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Water Resource Variability and
Climate Change
Yingkui Li and Michael A. Urban

Abstract: A significant challenge posed by changing climates is how water cycling
and surficial and subsurface water availability will be affected at global and regional
scales. Such alterations are critical as they often lead to increased vulnerability in
ecosystems and human society. Understanding specifically how climate change
affects water resource variability in different locations is of critical importance to
sustainable development in different parts of the world. The papers included in
this special issue focus on three broad perspectives associated with water resource
variability and climate change. Six papers employ remote sensing, meteorological
station-based observational data, and tree-ring records to empirically determine
how water resources have been changing over historical time periods. Eight of the
contributions focus on modeling approaches to determine how known processes are
likely to manifest themselves as climate shifts over time. Two others focus on human
perceptions and adaptation strategies in the midst of unstable or unsettled water
availability. The findings and methods presented in this collection of papers provide
important contributions to the increased study and awareness of climate change on
water resources.

Reprinted from Water. Cite as: Li, Y.; Urban, M.A. Water Resource Variability and
Climate Change. Water 2016, 8, 384.

1. Introduction

Climate change and increased anthropogenic pressure on earth–atmosphere
interactions affect water quantity, quality, and water-related processes, such as
sediment yield, on local, regional, and global scales [1–3]. Recent decades have
seen continuously increasing temperatures in most parts of the world, and changes
in precipitation patterns have increased the frequency of extreme climate events
such as drought and flooding [4]. The impact of changing baseline conditions
coupled with increased variability can be especially complicated in regions with rapid
changes in population, land development (especially urbanization), and economic
disruptions. While public discussions often focus more on temperature than water
availability, ecosystems and human society are highly vulnerable to water stress [5–8].
Understanding the mechanisms and geographic patterns by which anthropogenic
climate change is impacting water resource variability is of critical importance to
sustainable development, environmental management, and human health.
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A variety of approaches have been used to examine the relationships between
atmospheric variability and surficial water resources. Instrumental data collected
from meteorological and hydrological gauging stations can be used to investigate
altered hydrologic regimes over the timespan of several decades to a few centuries
in certain areas. Relatively long-term (hundreds to thousands of years) climate
and environmental records can be reconstructed using various proxies such as tree
rings, sediment cores, ice cores, and landform features [9,10]. More recently, the
availability of various remote sensing datasets, such as Landsat/MODIS (Moderate
Resolution Imaging Spectroradiometer) imagery, ICESAT (Ice, Clouds, and Land
Elevation Satellite) altimetry, GRACE (Gravity Recovery and Climate Experiment)
gravity, and LiDAR (Light Detection And Ranging) measurements have facilitated
remote sensing-based approaches to quantifying water resource changes [11–13].
Computational modeling approaches, ranging from global circulation models
(GCMs) to regional or watershed hydrological models, are serving to simulate and
forecast the projected nature of climate variability on water resources [14,15]. Social
scientists have also been investigating how groups or local communities perceive
the impacts of climate change and climate vulnerability in order to implement better
adaptation practices and sustainable development in coping with changing water
resources of different regions [16,17].

The papers included in this special issue address three broad perspectives
associated with water resource variability and climate change: (1) the quantification
of water resource variability altered by changing climates using remote sensing
assessment, meteorological station-based observational datasets, and tree-ring record
reconstruction; (2) the simulation of such impacts on water resource variability using
modeling approaches; and (3) evaluating social perceptions and adaptation strategies in
the face of unstable water resource variability. The following section summarizes the
individual contributions within each perspective.

2. Contributions

Six of the papers assess the various impacts of climate change on water resources
using a variety of datasets, empirical observations, and proxies. Li et al. [18] examine
surface area fluctuations occurring in 10 major lakes in the arid province of Xinjiang,
China, from 2000 to 2014 using MODIS time series imagery. The authors develop
a classification method to accommodate varied spectral characteristics of water
pixels and derived water bodies for April, July, and September in each year for
10 major lakes (>100 km2) in the study area. Lakes in the lowland (close to urban
and agriculture areas) showed a shrinking trend, while mountain lakes have diverse
changing patterns (some shrinking, some expanding), and lakes on the Tibetan
Plateau exhibited significant expanding trends. By observing varied patterns of lake
surface changes across the region, the authors conclude that observed lake expansion
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is likely driven by rising temperature, leading to accelerated melting of snow and
glaciers in high mountains and on the Tibetan Plateau, and increased precipitation in
this region (especially in 2010), whereas the shrinking of some lakes is likely related
to anthropogenic utilization based on agricultural and industrial needs.

Ning et al. [19] analyze recent changes in water resources and grassland in the
Hulun Lake region, a semi-arid region in northeastern China, using monthly GRACE
and Tropical Rainfall Measuring Mission (TRMM) data. Results indicate decreasing
trends in overall water storage and precipitation between 2002 and 2007, followed
by increasing trends in the period from 2007 to 2012. Water storage trends are mainly
correlated to precipitation and temperature patterns. As a result, a large proportion
of grassland recovered to its normal state in 2008–2012, and only a small proportion
of grassland (16.5% of the study area) is classified as degraded. The authors conclude
that degraded grassland areas in the region are more vulnerable to climate variability
and require protective strategies to prevent further degradation.

Buma et al. [20] assess observed changes in hydrological conditions of Lake
Chad basin based on the total water storage (TWS) derived from GRACE, lake levels
taken from satellite altimetry, and water fluxes and soil moisture obtained from
the Global Land Data Assimilation System (GLDAS). The authors observe a similar
pattern between TWS and lake level changes and subsurface water volume changes.
The derived values for subsurface water volume changes are found to be consistent
with groundwater outputs calculated from the WaterGAP Global Hydrology Model
(WGHM). By utilizing recently developed remote sensing datasets, this study
provides an alternative means of generating information for the management of
water resources in the Lake Chad basin.

Jiang et al. [21] summarize the changing patterns, causes, and implications
of surface water discharge and sediment load in Chinese rivers from 1956 to
2012 based on monthly hydrological and daily meteorological data obtained from
725 rain gauge stations across the country. Numerous patterns can be observed
during this period. Streamflow discharges manifest a decreasing trend, a relatively
stable state, and an increasing trend within northern, southern, and western China,
respectively. Excepting the Lancang River and Yarlung Zangbo River basins,
sediment loads in most Chinese river basins show gradually decreasing trends,
especially after 2000. Although patterns of streamflow and sediment load are affected
by the interaction of varied meso-scale climate systems—including East and South
Asian monsoons and westerlies—the authors determine that water consumption
for industrial and residential purposes, soil, and water conservation engineering,
hydraulic engineering, and land surface changes induced by other factors are likely
the main causes of observed patterns of streamflow and sediment reduction.

Wang et al. [22] investigate the impact that climate change has had on the
duration of flood seasons in the Fenhe River, China, from 1957 to 2014, based on
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daily precipitation data from 14 meteorological stations in the basin and an analysis
of the variations in the onset and retreat dates of yearly flood seasons. The results
show that the observed duration of the flood season has been extended since 1975.
In particular, the onset of floods has advanced 15 days, although the retreat date
is relatively stable. Based on these results, the authors recommend corresponding
measures to adapt to the flood season variations.

Kwak et al. [23] conduct a drought analysis using a long-term streamflow record
reconstructed using tree ring indices within the Sacramento Basin, California, USA.
By first identifying annual streamflow patterns of the Sacramento River from 1560 to
1871 and then analyzing the hydrological drought return period in this river basin,
the authors argue that drought with a 20-year return period can be considered a
critical indicator of drought for water shortages in the Sacramento River basin.

Eight of the papers aim to simulate the impact of climate change on
water resource variability using various climatological and hydrological models.
Pechlivanidis et al. [24] investigate the impact of changing climates have on
the hydro-climatology of the Indian subcontinent by comparing current and
projected future water fluxes from three RCP (Representative Concentration
Pathway) scenarios (RCP2.6, RCP4.5 and RCP8.5). These results are used to depict
expected changes in the annual flow cycles of three major rivers from different
hydro-climatic regions, while acknowledging that conclusions can be significantly
influenced by statistical uncertainty embedded in the RCP scenarios. Based on
this study, the models project a gradual increase in temperature and uneven
changes (ranging from −20% to +50%) in long-term average precipitation and
evapotranspiration. Potential surface runoff is also expected to change anywhere
from −100% to +100%. The analysis of annual cycles for the three selected regions
show that the impact of climate change on discharge and evapotranspiration varies
between seasons, and the magnitude of change is primarily dependent on the
hydro-climatic gradient in different regions.

Li and Gao [25] simulate the impact of various precipitation change scenarios
on runoff and sediment yield in a hilly-gullied watershed typical of the Loess Plateau
in China using the Soil and Water Assessment Tool (SWAT). This study indicates
that runoff and sediment yield both increase with increasing precipitation, while
the variation in sediment yield is more sensitive to smaller rainfall events. The
authors determine that under these conditions, annual runoff and sediment yield
fluctuate greatly and the magnitude of the variations was especially amplified
when precipitation increased by 20%. Overall escalation in runoff and sediment
caused by increased precipitation is greater than corresponding decreases coincident
with reduced precipitation, and runoff is the more sensitive variable compared to
sediment yield.
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Ligaray et al. [26] assess the hydrological response of climate change in the
Chao Phraya River Basin, Thailand. Streamflow variations were simulated using a
combination of SWAT and meteorological data from 2003 to 2011 for various climate
sensitivity and greenhouse gas emission scenarios. Simulation results reveal that
streamflow variations correspond to the changes in rainfall totals and intensity, while
increased air temperature likely leads to future water shortages. The simulation
also suggests that high CO2 concentration drives plant responses that may lead
to a dramatic increase in streamflow. Specifically, increased streamflow variations
to 6.8%, 41.9%, and 38.4% were simulated for the three greenhouse gas emission
scenarios (A1B, A2, B1) in the reference period of 2003–2011.

Mahmood et al. [27] investigate the potential impacts of climate change on
the water resources of the Kunhar River basin, Pakistan under A2 and B2 climate
scenarios. Using the HEC-HMS (Hydrologic Engineering Center’s Hydraulic
Modeling System) hydrological model, the authors simulate streamflow for the
periods: 2011–2040, 2041–2070, and 2071–2099, and compare them with the baseline
period (1961–1990) to explore changes in different streamflow variables. The results
indicate an overall increase in mean annual flow projected under both A2 and B2
scenarios, but with a high degree of variability. Stream discharge increases mainly
in summer and autumn, but decreases throughout the spring and winter months.
High and median flows are predicted to increase, with peak discharges shifting from
June to July, while low flow conditions are projected to decrease. The Kunhar basin
will face a higher degree of variability—both more floods and droughts—by the end
of the 21st century, due to the projected increase in high flow, the decrease in low
flow, and greater variations in peak discharges. This study highlights key impacts
of climate change on water resources to help develop suitable policies for water
resource use and management in this river basin.

Hesse and Krysanova [28] simulate the impacts of climatic shifts and changing
management practices on water quality and in-stream processes in the Elbe
River Basin using a semi-distributed watershed model (SWIM) with implemented
in-stream nutrient (N+P) turnover and algal growth processes. The set of modeled
climate scenarios show a projected increase in temperature (+3 ◦C) and precipitation
(+57 mm) on average until the end of the century, leading to varied changes
in discharge (+20%), nutrient loads (NO3-N: 5%; NH4-N: 24%; PO4-P: +5%),
phytoplankton biomass (4%), and dissolved oxygen concentration (5%) in the Elbe
River Basin. The authors utilize the model to examine the ways in which changes in
climatic variables fundamentally impact the ways by which land use and nutrients
are managed to reduce nutrient emissions to the river.

Liu and Chan [29] assess impacts on water quality in the Danshuei
River estuarine system in northern Taiwan using a coupled three-dimensional
hydrodynamic and water quality model driven by changes in climatic variables. The
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model is calibrated and validated using observed data and then applied to simulate
water quality projections under various climate change scenarios. Results indicate
that dissolved oxygen concentrations are likely to significantly decrease in the
Danshuei, whereas nutrients will increase in response to expected climate changes.
In particular, dissolved oxygen concentrations will be reduced to less than 2 mg/L
in the main stream, failing to meet accepted water quality standards. This study
suggests an appropriate strategy for effective water quality management in estuarine
systems such as the Danshuei is needed to adapt to the water quality changes likely
to accompany anthropogenic climate change.

Wei et al. [30] estimate flood risk that is likely to occur under the heightened
hydrologic variability driven by climate change in the Tsengwen River Basin, Taiwan,
using a SOBEK model (Deltares, The Netherlands). Simulated results indicate that
the discharge of the Tsengwen is at increasing risk of exceeding the designed
maximum streamflow at three stations from different areas of the watershed for
three projected periods of 1979–2003, 2015–2039, and 2075–2099. Model results
indicate that the exceedance frequency for the designed flood is 2 in 88 events in
the base period (1979–2003), 6 in 82 events in the near future (2015–2039), and 10 in
81 events at the end of the century (2075–2099).

Okamoto et al. [31] turn our attention from streamflow to water fluxes driving
hillslope processes. They investigate the optimal soil hydraulic parameters for
simulating unsaturated flow based on a case study from the island of Miyakojima,
Japan. The authors optimize the parameters for root water uptake and then examine
the influence of soil hydraulic parameters on simulations of evapotranspiration. From
there, they compare volumetric water content between the simulation results and
those using pedotransfer estimates obtained from ROSETTA software. The resulting
comparison highlights the importance of using soil hydraulic parameters based on
measured data to simulate evapotranspiration and unsaturated water flow processes.

The last two papers in this special issue examine the ways by which different
perceptions of climate change and adaptation strategies impact management and
water resource variability. Ndamani and Watanabe [32] analyze farmer perceptions
of adaptation practices using semi-structured questionnaires and focus group
discussions of 100 farmer-households from four communities in the Lawra district of
Ghana. The results show that adaptation is largely driven by response to dry spells
and droughts (93.2%) rather than floods. Farmers in the region ranked improved crop
varieties and irrigation as the most important adaptation measures, but largely lacked
the capacity to implement these adaptation practices. The study also revealed that
unpredictable weather, high cost of farm inputs, limited access to reliable weather
information, and lack of water resources were the most critical barriers to successful
adaptation. This study highlights the critical linkage between climate, hydrology,
perception, and environmental management.
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Shandas et al. [33] present a study of differing perspectives from the field
on stressors and strategies for managing urban water scarcity in two urbanizing
regions of the western US: Portland, Oregon and Phoenix, Arizona. The results show
that long-term drought, population growth, and outdoor water use are the most
important stressors to urban water systems, and indicate more agreement across
cities than across professions in terms of effective strategies, suggesting that land-use
planners and water managers remain divided in their conception of the solutions
to urban water management. The authors also recommend potential pathways for
coordinating the fields of land and water management to streamline strategies for
urban sustainability.

3. Conclusions

This collection of papers focuses on a range of research topics influenced by the
overriding hydrologic mechanisms associated with anthropogenic climate change
and associated water resource variability. This includes a wide range of problems
ranging from changes in surficial water levels, streamflow, sediment yields, and water
quality in lakes, rivers, watersheds, and estuarine systems. The authors have brought
a number of methodological tools to bear on these problems by examining various
datasets and techniques, such as remote sensing, meteorological station-based
observational data, tree-ring records, climate forecasts, and hydrological models
used to simulate climatic impacts on streamflow, sediment yield, and water quality.
Because consequent environmental problems and strategies for coping and mitigating
deleterious effects must be defined in a social context, it is also important to include
research examining perception, vulnerability, and adaptation. This collection of
16 papers emphasizes the importance of understanding the various interrelated
facets that changing climates have on water resource variability and how focused
investigations will help ground suitable strategies for mitigating and adapting to
anthropogenic climate change.
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MODIS-Derived Spatiotemporal Changes of
Major Lake Surface Areas in Arid Xinjiang,
China, 2000–2014
Qingting Li, Linlin Lu, Cuizhen Wang, Yingkui Li, Yue Sui and Huadong Guo

Abstract: Inland water bodies, which are critical freshwater resources for arid and
semi-arid areas, are very sensitive to climate change and human disturbance. In this
paper, we derived a time series of major lake surface areas across Xinjiang Uygur
Autonomous Region (XUAR), China, based on an eight-day MODIS time series in
500 m resolution from 2000 to 2014. A classification approach based on water index
and dynamic threshold selection was first developed to accommodate varied spectral
features of water pixels at different temporal steps. The overall classification accuracy
for a MODIS-derived water body is 97% compared to a water body derived using
Landsat imagery. Then, monthly composites of water bodies were derived for the
months of April, July, and September to identify seasonal patterns and inter-annual
dynamics of 10 major lakes (>100 km2) in XUAR. Our results indicate that the
changing trends of surface area of major lakes varied across the region. The surface
areas of the Ebinur and Bosten Lakes showed a significant shrinking trend. The
Ulungur-Jili Lake remained relatively stable during the entire period. For mountain
lakes, the Barkol Lake showed a decreasing trend in April and July, but the Sayram
Lake showed a significant expanding trend in September. The four plateau lakes
exhibited significant expanding trends in all three seasons except for Arkatag Lake
in July. The shrinking of major lakes reflects severe anthropogenic impacts due to
agricultural and industrial needs, in addition to the impact of climate change. The
pattern of lake changes across the XUAR can provide insight into the impact of
climate change and human activities on regional water resources in this arid and
semi-arid region.

Reprinted from Water. Cite as: Li, Q.; Lu, L.; Wang, C.; Li, Y.; Sui, Y.; Guo, H.
MODIS-Derived Spatiotemporal Changes of Major Lake Surface Areas in Arid
Xinjiang, China, 2000–2014. Water 2015, 7, 5731–5751.

1. Introduction

Inland water bodies are important parts of the hydrosphere, serving as an
essential source of freshwater for human consumption, agriculture, industry, and
other uses. Due to climate change, uneven distribution of precipitation, and human
activities, water resources show tremendous temporal variability worldwide [1].
Lakes and rivers are primary freshwater sources available to the local population
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and their livestock in arid and semi-arid areas [2,3]. Spatial dynamics and up-to-date
information on surface water resources are essential for understanding water
resource-related issues in these areas. Temporal water bodies that provide habitats
for plant and animal communities in these areas have rarely been included in global
datasets, such as the Global Lakes and Wetlands Database (GLWD) [4,5] and Vector
Map Level 0 (VMAP0) [6].

With the capability of synoptic view and repeated coverage of the earth’s
surface, satellite remote sensing is an effective means of extracting water bodies
across a variety of spatial and temporal scales. Due to their strong absorption in the
near-infrared (NIR) spectrum, optical remote sensing platforms, such as Landsat [7,8],
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) [9,10],
and Satellite Pour l’Observation de la Terre (SPOT) [11], have been used to map the
area of the water body at various spatial resolutions. However, the high costs, narrow
swath, and long revisit intervals of the medium- and high-resolution images limit
their applications on monitoring the dynamics of lake systems across large spatial
scales. Remote sensing data with high temporal resolution have the advantage of
documenting detailed water area variation. Time series data from satellite sensors,
such as the SPOT VEGETATION, Moderate Resolution Imaging Spectroradiometer
(MODIS), and Advanced Very High Resolution Radiometer (AVHRR), have been
applied to seasonal and inter-annual change detection of water bodies over large
areas [12–16].

One of the common image processing methods for extracting water extent
is based on a threshold of a water detection index. Spectral indexes, such as
Normalized Difference Water Index (NDWI) [17], Modified Normalized Difference
Water Index (MNDWI) [18], and Normalized Difference Pond Index (NDPI) [11],
have been developed for water detection using remote sensing imagery. NDWI
uses green band and near-infrared band to distinguish water from vegetation and
soil [17]. In order to enhance the ability of water detection, especially for areas
with built-up land in the background, the middle infrared band was integrated
into MNDWI and NDPI instead of NIR band in NDWI [11,18]. Built-up areas and
water bodies show discriminating spectral responses at the MODIS short-wavelength
infrared (SWIR) band. A Combined Water Index (CWI) combining SWIR’s and
NDVI’s ability to represent vegetation information was proposed for water body
identification using MODIS data [19]. In addition, spectral reflectance of water
shows spatiotemporal variability across different scenes and acquisition dates. Thus,
delineating water bodies using a standard threshold may become problematic in
large-area applications [20]. A strategy for threshold computation of different satellite
images is needed.

The Xinjiang Uygur Autonomous Region (XUAR), with a widespread area of
1,660,000 km2, is the largest autonomous region in China. There are 113 lakes with
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an area of >1 km2 in the XUAR. Many lakes are important wetlands for threatened
species, five of which are designated as the National Nature Reserves of China [21].
The water levels of inland lakes in XUAR are influenced by the runoff of their
inflowing rivers, and are sensitive to climate change and human activities altering
the rivers’ inflows [22]. It has been reported in past studies that the water extent has
been shrinking in past decades, causing severe environmental problems, such as land
desertification, salinization, vegetation degradation, water shortage, and biodiversity
loss in this arid/semi-arid area [22].

Several studies have examined changes of lakes in the XUAR using satellite
imagery, such as Landsat [22–24], SPOT VEGETATION [25], and MODIS [12,26] data.
Landsat TM imagery has been used to interpret changes in area of inland lakes in
Xinjiang over the period 1975–2007, but only selected lakes in spring and autumn
seasons were analyzed [22]. Comparing with nationwide lake surveys undertaken
in the 1960s–1980s, Ma et al. (2010) reported that 62 lakes vanished in the XUAR
from the 1960s to 2000s; one of the completely dried lakes is the Lop Nur Lake with
an original lake area of 5500 km2 [23]. Water extents were found to have decreased
significantly due to anthropogenic impacts, such as agricultural water consumption
and damming in this region [24]. The Ebinur Lake, the largest salt lake in the XUAR,
exhibited a significant inter-annual and inter-seasonal variation based on SPOT
VEGETATION data [25]. However, due to the large area of XUAR, previous studies
have mainly focused on selected water bodies and annual or seasonal temporal
intervals. The temporal fluctuations in surface area of major lakes were monitored
with MODIS data in XUAR, but only inter-annual variations were analyzed [12,26].
The temporal and spatial dynamics of lake surface areas across XUAR are rarely
documented in detail.

The purpose of this study is to examine the spatiotemporal variation of water
bodies from 2000 to 2014 based on MODIS time series data. Detailed objectives
include: (1) to develop an automatic approach to extract water bodies from MODIS
data; (2) to generate a 15-year water body mask and document the changes of
water extent; and (3) to examine the driving factors of the changes in major lakes in
the XUAR.

2. Study Area

The XUAR is located in north-western China and encompasses the Altay
Mountains, Junngar Basin, Tianshan Mountain, Tarim Basin, and Kunlun Mountains
from north to south (Figure 1). It is an arid and semi-arid area with mean annual
precipitation ranging between 100 and 200 mm [27]. Vast areas of the XUAR are
covered by grassland and desert [28]. Forests are sparsely scattered within high
mountains and along rivers. Oasis landscapes characterized by human settlements
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and agriculture lands are distributed within inland river deltas, alluvial-diluvial
plains, and along the edges of diluvial-alluvial fans.Water 2015, 7 5734 

 

 

 

Figure 1. Geographic location and topographic map of study area. The percentage 

coverage of water bodies was combined for April, July, and September from 2000 to 2014. 
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Among all the lakes in the XUAR, 10 lakes have areas larger than 100 km2. Their total area 

accounts for more than 80% of the lake surface area (Table 1) [26]. 

Table 1. Ten major lakes in the study area (with surface area >100 km2). 

Name 
Area 
(km2) 

Altitude 
(m) 

Mean Water Depth (m) Region Type 

Ebinur  673.46 194 1.2  Junggar Plain 
Manas  259.81 244 6 Junggar Plain 

Ulungur-Jili 1041.60 478 10.4 Junggar Plain 
Bosten 1004.33 1050 9 Tarim Transition 
Sayram 462.63 2072 46 Junggar Mountain 
Barkol 118.57 1577 0.6 Junggar Mountain 

Ayakkum 200.46 3876 10 Kumukuli Plateau 
Aqqikkol 168.93 4251 8 Kumukuli Plateau 
Arkatag 110.33 4713 8 Kumukuli Plateau 

Aksayquin 88.54 4844 8 Northern Tibet Plateau 

  

Figure 1. Geographic location and topographic map of study area. The percentage
coverage of water bodies was combined for April, July, and September from 2000
to 2014.

According to the topographic characteristics, lakes in the XUAR can be
categorized as four types [26]: (1) plateau lakes (>3500 m), with snow and glacier
ice melt and surface runoffs as their main charge; (2) mountain lakes (1000–3500 m),
with snow and glacier ice melt, underground runoff as their main influx; (3) plain
lakes (<1000 m), heavily influenced by human activities; and (4) transition lakes,
located at the transition area between mountains and plains.

Among all the lakes in the XUAR, 10 lakes have areas larger than 100 km2. Their
total area accounts for more than 80% of the lake surface area (Table 1) [26].
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Table 1. Ten major lakes in the study area (with surface area >100 km2).

Name Area (km2) Altitude (m) Mean Water
Depth (m) Region Type

Ebinur 673.46 194 1.2 Junggar Plain
Manas 259.81 244 6 Junggar Plain

Ulungur-Jili 1041.60 478 10.4 Junggar Plain
Bosten 1004.33 1050 9 Tarim Transition
Sayram 462.63 2072 46 Junggar Mountain
Barkol 118.57 1577 0.6 Junggar Mountain

Ayakkum 200.46 3876 10 Kumukuli Plateau
Aqqikkol 168.93 4251 8 Kumukuli Plateau
Arkatag 110.33 4713 8 Kumukuli Plateau

Aksayquin 88.54 4844 8 Northern Tibet Plateau

3. Materials and Methods

3.1. Remote Sensing Datasets

Terra MODIS images were selected as the main data source for monitoring water
body variation in XUAR. The MODIS Surface Reflectance (MOD09A1) dataset was
used to build an image time series from 2000 to 2014 [29]. It provides surface
reflectance at bands 1–7 with 500 m spatial resolution and eight-day temporal
resolution. The XUAR region is entirely covered by six tiles (h23v04, h23v05, h24v04,
h24v05, h25v04, and h25v05). Lakes in XUAR were relatively stable during the spring
and autumn seasons. In summer, some were influenced by extensive agricultural
irrigation and high evaporation. In winter, some of the water bodies were frozen
and may have caused high uncertainty in lake extent extraction. Therefore, we
downloaded MODIS data for the months of April, July, and September to analyze
the spatiotemporal dynamics of lake surface area. The Shuttle Radar Topography
Mission (SRTM) digital elevation model with a spatial resolution of 90 m was used
to correct the water body extraction affected by shadow and snow in mountainous
regions [14,30].

Landsat data of 30 m resolution was used to assess the accuracy of remote
sensing products with 250 m [31] and 1 km resolution [32]. In our study, Landsat TM,
ETM+, and OLI images were used to validate the results of water extraction from
MODIS data. A total of 71 Landsat image scenes (including Landsat 5 TM, Landsat 7
ETM+, and Landsat8 OLI_TIRS) were processed for the validation (Table 2).

The MODIS 500-m land-cover product (MCD12Q1) was used to identify
primary land covers in the study area [33]. The MCD12Q1 is produced using
an ensemble supervised classification algorithm with MODIS band 1–7 surface
reflectance, an enhanced vegetation index, and land surface temperature as the main
input. Post-processing refinements with ancillary datasets were also conducted.
The MCD12Q1 product of 2012 covering the study area was downloaded. With the
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International Geosphere-Biosphere Program (IGBP) classification scheme, the land
cover types were mapped and used to assess the impacts of human activities on lake
changes in this study.

Table 2. Landsat data used in our study.

Lake Ulungur Manas Bosten Ayakekumu

Sensors
Landsat5 TM Landsat5 TM Landsat5 TM Landsat5 TM

Landsat7 ETM+ Landsat7 ETM+ Landsat7 ETM+ Landsat7 ETM+
Landsat8 OLI_TIRS Landsat8 OLI_TIRS Landsat8 OLI_TIRS Landsat8 OLI_TIRS

Path/Row 143/27, 144/27 144/28 143/31 140/34

Date

7 July 2000 16 March 2000 25 March 2000 4 September 2000
24 September 2000 6 July 2000 31 July 2000 29 July 2001

13 April 2001 24 September 2000 17 September 2000 1 October 2001
27 July 2002 19 March 2001 1 August2006 11 April 2002

14 September 2002 10 April 2003 10 September 2006 1 August2002
10 April 2003 31 July 2006 14 April 2007 4 October 2002
24 July 2006 17 September 2006 27 July 2007 14 April 2003

17 September 2006 4 September 2007 13 September 2007 19 April 2005
6 April 2007 23 July 2009 2 May 2008 27 July 2006
23 July 2009 9 September 2009 16 July 2009 13 September 2006

18 September 2009 10 May 2011 3 April 2009 6 July 2007
10 May 2011 13 July 2011 6 July 2011 25 April 2010
13 July 2011 1 October 2011 24 September 2011 30 July 2010

15 September 2011 13 April 2013 22 April 2013 31 August2010
13 April 2013 2 July 2013 27 July 2013 8 May 2012
11 July 2013 4 September 2013 29 September 2013 7 August2013

29 September 2013 2 May 2014 31 August2014 24 September 2013
25 April 2014 21 July 2014 6 May 2014

3.2. MODIS-Based Water Body Extraction

In XUAR, large areas of deserts and bare rocks have high spectral responses in
short-wavelength infrared (SWIR) band [34]. Water usually has low reflectance along
the spectrum. In this study we use CWI to detect water bodies from MODIS data.
The computation formula of CWI is as follows [19]:

CWI = (NDVI + SWIR + A)× C (1)

NDVI =
b2 − b1
b2 + b1

(2)

SWIR =
b7
b7,

(3)

where b1, b2, and b7 represent the reflectance of band 1 (Red band, 620–670 nm),
band 2 (NIR band, 871–876 nm), and band 7 (SWIR band, 2105–2155 nm) of the
MOD09 data, respectively. A and C are correction factors to adjust the data ranges of
CWI values. They are empirically determined by comparing CWI values between
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water pixels and background in the study area. We set A as 0.4 and C as 100 in our
study [19]. Figure 2 illustrates the procedure for extracting water bodies based on
MODIS data.
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Figure 2. Workflow for water body extraction in our study.

The MODIS tiled data in Sinusoidal projection were mosaicked, re-projected
using the nearest neighbor re-sampling method, and saved as GeoTIFF format using
the MODIS Reprojection Tool. The DEM data is resampled to the pixel size of MODIS
to refine the water detection results in the following steps.

The quality assessment information of MODIS data was used to exclude pixels
labeled as cloudy or snow/ice. Then CWI was calculated for each MODIS tile. The
atmosphere condition, water depth, and chlorophyll content all have influence on
the spectral features of water on remote sensing images. A single threshold value
derived for one image might not be suitable for another. Since there is no standard
threshold for the whole study period, an optimized threshold must be identified for
each scene or each month. In this study, we set a different threshold for each time
step and extract water pixels. For the threshold selection, the training datasets that as
pixels were covered by water for all time steps were collected manually from MODIS
data in July. The statistics of CWI values were calculated based on training samples.
We choose two standard deviations of the mean CWI value as the threshold value
and classify pixels within it as water and vice versa.

Shadows in mountainous areas can lead to confusion with water bodies.
To eliminate the snow and shadow effect, a slope map was used to refine the water
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extent. All pixels with a slope >1◦ were removed from the classification result because
water bodies usually have flat surfaces. In this way, misclassification of shadow in
mountainous areas can be corrected. In addition, to reduce the noise caused by small
and temporary water bodies in mountainous areas, we removed water bodies smaller
than 4 km2 in the detection results. After these steps, a binary mask with water and
non-water pixels for each time step was derived.

A binary water mask was calculated for each eight-day interval. For each month,
we summed up the binary masks at four time steps. For all pixels, we obtained the
number of times they were classified as water. Only pixels classified as water three
out of four times in a month were marked as water [14]. In this way, composited
monthly water masks were generated for April, July, and September, 2000–2014. The
seasonality of each lake was calculated using the maximum/minimum ratio of area
extent of one representative year for each lake [35]. Finally, combining the monthly
masks for April, July, and September from 2000 to 2014, a percentage coverage
layer was derived. In this layer, pixel values show the percentage of times a pixel
was classified as water from 2000 to 2014. A 100% percentage means the pixel was
identified as water at all the 45 monthly masks from 2000 to 2014.

3.3. Accuracy Assessment

Water extents classified from Landsat images served as our validation sources in
this study. An integrated water body mapping method combining the NDVI, NDWI,
NIR, and slope layers was applied [36]. The commonly used threshold method
was used to calculate threshold values and segment water bodies [36]. After that,
the water bodies detected from Landsat images were resampled to MODIS pixel
size to perform a pixel-to-pixel comparison. Confusion matrices were calculated to
represent the accuracy of the classification results [37]. Three measurements, namely
user’s accuracy, producer’s accuracy, and overall accuracy were calculated to assess
the accuracies of MODIS detection. The user’s accuracy is defined as the number
of correctly classified water pixels divided by the total number of classified water
pixels in the MODIS detection results. The producer’s accuracy is defined as the
total number of correctly classified water pixels divided by the total number of
water pixels in the Landsat detection results. Overall accuracy is defined as the sum
of all correctly classified water/non-water pixels divided by the total number of
validation samples.

We selected four water bodies to conduct accuracy assessment for MODIS water
detection results. For each lake, Landsat data acquired in April, July, and September
or the nearest month were collected for each year. The MODIS results on the nearest
neighboring date were selected and compared with the Landsat interpreted results
to ensure the images were consistent in acquisition time.
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It is worth noting that classification error exists in the water extent mapped
from Landsat data and may influence the accuracy assessment results. For the
30-m resolution Landsat images, mixed pixels of lake fringes and small water
bodies contain significant spectral response from backgrounds such as grasslands
and croplands. In addition, the turbidity of water can increase its response at the
near-infrared band and lead to a lower NDWI value [38]. A more accurate validation
exercise could be conducted based on comparison with manually collected validation
samples, which is very time-consuming and was not conducted in this study.

3.4. Data Sources of Climate and Human Activities

We also analyzed possible drivers of lake area variations in XUAR. Specifically,
annual mean temperature and annual precipitation were used as indicators of
regional climate. Cropland and built-up areas were used as indicators of human
activities. The monthly air temperatures and precipitations for XUAR were obtained
from 55 meteorological stations (National Meteorological Information Center of
China Meteorological Administration; http://cdc.nmic.cn/home.do). Monthly
values were averaged or summed (for temperature and precipitation, respectively)
to acquire annual values. For each variable, annual time series graphs were plotted
for the 15-year study period, 2000–2014. The linear regression method and t-test are
used to estimate the changing trend and test statistical significance of the changing
trends of climate data. If the P value derived from the statistical analysis is less than
the significance level, a significant changing trend is observed. Areas of irrigated
croplands and built-up areas from 2000 to 2013 were collected from the XUAR
Statistical Year Book [39].

4. Results and Discussion

4.1. Intra- and Inter-Annual Dynamics of Water Bodies

The water body mapping results of the Ebinur Lake using NDWI, MNDWI, and
CWI from MODIS data were compared in Figure 3. The spectral response of water
is very similar to bare lands around the lake for NDWI (Figure 3b). For MNDWI,
the spectral signatures of dried-up lake and snow at the lower right of the image are
identical with water pixels (Figure 3d). We applied a threshold value of zero to extract
water pixels from the NDWI and MNDWI images [18]. The mapping result from
NDWI shows an obvious underestimation of the lake surface area (Figure 3c). An
overestimation of lake surface area is observed from the MNDWI results (Figure 3e).
Comparing with water bodies extracted from NDWI and MNDWI visually, the water
pixels identified from CWI have higher accuracy (Figure 3g).
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Figure 3. Water body detection results from MODIS data. (a) Landsat image; (b) NDWI [17]; 
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Figure 3. Water body detection results from MODIS data. (a) Landsat image;
(b) NDWI [17]; (c) extracted water bodies from NDWI; (d) MNDWI [18];
(e) extracted water bodies from MNDWI; (f) CWI; and (g) extracted water bodies
from CWI. Water bodies are shown in white in (c), (e), and (g).

In our study, the water body detection results from 2000 to 2014 in April,
July, and September were combined and illustrated in Figure 1. In addition to
the permanent water bodies that were detected at each time step, many temporal
pools that were rarely mapped in global datasets were revealed. For lakes located in
high elevation areas, they were frozen and cannot be detected in winter and spring
months. For lakes located in arid and semi-arid areas, some of them dried up in the
summer months.

We calculated the total area of 10 large lakes and analyzed their intra- and
inter-annual dynamics in XUAR. Their total surface area varied from 4217 km2
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(September 2010) to 5014.75 km2 (April 2003), with high seasonal variability. The
largest surface area is usually in April and the smallest value in September. A
decreasing trend of total lake surface area can also be observed for all three months
from 2000 to 2014, even though the trend is insignificant with a 0.1 significance
level (Figure 4). Significant shrinking trends were found for April (34.65 km2/year),
July (22.91 km2/year), and September (31.02 km2/year) from 2000 to 2010 with
a 0.1 significance level.Water 2015, 7 5740 
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Figure 4. Inter-annual variation of the total area of major lakes for the months of (a) April; 
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Figure 4. Inter-annual variation of the total area of major lakes for the months of
(a) April; (b) July; and (c) September in XUAR from 2000 to 2014.
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4.2. Temporal Variations of Major Water Bodies

The inter-annual variation in the surface area of each major lake was illustrated
for April, July, and September (Figure 5). The changing trend in the surface area of
each lake in July was calculated (Figure 6). The statistics of inter-annual variations of
surface area for each lake were listed in Table 3. These results revealed that the lakes
along the Tianshan Mountains (central Xinjiang) are shrinking, while the lakes in the
northern and southern parts are expanding. This may indicate that human activities
cause the lake to shrink, since most human settlements and agricultural lands are
distributed along the Tianshan Mountains (Figure 6). Lakes where there is less human
influence exhibited expanding trends, mainly due to changes in climate variables.Water 2015, 7 5741 
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Table 3. Changing trend in the surface area of major lakes in XUAR from 2000 to 2014. 

Name April July September Seasonality (max/min ratio) 

Ebinur −6.09 −10.36 −11.74 1.29 
Manas −5.53 −5.08 −6.59 1.52 

Ulungur-Jili 2.08 1.25 0.81 1.03 
Bosten −16.71 −7.78 −6.36 1.06 
Sayram 0.22 0.61 0.90 1.03 
Barkol −2.32 −1.07 −0.43 1.38 

Ayakkum 7.80 7.48 6.72 1.05 
Aqqikkol 6.55 6.82 5.52 1.06 
Arkatag 1.9 1.13 2.08 1.04 

Aksayquin 3.21 3.88 3.92 1.15 

Note: The values in bold indicate significant trends (p value <0.1). 

Figure 5. Inter-annual variation in the surface area of major lakes for the months of
April, July, and September in XUAR from 2000 to 2014. Solid, dashed, and dotted
lines represent April, July, and September, respectively.
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Table 3. Changing trend in the surface area of major lakes in XUAR from 2000
to 2014.

Name April July September Seasonality
(max/min ratio)

Ebinur −6.09 −10.36 −11.74 1.29
Manas −5.53 −5.08 −6.59 1.52

Ulungur-Jili 2.08 1.25 0.81 1.03
Bosten −16.71 −7.78 −6.36 1.06
Sayram 0.22 0.61 0.90 1.03
Barkol −2.32 −1.07 −0.43 1.38

Ayakkum 7.80 7.48 6.72 1.05
Aqqikkol 6.55 6.82 5.52 1.06
Arkatag 1.9 1.13 2.08 1.04

Aksayquin 3.21 3.88 3.92 1.15

Note: The values in bold indicate significant trends (p value <0.1).
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Figure 6. Changing trends and rates in the surface area of major lakes in XUAR in
July from 2001 to 2014. Spatial distribution of land cover/use types was extracted
from MODIS land cover type product in 2012 [33].

The highest seasonality is at Manas Lake, Barkol Lake, and Ebinur Lake. The
lowest seasonality exists at Ulungur-Jili Lake, Sayram Lake, and Arkatag Lake. The
seasonal dynamics of Ebinur Lake, Manas Lake, Barkol Lake, and Aksayquin Lake,
which have the highest seasonality, are illustrated in Figure 7. For each pixel, we
summed the number of times it was classified as water for April, July, and September
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over the entire study period. The monthly composite was classified into four intervals
to indicate areas that stayed stable over the entire time series, and areas that were
covered by water for several years during the 2000–2014 period. Different seasonal
behaviors were observed for the four lakes. Ebinur Lake showed the largest area in
April and the smallest in September. Manas Lake was largest in July and smallest
in September.Water 2015, 7 5743 
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4.3. Accuracy Assessment 
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mask derived from Landsat images of the same month. The small water bodies that were detected from 

Landsat data cannot be extracted from MODIS imagery at 500 m resolution. This leads to a partial 

disagreement of detection results between Landsat and MODIS data. Based on our assessment, an 

overall accuracy of 0.97 is obtained (Table 4), which is adequate for the dynamic analysis of lake 

Figure 7. Typical seasonal water bodies of XUAR and their temporal dynamics for
the months of April, July, and September from 2000 to 2014. (a) Ebinur; (b) Manas;
(c) Barkol and (d) Aksayquin Lakes. The numbers at each pixel indicate the number
of times it was detected as a water body during the 2000–2014 period.
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4.3. Accuracy Assessment

Figure 8 illustrates the comparison of a monthly water mask derived from
MODIS data with a water mask derived from Landsat images of the same month.
The small water bodies that were detected from Landsat data cannot be extracted
from MODIS imagery at 500 m resolution. This leads to a partial disagreement of
detection results between Landsat and MODIS data. Based on our assessment, an
overall accuracy of 0.97 is obtained (Table 4), which is adequate for the dynamic
analysis of lake surface area. The detection results for Manas Lake showed lower
user accuracy than the other lakes. Due to the high concentration of salts and other
dissolved minerals, the spectral feature of water in Manas Lake is different from other
water bodies. Therefore, the identification of water pixels using a general threshold
for all of the water bodies in the entire study area may lead to misclassifications. For
Bosten Lake, mixed pixels of wetland and small water bodies can be misclassified as
non-water bodies due to the coarse resolution of MODIS data. The lake ice and snow
can also lead to lower accuracies in April for plateau lakes like Ayakkum.
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Figure 8. Comparison of a water body derived from MODIS data and Landsat for
April 2014, Ulungur Lake. (a) Landsat image; (b) water mask derived from Landsat
data; and (c) water mask derived from MODIS data.

Table 4. The error matrix, overall, producer’s, and user’s accuracies of water bodies
and non-water bodies resulting from MODIS time series data, 2000–2014.

Month
Ulungur Manas Bosten Ayakkum

User Prod User Prod User Prod User Prod

April 0.92 0.93 0.72 0.97 0.95 0.89 0.97 0.95
July 0.96 0.92 0.66 0.95 0.99 0.86 0.95 0.94

September 0.97 0.93 0.63 0.93 0.99 0.89 0.97 0.97

Overall
Accuracy 0.97
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4.4. Effects of Regional Climate and Human Activities on Lake Changes

The linear trend of temperature and precipitation are not statistically significant
at the 0.1 significance level for 2000–2014. In our study period, an increase in
precipitation occurred in 2010, which corresponds well to the extending lake area in
2011 and 2012 (Figure 9). The area of cropland increased from 3.39 million hectares in
2000 to 5.21 million hectares in 2013. Built-up areas increased from 473 km2 in 2000
to 1065 km2 in 2013. As we can see in Figure 5, the oases comprised of agricultural
lands and built-up areas are distributed in river plains near major lakes. The water
demands of oases can influence aerial changes in lakes that have river runoff as their
main inflows, such as Ebinur, Bosten, and Manas Lakes. For a regional comparison,
the changing trends of temperature and precipitation at meteorological stations near
each major lake were analyzed (Table 5). Their relationships with lake area changes
were also analyzed. Due to the lack of observed climate data, the analysis was not
performed for the four plateau lakes.Water 2015, 7 5745 
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Figure 9. Variations in (a) annual mean temperature; (b) annual precipitation;
(c) area of croplands; and (d) built-up areas in XUAR over the study period.

Table 5. Changing trends in temperature and precipitation at meteorological
stations near the major lakes from 2000 to 2014.

Climate Variable Ebinur Manas Ulungur-Jili Bosten Sayram Barkol

Annual Mean
Temperature (◦C) −0.20 −0.06 0.31 −0.26 −0.27 0.51

Annual
Precipitation (mm) −0.28 −1.70 −2.28 −2.72 −3.21 2.82
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Among the major lakes, three plain lake or lake systems, Ebinur, Manas, and
Ulungur-Jili, were analyzed. Located in low elevation plain areas, their main supply
is river runoff, which can be influenced tremendously by human activities. Ebinur is
the largest saline lake in XUAR. With a maximum depth of 3.5 m and a mean depth of
1.2 m, it is a closed lake without outlet. Its hydrologic input is mainly from the Bo and
Jing rivers, which originate from precipitation in mountainous areas. In their analysis
of multi-temporal VGT-S10 data from 1 April 1998 to 31 December 2005, Ma et al.
(2007) revealed that this lake had a peak area of 903 km2 in 2003 and subsequently
decreased to an area of 847 km2 in 2004 [23]. Our study showed a decreasing trend of
surface area from 2000 to 2014 in all three seasons, with a short increase in 2002–2004
(Figure 5). The significant decreasing trend of the Ebinur Lake is 6.09 km2/year
for April, 10.36 km2/year for July, and 11.74 km2/year for September, respectively.
A slight decreasing trend of precipitation and temperature was revealed (Table 5).
According to Zhang et al. (2015), human factors, such as population growth and
agricultural development, led to the increase in desertification area in the Ebinur
Lake region between 1990 and 2010 [40].

Manas Lake is the terminal lake of Manas River. This lake is about 55 km long
and 15–20 km wide, with an area of about 550 km2 and an average depth 6 m [41].
Our results show a decreasing trend of Manas Lake from 2000 to 2014. The smallest
lake size occurred in 2009 and 2010 (Figure 5). A decreasing trend of precipitation and
temperature was observed at the meteorological station near Manas Lake (Table 5).
Manas River Valley is a representative area for oasis exploitation in Xinjiang as a
primary agricultural production region and core region of economic development of
the northern slope of the Tianshan [41]. The expansion of oasis in Manas River Valley
was characterized by the spread of settlements and agricultural lands. In addition to
reclaiming agricultural lands, many hydrological constructions, including reservoirs,
wells, and canals, were built along the Manas River for irrigation of the croplands.

Ulungur-Jili lake system is a closed inland lake, with its water supplied by the
Ulungur River, groundwater, precipitation, and snow melting. As the second largest
lake in XUAR, the Ulungur-Jili lake system can be divided into two sections, the
Ulungur Lake and the smaller Jili Lake, connected by a narrow channel. In 2011,
Ulungur Lake had an average depth of 10.4 m and a surface area of 859 km2, and
Jili Lake had an average depth of 8.8 m and an area of 169 km2 [42]. Based on an
analysis of the lake area with Landsat images acquired in August, a stable or slightly
increasing trend of lake surface area is revealed from 2000 to 2011 [43]. A slight
extending trend of Ulungur-Jili Lake was also observed in our study from 2000 to
2014. Increasing temperature and decreasing precipitation were observed at the
nearby meteorological stations. Since snow and ice melting off the Altay Mountain
is the main runoff supply of Irtysh River, snow and glacier changes caused by the
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increasing temperature contributed to the variation of lake area of the Ulungur-Jili
lake system.

Bosten Lake, as a transition lake located between the mountains and plains, is
the largest inland freshwater lake in China. As an open catchment lake with outlets,
Bosten Lake lies at the end of Kaidu River and the beginning of Kongque River. The
lake inflow mainly comes from Kaidu River, which contributes about 95% of the total
water inflow [44,45]. The main outflow is Kongque River and evaporation [46]. With
a large area in 2001 and 2003 (Figure 5), our study revealed an obvious decreasing
trend in the surface area of Bosten Lake from 2000 to 2014. The nearby meteorological
station observed the decreasing trend of precipitation and temperature. According to
the monthly mean lake level data, the lake level decreased dramatically from 2002 to
2010 [46]. The sharply decreasing lake level during 2003 to 2010 was reported to be
caused by the emergency project of transferring water to Tarim River and increasing
lake outflow in addition to the reduced precipitation [46].

Sayram Lake is the largest and highest alpine lake in XUAR. The lake is located
in a mountain basin in the western part of the Tian Shan with an average water
depth of 46.1 m. It has a frozen period extending for six months from October to
May [47]. Though a decreasing trend of precipitation and temperature was observed
at the nearby meteorological station, a slight increasing trend was observed from
2000 to 2014 in our study. Located in a natural environment, Sayram Lake was less
impacted by anthropogenic disturbances and showed a stable surface area from 1975
to 2007 [22].

Barkol Lake is a closed saline lake with an elevation of about 1580 m. Located in
the Barkol Basin, Barkol Lake is bordered by the Barkol Range, the eastern Tianshan
to the south, and the Moqinwula Range to the north. The average water depth is only
0.6 m, with a maximum water depth of about 1 m [48]. In our study, a shrinking trend
of water surface area was observed from 2000 to 2014, while an increasing trend of
precipitation was observed (Table 5). The primary cause for lake size decrease may
be attributed to human interference. Due to the mirabilite production and reducing
precipitation near the lake, the lake area shrunk from 233 km2 in the 1950s to 60 km2

in 2011 [49]. The severe mineralization of lake water led to large area degradation of
the surrounding wetlands [49].

Ayakkum, Aqqikkol, and Arkatag Lakes are located in the Kumkol Basin
between the Altyn Mountains and the Kunlun Mountains. Aksayquin Lake is
located in the western Kunlun Mountains of the northern Tibetan Plateau. The
main supply of the four lakes is river runoff from the melting of glaciers and snow.
In our study, significant expanding trends were observed for these four lakes from
2000 to 2014 except Arkatag Lake in July. Based on Landsat image analysis over the
entire Tibetan Plateau, Aqqikkol had undergone surface extent increases in excess
of 10% from 2000 to 2011 [8]. The expansion of lake areas and increasing trend of
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lake level on northern Tibetan Plateau was observed and documented by several
studies [8,50,51]. Due to the increasing temperature, the water recharge increased a
lot from accelerated melting of glaciers and perennial snow cover [52], and permafrost
degradation [53,54]. However, for areas where surface water resources are generated
mainly in the mountain glaciers of XUAR, the increasing flows caused by melting of
mountain glaciers cannot be sustained in the long term if the glaciers disappear due
to increasing temperature [55].

5. Conclusions

This study presented a time series analysis of lake water surfaces across XUAR
using MODIS data from 2000 to 2014. A classification approach based on water index
calculation and dynamic threshold selection was developed. Compositing water
detection results of each time step, water masks were derived for the months of April,
July, and September. The major lakes with an area of >100 km2 were categorized
into four classes based on their topographic locations. The seasonal and inter-annual
surface area variation of the 10 major lakes was revealed in detail.

For plain lakes, the surface area of Ebinur Lake showed a significant shrinking
trend and Manas lake an insignificant shrinking trend. They are both influenced
by the expanding oasis and increasing water consumption. The Ulungur-Jili Lake
had a stable area throughout the entire time period. The decreasing area of Bosten
Lake may have been caused by the construction of hydrological projects in addition
to the reduced precipitation. For mountain lakes, overexploitation has caused the
shrinking of the Barkol Lake and the degradation of surrounding wetlands. As the
largest and highest alpine lake, Sayram Lake showed a significant expanding trend
in September. The four plateau lakes exhibited significant expanding trends for all
three seasons except Arkatag Lake in July.

The lake dynamics revealed by MODIS time series are useful for ecological
assessment of XUAR. Further studies are needed to use satellite imagery with
different spatiotemporal resolutions, such as AVHRR and Landsat data since the
1970–80s, to capture the long-term dynamics of lakes in XUAR. It is also important to
integrate the analysis of satellite data and climatic datasets for better understanding
of the impact of climate change on water bodies in this arid and semi-arid region.
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Remote Sensing Based Analysis of Recent
Variations in Water Resources and
Vegetation of a Semi-Arid Region
Shaowei Ning, Hiroshi Ishidaira, Parmeshwar Udmale and Yutaka Ichikawa

Abstract: This study is designed to demonstrate use of free remote sensing data to
analyze response of water resources and grassland vegetation to a climate change
induced prolonged drought in a sparsely gauged semi-arid region. Water resource
changes over Hulun Lake region derived from monthly Gravity Recovery and
Climate Experiment (GRACE) and Tropical Rainfall Measuring Mission (TRMM)
products were analyzed. The Empirical Orthogonal Functions (EOF) analysis
results from both GRACE and TRMM showed decreasing trends in water storage
changes and precipitation over 2002 to 2007 and increasing trends after 2007 to
2012. Water storage and precipitation changes on the spatial and temporal scale
showed a very consistent pattern. Further analysis proved that water storage changes
were mainly caused by precipitation and temperature changes in this region. It is
found that a large proportion of grassland vegetation recovered to its normal state
after above average rainfall in the following years (2008–2012) and only a small
proportion of grassland vegetation (16.5% of the study area) is degraded and failed
to recover. These degraded grassland vegetation areas are categorized as ecologically
vulnerable to climate change and protective strategies should be designed to prevent
its further degradation.

Reprinted from Water. Cite as: Ning, S.; Ishidaira, H.; Udmale, P.; Ichikawa, Y. Remote
Sensing Based Analysis of Recent Variations in Water Resources and Vegetation of a
Semi-Arid Region. Water 2015, 7, 6039–6055.

1. Introduction

Freshwater resources are the lifeblood of our planet. It is fundamental to
the biochemistry of all living organisms. The Earth’s ecosystems are linked and
maintained by water; it drives plant growth and provides a permanent habitat
for many species, including ourselves. However, freshwater is a resource under
considerable pressure. Its stored potential (surface water, ground water, soil
moisture, ice, etc.) is increasingly facing challenges from climate changes as well
as anthropogenic activities. That current and future climate change is expected
to significantly impact freshwater systems including rivers, streams and lakes, in
terms of flow and direction, timing, availability, temperature, and its inhabitants.
So understanding the information about water resource change, its driving force
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and potential impact in the past and future is very important for water resource
management and eco-environmental protection.

In recent years, the response of water resource and vegetation to the changing
climate and anthropogenic effects has been discussed extensively at regional or
global scales. With the rapid development of remote sensing techniques, the
reliability of satellite products relevant to water resource monitoring has greatly
improved. For example, changes in terrestrial water storage are measurable through
satellite gravity based approximations of equivalent water thickness to a precision of
0.5 cm per year. [1]. Precipitation is monitored by multiple post-processing phases of
currently available satellite data (i.e., Tropical Rainfall Measuring Mission (TRMM)) to
a resolution of millimeter per day [2]. Water level change in rivers and lakes is derived
from altimetry satellites (i.e., Jason-1/2, ENVISAT) to a sub-meter precision [3].
Hence, satellite observations have been increasingly used in such research, exploiting
their potential of providing spatially continuous and temporally recurrent estimates
over regional to global scales [4].

Zhang et al. [5] used monthly precipitation observations over global land
areas to analyze precipitation trends in two twentieth century periods (1925–1999
and 1950–1999), and showed that anthropogenic forcing has had a detectable
influence on observed changes in average precipitation within latitudinal bands,
and that these changes cannot be explained by internal climate variability or natural
forcing. Syed et al. [6] characterized terrestrial water storage variations using Gravity
Recovery and Climate Experiment (GRACE) and Global Land Data Assimilation
System (GLDAS) at global scale, the results illustrated spatial-temporal variability
of water storage change over land, with implications for a better understanding
of how terrestrial water storage responds to climate change and variability. Apart
from global scale studies, Fensholt and Du [7,8] assessed the regional/continental
precipitation trends and showed their influence on stream flow, water level, soil
moisture and vegetation changes. Moiwo et al. [9] analyzed water storage dynamics
in the North China Region (an important grain-production base) using GRACE,
GLDAS products in conjunction with in situ hydro-climate data, the results showed
a sharp water storage depletion from April 2002 through December 2009 in that area
and water loss which was more a human than a natural cause had already negatively
influenced millions of people in the region and beyond in terms of water supply crop
production, eco-environmental system and social stability.

Besides that, much research also indicates that a remote sensing approach is a
cost-efficient and accurate method to monitor inland water surface and water level
(case of lakes and reservoirs) dynamics which are also affected directly by climate
change and human activity. Dorothea et al. [10] used a Moderate Resolution Imaging
Spectro-radiometer (MODIS) surface reflectance dataset and a Modified Normalized
Difference Water Index (MNDWI) to map the variability of Lake Manyara’s water
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surface area over 2000–2011. Their results implied that recent fluctuations of Lake
Manyara’s surface water area are a direct consequence of global and regional climate
fluctuations. Duan et al. [11] proposed and evaluated a method that combined
operational satellite altimetry databases with satellite imagery data to estimate water
volume variations in Lake Tana. Results showed that satellite altimetry products
were in good agreement with in situ water levels for Lake Tana (R2 = 0.97). Estimated
water volume variations derived from satellite altimetry products and LANDSAT
TM/ETM+ agreed well with in situ water volume for Lake Tana, with R2 higher than
0.95 and Root Mean Square Error (RMSE) 9.41% of corresponding mean value of
in situ measurements.

With respect to vegetation, it plays a notably important role in soil conservation,
atmosphere adjustment and maintenance of climatic and whole ecosystem stability
because of its natural tie connecting atmosphere, water, and soil. Surface vegetation
conditions are known for their sensitivity to natural changes and anthropogenic
effects, thus serving as important proxies for regional eco-environmental and
global climate fluctuations. Satellite based vegetation indexes such as normalized
difference vegetation index (NDVI) as an efficient tool are widely used to examine
the dynamic of vegetation health, density and degradation due to climate changes
and anthropogenic effects [12,13].

As mentioned above, satellite remote sensing has shown promising results
in the estimation of water resources and vegetation. However, in this study, we
focus on the analysis of a combination of available satellite data including GRACE
terrestrial water storage (TWS), TRMM, MODIS/LANDSAT, satellite altimetry
data (Topex/Poseidon, Jason-1/2) coupled with in situ climate data to assess the
water resource variation within a sparsely gauged area—the Hulun lake region
and its impact on the eco-environment to provide useful information for future
water resource management and eco-environmental protection. More specifically,
this study aims (1) to provide a framework for a remote sensing based integrated
assessment of water resource trends; (2) to detect trends in consistently established
time series (from 2002 to 2012) of terrestrial water storage change and precipitation
in a spatial distributed manner and (3) to infer the probable causes of water resource
variations and its impacts on vegetation in order to contribute towards sustainable
eco-environmental management.

2. Study Area

For this study, a representative case of the Daurian Steppe Eco-region (a most
intact example of Eurasian Steppe) is selected (Figure 1). It is straddled over borders
of three countries, namely, China, Mongolia and Russia (111◦ E–119◦ E, 47◦ N–50◦ N).
The total study area is about 290,400 km2. It covers a part of an ecologically important
region—The Daurian International Protected Areas (DIPA), namely, The Hulun Lake
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Nature Reserve grassland. The Hulun Lake Nature Reserve is a reserved grassland
and least influenced by human activities [14,15]. This draws attention to identify the
consequences of water resource changes (consecutive years of precipitation deficit
and decline in TWS) on representative natural grassland-vegetation with minimum
anthropogenic disturbances.
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Figure 1. The geographic location and Shuttle Radar Topography Mission
(SRTM)-based elevation map of the study area (red color region in the down figure
shows the Eurasian Steppe zone).

The area has a mid-temperate semi-arid continental climate with the dominant
mid-temperate zone characterized by drastic changes in winter and summer seasons.
The average annual rainfall is about 293 mm, mainly concentrated in unfrozen season
(from May to October). The average annual temperature ranges from −13 ◦C in
winter to 12.3 ◦C in summer, the average annual evaporation is around 249 mm,
and the average annual relative humidity is 49%. The semi-arid climate with the
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strong winds is increasing the vulnerability of this area to desertification. Figure 2
shows the vegetation cover types of the study area. About 89.9% and 7.9% of the
study area is occupied by annual grass-vegetation and forest (deciduous needle
leaf, deciduous broadleaf, evergreen needle leaf and annual broadleaf vegetation),
respectively. The surface water bodies cover about 2.2% of study area, with a major
water bodies—Hulun Lake having surface area 2307 km2 and Beier Lake with surface
area 609 km2. As shown in Figure 1, there are many inland rivers in the study area,
but only two rivers, Kelulun and Wuerxun river, with annual discharge about 7× 108

and 5.5 × 108 m3, flow into Hulun lake which is the main drainage outlet in this
area. Recently, however, the annual average discharge of these two rivers is less than
2× 108 m3. The fluctuations in water levels of Hulun lake can be used as an indicator
of wet and dry conditions in the study area.Water 2015, 7 6043 
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3. Materials

3.1. Precipitation Data

The monthly precipitation for the period of 2002–2012 is obtained from Tropical
Rainfall Measuring Mission (TRMM) [16]. TRMM products have been used in a
number of studies of Inner Mongolia and surrounding precipitation, where they have
been found to be adequate when compared with ground observations [17,18]. The
product used in this study is referred as the TRMM and other precipitation dataset
(denoted as 3B43). It is derived not only from TRMM sensors but also a number of
other satellites and ground based rain gauged data. Monthly observed precipitation
data (2002–2012) for five stations near the Hulun Lake are employed in this analysis
to evaluate the applicability of satellite derived precipitation in study area.
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3.2. Surface Air Temperature Data

This study uses a surface air temperature dataset namely Global Historical
Climatology Network version 2 and the Climate Anomaly Monitoring System
(GHCN + CAMS) which is a station observation-based global land monthly mean
surface air temperature dataset at 0.5 × 0.5 degree resolution for the period of 1948
to the present. When compared with several existing observation-based land surface
air temperature data sets, the preliminary results show that the quality of this new
GHCN + CAMS land surface air temperature analysis is reasonably good and the
new dataset can capture most common temporal-spatial features in the observed
climatology and anomaly fields over both regional and global domains [19].

3.3. Lake Water Level Data

Monthly water level data for the Hulun Lake for the period of 2002–2012 is
obtained from Hydroweb dataset [20]. The dataset is developed by Laboratoire
d’Etudes en Oceanographie et Geode’sie Spatiale, Equipe Geodesie, Oceanographie,
et Hydrologie Spatiales (LEGOS/GOHS) in Toulouse, France. It provides time series
of water levels of large rivers, about 150 lakes and reservoirs, and wetlands around
the world using the merged Topex/Poseidon, Jason-1and 2, ENVISAT and Geosat
Fellow-On (GFO) data. Recent study has showed that the accuracy of water level
data from Hydroweb was very high with R2 range from 0.96 to 0.99 compared with
in situ data in US, Netherlands and Ethiopia [11].

3.4. Satellite Imagery Data

MODIS Terra surface reflectance product (Mod09A1) [21] is employed to map
and monitor spatial and temporal variations in water surface of the Hulun Lake from
2002 to 2012. Images on which snow covers the lake surface and surrounding region
in winter time are not selected, because it is difficult to retrieve lake surface area
in those scenes. Besides that, we also use several scenes of LANDSAT TM/ETM+
data [22] with spatial resolution of 30m to validate lake surface area derived from
Mod09 A1.

3.5. GRACE TWS Data

TWS was derived from the latest version monthly GRACE gravity solutions
(RL05) generated by the Center for Space Research at the University of Texas at
Austin [23], from August 2002 through December 2012. Each solution consists of
sets of spherical harmonic (Stokes) coefficients, Clm and Slm, to degree l and order
m, both size less than or equal to 60. We calculated these coefficients by combining
GRACE data with ocean model output as Swenson et al. [24] did. TWS calculation
and the post processing method used here were similar with Duan et al. [25] with
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two Fan filter [26] radiuses 500 and 800 km, respectively. Finally, these coefficients
were transformed into 1 × 1 degree gridded data that reflect vertically integrated
water mass change represented by equivalent water thickness.

3.6. NDVI Data

NDVI dataset acquired from the Advanced Very High Resolution Radiometer
(AVHRR) sensor aboard NOAA satellites processed by the Global Inventory
Monitoring and Modeling Studies (GIMMS) at the National Aeronautics and Space
Administration (NASA) [27]. The database ranges from July 1981 to December
2013 at a spatial resolution 8 km2. The data are composited over approximately
15 day periods with the maximum value compositing technique, which minimizes
the influences of atmospheric aerosols and clouds. This study analyzes the NDVI
trend for the period from 2002 to 2012.

4. Methods

4.1. Water Resource Spatial-Temporal Series Analysis

Empirical Orthogonal Functions (EOF) analysis is a widely and easily used
statistical method for analyzing large multidimensional datasets. When applied to a
space-time dataset, EOF analysis can be used to decompose the observed variability
into a set of spatial change patterns (EOFs), which are statistically independent and
spatially orthogonal to the others, and a set of times series called time coefficients
(PCs) that describes the time evolution of the particular EOFs. Together, the EOFs and
PCs can be combined to reconstruct the variability in the original dataset. Basically,
the goal of EOF analysis is to transform an original set of variables into a substantially
smaller set of uncorrelated variables, which can reflect most of the information of
the original dataset. It also has the ability to isolate various processes mixed in
observation data [28]. The EOF has recently become a popular tool in various science
areas such as meteorology, geology, and geography [29]. In this study, EOF analysis
is applied to study both the spatial and temporal changes of precipitation and TWS.

4.2. Lake Water Surface Area Estimation

Several land cover classification methods can be used for delineating water
bodies from multi-temporal satellite imagery to date from conventional unsupervised
methods to more advanced artificial neural networks and support vector machine
classifier [12,30]. The Modified Normalized Difference Water Index (MNDWI)
method proposed by Xu [31] has been widely applied and proved efficient to retrieve
water surface. The MNDWI is a band ratio index between Green (correspond to
band 4 of MOD09A1 imagery) and Shortwave Infrared (SWIR, correspond to band 6
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of MOD09A1 imagery) spectral bands that enhances water features. MNDWI is
defined as:

MNDWI =
Green − SWIR
Green + SWIR

(1)

Following other studies [32,33], we set the threshold for MNDWI to zero.
MNDWI values > 0 represent water bodies and < 0 non-water cover types. Water
features have positive MNDWI values because of their higher reflectance in the Green
band than in the SWIR band while non-water features (soil and vegetation) have
negative MNDWI values due to their low reflectance in the Green band than the
SWIR band. However, some parts of Hulun Lake with the average depth 5.7 m
are very shallow, usually less than 1 m and many aquatic plants grow out of water
surface. This makes the MNDWI values negative in some grid located inside the lake.
Here, we combine the NDVI value to eliminate that effect. We decide if NDVI < 0 or
MNDWI > 0 and only one rule satisfies, then it is classified as water body. To validate
the results, we estimate the water body from several scenes of LANDSAT imagery
by traditional manual digitization, which is time consuming but has high accuracy.

4.3. NDVI Variation Trend Analysis Method

The Theil-Sen Median trend analysis, Mann-Kendall [34] are used to study
the vegetation covered regions of our study area, namely, the temporal variation
characteristics of the NDVI of the pixel covered region with NDVI values greater
or equal to 0.1. The Theil-Sen trend analysis method can be effectively combined
with the Mann-Kendall test. These are important methods for detecting the trend
of long time series data, and this combination has been gradually used to analyse
the long time series of vegetation reflecting the variation in trends of each pixel in a
time series.

The Theil-Sen Median trend analysis is a robust trend statistical method, and it
calculates the median slopes between all n·(n − 1)/2 pair-wise combinations of the
time series data. It is based on non-parametric statistics and is particularly effective
for the estimation of trends in small series. The slope of Theil-Sen Median can
represent the increase or decrease in the NDVI over the 11 years between 2002 and
2012 on a pixel scale. It is calculated by:

TSNDVI = median
(

NDVIm − NDVIn

m − n

)
, 2002 ≤ n < m ≤ 2012 (2)

where, TSNDVI refers to the Theil-Sen median, and NDVIm, NDVIn represent the
NDVI values for years of m and n, in case of TSNDVI > 0, the NDVI shows a rising
trend, otherwise, the NDVI presents a decreasing trend.

The Mann-Kendall test measures the significance of a trend. It is a non-parametric
statistical test, and it has the advantage that samples do not need to follow certain
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distributions and is free from the interference of outliers. It has been broadly used to
analyse the trends and variations at sites with hydrological and meteorological time
series. Recently, this method has been applied to detection of vegetation variations
over long time periods. The calculation algorithm is as follows:

It is assumed that NDVIm, m stands for time series from 2002 to 2012. The
statistics of Z is defined as:

Z =


S−1√

s(S)
, s > 0

0 , s = 0
S+1√

s(S)
, s < 0

(3)

where, S =
t−1
∑

n=1

t
∑

m=n+1
sgn(NDVIn − NDVIm), sgn(NDVIn − NDVIm) =

1 , NDVIn − NDVIm > 0
0 , NDVIn − NDVIm = 0
−1 , NDVIn − NDVIm < 0

,

s (s) =
t (t− 1) (2t + 5)

18
(4)

where, NDVIm and NDVIn stands for the NDVI values of the pixels m and n; t is
the length of the time series; sgn is a sign function; and the Z statistic is located in
the range of (–∞, +∞). A given significance level, |Z| > µ1−α/2, signifies that the
times series shows significant variations on the level of α. Generally, the value of α is
0.05. In this study, we choose α = 0.05, means that we measure the significance of the
NDVI trend over period from 2002 to 2012 on pixel scale at a confidence level of 0.05.

5. Results and Discussion

5.1. Precipitation and Temperature Variation Analysis

The numbers of rain-gauge stations in the study area are limited. Hence, we
used TRMM monthly data to analyze precipitation trends in this study. To confirm
the feasibility of TRMM data, observed precipitation from five rain gauge stations
(Table 1) located in the vicinity of the study area are used. The correlation between
two data sets for respective grids is observed to be in the range of 0.74–0.94 over the
period of 2002–2012 as shown in Table 1. This confirms the applicability of TRMM
data for precipitation trend analysis in this study. Studies by Yatagai et al. [17] and
Chen et al. [18] also validated the applicability of TRMM data in this region.

After applying EOF to TRMM data, we found three dominant EOFs and PCs
in study area (as shown in Figure 3). EOF1 and PC1 represent about 65% of
total variance of precipitation, which shows superposition of annual and seasonal
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variability. The EOF1 is found positive throughout the study area with high values
in central part highlighting uniform changing pattern over study area. A significant
decreasing trend is observed over a period of 2002–2007, however an increasing trend
from 2008 to 2012 can be seen from PC1. Low negative PC1 values corresponding to
summer season from 2003 to 2007 indicates five consecutive years of below average
rainfall, which induced a very serious drought. Using a linear regression, we found
an average precipitation decline of 23.1 mm/year and increase of 18.2 mm/year for
the periods of 2002–2007 and 2008–2012, respectively. We do not interpret the second
and third mode of EOF on precipitation variation (i.e., EOF2, PC2 and EOF3, PC3
here, respectively), since the temporal pattern change is not obvious, and it accounts
for only 13% and 6% of variance in precipitation, respectively.
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Figure 3. EOF decomposition of precipitation changes derived from TRMM satellite
data over study area. EOF patterns are shown in left side and corresponding unit-less
temporal patterns (PCs) in right side. (a): The first change mode of precipitation
changes; (b): The second change mode of precipitation changes; (c): The third
change mode of precipitation changes.

We also analyzed the warm (May–October) and cold (November–April) season
average temperature over study area as shown in Figure 4. Average temperature of
warm and cold season shows opposite change pattern against precipitation. Rising
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temperature may have caused more evapotranspiration, then further exacerbated
water storage depletion and drought.

Table 1. Correlation between gauged precipitation with tropical rainfall measuring
mission (TRMM) precipitation in respective grids.

