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Preface to ”Assessment of Energy–Environment–

Economy Interrelations”

The development of new energy and environmental policies, the new climate regime, and the

development of new scientific techniques have provided ample opportunity for further research.

Projects on energy efficiency have been prioritized in the portfolio of policies in many countries,

as these policies are considered no-regret options, meaning that they may even provide gains for

the economy. In order to fill a gap in the literature, this book is intended to provide an analysis of

the energy–environment–economy interrelations, with special attention paid to the potential role of

energy and economic growth in the environment.

Currently, energy is considered a commodity, and continuous access, along with price stability,

is of vital importance for every economic agent worldwide. Halkos and Tsirivis (2019) provided a

review of energy hedging and discussed the two main hedging strategies related to energy portfolios,

namely, the minimum-variance hedge ratio and the expected utility maximization methodology.

They showed that when substantiation from the energy market during exceptionally volatile

economic climate periods is considered, both hypotheses may be violated, implying that it would

be sensible for possible hedgers to take into account both methodologies in constructing a successful

and profitable hedging strategy.

Energy consumption and economic growth have been of great interest to researchers and

policy-makers. Knowledge of the actual causal relationship between energy and the economy with

respect to the environment has important implications for modeling environmental and growth

policies. Uribe-Toril et al. (2019) reviewed the international research on interactions between the

3E, that is, Economy, Energy, and Environment, in the 21st century. They used bibliometric and

cluster analyses by fractional accounting and relied on the two most extensive databases: Web of

Science (WoS) and Scopus. This paper contributed an analysis of keywords from 2001 to 2018, with

trends showing that sustainable development and sustainability, together with CO2 emissions and

consumption, were the main common elements. Moreover, Hao et al. (2019) combined the Tapio

decoupling model and the environmental Kuznets curve (EKC) framework to explore the relationship

between China’s carbon emissions and economic growth. Panel data of 29 provinces from 2007 to

2016 were used to estimate the nexus of emissions, development for the nation, and the decoupling

status of individual provinces. Similarly, Chandio et al. (2019) considered the LR influence of

financial development, economic growth, energy consumption (specifically, electricity consumption

in the agriculture sector), foreign direct investments (FDI), and the population on the environment

in Pakistan for the period 1980–2016. CO2 emissions from agriculture were used as an indicator of

environmental quality. Their findings showed that increasing financial development and FDI helped

environmental quality, whereas higher economic growth and electricity consumption in agriculture

damaged the environment in Pakistan.

The game theory set-up may also be helpful, given that uncertainty is a major issue in such

analyses. Stienen and Engwerda (2020) considered a stylized dynamic interdependent multi-country

energy transition model in an aim to examine the effect of uncertainty in such cases. A simple

model based on the standard Solow macroeconomic growth model was developed in a two-country

setting using non-cooperative dynamic game perspectives. Total CO2 emissions were added as a

factor that negatively influences growth, and production could be realized with either green or

fossil energy. A factor that captures the difficulties in using green energy, such as accessibility
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in each country, was also added. In general, the model satisfactorily describes energy transitions

towards different equilibrium constellations. Additionally, Zhang et al. (2019) considered the high

investment cost of utility tunnels and the limitations of common cost-sharing methods (such as spatial

proportional, direct-laying cost, and benefit-based proportional methods) in their effort to establish

a fair and practical cost-sharing mechanism. For this purpose, an improved Shapley value-based

spatial proportional method was suggested, and the resource dependence theory was introduced to

enumerate the bargaining power of pipeline companies in negotiating cost allocation. Simulations

on the utility data in China demonstrated that the suggested cost allocation mechanism was the most

satisfactory, as well as more adequate and more practical, compared with traditional cost allocation

methods.

The analysis and quantification of relationships between industrialization, energy systems, and

carbon emissions are crucial. Zhang et al. (2020) developed an expanded Kaya identity to explore

the main drivers of industrial emissions by employing the logarithmic mean Divisia index method

to follow the historical contributions of various sources of emissions, together with forecasts into the

future. They found that development and the population were the two main determinants of past

industrial CO2 emissions, while carbon and industry energy intensities were predicted to be the main

two factors for the reduction of future industrial CO2 emissions. Clean supply, electrification, and

energy efficiency were suggested for industrial emission reduction

Obviously, energy efficiency and renewable energy sources are essential in addressing

environmental degradation. Mikielewicz et al. (2019) estimated the effect of fuel calorific value on

turbine performance and analyzed the possibilities for optimizing turbine construction in terms of

maximum efficiency for specific fuels. The careful design of such devices attained high efficiency.

Thess individually created generation systems that may be used in distributed generation systems to

achieve environmental profits.

Along these lines, Ziemba (2019) discussed an approach to solving wind energy-related decision

problems that demand many criteria, which are sometimes interrelated and dependent on each other.

In these cases, decision systems that rely on multi-criteria decision analysis (MCDA) methods are

usually used, but most methods assume independence between criteria, making their use in wind

energy decision problems arguable. Therefore, this paper discussed the use of the analytic network

process (ANP) method to select the location and design of wind farms. This method captures the

complexity of decision problems that involve criteria dependencies. The results of the ANP method

were compared with those of the analytic hierarchy process (AHP), which relies on hierarchical

dependencies between criteria. They claimed that the rankings extracted from the ANP were of

higher quality than those of the AHP.

Furthermore, Zhang et al. (2019) proposed a dynamic hybrid input–output model combined

with structural decomposition analysis (DHI/O-SDA model). Taking China as an example, this

DHI/O-SDA model was verified with the presentation of bilateral relationships among sectoral

responsibilities for energy-related carbon emissions (ERCE) in construction services. Their main

finding was that the “Other Tertiary Industry” sector is responsible for ERCE in construction services,

which also affect other sectors. In this way, controlling the final demand increase in the service

industry was deemed the most effective policy to reduce ERCE generated by construction services.

Finally, Halkos and Petrou (2020) considered energy efficiency in the European Union (EU)

member states and reviewed the potential for energy recovery from waste according to derived

efficiency scores. These efficiencies were assessed using data envelopment analysis (DEA). According
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to these efficiency scores, various recommendations were proposed to meet the stated objectives,

namely, sufficient and sustainable energy production and effective treatment of municipal solid

wastes.

All the above-cited papers aim to help decision-makers further understand relevant issues and

adopt appropriate methods to tackle and solve relevant problems.

George E. Halkos

Special Issue Editor
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Abstract: Energy is considered as a commodity nowadays and continuous access along with price
stability is of vital importance for every economic agent worldwide. The aim of the current
review paper is to present in detail the two dominant hedging strategies relative to energy
portfolios, the Minimum-Variance hedge ratio and the expected utility maximization methodology.
The Minimum-Variance hedge ratio approach is by far the most popular in literature as it is less time
consuming and computationally demanding; nevertheless by applying the appropriate multivariate
model Garch family volatility model, it can provide a very reliable estimation of the optimal hedge
ratio. However, this becomes possible at the cost of a rather restrictive assumption for infinite hedger’s
risk aversion. Within an uncertain worldwide economic climate and a highly volatile energy market,
energy producers, retailers and consumers had to become more adaptive and develop the necessary
energy risk management and optimal hedging strategies. The estimation gap of an optimal hedge
ratio that would be subject to the investor’s risk preferences through time is filled by the relatively
more complex and sophisticated expected utility maximization methodology. Nevertheless, if hedgers
share infinite risk aversion or if alternatively the expected futures price is approximately zero the two
methodologies become equivalent. The current review shows that when evidence from the energy
market during periods of extremely volatile economic climate is considered, both hypotheses can be
violated, hence it becomes reasonable that especially for extended hedging horizons it would be wise
for potential hedgers to take into consideration both methodologies in order to build a successful and
profitable hedging strategy.

Keywords: energy commodities; hedging strategies; minimum-variance hedge ratio; expected utility
maximization; risk aversion

JEL Classification: O1; P2; Q4; QO2

1. Introduction

Continuous access along with price stability of energy commodities is of vital importance for
every state or individual economic unit around the globe. As a result, energy risk composes a major
risk factor for most firms involved in every key industrial sector in both developed and developing
countries [1]. Relatively few studies have been conducted regarding the understanding of energy risk
and the measurement of price risk exposure and an even lower number of research has been developed
in the field of optimal hedging [2–4]. In those regards optimal hedging strategies are designed under
the assumption that managers maximize their expected utility while their income from the firm is
increasing with changes in the value of the firm [4].

Apart from diminishing the level of risk exposure regarding energy commodities, it is equally
essential for all counterparties in this market to create the optimal strategy or portfolio that will enable
them to maximize their expected profit, given their approved level of risk exposure [5]. In order for

Energies 2019, 12, 3979; doi:10.3390/en12203979 www.mdpi.com/journal/energies1
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this goal to be accomplished, a variety of financial derivatives over specific energy commodities is
used; the most common and widely accepted ones being the Forwards and Futures contracts, Option
rights and Swaps. Derivatives provide the advantage to hedge some or all risk coming from the spot
price energy market, ensuring future energy commodity sales (Short position) or purchases (Long
position) at a prearranged time, place (some of them do not involve physical delivery or they are cashed
out prior to expiry date) and price [5]. Due to the increasing uncertainty in the energy commodity
market over the last decade, there is high interest from all participants for more extensive research to
be conducted around energy portfolio optimization. Additionally, concerning the ability of estimating
and predicting the relative price risk exposure, researchers put their mixed Garch-VaR (Value-at-Risk)
(see [6]) type models into another assessment involving revealing the optimal hedging strategy for
certain energy products.

Specifically, there are two dominant methodologies for estimating the optimal hedging strategy
or optimal hedging ratio, including the Minimum-Variance hedge ratio and the expected utility
maximization [5]. The two methodologies vary in one key aspect which involves the expected
utility maximization approach incorporating into the estimation of the optimal hedge ratio, a time
varying parameter representing the investor’s risk aversion [5]. In the expected utility maximization
methodology three basic types of utility functions are used, including the quadratic, the logarithmic and
the exponential utility function. On the contrary, in the Minimum-Variance hedge ratio methodology
infinite risk aversion is assumed, with a number of developed tests showing which model and
methodology provides the most appropriate hedging strategy for profit maximization [7].

Within an uncertain worldwide economic climate and a highly volatile energy market, energy
producers, retailers and consumers had to become more adaptive and develop the necessary energy
risk management and optimal hedging strategies. Subsequently, firms that succeed in securing their
access to the required energy sources, while minimizing the relative cost, gain a serious competitive
advantage over their rivals and reinforce their established market position and profitability.

Of the first to deal with a nation’s competitive advantage was Ricardo [8] who identified that if
two countries capable of producing two commodities engage in the free market, then each country
will increase its overall consumption by exporting the good for which it has a comparative advantage.
Moreover Manoilescu [9] supports the opinion that the engagement of productive forces in industry is
always more productive than agriculture and other raw materials.

In those regards Balassa [10] defined the revealed comparative advantage as an index used in
international economics for calculating the relative advantage or disadvantage of a certain country in a
certain category of goods or services as evidenced by trade flows. Porter [11] shows that a nation’s
competitiveness depends on its capacity to innovate and upgrade, with the determinants of national
competitive advantage being: factor conditions, demand conditions, related and supporting industries
and firm strategy and structure.

With regards to competitive advantage in the energy sector, Dogaru [12] shows that the trade flows
of elementary and macroeconomic process are explained using comparative and absolute advantage
principles (CAAPs). As for renewable energy sources, while competitive advantage appears to remain
stable over time for the wind industry, it decreases in the solar PV industry after four or five years [13].

Firms that do not manage to hedge their energy risk effectively, especially in times with intense
price fluctuations, increase their overall production cost putting under serious threat their current and
future viability. Furthermore, energy producers and retailers who in most cases already possess energy
commodities and have a higher motive not to hedge but speculate in the spot market, might suffer
huge losses or even go bankrupt within days like in some recent examples coming from the US energy
market, unless they develop the necessary mechanisms to constantly measure their risk exposure and
build a suitable hedging strategy [14]. In 2019 alone a total of 26 firms with a total debt of $10.96 billion
have filed for court restructuring until mid-August [15].

This paper focuses on hedging strategies in the energy sector. More specifically it thoroughly
reviews the two dominant hedging methodologies relative to energy portfolios, the Minimum-Variance
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hedge ratio and the expected utility maximization methodology. In more detail Section 2 explains how
hedging the price risk of energy commodities works, while Section 3 presents the main strategies for
building the optimal hedging approach, Section 4 demonstrates some studies which have used the
approaches described in Section 3. Finally, the last Section (Section 5) concludes the paper.

