&orcid=
http://www.mdpi.com/search?authors=Kazuhito%20Sakai&orcid=
http://www.mdpi.com/search?authors=Jae%20Young%20Seo&orcid=
http://www.mdpi.com/search?authors=Vivek%20Shandas&orcid=
http://www.mdpi.com/search?authors=Devesh%20Sharma&orcid=

K.C. Sharma Department of Environmental Science, Central University of
Rajasthan, Kishangarh, Dist-Ajmer, Rajasthan 305817, India.

Vijay P. Singh Department of Biological and Agricultural Engineering and
Zachry Department of Civil Environmental Engineering, Texas A & M University,
College Station, TX 77843-2117, USA.

Suthipong Sthiannopkao Department of Environmental Engineering,
Dong-A University, Busan 604-714, Korea.

Yue Sui Key Laboratory of Digital Earth Science, Institute of Remote Sensing and
Digital Earth, Chinese Academy of Sciences, No. 9 Dengzhuang South Road,
Haidian District, Beijing 100094, China.

Parmeshwar Udmale International Research Center for River Basin Environment
(ICRE), University of Yamanashi, Takeda 4-3-11, Kofu, Yamanashi 400-8511, Japan.

Cuizhen Wang Department of Geography, University of South Carolina,
Columbia, SC 29208, USA.

Hejia Wang State Key Laboratory of Simulation and Regulation of Water Cycle in
River Basin, China Institute of Water Resources and Hydropower Research, 1-A
Fuxing Road, Haidian District, Beijing 100038, China; Department of Hydraulic
Engineering, Tsinghua University, Haidian District, Beijing 100084, China.

Jianhua Wang State Key Laboratory of Simulation and Regulation of Water Cycle
in River Basin, China Institute of Water Resources and Hydropower Research,
1-A Fuxing Road, Haidian District, Beijing 100038, China.

Yicheng Wang State Key Laboratory of Simulation and Regulation of Water Cycle
in River Basin, China Institute of Water Resources and Hydropower Research,
1-A Fuxing Road, Haidian District, Beijing 100038, China.

Tsunemi Watanabe School of Economics and Management, Kochi University of
Technology, 2-22 Eikokuji, Kochi City, Kochi 780-8515, Japan.

Hsiao-Ping Wei National Science and Technology Center for Disaster Reduction,
New Taipei City 23143, Taiwan.

Weihua Xiao State Key Laboratory of Simulation and Regulation of Water Cycle
in River Basin, China Institute of Water Resources and Hydropower Research,
1-A Fuxing Road, Haidian District, Beijing 100038, China.

Keh-Chia Yeh Department of Civil Engineering in National Chiao Tung
University, Hsinchu 300, Taiwan.

XI


http://www.mdpi.com/search?authors=K.C.%20Sharma&orcid=
http://www.mdpi.com/search?authors=Vijay%20P.%20Singh&orcid=
http://www.mdpi.com/search?authors=Suthipong%20Sthiannopkao&orcid=
http://www.mdpi.com/search?authors=Yue%20Sui&orcid=
http://www.mdpi.com/search?authors=Parmeshwar%20Udmale&orcid=0000-0002-1558-231X
http://www.mdpi.com/search?authors=Cuizhen%20Wang&orcid=
http://www.mdpi.com/search?authors=Hejia%20Wang&orcid=
http://www.mdpi.com/search?authors=Jianhua%20Wang&orcid=
http://www.mdpi.com/search?authors=Yicheng%20Wang&orcid=
http://www.mdpi.com/search?authors=Tsunemi%20Watanabe&orcid=
http://www.mdpi.com/search?authors=Hsiao-Ping%20Wei&orcid=
http://www.mdpi.com/search?authors=Weihua%20Xiao&orcid=
http://www.mdpi.com/search?authors=Keh-Chia%20Yeh&orcid=

Linbo Zhang Key Laboratory of Regional Eco-Process and Function Assessment
and State Environment Protection, Chinese Academy of Environmental Sciences,
Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk
Assessment, Chinese Research Academy of Environmental Sciences,

Beijing 100012, China.

XII


http://www.mdpi.com/search?authors=Linbo%20Zhang&orcid=

About the Guest Editors

Yingkui Li, PhD, is Associate Professor in Geography at the University of
Tennessee. He has broad research interests in reconstructing paleo-climate and
environments, assessing climate and human impacts on the environment, and
applying LiDAR (Light Detection and Ranging) technique to quantify Earth
surface processes. He has investigated the pattern and potential drivers of
dramatic lake changes on the Tibetan Plateau since the 1970s and assessed the
impact of land use change/urbanization on surface runoff and water quality for
different watersheds in the United States and China. He has also applied
cosmogenic nuclides and optically stimulated luminescence dating techniques in
paleo-climate and environmental reconstruction on the Tibetan Plateau, Tian Shan
in Central Asia, and highlands in Costa Rica. More recently, he is developing and
applying terrestrial LIDAR technique to quantify Earth surface processes, such as
hillslope erosion, gully erosion, glacier retreat, and terrain modeling. His research
has been supported by the National Science Foundation, the National Natural
Science Foundation of China, Chinese Academy of Sciences, and the University
of Tennessee.

Michael Urban, Ph.D. is Associate Professor and Chair of Geography at the
University of Missouri-Columbia whose research specialty is geomorphology,
water resources and environmental management. The focus of much of his work
has been on how river systems and water resources have changed in response to
patterns of climate, human behavior, and human impacts on the environment
over the past century. Recent work involves modeling 20th and 21st century
climatic water budgets and examining the nature of human-environment
interaction on changing landscapes. He has attended the United Nations Climate
Change Conference as a representative of the Association of American
Geographers and is interested in how changing climates will affect water
resources and environmental management over local and regional scales. He has
also published on a number of other different but related topics including how
perception of natural environments influences public policy, the ethics and
philosophy behind environmental restoration, and the effect of agriculture on the
physical integrity of river channels and stream networks. He was a Fulbright
scholar from 2006-2007 at Northeastern University in Shenyang, China and has
lectured in Universities throughout China and South Korea.

XIIT






Preface to “Water Resource Variability and
Climate Change”

Climate itself represents one of the most significant external forcing
mechanisms with respect to surficial environmental processes. Climates that are
systematically changing in response to anthropogenic warming necessitate a
closer examination of global and regional water cycling and surficial and
subsurface water availability. These changes to surficial water are already
increasing vulnerabilities of ecosystems and of human society. Understanding the
ways in which climate change affects water resource variability is essential to the
broader policy goal of sustainable development in different parts of the world.
The sixteen papers included in this Special Issue of “Water Resource Variability
and Climate Change” address three broad perspectives: (1) the quantification of
water resource variability altered by changing climates using remote sensing
assessment, meteorological station-based observational datasets, and tree-ring
record reconstruction; (2) modeling climate and hydrology to simulate the various
impacts on water resource variability; and (3) an evaluation of social perceptions
and adaptation strategies in the face of unstable water resource variability. The
findings and methods presented in this collection of papers provide important
contributions to the increased study and awareness of climate change on water
resources.

Yingkui Li and Michael Urban
Guest Editors
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Water Resource Variability and
Climate Change

Yingkui Li and Michael A. Urban

Abstract: A significant challenge posed by changing climates is how water cycling
and surficial and subsurface water availability will be affected at global and regional
scales. Such alterations are critical as they often lead to increased vulnerability in
ecosystems and human society. Understanding specifically how climate change
affects water resource variability in different locations is of critical importance to
sustainable development in different parts of the world. The papers included in
this special issue focus on three broad perspectives associated with water resource
variability and climate change. Six papers employ remote sensing, meteorological
station-based observational data, and tree-ring records to empirically determine
how water resources have been changing over historical time periods. Eight of the
contributions focus on modeling approaches to determine how known processes are
likely to manifest themselves as climate shifts over time. Two others focus on human
perceptions and adaptation strategies in the midst of unstable or unsettled water
availability. The findings and methods presented in this collection of papers provide
important contributions to the increased study and awareness of climate change on
water resources.

Reprinted from Water. Cite as: Li, Y.; Urban, M.A. Water Resource Variability and
Climate Change. Water 2016, 8, 384.

1. Introduction

Climate change and increased anthropogenic pressure on earth-atmosphere
interactions affect water quantity, quality, and water-related processes, such as
sediment yield, on local, regional, and global scales [1-3]. Recent decades have
seen continuously increasing temperatures in most parts of the world, and changes
in precipitation patterns have increased the frequency of extreme climate events
such as drought and flooding [4]. The impact of changing baseline conditions
coupled with increased variability can be especially complicated in regions with rapid
changes in population, land development (especially urbanization), and economic
disruptions. While public discussions often focus more on temperature than water
availability, ecosystems and human society are highly vulnerable to water stress [5-8].
Understanding the mechanisms and geographic patterns by which anthropogenic
climate change is impacting water resource variability is of critical importance to
sustainable development, environmental management, and human health.




A variety of approaches have been used to examine the relationships between
atmospheric variability and surficial water resources. Instrumental data collected
from meteorological and hydrological gauging stations can be used to investigate
altered hydrologic regimes over the timespan of several decades to a few centuries
in certain areas. Relatively long-term (hundreds to thousands of years) climate
and environmental records can be reconstructed using various proxies such as tree
rings, sediment cores, ice cores, and landform features [9,10]. More recently, the
availability of various remote sensing datasets, such as Landsat/MODIS (Moderate
Resolution Imaging Spectroradiometer) imagery, ICESAT (Ice, Clouds, and Land
Elevation Satellite) altimetry, GRACE (Gravity Recovery and Climate Experiment)
gravity, and LiDAR (Light Detection And Ranging) measurements have facilitated
remote sensing-based approaches to quantifying water resource changes [11-13].
Computational modeling approaches, ranging from global circulation models
(GCMs) to regional or watershed hydrological models, are serving to simulate and
forecast the projected nature of climate variability on water resources [14,15]. Social
scientists have also been investigating how groups or local communities perceive
the impacts of climate change and climate vulnerability in order to implement better
adaptation practices and sustainable development in coping with changing water
resources of different regions [16,17].

The papers included in this special issue address three broad perspectives
associated with water resource variability and climate change: (1) the quantification
of water resource variability altered by changing climates using remote sensing
assessment, meteorological station-based observational datasets, and tree-ring record
reconstruction; (2) the simulation of such impacts on water resource variability using
modeling approaches; and (3) evaluating social perceptions and adaptation strategies in
the face of unstable water resource variability. The following section summarizes the
individual contributions within each perspective.

2. Contributions

Six of the papers assess the various impacts of climate change on water resources
using a variety of datasets, empirical observations, and proxies. Li et al. [18] examine
surface area fluctuations occurring in 10 major lakes in the arid province of Xinjiang,
China, from 2000 to 2014 using MODIS time series imagery. The authors develop
a classification method to accommodate varied spectral characteristics of water
pixels and derived water bodies for April, July, and September in each year for
10 major lakes (>100 km?) in the study area. Lakes in the lowland (close to urban
and agriculture areas) showed a shrinking trend, while mountain lakes have diverse
changing patterns (some shrinking, some expanding), and lakes on the Tibetan
Plateau exhibited significant expanding trends. By observing varied patterns of lake
surface changes across the region, the authors conclude that observed lake expansion



is likely driven by rising temperature, leading to accelerated melting of snow and
glaciers in high mountains and on the Tibetan Plateau, and increased precipitation in
this region (especially in 2010), whereas the shrinking of some lakes is likely related
to anthropogenic utilization based on agricultural and industrial needs.

Ning et al. [19] analyze recent changes in water resources and grassland in the
Hulun Lake region, a semi-arid region in northeastern China, using monthly GRACE
and Tropical Rainfall Measuring Mission (TRMM) data. Results indicate decreasing
trends in overall water storage and precipitation between 2002 and 2007, followed
by increasing trends in the period from 2007 to 2012. Water storage trends are mainly
correlated to precipitation and temperature patterns. As a result, a large proportion
of grassland recovered to its normal state in 2008-2012, and only a small proportion
of grassland (16.5% of the study area) is classified as degraded. The authors conclude
that degraded grassland areas in the region are more vulnerable to climate variability
and require protective strategies to prevent further degradation.

Buma et al. [20] assess observed changes in hydrological conditions of Lake
Chad basin based on the total water storage (TWS) derived from GRACE, lake levels
taken from satellite altimetry, and water fluxes and soil moisture obtained from
the Global Land Data Assimilation System (GLDAS). The authors observe a similar
pattern between TWS and lake level changes and subsurface water volume changes.
The derived values for subsurface water volume changes are found to be consistent
with groundwater outputs calculated from the WaterGAP Global Hydrology Model
(WGHM). By utilizing recently developed remote sensing datasets, this study
provides an alternative means of generating information for the management of
water resources in the Lake Chad basin.

Jiang et al. [21] summarize the changing patterns, causes, and implications
of surface water discharge and sediment load in Chinese rivers from 1956 to
2012 based on monthly hydrological and daily meteorological data obtained from
725 rain gauge stations across the country. Numerous patterns can be observed
during this period. Streamflow discharges manifest a decreasing trend, a relatively
stable state, and an increasing trend within northern, southern, and western China,
respectively. Excepting the Lancang River and Yarlung Zangbo River basins,
sediment loads in most Chinese river basins show gradually decreasing trends,
especially after 2000. Although patterns of streamflow and sediment load are affected
by the interaction of varied meso-scale climate systems—including East and South
Asian monsoons and westerlies—the authors determine that water consumption
for industrial and residential purposes, soil, and water conservation engineering,
hydraulic engineering, and land surface changes induced by other factors are likely
the main causes of observed patterns of streamflow and sediment reduction.

Wang et al. [22] investigate the impact that climate change has had on the
duration of flood seasons in the Fenhe River, China, from 1957 to 2014, based on



daily precipitation data from 14 meteorological stations in the basin and an analysis
of the variations in the onset and retreat dates of yearly flood seasons. The results
show that the observed duration of the flood season has been extended since 1975.
In particular, the onset of floods has advanced 15 days, although the retreat date
is relatively stable. Based on these results, the authors recommend corresponding
measures to adapt to the flood season variations.

Kwak et al. [23] conduct a drought analysis using a long-term streamflow record
reconstructed using tree ring indices within the Sacramento Basin, California, USA.
By first identifying annual streamflow patterns of the Sacramento River from 1560 to
1871 and then analyzing the hydrological drought return period in this river basin,
the authors argue that drought with a 20-year return period can be considered a
critical indicator of drought for water shortages in the Sacramento River basin.

Eight of the papers aim to simulate the impact of climate change on
water resource variability using various climatological and hydrological models.
Pechlivanidis et al. [24] investigate the impact of changing climates have on
the hydro-climatology of the Indian subcontinent by comparing current and
projected future water fluxes from three RCP (Representative Concentration
Pathway) scenarios (RCP2.6, RCP4.5 and RCP8.5). These results are used to depict
expected changes in the annual flow cycles of three major rivers from different
hydro-climatic regions, while acknowledging that conclusions can be significantly
influenced by statistical uncertainty embedded in the RCP scenarios. Based on
this study, the models project a gradual increase in temperature and uneven
changes (ranging from —20% to +50%) in long-term average precipitation and
evapotranspiration. Potential surface runoff is also expected to change anywhere
from —100% to +100%. The analysis of annual cycles for the three selected regions
show that the impact of climate change on discharge and evapotranspiration varies
between seasons, and the magnitude of change is primarily dependent on the
hydro-climatic gradient in different regions.

Li and Gao [25] simulate the impact of various precipitation change scenarios
on runoff and sediment yield in a hilly-gullied watershed typical of the Loess Plateau
in China using the Soil and Water Assessment Tool (SWAT). This study indicates
that runoff and sediment yield both increase with increasing precipitation, while
the variation in sediment yield is more sensitive to smaller rainfall events. The
authors determine that under these conditions, annual runoff and sediment yield
fluctuate greatly and the magnitude of the variations was especially amplified
when precipitation increased by 20%. Overall escalation in runoff and sediment
caused by increased precipitation is greater than corresponding decreases coincident
with reduced precipitation, and runoff is the more sensitive variable compared to
sediment yield.



Ligaray et al. [26] assess the hydrological response of climate change in the
Chao Phraya River Basin, Thailand. Streamflow variations were simulated using a
combination of SWAT and meteorological data from 2003 to 2011 for various climate
sensitivity and greenhouse gas emission scenarios. Simulation results reveal that
streamflow variations correspond to the changes in rainfall totals and intensity, while
increased air temperature likely leads to future water shortages. The simulation
also suggests that high CO, concentration drives plant responses that may lead
to a dramatic increase in streamflow. Specifically, increased streamflow variations
to 6.8%, 41.9%, and 38.4% were simulated for the three greenhouse gas emission
scenarios (A1B, A2, B1) in the reference period of 2003—2011.

Mahmood et al. [27] investigate the potential impacts of climate change on
the water resources of the Kunhar River basin, Pakistan under A2 and B2 climate
scenarios. Using the HEC-HMS (Hydrologic Engineering Center’s Hydraulic
Modeling System) hydrological model, the authors simulate streamflow for the
periods: 2011-2040, 2041-2070, and 2071-2099, and compare them with the baseline
period (1961-1990) to explore changes in different streamflow variables. The results
indicate an overall increase in mean annual flow projected under both A2 and B2
scenarios, but with a high degree of variability. Stream discharge increases mainly
in summer and autumn, but decreases throughout the spring and winter months.
High and median flows are predicted to increase, with peak discharges shifting from
June to July, while low flow conditions are projected to decrease. The Kunhar basin
will face a higher degree of variability—both more floods and droughts—by the end
of the 21st century, due to the projected increase in high flow, the decrease in low
flow, and greater variations in peak discharges. This study highlights key impacts
of climate change on water resources to help develop suitable policies for water
resource use and management in this river basin.

Hesse and Krysanova [28] simulate the impacts of climatic shifts and changing
management practices on water quality and in-stream processes in the Elbe
River Basin using a semi-distributed watershed model (SWIM) with implemented
in-stream nutrient (N+P) turnover and algal growth processes. The set of modeled
climate scenarios show a projected increase in temperature (+3 °C) and precipitation
(+57 mm) on average until the end of the century, leading to varied changes
in discharge (+20%), nutrient loads (NO3-N: 5%; NHs-N: 24%; PO4-P: +5%),
phytoplankton biomass (4%), and dissolved oxygen concentration (5%) in the Elbe
River Basin. The authors utilize the model to examine the ways in which changes in
climatic variables fundamentally impact the ways by which land use and nutrients
are managed to reduce nutrient emissions to the river.