No. Station Name Latitude Longitude R2

1 Xinyouqi 48.67◦ N 116.82◦ E 0.75
2 Xinzuoqi 48.21◦ N 118.27◦ E 0.74
3 Manzhouli 49.57◦ N 117.43◦ E 0.82
4 Hailaer 49.22◦ N 119.75◦ E 0.92
5 Aershan 47.17◦ N 119.93◦ E 0.94
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5.2. Water Storage Change

Figure 5 shows the overall EOF results of water storage variability in spatial
and temporal scale over the study area. EOF analysis result provides us the general
understanding of water storage change condition. EOF1 and PC1 represent 88% of
total variance in water storage changes and EOF2 and PC2 represent only 10%. For
EOF1, all values are positive, which means all places have same change pattern with
high significance in the central and north part of study area, while the corresponding
PC1 shows the dominant trend. By a linear regression, we found an average water
storage decline of 14.2 mm/year and an increase of 3 mm/year in the study area for
the periods of 2002 to 2007 and 2008 to 2012, respectively. EOF2 delineates a spatial
east-west dipole structure and PC2 shows an increasing trend in the southwest corner
and decreasing trend in the east of study area over period of 2008 to 2012. Overall,
the water storage first reduced sharply (2002 to 2007) and then restored slightly
(2008–2012), especially in the central and north part of study area (EOF1).

EOF2 and PC2 (Figure 3) representing 13% of total rainfall change pattern shows
the similar east west dipole structure of the TWS pattern 2 (as shown in Figure 5).
It is found that EOF1/2 and PC1/2 of precipitation (Figure 3) is very consistent

43



with EOF1/2 and PC1/2 of TWS (Figure 5). This explains that the precipitation
is one of the major driving factors behind water storage changes. Similar trends
in precipitation and water storage changes observed over whole study area (as
shown in Figure 6), which indicates a very sharp decreasing trend over the period of
2002–2007. However, for the period 2007–2012, in spite of the increasing precipitation
trend, TWS did not show a significant increasing trend as that of precipitation but
increased slightly. There may be two reasons for that: first, as we mentioned in the
study area section, water income from the two rivers flow to this region has been
lower than usual recently; second, actual evapotranspiration has increased because
of above-normal vegetation development (as we will explain in Section 5.4).Water 2015, 7 6049 
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shows a very close relation with R2 value as high as 0.95 and very low absolute and relative errors. It 

demonstrates the validity of MODIS derived lake surface area with high accuracy in unfrozen season 

(May–October). Figure 7 gives the lake level and lake water area time series with their correlation. 

Both shows rapid declination from 2002 to 2009 with about three meters of water level drop and  

400 km2 of shrinkage in lake surface area, respectively, and remained stable after 2009. This temporal 

change pattern is not consistent with water storage and precipitation change. Although precipitation 

increased after 2007, lake volume still decreased till 2009 and did not show obvious rise after that. For 

Figure 5. EOF decomposition of TWS changes over the study area. EOF patterns
are shown on the left side and corresponding unit-less temporal patterns (PCs)
are shown on the right side. (a): The first change mode of TWS changes; (b): The
second change mode of TWS changes.
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5.3. Lake Response to Water Storage Change

As mentioned in the study area introduction, Lake Hulun drains in most parts
of the study area, so its water volume change is a good indicator of water resource
variation for this region. Table 2 shows the comparison between MODIS derived and
LANDSAT digitalized results of lake surface area. It shows a very close relation with
R2 value as high as 0.95 and very low absolute and relative errors. It demonstrates the
validity of MODIS derived lake surface area with high accuracy in unfrozen season
(May–October). Figure 7 gives the lake level and lake water area time series with
their correlation. Both shows rapid declination from 2002 to 2009 with about three
meters of water level drop and 400 km2 of shrinkage in lake surface area, respectively,
and remained stable after 2009. This temporal change pattern is not consistent with
water storage and precipitation change. Although precipitation increased after 2007,
lake volume still decreased till 2009 and did not show obvious rise after that. For
this phenomenon, there may be several possible reasons. Firstly, because of drought,
Lake Hulun got less inflow from the upper reaches of two main rivers (Kelulun and
Wuerxun) during 2002 to 2007. According to local news, these two rivers dried up
from September 2007 and did not discharge water into the lake for almost for one
year [35]. Secondly, people and livestock suffering from drought, which has driven
water scarcity around the lake may have withdrawn more water from it than a normal
year. Finally, the most important point, a large proportion of precipitation may have
been contributed to recover soil moisture deficit and depleted groundwater levels
due to consecutive years of droughts. This might have delayed the river inflow and
groundwater discharge to the lake. In summary, when drought attacks this region, it
needs more time and water to recover to the normal state even after enough rainfall.

Table 2. Comparison of Moderate Resolution Imaging Spectro-radiometer (MODIS)
and LANDSAT derived Hulun lake area.

LANDSAT MODIS
Absolute

Error (km2)
Relative
Error (%)Date Lake Surface

Area (km2) Date Lake Surface
Area (km2)

1 July 2000 2306.6 4 July 2000 2290.1 −16.4 −0.71%
6 September 2001 2236.4 7 September 2001 2186.3 −50.2 −2.24%

8 August 2002 2154.4 6 August 2002 2221.2 66.7 3.10%
27 August 2003 2114.2 30 August 2003 2106.9 −7.3 −0.35%
13 August 2004 2002.5 13 August 2004 2058.2 55.7 2.78%
16 August 2005 1977.6 14 August 2005 1948.8 −28.7 −1.45%

26 July 2006 1938.6 29 July 2006 1942.9 4.3 0.22%
29 July 2007 1907.2 29 July 2007 1902.3 −4.9 −0.26%

25 August 2008 1837 13 August 2008 1862.1 25.1 1.36%
5 October 2009 1791.5 1 October 2009 1772.8 −18.7 −1.04%
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Figure 7. (a) Lake water level; (b) lake water surface area; and (c) correlation
between lake water level and surface area.

5.4. Vegetation Response to Water Resource Change

Average NDVI distribution over the period of 2002–2012 is shown in Figure 8a.
It can be seen that the areas with high NDVI (0.4–0.5) are located in northwestern
part. NDVI values in central and south part of study area, and in the vicinity
of lake grassland region are relatively low (0.2–0.3). The variations in trends of
NDVI can be effectively captured by the Theil-Sen median trend analysis and the
Mann-Kendall test to reflect the spatial distribution of vegetation responses to water
resource changes. Because regions with a TSNDVI of 0 strictly do not exist, we made
the following classifications according to the real conditions of the TSNDVI. Regions
with a TSNDVI from −0.0005 to 0.0005 are categorized as stable regions, regions
with TSNDVI larger than or equal to 0.0005 are categorized improved regions and
regions with TSNDVI less than −0.0005 are categorized as degraded areas. Moreover,
significance test results of the Mann-Kendall test, at the confidence level of 0.05,
are determined as significance variations (Z > 1.96 or Z < −1.96) or insignificant
variations (−1.96 ≤ Z ≤ 1.96). Through combining the classification results of the
Theil-Sen median trend analysis and the MK test, it is comparable with the data of
trend variations of the NDVI. The results are summarized into five classes as shown
in Table 3. It shows the regions with vegetation condition improvement, regions with
stable vegetation condition, and regions with vegetation degradation, which account
for 70%, 13.5% and 16.5%, respectively.
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NDVI change over 2002 to 2012.

Table 3. Changing trend of normalized difference vegetation index (NDVI) in the
study area.

TSNDVI Z NDVI Trend Area (%)

<−0.0005 <−1.96 Severely degraded 2.69%
<−0.0005 −1.96–1.96 Slightly degraded 13.80%

−0.0005–0.0005 −1.96–1.96 Stable 13.51%
≥0.005 −1.96–1.96 Slightly improved 57.35%
≥0.005 ≥1.96 Improved 12.64%

As shown in Figure 8b, the region with improved vegetation condition is far
larger than the regions with degrading trend, and mainly scattered in the central part
of the study area. This indicates resilience of grassland vegetation to droughts. The
decreasing precipitation from 2002 to 2007 had not much impact on vegetation in
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the central part. It can be seen that the vegetation condition recovered quickly after
the withdrawal of drought and the increase in precipitation in the following years.
Hence, average NDVI over 2002–2012 showed an increasing trend. This shows the
close relationship between vegetation conditions and precipitation as found by other
researchers [36]. It is obvious to detect such vegetation conditions with a decreasing
trend distributed in the northwest mountain areas and Lake Hulun surrounding
areas (especially, in the northern and western part, Figure 2 shows that these are
the evergreen and deciduous forest areas). Decrease in water resources had serious
negative and long-term impacts on vegetation conditions. Even the precipitation
increased after 2007, vegetation conditions did not recover to its normal state. We
can categorize those areas as ecologically vulnerable regions, where more protective
measures and effective management are needed. Possible causes about vegetation
degradation in the north of Lake Hulun may have also affected by anthropogenic
activities. Since it became the more important trading port between China and Russia
after 2000, human activities have been more frequent than before. In addition, rapid
urbanization affected vegetation conditions in this area.

6. Conclusions

In the present study, water resource changes over Hulun Lake region derived
from monthly GRACE and TRMM products were analyzed. The EOF results from
both GRACE and TRMM showed decreasing trends in water storage changes and
precipitation over 2002 to 2007 and increasing trends after 2007 to 2012. Water storage
and precipitation changes in spatial and temporal scale showed a very consistent
pattern. Further analysis proved that water storage changes were mainly caused
by precipitation and temperature changes in this region. Based on the general
understanding about water resource variations, we checked the response of Hulun
Lake. Results indicated that lake level and lake surface area both declined during
2002 to 2009, with about three meters of water level drop and 400 km2 shrinkage
in lake surface area, respectively, and then remained stable after 2009 even though
precipitation had recovered back to pre-2002 level. We can infer that water resource
conditions needed more time and precipitation to recover from a long term drought in
this typical semi-arid region. Furthermore, the vegetation response to water resource
variations reflected that vegetation resilience to drought in most regions was high,
forests were less resilient to drought than grasslands. Drought did not bring serious
negative implications on vegetation growing conditions. Only 16.5% of the study area
which is located in the northern and western sections of Hulun Lake and northwest
mountain areas showed vegetation degradation. These areas that are categorized as
ecological vulnerable regions need more protection and effective management in the
future. Finally, this study demonstrated the feasibility of estimating water resource
variation on the spatial–temporal scale and its impact on eco-environment using
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freely available remote sensing data in a sparsely gauged semi-arid area, which can
also be adapted to other regions. Such spatiotemporally distributed analysis at the
regional and basin level is particularly important considering that most of the water
management and eco-environmental protection also take place at these scales.
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Hydrological Evaluation of Lake Chad Basin
Using Space Borne and Hydrological
Model Observations
Willibroad Gabila Buma, Sang-Il Lee and Jae Young Seo

Abstract: Sustainable water resource management requires the assessment of
hydrological changes in response to climate fluctuations and anthropogenic activities
in any given area. A quantitative estimation of water balance entities is important
to understand the variations within a basin. Water resources in remote areas with
little infrastructure and technological knowhow suffer from poor documentation,
rendering water management difficult and unreliable. This study analyzes the
changes in the hydrological behavior of the Lake Chad basin with extreme climatic
and environmental conditions that hinder the collection of field observations. Total
water storage (TWS) from the Gravity Recovery and Climate Experiment (GRACE),
lake level variations from satellite altimetry, and water fluxes and soil moisture
from Global Land Data Assimilation System (GLDAS) were used to study the
spatiotemporal variability of the hydrological parameters of the Lake Chad basin.
The estimated TWS varies in a similar pattern as the lake water level. TWS in the
basin area is governed by the lake’s surface water. The subsurface water volume
changes were derived by combining the altimetric lake volume with the TWS over
the drainage basin. The results were compared with groundwater outputs from
WaterGAP Global Hydrology Model (WGHM), with both showing a somewhat
similar pattern. These results could provide an insight to the availability of water
resources in the Lake Chad basin for current and future management purposes.

Reprinted from Water. Cite as: Buma, W.G.; Lee, S.-I.; Seo, J.Y. Hydrological
Evaluation of Lake Chad Basin Using Space Borne and Hydrological Model
Observations. Water 2016, 8, 205.

1. Introduction

In some developing parts of the world, very limited and low quality ground
water data often hinder proper water management studies [1]. Moreover,
the estimation of large-scale water balance using these limited ground-based
measurements is prone to inaccuracies [2]. Sometimes, obtaining these datasets from
the appropriate authorities involves lengthy administrative procedures, rendering
studies extremely difficult.

Some, if not all of these, are associated with the Lake Chad Basin (LCB). Its scale
and lack of modern infrastructure are major challenges for data collection, analysis
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and management [3]. Under these circumstances, satellite gravimetric, altimetry and
hydrological models have proven useful in the study of these water bodies.

The Gravity Recovery and Climate Experiment (GRACE) is a joint mission
between Deutsche Forschungsanstalt fur Luft und Raumfahrt (DLR) and National
Aeronautics and Space Administration (NASA) that was launched in 2002. It records
the Earth’s time variable gravity field with a temporal and spatial resolution usually
within a few hundreds of kilometers. These products together with the products
[data] from satellite altimetry, Global Land Data Assimilation System (GLDAS), and
WaterGAP Global Hydrology Model (WGHM) were used for this study. Satellite and
hydrologic model products have widely been used for ground-based hydrological
measurements and studies, and they also serve as inputs to land surface and
atmospheric models [4,5]. They are also used to verify these models.

Lake Chad Basin (LCB) extends between latitude 6˝ N and 24˝ N, and between
longitude 8˝ E and 24˝ E (Table 1). It covers an area of about 2,400,000 km2, which is
equivalent to 8% of the total area of the African Continent. About 20% of this total
area is the conventional basin, which is under the mandate of the Lake Chad Basin
Commission (LCBC).

Table 1. Morphometric data for Lake Chad.

Parameter Lake Chad Basin

Location 6˝ N and 20˝ N, 7˝ E and 25˝ E
Catchment area 2.4 ˆ 106 km2

Conventional Basin 427,500 km2

Lake area 1350 km2

Lake Chad itself occupies the central region of the LCB. It is a closed lake,
predominantly fed by two perennial rivers (the Chari and the Logone) and an
ephemeral one (the Komadugu Yobe) (Figure 1). It serves as a source of freshwater
and fish, and also aids pastoral and agricultural land for a population of 30 million
across the basin by offering a relatively easy and permanent access to water [6].

Increase in population, dam constructions, and irrigation development facilities
during the last four decades have caused the surface area of Lake Chad to shrink
from 24,000 km2 to 1300 km2 [7,8] (Figure 2). Studies have shown that the decrease
was due to persistent drought and irrigation activities in the area [9–11].

In an attempt to manage and reduce the persistent droughts in this area, the
water transfer project, whose main objective is halting the shrinkage of Lake Chad
through an inflow of water coming from the Ubangi River, was introduced by
the LCBC.
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Water scarcity triggers food insecurity, poverty, migration and conflicts. As
such, it is very important for a population or nations as a whole to secure stable
and reliable water resource management techniques. A step towards this would be
to understand the changes experienced by the water body in their vicinity. With
limited and unreliable in situ data collection, understanding and documenting these
changes can be very challenging and costly prompting researchers to rely on the
use of satellite gravimetric, altimetry and hydrological models in monitoring water
resources in such remote areas (Table 2).
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Previous studies have applied remote sensing and satellite data to the Lake Chad
region-some of which focused on the changes in stream flow patterns connected
to the lake [9,13–15], Leblanc et al. [16] reported on the existence of a mega-lake
Chad. They used satellite images from Landsat and Moderate Resolution Imaging
Spectrometer (MODIS) for their studies. Thermal remote sensing techniques, such
as the Meteosat thermal maximum composite data, was used to account for the
variability of inundated areas within the lake under flooded vegetation [17]. Satellite
imagery and GRACE data were used to study the regional hydrogeology and made
an attempt at estimating the actual evapotranspiration over the LCB [5]. Altimetry
data and ground-based information were used to predict the downstream lake and
marsh heights using imperial regression techniques [18].

Few studies have used remote sensing data for investigating groundwater
recharge around this area like [3,6] used satellite images (Meteosat thermal data)
combined with hydrogeological data to identify the thermal change of groundwater
in the depression zones, and then estimated values of recharge and discharge of the
area. We try to define time series data of groundwater depending on the nature and
fluctuation of this property in time and space.

In this study, we combined updated remotely sensed and hydrological model
datasets. These datasets have been used to study the diverse aspects of basin
hydrology within the continent [6,7,11,19–24]. Some of these point out the lack of
readily available in situ data for these studies [5,22], some cases validated the in situ
measurements in Lake Chad and other parts of Africa (Table 2).

Table 2. Literature review of remotely sensed data sets used in the studies of some
watershed in Africa.

Study Area
Data Products

ReferenceTerrestrial Water Storage Rainfall Lake Height

Lake Chad GRACE 1 GPCP 2 – [5]
Lake Chad – – Sat. Alt. 3 [25]

Lake Chad – NOAA 4,
TRMM 5 – [12]

East African Great Lake GRACE, WGHM 6 GPCP Sat. Alt. [25]
Lake Victoria, Malawi and

Tamganyika GRACE GLDAS,
TRMM Sat. Alt. [26]

Okavango catchment GRACE TRMM Sat. Alt. [27]

Congo river basin GRACE GLDAS,
TRMM Sat. Alt. [26]

Lake Victoria,
Tamganyika and Malawi GRACE, WGHM GLDAS,

TRMM Sat. Alt. [28]

1 GRACE: Gravity Recovery and Climate Experiment; 2 GPCP: Global Precipitation
Climatology Project; 3 Sat. Alt.: Satellite Altimetry; 4 NOAA: National Oceanic and
Atmospheric Administration; 5 TRMM: Tropical Rainfall Measuring Mission; 6 WGHM:
WaterGap Hydrological Model.
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We utilized satellite gravimetric, altimetric and hydrological models products
over the Lake Chad basin to characterize the spatiotemporal and multiscale variability
in its hydrological cycle, to infer the effect of rainfall on water storage in this region,
and, finally, to investigate subsurface water variations within this region and perform
comparison with groundwater outputs from a global hydrological model.

2. Materials and Methods

2.1. Terrestrial Water Storage (TWS) from GRACE

GRACE is known for estimating high-precision time-varying gravity field
and the changes of Earth’s surface mass at a high degree of accuracy on a time
scale ranging from months to a decade [29,30]. These variations are mainly due to
redistribution of water mass in the surface fluid envelopes of the earth. It provides
estimates of TWS, which encompasses surface water, soil moisture, groundwater
and snow. However, experimental errors while using GRACE increase rapidly
and concurrently as the degree of the spherical harmonic coefficients, causing
inaccurate results at higher degree terms of the spherical harmonic coefficients [31,32].
Spatial averaging functions are normally used to reduce the high degree of noise
in the GRACE gravity field. This provides researchers with accurate surface mass
changes. An additional de-stripping averaging filter is used for suppressing the
“N–S” stripping noise in the GRACE data. There is also a leakage effect, which is
caused by the spatial averaging functions. This causes some signals of the GRACE
mass anomalies to leak outside the region of interest. The accuracy of GRACE is
high enough to detect surface mass variations corresponding to hydrological loads
of 1 cm at monthly and longer time scales, with horizontal dimensions of hundreds
of kilometers and larger [30].

Numerous studies on the reliability of its data sets has been carried out
by comparing its TWS products to that of Land Surface Models or in situ land
observations-India [31], the Korean Peninsula [33,34], the East African lakes [25],
Mali in Africa [35]. It has also been widely used in the studies of lakes around the
world [36–39].

The GRACE Level 3 (Release 05) is the latest and more accurate of GRACE
products. It provides processed time variability gravity field products. These products
are provided as sets of spherical harmonic coefficients averaged on a monthly scale.

For this study, we used the monthly land mass grid observations (Level 3)
provided by the Center of Space Research (CSR), University of Texas, at Austin from
January 2003 to December 2013. The data are available as monthly 1˝ ˆ 1˝ grids
of TWS over our study area [40]. The data set was truncated at 60 degrees and
smoothed with the Gaussian filter of 300 km. GRACE data enhancement techniques
provided [30] were also included to improve the accuracy of these TWS estimates.
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For the time frame of our study, we encountered six months of missing data
during these dates: June 2011, May and October 2012, and March, August, and
November 2013. For these missing datasets, the temporal linear interpolation was
done between them since they were not contiguous.

2.2. Lake Height from Altimetry

Generally, satellite altimeters are nadir-pointing instruments that record the
average surface “spot” height directly below the satellite as it transverses over the
Earth’s surface. It basically determines the distance from the satellite to a target
surface by measuring the satellite-to-surface round-trip time of a radar pulse. The
altimeter emits a radar wave and analyzes the return signal that bounces off the
surface. The surface height is calculated as the difference between the satellite’s
positions on orbit with respect to an arbitrary reference surface, i.e., the Earth’s center
is represented by a reference ellipsoid and the range between the satellite and the
surface is obtained by calculating the time taken for the signal to return. From this,
the measurements of the sea surface height and other characteristics of oceans, lakes,
floodplains, and rivers can be obtained. A lot of information can be extracted from
satellite altimetry.

Institutions like the Foreign Agricultural Services (FAS) of the United States
Department of Agriculture, Hydroweb, and European Space Agency (ESA) have
been making available the up-to-date and reliable user-friendly data sets.

Lakes, rivers and oceans have all been monitored over the years using these
data sets [9,11,41–44]. Surface water level data sets are sometimes given in the
form of graphs and tables for major water bodies based on combination of
various radar altimetry sensors. These data sets are made available free of
charge via web applications, such as USDA’s Global Reservoir and Lake Monitor
(http://www.pecad.fas.usda.gov), Hydroweb of Geodesy, Oceanography and
Hydrology from Space (GOHS; http://www.legos.obs-mip.fr/), and River and Lake
system provided by ESA (http://tethys.eaprs.cse.dmu.ac.uk). Repeat track methods
used in the derivation of time series of the lake surface height variation uses the
reference lake height profile. This is derived from averaging all height profiles across
the lake within a given time span. This effectively smoothens out any varying effects
of tide and wind set-up. These resulting time series of height variations are expected
to have an accuracy of about 20 cm root mean square (RMS) for lakes with minimal
tides and limited dynamic variability.

For our study area, the satellite altimetry data has widely been used in the
studies of the lake in which in situ datasets were compared with these altimetry
products. The results showed accurate water level variations for Lake Chad in
the two data sets [11,40,41]. Altimetry missions with a 10-day repeat track, such
as TOPEX/Poseidon (1992–2006), Jason-1 (2001–2013), and Jason-2 (2008–present),
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or those with a 35-day repeat track, such as ERS-2 (1995–2000) and ENVISAT
(2002–2010), can be used to extract lake height variations. ENVISAT altimetry
estimates were used for this study.

2.3. Soil Moisture from GLDAS

Operated by NASA and the National Oceanic and Atmospheric Administration
(NOAA), GLDAS is a land surface simulation system that aims to ingest satellite and
ground-based observational data products, using advanced land surface modeling
and data assimilation techniques, in order to generate optimal fields of land surface
state (e.g., soil moisture and surface temperature) and flux (e.g., evaporation and
sensible heat flux) products [4]. It adopts four advanced land surface models
(LSMs): The Community Land Model (CLM), Mosaic, Noah, and Variable Infiltration
Capacity (VIC). GLDAS executes spatial resolutions globally at both 0.25˝ and 1.0˝,
with temporal resolutions of three hours and monthly products since 1979. GLDAS
data are widely used for land-surface flux simulations. As such, the simulation
accuracy using GLDAS dataset is largely contingent upon the accuracy of the
GLDAS dataset. The data are available from the Goddard Earth Sciences Data
and Information Services Center (GES DISC).

In this study, we used Noah 1.0˝ grid data which has four layers of vertical
soil moisture. The monthly average soil moisture is computed as the sum of all the
layers [45].

2.4. Groundwater Estimates from the WaterGap Hydrological Model

The WaterGAP Global Hydrological Model (WGHM) is a submodel of the global
water use and availability model WaterGAP 2.2 It computes groundwater recharge,
surface runoff and river discharge as well as storage variations of water in canopy,
rivers, soil, lakes, wetlands, groundwater and snow at a spatial resolution of 0.5˝ [46].

WGHM is based on the best global data sets currently available, and it is able
to simulate variations in water bodies. It computes the water storage in the snow
pack, rooted soil zone, groundwater, on vegetation surfaces, and in surface water
reservoirs. Here, the simulated estimates provided by [47] were used. In order to
obtain a reliable estimate of water availability, they tuned the model against the
observed discharge at 1235 gauging stations, which represent 50% of the global land
area and 70% of the actively discharging area. In Africa, most basins north of the
equator do not perform well [47]. Detailed information about the modelling concept
and its corresponding assumptions can be found in [48].

Model outputs assessment performance was not carried out in the LCB due to
limited data availability. However, the Chari and Komadougou Yobe river basins,
which predominantly feed the lake, were included in the calibration scheme of this
region. Too much water was modeled for both basins. The Chari-Logone river system,

58



which supplies most of the water into the southern part of LC, has a Nash-Sutcliffe
efficiency of around 0.6, which is quite good. On other hand, inland water bodies in
Africa showed a good match with the WGHM model output-for instance, the East
African great lakes as reported by [46].

For this study, outputs from the WaterGap 2.2a model forced with precipitation
from the Global Precipitation Climatology Centre (GPCC) and data from the
European Center for Medium-Range Weather Forecast (ECMWF) integrated forecast
system were used. These outputs include; global-scaled gsssroundwater storage,
total water storage, baseflow, and groundwater recharge (diffused and below surface
water bodies). There is no data available after 2009 (Table 3). This can be found on
the website (https://www.uni-frankfurt.de/49903932/7_GWdepletion) [49].

Table 3. Summary of data sets used for this study.

Variable Dataset
Resolution

PeriodSpatial Temporal

Terrestrial Water Storage GRACE 1˝ ˆ 1˝ 1 month 2003–2013
Lake Height Sat. Alt. 1˝ ˆ 1˝ 30 days 2003–2013

Rainfall GLDAS 1˝ ˆ 1˝ 1 month 2003–2013
Soil moisture GLDAS 1˝ ˆ 1˝ 1 month 2003–2013
Groundwater WGHM 0.5˝ ˆ 0.5˝ 1 month 2003–2009

2.5. Data Processing

2.5.1. Variability in TWS and Lake Height

Seasonal-Trend Decomposition Procedure based on Loess (STL) method is a
filtering procedure that decomposes a time series into its additive components of
variation (trend, seasonal and the remainder components) by the application of Loess
smoothing models [50]. This was used to model GRACE monthly storage variations
as well as the time series of altimetric lake height.

In brief, the steps performed during STL decomposition are as follows:

1. Cycle-subseries smoothing: series are built for each seasonal component, and
smoothed separately.

2. Low-pass filtering of smoothed cycle-subseries: the subseries are put together
again, and smoothed.

3. Detrending of the seasonal series.
4. Deseasonalizing the original series, using the seasonal component calculated

in the previous steps; and Smoothing the deseasonalized series to get the
trend component.
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In R statistical software, the STL algorithm is available through the stl function.
We use it with its default parameters. The degrees for the Loess fitting are d = 1 in
steps (iii) and (iv), and d = 0 in step (ii).

The parameter values must be chosen by the data analyst. We assume each
observation Xi in time series is the sum of these components:

Xi “ Ti ` Si ` Ii (1)

where Ti “ Trend, Si “ Seasonality and Ii “ Interannual components.
Often, six parameters determine the degree of smoothing in trend and seasonal

components. For detailed information on method and parameters, consult [50] paper
on STL methods. For our study, these parameters are:

nppq : The number of observations in each seasonal cycle, = 12 months (yearly
periodicity with monthly data);
npiq : The number of passes through the inner loop (usually set to equal one or
two) = 1 month;
npoq : The number of robustness iterations of the outer loop (Values qual one or
two) = po robustness while a zero value has no robustness iteration) = 5 months;
nplq : The span of the loess window for the low-pass filter (computed as the next odd
number to nppq) = 13 months;
npsq : The smoothing parameter for the seasonal component, = 12 months (seasonal
length is same as the periodic length);
nptq : The smoothing parameter for the trend component, = 22 months.

nptq ě

»

–

1.5nppq
1´ 1.5n´1

psq

fi

fl ˆ 2 (2)

For this analysis, R statistical software was used [51]. It is a free software
environment and a programming language for statistical computing and graphics. It
is widely used among statistics and data miners for developing statistical software
and data analysis. MS excel was also used for subsequent data representation
and analysis.

2.5.2. Subsurface Water Volume Change

Subsurface water volume (Groundwater + Soil moisture) was investigated.
GRACE data provides changes in total water storage, which includes Lake water
storage (LS), Snow water equivalent storage (SWES), soil moisture storage (SMS),
and groundwater storage (GWS) within the basin. With satellite and model-based
estimates of LS and SMS, subsurface water volume can be estimated. SWES was
ignored for our study area since this area is humid.
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Estimates of the subsurface water changes was evaluated using the following
disaggregation equation,

∆SSW = ∆SM + ∆GW = ∆TWS´∆LS (3)

Here, ∆SSW = Subsurface Water, ∆GW = Groundwater, ∆LS = Lake water,
∆TWS = Terrestrial Water Storage, ∆SM = Soil Moisture.

In an attempt to express ∆SSW and ∆LS in terms of volume, both were
multiplied by the LCB area and Lake Area, respectively.

3. Results and Discussions

3.1. TWS and Altimetry Lake Height

Based on our study period, the STL trend of the time series of monthly GRACE
TWS shows a decrease in average TWS of the Lake Chad basin (Figure 3) for the
periods 2003–2005 and 2009–2010 with the latter being the lowest water estimates at
´0.54 cm/year. There is an increase in TWS concentrations from 2006 to 2008, and
2010 through 2013, with the latter being the highest storage estimates of 0.69 cm/year.Water 2016, 8, 205 8 of 14 
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The STL trend of the time series of altimetric lake height (Figure 4) shows a
decrease in lake level from 2003 through 2005 and a steady increase until after 2008
with an average height of about 0.3 m/year. From this point, it begins to slope down
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towards 2010. From 2010 to 2012, the Lake experiences its lowest height averaging to
about 0.23 m/year. Different rates are shown in Table 4.
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Table 4. STL fitted trend of the time series of TWS and lake height.

Period TWS
(cm)

Lake Height
(m)

2003–2005 0.25 0.32
2006–2009 0.84 0.62
2010–2013 0.38 ´0.78

The STL decomposition plot of the monthly TWS estimates and lake altimetric
height shows a similar pattern with their seasonal components suggesting an annual
increase from the months of July–September as well as a decrease from October–June.
This implies the Lake’s height follows the seasonal pattern of the rainfall cycle around
this area. There is a correlation (>80%) between them which points out the similarity
in their pattern (Figure 5a).

Their seasonal component suggests an average annual increase in September
and a main annual drop exists in November. This is due to the rainfall regime that
exists over the Lake region. This relationship will be discussed in Section 3.2. The
largeness and uniform size of the seasonal cycle of Lake Chad means that, over the
years, Lake Chad has a fast water renewal process.
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3.2. TWS and Rainfall

Rainfall estimates from GLDAS were compared to GRACE TWS over the LCB.
During the wet season (July–September), there is an increase in seasonal pattern
of rainfall over the study region with 2012 having the maximum annual averages.
Figure 6 shows a comparison between the time series of the monthly estimated
GLDAS rainfall and the change in GRACE TWS and, as expected, both curves show
a good agreement during most of the study period in terms of pattern.

Based on Figure 6, we can clearly see the existence of a phase shift between
GLDAS rainfall and GRACE TWS. This phase shift is about a month and a half. Their
lagged correlation was also high (>0.9). From trend analysis, rainfall that precedes
TWS increases throughout the study period. Its seasonal cycle goes ahead to confirm
this phase shift that exists between rainfall and TWS in this region.
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Figure 7 also confirms the bimodal rainfall regime that exists within this region
with most of its heavy rainfall occurring between July–September and shorter rains
from October–December.
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water volume change from altimetry are critically analyzed. Due to its improved
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Additionally, investigated were the changes in subsurface water volume, which
comprises of groundwater and soil moisture (Section 2.5.2). In early 2003 and 2007,
there is a dissimilarity between volume estimates of WGHM groundwater and
subsurface water estimates. The results obtained were compared with WGHM
outputs (Figure 10). It shows two peak periods at approximately mid-2005 and 2006.
Both curves have a somewhat similar pattern with a correlation coefficient of about
47% between them.
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4. Conclusions

In this study, we see how the use of GRACE TWS data along with other data
sources could be of great value in the hydrological studies of remote areas. We
investigated hydrological variability associated within the LCB from January 2003 to
December 2013. GRACE TWS and altimetric lake volume showed a similar pattern
for the majority of the study period. After comparing TWS with soil moisture content,
we found that the discharge in this area is governed by surface water of the lake. This
is the first attempt in which these remotely sensed datasets were used to study the
varying patterns of the lake’s hydrology. Deriving this characteristic spatiotemporal
analysis of surface mass anomalies across the LCB, future improvements can be
made in the management of water resources in this area.

For much of the study period, GRACE TWS variations within the basin show
a similar pattern of variation as the averaged lake height variation from altimetry.
A trend analysis showed increasing precipitation with maximum annual average
increase in August but decreasing water level in the lake from altimetry with the
minimum annual average occurring in 2012 with a value of 0.2 m. Our study also
showed that altimetry-based volume with TWS from GRACE provides information
on soil moisture and groundwater. This could help in detecting subsurface water
storage changes in relation to climate variability or anthropogenic activities especially
in situations where in situ measurements are not available. This could also lead to
new research prospects, where researchers could try to find out the main cause
behind the lake’s decreasing trend.

This characterization can help in the proposed Water Transfer Project from the
Ubangi River to Lake Chad in a number of ways. For instance, the primary objective
of this project is to halt the shrinkage of Lake Chad through an inflow of water
coming from the Congo basin. The association between LC level and precipitation
will enable managers to plan for the total water volume that can be released and
retained based on future forecasts.
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Water Discharge and Sediment Load
Changes in China: Change Patterns, Causes,
and Implications
Chong Jiang, Linbo Zhang, Daiqing Li and Fen Li

Abstract: In this research, monthly hydrological and daily meteorological data were
collected across China for the period 1956–2012. Modified Mann–Kendall tests,
double mass curve analysis, and correlation statistics were performed to identify
the long-term trends and interrelation of the hydrometeorological variables and
to examine the influencing factors of streamflow and sediment. The results are
as follows: (1) In the last 60 years, the streamflow in northern China has shown
different decreasing trends. For the southern rivers, the streamflow presented
severe fluctuations, but the declining trend was insignificant. For the streamflow
in western China, an increasing trend was shown. (2) In the northern rivers, the
streamflow was jointly controlled by the East Asian monsoon and westerlies. In the
southern rivers, the runoff was mainly influenced by the Tibet–Qinghai monsoon,
the South Asian monsoon, and westerlies. (3) Sediment loads in the LCRB (Lancang
River Basin) and YZRB (Yarlung Zangbo River Basin) did not present significant
change trends, although other rivers showed different degrees of gradual reduction,
particularly in the 2000s. (4) Underlying surface and precipitation changes jointly
influenced the streamflow in eastern rivers. The water consumption for industrial and
residential purposes, soil and water conservation engineering, hydraulic engineering,
and underlying surface changes induced by other factors were the main causes of
streamflow and sediment reduction.

Reprinted from Water. Cite as: Jiang, C.; Zhang, L.; Li, D.; Li, F. Water Discharge and
Sediment Load Changes in China: Change Patterns, Causes, and Implications. Water
2015, 7, 5849–5875.

1. Introduction

Global warming caused by human-induced emissions of greenhouse gases is
accelerating the global hydrological cycle [1]. The accelerated hydrological cycle is
in turn altering the spatial-temporal patterns of precipitation, resulting in increased
occurrences of precipitation extremes that cause increased occurrences of floods and
droughts in many regions of the world [2], including China [3–5]. As a vital natural
resource, water is fundamental for the sustainable development of the economy,
ecosystem, and biodiversity. Therefore, water security and related implications for
ecosystem and river diversity, particularly the variability and availability of regional
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water resources under the influences of climatic change and human activities, have
been discussed in recent years [6–8]. Much attention has been given to water resource
changes and their effects on the economic society by the international community.
For example, the Intergovernmental Panel on Climate Change (IPCC) has reviewed
changes in the global hydrological cycle and has assessed the impacts of climatic
change on water resources [9]. Many countries, such as the United Kingdom, have
addressed the impact of climatic change on water resource variation [10]. The climatic
changes of China are controlled mainly by winter and summer monsoons [11].
Generally, precipitation in southwest China is greater than that in northwest China;
these patterns are controlled mainly by the monsoon system and the effects of
topography [12]. Rainy seasons in eastern China hinge on progress and retreat
of the East Asian monsoon. Detailed information on the evolution of summer
Asian monsoons and the associated propagation of rain belts has been reported by
Ding [13].

River sediment is an important aspect of land surface processes and global
change research. River sediment generation, transportation, and river delta response
have become important aspects of Earth system science. In 1968, Holeman [14]
investigated global sediment discharge by using global hydrological data; further
research was conducted by Holland [15]. Walling and Fang [16] investigated the
temporal variation of 145 rivers by using long-term data (longer than 25 years) in
Asia, Europe, and North America. They reported that the sediment discharge in more
than 50% of analyzed rivers presented upward or downward trends, the latter of
which was dominant. However, in the remaining 50%, the sediment flux essentially
remained stable [17]. A study of the sediment load in Russia showed that of the
20 rivers flowing into the Arctic Ocean, 35% showed increasing trends, 60% presented
declining trends; only 5% remained stable [18]. Similar research was conducted by
Liu [19], Subramainian [20], and Siakeu [21] for major rivers of Asia, India, and Japan,
respectively. This research revealed that human activities, particularly reservoir and
dam construction, were the main causes of sediment flux reduction.

Many researchers investigated the sediment and streamflow change in major
rivers of China. The Yangtze River Basin (YARB) [22], Yellow River Basin (YRB) [23],
Huai River Basin (HURB) [24], Liao River Basin (LRB) [25], and Songhua River Basin
(SRB) [26] showed different degrees of decreasing trends. However, the sediment flux
in western rivers such as the Yarlung Zangbo River Basin (YZRB) and Lancang River
Basin (LCRB) remained stable or increased slightly. The Yellow and Yangtze rivers
are two of the largest rivers in China and therefore receive more attention. Yang [27]
considered that reservoir and dam construction was the main reason of sediment
reduction in the Yangtze River. Miao [23] reported that reservoir construction,
reduced precipitation, soil and water conservation projects jointly induced sediment
reduction in the Yellow River. So far, the focus in China has been mostly on regional
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water and sediment resources. On the basis of instrument records of streamflow and
sediment, many scholars conducted research in different river basins in China to
reveal different changing patterns of runoff and sediment. Most of these studies are
based on the monitoring data of individual rivers without considering the impacts
of water and sand resource consumption of the economic society within the river
basin. Regarding spatial scale, most studies completed thus far are based on one
river basin; few are based on a national scale. An acceptable evaluation of water
and sediment resources requires sufficient hydrometeorological data and extensive
data-driven analysis, which is the motivation for the current study. Further, possible
causes of precipitation and streamflow and sediment resource variation need to be
investigated, and the related implications should be discussed.

Therefore, the objectives of this study are to (1) investigate streamflow and
sediment changes in major rivers in China; (2) determine the streamflow changes
and their relationship with precipitation, monsoons, and water consumption for
industrial and residential purposes; (3) determine regional sediment load changes
and their relationship with hydraulic engineering, soil and water conservation
engineering, and underlying surface changes induced by human activities; and
(4) discuss the relationship between sediment and runoff changes and their
relationship with specific events, the implications of which will also be discussed.
The primary goal of this study is to evaluate the impact of climate change and human
activities on streamflow and sediment load and to provide basic information for
water and soil resources management in this region.

2. Data and Methodology

2.1. Data Collection and Processing

In this study, annual precipitation data from 725 rain gauge stations for the
period 1951–2012 were obtained from the National Climate Center (NCC) of the
China Meteorological Administration (CMA). The quality of meteorological data
was firmly controlled [28]. To guarantee the accuracy of the results, the data was
preprocessed as follow before the analysis. The observational data of missing data
years of more than 5 years (including 5 years) were excluded. The time series data of
partial relocation stations were unified, and the remaining missing observation data
were completed with a linear regression method and adjacent station interpolation
to ensure the integrity of the time series. The missing data in 725 stations only
accounted for less than 5% of total data amount. The regional averages refer to the
arithmetic mean value of the stations within a region. Annual precipitation average
was, thus, calculated from these records using the Thiessen Polygon method for each
river basin.
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The consecutive monthly data of streamflow and sediment yields from the
30 gauge stations were collected for the same period from Ministry of Water
Resources (MWR). The hydrologic data from the 30 gauge stations listed in Table 1
were used to analyze changes in streamflow and sediment load. Figure 1 and Table 1
provide information on the station location and associated drainage area. It is worth
to address is that, the Xinjiang Inland River Basin and the Hexi Inland River Basin
(HIRB) in northwestern China are composed of many tributaries. Therefore, to reflect
the overall change in streamflow, we summed the streamflow in tributary data to
represent the runoff of the entire basin. In southwestern China, although many large
rivers are present, we selected as study objects only two river systems, the LCRB and
YZRB, considering data availability.
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Figure 1. Distribution of 12 major basins in China showing gauge stations (red
triangles) and meteorological stations (black dots) used in this study.

The daily discharge was computed from the water level by using previously
calibrated discharge-water level curves. Water was sampled at fixed intervals, and
suspended sediment concentration was obtained by measuring water samples in the
laboratory. All the measurements of water level, discharge, SSC followed national
standards issued by the Ministry of Water Conservancy, and were printed in the
China Gazette of River Sedimentation [29]. Sediment loads refers to the suspended
fraction only, whereas bedload was excluded due to its difficulty in field sampling.
Measurement of the sediment loads was on the basis of standard procedures [30,31].
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Errors in calculating sediment load were introduced through the low frequency
of sampling, rather than continuous monitoring, which is likely to underestimate
sediment load during peak hours. The monthly and annual streamflow and sediment
load at the gauging stations were derived from the daily measured data. The accuracy
and consistency of all the data used in this study have been checked out by the
corresponding agencies before their release. In instances when discharge data were
missing, we used discharge data from similar rainfall conditions at other times as a
replacement, and the missing data in 30 stations only accounted for less than 3% of
total data amount.

Table 1. Summary of gauging stations and hydrological characteristics in the
12 major basins in China. DA is the drainage area.

ID Gauge Station Basin
(Abbreviation) Location Longitude

(N◦)
Latitude

(E◦)
DA

(km2)
Time
Span

1 Lijin Yellow River
Basin (YRB) Mainstream 118◦15′ 37◦29′ 752,032 1952–2012

2 Datong Yangtze River
Basin (YARB) Mainstream 117◦03′ 32◦37′ 1,705,383 1950–2012

3 Wujiadu Huai River Basin
(HURB) Mainstream 117◦23′ 32◦54′ 121,330 1950–2011

4 Zhangjiafen

Hai River
Basin (HRB)

Bai River 116◦10′ 39◦48′ 8506 1954–2011
5 Xiahui Chao River 117◦18′ 40◦22′ 5340 1961–2011
6 Shixiali Sanggan River 114◦43′ 40◦16′ 23,944 1952–2011
7 Xiangshuipu Yang River 109◦40′ 38◦01′ 14,507 1952–2011
8 Yanling Yongding River 115◦49′ 40◦01′ 43,674 1952–2011

9 Haerbin Songhua River
Basin (SRB) Mainstream 126◦32′ 45◦48′ 389,769 1955–2012

10 Tieling Liao River Basin
(LRB) Mainstream 123◦43′ 42◦13′ 120,764 1954–2012

11 Gaoyao Pearl River
Basin (PRB) Xi River 112◦27′ 23◦01′ 351,535 1957–2011

12 Zhuqi
Southeast Rivers
Basin (Min River

Basin, MRB)
Mainstream 119◦06′ 26◦08′ 54,500 1950–2011

13 Nuxia

Southwestern
Rivers Basin

(Yarlung Zangbo
River, YZRB)

Mainstream 95◦05′ 31◦17′ 191,235 1956–2009

14 Xiangda

Southwestern
Rivers Basin

(Lancang River
Basin, LCRB)

Mainstream 96◦28′ 32◦12′ 17,909 1956–2012

15 Dajingxia Reservoir

Hexi Inland
River Basin

(HIRB)

Dajing River 103◦24′ 37◦28′

68,300

1961–2010
16 Gulang Gulang River 102◦52′ 37◦27′ 1961–2010

17 Huangyanghe
Reservoir Huangyang River 102◦44′ 37◦35′ 1961–2010

18 Zamusi Zamu River 102◦34′ 37◦42′ 1961–2010
19 Nanying Reservoir Jinta River 102◦31′ 37◦48′ 1961–2010
20 Jiutiaoling Xiying River 102◦03′ 37◦52′ 1961–2010
21 Shagousi Dongda River 101◦55′ 37◦58′ 1961–2010
22 Xidahe Reservoir Xida River 101◦23′ 38◦03′ 1961–2010
23 Changmapu Shule River 96◦51′ 39◦49′ 1961–2010
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Table 1. Cont.

ID Gauge Station Basin
(Abbreviation) Location Longitude

(N◦)
Latitude

(E◦)
DA

(km2)
Time
Span

24 Dangchengwan Dang River 94◦53′ 39◦30′ 1961–2010
25 Yingluoxia Hei River 99◦55′ 38◦57′ 1961–2010
26 Binggou Beida River 101◦56′ 37◦54′ 1961–2010

27 Kaqun Xinjiang Inland
River Basin

(Tarim River
Basin, TRB)

Yeerqiang River 76◦54′ 37◦59′ 50,248 1957–2011
28 Tongguziluoke Yulongkashi River 79◦55′ 36◦49′ 14,575 1957–2011
29 Yanqi Kaidu River 86◦34′ 42◦02′ 22,516 1957–2011
30 Alaer Mainstream 81◦19′ 40◦32′ 127,900 1957–2011

1:100,000-scale land use maps in 1985 and 2010 were respectively obtained
from the Earth System Science Data Sharing Platform and The Remote Sensing
Monitoring and Assessment of Decadal Changes of National Eco-environment
(2000–2010) project group. The digital elevation model (DEM), the Monitoring
Report of Soil and Water Loss in China, and other maps were obtained from the
Earth System Science Data Sharing Platform.

2.2. Methodology

2.2.1. Mann–Kendall Test for Monotonic Trend

To analyze the long-term trends of hydrometeorological variables, the
non-parametric Mann–Kendall test [32,33] was applied. This method has been
widely used to detect trends in climate and streamflow time series [34]. In the
Mann–Kendall test, the null hypothesis H0 states that x1,..., xn are samples of n
independent and identically distributed random variables with no seasonal change.
The alternative hypothesis H1 for a two-sided test defines the distributions of xk and
xj as non-identical for all k, j ≤ n; with k 6= j. The test statistic S is given as

S =
n−1

∑
i=1

n

∑
k=i+1

sgn (xk − xi) (1)

sgn =


+1
0
−1

i f
θ > 0
θ = 0
θ < 0

(2)

If the dataset is independent and identically distributed, the mean of S will be zero,
and the variance of S will be:

var (S) =

[
n (n− 1) (2n + 5)−

m
∑

j=1
tj
(
tj − 1

) (
2tj + 5

)]
18

(3)
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where n is the number of data points, t is the extent of a given time, m is the number
of tied groups, and tj is the number of data points in the j-th group. A tied group
is a set of data points having the same value. A normalized test statistic Z can be
computed on the basis of S as:

Z =


S−1√
var(S)

S > 0

0 S = 0
S+1√
var(S)

S < 0

(4)

When the significance levels are set at 0.01, 0.05, and 0.1, |Zα| is 2.58, 1.96, and
1.65, respectively. At a certain significance level, if |Z| > |Zα|, the null hypothesis H0

is rejected. That is, the trend is significant at the set level of significance. Otherwise,
no significant trend exists.

In the Mann–Kendall test, the slope estimated by using the Theil–Sen
estimator [35,36] is usually considered to detect the monotonic trend and to indicate
the variable quantity in the unit time. It is a robust estimate of the magnitude of a
trend and has been widely used to identify the slope of a trend line in a hydrological
or climatic time series [37]. The estimator is given as:

β = Median
( xj − xl

j− l

)
∀1 < l < j (5)

where 1 < l < j < n, β is the median overall combination of record pairs for the entire
dataset and is resistant to extreme observations. A positive β denotes an increasing
trend, and a negative β indicates a decreasing trend.

2.2.2. Modified Mann–Kendall Test (Mann–Kendall Test with
Trend-Free Pre-whitening)

The Mann–Kendall test assumes that the series is independent and the series
is not robust against autocorrelation. However, certain hydrological time series
may frequently display statistically significant serial correlation. This may lead to
a disproportionate rejection of the null hypothesis of no trend, whereas the null
hypothesis is actually true. Therefore, the effect of serial correlation is a major source
of uncertainty in testing and interpretation trends. To eliminate the influence of serial
correlation, “pre-whitening” was proposed by Von Storch [38] to remove the lag
one serial correlation (r1) from the time series. This method has been applied in an
increasing number of studies [23,26,39].

77



To determine whether the observed dataset is serially correlated, the significance
of the lag-1 serial correlation (r1) should be tested at the 0.10 significance level. r1 is
calculated by using the following Equation [23,26]:

rk =
1

n−k ∑n−k
i=1 (xi − x) (xi+k − x)
1
n ∑n

i=1 (xi − x)2 (6)

If −1−1.645
√

n−2
n−1 ≤ r1 ≤ −1+1.645

√
n−2

n−1 , the time series is assumed to be independent
at the 0.10 significance level and can be subjected to the original Mann–Kendall test.
Otherwise, the effect of serial correlation should be removed from the time series
by pre-whitening prior to application of the Mann–Kendall test. The Mann–Kendall
test is then used to detect trends in the residual series. The new time series is
obtained as [40].

x′i = xi − (β× i) (7)

The r1 value of this new time dataset is calculated and used to determine the residual
series as:

y′i = x′i − r1 ×−x′i−1 (8)

The value of β × i is added again to the residual dataset as:

yi = y′i + (β× i) (9)

The yi series is then subjected to trend analysis.

2.2.3. Double Mass Curve

Double mass curve analysis is a simple and practical visual method widely
used in the study of the consistency and long-term trend test of hydrometeorological
data [41]. This method was first used to analyze the consistency of precipitation
data in Susquehanna watershed, Pennsylvania, USA [42]; a theoretical explanation
was later reported [43]. The theory of the double mass curve is based on the fact
that a plot of two cumulative quantities during the same period exhibits a straight
line if the proportionality between the two remains unchanged; the slope of the line
represents the proportionality. This method can smooth a time series and suppress
random elements in the series; thus, it can show the main trends of the time series. In
the last 30 years, Chinese scholars analyzed the effects of soil and water conservation
measures and land use/cover changes on streamflow and sediment by using this
method and have achieved good results [44]. In the present study, double mass
curves of sediment versus streamflow were plotted for the different periods to detect
the relationship change before and after transition years. The appearance of the
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inflection point denotes that the relationship between the sediment and streamflow
begins to change significantly [44].

3. Variation of Streamflow and Sediment Load

3.1. Overall Change of Streamflow

In this study, we defined the northern rivers and southern rivers as those north
and south of the eastern monsoon zone in China, respectively. Therefore, the northern
rivers include the YRB, HRB, LRB, SRB, and HURB; the southern rivers include the
Pearl River Basin (PRB), YARB, and Min River Basin (MRB); and the western rivers
include the Tarim River Basin (TRB), HIRB, LCRB, and YZRB. Based upon the years
of average runoff (Table 2), the order of runoff in the southern rivers was YARB
(8944.8 × 108 m3) > PRB (2166.4 × 108 m3) > MRB (532.7 × 108 m3); that in the
northern rivers was SRB (404.7 × 108 m3) > YRB (299.2 × 108 m3) > HURB (266.9 ×
108 m3/a) > LRB (29.3 × 108 m3) > HRB (18.1 × 108 m3); and that in the western
rivers was YZRB (312.5 × 108 m3) > LCRB (247.3 × 108 m3) > TRB (157.3 × 108 m3) >
HIRB (44.0 × 108 m3). It should be noted that Xiangda Station, which represents the
LCRB, is located at the source area of LCRB; therefore, the streamflow was smaller
than that in the entire basin. Actually, the average streamflow in the downstream
region of the LCRB was 740.5 × 108 m3 [45].

Table 2. Average annual streamflow and sediment load.

Basins Water Discharge (108 m3) Sediment Load (104 t)

HRB 18.1 795.1
HURB 266.9 881.4
YRB 299.2 76,655
LRB 29.3 1112.9
SRB 404.7 598.8
MRB 532.7 573.3
PRB 2166.4 6274.6

YARB 8944.8 40791
HIRB 44.0 –
TRB 157.3 –

YZRB 312.5 1710.4
LCRB 247.3 341.0

Figure 2a,b show the cumulative curve of the streamflow in the major rivers.
The cumulative curves of YARB, PRB, MRB, LCRB, YZRB, TRB, and HIRB, presented
linear increasing trends with essentially no fluctuation or inflection point. Among
them, the runoff in the HIRB showed a significant increasing trend at 0.16× 108 m3/a,
P < 0.001. That of other basins fluctuated near the mean level, as shown in Figure 3;
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the interdecadal anomalies are shown in Table 3. For the northern rivers, the
cumulative curve of streamflow in HURB presented complicated changes. The
overall direction was a straight line, indicating severe fluctuation on the interannual
scale, and no obvious trend was found. The other northern rivers generally presented
convex curves or lines, indicating that runoff in these rivers showed decreasing trends
(Figure 3). As shown in Table 4, the order of decrease rate was YRB (−7.25× 108 m3/a,
P < 0.001) > SRB (−3.32× 108 m3/a, P < 0.001) > HRB (−0.69× 108 m3/a, P < 0.001) >
LRB (−0.48 × 108 m3/a, P < 0.001).

3.2. Overall Change in Sediment Load

Figure 2c,d show the cumulative curve of the sediment load in the major rivers.
No obvious convex state was presented in those of LCRB and YZRB, which means
the sediment discharge variation had no significant trend. The cumulative curve of
sediment load in other rivers showed obvious convex shapes, which denote that the
sediment had different degrees of gradual reduction. In particular, after 2000, the
decrease was between 59.1% and 98.7% (Table 3). In the southern rivers, the decrease
in the 2000s was between 59.1% and 63.4%, with YARB showing the largest value.
In the northern rivers, the decrease was between 59.4% and 98.7%; LRB and HRB
were reduced by 97.6% and 98.7%, respectively (Table 3).
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discharge in major basins in China, during 1950–2012.

3.3. Pattern of Changes in Streamflow and Sediment Load

Figures 3 and 4 show respectively the temporal variation and double mass
curves of sediment load and streamflow in the 12 major rivers in China. On the whole,
the variation of streamflow versus sediment can be divided into three categories. In
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the first, the streamflow was stably maintained, but the sediment load was reduced
(HURB, YARB, MRB, PRB). In the second, the streamflow and sediment load were
both reduced (YRB, LRB, HRB, SRB). In the third, both water and sediment discharge
remained stable (LCRB, YZRB).

Table 3. Interdecadal anomalies of water discharge and sediment load. The
reference value is the average value during the 1950s to 1960s.

Basins
Change in Water Discharge (%) Change in Sediment Load (%)

1970s 1980s 1990s 2000s 1970s 1980s 1990s 2000s

HRB –18.6 –55.9 –56.4 –84.6 –35.0 –77.5 –77.2 –98.7
HURB –27.8 0.1 –45.5 –6.5 –43.4 –46.8 –73.7 –69.6
YRB –36.4 –41.5 –71.2 –67.5 –26.0 –47.3 –67.8 –88.7
LRB –56.9 –36.8 –27.3 –62.8 –90.2 –80.3 –59.9 –97.6
SRB –31.6 –2.9 –4.6 –43.4 –21.3 7.7 –19.6 –59.4
MRB –1.7 –2.6 4.2 –5.4 –1.6 –13.4 –49.0 –63.4
PRB 11.2 –4.0 13.3 –6.4 10.9 14.7 4.4 –59.1

YARB –6.1 –0.9 5.8 –5.7 –13.0 –10.9 –29.7 –63.1
YZRB –6.6 –14.2 –4.5 5.2 –14.9 –24.0 –5.2 –
LCRB –1.4 19.3 1.7 14.1 5.7 39.4 –14.4 –

Table 4. Results of Sen’s slope estimator and the Z value by using linear regression
and the Mann–Kendall test, respectively.

Basins
Water Discharge (108 m3) Sediment Load (104 t)

Slope Z Significance Slope Z Significance

HRB −0.69 −6.96 ** P < 0.001 −46.96 −6.73 ** P < 0.001
HURB −1.50 −1.49 P > 0.1 −25.35 −5.42 ** P < 0.001
YRB −7.25 −6.01 ** P < 0.001 −2300 −6.58 ** P < 0.001
LRB −0.48 −3.2 * P < 0.01 −55.33 −4.90 ** P < 0.001
SRB −3.32 −3.37 ** P < 0.001 −8.44 −4.11 ** P < 0.001
MRB −0.53 −0.58 P > 0.1 −9.74 −4.10 ** P < 0.001
PRB −2.04 −0.98 P > 0.1 −77.49 −3.31 ** P < 0.001

YARB −5.72 −0.36 P > 0.1 −6000 −6.73 ** P < 0.001
HIRB 0.16 2.81 * P < 0.01 − − −
TRB 0.10 0.80 P > 0.1 − − −

YZRB 0.20 0.40 P > 0.1 6.12 0.47 P > 0.1
LCRB 0.61 1.58 P > 0.1 −0.96 −0.67 P > 0.1

Note: “*” and “**” mean the correlation coefficient reach the significance level of 0.01 and
0.001, respectively.

3.3.1. Streamflow Remained Stable and Sediment Load Reduced

In the HURB, the streamflow and sediment discharge experienced continuous
declines before 1978 (Figures 3a and 4a). Since the early 1980s, and particularly in

81



the 1990s, an obvious decrease in sediment discharge occurred. This result was due
mainly to the effects of soil and water conservation projects in the HURB with areas
of 1.53 × 104 km2 and 1.04 × 104 km2 in the 1980s and 1990s, respectively. Shi [24]
reported that the soil erosion amount of the small watershed in the upper reaches of
the Huai River was reduced 77%–85% after implementation of engineering projects.
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In the YARB, the streamflow variation was relatively stable; however, the
sediment load decreased significantly (Figures 3b and 4b). The sediment yields
in 1956, 1958, and 1963–1968 were obviously high, which is likely attributed to
large-scal edeforestation activities such as “Devastating Forests for Arable Land”.
After 1969, the sediment load value suddenly dropped. This result is likely attributed
to the Danjiangkou Reservoir operation that began in 1968, which intercepted a
large amount of sediment. After 1989, the sediment yield decreased again, which
could have been caused by three aspects. Firstly, a series of ecological engineering
projects was conducted since 1982, particularly the Changzhi Project launched in 1989.
Secondly, the reservoirs were constructed in the mainstream and tributaries of the
Yangtze River. Thirdly, the amount of sand dredging increased annually. The total
amount in 1990–2002 was 5 × 107 t. After 2003, the sediment load decreased again,
which was mainly caused by operation of the Sanxia Reservoir in 2003. In 2012,
sedimentation in Sanxia Reservoir reached 14.37 × 108 t.

For MRB, as observed by Zhuqi Station, sediment load changed with streamflow
variation before 1985, although the amplitude of the sediment was larger than that of
the streamflow (Figures 3c and 4c). After 1985 and 1993, we detected two distinct
decreasing processes obviously related to reservoir construction such as the Shaxikou
hydropower station in 1987, Fancuo Dam in 1988, and the Shuikou hydropower
station in 1993. In particular, the sedimentation of Shuikou Dam accounted for 86%
of the total amount of sediment in the MRB. An additional factor is that the annual
sand dredging amount in Mawei near Shuikou Dam was 1 × 107 t after the late
1980s. The streamflow in Gaoyao Station of PRB was stable, although the sediment
load decreased significantly (Figures 3d and 4d). Before 1983, the sediment load
fluctuated with streamflow change and maintained a consistent pace. In 1983–1991,
the sediment load increased obviously, which may related to the construction of
multiple reservoirs. Since 1994, the sediment load presented a sharp decline, which
is mainly attributed to the sediment-retaining functions of reservoirs and dams such
as Yantan Reservoir in the Hongshui River (operated in 1993) and Longtan Reservoir
(operated in 2003).

3.3.2. Streamflow and Sediment Load Reduced Together

In the YRB, HRB, LRB, and SRB, the water and sediment discharge showed
clear downward trends. In YRB, as observed by Linjin Station, the sediment loads
in 1961–1965, 1980–1988, and 2000–2012 were lower than the mean level (Figures 3e
and 4e). The low point in 1961 reflected the operation of Sanmenxia Reservoir, which
began to retain water and sediment. In 1965, the operation mode of this reservoir
changed to begin storing clear water and releasing muddy sediment; therefore, the
sediment load recovered slightly. After 1980, the sediment load reduced again, with
the following possible causes: Firstly, the water diversion project began operation,
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which reduced the streamflow and sediment discharge. Secondly, the soil and water
conservation projects in the upstream function are functioning efficiently; thus, the
water discharge is reduced in the lower reaches. Thirdly, the rainfall is concentrated
mainly in the midstream region with less soil loss area; thus, the sediment is reduced
downstream. In the early 2000s, the sediment and streamflow reduced again, mainly
due to the water diversion projects and water reservoirs operating in the upstream
region, such as Xiaolangdi Reservoir in 1999.

In the HRB, the sediment and streamflow after the 1980s was maintained at
relatively low levels, the sediment load approached zero since 2000 (Figures 3f and 4f).
The abnormally high sediment load in 1967 and 1974 was due to the desilting effect
of Guanting Reservoir during the flood season through high rainfall and runoff. In
the LRB, the sediment and water discharge presented periodic changes (Figures 3g
and 4g). Before the 1960s, strong rainfall caused severe soil erosion, thereby inducing
sediment load increases. After 1964, the sediment load decreased significantly due
to the operation of Hongshan Reservoir in 1962. Until 1999, the sedimentation in
Hongshan Reservoir reached 9.41 × 108 m3, accounting for 58% of the total storage
capacity. Severe fluctuation of sediment and streamflow occurred in 1985–2000,
which was caused mainly by rainfall.

In the SRB, the streamflow and sediment discharge decreased at the same
pace (Figures 3h and 4h). On the interdecadal scale, the streamflow and sediment
discharge experienced “low-high-low” alternating variation processes in the 1970s
to 1990s, which were mainly affected by precipitation. In addition, agricultural and
industrial development since the beginning of the 1960s also accelerated the water
consumption for industrial and residential purposes. Although some large- and
medium-sized reservoirs are located in the upstream regions of Songhua River, the
reciprocal relationship between runoff and sediment has been relatively good, and no
obvious anomalies have been detected. This result occurred essentially because the
vegetation coverage in the source area is relatively high, and density of population is
low; thus, the river is seldom disturbed by human activities.

3.3.3. Both Streamflow and Sediment Discharge Remained Stable

Both streamflow and sediment discharge in the LCRB and YZRB maintained
stability. No significant upward or downward trends were detected, and fluctuations
of streamflow versus sediment have been essentially consistent (Figure 3i,j and
Figure 4i,j). Actually, the vegetation coverage is good, the population density in
the YZRB and LCRB is relatively low, and the level of economic development and
social construction is also relatively low. Thus; the streamflow and sediment are
seldom affected by human activities, and presented a good correlation among rainfall,
streamflow, and sediment.
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4. Influencing Factors of Streamflow Variation

4.1. Precipitation

In general, climate change is mainly characterized by temperature and
precipitation variability. Precipitation drives runoff and hence directly influences the
discharge of a river. Figure 5 shows precipitation changes in the major rivers and
in the entire country that occurred during the past 60 years. China’s precipitation
experienced a “decrease, increase, decrease, increase, decrease” pattern. The 1950s
was a rainy decade; the average rainfall reached 820.3 mm, which was the highest
value recorded in several decades. After 1960, precipitation began to decrease. Levels
were low in the 1980s and increased slightly in the 1990s. After 2000, the overall
trend obviously reduced. The SRB and LRB experienced a rainy period in the 1950s
that decreased in the 1960s and 1970s. The 1980s and 1990s presented slight increases
that decreased again in the 2000s. Precipitation in the YRB essentially showed a
decreasing trend by decade with lowest values occurring in the 1990s. After 2000,
however, the level increased slightly. Rainfall in the TRB and HIRB increased by
decade; however, the YZRB and LCRB presented decreasing trends since the 1960s.
For the southern rivers including YARB, MRB, and PRB, changes in precipitation
were consistent. Levels were lowest in the 1950s, increased in the 1960s and 1970s,
and fell slightly in the 1980s before returning to the less-rainfall stage in 2000.
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Since the Reform and Opening-up policy was implemented in 1979, the demand
for water resources increased substantially, and the streamflow in some rivers showed
different degrees of decreasing trend (Figure 3). Therefore, we divided the streamflow
sequence into two periods of before and after 1980 to explore the relationship between
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streamflow and precipitation (Figure 6). The subsection fitting lines of precipitation
versus runoff represent the runoff depth produced by rainfall in 1950–1979 and
1980–2010, respectively. Assuming that the precipitation had no significant change
on the basin scale, changes in the relationship of precipitation and streamflow can
reflect the influence of the underlying surface on the original hydrological process.
In the northern rivers, the fitting lines of rainfall-runoff in the HRB (Figure 6a), YRB
(Figure 6c), and SRB (Figure 6e) moved downward during 1980–2010 comparing
with that occurring in 1950–1979.
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versus those in 1980–2012. Solid and dotted lines represent lines in 1950–1979
and 1980–2012, respectively. Blue and red points represent data of 1950–1979 and
1980–2012, respectively.
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This downward movement denote the capacity of runoff yield decline. For
the HURB (Figure 6b) and LRB (Figure 6d), the fitting lines moved upward, which
illustrates that the capacity of runoff yield was enhanced. In the southern rivers,
the runoff capacity of the PRB declined after 1980 (Figure 6g), whereas the change
of MRB was not obvious (Figure 6f). The YARB also remained stable (Figure 6h).
The streamflows of the TRB and HIRB in the northwest and the LCRB and YZRB in
the southwest, originating from Tibet–Qinghai Plateau, were recharged by rainfall
in addition to runoff from glacier and snow melt water. In this condition, the
rainfall-runoff fitting lines could not fully reflect the changes in runoff yield ability.
Nevertheless, the fitting lines can still be used to determine the role of rainfall change
on runoff. The slope of the regression line in the HIRB during 1950–1979 was a
negative value (Figure 6i), which shows that the water supply in addition to rainfall
decreased. In 1980–2010, however, this part of the water supply increased. Similarly,
the runoff yield in the TRB (Figure 6j) and the YZRB (Figure 6k) decreased, whereas
the change in the LCRB was not obvious (Figure 6l). Changes in the rainfall–runoff
relationship showed that the underlying surface affected the hydrological process,
which will be further discussed in subsequent sections.

4.2. Monsoons

To determine the possible causes of streamflow variation, we examined Asian
monsoon indices, including the East Asian monsoon index (EAMI), South Asian
monsoon index (SAMI), Tibet–Qinghai Plateau monsoon index (TPMI), West Pacific
subtropical high (WPSH), and westerly index (WI). The Asian monsoon indices were
created by Li [46,47], and WI was derived from National Centers for Environmental
Prediction (NCEP) reanalysis data. The TPMI was calculated from NCEP 600 mb
height reanalysis data based on the method given by Wang [48].

Figure 7 shows the cumulative anomaly curves of runoff versus climatic
indexes and their correlation coefficients. The streamflow in the northern rivers
correlated positively with the EAMI and negatively with the WI, including the HRB
(Figure 7a,b), HURB (Figure 7c,d), YRB (Figure 7e,f), LRB (Figure 7g,h), and SRB
(Figure 7i,j). Among the northern rivers, the correlation coefficient between the YRB
and EAMI streamflow was the highest (R = 0.82, P < 0.001). However, the cumulative
anomaly curves of streamflow against the WI presented an opposite phase (R =−0.83,
P < 0.001). The results showed that streamflow in the YRB was jointly affected by the
East Asian monsoon and westerlies, which also reflects the interaction of westerlies
and the East Asian monsoon. The relationship of streamflow in the HRB, HURB, LRB,
and SRB and climatic indices was essentially the same as that in the YRB. However,
the correlation was not as strong as that with the YRB, which may be related to
the locations of the East Asia monsoon and westerly belt, as well as the influence
of human activities on natural runoff. In the southeastern rivers, the runoff of the
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MRB was affected mainly by the West Pacific subtropical high (R = 0.46, P < 0.01)
and the Tibet–Qinghai Plateau Monsoon (R = 0.38, P < 0.01) (Figure 7k,l). The PRB
(Figure 7m,n) is adjacent to the South China Sea and is also located in the westerly
belt and the East Asian monsoon zone. Therefore, its runoff was influenced by
several monsoon systems and therefore lacked direct correlation with a specific
monsoon index; the closest relationships were with the SAMI (R = 0.24, P < 0.1) and
TPMI (R = −0.55, P < 0.01). The case of the YARB (Figure 7o,p) was similar to that
of the PRB. The runoff was influenced by several monsoon systems dominated by
the WI (R = 0.64, P < 0.001) and TPMI (R = 0.39, P < 0.01). Ma [49] also found a
similar phenomenon, although deeper indications require further investigation. In
northwestern China, runoff in the HIRB (Figure 7q,r) and TRB (Figure 7s,t) correlated
positively with that in the TPMI and WI, indicating that streamflow changes in these
areas were controlled mainly by the Tibet–Qinghai Plateau monsoon and westerlies.

A deeper indication is that the TRB and HIRB were located in the central
area of Eurasia, which could have hardly been reached by the Northwest Pacific
summer monsoon. Therefore, the westerlies and Tibet–Qinghai Plateau monsoon
became the dominant factors. In southwestern China, the YZRB originated from
the Tibet–Qinghai Plateau hinterland. Its runoff was therefore subjected to the
Tibet–Qinghai plateau monsoon, and the correlation coefficient between them was
as high as 0.76 (p < 0.001) (Figure 7u,v). In contrast, because the YZRB was near
the India Ocean, the runoff and particularly the midstream was influenced by the
South Asia monsoon. In the LCRB (Figure 7w,x), although its headwater was in
the Tibet–Qinghai Plateau monsoon zone, the runoff was mainly affected by the
westerlies and East Asian monsoon.

4.3. Water Consumption for Industrial and Residential Purposes

Although climate change is important, particularly the impact of precipitation
change on runoff, water consumption for industrial and residential purposes also
plays important roles in runoff change [50–52]. Long-term statistics of water
consumption are not currently available, which makes detailed analysis difficult.
The “China Water Resources Bulletin (2004–2012)”, reported that the YARB had the
largest annual water consumption (Figure 8a). Aside from a slight reduction in
water consumption in the HRB, the other basins all presented increasing trends in
2004–2012 (Figure 8a). Water for agriculture and industry accounted for the largest
proportion at more than 80% of the total water consumption (Figure 8b,c). For
long term trends, the “China Statistical Yearbook (1950–2009)” reported that the
population, gross domestic product (GDP), and gross agricultural products showed
significantly increasing trends (Figure 9). In particular, definite increases in water
consumption are expected by the former two sectors. Thus, it can be inferred that the
water consumption during the past 60 years also showed sharp increasing trends.
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Figure 7. Cumulative anomaly curves of streamflow versus monsoon intensity
indices in the main basins of China. EAMI, SAMI, WI, WPSH and TPMI represent
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Tibetan Plateau monsoon index, respectively. R and P represent the correlation
coefficient and significance level, respectively.
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Figure 8. Interannual variability of water consumption and its change rate
in the 10 major basins and in the whole country (TWC). (a), (b), and (c) are
respectively gross water consumption, agricultural water consumption, and
industrial water consumption.