2. Hedging the Price Risk of Energy Commodities

This section reviews in greater detail the options for hedging the price risk of energy commodities
and the relevant tools to be used, which include forward contracts (Section 2.1.1), futures contracts
(Section 2.1.2), option contracts (Section 2.1.3) and swap contracts (Section 2.1.4).

The most effective strategy for every business to reduce the danger coming from the various
risk types such as price risk, basis risk, credit risk, operational risk to name a few while remaining
profitable and solvent is hedging. Especially for businesses belonging in the energy sector or severely
depending on certain energy commodities as inputs, their ability to effectively hedge the different
risks and particularly the market risk or price risk is crucial, due to the extreme price volatility of
energy commodities.

Reference [16] reports that based on a sample of 100 oil and gas producers, the companies using
hedging strategies increased significantly within a three-year period in which they were investigated,
where a noteworthy number of them ended up hedging more than 28% of their total production.
Furthermore, in an attempt to reduce their overall risk, it was noted that firms with higher debt, tended
to also hedge a higher percentage of their total production, while firms possessing a larger number of
assets were more likely to develop a hedging strategy.

Additionally, according to [17] firms hedge either because the management has a risk averse
mentality in general, or they want to lower the probability of falling in financial distress and be unable
to fund any profitable projects. Moreover, based on [18] firms decide to hedge to diminish any risks
deriving from business processes that do not have any insight or control, enabling them to concentrate
on their core competences improving the firm’s effectiveness and efficiency. References [19,20] report,
that especially energy consumer firms which hedge against the price risk of the energy products they
use as basic inputs, can obtain significant benefits and grow the overall firm value.

Ceczy et al. [21], found evidence that companies using commodity derivatives for hedging
purposes appear to have significantly less volatile stock prices, with the companies having a lower
bond rating hedging substantially more than those with higher credit reliability. Additionally,
reference [22] using a large sample of oil and gas producers in the United States, also found strong
indication of significant sensitivity reduction in the stock prices of the most active companies in terms
of hedging practices.

Therefore, as it comes forward, energy prices are by far the most volatile of all other commodities
with the volatility difference increasing considerably during the last decade. Therefore, hedging of
energy risk can add value to firms in many ways, enabling the firm to have a greater debt capacity, low
cost of capital, capital availability for optimal investing even through periods of unexpectedly low
cash flows and of course avoid the cost of financial distress.

2.1. Hedging Tools for Managing Energy Commodities’ Price Risk

Financial derivatives are the key hedging instrument that enables firms to manage the risks
coming from the persistent high volatility and uncertainty in energy commodities’ prices. Derivatives
are secondary market contracts that instead of directly depicting certain ownership rights about an
asset, they derive their current value from an underlying commodity or asset [23]. The wise use of
derivatives for hedging purposes allows for an effective reduction of price risk exposure, as in this
way derivative investors accomplish to transfer part of their overall risk exposure to a third party in
exchange for potential profit.

The party transferring risk ensures price certainty for a given time period mentioned in the
contract, though sacrificing the potential of making extra profit from a price movement towards its
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favorable side [23]. In contrast, the party accepting the risk will realize a loss if the price movement
confirms the initial fears of the other party. In general, derivatives are becoming more and more
important for everyone involved in financial markets and play an even more crucial role in hedging
the extreme price risk, that have to deal with both energy producers as well as industries heavily
dependent on high demand energy commodities [5].

The reason behind this, is that the characteristic features of energy commodities provide additional
flexibility when facing the extreme energy price risk, while they can provide enterprises with the
necessary security and certainty about any future expected cash flows [24]. The largest number of
available derivative contracts in the market consist of forward contracts, futures contracts, options
and swaps.

2.1.1. Forward Contracts

Forward contracts are more commonly used in the electricity market among individual producers
and industrial firms and can mainly be described as a contractual agreement, which specifies the
buying or selling of a particular commodity or asset of given quality and quantity at a pre-specified
price and delivery place in a future time [24]. Forward contracts are basically a step further of the
traditional cash and carry exchanges with the delivery taking place in the future.

In the oil market forward contracts are commonly used by industrial firms to make sure that they
will maintain the necessary oil reserve that is needed to guarantee their future operational ability, while
avoiding the extra costs required for the storage until the time of use [25]. The inability of electricity to
be directly stored except from the excessively expensive possibility of saving remaining production
capacity of power plants, as well as the flexibility to adjust in the exact needs of both the producers or
retailers and the large consumer firms made this type of derivative contracts extremely useful and
popular among electricity market participants [26].

Nevertheless, because of the aforementioned unique characteristics of forward contracts several
issues may arise, as it can prove to be rather difficult to find a suitable counterparty that will match
the exact needs of the producer or the consumer. A common problem that is mostly present in the
electricity market refers to the difficulty of delivering the purchased electricity when making a forward
contract with a producer that is far away from the supplying network of the consumer’s region [27].

Additionally, both counterparties face the default and credit risk exposure of the other party,
with the risk significantly rising for forward contracts with long future time delivery or when the
contract value is moving too much in favor of one of the two parties, in a way strangling the other party
and thus making inevitable to fail meeting its contractual obligations [27]. For that reason, investors
who intend to get involved in a forward contract, need to first thoroughly investigate their potential
counterparties’ reliability and credit ratings, or set collateral requirements prior to final agreement
to secure the viability and validity of the contract. Finally, there is a chance that the needs or the
operational conditions of one of the two involved parties change during the time of the contract; this
usually leads to renegotiation of certain contractual clauses facing very strict penalties [25].

2.1.2. Futures Contracts

Futures are very similar to forward contracts in terms that they also represent the obligation to sell
or buy a specific quantity of a certain commodity for a pre-specified price and delivery place, however
counterparties in futures contracts avoid several risks and problems [28]. Specifically, involved parties
in futures contracts avoid are much easier to find the most appropriate counterparty which will be able
to cover their exact needs, as it is not necessary to search for the other party on their own.

Instead there are futures exchanges which take on the role of getting together the potential futures
investors and specialized dealers who are responsible to represent these investors to the exchange,
while at the same time they are in charge of fulfilling the clauses of the contractual agreement [29].
Additionally, futures investors avoid counterparty risk, as when they enter a futures agreement they
are obliged to disburse an initial amount which is used to cover any losses from the daily ‘marking to
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market’ examination of the party’s position. Nevertheless, in case this amount is not sufficient to cover
the losses then it is the broker’s obligation to cover his client’s or defaulting party’s losses and close his
position [29]. If the broker cannot fulfill this either, then the exchange will bear the responsibility to
compensate the other party.

Especially, in the oil market, futures contracts can prove to be very useful as they allow for
additional hedging strategies and contracts such as the crack spread contracts [30]. For example,
refiners mainly fear the price difference between their basic input and the price of their produced
output products, rather than the actual level of prices. Being able to safely estimate all other costs
except oil, refiners are primarily concerned about this price spread and as a result they are interested in
strategies to ensure this spread, which their potential profits are largely depended on [30].

The most common hedging strategy in this case is to buy futures on oil and simultaneously sell
futures on their oil refined products. In order to cover these multiple transactions, the crack spread
contract was created, which incorporates all the above necessary hedging actions to ensure the price
spread in just one trade [30]. A rather popular crack spread contract is the one including initially
buying three crude oil futures, while selling two gasoline futures and one heating oil future one
calendar month later. However because this 3-2-1 ratio based crack spread contract cannot meet the
needs of all refiners in an over-the-counter market outside exchanges that have been developed [31].

On the other hand, as in the case of forwards, futures contracts are also accompanied by some risks.
It is most common for counterparties in futures agreements to close their position prior to maturity,
hence physical delivery rarely is taking place with both parties exploiting their chances for making
profit until the settlement date [31]. However, it is possible for someone to sell futures on a specific
energy commodity without having the obligation to actually possess the underlying commodity in the
first place. This fact is widely taken advantage by speculators, who are willing to get transferred the
producers’ price risk and gamble on the price movements of the energy commodities by selling or
buying futures contracts and close their position prior to the delivery date [29].

Furthermore, another characteristic of futures contracts that may arise further questions concerning
the risks in that particular secondary commodity market, is that the necessary initial margin required
by the participants in a futures contract is significantly smaller relative to their overall commitment to
buy or sell a specific energy commodity [32]. This allows investors to leverage their position realizing
enormous profits or losses for only small price changes. Finally, because futures contracts are only
available for a few specific energy commodities, very limited number of delivery locations and a shorter
to a decade ahead time horizon, there is a fast growing over-the-counter market outside exchanges
that covers the gap between the investors’ needs and what is offered in futures exchanges [31].

2.1.3. Option Contracts

The purchaser of an option contract for an underlying energy commodity, is basically buying the
right to sell to (put option) or buy (call option) from the contract issuer a specific amount of the energy
commodity for a pre-determined price over a specific future time period [31]. There are two main types
of options contracts, where the first one, the American type, provides the contract owner the ability to
exercise the described in the contract right at any point until the maturity date [33]. The second type,
referred as the European type of option contracts, can be exercised only on the pre-defined maturity
date [33]. Nevertheless, both types of option contracts regardless of being purchased on an exchange
or over-the-counter, they are paid in advance [33].

Additionally, option contracts offer an alternative to employing a hedging strategy relying on
futures like hedging using crack spread contracts. This alternative strategy involves buying call options
on an energy commodity which is used as a basic input such as oil, while simultaneously selling
put options on the refined products [33]. Moreover, in the electricity market it is most common for
suppliers to purchase electricity options in order to eliminate the risk of their clients consuming more
electricity than the relative amount corresponding in the futures contracts that are in the supplier’s
possession. Finally, similarly to crack spread contracts in the oil market, in the case of electricity there
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are the spark spread contracts aiming to diminish price risks and specifically price fluctuations between
the electricity’s selling price and the price of the necessary input fuels for its production [34].

2.1.4. Swap Contracts

Swap contracts is the latest development in the financial derivatives market and were created in
an attempt to provide price security at a lower cost than option contracts. Swaps contrary to other
derivatives do not involve actual physical delivery of the underlying commodity, but instead works as
an agreement between two parties to exchange a number of cash flows based on the price changes of
the underlying asset or commodity [35]. This type of contracts mainly concerns external agreements
which do not take place in a traditional exchange or other established trading facility, hence they are
considered as over-the-counter derivatives [35].

As a result of no physical delivery taking place and no amounts being initially paid as a security, a
principal base or notional amount is being determined upon which the various future cash flow transfers
will take place [36]. This notional amount can represent the current market value of the two assets that
are about to be swapped between counterparties or the quantity of a specific underlying commodity
for which the cash flow settlements of each month will be arranged based on its price fluctuations.

In general, swaps share a large number of similar characteristics with futures and option contracts,
allowing hedging price risk exposure without obliging the counterparties involved in the agreement to
possess the actual underlying commodity or asset [31]. However, the fact that swaps are individually
negotiated contracts allows counterparties to be more flexible and customize their swap agreements,
enabling them to better manage the risks that arise from their business activities and are vital to be
hedged in order to ensure the financial stability and future viability of their firms [36].

Nevertheless, the lack of security that accompanies swap contracts as they are not guaranteed by
an established clearinghouse and hence the high counterparty and credit risk exposure, often lead
to less liquid swap contracts as it very often is the case that counterparties renegotiate very much in
detail all the relative contractual terms before they decide to offset or terminate a swap agreement
prior to its expiry date [27].

3. Building the Optimal Hedging Strategy

Following the review of the most commonly used hedging strategies, this Section focuses on the
main strategies for building the optimal hedging approach, namely the Minimum-Variance hedging
strategy (Section 3.1) and the expected utility maximization methodology for hedging (Section 3.2) and
a few alternative hedging strategies (Section 3.3).

Managing the energy price risk is becoming more and more crucial for all businesses and investors
that are involved in a direct or less direct way with that particular market, as the volatility in energy
product prices and their derivative contracts is by far the highest than any other asset [37]. Nevertheless,
not all interested parties deciding to deal with energy price risk and develop a relative hedging strategy
belong in the same group. Participants in the energy derivatives market are often driven by various
and most often opposite incentives [37].