Liu and Chan [29] assess impacts on water quality in the Danshuei
River estuarine system in northern Taiwan using a coupled three-dimensional
hydrodynamic and water quality model driven by changes in climatic variables. The



model is calibrated and validated using observed data and then applied to simulate
water quality projections under various climate change scenarios. Results indicate
that dissolved oxygen concentrations are likely to significantly decrease in the
Danshuei, whereas nutrients will increase in response to expected climate changes.
In particular, dissolved oxygen concentrations will be reduced to less than 2 mg/L
in the main stream, failing to meet accepted water quality standards. This study
suggests an appropriate strategy for effective water quality management in estuarine
systems such as the Danshuei is needed to adapt to the water quality changes likely
to accompany anthropogenic climate change.

Wei et al. [30] estimate flood risk that is likely to occur under the heightened
hydrologic variability driven by climate change in the Tsengwen River Basin, Taiwan,
using a SOBEK model (Deltares, The Netherlands). Simulated results indicate that
the discharge of the Tsengwen is at increasing risk of exceeding the designed
maximum streamflow at three stations from different areas of the watershed for
three projected periods of 1979-2003, 2015-2039, and 2075-2099. Model results
indicate that the exceedance frequency for the designed flood is 2 in 88 events in
the base period (1979-2003), 6 in 82 events in the near future (2015-2039), and 10 in
81 events at the end of the century (2075-2099).

Okamoto et al. [31] turn our attention from streamflow to water fluxes driving
hillslope processes. They investigate the optimal soil hydraulic parameters for
simulating unsaturated flow based on a case study from the island of Miyakojima,
Japan. The authors optimize the parameters for root water uptake and then examine
the influence of soil hydraulic parameters on simulations of evapotranspiration. From
there, they compare volumetric water content between the simulation results and
those using pedotransfer estimates obtained from ROSETTA software. The resulting
comparison highlights the importance of using soil hydraulic parameters based on
measured data to simulate evapotranspiration and unsaturated water flow processes.

The last two papers in this special issue examine the ways by which different
perceptions of climate change and adaptation strategies impact management and
water resource variability. Ndamani and Watanabe [32] analyze farmer perceptions
of adaptation practices using semi-structured questionnaires and focus group
discussions of 100 farmer-households from four communities in the Lawra district of
Ghana. The results show that adaptation is largely driven by response to dry spells
and droughts (93.2%) rather than floods. Farmers in the region ranked improved crop
varieties and irrigation as the most important adaptation measures, but largely lacked
the capacity to implement these adaptation practices. The study also revealed that
unpredictable weather, high cost of farm inputs, limited access to reliable weather
information, and lack of water resources were the most critical barriers to successful
adaptation. This study highlights the critical linkage between climate, hydrology,
perception, and environmental management.



Shandas et al. [33] present a study of differing perspectives from the field
on stressors and strategies for managing urban water scarcity in two urbanizing
regions of the western US: Portland, Oregon and Phoenix, Arizona. The results show
that long-term drought, population growth, and outdoor water use are the most
important stressors to urban water systems, and indicate more agreement across
cities than across professions in terms of effective strategies, suggesting that land-use
planners and water managers remain divided in their conception of the solutions
to urban water management. The authors also recommend potential pathways for
coordinating the fields of land and water management to streamline strategies for
urban sustainability.

3. Conclusions

This collection of papers focuses on a range of research topics influenced by the
overriding hydrologic mechanisms associated with anthropogenic climate change
and associated water resource variability. This includes a wide range of problems
ranging from changes in surficial water levels, streamflow, sediment yields, and water
quality in lakes, rivers, watersheds, and estuarine systems. The authors have brought
a number of methodological tools to bear on these problems by examining various
datasets and techniques, such as remote sensing, meteorological station-based
observational data, tree-ring records, climate forecasts, and hydrological models
used to simulate climatic impacts on streamflow, sediment yield, and water quality.
Because consequent environmental problems and strategies for coping and mitigating
deleterious effects must be defined in a social context, it is also important to include
research examining perception, vulnerability, and adaptation. This collection of
16 papers emphasizes the importance of understanding the various interrelated
facets that changing climates have on water resource variability and how focused
investigations will help ground suitable strategies for mitigating and adapting to
anthropogenic climate change.
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MODIS-Derived Spatiotemporal Changes of
Major Lake Surface Areas in Arid Xinjiang,
China, 2000-2014

Qingting Li, Linlin Lu, Cuizhen Wang, Yingkui Li, Yue Sui and Huadong Guo

Abstract: Inland water bodies, which are critical freshwater resources for arid and
semi-arid areas, are very sensitive to climate change and human disturbance. In this
paper, we derived a time series of major lake surface areas across Xinjiang Uygur
Autonomous Region (XUAR), China, based on an eight-day MODIS time series in
500 m resolution from 2000 to 2014. A classification approach based on water index
and dynamic threshold selection was first developed to accommodate varied spectral
features of water pixels at different temporal steps. The overall classification accuracy
for a MODIS-derived water body is 97% compared to a water body derived using
Landsat imagery. Then, monthly composites of water bodies were derived for the
months of April, July, and September to identify seasonal patterns and inter-annual
dynamics of 10 major lakes (>100 km?) in XUAR. Our results indicate that the
changing trends of surface area of major lakes varied across the region. The surface
areas of the Ebinur and Bosten Lakes showed a significant shrinking trend. The
Ulungur-Jili Lake remained relatively stable during the entire period. For mountain
lakes, the Barkol Lake showed a decreasing trend in April and July, but the Sayram
Lake showed a significant expanding trend in September. The four plateau lakes
exhibited significant expanding trends in all three seasons except for Arkatag Lake
in July. The shrinking of major lakes reflects severe anthropogenic impacts due to
agricultural and industrial needs, in addition to the impact of climate change. The
pattern of lake changes across the XUAR can provide insight into the impact of
climate change and human activities on regional water resources in this arid and
semi-arid region.

Reprinted from Water. Cite as: Li, Q.; Lu, L.; Wang, C.; Li, Y.; Sui, Y.; Guo, H.
MODIS-Derived Spatiotemporal Changes of Major Lake Surface Areas in Arid
Xinjiang, China, 2000-2014. Water 2015, 7, 5731-5751.

1. Introduction

Inland water bodies are important parts of the hydrosphere, serving as an
essential source of freshwater for human consumption, agriculture, industry, and
other uses. Due to climate change, uneven distribution of precipitation, and human
activities, water resources show tremendous temporal variability worldwide [1].
Lakes and rivers are primary freshwater sources available to the local population
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and their livestock in arid and semi-arid areas [2,3]. Spatial dynamics and up-to-date
information on surface water resources are essential for understanding water
resource-related issues in these areas. Temporal water bodies that provide habitats
for plant and animal communities in these areas have rarely been included in global
datasets, such as the Global Lakes and Wetlands Database (GLWD) [4,5] and Vector
Map Level 0 (VMAPO) [6].

With the capability of synoptic view and repeated coverage of the earth’s
surface, satellite remote sensing is an effective means of extracting water bodies
across a variety of spatial and temporal scales. Due to their strong absorption in the
near-infrared (NIR) spectrum, optical remote sensing platforms, such as Landsat [7,8],
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) [9,10],
and Satellite Pour 1'Observation de la Terre (SPOT) [11], have been used to map the
area of the water body at various spatial resolutions. However, the high costs, narrow
swath, and long revisit intervals of the medium- and high-resolution images limit
their applications on monitoring the dynamics of lake systems across large spatial
scales. Remote sensing data with high temporal resolution have the advantage of
documenting detailed water area variation. Time series data from satellite sensors,
such as the SPOT VEGETATION, Moderate Resolution Imaging Spectroradiometer
(MODIS), and Advanced Very High Resolution Radiometer (AVHRR), have been
applied to seasonal and inter-annual change detection of water bodies over large
areas [12-16].

One of the common image processing methods for extracting water extent
is based on a threshold of a water detection index. Spectral indexes, such as
Normalized Difference Water Index (NDWI) [17], Modified Normalized Difference
Water Index (MNDWI) [18], and Normalized Difference Pond Index (NDPI) [11],
have been developed for water detection using remote sensing imagery. NDWI
uses green band and near-infrared band to distinguish water from vegetation and
soil [17]. In order to enhance the ability of water detection, especially for areas
with built-up land in the background, the middle infrared band was integrated
into MNDWI and NDPI instead of NIR band in NDWI [11,18]. Built-up areas and
water bodies show discriminating spectral responses at the MODIS short-wavelength
infrared (SWIR) band. A Combined Water Index (CWI) combining SWIR’s and
NDVT’s ability to represent vegetation information was proposed for water body
identification using MODIS data [19]. In addition, spectral reflectance of water
shows spatiotemporal variability across different scenes and acquisition dates. Thus,
delineating water bodies using a standard threshold may become problematic in
large-area applications [20]. A strategy for threshold computation of different satellite
images is needed.

The Xinjiang Uygur Autonomous Region (XUAR), with a widespread area of
1,660,000 km?, is the largest autonomous region in China. There are 113 lakes with
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an area of >1 km? in the XUAR. Many lakes are important wetlands for threatened
species, five of which are designated as the National Nature Reserves of China [21].
The water levels of inland lakes in XUAR are influenced by the runoff of their
inflowing rivers, and are sensitive to climate change and human activities altering
the rivers” inflows [22]. It has been reported in past studies that the water extent has
been shrinking in past decades, causing severe environmental problems, such as land
desertification, salinization, vegetation degradation, water shortage, and biodiversity
loss in this arid /semi-arid area [22].

Several studies have examined changes of lakes in the XUAR using satellite
imagery, such as Landsat [22-24], SPOT VEGETATION [25], and MODIS [12,26] data.
Landsat TM imagery has been used to interpret changes in area of inland lakes in
Xinjiang over the period 1975-2007, but only selected lakes in spring and autumn
seasons were analyzed [22]. Comparing with nationwide lake surveys undertaken
in the 1960s-1980s, Ma et al. (2010) reported that 62 lakes vanished in the XUAR
from the 1960s to 2000s; one of the completely dried lakes is the Lop Nur Lake with
an original lake area of 5500 km? [23]. Water extents were found to have decreased
significantly due to anthropogenic impacts, such as agricultural water consumption
and damming in this region [24]. The Ebinur Lake, the largest salt lake in the XUAR,
exhibited a significant inter-annual and inter-seasonal variation based on SPOT
VEGETATION data [25]. However, due to the large area of XUAR, previous studies
have mainly focused on selected water bodies and annual or seasonal temporal
intervals. The temporal fluctuations in surface area of major lakes were monitored
with MODIS data in XUAR, but only inter-annual variations were analyzed [12,26].
The temporal and spatial dynamics of lake surface areas across XUAR are rarely
documented in detail.

The purpose of this study is to examine the spatiotemporal variation of water
bodies from 2000 to 2014 based on MODIS time series data. Detailed objectives
include: (1) to develop an automatic approach to extract water bodies from MODIS
data; (2) to generate a 15-year water body mask and document the changes of
water extent; and (3) to examine the driving factors of the changes in major lakes in
the XUAR.

2. Study Area

The XUAR is located in north-western China and encompasses the Altay
Mountains, Junngar Basin, Tianshan Mountain, Tarim Basin, and Kunlun Mountains
from north to south (Figure 1). It is an arid and semi-arid area with mean annual
precipitation ranging between 100 and 200 mm [27]. Vast areas of the XUAR are
covered by grassland and desert [28]. Forests are sparsely scattered within high
mountains and along rivers. Oasis landscapes characterized by human settlements
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and agriculture lands are distributed within inland river deltas, alluvial-diluvial
plains, and along the edges of diluvial-alluvial fans.
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Figure 1. Geographic location and topographic map of study area. The percentage
coverage of water bodies was combined for April, July, and September from 2000
to 2014.

According to the topographic characteristics, lakes in the XUAR can be
categorized as four types [26]: (1) plateau lakes (>3500 m), with snow and glacier
ice melt and surface runoffs as their main charge; (2) mountain lakes (1000-3500 m),
with snow and glacier ice melt, underground runoff as their main influx; (3) plain
lakes (<1000 m), heavily influenced by human activities; and (4) transition lakes,
located at the transition area between mountains and plains.

Among all the lakes in the XUAR, 10 lakes have areas larger than 100 km?2. Their
total area accounts for more than 80% of the lake surface area (Table 1) [26].
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Table 1. Ten major lakes in the study area (with surface area >100 km?).

Name Area (km?)  Altitude (m) h]/[)ee;;nﬂ\:\::;r Region Type
Ebinur 673.46 194 12 Junggar Plain
Manas 259.81 244 6 Junggar Plain
Ulungur-Jili 1041.60 478 10.4 Junggar Plain
Bosten 1004.33 1050 9 Tarim Transition
Sayram 462.63 2072 46 Junggar Mountain
Barkol 118.57 1577 0.6 Junggar Mountain
Ayakkum 200.46 3876 10 Kumukuli Plateau
Aqqikkol 168.93 4251 8 Kumukuli Plateau
Arkatag 110.33 4713 8 Kumukuli Plateau
Aksayquin 88.54 4844 8 Northern Tibet Plateau

3. Materials and Methods

3.1. Remote Sensing Datasets

Terra MODIS images were selected as the main data source for monitoring water
body variation in XUAR. The MODIS Surface Reflectance (MOD09A1) dataset was
used to build an image time series from 2000 to 2014 [29]. It provides surface
reflectance at bands 1-7 with 500 m spatial resolution and eight-day temporal
resolution. The XUAR region is entirely covered by six tiles (h23v04, h23v05, h24v04,
h24v05, h25v04, and h25v05). Lakes in XUAR were relatively stable during the spring
and autumn seasons. In summer, some were influenced by extensive agricultural
irrigation and high evaporation. In winter, some of the water bodies were frozen
and may have caused high uncertainty in lake extent extraction. Therefore, we
downloaded MODIS data for the months of April, July, and September to analyze
the spatiotemporal dynamics of lake surface area. The Shuttle Radar Topography
Mission (SRTM) digital elevation model with a spatial resolution of 90 m was used
to correct the water body extraction affected by shadow and snow in mountainous
regions [14,30].

Landsat data of 30 m resolution was used to assess the accuracy of remote
sensing products with 250 m [31] and 1 km resolution [32]. In our study, Landsat TM,
ETM+, and OLI images were used to validate the results of water extraction from
MODIS data. A total of 71 Landsat image scenes (including Landsat 5 TM, Landsat 7
ETM+, and Landsat8 OLI_TIRS) were processed for the validation (Table 2).

The MODIS 500-m land-cover product (MCD12Q1) was used to identify
primary land covers in the study area [33]. The MCD12Q1 is produced using
an ensemble supervised classification algorithm with MODIS band 1-7 surface
reflectance, an enhanced vegetation index, and land surface temperature as the main
input. Post-processing refinements with ancillary datasets were also conducted.
The MCD12Q1 product of 2012 covering the study area was downloaded. With the
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International Geosphere-Biosphere Program (IGBP) classification scheme, the land
cover types were mapped and used to assess the impacts of human activities on lake

changes in this study.

Table 2. Landsat data used in our study.

Lake Ulungur Manas Bosten Ayakekumu
Landsat5 TM Landsat5 TM Landsat5 TM Landsat5 TM
Sensors Landsat7 ETM+ Landsat7 ETM+ Landsat7 ETM+ Landsat7 ETM+
Landsat8 OLI_TIRS = Landsat8§ OLI_TIRS  Landsat8 OLI_TIRS  Landsat8 OLI_TIRS
Path/Row 143/27,144/27 144/28 143/31 140/34
7 July 2000 16 March 2000 25 March 2000 4 September 2000
24 September 2000 6 July 2000 31 July 2000 29 July 2001
13 April 2001 24 September 2000 17 September 2000 1 October 2001
27 July 2002 19 March 2001 1 August2006 11 April 2002
14 September 2002 10 April 2003 10 September 2006 1 August2002
10 April 2003 31 July 2006 14 April 2007 4 October 2002
24 July 2006 17 September 2006 27 July 2007 14 April 2003
17 September 2006 4 September 2007 13 September 2007 19 April 2005
Date 6 April 2007 23 July 2009 2 May 2008 27 July 2006
23 July 2009 9 September 2009 16 July 2009 13 September 2006
18 September 2009 10 May 2011 3 April 2009 6 July 2007
10 May 2011 13 July 2011 6 July 2011 25 April 2010
13 July 2011 1 October 2011 24 September 2011 30 July 2010
15 September 2011 13 April 2013 22 April 2013 31 August2010
13 April 2013 2 July 2013 27 July 2013 8 May 2012
11 July 2013 4 September 2013 29 September 2013 7 August2013
29 September 2013 2 May 2014 31 August2014 24 September 2013
25 April 2014 21 July 2014 6 May 2014

3.2. MODIS-Based Water Body Extraction

In XUAR, large areas of deserts and bare rocks have high spectral responses in

short-wavelength infrared (SWIR) band [34]. Water usually has low reflectance along
the spectrum. In this study we use CWI to detect water bodies from MODIS data.
The computation formula of CWI is as follows [19]:

CWI = (NDVI+SWIR+A) x C (1)
b2 — bl

NDVI = 52 Thi ()

SWIR = ;Ll 3)

7

where b1, b2, and b7 represent the reflectance of band 1 (Red band, 620-670 nm),
band 2 (NIR band, 871-876 nm), and band 7 (SWIR band, 2105-2155 nm) of the
MODO09 data, respectively. A and C are correction factors to adjust the data ranges of
CWI values. They are empirically determined by comparing CWI values between
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water pixels and background in the study area. We set A as 0.4 and C as 100 in our
study [19]. Figure 2 illustrates the procedure for extracting water bodies based on

MODIS data.
MODO09A1
Training samples of

‘ Data preprocessing ‘ water and non-water
TM/ETM+/OLI .
. e Thresold
imagery i
Water pixels
for each tile

¥
Watermask /[ piler | SRTMDEM
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Figure 2. Workflow for water body extraction in our study.

The MODIS tiled data in Sinusoidal projection were mosaicked, re-projected
using the nearest neighbor re-sampling method, and saved as GeoTIFF format using
the MODIS Reprojection Tool. The DEM data is resampled to the pixel size of MODIS
to refine the water detection results in the following steps.

The quality assessment information of MODIS data was used to exclude pixels
labeled as cloudy or snow /ice. Then CWI was calculated for each MODIS tile. The
atmosphere condition, water depth, and chlorophyll content all have influence on
the spectral features of water on remote sensing images. A single threshold value
derived for one image might not be suitable for another. Since there is no standard
threshold for the whole study period, an optimized threshold must be identified for
each scene or each month. In this study, we set a different threshold for each time
step and extract water pixels. For the threshold selection, the training datasets that as
pixels were covered by water for all time steps were collected manually from MODIS
data in July. The statistics of CWI values were calculated based on training samples.
We choose two standard deviations of the mean CWI value as the threshold value
and classify pixels within it as water and vice versa.