4.4. Land Use/Land Coverage Change

The statistics of land use change from 1985 to 2010 are listed in Table 5. National
land use change during the past 30 years shows obvious spatial differences and can
be divided into two periods: from the end of the 1980s to 2000 and from 2000 to 2010.
The characteristics of land use change during the first period indicate that farmland,
residential land, industrial land, paddy fields, and water areas increased rapidly, and
ecological land was greatly reduced. In 2000–2010, growth in farmland, residential
land, paddy fields, and water areas slowed, and ecological land decreased slightly.
Three possible causes can be considered. Firstly, construction land expansion was
the main cause of the farmland decrease in traditional agricultural areas. In addition,
large-scale ecological engineering promoted decreases in farmland. Another aspect,
annual accumulated temperature increases in the northern arid zone, created suitable
climatic conditions for reclamation in some forest zones, and a large area of dry
land was converted to paddy fields. Secondly, implementation of the Reform
and Opening-up policy resulted in rapid urbanization processes that occupied
farmland and ecological land, particularly in eastern China. Thirdly, before 2000, the
reclamation of grassland and forests caused soil degradation, which induced severe
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soil erosion. After 2000, the ‘Grain for Green’ program was implemented, which
significantly increased the areas of grassland and forests in the ecologically fragile
areas of western China.Water 2015, 7 5867 
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Figure 9. (a) Interannual variability of population; (b) gross domestic product
(GDP); and (c) agricultural products in 1950–2012 in China.

Table 5. Area of land use conversion in China during the two periods of 1980s–2000
and 2000–2010.

Transfer
Types

Dryland–
Paddy Field

Grassland–
Forest

Others–
Waters

Others–
ConstructionLand

Forest–
Farmland

Forest–
Grassland

Grassland–
Farmland

Grassland–
Forest

Waters–
Others

1980–2000 173.15 115.80 80.81 177.63 174.73 81.14 345.76 104.73 62.40
2000–2010 138.12 142.36 114.55 378.24 37.54 41.85 197.38 88.79 83.27

The potential hydrological effect of land use/land coverage change has been a
highly contested issue. Firstly, the high intensity of human activities in the city have
resulted in accelerated soil compaction and crusting processes, thereby decreasing
the infiltration rate and capacity of soil water storage and resulting in surface runoff
increases [22,53]. Secondly, the runoff coefficients of forest areas and grassland are
relatively small. When the forests and grassland converted to arable land, the flow
yield will therefore increase. Thirdly, in southern China, a certain degree of lake
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reclamation occurred, which inhibited the process of evaporation and infiltration
and resulted in runoff increases.

5. Influencing Factors of Sediment Load Variation

5.1. Hydraulic Engineering and Soil and Water Conservation Engineering

5.1.1. Soil and Water Conservation Engineering

China began to conduct soil and water conservation projects in the early 1950s,
which included the construction of silt dams and terraced fields and the planting
of trees and grass [54,55]. In the middle reaches of the Yellow River, for example,
the most severe soil erosion in China occurred. The statistics of soil and water
conservation engineering projects conducted in this area in 1979, 1989, 1996, and
2011 are plotted in Figure 10a.
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All types of engineering showed an increasing trend, with the largest area
in afforestation. On the national scale, the total area of present soil and water
conservation engineering projects is 99.2 × 104 km2, and the area of silt dams
is 925.6 km2 [56]. The largest distribution is in western China, which incurred
severe soil erosion (Figure 10b). During the past 60 years, the runoff in some large
rivers declined significantly (Figure 3), largely due to the impact of soil and water
conservation engineering.

5.1.2. Reservoir and Dam Construction

By the end of 2012, the total number of large, medium, and small reservoirs
in mainstreams and tributaries was 97,543, and a capacity of 8255 × 108 m3 [56].
These reservoirs regulated the runoff and sediment change processes and reduced
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the sediment load in the downstream regions. The statistics of the “Water Resources
Yearbook in 2006” [57] indicate that by the end of 2006, the numbers of large and
medium reservoirs in the YARB were 149 and 1115, respectively, which ranked
as highest. For the southern rivers including the YARB, PRB, HURB, and SERB,
water resources were abundant. Thus, there were many reservoirs in these basins,
and the ratios of total reservoir capacity (TRC) to average annual flow (AAF) was
below 70%. However, in the northern rivers including the LRB, SRB, and HRB,
the water resources are relatively limited; thus, the TRC/AAF was above 100%.
In the two largest basins (YRB and YARB), the total amount of sedimentation in
all of the reservoirs in the YARB during 1991–2005 was 17958 × 104 t. For the
Sanmenxia and Xiaolangdi reservoirs, sedimentation in 1960–2012 and 1997–2012
was 64.108 × 108 m3 and 27.625 ×108 m3, respectively [56].

5.1.3. Water and Sediment Diversion Projects

To resolve the uneven distribution of water resources and to ease the high
demand of local water resources, China has been conducting water and sediment
diversion projects such as the “South-to-North Water Diversion Project” and the
“Yellow River-to-Tianjin Water Diversion Project”. After implementation of these
projects, the streamflow and sediment load decreased in water supply areas and
increased in water demand areas. In the “South-to-North Water Diversion Project”,
the amount of water diversion from the midstream region of the Yangtze River
accounted for a very small proportion of the average streamflow, particularly in the
wet seasons, and had little impact in abundant water. In the dry seasons, however, the
water diversion project reduced the streamflow in the downstream region. Therefore,
the saltwater traced back into the estuary of Yangtze River, and the sediment load
was reduced downstream.

In the Yellow River, for example, the total amount of water diversion in the
lower reaches was 3665.2× 108 m3 in 1958–2002, and the annual water diversion was
89.4 × 108 m3, accounting for 23.1% of the runoff observed at Huayuankou Station
during the same period and directly influencing streamflow and sediment changes
in the lower reaches [23,55]. The amount of water and sediment diversion in the
downstream region of the Yellow River in 2011 is shown in Table 6. These factors
accounted for 15.6% and 13.6% of water and sediment discharge, respectively, during
the same period.
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Table 6. Amount of water and sediment diversion in the downstream reaches of
the Yellow River in 2011.

Channel
Segment

Xixiayuan–
Huayuankou

Huayuankou–
Jiahetan

Jiahetan–
Gaocun

Gaocun–
Sunkou

Sunkou–
Aishan

Aishan–
luokou

Luokou–
Lijin

Lower
Reaches
of Lijin

Total

Length (km) 109.8 100.8 77.1 118.2 63.9 101.8 167.8 110.0 849.4
Amount of

water diversion
(108 m3)

4.19 14.57 17.31 11.50 8.5 21.07 22.08 4.66 103.88

Amount of
sediment

diversion (104 t)
62.8 111.3 286.6 242.7 266.3 800.2 464.4 94.5 2328.8

5.2. Other Human Activities

The impacts of human activities on soil and water loss and sediment
discharge in rivers include direct and indirect effects. Direct impacts include
the erosion-transport-accumulation process induced by human activities such as
farmland reclamation, mining, and road construction. The indirect impacts were
mainly caused by destruction of vegetation, which accelerated the occurrence and
development of soil erosion. With the development of society and the economy, both
the strength and breadth of human activities were greater than those in the past.
These activities include increases in population, the scale of reclamation, mining, and
other infrastructure construction.

6. Impacts of Water and Sediment Discharge Reduction on Utilization of
Sediment Resources

6.1. Effects of River Regulation and Flood Control

In the YRB, the sediment load in the lower reaches of Yellow River was greatly
reduced in recent decades. Particularly after 2000, the streamflow and sediment load
observed at Huayuankou Station were reduced by 52.5% and 61.7%, respectively,
compared with those observed in the 1950s to 1960s. Reducing water and sediment
discharges has relieved flood pressure and has influenced river regulation to some
degree. Dike reinforcement with silt remains a very important project in the lower
reaches of the Yellow River [58]. Decreases in sediment concentration by flooding
and the threat of beach inundation by flooding have resulted in significant increases
in the cost of dike reinforcement with silt.

6.2. Effects of Flood Irrigation and Soil Improvement

The sediment of the Yellow River, particularly flood sediment, is an effective
material for soil improvement because it reduces salinity and alkalinity and improves
land fertility. Until the early 1990s, the area of soil improvement was 23.2 × 104 hm2

in the lower reaches of the Yellow River [58]. Soil improvement by silt is usually
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conducted during the flood season, when the sediment concentration is relatively
high. However, this effect will be limited under the reduction of water and
sediment resources.

6.3. Effects of Land and Wetland Formation

In the estuary area of the Yellow River, approximately 64% of sediment is
precipitated on land and in shallow water, which elevates the riverbed and delta. The
Linjin Station observation reported reductions of 88.7% and 67.5% in sediment and
water discharge, respectively, compared with values reported in the 1950s and 1960s.
Therefore, the land formation rate has decreased. For example, the 23.6 km2/a land
formation rate in 1855–1954 decreased to 8.6 km2/a in 1992–2001 [58]. In addition,
soil, water, and sediment are the main components of wetlands. Therefore, sediment
and water discharge reduction will directly affect the quality and formation rate
of wetlands.

7. Conclusions

The results of the present study are summarized in the following points:

1. During the past 60 years, the streamflow in northern China, including the HRB,
HURB, YRB, LRB, and SRB, showed different decreasing trends. That in the
southern rivers, including MRB, PRB and YARB, presented severe fluctuations,
although the declining trend did not reach significant levels. For the streamflow
in the TRB, HIRB, YZRB, and LCRB, increasing trends were presented. The
runoff yield capacity was weakened in the HRB, YRB, SRB, and PRB and
enhanced in the LRB and HURB. That in the MRB and YARB remained stable.

2. In the northern rivers, runoff correlated positively with the EAMI and negatively
with the WI. In the southern rivers, runoff was mainly influenced by the
Tibet–Qinghai monsoon, South Asian monsoon, and westerlies. That in the
HIRB and TRB was controlled mainly by the Tibet–Qinghai monsoon and
westerlies. Runoff in the YZRB was controlled by the South Asian monsoon and
the Tibet–Qinghai monsoon, whereas that in the LCRB was influenced mainly
by the East Asian monsoon and westerlies.

3. Sediment loads in the LCRB and YZRB did not present significant change trends.
However, sediment loads in other rivers exhibited varying degrees of gradual
reduction, the greatest of which was in the 2000s.

4. Underlying surface and precipitation changes jointly influenced the runoff
in eastern rivers. Water consumption for industrial and residential purposes,
soil and water conservation engineering projects, hydraulic engineering, and
underlying surface changes induced by other factors were the main causes of
runoff and sediment reduction.
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The Impact of Climate Change on the
Duration and Division of Flood Season in
the Fenhe River Basin, China
Hejia Wang, Weihua Xiao, Jianhua Wang, Yicheng Wang, Ya Huang,
Baodeng Hou and Chuiyu Lu

Abstract: This study analyzes the duration and division of the flood season in
the Fenhe River Basin over the period of 1957–2014 based on daily precipitation
data collected from 14 meteorological stations. The Mann–Kendall detection, the
multiscale moving t-test, and the Fisher optimal partition methods are used to
evaluate the impact of climate change on flood season duration and division. The
results show that the duration of the flood season has extended in 1975–2014
compared to that in 1957–1974. Specifically, the onset date of the flood season
has advanced 15 days, whereas the retreat date of the flood season remains almost
the same. The flood season of the Fenhe River Basin can be divided into three stages,
and the variations in the onset and retreat dates of each stage are also examined.
Corresponding measures are also proposed to better utilize the flood resources to
adapt to the flood season variations.

Reprinted from Water. Cite as: Wang, H.; Xiao, W.; Wang, J.; Wang, Y.; Huang, Y.;
Hou, B.; Lu, C. The Impact of Climate Change on the Duration and Division of Flood
Season in the Fenhe River Basin, China. Water 2016, 8, 105.

1. Introduction

Global climate change is inevitable [1], causing frequently occurring extreme
weather and climate events and unevenly distributed rainfall. Fenhe River, the
second largest tributary of the Yellow River in Northern China, is experiencing such
changes. According to historical records, it had a 5-year-long wet season from 1963
to 1967, and had a 15-year-long dry season from 1979 to 1993. It has been suggested
that the climate, especially precipitation, in the Fenhe River Basin has been affected
by human activities and natural phenomena such as El Niño-Southern Oscillation
and Pacific Decadal Oscillation [2]. Therefore, it is of critical importance to study the
variation in the flood season and evaluate the impact of climate change.

Several studies have investigated the duration of flood seasons. Odekunle [3]
and Sâmia et al. [4] determined the onset and retreat time of the flood seasons in
Nigeria and South American monsoon areas, respectively, and both of their methods
were effective. Hachigonta et al. [5] found that the onset date of the flood season
in Zambia has a significant spatial variation. Other studies [6–10] have analyzed
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temporal variations in flood seasons. All of these studies indicate that the onset
and retreat time of the flood season have fluctuations that are affected by natural
variations over long periods.

Although numerous researchers have investigated the onset and retreat times
of the flood season, few studies explore the variation of the flood season in light of
climate change. In this paper, we detect the abrupt changing point of the climate
based on the annual precipitation in 1957–2014 in the Fenhe River Basin, estimate the
onset and retreat time of flood seasons divided by this abrupt changing point, and,
finally, divide the flood season into three stages to analyze the temporal variation
of each stage. Based on the results, we propose measures to alleviate the discord
between flood control and flood resources utilization.

2. Study Area

The Fenhe River is the largest river in the province of Shanxi, China and also
the second largest tributary of the Yellow River. The Fenhe River Basin covers an
area of 39471 km2 (110˝301–113˝321 E; 35˝201–39˝001 N), accounting for 25.3% of the
area of Shanxi. The Fenhe River Basin lies between Mt. Lvliang and Mt. Taihang
and irregularly distributed as a wide stripe in West-Central Shanxi. It is located in
the mid-latitude continental monsoon climate zone with arid and semiarid climates.
During 1957–2014, the mean annual precipitation was 472.4 mm. The drainage map
of the Fenhe River Basin is shown in Figure 1.
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The data used for this study include daily precipitation data from 1957 to 2014
at 14 meteorological stations within the basin, and are obtained from the China
Meteorological Administration [11]. Some stations have incomplete and false data
records for some years. We use the inverse distance weighted method to fill and
replace these missing or false data. It should be stated that the precipitation data
during 1957–1979 are separated by rain and snow, but they are no longer separated
and have not been since 1980. In this study, the snow data before 1980 are converted
to the corresponding rainfall.

3. Materials and Methods

3.1. Climate Abrupt Change Detection

Mann–Kendall detection is a nonparametric statistical test method which is
widely used in time series data trend tests [12]. Samples are not needed to obey a
certain distribution in this way, which is also unacted on the interference of a few
outliers. Therefore, it is suitable for hydrology, meteorology, and other non-normal
distribution data. In this paper, the annual precipitation during 1957–2014 are chosen
as the time series data to detect the abrupt point. The specific steps of Mann–Kendall
detection are then further explored [13].

3.2. The Onset and Retreat Dates of Flood Season

Currently, the onset and retreat time of flood season are mostly defined by
experience, which is inevitably subjective. The accurate detect of the two dates will
provide scientific support to relevant sectors to forecast the flood season and to
regulate the reservoirs for the purpose of flood control. The moving t-test is suitable
for the multiscale detection of the change of flood season; the beginning of flood
season is a symbol that the precipitation varies from less to more, at which time the
abrupt point may exist. The situation is just the opposite when it comes to the end
of flood season. Fraedrich et al. took the historical flood level of the River Nile, for
example, and found three distinct epochs from AD 622 to AD 1470 [14]. Wang et al.
detected the beginning and ending dates of rainy season in Dalian from 1951 to 1998
by applying the moving t-test method, which showed that it is more objective and
exact than the empirical method [15]. Jiang et al. redistricted the coherently dry/wet
episode of the Nile River and found the results were coincided with the historical
disaster and famine of Egypt [16]. Other researchers also obtained ideal results by
using this method [17–19]. Therefore, the multiscale moving t-test is applied in this
paper to define the onset and retreat dates of flood season.

The multiscale moving t-test is used to detect the differences between two
subsamples before and after the abrupt point with equivalent sample sizes, namely,
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n = n1 = n2. The t-statistic of precipitation in the Fenhe River Basin can be calculated
as follows:

t pn, iq “ pxi2 ´ xi1q n1{2
´

s2
i2 ` s2

i1

¯´1{2
(1)

where

xi1 “

i´1
ÿ

j“i´n

xj{n; s2
i1 “

i´1
ÿ

j“i´n

`

xj ´ xi1
˘2
{ pn´ 1q (2)

xi2 “

j`n´1
ÿ

j“i

xj{n; s2
i2 “

i`n´1
ÿ

j“i

`

xj ´ xi2
˘2
{ pn´ 1q (3)

The test of the multiscale abruption is realized by altering the n value.
N = 2, 3, . . . , <N/2, and i = n+1, n+2, . . . , N-n, where N is the number of days
in a year (365 or 366), and n is the timescale. The confidence level of t-test at
0.01 is approximately equivalent to the confidence level of Yamamoto and the
Mann–Kendall test at 0.05. In order to make the graphics visualized and the analysis
convenient, the further calculation is as follows:

tr pn, iq “ t pn, iq {t0.01 pnq (4)

tr(n, i) can be treated as the threshold to judge whether there is an abrupt point.
When tr(n, i) is greater than 1.0, it means that the abruption of variation trend is
rising; when tr(n, i) is less than ´1.0, it means the abruption of variation trend is
descending. The center of extreme values of the tr(n, i) absolute value means that the
abruption is the most prominent when the time is i and the timescale is n.

3.3. Flood Season Division

Flood season division means dividing the flood season into several stages in the
light of the distinct differences and the regularity of flood characteristics during the
different periods. Accurate division is the prerequisite for controlling the flood limit
level, which can bring huge benefits to agricultural irrigation, power generation, etc.,
and alleviate the contradiction between flood control and flood resources utilization.
Extensive researches on flood season division are conducted, and a mass of methods
has been applied to flood season division. Liu et al. successfully divided the flood
season in the Geheyan Reservoir by means of the changing point method [20]. Jin et al.
used the fuzzy set analysis method with the city of Nanping and divided the flood
season into three stages [21]. Many other methods are also ideal for solving this
problem [22–27].

The essence of flood season division is a multidimensional orderly clustering
analysis of time series. The Fisher optimal partition method is just a method of
clustering of ordered samples and was used to divide seismicity period successfully
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by He et al. [28]. It has some basic characteristics: firstly, it can take multi-index into
consideration; secondly, it can meet the time sequence of the flood season; finally, it
can confirm the optimum number of flood season divisions. Therefore, the Fisher
optimal partition method is applied in this paper to divide the flood season of the
Fenhe River Basin.

We can define {x1, x2, . . . , xn} as ordered samples, where every sample is
m-dimensional vector. The symbol B(n, k) indicates that n ordered samples are
divided into k parts. The division can be expressed as follows:

P1 “ ti1, i1 ` 1, . . . , i2 ´ 1u ; P2 “ ti2, i2 ` 1, . . . , i3 ´ 1u ; . . . Pk “ tik, ik ` 1, . . . , nu , (5)

where division points are 1 = i1 < i2 < . . . <ik < n = ik+1´1.
Supposing a part P contains samples {xi, xi+1, . . . , xj}, the mean value can be

denoted as follows:

xp “
1

j´ i` 1

j
ÿ

t“1

xt (6)

Therefore, the sum of the squares of deviations of the part can be denoted
as follows:

D pi, jq “
j
ÿ

t“i

`

xt ´ xp
˘T `

xt ´ xp
˘

(7)

The purpose of the Fisher optimal partition method is to find division points,
which make the sum of the squares of deviations of every part the minimum.
Consequently, the optimal division can be depicted as the following formula:

B pn, kq “ min
k
ÿ

t“1

D pit, it`1 ´ 1 q (8)

The theorem says that the optimal division B(n, k) must be equal to the optimal
division B(n´1, k´1) plus the remaining part. According to the theorem above, the
optimal division B(n, 2) can be denoted as follows:

B pn, 2q “ min
2ďiďn

tD p1, i´ 1q `D pi, nqu (9)

Similarly, the optimal division B(n, k) can be denoted as follows:

B pn, kq “ min
2ďiďn

tB pi´ 1, k´ 1q `D pi, nqu (10)
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Then, we can obtain the optimal solution by finding the division points
in descending order. The division point ik must meet the requirement of the
following equation:

B pn, kq “ tB pik ´ 1, k´ 1q `D pik, nqu (11)

Then, the part k can be obtained: Pk= {ik, ik + 1, . . . , n}. Similarly, the remaining
parts Pk´1, Pk´2, . . . , P2, P1 can be obtained successively.

In this process, we need to draw the B(n, k) ´ k curve according to the results,
and then calculate the absolute value of slope of every division point f (k). Next, the
f (k) ´ k curve can be drawn—if f (k) is greater, the division into k parts is better than
k´1 parts. When f (k) is close to zero, there is no need for division. Generally, k is the
optimal division number of parts when f (k) meets the maximum, and the corner of
B(n, k) ´ k curve is also seen as the optimal division point.

4. Results

4.1. The Detection of Climate Abrupt Point

Figure 2 displays the results of Mann–Kendall detection of annual precipitation
during 1957–2014. Here, UF(K) and UB(K) are statistics sequence which obey
standard normal distribution. A intersection exists between UF(K) line and UB(K)
line, and it just lies between the two critical lines whose confidence level are 0.05.
The corresponding time of the intersection is 1974. Therefore, we can divide the
period 1957–2014 into two periods, namely, 1957–1974 and 1975–2014. The annual
precipitation is on the rise during the former period, while the trend declines during
the latter period.
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4.2. The Onset and Retreat Dates of Flood Season

Taking the year 1979 as an example, the result of the multiscale moving t-test of
the Fenhe River Basin precipitation is shown in Figure 3. The color scale of the contour
map shows that the larger the value, the deeper the color. The maximum value of
tr(n, i) is 2.2, which is greater than 1.0. The corresponding day is 165 and the
corresponding timescale is 65 days. It means that the onset date of flood season in
1979 is Day 165, on which the abruption is the most conspicuous in the timescale of
65 days. Similarly, the retreat date of flood season in 1979 is Day 255, on which the
abruption is the most conspicuous in the timescale of 63 days. Figure 4 shows
the variation trend during 1957–2014, the red line represents the onset date of
flood season in the Fenhe River Basin, and the blue line indicates the retreat date.
Consequently, the annual average flood season of the two period 1957–1974 and
1975–2014 can be obtained. The onset and retreat dates of flood season during
1957–1974 are 170 and 253, respectively, and the flood season lasts 84 days long.
In a similar way, the onset and retreat dates of flood season during 1975–2014
are 156 and 252, respectively, and the flood season is 13 days longer than that
during 1957–1974. Out of convenience with respect to the flood season division,
it was necessary to transform the timescale from day to pentad. According to
the traditional Chinese calendar, a pentad is 5 days; one year contains 72 pentads.
For instance, Day 170 can be converted to 4 June, which means the fourth pentad
in June. Therefore, the flood season of 1957–1974 and 1975–2014 are 4 June–
2 September and 1 June–2 September, respectively.Water 2016, 8, 105 6 of 11 
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4.3. Flood Season Division

Five factors that can represent the seasonal rules of precipitation and flood are
chosen as basic elements for flood season division: mean pentad precipitation, mean
coefficient of variation of pentad precipitation, mean maximum 1-day-precipitation
within a pentad, mean maximum 3-day-precipitation within a pentad, and number
of hard rain days within a pentad. Tables 1 and 2 display the result of division of
1957–1974 and 1975–2014, respectively. Figure 5 shows the B(n, k) ´ k curve and
f (k) ´ k curve of 1957–1974 and 1975–2014, respectively. The f (k) is the maximum
when k is equal to 3 in picture (b), and the curve B(n, k) ´ k has a turning at the same
time. Therefore, the optimal division number k is 3 during 1957–1974, which means
the flood season can be divided into three stages during 1957–1974, namely, pre-flood
season, main flood season, and post-flood season. The corresponding classification
in Table 2 is 1–3, 4–9, 10–17, which means the pre-flood season is from 4 June to
6 June, the main flood season is from 1 July to 6 July, and the post-flood season is
from 1 August to 2 September. Analogously, the flood season can be divided into
three stages during 1975–2014. To be specific, the pre-flood season is from 1 July to
6 July, the main flood season is from 1 July to 6 August, and the post-flood season
is from 1 September to 2 September. Figure 6 shows the length of each stage. By
contrast, we can see the pre-flood season is 15 days in advance; thus, it lasts 15 days
longer than before, the main flood season lasts 30 days longer than before, and the
post-flood season is 30 days less, accordingly.
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Table 1. Result of flood season division of the Fenhe River Basin during 1957–1974.

k B(n,k) f(k) Classification

2 0.742 1–2,3–17
3 0.223 0.519 1–3,4–9,10–17
4 0.091 0.132 1–2,3–4,5–9,10–17
5 0.072 0.019 1–2,3–4,5–7,8–9,10–17
6 0.052 0.02 1–2,3–4,5–7,8,9,10–17
7 0.036 0.016 1–2,3,4,5–7,8,9,10–17
8 0.025 0.011 1–2,3,4,5,6–7,8,9,10–17
9 0.016 0.009 1–2,3,4,5,6–7,8,9,10,11–17
10 0.01 0.006 1–2,3,4,5,6,7,8,9,10,11–17
11 0.007 0.003 1–2,3,4,5,6,7,8,9,10,11–14,15–17
12 0.004 0.003 1–2,3,4,5,6,7,8,9,10,11–13,14,15–17
13 0.002 0.002 1–2,3,4,5,6,7,8,9,10,11–13,14,15–16,17
14 0 0.002 1–2,3,4,5,6,7,8,9,10,11–12,13,14,15–16,17
15 0 0 1,2,3,4,5,6,7,8,9,10,11-12,13,14,15–16,17
16 0 0 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15–16,17

Table 2. Result of flood season division of the Fenhe River Basin during 1975–2014.

k B(n,k) f(k) Classification

2 1.021 1–6,7–20
3 0.437 0.584 1–6,7–18,19–20
4 0.263 0.174 1–6,7–11,12,13–20
5 0.192 0.071 1–6,7–11,12,13–18,19–20
6 0.146 0.046 1–6,7–8,9–11,12,13-18,19–20
7 0.103 0.043 1–4,5–6,7–8,9–11,12,13–18,19–20
8 0.062 0.041 1–4,5–6,7–8,9–11,12,13–17,18,19–20
9 0.025 0.037 1–4,5–6,7–8,9–11,12,13–16,17,18,19–20

10 0.021 0.004 1–4,5–6,7–8,9–11,12,13,14–16,17,18,19–20
11 0.013 0.008 1–4,5–6,7–8,9–11,12,13,14,15–16,17,18,19–20
12 0.01 0.003 1–4,5–6,7–8,9–10,11,12,13,14,15-16,17,18,19–20
13 0.007 0.003 1–2,3–4,5–6,7–8,9–10,11,12,13,14,15–16,17,18,19–20
14 0.005 0.002 1–2,3,4,5–6,7–8,9–10,11,12,13,14,15–16,17,18,19–20
15 0.004 0.001 1–2,3,4,5–6,7–8,9–10,11,12,13,14,15,16,17,18,19–20
16 0.003 0.001 1–2,3,4,5–6,7,8,9–10,11,12,13,14,15,16,17,18,19–20
17 0.002 0.001 1–2,3,4,5–6,7,8,9–10,11,12,13,14,15,16,17,18,19,20
18 0.001 0.001 1–2,3,4,5–6,7,8,9,10,11,12,13,14,15,16,17,18,19,20
19 0 0.001 1,2,3,4,5–6,7,8,9,10,11,12,13,14,15,16,17,18,19,20
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5. Discussion

This research suggests that the flood season has advanced and extended from
climate change since 1974, and it can be divided into three stages. Liu et al.
also detected the abrupt point in the Fenhe River Basin, and they found that the
precipitation changed abruptly in 1978 [29], which is approximately consistent with
the results in this paper. The inconsistency between their article and this paper may
derive from the inconsistency of the data—the period studied and the meteorological
stations are different, while it is clear that the climate indeed changed significantly in
the Fenhe River Basin.

With respect to the onset and retreat time of flood season, according to statistics,
the precipitation during flood season account for more than 60% of the annual
precipitation. Thus, the multiscale moving t-test method is objective and consistent
with the characteristics of the precipitation. Pan et al. reconstructed the beginning
times of flood season of the middle reaches of Yellow River according to the historical
water level data from 1921 to 1950, and the results showed that they range from 6 July
to 10 July. Our results indicate that the average onset dates of flood season during
the period 1957–1974 and 1975–2014 in the Fenhe River Basin are 19 June and 5 June,
respectively, which is inconsistent with Pan’s results. Although the Fenhe River Basin
lies in the middle reaches of the Yellow River, the terrain here is different from the
mainstream of the Yellow River; the Fenhe River Basin is sandwiched between Mt.
Lvliang and Mt. Taihang. The method and water level data used in Pan’s paper are
also different from the moving t-test method and the precipitation data used in this
paper, which may have caused these differing results.

When it comes to the flood season division, Yang analyzed the diachronic
distribution of storm floods and the regularity of flood season division in the Fenhe
River Reservoir by recording the number of rainstorm days and the frequency of
flood. The results indicated that the flood season can be divided into three stages [30],
which is similar to the results of this paper. However, the Fisher optimal partition
method focuses on the study from the angle of mathematics; it takes index into
consideration more, and the time interval in this paper is 5 days, which is more
accurate than 10 days in Yang’s paper, so the result of the Fisher optimal partition
method is more accurate.

Some countermeasures should be guaranteed to effectively utilize the flood
water resources. We often set different flood limit levels during each stage [31]. In
general, the prime task during the pre-flood season and the main flood season is
flood prevention, so the flood limit levels in the pre- and main flood season should be
a little lower. Further, the main purpose during the post-flood season is storing water,
so the flood limit level during this period should be a little higher. As the pre-flood
season has advanced 15 days and the main flood season has extended by 30 days, the
flood limit level during this period should be decreased in advance and sustained
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longer so that the flood can flow safely through the basin. As for the shortening and
delay of the post-flood season, the flood limit level should be elevated later so that
flood can be transferred to water resources during this period.

Although some valuable findings have been obtained, further studies are needed
to explore the flood season in greater detail. We used daily precipitation only to
define the onset and retreat time of the flood season in the Fenhe River Basin. In fact,
water level is also relative to the flood season, and the run-off also can impact the
flood season. Future research should gather more data and consider more variables.
If possible, we can take one reservoir as an example to evaluate the utilizable quantity
of flood resources under climate change.

6. Conclusions

By using the Mann–Kendall detection, the multiscale moving t-test and the
Fisher optimal partition methods, we present the onset and retreat dates of each
stage in the Fenhe River Basin, which are characterized as the temporal variations
from climate change. In the meantime, some useful conclusions of this study can be
summarized as follows:

(1) The climate in the Fenhe River Basin has changed since 1974, and the annual
precipitation illustrates a downward trend.

(2) The flood season in the Fenhe River Basin during 1975–2014 is 15 days longer
than that during 1957–1974. Specifically, the pre-flood season is from 16 June to
30 June during 1957–1974, while it is from 1 June to 30 June during 1975–2014;
the main flood season is from 1 July to 31 July during 1957–1974, while it is from
1 July to 31 August during 1975–2014; the post-flood season is from 1 August to
10 September during 1957–1974, whereas it is from 1 September to 10 September
during 1975–2014.

(3) The flood limit level should be lowered at an earlier time to resist floods during
the pre- and main flood season, and it should be raised at a later time so that
more water for utilization can be stored after the flood season.

Author Contributions: Jianhua Wang contributed to design the methods; Yicheng Wang and
Hejia Wang contributed ideas concerning the structure and content of the article; Baodeng
Hou and Ya Huang contributed to data collection and processing; Chuiyu Lu drew the
figures and maps; Weihua Xiao and Hejia Wang analyzed the results; Hejia Wang wrote the
final manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. International Panel of Climate Change (IPCC) Working Group I. IPCC Fifth Assessment
Report (AR5); IPCC: Stockholm, Sweden, 23–26 September 2013.

112



2. Ma, Z.G.; Shao, L.J. Relationship between dry/wet variation and the Pacific Decade
Oscillation (PDO) in Northern China during the last 100 years. Chin. J. Atmos Sci. 2006,
30, 464–474.

3. Odekunle, T.O. Determining rainy season onset and retreat over Nigeria from
precipitation amount and number of rainy days. Theor. Appl. Climatol. 2006, 83, 193–201.

4. Sâmia, R.G.; Alan, J.P.C.; Mary, T.K. Revised method to detect the onset and demise dates
of the rainy season in the South American Monsoon areas. Theor. Appl. Climatol. 2015.

5. Hachigonta, S.; Reason, C.J.C.; Tadross, M. An analysis of onset date and rainy season
duration over Zambia. Theor. Appl. Climatol. 2008, 91, 229–243.

6. Ding, J.L.; Xu, Z.S.; Fei, J.F.; Qiang, X.M. Analysis of the definition of the onset and ending
dates of the annually first rainy season in South China and its interannual variation
characteristics. J. Trop. Meteorol. 2009, 25, 59–65.

7. Gu, R.Y.; Zhou, W.C.; Bai, M.L.; Di, R.Q.; Yang, J. Influence of climate change on ice slush
period at Inner Mongolia section of Yellow River. J. Dese. Res. 2012, 32, 1751–1756.

8. Pan, W.; Fei, J.; Man, Z.M.; Zheng, J.Y.; Zhuang, H.Z. The fluctuation of the beginning
time of flood season in North China during AD1766-1911. Quatern. Int. 2015, 380,
377–381.

9. Owusu, K.; Waylen, P.R. The changing rainy season climatology of mid-Ghana. Theor.
Appl. Climatol. 2013, 112, 419–430.

10. Ding, L.L.; Ge, Q.S.; Zheng, J.Y.; Hao, Z.X. Variation of starting date of pre-summer rainy
season in South China from 1736 to 2010. Acta. Geogr. Sin. 2014, 24, 845–857.

11. China Meteorological Administration. Available online: http://data.cma.gov.cn/
(accessed on 15 March 2016).

12. Pettitt, A.N. A non-parametric approach to the change-point problem. Appl. Stat. 1979,
28, 126–135.

13. Wei, F.Y. Modern Climatic Statistical Diagnosis and Prediction Technology; China
Meteorological Press: Beijing, China, 1999; pp. 69–72.

14. Fraedrich, K.; Jiang, J.M.; Gerstengarbe, F.W.; Werner, P.C. Multiscale detection of abrupt
climate changes: application to River Nile flood levels. Int. J. Climatol. 1997, 17,
1301–1315.

15. Wang, L.L.; Zou, Y.R.; Sui, H.Q. An objective determination of the beginning and ending
date of rainy season in Dalian. Meteorol. Mon. 2000, 26, 12–16.

16. Jiang, J.M.; Fraedrich, K.; Zou, Y.R. A scanning t test of multiscale abrupt changes and its
coherence analysis. Chin. J. Geophys. 2001, 44, 31–39.

17. Jiang, J.M.; Mendelssohn, R.; Schwing, F.; Fraedrich, K. Coherency detection of multiscale
abrupt changes in historic Nile flood levels. Geophys. Res. Lett. 2002, 29, 112.

18. Schwing, F.; Jiang, J.M.; Mendelssohn, R. Coherency of multi-scale abrupt changes
between the NAO, NPI, and PDO. Geophys. Res. Lett. 2003, 30, 325–348.

19. Gu, X.Q.; Jiang, J.M. A new application of scanning t-test: Partition of dry/wet episodes
in the western USA. Quat. Sci. 2006, 26, 742–751.

113



20. Liu, P.; Guo, S.L.; Li, W.; Xiong, H.K.; Zhang, W.X.; Guo, H.J.; Xu, D.L.; Wang, Z.X.
Application of changing-point method for flood season stage in Geheyan Reservoir.
J. Yangtze River. Sci. Res. Inst. 2007, 24, 8–11.

21. Jin, B.M.; Fang, G.H. Application of fuzzy set analysis method on flood stage study of
Nanping. Water Power 2010, 36, 20–22.

22. Gao, B.; Liu, K.L.; Wang, Y.T.; Hu, S.Y. Application of system clustering method to
dividing flood season of reservoir. Water Resour. Hydropower Eng. 2005, 35, 1–5.

23. Dong, Q.J.; Wang, X.J.; Wang, J.P.; Fu, C. Application of fractal theory in the stage analysis
of flood season in Three Gorges Reservoir. Resour. Environ. Yangtze Basin 2007, 16,
400–404.

24. Xie, F.; Wang, W.S. Set pair analysis and its application to the division of flood period.
S-N Water Divers. Water Sci. Technol. 2011, 9, 60–63.

25. Wang, Z.Z.; Cui, T.T.; Wang, Y.T.; Yu, Z.B. Flood season division with an improved fuzzy
c-mean clustering method in the Taihu Lake Basin in China. Procedia Eng. 2012, 28,
66–74.

26. Wang, Z.Z.; Wang, Y.T.; Wu, H.Y.; Cui, T.T.; Xu, H.; Zhang, Y. Novel flood season division
method based on fuzzy time series-effective cluster and its application to Taihu lake
basin. J. Hydroelectric Eng. 2012, 31, 29–34.

27. Chen, L.; Singh, V.P.; Guo, S.L.; Zhou, J.Z.; Zhang, J.H.; Liu, P. An objective method
for partitioning the entire flood season into multiple sub-seasons. J. Hydrol. 2015, 528,
621–630.

28. He, H.W.; Zhang, A.L. The application of Fisher method to dividing seismicity period in
Yunnan province. J. Seismol. Res. 1994, 17, 231–239.

29. Liu, Y.F.; Sun, H.; Yuan, Z.H.; Li, Y.R. Time series analysis of precipitation in flood season
in fenhe river basin. B. Soil Water Conserv. 2011, 31, 121–125.

30. Yang, H.X. Research on the storm-flood characteristic of basin controlled by fenhe
reservoir and its dividing by periods. Shanxi Hydrotech. 2008, 3, 40–41.

31. Gao, B.; Wang, Y.T.; Hu, S.Y. Adjustment and application of the limited level of reservoirs
during the flood season. Adv. Water Sci. 2005, 16, 326–333.

114



Bivariate Drought Analysis Using
Streamflow Reconstruction with Tree Ring
Indices in the Sacramento Basin,
California, USA
Jaewon Kwak, Soojun Kim, Gilho Kim, Vijay P. Singh, Jungsool Park and
Hung Soo Kim

Abstract: Long-term streamflow data are vital for analysis of hydrological droughts.
Using an artificial neural network (ANN) model and nine tree-ring indices, this study
reconstructed the annual streamflow of the Sacramento River for the period from
1560 to 1871. Using the reconstructed streamflow data, the copula method was used
for bivariate drought analysis, deriving a hydrological drought return period plot
for the Sacramento River basin. Results showed strong correlation among drought
characteristics, and the drought with a 20-year return period (17.2 million acre-feet
(MAF) per year) in the Sacramento River basin could be considered a critical level of
drought for water shortages.

Reprinted from Water. Cite as: Kwak, J.; Kim, S.; Kim, G.; Singh, V.P.; Park, J.;
Kim, H.S. Bivariate Drought Analysis Using Streamflow Reconstruction with Tree
Ring Indices in the Sacramento Basin, California, USA. Water 2016, 8, 122.

1. Introduction

Generally, long-term data are recommended for analyzing floods and droughts.
However, although precipitation data are available from the 16th century onwards,
their quality and reliability in many countries are questionable because of the
methods of observation, different periods of observations, uncertainties associated
with gaging sites, and temporal resolution of observations [1,2]. Many studies have,
therefore, used tree-ring data as a way to acquire data for longer periods of time, up
to 500 years [3].

Since Ferguson [4] correlated observed hydro-meteorological data and tree-ring
data in California, many studies have utilized tree-ring data to reconstruct time series
of the past. Fritts [5] did tree ring analysis and correlated the data with climate,
suggesting that it can be used in water resources management [6]. Also, some studies
have correlated hydro-meteorological variables with tree-ring data to reconstruct
climate factors [7–10]. Some studies have reconstructed seasonal series, such as
precipitation [11,12], natural hazards [13], and temperature [14], based on tree ring
width data. However, most of the studies on tree rings and hydrological phenomena
have focused on droughts [15–24]. This may be because annual data are normally
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reconstructed using tree ring data and hence it is difficult to analyze intra-annual
hydrological phenomena. Long time-scale data are mainly used for droughts, because
it is difficult to determine the onset or end of a drought and often the drought may
last for several months or years. The long time-scale occasionally gives rise to a
sample size problem [25] for drought analysis that can be overcome with long-term
tree ring reconstruction [26]. Some studies have directly correlated tree rings with
droughts [15,27], drought patterns or oscillations [28–30], drought index and its
trend [23,31–33], return periods [34], and spatial drought characteristics [35].

Bivariate (or multivariate) analyses of drought characteristics, such as severity,
duration, and arrival time, are being increasingly made [36]. These analyses
have introduced multivariate drought indices, such as Multivariate Drought Index
(MDI) including precipitation, runoff, evapotranspiration, and soil moisture [37];
Multivariate Standardized Drought Index (MDSI) which combines the Standardized
Precipitation Index and the Standardized Soil Moisture Index [38]; and Vegetation
Drought Response Index (VegDRI) which integrates climatic indicators; and
satellite-derived vegetation index [39,40]. Some studies have employed conventional
multivariate analysis for drought indices with PDSI [23,41] and SWSI [42,43],
or bivariate frequency analysis [44,45] assuming that all variables had the same
probability distribution. To overcome this restriction, the copula method has been
developed [46]. For doing bivariate drought analysis by the copula method [46,47],
tree ring reconstruction can be employed to our advantage.

The objective of this study, therefore, is to reconstruct the annual streamflow of
the Sacramento River in California and Oregon using tree-ring width data, and use
the reconstructed data for bivariate drought frequency analysis with the copula
method. Selected tree-ring data were used in an artificial neural network for
streamflow reconstruction and the reconstructed data were verified by comparing
with actual observations. The Archimedean copula function was applied to the
reconstructed streamflow data and then the return period plot of the hydrological
drought in the Sacramento River basin was derived. The advantages of using
the copula method have been discussed in many studies [34,36,48–55]. Since
drought may last from months to years, as has happened in California, long-term
reconstruction based on tree-ring data, addresses the drawback of short-term
data [56].

2. Materials and Methods

2.1. Study Area and Data

Annual streamflow data for four Sacramento rivers and tree-ring data of the
nearby region were employed in this study. The tree-ring data from 17 sites (Figure 1
and Table 1) in California and Oregon, which reflect standard chronologies of ring
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width [57], were obtained from the International Tree-Ring Databank [58]. The
tree ring width data were standardized [59]. Annual streamflow is the sum of
four river flows, which are the Sacramento River above Bend Bridge (SBB), the
Feather River at the Lake Oroville (FTO), the Yuba River near Smartville (YRS)
and the American River at Folsom (AMF), which was obtained from the California
Data Exchange Center of California Department of Water Resources [60] for the
period 1872 to 1977. It has a long-term mean of 18.9 MAF (million acre-feet;
1.23ˆ 109 m3), median of 17.6 MAF, and maximum flow of 51.6 MAF that occurred in
the year 1890. These tree ring and streamflow sites are shown in Figure 1 and Table 1.
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Figure 1. Study area, tree ring sites, and streamflow sites.

2.2. Drought Definition Using the Run Theory

This study qualitatively defines the hydrological drought (hereafter referred
to as “drought”) as a significant decrease in the availability of streamflow in the
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river. Quantitatively, drought was defined using the run theory, which allows us
to calculate drought duration, severity, and arrival time [61,62]. Thus, drought can
be defined as the time when a hydro-meteorological time series xt falls below the
truncation level x0 and that represents a hydro-meteorological event (Figure 2).

Table 1. Tree ring sites and streamflow observatory specification [58].

Category
Index in
Figure 1 ID Name

Site Location
Tree Ring SpeciesLat

(degree)
Lon

(degree)
Height
(EL.m)

Tree ring
sites

7 ANTEP Antelope Lake 40.15 ´120.6 1480 Pinus jeffreyi Balf
7 ANTEP Antelope Lake 40.15 ´120.6 1480 Pinus ponderosa Douglas ex C. Lawson
3 CALAM Calamity Creek 43.98 ´118.8 1464 Juniperus occidentalis Hook
6 DALTON Dalton Reservoir 41.62 ´120.7 1531 Pinus ponderosa Douglas ex C. Lawson

14 DEVILS Devil’s Dance Floor 37.75 ´119.75 2084 Pinus jeffreyi Balf
9 DONNER Donner Summit 39.32 ´120.35 2265 Pinus jeffreyi Balf

11 FELKN Felkner Ridge 39.5 ´122.67 1494 Pinus lambertiana Douglas
2 FREDER Frederick Butte 43.58 ´120.45 1494 Juniperus occidentalis Hook
5 HAGER Hager Basin Reservoir 41.77 ´120.75 1524 Juniperus occidentalis Hook

10 HELLS Hell’s Half Acre 39.6 ´122.95 1922 Pinus jeffreyi Balf
8 LEMON Lemon Canyon 39.57 ´120.25 1859 Pinus jeffreyi Balf

15 PIUTE Piute Mountain 35.53 ´118.43 1975 Pinus jeffreyi Balf
13 SNOWHT Snow White Ridge 38.13 ´120.05 1731 Pinus ponderosa Douglas ex C. Lawson
16 SORREL Sorrel Peak 35.43 ´118.28 2011 Pinus jeffreyi Balf
1 SPRING Spring Canyon 44.9 ´118.93 1366 Juniperus occidentalis Hook
4 STEENS Steens Mountain 42.67 ´118.92 1656 Juniperus occidentalis Hook

13 STJOHN St. White Mountain 39.43 ´122.68 1555 Pinus ponderosa Douglas ex C. Lawson

Flow site

S SBB Sac. River, Abv bend bridge 40.29 –122.19 56.6 -
F FTO Feather River, Oroville 39.52 –121.55 45.4 -
Y YRS Yuba River, Smartville 39.24 –121.27 85.3 -
A AMF American River, Folsom 38.68 –121.18 0 -
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Figure 2. Drought characteristics using the run theory: D1, D2, . . . denote drought
duration; S1, S2, . . . denote drought severity; I1, I2, . . . denote drought arrival time.

Drought events are based on the truncation level, so the selection of the level is
one of the important issues for proper drought analysis. Generally, the mean value
of streamflow has been widely used as the truncation level [63–68]. However, the
Sacramento River streamflow shows high variability, between 5.13 and 51.65 MAF,
so a median value of annual streamflow was regarded as a more reliable truncation
level in this study.
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2.3. Artificial Neural Network

The factors that influence annual hydro-meteorological behavior can be roughly
classified into four groups: (i) atmospheric-climatic; (ii) geologic-geomorphic;
(iii) soil-vegetation; and (iv) runoff-channel factors [69]. Tree-ring widths in a trunk
of a tree are also influenced by atmospheric-climatic and soil-vegetation factors,
such as precipitation, evapotranspiration, and soil moisture. This indicates that
an appropriate modeling technique and tree rings that have a correlation with
atmospheric-climatic factors can be used to reconstruct annual streamflow, and
this study employed an Artificial Neural Network (ANN) model. ANN mimics the
structure and functions of a biological neural system, in which neurons are connected
through nodes [70]. After the perceptron was proposed to categorize information
patterns [71], ANNs have been widely used to recognize nonlinear relationships
between different variables. The ANN used in this study was comprised of three
layers: the input layer that represents observed streamflow data, the output layer that
produces simulated streamflow, and the hidden layer that is constituted by a network
of neurons that are trained to recognize patterns from observations (Figure 3).
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Figure 3. ANN schematization: Input i is the input set, output is the result of
network delay, and each circle represents neural network [71]; each line indicates
nodes between neurons that have their own connection strength.

The back-propagation algorithm was used to train the network through the
adjustment of connection strength to learn about the error and optimize the neurons.
It calculates the error function with respect to all the weights in the network and the
gradient of error functions is fed into the optimization technique, which attempts
to minimize the error of the network. Hence, the selection of back-propagation
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algorithm is one of the challenges when using a neural network [72]. The
Levenberg–Marquardt–QNBP algorithm was selected as the back-propagation
algorithm, because it is known to work well for non-linear problems, such as
those related to meteorological and hydrological data [73]. Also, the number of
hidden layers, which can be optimized by a trial and error method, is important
for a proper network. The ANN model used in this study has six hidden layers
that are optimized. One of the advantages of ANN is that it can be used as an
alternative modeling technique when the data show non-linearity, which may cause
error with a linear technique [74]. The tree-ring data in California and Oregon have
autocorrelation and lagged-correlation characteristics [75], so ANN was employed as
an alternative to reconstruct streamflow using tree-ring data. More details on ANN
and the back-propagation algorithm can be found in Basheer and Hajmeer [76].

2.4. Drought Frequency Analysis Based on Copula

Unlike precipitation or flood occurrence, drought shows a different statistical
behavior for a different duration [62]. Considering drought duration and severity
as mutually related variables, the copula method has been employed to capture
the dependence between them [47,77]. For a probability distribution F px1, . . . , xnq,
which has n-dimensional marginal distributions F1 px1q , . . . , Fn p xnq, the copula
function C that satisfies the relationship between marginal variables can be
expressed as:

F px1, . . . , xnq “ C p F1 px1q , . . . , Fn p xnqq “ ψα
´1 p ψα pF1 px1qq ` . . .`ψα pFn p xnqqq (1)

1{T “ E pLq { t1´ F1 ´ F2 . . . , Fn ` C pF1, F2, . . . , Fnqu (2)

where ψα denotes the generating function; ψα
´1 is the pseudo-inverse of that

function, which differs with the copula family; T denotes the return period; and
E(L) is the interval between events. Unlike univariate frequency analysis, bivariate
frequency indicates the probability that the phenomenon under study occurs if and
only if a prior condition takes place. There are several types of copula functions, but
the Archimedean copula family, which allows for greater flexibility and simplicity
of use, is more commonly used in hydrology [78]. From the Archimedean copula
family, the Clayton, Gumbel, and Frank copulas were employed and their functions
are given in Table 2.
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Table 2. Bivariate Archimedean copula family: C is the copula function, t denotes
the drought event, α is the copula parameter, and F1 and F2 denote cumulative
distribution function of each variable [79].

Copula Family Copula func., C p F1 px1q , F2 p x2qq
Generator

func., ψα ptq
Parameter (α)

Clayton
´

max
!

F1 px1q
´1
` F2 px2q

´1
´ 1; 0

)¯ 1
α

`

t´α ´ 1
˘

α P r´1,8s

Frank
´1
α

log
ˆ

1`
pexp p´αF1 px1qq ´ 1q pexp p´αF2 px2q ´ 1q

exp p´αq ´ 1

˙

´log
ˆ

exp p´αtq ´ 1
exp p´αq ´ 1

˙

α P rRs

Gumbel exp

¨

˝´
`

p´logpF1 px1qq
α
` p´logpF1 px1qq

α˘
1
α

˛

‚ ´log ptqα α P r1,8s

3. Results and Discussion

3.1. Tree-Ring Data Screening

Appropriate tree rings, which have correlation with atmospheric-climatic factors,
can be used as the predictor for annual streamflow. Therefore, selection of the
appropriate input for the ANN model was one of the challenges in this study.
Generally, a trial and error method with different input variables is employed, but
it can lead to the poor performance of neural networks [80,81]. Alternatively, cross
correlation coefficients were employed to select appropriate inputs in this study in
the same way as Meko et al. [75].

Seven tree-rings indices showed correlation with streamflow (Figure 4),
including Antelope Lake (Pinus Jeffreyi and Pinus Ponderosa), Felkner Ridge,
Frederick Butte, Lemon Canyon, Piute Mountain, and Sorrel Peak; four tree rings
had correlation with a one-year time-lag, including Dalton Reservoir, Hager Basin
Reservoir and Antelope Lake (Pinus Jeffreyi and Pinus Ponderosa), as shown in
Figures 4 and 5. Hence, nine tree rings were selected as predictors for the ANN
model (two tree-rings were overlapped in zero-lagged and one-year lagged). Also,
four tree-rings, which had one-year time-lag correlation (Antelope with Pinus Jeffreyi
and Pinus Ponderosa, Dalton Reservoir, and Hager Basin Reservoir), are located on
the nearby lake or reservoir. Therefore, it seems that the groundwater level or soil
moisture influenced tree ring width, but there are no clues to estimate the correlation
between them and further studies are thus needed. These nine tree-ring data points
composed the input dataset for the ANN model.

121



Water 2016, 8, 122 6 of 16 

Alternatively, cross correlation coefficients were employed to select appropriate inputs in this study 
in the same way as Meko et al. [75]. 

Seven tree-rings indices showed correlation with streamflow (Figure 4), including Antelope 
Lake (Pinus Jeffreyi and Pinus Ponderosa), Felkner Ridge, Frederick Butte, Lemon Canyon, Piute 
Mountain, and Sorrel Peak; four tree rings had correlation with a one-year time-lag, including 
Dalton Reservoir, Hager Basin Reservoir and Antelope Lake (Pinus Jeffreyi and Pinus Ponderosa), as 
shown in Figures 4 and 5. Hence, nine tree rings were selected as predictors for the ANN model (two 
tree-rings were overlapped in zero-lagged and one-year lagged). Also, four tree-rings, which had 
one-year time-lag correlation (Antelope with Pinus Jeffreyi and Pinus Ponderosa, Dalton Reservoir, 
and Hager Basin Reservoir), are located on the nearby lake or reservoir. Therefore, it seems that the 
groundwater level or soil moisture influenced tree ring width, but there are no clues to estimate the 
correlation between them and further studies are thus needed. These nine tree-ring data points 
composed the input dataset for the ANN model. 

 
Figure 4. Cross correlation diagram between streamflow and tree ring data at: (a) Felkner Ridge;  
(b) Lemon Canyon; (c) Calamity Creek; (d) Dalton Reservoir; (e) Hager Basin Reservoir; (f) Antelope 
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White Mountain; (n) Devil’s Dance Floor; (o) Sorrel Peak; and (p) Piute Mountain. 

Figure 4. Cross correlation diagram between streamflow and tree ring data at:
(a) Felkner Ridge; (b) Lemon Canyon; (c) Calamity Creek; (d) Dalton Reservoir;
(e) Hager Basin Reservoir; (f) Antelope Lake (Pinis Jeffreyi Balf.); (g) Antelope Lake
(Pinus Ponderosa Douglas ex C. Lawson); (h) Steens Mountain; (i) Hell’s Half Acre;
(j) Donner Summit; (k) Frederick Butte; (l) Spring Canyon; (m) St. White Mountain;
(n) Devil’s Dance Floor; (o) Sorrel Peak; and (p) Piute Mountain.
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Figure 5. Study area, tree ring sites, and streamflow sites; a green circle indicates that the tree ring 
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model efficiency coefficient have been widely used to assess the predictive performance of models 
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Figure 5. Study area, tree ring sites, and streamflow sites; a green circle indicates
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correlation with time-lag (1 year) and a yellow box indicates that there is no
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3.2. Reconstructed ANN Model Calibration and Validation

The ANN model had six hidden layers that were determined by trial and error
and was established with selected predictors. The Sacramento streamflow data were
divided into calibration period (1872 to 1957) and validation period (1958 to 1977).
To evaluate the results of calibration and validation, R2 and RMSE [82], and the
Nash–Sutcliffe model efficiency coefficient [83] were computed. The RMSE describes
a measure of average error in prediction and R2 and Nash–Sutcliffe model efficiency
coefficient have been widely used to assess the predictive performance of models [84].
The calibration and validation results with selected predictors are shown in Figure 6.
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Nash–Sutcliffe efficiency of 0.78, 3.66, and 0.78 in the calibration and 0.70, 3.94, and 0.72 in the 
validation period, respectively. Thus, the reconstructed streamflow, based on the ANN model and 
selected predictor, could be used as the reconstruction model. Also, it could be used for 
hydro-meteorological simulations. The variability of each period was 5.74 to 51.64 MAF in the 
calibration period and 5.13 to 32.5 MAF in the validation period. 

The reconstructed streamflow using the selected predictor (nine tree rings) is shown in Figure 7 
and the basic statistics are shown in Table 3, with an average of 18.9 MAF observed and 20.4 MAF of 
reconstructed streamflow. 

Table 3. Basic statistics of observed and reconstructed streamflow. 
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Figure 6. Calibration and validation results with tree ring: (a) calibration period
(1872 to 1957); and (b) validation period (1958 to 1977).

The ANN model showed relatively high values of evaluation measures, with
R2, RMSE, and Nash–Sutcliffe efficiency of 0.78, 3.66, and 0.78 in the calibration and
0.70, 3.94, and 0.72 in the validation period, respectively. Thus, the reconstructed
streamflow, based on the ANN model and selected predictor, could be used as the
reconstruction model. Also, it could be used for hydro-meteorological simulations.
The variability of each period was 5.74 to 51.64 MAF in the calibration period and
5.13 to 32.5 MAF in the validation period.
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The reconstructed streamflow using the selected predictor (nine tree rings) is
shown in Figure 7 and the basic statistics are shown in Table 3, with an average
of 18.9 MAF observed and 20.4 MAF of reconstructed streamflow.Water 2016, 8, 122 9 of 16 
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Figure 7. Reconstructed streamflow using the ANN model.

Table 3. Basic statistics of observed and reconstructed streamflow.

Period Mean
(MAF)

Median
(MAF)

Standard
Deviation (MAF) Skewness

Observed (1872–1977) 18.9 17.6 7.8 0.8
Reconstructed

(1560–1871) 20.4 19.8 9.6 0.6

3.3. Bivariate Drought Analysis and Discussion

Before drought analysis based on reconstructed streamflow, the truncation level
that defines the relevant streamflow level was determined to define hydrological
drought from the streamflow series. The median value of annual streamflow, which
was 19.4 MAF, was employed as the truncation level to define hydrological droughts
for the Sacramento River basin and results are shown in Figure 8. In total, 96 droughts
occurred during the period from 1560 to 1977. Their statistical characteristics were:
median drought duration of about two years, average drought severity of about
15.8 MAF, and average drought arrival time of about 2.1 years during the 15th to 20th
centuries. The longest drought duration estimated was 10 years and had 75.31 MAF
during 1927 to 1936 (in the observation period), and the severest drought estimated
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was 76.17 MAF, which had an eight-year drought duration from 1582 to 1589 (in the
reconstruction period).
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Figure 8. Truncated drought events (1560 to 1977) using observed and
reconstructed streamflow.

For bivariate drought frequency analysis with the copula function, marginal
distributions of drought variables (duration and severity) were derived. The
drought duration was found to have an “exponential” distribution, if treated as
a continuous random variable [34]. Also, the drought severity was found to have a
“gamma” distribution with 95% confidential level with the PPCC (probability plot
correlation coefficient; [85]) distribution goodness of fit test. Then, parameters of
the Archimedean family copulas (Frank, Clayton, and Gumbel) were estimated by
the method of moments according to their relationship between copula parameter
and Kendall’s tau [86], which has been found adequate for estimating parameters for
small sample sizes [78].

The minimum quadratic distance (L2) between the empirical and theoretical
values of the K criterion, which describes the most appropriate copula [78], was
calculated for each copula. As shown in Figure 9, the Frank copula, which generally
fitted well throughout (L2 = 0.023), was selected for bivariate drought analysis for
the Sacramento River. The Frank copula parameter was estimated as 8.03, and the
bivariate joint probability of drought for the Sacramento River basin was described as:

F p Fd, Fsq “ ´
1

8.03
log

ˆ

1`
pexp p´8.03 Fd ptqq ´ 1q pexp p´8.03 Fs ptq ´ 1q

exp p´8.03q ´ 1

˙

(3)

where, Fd ptq and Fs ptq are the cumulative distribution functions of drought duration
and severity. Figure 10 shows the joint CDF of the Sacramento River basin drought.
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The return period is described as the average time of occurrence of events with
the threshold intensity. The bivariate return period can be divided into the exceedance
probabilities of both the drought duration and severity [62]. The copula-based return
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period with the average inter-arrival of occurrences (E pLq), which was 2.1 years, can
be defined as:

Treturn period “
2.1

P pD ą d & S ą sq
“

2.1
1´ FD pdq ´ FS psq ` C pFD pdq , FS psqq

(4)

Therefore, the duration and severity of droughts can be expressed in terms of
the same return period, which can be illustrated in each “return period plot”, as
shown in Figure 11.
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The drought event and return period plot in Figure 11 shows the hydrological
drought pattern of the Sacramento River basin. Overall, the drought duration and
severity seemed to have a positive correlation with each other. To identify the
correlation between drought duration and severity, Pearson’s linear correlation
coefficient, Kendall’s rank correlation coefficient (τ), and Spearman’s rank correlation
coefficient (ρ) were found to be 0.92, 0.73, and 0.85, respectively. Also, the severity
of two-year duration drought showed higher variability than did the three-year
duration drought. Strong correlation between drought characteristics and higher
variability of the two-year drought was the basis for the copula method, especially
higher variability of severity or larger statistical irregularity than other durations
for the same return period in the univariate frequency analysis [62]. Hence, the
copula method would be expected to be more reliable for drought analysis for the
Sacramento River basin. Furthermore, California has a 22.4 MAF mean annual runoff
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and used 5.2 MAF annually to supply the southern area [87]. So, a drought that
becomes over 17.2 MAF will cause the shortage of water supply and is equivalent to
approximately a 20-year return period with a two-month duration (median value of
drought duration) based on the return period plot in Figure 11. Therefore, any return
period that causes an actual water shortage could be the appropriate critical level of
drought. Also, the return period plot in Figure 11 can be used as elementary data for
water resources planning. For instance, if a decision maker or agency determined
a three-year design drought for a dam or reservoir to be having a 20-year return
period, then its deficiency would be about 11.1 ˆ 109 m3 (27.0 MAF), and it could
be the target storage volume for water resources planning.

Most of the droughts that occurred during the last five centuries did not have
more than a 50-year return period, and just six droughts showed 100-year or longer
return periods. These high return period events are one of the limitations of the study;
for instance, the drought from 1927 to 1936 years, the longest and severest drought in
historical data [88], with a 10-year duration and 75.31 MAF severity, which equated
to a 9.26 ˆ 109 m3 streamflow deficiency per year, had approximately a 7500-year
return period. That extreme return period was due to the Frank copula and sample
size, which shows some bias in high quantile (high return period) events in Figure 9,
so it could have overestimated the return period [89], and the number of drought
events with high quantiles is also limited. Droughts that have high quantiles or
extreme return periods depend significantly on the fitted copula function. Therefore,
further studies are needed for generally well-fitted copulas throughout, and also for
carefully considering the use of the return period plot in water resources planning.

4. Conclusions

This study reconstructed the past streamflow of the Sacramento River based on
the ANN and tree-ring data, and bivariate drought frequency was analyzed using
the Archimedean copula. Results of this study can be summarized as follows:

1. The past streamflow for the period from 1560 to 1871 is reconstructed with
the ANN model and tree-ring data, which was found to be the appropriate
predictor. As shown by calibration and validation results from 1872 to 1977, the
R2 and Nash values are 0.7 or higher. It is therefore concluded that the ANN
model reconstructs streamflow of the Sacramento River satisfactorily.

2. Drought characteristics in the Sacramento River basin have strong correlation
with each other. The Archimedean copula is found to be appropriate for
bivariate drought frequency analysis.

3. It is shown that a drought with a 20-year return period or longer will cause actual
water shortages in the perspective of water supply to the southern California
area. Hence, it could be considered an appropriate critical level of droughts for
actual water shortages.
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Multi-Basin Modelling of Future
Hydrological Fluxes in the
Indian Subcontinent
Ilias G. Pechlivanidis, Jonas Olsson, Thomas Bosshard, Devesh Sharma and
K.C. Sharma

Abstract: The impact of climate change on the hydro-climatology of the Indian
subcontinent is investigated by comparing statistics of current and projected future
fluxes resulting from three RCP scenarios (RCP2.6, RCP4.5, and RCP8.5). Climate
projections from the CORDEX-South Asia framework have been bias-corrected
using the Distribution-Based Scaling (DBS) method and used to force the HYPE
hydrological model to generate projections of evapotranspiration, runoff, soil
moisture deficit, snow depth, and applied irrigation water to soil. We also assess the
changes in the annual cycles in three major rivers located in different hydro-climatic
regions. Results show that conclusions can be influenced by uncertainty in the RCP
scenarios. Future scenarios project a gradual increase in temperature (up to 7 ˝C
on average), whilst changes (both increase and decrease) in the long-term average
precipitation and evapotranspiration are more severe at the end of the century. The
potential change (increase and decrease) in runoff could reach 100% depending on
the region and time horizon. Analysis of annual cycles for three selected regions
showed that changes in discharge and evapotranspiration due to climate change vary
between seasons, whereas the magnitude of change is dependent on the region’s
hydro-climatic gradient. Irrigation needs and the snow depth in the Himalayas are
also affected.

Reprinted from Water. Cite as: Pechlivanidis, I.G.; Olsson, J.; Bosshard, T.;
Sharm, D.; Sharma, K.C. Multi-Basin Modelling of Future Hydrological Fluxes in the
Indian Subcontinent. Water 2016, 8, 177.

1. Introduction

Climate change impacts can be particularly complex in regions which are
additionally subject to other environmental and socio-economic changes, i.e.,
population growth, urbanization, land use change, and change in industrial and
hydropower sectors [1]. India is a developing country with nearly two-thirds
of the population depending directly on the climate- and water-sensitive sectors.
The country already faces high risks of water shortages due to population
growth, urbanization, and increasing demands in the agricultural, industrial, and
hydropower sectors; hence, India offers a unique opportunity to examine the impacts
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of climate change, which in some areas have already been observed [2–4]. The region
is characterised by a strong hydro-climatic gradient due to the monsoon (tropical
climatic regions in the south; temperate and alpine regions in the Himalayan north,
where elevated areas receive sustained winter snowfall) and the geographic features;
hence, posing extraordinary scientific challenges to understand, quantify, and predict
future availability of water resources. Of particular interest are the Northern Indian
Himalayan plains given the sensitivity of snow and glacier melt processes to climate
variability and change [5–7]. Arid and semi-arid regions might also experience
changes in their hydrological cycle [8,9].

Assessment of future climate change impacts on water resources commonly
involves climate variables (i.e. precipitation, temperature) from global circulation
models (GCMs) in combination with hydrological models [10,11]. GCMs demonstrate
significant skill at the continental and hemispheric spatial scales and incorporate a
large proportion of the complexity of the global system; however, they are inherently
unable to represent local basin-scale features and dynamics [12]. To narrow the
gap between GCMs’ abilities and hydrological needs, regional climate models
(RCMs) have been developed to downscale the GCM output and, thus, provide
high-resolution meteorological inputs to hydrological models. To improve the
confidence in regional trends of hydro-climatic key variables and increase robustness
in hydrological long term predictions, the World Climate Research Programme
(WCRP) has recently launched a framework, called COordinated Regional climate
Downscaling EXperiment (CORDEX), to generate and evaluate fine-scale ensembles
of regional climate projections for all continents globally [13]. CORDEX has several
domains that are defined as regions for which the regional downscaling is taking
place. In particular, the efforts in the South Asia (SA) domain aim to translate
regionally-downscaled climate data into meaningful sustainable development
information in the monsoon South Asia area [14]. CORDEX-SA was initiated in
2012 and the RCM outputs have only recently become available.

While RCMs transfer the large-scale information from GCMs to scales which
are closer to the basin scale (10–50 km), the output often shows large bias in
the magnitude and spatial distribution of precipitation and, to a lesser extent,
temperature [15]. RCM data are, therefore, not considered to be directly useful
for assessing hydrological impacts at the regional and/or local scale [16]. A way
to tackle the problem of RCM misrepresentation is to bias correct the RCM data
to make them reproduce historical observed statistics to the degree possible [17].
Different approaches to bias correction have been made, with various complexity [18].
Simpler methods include shifting long-term annual or seasonal means to agree
with observations whereas more advanced methods include adjustment of the full
frequency distribution. A distribution-based approach is attractive not least for
precipitation, for which both bias and future change are generally found to depend
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on the intensity level [19]. Bias correction often includes an implicit downscaling
component, in that higher-resolution reference observations are used when fitting the
RCM mapping functions. Bias correction generally preserves the variability described
by different climatic conditions generated by RCM projections [20]; however, the
RCM may perform differently depending on the season or governing atmospheric
circulation. For instance, a typically wet weather regime (e.g., pattern or season) can
have a different precipitation distribution in time and space than a dry regime.

Projected hydrologic information is prone to considerable uncertainty/errors
at various steps of the modelling chain, i.e., climate projection, bias correction and
downscaling techniques, and hydrological simulation [21–23]. These errors can
propagate in a very complex way (e.g., magnitude of error could vary both in
space and time) which could be misinformative for management decisions [24,25].
A major source of uncertainty, among others, concerns the future emission scenarios,
described by the representative concentration pathways (RCP), which further results
in different climate projections. [26] showed that towards the end of the 21st century,
the emission scenarios (here RCPs) are the dominant source of uncertainty in climate
projections. The spatiotemporal variability of water fluxes differs between RCPs,
particularly in areas with unique weather systems, i.e., monsoon [27,28]. However,
the choice of GCM and RCM may also have a large impact on the results and generally
an ensemble of projections—encompassing different GCMs, RCMs, and emission
scenarios—is recommended in hydrological climate change impact assessments [29,30].

Conventionally, hydrologic impacts are investigated on small (~0.1–102 km2) or
medium-sized basins (~102–103 km2); however, current needs require assessment
on larger areas and river basins, which requires the use of large scale hydrological
models [31,32]. This type of modelling has the potential to encompass many river
basins, cross-regional, and international boundaries and represents a number of
different geophysical and climatic zones [33]. In addition, according to [34], large
scale modelling can balance “depth with breadth”, enhance process understanding,
increase robustness of generalizations, facilitate catchment classification and
regionalization schemes, and support better understanding of prediction uncertainty.

This paper contributes to ongoing efforts on assessing the potential impacts of
climate change on water availability in the Indian subcontinent. In particular, we
aim to answer the following questions: (i) what is the quantified impact of climate
change on India’s water resources? (ii) how is the uncertainty due to RCP propagated
in hydrological impact modelling? and (iii) how does the potential impact vary in
different climatic regions (i.e., tropical, humid subtropical, and montane)? Although
previous investigations have, at least to some degree, addressed similar questions,
our contribution is associated with three novel features in that we apply: (1) three
recently-generated high-resolution CORDEX-SA projections (RCP2.6, RCP4.5, and
RCP8.5), (2) the DBS (distribution-based scaling; [35]) method to correct biases in
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the climate projections, and (3) the large-scale multi-basin HYPE (HYdrological
Predictions for the Environment; [36]) hydrological model, to quantify climatic as
well as anthropogenic impacts of climate change on hydrology and water availability
over the entire Indian subcontinent. Section 2 introduces the study area, whereas the
hydrological model and methodology are presented in Section 3. Section 4 presents
the results of climate change impacts, followed by a discussion in Section 5 and
conclusions in Section 6.

2. Study Area and Data

2.1. Study Area

India is the seventh-largest country by area and the second-most populated
country with over 1.2 billion people. The country covers an area of about 3.3 million
km2 and some of its river basins extend into several neighboring countries (i.e., China,
Nepal, Pakistan, and Bangladesh; see Figure 1). Major rivers of Himalayan origin
that are mainly located in India include the Ganga and the Brahmaputra, both of
which drain into the Bay of Bengal. Major peninsular rivers, whose steeper gradients
prevent them from flooding, include the Godavari, the Mahanadi, and the Krishna,
which also drain into the Bay of Bengal; and the Narmada and the Tapi, which
drain into the Arabian Sea. Coastal features include the marshy Rann of Kutch of
Western India and the alluvial Sundarbans delta of Eastern India; the latter is shared
with Bangladesh.

The spatiotemporal variation in climate is perhaps greater than in any
other area of similar size in the world. The climate is strongly influenced by
the Himalayas and the Thar Desert in the northwest, both of which drive the
summer and winter monsoons [37]. Four seasons can be distinguished: winter
(January–February), pre-monsoon (March–May), monsoon (June–September), and
post-monsoon (October–December). In terms of spatial variability, the rainfall pattern
roughly reflects the different climate regimes of the country, which vary from humid
in the northeast (precipitation is 2068 mm/year and occurs about 180 days/year),
to arid in Rajasthan (precipitation is 313 mm/year and occurs about 20 days/year).
Moreover, India is characterized by strong temperature variations in different seasons
ranging from a mean temperature of about 10 ˝C in winter to about 32 ˝C in
pre-monsoon season.