In the existing literature, hedgers are typically separated in two basic groups including short
hedgers that are most likely to represent the position of an energy commodity producer, greatly
worrying about potential price decreases and long hedgers, which are mainly heavily dependent firms
using energy commodities as one of their basic inputs and are deeply worrying about potential price
increases [38]. As a result, it is clear that the two groups are concerned about the exactly opposite side
of the return distribution, as [39] found evidence deriving from the oil futures market that the vast
majority of short hedgers (producers) merely hedge the difference of their present production to the
minimum economic production level and the extreme correlation between oil producers’ profits and
actual prices strongly indicate that producers hedge only a small portion of their overall production.
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During the last two decades a series of academic studies have been developed trying to explore
what should be considered as an optimal hedging strategy. There were two fundamental approaches
in the field in which researchers based their studies to provide estimations of the optimal hedge ratio.

The first, and perhaps most popular approach refers to minimizing the return volatility as an
optimal hedging strategy and is well known as the Minimum-Variance hedge ratio. This approach
may be by far less time consuming and computationally demanding than others, however it may lead
to rather unrealistic and even false conclusions if the limitations of the particular method are not taken
into serious consideration by the researcher [5]. These limitations refer to the assumption for zero
expected return on the futures contract or for constant, infinite risk aversion regarding the general risk
attitude of the hedgers, which is a fairly important hedging parameter considering that there can be
significant alternations of this factor between the two subsequent groups of hedgers [40].

The second more popular hedging strategy is the expected utility maximization methodology and
is used in both financial and energy risk management, as it takes into serious account the aspect of risk
aversion and relies on the utility maximization framework to estimate the optimal hedge ratio [5].

In general, investors aim to secure their portfolio’s position in the spot market by using financial
derivatives and especially futures contracts, hence the optimal hedging ratio represents the exact
combination of spot market investments and futures that would eliminate or minimize to the lowest
possible degree the volatility of the overall portfolio value [5]. As a result, considering a portfolio of
As assets in the spot market (long spot position) and AF assets in the futures market (short futures
position), PSt and PFt denoting the spot and futures prices at a specific time t and rSt and rFt the net
returns for a single period from t− 1 to t, then the total return of the hedged portfolio rh is estimated
as follows:

rh=
ASPSrSt −AFPFrFt

ASPs
= rst − δht−1rFt (1)

where δht−1 represents the hedge ratio and is basically defined as the ratio of the futures position value
to the value of the spot position at time t− 1 showing how many currency units are invested in the
futures market for each unit invested in the spot market.

Nevertheless, due to the fact that the optimal hedge ratio plays a key role in every successful
hedging strategy, it is of vital importance to mention that its estimation is always subject to the specific
objective function that needs to be optimized based on the chosen hedging methodology [6]. Therefore,
the optimal hedge ratio which according to existing literature can be both static and dynamic, may
either represent the investment strategy that minimizes the variance of the total portfolio value or
maximizes a particular utility function or is in line with the limitations set by a prespecified VaR
level [41].

3.1. The Minimum-Variance Hedging Strategy

The vast majority of academic research relies on [42] variance minimization concept for building
the most effective hedging strategy regarding a single or a portfolio of energy commodities. This
fundamental methodology which was further developed by [43–45] relies on decreasing the variance
of the proposed hedged portfolio to the lowest possible degree.

Under the minimum variance approach, the optimal hedging strategy is the one that simply
offers the higher price risk reduction. This particular framework is less computationally demanding,
while it also allows for easier interpretation, however it emphasizes solely on the risk reduction and
completely ignores the risk aversion and the expected return parameters for the optimal hedging
planning [5]. Therefore, on a minimum variance hedging model it is arbitrarily been assumed that all
investor groups in energy market share infinite risk aversion, a hypothesis which is rather unrealistic
even for the most conservative and modest economic organizations (i.e., public companies, pension
funds etc.), as infinite risk aversion means that investors would reject investment opportunities which
could offer significant potential returns for even the slightest amount of additional risk [46].
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The fact that the minimum variance approach fails to distinguish hedgers both based on their
interests (e.g., refiners, producers, consumers etc.), as well as on their individual investor characteristics
(e.g., investors, speculators) and hence their attitude towards risk is a very important factor that needs
to be taken into account, when estimating the optimal hedging ratio since hedgers may vary from the
point of being reluctant to take any risk, up to the point where hedgers are found to adopt unexpectedly
risky hedging strategies [47]. Figure 1 shows the graphical representation of the optimal hedging ratio.

Figure 1. Hedge position and the shape of portfolio variance [48].

Proper assessment of energy risk relies on models that reflect a number of important properties of
the underlying assets which affect the performance of the participants’ portfolios such as time-dependent
volatility and heavy tails [49]. Some of the main factors affecting hedging behavior are: profit
opportunities and shareholder values which may solve conflicts over different contract preferences
between companies in commodity-marketing channels [50].

3.1.1. Estimation of the Minimum-Variance hedge ratio based on the OLS methodology

The most simplistic method to estimate the Minimum-Variance hedge ratio by taking into account
any potential price volatility differentials between the spot and futures prices, involves the use of
the OLS regression technique between spot returns and futures returns of the examined energy
portfolio [46]. Nevertheless, it is important to mention that the resulting Minimum-Variance hedge
ratio of this basic analysis is static and not dynamic. Based on Equation (1) the variance of the portfolio
return can be mathematically estimated as follows:

σ2
ht
= σ2

st + δ2
hσ

2
Ft
− 2δhcov(rst , rFt) (2)

where σ2
ht

symbolizes the portfolio’s conditional variance and the σ2
st and σ2

Ft
the conditional variances

of the spot and futures positions respectively, while cov(rSt , rFt) indicates the conditional covariance.
Hence, the Minimum-Variance hedge ratio can be estimated by minimizing the portfolio’s

conditional variance
(
σ2

ht

)
with respect to δh:

δh =
cov(rst , rFt)

σ2
Ft

= ρ
σst

σFt

(3)

where ρ denotes the correlation between spot and futures returns, while σst and σFt represent the
standard deviations.

Assuming that the variance-covariance matrix is constant and not time variant, the optimal hedge
ratio can be calculated by performing an OLS regression of the spot returns on the futures returns.
In this regression the slope parameter will refer to the optimal δOLS

h . Nevertheless, since most energy
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commodities are characterized by excess price volatility and thus prices are not reasonable to be
considered as stationary for any reason, a dynamic analysis is required instead that will allow for a time
variant optimal hedge ratio [5]. Finally, [51] point that the resulting optimal δOLS

h can be trustworthy
only when all OLS methodology criteria are met. However, this is relatively rare to happen mostly
due to the heteroskedasticity problem that econometric tests find to be present in the vast majority of
energy commodity price data sets.

3.1.2. Estimation of the Minimum-Variance Hedge Ratio based on Nonlinear Multivariate
Garch Models

Researchers trying to deal with the problematic and unrealistic hypothesis of the OLS approach for
constant variance-covariance matrix of returns that leads to an estimation of a static optimal hedge ratio,
started to implement the Arch-Garch methodology in their studies [52]. With the implementation of the
appropriate Garch type volatility model (see reference [53] for a complete analysis of the econometric
procedures and tests that lead to the choice of the appropriate Garch type volatility model in an energy
portfolio), researchers in their estimates for the optimal hedge ratio use the conditional sample variance
and covariance resulting from the chosen model.

This particular econometric technique allows for time varying variances and covariances
supporting updates of the optimal hedge ratio during the hedging period. Furthermore, the Arch-Garch
methodology overcomes another limitation of the OLS approach, which has to do with the presence of
heteroskedasticity in the energy commodities’ data sample of price returns, as OLS regression provides
unreliable and less efficient results in case of heteroskedasticity in the error term. Reference [44] suggest
that the use of conditional variance and covariance in the estimation of the optimal hedge ratio for a
portfolio of commodities with highly volatile returns provides significantly more accurate estimates.
Additionally, [45] using a data set for six different commodities they conclude that the implementation
of a static optimal hedge ratio as a hedging strategy can prove to be rather costly.

The estimation of the optimal hedge ratio even for a single energy commodity, which includes
the spot and futures returns, requires the application of sophisticated nonlinear multivariate Garch
models [54]. The type of volatility models are more commonly used in risk management for energy
portfolios, as they are found to be superior in terms of incorporating and revealing the dynamics of
variances and covariances, as well as allowing for dynamic interactions between spot and futures
returns [55].

The most simplistic version of these type of models that is widely used for the estimation of the
optimal hedge ratio is the VECH model, which was initially introduced by [56] and can be considered
as a straightforward extension of the basic univariate GARCH model.

The VECH model is estimated as follows:

VECH(Ht) = C +
∑q

i=1
Ai vech

(
εt−1ε

′
t−i

)
+
∑p

j=1
Bj vech

(
Ht− j
)
, (4)

All conditional variances and covariances are functions of their own lagged values, along with
lagged squared returns and cross-products of returns. Vech(.) denotes an operator, stacking the
columns of the lower triangular elements of its suggested square matrix, while Ht represents the
resulting conditional covariance matrix, C is an [N(N + 1)/2×N(N + 1)/2] vector and Ai, BJ are
[N(N + 1)/2×N(N + 1)/2] parameter matrices.

The model has the advantage of being rather simple and flexible: however it is accompanied by
some serious drawbacks and limitations. That is because, firstly, as Ht necessarily remains positive for
all εt, in order to reasonably estimate all the parameters that are specified by the model, this can be
diffic ult to investigate. Secondly, the large number of required parameters, as well as the demanding
computational time, critically limit the model given the difficulty to consider more than two basic
factors. As a result it is limited to a bivariate model [53].
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According to [45] the Minimum-Variance hedge ratio in a bivariate VECH model is estimated
as follows:

Let yt = (Ps, PF)
′ denote a (2 × 1) vector containing cash and futures prices:

[
ΔPS
ΔPF

]
=

[
μ1

μ2

]
+

[
ε1t
ε2t

]
⇔ Δyt = μ+ εt (5)

With:

εt|Ωt−1 ∼ N(0, Ht) and Ht =

[
H11,t H12,t
H21,t H22,t

]
(6)

Considering Equation (1) the optimal hedge ratio at time t is given by:

δt−1 =
σ21,t

σ22,t
(7)

where σi j,t corresponds to the value of the exact same position in the Ht conditional covariance matrix.
Despite its drawbacks and limitations the VECH model remains popular in estimating the

Minimum-Variance hedge ratio in portfolios with a very small number of assets as it provides a time
variant optimal hedge ratio rather than a single static one for the total hedging period [55].

However, in the vast majority of studies related to risk management and hedging in energy
portfolios more sophisticated and complex multivariate Garch models are being used, such as the
constant correlations (CCC) model and the dynamic conditional correlation model (DCC) model [53].
This is merely happening due to the advantages that these models offer to researchers compared to
VECH model. Nevertheless, the more popular of the two models is [57] DCC model, which allows
for a more realistic time-varying correlation structure enabling the model to capture any interactions
between portfolio’s assets. As a result, the DCC model has been used recently in a larger series of
studies such as [58–62].

The Minimum-Variance hedge ratio based on the dynamic conditional correlation model (DCC) is
estimated as follows:

Consider : yt
∣∣∣Ωt−1 ∼ N(0, Qt), t = 1, 2, . . . , n (8)

and:
Qt = DtρtDt (9)

where Ωt is the existing data set at time t, Dt =
(
h1/2

1 , . . . , h1/2
m

)
represents the diagonal matrix of

conditional volatility with hit denoting the conditional variances that can be calculated using the
basic Garch model and ρt the dynamic conditional correlation.Let rSt = μ+ εFt and rFt = μ+ εFt the
returns on the spot and futures position respectively, the following two equation provide the relative
conditional variances:

hSt = ωs + αsε
2
st + βs hst−1 (10)

hFt = ωF + atε
2
Ft
+ βF hFt−1 (11)

While (9) with respect to ρt becomes:

ρt =
{(

diag(Qt)
− 1

2

)
Qt

(
diag(Qt)

− 1
2

)}
(12)

where the conditional covariance matrix Qt is estimated as follows:

Qt = Qt + γ
(
εSt−1εFt−1 −Qt

)
+ δ
(
Qt−1 −Qt

)
⇔ Qt = (1− γ− δ)Qt + γεSt−1εFt−1 + δQt−1

(13)
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Qt symbolizes the unconditional correlation coefficient and εSt−1 , εFt−1 the standardized residuals
of the spot and futures returns, respectively.

Hence the time variant Minimum-Variance hedge ratio is given by:

δ∗t
∣∣∣Ωt−1 =

hSFt

hFt

(14)

where hSFt denotes the conditional covariance between the spot and futures returns, and hFt the
conditional variance of futures returns.