Shadows in mountainous areas can lead to confusion with water bodies.
To eliminate the snow and shadow effect, a slope map was used to refine the water
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extent. All pixels with a slope >1° were removed from the classification result because
water bodies usually have flat surfaces. In this way, misclassification of shadow in
mountainous areas can be corrected. In addition, to reduce the noise caused by small
and temporary water bodies in mountainous areas, we removed water bodies smaller
than 4 km? in the detection results. After these steps, a binary mask with water and
non-water pixels for each time step was derived.

A binary water mask was calculated for each eight-day interval. For each month,
we summed up the binary masks at four time steps. For all pixels, we obtained the
number of times they were classified as water. Only pixels classified as water three
out of four times in a month were marked as water [14]. In this way, composited
monthly water masks were generated for April, July, and September, 2000-2014. The
seasonality of each lake was calculated using the maximum /minimum ratio of area
extent of one representative year for each lake [35]. Finally, combining the monthly
masks for April, July, and September from 2000 to 2014, a percentage coverage
layer was derived. In this layer, pixel values show the percentage of times a pixel
was classified as water from 2000 to 2014. A 100% percentage means the pixel was
identified as water at all the 45 monthly masks from 2000 to 2014.

3.3. Accuracy Assessment

Water extents classified from Landsat images served as our validation sources in
this study. An integrated water body mapping method combining the NDVI, NDWI,
NIR, and slope layers was applied [36]. The commonly used threshold method
was used to calculate threshold values and segment water bodies [36]. After that,
the water bodies detected from Landsat images were resampled to MODIS pixel
size to perform a pixel-to-pixel comparison. Confusion matrices were calculated to
represent the accuracy of the classification results [37]. Three measurements, namely
user’s accuracy, producer’s accuracy, and overall accuracy were calculated to assess
the accuracies of MODIS detection. The user’s accuracy is defined as the number
of correctly classified water pixels divided by the total number of classified water
pixels in the MODIS detection results. The producer’s accuracy is defined as the
total number of correctly classified water pixels divided by the total number of
water pixels in the Landsat detection results. Overall accuracy is defined as the sum
of all correctly classified water/non-water pixels divided by the total number of
validation samples.

We selected four water bodies to conduct accuracy assessment for MODIS water
detection results. For each lake, Landsat data acquired in April, July, and September
or the nearest month were collected for each year. The MODIS results on the nearest
neighboring date were selected and compared with the Landsat interpreted results
to ensure the images were consistent in acquisition time.
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It is worth noting that classification error exists in the water extent mapped
from Landsat data and may influence the accuracy assessment results. For the
30-m resolution Landsat images, mixed pixels of lake fringes and small water
bodies contain significant spectral response from backgrounds such as grasslands
and croplands. In addition, the turbidity of water can increase its response at the
near-infrared band and lead to a lower NDWI value [38]. A more accurate validation
exercise could be conducted based on comparison with manually collected validation
samples, which is very time-consuming and was not conducted in this study.

3.4. Data Sources of Climate and Human Activities

We also analyzed possible drivers of lake area variations in XUAR. Specifically,
annual mean temperature and annual precipitation were used as indicators of
regional climate. Cropland and built-up areas were used as indicators of human
activities. The monthly air temperatures and precipitations for XUAR were obtained
from 55 meteorological stations (National Meteorological Information Center of
China Meteorological Administration; http://cdc.nmic.cn/home.do). Monthly
values were averaged or summed (for temperature and precipitation, respectively)
to acquire annual values. For each variable, annual time series graphs were plotted
for the 15-year study period, 2000-2014. The linear regression method and t-test are
used to estimate the changing trend and test statistical significance of the changing
trends of climate data. If the P value derived from the statistical analysis is less than
the significance level, a significant changing trend is observed. Areas of irrigated
croplands and built-up areas from 2000 to 2013 were collected from the XUAR
Statistical Year Book [39].

4. Results and Discussion

4.1. Intra- and Inter-Annual Dynamics of Water Bodies

The water body mapping results of the Ebinur Lake using NDWI, MNDWI, and
CWI from MODIS data were compared in Figure 3. The spectral response of water
is very similar to bare lands around the lake for NDWI (Figure 3b). For MNDWI,
the spectral signatures of dried-up lake and snow at the lower right of the image are
identical with water pixels (Figure 3d). We applied a threshold value of zero to extract
water pixels from the NDWI and MNDWI images [18]. The mapping result from
NDWTI shows an obvious underestimation of the lake surface area (Figure 3c). An
overestimation of lake surface area is observed from the MNDWI results (Figure 3e).
Comparing with water bodies extracted from NDWI and MNDWI visually, the water
pixels identified from CWTI have higher accuracy (Figure 3g).
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Figure 3. Water body detection results from MODIS data. (a) Landsat image;
(b) NDWI [17]; (c) extracted water bodies from NDWI; (d) MNDWI [18];
(e) extracted water bodies from MNDWI; (f) CWIL; and (g) extracted water bodies
from CWI. Water bodies are shown in white in (c), (e), and (g).

In our study, the water body detection results from 2000 to 2014 in April,
July, and September were combined and illustrated in Figure 1. In addition to
the permanent water bodies that were detected at each time step, many temporal
pools that were rarely mapped in global datasets were revealed. For lakes located in
high elevation areas, they were frozen and cannot be detected in winter and spring
months. For lakes located in arid and semi-arid areas, some of them dried up in the
summer months.

We calculated the total area of 10 large lakes and analyzed their intra- and
inter-annual dynamics in XUAR. Their total surface area varied from 4217 km?
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(September 2010) to 5014.75 km? (April 2003), with high seasonal variability. The
largest surface area is usually in April and the smallest value in September. A
decreasing trend of total lake surface area can also be observed for all three months
from 2000 to 2014, even though the trend is insignificant with a 0.1 significance
level (Figure 4). Significant shrinking trends were found for April (34.65 km?/year),
July (22.91 km?/year), and September (31.02 km?/year) from 2000 to 2010 with
a 0.1 significance level.
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Figure 4. Inter-annual variation of the total area of major lakes for the months of
(a) April; (b) July; and (c) September in XUAR from 2000 to 2014.
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4.2. Temporal Variations of Major Water Bodies

The inter-annual variation in the surface area of each major lake was illustrated
for April, July, and September (Figure 5). The changing trend in the surface area of
each lake in July was calculated (Figure 6). The statistics of inter-annual variations of
surface area for each lake were listed in Table 3. These results revealed that the lakes
along the Tianshan Mountains (central Xinjiang) are shrinking, while the lakes in the
northern and southern parts are expanding. This may indicate that human activities
cause the lake to shrink, since most human settlements and agricultural lands are
distributed along the Tianshan Mountains (Figure 6). Lakes where there is less human
influence exhibited expanding trends, mainly due to changes in climate variables.
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Figure 5. Inter-annual variation in the surface area of major lakes for the months of
April, July, and September in XUAR from 2000 to 2014. Solid, dashed, and dotted
lines represent April, July, and September, respectively.
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Table 3. Changing trend in the surface area of major lakes in XUAR from 2000

to 2014.
. Seasonality
Name April July September (max/min ratio)
Ebinur —6.09 —10.36 —11.74 1.29
Manas —5.53 —5.08 —6.59 1.52
Ulungur-Jili 2.08 1.25 0.81 1.03
Bosten —-16.71 —7.78 —6.36 1.06
Sayram 0.22 0.61 0.90 1.03
Barkol —2.32 -1.07 —-043 1.38
Ayakkum 7.80 7.48 6.72 1.05
Aqgqikkol 6.55 6.82 5.52 1.06
Arkatag 19 1.13 2.08 1.04
Aksayquin 3.21 3.88 3.92 1.15
Note: The values in bold indicate significant trends (p value <0.1).
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Figure 6. Changing trends and rates in the surface area of major lakes in XUAR in
July from 2001 to 2014. Spatial distribution of land cover/use types was extracted
from MODIS land cover type product in 2012 [33].

The highest seasonality is at Manas Lake, Barkol Lake, and Ebinur Lake. The
lowest seasonality exists at Ulungur-Jili Lake, Sayram Lake, and Arkatag Lake. The
seasonal dynamics of Ebinur Lake, Manas Lake, Barkol Lake, and Aksayquin Lake,
which have the highest seasonality, are illustrated in Figure 7. For each pixel, we
summed the number of times it was classified as water for April, July, and September
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over the entire study period. The monthly composite was classified into four intervals
to indicate areas that stayed stable over the entire time series, and areas that were
covered by water for several years during the 2000-2014 period. Different seasonal
behaviors were observed for the four lakes. Ebinur Lake showed the largest area in
April and the smallest in September. Manas Lake was largest in July and smallest
in September.
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Figure 7. Typical seasonal water bodies of XUAR and their temporal dynamics for
the months of April, July, and September from 2000 to 2014. (a) Ebinur; (b) Manas;
(c) Barkol and (d) Aksayquin Lakes. The numbers at each pixel indicate the number
of times it was detected as a water body during the 2000-2014 period.
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4.3. Accuracy Assessment

Figure 8 illustrates the comparison of a monthly water mask derived from
MODIS data with a water mask derived from Landsat images of the same month.
The small water bodies that were detected from Landsat data cannot be extracted
from MODIS imagery at 500 m resolution. This leads to a partial disagreement of
detection results between Landsat and MODIS data. Based on our assessment, an
overall accuracy of 0.97 is obtained (Table 4), which is adequate for the dynamic
analysis of lake surface area. The detection results for Manas Lake showed lower
user accuracy than the other lakes. Due to the high concentration of salts and other
dissolved minerals, the spectral feature of water in Manas Lake is different from other
water bodies. Therefore, the identification of water pixels using a general threshold
for all of the water bodies in the entire study area may lead to misclassifications. For
Bosten Lake, mixed pixels of wetland and small water bodies can be misclassified as
non-water bodies due to the coarse resolution of MODIS data. The lake ice and snow
can also lead to lower accuracies in April for plateau lakes like Ayakkum.

Figure 8. Comparison of a water body derived from MODIS data and Landsat for
April 2014, Ulungur Lake. (a) Landsat image; (b) water mask derived from Landsat
data; and (c) water mask derived from MODIS data.

Table 4. The error matrix, overall, producer’s, and user’s accuracies of water bodies
and non-water bodies resulting from MODIS time series data, 2000-2014.

Ulungur Manas Bosten Ayakkum
User Prod User Prod User Prod User Prod
April 0.92 0.93 0.72 0.97 0.95 0.89 0.97 0.95

Month

July 09 092 066 095 099 086 095 094
September 097 093 063 093 099 089 097 097
Overall 0.97
Accuracy
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4.4. Effects of Regional Climate and Human Activities on Lake Changes

The linear trend of temperature and precipitation are not statistically significant
at the 0.1 significance level for 2000-2014. In our study period, an increase in
precipitation occurred in 2010, which corresponds well to the extending lake area in
2011 and 2012 (Figure 9). The area of cropland increased from 3.39 million hectares in
2000 to 5.21 million hectares in 2013. Built-up areas increased from 473 km? in 2000
to 1065 km? in 2013. As we can see in Figure 5, the oases comprised of agricultural
lands and built-up areas are distributed in river plains near major lakes. The water
demands of oases can influence aerial changes in lakes that have river runoff as their
main inflows, such as Ebinur, Bosten, and Manas Lakes. For a regional comparison,
the changing trends of temperature and precipitation at meteorological stations near
each major lake were analyzed (Table 5). Their relationships with lake area changes
were also analyzed. Due to the lack of observed climate data, the analysis was not
performed for the four plateau lakes.
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Figure 9. Variations in (a) annual mean temperature; (b) annual precipitation;
(c) area of croplands; and (d) built-up areas in XUAR over the study period.

Table 5. Changing trends in temperature and precipitation at meteorological
stations near the major lakes from 2000 to 2014.

Climate Variable Ebinur Manas Ulungur-Jili Bosten Sayram  Barkol
Annual Mean
Temperature (°C) —0.20 —0.06 0.31 —0.26 -0.27 0.51
Annual 028 —1.70 ~228 272 -321 2.82

Precipitation (mm)
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Among the major lakes, three plain lake or lake systems, Ebinur, Manas, and
Ulungur-Jili, were analyzed. Located in low elevation plain areas, their main supply
is river runoff, which can be influenced tremendously by human activities. Ebinur is
the largest saline lake in XUAR. With a maximum depth of 3.5 m and a mean depth of
1.2m, itis a closed lake without outlet. Its hydrologic input is mainly from the Bo and
Jing rivers, which originate from precipitation in mountainous areas. In their analysis
of multi-temporal VGT-510 data from 1 April 1998 to 31 December 2005, Ma et al.
(2007) revealed that this lake had a peak area of 903 km? in 2003 and subsequently
decreased to an area of 847 km? in 2004 [23]. Our study showed a decreasing trend of
surface area from 2000 to 2014 in all three seasons, with a short increase in 2002-2004
(Figure 5). The significant decreasing trend of the Ebinur Lake is 6.09 km? /year
for April, 10.36 km?/year for July, and 11.74 km?/year for September, respectively.
A slight decreasing trend of precipitation and temperature was revealed (Table 5).
According to Zhang et al. (2015), human factors, such as population growth and
agricultural development, led to the increase in desertification area in the Ebinur
Lake region between 1990 and 2010 [40].

Manas Lake is the terminal lake of Manas River. This lake is about 55 km long
and 15-20 km wide, with an area of about 550 km? and an average depth 6 m [41].
Our results show a decreasing trend of Manas Lake from 2000 to 2014. The smallest
lake size occurred in 2009 and 2010 (Figure 5). A decreasing trend of precipitation and
temperature was observed at the meteorological station near Manas Lake (Table 5).
Manas River Valley is a representative area for oasis exploitation in Xinjiang as a
primary agricultural production region and core region of economic development of
the northern slope of the Tianshan [41]. The expansion of oasis in Manas River Valley
was characterized by the spread of settlements and agricultural lands. In addition to
reclaiming agricultural lands, many hydrological constructions, including reservoirs,
wells, and canals, were built along the Manas River for irrigation of the croplands.

Ulungur-Jili lake system is a closed inland lake, with its water supplied by the
Ulungur River, groundwater, precipitation, and snow melting. As the second largest
lake in XUAR, the Ulungur-Jili lake system can be divided into two sections, the
Ulungur Lake and the smaller Jili Lake, connected by a narrow channel. In 2011,
Ulungur Lake had an average depth of 10.4 m and a surface area of 859 km?, and
Jili Lake had an average depth of 8.8 m and an area of 169 km? [42]. Based on an
analysis of the lake area with Landsat images acquired in August, a stable or slightly
increasing trend of lake surface area is revealed from 2000 to 2011 [43]. A slight
extending trend of Ulungur-Jili Lake was also observed in our study from 2000 to
2014. Increasing temperature and decreasing precipitation were observed at the
nearby meteorological stations. Since snow and ice melting off the Altay Mountain
is the main runoff supply of Irtysh River, snow and glacier changes caused by the
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increasing temperature contributed to the variation of lake area of the Ulungur-Jili
lake system.

Bosten Lake, as a transition lake located between the mountains and plains, is
the largest inland freshwater lake in China. As an open catchment lake with outlets,
Bosten Lake lies at the end of Kaidu River and the beginning of Kongque River. The
lake inflow mainly comes from Kaidu River, which contributes about 95% of the total
water inflow [44,45]. The main outflow is Kongque River and evaporation [46]. With
a large area in 2001 and 2003 (Figure 5), our study revealed an obvious decreasing
trend in the surface area of Bosten Lake from 2000 to 2014. The nearby meteorological
station observed the decreasing trend of precipitation and temperature. According to
the monthly mean lake level data, the lake level decreased dramatically from 2002 to
2010 [46]. The sharply decreasing lake level during 2003 to 2010 was reported to be
caused by the emergency project of transferring water to Tarim River and increasing
lake outflow in addition to the reduced precipitation [46].

Sayram Lake is the largest and highest alpine lake in XUAR. The lake is located
in a mountain basin in the western part of the Tian Shan with an average water
depth of 46.1 m. It has a frozen period extending for six months from October to
May [47]. Though a decreasing trend of precipitation and temperature was observed
at the nearby meteorological station, a slight increasing trend was observed from
2000 to 2014 in our study. Located in a natural environment, Sayram Lake was less
impacted by anthropogenic disturbances and showed a stable surface area from 1975
to 2007 [22].

Barkol Lake is a closed saline lake with an elevation of about 1580 m. Located in
the Barkol Basin, Barkol Lake is bordered by the Barkol Range, the eastern Tianshan
to the south, and the Moginwula Range to the north. The average water depth is only
0.6 m, with a maximum water depth of about 1 m [48]. In our study, a shrinking trend
of water surface area was observed from 2000 to 2014, while an increasing trend of
precipitation was observed (Table 5). The primary cause for lake size decrease may
be attributed to human interference. Due to the mirabilite production and reducing
precipitation near the lake, the lake area shrunk from 233 km? in the 1950s to 60 km?
in 2011 [49]. The severe mineralization of lake water led to large area degradation of
the surrounding wetlands [49].

Ayakkum, Aqgqikkol, and Arkatag Lakes are located in the Kumkol Basin
between the Altyn Mountains and the Kunlun Mountains. Aksayquin Lake is
located in the western Kunlun Mountains of the northern Tibetan Plateau. The
main supply of the four lakes is river runoff from the melting of glaciers and snow.
In our study, significant expanding trends were observed for these four lakes from
2000 to 2014 except Arkatag Lake in July. Based on Landsat image analysis over the
entire Tibetan Plateau, Aqqikkol had undergone surface extent increases in excess
of 10% from 2000 to 2011 [8]. The expansion of lake areas and increasing trend of
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lake level on northern Tibetan Plateau was observed and documented by several
studies [8,50,51]. Due to the increasing temperature, the water recharge increased a
lot from accelerated melting of glaciers and perennial snow cover [52], and permafrost
degradation [53,54]. However, for areas where surface water resources are generated
mainly in the mountain glaciers of XUAR, the increasing flows caused by melting of
mountain glaciers cannot be sustained in the long term if the glaciers disappear due
to increasing temperature [55].

5. Conclusions

This study presented a time series analysis of lake water surfaces across XUAR
using MODIS data from 2000 to 2014. A classification approach based on water index
calculation and dynamic threshold selection was developed. Compositing water
detection results of each time step, water masks were derived for the months of April,
July, and September. The major lakes with an area of >100 km? were categorized
into four classes based on their topographic locations. The seasonal and inter-annual
surface area variation of the 10 major lakes was revealed in detail.