The monsoon season is very important for water resources (and in turn their use
for, e.g., power generation and agriculture) in the country since 75% of the annual
rainfall (877 out of 1182 mm) is received in this period [38]. In particular, India’s
mean monthly rainfall during July (286.5 mm) is highest and constitutes about 24%
of the annual total. The contribution in August is slightly lower (~21%) and in June
and September ~14% [39]. The contribution of pre-monsoon and post-monsoon
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rainfall to the annual total is roughly the same (11%). Higher variation is observed
during the end of post-monsoon and winter (i.e., November–February). To provide a
better understanding of the system behavior, Figure 1b–d shows the annual cycles of
the hydro-climatic fluxes in three different climatic regions, i.e., humid subtropical
(Ganga), montane (Indus), and tropical (Godavari).
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Figure 1. (a) The Indian subcontinent (model domain)—the numbers correspond
to the basins in which regional analysis is conducted. Mean annual hydro-climatic
cycles (precipitation (P), actual evapotranspiration (AE), and discharge (Q)) during
the period 1976–2005 for the rivers: (b) Ganga (at Farakka station), (c) Indus
(Chenab at Akhnoor station), and (d) Godavari (at Polavaram station). These
results are shown from investigation areas in (a) with a star.

2.2. Spatial Input Data

Data availability is usually a severe constraint in the analysis of large-scale
domains. To overcome such a problem, we use global datasets to extract the
information required for hydrological applications (see Table 1 in [40]).
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2.3. Meteorological Reference Data

Daily precipitation inputs for the period 1971–2005 are obtained from the Asian
Precipitation—Highly-Resolved Observational Data Integration Towards Evaluation
of Water Resources (APHRODITE) project [41,42] at 0.25˝ resolution (Table 1).
Similarly, AphroTEMP [43] provides daily temperature inputs for the same period
at 0.5˝ resolution. APHRODITE and AphroTEMP (in the following jointly denoted
APHRODITE) are the only long-term continental-scale gridded datasets that are
based on a dense network of daily data for Asia including the Himalayas. Therefore,
the datasets have contributed to studies including among others water resources,
climate change analysis, and statistical downscaling [28]. In this study, as a reference
period we have chosen the 30-year period 1976–2005. The APHRODITE dataset fully
covers this reference period and the period does not overlap with the future climate
projections that start in 2006.

Table 1. The three CORDEX-SA climate projections used in this study.

RCP GCM RCM Reference Data

2.6
4.5
8.5

EC-EARTH
RCA4

(0.44 ˆ 0.44 deg)

APHRODITE
(0.25 ˆ 0.25 deg)

AphroTEMP
(0.5 ˆ 0.5 deg)

2.4. Climate Projections

Our ensemble of three climate projections consists of modelling chains that
use the same GCM (EC-EARTH; [44]) and RCM (RCA4; [45]), but three different
representative concentration pathways, RCPs (see ). RCPs are numbered after
their increased radiative forcing until year 2100 (+2.6, +4.5, and +8.5 W/m2,
respectively; [46]). Note that more climate projections are becoming available over
the South Asian domain through the CORDEX initiative (e.g., [47]).

A total of 129 years of hydrological simulations have been conducted for each
climate scenario (1971–2099). However, the analysis is based on three 30-year periods:
reference period (1976–2005), mid-century period (2021–2050), and end-century
period (2070–2099). Note that in here we only analyze three projections from the
CORDEX-SA ensemble; the CORDEX experiment is ongoing and more projections
are being generated but these were the only ones available at the time of the study.

141



3. Methodology

3.1. India-HYPE: Description, Setup, and Calibration

The Hydrological Predictions for the Environment, HYPE, model [36] is
a semi-distributed rainfall-runoff model capable of describing the hydrological
processes at the basin scale. The model represents processes for snow and ice
accumulation and melting, evapotranspiration, soil moisture, discharge generation,
groundwater recharge, and routing through rivers and lakes. HYPE simulates
the water flow paths in soil, which is divided into three layers with a fluctuating
groundwater table. Parameters are linked to physiographical characteristics in the
landscape, such as hydrological response units (HRUs) linked to soil type and depths
and vegetation. Elevation is used to get temperature variations within a sub-basin
for estimating the snow cover dynamics.

Lakes are defined as classes with specified areas and receive the local runoff and
the river flow from upstream sub-basins. Precipitation falls directly on lake surfaces
and lake water evaporates at the potential rate until the lake is dry. Each lake has a
defined depth below an outflow threshold. The outflow from lakes is determined by
a general rating curve, unless a specific one is given or if the lake is regulated. Lakes
and man-made reservoirs are not separated in the simulation. A simple regulation
rule can be used, in which the outflow is constant or follows a seasonal function for
water levels above the threshold. A rating curve for the spillways can be used when
the reservoir is full.

Irrigation in HYPE is simulated based on crop water demands calculated either
with the FAO-56 crop coefficient method [48] or relative to a reference flooding level
for submerged crops (e.g., rice). The demands are withdrawn from rivers, lakes,
reservoirs, and/or groundwater within and/or external to the sub-basin where the
demands originated. The demands are constrained by the water availability at these
sources. After subtraction of conveyance losses, the withdrawn water is applied
as additional infiltration to the irrigated soils from which the demands originated
(in here named as applied irrigation water to soil (AIW)).

The HYPE model is set up for the entire Indian subcontinent (4.9 million km2)
divided into 6010 sub-basins, i.e., with an average size of 810 km2, and is referred
to as India-HYPE. The model runs at a daily time step using APHRODITE as input
data, but due to lack of daily discharge observations it was calibrated and evaluated
(both in space and time) against monthly observations from 42 stations in the GRDC
(Global Runoff Data Centre) database. For the Indian subcontinent, GRDC data are
limited to monthly discharge for chosen river basins in the period 1971–1979. More
discharge data are held in the Indian government agencies, but are not released to
the public domain due to confidentiality; this generally sets a constraining factor
for a model setup. Many of the parameters in the model are coupled to soil type or
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land use, while others are assumed to be general to a larger region. This approach
fosters the potential of parameter transferability within reasonably homogeneous
regions. In applications of HYPE, we generally consider the parameter identifiability
and their regionalization to ungauged regions to be acceptable if the model performs
adequately in the gauged basins over the entire model domain.

The HYPE model was spatiotemporally calibrated and evaluated in a
multi-basin approach by considering the median performance in selected stations;
30 stations were selected for model calibration and 12 “blind” stations for spatial
evaluation. The years 1969–1970 were used as a model warm-up period, the next
five years for model calibration (1971–1975) and the final four years for temporal
performance evaluation (1976–1979). The model’s predictability was tested using
various performance measures (i.e., objective functions and flow signatures) and
additional data sources (i.e., remote sensing potential evapotranspiration records); see
details in [40]. Here, we assess the model’s predictability based on the Nash-Sutcliffe
Efficiency, NSE [49] and relative error, RE (defined as the difference between the
mean modelled value and the mean observed value divided by the mean observed
value). The former has been widely applied in hydrology as a benchmark measure
of fit. It can also be interpreted as a classic skill score, where skill is interpreted
as the comparative ability with regards to a baseline model (here taken to be the
“mean of the observations”; i.e., NSE < 0 indicates that the mean of the observed
time series provides, on average, a better prediction than the model). NSE ranges
between 1 (perfect fit) and ´8 whereas RE ranges between ´8 and +8, with the
“ideal” value being 0.

3.2. Bias Correction of RCM Data

The RCM projections (mean daily precipitation and temperature) were bias
corrected against the APHRODITE dataset using the distribution based scaling,
DBS, statistical method [35]. In brief, DBS aims to map the quantile distributions
of precipitation and temperature in the RCM data to those of the reference data.
For precipitation, a two-step procedure is applied: 1) correction of the wet-day
frequency by applying a wet-day cut-off threshold (in case of wet frequency bias)
or by adding wet-days to pre-existing wet-spells (if dry frequency bias), and 2)
quantile-mapping of the precipitation data using a double-gamma distribution to
accurately represent both normal and extreme precipitation intensity ranges. For
temperature, a quantile-mapping correction based on a Gaussian distribution is
used. The temperature correction model is dependent on the wet/dry state of the
corresponding precipitation. This means that DBS takes into account different biases
on wet and dry days (see details in [35]). The bias-corrected projections were used to
force the hydrological model for the assessment of climate change impacts on water
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resources. DBS was used for bias-correcting GCM projections over India (Mumbai
region) by [50].

3.3. Climate Change Impact Assessment

For the present climate, water availability in space and time was simulated
using the reference APHRODITE dataset as input. The same framework is then used
to project the impact of climate change on the water resources with the assumption
that the land use shall not change over time.

3.3.1. Long-Term Averages

Firstly, we assess the impact of climate change on the hydro-climatic variables,
i.e., long-term means of precipitation (P, in mm), temperature (T, in C), actual
evapotranspiration (AE, in mm), runoff (R, in mm), soil moisture deficit (SMD,
in mm), snow depth (SD, in cm), and applied irrigation water to soil (AIW, in Mm3).
The daily series for each 30-year period (reference, mid- and end-century) is used to
extract the statistics. The relative future change in the long-term average (%) between
two periods (mid- or end-century versus reference period) due to climate change is
estimated for each sub-basin. Positive (negative) change indicates increase (decrease)
from the average value in the reference period. Note that for T we calculate absolute
differences between future and reference periods; hence, we can express properly
also changes in the sign of T.

The spatial variability of change at the basin scale is further summarized (here
presented as a boxplot) allowing comparison of the overall change between basins;
note that this analysis is only presented for P and R.

3.3.2. Annual Cycles

To complement the above assessment, we investigate the changes in the annual
cycles in different locations and governing climatic conditions. We, therefore,
compare the annual cycles of P, E, and discharge (Q, in m3/s) for the Ganga (at
Farakka station), Indus (Chenab at Akhnoor station), and Godavari (at Polavaram
station) basins (see annual cycles of the present climate in Figure 1b–d). The climate
in these basins is characterized as humid subtropical, montane, and tropical,
respectively; hence, the analysis can capture the sensitivity to the dominant climatic
gradients in the subcontinent.

4. Results

4.1. Model Evaluation

Here, we investigate the model’s reliability (which involves measures sensitive
to high flows, timing, variability, and volume), and present performances for the
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benchmark objective functions, i.e., NSE and RE. The NSE and RE for all calibration
and evaluation stations and periods are presented in Table 2. Overall, the India-HYPE
model achieved an acceptable performance for our purpose and is, therefore,
considered adequate to describe the dominant hydrological processes in the region
(median NSE and RE for the calibration period is 0.76 and´5.26%, respectively, while
for the evaluation period the values are 0.68 and +8.01%, respectively). However, as
expected, the performance decreased when the model is validated both in space and
time (NSE and RE equal 0.40 and 16.81%, respectively); the model is not “trained”
to capture the flow conditions at independent areas and time periods. A more
detailed analysis during the evaluation period showed that the model could not fully
capture the variability (e.g., standard deviation) of the observed data in the validation
stations. The ratio of the standard deviation of modelled over the standard deviation
of observed data decreases during the evaluation period at the evaluation stations
from 0.78 to 0.58 which consequently affects the NSE values; see the discussion on
the decomposition of the NSE and the importance of its decomposed terms (dealing
with timing, variability, and volume) on the overall NSE in [51]. However other flow
characteristics, i.e. timing and volume, are better represented than variability during
the evaluation period. Further analysis and discussion on model performance and
consistency can be found in [40].

Table 2. Median model performance for calibration and evaluation stations
and periods.

Space Time/Periods NSE RE (%)

Cal. (30 stations)
1971–1975 0.76 ´5.26

1976–1979 0.63 ´5.43

Eval. (12 stations)
1971–1975 0.68 8.01

1976–1979 0.40 16.81

4.2. Bias Correction

The effect of bias-correction using the DBS methodology is illustrated here
for the case of mean P (Figure 2). The highest P amounts are measured along the
mountain ridges, e.g., on the western side of the Western Ghats, Southwest India,
and at the foothills of the Himalaya in the northern part of the study region. Those
wet regions are strongly associated with atmospheric flows during the monsoon
season. Dry regions are located in the northwestern part and on the eastern side
of the Western Ghats. The projections employed in this study all share the same
historical run, thus Figure 2 is representative for all three projections. The historical
projection shows large positive and negative biases in mean P, with sharp gradients
between regions of positive and negative biases. The regions with sharp gradients
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coincide very well with regions of complex topography (e.g., in the Himalaya or
on the lee and luv side of the Western Ghats). DBS is able to correct for most
of the bias although some remaining dry bias is apparent in regions where the
historical projection strongly underestimates mean precipitation. This is related to
a dry frequency bias, i.e., too few wet days in the projection. DBS is not able to
fully correct for the pronounced deficits in rain days, but can only correct moderate
dry frequency bias by adding wet-days to existing wet-spells. Such a limitation of
bias-correction methods in case of dry frequency biases is a general limitation of
current quantile-mapping bias-correction methods [35,52].
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Figure 2. Observed precipitation and RCM bias in the period 1976–2005:
(a) mean daily precipitation in APHRODITE; (b) relative bias in uncorrected
historical GCM-RCM projection, and (c) relative bias in bias-corrected historical
GCM-RCM projection.

Concerning T, in most parts of India it was underestimated by 1–2 C in the
historical GCM-RCM projection (not shown). After the DBS bias-correction, only a
negligible bias remained and the spatial pattern became essentially identical to the
observations (see Figure 3c).

4.3. Reference Data Analysis

To infer a quantitative understanding of the magnitude of the climate change
impact on the hydro-climatic components (P was analyzed in Section 4.2), it is
necessary to estimate the long-term averages of India-HYPE driven by APHRODITE
for the entire reference period (Figure 3). Long-term average R is controlled by the
spatial patterns of P and AE; consequently high R is generated at the southwestern
rivers and at the Himalayan mountain range. AE, which in this model is controlled by
water availability and T, shows similar spatial patterns to P but lower than the latter
by almost 25%; hence, indicating that most precipitated water is evaporated back to
the atmosphere. Note, also, the high temperatures which are almost homogeneously
distributed over the region (average T is about 25 ˝C); however, the T gradient is very
strong at the Himalayan mountain range (average T varies between ´5 and 2 ˝C).
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The AIW varies between 100 and 900 Mm3 per year with high spatial variability in the
region (note that the spatial pattern of this variable is subject to the GMIA irrigation
map). The SMD is between 0 and 140 mm/year, with the Himalayas exhibiting very
low values and the Thar Desert exhibiting high values; note the presence of wetlands
covering this northwest region. Finally, SD can reach 100 cm in the Himalayas with
large local variability.

Water 2016, 8, 177 9 of 22 

between 100 and 900 Mm3 per year with high spatial variability in the region (note that the spatial pattern 
of this variable is subject to the GMIA irrigation map). The SMD is between 0 and 140 mm/year, with the 
Himalayas exhibiting very low values and the Thar Desert exhibiting high values; note the presence of 
wetlands covering this northwest region. Finally, SD can reach 100 cm in the Himalayas with large local 
variability. 

 
Figure 3. Annual averages (period 1976–2005) for the variables: (a) runoff, R; (b) actual 
evapotranspiration, AE; (c) temperature, T; (d) applied irrigation water to soil, AIW; (e) soil moisture 
deficit, SMD; and (f) snow depth, SD. 

4.4. Climate Change Impacts 

As outlined in Section 3.3, we analyze the effects of climate change for various variables in two 
different scenario periods. We firstly present changes in the variables which control the hydro-climatic 
conditions and continue with the applied irrigation water to soil which is more “end-user related”. We 
then investigate the changes in the annual cycles of three regions.  
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All projections show an increase of T for both scenario periods and in the whole modelling domain 
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For the same scenario period and RCP4.5, the increase in T is projected to fall into the range of +1.0 to +2.0 
°C over most of the domain, but is higher—up to +3.0 °C—in the mountainous parts in the north. The same 
spatial pattern is seen in RCP8.5 in which T is projected to increase between 1.5 and 6.0 °C with the highest 
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evapotranspiration, AE; (c) temperature, T; (d) applied irrigation water to soil, AIW;
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4.4. Climate Change Impacts

As outlined in Section 3.3, we analyze the effects of climate change for various
variables in two different scenario periods. We firstly present changes in the variables
which control the hydro-climatic conditions and continue with the applied irrigation
water to soil which is more “end-user related”. We then investigate the changes in
the annual cycles of three regions.

4.4.1. Long-Term Averages

All projections show an increase of T for both scenario periods and in the whole
modelling domain (Figure 4). In RCP2.6, the increase in T is limited to ranges below
+1.5 ˝C until the end of the 21st century. For the same scenario period and RCP4.5,
the increase in T is projected to fall into the range of +1.0 to +2.0 ˝C over most of the
domain, but is higher—up to +3.0 ˝C—in the mountainous parts in the north. The
same spatial pattern is seen in RCP8.5 in which T is projected to increase between

147



1.5 and 6.0 ˝C with the highest increase also occurring in the mountainous regions.
This elevation dependency could be due to the snow albedo effect which leads to
higher increases in T when the snow cover duration decreases [53].

Regarding P, the projections show strongly increasing mean P over most of the
region (Figure 5). This also includes areas where present day P is already very high
(e.g. along the Western Ghats and the southern side of the Himalayan mountain
range). The signal is stronger towards the end of the 21st century than in mid-century
and the higher the RCP is, with the exception of RCP2.6 for which there is no
intensification of the signal from the mid- to the end-century period. The clear
dependency of the change signal on the period and the RCP is true for all variables
discussed below. The dry regions in the northwestern and central parts, including
e.g., the Indus, Luni, Sabarmati, and parts of the Ganga River, are projected to receive
less P. Additionally, the spatial variability of the changes within the major river basins
(see boxplots in Figure 5) is generally increasing towards the end of the century. The
above-mentioned river basins include sub-basins with a very heterogeneous pattern
of P changes, ranging from decreases to increases for all projections except for the
RCP8.5 end-century evaluation. Those basins are located in a zone where slight
changes in the spatial patterns of P decrease or increase might lead to a pronounced
effect on the basin-wide qualitative changes (i.e., decrease or increase of mean P).
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AE generally either remains essentially unchanged or increases. In areas with a pronounced 
decrease in P, such as in the northwest, a slight decrease of AE may, however, occur (see Figure 6). The 
increase of evaporation in the south is due to decrease in SMD (see Figure 8). Over the Himalayan 
mountain range, strong increases are projected in all RCPs and both scenario periods. In that area, the 
increase of potential evapotranspiration (not shown) due to increased temperature and a shortened 
period of snow cover (see Figure 8 for snow depth changes as an indicator of snow cover changes) both 
contribute to higher AE. 
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Figure 5. (a) Relative change in precipitation P for each climate projection (columns
1–3) and period (top and bottom row for the mid- and end-century, respectively);
and (b) variability of the change at the basin scale for each climate projection
(columns 1–3) and period (rows 1–2).

AE generally either remains essentially unchanged or increases. In areas with
a pronounced decrease in P, such as in the northwest, a slight decrease of AE may,
however, occur (see Figure 6). The increase of evaporation in the south is due
to decrease in SMD (see Figure 8). Over the Himalayan mountain range, strong
increases are projected in all RCPs and both scenario periods. In that area, the
increase of potential evapotranspiration (not shown) due to increased temperature
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and a shortened period of snow cover (see Figure 8 for snow depth changes as an
indicator of snow cover changes) both contribute to higher AE.
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The pattern of R changes follows the one of P but the magnitudes of the relative changes are larger 
than for P (Figure 7). Consequently, the spatial variability within the major river basins is also much 
larger than for P, shown by the wider boxplots in the Figure 7. Thus, the basins, which are susceptible to 
small spatial changes of areas with increasing and decreasing P, are even more sensitive to spatial 
changes when it comes to R. 

Figure 6. Same as Figure 5a for actual evapotranspiration AE.

The pattern of R changes follows the one of P but the magnitudes of the relative
changes are larger than for P (Figure 7). Consequently, the spatial variability within
the major river basins is also much larger than for P, shown by the wider boxplots in
the Figure 7. Thus, the basins, which are susceptible to small spatial changes of areas
with increasing and decreasing P, are even more sensitive to spatial changes when it
comes to R.

Within the model domain, snow only occurs in the Himalayas (Figure 3). For
a large fraction of that area, SD is projected to decrease strongly, a change which is
already apparent in the mid-century period (Figure 8). Only in some high-elevated
areas is T cold enough to make SD increase due to increased mean P.

The changes in irrigated water to soil (Figure 9) should be interpreted in a way
that they represent the changes in future demand for irrigation. Wherever irrigation
is projected to increase, a higher demand for irrigation is implied. In that sense, the
results indicate that the demand for irrigation will increase in the Northwestern and
central regions in all RCPs and both scenario periods. Towards the end of the century
in RCP8.5, the region with increased irrigation demand is enlarged and encompasses
the whole Indus and Ganga river basins. Decreases in irrigation needs are projected
for the southern part of the model domain.
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4.4.2. Annual Cycles

Whereas in Section 4.4.1 we presented spatially detailed maps of changes in
annual mean quantities, we show here the results of changes in the annual cycle at
three selected gauges (see stars in Figure 1) in order to provide more details about
the seasonal dynamics.
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Figure 8. Relative change in soil moisture deficit SMD (column 1) and snow
depth SD (column 2) for climate projection RCP4.5 until mid-century (row 1)
and end-century (row 2). Only RCP4.5 is shown; the spatial pattern of changes
is very similar for the other RCPs. (a) SMD change for mid-century; (b) SD
change for mid-century; (c) SMD change for end-century, and (d) SD change for
end-century. See the results for all RCPs and future periods in Figures S1 and S2 in
the Supplement.

The Ganga River has clear Q seasonality with peak Q in the monsoon season and
very little Q in the remaining months (Figure 1b). P is projected to increase during the
monsoon period, and little change happens in the rest of the year (Figure 10a). This
trend is stronger for the end-century than for the mid-century changes in RCP4.5 and
RCP8.5, while RCP2.6’s changes remain on a low level even at the end of the century.
For the end-century period, RCP8.5 also shows a longer season of increasing P,
lasting until the start of the post-monsoon season in October. The seasonal pattern
of changes in AE closely follows the one of P, but the magnitudes of the changes
are smaller. Thus, the increases in P partly become runoff effective, which is seen as
increasing Q in the monsoon season. The largest increases in Q towards the end of
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the century are projected to range from 5000 to 20,000 m3/s depending on the chosen
RCP, corresponding to a 12 to 50 % increase compared to the reference period.
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The gauge in the Indus catchment lies close to the Himalayas. In present day
conditions, the seasonal cycle of P shows a two-peak pattern with one peak in March
and the second one in July/August (Figure 1c). The three projections do not agree
on the change signal (Figure 10b). For the end-century period, a slight tendency
towards increasing P in summer and decreasing P in March is noticeable. This would
mean that the first P peak weakens, whereas the second one in summer gets stronger.
AE increases throughout the year, with the largest increases being projected for the
summer. There is no clear link between the P and the AE change signal, indicating
that the soil moisture is not the limiting factor for AE in that area. The change signal
in Q is associated with more uncertainty and small projected changes switch sign
several times in the course of the annual cycle. This is also reflected in the boxplots
in Figure 7 where the Indus River shows a large spatial variability of runoff changes
around the no-change level. Small changes in some sub-basins might lead to a switch
of the sign of change in the response on the aggregated basin level. Overall, it seems
that the climate change signal of discharge is small.

Under the current conditions, the Godavari River has a clear seasonal discharge
regime with a peak in the monsoon season and low discharge in the rest of the year
(Figure 1d). Compared to the Ganga River, the seasonality is even more pronounced
due to the lack of snow-melt from the Himalayas during the pre- and post-monsoon
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season. Additionally, the seasonal pattern of changes in all variables looks similar
to the ones in the Ganga River; however, the magnitudes are larger (Figure 10c).
For total Q in the monsoon and post-monsoon period, the changes amount to +10%
to +80%.
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evapotranspiration AE and discharge Q for each climate scenario and period
(column 1 and 2 for the mid- and end-century, respectively) for the rivers: (a) Ganga
(at Farakka station); (b) Indus (Chenab at Akhnoor station), and (c) Godavari
(at Polavaram station).
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5. Discussion

5.1. Enhancing Understanding of Future Climate Change Impacts

Our study contributes to the previously reported assessments of future climatic
patterns (which in most cases are driven by projections from different GCMs and
RCMs) in India and their impact on water resources. Overall our results support
previous findings that climate projections reveal an increase in monsoon precipitation
in the mid-century [54,55] and a possible extension of the monsoon period [56–58].
Our results over Northern and Western India and the southeastern coastline differ
from previous projections based on the CGCM3.1-PRECIS model chain and the
A1B emission scenario [31,59]. According to [59], in those regions precipitation is
expected to decrease both in the mid- and end-century. Moreover, analysis (not
shown here) on the number of wet spells was consistent with the general trends
of previous finding, showing a higher frequency of wet spells from the 2060s and
beyond, mostly in northern and coastal regions [14,60]. [61] define the river basins
of Kutch, Saurashtra, Luni, and Indus in the northwest and Pennar in the southeast
as physically water-scarce, most of the rest of India as economically water-scarce,
and only Brahmaputra, Meghna, Brahmani, Mahanadi, and some smaller basins
along the east coast as non-water-scarce (Figure 1). Our results support this regional
classification, however attention is needed in results for R in the northwestern
basins due to their pronounced spatial variability (although overall results point at
decreasing runoff). The overall decreasing future trend of water availability in the
northwestern basins with a high spatial variability agrees with the results in [31].
In our results river Pennar will clearly become less water-scarce by the end of the
century, which is in contrast to [31] who found a reduced water yield in this basin on
this time horizon.

A key component for assessing water scarcity is the evapotranspiration.
Similarly to P, AE in our results exhibit a pronounced spatial variability in the
northwest and overall an increase is projected for the Indian subcontinent. This can
be contrasted with recent findings of observed decreasing trends in temperature
(and consequently evaporation and water scarcity) over Northeastern India [62], the
Godavari basin [63], as well as many regions world-wide [64,65]. For India, this
finding has been attributed to mainly a reduction of wind speeds (‘stilling’) and an
increase of atmospheric humidity [63]. These impacts cannot be simulated with the
purely T-based relationship for AE used here.

In the Himalayan region, we found a generally consistent increase in runoff for
different projections and future periods, which agrees with the general trend in the
literature [5,6,66–68]; however this increase varies significantly in space (following
the topographic pattern). In addition, it is generally expected that the changes in
the Ganga and Meghna rivers will be larger than in the Brahmaputra river, probably
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due to the impact of melted water from snow and glaciers [2]. This conclusion is
consistent with our results. Change in runoff in the Krishna river is ambiguous with
studies showing both a future increase [32,69], as here, and a decrease [31].

5.2. Limitations of This Study

Reliability of the input data used to drive large-scale multi-basin hydrological
models, particularly those derived from global datasets, has been questioned [70].
Although a preliminary comparison of the applied climatic and physiographic data
against national data did not show significant discrepancies (e.g., when comparing
the APHRODITE data against P and T observations from the Indian Meteorological
Department), some inconsistencies were generally observed at the local scale.

Here, we have only focused on the uncertainty from the RCP scenario. This was
motivated by previous findings indicating that towards the end of the 21st century,
generally the emission scenario (here, RCP) is the dominant source of uncertainty
in climate projections (e.g., [26]). However, it is clear that also the other sources
may substantially contribute to the uncertainty, e.g., the choice of GCMs, RCMs,
bias-correction method, hydrological model structure, and parameterization can
have a substantial impact [71,72].

Climate change impact results are subject to the impact model’s predictability
and consistency, here assessed by the model’s performance in the present climate.
The India-HYPE model can adequately represent the long-term average fluxes and
their seasonal variation (see details in [40]); however, it is expected that a larger
number of discharge gauges (representing different hydro-climatic systems) and/or
temporally extended time series (in terms of length and resolution) and/or additional
variables (e.g., evapotranspiration, snow cover area etc.) would provide additional
information to drive the parameterization of the model and guide towards model
structural improvements.

Finally, our study is limited by the assumed stationarity in the investigated
hydrological systems. It is recognized that non-stationarity exists as a characteristic
of the natural world due to various environmental changes (land use and other
man-made alterations) [73].

6. Conclusions

We have explored the potential impact of climate change on the hydrology and
water resources of the Indian subcontinent, based on an RCP-ensemble of regional
climate projections from the CORDEX-SA framework. Climate projections with
GCM EC-EARTH and RCM RCA4 based on three RCP scenarios (RCP2.6, RCP4.5,
and RCP8.5) are bias-corrected and introduced into the HYPE hydrological model
to assess average changes in various hydro-climatic fluxes for two future periods
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(mid- and end-century). Additionally, the intra-annual variability of key fluxes
(precipitation, evapotranspiration, and discharge) in three river systems.

Overall, the distribution of change in runoff varies considerably with both
hydro-climatic region and climate projection. In particular, the following future
changes were indicated:

‚ Temperature will increase in the entire subcontinent, with the highest increase
in the mountainous regions.

‚ An increase in long-term average precipitation and evapotranspiration in
wet regions; however, less precipitation and evapotranspiration are expected at
the dry regions.

‚ Average snow depth in the Himalayan region will be reduced; this is consistent
in all projections and time horizons.

‚ A general increase in the need for irrigation; however, the need is reduced
in the south.

‚ Large relative changes in runoff, and large spatial variability at the basin scale,
particularly towards the end of the century.

‚ Changed seasonality in discharge, with more pronounced changes in the tropical
and subtropical zones than in the mountainous regions.

Overall, the conclusions support previous findings in most parts of India
(including the Himalayas), with respect to future trends in runoff. This study, however,
indicates larger changes under the severe emission scenario RCP8.5. Regionally, some
differences are found in comparison with existing results, e.g., for precipitation and
evapotranspiration in northern and western India and the southeastern coastline
and for runoff changes in the Krishna river. These differences highlight the need
for further studies focusing on climate change impacts on hydrology in India. In
addition to pure climate impact modelling, as performed here, we believe more
efforts are needed to better understand and quantify the sensitivity of the river
systems to climate changes, as well as other changes (e.g., land-use and population).
This work should preferably include multiple scenarios of all considered changes
used in combination with multiple hydrological models. Work in this direction is
ongoing and will be reported elsewhere.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4441/
8/5/177/s1. Figure S1: Relative change in soil moisture deficit (SMD) for each climate
projection (columns 1–3) and period (top and bottom row for mid- and end-century
respectively), Figure S2: Relative change in snow depth (SD) for each climate projection
(columns 1–3) and period (top and bottom row for mid- and end-century, respectively).
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44. Hazeleger, W.; Wang, X.; Severijns, C.; Ştefănescu, S.; Bintanja, R.; Sterl, A.; Wyser, K.;
Semmler, T.; Yang, S.; van den Hurk, B.; van Noije, T.; van der Linden, E.; van der Wiel, K.
EC-Earth V2.2: Description and validation of a new seamless earth system prediction
model. Clim. Dyn. 2012, 39, 2611–2629.

45. Samuelsson, P.; Collin, G.J.; Willén, U.; Ullerstig, A.; Gollvik, S.; Hansson, U.; Jansson, C.;
Kjellström, E.; Nikulin, G.; Wyser, K. The Rossby Centre Regional Climate model RCA3:
Model description and performance. Tellus 2011, 63A, 4–23.

46. Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; van Vuuren, D.;
Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T.; et al. The next generation of scenarios for
climate change research and assessment. Nature 2010, 463, 747–756.

47. Ghimire, S.; Choudhary, A.; Dimri, A.P. Assessment of the performance of
CORDEX-South Asia experiments for monsoonal precipitation over the Himalayan
region during present climate: Part I. Clim. Dyn. 2015.

48. Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration, Guidelines for
Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; Food and
Agriculture Organization of the United Nations (FAO): Rome, Italy, 1998.

49. Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models. J. Hydrol.
1970, 10, 282–290.

50. Rana, A.; Foster, K.; Bosshard, T.; Olsson, J.; Bengtsson, L. Impact of climate change
on rainfall over Mumbai using Distribution-based Scaling of Global Climate Model
projections. J. Hydrol. Reg. Stud. 2014, 1, 107–128.

51. Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared
error and NSE performance criteria: Implications for improving hydrological modelling.
J. Hydrol. 2009, 377, 80–91.

52. Themeßl, M.J.; Gobiet, A.; Heinrich, G. Empirical-statistical downscaling and error
correction of regional climate models and its impact on the climate change signal.
Clim. Change 2012, 112, 449–468.

53. Kotlarski, S.; Bosshard, T.; Lüthi, D.; Pall, P.; Schär, C. Elevation gradients of European
climate change in the regional climate model COSMO-CLM. Clim. Change 2012, 112,
189–215.

54. Cherchi, A.; Alessandri, A.; Masina, S.; Navarra, A. Effects of increased CO2 levels on
monsoons. Clim. Dyn. 2010, 37, 83–101.

161



55. Kripalani, R.H.; Oh, J.H.; Kulkarni, A.; Sabade, S.S.; Chaudhari, H.S. South Asian summer
monsoon precipitation variability: Coupled climate model simulations and projections
under IPCC AR4. Theor. Appl. Climatol. 2007, 90, 133–159.

56. Goswami, B.N.; Venugopal, V.; Sengupta, D.; Madhusoodanan, M.S.; Xavier, P.K.
Increasing trend of extreme rain events over India in a warming environment. Science
2006, 314, 1442–1445.

57. Kumar, K.K.; Patwardhan, S.K.; Kulkarni, A.; Kamala, K.; Rao, K.K.; Jones, R. Future
projection of Indian summer monsoon variability under climate change scenario:
An assessment from CMIP5 climate models. Curr. Sci. 2011, 101, 312–326.

58. Sharmila, S.; Joseph, S.; Sahai, A.K.; Abhilash, S.; Chattopadhyay, R. Future projection of
Indian summer monsoon variability under climate change scenario: An assessment from
CMIP5 climate models. Glob. Planet. Chang. 2014, 124, 62–78.

59. Salvi, K.; Kannan, S.; Ghosh, S. High-resolution multisite daily rainfall projections in
India with statistical downscaling for climate change impacts assessment. J. Geophys.
Res. Atmos. 2013, 118, 3557–3578.

60. Ojha, R.; Kumar, D.N.; Sharma, A.; Mehrotra, R. Assessing severe drought and wet events
over India in a future climate using a nested bias-correction approach. J. Hydrol. Eng.
2013, 18, 760–772.

61. Amarasinghe, U.A.; Sharma, B.R.; Aloysius, N.; Scott, C.; Smakhtin, V.; de Fraiture, C.
Spatial Variation in Water Supply and Demand across River Basins of India; Research Report
83; International Water Management Institute: Colombo, Sri Lanka, 2004.

62. Jhajharia, D.; Shrivastava, S.K.; Sarkar, D.; Sarkar, S. Temporal characteristics of pan
evaporation trends under the humid conditions of northeast India. Agric. For. Meteorol.
2009, 149, 763–770.

63. Jhajharia, D.; Dinpashoh, Y.; Kahya, E.; Choudhary, R.R.; Singh, V.P. Trends in
temperature over Godavari River basin in Southern Peninsular India. Int. J. Climatol.
2014, 34, 1369–1384.

64. McVicar, T.R.; Roderick, M.L.; Donohue, R.J.; Li, L.T.; van Niel, T.G.; Thomas, A.;
Grieser, J.; Jhajharia, D.; Himri, Y.; Mahowald, N.M.; et al. Global review and synthesis of
trends in observed terrestrial near-surface wind speeds: Implications for evaporation.
J. Hydrol. 2012, 416–417, 182–205.

65. Schewe, J.; Heinke, J.; Gerten, D.; Haddeland, I.; Arnell, N.W.; Clark, D.B.; Dankers, R.;
Eisner, S.; Fekete, B.M.; Colón-González, F.J.; et al. Multimodel assessment of water
scarcity under climate change. PNAS 2014, 111, 3245–3250.

66. Immerzeel, W.W.; Droogers, P.; de Jong, S.M.; Bierkens, M.F.P. Large-scale monitoring
of snow cover and runoff simulation in Himalayan river basins using remote sensing.
Remote Sens. Environ. 2009, 113, 40–49.

67. Masood, M.; Yeh, P.J.-F.; Hanasaki, N.; Takeuchi, K. Model study of the impacts of
future climate change on the hydrology of Ganges–Brahmaputra–Meghna (GBM) basin.
Hydrol. Earth Syst. Sci. Discuss. 2014, 11, 5747–5791.

68. Mukhopadhyay, B. Signature and hydrologic consequences of climate change within the
upper-middle Brahmaputra Basin. Hydrol. Process. 2013, 27, 2126–2143.

162



69. Meenu, R.; Rehana, S.; Mujumdar, P. Assessment of hydrologic impacts of climate change
in Tunga–Bhadra river basin, India with HEC-HMS and SDSM. Hydrol. Process. 2013, 27,
1572–1589.

70. Kauffeldt, A.; Halldin, S.; Rodhe, A.; Xu, C.-Y.; Westerberg, I.K. Disinformative data in
large-scale hydrological modelling. Hydrol. Earth Syst. Sci. 2013, 17, 2845–2857.

71. Hagemann, S.; Chen, C.; Haerter, J.O.; Heinke, J.; Gerten, D.; Piani, C. Impact of a
statistical bias correction on the projected hydrological changes obtained from three
GCMs and two hydrology models. J. Hydrometeorol. 2011, 12, 556–578.

72. Pechlivanidis, I.G.; Arheimer, B.; Donnelly, C.; Hundecha, Y.; Huang, S.; Aich, V.;
Samaniego, L.; Eisner, S.; Shi, P. Analysis of hydrological extremes at different
hydro-climatic regimes under present and future conditions. Clim. Chang. 2016. submitted.

73. Wagner, P.D.; Kumar, S.; Schneider, K. An assessment of land use change impacts on
the water resources of the Mula and Mutha Rivers catchment upstream of Pune, India.
Hydrol. Earth Syst. Sci. 2013, 17, 2233–2246.

163



Runoff and Sediment Yield Variations in
Response to Precipitation Changes: A Case
Study of Xichuan Watershed in the Loess
Plateau, China
Tianhong Li and Yuan Gao

Abstract: The impacts of climate change on hydrological cycles and water resource
distribution is particularly concerned with environmentally vulnerable areas, such
as the Loess Plateau, where precipitation scarcity leads to or intensifies serious
water related problems including water resource shortages, land degradation, and
serious soil erosion. Based on a geographical information system (GIS), and using
gauged hydrological data from 2001 to 2010, digital land-use and soil maps from
2005, a Soil and Water Assessment Tool (SWAT) model was applied to the Xichuan
Watershed, a typical hilly-gullied area in the Loess Plateau, China. The relative error,
coefficient of determination, and Nash-Sutcliffe coefficient were used to analyze
the accuracy of runoffs and sediment yields simulated by the model. Runoff and
sediment yield variations were analyzed under different precipitation scenarios. The
increases in runoff and sediment with increased precipitation were greater than
their decreases with reduced precipitation, and runoff was more sensitive to the
variations of precipitation than was sediment yield. The coefficients of variation
(CVs) of the runoff and sediment yield increased with increasing precipitation, and
the CV of the sediment yield was more sensitive to small rainfall. The annual runoff
and sediment yield fluctuated greatly, and their variation ranges and CVs were large
when precipitation increased by 20%. The results provide local decision makers with
scientific references for water resource utilization and soil and water conservation.

Reprinted from Water. Cite as: Li, T.; Gao, Y. Runoff and Sediment Yield Variations in
Response to Precipitation Changes: A Case Study of Xichuan Watershed in the Loess
Plateau, China. Water 2015, 7, 5638–5656.

1. Introduction

Climate change as a result of both natural factors and human activities is
altering the earth’s hydrologic cycles to various degrees [1,2]. Climate change
affects hydrology mainly through changes in precipitation, temperature, and
evaporation [3,4], and it subsequently influences the temporal-spatial distributions of
runoff and sediment, as well as the patterns of runoff and sediment transport [5]. The
impacts of climate change on water resources and the hydrologic cycles have long
been a focus of the international community [6,7]. Research on this issue began as
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early as the 1980s. In 1985, the World Meteorological Organization (WMO) published
a summary report of their study of the impacts of climate change on hydrology
and water resources and proposed several evaluation and test methods. In 1987,
the WMO proposed analyzing the sensitivity of hydrology and water resources to
climate change. This issue was also discussed in the 2007 international conference of
the International Union of Geodesy and Geophysics (IUGG). The Intergovernmental
Panel on Climate Change (IPCC) of the United Nations analyzed the impacts
of climate change on hydrology and water resources from 1990 to 2007. In its
technical report [8], the IPCC highlighted that the global and regional water resource
problems caused by climate change are crucial issues. Changes in precipitation and
temperature have significant effects on runoff and water availability, particularly in
semiarid and arid regions [9].

China has always considered the impacts of climate change on water resources
to be important and has actively carried out a series of scientific studies to support
research on the impact of the changing environment (due to global changes and
human activities) on water cycles [5,10]. For instance, the National Planning Outline
for Mid- and Long-term Scientific and Technological Development (2006–2020) issued by
the State Council of China in 2006 pointed out that research on the impacts of global
climate change in China is a focus, with special emphasis on the impacts of climate
change on hydrologic cycles and regional water resources, especially in arid regions
with fragile ecological environments [11].

Currently, studies of the impacts of climate change on runoff and sediment
mainly focus on two aspects. Some studies analyze the changes in the
temporal-spatial distributions of runoff and sediment and the patterns of runoff
and sediment transport that are caused by changes in climate factors, such as
precipitation and temperature, whereas other studies analyze the trends of the
changes in runoff and sediment under future climate change scenarios. The main
method for quantitatively evaluating and studying the impacts of climate change on
runoff and sediment is to use watershed hydrological models. The most commonly
used models are statistical regression models, water balance models, and distributed
physical models [9,12]. Of these models, the Soil and Water Assessment Tool
(SWAT) [13], which was developed by the US Department of Agriculture in the
1990s, has been widely applied to watersheds around the world [14–20]. There are
two types of predicted future climate change scenarios. First, changes in temperature,
precipitation, and evaporation are hypothesized based on the trends and ranges
of the meteorological changes in the study area, as well as specialized knowledge,
experience, and the time-series statistical analysis method, which is easy to design
and apply [21–23]; Second, different climate change scenarios can be simulated using
models, such as the General Circulation Models [19,24].
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Previous studies have shown that the precipitation in the Yellow River Basin
has decreased significantly since the 1970s [10,25] although variation trends may
differ in sub-basins. Precipitation is the main source of runoff and one of the driving
factors of soil and water losses in the Loess Plateau [26,27], where water resources
are scarce. Therefore, in the context of global climate change, studying the impacts of
changes in precipitation on the runoff and sediment production in the Yellow River
Basin is important for the sustainable utilization of water resources. Most previous
studies of the impacts of changes in precipitation on water resources in the Yellow
River Basin have focused on the entire basin [28,29] or the basin at relatively large
scales [30–32]. Relatively few studies have focused on small watersheds. In addition,
most studies have focused on the impact of precipitation on the runoff and have
rarely investigated the impact of precipitation on the sediment yield. In fact, high
sediment content is an important and unique characteristic of the rivers in the Loess
Plateau, China. Sediment transport requires a considerable amount of water [33] and
competes with other water uses. Thus, it is imperative to consider sediment when
studying the water resource problems of these rivers.

This study used the Xichuan Watershed, a typical small basin in the hilly and
gully area in the Loess Plateau, as a target area, and used ArcGIS, MATLAB, and
SPAW [34,35] to process observed meteorological and hydrological data. Then, a
localized SWAT model was constructed, calibrated, and validated. Using the SWAT
model under different precipitation scenarios, the study quantitatively predicted the
impacts of changes in precipitation on the runoff and sediment yield in this small
watershed and analyzed the characteristics of the changes in runoff and sediment
production with the aim of providing a scientific basis for the management and
sustainable utilization of water resources in basins that are similar to the study area.

2. Methodology

Based on the spatial and attribute data, including meteorological data,
hydrological data, soil map, land use map, and a digital elevation model (DEM), this
study investigated the characteristics of the changes in the precipitation, runoff, and
sediment yield in the study area. Spatial and attribute databases of the SWAT model
were developed. After determining the parameters of the SWAT model and verifying
the predicted results from the model, we quantitatively analyzed the impacts of
changes in precipitation on the runoff and sediment production in the study area
using precipitation change scenarios. Figure 1 shows the technical workflow of
the study.

This study used AVSWAT, developed by integrating the SWAT into ArcView for
the analysis. AVSWAT has powerful spatial analysis and processing functions and is
convenient to use. The SWAT model consists of three sub-models: the hydrological

166



process sub-model, the soil erosion sub-model and the pollution load sub-model.
This study mainly uses the hydrological process and the soil erosion sub-models.Water 2015, 7 5641 

 

 

 

Figure 1. Technical workflow of this study. 
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Figure 1. Technical workflow of this study.

2.1. Study Area

The Xichuan River is a tributary of the Yanhe River (a tributary of the Yellow
River) with a total length of 61.5 km. The Xichuan Watershed is located west of
the Yanhe River Basin between 108◦50′ E and 109◦20′ E and between 36◦30′ N and
36◦45′ N, covering an area of 801 km2 [36]. The mean runoff of the watershed
was 169.04 × 106 m3 from 2001 to 2010. The river originates in Caofeng Village,
Zhidan Town in Zhidan County and flows past Xihekou Village, Zhuanyaowan
Town and Gaoqiao Village in Ansai County and Zaoyuan Village in the Baota District
and eventually flows into the Yanhe River near Shifogou in the Baota District. The
Zaoyuan Hydrological Station (ZHS) is located 13 km upstream from the mouth
of the Xichuan River, and it controls 90% area (719 km2) of the whole watershed
(Figure 2).
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The Xichuan Watershed has a continental monsoon climate where winters are
cold and dry with little precipitation, whereas summers are warm with abundant
precipitation. Precipitation is unevenly distributed and mainly concentrated in the
summer and fall, accounting for 54.3% and 27.7% of the total annual precipitation.
Floods in this watershed have relatively short durations, rising and falling suddenly
with high sediment concentrations [37].

The soil types in this watershed include yellow loessial soil, red clay soil, alluvial
soil, and dark loessial soil. The yellow loessial soil, developed from the parent
loess, is the main soil type, covering more than 80% of the total basin area. The
vegetation coverage of the watershed is very low, belonging to the forest steppe zone.
Both natural and artificial vegetation types are present, mainly consisting of crops,
evergreen coniferous forests, deciduous coniferous forests, deciduous broad-leaved
forests, shrubs, and grasslands.Water 2015, 7 5642 

 

 

 

Figure 2. Location of the study area. 
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data processing, grid calculations, and interpolations were conducted using ArcGIS, and the statistical 

Figure 2. Location of the study area.

More than 80% of the basin area suffers soil erosion by water. The multi-year
mean sediment discharge is 1330.2 × 104 t/a. Since the 1970s, a series of water and
soil conservation and ecological construction projects have been implemented and
have substantially improved the ecological environment in the watershed [38].

2.2. Data and Data Preprocessing

The main data used in this study included Digital Elevation Model (DEM)
data, a land use map, a soil type map, precipitation data, temperature data, and the
boundary of the Yanhe River basin. Table 1 lists the data descriptions and sources.
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Table 1. List of data that were used in this study.

Data Type Temporal/Spatial Resolution Source

DEM data Grid format, 30 m/grid
Data Application Environment
Sharing Platform of the Chinese

Academy of Sciences

Land use map At the scale of 1:100,000,
compiled at 2005

Data Application Environment
Sharing Platform of the Chinese

Academy of Sciences

Soil type map At the scale of 1:1,000,000,
compiled at 2005

Data Application Environment
Sharing Platform of the Chinese

Academy of Sciences

Meteorological data

Daily precipitation, daily
maximum temperature and
daily minimum temperature

between 1990 and 2010

China Meteorological Data
Sharing Service Website

Runoff and sediment yield Monthly runoff and sediment
yield between 2001 and 2010

The Zaoyuan Meteorological
Station in the Yan’an City

The data required for the SWAT model included geospatial data, a non-spatial
attribute database, meteorological data, and hydrological and sediment data for
model calibration and verification. Spatial data processing, grid calculations,
and interpolations were conducted using ArcGIS, and the statistical analysis was
performed using Excel. All spatial data used in the SWAT were converted to the
Albers equal-area conic projection. The whole area was divided into 31 sub-basins
using the DEM and each sub-basin contained 5–16 hydrological response units
(HRUs), which is the basic unit in SWAT model.

2.3. SWAT Model Development

2.3.1. Model Construction

The SWAT model requires the land use classification scheme developed by the
US Geological Survey (USGS). It also requires the auxiliary land use attributes with
parameters provided by the USGS. The land use map used in this study had to be
reclassified to meet these requirements. After reclassification, the main land use types
included farmland (39.30%), typical grassland (32.60%), meadow grassland (13.09%),
deciduous coniferous forest and deciduous broad-leaved forest (8.90%), bush wood
(5.05%), evergreen forest (0.86%), barren land (0.09%), water body (0.05%), and rural
villages (0.05%) [35].

The soil data included the spatial distribution and physical and chemical
attributes of the soils. The soil map was produced based on the 2005 soil survey of
the study area. The physical attributes of the soils mainly included the thicknesses,
silt contents, clay contents, bulk densities, organic carbon contents, effective water
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contents, saturated hydraulic conductivities, and the available field capacities. These
attributes control the movement of the water and air in the soil and have an important
role in the water cycles. This study established a users’ soil parameter database based
on these characteristics.

The soils were divided into four hydrologic groups. For the same precipitation
and surface conditions, soils with similar runoff production capacities were classified
into a single hydrologic group [39].

The wet density of a soil, the available effective water in a soil layer and
the saturated hydraulic conductivity coefficient can be calculated using the SPAW
model [34,35]. The SPAW model is a daily hydrologic budget model for agricultural
fields. It also includes a routine for the daily water budgets of inundated ponds and
wetlands that utilizes the field hydrology of the watershed.

The soil erosion factor (K) is often used to evaluate soil erodibility. K is calculated
based on the organic carbon and particle compositions of the soil using the method
proposed by Williams [40].

The observed meteorological input data mainly included the precipitation, daily
maximum and minimum temperature data from 2001 to 2010. The SWAT model
includes a built-in weather generator. If some data were not available, the weather
generator simulated daily meteorological data based on multi-year monthly mean
data that were provided in advance. The “pcpSTAT” and “dew02” procedures were
used to calculate daily precipitation and temperature to obtain the related parameters
and generate the weather data that were needed for simulations.

The measured runoff and sediment data were collected at ZHS (Figure 2) from
2001 to 2010. They were used in sensitivity analysis and parameters calibration.
The measured daily precipitation data were used to simulate daily runoff using the
Soil Conservation Service (SCS) curve method [39]. The potential evaporation was
derived using the Penman-Monteith method [41]. The variable storage coefficient
method [42] was used in the river channel routing simulation.

2.3.2. Sensitivity Analysis, Validation, and Testing of the SWAT Parameters

The parameter sensitivity analysis module was used to analyze the sensitivities
of the parameters in the runoff and sediment simulations. This module uses the Latin
hypercube one-factor-at-a-time (LH-OAT) method [43]. The objective of this analysis
is to analyze and determine which input parameters have the most significant impacts
on the output when their values are changed. Important parameters are selected to
highlight their impacts on the simulation and to reduce the time that is needed for
parameter adjustment. In this study, the simulated runoff and sediment yield were
compared with actual gauged data at ZHS (Figure 2). The important factors affecting
the precision of the simulation in the watershed were determined after analyzing the
sensitivity of each parameter.
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The runoff and sediment yield parameters were calibrated in sequence. Three
indexes, including the relative error (Re) [44], the coefficient of determination (R2) [45]
and the Nash-Sutcliffe coefficient (Ens) [46] were chosen to statistically test the
accuracy of the calibrated and validated runoff and sediment yield outputs. If Re = 0,
the model prediction is the same as the observed data. If Re > 0, the model prediction
is larger than the observation. If Re < 0, the model prediction is less than the observed
value. R2 was obtained from the linear regression in Microsoft Excel. The larger the
R2 value, the better simulation of the model. If the value of Ens is greater than 0.75, the
simulation is excellent. If Ens is between 0.36 and 0.75, the simulation is satisfactory,
and if Ens is less than 0.36, the simulation is unsatisfactory.

2.4. Precipitation Scenarios

Based on land use maps in 2005 and the climate conditions from 2001 to
2010, the calibrated and verified SWAT model was used to simulate the impacts
of precipitation on the runoff and sediment yield by altering the input climate
conditions (precipitation). Spatial variability in precipitation was not considered
in the simulations because the study area is a small watershed with limited
precipitation stations.

Precipitation scenarios were determined based on the variation characteristics
of the precipitation in this area. During the study period, the annual precipitation
did not show significant increasing or decreasing trend in this area. A previous
study [47] also showed no significant increasing or decreasing trend in the Yanhe
River basin. The mean annual precipitation in the study area from 2001 to 2010 was
514 mm. Thus, we considered four precipitation change scenarios:

(1) the annual mean precipitation increases by 20%, i.e., 617 mm;
(2) the annual mean precipitation increases by 10%, i.e., 565 mm;
(3) the annual mean precipitation decreases by 10%, i.e., 462 mm; and
(4) the annual mean precipitation decreases by 20%, i.e., 411 mm.

2.5. Variance Analysis

The coefficient of variation (Cv) was used to reflect the inter-annual changes in
the precipitation and runoff. It is calculated using the following equation:

Cv =
SD
M

(1)

where SD is the standard deviation of a variable and M is the average value of
the variable. The greater the value of Cv of precipitation or runoff, the greater the
extent of the inter-annual change in the precipitation or runoff is, and the possibility
of occurrences of floods or droughts increases. The smaller the value of Cv of the
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inter-annual precipitation or runoff is, the smaller the extent of the inter-annual
change in the precipitation or runoff is, which is more beneficial to the utilization
of water resources. Cv also reflects the characteristics of the inter-annual change
in the sediment yield. The greater the value of Cv of the sediment yield indicates
that the sediment yield changed greatly, and disasters such as soil erosion are more
common. On the other hand, the smaller the value of Cv of sediment yield is, the
smaller changing extent of the sediment yield is, which is more beneficial to water
and soil conservation.

The changing rate (CR) is another parameter that expresses the changes in the
runoff and sediment yield:

CR =
Xi − X0

X0
× 100% (2)

where Xi represents the simulated annual mean runoff or sediment yield under the
ith precipitation scheme, and X0 represents the simulated annual mean runoff or
sediment yield under the actual conditions.

3. Results

3.1. Characteristics of the Variations of Runoff and Sediment Yield

The Xichuan Watershed is in a continental monsoon climate region. The runoff
mainly originates from precipitation and is thus significantly affected by precipitation.
With the data measured at the ZHS between 2001 and 2010, the changes in the runoff
and sediment yield in the watershed during this 10-year period were analyzed and
compared with precipitation changes.

Figure 3 shows the distributions of the monthly mean precipitation and runoff
between 2001 and 2010. The precipitation and runoff are both concentrated in the
flood season (from June to September). The most intense monthly precipitation
occurs in July, which accounts for 20.4% of the annual total, and the maximum
monthly runoff occurs in August, accounting for 20.1% of the total annual runoff.
The minimum monthly precipitation occurs in December (0.75% of the total annual
precipitation), and the minimum monthly runoff occurs in January (3.38% of the
total annual runoff). The seasonal precipitation and runoff distributions in the
watershed are extremely uneven. Precipitation and runoff are mainly concentrated
in the summer and fall. Summer precipitation accounts for 54.3% of the total annual
precipitation, and summer runoff accounts for 45.7% of the total annual runoff. Fall
precipitation accounts for 27.7% of the total annual precipitation, and fall runoff
accounts for 23.3% of the total annual runoff. Figure 3 also shows that, during
the spring and winter, the changes in the precipitation and runoff are gentle, and
the precipitation and runoff are relatively stable. The runoff is slightly affected
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by precipitation during this period. Generally speaking, the runoff in the Xichuan
Watershed is mainly generated by the base flows in the spring and winter and by
precipitation in the summer and spring.Water 2015, 7 5646 
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Figure 3. Comparison of the monthly measured runoff and precipitation.

Figure 4 shows the distributions of the monthly mean precipitation and sediment
yields between 2001 and 2010. The annual sediment yield is generally consistent with
the runoff pattern. The sediment yield is mainly concentrated in flood seasons. The
maximum sediment output (16,406 t/m) occurs in August. Both the maximum
runoff and the maximum sediment yield occur one month after the maximum
precipitation. In the Loess Plateau, sediment production is usually accompanied by
runoff with eroding capability. That the maximum peaks of runoff and sediment yield
occurred within the same month is understandable. Besides precipitation, runoff
and sediment generation processes are related to many other factors, including soil
properties, topography, and land cover change. These factors are heavily influenced
by human activities. In this watershed, a series of infrastructure reforms, water and
soil conservation, and ecological projects, especially the well-known Grain-to-Green
Program started in 1998 [48], were undertaken before and during the study period.
Specific practices, including changing slopes into terrace fields, afforestation in barren
land, constructing silt dams and reservoirs, returning farmland to forest or grassland
etc., could retard the processes of runoff generation and soil erosion [49].

In general, high-intensity precipitation will affect the runoff and sediment yield
in a basin only after time has passed since the precipitation. The sediment yield in the
watershed is mainly concentrated in the summer because high-intensity precipitation
frequently occurs in that season, and precipitation is the main source of the runoff,
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which is main driving force of sediment output; therefore, the runoff and sediment
exhibit significant seasonal variations [9].
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Inter-annual runoff changes are often affected by factors such as climate change,
human activities, and changes in the underlying surface conditions. Table 2 shows
the statistical characteristics of the precipitation and runoff at ZHS. The annual
mean precipitation and runoff at the ZHS from 2001 to 2010 are 513.38 mm and
169.04× 106 m3, respectively. The maximum precipitation at ZHS (634.3 mm) occurred
in 2007, and the maximum runoff (235.89 × 106 m3) occurred in 2002. The minimum
precipitation (441.6 mm) and minimum runoff (95.08 × 106 m3) at ZHS both occurred
in 2008. The Cv values of the inter-annual precipitation and runoff between 2001 and
2010 are both relatively small (0.13 and 0.29, respectively). Therefore, in this 10-year
period, the variation in precipitation in the watershed was insignificant, and the water
resources were relatively stable, favoring the use of water resources.

The sediment discharge is related to many factors, such as the topography and
landforms of the basin, vegetation cover, precipitation, and precipitation intensity.
In recent decades, the changes in the sediment yield in the Xichuan Watershed were
relatively complicated due to the impacts of climate change and human activities.
The mean sediment yield at ZHS between 2001 and 2010 is 1330.2 × 104 t (Table 2).
During 2001 to 2010, the sediment discharge changed significantly, and soil erosion
was relatively severe. The Cv value of the inter-annual sediment discharge at ZHS
between 2001 and 2010 is relatively large (0.84). The maximum sediment yield at ZHS
between 2001 and 2010 (3161.4 × 104 t) occurred in the same year as the maximum
runoff (2002), and the minimum sediment yield (122.7 × 104 t) occurred in 2006.
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Table 2. Annual characteristics of precipitation, runoff and sediment yield
during 2001–2010.

Variable Mean Value Cv
Maximum Value Minimum Value

Value Year of
Occurrence Value Year of

Occurrence

Precipitation 513.38 mm 0.13 634.30 mm 2007 441.60 mm 2008
Runoff 169.04 × 106 m3 0.29 235.89 × 106 m3 2002 95.08 × 106 m3 2008

Sediment 1,330.20 × 104 t 0.84 3,161.40 × 104 t 2002 122.70 × 104 t 2006

3.2. SWAT Calibration and Validation Results

In this study, the year of 2001 was used as the warming period, data in
2002–2006 was used for model calibration, and data in 2007–2010 was used for model
validation. The calibration procedure follows the method introduced by [36] with the
following steps:

Step 1: model initiation—run the model and read the required data
and parameters;

Step 2: runoff simulation—produce the simulated monthly runoffs and compare
them to the actual observed values;

Step 3: if runoff simulation reaches the condition of −20% < Re < 20%, R2 > 0.6,
and Ens > 0.5, then go to the next step for sediment yield simulation; otherwise, the
adjust the parameters “Base flow recession constant,” “Snow pack temperature
lag factor,” “Soil evaporation compensation factor,” “Available water capacity,”
“Threshold depth of water in the shallow aquifer required for return flow to occur,”
and “Groundwater ‘revap’ coefficient” and go back to step 2;

Step 4: sediment yield simulation—produce the simulated monthly sediment
yields and compare them to the actual observed values;

Step 5: if sediment yield simulation reaches the condition of −20% < Re < 20%,
R2 > 0.6, and Ens > 0.5, then the simulation is successfully ended; otherwise, adjust
the parameters “USLE equation support practice factor,” “Linear parameters for
calculating the channel sediment rooting,” and “Peak rate adjustment factor for
sediment routing in the main channel” and go back to step 4.

Figures 5 and 6 show comparisons between the observed and simulated monthly
runoffs and sediment yield at ZHS during the model calibration period. Figures 7
and 8 show the results during the model validation period. Table 3 compares
the parameters of the simulated monthly runoff and sediment yield in the model
calibration and validation periods.
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Table 3. Evaluation results of the SWAT model performance.

Simulation Period
Runoff Sediment Yield

Re R2 Ens Re R2 Ens

Calibration (2002–2006) 9.10% 0.79 0.73 14.20% 0.78 0.67
Verification (2007–2010) 11.20% 0.88 0.82 17.50% 0.83 0.71
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Figure 8. Comparison between the simulated and observed monthly sediment
yield in model validation.

As illustrated in Figures 5–8, the difference between simulated runoff/sediment
yield and observed values is smaller during the calibration period than during
the validation period, while the variation trend of runoff/sediment yield is more
consistent with the trend of observed data during the validation period than in the
calibration period. These differences can also be supported by the statistics in Table 3.
Table 3 also shows that in the model validation period, the values of Re between the
simulated and observed monthly runoffs and between the simulated and observed
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monthly sediment yields are 11.2% and 17.5%, respectively, and the values of R2

are 0.88 and 0.83, respectively. The Ens values of runoffs and sediment yields are
0.82 and 0.71, respectively. The SWAT simulated values generally reflect the actual
changes in the runoff and sediment yield, and the SWAT model can be used for the
subsequent scenario analysis.

3.3. Responses of Runoff and Sediment Yield to Precipitation Changes

We also simulated the runoff and sediment yields under the four precipitation
scenarios described in Section 2.4. Keeping the other inputs the same, the four
precipitation scenarios were input to the validated SWAT model, and the daily runoff
and sediment yield were simulated for the year of 2002 to 2010. Table 4 shows the
nine-year (2002–2010) mean values. Figure 9 shows the trends and changes in the
runoff and sediment yield under these precipitation scenarios.

Table 4. Responses of annual runoff and sediment yield to precipitation changes.

Simulated
Item

Compared
Value P P (1% + 20%) P (1% + 10%) P (1% − 10%) P (1% − 20%)

Runoff Simulated
value (m3) 156.14 207.20 184.81 135.28 112.58

Sediment
yield

Simulated
value (104 t) 101.09 120.49 112.87 90.93 85.04
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The results show that the runoff and sediment yield in this watershed under the
four precipitation scenarios have the following characteristics:

(1) The runoff and sediment yield increase with increasing precipitation and
decrease with decreasing precipitation, which is consistent with the actual
situation. Precipitation has a direct impact on runoff, and sediment is transported
by runoff. Therefore, the trends of the changes in the precipitation, runoff, and
sediment are similar.

(2) When precipitation increases by 10%, the runoff and sediment yield increase
by 18.36% and 11.54%, respectively. When precipitation decreases by 10%, the
runoff and sediment yield decrease by 13.36% and 10.05%, respectively. The
increases in the runoff and sediment yield are greater than the decreases in
the runoff and sediment yield. The change in the runoff with precipitation is
greater than the change in the sediment yield with precipitation. Therefore,
precipitation has a more significant impact on the runoff than the sediment
yield. The runoff generated by precipitation is only one of several factors that
affect sediment production and sediment production may also be affected by
other factors, such as vegetation cover, soil bulk density and land use changes.

(3) When precipitation increases by 20%, the runoff and sediment yield increase by
32.7% and 19.20%, respectively. Thus, water resources will become relatively
abundant when the annual precipitation intensity is relatively high, so it will be
necessary to focus on preventing floods and sediment loss. When precipitation
decreases by 20%, the runoff and sediment yield decrease by 27.9% and 15.88%,
respectively. In these cases, water resources will be relatively scarce and it is
necessary to take measures to prevent and combat droughts.

Based on the simulation results, the Cv values of the annual runoff and sediment
yield are statistically calculated for the four precipitation scenarios. Figure 10 shows
the trends and changes in the Cv values of the annual runoff and sediment yield for
the precipitation scenarios.

The Cv values of the annual runoff and sediment yield both decrease with
decreasing precipitation. The Cv values vary between 0.18 and 0.46 for the annual
runoff, and vary between 0.51 and 0.98 for the sediment yield. Therefore, the Cv
values of the annual runoff are smaller than those of the sediment yield. The
decreased Cv value of the sediment yield with decreasing precipitation is more
apparent than its increase with increasing precipitation, indicating that the Cv of the
sediment yield is more sensitive to a decrease in precipitation. When precipitation
increases by 20%, the Cv value of the annual runoff is 0.46 and that of the annual
sediment yield is 0.98, which also demonstrates that when the precipitation intensity
is relatively high, the annual runoff and sediment yield fluctuate significantly, and
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floods and soil erosion will occur frequently, which will be detrimental to the
utilization and management of the water resources in the watershed.

Water 2015, 7 5651 

 

 

precipitation has a more significant impact on the runoff than the sediment yield. The runoff 

generated by precipitation is only one of several factors that affect sediment production and 

sediment production may also be affected by other factors, such as vegetation cover, soil bulk 

density and land use changes. 

(3) When precipitation increases by 20%, the runoff and sediment yield increase by 32.7% and 

19.20%, respectively. Thus, water resources will become relatively abundant when the annual 

precipitation intensity is relatively high, so it will be necessary to focus on preventing floods and 

sediment loss. When precipitation decreases by 20%, the runoff and sediment yield decrease by 

27.9% and 15.88%, respectively. In these cases, water resources will be relatively scarce and it 

is necessary to take measures to prevent and combat droughts. 

Based on the simulation results, the Cv values of the annual runoff and sediment yield are statistically 

calculated for the four precipitation scenarios. Figure 10 shows the trends and changes in the Cv values 

of the annual runoff and sediment yield for the precipitation scenarios. 

 

Figure 10. Coefficients of variation of annual runoff and sediment yield to precipitation changes. 

The Cv values of the annual runoff and sediment yield both decrease with decreasing precipitation. 

The Cv values vary between 0.18 and 0.46 for the annual runoff, and vary between 0.51 and 0.98 for the 

sediment yield. Therefore, the Cv values of the annual runoff are smaller than those of the sediment 

yield. The decreased Cv value of the sediment yield with decreasing precipitation is more apparent than 

its increase with increasing precipitation, indicating that the Cv of the sediment yield is more sensitive 

to a decrease in precipitation. When precipitation increases by 20%, the Cv value of the annual runoff  

is 0.46 and that of the annual sediment yield is 0.98, which also demonstrates that when the precipitation 
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Figure 10. Coefficients of variation of annual runoff and sediment yield to
precipitation changes.

4. Discussion

By studying the impacts of different precipitation scenarios on runoff and
sediment yield in the Xichuan Watershed, we found that the runoff and sediment
yield in the basin increase with increasing precipitation and decrease with decreasing
precipitation and that the increase is more significant than the decrease. Precipitation
has a more significant impact on runoff than on sediment yield. However, researchers
have not yet reached a consensus about whether runoff and sediment production is
more sensitive to a decrease or an increase in precipitation, as well as whether runoff
or sediment production is more sensitive to changes in precipitation.

In a study of the response of runoff production in the Fox Basin in Illinois (US)
to changes in precipitation, Elias [19] found that runoff production is more sensitive
to increases in precipitation. In an investigation of the impact of climate change on
runoff and sediment production in the purple, hilly area of Sichuan Province, China,
Zeng et al. [50] found that the annual mean runoff and sediment yield increased
with increasing precipitation. For the same change in precipitation, the percentage
change in the sediment yield was almost twice the percentage change in the runoff.
The runoff and sediment yield were more sensitive to decreases in precipitation
than to increases, and the changes in the runoff and sediment yield with decreasing
precipitation were more significant. The surface conditions of an area can thus
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affect the impact of precipitation on the runoff and sediment production in the area.
In addition, another important parameter of climate change, namely temperature,
will affect runoff variations. In the parameter sensitive analysis, the snow pack
temperature factor is the second most sensitive parameter in the SMAT model [36],
which means that melting snow is an important source of precipitation in the study
area. Xia et al. [51] also discovered that when the temperature varied between 0 ◦C
and 1 ◦C, the monthly runoff in the Hanjiang River Basin increased with increasing
precipitation more than it decreased with decreasing precipitation. However, with
increasing temperature, the extent to which the monthly mean runoff increased
with increasing precipitation gradually decreased, whereas the extent to which it
decreased with decreasing precipitation gradually increased. This might be attributed
to the fact that an increase in temperature had a greater impact than precipitation on
evapotranspiration in the basin.

This study uses the SWAT model to simulate changes in the runoff and
sediment yield under several precipitation scenarios and preliminarily reveals the
characteristics of the changes in the runoff and sediment yield in a small basin typical
of the hill and gully area of the Loess Plateau. However, several problems in this
study merit further research and investigation. (1) Several climate factors have
impacts on runoff and sediment production. However, this study only considers the
impact of precipitation and does not consider the impact of changes in temperature
on the runoff and sediment production. Evapotranspiration is an important factor
that affects surface runoff. Due to the lack of evapotranspiration data for the basin, it
is not possible to calibrate and verify the evapotranspiration in the basin. Therefore,
this study does not investigate the changes in evapotranspiration in the basin that
are caused by changes in precipitation. Additional studies should be conducted to
investigate the impact of other factors (e.g., temperature, evapotranspiration) on
the runoff and sediment production; (2) This study did not consider the spatial
distribution of precipitation that will bring uncertainty to the results of model
simulation. Because the study area only covers 719 km2, the assumption of a uniform
precipitation is acceptable. When the method is extended to large river basins,
the spatial distribution of precipitation should be considered. Since the HRU is
the basic spatial unit in the simulation, the spatial distribution of precipitation can
be considered by inputting different precipitation data for different HRUs if more
precipitation stations are available. (3) Due to the data availability, the precipitation
scenarios were set using the empirical method, a method used by other researchers
in this situation [21,23]. In future studies, efforts should be made to collect basic
data and use climate output models to predict precipitation to conduct in-depth
investigations on the trends of future climate change.
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5. Conclusions

A SWAT model was parameterized in the Xichuan Watershed, a typical hilly and
gully loess area in the Loess Plateau, China. The variations of runoff and sediment
yield were simulated using the calibrated SWAT model and scenario analyses. Based
on the simulation, we found that the increases of runoff and sediment yield with
increasing precipitation are more apparent than their decreases with decreasing
precipitation. Precipitation has a more significant impact on runoff than on sediment
yield. The Cv values of the annual runoff and sediment yield both increase with
increasing precipitation. However, the Cv value of the annual runoff is relatively
smaller than the Cv value of the sediment yield when precipitation increases, and
the Cv value of sediment yield is more sensitive to a decrease in precipitation than is
that of runoff. The different characteristics of variations in runoff and sediment yield
suggests proper strategies in the utilization and management of the water resources
in this watershed.
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Assessment on Hydrologic Response by
Climate Change in the Chao Phraya River
Basin, Thailand
Mayzonee Ligaray, Hanna Kim, Suthipong Sthiannopkao, Seungwon Lee,
Kyung Hwa Cho and Joon Ha Kim

Abstract: The Chao Phraya River in Thailand has been greatly affected by climate
change and the occurrence of extreme flood events, hindering its economic
development. This study assessed the hydrological responses of the Chao Phraya
River basin under several climate sensitivity and greenhouse gas emission scenarios.
The Soil and Water Assessment Tool (SWAT) model was applied to simulate the
streamflow using meteorological and observed data over a nine-year period from
2003 to 2011. The SWAT model produced an acceptable performance for calibration
and validation, yielding Nash-Sutcliffe efficiency (NSE) values greater than 0.5.
Precipitation scenarios yielded streamflow variations that corresponded to the
change of rainfall intensity and amount of rainfall, while scenarios with increased air
temperatures predicted future water shortages. High CO2 concentration scenarios
incorporated plant responses that led to a dramatic increase in streamflow. The
greenhouse gas emission scenarios increased the streamflow variations to 6.8%,
41.9%, and 38.4% from the reference period (2003–2011). This study also provided
a framework upon which the peak flow can be managed to control the nonpoint
sources during wet season. We hope that the future climate scenarios presented in
this study could provide predictive information for the river basin.