3.2. Hedging via the Expected Utility Maximization Methodology

The maximization of the expected utility constitutes the alternative hedging approach to
Minimum-Variance hedge ratio. In expected utility maximization methodology the hedger’s attitude
towards risk is explicitly taken into consideration instead of assuming infinite risk aversion, by which
it is implied that investors would reject investments that offer significantly high potential returns for
even a relatively small additional risk [63]. This hypothesis is reasonably considered as irrational for
the vast majority of hedgers, constituting risk aversion a critical factor for every risk management
analysis and for the estimation of the optimal hedge ratio.

Furthermore, in contrast with Minimum-Variance hedge ratio the expected utility maximization
methodology also examines the parameter of the expected return, combining elements of both risk and
expected return in its estimates for the optimal hedge ratio. Nevertheless, the implementation of the
risk aversion aspect requires the use of the appropriate utility function that would ideally match with
the hedger’s risk preference [5]. Reference [64] analyzed data for a number of energy commodities and
reported that the presence of excess skewness and kurtosis in the return distribution lead to important
differentiations in the resulting optimal hedge ratios that where estimated based on specific applied
utility functions.

As a result, specifying the appropriate utility function becomes a critical matter considering that
these statistical characteristics are found to be present in almost every risk management analysis
regarding energy commodities, while they appear to be more intense during periods of economic
turmoil [64]. Specifically, large movements of certain commodities are noticed during severe crisis such
as for the prices of oil [65]. Finally, another parameter of great importance that needs to be taken into
account is the time variance in the hedger’s risk attitude. Table 1 shows the volatility under normal
and crisis market conditions for a few commodities.

Similarly to evidence coming from financial markets, which is an even less volatile market
compared to energy market, investors tend to adjust their risk preferences over time. Perhaps the most
characteristic example is the 2007 economic crisis, during which investors’ perception towards risk
was found to have changed dramatically. Hence, applying arbitrary risk aversion values to a hedging
strategy analysis for an energy portfolio is a practice that can lead to suboptimal hedge ratios [61].

The utility concept was first introduced by Georgescu-Roegen [66,67] to explain economic values.
Though since then, it has now become an obsolete concept since nobody has been able to provide a
specific measurement [68]. One business model in the evolving energy sector is the energy service
utility model that, unlike conventional investor-owned energy utilities, provides services such as hot
water, clean electricity, or sustainable materials rather than commodities like kilowatt-hours, therms,
and so on [69].

Additionally, the current business model of the utility industry is based on increasing sales and
needs to be revised as electricity consumption continues to decline, at the same time energy efficiency
should be a main function of the utility business model in order to reduce carbon emissions while
maintaining the long-term stability of the industry [70]. More efficient distribution utility models
can be designed taking into account forward looking strategies, regulatory tools, financial incentives,
performance incentives and incentives for long term innovation [71].
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Table 1. Risk analysis data—volatility under normal and crisis market conditions and sensitivity factors
(adapted from [65]).

Commodity Name

Monthly
Volatility
(Normal

Market) (%)

Monthly
Volatility

(Crisis
Market) (%)

Annual
Volatility
(Normal

Market) (%)

Annual
Volatility

(Crisis
Market) (%)

Sensitivity
Factors

Petroleum: average
crude price 8.1 24.6 28.1 85.2 1.72

Gasoline 10.4 25.4 30.4 87.2 1.88
Natural gas 5.8 20.6 20.0 71.2 0.14

Coal 4.0 13.5 13.9 46.9 0.26
Gold 3.3 12.5 11.3 43.2 0.18
Silver 5.4 21.6 18.7 75.0 0.18

Copper 6.2 20.0 21.5 69.2 0.48
Zinc 6.1 24.9 21.3 86.4 0.34
Lead 6.3 23.8 21.9 82.3 0.15

Aluminum 5.8 32.6 20.0 133.1 0.31
Nickel 8.9 22.2 30.7 76.9 0.54

Iron ore 4.4 12.9 15.2 44.7 0.18
Phosphate rock 2.3 21.7 8.1 75.2 0.01

Wheat 5.1 15.1 17.7 52.3 0.08
Cotton 4.9 12.6 17.0 43.5 0.14.9
Sugar 2.1 11.0 7.3 38.2 −0.05
Maize 5.3 25.2 18.4 87.2 −0.08

Tobacco 1.8 4.9 6.2 16.8 0.01
Coffee 8.0 37.1 27.6 128.6 0.04

Tea 7.7 23.6 26.8 81.8 0.11
Rubber 6.0 18.1 20.8 62.7 0.37
Wool 4.7 16.5 16.4 57.3 −0.02

All commodities 3.6 12.3 12.5 42.5 1.00

3.2.1. Measuring Risk Aversion

Determining the degree of risk aversion has always been a challenge for researchers, nevertheless
there are two measures that are more commonly used by the vast majority of researchers in the field of
hedging and energy economics, consisting of the coefficients of absolute and relative risk aversion [61].
In general, the term risk aversion is basically defined as the investor’s assessment regarding the
tradeoff between in taking risk that needs to be accepted for potential future return coming from the
particular investment. This relationship is depicted by the investor’s utility function and the relative
risk aversion is approximated by the slope change that is observed between each individual point in
the function [64].

The coefficient of absolute risk aversion (CARA) examines the percentage changes of the investor’s
portfolio that is invested in the risky and the risk free asset respectively regardless of the investor’s
wealth level and it is mathematically described as follows:

CARA = −U′′ (Wealth)
U′(Wealth)

(15)

From the above equation it is evident that an investor with CARA in absolute terms will invest a
smaller part of the total portfolio value in the risky asset as wealth (W) increases.

On the contrary, the coefficient of relative risk aversion (CRRA) investigates percentage changes
in the part of the investor’s portfolio that is invested in risky and risk free asset respectively, given
specific changes in wealth and it is mathematically described as follows:

CRRA = −W ∗ U′′ (Wealth)
U′(Wealth)

(16)
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The above equation allows for the investor’s risk aversion to be expressed numerically, while a
scale factor is used to represent the investor’s present wealth level. Nevertheless, the whole concept of
the CRRA relies on the market risk premium, showing the demanded excess return by the investor’s
side in order to be compensated for the additionally accepted systematic risk.

3.2.2. Optimal Hedge Ratio Estimation based on Expected Utility Theory

Assuming that
(
rδh

)
and σ2

δh
represent the expected return and variance of the hedged portfolio

then the expected utility function is mathematically described as follows:

EU
(
rδh

)
= E
(
rδh

)
− λσ2

δh
, for λ > 0 (17)

where λ denotes the risk aversion parameter. As a result, the hedger’s expected utility maximization is
given by:

EU= max
δh

EU
(
rδh

)
= max

δh

[
E(rs) − δhE

(
r f
)
− λ
(
σ2

s + δ2
hσ

2
f − 2δhcov

(
rs, r f

))]
(18)

Hence the optimal hedge ratio based on the investor’s expected utility maximization can be
estimated as follows:

δh =
cov
(
rs, r f

)
σ2

f

−
E
(
r f
)

2λσ2
f

(19)

From the above equation it is evident that in case of absolute risk aversion or the futures expected
return is zero (i.e., futures prices follow a martingale), the speculative term of the equation becomes
zero and as a result the estimated optimal hedge ratio becomes equivalent to the Minimum-Variance
hedge ratio [6].

3.3. Alternative Hedging Strategies

Although the vast majority of academic researches incorporate primarily the Minimum-Variance
methodology to estimate the optimal hedge ratio and ultimately build the most effective hedging
strategy for a particular energy portfolio, there are also other approaches that aim to solve the same
problem through a different perspective. The most characteristic example is the mean-risk hedge
ratios, in which the optimal hedge ratios are estimated by maximizing the utility function or a specific
objective function of the expected return [6]. In this alternative methodology there are three main
derivations regarding risk measurement including the Sharp hedge ratio, the mean-extended-Gini
(MEG) coefficient hedge ratio and the generalized semi-variance (GSV) hedge ratio.

The Sharp hedge ratio introduced by [72] actually comprises a tradeoff between risk and return,
including the element of portfolio return into the hedging strategy. The Sharp hedge ratio is derived
by maximizing the portfolio’s excess return relative to the portfolio’s volatility and can be calculated
using the following function:

max
δh

θ =
E(rh) − r f ree

σh
(20)

where, r f ree denotes the risk-free rate and σ2
h is equal to the portfolio variance Var(rh) The Sharp hedge

ratio in case the futures contracts return follows a pure martingale, it becomes equal to the optimal
hedge ratio estimated by the Minimum-Variance hedge ratio.

Similarly, the MEG coefficient Γu(rh) as proposed by [73–75] is estimated by minimizing the
following equation:

Γu(rh) = −λCov(rh, (1−G(rh)))
λ−1 (21)

where G represents the cumulative probability distribution.
While alternatively [76] suggest maximizing the utility function below:

U(rh) = E(rh) − Γλ(rh) (22)
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In this case the estimated hedge ratio is called M-MEG and it differs from MEG hedge ratio, as
it incorporates the expected return parameter into the developing hedging strategy. The two hedge
ratios become equivalent when the expected return is zero (i.e., the futures returns follow a martingale).
Additionally, [77] proved that the MEG hedge ratio reduces to the Minimum-Variance hedge ratio
whenever the assumption that both spot and futures returns are normally distributed is confirmed.
Furthermore, [73,76] show that for low values of the risk aversion parameter λ the MEG hedge ratio
converges to Minimum-Variance hedge ratio, while significantly differentiating for increased risk
aversion. Contrary, in case of high levels of risk aversion the M-MEG hedge ratio was found to become
equivalent to the Minimum-Variance hedge ratio.

The third alternative mean-risk ratio is the GSV hedge ratio, which was developed by [78–80]
and further extended by [81]. The optimal hedge ratio is estimated by minimizing the following GSV
equation:

U(rh) = E(rh) − Γλ(rh) (23)

where G(rh) represents the probability distribution of the hedged portfolio’s return while γ denotes the
portfolio’s target return. In equation (23) it is assumed that investors consider lower than the targeted
returns to be riskier, meaning that risk is measured based on a lower part of the hedged portfolio’s
distribution. [79] verify that the GSV hedge ratio becomes equivalent to the Minimum-Variance hedge
ratio, provided that both assumptions for joint normality in the return distribution and pure martingale
price process are met.

Extending the abovementioned hedge ratio methodology, [81] alter the GSV hedge ratio by
including the mean return parameter in the derivation of the optimal hedge ratio. In this case,
the produced mean-GSV hedge ratio is estimated by maximizing the below utility function:

U(rh) = E(rh) −Vγ,λ(rh) (24)

Reference [81] show that the M-GSV hedge ratio would become equivalent to the
Minimum-Variance hedge ratio if both the pure martingale and joint normality hypotheses hold.
Reference [80] suggest that adopting a conventional Minimum-Variance hedge strategy is unsuitable for
hedgers that are mostly worried about downside risk. As a result, because of its conceptual simplicity
for measuring the downside risk of a hedged portfolio the VaR methodology is being adopted by
researchers as an alternative approach to build the optimal hedging strategy. Such case is the VaR
constraint approach, which involves estimating the optimal hedge ratio based on a certain acceptable
amount of risk or expected profit. Reference [82] where the first to build a VaR constraint hedging
optimization model motivated by the high level of risk in the US electricity, with [83] following.

4. State of the Art—Relevant Studies Using Hedging Strategies

Although the specific research field in general became popular only recently, there is a number
of very interesting research papers trying to explore the most important aspects for employing a
successful hedging strategy regarding energy commodities, which are further presented in this Section.

4.1. Optimal Hedging Strategies based on the Minimum Variance Methodology

The Minimum-Variance hedge ratio methodology, despite its demerits, is by far the most widely
used in academic literature offering useful advice about the mixture of the hedging strategy that should
be employed by a firm that is exposed to energy price risk [5]. Therefore, many researchers use the
Minimum-Variance hedge ratio to provide guidance to risk managers relative to the most appropriate
hedging policy that would lead to reduced stock price volatility and increased firm value.

Reference [84] are some of the first that focused on estimating the most suitable hedging ratios
regarding the crude oil market. The authors were using a four-year weekly spot price data sample
for crude oil futures and the basic ARCH and GARCH models, and they concluded that the optimal
hedging ratio is time-varying and that is positively affected by the duration of the contracts. Next, [61]
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using a much larger sample of daily spot prices for both Brent and WTI oil from a period from 1997 to
2009, tested several multivariate volatility models for their ability to estimate the most effective optimal
hedge ratio, determining that the diagonal BEKK model is the most appropriate. Furthermore, they
suggested a hedging strategy which involves an increased proportion of shorting in crude oil futures.