For plain lakes, the surface area of Ebinur Lake showed a significant shrinking
trend and Manas lake an insignificant shrinking trend. They are both influenced
by the expanding oasis and increasing water consumption. The Ulungur-Jili Lake
had a stable area throughout the entire time period. The decreasing area of Bosten
Lake may have been caused by the construction of hydrological projects in addition
to the reduced precipitation. For mountain lakes, overexploitation has caused the
shrinking of the Barkol Lake and the degradation of surrounding wetlands. As the
largest and highest alpine lake, Sayram Lake showed a significant expanding trend
in September. The four plateau lakes exhibited significant expanding trends for all
three seasons except Arkatag Lake in July.

The lake dynamics revealed by MODIS time series are useful for ecological
assessment of XUAR. Further studies are needed to use satellite imagery with
different spatiotemporal resolutions, such as AVHRR and Landsat data since the
1970-80s, to capture the long-term dynamics of lakes in XUAR. It is also important to
integrate the analysis of satellite data and climatic datasets for better understanding
of the impact of climate change on water bodies in this arid and semi-arid region.
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Remote Sensing Based Analysis of Recent
Variations in Water Resources and
Vegetation of a Semi-Arid Region

Shaowei Ning, Hiroshi Ishidaira, Parmeshwar Udmale and Yutaka Ichikawa

Abstract: This study is designed to demonstrate use of free remote sensing data to
analyze response of water resources and grassland vegetation to a climate change
induced prolonged drought in a sparsely gauged semi-arid region. Water resource
changes over Hulun Lake region derived from monthly Gravity Recovery and
Climate Experiment (GRACE) and Tropical Rainfall Measuring Mission (TRMM)
products were analyzed. The Empirical Orthogonal Functions (EOF) analysis
results from both GRACE and TRMM showed decreasing trends in water storage
changes and precipitation over 2002 to 2007 and increasing trends after 2007 to
2012. Water storage and precipitation changes on the spatial and temporal scale
showed a very consistent pattern. Further analysis proved that water storage changes
were mainly caused by precipitation and temperature changes in this region. It is
found that a large proportion of grassland vegetation recovered to its normal state
after above average rainfall in the following years (2008—2012) and only a small
proportion of grassland vegetation (16.5% of the study area) is degraded and failed
to recover. These degraded grassland vegetation areas are categorized as ecologically
vulnerable to climate change and protective strategies should be designed to prevent
its further degradation.

Reprinted from Water. Cite as: Ning, S.; Ishidaira, H.; Udmale, P; Ichikawa, Y. Remote
Sensing Based Analysis of Recent Variations in Water Resources and Vegetation of a
Semi-Arid Region. Water 2015, 7, 6039—-6055.

1. Introduction

Freshwater resources are the lifeblood of our planet. It is fundamental to
the biochemistry of all living organisms. The Earth’s ecosystems are linked and
maintained by water; it drives plant growth and provides a permanent habitat
for many species, including ourselves. However, freshwater is a resource under
considerable pressure. Its stored potential (surface water, ground water, soil
moisture, ice, efc.) is increasingly facing challenges from climate changes as well
as anthropogenic activities. That current and future climate change is expected
to significantly impact freshwater systems including rivers, streams and lakes, in
terms of flow and direction, timing, availability, temperature, and its inhabitants.
So understanding the information about water resource change, its driving force
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and potential impact in the past and future is very important for water resource
management and eco-environmental protection.

In recent years, the response of water resource and vegetation to the changing
climate and anthropogenic effects has been discussed extensively at regional or
global scales. With the rapid development of remote sensing techniques, the
reliability of satellite products relevant to water resource monitoring has greatly
improved. For example, changes in terrestrial water storage are measurable through
satellite gravity based approximations of equivalent water thickness to a precision of
0.5 cm per year. [1]. Precipitation is monitored by multiple post-processing phases of
currently available satellite data (i.e., Tropical Rainfall Measuring Mission (TRMM)) to
a resolution of millimeter per day [2]. Water level change in rivers and lakes is derived
from altimetry satellites (i.e., Jason-1/2, ENVISAT) to a sub-meter precision [3].
Hence, satellite observations have been increasingly used in such research, exploiting
their potential of providing spatially continuous and temporally recurrent estimates
over regional to global scales [4].

Zhang et al. [5] used monthly precipitation observations over global land
areas to analyze precipitation trends in two twentieth century periods (1925-1999
and 1950-1999), and showed that anthropogenic forcing has had a detectable
influence on observed changes in average precipitation within latitudinal bands,
and that these changes cannot be explained by internal climate variability or natural
forcing. Syed et al. [6] characterized terrestrial water storage variations using Gravity
Recovery and Climate Experiment (GRACE) and Global Land Data Assimilation
System (GLDAS) at global scale, the results illustrated spatial-temporal variability
of water storage change over land, with implications for a better understanding
of how terrestrial water storage responds to climate change and variability. Apart
from global scale studies, Fensholt and Du [7,8] assessed the regional /continental
precipitation trends and showed their influence on stream flow, water level, soil
moisture and vegetation changes. Moiwo et al. [9] analyzed water storage dynamics
in the North China Region (an important grain-production base) using GRACE,
GLDAS products in conjunction with in situ hydro-climate data, the results showed
a sharp water storage depletion from April 2002 through December 2009 in that area
and water loss which was more a human than a natural cause had already negatively
influenced millions of people in the region and beyond in terms of water supply crop
production, eco-environmental system and social stability.

Besides that, much research also indicates that a remote sensing approach is a
cost-efficient and accurate method to monitor inland water surface and water level
(case of lakes and reservoirs) dynamics which are also affected directly by climate
change and human activity. Dorothea et al. [10] used a Moderate Resolution Imaging
Spectro-radiometer (MODIS) surface reflectance dataset and a Modified Normalized
Difference Water Index (MNDWI) to map the variability of Lake Manyara’s water
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surface area over 2000-2011. Their results implied that recent fluctuations of Lake
Manyara’s surface water area are a direct consequence of global and regional climate
fluctuations. Duan ef al. [11] proposed and evaluated a method that combined
operational satellite altimetry databases with satellite imagery data to estimate water
volume variations in Lake Tana. Results showed that satellite altimetry products
were in good agreement with in situ water levels for Lake Tana (R? = 0.97). Estimated
water volume variations derived from satellite altimetry products and LANDSAT
TM/ETM+ agreed well with in situ water volume for Lake Tana, with R? higher than
0.95 and Root Mean Square Error (RMSE) 9.41% of corresponding mean value of
in situ measurements.

With respect to vegetation, it plays a notably important role in soil conservation,
atmosphere adjustment and maintenance of climatic and whole ecosystem stability
because of its natural tie connecting atmosphere, water, and soil. Surface vegetation
conditions are known for their sensitivity to natural changes and anthropogenic
effects, thus serving as important proxies for regional eco-environmental and
global climate fluctuations. Satellite based vegetation indexes such as normalized
difference vegetation index (NDVI) as an efficient tool are widely used to examine
the dynamic of vegetation health, density and degradation due to climate changes
and anthropogenic effects [12,13].

As mentioned above, satellite remote sensing has shown promising results
in the estimation of water resources and vegetation. However, in this study, we
focus on the analysis of a combination of available satellite data including GRACE
terrestrial water storage (TWS), TRMM, MODIS/LANDSAT, satellite altimetry
data (Topex/Poseidon, Jason-1/2) coupled with in situ climate data to assess the
water resource variation within a sparsely gauged area—the Hulun lake region
and its impact on the eco-environment to provide useful information for future
water resource management and eco-environmental protection. More specifically,
this study aims (1) to provide a framework for a remote sensing based integrated
assessment of water resource trends; (2) to detect trends in consistently established
time series (from 2002 to 2012) of terrestrial water storage change and precipitation
in a spatial distributed manner and (3) to infer the probable causes of water resource
variations and its impacts on vegetation in order to contribute towards sustainable
eco-environmental management.

2. Study Area

For this study, a representative case of the Daurian Steppe Eco-region (a most
intact example of Eurasian Steppe) is selected (Figure 1). It is straddled over borders
of three countries, namely, China, Mongolia and Russia (111° E-119° E, 47° N-50° N).
The total study area is about 290,400 km?. It covers a part of an ecologically important
region—The Daurian International Protected Areas (DIPA), namely, The Hulun Lake
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Nature Reserve grassland. The Hulun Lake Nature Reserve is a reserved grassland
and least influenced by human activities [14,15]. This draws attention to identify the
consequences of water resource changes (consecutive years of precipitation deficit
and decline in TWS) on representative natural grassland-vegetation with minimum
anthropogenic disturbances.
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Figure 1. The geographic location and Shuttle Radar Topography Mission
(SRTM)-based elevation map of the study area (red color region in the down figure
shows the Eurasian Steppe zone).

The area has a mid-temperate semi-arid continental climate with the dominant
mid-temperate zone characterized by drastic changes in winter and summer seasons.
The average annual rainfall is about 293 mm, mainly concentrated in unfrozen season
(from May to October). The average annual temperature ranges from —13 °C in
winter to 12.3 °C in summer, the average annual evaporation is around 249 mm,
and the average annual relative humidity is 49%. The semi-arid climate with the
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strong winds is increasing the vulnerability of this area to desertification. Figure 2
shows the vegetation cover types of the study area. About 89.9% and 7.9% of the
study area is occupied by annual grass-vegetation and forest (deciduous needle
leaf, deciduous broadleaf, evergreen needle leaf and annual broadleaf vegetation),
respectively. The surface water bodies cover about 2.2% of study area, with a major
water bodies—Hulun Lake having surface area 2307 km? and Beier Lake with surface
area 609 km?. As shown in Figure 1, there are many inland rivers in the study area,
but only two rivers, Kelulun and Wuerxun river, with annual discharge about 7 x 108
and 5.5 x 108 m3, flow into Hulun lake which is the main drainage outlet in this
area. Recently, however, the annual average discharge of these two rivers is less than
2 x 108 m3. The fluctuations in water levels of Hulun lake can be used as an indicator
of wet and dry conditions in the study area.

T1AHE Hil2=E 13°E 114°E 115°E 116° E 117°E 118°E 119°E
1 Il 1 Il Il 1 Il Il 1
50° N+ - 150° N
49° N F49° N
48° N+ 48° N
47° N+ 47°N
\ \ T \ \ \ \ \ \
1M1°E 112°E 113°E 114° E 115° E 116°E M7°E 118° E T19°E
Legend IRiver and Lake [ Deciduous needleleaf vegetation [ Annual grass vegetation

[ Evergreen needle vegetation lll Deciduous broadleaf vegetation Il Annual broadleaf vegetation

Figure 2. Vegetation map of study area.

3. Materials

3.1. Precipitation Data

The monthly precipitation for the period of 2002—-2012 is obtained from Tropical
Rainfall Measuring Mission (TRMM) [16]. TRMM products have been used in a
number of studies of Inner Mongolia and surrounding precipitation, where they have
been found to be adequate when compared with ground observations [17,18]. The
product used in this study is referred as the TRMM and other precipitation dataset
(denoted as 3B43). It is derived not only from TRMM sensors but also a number of
other satellites and ground based rain gauged data. Monthly observed precipitation
data (2002-2012) for five stations near the Hulun Lake are employed in this analysis
to evaluate the applicability of satellite derived precipitation in study area.
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3.2. Surface Air Temperature Data

This study uses a surface air temperature dataset namely Global Historical
Climatology Network version 2 and the Climate Anomaly Monitoring System
(GHCN + CAMS) which is a station observation-based global land monthly mean
surface air temperature dataset at 0.5 x 0.5 degree resolution for the period of 1948
to the present. When compared with several existing observation-based land surface
air temperature data sets, the preliminary results show that the quality of this new
GHCN + CAMS land surface air temperature analysis is reasonably good and the
new dataset can capture most common temporal-spatial features in the observed
climatology and anomaly fields over both regional and global domains [19].

3.3. Lake Water Level Data

Monthly water level data for the Hulun Lake for the period of 2002-2012 is
obtained from Hydroweb dataset [20]. The dataset is developed by Laboratoire
d’Etudes en Oceanographie et Geode’sie Spatiale, Equipe Geodesie, Oceanographie,
et Hydrologie Spatiales (LEGOS/GOHS) in Toulouse, France. It provides time series
of water levels of large rivers, about 150 lakes and reservoirs, and wetlands around
the world using the merged Topex/Poseidon, Jason-land 2, ENVISAT and Geosat
Fellow-On (GFO) data. Recent study has showed that the accuracy of water level
data from Hydroweb was very high with R? range from 0.96 to 0.99 compared with
in situ data in US, Netherlands and Ethiopia [11].

3.4. Satellite Imagery Data

MODIS Terra surface reflectance product (Mod09A1) [21] is employed to map
and monitor spatial and temporal variations in water surface of the Hulun Lake from
2002 to 2012. Images on which snow covers the lake surface and surrounding region
in winter time are not selected, because it is difficult to retrieve lake surface area
in those scenes. Besides that, we also use several scenes of LANDSAT TM/ETM+
data [22] with spatial resolution of 30m to validate lake surface area derived from
Mod09 Al.

3.5. GRACE TWS Data

TWS was derived from the latest version monthly GRACE gravity solutions
(RLO5) generated by the Center for Space Research at the University of Texas at
Austin [23], from August 2002 through December 2012. Each solution consists of
sets of spherical harmonic (Stokes) coefficients, Cj,, and Sy, to degree 1 and order
m, both size less than or equal to 60. We calculated these coefficients by combining
GRACE data with ocean model output as Swenson et al. [24] did. TWS calculation
and the post processing method used here were similar with Duan et al. [25] with
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two Fan filter [26] radiuses 500 and 800 km, respectively. Finally, these coefficients
were transformed into 1 x 1 degree gridded data that reflect vertically integrated
water mass change represented by equivalent water thickness.

3.6. NDVI Data

NDVI dataset acquired from the Advanced Very High Resolution Radiometer
(AVHRR) sensor aboard NOAA satellites processed by the Global Inventory
Monitoring and Modeling Studies (GIMMS) at the National Aeronautics and Space
Administration (NASA) [27]. The database ranges from July 1981 to December
2013 at a spatial resolution 8 km?. The data are composited over approximately
15 day periods with the maximum value compositing technique, which minimizes
the influences of atmospheric aerosols and clouds. This study analyzes the NDVI
trend for the period from 2002 to 2012.

4. Methods

4.1. Water Resource Spatial-Temporal Series Analysis

Empirical Orthogonal Functions (EOF) analysis is a widely and easily used
statistical method for analyzing large multidimensional datasets. When applied to a
space-time dataset, EOF analysis can be used to decompose the observed variability
into a set of spatial change patterns (EOFs), which are statistically independent and
spatially orthogonal to the others, and a set of times series called time coefficients
(PCs) that describes the time evolution of the particular EOFs. Together, the EOFs and
PCs can be combined to reconstruct the variability in the original dataset. Basically,
the goal of EOF analysis is to transform an original set of variables into a substantially
smaller set of uncorrelated variables, which can reflect most of the information of
the original dataset. It also has the ability to isolate various processes mixed in
observation data [28]. The EOF has recently become a popular tool in various science
areas such as meteorology, geology, and geography [29]. In this study, EOF analysis
is applied to study both the spatial and temporal changes of precipitation and TWS.

4.2. Lake Water Surface Area Estimation

Several land cover classification methods can be used for delineating water
bodies from multi-temporal satellite imagery to date from conventional unsupervised
methods to more advanced artificial neural networks and support vector machine
classifier [12,30]. The Modified Normalized Difference Water Index (MNDWI)
method proposed by Xu [31] has been widely applied and proved efficient to retrieve
water surface. The MNDWI is a band ratio index between Green (correspond to
band 4 of MOD09A1 imagery) and Shortwave Infrared (SWIR, correspond to band 6
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of MODO09A1 imagery) spectral bands that enhances water features. MNDWI is
defined as: G SWIR
reen —
DWI = 1
MNDWI Green + SWIR @

Following other studies [32,33], we set the threshold for MNDWI to zero.
MNDWI values > 0 represent water bodies and < 0 non-water cover types. Water
features have positive MNDWI values because of their higher reflectance in the Green
band than in the SWIR band while non-water features (soil and vegetation) have
negative MNDWI values due to their low reflectance in the Green band than the
SWIR band. However, some parts of Hulun Lake with the average depth 5.7 m

are very shallow, usually less than 1 m and many aquatic plants grow out of water
surface. This makes the MNDWI values negative in some grid located inside the lake.
Here, we combine the NDVI value to eliminate that effect. We decide if NDVI < 0 or
MNDWI > 0 and only one rule satisfies, then it is classified as water body. To validate
the results, we estimate the water body from several scenes of LANDSAT imagery
by traditional manual digitization, which is time consuming but has high accuracy.

4.3. NDVI Variation Trend Analysis Method

The Theil-Sen Median trend analysis, Mann-Kendall [34] are used to study
the vegetation covered regions of our study area, namely, the temporal variation
characteristics of the NDVI of the pixel covered region with NDVI values greater
or equal to 0.1. The Theil-Sen trend analysis method can be effectively combined
with the Mann-Kendall test. These are important methods for detecting the trend
of long time series data, and this combination has been gradually used to analyse
the long time series of vegetation reflecting the variation in trends of each pixel in a
time series.

The Theil-Sen Median trend analysis is a robust trend statistical method, and it
calculates the median slopes between all n-(n — 1)/2 pair-wise combinations of the
time series data. It is based on non-parametric statistics and is particularly effective
for the estimation of trends in small series. The slope of Theil-Sen Median can
represent the increase or decrease in the NDVI over the 11 years between 2002 and
2012 on a pixel scale. It is calculated by:

NDVI, — NDVI,
m —n

TSnpvi = median ( ) , 2002 <n<m <2012 (2)
where, TSnpy] refers to the Theil-Sen median, and NDVI,,, NDV I, represent the
NDVI values for years of m and #, in case of TSypy; > 0, the NDVI shows a rising
trend, otherwise, the NDVI presents a decreasing trend.