Reprinted from Water. Cite as: Ligaray, M.; Kim, H.; Sthiannopkao, S.; Lee, S.;
Cho, K.H.; Kim, J.H. Assessment on Hydrologic Response by Climate Change in the
Chao Phraya River Basin, Thailand. Water 2015, 7, 6892–6909.

1. Introduction

Current environmental changes due to either natural or anthropogenic influences
are creating a significant impact on natural resources and the living conditions
of humans [1]. In particular, as a critical natural resource, water bodies have
been subjected to pollution and are reaching scarcity levels around the globe [2,3].
Climate change is a key factor that has greatly affected water resources, due to its
uncertainty and variability [4–6]; the intensities and frequencies of rainfall have
been fluctuating over the years, thereby changing the spatiotemporal distributions
of water resources [7]. Furthermore, it is apparent that climate change influences a
change in water quality by modifying the surface and groundwater components [8,9].
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Floods and droughts brought about by climate change may also lead to a change in
water quality by increasing the effects of erosion or dilution [8,10,11].

There are several signs that the varying rainfall intensity has caused a change in
climate change factors. These change factors include the increasing global surface
temperature and significant local impacts such as high-magnitude floods, prolonged
droughts, flow variability, temperature rise, and decreased rainfall [12–14]. As such,
there is a need to change the perception of climate change and its uncertainty and
vulnerability since its weaknesses should be prioritized. Though a certain level
of uncertainty has always existed in water resource management and planning,
alternative approaches to manage water resources have been proposed, such as
creating climate change scenarios with respect to speed and intensity of changes
in baseline conditions [15,16]. In addition, though it is difficult to mitigate the
effect of climate on water quantity since policy makers should obtain scientific
and predictive information, for effective water resources management, the accurate
prediction of water quantity and quality is a necessary response to the climate change
scenario [17–19].

The Chao Phraya River, a major river basin in the Mekong subregion and the
largest watershed in Thailand, serves mostly as a source for irrigation water and a
transportation route in Central Thailand [20]. Over the years, climate change has
greatly affected the river, which may subsequently hinder the economic development
and the eradication of poverty in adjacent countries [21]. The Chao Phraya River
basin has experienced extreme floods, which has brought about the subsequent
contamination water used for human consumption [22], health problems [23,24], and
economic loss on Thai Rice exports [25]. For example, the flood event that occurred
in 2011 caused 813 fatalities nationwide and $45.7 billion in economic damages
and losses [26,27]. This event prompted several researchers to conduct further case
studies in different fields, including disaster management [28] and medicine [29,30].

Water management of irrigation water is very important for the Chao Phraya
River basin because it is one of the world’s major agricultural producers, having a
cultivated area of approximately 51% (cropland) [31–33]. However, climate change
has also played a significant role in the rate of landuse changes in the basin [34].
Farmers respond to weather conditions by changing crops seasonally, the timing of
planting and harvesting, and other daily activities [35]. In cases such as this, there
remains a need to understand the characteristics of the basin and its hydrological
response to climate change.

To address the issues presented by extreme flood events and climate change,
this study investigates the impact of climate change scenarios on the basin. The
aims of this investigation are thus to: (1) calibrate and validate the water quantity
in the Chao Phraya River basin using the Soil and Water Assessment Tool (SWAT)
model; and (2) assess hydrological responses under hypothetical climate sensitivity
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scenarios and greenhouse gas emission scenarios. The results of this research will
both help improve the foundation of water resource management based on these
climate change scenarios and also provide an evaluation of highly variable climate
changes on the basin.

2. Methodology

2.1. Site Description

The Chao Phraya River is an important water resource that supplies water to
irrigated, urban, and domestic areas of the central part of Thailand [36]. Figure 1
presents the land use classes used in the SWAT model. It also includes the weather
and outlet stations of the Chao Phraya River basin. The basin has 51.66% agriculture
area, which depends on the main river and its tributaries to cultivate crops, such as
rice, sugarcane, and corn. The river has four main tributaries: the Wang, Yom, Ping,
and Nan Rivers and a significant lateral tributary, the Pasak River. The river drains an
area of approximately 160,000 km2 (98◦ E–103◦ E, 13◦ N–20◦ N), covering 30% of the
country, and receives annual precipitation of about 1,179 mm/year and an average
discharge of 196 m3/s at Chai Nat Station [37]. The basin is in a tropical climate, and
is influenced by northeast and southwest monsoons. The northeast monsoon brings
in cool and dry air from November to February, whereas the southwest monsoon
brings very humid air, thus causing heavy rains from May to October [38].

2.2. SWAT Model

The Soil and Water Assessment Tool (SWAT) is watershed model that can
be applied to simple and complex watersheds. It is a continuous-time model
that operates on a daily time step and was developed for the USDA Agricultural
Research Service (ARS) to predict the impact of management on water, sediment,
and agricultural chemical yields in large complex watersheds [39]. The model is
physically-based, uses readily available inputs, is computationally efficient, and is
able to continuously simulate long-term impacts. Major model components include
hydrology, weather, soil, temperature, plant growth, nutrients, pesticides, and land
management. The SWAT model divides the watershed into multiple subwatersheds,
which are then further subdivided into hydrologic response units (HRUs) that
consist of homogenous land use, management, and soil characteristics. Models
calibrated using watershed and water quality data have been used to forecast water
quantity/quality in response to climate change scenarios; the SWAT model has been
widely used to predict water quantity and quality in response to various management
and climate scenarios [40–51].
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Figure 1. Chao Phraya River basin is shown in the map. It includes the locations
of the twelve weather stations (yellow squares) of the basin as well as the outlet
stations (red circles) of the river, which also served as monitoring stations. Chai
Nat Station has been chosen for the SWAT model simulation of the streamflow.

2.3. Model Application

To construct the Chao Phraya River basin model, a model database was compiled
using topographical data, consisting of a digital elevation map, landuse, soil and
river basin, meteorological data (e.g., precipitation, and maximum and minimum
temperature), and observed monitoring data (e.g., flow discharge). The topographical
data included a digital elevation model (DEM) in GeoTiff grid tiles (5◦ × 5◦ tiles)
created from a water database [52]; the data was derived from USGS/NASA Shuttle
Radar Topography Mission (SRTM) data with a 90 m resolution. The land use data
has a spatial resolution of 1 km that included 14 classes of landuse representations
from the USGS Global Land Cover Characterization (GLCC) database [53]. There
were also 14 soil types in the soil grid provided by the Food and Agriculture
Organization of the United Nations [54]. We also obtained nine-year meteorological
data (2003–2011) from the Thai Meteorological Department, which included daily
precipitation and maximum/minimum temperatures from 12 stations within the
Chao Phraya River basin.
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The SWAT model was able to delineate an area of 119,663 km2 of the Chao
Phraya River basin. Figure 1 illustrates the Chao Phraya River basin built by SWAT.
Landuse classes of the basin are listed in Table 1, showing that the basin is mainly
comprised of agriculture area and broadleaf forest. The table also indicates that
half of the area used for agriculture was irrigated cropland and pasture (CRIR).
Streamflow was monitored at the Chai Nat Station located in Chai Nat province. The
observed flow data of the said station was stable and were acquired from the Royal
Irrigation Department Computer Center in Sanphaya, Chai Nat.

Table 1. Area and percentage of land cover in the Chao Phraya River basin.

Landuse Definition Area (ha) Percentage (%)

CRIR Irrigated cropland and pasture 6,181,831 51.66
FODB Deciduous broadleaf forest 1,947,509 16.27
FOEB Evergreen broadleaf forest 1,503,653 12.57
SAVA Savanna 1,038,567 8.68
FOMI Mixed forest 495,301 4.14

CRWO Cropland/woodland mosaic 294,706 2.46
SHRB Shrubland 270,081 2.26
WATB Water bodies 113,731 0.95
CRDY Dryland cropland and pasture 79,365 0.66

URMD Urban residential medium
density 37,820 0.32

GRAS Grassland 3060 0.03
CRGR Cropland/grassland mosaic 381 0
BSVG Barren or sparsely vegetated 249 0

Watershed 11,966,254 100

2.4. Sensitivity Analysis

The Latin Hypercube—One-factor-At-a-Time (LH-OAT) method is a sensitivity
analysis technique that combined the robustness of the Latin Hypercube (LH)
sampling method and a one-factor-at-a-time (OAT) design [55]. It searches for
good performance using a limited parameter number of important factors for model
calibration and model output for a particular basin. LH is a stratified sampling
method developed by McKay et al. [56] and is based on the Monte Carlo simulation;
the OAT design was developed by Morris [57] and is used to observe the changes
in the output by changing a particular input. LH-OAT method firstly divides the
range of the parameters into segments then takes LH samples from each parameter
to create parameter sets. The OAT design can then achieve global sensitivity by
changing an entire parameter range using the LH samples [58]. Table 2 shows the
15 SWAT model parameters that were subjected to sensitivity analysis.
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Table 2. Soil and water assessment tool (SWAT) model parameters used for the
sensitivity analysis.

Name Definition Range Process

Cn2 Soil Conversion Service (SCS) runoff
curve number for moisture condition 2 35–98 Runoff

Alpha_Bf Baseflow alpha factor (days) 0.00–1.00 Groundwater

Rchrg_Dp Deep aquifer percolation fraction 0.00–1.00 Groundwater

Esco Soil evaporation compensation factor 0.00–1.00 Evaporation

Revapmn
Threshold depth of water in the

shallow aquifer for percolation to the
deep aquifer (mmH2O)

0–500 Groundwater

Ch_K2 Effective hydraulic conductivity in
main channel alluvium (mm/h) −0.01–150 Channel

Gwqmn
Threshold depth of water in the

shallow aquifer required for return
flow to occur (mm)

0–5000 Soil

Sol_Awc Available water capacity of the soil
layer (mm/mm soil) 0–100 Soil

Sol_Z Maximum canopy index Soil depth 0–3000 Soil

Gw_Revap Groundwater “revap” coefficient 0.02–0.2 Groundwater

Surlag Surface runoff lag coefficient 0.00–10.00 Runoff

Blai Leaf area index for crop 0.00–1.00 Crop

Slope Average slope steepness (m/m) 0.0001–0.6 Geomorphology

Canmx Maximum canopy index 0.00–10.00 Runoff

Epco
Threshold depth of water in the

shallow aquifer to percolation to the
deep aquifer (mmH2O)

0.00–1.00 Evaporation

2.5. Performance Assessment

We applied a coefficient of determination (R2), Nash-Sutcliffe efficiency (NSE),
and root mean square error (RMSE) to evaluate the model performance. R2 evaluated
how accurate the simulated values were compared to the observed values and is
defined as the squared value of Bravais-Pearson’s coefficient of correlation (r) [59,60].
It depicts the strength between the simulated and observed data and the direction
of the linear relation. R2 is expressed as the squared ratio between the covariance
and the multiplied standard deviation of the observation and simulated values [61].
NSE measures the goodness of fit and describes the variance between the simulated
and observed values [62]. NSE values can differ from negative values up to less than
one [63]. Generally, the calibration and validation values of the SWAT model are
considered to be acceptable or satisfactory performances when NSE is within the
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range of 0.5 and 0.65, 0.65–0.75 is considered satisfactory, while 0.75–1.00 indicate a
very good performance [64–66]. Table 3 presents the performance ratings for NSE,
as suggested by Moriasi et al. (2007). Lastly, RMSE was used to assess the validity
of the model in this study. It measures the square root of the distance between the
observed and predicted values and gives an estimate of the variability of the model
compared to the observations [49]. The desired value for RMSE is 0, which depicts a
perfect simulation, with lower values representing better performance [67].

Table 3. General performance rating for the recommended statistics for monthly
time step [68].

Performance Rating NSE

Very good 0.75 < NSE ≤ 1.00
Good 0.65 < NSE ≤ 0.75

Satisfactory 0.50 < NSE ≤ 0.65
Unsatisfactory NSE ≤ 0.50

2.6. Climate Change Scenarios

We applied a Special Report on Emission Scenario (SRES) to assess the
hydrological response using a future climate change scenario. We applied the
Commonwealth Scientific and Industrial Research Organisation (CSIRO) Mark 3.5
(Mk3.5) (CSIRO Atmospheric Research, Melbourne, Victoria, Australia)from the
CSIRO Marine and Atmospheric Research in Australia as the future climate change
model since it provides daily meteorological data for a long period for each climate
change scenario. The future climate scenarios from the Intergovernmental Panel on
Climate Change (IPCC) (A2, A1B, and B1) were chosen as its outputs (greenhouse
gas emission scenarios) [69,70]. Mk3.5 is based on CSIRO Mark 3.0 (Mk3.0), a
prior model version that has a fully coupled ocean-atmosphere system [71]. It is
a spectral model that was developed to use the horizontal spectral resolution T63
[1.875◦ EW × 1.875◦ NS] with 18 vertical levels, and to remove the cold bias of Mk3.0
due to the rising of global air temperature [72].

Four different qualitative storylines were developed by IPCC that represented
the different demographic, social, economic, technological, and environmental
developments of the communities [73,74]. SRES scenarios A1B, A2, and B1 were
chosen for this study [75,76]. A1B is under the A1 storyline and scenario family, which
emphasizes globalization. A1B is described as a balance across all energy sources
that do not rely heavily on a specific source [40]. The A2 scenario describes a very
heterogeneous world with slower economic growth and technological advancement
compared to the other storylines. Lastly, the B1 scenario stresses on rapid economic
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change towards service and information, social and environmental sustainability,
improved equity, and global solutions without additional climate initiatives [77].

The potential future climate included a set of gridded map layers for the daily
precipitation and air temperature for 2051–2059, based on the output from a set of
SRES. GCM produced the climate data applied in this study; however, the coarse
resolution of GCM will reduce the accuracy of the results. An interpolation method
was implemented to convert the GCMs of the 12 meteorological stations to finer
regional resolutions. The converted climate data was then downscaled and used as
weather inputs for the SWAT model.

The change factor method, a downscaling technique, was used to adjust the
observed daily temperature and daily precipitation using Equations (1) and (2),
respectively. The daily temperature at the 2059 horizon was obtained by adding the
difference of mean daily temperature in 2059 horizon predicted by the climate model
and mean temperature of the reference period (2003–2011) to the observed daily
temperature, obtained using Equation (1) [78]. The daily precipitation was calculated
by multiplying the observed daily precipitation with the ratio of the mean projected
daily precipitation at the 2059 horizon, and the mean precipitation of the reference
period, as described in Equation (2) [79].

Tadj,2059,d = Tobs,d +
(

T CM,2059,m − T CM,re f ,m

)
(1)

Padj,2059,d = Pobs,d ×
(

P CM,2059,m ÷ P CM,re f ,m

)
(2)

where Tobs,d and Pobs,d are the observed daily temperature and precipitation,
TCM,2059,m and PCM,2059,m are the projected daily temperature and precipitation at
the 2059 horizon obtained by the climate model, TCM,ref,m and PCM,ref,m are the
temperature and precipitation during the reference period (2003–2011), and Tadj,2059,d
and Padj,2059,d are the daily temperature and precipitation at the 2059 horizon. The
averages of the temperature and precipitation from the 12 meteorological stations
were the data used for the TCM,ref,m and PCM,ref,m, respectively. The strength of the
change factor (CF) method is similar to the results of factors derived from GCM or
Regional Climate Model (RCM).

Table 4 shows the conditions of the hypothetical climate sensitivity scenarios.
There were zero changes in precipitation and temperature at the reference point, with
CO2 concentrations at 330 ppm. Scenarios 1 to 3 have twice the CO2 concentration
(660 ppm) and high variation in the precipitation and air temperature. Scenarios 4 to
7 show variations in the precipitation, while maintaining constant CO2 concentrations
and air temperatures. Scenarios 8 to 10 have variations air temperature, while CO2

concentrations and precipitations remain constant. The change factors of the SRES
scenarios, A1B, A2, and B1, were also included in the table.
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Table 4. Conditions of climate sensitivity scenarios and intergovernmental panel on
climate change (IPCC) special report on emissions scenarios relative to the baseline.
Scenarios 1–3 are referred to as the CO2 scenarios, 4–7 as precipitation change
scenarios, and 8–10 as temperature increase scenarios.

Scenario CO2 Concentration (ppm) Precipitation Change (%) Temperature (◦C)

Baseline 330 0 0

1 CO2 × 2 = 660 0 0
2 CO2 × 2 = 660 +20 0
3 CO2 × 2 = 660 0 +6
4 330 +10 0
5 330 +20 0
6 330 −10 0
7 330 −20 0
8 330 0 +1
9 330 0 +3
10 330 0 +6

A1B 330 +1.0644
Max +2.0621
Min +2.4954

A2 330 +1.0338
Max +1.8729
Min +2.2905

B1 330 +1.0054
Max +0.7926
Min +0.6106

3. Results and Discussion

3.1. Model Evaluation

Thirty-five hydrological model parameters of the SWAT model underwent
sensitivity and uncertainty analyses (e.g., Parameter solution (Para Sol) and
Sequential Uncertainty Fitting (SUFI-2) in SWAT-CUP) to determine the optimal
model parameters [80]. The top 11 parameters having sensitivity indices greater
than or equal to 0.05 were then selected, as shown in Table 5 [81]. The result of
the sensitivity analysis shows that the initial SCS runoff curve number for moisture
condition II (CN2) and baseflow alpha factor-baseflow recession (Alpha_Bf) were
the most sensitive parameters. They are followed by the deep aquifer percolation
fraction (Rchrg_Dp), soil evaporation compensation factor (Esco), threshold depth of
water in the shallow aquifer for percolation to the deep aquifer (Revapmn), effective
hydraulic conductivity in main channel alluvium (Ch_K2), available water capacity
of the soil layer (Sol_AWC), threshold depth of water in the shallow aquifer required
for return flow to occur (Gwqmn), depth from soil surface to bottom of layer (Zol_Z),
groundwater “revap”coefficient (Gw_Revap), and surface runoff lag coefficient
(Surlag). Most parameters are related to either groundwater or soil process. The
sensitive flow discharge parameters were then used to calibrate the model.
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One of the limitations of this research was having a large watershed model with
only 12 meteorological stations and one gauge station to calibrate the streamflow.
The available data allowed nine years for the simulation period of the SWAT
model. The comparison of daily observed and simulated streamflow during the
nine-year (2003–2011) simulation period included a one-year spin up time (2003),
a five-year (2004–2008) calibration period, and a three-year (2009–2011) validation
period. Results from the statistical evaluation with the two numeric criteria including
NSE, R2, and RMSE, are listed in Table 6. Figure 2 shows how well-matched the
daily streamflow simulations with the observations were. The NSE values of the
daily streamflow simulations for the calibration and validation were 0.74 and 0.81,
respectively. On the other hand, the NSE values of the monthly time step were 0.54
and 0.66 for the five-year calibration and three-year validations, respectively. The
model evaluation statistics for the streamflow prediction show that there was a fair
agreement between the measured and simulated flows, which were confirmed by
the R2 and NSE being greater than 0.5 [62].

Table 5. Top 11 parameters yielded by the sensitivity analysis.

Rank Name Definition Sensitivity Process

1 Cn2 SCS runoff curve number
for moisture condition 2 1.49 Runoff

2 Alpha_Bf Baseflow alpha factor (days) 1.42 Groundwater

3 Rchrg_Dp Deep aquifer percolation fraction 0.66 Groundwater

4 Esco Soil evaporation
compensation factor 0.48 Evaporation

5 Revapmn
Threshold depth of water in the

shallow aquifer for percolation to
the deep aquifer (mm H2O)

0.22 Groundwater

6 Ch_K2
Effective hydraulic conductivity

in main channel
alluvium (mm/h)

0.20 Channel

7 Gwqmn
Threshold depth of water in the

shallow aquifer required for
return flow to occur (mm)

0.18 Soil

8 Sol_Awc Available water capacity of the
soil layer (mm/mm soil) 0.14 Soil

9 Sol_Z Maximum canopy
index Soil depth 0.078 Soil

10 Gw_Revap Groundwater “revap” coefficient 0.06 Groundwater

11 Surlag Surface runoff lag coefficient 0.05 Runoff
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Table 6. Prediction accuracy for the monthly streamflow in terms of R2, Nash-Sutcliffe
efficiency (NSE) and root mean square error (RMSE).

Statistical Index Calibration Validation

R2 0.81 0.89
NSE 0.54 0.66

RMSE (m3/s) 2.5466 × 103 3.0224 × 103
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Figure 2. Observed and simulated streamflow and the corresponding daily rainfall during a 
nine-year period (2003–2011). Figure includes a one-year spin-up period (2003), five-year calibration 
period (2004–2008), and three-year validation period (2009–2011). 

  

Figure 2. Observed and simulated streamflow and the corresponding daily
rainfall during a nine-year period (2003–2011). Figure includes a one-year spin-up
period (2003), five-year calibration period (2004–2008), and three-year validation
period (2009–2011).

3.2. Climate Sensitivity Scenario

3.2.1. CO2 Concentration

Scenarios 1 to 3 have atmospheric CO2 concentrations of 660 ppm and a
change in precipitation and air temperature (Table 7). These three scenarios were
related to the stomatal conductance variable, which depends on the atmospheric
CO2 concentration [82]. For climate change simulations in the SWAT model, the
reduction in stomatal conductance and increase in leaf area index were attributed to
an increase in the CO2 concentration [83]. According to the increasing atmospheric
CO2 concentration, variation in the streamflow was seen to be affected by the
change in evapotranspiration, whereas the hydrological response depends on
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crop variables [84]. When the stomatal conductance of the vegetation decreases,
the evapotranspiration also decreases, thus disturbing the water efficiency of the
crops [84,85]. Table 7 shows the predicted relative change (percentage of baseline)
in annual average streamflow with respect to the climate change scenario. In the
calibration of the Chao Phraya subbasin, the annual average streamflow changed
by 16.4% in calibration, another changed by 18.4%, with a maximum of 52.3% and a
minimum of 1.6% in the whole basin. Scenario 2 reflects an increase of almost 48% in
the annual average streamflow change of the subbasin; another subbasin increased
by 52.6%, while the maximum was 128.9% and the minimum was 15.1% in the
whole basin. Scenario 3, on the other hand, showed an annual average streamflow
change of −5.3% at Chai Nat Station, whereas another site changed by −6.2%, with
a maximum of 1.2%, and a minimum of −14.3% in the whole basin.

Table 7. Predicted relative percentage change of annual average streamflow from
the baseline under different climate sensitivity scenarios and special report on
emission scenario (SRES) (B1, A1B, and A2). It also includes the streamflow change
at the Chai Nat Station.

Terms
Ref Climate Sensitivity Scenario SRES

Stream-Flow
CO2 (%) Precipitation (%) Air Temperature (%) GCM (%)

1 2 3 4 5 6 7 8 9 10 B1 A1B A2

Chai Nat Station 562.8 16.4 48 −5.3 15.6 30 −15.8 −32.8 −3.1 −9.3 −19.2 24.7 41.9 49.8

Max % change
of the basin 671.8 52.3 128.9 1.2 35.9 70 −7 −14.5 8.2 8.2 −1.3 107.8 136.5 146.4

Min % change
of the basin 1.3 1.6 15.1 −14.3 5.9 11.6 −37.3 −71.4 −8.2 −23.8 −53 −17.5 −1.1 4.1

Average % change
of the basin 68.5 18.4 52.6 −6.2 16.6 32.2 −16.7 −34.5 −3.5 −10.6 −21.4 19.7 37.7 47

Figure 3a–c show streamflow variations of the basin, mostly ranging from −2%
to 20%. The spatial variation for CO2 concentration scenario displayed an increasing
streamflow change in the southern area of Chao Phraya River basin that is within the
range of 20% to 42% (Figure 3a). Scenario 2 (Figure 3b) showed a total streamflow
increase and a more sensitive response in the southern area of the basin, while
Scenario 3 (Figure 3c) indicated a decrease in streamflow in the whole basin area.
Higher concentrations of CO2 directly caused the stomata of plants to close, which
then decreased their rate of transpiration and increased their water use, efficiency
leading to a reduction in evapotranspiration [86]. The latter increased runoff and
led to an increase in the streamflow. However, when increased CO2 concentration is
paired with an increase in temperature, as shown by Scenario 3, the streamflow will
decrease—as also stated by the negative change in the annual average streamflow of
Scenario 3 [87].
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Figure 3. Spatial distributions of streamflow ratio under the climate sensitivity scenarios during  
the reference period (2003–2011) and SRES B1, A1B, and A2 (2051–2059). (a–c) CO2 scenarios;  
(d–f) Precipitation scenarios; (g–i) Temperature scenarios; and (j–l) SRES. 

3.2.2. Precipitation 

Scenarios 4 through 7 represent precipitation changes of +10%, +20%, −10%, and −20%, while 
holding the baseline CO2 concentration (330 ppm) and air temperature constant (Table 7). Annual 
average streamflow changes of 15.6%, 30%, −15.8, and −32.8% correspond to the changes implemented 
for the annual precipitation. On the other hand, changes in the annual average streamflow in the 
entire Chao Phraya River basin, 16.6%, 32.2%, −16.7%, and −34.5%, corresponded to the changes at 
Chai Nat Station. Figure 3d–f shows the spatial distributions of streamflow ratio of Scenarios 4 to 6, 
which reflect the results of the average streamflow changes. Figure 3f, which shows Scenario 6, 
represents the spatial distribution of the decrease in precipitation. It can be concluded that Scenario 7 
will have a darker shade, signifying an overall decrease of streamflow ratio in the basin. Based on 
these results, streamflow and precipitation have a positive linear relationship. One of the significant 
factors that affect streamflow is soil water content. Figure 4 shows the plots of soil water content of 
different scenarios. Compared to the others, the precipitation scenarios have notable differences 
from the baseline; as precipitation was increased, the soil water content also steadily increased. 
Increases or decreases in precipitation directly lead to corresponding directional changes in the 
streamflow [88,89]. 

Figure 3. Spatial distributions of streamflow ratio under the climate sensitivity
scenarios during the reference period (2003–2011) and SRES B1, A1B, and A2
(2051–2059). (a–c) CO2 scenarios; (d–f) Precipitation scenarios; (g–i) Temperature
scenarios; and (j–l) SRES.

3.2.2. Precipitation

Scenarios 4 through 7 represent precipitation changes of +10%, +20%, −10%, and
−20%, while holding the baseline CO2 concentration (330 ppm) and air temperature
constant (Table 7). Annual average streamflow changes of 15.6%, 30%, −15.8, and
−32.8% correspond to the changes implemented for the annual precipitation. On the
other hand, changes in the annual average streamflow in the entire Chao Phraya River
basin, 16.6%, 32.2%, −16.7%, and −34.5%, corresponded to the changes at Chai Nat
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Station. Figure 3d–f shows the spatial distributions of streamflow ratio of Scenarios 4
to 6, which reflect the results of the average streamflow changes. Figure 3f, which
shows Scenario 6, represents the spatial distribution of the decrease in precipitation.
It can be concluded that Scenario 7 will have a darker shade, signifying an overall
decrease of streamflow ratio in the basin. Based on these results, streamflow and
precipitation have a positive linear relationship. One of the significant factors that
affect streamflow is soil water content. Figure 4 shows the plots of soil water content
of different scenarios. Compared to the others, the precipitation scenarios have
notable differences from the baseline; as precipitation was increased, the soil water
content also steadily increased. Increases or decreases in precipitation directly lead
to corresponding directional changes in the streamflow [88,89].Water 2015, 7, 6892–6909 
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Figure 4. Water yield, soil water content, and groundwater recharge of Chao Phraya River basin 
under climate sensitivity scenarios. 
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from the Chao Phraya River. It can be seen that an increase in precipitation led to an increase in the 
annual average streamflow in the Chao Phraya Watershed, as indicated by Scenarios 4 and 5. These 
results coincide with other literature that investigated the hydrological impact of climate change and 
hydrological scenarios, which stated that the mean annual river discharge increases due to an 
increase in precipitation [90,91]. The decreased streamflow in Scenarios 6 and 7 also confirmed that 
precipitation plays a major role in streamflow variations. 

During the wet season, a precipitation change was responsible for the streamflow variation [92]. 
In the upstream, the annual average streamflow was 249.2 m3/s in September, while the middle and 
down streams had around 562.8 m3/s and 671.8 m3/s, respectively. Figure 5 compares the seasonal 
variation of the peak streamflow for dry and wet seasons. The apparent increase in the streamflow 
in the increasing trend of the precipitation scenarios could lead to flooding events during the wet 
season. Monsoonal rains occur in the Chao Phraya River every year from May to October, making 
the watershed vulnerable to flood-related disasters during this season [93–95]. In this study, the 
streamflow increased in May and continued to rise until reaching their peak in September. The peak 
streamflow of the baseline and scenarios are highlighted in blue in Figure 5. 

Figure 4. Water yield, soil water content, and groundwater recharge of Chao Phraya
River basin under climate sensitivity scenarios.

In terms of precipitation scenarios, the annual streamflow of Chao Phraya River
have maximum changes of 35.9%, 70%, −7%, and −14.5%, and minimum changes
of 5.9%, 11.6%, −37.3%, −71.4%. Figure 3g–i shows the variation of upstream flow,
middle streamflow, and down streamflow from the Chao Phraya River. It can be seen
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that an increase in precipitation led to an increase in the annual average streamflow in
the Chao Phraya Watershed, as indicated by Scenarios 4 and 5. These results coincide
with other literature that investigated the hydrological impact of climate change and
hydrological scenarios, which stated that the mean annual river discharge increases
due to an increase in precipitation [90,91]. The decreased streamflow in Scenarios 6
and 7 also confirmed that precipitation plays a major role in streamflow variations.

During the wet season, a precipitation change was responsible for the streamflow
variation [92]. In the upstream, the annual average streamflow was 249.2 m3/s
in September, while the middle and down streams had around 562.8 m3/s and
671.8 m3/s, respectively. Figure 5 compares the seasonal variation of the peak
streamflow for dry and wet seasons. The apparent increase in the streamflow in the
increasing trend of the precipitation scenarios could lead to flooding events during
the wet season. Monsoonal rains occur in the Chao Phraya River every year from
May to October, making the watershed vulnerable to flood-related disasters during
this season [93–95]. In this study, the streamflow increased in May and continued to
rise until reaching their peak in September. The peak streamflow of the baseline and
scenarios are highlighted in blue in Figure 5.
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Figure 5. Seasonal variations of the peak stream flow under different climate scenarios in a year. The 
peak streamflow of each scenario is highlighted in blue to emphasize the difference from the 
baseline. It includes the upstream, middle stream, and downstream regions of the Chao Phraya 
River. 
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decreases. These results indicate that a rise in temperature due to global warming may lead to a 
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These results are similar to the results of spatial variations of previous scenarios, such as 
Scenarios 3, 6, and 7, which either increased the temperature or decreased the precipitation. In 
Scenario 6, Figure 3f shows that the southern area has a more sensitive response due to the 
significant decrease in its streamflow level. The southern part of the Chao Phraya Watershed also 
represents Central Thailand, which is described as a lush, fertile valley. This area is a perfect 
catchment basin of the mountainous Northern Thailand; thus, a drastic decrease in the streamflow 
will be first noticed in this area then followed by the rest of the watershed [97]. Figure 3g–i also 
shows a decrease in streamflow change in the entire river basin. 

3.2.4. Climate Change Effects of SRES 
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to predict the hydrological effect of potential future climate for the mid-21st century. Figure 3j–l 
illustrates baseline conditions of the monthly average precipitation and air temperature for the 
baseline period (2003–2011). Future climate change scenarios under three greenhouse gas emission 
scenarios from 2050–2059 are then projected. 

Figure 3j–l show the variation of locational streamflow under different emission scenarios. The 
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shift in the peak flow runoff in early May. Relative to the baseline conditions, the annual average 
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Figure 5. Seasonal variations of the peak stream flow under different climate
scenarios in a year. The peak streamflow of each scenario is highlighted in blue
to emphasize the difference from the baseline. It includes the upstream, middle
stream, and downstream regions of the Chao Phraya River.
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3.2.3. Air Temperature

Scenarios 8–10 represent air temperature increases of 1 ◦C, 3 ◦C, and 6 ◦C,
respectively, from the baseline, while maintaining the CO2 concentration at 330 ppm
with no change in precipitation. Table 7 shows the variation of streamflow at the
Chai Nat Station, which decreased by −3.1%, −9.3%, and −19.2% for Scenarios 8, 9,
and 10. The table also includes the annual average streamflow and maximum and
minimum changes in the annual average streamflow of the whole basin for each
scenario. It was found that as the temperature increases, the average streamflow
significantly decreases. These results indicate that a rise in temperature due to global
warming may lead to a serious water shortage [96].

These results are similar to the results of spatial variations of previous scenarios,
such as Scenarios 3, 6, and 7, which either increased the temperature or decreased the
precipitation. In Scenario 6, Figure 3f shows that the southern area has a more
sensitive response due to the significant decrease in its streamflow level. The
southern part of the Chao Phraya Watershed also represents Central Thailand, which
is described as a lush, fertile valley. This area is a perfect catchment basin of the
mountainous Northern Thailand; thus, a drastic decrease in the streamflow will be
first noticed in this area then followed by the rest of the watershed [97]. Figure 3g–i
also shows a decrease in streamflow change in the entire river basin.

3.2.4. Climate Change Effects of SRES

We applied downscaled GCM outputs to modify the meteorological data in the
SWAT model to predict the hydrological effect of potential future climate for the
mid-21st century. Figure 3j–l illustrates baseline conditions of the monthly average
precipitation and air temperature for the baseline period (2003–2011). Future climate
change scenarios under three greenhouse gas emission scenarios from 2050–2059 are
then projected.

Figure 3j–l show the variation of locational streamflow under different emission
scenarios. The predicted streamflow displayed a higher frequency of flood events,
which was expected due to a shift in the peak flow runoff in early May. Relative
to the baseline conditions, the annual average percentage changes of the projected
climate scenarios in streamflow under B1, A1B, and A2 were 12.3%, 45.7%, and
40.8% respectively. The maximum values of annual average percentage changes were
95.7%, 138.3%, and 132.2%, whereas the minimum values were −33.3%, 5.3%, −0.7%
in the basin. The variations in streamflow for the upstream, middle stream, and
downstream follow similar baseline patterns under the projected climate scenarios.

The previous spatial streamflow variations of Scenarios 8 to 10 yielded a decrease
in streamflow at the southern part of the basin, whereas the middle-eastern area
had a more significant increase in percentage change of the streamflow when the
projected climate change scenario under SRES was applied. The middle-eastern
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area represents Northeast Thailand, an arid region having a rolling surface and
undulating hills that often experiences harsh climatic conditions. These results
are justified, as Chinvanno [98] previously stated that this part of Thailand will
experience a significant shift in season with increased rainfall and a longer late season
rain peak, consequently increasing its water quantity. The streamflow variation of
three emission scenarios commonly displayed an increase of streamflow in this area
of the river basin.

4. Conclusions

The SWAT model was used to create a hydrological model of the Chao Phraya
Watershed to investigate the effect of climate sensitivity and greenhouse gas emission
scenarios on its streamflow. The model yielded percentage increases of the streamflow
that revealed a need to create safety measures during flood events: daily average
streamflow (72.3%), during the wet season in early May (22.7%), and after May
(70.1%). This study also achieved its objectives.

1. The SWAT model showed a satisfactory performance in terms of calibration
and validation, with R2 and NSE values greater than 0.5.

2. Precipitation scenarios yielded streamflow variations that corresponded to
the change of rainfall intensity and amount of rainfall, while scenarios with
increased air temperature yielded a decrease in water level leading to a water
shortage. However, the three greenhouse gas emission scenarios from 2051–2059
had streamflow variations that increased from the baseline (2003–2011).

3. Scenarios 1 to 3 were related to an increase in CO2 concentration scenarios,
which reduced stomatal conductance and increased the leaf area index. The
results showed an increase in streamflow levels; however, a negative change in
streamflow was also observed when the air temperature increased.

4. Variations under three SRES indicate low streamflow values compared to those
of the southern Chao Phraya Watershed. Hence, flood measures should be
performed in the main streamline of Chao Phraya River and the southern area
of the basin. As such, further water resource management will be needed in the
northeastern area of the Chao Phraya river basin in the future.

Further increasing the uncertainty of climate change brings a corresponding
uncertainty into the predictions of severe flood and drought. In addition, change in
the landuse of the Chao Phraya River subbasins may result in a different distribution,
which also depends on the changes of climate conditions such as climate sensitivity
scenarios and the three emission scenarios.
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Potential Impacts of Climate Change on
Water Resources in the Kunhar River
Basin, Pakistan
Rashid Mahmood, Shaofeng Jia and Mukand S. Babel

Abstract: Pakistan is one of the most highly water-stressed countries in the world and
its water resources are greatly vulnerable to changing climatic conditions. The present
study investigates the possible impacts of climate change on the water resources
of the Kunhar River basin, Pakistan, under A2 and B2 scenarios of HadCM3, a
global climate model. After successful development of the hydrological modeling
system (HEC-HMS) for the basin, streamflow was simulated for three future periods
(2011–2040, 2041–2070, and 2071–2099) and compared with the baseline period
(1961–1990) to explore the changes in different flow indicators such as mean flow,
low flow, median flow, high flow, flow duration curves, temporal shift in peaks,
and temporal shifts in center-of-volume dates. From the results obtained, an overall
increase in mean annual flow was projected in the basin under both A2 and B2
scenarios. However, while summer and autumn showed a noticeable increase in
streamflow, spring and winter showed decreased streamflow. High and median
flows were predicted to increase, but low flow was projected to decrease in the
future under both scenarios. Flow duration curves showed that the probability of
occurrence of flow is likely to be more in the future. It was also noted that peaks were
predicted to shift from June to July in the future, and the center-of-volume date—the
date at which half of the annual flow passes—will be delayed by about 9–17 days in
the basin, under both A2 and B2 scenarios. On the whole, the Kunhar basin will face
more floods and droughts in the future due to the projected increase in high flow
and decrease in low flow and greater temporal and magnitudinal variations in peak
flows. These results highlight how important it is to take cognizance of the impact of
climate change on water resources in the basin and to formulate suitable policies for
the proper utilization and management of these resources.

Reprinted from Water. Cite as: Mahmood, R.; Jia, S.; Babel, M.S. Potential Impacts of
Climate Change on Water Resources in the Kunhar River Basin, Pakistan. Water 2016,
8, 23.

1. Introduction

The concentration of greenhouse gases (GHGs) has dramatically increased
during the last few decades because of anthropogenic forces such as burning of fossil
fuels and biomass, land use changes, rapid industrialization, and deforestation. This
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increased GHGs concentration has resulted in global warming and a global energy
imbalance [1,2]. According to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change (IPCC-AR5), the global average temperature has increased
by 0.85 ˝C (0.65 ˝C–1.06 ˝C) over the period of 1800–2012, relative to 1961–1990 [3],
and 0.74 ˝C ˘ 18 ˝C has been detected during the last hundred years (1906–2005) [4].
There is a very high likelihood of this trend in global warming to only exacerbate.
The global average temperature is projected to increase by 1.7 ˝C–4.8 ˝C in 2081–2100
(relative to 1986–2005) under different Representative Concentration Pathways (RCPs).

The projected increase in global warming is likely to intensify the hydrological
cycle of the world, and hence, disturb the existing hydrological system. As a
consequence of global warming, hydrological systems are likely to experience
changes in the average availability of water, as well as changes in extreme events
such as increase in precipitation intensity, frequency, and/or amount of heavy
precipitation [5–7]. For example, the average annual precipitation is likely to increase
in the high latitudes and the equatorial Pacific Ocean by the end of the 21st century
under RCP8.5. However, in several mid-latitude areas and subtropical dry regions,
mean precipitation is likely to decrease. The areas of the globe with increasing
precipitation are much more than those with decreasing precipitation [3]. This
disturbance in a hydrological system can pose problems for public health, industrial
and municipal water demand, water energy exploitation, and the ecosystem.
However, as stated above, the impact of climate change on hydrological systems may
vary from region to region [2,3,5,8].

Hydrological systems are of great importance as they greatly affect the
environmental and economic development of a region and are highly complex
because they comprise the atmosphere, cryosphere, hydrosphere, biosphere, and
geosphere. The hydrological cycle of a basin (catchment) is mainly influenced by
the physical characteristics of the basin, climatic conditions in the basin, and human
activities. Most studies on climate change have focused on temperature, precipitation,
and evaporation [9] since these are considered to be the key indicative factors of
climate change and variability in a river basin [10]. There is an increasing consensus
that changing trends in climatic variables, especially temperature and precipitation,
can change the hydrological and ecological conditions of a river basin [11,12]. Given
all these conditions, it is of great importance to assess the possible impacts of climate
change on the water resources of a region, which can help in the proper utilization
and management of these water resources.

The economy of Pakistan relies greatly on agriculture, which is heavily
dependent on the Indus River Irrigation System. Water issues in Pakistan are crucial
challenges for the policymakers and managers of water resources in the country [13].
Today, Pakistan is one of the most water-stressed countries in the world as water
availability in the country has reduced from about 5000 m3 per capita per year in 1952
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to 1100 m3 per capita per year in 2006, which is an alarming situation [14]. According
to the United Nations report, a country with water availability of less than 1000 m3

per capita per year is considered a water scarce country [15]. The reduction in water
availability has created tensions among different provinces due to the increasingly
unequal distribution of water. Climate change and variability are likely to affect
water availability for, and magnitude of, irrigation and hydropower production in
the country. These changing water conditions are likely to increase the tensions
among the provinces, especially at the downstream (Sindh province) [13]. Therefore,
a clear estimation of future water resources under changing climatic conditions is
of great importance for the planning, operation, and management of hydrological
installations in any watershed in Pakistan.

In the last few years, outputs from General Circulation Models (GCMs)—the
most advanced and numerical based coupled models—are fed into hydrological
models to explore the impacts of climate change on water resources in various parts of
the world in the future. However, these models are coarse in spatial resolution (about
200–500 km) [16] and might not be suitable at the basin level, especially small basins
which require very fine spatial resolution [17,18]. To bridge GCM resolution and basin
scales, downscaling—dynamical and statistical—techniques have been developed.
In dynamical downscaling, a high-resolution numerical based Regional Climate
Model (RCM), with a resolution of about 5-50 km, uses the course outputs of a GCM
and provides detailed information or high resolution outputs at the basin level [2].
On the other hand, Statistical downscaling (SD) methods (i.e., stochastic weather
generator, regression, and weather typing) create empirical/statistical relationships
between the GCM scale and basin scale variables (e.g., temperature and precipitation).
Compared to dynamical downscaling, SD methods are faster and computationally
inexpensive, and thus offer approaches that have been rapidly adopted by a wider
community of scientists [17]. For the present study, downscaled data (maximum
temperature, minimum temperature, and precipitation) was obtained from [1].
They used a Statistical Downscaling Model (SDSM), a combination of multiple
linear regression and a stochastic weather generator, to downscale temperature and
precipitation over the period of 2011–2099 under A2 and B2 scenarios of HadCM3,
a global climate model.

Different studies such as Akhtar et al. [13], Ahmad et al. [19], Shrestha et al. [20],
and Bocchiola et al. [21] have assessed the impacts of climate change on the water
resources of Pakistan [13,19–21]. These studies were mostly conducted in the Upper
Indus basin using hydrological models such as Snowmelt Runoff model (SRM),
Hydrologiska Byråns Vattenbalansavdelning (HBV), Soil and Water Assessment
Tool (SWAT), and the WEB-DHM-S model. However, to the best of our knowledge,
no studies have been conducted to explore the potential impacts of climate change on
the water resources of the Kunhar River basin, which is one of the main tributaries
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of the transboundary Jhelum River and is located entirely in Pakistan. The Kunhar
River originates from the Greater Himalayas and contributes to the Mangla Reservoir
after joining the Jhelum River. The Mangla Reservoir’s water is used for irrigation
and hydropower production. It is the second largest reservoir of Pakistan. Although
HEC-HMS, a well-known hydrological model, has been successfully used for small
to large and plains to mountainous areas of the world [22–27], almost no studies
have been reported in Pakistan that use HEC-HMS for the assessment of climate
change impacts on water resources.

Thus, the main objectives of the present study were: (1) the development of
HEC-HMS, a hydrological model, in the mountainous Kunhar River basin which
is greatly influenced by winter snowfall; and (2) to assess the possible impacts of
climate change on the water resources of the Kunhar River basin, located in Pakistan,
under A2 and B2 scenarios of HadCM3. Description of the data and the study area
are given in Sections 2 and 3 of this paper. A brief introduction of the hydrological
model used in the study, and the methods used for the analysis of streamflow, is
given in Section 4. Sections 5 and 6 include the results/discussion and conclusions
respectively. This study will be very useful for policies that govern the utilization
and management of the water resources of the Kunhar basin, which contributes
significantly to the Mangla reservoir, under the effects of climate change.

2. Data Description

2.1. Hydro-Meteorological Data

Observed daily historical data of three climate stations (maximum temperature,
minimum temperature, and precipitation) were collected from the Pakistan
Meteorological Department (PMD) and the streamflow data of two hydrometric
stations, spanning 1961 to 2000, from the Water and Power Development Authority
(WAPDA). The geographical and basic information of the hydro-meteorological
stations is presented in Table 1 and Figure 1.

2.2. HadCM3 Downscaled Data

Downscaled data of maximum temperature (TX), minimum temperature (TN),
and precipitation (PP) for the period of 2011-2099 was taken from [1]. They
downscaled TX, TN, and PP with a well-known downscaling model, Statistical
Downscaling Model (SDSM), under A2 and B2 scenarios of HadCM3 in the Jhelum
River basin. They selected HadCM3 for two reasons: (a) it showed better results
during the evaluation of various GCMs (CGCM2, CSISRO, CCSR/NIES, and
HadCM3); and (b) it has been used by a majority of studies for statistical downscaling
of climate variables around the Jhelum basin [1]. They also applied the bias correction
technique on the downscaled data to get closer to realistic results.
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Table 1. Basic information about hydro-climatic stations in the Kunhar River basin.

SR
Station Lat Long Altitude Period PP TX TN

Meteorological (˝ N) (˝ E) (m ASL) (year) Annual
(mm)

Mean
(˝C) Mean (˝C)

1 Balakot 34.55 73.35 995 1961–2000 1514 24.9 12.4
2 Muzaffarabad 34.37 73.48 702 1961–2000 1477 28.4 13.5
3 Naran 34.9 73.65 2421 1961–2000 1522 12.3 3.2

1504 21.8 9.7

Hydrometric Mean Discharge Catchment
Area

Annual
(mm) m3/s km2

1 Naran 34.90 73.65 2362 1961–2000 1441 47 1011
2 Gari Habibullah 34.40 73.38 810 1961–2000 1349 101 2335

PP, precipitation; TX, maximum temperature; TN, minimum temperature; ASL, above
sea level.

SDSM is a hybrid of multiple linear regression and a stochastic generator [28]
and is widely used for downscaling climate variables [1]. HadCM3 is a Global
Climate Model (GCM) developed by the Hadley Center of the UK Meteorological
Office. It has a spatial resolution of 2.5˝ ˆ 3.75˝ (latitude ˆ longitude), with a
surface spatial resolution of about 278 ˆ 417 km, decreasing to 278 ˆ 295 km at
45 degrees North and South [29]. A2 and B2 are the emission scenarios developed
by the IPCC. The A2 scenario describes a very heterogeneous world: very slow
fertility patterns across regions, continuous increase in global population, regionally
oriented economic development, more fragmented and slower per capita economic
growth, and more rapid technological changes as compared to other scenarios. The
B2 scenario presents the world with an emphasis on social and environmental
sustainability and local solutions to economic issues. Under this scenario, the
population of the world increases at a rate lower than under A2 and economic
development is intermediate. B2 also posits less rapid and more diverse technological
changes relative to the B1 and A1 scenarios [30].

Mahmood and Babel [1] have shown that TX, TN, and PP are projected to
increase by 0.91 ˝C–3.15 ˝C, 0.93 ˝C–2.63 ˝C, and 6%–12% respectively under A2,
and 0.69 ˝C–1.92 ˝C, 0.56 ˝C–1.63 ˝C, and 8%–14% respectively under B2. According
to them, in autumn, winter, summer, and spring, precipitation is projected to increase
by 24%–32%, 11%–17%, 9%–12% and 4%–5% under A2 and 12%–25%, 12%–15%,
10%–14%, 0.2%–4% respectively under B2. The projected increases in temperature
(TX and TN) are 2.7 ˝C–3.0 ˝C, 2.5 ˝C–3.2 ˝C, and 2.0 ˝C–2.6 ˝C, 3.2 ˝C–3.9 ˝C under
A2 and 1.6 ˝C–1.73 ˝C, 2.0 ˝C–2.5 ˝C, 1.4 ˝C–1.7 ˝C, 1.4 ˝C–1.8 ˝C under B2 by the
end of this century.
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2.3. DEM Data

Elevation data is one of the primary sources used in hydrological studies.
The most common form of elevation data is the digital elevation model (DEM)
that is widely used to extract the topographical characteristics of a terrain [31,32].
In this study, a DEM of 30 m, created by the Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER), was obtained from the U.S. Geological
Survey (USGS) (http://gdex.cr.usgs.gov/gdex/). This DEM is shown in Figure 1.
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ASTER-DEM was developed by the National Aeronautics and Space Administration
(NASA) of USA, the Japan Space Systems (JSS), and the Ministry of Economy, Trade
and Industry (METI) of Japan. The coverage area of ASTER-DEM ranges between
83˝ N and 83˝ S, covering 99% of the Earth’s landmass.

In the present study, DEM was processed with HEC-GeoHMS, an extension
of GIS, to extract basin parameters like slopes of rivers and sub-basins, areas of
sub-basins, river lengths, longest flow paths, elevations in the basin, flow direction,
streamlines, contour lines, and aspects during the process of watershed delineation.
Among them, contours, aspects, slope, and the delineated sub-basin are shown in
Figure 2.
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Figure 2. Topographical features and streamline delineation of the Kunhar River basin. 

2.4. Land Cover and Soil Data 

Land cover can strongly affect the hydrological processes in a region. These processes are mainly 
influenced by the density of plant cover and the morphology of plant species [33]. The land cover 
data for the Kunhar River basin was derived from the global land cover data (1 km resolution) 
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2.4. Land Cover and Soil Data

Land cover can strongly affect the hydrological processes in a region. These
processes are mainly influenced by the density of plant cover and the morphology of
plant species [33]. The land cover data for the Kunhar River basin was derived from
the global land cover data (1 km resolution) developed by the Joint Research Center
(JRC) of the European Commission (http://eusoils.jrc.ec.europa.eu/data.html). This
data is shown in Figure 3.
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The soil data for the Kunhar basin was obtained from the Harmonized
World Soil Database, with a resolution of 1 km, as is shown in Figure 3. This
database was developed by FAO in collaboration with the International Institute
Of Applied Systems Analysis (IIASA), the International Soil Reference and
Information Centre (ISRIC) of World Soil Information, the Institute of Soil Science
of Chinese Academy of Sciences (ISSCAS), and the Joint Research Centre of the
European Commission (JRC) (http://www.fao.org/soils-portal/soil-survey/soil-
maps-and-databases/harmonized-world-soil-database-v12/en/).

The soil and land cover data were used to extract the initial estimations of the
hydrological properties of the basin such as maximum moisture deficit, hydraulic
conductivity, crop coefficient, percentage of imperviousness, and basin lag. However,
the exact estimates of these parameters for each sub-basin were obtained only during
the calibration process.
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3. Study Area

The Kunhar River basin is located in the northern side of Pakistan and stretches
between 34.2˝–35.1˝ N and 73.3˝–74.1˝ E, as is shown in Figure 1. The Kunhar drains
the southern slope of the Greater Himalayas, located in the Khyber Pakhtunkhwa
(KPK) province of Pakistan. It originates from the Lulusar Lake in the Kaghan valley
of KPK. It passes through Jalkhand, Bata Kundi, Naran, Kaghan, Kawai, Balakot, and
Gari Habibullah and finally joins the Jhelum River at Rara. The Kunhar’s water is
rich in algal flora, resulting in a great diversity of the aquatic life it harbors [34]. It has
a drainage area of 2535 km2, with elevation ranging from 600 to 5000 m (Figure 1).

The Kunhar is one of the biggest tributaries of the transboundary Jhelum River
basin. This is the only main tributary which is entirely situated in Pakistan’s territory
and therefore, has great importance from the perspective of hydrological monitoring
by the WAPDA of Pakistan. The Kunhar contributes about 11% of the total flow to the
Mangla Reservoir constructed in the Jhelum River basin. The Mangla Reservoir is the
second largest water storage site in the country. The water stored here is primarily
used for irrigating 6 million hectares of land in the country and for generating
hydropower. The installed capacity of the Mangla power plant is 1000 MW, and
electricity is generated as a byproduct [1,35]. Snowmelt from the Kunhar basin
contributes about 65% to the total discharge of the Kunhar River and 20%–40% to the
Jhelum River at Manga [35]. The population in the Kunhar basin is almost entirely
rural and their economy is generally agro-pastoral based. The principal occupation
of the population is agriculture, although rearing livestock is also practiced in the
adjacent mountainous areas. A small portion of the population is involved in trade,
local labor, and employment in the bigger cities of the country [36]. In Pakistan, 93%
of the total annual flow is used for agricultural purposes, 5% for industrial use, and
2% for domestic use [37]. The water of the Kunhar River is mostly used for irrigation,
municipal use, power generation, and recreation [35]. Since no industries are located
in the basin, most of the water of the Kunhar Basin (about 98%) is used for agriculture
and the rest for domestic use.

The data of other major topographical characteristics such as slope, contours
lines, aspects, and delineated sub-basins, which were extracted from DEM, are
presented in Figure 2. This figure shows that the basin has undulating relief ranging
from 0˝ to 78˝. The plains along the course of the Kunhar River are located on a
gentle slope (0˝–10˝). However, most parts of the basin have moderate (>10˝ and
<30˝) to steep slopes (>30˝).

The basin has a great diversity of vegetation such as temperate coniferous forests,
subtropical coniferous forests, alpine meadows, agricultural cover, and snow, as
described in Table 2 and shown in Figure 3. These varied land covers are reclassified
into seven main classes to explore the major land use covers in the basin. Forest,
agriculture, and snow cover the maximum area of the basin with about 65%, 14%,
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and 20% respectively (Table 2). This information was derived from the land cover
data of 1 km resolution in the basin.

Table 2. Basic characteristics of soil and land use data in the Kunhar River basin.

HWSD-Soil Group
Area Texture Top Soil Fraction TSGC

% km2 Sand (%) Silt (%) Clay (%) Gravel
(%)

1 Cambisol 14 344 Medium 42 36 22 9
2 Cambisol 13 342 Fine 22 30 48 8
3 Leptosol 71 1801 Medium 43 34 23 26
4 Glacier 2 48 - 0 0 0 0

Land use cover Area Land Use Cover

Re-classes % km2 Original

1 Coniferous Forest 33.1 838 Temperate Conifer/Subtropical Conifer/Tropical Moist
Deciduous

2 Degraded Forest 0.4 11 Degraded Forest
3 Fallow and Grassland 0.3 7 Slope Grasslands/Sparse vegetation (cold)/Gobi/Desert (cold)
4 Alpine Meadow Forest 31.8 805 Alpine Meadow
5 Irrigated Agriculture 1.0 25 Irrigated Agriculture
6 Slope Agriculture 13.0 329 Slope Agriculture
7 Snow 20.5 521 Snow

HWSD, Harmonized World Soil Database; TSGC, Top Soil Gravel Content.

There are three main groups of soils in the Kunhar River basin, as shown
in Figure 3: 1) cambisol fine, 2) cambisol medium, and 3) leptosol. Cambisol
characterizes weak to moderately developed soils and it (both fine and medium
varieties) covers 27% of the basin, while leptosol is very shallow soil over hard rock
and is unconsolidated and very gravelly material. Leptosol covers around 71% area
of the basin. Some glacier patches also exist in the upper part of the basin. The basic
information about soil types found in the basin is given in Table 2. The properties of
these soils were derived from the soil data of 1 km resolution in the basin.

The Kunhar basin is located in a humid, subtropical zone. In the present study,
hydro-climatic data was processed for the period of 1961–2000 to extract some basic
information about the hydro-climatic conditions in the basin. This information is
presented in Figure 4. The average annual temperature in the basin is about 13 ˝C
(2 ˝C–23 ˝C). February is the coldest and July is the warmest month here. This was
calculated from the data of the Naran and Balakot climate stations available for the
period of 1961-2000. At Balakot, located in the lower part of basin (Figure 1), TN
ranges from 2 ˝C (January) to 23 ˝C (July) and TX from 14 ˝C (January) to 35 ˝C (June).
At Naran, located in the upper part of the basin, TN ranges from ´9 ˝C (February)
to 13 ˝C (July) and TX from ´1 ˝C (February) to 23 ˝C (July) (Figure 4a). The
Kunhar basin has an annual precipitation of about 1500 mm (Table 1) with two peaks
(Figure 4b). The first peak occurs in the upper part of the basin in the month of March
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because of the Western Disturbances (WDs) system in winter. Most parts of Pakistan,
and its northwestern parts primarily, obtain precipitation due to WDs. WDs are
caused by depressions over Mediterranean regions, resulting in precipitation over
central and southwest Asia in the months of December to March [38,39]. The second
peak happens in the month of July and in the lower parts of the basin due to the
summer monsoons, which are the result of the saturated south western winds from
the Bay of Bengal and Arabian Sea. It can be concluded that the monsoons do not
reach the upper part of the basin, although WDs affect the whole basin. On the other
hand, there is only one big streamflow peak, both in the upper (Naran) and lower
parts (Gari Habibullah) of the basin, that occurs in the month of July (Figure 4b).
This means the precipitation from December to March (winter) accumulates as snow
cover, especially in the upper parts of the basin, and then starts melting after March
and lasts till July when it overlaps with monsoon precipitation and results in one
big peak. An average flow of about 1350 mm (103 m3/s) has been measured at Gari
Habibullah near the mouth of the basin for the period of 1961-2000. The same was
reported by de-Scally as well [39].
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Figure 4. Monthly (a) max temperature (TX), min temperature (TN), (b) precipitation
(PP), and streamflow (SF) in the Kunhar River basin for the period of 1961–2000.

220



4. Methodology

4.1. Description of HEC-HMS

The Hydrological Modeling system (HEC-HMS) is a rainfall-runoff simulation
software used for a wide range of watersheds from large river basins to small
urban areas. The model was formulated by the U.S. Army Corps of Engineers
at the Hydrologic Engineering Center (HEC). HEC-HMS comprises different loss
techniques such as SCS curve number, initial and constant, Green Ampt, one-layer
deficit-constant, Smith Parlange, and five-layer soil moisture accounting. These
techniques are used to estimate excess precipitation in fairly simple to very complex
infiltration and evapotranspiration environments. This model can be used for both
event and continuous modeling.

In order to calculate direct runoff from excess precipitation, seven methods
including SCS, Clark, Snyder, and ModClark are available in the system. This model
also consists of five base flow methods including recession method, constant monthly
method, and linear reservoir method, and six channel routing methods including
Muskingum, and modified pulse methods. It also has six kinds of meteorological
models like Thiessen and inverse distance methods to analyze meteorological data
such as precipitation, evapotranspiration, and snowmelt. The meteorological model
extracts the precipitation for each sub-basin in the watershed. However, currently,
only two methods (Temperature Index and Gridded Temperature Index) are available
to compute runoff from snowfall in this modeling system [40,41].

A complete basin model setup for rainfall-runoff processes comprises a basin
model, a meteorological model, control specification, and input time series. The
basin model describes the physical characteristics of the study region such as the
areas of sub-basins and river lengths of a watershed. Each basin model in HEC-HMS
consists of a loss method, a transforming method, a base flow method, and a channel
routing method [23]. Control specification is one of the main components of this
model’s setup and it controls the simulation period. For example, it controls when
the model is to start and stop, and what the time interval for simulation should be.
The input time series encompasses precipitation, temperature, evapotranspiration,
and observed streamflow etc., which have a direct link with the basin’s model and
the meteorological model. A detailed description of the model’s formulation and its
various processes is provided in the User’s Manual and Technical Reference Manual
of HEC-HMS [40] (p. 318 and p. 157).

In the present study, the basin model was developed using the deficit and
constant loss (DCL) method for calculating excess precipitation, the SCS unit
hydrograph for transforming direct runoff, Muskingum for channel routing, and the
recession method for base flow. The meteorological model was established using the
Thiessen polygon gauge weight method for precipitation calculation, the temperature
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index method for snowmelt modeling, and the monthly evapotranspiration
method. The Thiessen polygons were created and their weights were calculated by
HEC-GeoHMs in accordance with the precipitation gauges. The same combination
has been used in different studies [15,17,18].

The DCL model computes excess precipitation in a watershed. It is a single
layer continuous method used for calculating the changes in soil moisture content.
It is similar to the initial and constant loss (ICL) method but this method recovers
the initial losses after a long period of no precipitation. This method contains four
main parameters: maximum deficit, initial deficit, constant rate, and impervious
percentage. These parameters can be initially estimated using soil and land cover data
as initial inputs for the model but are finalized only during the calibration process.

The excess precipitation calculated from DCL was transformed into direct
surface runoff by the SCS unit hydrograph method. Basin lag is the only parameter
of the SCS method, and it needs to be determined during calibration. It can also be
estimated as an initial value for calibration by multiplying the time of concentration
by 0.6. In this study, the recession method was used to calculate the base flow which
contributes to the total flow from the watershed. Three parameters—initial discharge,
recession constant, and threshold—were determined during calibration.

To transfer the total flow from one point to other, the Muskingum method was
used. This method is a simple mass conservation scheme for routing flow through
channels. There are two main parameters for this method: travel time (K), and the
Muskingum coefficient (X). The Muskingum coefficient ranges between 0 and 0.5.

The Thiessen polygon method was used to assign weights to each gauge in
the watershed during the development of the meteorological model. For snowmelt
modeling, different elevation bands were used for each sub-basin in the temperature
index method (TIM). TIM is an extension of the degree-day technique to calculate flow
from snowpack. In the degree-day approach, a fixed amount of snowmelt is assigned
for each degree above freezing point. This method is a conceptual representation of
the cold energy stored in the snowpack. This also takes care of past conditions and
some other climatic factors during the calculation of snowmelt. Different parameters
such as base temperature, wet melt rate, rain rate limit, melt rate pattern, lapse rate,
and antecedent temperature index are required for this method [32]. A lapse rate
of ´7.0 ˝/km was calculated for the study area and kept constant for the entire
Kunhar River basin. The FAO Penman-Monteith method—recommended as the
standard method for computing potential evapotranspiration [24]—was carried out
to calculate the potential evapotranspiration in the basin. A schemetic diagram for
the setup of HEC-HMS in the Kunhar River basin is shown in Figure 5.
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Figure 5. Schemetic diagram for the setup of HEC-HMS hydrological modeling system. 
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4.2. The Model’s Calibration and Validation

The calibration of a model is a process in which the model’s parameters are
adjusted in such a way that the simulated flow captures the variations of the observed
flow [25]. In this study, a split sample method was used for calibration and validation.
In this method, the calibration period does not overlap with the validation period.
A data period of eight years, from 1982 to 1989, was chosen as the calibration period
and the period from 1978 to 1981 for validation because these periods had minimum
missing values of both precipitation and streamflow. The physical properties—land
use cover and soil properties—of the watershed were considered as constant during
the simulation period.

Nelder Mead and Univariate Gradient are the two main algorithms to optimize
the objective function. There are seven different kinds of objective functions in
HEC-HMS. In this study, the sum of the squared residual was chosen and was
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minimized using the Nelder-Mead algorithm to explore the optimized model
parameters in order to get the best results of the simulation. The simulated flows were
compared with the observed flow using the coefficient of determination (R2), percent
deviation (D), and Nash-Sutcliffe efficiency (E). The R2 values indicate how well
the variations in the observed data are captured by the simulated data, D describes
the mean percent deviation between observed and simulated flow, and E shows
how well the observed plot fits with the simulated plot [22]. For more illustrative
purposes, the simulated data was also compared with observed data graphically to
explore how well the low and high observed flows were captured by simulated flow.
In the present study, the model was calibrated and validated at both Naran and Gari
Habibullah gauging stations.

The model’s performance parameters—R2, D, and E—were calculated using the
following equations:

R2 “

ř
`

Qobs ´Qobs
˘

ˆ
`

Qsim ´Qsim
˘

b

ř
`

Qobs ´Qobs
˘2
ˆ
`

Qsim ´Qsim
˘2

(1)

Qobs and Qsim are observed and simulated values respectively. If the value of R2

is close to 1, it indicates a good correlation between simulated and observed flows.
The correlation is considered optimum if R2 is exactly equal to 1 [22].

D p%q “ 100ˆ
ř

pQsim ´Qobsq
ř

Qobs
(2)

The value of D should ideally be close to 0%. Positive and negative values are
respectively indicators of over- and under-estimation by the model [22].

E “ 1´
ř

pQsim ´Qobsq
2

ř
`

Qobs ´Qobs
˘2 (3)

The value of E lies between 0 and 1. A positive value close to 1 implies good
calibration while a negative value close to 0 is not acceptable. If the value of E is
greater than 0.75, then the results are considered to be good, and if it is between 0.36
and 0.75, the results are satisfactory [41].

4.3. Projected Changes in Streamflow

After successful calibration and validation, the downscaled daily time series
(A2 and B2) of precipitation and temperature for the period of 2011 to 2099 were
used as input for HEC-HMS to simulate daily flow data at both gauges (Naran
and Gari Habibullah). The physical characteristics of the Jhelum basin were kept
constant throughout the simulation period. However, it cannot be ignored that these
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characteristics do vary with time. The simulated data were divided into three periods:
the 2020s (2011–2040), the 2050s (2041–2070), and the 2080s (2071–2099) and all three
were compared with the baseline period (1961–1990) to assess changes in flow in the
future. Different indicators such as mean flow, low flow, median flow, high flow, flow
duration curves, temporal shift in peaks, and temporal shifts in center-of-volume
dates were calculated for the three periods and the results were compared to the
baseline period’s data so as to explore the impact of climate change on the streamflow
in the basin.

When analyzing streamflow to construct an installation such as a reservoir
and headwork on a river, two questions are frequently asked: (1) how often will the
streamflow occur in the future? and (2) what will be the magnitude of the streamflow?
Flow duration curves are the main tools to deal with these two questions. These
curves present the percentage of times that the flow in a stream is likely to exceed
or be equal to a specified value of the flow. These curves can be applied in different
kinds of studies such as hydropower management, reservoir sedimentation, water
quality management, and low and high flow studies [42]. The following equation is
used to construct the flow duration curves:

P p%q “
M

pn` 1q
ˆ 100 (4)

P or the probability of flow is equal to or exceeds a specified value (% of time),
M is the rank of events, and N is the number of events in a specified period of time.

In the present study, the daily time series were used to construct the flow
duration curves for the base period (1961–1990) and for the three future periods: the
2020s, 2050s, and 2080s.

5. Results and Discussion

5.1. Calibration and Validation

Table 3 shows the model’s performance parameters (E, D, and R2) that were
calculated using the daily and monthly observed and simulated streamflows for
calibration (1982–1989) and validation (1978–1981) at Naran and Gari Habibullah.
In the case of daily data, the values of E and R2 ranged from 0.55 to 0.74 during
calibration and validation at both stations, and the D values lay between ´9% and
12%. The D values show that the model underestimated values during the calibration
and validation periods at Naran and also underestimated them at Gari Habibullah
during calibration. However, the model overestimated the values during validation
at the Gari Habibullah station. The results were greatly improved when these
parameters were calculated from the monthly time series. The values of E and R2

were improved to 0.63–0.88. These results are quite satisfactory and complement well
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some previous studies such as Meenu et al. [22] in India, Verma et al. [23] in India,
Yimer et al. [24] in Ethiopia, and Garcia et al. [25] in Spain. All these studies also used
HEC-HMS to simulate streamflow for climate change studies, with E ranging from
0.48–0.83 and R2 from 0.63–0.84.

Table 3. Nash-Sutcliffe efficiency (E), coefficient of determination (R2), and percent
deviation (D) for calibration (1982–1989) and validation (1978–1981) for different
stream gauges, calculated from daily and monthly data, in the Kunhar River basin.

Hydrometric Station
Calibration Validation

E R2 D (%) E R2 D (%)

From daily streamflow
Naran 0.71 0.74 ´7.78 0.71 0.73 ´3.13
Gari Habibullah 0.66 0.67 ´8.69 0.55 0.65 12.17
From monthly streamflow
Naran 0.83 0.84 ´11.02 0.83 0.84 ´3.14
Gari Habibullah 0.88 0.85 ´9.92 0.63 0.70 12.18

The graphical comparisons of observed against simulated flow for the
calibration and validation periods are shown in Figures 6 and 7 respectively. At
both Naran and Gari Habibullah gauging stations, patterns of observed flow were
well matched by patterns of simulated flow during the calibration period. However,
the peak and low flows were not captured well by the model. At Naran, in some
years, peak and low flows were underestimated by the model but it was the reverse
in the case of Gari Habibullah. This underestimation of flow might be due to the
lack of enough precipitation gauges available in the basin or it might be due to the
use of a simple temperature index model to calculate flow from snowmelt because
about 65% of the total flow comes from snowmelt. Over- and under-estimation of
flow must be considered during the discussion of this study’s results. For example,
at Gari Habibullah, the model overestimated the flow by 12%. This means that if
the projected increase at Gari Habibullah is 50%, then the final projected increase
will be 38%.

In the case of validation, the peaks were comparatively better captured by the
simulated flow at both stations, especially at Naran. On the whole, the calibration
and validation results were satisfactory and comparable with some previous studies
like Meenu et al. [22], Verma et al. [23], Yimer et al. [24], and Garcia et al. [25].

The present study’s results could be much more exact if the number of
precipitation gauges were more than are currently available. In the present study, the
vegetation cover (where 20% is snow cover) was considered constant for the entire
calibration and validation periods. Vegetation cover, especially snow cover, could
not have been the same for all the years of the calibration and validation periods.
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It can be concluded that taking into consideration changes in vegetation cover will
perhaps improve the results.
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Figure 6. Comparison of daily and monthly observed and simulated streamflow at (a) Naran and  
(b) Gari Habibullah for calibration (1982‒1989) in the Kunhar River basin. Figure 6. 3-dimensional (a) and 2-dimensional (b) space of the pressure measurements.
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(b)

Figure 7. Comparison of daily and monthly observed and simulated streamflow at (a) Naran and  
(b) Gari Habibullah for validation (1978‒1981) in the Kunhar River basin. 