Reference [85] while emphasizing on the oil refining industry, they examine the weekly spot and
futures prices for a 15-year period (1994–2009), regarding three of the most important and characteristic
energy products in that specific industry, including the WTI crude oil, heating oil and gasoline. Their
empirical results reveal that a combination of a dynamic conditional correlation (DCC) model and
error correction GARCH model is better compared to simplified GARCH based models to capture the
risk for refiners stemming both from the crude oil market itself, as well as the oil product market.

Finally, [86] were the first to examine the natural gas market and build an optimal hedging strategy
using a single Henry-Hub futures contract. Specifically, they reveal that an adjusted error correction
GARCH model is by far more capable of estimating the most effective time-varying hedging ratio
relative to the conventional OLS methodology and several basic GARCH models. Moreover, based
on the results of their research it is also supported that taking into consideration the elements of
co-integration and time varying volatility doesn’t have a significant impact on the hedging effectiveness
of a specific strategy.

4.2. Incorporating the Elements of Risk Aversion and Expected Return into the Optimal Hedging Strategy

A rather interesting factor, when investigating the hedging policies of particular industries, is
the tendency as well as the willingness of the market participants to take risks. The risk attitude of
an industrial firm, which is exposed to the energy price risk may seriously affect the overall hedging
policy of the firm regarding energy products considering their increased price volatility [37].

Although the above issue constitutes a quite interesting topic for further research, the fact that
incorporating a risk aversion factor in such a study can prove to be tricky, as well as computationally
demanding and time consuming, probably discouraged most academics to deal with the aforementioned
topic. Specifically, [64] are the first who try to address the problem of risk aversion incorporation in an
optimal hedging strategy regarding energy products.

The researchers while applying a GARCH in Mean model, estimate the optimal hedging ratio
relying on a sample for gasoline futures prices for a 16-year period between 1992 and 2008. However,
the innovative element of their study, is that in their model’s estimates a time varying risk aversion
factor is taken into consideration, enabling them to forecast risk aversion and thus better adjust the
hedging strategy to the hedger’s future needs. Finally, [87] further extend the previous study by
incorporating the factor of risk aversion to the most popular and frequently applied utility functions
and through that they end up to the most appropriate and efficient hedging strategy.

5. Conclusions

Energy is considered as a commodity nowadays and continuous access along with price stability is
of vital importance for every economic agent worldwide. The current study comprehensively reviews
the advantages and disadvantages of the main hedging methodologies regarding risk management in
energy portfolios. Additionally, it enables the reader to explain, analyze and interpret the variations in
the results for the proposed optimal hedging strategies of each methodology, while advising when and
why choosing a specific methodology over the others and if more than one methodology is required to
build a more reliable hedging strategy due to special economic characteristics of a certain time period.

Based on the conducted review, it is clear that the Minimum-Variance hedge ratio methodology if
the appropriate nonlinear multivariate model is used, the Garch family volatility model can provide a
reliable optimal hedge ratio with relatively low computational effort. However, that becomes possible
by applying a rather restrictive assumption for infinite risk aversion on behalf of the investor into the
analysis. This estimation gap of an optimal hedge ratio that would be subject to the investor’s risk
preferences through time is filled by the relatively more complex and sophisticated expected utility
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maximization methodology. Nevertheless, if hedgers share infinite risk aversion or if alternatively the
expected futures price variation is approximately zero, the two methodologies become equivalent.

In general, considering evidence from the energy market the assumption that energy futures
prices follow a martingale is confirmed for extended periods of time, yet during periods with extremely
volatile economic climate and financial crisis this may change until the market returns to normality.
Finally, it is important to note that during periods of extreme uncertainty and high risk it is common
also for the investors’ risk attitude to show significant variations. Hence, it becomes reasonable
that especially for extended hedging horizons it would be wise for potential hedgers to take into
consideration both methodologies in order to build a successful and profitable hedging strategy.

A numerical analysis is proposed as a further extension of the present paper, in which the resulting
hedging strategies from the different methodologies would be tested regarding their effectiveness
and profitability through multiple time horizons and for several energy commodities. An important
limitation of this research has to do with resources decoupling and keeping under control the increasing
of the value added and decreasing energy consumption.
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Abstract: This paper has reviewed the international research on the interactions between the Economy,
Energy, and Environment (3E) in the 21st century. For this purpose, a bibliometric and cluster analysis
by fractional accounting has been carried out based on the two most important databases: Web of
Science (WoS) and Scopus. The research found and studied 2230 documents from the WoS Core
Collection and 3,149 from Scopus. The results show a continuous increase in the number of articles
that were published and citations during the whole period. They also showed that China and the
United States (U.S.) were the most productive countries and there was a predominance of Asian
organizations supporting and fostering researches. The main contribution of this article is the
analysis of keywords from 2001 to 2018. The trends show that the main common elements are
sustainable development and sustainability and they also include CO2 emissions and consumption.
Future research in this field should address the energy transition issue in the area of sustainable
development by adapting it to the restrictions of this economic model.
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1. Introduction

Throughout history, the concept of economy has evolved in parallel with society: from a
perspective that is solely focused on obtaining wealth, to a holistic and integrated vision in which a
growing number of factors are interrelated with it.

The scientific literature includes numerous articles in which the interrelation between
Energy, Economy, and Environment is identified with the nomenclature “3E” [1–3]. In this sense,
the eight Millennium Development Goals that were proposed by the United Nations Development
Organization [4] at the beginning of the 21st century show the global importance of this triple helix
in the global economic scenario. Ensuring environmental sustainability is the seventh of these goals,
while energy appears as an indicator of this objective: carbon dioxide emissions or use of water
resources, among others. The evolution of these objectives in the Sustainable Development Goals [5]
expands the importance of energy and the environment in the form of the following: affordable and
non-polluting energy, sustainable cities and communities, or climate action. In light of this, 3E is more
present today than ever before.

In recent years, the problems that are related with 3E have been studied and evaluated in a
deeper way than ever before in history [6–8]. Recently, the academic community has linked these three
elements in the form of diverse currents or lines of research [9–11].

One of these research lines emphasizes the impact of the energy management of productive units
on the economic growth of the regions. On the one hand, the impact of human activities, such as mining
or tourism, on the state of natural resources (even human capital) is analysed [12–14]. In contrast,
some authors apply a long-term approach and analyse the viability of cleaner energy in developing
economies [15,16].
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There are also research studies in which the efficiency and effectiveness of the energy sources
used are related to the environment and the restrictions that it poses. For example, the solid waste
recycling strategy in Brazil to solve the problem of the growing amount of electronic waste because
of an increase in the use of new technologies and electrical energy [17], or the impact of efficient coal
waste management [18] while using environmental indicators that characterize the combustion of
different ranges of coal (gas, flame, coke, or uncooked coal).

There is a factor used by the research community that manages to relate the three elements in an
integral way: the concept of renewable energy [19,20]. Through the inclusion of alternative energies,
the productive system of an economy adapts the intervening elements in the value chain to develop an
“environment-centred” strategy [21,22]. For example, an integrated sustainability model that is used
to understand how changes in the bioenergy system influence environmental measures, economic
development, and society, showing that an increase in the share of bioenergy in total electricity
generation will stimulate the electricity market [23].

Other authors follow this trend regarding energy from different perspectives: a reorientation of
productive energy distribution towards others, such as biogas, biodiesel, or bioethanol to close the
carbon cycle in nature [24]; the achievement of a given objective of carbon dioxide elimination through
the framework of Modelling and Optimisation of Negative Emission Technologies (MONET) [25],
or an analysis of the impact of traditional and alternative energy resources on economic growth,
the transport sector, and the carbon dioxide emissions [26].

Furthermore, another highlighted line of investigation focuses more on the environmental
aspect: from a legal and educational approach of the issue [27], the application of the concept
of eco-efficiency to assess the suitability of renewable energies [28–30] to multi-target models or
a qualitative comparative analysis to study the relationship between economic growth and the
environment [31–33].

The so-called carbon footprint, which can be defined as a measure of the greenhouse gas
emissions of human activity, is another element of growing research attention that associates the
three concepts [34,35]. This line of research applies the method of accumulated energy demand to
develop and validate indicators of urban environmental sustainability, using the five urban systems
in Italy as case studies to analyse their ecological footprint. Other researchers [36] use the life cycle
assessment method to propose a strategy to maximise the benefits of the cold chain of table grapes
by integrating its carbon footprint. In the same way, the concept of the seasonal footprint avoided
by imports has been used to analyse whether proximity and seasonal consumption are consumption
patterns that buyers can use to improve the sustainability of the economy [37]. An approach that is
focused on the Internet of Things has also been used to analyse the management of “Smart” cities and
how households can reduce their carbon footprint [38].

However, the most relevant expression of the union of these concepts is found in the concept
of sustainability, which made its first appearance on the international stage at the United Nations
Conference on Environment and Development [39] that was held in Stockholm in 1972. Since then,
the question of how to improve and stabilize the economic situation of countries is linked to the
restrictions that are imposed by the natural environment [40] and it has materialized in numerous
research articles that interrelate the economy with the environment. In fact, sustainability is identified
as the perfect conciliation between the environment and the economy [41].

In accordance with this approach, several authors focus on the following methodologies
to assess the impact of human activities on the sustainability of the environment: an analysis
of the social and environmental impact of these activities by using the life cycle assessment
method [42], agency theory [43], or the development of different indicators [44,45]. On the other
hand, another stream of authors study how the different agents of the economy of a country influence
the sustainability: multinational companies [46] or final consumers [47].
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Nevertheless, the researchers also point to examples of economic growth using environmentally
damaging energies [48], recommending that authorities should take the path of sustainable
development with low resource consumption, less pollution, and high ecological security.

There are similar articles that analyse the economy, energy, and environment from a bibliometric
analysis, either independently or in pairs [49–51]. However, there is no article in the existing literature
analysing the latest trends in 3E that are based on a bibliometric analysis. From this analysis, it can
be seen that the junction of the three terms results in new research areas, such as sustainability, and a
focus on CO2 emissions.

2. Materials and Methods

The methodology that is used to analyse the concept of 3E is bibliometric analysis, a scientific
method that is widely accepted and used by institutions, such as the European Commission or
the National Science Foundation [52]. Bibliometric is a scientific method that uses mathematical
techniques and statistics to evaluate a given scientific output [53]. The principle on which it is based is
the citation network, from which the sub-methods of citation analysis [54] and scientific cartography,
which are essential for the evaluation of research performance, are derived. In order to understand the
performance or production of a researcher, this research has also applied the index h, as developed by
Hirsch [55] and defined as the number of articles with citation number ≥h. To this end, the indexes of
publications in the core collection of the WoS and Scopus online databases are considered.

All types of documents (articles, books, proceedings and so on) were included for the general
analysis, but the impact analysis was filtered to only include articles (Table 1). The reason why this
filter was applied is that this type of scientific document has undergone a rigorous review process to
guarantee its quality and will, thus also guarantee the quality of our conclusions. Finally, information
that is related to 3E was also filtered, coding the recovered material, and analysing the results.

Table 1. Distribution of publications by type of document.

Type of Document WoS Scopus

Article 2230 3149
Proceedings Paper 1462 1894

Review 268 437
Book and Book Chapter 110 518

The cluster analyses were built while using VOSviewer software tool for constructing and
visualizing bibliometric networks [56]. For this analysis, a fractional counting method was chosen.
The basic idea of the fractional counting approach is that each action, such as co-authoring or citing of
a publication, should have equal weight, regardless of, for instance, the number of authors, citations,
or references of a publication [57].

This bibliometric analysis followed the following steps (Figure 1). First, the search criteria,
keywords, and period were defined. In this work, we have chosen the words “energy”, “environment”,
and “economy”. The reason why these words have been chosen lies with the scientific community’s
continued use of 3E terminology to name the development and growth models in which these elements
are integrated [1,2,58]. The study period corresponds to the 21st century: from 2001 to 2018 so that
new trends can be better defined. Subsequently, Scopus and WoS were the chosen databases in which
the analysis was conducted, since they are the two largest databases that follow a rigorous protocol for
the inclusion of research work in order to ensure scientific quality [59].
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•Keywords: 
energy AND 
economy AND 
environment

•Period: 2001 to 
2018

1. Definition of 
search criteria

•WOS: 3904 
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Figure 1. Bibliometric analysis steps followed.

In order to identify new trends involving the three elements, 3904 relevant research studies
have been identified from 2001 to 2018 in the core collection of Web of Science (WoS). The list was
then filtered down to 2230 publications that link Energy, Economy, and Environment as keywords
in the documents recorded. The process was then repeated for the Scopus database. This time,
6198 documents were founded and the results were filtered down to 3149 research articles that were
published in impact journals.