The Mann-Kendall test measures the significance of a trend. It is a non-parametric
statistical test, and it has the advantage that samples do not need to follow certain
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distributions and is free from the interference of outliers. It has been broadly used to
analyse the trends and variations at sites with hydrological and meteorological time
series. Recently, this method has been applied to detection of vegetation variations
over long time periods. The calculation algorithm is as follows:

It is assumed that NDVI,,, m stands for time series from 2002 to 2012. The
statistics of Z is defined as:

S—1
Ol s>0
Z = 0 ,s5=0 3)
s(S)
=1t
where, S = Y Y sgn(NDVI, — NDVI,), sgn(NDVI, — NDVI,) =

n=1m=n+1
1 ,NDVI, — NDVI, >0
0 ,NDVI, - NDVI,=0 ,
-1 ,NDVI, — NDVI, <0

(= D@L "

where, NDVI,, and NDV I, stands for the NDVI values of the pixels m and n; tis
the length of the time series; sgn is a sign function; and the Z statistic is located in
the range of (—oo, +00). A given significance level, |Z| > p;_ 4, signifies that the
times series shows significant variations on the level of «. Generally, the value of « is
0.05. In this study, we choose & = 0.05, means that we measure the significance of the
NDVI trend over period from 2002 to 2012 on pixel scale at a confidence level of 0.05.

5. Results and Discussion

5.1. Precipitation and Temperature Variation Analysis

The numbers of rain-gauge stations in the study area are limited. Hence, we
used TRMM monthly data to analyze precipitation trends in this study. To confirm
the feasibility of TRMM data, observed precipitation from five rain gauge stations
(Table 1) located in the vicinity of the study area are used. The correlation between
two data sets for respective grids is observed to be in the range of 0.74-0.94 over the
period of 2002-2012 as shown in Table 1. This confirms the applicability of TRMM
data for precipitation trend analysis in this study. Studies by Yatagai et al. [17] and
Chen et al. [18] also validated the applicability of TRMM data in this region.

After applying EOF to TRMM data, we found three dominant EOFs and PCs
in study area (as shown in Figure 3). EOF1 and PC1 represent about 65% of
total variance of precipitation, which shows superposition of annual and seasonal

41



variability. The EOF1 is found positive throughout the study area with high values
in central part highlighting uniform changing pattern over study area. A significant
decreasing trend is observed over a period of 2002-2007, however an increasing trend
from 2008 to 2012 can be seen from PC1. Low negative PC1 values corresponding to
summer season from 2003 to 2007 indicates five consecutive years of below average
rainfall, which induced a very serious drought. Using a linear regression, we found
an average precipitation decline of 23.1 mm/year and increase of 18.2 mm/year for
the periods of 2002-2007 and 2008-2012, respectively. We do not interpret the second
and third mode of EOF on precipitation variation (i.e., EOF2, PC2 and EOF3, PC3
here, respectively), since the temporal pattern change is not obvious, and it accounts
for only 13% and 6% of variance in precipitation, respectively.
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Figure 3. EOF decomposition of precipitation changes derived from TRMM satellite
data over study area. EOF patterns are shown in left side and corresponding unit-less
temporal patterns (PCs) in right side. (a): The first change mode of precipitation
changes; (b): The second change mode of precipitation changes; (c): The third
change mode of precipitation changes.

We also analyzed the warm (May—October) and cold (November—April) season
average temperature over study area as shown in Figure 4. Average temperature of
warm and cold season shows opposite change pattern against precipitation. Rising
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temperature may have caused more evapotranspiration, then further exacerbated
water storage depletion and drought.

Table 1. Correlation between gauged precipitation with tropical rainfall measuring
mission (TRMM) precipitation in respective grids.

No. Station Name Latitude Longitude R?
1 Xinyougqi 48.67° N 116.82° E 0.75
2 Xinzuoqi 48.21° N 118.27° E 0.74
3 Manzhouli 49.57° N 117.43° E 0.82
4 Hailaer 49.22° N 119.75° E 0.92
5 Aershan 47.17° N 119.93° E 0.94
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Figure 4. Temperature trend over study area from 2002 to 2012.

5.2. Water Storage Change

Figure 5 shows the overall EOF results of water storage variability in spatial
and temporal scale over the study area. EOF analysis result provides us the general
understanding of water storage change condition. EOF1 and PC1 represent 88% of
total variance in water storage changes and EOF2 and PC2 represent only 10%. For
EOF], all values are positive, which means all places have same change pattern with
high significance in the central and north part of study area, while the corresponding
PC1 shows the dominant trend. By a linear regression, we found an average water
storage decline of 14.2 mm/year and an increase of 3 mm/year in the study area for
the periods of 2002 to 2007 and 2008 to 2012, respectively. EOF2 delineates a spatial
east-west dipole structure and PC2 shows an increasing trend in the southwest corner
and decreasing trend in the east of study area over period of 2008 to 2012. Overall,
the water storage first reduced sharply (2002 to 2007) and then restored slightly
(2008-2012), especially in the central and north part of study area (EOF1).

EOF2 and PC2 (Figure 3) representing 13% of total rainfall change pattern shows
the similar east west dipole structure of the TWS pattern 2 (as shown in Figure 5).
It is found that EOF1/2 and PC1/2 of precipitation (Figure 3) is very consistent
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with EOF1/2 and PC1/2 of TWS (Figure 5). This explains that the precipitation
is one of the major driving factors behind water storage changes. Similar trends
in precipitation and water storage changes observed over whole study area (as
shown in Figure 6), which indicates a very sharp decreasing trend over the period of
2002-2007. However, for the period 2007-2012, in spite of the increasing precipitation
trend, TWS did not show a significant increasing trend as that of precipitation but
increased slightly. There may be two reasons for that: first, as we mentioned in the
study area section, water income from the two rivers flow to this region has been
lower than usual recently; second, actual evapotranspiration has increased because
of above-normal vegetation development (as we will explain in Section 5.4).
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Figure 5. EOF decomposition of TWS changes over the study area. EOF patterns
are shown on the left side and corresponding unit-less temporal patterns (PCs)
are shown on the right side. (a): The first change mode of TWS changes; (b): The
second change mode of TWS changes.
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Figure 6. Annual precipitation and water storage changes series from 2002 to 2012.
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5.3. Lake Response to Water Storage Change

As mentioned in the study area introduction, Lake Hulun drains in most parts
of the study area, so its water volume change is a good indicator of water resource
variation for this region. Table 2 shows the comparison between MODIS derived and
LANDSAT digitalized results of lake surface area. It shows a very close relation with
R? value as high as 0.95 and very low absolute and relative errors. It demonstrates the
validity of MODIS derived lake surface area with high accuracy in unfrozen season
(May—October). Figure 7 gives the lake level and lake water area time series with
their correlation. Both shows rapid declination from 2002 to 2009 with about three
meters of water level drop and 400 km? of shrinkage in lake surface area, respectively,
and remained stable after 2009. This temporal change pattern is not consistent with
water storage and precipitation change. Although precipitation increased after 2007,
lake volume still decreased till 2009 and did not show obvious rise after that. For
this phenomenon, there may be several possible reasons. Firstly, because of drought,
Lake Hulun got less inflow from the upper reaches of two main rivers (Kelulun and
Wuerxun) during 2002 to 2007. According to local news, these two rivers dried up
from September 2007 and did not discharge water into the lake for almost for one
year [35]. Secondly, people and livestock suffering from drought, which has driven
water scarcity around the lake may have withdrawn more water from it than a normal
year. Finally, the most important point, a large proportion of precipitation may have
been contributed to recover soil moisture deficit and depleted groundwater levels
due to consecutive years of droughts. This might have delayed the river inflow and
groundwater discharge to the lake. In summary, when drought attacks this region, it
needs more time and water to recover to the normal state even after enough rainfall.

Table 2. Comparison of Moderate Resolution Imaging Spectro-radiometer (MODIS)
and LANDSAT derived Hulun lake area.

LANDSAT MODIS

Absolute Relative
Lake Surface Lake Surface Error (km?2) Error (%)
Date Area (km?) Date Area (km?)
1 July 2000 2306.6 4 July 2000 2290.1 —16.4 —0.71%
6 September 2001 2236.4 7 September 2001 2186.3 —50.2 —2.24%
8 August 2002 2154.4 6 August 2002 2221.2 66.7 3.10%
27 August 2003 2114.2 30 August 2003 2106.9 -73 —0.35%
13 August 2004 2002.5 13 August 2004 2058.2 55.7 2.78%
16 August 2005 1977.6 14 August 2005 1948.8 —28.7 —1.45%
26 July 2006 1938.6 29 July 2006 1942.9 43 0.22%
29 July 2007 1907.2 29 July 2007 1902.3 —4.9 —0.26%
25 August 2008 1837 13 August 2008 1862.1 25.1 1.36%
5 October 2009 1791.5 1 October 2009 1772.8 —18.7 —1.04%
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Figure 7. (a) Lake water level; (b) lake water surface area; and (c) correlation
between lake water level and surface area.

5.4. Vegetation Response to Water Resource Change

Average NDVI distribution over the period of 2002-2012 is shown in Figure 8a.
It can be seen that the areas with high NDVI (0.4-0.5) are located in northwestern
part. NDVI values in central and south part of study area, and in the vicinity
of lake grassland region are relatively low (0.2-0.3). The variations in trends of
NDVI can be effectively captured by the Theil-Sen median trend analysis and the
Mann-Kendall test to reflect the spatial distribution of vegetation responses to water
resource changes. Because regions with a TSypyy of 0 strictly do not exist, we made
the following classifications according to the real conditions of the TSypy;. Regions
with a TSnpyr from —0.0005 to 0.0005 are categorized as stable regions, regions
with TSypyy larger than or equal to 0.0005 are categorized improved regions and
regions with TSypyy less than —0.0005 are categorized as degraded areas. Moreover,
significance test results of the Mann-Kendall test, at the confidence level of 0.05,
are determined as significance variations (Z > 1.96 or Z < —1.96) or insignificant
variations (—1.96 < Z < 1.96). Through combining the classification results of the
Theil-Sen median trend analysis and the MK test, it is comparable with the data of
trend variations of the NDVI. The results are summarized into five classes as shown
in Table 3. It shows the regions with vegetation condition improvement, regions with
stable vegetation condition, and regions with vegetation degradation, which account
for 70%, 13.5% and 16.5%, respectively.
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Figure 8. Spatial distribution of (a) average NDVI and (b) trends of inter-annual
NDVI change over 2002 to 2012.

Table 3. Changing trend of normalized difference vegetation index (NDVI) in the
study area.

TSnDvI V4 NDVI Trend Area (%)
<—0.0005 <—1.96 Severely degraded 2.69%
<—0.0005 —1.96-1.96 Slightly degraded 13.80%

—0.0005-0.0005 —1.96-1.96 Stable 13.51%

>0.005 —1.96-1.96 Slightly improved 57.35%

>0.005 >1.96 Improved 12.64%

As shown in Figure 8b, the region with improved vegetation condition is far

larger than the regions with degrading trend, and mainly scattered in the central part
of the study area. This indicates resilience of grassland vegetation to droughts. The
decreasing precipitation from 2002 to 2007 had not much impact on vegetation in
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the central part. It can be seen that the vegetation condition recovered quickly after
the withdrawal of drought and the increase in precipitation in the following years.
Hence, average NDVI over 2002-2012 showed an increasing trend. This shows the
close relationship between vegetation conditions and precipitation as found by other
researchers [36]. It is obvious to detect such vegetation conditions with a decreasing
trend distributed in the northwest mountain areas and Lake Hulun surrounding
areas (especially, in the northern and western part, Figure 2 shows that these are
the evergreen and deciduous forest areas). Decrease in water resources had serious
negative and long-term impacts on vegetation conditions. Even the precipitation
increased after 2007, vegetation conditions did not recover to its normal state. We
can categorize those areas as ecologically vulnerable regions, where more protective
measures and effective management are needed. Possible causes about vegetation
degradation in the north of Lake Hulun may have also affected by anthropogenic
activities. Since it became the more important trading port between China and Russia
after 2000, human activities have been more frequent than before. In addition, rapid
urbanization affected vegetation conditions in this area.

6. Conclusions

In the present study, water resource changes over Hulun Lake region derived
from monthly GRACE and TRMM products were analyzed. The EOF results from
both GRACE and TRMM showed decreasing trends in water storage changes and
precipitation over 2002 to 2007 and increasing trends after 2007 to 2012. Water storage
and precipitation changes in spatial and temporal scale showed a very consistent
pattern. Further analysis proved that water storage changes were mainly caused
by precipitation and temperature changes in this region. Based on the general
understanding about water resource variations, we checked the response of Hulun
Lake. Results indicated that lake level and lake surface area both declined during
2002 to 2009, with about three meters of water level drop and 400 km? shrinkage
in lake surface area, respectively, and then remained stable after 2009 even though
precipitation had recovered back to pre-2002 level. We can infer that water resource
conditions needed more time and precipitation to recover from a long term drought in
this typical semi-arid region. Furthermore, the vegetation response to water resource
variations reflected that vegetation resilience to drought in most regions was high,
forests were less resilient to drought than grasslands. Drought did not bring serious
negative implications on vegetation growing conditions. Only 16.5% of the study area
which is located in the northern and western sections of Hulun Lake and northwest
mountain areas showed vegetation degradation. These areas that are categorized as
ecological vulnerable regions need more protection and effective management in the
future. Finally, this study demonstrated the feasibility of estimating water resource
variation on the spatial-temporal scale and its impact on eco-environment using
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freely available remote sensing data in a sparsely gauged semi-arid area, which can
also be adapted to other regions. Such spatiotemporally distributed analysis at the
regional and basin level is particularly important considering that most of the water
management and eco-environmental protection also take place at these scales.
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Hydrological Evaluation of Lake Chad Basin
Using Space Borne and Hydrological
Model Observations

Willibroad Gabila Buma, Sang-Il Lee and Jae Young Seo

Abstract: Sustainable water resource management requires the assessment of
hydrological changes in response to climate fluctuations and anthropogenic activities
in any given area. A quantitative estimation of water balance entities is important
to understand the variations within a basin. Water resources in remote areas with
little infrastructure and technological knowhow suffer from poor documentation,
rendering water management difficult and unreliable. This study analyzes the
changes in the hydrological behavior of the Lake Chad basin with extreme climatic
and environmental conditions that hinder the collection of field observations. Total
water storage (TWS) from the Gravity Recovery and Climate Experiment (GRACE),
lake level variations from satellite altimetry, and water fluxes and soil moisture
from Global Land Data Assimilation System (GLDAS) were used to study the
spatiotemporal variability of the hydrological parameters of the Lake Chad basin.
The estimated TWS varies in a similar pattern as the lake water level. TWS in the
basin area is governed by the lake’s surface water. The subsurface water volume
changes were derived by combining the altimetric lake volume with the TWS over
the drainage basin. The results were compared with groundwater outputs from
WaterGAP Global Hydrology Model (WGHM), with both showing a somewhat
similar pattern. These results could provide an insight to the availability of water
resources in the Lake Chad basin for current and future management purposes.

Reprinted from Water. Cite as: Buma, W.G.; Lee, S.-I.; Seo, ].Y. Hydrological
Evaluation of Lake Chad Basin Using Space Borne and Hydrological Model
Observations. Water 2016, 8, 205.

1. Introduction

In some developing parts of the world, very limited and low quality ground
water data often hinder proper water management studies [1]. Moreover,
the estimation of large-scale water balance using these limited ground-based
measurements is prone to inaccuracies [2]. Sometimes, obtaining these datasets from
the appropriate authorities involves lengthy administrative procedures, rendering
studies extremely difficult.

Some, if not all of these, are associated with the Lake Chad Basin (LCB). Its scale
and lack of modern infrastructure are major challenges for data collection, analysis
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and management [3]. Under these circumstances, satellite gravimetric, altimetry and
hydrological models have proven useful in the study of these water bodies.

The Gravity Recovery and Climate Experiment (GRACE) is a joint mission
between Deutsche Forschungsanstalt fur Luft und Raumfahrt (DLR) and National
Aeronautics and Space Administration (NASA) that was launched in 2002. It records
the Earth’s time variable gravity field with a temporal and spatial resolution usually
within a few hundreds of kilometers. These products together with the products
[data] from satellite altimetry, Global Land Data Assimilation System (GLDAS), and
WaterGAP Global Hydrology Model (WGHM) were used for this study. Satellite and
hydrologic model products have widely been used for ground-based hydrological
measurements and studies, and they also serve as inputs to land surface and
atmospheric models [4,5]. They are also used to verify these models.

Lake Chad Basin (LCB) extends between latitude 6° N and 24° N, and between
longitude 8° E and 24° E (Table 1). It covers an area of about 2,400,000 km?, which is
equivalent to 8% of the total area of the African Continent. About 20% of this total
area is the conventional basin, which is under the mandate of the Lake Chad Basin
Commission (LCBC).

Table 1. Morphometric data for Lake Chad.

Parameter Lake Chad Basin
Location 6° N and 20° N, 7° E and 25° E
Catchment area 2.4 x 10° km?
Conventional Basin 427 500 km?
Lake area 1350 km?

Lake Chad itself occupies the central region of the LCB. It is a closed lake,
predominantly fed by two perennial rivers (the Chari and the Logone) and an
ephemeral one (the Komadugu Yobe) (Figure 1). It serves as a source of freshwater
and fish, and also aids pastoral and agricultural land for a population of 30 million
across the basin by offering a relatively easy and permanent access to water [6].

Increase in population, dam constructions, and irrigation development facilities
during the last four decades have caused the surface area of Lake Chad to shrink
from 24,000 km? to 1300 km? [7,8] (Figure 2). Studies have shown that the decrease
was due to persistent drought and irrigation activities in the area [9-11].

In an attempt to manage and reduce the persistent droughts in this area, the
water transfer project, whose main objective is halting the shrinkage of Lake Chad
through an inflow of water coming from the Ubangi River, was introduced by
the LCBC.
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Figure 2. Schematics of the state of Lake Chad from Landsat 5 images; courtesy of
NASA. Modified after [12].

Water scarcity triggers food insecurity, poverty, migration and conflicts. As
such, it is very important for a population or nations as a whole to secure stable
and reliable water resource management techniques. A step towards this would be
to understand the changes experienced by the water body in their vicinity. With
limited and unreliable in situ data collection, understanding and documenting these
changes can be very challenging and costly prompting researchers to rely on the
use of satellite gravimetric, altimetry and hydrological models in monitoring water
resources in such remote areas (Table 2).
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Previous studies have applied remote sensing and satellite data to the Lake Chad
region-some of which focused on the changes in stream flow patterns connected
to the lake [9,13-15], Leblanc et al. [16] reported on the existence of a mega-lake
Chad. They used satellite images from Landsat and Moderate Resolution Imaging
Spectrometer (MODIS) for their studies. Thermal remote sensing techniques, such
as the Meteosat thermal maximum composite data, was used to account for the
variability of inundated areas within the lake under flooded vegetation [17]. Satellite
imagery and GRACE data were used to study the regional hydrogeology and made
an attempt at estimating the actual evapotranspiration over the LCB [5]. Altimetry
data and ground-based information were used to predict the downstream lake and
marsh heights using imperial regression techniques [18].