5.2. Projected Changes in Mean Streamflow 

Table 4 outlines, in percentage, the projected changes in seasonal and annual flows in the 2020s, 
2050s, and 2080s with respect to the baseline period (1961–1990) under A2 and B2 scenarios. In all 
three periods and under both scenarios, the flow in winter (DJF) and spring (MAM) seasons was 
projected to decrease at both gauges except in winter at Gari Habibullah in the 2080s. In both seasons, 
the negative changes at Naran (ranging from 40%‒73%) were greatly higher than Gari Habibullah, 
(ranging from 6% to 28%) under both A2 and B2. Mahmood and Babel [43] conducted a study about 
extreme temperature events in the Jhelum River basin under A2 and B2, and they found that the 
intensity of cold days and cold nights will increase in the future. The reduction in flow (as indicated 
by the results of this study) is likely to be the case due to more accumulation of snowfall that would 
result from the increased intensity of cold days and cold nights in winter (based on the projections of 
Mahmood and Babel that indicate that precipitation will increase in winter and decrease in spring) 
[1]. 

Figure 7. Comparison of daily and monthly observed and simulated streamflow
at (a) Naran and (b) Gari Habibullah for validation (1978-1981) in the Kunhar
River basin.
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5.2. Projected Changes in Mean Streamflow

Table 4 outlines, in percentage, the projected changes in seasonal and annual
flows in the 2020s, 2050s, and 2080s with respect to the baseline period (1961–1990)
under A2 and B2 scenarios. In all three periods and under both scenarios, the flow in
winter (DJF) and spring (MAM) seasons was projected to decrease at both gauges
except in winter at Gari Habibullah in the 2080s. In both seasons, the negative
changes at Naran (ranging from 40%–73%) were greatly higher than Gari Habibullah,
(ranging from 6% to 28%) under both A2 and B2. Mahmood and Babel [43] conducted
a study about extreme temperature events in the Jhelum River basin under A2 and
B2, and they found that the intensity of cold days and cold nights will increase in
the future. The reduction in flow (as indicated by the results of this study) is likely
to be the case due to more accumulation of snowfall that would result from the
increased intensity of cold days and cold nights in winter (based on the projections
of Mahmood and Babel that indicate that precipitation will increase in winter and
decrease in spring) [1].

Conversely, the summer (JJA) and autumn (SON) seasons were projected to
have increased flow in all three future periods and under both scenarios but with
different magnitudes. Autumn showed highest projected increase at both stations
and under both scenarios, ranging from 91% to 131%. This high increase in autumn
flow is most likely due to the most projected increase of 25%-32% in precipitation
indicated by Mahmood and Babel [1]. The projected changes in this study appear
much more than the projected changes in precipitation explored by Mahmood and
Babel [1]. This could be because the vegetation cover was considered to be constant
throughout the simulation period in this study. In the present state, snow cover (20%)
dominates the basin and we used the same percentage of snow cover and constant
proportions of other vegetation types for the simulation of projected flow. It is quite
possible that snow cover will reduce in the future because of increasing temperature
in the basin. So, along with validation results wherein the model overestimated by
about 12%, if we also reduce snow cover, then the changes would be less than the
projected changes.

On the whole, the mean annual flow was projected to increase by 42%–43% at
the end of this century in the basin (at both sites) under both scenarios. The high
increase in flow in summer and autumn and the decrease in winter and spring shows
that it is hard to rely on only one GCM. So, a group of GCMs is required to give a
clearer picture about these results.

The projected decrease in winter and spring can cause water shortage during
these seasons not only for the agriculture sector but also for the domestic sector. On
the other hand, the projected increase in summer (monsoon season) and autumn can
result in flooding in the basin, and that can cause economic losses in the basin. These
losses can be reduced by building reservoirs in the basin which can be used to store
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water during the flooding season and the stored water can be used during the period
of shortage.

Table 4. Future changes (%) in streamflow at different gauges relative to the baseline
period (1961-1990) under A2 and B2 scenarios in the Kunhar River basin.

A2 Scenario
1961–1990 (m3/s) 2020s 2050s 2080s

Naran G. Habib Naran G. Habib Naran G. Habib Naran G. Habib

Winter 10 25 ´70 0 ´71 ´6 ´70 8
Spring 37 110 ´56 ´14 ´52 ´26 ´40 ´12

Summer 121 226 53 38 51 46 61 49
Autumn 24 58 104 109 98 107 111 126
Annual 48 105 8 33 6 30 16 43

B2 Scenario

Winter 10 25 ´73 ´2 ´73 ´11 ´70 2
Spring 37 110 ´62 ´16 ´58 ´28 ´49 ´10

Summer 121 226 58 38 56 43 54 46
Autumn 24 58 88 97 92 91 97 131
Annual 48 105 3 29 5 24 8 42

5.3. Changes in Flow Duration Curve as Well as Low, Medium, and High Flows

Figure 8 displays the comparison of flow duration curves during the baseline
period (1961–1990) and the three future periods (2020s, 2050s and 2080s) under A2
and B2 scenarios at the Gari Habibullah hydrometric station. This comparison shows
that the probability of occurrence of flow and magnitudes of flow could be higher
in the future in the Kunhar basin under both scenarios. Table 5 shows the projected
changes in high flow (Q5), median flow (Q50), and low flow (Q95) in the 2020s, 2050s,
and 2080s with respect to the baseline under both scenarios. Under both scenarios,
Q5 and Q50 were projected to increase in all three future periods in the Kunhar basin,
with 17%–52% (Q5) and 43%–84% (Q50). This increase in mean flow is most likely due
to the increase in mean annual precipitation and increase in high flow is most likely
due to the increase in summer precipitation (monsoon season), as also projected by
Mahmood and Babel [1]. However, Q95 was predicted to decrease by 18%–99% in the
future in the basin. This might be due to the increase in the intensity of cold days and
cold nights (mentioned by Mahmood and Babel [43]) which may cause precipitation
as snow accumulation in winter (low flow season).

These changes in high flow and flow duration curve show that the frequency
of floods and their magnitudes will increase in the future which will create a lot of
management problems in the basin. Flooding can not only cause economic losses
but also loss of life. Nonetheless, with proper utilization and management of the
increased flow, Pakistan can actually increase food and hydropower production
in the basin.
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(b)

Figure 8. Flow duration curves under (a) A2 and (b) B2 scenarios at Gari Habibullah in the Kunhar 
River basin. 

Table 5. Percent future changes in low, median, and high flows with respect to the baseline  
(1961–1990) under A2 and B2 scenarios in the Kunhar River basin. 

A2 Scenario 
1961–1990 (m³/s) 2020s 2050s 2080s 

Naran G. Habib Naran G. Habib Naran G. Habib Naran G. Habib
Q5 170 316 41 17 39 22 52 28 
Q50 19 54 43 67 44 55 61 76 
Q95 8 21 –99 –25 –99 –22 –99 –18 

B2 Scenario    
Q5 170 316 42 19 46 21 43 24 
Q50 19 54 31 65 43 51 45 86 
Q95 8 21 –99 –23 –99 –25 –99 –21 

Q5, high flow; Q50, median flow; Q95, low flow. 

5.4. Temporal Shifts in Peak Flows 

In Figure 9, the mean monthly discharge of the baseline period (1961–1990) is plotted against the 
mean monthly discharge in the future periods (2020s, 2050s, and 2080s) to explore temporal shifts 
and magnitudes of peak flows at Gari Habibullah. At this site, a definite delay and increase in peak 
flows were projected in all three future periods under both scenarios. The peak flows were projected 
to shift from June to July, with about a 10%–25% increase under both scenarios. This shows that the 
basin will not only face an increase in frequency and magnitude of floods (mentioned in previous 
sections) but will also face the shift of these floods from June to July. 
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Figure 8. Flow duration curves under (a) A2 and (b) B2 scenarios at Gari Habibullah
in the Kunhar River basin.
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Table 5. Percent future changes in low, median, and high flows with respect to the
baseline (1961–1990) under A2 and B2 scenarios in the Kunhar River basin.

A2 Scenario
1961–1990 (m³/s) 2020s 2050s 2080s

Naran G. Habib Naran G. Habib Naran G. Habib Naran G. Habib

Q5 170 316 41 17 39 22 52 28
Q50 19 54 43 67 44 55 61 76
Q95 8 21 –99 –25 –99 –22 –99 –18

B2 Scenario

Q5 170 316 42 19 46 21 43 24
Q50 19 54 31 65 43 51 45 86
Q95 8 21 –99 –23 –99 –25 –99 –21

Q5, high flow; Q50, median flow; Q95, low flow.

5.4. Temporal Shifts in Peak Flows

In Figure 9, the mean monthly discharge of the baseline period (1961–1990) is
plotted against the mean monthly discharge in the future periods (2020s, 2050s, and
2080s) to explore temporal shifts and magnitudes of peak flows at Gari Habibullah.
At this site, a definite delay and increase in peak flows were projected in all three
future periods under both scenarios. The peak flows were projected to shift from June
to July, with about a 10%–25% increase under both scenarios. This shows that the
basin will not only face an increase in frequency and magnitude of floods (mentioned
in previous sections) but will also face the shift of these floods from June to July.
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5.5. Temporal Shifts in Center-of-Volume Date (CVD)

To determine the impact of climate change on the timing of streamflows,
an indicator such as center-of-volume date (CVD)—a date at which half of the
total volume of streamflow passes through at a gauging station for a specific time
period—was used in the present study. CVD was calculated according to the equation
described in [44]. Table 6 shows the changes in CVD under A2 and B2, with respect
to the baseline period, in the three future periods at Naran and Gari Habibullah.
The positive values show delay in flow, and the negative values show earlier in flows.
The delay flows were projected at both stations in the Kunhar River basin under A2
and B2 in all three future periods, with 9–17 days delay. Table 6 shows that about
half of the flow, on an average, of each year, in the Kunhar basin, passed through by
2–6 July for the baseline period (1961–1990) at both sites. However, this is predicted
to shift to mid-July in the future.

Table 6. Future changes in center-of-volume dates (CVD) with respect to the
baseline period (1961–1990) at different streamflow stations under both scenarios,
A2 and B2, in the Kunhar River basin.

River Station
CVD of Baseline 2020s 2050s 2080s

Day of Year A2 (B2) Day

Kunhar G. Habib 183 2 July 15(14) 17(16) 9(16)
Kunhar Naran 187 6 July 13(14) 13(12) 11(10)

6. Conclusions

Pakistan is one of the most water-stressed countries in the world and its water
resources are greatly vulnerable to changing climate. In the present study, the
possible impacts of climate change on the water resources of the Kunhar River
basin, Pakistan, were assessed under A2 and B2 scenarios of HadCM3. The Kunhar
River originates in the Greater Himalayas and is one of the main tributaries of the
transboundary Jhelum River. It is located entirely in Pakistan and contributes to the
Mangla Reservoir after joining the Jhelum River.

The HEC-HMS hydrological model was used to simulate streamflow in the
basin for the future. The model was calibrated and validated for the periods of
1982–1989 and 1978–1981 respectively, at two hydrometric stations (Naran and Gari
Habibullah). Three indicators (i.e., Nash Efficiency, coefficient of determination, and
percentage deviation), and graphical representations of differences between observed
and simulated data were used to check the performance of the model. Downscaled
temperature and precipitation data for the period of 2011–2099 under A2 and B2
scenarios of HadCM3 were obtained from Mahmood and Babel [1] and fed into
HEC-HMS to simulate the streamflow for the future. Mahmood and Babel projected
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an overall increase of 1.92 ˝C–3.15 ˝C in temperature and 5%–11% in precipitation in
the basin. In this study, the simulated streamflow data was divided into three future
periods (2011–2040, 2041–2070, and 2071–2099) and was compared with the baseline
period (1961–1990). Different indicators like changes in mean flow, low flow, median
flow, high flow, flow duration curves, temporal shift in peaks, and temporal shifts in
center-of-volume dates were used to investigate the changes in streamflow under A2
and B2. The main conclusions of the study are the following:

1. Mean annual flow was projected to increase in the basin under both A2 and B2
scenarios. Noticeable increase in streamflow was predicted for summer and
autumn. However, spring and winter showed decrease in flow.

2. High and median flows were predicted to increase but low flows were projected
to decrease in the future under both scenarios. Flow duration curves showed
that the probability of occurrence of flow will be more in the future, relative to
the baseline.

3. Peaks were predicted to shift from June to July in the future. Similarly,
center-of-volume date, a date at which half of the annual water passes, might
get delayed by about 9–17 days in the basin under both A2 and B2.

The overall conclusion of the study is that the Kunhar basin is likely to face
more floods and droughts in the future due to the projected increase in high flows
and decrease in low flows. Many temporal and magnitudinal variations in peak
flows would be faced in the basin. This can create many problems for the policy
makers and managers of water resources if they do not consider the impacts of
changing climate in the basin. For further studies of the basin, we recommend the
use of different GCMs so as to cover the range of uncertainties related to GCMs and
to explore a wider range of possible impacts of climate change on water resources
in the basin.

Limitations of the Study

In the present study, the impact of climate change on the water resources of the
Kunhar River basin were assessed by using only single GCM (HadCM3), although
it is suggested that more than one GCM should be used to cover the uncertainties
related to GCM outputs. Only two meteorological stations are available in the basin,
an indication of the data scarcity of the basin. The scarcity of data can cause a lower
level of performance by a hydrological model during the calibration and validation
processes. Land cover and soil properties were considered constant throughout the
simulation period; such an assumption can affect the projections of streamflow in
the basin.
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Modeling Climate and Management Change
Impacts on Water Quality and In-Stream
Processes in the Elbe River Basin
Cornelia Hesse and Valentina Krysanova

Abstract: Eco-hydrological water quality modeling for integrated water resources
management of river basins should include all necessary landscape and in-stream
nutrient processes as well as possible changes in boundary conditions and driving
forces for nutrient behavior in watersheds. The study aims to assess possible impacts
of the changing climate (ENSEMBLES climate scenarios) and/or land use conditions
on resulting river water quantity and quality in the large-scale Elbe river basin by
applying a semi-distributed watershed model of intermediate complexity (SWIM)
with implemented in-stream nutrient (N+P) turnover and algal growth processes.
The calibration and validation results revealed the ability of SWIM to satisfactorily
simulate nutrient behavior at the watershed scale. Analysis of 19 climate scenarios
for the whole Elbe river basin showed a projected increase in temperature (+3 ˝C)
and precipitation (+57 mm) on average until the end of the century, causing diverse
changes in river discharge (+20%), nutrient loads (NO3-N: ´5%; NH4-N: ´24%;
PO4-P: +5%), phytoplankton biomass (´4%) and dissolved oxygen concentration
(´5%) in the watershed. In addition, some changes in land use and nutrient
management were tested in order to reduce nutrient emissions to the river network.

Reprinted from Water. Cite as: Hesse, C.; Krysanova, V. Modeling Climate and
Management Change Impacts on Water Quality and In-Stream Processes in the Elbe
River Basin. Water 2016, 8, 40.

1. Introduction

Changes of the world’s and Europe’s climate and increased anthropogenic
pressure on natural resources have already been detected in the past, and this
development is likely to continue in the future [1–6].

Looking at the climate aspect, a global rise in mean temperature, change in
precipitation pattern as well as an increase in intensity and frequency of extreme
events can be recognized [1,2,7], impacting the water cycle [8–10], vegetation and
biodiversity [11–14] as well as human health [15,16] and economy [17,18]. The
potential warming in Europe could reach values from +1 to +6 ˝C by the end of
this century [19], depending on the location. The annual mean precipitation is
expected to increase in Northern Europe and decrease in most parts of Southern
Europe and Mediterranean regions up to ˘20% [20]. The catchment of the Elbe
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river, mainly located in Germany and the Czech Republic in Central Europe, is
already experiencing changes in climate conditions as well as changes in extreme
temperature and precipitation values, and this trend is expected to continue. During
the last century (1882–2013) the average temperature in Germany increased by 1.2 ˝C,
whereas the precipitation amounts rose by 10.6% on average with a high spatial
and temporal variability [21]. Application of ensembles of climate scenarios shows
increasing trends in floods for the Elbe basin in Germany [22] as well as in the
Czech Republic [23], especially in wintertime.

Climate change will have direct and indirect impacts on river water quantity
and quality [24–28]. With the rising temperature, water availability will decrease due
to increased evapotranspiration, and a reduced discharge will facilitate algal growth
and reduce dilution of point source pollutants. Higher temperatures and lower
flow velocities would additionally stimulate turnover processes and increase system
respiration rates, causing oxygen deficits in river reaches. All these processes lead to
the degradation of water quality and ecological status of a waterbody connected with
a higher probability of algal blooms [24,29,30] and increasing problems for water
supply and treatment [25].

As phytoplankton growth is a key factor for water quality in lowland river
ecosystems [31], the algal processes should be included in evaluating impacts of
global change on water quality. Light and nutrients are generally deemed to be
the most important external drivers of phytoplankton dynamics in rivers, along
with temperature which also has a positive relationship with phytoplankton, and
discharge which has a negative relationship [29–31].

Additionally, climate change would influence nutrient turnover and transport
processes (denitrification, nitrification, volatilization and leaching) in the catchments,
due to altered temperature and precipitation [32–34], and the terrestrial processes
will also influence the final river water quality at the outlet of the basin. River systems
are also affected by anthropogenic impacts (land use composition, population and
industry) causing nutrient pollution from point (factories, sewage treatment plants)
and diffuse sources (agricultural fields), which lead to eutrophication processes and
a decrease in river water quality [35–38].

Due to the high pressure of rising population, growing industry and increasing
transport demand on landscapes and natural vegetation, many changes in land
use could be recognized in Europe in the past. The current tendencies include a
decreasing trend in crop and pasture acreages in Spain, Czech Republic and Northern
Germany, slowly growing forested areas in Northern Europe and Portugal, and
notably growing urban areas in France and Western Germany [5,39]. It is expected
that these trends will continue in the coming 10–20 years.

Population density and human activities are important underlying factors for
point and diffuse nutrient pollution entering rivers [40]. During the last decades,
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many efforts to reduce nutrient inputs to the rivers by construction and improvement
of sewage treatment plants and optimization of fertilizer application on cropland
were undertaken in Europe. They resulted in a remarkable reduction of phosphorus
emissions (mainly from point sources), but only a small decrease of nitrogen inputs
(mainly from diffuse sources) due to the lag time of diffuse nutrients in soils [41–43].
It is widely recognized that the control of diffuse source emissions is much more
difficult. So it is expected that the inputs of nutrients from households and industry
will be further reduced in the future, and diffuse inputs from fertilizers and manure
will become the main sources of nutrient pollution in Europe [42].

Climate as well as land use change impacts on river water quality superimpose
each other and create a very complex system of interactions and feedbacks [27,44,45].
The nitrate loads in the rivers, for example, are climate-dependent, and were likely
influenced by former climate variations, so it is difficult to define and interpret
the pure effects of management changes in the past [41]. Furthermore, adaptation
measures and policy responses to projected climate change, e.g., subvention for
bio-fuels or control of greenhouse gas emissions, affect freshwater quality as well [24].
A combined land use and climate change impact assessment would be an important
step facilitating an integrated river basin management. The system characteristics
and variable boundary conditions should be taken into account by default in modern
management strategies [31] to support the implementation of adaptation measures
in river basins.

The process-based eco-hydrological watershed models driven by climate and
land use parameters can be useful for assessing potential future developments in a
changing world. Watershed models including both landscape and in-stream nutrient
processes, which are able to simulate nutrient turnover processes in a catchment and
river network, may represent effective tools for the evaluation of river water quality
at the basin scale [46,47]. However, it should be kept in mind that current water
quality modeling at the watershed scale still has more weaknesses and uncertainties
compared to pure hydrological modeling due to the higher complexity of modeled
processes and the requirement to include more input data and parameters.

In former applications of the semi-distributed eco-hydrological Soil and Water
Integrated Model (SWIM) [48] for water quality modeling in river basins in Germany,
it was observed that nutrient retention and decomposition solely in the soils of
the watershed is not sufficient for tackling nutrients coming from different sources,
especially in larger basins [49]. Therefore, SWIM was extended by a new module
representing nutrient and oxygen turnover processes and algal growth in rivers,
which was already tested for the mesoscale Saale river, a sub-catchment of the Elbe
river with an area of about 25,000 km2 [50]. The aim of this study is to apply the
new SWIM version for a combined climate and land use change impact assessment
on the entire Elbe basin including the upstream part in the Czech Republic and the
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lower part in Germany (total drainage area about 150,000 km2). This can support
the development of management strategies and adaptation measures to potential
changes in the future in this large-scale river basin.

In particular, the following objectives were pursued in this study:

‚ Testing the in-stream SWIM module for the large scale by modeling water
quality parameters (nitrate nitrogen (NO3-N), ammonium nitrogen (NH4-N),
phosphate phosphorus (PO4-P), dissolved oxygen (DOX), and chlorophyll
a (Chla)) at the basin outlet and at confluences of the large Elbe tributaries
in the historical period;

‚ Analysis of climate scenarios for the region provided by the European
ENSEMBLES project [51], and climate change impact assessment on water
quantity and quality for two future periods (2021–2050 and 2071–2100) with
unchanged management;

‚ Simulation of selected land use change and management scenarios aiming at
the reduction of point and diffuse nutrient loads in the basin; and

‚ Analysis of the combined climate and land use change impacts on water
quantity and quality to derive ideas for suitable measures for adaptation to
climate change.

The model-based assessments of climate and land use change impacts on
water quality are rare in literature so far compared to impact assessments on the
hydrological cycle, especially at the large scale. The recently implemented in-stream
module enables a more realistic representation of all interrelated processes for the
impact study. Therefore, this study is an important step forward to large-scale
application of water quality models with distributed calibration for impact studies in
general, as well as towards a fully integrated water resources assessment in the Elbe
catchment in particular.

2. Study Area: The Elbe Catchment

The Elbe river (1094 km) originates at 1386 m a.s.l. in the Giant Mountains
located between Poland and the Czech Republic, drains an area of 148,268 km2 and
flows into the North Sea [52]. The Elbe has the fourth largest catchment area among
the European rivers [31]. 65.5% of its catchment belongs to Germany, 33.7% to the
Czech Republic, 0.6% to Austria and 0.2% to Poland (see Figure 1). The discharge
regime (861 m3¨ s´1 on average) usually shows high water levels in winter and spring
and low water levels in summer and autumn. In total, 24.5 million people live in the
Elbe basin, which also includes the large cities Berlin, Hamburg and Prague [52].

Table 1 gives an overview of the main characteristics of the Elbe basin until the
gauge Neu Darchau, and its six main tributaries, covering catchment areas above
5000 km2. In this table some topography-specific differences can be detected between
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the tributary subbasins, namely in regard to climate parameters, soil conditions and,
as a consequence, land use distribution, which also affect nutrient concentrations in
the rivers. So, in the sub-catchments with dominating agricultural land use due to
fertile loess soils (e.g., Saale and Mulde) the nitrate and nitrogen concentrations are
higher (see Table 1), resulting from fertilizer application and leaching. In contrast,
the catchment of the Havel river has the highest share of low fertile soils consisting
of almost two-thirds of sandy grained particles (about 70% of the total area) and
shows the lowest nitrogen pollution but the highest phosphorus level. The high
phosphate concentrations of the Havel river can be mainly explained by desorption
from historically polluted sediments [53].
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aň

an
y/

Z
el

čí
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According to the German classification of water quality [54], which uses the
90th percentile for nutrients and the 10th percentile for dissolved oxygen to compare
with certain water quality thresholds, the highest nitrate level results in water quality
class III (Mulde and Saale), the highest ammonium value belongs also to class III
(Vltava), the maximum phosphate phosphorus level represents water quality class
II–III (Vltava and Havel), and the lowest dissolved oxygen concentration results in
water quality class II (Havel). There is quite high diversity between the rivers in this
respect, and no river exists which has the worst or best status for all components.

The Elbe river is the most important river draining the eastern part of Germany.
The natural flow regime is influenced by reservoirs and regulation of small rivers,
drainage of wetlands and brown coal mining [59]. Due to former political and
socio-economic conditions, the Elbe was one of the most polluted rivers in Europe
with a low ecological potential. The water quality improved after the German
reunification in 1990 due to closure or upgrading of sewage treatment plants and
industrial enterprises in the basin, as well as to a substantial decrease in fertilization
rates on agricultural land [58,60]. However, contamination problems still exist,
especially looking at sediments, which are characterized by a high adsorption of
heavy metals and other polluting substances [61]. There are also no significant
improvements regarding chlorophyll a concentrations in the Elbe river [60].

In general, the Elbe river is characterized by a strong phytoplankton growth in
the free-flowing section due to inputs from the reservoirs of the upper Elbe and Vltava
and high nutrient loads from tributaries [62]. The high primary productivity leads to
substantial differences in nutrient concentrations along the river with remarkable
intra- and interannual variations [62], and the season of main biological activity is
between March and October [31]. Low flow velocities in the lowland tributaries
with many natural lakes in the river course (e.g., Havel) and in rivers influenced by
weirs and barrages (e.g., Vltava, Saale) facilitate good conditions for algal growth
and cause high concentrations of chlorophyll a.

The middle course of the Elbe river in Germany contains several protected
natural areas with a high diversity of flora, fauna and landscape types. Large parts
of the river in Germany are free-flowing and not influenced by barrages. However,
the original floodplain areas have often been cut off by flood protection measures for
settlements, agriculture and industry during the last centuries. Approximately 84%
of the floodplain along the Elbe river course in Germany is protected by dikes [63].
The reduced flooding area not only causes problems in times of very high water levels
(e.g., during the last decades when immense flood events and damage occurred),
but also hinders the natural nutrient retention capacity of the river ecosystems. This
induces an intensification of nutrient pollution problems in the river waters.

247



3. Materials and Methods

3.1. Soil and Water Integrated Model (SWIM)

The Soil and Water Integrated Model (SWIM) is an eco-hydrological model of
intermediate complexity simulating the hydrological cycle and vegetation growth
integrated with nutrient turnover processes within a river basin driven by climate
parameters and taking soil conditions and land use management into account. SWIM
was developed on the base of the Soil and Water Assessment Tool (SWAT ) [64] and
the MATSALU model [65] specifically as a tool for the analysis of climate and land
use change impacts on hydrological processes, agricultural production and water
quality at the regional scale. More details can be found in [48].

Being a spatially semi-distributed dynamic model working with a daily time
step, SWIM calculates all hydrological, vegetation and nutrient processes on a
hydrotope level (set of elementary units in a subbasin with the same land use
class and soil type). Lateral fluxes (surface, subsurface and groundwater flow with
associated nutrients) are summarized at the subbasin level and routed through the
river network to the outlet of the catchment.

Hydrological processes on the hydrotope level are based on the water
balance equation, taking precipitation, evapotranspiration, percolation, surface and
subsurface runoff, capillary rise and ground water recharge into account.

The available water content in soil is influenced by crop and vegetation types,
which are parameterized in a database connected to SWIM [48]. The crop database is
the same as in SWAT [66], and only some parameters were adapted during calibration.
The vegetation affects nutrient turnover as well, as plants are important nutrient
consumers as well as sources (from plant residue).

The nitrogen module of the applied SWIM version (compare Hesse et al. [50])
calculates nutrient processes in the soil profile and includes several pools: nitrate
and ammonium nitrogen, active and stable organic nitrogen, and organic nitrogen
in plant residues. They are influenced by fertilization, mineralization, volatilization
and (de-)nitrification processes, plant uptake, wet deposition, wash-off, leaching and
erosion. Leaching is calculated differently for nitrate and ammonium nitrogen, as
the latter has much higher bonding capacity to soil particles.

The soil phosphorus module includes labile phosphate phosphorus, active and
stable mineral phosphorus, organic phosphorus and phosphorus in the plant residue.
The phosphorus pools are influenced by fertilization, (de-)sorption, mineralization,
plant uptake, erosion, and leaching. The equation applied to calculate leaching of
phosphate phosphorus through the soil profile can be found in Hesse et al. [49].

Processes related to diffuse source nitrogen and phosphorus flows to the
river network are surface runoff, subsurface runoff, groundwater flow, wash-off,
leaching, erosion and retention of nutrients in the landscape. After simulating
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all nutrient-specific processes in the soil profile, nitrogen and phosphorus are
transported with surface, subsurface and groundwater flows to the rivers. During
their passage through the basin, nutrients are subject to retention and transformation
processes in soils, wetlands and in the river system. These processes and model
equations, as well as the testing of different retention methods, were described in
detail in previous publications [50,67,68].

Additional information about the general SWIM model concept, necessary
input and output data, calibration parameters, process equations as well as the GIS
interface for model setup can be found in the User Manual [48].

3.2. Data Preparation and Model Setup for Calibration

SWIM model setup requires spatial and temporal data sets as well as major
water and land use management information. The spatial maps include a digital
elevation model (DEM), a soil map with soil parameterization, a land use map and
a subbasin map. The temporal data sets include the daily historical observed or
projected future climate parameters (temperature, precipitation, solar radiation and
relative air humidity) as external drivers of the model. The observed river discharge
and nutrient concentrations, at least close to the catchment’s outlet, are necessary for
the model calibration and validation. Additional monitoring data at intermediate
gauges and tributaries allow a multi-site calibration, which is more reliable, especially
for large-scale catchments. Necessary management data include water abstraction,
storage or transfer, major crops with their planting and harvesting dates, as well
as fertilization rates and dates and effluents from industrial sites or waste water
treatment plants.

The model setup for the Elbe river was based on spatial maps with a
250 m resolution. The DEM map was resampled from the data provided by
the NASA Shuttle Radar Topographic Mission (SRTM). The general German soil
map “BÜK1000” delivered by the Federal Institute for Geosciences and Natural
Resources (BGR) was combined with the soil map and soil parameterization of the
Czech Republic [59] and the European Soil Database (ESDB) provided by the Joint
Research Centre of the European Commission to cover the entire Elbe river catchment.
The land use map was obtained from the CORINE land cover (CLC2000) data set of
the European Environment Agency (EEA) and reclassified to the 15 SWIM land use
classes required by the model. The subbasin map was combined from the standard
maps of the Federal Environment Agency (UBA) for Germany and the T.G.M. Water
Research Institute for the Czech Republic, and included 2268 subbasins.

The historical climate data of 348 climate observation stations located within and
20 km around the Elbe catchment were used to interpolate the climate parameters
to the centroids of all subbasins by an inverse distance method for calibration and
validation of the SWIM model, taking climate information of at least one to maximum
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four neighboring stations into account. The station density with available climate
data was higher in the German than in the Czech part of Elbe river catchment.

The observed discharge and water quality data for selected gauges located at the
Elbe river and its main tributaries in Germany originated from the Data Information
System (FIS) of the River Basin Community Elbe (FGG-Elbe) and were downloaded
in December 2012. The Czech monitoring data with a monthly time step were taken
from the publications of the International Commission for the Protection of the
Elbe river (IKSE). In case the observed nutrient concentrations were indicated to be
below the detection limit, the minimum detectable concentration was halved and
assumed for this day. Data on nutrient inputs from point sources at the German part
of the basin were taken from FGG-Elbe [60]. For the Czech part, assumed data on
nutrient emissions from point sources were derived from a report of the IKSE for the
year 2000 [58]. As there were only temporally aggregated data available, the point
source emissions were implemented in the model as daily constant values.

The standard SWIM does not consider crop rotation management on agricultural
fields so that only one main crop type could be assumed on the entire arable
land. According to data in the statistical yearbooks of the German federal states in
Germany considerably overlaying with the Elbe basin (Thuringia, Saxony-Anhalt,
Brandenburg, Saxony and Mecklenburg-West Pomerania), winter wheat was selected
to be the main crop. Assuming some nutrient storage in the soils, 100 kg N/ha
and 12 kg P/ha were assumed as an average fertilization level in accordance with
recommendations of the federal agriculture agencies. However, fertilization is
recommended to be increased with increasing yield expectations [69]. To implement
this option, arable land was classified according to the expected yield as simulated by
SWIM (as a function of soil quality, water availability and climate conditions under
constant fertilization). Then the medium yield class received the average fertilization,
and fertilization of the low/high yield classes was reduced/increased by 20%.

In order to better represent specific behavior of vegetation in lowland
areas with its connection to groundwater and the increased evapotranspiration
potential, the simpler of two approaches for wetland simulation as described in
Hattermann et al. [70] was used in SWIM. In total, 22.6% of the entire Elbe river basin
belongs to wetlands, with especially high shares in the Schwarze Elster catchment
(41%), the lower Elbe reaches (40%), and the Havel river catchment (33%). In the
catchments of the other large tributaries (Saale, Mulde, Ohře and Vltava), wetlands
make up 10%–16% of their total areas.

The model calibration and validation for the whole basin was performed for five
years, each within the period 2001–2010, considering observed data at the last gauges
at Neu Darchau (discharge, Elbe, km 536.4) and Schnackenburg (water quality, Elbe,
km 474.5), which are undisturbed by tidal influences. The nutrient loads at the
gauge at Schnackenburg were calculated as products of concentration and discharge
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using the discharge of the gauge at Wittenberge (km 453.9) with the correction
factor 1.001 [71].

The calibration of water discharge (Q) and nutrient loads was done by adjusting
the main model calibration parameters described in the SWIM manual [48], and listed
in former SWIM model applications [49,50,68,72,73]. During the model calibration it
was realized that a global calibration parameter set was not sufficient to represent
the basin- and river-specific water and nutrient processes for the several catchments
of the Elbe tributaries, which can be highly variable due to different combinations of
elevation, soil, land use and river characteristics. Therefore, it was decided to use the
most important calibration parameters spatially distributed for the seven large river
catchments, which were calibrated individually. Table 2 lists and describes those
parameters for water quantity and quality calibration used in a distributed mode
within the Elbe river basin.

Table 2. SWIM calibration parameters applied spatially distributed in the Elbe
river basin.

Module Parameter Description Unit

Hydrology

bff baseflow factor used to calculate return flow travel time -
delay time needed for water leaving root zone to reach shallow aquifer day
roc2/roc4 coefficients to correct the storage time constants for surface and

subsurface flows
-

Soil
nutrients

ret retention times of nitrate nitrogen (NO3-N), ammonium nitrogen
(NH4-N) and phosphate phosphorus (PO4-P) in the lateral
subsurface and groundwater flows (6 parameters)

day

deg degradation rates of NO3-N, NH4-N and PO4-P in the lateral
subsurface and groundwater flows (6 parameters)

day´1

deth soil water content threshold for denitrification of NO3-N %
dad/dkd ratios of adsorbed NH4-N and PO4-P to that in soil water -

In-stream
processes

mumax maximum specific algal growth rate day´1

tempo optimal temperature for algal growth ˝C
lio optimal radiation for algal growth ly
pr20 predation rate in the reach at 20 ˝C day´1

ai1/ai2 fractions of algal biomass that is nitrogen and phosphorus mg¨mg´1

rs1 local algal settling rate in the reach at 20 ˝C m¨day´1

rs2/rs3 benthic source rates for PO4-P and NH4-N in the reach at 20 ˝C mg¨(m2¨day)´1

rs5 organic phosphorus settling rate in the reach at 20 ˝C day´1

rk2 oxygen reaeration rate in the reach at 20 ˝C day´1

bc3 rate constant for hydrolysis of organic nitrogen to NH4-N at 20 ˝C day´1

bc4 rate constant for mineralization of organic phosphorus to
PO4-P at 20 ˝C

day´1

3.3. Evaluation of Model Results

The ability of SWIM to simulate water and nutrient processes in the Elbe
catchment and to reproduce the observed monitoring values was evaluated in
different ways for water quantity and quality.

The simulated daily and/or monthly discharges were assessed using the
Nash-and-Sutcliffe efficiency (NSE, [74]) as well as the deviation in water balance (DB)
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(compare [49]). The non-dimensional NSE is a measure to analyze the squared
differences between the observed and simulated values, and DB describes the
long-term differences of the observed values against the simulated ones for the
whole simulation period in percent.

The model’s efficiency to represent the water quality parameters was evaluated
at the long-term average monthly basis using three criteria, ∆µ, ∆σ and r, according
to Gudmundsson et al. [75]. Here ∆µ is a balance measure defined as the relative
bias of the mean annual observed and simulated values. Criterion ∆σ evaluates
the amplitude or the spread from the lowest to the highest monthly values of the
mean annual cycle by comparing the relative difference in standard deviations of the
observed and the simulated values. Also, the usual Pearson’s correlation coefficient
r, which is sensitive to differences in the shape as well as in the timing of the mean
annual cycle, was applied.

Table 3 lists the possible ranges, optima and aspired results of the different
performance criteria used in this study.

Table 3. Description of performance criteria used in this study to evaluate
model results.

Criterium Range Optimum Aim in This Study

NSE ´8 to 1 1 >0.65
DB ´8 to +8 0 >´20% to <20%
∆µ ´8 to +8 0 >´0.2% to <0.2%
∆σ ´8 to +8 0 >´0.2% to <0.2%
r ´1 to 1 1 >0.5

3.4. Description, Evaluation and Processing of Climate Scenario Data

The ENSEMBLES project [51] delivered projections for a possible climatic future
of Europe by running an ensemble of different Regional Climate Models (RCMs)
using the boundary conditions produced by several General Circulation Models
(GCMs). All models assumed the A1B emission scenario with a balanced use of fossil
and non-fossil fuels in a world with a rapidly growing economy, population growth
until 2050 and a decline afterwards, and fast development of new and effective
technologies [76]. According to this scenario an average global temperature rise
of 2.8 ˝C (with a range between 1.8 and 4.4 ˝C) is estimated [1] until the end of
the 21st century.

The resulting ENSEMBLES climate scenarios differ in resolution (25 or 50 km
grids) and simulation period (1951/1961–2050/2100). For our study, 19 scenarios
covering the period until 2100 were chosen (Table 4). As climate data necessary for
SWIM modeling were not available for all scenarios until 2100, only data until 2098
were considered in all cases. A scenario-specific number of grid cells with data were
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treated as virtual climate stations for climate interpolation to the centroids of the
2268 subbasins within the Elbe basin using an inverse distance method.

Table 4. Numbering of the chosen climate scenarios as combinations of General
Circulation Models (GCMs) and Regional Climate Models (RCMs), the responsible
institute, resolution [km], starting year, and number of grid cells used for
interpolation of the projected climate in the Elbe catchment.

ID Institute GCM RCM Resolution Start Year Number of
Grid Cells

1 SMHI HadCM3Q3 RCA 25 1951 316
2 HC HadCM3Q0 HadRM3Q0 25 1951 316
3 HC HadCM3Q3 HadRM3Q3 25 1951 316
4 HC HadCM3Q16 HadRM3Q16 25 1951 316
5 C4I HadCM3Q16 RCA3 25 1951 316
6 ETHZ HadCM3Q0 CLM 25 1951 316
7 KNMI ECHAM5-r3 RACMO 25 1951 316
8 SMHI BCM RCA 25 1961 316
9 SMHI ECHAM5-r3 RCA 25 1951 316

10 MPI ECHAM5-r3 REMO 25 1951 316
11 CNRM ARPEGE_RM5.1 Aladin 25 1951 300
12 DMI ARPEGE HIRHAM 25 1951 316
13 DMI ECHAM5-r3 DMI-HIRHAM5 25 1951 316
14 DMI BCM DMI-HIRHAM5 25 1961 316
15 ICTP ECHAM5-r3 RegCM 25 1951 282
16 KNMI ECHAM5-r1 RACMO 50 1951 79
17 KNMI ECHAM5-r2 RACMO 50 1951 79
18 KNMI ECHAM5-r3 RACMO 50 1951 79
19 KNMI MIROC RACMO 50 1951 79

To analyze the projected trends of single climate scenarios, climate change
signals were calculated for two future periods for temperature, precipitation and
solar radiation. Climate change signals describe the differences between the mean
climate parameter values in a future period and in the reference period of the same
scenario. The signals were derived taking all scenario grid cells into account and
were evaluated for the annual mean climate parameter values as well as for their
seasonal dynamics.

The 19 climate scenarios were used to drive the calibrated SWIM model, each
for the reference period 1971–2000 (p0) and the two future periods 2021–2050 (p1)
and 2071–2098 (p2).

It is very important which downscaling approach is used to generate climate
scenarios, and whether it is statistical or dynamical. The choice of a hydrological
model is less important in terms of its contribution to uncertainty, especially when
only the long-term mean annual changes are compared [77]. Often it was detected
that results achieved with one hydrological model under two or more climate
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scenarios differ more than the results of different hydrological models achieved
by using only one climate scenario [78,79]. Hence, many authors suggest using an
ensemble of climate change scenarios to get the full range of uncertainty between the
different scenario projections [22,80,81]. The last two authors also mentioned that
there is no direct link between the climate model performance in the historical period
and the robustness of trends in the future, and thus the application of a smaller
number of best fitting scenarios could not be recommended. Therefore, in our study
we did not try to find the most probable future climate scenarios by their comparison
with the historical measurements.

The observed climate data are also often used for bias correction of climate
scenarios before applying them for impact assessment in order to avoid unrealistic
simulations of runoff or nutrient loads. However, there is no consistent opinion on
the usefulness of bias correction for impact assessments. While Teutschbein and
Seibert [82] recommend an application of bias correction, other authors complain
about the lack of physical justifications of corrections damaging the physical
consistency between the variables [77,83]. The latter do not appreciate this method
as a “valid procedure”, and complain that an additional uncertainty is added to the
model chain. In our study it was decided not to use bias correction and to simply
compare the simulations driven by 19 RCMs between periods to detect trends and
the relative changes caused by climate change.

3.5. Processing of Socio-Economic Change Experiments

In addition to climate change simulations, five land use change experiments
were applied for testing the effects of specific socio-economic measures aimed at
reducing point or diffuse nutrient emissions.

The applied land use change scenarios are listed in Table 5 together with
the description of the changes implemented in model input data. Two scenarios
are dealing with the direct reduction of nutrient emissions (“Point sources” and
“Fertilization”) by 10% or 20%. The decrease of point source emissions was assumed
with different percentages for the two nutrients, as it was supposed that phosphorus
reduction potential in sewage treatment is higher. The third scenario (“Retention”)
indirectly tested the effects of a possible increase of the retention potential and
decomposition rate in the soils of the Elbe catchment by 10%. This could be
achieved by different measures, for example by extension of wetland areas around
the watercourses or intensified cultivation of plant communities with a high nutrient
intake rate (mycorrhiza, legumes). In addition, two such measures were tested
directly in the model (“Buffer” and “Slope”) by changing the land use composition
in the catchment. Due to the spatial resolution of the SWIM project with 250 ˆ 250 m
raster maps, water courses in agricultural areas were converted to 250 m raster
cells in the “Buffer” experiment, containing extensive meadows without fertilization.
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In the “Slope” scenario, all agricultural areas with a slope >4% were converted to
extensively used meadows to study the effects on water quantity and quality in the
catchment (see e.g., [84] where hillsides with slopes >4% are considered as being a
risk of facilitating erosion).

Table 5. Description of applied land use change experiments in the Elbe
river catchment.

Scenario Name Description

Point sources Reduction of emissions from point sources
(nitrogen ´10%, phosphorus ´20%)

Fertilization Reduction of N and P fertilizers on agricultural land by 20%

Retention Increase of nutrient retention time and decomposition rate in
soils by 10% each

Buffer Conversion of all agricultural lands around water courses to
extensive meadow

Slope Conversion of agricultural lands to extensive meadows on
hillsides with slopes >4%

The socio-economic experiments were run under the 19 ENSEMBLES climate
scenarios to allow evaluation of the combined climate and land use change impacts
on water quantity and quality in addition to the land use change impacts only.
As 19 climate scenarios were applied with specific climate conditions, the results
were different, not only for the combined impacts, but also for the land use change
impacts. To show the possible effects of scenarios, the 19 single percental changes of
the model outcomes were analyzed regarding their medians and 25th/75th percentile
values, representing the most probable 50% range of all scenario results.

4. Results

4.1. SWIM Model Calibration and Validation

A successful calibration of a model for water quality requires a well-calibrated
hydrological model. During the hydrological and water quality calibration, the
observed and simulated values at the most downstream Elbe gauges, at the gauges
located close to the German-Czech border, as well as at the main tributaries were
compared and statistically evaluated for the period of 2001–2010.

Figure 2 presents the observed and simulated daily discharges for the 10-year
period (left), and the long-term daily averages (right) at the two main Elbe gauges
Schöna and Neu Darchau. The discharge dynamic is well reproduced, reaching the
good to very good performance ratings. The performance criteria for the daily model
results are better at the downstream gauge Neu Darchau. The long-term seasonal
dynamics are reproduced well at both gauges.
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However, not all simulation results at the tributaries reach the same model
performance (Table 6). The most difficult river to simulate was the Schwarze Elster,
which is highly influenced by human activities and regulation (opencast lignite
mining, discharge regulation and stream straightening), so that the hydrological
processes are no longer natural. As these site-specific management measures were
not implemented in the model, the model does not perform well enough at the Löben
gauge. Similar problems apply to the lowland catchment of the Havel river, which is
characterized by a high number of wetland areas and stream lakes, and is also highly
affected by lignite mining in its upper course, all this leading to lower NSE values at
gauge Havelberg.Water 2016, 8, 40 13 of 31 
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Figure 2. Calibration results for the Elbe river discharge at the most downstream
gauge Neu Darchau and the intermediate Elbe gauge Schöna (Czech/German border)
for the time period 2001–2010, separated into calibration and validation sub-periods.

Only monthly measurements for a shorter time period were available for the
three gauges located in the Czech part of the Elbe basin. The best results here could
be achieved for the smaller and mountainous river Ohře. The upper part of the
Elbe river (gauge Nymburk), as well as the largest Elbe tributary, Vltava, show a
slight underestimation of discharge. This could be explained by water regulation
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measures in the water course of these rivers, with a high number of barrages and
dams to ensure water availability for shipping and for flood protection, which were
not implemented in the model. However, the hydrological model performance in
terms of NSE and DB for the Elbe and its tributaries mostly meet the aim (compare
Table 3), so that it was used for the subsequent water quality calibration.

Table 6. Model performances for four discharge gauges of the Elbe river and
six gauges of its main tributaries from the upstream to downstream location
of tributaries.

River Gauge Time Period
NSE (´)

DB (%)
Daily Monthly

Elbe Nymburk 11/2002–10/2010 0.75 ´13.5
Vltava Vranany 11/2002–10/2010 0.64 ´10.5
Ohře Louny 11/2002–10/2010 0.86 ´0.3

Elbe Schöna 2001–2010 0.69 0.77 ´5.1
Schwarze Elster Löben 2001–2008 0.25 0.60 13.4
Mulde Bad Düben 2001–2010 0.74 0.88 1.7
Saale Calbe-Griezehne 2001–2010 0.61 0.84 1.5

Elbe Magdeburg 2001–2010 0.82 0.86 1.1
Havel Havelberg 2001–2010 0.54 0.68 ´1.5

Elbe Neu Darchau 2001–2010 0.83 0.86 ´0.5

Figure 3 presents the results of water quality calibration for two main gauges in
the Elbe river: Schmilka at the Czech-German border and the most downstream Elbe
gauge Schnackenburg. The long-term average daily observed loads were calculated
based on interpolated values between biweekly measurements and have some degree
of uncertainty. The calibration was aimed at visually and statistically matching the
inner-annual dynamics and minimizing the deviation in balance of the mean annual
nutrient loads for the 10-year period of 2001–2010.

In Figure 3, a specific annual cycle of the three nutrients can be observed,
which is reproduced quite well by the SWIM model. The nitrate nitrogen loads
(mainly coming from diffuse sources) generally follow the discharge curve with
a spring peak and low values in summer. Ammonium nitrogen and phosphate
phosphorus are more algae-influenced. The periods with high concentrations of
chlorophyll a especially result in ammonium depletion in the river due to the high
ammonium preference factor of the algae defined in the model. Algal influences
on the phosphate loads are less significant, but also obvious, especially during the
spring algal bloom. The dissolved oxygen loads are highly connected to the water
amounts and are simulated very well. The balance measure ∆µ is low in all cases and
is located within the aimed range, also reflecting sufficiently good calibration results.
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Figure 3. Long-term average daily observed and simulated loads of nitrate
nitrogen (NO3-N), ammonium nitrogen (NH4-N), phosphate phosphorus (PO4-P),
chlorophyll a (Chla) and dissolved oxygen (DOX) at the two Elbe gauges Schmilka
(corresponds to the total Czech loads) and Schnackenburg (most downstream
gauge) for the time period 2001–2010.

Figure 4 and Table 7 show results on water quality for the main tributaries
of the Elbe river and for selected Elbe gauges. Figure 4 plots the simulated versus
observed long-term average monthly values and illustrates the variation of the
long-term seasonal cycle ratios around a diagonal of perfect fit, and Table 7 analyzes
the model’s performance statistically.
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Figure 4. The long-term average monthly observed and simulated discharge and loads per tributary 
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intervals). 

As already detected in the hydrological calibration, the largest discrepancies between the 
observed and simulated values can be seen for the Schwarze Elster river. The intensive human 
activities within this catchment (e.g., surface water management due to lignite mining) influence 
nutrient processes but are not fully implemented in the model, resulting in model outputs different 
from observations. Some problems can also be seen for the Havel and (partly) the Mulde tributaries. 
The largest dispersion around the diagonal of perfect fit is obvious for ammonium nitrogen, which is 
difficult to model as it is highly influenced by point source emissions involving input data 
uncertainty as well as by algal consumption processes (parameter uncertainty). The latter, due to 
their complex behavior influenced by many physical, chemical and biological interactions, are 
difficult to model, especially in large basins. The results in terms of statistical criteria (Table 7) with 
mostly high r and low Δµ and Δσ confirm the visual impression. 

Generally, the calibrated SWIM model for the large-scale Elbe river basin matches observations 
well, and can be used for climate and land use change impact assessment. 
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Before applying the 19 ENSEMBLES climate scenarios to the Elbe basin, they were analyzed for 
their trends in temperature, precipitation and solar radiation averaged over the whole basin by 
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temperature by 1.3 °C for the first period and by 3 °C for the second period on average, as well as an 
increase in precipitation by +41/+57 mm on average for all 19 climate scenarios. The increase in 
precipitation is accompanied by a decrease in solar radiation of −15/−27 J cm−2 on average, probably 
due to increased cloudiness with higher precipitation amounts. There is a wide spread in signals 
between the scenarios, which is increasing in the second period. Regarding temperature, all 
scenarios agree on increasing trend, but the increase in period p2 ranges between 2 and 5 °C 
depending on the scenario. The agreement of the single scenarios with the overall trends is lower for 

Figure 4. The long-term average monthly observed and simulated discharge
and loads per tributary and at two selected Elbe gauges in the period 2001–2010
(diagonals: black—perfect fit, grey—˘ 50% intervals).

As already detected in the hydrological calibration, the largest discrepancies
between the observed and simulated values can be seen for the Schwarze Elster
river. The intensive human activities within this catchment (e.g., surface water
management due to lignite mining) influence nutrient processes but are not fully
implemented in the model, resulting in model outputs different from observations.
Some problems can also be seen for the Havel and (partly) the Mulde tributaries.
The largest dispersion around the diagonal of perfect fit is obvious for ammonium
nitrogen, which is difficult to model as it is highly influenced by point source
emissions involving input data uncertainty as well as by algal consumption processes
(parameter uncertainty). The latter, due to their complex behavior influenced by
many physical, chemical and biological interactions, are difficult to model, especially
in large basins. The results in terms of statistical criteria (Table 7) with mostly high
r and low ∆µ and ∆σ confirm the visual impression.

Generally, the calibrated SWIM model for the large-scale Elbe river basin
matches observations well, and can be used for climate and land use change
impact assessment.
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4.2. Climate Change Signals of the ENSEMBLES Scenarios

Before applying the 19 ENSEMBLES climate scenarios to the Elbe basin, they
were analyzed for their trends in temperature, precipitation and solar radiation
averaged over the whole basin by comparing two future scenario periods, p1 and p2,
with the reference period p0. The comparison was done for the long-term average
annual values as well as for the long-term average monthly values of all scenarios
and periods.

Table 8. Climate change signals for temperature, precipitation and radiation of
19 analyzed ENSEMBLES climate scenarios and on average for the two future
periods 2021–2050 (p1) and 2071–2098 (p2) compared to the reference period
1971–2000 (p0) for the Elbe basin.

Scenario
Temperature (˝C) Precipitation (mm) Radiation (J¨cm´2)

p1-p0 p2-p0 p1-p0 p2-p0 p1-p0 p2-p0

S1 1.5 2.9 67 95 ´26 ´76
S2 2.1 4.0 ´2 16 27 28
S3 1.7 3.4 34 17 8 7
S4 2.2 5.0 48 ´49 1 43
S5 1.8 4.1 104 94 ´57 ´67
S6 1.7 3.5 24 13 ´22 ´12
S7 0.9 2.6 35 110 ´12 ´20
S8 0.7 1.9 63 86 ´30 ´48
S9 0.8 2.4 47 112 ´29 ´65

S10 0.9 2.6 14 47 ´18 ´42
S11 1.1 2.8 ´4 ´68 5 36
S12 0.9 2.0 14 ´31 ´16 ´111
S13 0.6 2.0 57 157 ´21 ´73
S14 0.9 2.5 37 99 ´29 ´47
S15 0.9 2.6 29 87 1 7
S16 1.0 3.1 52 63 ´12 ´5
S17 1.4 3.3 65 54 ´22 ´11
S18 0.9 2.6 36 99 ´16 ´20
S19 1.8 3.9 50 76 ´26 ´40

meanall 1.3 3.0 41 57 ´15 ´27

stdevall 0.5 0.8 26 60 18 42

The climate change signals per scenario can be found in Table 8. The results
show an increase in temperature by 1.3 ˝C for the first period and by 3 ˝C for the
second period on average, as well as an increase in precipitation by +41/+57 mm
on average for all 19 climate scenarios. The increase in precipitation is accompanied
by a decrease in solar radiation of ´15/´27 J cm´2 on average, probably due to
increased cloudiness with higher precipitation amounts. There is a wide spread in
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signals between the scenarios, which is increasing in the second period. Regarding
temperature, all scenarios agree on increasing trend, but the increase in period p2
ranges between 2 and 5 ˝C depending on the scenario. The agreement of the single
scenarios with the overall trends is lower for precipitation (15 of 19 scenarios agree
with the trend) and solar radiation (14 scenarios agree). However, a majority of
scenarios correspond to the average trends.

The seasonal climate change signals are visualized in Figure 5. Looking at
the changes per month, it is obvious that the value as well as the spread of the
climate change signals is higher in the second period. The increase in temperature
is confirmed for the entire course of the year, and it is lowest in May and highest in
winter months (December–February) and in August. The changes in precipitation
and solar radiation vary around the zero-line and show an opposite behavior
(probably due to connection of precipitation and cloudiness). In the first period
precipitation is slightly decreasing in July and August, and in the second period
negative changes in precipitation are projected from June to September. The changes
in solar radiation show almost the opposite trends. In general, the 19 ENSEMBLES
climate scenarios project a warmer and wetter climate with less sunshine hours from
autumn to spring, but a warmer, dryer and sunnier climate in the summer months
for the region.Water 2016, 8, 40 18 of 31 
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4.3. Climate Change Impacts 

The projected changes in climate lead to changes in simulated water quantity and quality 
variables in the Elbe basin in future periods. The results are shown Figure 6 for the two Elbe river 
gauges Schöna and Neu Darchau. They present changes in the long-term average seasonal dynamics 
comparing the average and the 25th/75th percentile ranges of six variables from simulations driven 
by 19 climate scenarios in the future and the average of the reference period 1971–2000. 

 

Figure 5. Ranges of seasonal climate change signals for temperature, precipitation
and solar radiation of 19 ENSEMBLES climate scenarios for the two future periods
compared to the reference period of the same scenario for the Elbe basin. The plots
represent median (line), 25th/75th percentiles (box), min/max values (whiskers)
and the average (dots) change of all 19 scenarios.
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4.3. Climate Change Impacts

The projected changes in climate lead to changes in simulated water quantity
and quality variables in the Elbe basin in future periods. The results are shown
Figure 6 for the two Elbe river gauges Schöna and Neu Darchau. They present
changes in the long-term average seasonal dynamics comparing the average and the
25th/75th percentile ranges of six variables from simulations driven by 19 climate
scenarios in the future and the average of the reference period 1971–2000.
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Figure 6. The long-term average monthly values of simulated discharge (Q), nutrient and 
chlorophyll a loads (NO3-N, NH4-N, PO4-P, Chla) and dissolved oxygen concentrations (DOX) with 
uncertainty ranges (25th/75th percentiles corresponding to 19 simulations) at the two Elbe gauges 
Neu Darchau (full lines) and Schöna (dashed lines) for the future periods 2021–2050 (p1, a) and 
2071–2078 (p2, b) in comparison to the corresponding average values of the reference period  
1971–2000 (p0). 

Following the increasing trend for precipitation in the Elbe basin, the discharge is projected to 
increase as well, both at the last Elbe gauge and at the gauge of the Czech-German border. The 
increase can be observed during almost the whole year, with the highest values in winter months 
(due to higher rainfall) and the lowest values, or even negative changes in the p1 period, in April 
(due to lower or missing snow melt peaks). Though a decrease in precipitation is projected in the 
summertime (compare Figure 5), the projected discharge in summer months is higher than in the 
reference period, probably due to the capability of soils to retain additional winter and spring water 
causing delayed subsurface and groundwater flows. However, the uncertainty ranges for the 
projected discharge are quite high, especially at the most downstream gauge. 

The nitrate nitrogen load performs similarly to the discharge, as nitrate nitrogen comes to the 
river mainly dissolved in water from diffuse sources. A moderate increase can be observed in the 
first winter months, followed by some decrease in spring, whereas the second half of the season 
shows only minor changes on average compared to the reference period (due to higher retention 
time of nitrate nitrogen compared to water as well as impacts of vegetation). 

The ammonium nitrogen loads are higher on average in the upstream part of the Elbe (gauge 
Schöna) than downstream (gauge Neu Darchau) due to higher loads in the Czech part of the 
catchment as well as to progressively increasing phytoplankton concentration downstream of the 
Elbe. The decrease in ammonium load caused by changes in climate conditions is obvious in the first 
half of the season (especially during spring flood). The decrease in NH4-N loads is probably 
connected to the rising temperatures, as mineralization processes and the emergence of leachable 

Figure 6. The long-term average monthly values of simulated discharge (Q),
nutrient and chlorophyll a loads (NO3-N, NH4-N, PO4-P, Chla) and dissolved
oxygen concentrations (DOX) with uncertainty ranges (25th/75th percentiles
corresponding to 19 simulations) at the two Elbe gauges Neu Darchau (full lines)
and Schöna (dashed lines) for the future periods 2021–2050 (p1, a) and 2071–2078
(p2, b) in comparison to the corresponding average values of the reference period
1971–2000 (p0).

Following the increasing trend for precipitation in the Elbe basin, the discharge
is projected to increase as well, both at the last Elbe gauge and at the gauge of the
Czech-German border. The increase can be observed during almost the whole year,
with the highest values in winter months (due to higher rainfall) and the lowest
values, or even negative changes in the p1 period, in April (due to lower or missing
snow melt peaks). Though a decrease in precipitation is projected in the summertime
(compare Figure 5), the projected discharge in summer months is higher than in the
reference period, probably due to the capability of soils to retain additional winter
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and spring water causing delayed subsurface and groundwater flows. However, the
uncertainty ranges for the projected discharge are quite high, especially at the most
downstream gauge.

The nitrate nitrogen load performs similarly to the discharge, as nitrate nitrogen
comes to the river mainly dissolved in water from diffuse sources. A moderate
increase can be observed in the first winter months, followed by some decrease in
spring, whereas the second half of the season shows only minor changes on average
compared to the reference period (due to higher retention time of nitrate nitrogen
compared to water as well as impacts of vegetation).

The ammonium nitrogen loads are higher on average in the upstream part
of the Elbe (gauge Schöna) than downstream (gauge Neu Darchau) due to higher
loads in the Czech part of the catchment as well as to progressively increasing
phytoplankton concentration downstream of the Elbe. The decrease in ammonium
load caused by changes in climate conditions is obvious in the first half of the
season (especially during spring flood). The decrease in NH4-N loads is probably
connected to the rising temperatures, as mineralization processes and the emergence
of leachable ammonium in soils are temperature-related and occur mainly within a
certain temperature range. The uncertainty ranges around the ENSEMBLES average,
representing the most probable 50% of the 19 scenario results, are quite narrow.

The average phosphate phosphorus load shows a slight and almost constant
increasing trend throughout the season, but the uncertainty ranges are the largest
for this nutrient, caused by the high uncertainty and climate-dependence of
phosphorus-related processes in the Havel catchment (compare with Figure 7). The
increase in loads is probably connected to increasing erosion and leaching processes
with higher precipitation in the future, washing more phosphorus from sandy and
highly permeable soils. It could also be a result of less ingestion by a decreasing
algae population in the future.

The chlorophyll a load is projected to decrease in the spring blossom time,
when warmer temperatures (temperature stress) and lower solar radiation (below
the optimum value) may hamper phytoplankton growth and less ammonium is
available for algae consumption.

The dissolved oxygen concentration in the Elbe river is projected to decrease,
and the changes remain almost constant throughout the season. This is probably
connected to the increasing water temperature, resulting in lower values of oxygen
saturation in the water. The uncertainty ranges for future dissolved oxygen
concentrations are higher upstream, probably due to the generally higher ammonium
loads modeled in the upper river reaches, where oxygen is used for nitrification in
the water column.

In addition to the temporal analysis of climate impacts, Figure 7 illustrates
some spatially distributed results for the Elbe and its tributaries. For that, average
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percental changes were calculated for six main tributaries of the Elbe and two Elbe
gauges (the same as in Figure 6).

Water 2016, 8, 40 20 of 31 

 

ammonium in soils are temperature-related and occur mainly within a certain temperature range. 
The uncertainty ranges around the ENSEMBLES average, representing the most probable 50% of the 
19 scenario results, are quite narrow. 

The average phosphate phosphorus load shows a slight and almost constant increasing trend 
throughout the season, but the uncertainty ranges are the largest for this nutrient, caused by the high 
uncertainty and climate-dependence of phosphorus-related processes in the Havel catchment 
(compare with Figure 7). The increase in loads is probably connected to increasing erosion and 
leaching processes with higher precipitation in the future, washing more phosphorus from sandy 
and highly permeable soils. It could also be a result of less ingestion by a decreasing algae 
population in the future. 

 

Figure 7. Ranges of the percental changes of 30-year-average river discharges, nutrients and 
chlorophyll a loads, as well as dissolved oxygen concentrations in the Elbe river and its main 
tributaries simulated with SWIM driven by 19 ENSEMBLES climate scenarios (in future periods p1 
(light) and p2 (dark) compared to the reference period p0 of the same scenario). The plots visualize 
the following ranges: min/max (whiskers), 25th/75th percentiles (boxes), median (line) and average 
(dots) changes of all 19 scenarios. 

The chlorophyll a load is projected to decrease in the spring blossom time, when warmer 
temperatures (temperature stress) and lower solar radiation (below the optimum value) may 
hamper phytoplankton growth and less ammonium is available for algae consumption. 

Figure 7. Ranges of the percental changes of 30-year-average river discharges,
nutrients and chlorophyll a loads, as well as dissolved oxygen concentrations in the
Elbe river and its main tributaries simulated with SWIM driven by 19 ENSEMBLES
climate scenarios (in future periods p1 (light) and p2 (dark) compared to the
reference period p0 of the same scenario). The plots visualize the following ranges:
min/max (whiskers), 25th/75th percentiles (boxes), median (line) and average
(dots) changes of all 19 scenarios.

The overall trend for the entire basin can be generally detected regarding
different variables in Figure 7, though there are some outlying sub-catchments.
For all gauges an increasing discharge is projected, which becomes higher in the
second period. Also, the uncertainty ranges increase in p2. The differences between
gauges are small.
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The nitrate nitrogen load decreases on average for the entire Elbe river basin
(Neu Darchau). The decrease is largest for the Saale catchment, which is characterized
by the highest share of agricultural areas due to very fertile soils with a high nutrient
retention capability. There are also some sub-catchments where a small increase (or
no change) in nitrate load on average is simulated. This is probably connected to an
increased diffuse pollution with increased precipitation in these sub-areas.

The impacts on ammonium nitrogen loads are almost all negative, and show
a high diversity between the sub-catchments. The uncertainty ranges are highest
in the Vltava and Schwarze Elster sub-catchments, where ammonium pollution is
generally at its highest level, and have more space for variability due to climate
change impacts.

Except for the Saale sub-catchment with its fertile soils and high nutrient
retention potential, the climate change impact on phosphate phosphorus shows
increasing loads due to increased leaching and erosion processes. The uncertainty
ranges are extremely high in the Havel sub-catchment, where phosphorus
contamination is the highest in the Elbe drainage area, and a high share of
permeable and sandy soils causes a high phosphorus leaching potential with higher
precipitation amounts.

Chlorophyll a demonstrates a decreasing trend on average almost everywhere.
The uncertainty ranges, especially in the upper tributaries, are quite high, due to the
high complexity of algae processes simulated in the model, which are influenced by
many system-internal and external drivers.

Changes in the dissolved oxygen concentrations have a very small uncertainty
range and show a decreasing trend on average for all gauges due to increased
temperatures and lower oxygen saturation capacity. The highest range in average
changes can be observed for the Schwarze Elster sub-catchment, which is quite
heavily polluted with ammonium nitrogen. The latter is highly sensitive to climate
change impacts and is connected to the oxygen processes in the river water.

4.4. Socio-Economic Change Impacts under Climate Change

In addition to the climate change impact assessment, five land use change
experiments were run to test the model’s reaction on certain management measures
aimed at reducing nutrient inputs to the river network. The aim was to check whether
such measures are able to be reversed, intensify or revoke climate change impacts.
The land use change experiments were run 19 times, driven by the 19 ENSEMBLES
climate scenarios for the near future period 2021–2050 (p1), and the results were
compared with the results achieved under the reference management conditions for
the period 1971–2000 (p0) of the same scenarios (combined impacts) as well as with
the climate scenario-driven results with the reference management for period p1
(land use change impacts only).
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The single and combined impacts were analyzed for the two Elbe gauges Schöna
(Czech/German border) and Neu Darchau (Elbe outlet) as well as for the outlets
of the two selected tributaries Saale and Havel (Figure 8). The results are shown
as median values with a 25th/75th percentile range. In some cases, even the single
land use change impact shows some range of relative changes caused by different
behavior of temperature- and water-dependent nutrient processes under different
climate conditions used as an external driver.
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The socio-economic changes related to nutrient inputs to the river network (experiments “Point 
sources” and “Fertilization”) and an increased nutrient retention potential in soils (experiment 
“Retention”) have no influence on water discharge. Only the combined impacts show an increase in 
discharge of about 10% due to climate change. The solely socio-economic impacts of a changed land 
use composition (“Buffer” and “Slope”) on river discharge show a decrease (due to increased 
evapotranspiration of the enlarged grassland areas), but it is quite low, and cannot compensate the 
increase in Q caused by the projected climate change, so that all combined impacts for these 
experiments have a positive direction. 

The reduction of point source emissions has the highest influence on phosphate and 
ammonium loads, as these nutrients mainly originate from anthropogenic inputs of water treatment 

Figure 8. Impacts of socio-economic changes and combined climate and
socio-economic changes on the average water discharge (Q), nutrient (NO3-N,
NH4-N, PO4-P) and chlorophyll a (Chla) loads and dissolved oxygen concentrations
(DOX) of the Elbe river at two stations and at two main German tributaries. The
dark grey bars and white dots show the median of 19 percental changes together
with their 25th/75th percentile ranges (light grey ranges and black whiskers).
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The socio-economic changes related to nutrient inputs to the river network
(experiments “Point sources” and “Fertilization”) and an increased nutrient retention
potential in soils (experiment “Retention”) have no influence on water discharge.
Only the combined impacts show an increase in discharge of about 10% due
to climate change. The solely socio-economic impacts of a changed land use
composition (“Buffer” and “Slope”) on river discharge show a decrease (due to
increased evapotranspiration of the enlarged grassland areas), but it is quite low, and
cannot compensate the increase in Q caused by the projected climate change, so that
all combined impacts for these experiments have a positive direction.

The reduction of point source emissions has the highest influence on phosphate
and ammonium loads, as these nutrients mainly originate from anthropogenic inputs
of water treatment plants or industrial units. The projected climate change even
intensifies the reduction of ammonium nitrogen loads in the rivers, whereas the
decrease of phosphate phosphorus is reduced by climate change impacts (except for
the Saale basin). The sole reduction of point source emissions predominantly results
in a decrease of chlorophyll a loads in the rivers due to less available ammonium and
phosphate as algal food.

The decrease in fertilizer application causes lower nitrate loads in all analyzed
river parts, as this nutrient originates mainly from diffuse sources (predominantly
from agricultural fields). The reduction is only marginally influenced by climate
change. A decrease in fertilization affects NH4-N only partly, and causes decreased
ammonium loads, particularly in the upper part of the Elbe basin. As the changes
in NH4-N and PO4-P loads are less distinct under the “Fertilization” experiment,
chlorophyll a loads are only marginally influenced. The on-average-increasing
chlorophyll a trend caused by climate change impacts in the upper Elbe and
Saale catchments cannot be reversed by a simple reduction of fertilization in the
combined experiments.

An increased nutrient retention and decomposition potential in the soils of the
landscape (“Retention”) has the highest impact on nutrient loads. Especially the
diffuse nitrate nitrogen loads are affected, but also ammonium and phosphate show
some reactions, though with different magnitudes for the four analyzed gauges. The
diversity in the magnitude of changes for the river parts can be explained by the
heterogeneity and distribution of land use patterns and point sources as well as by
the diversity in projected climate change within the catchment. As NH4-N and/or
PO4-P are remarkably reduced under the retention experiment, chlorophyll a shows
a decreasing trend due to a lack of nutrients. This reduction is even able to reverse
the increasing trend in chlorophyll a caused by climate changes in the upper Elbe
and Saale sub-catchments.

Two experiments dealing with a changed land use composition (“Buffer” and
“Slope”) result in more meadows and less agricultural areas in the sub-catchments
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and show similar results in the different river parts. Nitrate nitrogen is reduced most
in the majority of cases due to less agricultural area with fertilizer application and
hence lower total fertilizer loading under the experiments. The highest diversity
of changes can be seen under the “Slope” experiment in the upper Elbe and Saale
sub-catchments, which are characterized by a high share of mountainous areas, where
the share of transformed land use areas is higher than in the lowland sub-catchment
of the Havel river. For the latter, the “Slope” experiment has nearly no impact
on the model outputs, and the combined changes result only from the climate
scenario impacts.

The concentrations of dissolved oxygen are not visibly influenced by the changes
in land use or management. The decreasing trend due to increased water temperature
is more obvious in the upper part of the Elbe basin (gauge Schöna), probably due to
less oxygen production with decreasing chlorophyll a loads in the river.

In general, the shares of cropland and distribution of point sources, as well
as the distribution of soils with their specific nutrient retention potentials, are very
important factors influencing the nutrient loads coming with the rivers. However, in
the model application presented here, it is often difficult to distinguish between the
single impacts on nutrient loads caused by certain land use or management changes
and the secondary impacts due to altered chlorophyll a concentrations and a resulting
change in nutrient uptake in the water body. The in-stream processes include a
complex behavior of nutrients with a high number of interactions and feedbacks
with the algae population. Chlorophyll a, for example, increases with decreasing
NH4-N availability and vice versa, causing increase (or decrease) of PO4-P due to less
(or more) algal uptake. Therefore, the resulting impacts are not only directly caused
by land use changes, but are also indirectly caused by the subsequently changed
conditions in the river water.

5. Discussion

A comparison of obtained results with the results of previous studies dealing
with global change impacts in the Elbe river catchment is sometimes difficult, as
different scenarios and downscaling methods were used by different authors. The
whole range of model outputs illustrates a high uncertainty in climate change
impact assessment.