3. Results and Discussion

3.1. Number of Publications per Year

Below, a series of data is displayed, which shows the status of the research activity about 3E with
reference to the results of the WoS and Scopus databases in the 21st century.
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WoS opens the new century with the article entitled Energy relations of gas estimated from flare
radiation in Nigeria [60], in which the economic and environmental impact of oil extraction in Nigeria
is studied. Scopus, on the other hand, includes, as its first article for the period, the work entitled
Food security, agricultural subsidies, energy, and the environment. A process of ‘glocalization’ in Sri
Lanka [61], in which the interaction of the political dilemma in the areas of food security, agricultural
subsidies, energy consumption, and the environment in the process of ‘glocalization’ in Sri Lanka
are analysed.

Throughout the study period, it is observed that the scientific contribution that was collected
in Scopus is higher than that of WoS in terms of the number of articles and citations, with the only
exception of 2016, in which the latter is slightly higher. The evolution of the h-index follows a
similar pattern, with WoS being higher in 2007. On the other hand, the ratio of scientific production
(represented by the number of citations per article) does not follow such a clearly defined path.
However, there is convergence in the number of articles that are indexed in each of the databases by
the end of the period (Table 2).

Table 2. Annual distribution of the publication of Economy, Energy, and Environment (3E)
scientific articles.

WOS SCOPUS

Year Articles H-Index Citations TC/Art Articles H-Index Citations TC/Art

2018 356 9 553 1.55 401 11 687 1.71
2017 327 16 1366 4.18 387 17 1767 4.57
2016 227 20 2179 9.60 269 20 1868 6.94
2015 187 20 2480 13.26 277 24 2656 9.59
2014 166 26 2220 13.37 279 28 3254 11.66
2013 147 24 2195 14.93 195 28 3289 16.87
2012 125 24 1971 15.77 203 29 3260 16.06
2011 121 27 2502 20.68 185 30 4665 25.22
2010 121 32 3134 25.90 177 35 4047 22.86
2009 108 25 2656 24.59 165 31 4673 28.32
2008 69 23 2033 29.46 120 29 3376 28.13
2007 65 25 2145 33.00 99 24 2329 23.53
2006 57 21 2564 44.98 79 21 2939 37.20
2005 42 16 1170 27.86 68 16 1217 17.90
2004 23 13 792 34.43 48 14 906 18.88
2003 35 18 1238 35.37 68 23 2567 37.75
2002 24 15 1959 81.63 49 21 2424 49.47
2001 20 9 343 17.15 63 14 1433 22.75

TC/Art: Total Citations/Article.

With consideration of the total number of articles in both databases, the trend is positive,
exponentially growing in recent years, and even surpassing 400 articles published in 2018 on the
Scopus database. The dynamics of WoS with respect to this issue is positive throughout the period,
only decreasing in 2004. The Scopus trend, on the other hand, shows several moments of decreasing
scientific contribution: in 2004, 2013, 2014, 2015, and 2016. However, the overall positive evolution
of this factor indicates that research into the interrelationship between the economy, energy, and the
environment is a safe bet, and currently at a high point in terms of the number of studies being
published on this issue (Figures 2 and 3).
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Figure 2. Evolution in number of articles.

 
Figure 3. Average number of articles on WOS vs Scopus.

The evolution of the number of citations does not present as stable a path as in the previous
variable, drawing an inverted U shape. The highest peak was in 2009 and 2011 for Scopus and 2010 for
WoS, decreasing in recent years. The most quoted article throughout this period in WoS and Scopus
is the work, A class of non-precious metal composite catalysts for fuel cells [62], with 1477 and 1531
citations, respectively (Figure 4).
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Figure 4. Evolution of total cites.

3.2. Language and Most Influential Countries

The main countries in terms of publication on 3E for both databases are represented below.
The ranking by country is practically the same for both databases: China leads the economy, energy,
and environment research field, followed by the United States of America (USA) and the United
Kingdom (UK), although the difference between the Asian countries and Anglo-Saxon ones is higher
in Scopus than in WoS. The only difference that was observed in both geographical distributions is the
last place: Netherlands for WoS and Russia for Scopus, with a similar production of articles, but with
much greater capacity for dissemination in the case of the Netherlands as compared to Russia.

The distribution by language shows the complete predominance of English over other languages.
With regards to other languages that are used in this field of research, the most commonly used
in both databases are Russian, Spanish, and German. Chinese and Portuguese are the divergent
languages, especially the latter if the results of WoS and Scopus are compared: three versus 311 articles
(Tables 3 and 4).

Table 3. Distribution of articles per country.

WOS SCOPUS

Country Articles H-Index Citations TC/Art. Country Articles H-Index Citations TC/Art.

China 582 43 7191 12.36 China 933 49 9472 10.15
USA 365 51 11538 31.61 USA 471 57 15599 33.12
UK 202 34 4789 23.71 UK 205 34 7252 35.38

Italy 98 17 1174 11.98 India 132 19 1218 9.23
Germany 92 24 2802 30.46 Germany 128 26 2156 16.84
Canada 89 18 1477 16.60 Italy 115 22 1904 16.56

Australia 85 23 2469 29.05 Australia 101 27 3734 36.97
India 83 14 662 7.98 Canada 99 19 2804 28.32
Japan 74 19 2588 34.97 Japan 90 17 1211 13.46

Turkey 72 13 954 13.25 Turkey 74 19 2259 30.53
Spain 66 15 1595 24.17 Spain 73 19 1560 21.37
France 61 20 2646 43.38 France 65 18 1370 21.08

Netherlands 57 21 2291 40.19 Rusia 61 6 143 2.34

TC/Art: Total Citations/Article.
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Table 4. Distribution by language.

WoS SCOPUS

Languages Articles Languages Articles

English 2083 English 2640
Russian 33 Chinese 311
Spanish 23 German 38

Portuguese 19 Russian 26
German 15 Spanish 24
Chinese 3 Portuguese 10

3.3. Journals and Authors

The distribution of scientific production by authors with respect to 3E shows a situation in which
the vast majority of authors are of Asian origin, especially from the perspective of WoS. However,
Professor Terry Barker (Department of Applied Economics at the University of Cambridge (UK)) is the
most prolific author in both datasets, with 13 and 10 articles in WoS and Scopus, respectively (Table 5).

Table 5. Distribution of articles by author (Web of Science (WoS)/Scopus).

Author ID
Ranking

(W/S)
Articles
(W/S)

H-Index
(W/S)

Citations
(W/S)

TC/A (W/S)

Barker, T. 7103052504 1/1 13/10 9/8 375/465 28.85/46.5
Chen, B. 55503929500 2/3 11/8 8/5 363/200 33/27.25
Zhang, Y. 57203830670 3/- 11/- 6/- 173/- 15.73/-
Ulgiati, S. 6701799759 -/2 -/10 -/7 -/200 -/20
Wang, L. NA 4/- 10/- 5/- 143/- 14.30/-
Lin, BQ. 35098935000 5/4 9/8 4/6 151/178 16.78/30.14
Zhang, J. 57193255205 6/- 9/- 4/- 95/- 10.56/-

Liu, Y. 57200105972 7/- 9/- 4/- 82/- 9.11/-
Chen, GQ. 7406541589 8/- 8/- 7/- 351/- 43.88/-

Huang, GH. 55489745300 9/- 8/- 6/- 193/- 24.13/-
Yang, L. 57203351492 10/- 8/- 6/- 133/- 16.63/-
Zhu, L. 56701286100 11/- 8/- 6/- 95/- 11.88/-

Song, ML. NA 12/- 8/- 4/- 75/- 9.38/-
Fan, Y. 7403491920 -/5 -/7 -/6 -/211 -/30.14

Yuan, X. 15066382000 -/6 -/7 -/5 -/75 -/10.71
Antunes, C.H. 57191244701 -/7 -/6 -/6 -/113 -/18.83
Krausmann, F. 6602183651 -/8 -/6 -/6 -/412 -/68.67

Lutz, C. 7103325863 -/9 -/6 -/5 -/108 -/18
Pollitt, H. 22954406100 -/10 -/6 -/5 -/134 -/22.33

Zuo, J. 23020460400 -/11 -/6 -/4 -/70 -/11.67
Edenhofer, E. 55868364000 -/12 -/5 -/5 -/430 -/86

ID: Identification author number on Scopus database; W/S: WoS/Scopus values; TC/Art: Total Citations/Article.

In both databases, the journals Energy Policy, Journal of Cleaner Production, Energy,
and Sustainability are the most influential journals on 3E-related issues. In fact, half of the most
influential journals are the same in WoS and Scopus. The main difference is the inclusion in Scopus of
Asian journals: Shengtai Xuebao Acta Ecologica Sinica and Nongye Gongcheng Xuebao Transactions
of the Chinese Society of Agricultural Engineering (Table 6).
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Table 6. Distribution of articles by journal (WoS/Scopus).

Journal
Ranking

(W/S)
Articles
(W/S)

H-Index
(W/S)

Citations
(W/S)

TC/A (W/S)

Energy Policy 1/1 116/124 36/38 4128/4681 35.58/37.75
Journal of Cleaner Production 2/2 107/87 18/19 1252/1323 11.70/15.21

Sustainability 3/4 60/56 8/8 219/276 3.65/4.93
Energy 4/3 51/63 17/23 1243/1654 24.37/26.25

Applied Energy 5/5 44/45 18/20 1361/1840 30.93/40.89
Shengtai Xuebao Acta Ecologica

Sinica -/6 -/43 -/5 -/96 2.23

Ecological Economics 6/- 29/- 15/- 1139/- 39.27/-
Resources conservation and

recycling 8/7 28/31 10/12 311/437 11.10/14.10

Nongye Gongcheng Xuebao
Transactions of the Chinese

Society of Agricultural
Engineering

-/8 -/28 -/7 -/204 -/7.29

Energies 7/9 28/26 6/6 114/111 4.07/4.27
International Journal of Hydrogen

Energy 9/- 27/- 12/- 938/- 34.74/-

Ecological Indicators 10/- 24/- 11/- 342/- 14.25/-
Energy Economics -/10 -/26 -/14 -/792 -/30.46

W/S: WOS/Scopus values.

3.4. Areas of Knowledge

The analysis of knowledge areas has been carried out with an initial homogenization of the
existing categories in WoS and Scopus, in order to extract more conclusive results. The adaptation of
the categories in WoS has been conducted with the inclusion of the Environmental, Chemical, Civil,
Industrial, and Agricultural Engineering subsections, while Computer Science includes Artificial
Intelligence, Interdisciplinary Applications, Software Engineering, and Information Systems. The rest
of the thematic areas correspond to the distribution that is presented in Table 7. The revision of
categories in Scopus has required the inclusion of Chemical Engineering in the Engineering area,
while the rest of categories correspond to those existing in this database.

Table 7. Distribution of articles by knowledge areas.

WOS SCOPUS

Subject Area Articles H-Index Citations TC/A Articles H-Index Citations TC/A

Environmental
Sciences 620 52 10779 17.4 1300 67 21212 16.32

Engineering,
Chemical 452 42 7400 16.4 1076 54 12413 11.54

Energy Fuels 483 55 11417 23.6 966 63 17199 17.80
Business Economics 345 48 7762 22.5 519 45 7770 14.97
Science Technology 299 25 3203 10.7 296 27 2951 9.97
Computer Science 54 14 705 13.1 178 25 2495 14.02

Social Science 98 15 736 7.51 608 34 5995 9.86
Agriculture 32 10 224 7 309 27 2834 9.17

TC/Art: Total Citations/Article.

The areas of Environmental Sciences, Engineering, and Energy Fuels are the most predominant
in terms of the number of articles published, especially in the case of Scopus, where this trio is
separated from the rest with a gap of almost double the number of works. However, if the influence or
productivity, as indicated by the number of citations per article, is observed, the category of Business
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Economics has the greatest impact in the scientific field, occupying second and third place in WoS and
Scopus, respectively (Table 7).

3.5. Institutions

The distribution of the 3E’s scientific contribution with respect to the institutions shows a
predominance of Asian organizations. In fact, nine of the 13 institutions that were analysed are
located in China, which is consistent with the results that were obtained in relation to geographical
distribution and the most productive and influential authors.