Few studies have used remote sensing data for investigating groundwater
recharge around this area like [3,6] used satellite images (Meteosat thermal data)
combined with hydrogeological data to identify the thermal change of groundwater
in the depression zones, and then estimated values of recharge and discharge of the
area. We try to define time series data of groundwater depending on the nature and
fluctuation of this property in time and space.

In this study, we combined updated remotely sensed and hydrological model
datasets. These datasets have been used to study the diverse aspects of basin
hydrology within the continent [6,7,11,19-24]. Some of these point out the lack of
readily available in situ data for these studies [5,22], some cases validated the in situ
measurements in Lake Chad and other parts of Africa (Table 2).

Table 2. Literature review of remotely sensed data sets used in the studies of some
watershed in Africa.

Data Products

Study Area Terrestrial Water Storage Rainfall  Lake Height Reference

Lake Chad GRACE! GPCP 2 - [5]

Lake Chad - - Sat. Alt. 3 [25]
NOAA 4,

Lake Chad - TRMM 5 - [12]

East African Great Lake GRACE, WGHM °© GPCP Sat. Alt. [25]
Lake Victoria, Malawi and GLDAS,

Tamganyika GRACE TRMM Sat. Alt. [26]

Okavango catchment GRACE TRMM Sat. Alt. [27]

Congo river basin GRACE GLDAS, Sat. Alt [26]

g0 1V TRMM A

Lake Victoria, GLDAS,

GRACE, WGHM Sat. Alt. [28]

TRMM
! GRACE: Gravity Recovery and Climate Experiment; > GPCP: Global Precipitation
Climatology Project; 3 Sat. Alt.: Satellite Altimetry; * NOAA: National Oceanic and
Atmospheric Administration; > TRMM: Tropical Rainfall Measuring Mission; ¢ WGHM:
WaterGap Hydrological Model.

Tamganyika and Malawi
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We utilized satellite gravimetric, altimetric and hydrological models products
over the Lake Chad basin to characterize the spatiotemporal and multiscale variability
in its hydrological cycle, to infer the effect of rainfall on water storage in this region,
and, finally, to investigate subsurface water variations within this region and perform
comparison with groundwater outputs from a global hydrological model.

2. Materials and Methods

2.1. Terrestrial Water Storage (TWS) from GRACE

GRACE is known for estimating high-precision time-varying gravity field
and the changes of Earth’s surface mass at a high degree of accuracy on a time
scale ranging from months to a decade [29,30]. These variations are mainly due to
redistribution of water mass in the surface fluid envelopes of the earth. It provides
estimates of TWS, which encompasses surface water, soil moisture, groundwater
and snow. However, experimental errors while using GRACE increase rapidly
and concurrently as the degree of the spherical harmonic coefficients, causing
inaccurate results at higher degree terms of the spherical harmonic coefficients [31,32].
Spatial averaging functions are normally used to reduce the high degree of noise
in the GRACE gravity field. This provides researchers with accurate surface mass
changes. An additional de-stripping averaging filter is used for suppressing the
“N-S” stripping noise in the GRACE data. There is also a leakage effect, which is
caused by the spatial averaging functions. This causes some signals of the GRACE
mass anomalies to leak outside the region of interest. The accuracy of GRACE is
high enough to detect surface mass variations corresponding to hydrological loads
of 1 cm at monthly and longer time scales, with horizontal dimensions of hundreds
of kilometers and larger [30].

Numerous studies on the reliability of its data sets has been carried out
by comparing its TWS products to that of Land Surface Models or in situ land
observations-India [31], the Korean Peninsula [33,34], the East African lakes [25],
Mali in Africa [35]. It has also been widely used in the studies of lakes around the
world [36-39].

The GRACE Level 3 (Release 05) is the latest and more accurate of GRACE
products. It provides processed time variability gravity field products. These products
are provided as sets of spherical harmonic coefficients averaged on a monthly scale.

For this study, we used the monthly land mass grid observations (Level 3)
provided by the Center of Space Research (CSR), University of Texas, at Austin from
January 2003 to December 2013. The data are available as monthly 1° x 1° grids
of TWS over our study area [40]. The data set was truncated at 60 degrees and
smoothed with the Gaussian filter of 300 km. GRACE data enhancement techniques
provided [30] were also included to improve the accuracy of these TWS estimates.
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For the time frame of our study, we encountered six months of missing data
during these dates: June 2011, May and October 2012, and March, August, and
November 2013. For these missing datasets, the temporal linear interpolation was
done between them since they were not contiguous.

2.2. Lake Height from Altimetry

Generally, satellite altimeters are nadir-pointing instruments that record the
average surface “spot” height directly below the satellite as it transverses over the
Earth’s surface. It basically determines the distance from the satellite to a target
surface by measuring the satellite-to-surface round-trip time of a radar pulse. The
altimeter emits a radar wave and analyzes the return signal that bounces off the
surface. The surface height is calculated as the difference between the satellite’s
positions on orbit with respect to an arbitrary reference surface, i.e., the Earth’s center
is represented by a reference ellipsoid and the range between the satellite and the
surface is obtained by calculating the time taken for the signal to return. From this,
the measurements of the sea surface height and other characteristics of oceans, lakes,
floodplains, and rivers can be obtained. A lot of information can be extracted from
satellite altimetry.

Institutions like the Foreign Agricultural Services (FAS) of the United States
Department of Agriculture, Hydroweb, and European Space Agency (ESA) have
been making available the up-to-date and reliable user-friendly data sets.

Lakes, rivers and oceans have all been monitored over the years using these
data sets [9,11,4144]. Surface water level data sets are sometimes given in the
form of graphs and tables for major water bodies based on combination of
various radar altimetry sensors. These data sets are made available free of
charge via web applications, such as USDA’s Global Reservoir and Lake Monitor
(http:/ /www.pecad.fas.usda.gov), Hydroweb of Geodesy, Oceanography and
Hydrology from Space (GOHS; http:/ /www.legos.obs-mip.fr/), and River and Lake
system provided by ESA (http://tethys.eaprs.cse.dmu.ac.uk). Repeat track methods
used in the derivation of time series of the lake surface height variation uses the
reference lake height profile. This is derived from averaging all height profiles across
the lake within a given time span. This effectively smoothens out any varying effects
of tide and wind set-up. These resulting time series of height variations are expected
to have an accuracy of about 20 cm root mean square (RMS) for lakes with minimal
tides and limited dynamic variability.

For our study area, the satellite altimetry data has widely been used in the
studies of the lake in which in situ datasets were compared with these altimetry
products. The results showed accurate water level variations for Lake Chad in
the two data sets [11,40,41]. Altimetry missions with a 10-day repeat track, such
as TOPEX/Poseidon (1992-2006), Jason-1 (2001-2013), and Jason-2 (2008—present),
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or those with a 35-day repeat track, such as ERS-2 (1995-2000) and ENVISAT
(2002—2010), can be used to extract lake height variations. ENVISAT altimetry
estimates were used for this study.

2.3. Soil Moisture from GLDAS

Operated by NASA and the National Oceanic and Atmospheric Administration
(NOAA), GLDAS is a land surface simulation system that aims to ingest satellite and
ground-based observational data products, using advanced land surface modeling
and data assimilation techniques, in order to generate optimal fields of land surface
state (e.g., soil moisture and surface temperature) and flux (e.g., evaporation and
sensible heat flux) products [4]. It adopts four advanced land surface models
(LSMs): The Community Land Model (CLM), Mosaic, Noah, and Variable Infiltration
Capacity (VIC). GLDAS executes spatial resolutions globally at both 0.25° and 1.0°,
with temporal resolutions of three hours and monthly products since 1979. GLDAS
data are widely used for land-surface flux simulations. As such, the simulation
accuracy using GLDAS dataset is largely contingent upon the accuracy of the
GLDAS dataset. The data are available from the Goddard Earth Sciences Data
and Information Services Center (GES DISC).

In this study, we used Noah 1.0° grid data which has four layers of vertical
soil moisture. The monthly average soil moisture is computed as the sum of all the
layers [45].

2.4. Groundwater Estimates from the WaterGap Hydrological Model

The WaterGAP Global Hydrological Model (WGHM) is a submodel of the global
water use and availability model WaterGAP 2.2 It computes groundwater recharge,
surface runoff and river discharge as well as storage variations of water in canopy,
rivers, soil, lakes, wetlands, groundwater and snow at a spatial resolution of 0.5° [46].

WGHM is based on the best global data sets currently available, and it is able
to simulate variations in water bodies. It computes the water storage in the snow
pack, rooted soil zone, groundwater, on vegetation surfaces, and in surface water
reservoirs. Here, the simulated estimates provided by [47] were used. In order to
obtain a reliable estimate of water availability, they tuned the model against the
observed discharge at 1235 gauging stations, which represent 50% of the global land
area and 70% of the actively discharging area. In Africa, most basins north of the
equator do not perform well [47]. Detailed information about the modelling concept
and its corresponding assumptions can be found in [48].

Model outputs assessment performance was not carried out in the LCB due to
limited data availability. However, the Chari and Komadougou Yobe river basins,
which predominantly feed the lake, were included in the calibration scheme of this
region. Too much water was modeled for both basins. The Chari-Logone river system,
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which supplies most of the water into the southern part of LC, has a Nash-Sutcliffe
efficiency of around 0.6, which is quite good. On other hand, inland water bodies in
Africa showed a good match with the WGHM model output-for instance, the East
African great lakes as reported by [46].

For this study, outputs from the WaterGap 2.2a model forced with precipitation
from the Global Precipitation Climatology Centre (GPCC) and data from the
European Center for Medium-Range Weather Forecast (ECMWF) integrated forecast
system were used. These outputs include; global-scaled gsssroundwater storage,
total water storage, baseflow, and groundwater recharge (diffused and below surface
water bodies). There is no data available after 2009 (Table 3). This can be found on
the website (https:/ /www.uni-frankfurt.de/49903932/7_GWdepletion) [49].

Table 3. Summary of data sets used for this study.

Resolution

Variable Dataset Period

Spatial Temporal

Terrestrial Water Storage =~ GRACE 1° x 1° 1 month  2003-2013

Lake Height Sat. Alt. 1° x 1° 30days  2003-2013

Rainfall GLDAS 1° x 1° 1 month  2003-2013
Soil moisture GLDAS 1° x 1° 1 month  2003-2013
Groundwater WGHM  05° x0.5° 1month  2003-2009

2.5. Data Processing

2.5.1. Variability in TWS and Lake Height

Seasonal-Trend Decomposition Procedure based on Loess (STL) method is a
filtering procedure that decomposes a time series into its additive components of
variation (trend, seasonal and the remainder components) by the application of Loess
smoothing models [50]. This was used to model GRACE monthly storage variations
as well as the time series of altimetric lake height.

In brief, the steps performed during STL decomposition are as follows:

1.  Cycle-subseries smoothing: series are built for each seasonal component, and
smoothed separately.

2. Low-pass filtering of smoothed cycle-subseries: the subseries are put together
again, and smoothed.

3. Detrending of the seasonal series.

4. Deseasonalizing the original series, using the seasonal component calculated
in the previous steps; and Smoothing the deseasonalized series to get the
trend component.
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In R statistical software, the STL algorithm is available through the st function.
We use it with its default parameters. The degrees for the Loess fitting are d = 1 in
steps (iii) and (iv), and d = 0 in step (ii).

The parameter values must be chosen by the data analyst. We assume each
observation X; in time series is the sum of these components:

Xi=T,+ S;+ I; (1)

where T; = Trend, S; = Seasonality and I; = Interannual components.

Often, six parameters determine the degree of smoothing in trend and seasonal
components. For detailed information on method and parameters, consult [50] paper
on STL methods. For our study, these parameters are:

n(p) : The number of observations in each seasonal cycle, = 12 months (yearly
periodicity with monthly data);

1 : The number of passes through the inner loop (usually set to equal one or
two) = 1 month;

1) : The number of robustness iterations of the outer loop (Values qual one or
two) = po robustness while a zero value has no robustness iteration) = 5 months;
n(;y : The span of the loess window for the low-pass filter (computed as the next odd
number to n(p)) = 13 months;

n(s) : The smoothing parameter for the seasonal component, = 12 months (seasonal
length is same as the periodic length);

np The smoothing parameter for the trend component, = 22 months.

1.51’1(p)

-1
1— 1.571(5)

For this analysis, R statistical software was used [51]. It is a free software
environment and a programming language for statistical computing and graphics. It

Tl(t) = x 2 (2)

is widely used among statistics and data miners for developing statistical software
and data analysis. MS excel was also used for subsequent data representation
and analysis.

2.5.2. Subsurface Water Volume Change

Subsurface water volume (Groundwater + Soil moisture) was investigated.
GRACE data provides changes in total water storage, which includes Lake water
storage (LS), Snow water equivalent storage (SWES), soil moisture storage (SMS),
and groundwater storage (GWS) within the basin. With satellite and model-based
estimates of LS and SMS, subsurface water volume can be estimated. SWES was
ignored for our study area since this area is humid.
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Estimates of the subsurface water changes was evaluated using the following
disaggregation equation,

ASSW =ASM +AGW =ATWS —ALS 3

Here, ASSW = Subsurface Water, AGW = Groundwater, ALS = Lake water,
ATWS = Terrestrial Water Storage, ASM = Soil Moisture.

In an attempt to express ASSW and ALS in terms of volume, both were
multiplied by the LCB area and Lake Area, respectively.

3. Results and Discussions

3.1. TWS and Altimetry Lake Height

Based on our study period, the STL trend of the time series of monthly GRACE
TWS shows a decrease in average TWS of the Lake Chad basin (Figure 3) for the
periods 2003-2005 and 2009-2010 with the latter being the lowest water estimates at
—0.54 cm/year. There is an increase in TWS concentrations from 2006 to 2008, and
2010 through 2013, with the latter being the highest storage estimates of 0.69 cm/year.
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Figure 3. STL decomposition of the time series of monthly GRACE TWS.

The STL trend of the time series of altimetric lake height (Figure 4) shows a
decrease in lake level from 2003 through 2005 and a steady increase until after 2008
with an average height of about 0.3 m/year. From this point, it begins to slope down
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towards 2010. From 2010 to 2012, the Lake experiences its lowest height averaging to
about 0.23 m/year. Different rates are shown in Table 4.
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Figure 4. STL decomposition of the time series of monthly lake altimetric height.

Table 4. STL fitted trend of the time series of TWS and lake height.

Period TWS Lake Height

(cm) (m)
2003-2005 0.25 0.32
2006-2009 0.84 0.62
2010-2013 0.38 —0.78

The STL decomposition plot of the monthly TWS estimates and lake altimetric
height shows a similar pattern with their seasonal components suggesting an annual
increase from the months of July-September as well as a decrease from October—June.
This implies the Lake’s height follows the seasonal pattern of the rainfall cycle around
this area. There is a correlation (>80%) between them which points out the similarity
in their pattern (Figure 5a).

Their seasonal component suggests an average annual increase in September
and a main annual drop exists in November. This is due to the rainfall regime that
exists over the Lake region. This relationship will be discussed in Section 3.2. The
largeness and uniform size of the seasonal cycle of Lake Chad means that, over the
years, Lake Chad has a fast water renewal process.
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Figure 5. (a) Represents TWS and lake height after smoothing with a six-month
window; (b) Represents the autocorrelation between TWS and lake height.

3.2. TWS and Rainfall

Rainfall estimates from GLDAS were compared to GRACE TWS over the LCB.
During the wet season (July—September), there is an increase in seasonal pattern
of rainfall over the study region with 2012 having the maximum annual averages.
Figure 6 shows a comparison between the time series of the monthly estimated
GLDAS rainfall and the change in GRACE TWS and, as expected, both curves show
a good agreement during most of the study period in terms of pattern.

Based on Figure 6, we can clearly see the existence of a phase shift between
GLDAS rainfall and GRACE TWS. This phase shift is about a month and a half. Their
lagged correlation was also high (>0.9). From trend analysis, rainfall that precedes
TWS increases throughout the study period. Its seasonal cycle goes ahead to confirm
this phase shift that exists between rainfall and TWS in this region.

...... TWS Rainfall ---------- Rainfall trend

9
_— ’é‘
5 E
S 0 =
g ; B
2

-2 -3

2001 2004 2006 2009 2012 2014

Time (Year)

Figure 6. Comparisons between the yearly estimates of rainfall and TWS.
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Figure 7 also confirms the bimodal rainfall regime that exists within this region
with most of its heavy rainfall occurring between July-September and shorter rains
from October—December.
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Figure 7. Comparisons between the monthly average rainfall and TWS.

3.3. TWS and Soil Moisture

Terrestrial water storage (TWS) of the Lake Chad Basin and the lake’s surface
water volume change from altimetry are critically analyzed. Due to its improved
precision, GRACE can detect gravitational changes within an area of 200,000 km? or
larger [44]. Hence, it is suitable for our study area which is 427,500 km?.

Figure 8 shows a good agreement between altimetric lake water volume with
GRACE basin water volume with a correlation of about 73%. There is also a good
agreement in their seasonal cycles (Figure 9). We can infer that surface water of Lake
Chad governs the volume of water in the basin area.

---TWs —— GLDAS soil molsture ©  Lake Water

Volume (km3)
=

Time (Year)

Figure 8. Effect of altimetric lake water and soil moisture on TWS.

GLDAS outputs of soil moisture estimates can also be seen in Figure 8. It has a
weak agreement with basin water volume with a correlation of about 35%. Hence,
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soil moisture content plays little or no role in the variability in water volume stored
in the Lake Chad Basin. It is solely governed by surface water of the Lake Chad.
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Figure 9. Monthly averaged seasonal cycle of the Lake Chad. Error bars represent
the standard deviation for each month.

Additionally, investigated were the changes in subsurface water volume, which
comprises of groundwater and soil moisture (Section 2.5.2). In early 2003 and 2007,
there is a dissimilarity between volume estimates of WGHM groundwater and
subsurface water estimates. The results obtained were compared with WGHM
outputs (Figure 10). It shows two peak periods at approximately mid-2005 and 2006.
Both curves have a somewhat similar pattern with a correlation coefficient of about
47% between them.
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Figure 10. Changes in subsurface water (groundwater and soil moisture) and
WGHM GW outputs. The annual signal is removed and data are smoothed with a
six-month window.
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4. Conclusions

In this study, we see how the use of GRACE TWS data along with other data
sources could be of great value in the hydrological studies of remote areas. We
investigated hydrological variability associated within the LCB from January 2003 to
December 2013. GRACE TWS and altimetric lake volume showed a similar pattern
for the majority of the study period. After comparing TWS with soil moisture content,
we found that the discharge in this area is governed by surface water of the lake. This
is the first attempt in which these remotely sensed datasets were used to study the
varying patterns of the lake’s hydrology. Deriving this characteristic spatiotemporal
analysis of surface mass anomalies across the LCB, future improvements can be
made in the management of water resources in this area.