The majority of published studies for the Elbe basin deal with climate change
impacts on the hydrological cycle. The simulated effects of climate change on water
cycle and river discharge presented in literature are diverse and differ in intensity
and even in direction of change, resulting mainly from the diversity of precipitation
change signals projected by different climate scenarios. Studies using 100 realizations
of the Statistical Analogue Resampling Scheme (STARS), with a distinct decrease
in summer precipitation and a moderate increase of precipitation in winter, project
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lower river discharge in the Elbe basin [85–88]. However, we have to note that
recently the STARS model was critically discussed [89,90] regarding its suitability for
producing climate scenarios. Model runs using the Inter-Sectoral Impact Model
Intercomparison Project (ISI-MIP) climate scenarios [91] for the Elbe basin also
project a decreased discharge on average, but the magnitude of changes is less
pronounced [85]. Huang et al. [92] report diverse results depending on the driving
climate model: the projections driven by the empirical-statistical model WETTREG
(WETTerlagen-basierte REGionalisierungsmethode) produce negative trends in flood
occurrence, whereas the projections forced by the two dynamical regional climate
models REMO (REgional MOdelling) and CCLM (COSMO-Climate Limited-area
Modelling) show various results with the prevalence of increasing trends in flood
occurrence for this region. Applications of the ENSEMBLES scenarios for assessing
future risks of floods and droughts in Germany showed an increasing trend of floods
but no significant increase in droughts for the Elbe basin [22]. This is also reflected in
our study, where under the same ENSEMBLES climate scenarios’ higher discharges
are projected on average (compare Figure 7).

There are some studies on the management change impacts on river water
quality for often only small parts of the Elbe region (e.g., [93–95]), but only a
few publications exist covering water quality issues under climate change. So,
Quiel et al. [62] used the outputs of a model chain driven by selected realizations of
the statistical model STARS as boundary conditions to run the river model QSim
for a 700 km reach of the Elbe river. Soluble phosphorus concentrations decrease
in all tributaries under all scenarios compared with the reference period for the
same scenario. This results in an increased phytoplankton growth along the studied
river reach and a shift of the chlorophyll a maximum under the dry and medium
scenarios, but in a decrease in chlorophyll a concentration under the wet scenario
conditions [62]. The latter is in accordance with the results for chlorophyll a presented
in our study (compare Figure 7), as the ENSEMBLES climate projections produce a
wetter climate in the future as well.

It seems that the projected nutrient loads presented in literature often correspond
to the precipitation change signals, especially when eco-hydrological models using
a simple routing of nutrients through the river network are applied. The increased
precipitation causes higher nitrogen leaching through soils as well as higher
phosphorus erosion rates with surface flow to the river network. Both processes
increase nutrient loading to the river waters. Therefore, statistically downscaled
climate scenarios with a negative trend in precipitation (e.g., STARS) mostly project
decreasing nutrient loads in the Elbe catchment, whereas dynamic climate scenarios
(e.g., REMO or the wet years of ISI-MIP scenarios) mostly result in increasing nutrient
loads in the river due to positive precipitation change signals (e.g., [96,97]). This
simple relationship between precipitation change signals and final nutrient load
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projections can be disturbed by including in-stream and algal processes in the
eco-hydrological models, due to included transformation and ingestion of nutrients
in the river network.

Nevertheless, the same conclusion as for river discharge is valid for the water
quality impact assessment: a wide range in projections can be found in literature
(as well as in our study). However, the diversity in discharge and water quality
projections may not necessarily be the result of the application of different model
approaches or climate scenario sets. Even with one scenario and one model, a high
spatial variability can be observed, and some sub-regional trends can actually be
opposite to the overall average trend of a large-scale basin, or local effects can be
masked by large-scale aggregation [78,79]. This could also be seen in our study,
where changes of model outputs due to climate impact differ in magnitude and
intensity or even in the direction of change when comparing several tributaries of
the Elbe (Figure 7).

In climate and socio-economic impact assessments in addition to the general
(and often large) uncertainty associated with climate scenarios as drivers, there is
also uncertainty connected to applied watershed models. The so-called structural
and parameterization uncertainty is related to the ability of eco-hydrological models
to represent the interrelated processes in landscape, vegetation and river network.
The parameterization uncertainty can be especially large in a model with a high
number of calibration parameters influencing each other, as in the SWIM model with
implemented in-stream processes. Often several calibration parameter combinations
exist, delivering the same or very similar model performance, so that it could happen
to be “right for the wrong reasons” [98,99]. In general, such uncertainty rises with the
rising model complexity, and goes along with a rising need in calibration efforts [68],
and this should be taken into account when the model is extended by adding new
processes. To overcome the limitations and weaknesses of a single eco-hydrological
or climate model approach, it is useful to apply several models with the same
input parameter sets (model intercomparison) and ensembles of climate scenarios
for a more comprehensive assessment of uncertainties and elicitation of robust
outputs [91,100].

The land use change experiments applied in this study do not represent the “full”
set of potential future land use scenarios in the Elbe region, which could be elaborated
considering options of future socio-economic development. For example, changes in
urbanization or forest patterns could also have effects on the environment and the
water resources [101,102]. In our study only the effects of single measures connected
to nutrient sources and agricultural practices (which are currently considered in the
planning of land/water management) on water quantity and quality were tested,
also in combination with climate change. This could be regarded as a first step to
finding suitable methods for adaptation to climate change impacts. However, for
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further studies it is recommended to apply a combination of different measures
under consideration of the future socio-economic development for a more realistic
land use change impact assessment. As climate change can strengthen, revoke or
even inverse the land use change impacts, this aspect should always be included in
such studies.

6. Summary and Conclusions

The SWIM model supplemented by an in-stream module was successfully
calibrated and validated for the entire Elbe river basin, and applied for climate
and land use change impact assessment in the region. For that, the commonly
used technique was applied, using 19 climate scenario data sets provided by the
ENSEMBLES project to drive an eco-hydrological model for 30-year periods in order
to evaluate changes in water quantity and quality for the two future periods of
2021–2050 and 2071–2098 in comparison to the reference period of 1971–2000.

The calibration and validation of the extended SWIM for the Elbe region was
complicated due to the high number of calibration parameters and the spatial
variability within the catchment. Satisfactory model results could be still achieved by
applying spatially distributed calibration parameter sets to capture variability in soil
type distribution, land use pattern and economic development in the sub-catchments.

The analysis of a potential future climate, as projected by 19 scenarios for the
Elbe catchment, indicates increasing trends in temperature and precipitation, but
a decreasing trend in solar radiation on average. However, looking at the climate
change signals of the 19 scenarios separately, differences can be seen in the intensity
and—for precipitation and solar radiation—also in the direction of change signals.
The standard deviation of the whole set of climate change signals increases in the
second future period.

The results of the climate change impact assessment on water quantity and
quality show a high spatial variability within the catchment according to the
individual characteristics of the tributaries within the basin. For the entire Elbe
catchment, river discharge is projected to increase by 11% and 20% on average for
the two future periods. Dissolved oxygen concentration is projected to decrease by
2% and 5%, mainly due to the increased water temperature. The projected changes in
nutrient loads do not show the same change direction. While NO3-N loads slightly
decrease on average (´1% and ´5%), and NH4-N shows a distinct decreasing trend
(´11% and ´24%), PO4-P loads are expected to increase by 6% and 5% on average.
The simulated reaction of nutrient loads to climate change is always influenced
by the phytoplankton population, and vice versa. The chlorophyll a concentrations
decrease slightly under the future conditions, by 3% and 4% on average, at the last
downstream Elbe gauge.
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Five simulation experiments dealing with possible changes in nutrient emissions
were applied in the study, also in combination with climate change scenarios. Water
discharge was mainly influenced by climate change impacts, and land use change
measures had little or no influence on runoff. A reduction of agricultural area or
fertilizer application mainly influenced the resulting nitrate nitrogen loads in the
Elbe, whereas the reduction of point source emissions had the highest impacts
on ammonium nitrogen and phosphate phosphorus loads. The chlorophyll a
concentrations reacted to a changed food supply in the river, and would be reduced
with a reduced nitrogen and phosphorus availability. An increase in nutrient
retention and decomposition potential within the catchments would certainly be
beneficial to reduce all types of nutrient loads in the river waters.

Nevertheless, the model application in the Elbe basin comes along with a certain
degree of structural, parameterization and scenario uncertainty. Due to the lack of
more detailed information on the case-specific observations and processes, not all
possible methods to reduce uncertainties could be applied in this study, and the
climate scenario–related uncertainty is unavoidable. The climate change impact
assessment and land use change simulation experiments presented here deliver the
first results and rough estimation on probable future developments in the Elbe river
basin under climate change. For future research, in order to diminish and better
assess (but not to eliminate) uncertainty, it could be recommended to apply two to
three eco-hydrological models, as well as a “full” set of socio-economic scenarios, for
a more reliable combined climate and land use change impact assessment. It could
be also advantageous to additionally include management measures neglected in
this model application so far (e.g., reservoirs or different crop types and rotations).
These methods would help to identify future risks and threats more realistically,
and to virtually test possible adaptation measures, as efforts to cope with the future
climate conditions and their impacts are generally needed. Watershed models offer a
suitable tool to guide decision-making on water quantity and quality for a sustainable
management of water resources to match the requirements of the European Water
Framework Directive (WFD).
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Assessment of Climate Change Impacts on
Water Quality in a Tidal Estuarine System
Using a Three-Dimensional Model
Wen-Cheng Liu and Wen-Ting Chan

Abstract: Climate change is one of the key factors affecting the future quality
and quantity of water in rivers and tidal estuaries. A coupled three-dimensional
hydrodynamic and water quality model has been developed and applied to the
Danshuei River estuarine system in northern Taiwan to predict the influences of
climate change on water quality. The water quality model considers state variables
including nitrogen, phosphorus, organic carbon, and phytoplankton as well as
dissolved oxygen, and is driven by a three-dimensional hydrodynamic model.
The hydrodynamic water quality model was validated with observational salinity
distribution and water quality state variables. According to the analyses of statistical
error, predictions of salinity, dissolved oxygen, and nutrients from the model
simulation quantitatively agreed with the observed data. The validated model was
then applied to predict water quality conditions as a result of projected climate change
effects. The simulated results indicated that the dissolved oxygen concentration was
projected to significantly decrease whereas nutrients will increase because of climate
change. Moreover, the dissolved oxygen concentration was lower than 2 mg/L in
the main stream of the Danshuei River estuary and failed to meet the water quality
standard. An appropriate strategy for effective water quality management for tidal
estuaries is needed given the projected persistent climate trends.

Reprinted from Water. Cite as: Liu, W.-C.; Chan, W.-T. Assessment of Climate Change
Impacts on Water Quality in a Tidal Estuarine System Using a Three-Dimensional
Model. Water 2016, 8, 60.

1. Introduction

Estuaries are among the world’s vital aquatic resources. They provide food
resources and a habitat for ecologically and economically important fish and shellfish
species, recreational regions, educational and scientific experiences, and other
important ecosystem services [1–5]. For example, the Guandu Natural Park in Taipei
city, which is located at the confluence of the Danshuei River and the Keelung River,
serves as an educational purpose and scientific experience [6]. Ecosystem services
are fundamental life-support processes upon which all organisms depend [7]. Two
ecosystem services that estuaries provide are water filtration and habit protection.
However, adverse impacts on the estuarine ecosystem by environmental perturbations
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(e.g., anthropogenic nutrient loading, land use change, hydrological modification)
have been widely reported [8–10]. The adverse impacts include impaired water
quality, habitat loss, and diminished resources [11]. These perturbations result in
declining water quality and deleterious changes in ecosystem structure and tropic
dynamics [12,13]. The deleterious water quality subsequently produces the problems
of odor, aesthetics, human pathogens, and increased public health risk. For
example, McKibben et al. [14] reported that harmful algal blooms are proliferations
of microscopic algae that harm the environment by producing toxins that accumulate
in shellfish or fish, or through the accumulation of biomass that in turn affects
co-occurring organisms and alters food webs in negative ways. Impacts include
human illness and mortality following direct consumption or indirect exposure to
toxic shellfish or toxins in the environment.

Climate change occurs naturally, but human population growth and associated
land-cover deforestation and burning of fossil fuel have substantially accelerated the
increase in greenhouse gases (CO2, CH4, N2O, etc.). The elevated concentration of
CO2 and other greenhouse gases from anthropogenic activities have caused warming
of the global climate by modifying radiative forcings, and continued changes will
result in climate shifts [15–18]. Feng et al. [19] used model-projected future surface
temperature and precipitation to examine the change/shifts of climate types over
the global land area. They concluded that compared to the present-day condition,
the boreal winter temperature over the global land area is projected to increase
by 3–12 ˝C by 2071–2100 under a high emission scenario. Strong warming (>8 ˝C)
appears along the Arctic coastal regions, moderate warming (5–7 ˝C) appears in the
mid-latitude of the Northern Hemisphere, while the warming in the tropical and
the Southern Hemisphere is relatively smaller (<5 ˝C). The projected warming in
the boreal summer is much weaker (3–6 ˝C). Xin et al. [20] studied climate change
projections over East Asia under various representative concentration pathway (RCP)
scenarios using simulations conducted with the Beijing Climate Center Climate
System Model for the Coupled Model Intercomparison Project phase 5. Under all
RCPs, including RCP2.6, RCP4.5, RCP6.0, and RCP8.5, the East Asian climate is
found to be warmer and wetter in the 21st century than the present climatology
(1986–2005). For 2080–2099, the East Asian mean surface air temperature is higher
than for present climatology by 0.98 ˝C (4.4%) under RCP2.6, 1.89 ˝C (7.7%) under
RCP4.5, 2.47 ˝C (7.1%) under RCP6.0, and 4.06 ˝C (9.1%) under RCP8.5.

The impacts of climate change on human health have been widely reported [21–23].
Numerous studies project greater morbidity and mortality from direct exposure, as
well as greater health risks due to decreased air quality, water-borne disease, and
other infectious diseases [23,24]. Impacts of climate change on river and estuarine
systems provide a subject of active research [25–27] because of the importance
of water resources for human activities. Potential impacts of climate change
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on hydrology cover changes in runoff discharge, river flow, and groundwater
storage [28]. Impacts on water quality include many factors (physical, including
temperature, turbidity; chemical, including pH and concentration; biological,
including biodiversity and species abundance across the entire food web from
microbial pools and macrophytes up to fishes). With respect to water quality, most
climate change impacts can be attributed to changes in either discharge—which
controls dilution, flow velocity, and residence time—or water temperature. The
impact of climate change on river and estuarine water quality is also heavily
dependent on the future evolution of human activities (pollutions, withdrawals,
etc.), so the direct influence of climate change may end up being relatively small [29].

The impact of climate change on estuaries has been reviewed by Robins et al. [30],
who reported that potential changes to physical processes include flooding and
coastal squeeze, caused by increased sea level rise, changing surge and wave climates,
and changing river flow events. Sea level rise will cause a shift towards net sediment
accretion, but with reduced transport in UK estuaries. Turbulent mixing that is
critical for water quality and coastal ecology is controlled by river flow variability.
Therefore, alterations to river flows will change the estuarine fronts, stratification,
and mixing. The combination of sea level rise and longer dry periods in summer will
cause negative impacts on eutrophication, harmful algal blooms, and hypoxia.

Numerical water quality models are useful in assisting the understanding of
biological processes and the assessment of the influences of climate change on water
quality conditions in aquatic systems [31–38]. For example, Tu [39] used a GIS-based
watershed simulation model, AVGWLF, to simulate the future changes in streamflow
and nitrogen load under different climate change and land use change scenarios at a
watershed in eastern Massachusetts, USA. AVGWLF simulates daily streamflows
and monthly nitrogen loads. As a result, the historical observed daily streamflow and
nitrogen loads have to be used for model calibration and validation. The AVGWLF
model tracks monthly streamflow and nitrogen load well in both calibration and
validation. The coefficient of determination (R2) and Nash-Sutcliffe coefficient (NS)
values in calibration for streamflow in most of the watersheds are higher than 0.7,
and for nitrogen load are higher than 0.6. The R2 and NS values in validation
of streamflow and nitrogen loads are even higher than the corresponding values
in calibration. The validated model was used to project the impact of different
climate scenarios (A1B, B1, and A2) on streamflow ad nitrogen load. The results
revealed that the monthly streamflows in late fall and winter increase, whereas those
in the summer months decrease, mainly as a result of climate change. Simulated
nitrogen loads in late fall and winter months increase greatly, whereas those in
spring and summer months have mixed responses affected by both climate and
land use changes [39]. Rehana and Mujumdar [40] adopted a water quality model,
QUAL2K, to simulate the water quality responses of six climate change scenarios
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covering different streamflow, air temperature, and water temperature at different
stations. The simulated results suggested that all climate change scenarios would
cause impairment in water quality. It was found that there was a significant decrease
in dissolved oxygen levels owing to the impact of climate change on temperature
and flows. For example, Luo et al. [41] applied the Soil and Water Assessment Tool
(SWAT) to evaluate and enhance the watershed modeling approach in characterizing
climate change impacts on water supply and ecosystem stressors. The SWAT was
applied to headwater drainage basins in the northern Costal Ranges and Sierra Nevada
mountain range in California. SWAT parameters for hydrological simulation were
initialized within the ArcSWAT interface. Input data for watershed morphology
have a 12-km spatial resolution. Input parameters mainly include the SCS runoff
curve number (CN), snowmelt-related parameters, channel hydraulic conductivity,
and parameters for groundwater recharge. The model was calibrated with daily
streamflow at different selected stations. The calibrated model was then applied to
project the effects of climate change. They concluded that the hydrological cycle and
water quality of headwater drainage basins in California, especially their seasonality,
were very sensitive to projected climate change.

These kinds of numerical models used to resolve one-dimensional and
two-dimensional issues cannot well represent the spatial variations in three
dimensions. For examples, Wan et al. [42] documented the development, calibration,
and verification of a three-dimensional water quality model for the St. Lucie Estuary,
a small and shallow estuary located on the east coast of south Florida. Modeling
results revealed that high algae concentrations in estuaries are likely caused by
excessive nutrient and algae supply in freshwater inflows. Cerco and Noel [43]
applied the CE-QUAL-ICM (Corps of Engineers Integrated Compartment Water
Quality Model) eutrophication model to simulate a 21-year (1985-2005) water quality
model of Chesapeake Bay. The most significant finding was the influence of physical
processes, notably stratification and associated effects (e.g., anoxic volume), on
computed water quality. Li et al. [44] developed a three-dimensional hydrodynamic
model coupled with a water quality model to determine the environmental capacity
of nitrogen and phosphorus in Jiaozhou Bay, China. The model was calibrated based
on data collected in 2003. The proposed water quality model effectively reproduced
the spatiotemporal variability in nutrient concentration. However, few studies
have emphasized the impacts of climate change on estuarine water quality using
three-dimensional hydrodynamics and water quality coupling models.

This study aims to apply a coupled three-dimensional hydrodynamic and
water quality (SELFE-WQ) model to characterize the water quality conditions in the
estuarine system and assess the impacts of climate change scenarios on water quality
in the Danshuei River estuarine system in northern Taiwan. The model was validated
with observational salinity and water quality state variables. The validated water
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quality model was then applied to project the water quality conditions in estuarine
system responses to climate change scenarios under the low flow condition.

2. Materials and Methods

The Danshuei River, with its tributaries, is the largest river system in northern
Taiwan; its watershed encompasses 2726 km2, with a combined length of 158.7 km
(Figure 1). The regional climate is subtropical with the temperature varying between
10 and 35 ˝C, and the annual precipitation in the region ranges between 1500 mm
and 2500 mm, with the majority falling in late spring (May) to early fall (October).
The long-term average annual river flow rate is 6.6 ˆ 109 m3/y. The contributions of
freshwater from the three major tributaries are, on average, 27% from the Keelung
River, 31% from the Tahan Stream, and 37% from the Hsintien Stream. In addition to
the mainstream of the Danshuei River, the lower reaches of the three major tributaries
are also affected by tide. The principal tidal constituents of the estuary lean toward
semi-diurnal tides, with a mean tidal range of 2.1 m and a spring tidal range of
3.5 m. Seawater intrusion reaches into all three tributaries except during periods of
very high river inflows. In general, saltwater intrusion reaches 25–30 km from the
Danshuei River mouth. The hydrodynamic characteristics in the system are mainly
controlled by tide, river inflow, and the density gradient induced by the mixing of
saline and freshwater [45,46]. The average flushing time of the Danshuei River is
2–4 days [47].

Figure 1. Danshuei River estuarine system and watershed.
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The Danshuei River flows through the metropolitan area of Taipei, which has
a population of approximately 6 million. A huge amount of treated and untreated
domestic sewage was discharged into the river system and resulted in low dissolved
oxygen and high nutrients. Viable biological activities are observed only in the lowest
reach of the estuary, where the pollutant concentrations are reduced as a result of
dilution by seawater [48,49].

3. Materials and Methods

3.1. Hydrodynamic Model

The numerical modeling of ocean circulation at scales ranging from estuaries to
ocean basins is maturing as a field. Most modern oceanic and estuarine circulation
codes solve for some form of the three-dimensional Navier–Stokes equations and can
be complemented with conservation equations for a given water volume and salt
concentration. In this paper, a three-dimensional, semi-implicit Eulerian-Lagrangian
finite element model (SELFE, Zhang and Baptisa [50]) was implemented to simulate
the Danshuei River estuarine system and its adjacent coastal sea. SELFE solves the
Reynolds stress-averaged Navier–Stokes equations, which use conservation laws for
mass, momentum, and salt with hydrostatic and Boussinesq approximations, to
determine the free-surface elevation, three-dimensional water velocity, and salinity.

Unlike most 3D models using finite-difference/finite-volume schemes, SELFE
is based on a finite-element scheme. No model splitting was used in SELFE, thus
eliminating the errors associated with the splitting between internal and external
modes [51]. Semi-implicit schemes were applied to all the equations to enhance the
stability and maximize the efficiency of the system. An Eulerian-Lagrangian method
was used to treat advection in the momentum equation, thus permitting the use of large
time steps without compromising on stability. The horizontal space was discretized in
the form of an unstructured grid of triangular elements, whereas the hybrid vertical
coordinates—partly terrain-following S coordinates and partly Z coordinates—were
used in the vertical direction. The wetting and drying algorithm was incorporated
into the model. The minimum depth criterion for wetting and drying simulation was
set to be 0.05 m.

Because turbulent mixing plays a critical role in determining the stratification in
the tidal estuary, several reports have documented the model results of turbulence
mixing parameterization. SELFE uses the generic length scale (GLS) turbulence
closure of Umlauf and Burchard [52], which has the advantage of encompassing most
of the 2.5-equation closure model (K–Ψ). A detailed description of the turbulence
closure model, the vertical boundary conditions for the momentum equation, the
numerical solution methods, and the numerical stability parameters can be found in
Zhang and Baptista [50].
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3.2. Water Quality Model

The water quality model used in this study was based on a three-dimensional
conventional water quality analysis simulation program called WASP5, originally
developed by Ambrose et al. [53]. It constitutes a complicated system of four
interacting parts: dissolved oxygen, nitrogen cycle, phosphorus cycle, and
phytoplankton dynamics. Eight water quality components are included: dissolved
oxygen (DO), phytoplankton as carbon (PHYT), carbonaceous biochemical oxygen
demand (CBOD), ammonium nitrogen (NH4), nitrate and nitrite nitrogen (NO3),
organic nitrogen (ON), ortho-phosphorus or inorganic phosphorus (OP), and organic
phosphorus (OP). The conceptual framework for the water quality model is presented
in Figure 2.

Figure 2. Schematic of water quality model.

A mathematical formulation of the conservation of mass can be written
as follows:
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where C is the concentration of water quality components; u, v, and w are the water
velocity components corresponding to a Cartesian coordinate system (x, y, z); Ah and
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Kv are the coefficients of horizontal viscosity and vertical eddy diffusion, respectively;
Se is the time rate of external additional (withdrawal) across the boundaries; and Si
is the time rate of internal increase/decrease by biogeochemical reaction processes.

Equation (1) gives the distribution of each state variable using the physical
parameters determined from the hydrodynamic model. The last two terms, Se and Si
represent, respectively, the external and internal sources (or sinks), the latter being
primarily due to biogeochemical processes.

The present model of DO includes the following processes: source from
photosynthesis, reaeration through surface and external loading, and sinks due
to decay of CBOD, nitrification, algae respiration, and SOD. The mathematical
representation is:

Si “ ´KcCBOD´ ano
Kn23N2

Kh23 ` N2

DO
DO` Knit

` acacopPQ ¨ G´
R

RQ
qChl (2)

Se “ p1´ λ1qKrpDOs ´DOq ´
SOD

∆z
DO

DO` KDO
`

WDO
V

(3)

where ac = ratio of carbon to chlorophyll in phytoplankton (mg C/µg Chl); aco = ratio
of oxygen demand to organic carbon recycled = 2.67; ano = ratio of oxygen consumed
per unit of ammonia nitrogen nitrified = 4.57; CBOD = concentration of carbonaceous
of biochemical oxygen demand (mg/L); Chl = concentration of chlorophyll a (µg/L);
DO = concentration of dissolved oxygen (mg/L); DOs = saturation concentration of
DO (mg/L); G = growth rate of phytoplankton (1/day); Kc = first-order decay rate of
CBOD (1/day); KDO = half-saturation concentration for benthic flux of CBOD (mg/L);
Kh23 = half-saturation concentration for nitrification (mg/L); Kn23 = nitrification rate
of ammonia nitrogen to nitrite-nitrate nitrogen (mg/L/day); Knit = half-saturation
concentration for oxygen limitation of nitrification (mg/L); Kr = reaeration rate
(1/day); N2 = concentration of ammonia nitrogen; PQ = photosynthesis quotient
(mole O2/mole C); R = respiration rate of phytoplankton (1/day); RQ = respiration
quotient (mole CO2/mole O2); V = layer volume (cm3); WDO = external loading of
DO (mg/day) including point and nonpoint sources; ∆z = layer thickness (cm); and
λ1 = 0 for k = 1 (at top layer), λ1 = 1 for 2 ď k ď N, and N is the number of layers.

The sediment oxygen demand (SOD) in Equation (3) is the rate of oxygen
consumption exerted by the bottom sediment and the overlay water due to the
respiration of the benthic biological communities and the biochemical degradation of
organic matter. The SOD is a major component of the dissolved oxygen (DO) budget
and a key parameter to be determined through the model validation in the water
quality model.

According to previous study implemented by Chen et al. [54], the component
of phytoplankton species in the Danshuei River estuary includes diatoms, green
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algae, and others; therefore, these three major species are taken into account in the
model simulation.

3.3. Model Schematization and Implementation

In the present study, the horizontal resolutions, 200 mˆ 200 m and 40 mˆ 40 m,
of the bathymetric and topographical data in the Taiwan Strait and Danshuei-River
estuarine system were obtained from the Ocean Data Bank and Water Resources
Agency, Taiwan. The deepest point within the study area is 110 m (below the mean
sea level) near the northeast corner of the computational domain (Figure 3). The
model mesh for the Danshuei-River estuarine system and its adjacent coastal sea
consists of 5119 elements (Figure 3). To meet the accuracy requirements, fine-grid
resolution was used locally, and coarse resolution was implemented away from the
region of interest. In this computational domain, the mesh size varied from 6000 m
in the Taiwan Strait down to 40 m in the upper reach of Danshuei River estuary. The
mesh size (40 m) used in the upper reach of Danshuei River estuary would be an
appropriate resolution because the bathymetric and topographic data in 40 m ˆ 40 m
were only obtained.

Figure 3. The topography of the Danshuei River estuarine system and its adjacent
coastal and unstructured grid for the computational domain.
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In the vertical direction, ten z-levels and ten evenly spaced S-levels were
specified at each horizontal grid, i.e., the thickness of the cell depended on the bottom
elevation of each grid. The vertical resolutions in the coastal sea and Danshuei River
estuary range from 10–20 m and 0.015–1.2 m, respectively. A 120-s time step was
used in our simulations without any signs of numerical instability.

4. Model Validation

4.1. Salinity Distribution

Salinity distributions reflect the combined results of all processes, including
density circulation and mixing processes. These processes in turn control the density
circulation and modify the mixing processes [45]. In the present study, the salinity
distribution along the Danshuei River-Tahan Stream collected by the Water Resources
Agency, Taiwan, was used for model validation. Liu et al. [55] reported that a
five-constituent tide (i.e., M2, S2, N2, K1, and O1) is sufficient to represent the tidal
components in the Taiwan Strait. The five-constituent tide was adopted in the model
simulation as a forcing function at the coastal sea boundaries. The model was run
for a two-year simulation. The salinity of the open boundaries in the coastal sea
was set to 35 ppt. The upstream boundary conditions at the three tributaries (Tahan
Stream, Hsintien Stream, and Keelung River) were specified with daily freshwater
discharges; therefore, the salinity at the upstream boundaries was set to be 0 ppt.

The simulated salinity distribution compared favorably to the salinity
measurements along the Danshuei River–Tahan Stream during the flood and ebb
tides on 26 November 2010, shown in Figure 4. The measured salinity during the
flood and ebb tides means that the salinity was measured at instantaneous flood and
ebb tides. Note that the field data of salinity were measured 0.5 m below the water
surface and then every 1.0 m below the water surface 0.5 m, and the simulated salinity
was presented with the top layer and bottom layer. The measured salinity shown in
Figure 4 presents the mean salinity in vertical direction plus/minus one standard
deviation. The absolute mean error and root mean square error of the difference
between the measured salinities and the computed salinity on 26 November 2010
are 2.71 ppt and 3.72 ppt, respectively, during the flood tide. The absolute mean error
and root mean square error are 0.49 ppt and 0.67 ppt, respectively, during the ebb tide.
It can be seen that the modeling performance for the ebb tide is better than that for
the flood tide. This may be the reason that the higher horizontal eddy diffusion is
calculated according to 2.5-equation closure model, resulting in salinity diffusion to
the upstream region during the flood tide.

292



Figure 4. The comparison between the measured and simulated salinities along
the Danshuei River–Tahan Stream on 26 November 2010 during (a) flood tide and
(b) ebb tide.

4.2. Water Quality Distribution

Chen et al. [56] implemented a comprehensive field sampling and lab analysis
program for the Danshuei River to collect the data in 2009 and 2010. They found that
adjacent to the metropolitan Taipei City, the spatial trend of the deteriorated water
quality is mostly attributed to the wastewaters directly discharged into the river
channels. Efforts were made successively to estimate the point source loadings by
Montgomery Watson Harza (MWH) [57] adopted in the following water quality
simulations. The freshwater discharges in 2010 and 2011 were adopted at the
upstream boundaries at the Tahan Stream, the Hsintien Stream, and the Keelung
River. The five-constituent tide used to generate the time-series tidal level was
employed at the ocean boundaries. Concentrations of water quality state variables
ammonium nitrogen, total nitrogen, total phosphorus, carbonaceous biochemical
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oxygen demand, dissolved oxygen, and chlorophyll a at the river boundaries and at
the ocean boundaries were established based on the monthly measurement by the
Taiwan Environmental Protection Administration (TEPA). The model was conducted
with two-year simulation.

Eight measured datasets were collected on 1 March, 1 June, 3 September,
2 December in 2010, 3 March, 1 June, 5 September, and 1 December in 2011 and
were used for model validation. The model parameters were initially estimated from
the literature [58]. These were adjusted and tuned until a reasonable reproduction
of field data at observation stations was obtained. The coefficients adopted for
water quality simulations are listed in Table 1. The longitudinal water quality
distributions predicted by the water quality model on 3 March 2011 for the
Danshuei River–Tahan Stream, the Hsintien Stream, and the Keelung River are
shown in Figures 5–7 respectively. Water quality distributions of the dissolved
oxygen, carbonaceous biochemical oxygen demand, ammonium nitrogen, and total
phosphorus concentrations at the top and bottom layers along the river channels are
presented in the figures, together with the observations from monitoring stations.
Both the model-predicted and observed dissolved oxygen concentrations along the
Danshuei River–Tahan Stream show a decrease from the Danshuei River mouth
to Hsin-Hai Bridge and an increase at the Fu-Chou Bridge (Figure 5a). In the
lower estuary, the dissolved oxygen concentrations increase toward the river mouth
as a result of seawater dilution. It also shows that quite low dissolved oxygen
concentrations occur at the Chong-Yang Bridge, Chung-Siao Bridge, and Hsin-Hai
Bridge. Carbonaceous biochemical oxygen demand, ammonium nitrogen, and total
phosphorus all show the same spatial trends along the river channel from the Tahan
Stream to the Danshuei River (Figure 5b–d). The concentrations increase from
the Danshuei River mouth to Hsin-Hai Bridge, reach a maximum at the Hsin-Hai
Bridge, and then gradually decrease toward the Fu-Chou Bridge. The maximum
concentrations of all three occur at the Hsin-Hai Bridge, resulting in low dissolved
oxygen. The figure shows that the model generally captured the spatial trends of the
observed longitudinal distributions.

The ratio of nitrogen to carbon in different water bodies has been documented
in reports [59–61]. The ratio ranges from 0.02–0.25 mg N/mg C. However, we set this
ratio to 0.01 mg N/mg C in the model simulation, which is lower than the suggested
value. This is the reason that the concentration of ammonium nitrogen (NH4) in the
Danshuei River estuarine system is quite high compared to other estuaries [10,42,62].
If we adopted the higher ratio of nitrogen to carbon in the model, the simulation
results of CBOD would be too high and DO would be too low to compare with the
measured data.
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Table 1. Coefficients used in the water quality model.

Coefficients Value Unit

Deoxygenation rate at 20 ˝C 0.16 day´1

Nitrification rate at 20 ˝C 0.13 day´1

Phytoplankton respiration rate at 20 ˝C 0.6 day´1

Denitrification rate at 20 ˝C 0.09 day´1

Organic nitrogen mineralization at 20 ˝C 0.075 day´1

Organic phosphorus mineralization at 20 ˝C 0.22 day´1

Optimum phytoplankton growth rate at 20 ˝C 2.5 day´1

Optimal temperature for growth of phytoplankton 16 ˝C
The morality rate of phytoplankton at 20 ˝C 0.003 day´1

Half-saturation constant for oxygen limitation of carbonaceous
deoxygenation 0.5 mg O2 L´1

Half-saturation constant for oxygen limitation of nitrification 0.5 mg O2 L´1

Half-saturation constant for uptake of inorganic nitrogen 25 µg N L´1

Half-saturation constant for uptake of inorganic phosphorus 1 µg P L´1

Half-saturation constant for oxygen limitation of denitrification 0.1 mg O2 L´1

Half-saturation constant of phytoplankton limitation of phosphorus recycle 1 mg C L´1

Sediment oxygen demand at 20 ˝C 3.5 g/m2 day
Optimal solar radiation rate 250 langleys/day
Total daily solar radiation 300 langleys/day
Ratio of nitrogen to carbon in phytoplankton 0.25 mg N/mg C
Ratio of phosphorus to carbon in phytoplankton 0.025 mg P/mg C
Ratio of phytoplankton to carbon 0.04 mg Phyt/mg C
Organic carbon (as CBOD) decomposition rate at 20 ˝C 0.21 day´1

Anaerobic algae decomposition rate at 20 ˝C 0.01 day´1

Denitrification rate at 20 ˝C 0.01 day´1

Organic nitrogen decomposition rate at 20 ˝C 0.01 day´1

Organic phosphorus decomposition rate at 20 ˝C 0.01 day´1

Benthic NH4 flux 0.04 mg N day´1

Benthic NO3 flux 0.003 mg N day´1

Benthic PO4 flux 0.005 mg P day´1

Ratio of nitrogen to carbon 0.01 mg N/mg C
Ratio of phosphorus to carbon 0.01 mg P/mg C

The longitudinal water quality distributions along the Hsintien Stream are
illustrated in Figure 6. Both the observation data and model predictions show that
the water quality conditions degrade as the river reach approaches the Hsintien
Stream mouth, where it joins the main stream of the Danshuei River; the dissolved
oxygen decreases, and the organic carbon, ammonium nitrogen and total phosphorus
increase monotonically. The model faithfully represents the observed carbonaceous
biochemical oxygen demand, ammonium nitrogen, and total phosphorus along the
Hsintien Stream.

295



Figure 5. The comparison between the measured and simulated water quality
distributions along the Danshuei River to the Tahan Stream on 3 March 2011 (a) DO;
(b) CBOD; (c) NH4; and (d) TP.

The longitudinal water quality distribution along the Keelung River (Figure 7)
shows that significant pollution loadings were discharged into the river section
around the Bai-Ling Bridge and the Chung-Shan Bridge, where the lowest dissolved
oxygen in the Keelung River was observed. The model can realistically mimic
the observed dissolved oxygen. The model was also revealed to match the
observed carbonaceous biochemical oxygen demand, ammonium nitrogen, and
total phosphorus very well along the Keelung River. Due to the page limitation, the
statistical errors, including the absolute mean error and root mean square error on
2 December 2010, 3 March, 1 June, 5 September 2011 are shown only in Tables 2–5.
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Figure 6. The comparison between the measured and simulated water quality
distributions along the Hsintien Stream on 3 March 2011 (a) DO; (b) CBOD; (c) NH4;
and (d) TP.

Figure 7. Cont.
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Figure 7. The comparison between the measured and simulated water quality
distributions along the Keelung River on 3 March 2011 (a) DO; (b) CBOD; (c) NH4;
and (d) TP.

Table 2. Statistical error between simulated and measured water quality state
variables on 2 December 2010.

Water Quality Variable

Danshuei
River–Tahan Stream Hsintien Stream Keelung River

AME
(mg/L)

RMSE
(mg/L)

AME
(mg/L)

RMSE
(mg/L)

AME
(mg/L)

RMSE
(mg/L)

Dissolved oxygen 0.63 0.88 2.17 3.47 0.91 0.98
Carbonaceous biochemical

oxygen demand 2.21 2.79 1.79 2.29 2.02 2.51

Ammonium nitrogen 0.36 0.54 0.52 0.74 0.15 0.19
Total phosphorus 0.07 0.10 0.08 0.12 0.008 0.01

Note that AME =
1
N

N
ř

i“1

ˇ

ˇpCpqi ´ pCoqi
ˇ

ˇ, RMSE =

d

1
N

N
ř

i“1
rpCpqi ´ pCoqis

2, where

Cp is the predicted water quality concentration; and Co is the observed water
quality concentration.
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Table 3. Statistical error between simulated and measured water quality state
variables on 3 March 2011.

Water Quality Variable

Danshuei
River–Tahan Stream Hsintien Stream Keelung River

AME
(mg/L)

RMSE
(mg/L)

AME
(mg/L)

RMSE
(mg/L)

AME
(mg/L)

RMSE
(mg/L)

Dissolved oxygen 0.74 0.85 0.86 1.18 0.38 0.45
Carbonaceous biochemical

oxygen demand 6.56 7.5 0.11 0.16 1.25 1.67

Ammonium nitrogen 0.35 0.46 0.25 0.32 0.23 0.27
Total phosphorus 0.08 0.08 0.07 0.09 0.01 0.01

Table 4. Statistical error between simulated and measured water quality state
variables on 1 June 2011.

Water Quality Variable

Danshuei
River–Tahan Stream Hsintien Stream Keelung River

AME
(mg/L)

RMSE
(mg/L)

AME
(mg/L)

RMSE
(mg/L)

AME
(mg/L)

RMSE
(mg/L)

Dissolved oxygen 0.83 0.97 0.29 0.44 0.68 0.76
Carbonaceous biochemical

oxygen demand 2.48 2.84 2.23 2.85 1.60 1.86

Ammonium nitrogen 0.52 0.80 0.44 0.67 0.35 0.42
Total phosphorus 0.99 0.10 0.08 0.14 0.06 0.07

Table 5. Statistical error between simulated and measured water quality state variables
on 5 September 2011.

Water Quality Variable

Danshuei
River–Tahan Stream Hsintien Stream Keelung River

AME
(mg/L)

RMSE
(mg/L)

AME
(mg/L)

RMSE
(mg/L)

AME
(mg/L)

RMSE
(mg/L)

Dissolved oxygen 1.41 1.65 0.67 0.83 1.04 1.19
Carbonaceous biochemical

oxygen demand 1.10 1.32 006 0.07 0.80 0.91

Ammonium nitrogen 0.47 0.78 0.03 0.04 0.56 0.71
Total phosphorus 0.04 0.06 0.01 0.01 0.02 0.02

5. Model Project Responses to Climate Change Impact

The future climate scenarios frequently used in Taiwan have been based on the
Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions
Scenarios (SRES) A1B and A2 scenarios. The Water Resources Agency [58] projected
the streamflow in the Danshuei River basin due to the climate change scenarios in
year 2039 (i.e., short term). The projected results in streamflow during the dry seasons
based on different scenarios are summarized in Table 6. These results indicate that
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the decreasing rates of streamflows in the Tahan Stream, the Hsintien Stream, and
the Keelung River are 45.54%, 4.15%, and 45.65%, respectively, for the A2 scenarios,
whereas they are 19.05%, 3.44%, and 24.32%, respectively, for the A1B scenario.

Table 6. The streamflows for the present condition and under climate change
scenarios during Q75 low flow.

River
Q75 Low Flow
under Present

Condition (m3/s)

Decreasing
Rate under A2
Scenario (%)

Q75 Low Flow
under A2

Scenario (m3/s)

Decreasing Rate
under A1B

Scenario (%)

Q75 Low Flow
under A1B

Scenario (m3/s)

Tahan Stream 3.36 45.54 1.83 19.05 2.72
Hsintien
Stream 14.23 4.15 13.64 3.44 13.74

Keelung River 3.33 45.65 1.81 24.32 2.52

To perform the model prediction of the water quality in the estuarine system, the
five-constituent tide at the ocean boundaries was used to force the model simulation.
Concentrations of the water quality state variables ammonium nitrogen, total
nitrogen, total phosphorus, carbonaceous biochemical oxygen demand, dissolved
oxygen, and chlorophyll a at the river boundaries and at the ocean boundaries were
established based on mean values calculated from the measured water quality data
collected from 2003 to 2013 as observed by TEPA. The river discharges at the tidal
limits of the three major tributaries—the Tahan Stream, the Hsintien Stream, and the
Keelung River—were conducted using the Q75 low flow condition, where Q75 flow
is the flow that is equaled or exceeded 75% of the time. The Q75 river flows at the
upstream reaches of the Tahan Stream, the Hsintien Stream, and the Keelung River
are 3.36, 14.23, and 3.33 m3/s, respectively, for the present condition. For the A2 and
A1B scenarios, the Q75 river flows at the upstream reaches of the Tahan Stream, the
Hsintien Stream, and the Keelung River are presented in Table 6.

The predicted water quality distribution for the present condition and the
A2 climate change scenario under Q75 low flow along the Danshuei River to
the Tahan Stream, the Hsintien Stream, and the Keelung River, respectively, is
shown in Figures 8–10. A comparison of the present condition with the A2 climate
change scenario reveals that the dissolved oxygen concentration decreased by
a maximum of 1.75 mg/L and that the carbonaceous biochemical oxygen demand,
ammonium nitrogen, and total phosphorus increased by a maximum of 6.4, 1.1,
and 0.04 mg/L, respectively, in the Danshuei River–Tahan Stream (Figure 8). The
dissolved oxygen concentration decreased by a maximum of 0.15 mg/L, and
the carbonaceous biochemical oxygen demand, ammonium nitrogen, and total
phosphorus increased by a maximum of 0.33, 0.14, and 0.01 mg/L, respectively,
in the Hsintien Stream (Figure 9). The dissolved oxygen concentration decreased
by a maximum of 1.50 mg/L, and the carbonaceous biochemical oxygen demand,
ammonium nitrogen, and total phosphorus increased by a maximum of 0.85, 0.48,
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and 0.03 mg/L, respectively, in the Keelung River (Figure 10). We found that the
dissolved oxygen concentration was lower than 2 mg/L in the Danshuei River-Tahan
Stream and did not meet the minimum requirement of TEPA. The maximum rate of
dissolved oxygen, carbonaceous biochemical oxygen demand, ammonium nitrogen,
and total phosphorus under climate change scenarios A2 and A1B is summarized in
Table 7. The maximum rate refers to the maximum values determined by the formula

represented by
Cp ´ Cc

Cp
ˆ 100%, where Cp is the water quality concentration at the

present time and Cc is the water quality concentration under climate change.

Figure 8. Predicting water quality distributions for present and climate change
(A2 scenario) conditions under Q75 low flow along the Danshuei River to the Tahan
Stream (a) DO; (b) CBOD; (c) NH4; and (d) TP.
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Figure 9. Predicting water quality distributions for present and climate change
(A2 scenario) conditions under Q75 low flow along the Hsintien Stream (a) DO;
(b) CBOD; (c) NH4; and (d) TP.

Table 7. Maximum rate of water quality state variables under climate change
scenarios A2 and A1B.

River

Maximum Rate under
Climate Change

A2 Scenario

Maximum Rate under
Climate Change

A1B Scenario

DO
(%)

CBOD
(%)

NH4
(%)

TP
(%)

DO
(%)

CBOD
(%)

NH4
(%)

TP
(%)

Danshuei
River–Tahan Stream ´59.4 20.46 26.9 4.4 ´25.8 7.5 9.8 1.8

Hsintien Stream ´2.0 1.9 3.8 1.7 ´1.9 1.6 3.0 1.6
Keelung River ´33.7 4.9 13.8 6.2 ´14.5 2.3 6.2 3.3

Note: minus and plus represent a decrease and increase, respectively.
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Figure 10. Predicting water quality distribution for present and climate change (A2
scenario) conditions under Q75 low flow along the Keelung River (a) DO; (b) CBOD;
(c) NH4; and (d) TP.

The vertical distributions of monthly (in August) average salinity, dissolved
oxygen, carbonaceous biochemical oxygen demand, ammonium nitrogen, and total
phosphorus in the Danshuei River-Tahan Stream under the present condition and A2
scenario, respectively, are shown in Figures 11 and 12. It can be seen that the limit of
salt water intrusion for the A2 scenario (Figure 12a) moves further upriver compared
with the present condition (Figure 11a). The limit of salt water intrusion for the
present condition, A2 scenario, and A1B scenario in the Danshuei River-Tahan Stream,
the Hsintien Stream, and the Keelung River is illustrated in Table 8. The differences
in the limit of salt water intrusion between the A2 scenario and present condition are
1.52 km, 0.25 km, and 1.33 km, respectively, in the Danshuei River-Tahan Stream, the
Hsintien Stream, and the Keelung River. According to Figures 11a and 12a, we can
observe the vertical stratification in salinity exhibited in the lower Danshuei River
estuary. The dissolved oxygen concentration for the A2 scenario (Figure 12b) in an
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estuarine system decreases compared to the present condition (Figure 11b), while the
concentrations of carbonaceous biochemical oxygen demand, ammonium nitrogen,
and total phosphorus (Figure 12c–e) increase (Figure 11c–e). No significant vertical
stratification in water quality was found in the Danshuei River estuary.

Figure 11. The vertical distribution of the monthly average water quality
concentration in the Danshuei River to Tahan Stream under Q75 flow for the
present condition (a) Salinity; (b) DO; (c) CBOD; (d) NH4; and (e) TP.
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Figure 12. The vertical distribution of the monthly average water quality concentration
in the Danshuei River to Tahan Stream under Q75 flow for the A2 Scenario
(a) Salinity; (b) DO; (c) CBOD; (d) NH4; and (e) TP.
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Table 8. The limit of salt water intrusion in the Danshuei River estuarine system
under different scenarios.

River Present Condition
(km)

A2 Scenario
(km)

A1B Scenario
(km)

Danshuei River–Tahan
Stream 24.67 26.19 25.24

Hsintien Stream 3.06 3.31 3.20
Keelung River 11.29 12.62 11.80

6. Discussion

Water quality studies utilizing a coupled hydrodynamic and water quality
model tend to contain some limitations and assumptions. These limitations and
assumptions exist in both the data and model. The major data used in this study were
climate change scenarios. The climate change scenarios (i.e., A1B and A2) used in this
study were obtained from the Water Resources Agency, Taiwan, which projected the
streamflow during dry seasons in the Danshuei River basin. We know that climate
change is a non-stationary and dynamic problem; however, the streamflow projected
from the climate change model and used in this study is a steady-state condition.
This could lead to bias in future streamflow estimates that result in more uncertainty
in the modeling results of water quality.

As mentioned in the Section “Water Quality Model”, there are many parameters
in the water quality model. The model was validated with two-year measured
data. The model parameters after validation are kept for modeling future conditions
without adjustment under future scenarios. However, future climate change might
change the parameters. All of these parameters might reduce the accuracy of the
modeling results. Nevertheless, after considering the aforementioned limitations and
assumptions, the modeling results of water quality are relevant and reliable under
the current climate change scenarios. The approaches are useful for assessing the
impact of climate change on estuarine water quality.

Some literature has stated that climate change causes the degradation of water
quality. For example, Tung et al. [59] evaluated the effects of climate change
on sustainable water quality management and proposed a systematic assessment
procedure including a weather generation model, the streamflow component of GWLF,
QUAL2E, and an optimization model. Their studies indicated that streamflows may
likely increase in humid seasons and decrease in arid seasons. The reduction of
streamflow in arid seasons might further degrade water quality and assimilation
capacity. Our study also demonstrated that the dissolved oxygen would decrease
as a result of climate change, which reduces the streamflow during dry seasons.
Wetz and Yoskowitz [27] reported that drought coupled with burgeoning population
growth in coastal watersheds places a serve strain on freshwater supplies and greatly
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reduces freshwater inflows to estuaries, especially when coincident with seasonal
peaks in human freshwater demand. Freshwater contains nutrients and organic
matter that upon delivery to the coastal zone, fuels the rich productivity of coastal
ecosystems and shapes critical fish habitats through its effects on salinity gradients
and stratification. Low freshwater inflow events have the potential to significantly
alter the water quality and ecosystem structure. In this study, we found that the
dissolved oxygen would decrease and nutrients would increase for the low flow
condition as a result of climate change. The decreased dissolved oxygen would result
in malodor, fish mortality, and microbial proliferation, which causes the issue of
public health.

In future research, future climate scenarios will be performed with a global
climate model (GCM model) combined with a rainfall-runoff model to project
time-series streamflow, which can be incorporated into the hydrodynamic and water
quality model. The impact of sea-level rise on the estuarine water quality can be
investigated. A long-term early warning system triggering proper adaptations to
reduce climate change effects can also be studied.

7. Conclusions

A coupled three-dimensional hydrodynamic water quality model was applied to
predict the water quality conditions in the Danshuei River estuarine system due to the
projected effects of climate change. The model was validated against salinity distribution
and water quality state variables including dissolved oxygen, carbonaceous
biochemical oxygen demand, ammonium nitrogen, and total phosphorus. The
simulated results using the three-dimensional hydrodynamic water quality model
revealed that the computed salinity and water quality state variables well reproduced
the observed data. The overall performance of the model is in qualitative agreement
with the available field data.

The validated model was then used to assess the effects of climate change on
water quality in the Danshuei River estuarine system during the low flow condition.
Two climate change scenarios, A2 and A1B, were considered for model simulation. The
simulated results indicated that the dissolved oxygen concentration has significantly
decreased and the concentrations of carbonaceous biochemical oxygen demand,
ammonium nitrogen, and total phosphorus have obviously increased because of
climate change. Moreover, the dissolved oxygen concentration would be lower than
2 mg/L in the main stream of the Danshuei River estuary and would fail to meet the
minimum requirement of TEPA. The deleterious water quality would produce other
issues related to human pathogens and public health.

The simulated results may vary depending on the estuarine system, climate
scenario, water quality model, and parameters considered. Considering the
limitations of this study, the results are valid only under current climate change
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scenarios in the study area. However, the results and methodologies in this study
still have implications for future water quality management in the estuarine system
for the study area and other regions facing similar stresses from climate change.
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Estimating the Risk of River Flow under
Climate Change in the Tsengwen
River Basin
Hsiao-Ping Wei, Keh-Chia Yeh, Jun-Jih Liou, Yung-Ming Chen and
Chao-Tzuen Cheng

Abstract: This study evaluated the overflow risk of the Tsengwen River under
a climate change scenario by using bias-corrected dynamic downscaled data as
inputs for a SOBEK model (Deltares, the Netherlands). The results showed that
the simulated river flow rate at Yufeng Bridge (upstream), Erxi Bridge (midstream),
and XinZong (1) (downstream) stations are at risk of exceeding the management
plan’s flow rate for three projection periods (1979–2003, 2015–2039, 2075–2099). After
validation with the geomorphic and hydrological data collected in this study, the
frequency at which the flow rate exceeded the design flood was 2 in 88 events in
the base period (1979–2003), 6 in 82 events in the near future (2015–2039), and 10 in
81 events at the end of the century (2075–2099).

Reprinted from Water. Cite as: Wei, H.-P.; Yeh, K.-C.; Liou, J.-J.; Chen, Y.-M.;
Cheng, C.-T. Estimating the Risk of River Flow under Climate Change in the
Tsengwen River Basin. Water 2016, 8, 81.

1. Introduction

Extreme typhoon precipitation events frequently result in socioeconomic
impacts and loss of human life. Increased incidences of extreme rainfall events
indicate one of the common features signaling climate change worldwide. The
International Panel on Climate Change [1] reported that on average, precipitation has
increased globally by approximately 8%. According to Liu et al. [2], scientists have
contended that the increase in global temperature over the past decade has prompted
an increase in extreme precipitation events and a decrease in moderate and mild
precipitation events. The 2010 Taiwan Climate Change Projection and Information
Platform (TCCIP) Project Report II included statistical data regarding the frequency
of extreme typhoon precipitation events in Taiwan from 1970 to 2009. The statistical
results indicated that prior to 2000, the frequency of extreme typhoon precipitation
events was approximately once every 2 years; however, this frequency increased to
at least once a year after 2000 [3]. Because of river flow changes caused by extreme
rainfall, discharge control structures (culverts, flap gates, weirs, and sluice gates) in
river basins are at a high risk of destruction.
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The main scientific tool used in long-term climate simulations is the general
circulation model (GCM), the main purpose of which is to project global climate
characteristics and trends. However, GCM projections (e.g., rainfall, temperature,
and humidity) cannot provide adequate and effective information for simulating
small areas. In past decades, scientists have developed downscaling methods to
increase the spatial resolution, providing more information for correcting the error
margin from the GCM simulations and presenting the influence of topographic
distribution in local areas. Currently, high-resolution climate data can be obtained
through high-resolution GCM, dynamical downscaling, and statistical downscaling.
Although numerous recent studies have attempted to increase the spatial resolution
of the output from the GCM, for example, by using statistical and dynamical
downscaling, the results typically yield only certain points of information that are
inadequate for resolving the climate characteristics of small areas with complex
terrain such as in Taiwan.

The present study used the Tsengwen River as the study area. High-resolution
dynamical downscaling data were used to simulate changes in the hourly flow rate
of typhoon events. Based on the selection criteria [4], the number of extreme typhoon
events selected from the base period (1979–2003), near future (2015–2039), and end
of the century (2075–2099) were 88, 82, and 81, respectively. The high-resolution
dynamical downscaling data were used as the input for a SOBEK river channel
routing model to simulate changes in the river flow rate under climate change.
Results were further compared with the design flow rate, as well as recorded river
water levels of the most severe typhoon events in history, to evaluate the risk of river
flooding under climate change.

2. Literature Review

The GCM is the main tool for simulating future climate conditions; however, it
has a relatively low resolution (approximately 200–500 km) [5], which is inadequate
for detailed assessments of land surface processes and climate change effects at local
to regional scales, particularly in regions with varied topography [6–8]. Chen et al. [9]
observed that the GCM has been widely applied in simulating future climate
scenarios; however, GCM data have a relatively low spatial resolution and cannot
be used for detailed discussions on climate scenarios for small areas. Present-day
regional climate models (RCM) are most often used for simulating the climate of more
local spatial regions. Over the past few decades, dynamical downscaling has mainly
been performed using high-resolution GCM or RCM data, with a spatial resolution
less than 100 km. Recently, a high-resolution atmospheric GCM model with a
resolution of approximately 20 km was developed by the Meteorological Research
Institute (MRI) of Japan (hereafter, MRI-AGCM) [10] to include explicitly simulated
extreme weather events, such as tropical storms and meso-scale systems, in long-term
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climate simulations. Although the MRI-AGCM showed marked improvements in
simulating extreme precipitation events, the details of local rainfall over complex
terrain may still be difficult to simulate. However, a 20-km resolution remains
insufficient for describing the local weather and climate characteristics in some areas
of Taiwan because of the complex terrain.

In recent years, hydrologic and hydraulic models such as Hydrologic
Engineering Centers River Analysis System, Mike-11, SOBEK, and the integrated
flood analysis system (IFAS) have been applied to predict potential disasters by using
future climate data. Linde et al. [11] used a SOBEK model to simulate low-probability
flood-peak events in the Rhine basin. The results showed a basin-wide increase of
8%–17% in the peak discharge of the Rhine basin in 2050 for probabilities between
1/10 and 1/1250. Kimura et al. [12] applied the IFAS to simulate the peak discharges
in Tsengwen reservoir watershed in Taiwan from extreme rainfall events (TP1–10)
during three periods: the present (1979–2003), near future (2015–2039), and future
(2075–2099). The peak discharges during the future climate change period were
higher than those during the present climate change period. Lenderink [13] discussed
the discharge of the Rhine during future climate change by investigating two periods:
the present (1960–1989) and future (2070–2099). A Rhineflow method was employed
to simulate discharges for the UK Met Office RCM HadRM3H [14–16]. The mean
discharge in the present (1960–1989) and future (2070–2099) climate change periods
increased by approximately 30% in winter and decreased by approximately 40%
in summer. This model estimated the effect of climate change on river discharges.
Climate data such as temperature, precipitation, and evapotranspiration were used
as inputs for the hydrologic and hydraulic models of the river basin; the outputs
were for typical river discharge structures [13,17].

Previous studies have rarely focused on hydrological changes in Taiwan
because of the low resolution of GCM data. Taiwan can currently generate its
own high-resolution data for future climate scenarios, which were employed in
the present study for hydraulic and hydrologic routing to project future flow rates
under climate change. This study directly compared the river flow and water level
determined through hydraulic and hydrologic routing. In addition, the risk of flood
protection facilities under climate change was evaluated.

3. Research Methodology

This study was aimed at quantifying the effects of climate change in the
Tsengwen catchment area. A flowchart of the research process employed in this
study is shown in Figure 1. The first stage focused on introducing related climate
change data. For the second stage, the major focus was developing a hydrodynamic
model, including its calibration and validation. In the final stage, river discharge
changes and river bank overtopping-frequency results were evaluated.
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Figure 1. Conceptual scheme of the evaluation of the effects of climate change on
river flow and water level.

3.1. SOBEK Model

The SOBEK model, which is in the SOBEK modeling suite developed by
Deltares (formerly WL Delft Hydraulics), the Netherlands, integrates the commercial
hydrologic and hydrodynamic programs of urban drainage systems along with
river and regional drainages. The present study used the SOBEK channel-flow (CF)
module along with the rainfall-runoff (RR) module for river channel simulations.
The estimated RR volume was calculated as the lateral inflow (node) that converges
in the main stream when calculating the unsteady flow of the river channel [18].

3.1.1. Rainfall Runoff

The SOBEK model incorporates the Sacramento RR model for simulating the
process of rainfall forming runoff, including evaporation, infiltration, subsurface
runoff, and underground water. The concept is to convert effective rainfall at the
surface through a unit hydrograph into surface runoff, and to then add soil surface
moisture, intermediate flow, and ground water discharge (base flow) to obtain
the total runoff [19]. The Sacramento model defines a mathematical equation that
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accounts for each process in the transformation of rainfall into outflow toward a
river. The concept of the Sacramento model and its parameters are shown in Figure 2.
According to the Sacramento model, the soil column is divided into two soil zones:
upper and lower [18]. The model has 17 parameters, the values of which must be
specified [18]. Table 1 lists all the Sacramento parameters [19] and parameter ranges
used in this study [20].

Figure 2. Conceptualization of the Sacramento model and parameters.

3.1.2. River Hydraulics

River flood routing is based on the dynamic wave transfer theory for
one-dimensional (1D) varied flow; that is, de Saint Venant’s gradually varied flow
equation for describing water flow in rivers. This study used the nonlinear implicit
difference method for calculating the depth and flow rate for each period. Water
depth and flow rate at each cross-section point where main and branch streams
converge were determined on the basis of conditions that the main and branch
streams have the same water level, and inflow equals outflow. Equations of continuity
(1) and motion (2) were considered for flood routing on the basis of de St. Venant’s 1D
gradually varied flow equation, which is the dynamic wave model. River simulations
included the simulation of bridges, reservoirs, and cross-river structures such as
weirs, culverts, orifices, and pump stations.
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Table 1. Sacramento model parameters and their allowable ranges.

Parameters Description Allowable Range

UZTWM Capacity of the upper tension water zone (mm) 250–300

UZFWM Capacity of the upper free water zone (mm) 240–300

UZK Upper zone lateral drainage rate (fraction of contents per day) 0.2

PCTIM Permanent impervious fraction of the segment contiguous with
stream channels 0.02

ADIMP Additional impervious fraction when all tension water
requirements are met 0.3–0.5

SARVA Fraction of the segment covered by streams, lakes, and
riparian vegetation 0.01

ZPERC Proportional increase in the percolation under saturated to dry
conditions in the lower zone 10–20

REXP Exponent in the percolation equation, for determining the rate at
which percolation demand changes from dry to wet conditions 1.5–2.5

LZTW Capacity of the lower zone tension water storage (mm) 210–330

LZFPM Capacity of the lower zone primary free water storage (mm) 230–450

LZFSM Capacity of the lower zone supplemental free water storage (mm) 200–340

LZPK Drainage rate of the lower zone primary free water storage
(fraction of contents per day) 0.004–0.04

LZSK Drainage rate of the lower zone supplemental free water storage
(fraction of contents per day) 0.06–0.14

PFREE Fraction of percolated water that drains directly to the lower
zone free water storage 0.2

RSERV Fraction of the lower zone free water storage that is unavailable
for transpiration purposes 0.3

SIDE Ratio of the unobserved to observed base flow 0

SSOUT Fixed rate of discharge lost during the total CF (mm/t) 0
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where Q is the discharge (m3/s), h is the water depth (m), R is the hydraulic
radius (m), qlat is the lateral discharge per unit length (m2/s), Af is the wetted
area (m2), wf is the flow width (m), τwind is the wind shear stress (N = m2), ρw is the
density of water (kg/m3), t denotes time (s), x refers to distance (m), and g denotes
acceleration due to gravity (m/s2) («9.81).

When the SOBEK CF module processes the equation of motion, the influence of
wind shear is considered, and wind force and direction are set to a fixed value or time
sequence. Moreover, the SOBEK model can account for the influence of wind on the
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water level, which is not considered in the urban drainage and flood model. When
considering the lateral inflow of a unit length of a river, including culverts, pumps,
and weirs, the flow rate can be computed using the stage–discharge relationship of
the hydraulic structures.

3.2. Indicators for Model Error Analysis

To validate the simulation model, the simulated and observed water level values
were compared, and three statistical indices, namely, the coefficient of efficiency (CE),
error of peak water level (ELP), and error of the time to peak (ETP), were calculated.
The three indices are computed as follows:

CE “ 1´
řn

i“1 pLobs ´ Lestq
2

řn
i“1

`

Lobs ´ Lobs
˘2 (3)

ELP “
Lest ´ Lobs

Lobs
(4)

ETP “ Test ´ Tobs (5)

where Lest denotes the estimated flood discharge (cm), Lobs represents the observed
flood discharge (cm), and Lobs is the mean value of the observed flood discharge
(cm); Lest and Lobs are the observed and estimated peak water levels of the flood,
respectively; and Test and Tobs denote the estimated and observed time to peak
discharges, respectively.

3.3. Study Area

We selected the Tsengwen River basin as the study area, which covers an area of
approximately 1176.7 km2. The Tsengwen river basin is complex; the mountains are
over 3000 m high, and the valley is narrower than 20 km. The average annual
rainfall received by the drainage basin is 2643 mm. The Tsengwen River basin
comprises the Tsengwen, Nanhua, and Wu Shantou Reservoirs. The Tsengwen
Reservoir is located upstream of the Tsengwen Creek, and is the largest reservoir in
Taiwan and the major source of water supply for downstream irrigation systems in
Chiayi and Tainan Counties. The Tsengwen Reservoir has a large net water storage
capacity (approximately 0.5 billion m3). The mean annual inflow to the reservoir is
approximately 1.1 billion m3 [21]. The Tsengwen River Basin includes the Tsengwen
River main stream, Cailiao River, Guantian River, and Houjue Creek. The location of
the Tsengwen River Basin is shown in Figure 3.
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Figure 3. Tsengwen River Basin.

3.4. Hydrologic and Geomorphic Data

Hydrologic and geomorphic data must be collected before simulating the river
flow rate and water depth for different scenarios. River cross-sections, hydraulic
structures, rainfall in future climate, land use, river flow, and water level data are the
basic data.

Rainfall data include observations from historical typhoon events and simulated
rainfall data of extreme typhoon events under future climate change. The water level
data include those of gauging stations along the river and tidal stations near the
estuary (120˝06143” E, 23˝01125” N). Hourly water level data from current gauging
stations were collected to validate hydraulic routing. Tide levels at the estuary
were considered downstream boundary conditions in the model. The finite volume
coastal ocean model (FVCOM) was employed to project changes in the astronomical
tide at the estuary under a future climate change scenario. Chen and Liu [22]
provided a detailed description of the FVCOM structure and parameters. River
cross-sectional data of 2010 were provided by the projects of the WRA’s Sixth River
Management Office and Water Resources Planning Institute, and these include data
of the cross-sections of the Tsengwen main stream, Cailiao River, Guantian River,
and Houku Creek. The reservoir data include data of the Tsengwen, Nanhua, and
Wushantou Reservoirs. The SOBEK model is based on reservoir operations [23–25],
in which settings for the reservoir include reservoir area, volume, and contributing
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area, and settings for the dam include spillway, water gate, power plant discharge,
and emergency spillway. Discharge functions were set according to reservoir
operation rules.

This study used the atmospheric general circulation model MRI-AGCM; the
climate during three periods over a total of 75 years was simulated: base period
(1979–2003), near future (2015–2039), and end of the century (2075–2099), developed
by Japan Meteorological Agency (JMA) and Meteorological Research Institute (MRI);
and ECHAM5, the climate model developed by the German research institute MPI,
for climate projections. Simulation results were used as the initial field and boundary
conditions for dynamical downscaling in the WRF modeling system, which was
developed by the U.S. National Center for Atmospheric Research (please refer to the
report of TCCIP (2010) for details).

This study adopted the high-resolution MRI-AGCM (20 km) to define typhoon
events. MRI-AGCM revises the definition of typhoon provided by Vitart et al. [4], and
uses the conditions of 850-hpa vorticity, sea-level pressure, presence or absence of
warm-core structure near the typhoon center, and maximum local thickness to detect
typhoons. Moreover, the wind speed at the bottom layer of typhoons must reach
at least 17 m/s for 1.5 days or more. The process of selecting typhoon events can
be divided into two steps: screening typhoon events and tracing typhoon routes [4].
The number of typhoon events determined using the aforementioned definition for
the three periods and MRI-AGCM are 88, 82, and 81.

We ranked extreme typhoon rainfall events from each of the three 25-year
periods based on the total rainfall over 24 h in the Tsengwen River basin. Although
the TCCIP (2/3) reported that projections must be revised, this study bias-corrected
the rainfall data by using the cumulative distribution function model [26] for the
extreme typhoon rainfall events during the three periods. Figure 4 shows the average
rainfall of the TOP1–20 events during the base period, near future, and end of the
century. Moreover, we observed that the rainfall of the typhoon events at the end
of the century (2075–2099) is higher than that of the base period and near future.
Table 2 shows the statistical values for the TOP1–20 extreme events during the three
periods. The Central Weather Bureau of Taiwan defines 24-h accumulated rainfall
of 250 mm as extremely torrential rain. After observing rainfall characteristics that
resulted in floods in Taiwan, Yu et al. [27] defined 3-h accumulated rainfall of 130 mm
as short-duration disastrous rain. Table 1 shows that the TOP1–2 events in the base
period, TOP1–5 in the future and the TOP1–12 events at the end of the century are
extremely torrential rain events. The TOP2 event in the near future and the TOP1-3,
TOP5, and TOP6 events at the end of the century are short-duration disastrous
rainfall events.
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Figure 4. Rainfall hyetograph for the TOP1-20 extreme typhoon rainfall events
during the three periods.

Table 2. Precipitation analysis of extreme events.

Typhoon
Events

Base Period Near Future End of This Century

(1979–2003) (2015–2039) (2075–2099)

No. (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4)

Top1 851.4 108.6 491.3 120 548.2 111.7 420.3 90 1027.8 191.7 722.1 48
Top2 505.9 63 268.4 90 370 132.3 367.8 78 738.2 160.6 572.5 66
Top3 298.6 57.1 247.3 90 304.9 68.8 296.3 66 551.1 200.4 549.5 36
Top4 295.7 58.7 223.1 60 344.3 64.2 295.8 60 534.6 84.8 433.2 132
Top5 248.8 55.7 222 66 288.3 117.0 280.9 67 677.0 154.3 430.1 48
Top6 194.8 73.5 192.6 78 227 39.6 197.2 90 407.5 135.9 404.9 66
Top7 174.8 75.7 164.4 42 197.7 47.0 183.3 42 503.0 94.2 394.7 102
Top8 149.1 68 147.6 42 171.9 55.5 162.7 72 475.7 91.2 366.6 48
Top9 242.5 36.3 141.8 48 167.5 40.3 158.2 72 484.8 97.2 359.9 42

Top10 132.4 117.1 131.8 96 218.1 28.2 149.9 48 344.9 63.9 283.4 48
Top11 153.4 31.0 123.0 54 156.9 33.7 145.9 48 338.3 92.0 268.2 54
Top12 112.9 106.0 112.9 48 295.2 27.1 145.7 150 328.0 82.2 250.8 42
Top13 104.3 89.6 98.7 72 147.9 62.7 143.3 72 258.0 61.9 219.6 66
Top14 95.6 95.6 95.6 108 225.4 32.7 133.4 42 259.7 79.0 203.6 42
Top15 92.1 90.6 92.1 84 122.2 56.7 121.8 66 201.1 94.6 195.4 54
Top16 88.6 88.6 88.6 24 120.8 28.7 120.2 84 239.0 43.6 191.8 72
Top17 85.7 77.7 85.7 30 112.2 37.3 106.8 60 306.8 42.7 186.1 60
Top18 91.8 52.7 85.3 54 110.9 37.3 106.8 78 290.1 57.3 173.7 30
Top19 75.2 75.2 75.2 48 98.5 42.6 98.1 30 190.8 28.6 147.1 48
Top20 67.5 34.8 37.0 138 76.5 23.6 74.8 42 68.7 21.5 66.8 78

Typhoon
Morakot 1007.5 144.3 636.2 72 – – – – – – – –

(1) Total precipitation (mm); (2) Maximum of 3 h; (3) Maximum of 24 h; (4) Total duration (h).
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In 2009, typhoon Morakot induced long-duration continuous rainfall, and the
total rainfall received was approximately equal to the rainfall received during the
most extreme typhoon event at the end of the century. However, the maximum
rainfall induced by typhoon Morakot after continuously raining for 3 and 24 h was
lower than the rainfall induced by the top few extreme typhoon events at the end
of the century. In other words, rainfall distribution during extreme typhoon events
during the future climate will be high over a short period.

Because the weather research and forecasting (WRF) climate data are grid data,
this study collected the rainfall data from WRF grid points of the WRA’s rainfall
stations nearby, and used the data as input for the SOBEK model. The location of
rainfall stations and WRF grid points are shown in Figure 5. Because of the historical
rainfall data length and data acquisition constraints, this study selected 11 rainfall
stations: MUZHA, TSOCHEN, BEILIAO, CHIKULAOS, BEILIAOS, SHANHUA,
YUTEN, NANXI, WANGYEGONG, ZHENGWEN, and BIAOHU.

Figure 5. Map of the Tsengwen River Basin rainfall stations and WRF grid points.

4. Case Analysis

This study used 88 extreme typhoon rainfall events for the base period, 81 for
the near future, and 82 for the end of the century periods. The data were used as
inputs for the SOBEK routing model, which is used for simulating changes in the
river flow rate during future climate change.
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4.1. River Hydraulic Structure Impact Assessment

Common hydraulic structures in rivers include weirs, piers, dams,
embankments, and groundsills. When a river channel requires hydraulic structures,
which can be for various purposes (flood disaster prevention or hydraulic design),
the flow rate and flood stage of the river channel must first be estimated to protect
the hydraulic structures as well as the lives and assets of residents.