Both of the databases show that the top three positions are held by the Chinese Academy of
Science, Tsinghua University, and North China Electric Power. The first of these is one of the most
relevant research centres in the world with around 60,000 researchers, standing out in the field of
chemistry. Tsinghua University is dedicated to academic excellence, the benefit of Chinese society,
and global development. It is considered to be one of the best academic institutions in China and Asia,
ranking in the top 20 of the Times Higher Education World Reputation Rankings. Finally, North China
Electric Power has been fostering talent in the areas of engineering technology, management, economics,
and the social sciences.

The exceptions to the Asian institutions are the University of Cambridge, the U.S. Department
of Energy, the University of London, and the University of California. In other words, the main
organizations researching the relationship between the economy, energy, and environment are of
Chinese and Anglo-Saxon origin (Table 8).

Table 8. Distribution of articles by institution (WOS/Scopus).

Institution
Ranking

(W/S)
Articles
(W/S)

H-Index
(W/S)

Citations
(W/S)

TC/A (W/S)

Chinese Academy of Science 1/1 76/113 20/21 1412/1614 18.58/14.28
Tsinghua University 2/2 44/61 17/18 850/1064 19.32/17.44

North China Electric Power
University 3/3 40/46 12/12 542/522 13.55/11.34

Beijing Normal University 4/5 31/35 13/11 568/567 18.32/16.2
Peking University 5/8 27/22 13/12 654/488 24.22/22.18

University of Cambridge 6/6 27/29 14/17 828/1432 30.67/49.38
U.S. Department of Energy 7/- 26/- 14/- 3509/- 134.96/-

University of London 8/- 25/- 10/- 330/- 13.2/-
University of Chinese Academy of

Science 9/4 24/36 10/8 433/355 18.04/9.86

Ministry of Education China -/7 -/23 -/8 -/392 -/17.04
University of California System 10/- 21/- 15/- 1840/- 87.62/-

Zheijang University -/9 -/21 -/8 -/243 -/11.57
Beijing Institute of Technology -/10 -/21 -/5 169 -/8.05

W/S: WoS/Scopus values; TC/Art: Total Citations/Article.

3.6. Linked Areas: Clustering 3E

In order to have a better understanding of the evolution of the literature from 2001 to 2018,
a fractional counting cluster analysis of keywords throughout the study period has been carried out.
The different configurations of the clusters can be observed in Figures 5 and 6, and they also show
how the main and central topics have changed.
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The articles published during 2001 are distributed into three clusters, with the term Sustainability
linking them (Figure 5). The first cluster includes: cost effectiveness, Czech Republic, environmental
assessment, water, and national accounting; the second cluster: construction materials, governance,
developing countries, public policy, and technology transfer; and, the third one: environmental
protection, energy consumption, and transport policy, all being within the geographical scope of the
Czech Republic and China.

The following two years follow a similar group structure, with a greater distribution in 2003:
four groups in 2002 as compared to 11 in 2003. The 2002 groups show the incorporation of new elements
in the 3E research field, such as logistics, structural change, land use, environmental impact, energy,
sustainable development, carbon dioxide, and hydrogen economy. In 2003, energy was the central
axis of the documents, being closely related to the environment in models of bottom-up approach.
The same cluster also includes keywords, such as integrated econometric models, welfare, or trade
reforms, all being framed within the geographical scope of China. The economy, on the other hand,
is found in another cluster, along with terms, such as biomechanics or energy efficiency.

There was a variation in the distribution of the research in 2004, with the predominance of two
large clusters that are united by the concept of sustainable development. The first cluster includes
elements, such as cost-benefit analysis, energy analysis, and quality. The second cluster focuses on the
value chain, the input-output technique, the explicit integration of economy, energy, and environment
and industrial district, focusing the issue in countries, such as Italy and the USA. In 2005, sustainable
development continued to be the central trend in the relationship between economy, environment,
and environment. Six clusters were identified, in which biomass energy is related to environmental
conservation, energy policies, renewable and rural energies, as well as environmental management or
the analysis of life cycle assessment in the territories of China and the European Union.

In the following year, the importance of the economy was greater within the dimension of
3E, while sustainable development continued to be the central concept. Keywords, such as energy
efficiency, taxes on coal and emissions, as well as biomass, renewable energy sources, climate change,
Jevons paradox, or eco-efficiency within New Zealand and Turkey revolve around it. In 2007, there was
a convergence between the three concepts of 3E, surrounded by elements, such as the agricultural
economy, biomass, hydrogen, energy efficiency, gasification, carbon dioxide emissions, production of
biohydrogen, or energy in the geographical areas of China and India.

The scenario drawn in 2008 and 2009 is very similar to that of 2007, although the importance of
energy is lower when compared to the presence of the environment and the economy in those years’
articles. New concepts that were incorporated in those years include wind energy, research and
development policies, strategic planning, exergy analysis, uncertainty, and the price of carbon
emissions in the Balkans, Europe, Asia, and India. Similar to 2008, 2009 saw a waning of the importance
of the economy with respect to energy and the environment, as well as a lesser presence of sustainable
development. Newer elements in 3E include the analysis of the environmental impact of transport,
critical discursive analysis of ecological modernization, deforestation, biodiesel, biofuel, and ecological
footprint, all being framed in countries such as China, Japan, or the African continent.

In 2010 (Figure 6), there was an increase in the importance of the elements of 3E, together with
the concept of sustainable development. In this period, new factors appear, such as the change in the
use of agricultural land, the dangers of climate change, the energy footprint, ecological modernisation,
greenhouse gas, environmental strategy, and the responsibility of consumers and pressure groups
on the state of the environment. The main territories at this time were China, Japan, Denmark,
Europe, and Africa. In 2011, the environment was the main element of 3E. Sustainability and climate
change are at the same level in terms of presence, while aspects such as renewable energies or
emissions management appear in the research to a greater extent than in previous periods. In addition,
the geographical scope of the studies broadened to include territories, such as Azerbaijan and the
United Arab Emirates. In 2012, the concept of sustainability once more gained space, along with the
terms biomass, biodiversity, efficiency, and performance. Economy, environment, and energy are at
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the same level of presence, but behind sustainability. The number of researches that were carried out
in China increased, as well as those that were focused on developing countries.

The following year, 2013, shows a similar structure to that of 2009, with a recovery of the concept
of sustainable development. It is in this year that the green economy had greater presence in the
research scenario, including terms, such as recycling or energy efficiency. 2014 stands out for the high
prominence that China acquires in the investigation on 3E. The concept of environment is at the same
level, to the detriment of energy and economy. Sustainability and energy efficiency also have a high
presence, and it is at this time that solar energy is analysed to a greater extent. In that year, there
was a distancing of the concept of economy in relation to energy and the environment, which had
a greater presence in the research landscape than the first. In fact, the greatest division takes place
between economy and energy, with the environment being the connecting element. China continues to
have a high presence, as well as a growing number of articles analysing the uncertainty, performance,
and management of energy efficiency.

Something similar happened the following year, 2015, where energy and the environment are
more closely related than the economy, which is less relevant. Along with the first two elements,
sustainable development, sustainability, consumption, economic growth, and CO2 emissions also
stand out, with China and the USA being the main countries under investigation. In 2016 and 2017, the
economy was once again linked to the other two components of 3E, with a concentration of keywords
around 3E. Finally, energy and sustainable development predominate in 2018. Factors, such as the
environmental curve of Kuznets, the carbon footprint, the circular economy, and the optimization of
the efficiency of greenhouse gas emissions are also present. These coincide with the latest trends that
were observed in the cluster analysis for the whole period (Figure 7).

Figure 7. Keyword analysis from 2001 to 2018.

The analysis of the 3E keyword trend shows that the most prominent common elements were
sustainable development and sustainability. The inclusion of this in the analysis shows the different
clusters that link them and the latest trends.

With regard to the clusters, these are distributed in six groups. The first of them relates to economic
growth in the circular economy, the efficient use and consumption of energy, and the management of
emissions, all being framed in the geographical scope of China and in the methodology of surrounding
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data analysis. The second group focuses more on the field of economic development, climate change,
and greenhouse gas emissions, with its methodological element being the analysis of the environmental
curve of Kuznets. The following two groups follow the line of climate change, identifying new energy
sources, such as biomass or biofuel, and including elements, such as green economy, development,
and sustainable energy, as well as the territory of Turkey. The fifth encompasses the concept of
sustainability and energy, while the last cluster integrates innovation with development policies and
dynamic systems.

Figure 8 shows the latest trends in research with the integration of energy, economy,
and environment terms in a single cluster analysis. An initial reflection in these trends indicates
that the Kuznets environmental curve is used under the sustainable development approach. Currently,
the enveloping analysis of data is used to study the impact of variables, such as carbon dioxide
emissions or energy consumption on economic growth. On the other hand, due to the absence of
some terms that were commonly used in previous years, such as petrol, pollution, or even some that
are lagging behind, such as climate change, which is in accordance with this cluster analysis, future
research on 3E may emphasise on Circular Economy and Green Economy as the main solution for
achieving sustainable development.

Figure 8. Keywords of sustaniable development from 2001 to 2018.

4. Conclusions

The interrelation between Energy, Economy, and Environment has been studied in depth by
academia and the number of publications increases year on year. The Millennium Development Goals
that was proposed by the United Nations Development Organization has contributed to highlight the
importance of this triple helix in the global economic scenario.

The bibliometric and cluster analysis has shown that the main thematic categories that are linked
to the integrated concept of 3E correspond to environmental sciences, engineering, energy fuels,
and business and economics. However, the diversity of topics with which this concept is related is so
great that it demonstrates its multidisciplinarity and transversal character.

The study of the most prolific countries shows the hegemony of China, followed by the USA
and the United Kingdom. This leadership of China as a research country in economy, energy,
and environment is more evident after analysing the distribution by authors and institutions,
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wherein most of them are from said country. However, English continues to be the main language
used by researchers due to the fact that it is the preferred language for the publication of articles in the
principal high impact journals.

The analysis of keywords shows that the evolution of the interrelation between 3E from 2001 to
2018 has been marked by a process of progressive integration of the three concepts. From 2001 to 2005,
there was a clear differentiation in a few groups between energy, economy, and environment. However,
from 2009 onwards, a progressive change can be observed in this relationship, integrating itself
more and more until 2018, when the concept of 3E culminates in the term sustainable development,
being linked to the environmental curve of Kuznets, the carbon footprint, the circular economy,
the green economy, and the optimisation of the efficiency of greenhouse gas emissions. These latest
trends are framed within the enveloping data analysis methodology. The main common element is
sustainable development and sustainability. It can be observed that topics regarding renewable power,
such as solar energy, have a relevant role from 2010. The inclusion of this in the analysis shows the
different clusters that link them and the latest trends.

According to the results that were obtained, the future of 3E studies revolves around the concept
of sustainable development, in which China, with the Chinese Academy of Science at the forefront,
is positioned as the driving country of this trend, and journals, such as Energy Policy, are the main
drivers to concentrate the research effort of the scientific community of institutions with greater research
capacity in the field of environmental sciences, energy fuels, engineering, business, and economics.

Specifically, in relation with energy, one of the most important topic are energy saving,
energy efficiency, recycling, and renewable energy sources, highlighting the importance of green
energy. In this line, concepts, such as eco-efficiency and energy production, have a greater presence in
the academia.

This work is placed as an identification of the latest trends that relate to Energy, Economy,
and Environment, at a time when the transition to energy from less polluting sources is being
considered in view of the imminent arrival of climate change. Therefore, it marks new lines of
research that is related to the concept of sustainable development and other complementary terms,
such as the circular economy or carbon footprint. In other words, new research in the field of 3E
should address the energy transition issue in the area of sustainable development, by adapting it to
the restrictions of this economic model.

With regards to the limitations of this research, firstly, the field of study has focused on the most
influential academic databases (WoS and Scopus). Secondly, only articles have been analysed and
therefore it would be interesting to open a broader line of research that includes other databases and
other types of publications, such as books or conference proceedings.
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Abstract: Global warming has emerged as a serious threat to humans and sustainable development.
China is under increasing pressure to curb its carbon emissions as the world’s largest emitter of carbon
dioxide. By combining the Tapio decoupling model and the environmental Kuznets curve (EKC)
framework, this paper explores the relationship between China’s carbon emissions and economic
growth. Based on panel data of 29 provinces from 2007 to 2016, this paper quantitatively estimates
the nexus of carbon emissions and economic development for the whole nation and the decoupling
status of individual provinces. There is empirical evidence for the conventional EKC hypothesis,
showing that the relationship between carbon emissions and per capita gross domestic product (GDP)
is an inverted U shape and that the inflection point will not be attained soon. Moreover, following the
estimation results of the Tapio decoupling model, there were significant differences between individual
provinces in decoupling status. As a result, differentiated and targeted environmental regulations
and policies regarding energy consumption and carbon emissions should be reasonably formulated
for different provinces and regions based on the corresponding level of economic development and
decoupling status.