For much of the study period, GRACE TWS variations within the basin show
a similar pattern of variation as the averaged lake height variation from altimetry.
A trend analysis showed increasing precipitation with maximum annual average
increase in August but decreasing water level in the lake from altimetry with the
minimum annual average occurring in 2012 with a value of 0.2 m. Our study also
showed that altimetry-based volume with TWS from GRACE provides information
on soil moisture and groundwater. This could help in detecting subsurface water
storage changes in relation to climate variability or anthropogenic activities especially
in situations where in situ measurements are not available. This could also lead to
new research prospects, where researchers could try to find out the main cause
behind the lake’s decreasing trend.

This characterization can help in the proposed Water Transfer Project from the
Ubangi River to Lake Chad in a number of ways. For instance, the primary objective
of this project is to halt the shrinkage of Lake Chad through an inflow of water
coming from the Congo basin. The association between LC level and precipitation
will enable managers to plan for the total water volume that can be released and
retained based on future forecasts.
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Water Discharge and Sediment Load
Changes in China: Change Patterns, Causes,
and Implications

Chong Jiang, Linbo Zhang, Daiqing Li and Fen Li

Abstract: In this research, monthly hydrological and daily meteorological data were
collected across China for the period 1956-2012. Modified Mann-Kendall tests,
double mass curve analysis, and correlation statistics were performed to identify
the long-term trends and interrelation of the hydrometeorological variables and
to examine the influencing factors of streamflow and sediment. The results are
as follows: (1) In the last 60 years, the streamflow in northern China has shown
different decreasing trends. For the southern rivers, the streamflow presented
severe fluctuations, but the declining trend was insignificant. For the streamflow
in western China, an increasing trend was shown. (2) In the northern rivers, the
streamflow was jointly controlled by the East Asian monsoon and westerlies. In the
southern rivers, the runoff was mainly influenced by the Tibet-Qinghai monsoon,
the South Asian monsoon, and westerlies. (3) Sediment loads in the LCRB (Lancang
River Basin) and YZRB (Yarlung Zangbo River Basin) did not present significant
change trends, although other rivers showed different degrees of gradual reduction,
particularly in the 2000s. (4) Underlying surface and precipitation changes jointly
influenced the streamflow in eastern rivers. The water consumption for industrial and
residential purposes, soil and water conservation engineering, hydraulic engineering,
and underlying surface changes induced by other factors were the main causes of
streamflow and sediment reduction.

Reprinted from Water. Cite as: Jiang, C.; Zhang, L.; Li, D.; Li, E. Water Discharge and
Sediment Load Changes in China: Change Patterns, Causes, and Implications. Water
2015, 7, 5849-5875.

1. Introduction

Global warming caused by human-induced emissions of greenhouse gases is
accelerating the global hydrological cycle [1]. The accelerated hydrological cycle is
in turn altering the spatial-temporal patterns of precipitation, resulting in increased
occurrences of precipitation extremes that cause increased occurrences of floods and
droughts in many regions of the world [2], including China [3-5]. As a vital natural
resource, water is fundamental for the sustainable development of the economy,
ecosystem, and biodiversity. Therefore, water security and related implications for
ecosystem and river diversity, particularly the variability and availability of regional
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water resources under the influences of climatic change and human activities, have
been discussed in recent years [6-8]. Much attention has been given to water resource
changes and their effects on the economic society by the international community.
For example, the Intergovernmental Panel on Climate Change (IPCC) has reviewed
changes in the global hydrological cycle and has assessed the impacts of climatic
change on water resources [9]. Many countries, such as the United Kingdom, have
addressed the impact of climatic change on water resource variation [10]. The climatic
changes of China are controlled mainly by winter and summer monsoons [11].
Generally, precipitation in southwest China is greater than that in northwest China;
these patterns are controlled mainly by the monsoon system and the effects of
topography [12]. Rainy seasons in eastern China hinge on progress and retreat
of the East Asian monsoon. Detailed information on the evolution of summer
Asian monsoons and the associated propagation of rain belts has been reported by
Ding [13].

River sediment is an important aspect of land surface processes and global
change research. River sediment generation, transportation, and river delta response
have become important aspects of Earth system science. In 1968, Holeman [14]
investigated global sediment discharge by using global hydrological data; further
research was conducted by Holland [15]. Walling and Fang [16] investigated the
temporal variation of 145 rivers by using long-term data (longer than 25 years) in
Asia, Europe, and North America. They reported that the sediment discharge in more
than 50% of analyzed rivers presented upward or downward trends, the latter of
which was dominant. However, in the remaining 50%, the sediment flux essentially
remained stable [17]. A study of the sediment load in Russia showed that of the
20 rivers flowing into the Arctic Ocean, 35% showed increasing trends, 60% presented
declining trends; only 5% remained stable [18]. Similar research was conducted by
Liu [19], Subramainian [20], and Siakeu [21] for major rivers of Asia, India, and Japan,
respectively. This research revealed that human activities, particularly reservoir and
dam construction, were the main causes of sediment flux reduction.

Many researchers investigated the sediment and streamflow change in major
rivers of China. The Yangtze River Basin (YARB) [22], Yellow River Basin (YRB) [23],
Huai River Basin (HURB) [24], Liao River Basin (LRB) [25], and Songhua River Basin
(SRB) [26] showed different degrees of decreasing trends. However, the sediment flux
in western rivers such as the Yarlung Zangbo River Basin (YZRB) and Lancang River
Basin (LCRB) remained stable or increased slightly. The Yellow and Yangtze rivers
are two of the largest rivers in China and therefore receive more attention. Yang [27]
considered that reservoir and dam construction was the main reason of sediment
reduction in the Yangtze River. Miao [23] reported that reservoir construction,
reduced precipitation, soil and water conservation projects jointly induced sediment
reduction in the Yellow River. So far, the focus in China has been mostly on regional
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water and sediment resources. On the basis of instrument records of streamflow and
sediment, many scholars conducted research in different river basins in China to
reveal different changing patterns of runoff and sediment. Most of these studies are
based on the monitoring data of individual rivers without considering the impacts
of water and sand resource consumption of the economic society within the river
basin. Regarding spatial scale, most studies completed thus far are based on one
river basin; few are based on a national scale. An acceptable evaluation of water
and sediment resources requires sufficient hydrometeorological data and extensive
data-driven analysis, which is the motivation for the current study. Further, possible
causes of precipitation and streamflow and sediment resource variation need to be
investigated, and the related implications should be discussed.

Therefore, the objectives of this study are to (1) investigate streamflow and
sediment changes in major rivers in China; (2) determine the streamflow changes
and their relationship with precipitation, monsoons, and water consumption for
industrial and residential purposes; (3) determine regional sediment load changes
and their relationship with hydraulic engineering, soil and water conservation
engineering, and underlying surface changes induced by human activities; and
(4) discuss the relationship between sediment and runoff changes and their
relationship with specific events, the implications of which will also be discussed.
The primary goal of this study is to evaluate the impact of climate change and human
activities on streamflow and sediment load and to provide basic information for
water and soil resources management in this region.

2. Data and Methodology

2.1. Data Collection and Processing

In this study, annual precipitation data from 725 rain gauge stations for the
period 19512012 were obtained from the National Climate Center (NCC) of the
China Meteorological Administration (CMA). The quality of meteorological data
was firmly controlled [28]. To guarantee the accuracy of the results, the data was
preprocessed as follow before the analysis. The observational data of missing data
years of more than 5 years (including 5 years) were excluded. The time series data of
partial relocation stations were unified, and the remaining missing observation data
were completed with a linear regression method and adjacent station interpolation
to ensure the integrity of the time series. The missing data in 725 stations only
accounted for less than 5% of total data amount. The regional averages refer to the
arithmetic mean value of the stations within a region. Annual precipitation average
was, thus, calculated from these records using the Thiessen Polygon method for each
river basin.

73



The consecutive monthly data of streamflow and sediment yields from the
30 gauge stations were collected for the same period from Ministry of Water
Resources (MWR). The hydrologic data from the 30 gauge stations listed in Table 1
were used to analyze changes in streamflow and sediment load. Figure 1 and Table 1
provide information on the station location and associated drainage area. It is worth
to address is that, the Xinjiang Inland River Basin and the Hexi Inland River Basin
(HIRB) in northwestern China are composed of many tributaries. Therefore, to reflect
the overall change in streamflow, we summed the streamflow in tributary data to
represent the runoff of the entire basin. In southwestern China, although many large
rivers are present, we selected as study objects only two river systems, the LCRB and
YZRB, considering data availability.
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Figure 1. Distribution of 12 major basins in China showing gauge stations (red
triangles) and meteorological stations (black dots) used in this study.

The daily discharge was computed from the water level by using previously
calibrated discharge-water level curves. Water was sampled at fixed intervals, and
suspended sediment concentration was obtained by measuring water samples in the
laboratory. All the measurements of water level, discharge, SSC followed national
standards issued by the Ministry of Water Conservancy, and were printed in the
China Gazette of River Sedimentation [29]. Sediment loads refers to the suspended
fraction only, whereas bedload was excluded due to its difficulty in field sampling.
Measurement of the sediment loads was on the basis of standard procedures [30,31].
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Errors in calculating sediment load were introduced through the low frequency
of sampling, rather than continuous monitoring, which is likely to underestimate
sediment load during peak hours. The monthly and annual streamflow and sediment
load at the gauging stations were derived from the daily measured data. The accuracy
and consistency of all the data used in this study have been checked out by the
corresponding agencies before their release. In instances when discharge data were
missing, we used discharge data from similar rainfall conditions at other times as a
replacement, and the missing data in 30 stations only accounted for less than 3% of
total data amount.

Table 1. Summary of gauging stations and hydrological characteristics in the
12 major basins in China. DA is the drainage area.

. Basin . Longitude Latitude DA Time
b Gauge Station (Abbreviation) Location (N°) (E°) (km?) Span
Yellow River . o ! onal .
1 Lijin Basin (YRB) Mainstream 118°15 37°29 752,032 1952-2012
Yangtze River . o2/ onm!
2 Datong Basin (YARB) Mainstream 117°03 32°37 1,705,383  1950-2012
.. Huai River Basin . oyl ompl
3 Wujiadu (HURB) Mainstream 117°23 32°54 121,330 19502011
4 Zhangjiafen Bai River 116°10 39°48' 8506 1954-2011
5 Xiahui Hai River Chao River 117°18' 40°22' 5340 1961-2011
6 Shixiali Basin (HRB) Sanggan River 114°43' 40°16' 23,944 1952-2011
7 Xiangshuipu Yang River 109°40’ 38°01 14,507  1952-2011
8 Yanling Yongding River 115°49' 40°01’ 43,674 1952-2011
9 Haerbin Songhua River Mainstream 126°32' 45°48' 389,769  1955-2012
Basin (SRB)
10 Tieling Liao I({i‘lfé)Bas‘“ Mainstream 123°43/ 42°13 120,764 19542012
Pearl River . e onq/
11 Gaoyao Basin (PRB) Xi River 112°27 23°01 351,535 1957-2011
Southeast Rivers
12 Zhugi Basin (Min River Mainstream 119°06’ 26°08’ 54,500 1950-2011
Basin, MRB)
Southwestern
13 Nuxia Rivers Basin Mainstream 95°05/ 31°17/ 191,235  1956-2009
(Yarlung Zangbo
River, YZRB)
Southwestern
14 Xiangda Rivers Basin Mainstream 96°28/ 32012/ 17,909  1956-2012
(Lancang River
Basin, LCRB)
15 Dajingxia Reservoir Dajing River 103°24 37°28' 1961-2010
16 Gulang Gulang River 102°52/ 37°27" 1961-2010
17 H‘;fe’;gjgihe Huangyang River ~ 102°44/ 37°35' 1961-2010
18 Zamusi Hexi Inland Zamu River 102°34/ 37°42' 1961-2010
19 Nanying Reservoir River Basin Jinta River 102°31 37°48 68,300 1961-2010
20 Jiutiaoling (HIRB) Xiying River 102°03' 37°52/ 4 1961-2010
21 Shagousi Dongda River 101°55 37°58 1961-2010
22 Xidahe Reservoir Xida River 101°23' 38°03' 1961-2010
23 Changmapu Shule River 96°51 39°49' 1961-2010
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Table 1. Cont.

. Basin . Longitude Latitude DA Time
b Gauge Station (Abbreviation) Location (N°) (E°) (km?) Span
24 Dangchengwan Dang River 94°53/ 39°30/ 1961-2010
25 Yingluoxia Hei River 99°55' 38°57/ 1961-2010
26 Binggou Beida River 101°56 37°54' 1961-2010
27 Kaqun Xinjiang Inland ~ Yeergiang River 76°54' 37°59 50,248  1957-2011
28 Tongguziluoke River Basin Yulongkashi River 79°55' 36°49 14,575  1957-2011
29 Yangi (Tarim River Kaidu River 86°34/ 42°02 22,516 1957-2011
30 Alaer Basin, TRB) Mainstream 81°19/ 40°32’ 127,900  1957-2011

1:100,000-scale land use maps in 1985 and 2010 were respectively obtained
from the Earth System Science Data Sharing Platform and The Remote Sensing
Monitoring and Assessment of Decadal Changes of National Eco-environment
(2000-2010) project group. The digital elevation model (DEM), the Monitoring
Report of Soil and Water Loss in China, and other maps were obtained from the
Earth System Science Data Sharing Platform.

2.2. Methodology

2.2.1. Mann-Kendall Test for Monotonic Trend

To analyze the long-term trends of hydrometeorological variables, the
non-parametric Mann-Kendall test [32,33] was applied. This method has been
widely used to detect trends in climate and streamflow time series [34]. In the
Mann-Kendall test, the null hypothesis Hy states that xj,..., x, are samples of n
independent and identically distributed random variables with no seasonal change.
The alternative hypothesis H; for a two-sided test defines the distributions of x; and

x;j as non-identical for all k, j < n; with k 7 j. The test statistic S is given as

= Z i (xk — x;) (1)

k=i+1
+1 >0

sgn = 0 if 6=0 )
-1 <0

If the dataset is independent and identically distributed, the mean of S will be zero,
and the variance of S will be:

n(n—1)(2n+5)— El ti (tj—1) (2t; +5)
=

18

var (S) = (©)
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where 7 is the number of data points, ¢ is the extent of a given time, m is the number
of tied groups, and ¢; is the number of data points in the j-th group. A tied group
is a set of data points having the same value. A normalized test statistic Z can be
computed on the basis of S as:

S5—1
var(S) >0
7 — 0 5=0 (4)
S+1 S<0
var(S)

When the significance levels are set at 0.01, 0.05, and 0.1, 1Z, | is 2.58, 1.96, and
1.65, respectively. At a certain significance level, if |Z| > | Z, |, the null hypothesis Hy
is rejected. That is, the trend is significant at the set level of significance. Otherwise,
no significant trend exists.

In the Mann—Kendall test, the slope estimated by using the Theil-Sen
estimator [35,36] is usually considered to detect the monotonic trend and to indicate
the variable quantity in the unit time. It is a robust estimate of the magnitude of a
trend and has been widely used to identify the slope of a trend line in a hydrological
or climatic time series [37]. The estimator is given as:

Xi— X]

B = Median ( /
j—1

>v1<l<j ()

where 1 <[ <j<n, 3 is the median overall combination of record pairs for the entire
dataset and is resistant to extreme observations. A positive 3 denotes an increasing
trend, and a negative 3 indicates a decreasing trend.

2.2.2. Modified Mann-Kendall Test (Mann-Kendall Test with
Trend-Free Pre-whitening)

The Mann—-Kendall test assumes that the series is independent and the series
is not robust against autocorrelation. However, certain hydrological time series
may frequently display statistically significant serial correlation. This may lead to
a disproportionate rejection of the null hypothesis of no trend, whereas the null
hypothesis is actually true. Therefore, the effect of serial correlation is a major source
of uncertainty in testing and interpretation trends. To eliminate the influence of serial
correlation, “pre-whitening” was proposed by Von Storch [38] to remove the lag
one serial correlation (r1) from the time series. This method has been applied in an
increasing number of studies [23,26,39].
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To determine whether the observed dataset is serially correlated, the significance
of the lag-1 serial correlation (r1) should be tested at the 0.10 significance level. rq is
calculated by using the following Equation [23,26]:

. ﬁﬂ%}k 7(1361' —X) (iCierk —X) ©)
aiy (Xi —X)

If % V=2 <y < % V=2 the time series is assumed to be independent

at the 0.10 significance level and can be subjected to the original Mann—Kendall test.
Otherwise, the effect of serial correlation should be removed from the time series
by pre-whitening prior to application of the Mann-Kendall test. The Mann—-Kendall
test is then used to detect trends in the residual series. The new time series is
obtained as [40].

x; = x; — (B x i) )

The r; value of this new time dataset is calculated and used to determine the residual
series as:
Vi=x—r x—xi (8)

The value of 3 X i is added again to the residual dataset as:

yi =y;+ (B i) ©
The y; series is then subjected to trend analysis.

2.2.3. Double Mass Curve

Double mass curve analysis is a simple and practical visual method widely
used in the study of the consistency and long-term trend test of hydrometeorological
data [41]. This method was first used to analyze the consistency of precipitation
data in Susquehanna watershed, Pennsylvania, USA [42]; a theoretical explanation
was later reported [43]. The theory of the double mass curve is based on the fact
that a plot of two cumulative quantities during the same period exhibits a straight
line if the proportionality between the two remains unchanged; the slope of the line
represents the proportionality. This method can smooth a time series and suppress
random elements in the series; thus, it can show the main trends of the time series. In
the last 30 years, Chinese scholars analyzed the effects of soil and water conservation
measures and land use/cover changes on streamflow and sediment by using this
method and have achieved good results [44]. In the present study, double mass
curves of sediment versus streamflow were plotted for the different periods to detect
the relationship change before and after transition years. The appearance of the
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inflection point denotes that the relationship between the sediment and streamflow
begins to change significantly [44].