Conventional river flood prevention plans incorporate the concept of a return
period when considering risk [28]; the design standard of river flood prevention
facilities in Taiwan considers return periods of 50, 100, or 200 years. Hydrological data
used for return period analysis are obtained through statistical analysis of historical
data (20–60 years). During flood prevention facility planning and designing, the
flow rate is projected on the basis of the hydrological data of the return period
and geomorphic data of the river channel, along with a safety factor to reduce the
uncertainty. The projected flood stage is calculated using a hydraulic model test
or 1D hydraulic model based on the river’s physical characteristics. Table 3 shows
the design flow rate and flood stage at XinZong (1), Erxi Bridge, and Yufeng Bridge,
as well as the highest water level observed in the past.

Table 3. Design discharge and water level.

Gauge Station Return Period
(Years)

Design
Discharge (cm)

Design
Stage (m)

* Historical
Maximum Stage

(m)

XinZong (1)
100

9890 15.71 18.36
Erxi Bridge 8740 21.37 23.56

Yufeng Bridge 6900 46.06 46.98

* occurred during typhoon Morakot.

4.2. Model Calibration and Validation

This study used the data of the rainfall for Typhoon Kalmaegi (2008) and
Typhoon Morakot (2009) to calibrate the SOBEK model parameters and rainfall
of 0610 torrential rains to validate the model parameters. Figures 6–8 compare the
water levels measured at the XinZong Bridge No. 1 station in the Tsengwen River
basin by using the SOBEK model. The figures show that the SOBEK simulations
match the measured water levels.
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Figure 6. Comparison between the estimated and observed results of the water
level at the XinZong (1) water level station during Typhoon Kalmaegi.

Figure 7. Comparison between the estimated and observed results of the water
level at the XinZong (1) water level station during Typhoon Morakot.

Figure 8. Comparison between the estimated and observed results of the water
level at the XinZong (1) water level station for 0610 extreme rain.
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To discuss the performance of the model, this study used CE, ELp, and ETP as
a basis for the model validation. A CE approximating 1 indicates that the routing
model has a higher goodness of fit, an ELp greater than 0 indicates that the peak
water level projected by the model is higher than the observed peak water level, an
ELp less than 0 indicates that the peak water level projected by the model is lower
than the observed peak water level, and a lower ETP indicates that the model is
more accurate when projecting the time to peak. The results in Table 4 show that the
simulated water level approximated the observed water level.

Table 4. Calibrated and verified results.

Item Typhoon Events CE ELP ETP (h)

Calibrated
Kalmaegi(2008) 0.8 ´1.31 ´2

Morakot(2009) 0.9 4.75 ´1

Verified 0610 Extreme rain
(2009) 0.9 ´1.66 0

4.3. Simulation Results

Figures 9 and 10 show the simulated discharge and water level hydrograph for
the TOP1–20 extreme typhoon events during the base period, near future, and end of
the century at the XinZong (1), Erxi Bridge, and Yufeng Bridge. According to these
figures, the peak discharge and water level for the end of the century is higher than
those for the base period and near future.

The design flood stages at XinZong (1), Erxi Bridge, and Yufeng Bridge gauging
stations are 15.71, 21.37, and 46.06 m, respectively. Table 5 shows the water levels
that exceeded the design values for extreme typhoon events in the base period, near
future, and end of the century at XinZong (1), Erxi Bridge, and Yufeng Bridge. The
simulated water levels at these three gauging stations exceeded the design values for
the water levels in the three periods. In the base period, the peak flows at XinZong 1,
Erxi Bridge, and Yufeng Bridge exceeded the management plan flow rate in 2 of 88,
3 of 88, and 1 of 88 events, respectively. For the near future, the corresponding peak
flow rates exceeded the design discharge in 6 of 82, 6 of 82, and 1 of 82 events, and at
the end of the century, the corresponding flow rates exceeded the flow rate in 10 of 81,
12 of 81, and 8 of 81 events. At the end of the century, extreme peak flow events were
forecasted to increase in both frequency and intensity. The simulation results show
that the upstream area of the Tsengwen River is already at risk of flooding at the end
of the century.

326



Figure 9. Discharge hydrographs for the TOP1-20 extreme typhoon events during
the three periods at (a) XinZong (1); (b) Erxi Bridge; and (c) Yufeng Bridge.

Table 5. Water levels exceeding the design stage during extreme typhoon events.

Water Level Station
Design Water Level (m)

Base Period (88) Future (82) End of Century (81)

XinZong (1) 2 6 10
Erxi Bridge 3 6 12

Yufeng Bridge 1 1 8

The highest water levels measured at Erxi Bridge during the TOP1 and
TOP2 extreme typhoon events at the end of the century were 24.55 and 24.32 m,
respectively, which are higher than the highest water level of 23.56 m during typhoon
Morakot. This simulation result indicates that a severe flood could reoccur under
climate change.
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Figure 10. Water level hydrographs for the TOP1–20 extreme typhoon events
during three periods at (a) XinZong (1); (b) Erxi Bridge; and (c) Yufeng Bridge.

5. Conclusions and Recommendations

This study used dynamic downscaling data produced by the TCCIP project
for river flow rate simulation, and the results highlight the risk of overflow in the
Tsengwen River in the future under a climate change scenario.

In 2009, Typhoon Morakot induced continuous rainfall over a long period, and
the total rainfall received was lower than that received during the most extreme
typhoon events forecasted for the end of the century. Furthermore, the maximum
total rainfall received in 3 and 24 h during the top extreme typhoon events at the end
of the century was higher than that received at those times during typhoon Morakot,
indicating that extreme typhoon events under future climate change will induce
strong rainfall over a short period.

Based on the flow rate simulation results, the flow rate at Yufeng Bridge
(upstream,) Erxi Bridge (midstream), and XinZong. (1) (downstream) will potentially
exceed the management plan at the end of the century. At XinZong (1), the number
of times that the flow rate exceeded the management plan rate was 2 in 88 events
in the base period, 6 in 82 events in the near future, and 10 in 81 events at the end
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of the century; that for the end of the century was 5-fold higher than that of the
near future and 3-fold higher than that of the base period. At the end of the century,
extreme peak flow events will increase in frequency and intensity. Simulation results
show that the peak flow rate at the end of the century will be higher than that during
Typhoon Morakot. Therefore, a severe flood could reoccur in the future.

In this study, the river cross-section was assumed to be the same when
simulating flow rates for future climate change. In future, we will consider the
influence of erosion and land use change on the river cross-section when carrying
out simulations for future climate change.
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Optimal Choice of Soil Hydraulic
Parameters for Simulating the Unsaturated
Flow: A Case Study on the Island of
Miyakojima, Japan
Ken Okamoto, Kazuhito Sakai, Shinya Nakamura, Hiroyuki Cho,
Tamotsu Nakandakari and Shota Ootani

Abstract: We examined the influence of input soil hydraulic parameters on
HYDRUS-1D simulations of evapotranspiration and volumetric water contents
(VWCs) in the unsaturated zone of a sugarcane field on the island of Miyakojima,
Japan. We first optimized the parameters for root water uptake and examined
the influence of soil hydraulic parameters (water retention curve and hydraulic
conductivity) on simulations of evapotranspiration. We then compared VWCs
simulated using measured soil hydraulic parameters with those using pedotransfer
estimates obtained with the ROSETTA software package. Our results confirm that
it is important to always use soil hydraulic parameters based on measured data, if
available, when simulating evapotranspiration and unsaturated water flow processes,
rather than pedotransfer functions.

Reprinted from Water. Cite as: Okamoto, K.; Sakai, K.; Nakamura, S.; Cho, H.;
Nakandakari, T.; Ootani, S. Optimal Choice of Soil Hydraulic Parameters for
Simulating the Unsaturated Flow: A Case Study on the Island of Miyakojima, Japan.
Water 2015, 7, 5676–5688.

1. Introduction

There are no rivers on Miyakojima, a semitropical island in southernmost Japan,
because of its flat topography and the high permeability of the limestone that forms
the island. Local residents there are dependent on groundwater for almost all of their
domestic water use. In the Okinawa region, temperatures are predicted to rise in
response to climate change, while annual rainfall is expected to decrease [1], with
resultant depletion of groundwater resources becoming a concern. The main land
use on Miyakojima is sugarcane farming; thus, understanding both water movement
in the unsaturated zone of the farmland soil and the total water budget is important.

The HYDRUS-1D software package [2] has often been used for analyses of
these type of problems [3,4]. HYDRUS-1D provides versatile numerical modeling
of the movement of moisture, solutes, and heat in soil. One option in the code is to
estimate soil hydraulic properties by using pedo-transfer functions (PTFs). Since it is
difficult to measure soil hydraulic parameters, PTFs that estimate them from readily
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measurable soil characteristics, such as particle size distribution and bulk density
provide a very attractive tool for numerical analyses.

The accuracy of HYDRUS-1D simulations has been analytically verified [5].
Most studies to evaluate the performance of HYDRUS-1D were simulations of
the transfer of heat and moisture in semiarid and humid regions. For example,
Saito et al. [6] reported that HYDRUS-1D was useful for predicting the transfer of
heat and moisture in sandy soils, and Kato et al. [7] reported that it was useful for
predicting soil temperature and moisture in volcanic soils.

Other studies have used vadose zone models and PTFs. Steinzer et al. [8]
simulated evapotranspiration, infiltration, and VWCs distribution in lysimeter
experiments on sandy and clay soils in Germany. Wang et al. [9] simulated
groundwater recharge in sand and sandy loam soil by using HYDRUS-1D. They
found that recharge in their soils was strongly dependent on the parameter n of the
van Genuchten model [10] and uncertainties in the simulated recharge were affected
by uncertainties in the n estimated from PTFs.

Thus, although HYDRUS-1D is known to be useful for simulations of water
movement in the unsaturated zone, the code must be tested in a particular area before
practical applications; for example, for the development of a water management plan.
Wang et al. [11] simulated groundwater recharge at four sites in the continental United
States with different climate conditions using HYDRUS-1D along with datasets for
sand and loamy sand. They showed that the distribution patterns of mean annual
groundwater recharge varied considerably across the sites, mainly depending on soil
texture and climatic conditions.

To date, the use of HYDRUS-1D in the island of Miyakojima has not yet
been tested. Although the necessary weather data are readily available from the
Japan Meteorological Agency, the collection of soil data is more difficult. Most of
the soil data collected and analyzed in past investigations for land development
projects consists only of particle size distributions and bulk density; water retention
curves were not always determined. Accurate simulation results are dependent
on the quality of the soil hydraulic parameters used as input to the simulation.
Okamoto et al. [12] reported that the retention curve of Shimajiri mahji soil
(dark-red soil [13], which was classified as a Cambisol [14]) estimated using the
ROSETTA software package [15–17] was considerably different from that derived
from measured data. However, they did not comment on the influence of this
difference on the simulated water budget.

To validate the use of HYDRUS-1D on Miyakojima, we examined the influence
of input soil hydraulic parameters on HYDRUS-1D simulations of evapotranspiration
and VWCs. We first optimized the parameters for root water uptake and examined
the influence of soil parameters on simulations of evapotranspiration (details are
shown in the later section). We then compared VWCs simulated using measured
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soil hydraulic parameters with those simulated using parameters derived by using
ROSETTA software.

2. Materials and Methods

2.1. Study Site

Our study site is in a sugarcane field at Saratake in the Shirakawada
groundwater basin, which is one of several fault-bounded groundwater basins on
Miyakojima (Figure 1). We measured precipitation (CTK-15PC, Climatec, Inc., Tokyo,
Japan), temperature (CVS-HMP-155D, Climatec, Inc., Tokyo, Japan), wind speed
(CPR010C, Climatec, Inc., Tokyo, Japan), net radiation (CHF-NR01, Climatec, Inc.,
Tokyo, Japan), evapotranspiration (CS7500, Campbell Scientific, Logan, UT, USA and
SAT-540, SONIC Co., Tokyo, Japan), and VWCs (EC5, Decagon Devices, Pullman,
WA, USA). Evapotranspiration was measured by the eddy covariance method [18].
Time-domain reflectometry soil moisture sensors were installed at depths of 15, 30,
50, and 70 cm. Data were collected every 30 min. Measurement started on 29 August
2009 and ended on 31 December 2009. Cultivation started on 21 February 2009 and
ended on 20 January 2010.
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Figure 1. Groundwater basins on the island of Miyakojima. Figure 1. Groundwater basins on the island of Miyakojima.

The surface soil at the study site is a Jahgaru soil (gray soil [13,19]), which
extends to a depth of 120 cm at our sampling site. Jahgaru soil derived from
Shimajiri-mudstone is classified as Calcaric Regosols [14]. We sampled both disturbed
and undisturbed soil at depths of 15, 30, 50, 70, and 100 cm. Undisturbed soil samples
were collected using a 100 cm3 soil core sampler (inside diameter 5 cm, height 5.1 cm).
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We measured soil particle size distributions (%), bulk densities (g·cm−3),
hydraulic conductivities (cm·day−1), and water retention curves in the laboratory.
Soil particle size distributions were obtained using sieve analysis for particle sizes
greater than 75 µm and by hydrometer analysis for particle sizes smaller than 75 µm,
according to Japanese Industrial Standards (JIS A1202). We measured bulk densities
by using the 100 cm3 soil core sampler, hydraulic conductivities by the constant-head
method, and water retention curves by the three methods shown in Table 1.

Table 1. Experimental procedures used for VWC measurements at selected soil
suction ranges.
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Note: * WP4-T, Decagon Devices, Pullman, WA, USA. 

2.2. HYDRUS-1D 

2.2.1. Overview of HYDRUS-1D 

One-dimensional water flow in soil is described by the Richards equation as follows: 
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where θr is residual water content (cm3·cm−3), θs is saturated water content (cm3·cm−3), and Se is 
normalized water content. α (cm−1), n, m (= 1 − 1/n) and l (= 0.5) are empirical parameters, and Ks is 
saturated hydraulic conductivity (cm s−1). 

2.2. HYDRUS-1D

2.2.1. Overview of HYDRUS-1D

One-dimensional water flow in soil is described by the Richards equation
as follows:

∂θ

∂t
=

∂

∂z

(
K

∂h
∂z

)
+

∂K
∂z
− S, (1)

where θ is volumetric water content (cm3·cm−3), t is time (s), z is the spatial
coordinate, assumed positive upward (cm), h is pressure head (cm), S is a sink
term for water uptake by plant roots (cm3·cm−3·s−1), and K is unsaturated hydraulic
conductivity (cm·s−1). We applied the van Genuchten-Mualem equation [10,20]
(VG hereafter) to estimate the water retention curve and hydraulic conductivity of
the soil by using Equations (2) and (3), respectively:

Se =
θ − θr

θs − θr
=
(
1 + |αh|n

)−m , (2)

K (h) = KsSe
l
[
1− Se

(
1− Se

1
m

)m]2
, (3)
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where θr is residual water content (cm3·cm−3), θs is saturated water content
(cm3·cm−3), and Se is normalized water content. α (cm−1), n, m (= 1 − 1/n) and
l (= 0.5) are empirical parameters, and Ks is saturated hydraulic conductivity (cm s−1).

We simulated five soil layers (0–20, 20–40, 40–60, 60–80, and 80–120 cm) that
correspond to the depth ranges of the soil samples we collected. Atmospheric
conditions of daily precipitation and potential evaporation were used as upper
boundary conditions. Potential transpiration was used to calculate water uptake by
plant roots. The lower boundary condition was free drainage. Initial VWC was the
VWC measured in the field.

2.2.2. Crop Model in HYDRUS-1D

We used the method of van Genuchten et al. [21] to simulate water uptake by
plant roots:

S (h) = α (h) Sp, (4)

α (h) =
1

1 +
(

h
h50

)p , (5)

where α(h) is the water stress response function, Sp is potential water uptake by
plants roots, h50 is the soil suction at which water uptake by roots is reduced by 50%,
and p is an empirical component that is usually assumed to be 3 [22]. We used p = 3
to optimize h50.

To determine daily root length, we used a logistic root growth function in
HYDRUS-1D [2] and the results of a previous study [23]. We used the leaf area
index (LAI) growth model of Larsbo and Jarvis [24]. The LAI growth model from
crop emergence day (Dmin) to the day of maximum LAI (Dmax) is described by
Equation (6), and that from Dmax to the day of harvest (Dharv) by Equation (7):

LAI = LAImin + (LAImax − LAImin)

(
D∗ − Dmin

Dmax − Dmin

)x1

, (6)

LAI = LAIharv + (LAImax − LAIharv)

(
Dharv − D∗

Dharv − Dmax

)x2

, (7)

where LAImin is LAI at Dmin, LAImax is LAI at Dmax, LAIharv is LAI at Dharv, D* is the
number of days after planting, and x1 and x2 are empirical components. We derived
daily values of LAI from the results of a previous study of sugarcane [25] (Figure 2).

Potential evapotranspiration (ETp) was calculated using the Penman
Equation (8) [26,27]:

ETp =
∆

∆ + γ
· S

L
+

γ

∆ + γ
· u2 (esa − ea) , (8)
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where ETp is the reference evapotranspiration (mm·day−1), ∆ is the slope of
the saturation vapor pressure curve (kPa·◦C−1), γ is the psychometric constant
(kPa·◦C−1), S is the net radiation (MJ·m−2·day−1), L is the latent heat of evaporation
(MJ·kg−1) is, u2 is wind speed at 2 m height (m·s−1), (esa − ea) is the saturation
vapor pressure deficit (kPa). ETp was partitioned into potential evaporation (Ep) and
potential transpiration (Tp) using Campbell’s equation [28]:

Tp = ETp [1− exp (−8.2LAI)] (9)

Ep = ETp − Tp (10)

Total precipitation during the observation period was 675.5 mm (Figure 3).
Since the days after planting during the observation period varied from 189 to 313
and LAI from 2.4 to 3.3 (from Equations (6) and (7)), Ep was low throughout the
observation period.
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Figure 3. Daily precipitation, potential evaporation (Ep) and potential transpiration (Tp) 
from 29 August to 31 December 2009. 
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2.3. Comparison of Measured Soil Hydraulic Parameters with Those Estimated
Using ROSETTA

We determined the parameters for the VG equation by using our analyses of soil
samples and by application of the ROSETTA module in HYDRUS-1D. We determined
VG parameters so as to minimize the difference between measured values and
estimated values according to the nonlinear least-squares method using the solver
of an EXCEL add-in. ROSETTA can use combinations of soil texture, particle size
distribution, bulk density, and one or two points on the water retention curve to
determine the parameters for the VG equation and for hydraulic conductivity. In this
study, we used particle size distribution and bulk density, since these properties were
readily available.

Measured particle size distribution, bulk density and hydraulic conductivity
are shown in Table 2. For all samples, the sand content was less than 20% and the
soil texture was silt. There were no clear differences in bulk density among soil
layers. The standard deviation of hydraulic conductivity was large for all layers,
which we attributed to cracks formed in response to shrinkage during drying of the
soil samples. We, therefore, used the geometric mean of hydraulic conductivity in
the simulations.

Table 2. Measured particle distribution, bulk density, and hydraulic conductivity
of all layers.

z Sand Silt Clay Bulk Density Saturated Conductivity, Ks
(cm) (%) (%) (%) (g·cm−3) Geometric mean ± SD (cm·day−1)

15 13.1 69.6 17.3 1.319 24.7 ± 97.8
30 11.1 71.2 17.7 1.278 24.3 ± 152.6
50 7.5 75.3 17.2 1.268 21.8 ± 90.0
70 8.7 74.8 16.5 1.305 116.3 ± 343.8
100 10.4 70.3 19.4 1.159 21.9 ± 99.8

Note: Particle size distribution was derived from one sample and hydraulic conductivity
from four samples.

In our application of HYDRUS-1D, we considered four combinations of input
soil hydraulic parameters (Cases 1 to 4; Table 3).

Table 3. Combinations of parameters input to HYDRUS-1D.

Soil Hydraulic
Parameter Case 1 Case 2 Case 3 Case 4

Retention curve Measured ROSETTA ROSETTA Measured
Hydraulic

conductivity Measured ROSETTA Measured ROSETTA
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2.4. Simulation of Evapotranspiration and Volumetric Water Contents

To optimize the value of h50, we needed to minimize the difference between
measured and simulated evapotranspiration for each of Cases 1 to 4. To achieve
this, for each case we ran HYDRUS-1D using h50 values from 100 to 1000 cm at
intervals of 100 cm. Then, we chose the optimum value of h50 as the value with
the lowest root-mean-square error (RMSE) for total evapotranspiration calculated at
10-day intervals.

To examine the influence of input soil hydraulic parameters on simulated VWCs
movement, we calculated the RMSE between measured VWCs and simulated VWCs
(optimized h50) for each of the four soil layers for Cases 1 to 4.

3. Results and Discussion

3.1. Comparison of Measured Soil Hydraulic Parameters with Those Estimated
by ROSETTA

In general, ROSETTA underestimated measured VWCs, particularly for soil
suctions greater than 1000 cm (Figure 4). Okamoto et al. [12] reported similar results
from their application of ROSETTA to Shimajiri mahji soil. Since Jahgaru soil has
a poorly developed structure [19] it often does not drain well [18]. Therefore, the
measured VWC values at high suction tended to be larger than that estimated by
ROSETTA (Figure 4). Schaap and Leij [29] reported that the use of PTFs to estimate
soil hydraulic parameters might depend strongly on the data used for calibration.
The characteristics of Jahgaru soil might be different from the soil data used to
develop on the parameters used in ROSETTA.

Measured hydraulic conductivities were 21.8–116.3 cm d−1, whereas those
estimated by ROSETTA were 30.3–53.5 cm·d−1 (Table 4). We attributed the
difference in these results to the influence of cracks and aggregations of soil in
the sugarcane field.

Table 4. Parameters used in simulations.

z
(cm)

θr (cm3·cm−3) θs (cm3·cm−3) α (cm−1) n Ks (cm·d−1)

Fitted ROS Fitted ROS Fitted ROS Fitted ROS Measured ROS

15 0 0.070 0.493 0.441 0.0037 0.0049 1.193 1.685 24.7 30.3
30 0 0.073 0.493 0.456 0.0148 0.0049 1.140 1.683 24.3 35.0
50 0 0.074 0.449 0.469 0.0117 0.0051 1.125 1.672 21.8 35.2
70 0 0.072 0.462 0.456 0.0107 0.0050 1.147 1.677 116.3 32.3

100 0 0.078 0.556 0.492 0.0082 0.0049 1.166 1.675 21.9 53.5

Note: ROS = from ROSETTA.
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Figure 4. Soil water retention curves from measured data and as estimated by ROSETTA. 
(a) z = 15 cm; (b) z = 30 cm; (c) z = 50 cm; (d) z = 70 cm; (e) z = 100 cm. 
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Figure 4. Soil water retention curves from measured data and as estimated by
ROSETTA. (a) z = 15 cm; (b) z = 30 cm; (c) z = 50 cm; (d) z = 70 cm; (e) z = 100 cm.

3.2. Simulation of Evapotranspiration and Volumetric Water Contents

3.2.1. Optimization of h50 and Simulation of Evapotranspiration

The simulations run to optimize h50 (Figure 5) show that total evapotranspiration
(TET) increased with increasing h50 for all four cases considered. The optimal h50
(smallest RMSE) was 600 cm for Case 1, 400 cm for Case 2, 300 cm for Case 3 and
700 cm for Case 4. For each of the four cases, the TET estimated with the optimized
h50 was almost the same as the measured TET (204.5 mm).

The simulation results for the pairs of cases with the same retention curve
(Cases 1 and 4, Cases 2 and 3) were similar (compare Figures 5 and 6). The suction
required to deplete VWCs during normal growth has been reported to be about
1000 cm [30]; therefore, we considered that Case 1 (600 cm) and Case 4 (700 cm)
provided the more realistic values of h50 for application in HYDRUS-1D, even though
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the RMSEs of Cases 2 and 3 were lower. The common factor for Cases 1 and 4 was
the use of the measured retention curve.
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Figure 5. Relationships of the value of h50 to RMSE and TET for each Case. (a) Case1;
(b) Case 2; (c) Case 3; (d) Case 4.

Thus, comparison of our simulation results for evapotranspiration did not
clearly indicate which soil hydraulic parameters were better for application
in HYDRUS-1D.

3.2.2. Influence of Soil Hydraulic Parameters on Volumetric Water
Contents Simulation

The time series of simulated VWCs (Figure 7) and RMSEs between measured
and simulated VWCs (Table 5) show that the simulated VWC values for Cases 2
and 3 (retention parameters estimated using ROSETTA) were lower than measured
values, whereas for Cases 1 and 4 (retention parameters calculated from measured
data) simulated and measured VWCs agreed well.

341



Water 2015, 7 5685 
 

 

0

1

2

3

4

5

M
ET

  (
m

m
 d

ay
-1

)

Measured Penman
Case 1 Case 2
Case 3 Case 4  
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intervals (MET) from 29 August to 31 December 2009. 
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Table 5. RMSE between measured and simulated VWCs.

z (cm)
RMSE (cm3·cm−3)

Case 1 Case 2 Case 3 Case 4

15 0.052 0.101 0.083 0.043
30 0.035 0.067 0.047 0.028
50 0.017 0.060 0.040 0.017
70 0.026 0.051 0.031 0.021

When considering the water budget, water recharge (Re) is calculated using

Re = P− ET − ∆SW, (11)

where P is precipitation, ET is evapotranspiration and ∆SW is the change of VWCs.
To estimate water recharge from this equation, accurate simulations of VWCs and
evapotranspiration are needed. The results of our simulations of evapotranspiration
for Cases 1 to 4 (Figure 6) did not differ greatly (Section 3.2.1). However, our
simulations of VWCs indicated that Cases 1 and 4 provided better results than Cases 2
and 3. These results indicate the importance of using soil hydraulic parameters based
on retention curves derived from measured data to calculate the water budget for
the island of Miyakojima, and likely for many or most other applications.

4. Conclusions

We drew the following main conclusions about the optimum application of
HYDRUS-1D in our study area.

1) ROSETTA software underestimated measured VWCs.
2) Optimized values of h50 were dependent on the parameters defined by the

retention curve. Simulated and measured total evapotranspiration rates agreed
well for all four cases considered. Since, for normal growth the amount of
suction required to deplete VWCs is about 1000 cm, we consider the h50
values we obtained that were closest to 1000 cm to be the more realistic. Thus,
our HYDRUS-1D simulations using the measured soil hydraulic parameters
provided better results than those based on parameters estimated by ROSETTA.

3) VWCs simulated by HYDRUS-1D using parameters estimated by ROSETTA
were lower than the measured values, whereas those using measured
parameters agreed well with measured values.

Our study confirmed that it is important to use soil hydraulic parameters
derived from measured retention data on the island of Miyakojima, rather than
estimates obtained with pedotransfer function.
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Farmers’ Perceptions about Adaptation
Practices to Climate Change and Barriers to
Adaptation: A Micro-Level Study in Ghana
Francis Ndamani and Tsunemi Watanabe

Abstract: This study analyzed the farmer-perceived importance of adaptation
practices to climate change and examined the barriers that impede adaptation.
Perceptions about causes and effects of long-term changes in climatic variables
were also investigated. A total of 100 farmer-households were randomly selected
from four communities in the Lawra district of Ghana. Data was collected using
semi-structured questionnaires and focus group discussions (FGDs). The results
showed that 87% of respondents perceived a decrease in rainfall amount, while 82%
perceived an increase in temperature over the past 10 years. The study revealed
that adaptation was largely in response to dry spells and droughts (93.2%) rather
than floods. About 67% of respondents have adjusted their farming activities in
response to climate change. Empirical results of the weighted average index analysis
showed that farmers ranked improved crop varieties and irrigation as the most
important adaptation measures. It also revealed that farmers lacked the capacity to
implement the highly ranked adaptation practices. The problem confrontation index
analysis showed that unpredictable weather, high cost of farm inputs, limited access
to weather information, and lack of water resources were the most critical barriers to
adaptation. This analysis of adaptation practices and constraints at farmer level will
help facilitate government policy formulation and implementation.

Reprinted from Water. Cite as: Ndamani, F.; Watanabe, T. Farmers’ Perceptions about
Adaptation Practices to Climate Change and Barriers to Adaptation: A Micro-Level
Study in Ghana. Water 2015, 7, 4593–4604.

1. Introduction

Climate change prediction models have indicated that the Sudan and Guinea
Savanna zones of Ghana will continue to experience increasing temperature and
decreasing precipitation trends [1]. This confirms previous findings that between
2030 and 2039 the rainy season might start in June or even later in Northern Ghana [2].
It is also projected that the standard deviation for the onset of the rainy season will
increase [3], which suggests that not only will it shift but also it will become even more
“erratic” [4]. The implications are that Northern Ghana would witness more extreme
weather conditions such as droughts, dry spells, and floods. This situation will
eventually affect agriculture, the environment, and human livelihoods. In particular,
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it is anticipated that adverse impacts on the agricultural sector will exacerbate the
incidence of rural poverty [5]. Adaptation practices are therefore needed to help
agrarian communities better face extreme weather conditions associated with climate
variations [6].

Adaptations are adjustments or interventions that take place to manage the
losses or take advantage of the opportunities presented by a changing climate.
Adaptive capacity has been defined as the ability of a system to adjust to climate
change (including climate variability and extremes), to moderate potential damages,
to take advantage of opportunities, or to cope with the consequences [7]. Adaptation
practices are therefore pre-emptive in nature. They are designed to mitigate potential
adverse effects and take advantage of the potential benefits of an envisaged change
in climatic variables.

Several studies in Ghana have reported adaptation practices in agriculture,
including crop diversification, change of planting date, hybrid varieties, and soil
moisture conservation techniques [8,9] In Uganda, income diversification, digging of
drainage channels, and the use of drought-tolerant varieties have been reported [10].
In addition, mixed farming, mixed cropping, tree planting, use of different crop
varieties, changing planting and harvesting dates, increased use of irrigation,
increased use of water and soil conservation techniques, and diversifying from farm
to non-farm activities have also been reported in Nigeria and in South Africa [11,12].

Globally, many studies have been used to understand farmers’ perceptions
about climate change and its associated effects on agriculture. Although perceptions
are not necessarily consistent with reality, they must be considered to address
socioeconomic challenges [13]. Perception has been defined as the process by which
organisms interpret and organize sensation to produce a meaningful experience of
the world [14]; and that a person’s perceptions are based on experiences with natural
and other environmental factors that vary in the extent to which such perceptions are
enabled [15]. Previous studies have shown that the way in which people experience
climate shocks varies across different social groups, geographic locations, and seasons
of the year, with men, women, and children all experiencing different levels of
hardship and opportunity in the face of climate change [16].

Discussions of adaptation practices and barriers to adoption need to be informed
by empirical data from farmers. Adaptation practices in agriculture are generally
location-specific [17]; hence, it is crucial to understand farmers’ perceptions about
the risks they face. To ensure farmers’ readiness for extreme weather events and
collaboratively learn about the evolution of weather patterns, efforts to focus on
farmers and their current activities, knowledge, and perceptions are essential [18,19].
Farmers’ willingness to accept and use prescribed measures could be enhanced if
their perceptions and understanding are considered in designing such measures.
By contrast, current models used in predictions of climate change and adaptation
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practices are at a global scale and need to be downscaled to accommodate realities at
the community level [9].

In the Lawra district of Ghana, agriculture production is the dominant source of
food and household incomes for the vast majority of rural households. Agriculture
production is largely rain-fed. Farmers’ dependence on an annual mono-modal
rainfall pattern coupled with farm resource constraints make agriculture very
vulnerable to the impacts of climate change. Results of previous studies have
revealed a negative correlation between seasonal rainfall and volume of staple
crops (i.e., sorghum, millet, and groundnut) produced annually in the Lawra district
over the past 20 years [20]. This study explored farmers’ perceptions regarding
long-term changes in climatic variables and the associated effects on farming.
It also identified and prioritized adaptation practices based on farmers’ perceived
importance. Constraints on the use of adaptation measures were also identified and
ranked. This study will help government policy decisions about suitable adaptation
practices that are applicable and most preferred by farmers. It will also ensure that
critical barriers to adoption are effectively addressed.

2. Materials and Methods

2.1. Survey Design and Study Area

This study is based on a cross-sectional survey data from farming households
across four communities (i.e., Brifo-chaa, Methuo, Kalsagri, and Oribili) in the Lawra
district of Ghana, located at longitude 10◦30′ N and latitude 2◦35′ W. The district
lies within the Guinea Savanna Zone, with mean annual rainfall ranging from 900
to 1200 mm. It has two seasons: the dry season (November–April) and the rainy
season (May–October). The vegetation is guinea savanna grassland characterized by
shrubs and medium-sized trees, such as shea-tree, dawadawa, baobab, and acacia.
The soils are mainly laterite soils developed from birimian and granite rocks. These
soils are shallow sandy loam with medium coarse quartz stones. Recurrent droughts,
dry spells, and floods tend to have adverse effects on crop production. The major
crops produced include maize, sorghum, millet, and groundnut. Crop production
activities take place within the rainy season. Eighty percent of the district’s total
population of 100,929 is engaged in rain-fed subsistence agriculture [21] The district
was chosen because, based on historical data from the Ghana Meteorological Agency,
it is more prone to extreme weather conditions. According to the [21], Lawra is the
poorest district in the upper west region of Ghana.

A total of 100 farming households were randomly selected for the interviews.
Semi-structured questionnaires were used to investigate farmers’ perceived changes
in temperature and rainfall, causes and effects of climate change, and adaptation
practices being used by farmers. Four focus group discussions (FGDs) were
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conducted to double check the survey data. The household survey and FGDs
were conducted between February and November 2014 with the assistance of three
regional and four district agricultural officers. The selection of communities was
based on the accessibility and knowledge of agricultural officers.

2.2. Statistical Analysis

Data were entered and analyzed using statistical package for the social sciences
(SPSS). Frequencies, percentages, and means are the basic descriptive statistical tools
used to represent farmers’ perceptions about long-term changes in climatic variables
and the associated causes (Table 1). In determining farmers’ perceived importance of
adaptation practices, respondents were requested to score selected practices based
on a 0–3 scale, where 0 is the least important practice and 3 is the most important
practice. The adaptation practices were then ranked using the weighted average
index (WAI):

WAI = ∑ Fi Wi
∑ Fi

(1)

where F = frequency of response; W = weight of each score; and i = score (3 = highly
important; 2 = moderately important; 1 = less important; 0 = not important).

Table 1. Description of data variables.

Variables Mean Standard Deviation

Age (15–34 years = 1; 35–54 years = 2; above 55 years = 3) 2.26 0.73
Education level (literate = 1; illiterate = 0) 0.21 0.41

Farm size (continuous) 4.95 1.70
Household size (continuous) 8.20 5.12

Family labor (continuous) 4.65 3.04
Annual farm income—Ghana cedi (continuous) 949.42 1909.55

Annual off-farm income—Ghana cedi (continuous) 797.20 2459.92
Farmer’s adaptation (adapted = 1; not adapted = 0) 0.67 0.47

Previous studies have also applied the weighted average index (WAI) to assess
farmers’ perceived important adaptation strategies in Bangladesh and barriers of
adaptation to climate change in Nepal [22,23].

To identify the critical constraints that hinder farmers from using adaptation
practices, a ranking was conducted using the Problem Confrontation Index (PCI).
Respondents were asked to grade their perceived barriers based on a 0–3 Likert scale
(i.e., ranging from “not a problem” to “highly problematic”). The PCI value was
estimated using the formula below:

PCI = Pn× 0 + P1× 1 + Pm× 2 + Ph× 3 (2)
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where:

PCI = Problem Confrontation Index;
Pn = Number of respondents who graded the constraint as no problem;
Pl = Number of respondents who graded the constraint as low;
Pm = Number of respondents who graded the constraint as moderate;
Ph = Number of respondents who graded the constraint as high.

3. Results

3.1. Farmers’ Perceptions of Long-Term Temperature and Rainfall Changes

The majority of farmers (82%) perceived an increase in temperature over the
past 10 years (Figure 1). About 9% of respondents perceived no change, 6% perceived
a decreasing change in temperature, and 3% did not know if there was a long-term
change in temperature (Figure 1). Similar results were obtained from the focus group
discussion. Generally, farmers believe that the increasing temperature trend was
associated with the changes in precipitation. A total of 87% of respondents claimed
that the rainfall amount has been decreasing over the past 10 years, 6% perceived no
change in precipitation, and 7% gave other responses. Results obtained from FGDs
proved that this perception was unanimous among farmers.
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Figure 1. Farmers’ perceptions of long-term changes in temperature and precipitation
in the Lawra district of Ghana.

To verify farmers’ perceptions regarding the precipitation trend, available
historical annual rainfall data from 1980 to 2012 were obtained from the upper west
regional weather station of the Ghana Meteorological Agency. The results indicated
high variability rather than a clear decreasing trend in precipitation (Figure 2).
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Figure 2. Annual and seasonal rainfall (mm) in the Lawra district of Ghana (The
rainfall data was collected directly from the office of the meteorological agency:
Ghana Meteorological Agency, 2014).

In addition, the results of discussions with the district agricultural officers
confirmed the results of statistical analysis on the long-term trend in precipitation.
Thus, the difference between farmers’ perceptions and statistical results is due to
the fact that farmers’ responses are based solely on recall. The high illiteracy rate
among farmers in Lawra district hinders their ability to keep formal records, and so
accurately recalling long-term trends of rainfall could be difficult.

3.2. Farmers’ Perceived Causes of Climatic Variability on Agriculture

Most farmers attributed climate change to human-related causes such as bush
fires (51%) and deforestation (14%). While deforestation is largely perceived as being
for the purposes of fuel wood, charcoal, and farm expansion, bush fires are believed
to be caused by the ‘negligence’ of hunters and cigarette smokers. About 9.3% of
respondents also claimed that traditional gods and ancestral spirits were responsible
for the perceived changes in rainfall and temperature trends. During the FGDs,
farmers indicated that the gods/ancestors were angry because many taboos have
been broken by people (e.g., destroying sacred groves or woods, catching of sacred
fish, etc.). Additionally, 23.3% of respondents claimed that climate change is caused
by many factors, while 2.4% could not give any cause (Table 2).
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Table 2. Farmers’ perceptions about the causes of climate change in the Lawra
district of Ghana (Number of respondents = 100).

Cause Variable Percentage of Respondents

Deforestation 14.0
Bush fires 51.0

More than one cause 23.3
Gods/ancestral spirits 9.3

Do not know 2.4
Total 100

3.3. Farmers’ Adaptation to Climate Change

The results revealed that farmers’ adaptations are largely in response to dry
spells (73%). However, 20% and 7% of respondents indicated that they used
adaptation options in response to droughts and floods, respectively. Although an
overwhelming majority of farmers recognized climate change, 33% of respondents
still do not use any adaptation practices (Table 3).

Table 3. Proportion of farmers by adaptation classification and reasons for
adaptation in the Lawra district of Ghana (Number of respondents = 100).

Variable Percentage of Respondents

a. Adaptation classification
Adapted 67

Not adapted 33

b. Reasons for adaptation
Reduce effects of flood 7

Reduce effects of drought 20
Reduce effects of dry spell 73

3.4. Farmer-Perceived Importance of Adaptation Practices

The ranking of adaptation practices based on farmers’ perceived importance
is presented in Table 4. Among the seven adaptation practices, improved crop
varieties and irrigation practice ranked first and second with a WAI of 2.15 and
2.09, respectively. The increasing incidence of drought and dry spells makes
drought-tolerant crop varieties and irrigation preferable to farmers. On the other
hand, income-generating activities and agroforestry practice were ranked the least
important with a WAI of 0.77 and 0.74, respectively. Results of FGDs showed that
farmers considered trading and agroforestry as capital-intensive activities. Crop
diversification, farm diversification, and change of planting date were ranked as
moderately important.
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Table 4. Farmers’ ranking of adaptation practices in the Lawra district of Ghana
(Number of respondents = 100).

Adaptation Practice
Frequency by Each Level of Importance

WAI RankHighly
Important

Moderately
Important

Less
Important

Not
Important

Improved crop varieties 35 48 14 3 2.15 1
Irrigation 30 51 17 8 2.09 2

Crop diversification 14 76 8 2 2.02 3
Farm diversification 7 67 23 3 1.78 4

Change of planting date 10 44 26 20 1.44 5
Income generating

activities 3 20 28 49 0.77 6

Agroforestry practice 0 9 56 35 0.74 7

The results of actual adaptation measures being implemented by farmers are
presented in Figure 3. The majority of farmers use crop diversification practices such
as mixed cropping (41%) and crop rotation (10%). About 12% of the respondents use
improved crop varieties (i.e., drought-tolerant and early maturing varieties), while
23% adopted change of planting date. Other identified adaptation practices being
implemented are off-farm jobs (6%), composting and mulching (3%), reduction in
farm size (3%), and dry season gardening (2%).
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3.5. Perceived Constraints to Adaptation to Climate Change

Results on barriers to use of adaptation practices are presented in Table 5. With a
PCI value of 215, unpredictable weather was ranked the most critical impediment to
use of adaptation options. High cost of farm inputs, lack of access to timely weather
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information, and lack of water resources were ranked the second, third, and fourth
most pressing problems, respectively. The FGDs showed that farmers’ main source
of weather information was colleagues who visited peri-urban towns during market
days. The focus group discussions also confirmed that farmers considered lack of
credit facilities, agricultural subsidies, and poor soil fertility as moderate constraints,
while lack of access to agricultural extension officers, agricultural markets, farm
labor, and farm size are the lowest constraints.

Table 5. Problems affecting implementation of adaptation practices in the Lawra
district of Ghana (Number of respondents = 100).

Constraints to Adoption Degree of Constraint
PCI Rank

High Moderate Low No Problem

Unpredictable weather 35 48 14 3 215 1
High cost of farm inputs 14 76 8 2 202 2

Lack of access to timely weather information 7 67 23 3 178 3
Lack of access to water resources (e.g., dams) 10 44 26 20 144 4

Lack of access to credit facilities 2 32 11 55 81 5
Lack of access to agricultural subsidies 3 20 28 49 77 6

Poor soil fertility 0 9 56 35 74 7
Limited access to agricultural extension officers 3 19 7 71 54 8

Limited access to agricultural markets 0 0 24 76 24 9
Inadequate farm labor 0 1 19 80 21 10

Limited farm size 0 0 13 87 13 11

4. Discussion

Generally, farmers are aware of climate change, since more than 80% of
the surveyed respondents have perceived long-term changes in temperature and
precipitation trends. In Sub-Saharan Africa, similar findings have been reported in the
Sekyedumase and Wa West districts of Ghana [8,13], Uganda [10], and Senegal [24].
Other studies have also shown that, in the last 100 years, there has been an average
global temperature increase of 0.74 ◦C [25].

Climate change model predictions for the Guinea Savannah Zone of Ghana
revealed that the increasing temperature and decreasing precipitation trends will
continue [1]. This implies that agricultural stakeholders should identify relevant and
applicable adaptation practices to mitigate the effects of the impending change in
climatic variables.

The study showed that farmers’ perceptions about the causes of climate
change are mostly centered on human factors (i.e., deforestation and bushfires) and
gods/ancestral curses. Similar findings have been reported in the Wa West district of
Ghana [13] and in Northern Nigeria [5].

This study showed that some farmers are already adjusting their farming activities
in response to droughts, dry spells, and floods. The FGDs revealed that increased
access to agricultural extension officers has impacted positively (67%) on farmers’
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implementation of adaptation options. Similar findings were reported in Bangladesh,
where more than 75% of respondents were using adaptation practices [23]. However,
a previous study conducted in the Sekyedumase district of Ghana showed that less
than 44% of farmers use adaptation measures due to lack of funds [8].

This study also revealed that farmer-perceived important adaptation practices
were different from the actual practices being implemented. Although farmers
ranked improved crop varieties (e.g., drought-tolerant and early maturing crops)
and irrigation as the most important adaptation strategies, only 14% actually
implemented measures in these categories. The majority of respondents (51%)
used crop diversification activities (i.e., mixed cropping and crop rotation). Similar
findings were reported in Northern Nigeria [5]. Feedback from the group discussions
showed that most farmers did not have access to improved crop varieties; hence, they
could not implement their most preferred measure. Results of the group discussion
showed that farmers are generally aware of the annual recurrent dry spells and
droughts. Also, although they view irrigation as the most important solution to these
extreme climatic events, they failed to rank it as such. This is because, according to
farmers, water resources such as dams and dugouts are very limited in the district.
Field observation showed that most of the available water bodies for irrigation are
broken down.

Also, in this study, unpredictable weather, high farm input cost, and limited
access to timely weather information and water resources were identified as the
most critical barriers to adoption. This is likely the case, because in Ghana, the main
sources of weather information are television and radio broadcasts. The majority of
farmers surveyed did not have electronic gadgets and hence could not readily access
weather information. Also, the FGDs revealed that farmers in the Lawra district
operate under limited resources due to limited agricultural credit and subsidies.
Field observations revealed that the limited number of irrigation facilities (i.e., dams
and dugouts) were either broken down or dried out. Similar barriers to adoption
have been reported in South Africa [12] and Nigeria [26].

5. Conclusions

With properly tailored policies, smallholder farmers can adjust to climate change
and improve their crop production. To do this, climate change policies need to factor
in farmers’ understanding of the risks they face and potential adaptations to climate
change. In this regard, interventions of the Ghanaian government should focus on
the development of improved crop varieties and irrigation facilities. More specifically,
the development of drought-tolerant crop varieties and the construction of dams and
dugouts need to be prioritized in the list of climate change adaptation practices in the
Lawra district. Also, there is a need for stakeholders to adhere to proper management
and maintenance of existing irrigation facilities.
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The perception that climate change is also caused by traditional gods
and ancestral curses implies that scientists and development experts should
consider the cultural and traditional beliefs of farmers when designing adaptation
practices. As such, a bottom-up approach must be used to ensure that farmers’
beliefs and understanding are a crucial part of the design and dissemination of
adaptation practices.

Farmers’ access to timely weather information also needs to be prioritized
to help farmers in their production decision-making processes (e.g., selection of
adaptation options). The Ghana Meteorological Agency and agricultural staff need
to be properly trained and resourced to collect, collate, and disseminate accurate
weather information timely and widely. Also, the government should boost the
capacity of scientists and agricultural staff to develop and promote appropriate
and effective technologies to help farmers adapt to climate change. In addition,
the prevailing high cost of farm inputs and lack of credit facilities and subsidies
require the government to ensure that agricultural loans with flexible terms are made
available to farmers to boost their capacity to adapt to the changing climate.

Finally, further research is recommended to assess the feasibility of farm-level
adaptation practices to climate change. This will help governments, researchers,
non-governmental organizations (NGOs), and farmers to develop and implement
adaptation measures that are sustainable, resilient, and reliable.
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Stressors and Strategies for Managing Urban
Water Scarcity: Perspectives from the Field
Vivek Shandas, Rosa Lehman, Kelli L. Larson, Jeremy Bunn and Heejun Chang

Abstract: Largely because water resource planning in the U.S. has been separated
from land-use planning, opportunities for explicitly linking planning policies to water
availability remain unexamined. The pressing need for better coordination between
land-use planning and water management is amplified by changes in the global
climate, which will place even greater importance on managing water supplies and
demands than in the past. By surveying land and water managers in two urbanizing
regions of the western United States—Portland, Oregon and Phoenix Arizona—we
assessed the extent to which their perspectives regarding municipal water resource
management align or differ. We specifically focus on characterizing how they
perceive water scarcity problems (i.e., stressors) and solutions (i.e., strategies).
Overall, the results show a general agreement across both regions and professions
that long-term drought, population growth, and outdoor water use are the most
important stressors to urban water systems. The results of the survey indicated more
agreement across cities than across professions with regard to effective strategies,
reinforcing the idea that land-use planners and water managers remain divided
in their conception of the solutions to urban water management. To conclude,
we recommend potential pathways for coordinating the fields of land and water
management for urban sustainability.

Reprinted from Water. Cite as: Shandas, V.; Lehman, R.; Larson, K.L.; Bunn, J.;
Chang, H. Stressors and Strategies for Managing Urban Water Scarcity: Perspectives
from the Field. Water 2015, 7, 6775–6787.

1. Introduction

Despite the breadth and depth of the literatures on water supply and demand
management, the operation of these systems have been viewed largely in isolation
from land-use planning [1]. Residential development patterns, which in some
cases are the direct and intentional outcome of land-use planning initiatives, are
a potentially important exogenous influence on water management [2–4]. In fact,
largely because water resource planning in the U.S. has traditionally been separated
from land-use planning, opportunities to explicitly link planning policies with
water availability have gone unexamined [5]. Further, the planning community
has neglected the role of water supply, assuming it is readily available for urban
(re)development. In short, integrated planning across the land and water sectors
is rarely if ever practiced. To better coordinate planning for land and water
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resources, information about professional perspectives and practices is required.
Such information can reveal areas of converging and diverging viewpoints, thereby
identifying the potential for collaborations as well as for conflicts as efforts to
integrate across sectors continue.

This paper seeks to characterize and compare perceptions among land-use and
water-resource planners in two cities of the American West. Using humid Portland,
Oregon and arid Phoenix, Arizona as case study samples, we surveyed professionals
about various stressors and strategies for their local community water systems.
In addition to identifying converging and diverging views, we also examined
similarities and differences across the two metropolitan study areas, which may
be important in signaling the unique effects of each regional context.

1.1. Pressing Challenges

The pressing need for better coordination between land-use planning and
water management is amplified by changes in population and the global climate,
which present even greater challenges and uncertainties than in the past. Urban
water managers—defined here as those public sector employees responsible for the
allocation, administration, and budgetary aspects of water management—in Portland
and Phoenix face the complexity of burgeoning growth, with the populations of both
urban regions expected to double in coming decades [6,7]. This comes on top of the
increasing growth rates of the last decade. Compounding the macro-scale pressures
faced in both cities, recent evidence suggests that global climate change will have
profound impacts on water resources in the West [8]. The Pacific Northwest (PNW)
is experiencing more frequent winter floods and summer warming [9,10], while the
American Southwest is currently experiencing a multi-year drought [11].

Long-term climate models project increasing annual temperatures and high
precipitation variability (with generally less precipitation in summer) for the PNW [9].
Higher winter temperatures combined with more precipitation will lead to higher
snow-line elevations, which in turn will affect the timing of snowmelt and summer
flow, ultimately impacting the availability of water resources for the Portland
region [12].

With respect to Phoenix, global climate models increasingly conclude the
Southwest will likely be warmer and drier in this century than in the last. Regional
climate models have recently indicated reductions in surface water runoff in regional
watersheds serving metropolitan Phoenix [6]. A report by the National Research
Council [13] shows that a warmer and drier future will reduce snowpack, Colorado
River flows, and urban water supplies. According to the 5th IPCC assessment report,
there is a broad consensus among models that the region will be drier during the 21st
Century, and indeed, the transition to a more arid climate is already underway [14].
Although per capita water consumption has decreased since the 1990s in most
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municipalities in the American west [15–18], the expected combination of reduced
water supply and increasing urban populations will likely create an unprecedented
state of potential water scarcity.

1.2. Potential Strategies

The process of coordinating water management still involves several policy
actions enacted independently and jointly by multiple agents with different goals
and objectives, as well as varying levels of influence on outcomes. Water managers
have multiple options for adapting to the effects of water supply shortfalls, including
taking actions to increase supplies or to decrease demands, both of which can have
either short-term or long-term reach. The long-term options, while generally effective
in engineering terms, are not always feasible for political and/or financial reasons.
Building dams and reservoirs can be cost-prohibitive and requires localities and
states to shoulder the burden alone, especially since the U.S. government appears
disinterested in funding such projects. The communities designated as hosts often
resist large-scale projects. As a result, augmenting supply increasingly does not
provide a viable option for the long-term [19]. Rather, U.S. water managers are
increasingly forced to use short-term measures that either augment supply or
diminish demand [20,21]. These measures include tapping emergency water sources,
trucking in water from outside locales, and imposing water-use restrictions on
non-essential uses (e.g., lawn irrigation, car washing). We note that such short term
measures can prove challenging due to the overall lack of precipitation, and the
uncertainties about future rain events.

In the face of new and pressing challenges and a diminished ability to continue
adding to the water supply, new solutions must be sought. One area of untapped
potential is in collaborating with land-use planners. Earlier studies suggest that the
nature of the built environment, landscape treatments, and short-term consumption
behavior can also impact residential water use in urban areas [16,22–26]. This is
particularly relevant to arid cities, such as Phoenix and Los Angeles, where an
estimated 74% of residential water use is for outdoor purposes [27]. Wentz and
Gober [22] demonstrated that residential outdoor water use increased with large lots,
turf grass (as opposed to drought-tolerant landscaping), and the presence of pools.
Similarly, Chang et al. [3] found that residential water use was higher in denser older
neighborhoods close to downtown than in newer peripheral neighborhoods in the
City of Portland, Oregon. House-Peters et al. [28] further reported that highly affluent
newer neighborhoods had more seasonal water use than denser older low-income
neighborhoods in Hillsboro, a suburban city of Portland. Sauri [29] found that
demand management policies such as conservation and water pricing may not
be sufficient for controlling water consumption levels when low-density urban
development continues or income gains occur. In a study of annual residential water
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use in the Portland metropolitan area, Shandas et al., [23] stressed the importance of
investigating behavioral and land-use density barriers that limit the responsiveness of
water use to varying climate conditions. Automated timers, for example, generally do
not appear to be adjusted in response to weather conditions. The built environment
of cities, which is largely controlled by land-use planning, combines with individual
and group behaviors to mediate the extent of water consumption [30,31].

1.3. Integration Across Sectors

To address calls for greater integration between water and land managers, many
national organizations, professional journals, trade publications, and international
conferences are bringing attention to highly inter-connected nature of water and
land systems. The National Science Foundation, for example, recently released a
call for proposals examining the water–land nexus, and the European Commission
is hotly debating the future of this field [32]. Amidst the challenges for integrating
water and land systems, little is known about the extent to which the people who are
responsible for managing these systems view the same challenges and opportunities.
To what degree do land managers agree with water managers in terms of the stressors
on the urban water system? What are the similarities and differences between the
two groups in terms of strategies for addressing future changes in water supply?
These and other questions help to frame a critical issue in the management of water
supplies because, arguably, if these two constituencies do not view the problem as
the same, then their solutions will also face formidable challenges to implement.

By surveying both land and water managers in two urbanizing regions of the
western United States, we sought to assess the extent to which their perspectives align
or differ. We specifically focused on their perceptions of the problem (e.g., stressors)
and potential solutions (e.g., strategies). While previous studies have looked at single
regions [31,33] we sought to examine two regions—Phoenix, Arizona, and Portland,
Oregon—that have different land-use policies, climate regimes, and population
growth trends. By engaging water managers and land-use planners in these regions,
we were able to address two research questions: (1) To what extent do urban water
use managers and land-use planners share perspectives regarding the stressors to
and strategies for water management both within and between the two locations and
professional fields? (2) What factors might help to explain any observed differences
and similarities in perspectives about the water management system?

2. Materials and Methods

Portland and Phoenix share the dual challenges of rapid growth and climatic
uncertainty. The challenges however occur under different physical geographies,
political cultures, and growth-management and land-use policies. These differences
allowed us to study perceptions of land-use planners and water-resource managers
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in two distinct areas, by comparing factors that may exacerbate or mitigate future
water shortages, and strategies for ameliorating potential water challenges.

2.1. Survey Design

We used a cross-sectional survey design that was informed by existing literature
on the challenges facing the regions [31,34]. An online survey of municipal water
managers and land-use planning professionals in the Phoenix and Portland regions
constituted the primary vehicle for the empirical assessment, resulting in four
samples: Phoenix water managers, Phoenix land planners, Portland water managers,
and Portland land planners. The survey was administered in the spring of 2010 to
municipal professionals in both regions—32 in metropolitan Phoenix and 25 in the
Portland area. By identifying all the municipal land use and water professionals
in both regions, we identified nearly all of the potential recipients of the survey.
For land planners, our priority was to survey planning directors/managers or the
closest equivalent for each city within our study regions. If none could be found, the
city/town manager was contacted instead. For water managers, our priority was to
target water resource managers/directors or the closest equivalent. While the small
number of municipalities in each region did not allow us to conduct statistical tests of
inference, they did provide a descriptive assessment of the water scarcity strategies
employed in each region, and patterns among survey respondents, comparing the
land and water managers and the two study regions.

To address our research questions, we developed survey questions that consisted
of two main points—stressors and strategies—with respondents rating a set of options
on a scale of one to ten (from 1 = not at all significant to 10 = greatly significant).
Twelve stressors and 13 strategies were developed for both potential risk factors
and solutions based on a review of literature and discussions with professionals
and among our research team. Following from Larson and colleagues [35,36] these
items present a variety of natural and anthropogenic risk factors as well as potential
voluntary and regulatory-based strategies in both the land and water sectors. For
each of the possible factors representing a stressor, respondents were asked, “To
what extent are each of the following factors important when considering the
future of water supply.” For each factor that represented a strategy, respondents
were asked, “To what extent are each of the following factors important when
considering strategies for addressing shortages in future water supply.” Respondents
had 12 stressors and 13 strategies to consider, relating to three sources of influence:
environment and population, infrastructure and management, and end-user behavior,
as shown in Tables 1 and 2. The three categories correspond to the generally accepted
challenges facing water resource management, including a growing population and
environment, combined with strategies facing the future, such as climate change,
technological applications, and human or individual actions. We distinguish two
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aspects of climate change, namely natural climate variability and human-induced
climate change in part because American public opinion continues to be divided
about the causes for changes in climate conditions.

Table 1. Stressors listed for consideration in survey with descriptive statistics
(Minimum, Maximum, Median, Standard Deviation).

Category of Stressor Stressor Min. Max. Med. SD

Environment and
Population

Population growth 1 10 7 2.89
Long-term drought 1 10 7 3.08

Natural climate variability 1 10 5 2.88
Human-induced climate changes 1 10 4 2.68

Infrastructure and
Management

Inadequate access to water sources 1 10 4 3.02
Infrastructure to store, treat,

deliver water 1 10 4 2.69

Land-use planning or development 1 10 5 2.46
Water-resource planning or management 1 10 5 2.66

End-User Behavior

Indoor water uses 1 8 4 2.06
Outdoor water uses 1 10 6 2.57

Household or residential water use 1 10 5 2.36
Industrial or other business water use 1 10 5 2.52

Table 2. Strategies listed for consideration in survey with descriptive statistics
(Minimum, Maximum, Median, Standard Deviation).

Category of Strategy Strategy Min. Max. Med. SD

Environment and
Population

Planning for future climate changes 1 10 5 2.74
Restricting new building permits 1 10 4 2.56

Limiting new growth or development 1 10 6 2.97

Infrastructure and
Management

More compact or dense communities 1 10 5 3.08
Retiring agricultural land 1 10 4 2.90

Acquiring new sources of water 1 10 8 2.73
Building structures to store water 1 10 4 2.94

Upgrading water delivery infrastructure 1 10 7 2.53
Wholesale contracts with other providers 1 10 5 2.93

End-User Behavior

Restrictions or bans to limit water use 1 10 6 2.50
Increasing the price of water 1 10 7 2.96

Water conservation education 1 10 8 2.49
New water efficiency technology 1 10 8 2.53

2.2. Methods of Analysis

Due to the small sample representing diverse municipalities in each region,
we developed analytical techniques that emphasize the descriptive and qualitative
patterns in the data. These included graphic depictions of the data, information
from a series of workshops, and where available, using qualitative responses to flesh
out responses to the survey. Specifically, for the purposes of data interpretation, we
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considered a rating of 7 or above to indicate the respondent considered the strategy
or stressor to be important or very important. By looking only at those responses
with a rating of 7 or higher we can effectively parse out the differences between the
two professions and the two regions using descriptive means.

Across both regions and sectors, 57 surveys were completed and returned for
a response rate of 50%—some municipalities had more than one respondent. For
Portland, both surveys were returned from 7 towns, either the land or water survey
was returned by 10 towns, and 7 towns did not respond at all. For Phoenix, both
surveys were returned by 8 towns, one or the other was returned by 17 towns, and
7 towns were not represented in this study. While the response rate was similar across
regions, land planners responded at a higher rate. For the water survey, respondents
included Public Works Directors, City Engineers, Environmental Managers, and a
Town Manager. The respondents from the land-use survey were mostly planners,
but also included City Administrators and Community Development Directors from
smaller towns. As a whole, the surveys represent a variety of towns across the study
regions, ranging from small to large. In accordance with policies governing the ethical
treatment of research participants, the survey results are presented anonymously.

3. Results and Discussion

Overall, the results of the surveys show significantly more agreement in
identifying the most significant stressors—of which only two stood out—whereas
there were many strategies identified as important and a wider range of opinion.
There was also somewhat more agreement across cities than across professions,
particularly for strategies.

3.1. Stressors

Three stressors emerged as the most widely perceived as important in both cities
and by both professions. These were, in ranked order, long term drought, population
growth, and outdoor water use (Figure 1). The remaining possible stressors were not
viewed as important by the majority of respondents, and there was general consensus
that indoor water use is the least important stressor. Phoenix professionals were
generally more focused on long-term drought than Portland professionals; 83% of
Phoenix water managers identified this as an important contributor to water stress,
and 62% of Phoenix land-use planners agreed (Figure 2). Two most widely identified
stressors were related to the environment and population, while the third—outdoor
water use—was an end-user behavior. Notably, professionals in both locations rated
human-induced climate change low—and water professionals rated it very low—as
a cause of stress, despite the direct connection between climate change and summer
drought in both areas that is projected by current climate models [11,12,37]. While
we are not able to discern the reasons for the low rating to human-induced climate
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change, we note that the term ‘human-induced’ may reflect the discomfort with the
causal connection or attribution of drought events to human activities. These results
would be consistent with the earlier point regarding the fact that U.S. public opinion
is still divided regarding the causes for climate change.Water 2015, 7 8 
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3.2. Strategies

Across both regions and professions, the results suggest greater variation in
perspective on the effectiveness of potential strategies than stressors. Between both
professions, four strategies were identified as somewhat effective by over 50% of
respondents (as compared to only two stressors): water efficiency technology, water
conservation education, acquiring new sources of water, and limiting new growth
(Figure 3). Although the two biggest stressors are in the environment and population
category, namely long-term drought and population growth, the corresponding
strategies that directly addressed these stressors were generally not among the
highest ranked.
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by profession.

The strategies relating to end-user behavior generated the most support.
Specifically, new water-efficient technology had the most support and least variability
of all the strategies in the survey across all categories of respondents. Among water
managers, there was consensus that increasing the price of water would be effective,
in Portland 70% of water managers ranked it 7/10 or above, and in Phoenix, almost
60% of water managers ranked it 10/10 (Figure 4). Water conservation education was
also a highly ranked strategy, although land planners lagged water managers in their
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enthusiasm for its effectiveness. Outright restrictions to ban or limit water-use was
split in among the Portland respondents and were ranked moderately in Phoenix.
Although inadequate access to water sources was not rated highly as a cause of
stress, there was general agreement in Phoenix that acquiring new sources of water
would be a highly effective strategy: half of Phoenix water managers ranked this
a 10/10. We note that while many of these strategies were supported, recent research
from California suggest that applications of water efficient technology, increasing the
prices of water and education [38], may not be highly effective.Water 2015, 7 10 
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by region.

Generally, land-use planners were relatively more supportive than water
managers of strategies in their field, such as limiting new growth, and more dense
and compact communities. Similarly, water managers were more favorable towards
upgrading water delivery systems and increasing the price of water. The main
regional difference is that professionals in Phoenix were more likely to support
acquiring new sources of water and limiting new growth than those in Portland.
Generally, restricting new building permits was not identified but by a few land-use
planners and water managers, while limiting new growth was somewhat more highly
valued, particularly in Phoenix where a clear majority (75%) of water managers rated
it 7/10 or above in effectiveness.
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4. Discussion

Despite the sample size of the survey, we observed that across region and
profession, survey respondents widely agreed on the sources of stress to urban water
systems, while opinions on strategies were much less uniform and a wider array of
strategies was identified as effective. The fact that only two stressors were identified
by 50% or more of respondents as important while many strategies emerged could
suggest that while stress to water resources comes from one or two causes, the
solutions are less clear. This is logical because a suite of strategies for each specific
region will be necessary, rather than a single silver bullet that fits every region.
Alternatively, these results could suggest that the research team more successfully
presented options for stressors with which practitioners agreed, while failing to
include other important stressors.

While the top two stressors were related to environment and population, the
majority of highly ranked strategies were related to end-user behavior. While
understandable due to the challenge in the physical and political feasibility of other
strategies, research by Lach and colleagues suggest that water managers are highly
conservative when attempting to regulate end-user behavior [39]. Accordingly, while
a strategy such as acquiring new sources of water might be highly effective, it is
not worth consideration if there are no such new sources available or if this strategy
would create negative environmental and social outcomes (e.g., on source ecosystems
or communities from which water is withdrawn). Further, experiences in California
suggest that water agencies are required to balance the cost of water to match what
is required to address the demand, and the raising water rates must occur within
limits. Local government bodies are much more likely to have the ability to enact
policies related to end-use. A more positive finding is that the third most highly rated
stressor was outdoor water use, which is highly likely to be impacted by land-use
decisions, as described in Section 1.2. Indeed, water provides in both regions have
introduced incentives for water conservation through landscape manipulation [40].

Distinctive perspectives were identified along both professional and regional
lines. The biggest professional division relates to limiting new growth, which was
much more highly ranked by land-use planners, and increasing the price of water,
which was much more highly ranked by water managers. This is perhaps due to
familiarity level—in that planners use growth measures (e.g., urban growth boundary
in Portland) to reduce the physical growth of the urban area—while water manger
in Phoenix use instruments such a pricing to mediate demand. The largest regional
difference was that Phoenix professionals are much more worried about long-term
drought, which is logical as their already arid region was in the midst of a significant
drought period at the time of the survey. Professionals in Phoenix are also more
optimistic about acquiring new sources of water as a solution.
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The practicality of some of the highest ranked solutions is not yet clear.
The two top strategies in both regions and professions are education and new
technology. While these are important tools, hoped for technological solutions
to environmental problems do not always materialize and often create negative,
unintended consequences (e.g., dams, canalized water transfer systems, excessive
ground water pumping). Conversely, some of the most aggressive strategies were
not as highly ranked, perhaps because of perceived political feasibility issues. In
particular, raising water prices and limiting growth may not be seen as popular
choices by elected officials. Although it is important to remain critical of the
practicality and feasibility of any solution, innovative ideas are already being
generated, such as tiered water pricing, which was recently implemented in
Santa Fe [41] This can also be seen in significant opposition to increasing the price
of water in an earlier Phoenix-based survey, which demonstrated that planning
professionals opposed those strategies more so than scientists as well as residents [42].

The practitioners’ approach to global climate change is of particular importance
for the long-term health of the water systems. Human-induced climate change was
identified as an important stressor by a minority of water managers and land-use
planners. Despite the fact that the two most commonly identified stressors are greatly
exacerbated by climate change—long-term drought in Phoenix, and population
growth in Portland—climate still is not considered unequivocally as the primary
factor in addressing urban water scarcity. The related strategies showed slightly
higher interest levels: planning for future climate changes was identified as an
effective strategy by a third of Phoenix water and land practitioners, a third of
Portland water managers, and almost half of Portland land-use planners.

The lack of recognition of climate change as an important stressor, and only
moderate interest in planning for future climate changes as a strategy suggests a
serious problem in resource management decision-making in Portland and Phoenix.
The professionals most concerned with climate change are land-use planners in
the Portland area, suggesting that they are a group to watch and may provide a
model. This further suggests that there could be potential opportunities to use
land planning to adapt to climate change as it relates to urban water resource
management [4,23,24]. The recent experience of California’s water management
challenges, and the emerging field of ‘climate attribution science’ may offer many
opportunities for further research into the linkages among climate, land use and
water recourses planning.

To that end, four plausible directions emerge as a way to address the challenges
facing water use in the midst of climate change. First, the gap must be closed between
academic and federal concerns over climate change and the lack of concern reported
by on the ground practitioners. Meeting mandates to provide water in the short
run seems to be central to the administration of urban water resources. Yet, if the
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frequency of drought and magnitude of droughts are expected to increase in the
future as projected by several studies [12,37,40] then engaging practitioners—both
land-use planners and water managers—in developing climate sensitive strategies
can provide effective guidance to reduce short and long term impacts. Second, a
realistic understanding of the scale of the issue is required. Quantification, even
as an estimate would help provide a realistic understanding of the improvements
in conservation education and technology that would be necessary to offset the
large-scale environmental and population challenges that are already emerging.
Third, while the communities we surveyed had a high level of consensus regarding
the problem (i.e., stressors) and on the top strategies, assessing the effectiveness
of those strategies is an area that requires further research and consideration. The
consensus itself is a strong foundation for advancing greater coordination between
the two fields, and provides an opportunity to build further cross-sector integration.

Finally, the continued rapid population growth that is forecasted for both study
areas presents an opportunity to use land-use planning tools to lessen future stresses
on urban water systems. The opportunity for linking existing land-use, housing, and
transportation models that are common place in urban areas, with water demand
models can help in cross-sector communication, particularly early in the land-use
planning process in growing cities [43]. Integrating such models with downscaled
climate system can also help to inform communities about the potential to greatly
impact the stressor and strategies for managing urban water scarcity.

5. Conclusions

We set out to answer two questions. First, to what extent do urban water
use managers and land-use planners share perspectives regarding the stressors to
and strategies for water management systems both within and between the two
locations and professional fields? Overall, survey responses were mostly consistent
for the stressors (i.e., problems) facing water resource management, while responses
to the effectiveness of strategies were more varied by both region and profession.
Professionals expressed the greatest concern about the impact of environmental
and population stressors, while strategies related to end-user behavior were found
to be the most effective, and there was general consensus that improved water
efficiency technology and water conservation education would be effective strategies.
Concomitant concerns about long-term drought seems to be pervasive among the
respondents from Phoenix, perhaps since the region continues to undergo severe
water shortages along with much of the Southwest. The general lack of concern
about climate pressures on water resources by Portland respondents is also note
worthy, and may suggest a need to further examine why climate concerns may not
be central to current water management strategies.

371



The second research question was: what factors might help to explain any
observed differences and similarities in perspectives about the water management
system? The general consensus was that environmental and population factors
are stressors, but that related strategies are not as effective, likely because these
influences are difficult or impossible to control at the level of local government.
Conversely, local government bodies may have greater ability and some certainty
to influence end-user behavior, which is reflected in these strategies’ high ratings.
There were categorical divisions in assessing one stressor (long-term drought) and
variation in the perceptions of many strategies, notably source acquisition and
limiting new growth. The clear consensus that drought is a greater stressor in
Phoenix than Portland is likely due to that region’s significantly more arid climate
with ongoing drought and to the projected impacts of climate change across the
southwest. The professional divide between water managers and land planners
concerning limiting new growth (favored by land-use planners) and increasing the
price of water (favored by water resource managers) might be explained by their
differential levels of involvement and knowledge of related programs. Fostering
greater interaction between these two groups may be a timely, cost-effective, and
prudent means of improving the opportunities for more effective management of
this scarce resource.

Taken together, the present paper provides one perspective into the state of
water resource management in two geographically diverse urban areas of the U.S.
However, the local politics of water management is complex and is often based
on accepted behaviors and organizational cultures [38]. The pressing challenges
of climate change and precipitation uncertainty pose formidable challenges to
traditional approaches. While our approach could not address the reason for specific
responses, the summary of responses suggest aligned and divergence regarding the
stressors and strategies by region and profession. Now more than ever we need
research that articulates how current challenges to water resource management are
created, in part, through the social systems we have created and enabled. Our
research is one step in that direction, but additional research is needed to assess the
extent to which administrative fragmentation of natural resource management is
creating water scarcity. The future will require at once the need for collaboration
among the diverse groups of interest managing water and land resources, and the
sharing of effective strategies across jurisdictions.
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