3. Variation of Streamflow and Sediment Load

3.1. Overall Change of Streamflow

In this study, we defined the northern rivers and southern rivers as those north
and south of the eastern monsoon zone in China, respectively. Therefore, the northern
rivers include the YRB, HRB, LRB, SRB, and HURB; the southern rivers include the
Pearl River Basin (PRB), YARB, and Min River Basin (MRB); and the western rivers
include the Tarim River Basin (TRB), HIRB, LCRB, and YZRB. Based upon the years
of average runoff (Table 2), the order of runoff in the southern rivers was YARB
(8944.8 x 108 m3) > PRB (2166.4 x 108 m®) > MRB (532.7 x 10% m3); that in the
northern rivers was SRB (404.7 x 108 m3) > YRB (299.2 x 108 m?®) > HURB (266.9 x
108 m3/a) > LRB (29.3 x 10® m3) > HRB (18.1 x 10® m3); and that in the western
rivers was YZRB (312.5 x 108 m3) > LCRB (247.3 x 10® m3) > TRB (157.3 x 108 m?) >
HIRB (44.0 x 108 m3). It should be noted that Xiangda Station, which represents the
LCRB, is located at the source area of LCRB; therefore, the streamflow was smaller
than that in the entire basin. Actually, the average streamflow in the downstream
region of the LCRB was 740.5 x 10% m3 [45].

Table 2. Average annual streamflow and sediment load.

Basins Water Discharge (108 m®) Sediment Load (10* t)
HRB 18.1 795.1
HURB 266.9 881.4
YRB 299.2 76,655
LRB 29.3 1112.9
SRB 404.7 598.8
MRB 532.7 573.3
PRB 2166.4 6274.6
YARB 8944.8 40791
HIRB 44.0 -
TRB 157.3 -
YZRB 312.5 1710.4
LCRB 247.3 341.0

Figure 2a,b show the cumulative curve of the streamflow in the major rivers.
The cumulative curves of YARB, PRB, MRB, LCRB, YZRB, TRB, and HIRB, presented
linear increasing trends with essentially no fluctuation or inflection point. Among
them, the runoff in the HIRB showed a significant increasing trend at 0.16 x 108 m3/a,
P <0.001. That of other basins fluctuated near the mean level, as shown in Figure 3;
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the interdecadal anomalies are shown in Table 3. For the northern rivers, the
cumulative curve of streamflow in HURB presented complicated changes. The
overall direction was a straight line, indicating severe fluctuation on the interannual
scale, and no obvious trend was found. The other northern rivers generally presented
convex curves or lines, indicating that runoff in these rivers showed decreasing trends
(Figure 3). As shown in Table 4, the order of decrease rate was YRB (—7.25 x 108 m3/a,
P <0.001) > SRB (—3.32 x 108 m3/a, P <0.001) > HRB (—0.69 x 108 m3/a, P <0.001) >
LRB (—0.48 x 108 m3/a, P < 0.001).

3.2. Overall Change in Sediment Load

Figure 2c,d show the cumulative curve of the sediment load in the major rivers.
No obvious convex state was presented in those of LCRB and YZRB, which means
the sediment discharge variation had no significant trend. The cumulative curve of
sediment load in other rivers showed obvious convex shapes, which denote that the
sediment had different degrees of gradual reduction. In particular, after 2000, the
decrease was between 59.1% and 98.7% (Table 3). In the southern rivers, the decrease
in the 2000s was between 59.1% and 63.4%, with YARB showing the largest value.
In the northern rivers, the decrease was between 59.4% and 98.7%; LRB and HRB
were reduced by 97.6% and 98.7%, respectively (Table 3).
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Figure 2. Cumulative curves of (a), (b) water discharge and (c), (d) sediment
discharge in major basins in China, during 1950-2012.
3.3. Pattern of Changes in Streamflow and Sediment Load

Figures 3 and 4 show respectively the temporal variation and double mass
curves of sediment load and streamflow in the 12 major rivers in China. On the whole,
the variation of streamflow versus sediment can be divided into three categories. In
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the first, the streamflow was stably maintained, but the sediment load was reduced
(HURB, YARB, MRB, PRB). In the second, the streamflow and sediment load were
both reduced (YRB, LRB, HRB, SRB). In the third, both water and sediment discharge
remained stable (LCRB, YZRB).

Table 3. Interdecadal anomalies of water discharge and sediment load. The
reference value is the average value during the 1950s to 1960s.

Change in Water Discharge (%) Change in Sediment Load (%)
1970s  1980s  1990s  2000s 1970s  1980s  1990s  2000s

HRB -18.6 -55.9 -56.4 -84.6 -35.0 -77.5 —77.2 -98.7
HURB  -27.8 0.1 —45.5 -6.5 —43.4 —46.8 -73.7 —-69.6
YRB -36.4 —41.5 -71.2 —67.5 -26.0 —47.3 —67.8 -88.7
LRB -56.9 -36.8 —27.3 —62.8 -90.2 -80.3 -59.9 -97.6

Basins

SRB -31.6 2.9 —4.6 —43.4 -21.3 7.7 -19.6 -59.4
MRB -1.7 2.6 42 5.4 -1.6 -13.4 —49.0 -63.4
PRB 11.2 —4.0 13.3 -6.4 10.9 14.7 44 -59.1
YARB 6.1 -0.9 5.8 -5.7 -13.0 -10.9 —29.7 -63.1
YZRB 6.6 -14.2 —4.5 52 -14.9 -24.0 -5.2 -

LCRB -14 19.3 1.7 14.1 57 39.4 -14.4 -

Table 4. Results of Sen’s slope estimator and the Z value by using linear regression
and the Mann-Kendall test, respectively.

Basins Water Discharge (108 m3) Sediment Load (10% t)
Slope z Significance  Slope Z Significance
HRB —0.69 —6.96 ** P <0.001 —4696  —6.73** P <0.001
HURB —1.50 —1.49 P>0.1 —2535  —542* P <0.001
YRB —7.25 —6.01 ** P <0.001 —2300 —6.58 ** P <0.001
LRB —0.48 —3.2* P <0.01 —55.33  —4.90* P <0.001
SRB —3.32 —3.37** P <0.001 —8.44 —4.11* P <0.001
MRB —0.53 —0.58 P>01 —9.74 —4.10** P <0.001
PRB —2.04 —0.98 P>01 -7749  —331* P <0.001
YARB -5.72 —0.36 P>01 —6000 —6.73 ** P <0.001
HIRB 0.16 2.81*% P <0.01 — - -
TRB 0.10 0.80 P>0.1 — - -
YZRB 0.20 0.40 P>0.1 6.12 0.47 P>0.1
LCRB 0.61 1.58 P>01 —0.96 —0.67 P>0.1

Note: “*” and “**” mean the correlation coefficient reach the significance level of 0.01 and
0.001, respectively.

3.3.1. Streamflow Remained Stable and Sediment Load Reduced

In the HURB, the streamflow and sediment discharge experienced continuous
declines before 1978 (Figures 3a and 4a). Since the early 1980s, and particularly in
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the 1990s, an obvious decrease in sediment discharge occurred. This result was due
mainly to the effects of soil and water conservation projects in the HURB with areas
of 1.53 x 10* km? and 1.04 x 10* km? in the 1980s and 1990s, respectively. Shi [24]
reported that the soil erosion amount of the small watershed in the upper reaches of
the Huai River was reduced 77%-85% after implementation of engineering projects.

5 1000 8 16000
000 (a) HURB y=-150x+314.17 (b) YARB y=-572x+9127.9
ﬁ Z=-1.49, P01 o Z=-036,7>0.1 Z
T 3750 v=-2535c+16981 750 & = 6 E 12000 <
< 7 =542, P<p.001 ] s
] P 3
2 2500 2 E R - so00 E
g O F]
2 2 2 =
2 ;
£ 250 ; 2 3 1958 19641968 L ao00 g
@ ; % y=-0.06x+5.7074 z
! ¥ Z=-6.73. P<0.001 2003
0 . . . . - ] 0 ; : : : . —L ¢
1950 1960 1970 1980 1990 2000 2010 1950 1960 1970 1980 1990 2000 2010
3000 1200
’ (c)MRB ¥=0.53x | 54931 16000 @ PRB =T aE] M0 -
z y=-974x+ssa9L £ 098 201 T s = -7749x + 89867 ¢ 7 =-0.98, F>0.1 £
2 2250 77z 41, P<0.001 [900 » B 12000 1 7 331, B0 =
g S :
] % 3 @
T 1500 A F600 5 3 8000 — 2200 £
: -
£ 2 =z g
3 S E 5
5 750 A r300 g 5 4000 o0 2
73 & 3 a
Fon =
=
0 - - - : : =L 0 i : ' " : — 0
1950 1960 1970 1980 1990 2000 2010 1950 1960 1970 1980 1990 2000 2010
8000 80
2 (e) YRB ¥ = -725x+ 53846 1240 () 1IRB -0.69x = 44.263 =
7 =601, P<0,001 T s 1967 Z=-6.96, P<0.001 z
= 304 ¥=-023x+ 146261 900 5 T 6000 A 1974 v=-46.96x | 25794 | G0 S
E 465 Z = -6.58, P<0.001 S Z=-6.73, P<0.001 =
3 1961 e 32 &
2 20 41l 600 & 5 4000 Lao 3
= = 5
Z 10 F300 5 5 2000 r 20 g
@ E @ Z
E -3
0 0 0 0
1950 1960 1970 1980 1990 2000 2010 1950 1960 1970 1980 1990 2000 2010
12000 120 2000 = - 1200
{g) LRB y=-0,48x + 45713 . (1) SRB ¥y=-332x+ 51941 _
= L P<0.01 T oo y=-8.4dx | 880,97 £ -3.37, £<0.001 =
& 9000 A =29941- 90 % B 1500 { z=-4.11, P<0.001 F 900 2,
=1 749, P<0.001 = = i ]
3 P %
£ 6000 A Feo = £ 1000 A 1380 F600 35
H 1965 2 8 = 4
H s / 1986 2000 N ) 35
= 3000 Pt F30 5 3 500 4 ! et S - 300 ]
E 2
0 0 0 T . . : ! —L 0
1950 1960 1970 1980 1990 2000 2010 1950 1960 1970 1980 1990 2000 2010
1200 : — 800 3000 800
(i) LCRB y=006lx+225.89 (i) YZRB »=0.20x+305.91
B | y=-096: + 3683 Z=1.58,P>0.1 | a5 T 6126+ 1532.8 Z=0.4, P01 - T
3 07 z=0enrol 5 5 00097, gm0l g
3 g 2 4000 5
£ sz 3
Z 57 2000 A 3
#h ; A [ é
9 . ' : y =4 0 . . : T : 0
1950 1960 1970 1980 1990 2000 2010 1950 1960 1970 1980 1990 2000 2010

Figure 3. Interannual variability of streamflow and sediment load in major basins
in China during 1950-2012. Blue and red lines represent changes in water discharge
and sediment discharge, respectively.
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Figure 4. Double mass curve of streamflow versus sediment load.
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In the YARB, the streamflow variation was relatively stable; however, the
sediment load decreased significantly (Figures 3b and 4b). The sediment yields
in 1956, 1958, and 1963-1968 were obviously high, which is likely attributed to
large-scal edeforestation activities such as “Devastating Forests for Arable Land”.
After 1969, the sediment load value suddenly dropped. This result is likely attributed
to the Danjiangkou Reservoir operation that began in 1968, which intercepted a
large amount of sediment. After 1989, the sediment yield decreased again, which
could have been caused by three aspects. Firstly, a series of ecological engineering
projects was conducted since 1982, particularly the Changzhi Project launched in 1989.
Secondly, the reservoirs were constructed in the mainstream and tributaries of the
Yangtze River. Thirdly, the amount of sand dredging increased annually. The total
amount in 1990-2002 was 5 x 107 t. After 2003, the sediment load decreased again,
which was mainly caused by operation of the Sanxia Reservoir in 2003. In 2012,
sedimentation in Sanxia Reservoir reached 14.37 x 108 .

For MRB, as observed by Zhugqi Station, sediment load changed with streamflow
variation before 1985, although the amplitude of the sediment was larger than that of
the streamflow (Figures 3c and 4c). After 1985 and 1993, we detected two distinct
decreasing processes obviously related to reservoir construction such as the Shaxikou
hydropower station in 1987, Fancuo Dam in 1988, and the Shuikou hydropower
station in 1993. In particular, the sedimentation of Shuikou Dam accounted for 86%
of the total amount of sediment in the MRB. An additional factor is that the annual
sand dredging amount in Mawei near Shuikou Dam was 1 x 107 t after the late
1980s. The streamflow in Gaoyao Station of PRB was stable, although the sediment
load decreased significantly (Figures 3d and 4d). Before 1983, the sediment load
fluctuated with streamflow change and maintained a consistent pace. In 1983-1991,
the sediment load increased obviously, which may related to the construction of
multiple reservoirs. Since 1994, the sediment load presented a sharp decline, which
is mainly attributed to the sediment-retaining functions of reservoirs and dams such
as Yantan Reservoir in the Hongshui River (operated in 1993) and Longtan Reservoir
(operated in 2003).

3.3.2. Streamflow and Sediment Load Reduced Together

In the YRB, HRB, LRB, and SRB, the water and sediment discharge showed
clear downward trends. In YRB, as observed by Linjin Station, the sediment loads
in 1961-1965, 1980-1988, and 20002012 were lower than the mean level (Figures 3e
and 4e). The low point in 1961 reflected the operation of Sanmenxia Reservoir, which
began to retain water and sediment. In 1965, the operation mode of this reservoir
changed to begin storing clear water and releasing muddy sediment; therefore, the
sediment load recovered slightly. After 1980, the sediment load reduced again, with
the following possible causes: Firstly, the water diversion project began operation,
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which reduced the streamflow and sediment discharge. Secondly, the soil and water
conservation projects in the upstream function are functioning efficiently; thus, the
water discharge is reduced in the lower reaches. Thirdly, the rainfall is concentrated
mainly in the midstream region with less soil loss area; thus, the sediment is reduced
downstream. In the early 2000s, the sediment and streamflow reduced again, mainly
due to the water diversion projects and water reservoirs operating in the upstream
region, such as Xiaolangdi Reservoir in 1999.

In the HRB, the sediment and streamflow after the 1980s was maintained at
relatively low levels, the sediment load approached zero since 2000 (Figures 3f and 4f).
The abnormally high sediment load in 1967 and 1974 was due to the desilting effect
of Guanting Reservoir during the flood season through high rainfall and runoff. In
the LRB, the sediment and water discharge presented periodic changes (Figures 3g
and 4g). Before the 1960s, strong rainfall caused severe soil erosion, thereby inducing
sediment load increases. After 1964, the sediment load decreased significantly due
to the operation of Hongshan Reservoir in 1962. Until 1999, the sedimentation in
Hongshan Reservoir reached 9.41 x 108 m?, accounting for 58% of the total storage
capacity. Severe fluctuation of sediment and streamflow occurred in 1985-2000,
which was caused mainly by rainfall.

In the SRB, the streamflow and sediment discharge decreased at the same
pace (Figures 3h and 4h). On the interdecadal scale, the streamflow and sediment
discharge experienced “low-high-low” alternating variation processes in the 1970s
to 1990s, which were mainly affected by precipitation. In addition, agricultural and
industrial development since the beginning of the 1960s also accelerated the water
consumption for industrial and residential purposes. Although some large- and
medium-sized reservoirs are located in the upstream regions of Songhua River, the
reciprocal relationship between runoff and sediment has been relatively good, and no
obvious anomalies have been detected. This result occurred essentially because the
vegetation coverage in the source area is relatively high, and density of population is
low; thus, the river is seldom disturbed by human activities.

3.3.3. Both Streamflow and Sediment Discharge Remained Stable

Both streamflow and sediment discharge in the LCRB and YZRB maintained
stability. No significant upward or downward trends were detected, and fluctuations
of streamflow versus sediment have been essentially consistent (Figure 3i,j and
Figure 4i,j). Actually, the vegetation coverage is good, the population density in
the YZRB and LCRB is relatively low, and the level of economic development and
social construction is also relatively low. Thus; the streamflow and sediment are
seldom affected by human activities, and presented a good correlation among rainfall,
streamflow, and sediment.
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4. Influencing Factors of Streamflow Variation

4.1. Precipitation

In general, climate change is mainly characterized by temperature and
precipitation variability. Precipitation drives runoff and hence directly influences the
discharge of a river. Figure 5 shows precipitation changes in the major rivers and
in the entire country that occurred during the past 60 years. China’s precipitation
experienced a “decrease, increase, decrease, increase, decrease” pattern. The 1950s
was a rainy decade; the average rainfall reached 820.3 mm, which was the highest
value recorded in several decades. After 1960, precipitation began to decrease. Levels
were low in the 1980s and increased slightly in the 1990s. After 2000, the overall
trend obviously reduced. The SRB and LRB experienced a rainy period in the 1950s
that decreased in the 1960s and 1970s. The 1980s and 1990s presented slight increases
that decreased again in the 2000s. Precipitation in the YRB essentially showed a
decreasing trend by decade with lowest values occurring in the 1990s. After 2000,
however, the level increased slightly. Rainfall in the TRB and HIRB increased by
decade; however, the YZRB and LCRB presented decreasing trends since the 1960s.
For the southern rivers including YARB, MRB, and PRB, changes in precipitation
were consistent. Levels were lowest in the 1950s, increased in the 1960s and 1970s,
and fell slightly in the 1980s before returning to the less-rainfall stage in 2000.
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Figure 5. Interdecadal rainfall changes in the main basins in China during
the 1950-2012.

Since the Reform and Opening-up policy was implemented in 1979, the demand
for water resources increased substantially, and the streamflow in some rivers showed
different degrees of decreasing trend (Figure 3). Therefore, we divided the streamflow
sequence into two periods of before and after 1980 to explore the relationship between
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streamflow and precipitation (Figure 6). The subsection fitting lines of precipitation
versus runoff represent the runoff depth produced by rainfall in 1950-1979 and
1980-2010, respectively. Assuming that the precipitation had no significant change
on the basin scale, changes in the relationship of precipitation and streamflow can
reflect the influence of the underlying surface on the original hydrological process.
In the northern rivers, the fitting lines of rainfall-runoff in the HRB (Figure 6a), YRB
(Figure 6¢), and SRB (Figure 6e) moved downward during 1980-2010 comparing
with that occurring in 1950-1979.
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Figure 6. Subsection fitting lines of precipitation versus streamflow in 1950-1979
versus those in 1980-2012. Solid and dotted lines represent lines in 1950-1979
and 1980-2012, respectively. Blue and red points represent data of 1950-1979 and
1980-2012, respectively.
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This downward movement denote the capacity of runoff yield decline. For
the HURB (Figure 6b) and LRB (Figure 6d), the fitting lines moved upward, which
illustrates that the capacity of runoff yield was enhanced. In the southern rivers,
the runoff capacity of the PRB declined after 1980 (Figure 6g), whereas the change
of MRB was not obvious (Figure 6f). The YARB also remained stable (Figure 6h).
The streamflows of the TRB and HIRB