Keywords: environmental Kuznets curve (EKC); decoupling theory; panel data; differential GMM
estimation; Tapio decoupling model

1. Introduction

Climate change has emerged as an important issue that threatens humans and sustainable
development. In response to global warming, in 2016, 196 parties signed the Paris Agreement, a
long-term agreement to control climate change, whose main objective is to limit the increase in global
average temperature to 2◦ Celsius within this century [1]. Among the factors affecting global warming,
the impact of carbon dioxide is crucial, and it has been confirmed that carbon dioxide is responsible
for about 60% of the world’s greenhouse effect [2]. Meanwhile, the short-term outlook for climate
governance is not optimistic. Carbon dioxide emissions from fossil fuels and industries were expected
to increase by 2% in 2017, the first increase following three consecutive years of decline since 2014 [3].
According to the World Resources Institute’s 2017 report [4], the three largest greenhouse gas emitters
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in the world are China, the European Union, and the United States, accounting for more than half
of total emissions. According to the estimations of the Carbon Dioxide Information Analysis Center
(CDIAC), since 2007, China has overtaken the United States to become the world’s largest carbon
emitter. As a large country with international responsibility, China has enacted a number of low-carbon
development policies in order to curb the growth of carbon emissions. China’s 13th Five-Year Plan
highlights low-carbon development as a major strategy for economic and social development, and it is
also an important way to construct an ecological civilization [5].

However, partly due to the remarkable gap in economic and social development, the scales
and growth rates of CO2 emissions between different provinces in China differ significantly [6].
Formulating a unified national low-carbon development policy may not effectively achieve carbon
emission reduction, and may even have the opposite effect on low-carbon development. Furthermore,
economic growth in Chinese provinces varies quite a bit. The per capita gross domestic product
(GDP) of some provinces is close to that of developed countries, while some provinces are relatively
lagging behind. Therefore, the government’s CO2 emission reduction policies for different provinces
should be connected to regional economic development levels, and the chronic trend characteristics of
regional CO2 emissions need to be considered. Decoupling indicators and the environmental Kuznets
curve (EKC) hypothesis are two important methods for measuring the nexus of economic growth
and carbon emissions. If we can effectively measure the decoupling status of each province, we can
figure out the CO2 emissions status. If the EKC framework could be effectively utilized to analyze the
nexus of economic growth and carbon emissions, it would be possible to predict carbon emissions
in different provinces in China. Therefore, by combining the two methods, we can develop a deeper
understanding of the carbon emission conditions and development trends in each province, and then
plan a low-carbon development policy that is suitable for each individual province.

Previous studies have conducted extensive research on the decoupling between economic growth
and carbon emissions. The decoupling theory originally came from physics [7]. The Organisation
for Economic Co-operation and Development (OECD) pioneered the concept of decoupling in 2002
to explore how to block the relevance of environmental damage and economic growth [8]. Based
on the OECD decoupling index, a comprehensive decoupling index of arithmetic mean sum was
developed. To eliminate error caused by the selection of the base period, Tapio uses the elastic
coefficient decomposition method [9]. This method makes it possible to analyze the internal causes of
and responses to decoupling within environmental pressure and economic growth, and opens up a new
research path for decoupling theory. Domestic and foreign scholars divide the degree of decoupling
into four categories: dichotomy [10], trichotomy [8], sextant, and octave [11]. The Tapio [12] decoupling
model is one of the major research methods to explore the nexus of carbon emissions and economic
growth. Generalized decoupling in this context refers to the nexus of environmental pollution and
economic growth changing from a positive correlation to a negative correlation. Some scholars have
summarized the existing methods of decoupling measurement as “speed decoupling” and “quantity
decoupling”.

Considering the EKC hypothesis, according to the research of Simon Kuznets [13], the degree
of income inequality decreases with the expansion of the economy, and the relationship between the
two shows the characteristics of an inverted U-shaped curve. Following the study by Kuznets [13],
Grossman and Krueger [14] defined the relationship between environment and per capita income
as the “environmental Kuznets curve (EKC)”, which is also known as the EKC hypothesis. In early
empirical studies of the EKC hypothesis with carbon dioxide as a pollutant, panel data were often
used. Some scholars have verified the inverted U-type nexus of per capita GDP and per capita
carbon emissions, that is, the existence of the EKC curve. Some scholars have determined an N-type
relationship through empirical studies [7,15,16], and per capita income at the inflection point of the
EKC curve varies greatly [17]. Some scholars have concluded that per capita carbon dioxide emissions
are monotonous with per capita income, and an inflection point does not exist [18]. Missing variable
errors, integral variables, false regressions, and identification of time effects all affect the final results of
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EKC estimates [19]. As Stern [18] stressed, the fact that different data and models may yield different
results reflects that the controversy over EKC has not yet been resolved and needs further exploration.
It is worth noting that the Kuznets curve model is classified as “quantity decoupling” by some scholars,
and the Tapio elastic coefficient method is classified as “speed decoupling.” The EKC hypothesis
uses the cross-sectional data of per capita GDP and pollution emissions to describe the inverse U
relationship between the two in absolute quantity, which is called “quantity decoupling” [15,20,21].

Although more studies have investigated the nexus of CO2 emissions and economic development,
some issues are still being ignored and deserve further investigation. First, the potential endogeneity
problem that may be caused by bilateral causality has been largely neglected. Second, the literature on
the decoupling effect is usually based on national or aggregate data, while the decoupling situations of
individual provinces over time have not been fully investigated. Third, some scholars from China have
measured the decoupling status of carbon emissions with similar measurements; however, they have
concentrated on a certain region or economic field, and have never made a comprehensive calculation
of the decoupling status of various provinces in China [22–26]. Xia [27] measured the economic growth
threshold of SO2 emissions, but the causes of CO2 and SO2 are quite different. The research results
have less significance for policies aimed at reducing CO2 emissions.

In order to fill the research gap, this paper used the Tapio decoupling index to measure the
decoupling status of economic growth and CO2 emissions, and used the EKC hypothesis to describe
the non-linear nexus of carbon emissions and economic growth to explore their absolute and relative
changes. To sum up, the main contributions of this study are fourfold. First, this study quantitatively
investigated the nexus of CO2 emissions and economic development in China by employing the
generalized method of moments (GMMs), which can deal with potential endogeneity. Second, the
decoupling effects of CO2 emissions and economic growth in China’s provinces were estimated
separately, so that the empirical results can serve as an important reference for policy-makers to enact
differentiated and targeted regional and provincial carbon reduction policies. Third, the decoupling
coefficients for each province were calculated and are discussed. Fourth, in the policy recommendations
section, targeted emission reduction policies can be developed based on calculations for the individual
provinces with different decoupling types.

2. Methods and Data

2.1. Carbon Emissions Calculation

In general, CO2 emissions are mainly generated from fossil fuel combustion and the production of
cement and lime. According to the estimations of CDIAC and some researchers, CO2 emissions from
fossil fuels account for approximately 90% of the total amount, while the other 10% comes from cement
and lime production in China [28,29]. In academia, there is no uniform standard method for measuring
carbon emissions. Actual measurement, system simulation, and carbon emission coefficient are the
three main research methods. Specifically, the carbon emission coefficient method was employed to
calculate CO2 emissions in this paper. Following the ideas and procedures of the Intergovernmental
Panel on Climate Change (IPCC) (2006) [12], the carbon dioxide emissions of 29 provinces (there are
currently 23 provinces, four centrally administered municipalities, and five autonomous regions in
mainland China (excluding Taiwan). Because they are administratively equal, the term “provincial”
is used to refer to them throughout this paper. To ensure comparability of the data, Chongqing was
combined with Sichuan Province. Tibet was excluded due to the unavailability of data) in China
from 2007 to 2016 were estimated and summed to obtain the total amount of CO2 emissions in the
country. At the same time, referring to Cheng et al. [30], this paper measured CO2 emissions from
fossil fuel combustion and estimated CO2 emissions from cement production. In addition, fossil fuel
consumption data come from the China Energy Statistics Yearbook. Data from cement production were
collected from the China Stock Market and Accounting Research (CSMAR) Economic and Financial
Database. The emission coefficients were taken directly from the IPCC [12].
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According to a study by Hao et al. [28], the formula to calculate CO2 emissions caused by fossil
fuel combustion is as follows:

FC =
n∑

s=1

FCs =
n∑

s=1

(Fs ×CFs ×CCs − SCs) ×OFs (1)

Equation (1) represents the calculation result of CO2 emitted from fossil fuel. The FC denotes
CO2 emissions, s represents the specific type of energy consumption, n is the number of energy types,
Fs is the fuel consumption, CFs is the calorific factor, CCs is the potential carbon emission factor, SCs

is the carbon sequestration, and OFS is the oxidation factor. For each fuel type, the CF, CC, and OF
values recommended by the IPCC [12] were used directly. To ensure the accuracy of the calculation,
data from energy balance sheets in China Energy Statistical Yearbooks (2008–2017) [30] were utilized.
Specifically, fossil fuel was further subdivided into different types (i.e., coal, oil, natural gas, other
energy sources). Coal included raw coal, cleaned coal, other washed coal, briquettes, coke, and other
coking products. Petroleum included crude oil, gasoline, kerosene, diesel, fuel oil, naphtha, lubrication,
paraffin, white spirit, bitumen asphalt, petroleum coke, liquefied petroleum gas, and other petroleum
products. Natural gas mainly comprised liquefied natural gas. Other energy sources were converted
into units of tons of standard coal equivalent (SCE). Because CO2 emissions generated from fossil fuels
are mainly produced from combustion processes, the energy input of transformation was not included.
This study followed Hao’s et al. [28] calculation method because they strictly followed the IPCC’s ideas
and obtained relatively reasonable and accurate estimation results for provincial CO2 emissions. It is
noteworthy that they pointed out that the data of provincial carbon sequestration products were not
available, and directly ignored the calculation of SCS. So far, there is still no unified provincial carbon
sequestration product measurement method, and data are still unavailable. Since the calculation of
provincial carbon sequestration products is not the focus of this study, this paper followed Hao’s idea
and ignored the SCs.

The formula for calculating CO2 emissions during cement production is as follows:

KC = T×Kcement (2)

Equation (2) represents the results of CO2 emissions during cement production. KC stands for
CO2 emissions generated from cement production, as the cement industry also contributes significantly
to CO2 emissions in China; T is total cement production; and Kcement indicates the coefficient of
cement production.

The formula to calculate the total amount of CO2 emissions is as follows:

Cit = FCit + KCit (3)

Equation (3) indicates the results of the total amount of CO2 emissions. Cit represents the first t
year’s CO2 emissions in city i, FCit represents the first t year’s CO2 emissions in city i generated by
burning fossil fuel, and KCit represents the first t year’s CO2 emissions in city i from cement production.

2.2. Decoupling Theory

Many previous studies found evidence that energy consumption and CO2 emissions are highly
correlated with economic growth in China [15,31]. “Decoupling” is a term that refers to the status
when the relationship between energy consumption/environmental deterioration and economic growth
begins to break up. In other words, the growth rate of energy consumption or environmental pollution
becomes slower than the growth rate of economic development [23]. In this regard, the decoupling
function can be expressed as Equation (4):

44



Energies 2019, 12, 2411

e =
ΔC/C
ΔY/Y

(4)

Equation (4) calculates the decoupling elastic coefficient between economic growth and carbon
emissions. e is the decoupling elastic coefficient, C indicates CO2 emissions, ΔC is current CO2

emissions minus previous CO2 emissions (indicating the change in carbon emissions), Y is the GDP
of the region, and ΔY is the difference between two adjacent periods. Following Wang et al. [31],
decoupling status can be divided into eight types in Tapio research, as shown in Table 1.

Table 1. Eight types of relationships for the Tapio decoupling model. GDP, gross domestic product.

Classification Status
Carbon

Emissions Change
(ΔC)

GDP Change
(ΔY)

Elastic Coefficient

Decoupling
Weak decoupling >0 >0 0 ≤ e < 0.8
Strong decoupling <0 >0 e < 0

Recessive decoupling <0 <0 e > 1.2

Negative decoupling
Expansive negative decoupling >0 >0 e > 1.2

Strong negative decoupling >0 <0 e < 0
Weak negative decoupling <0 <0 0 ≤ e < 0.8

Coupling Expansive coupling >0 >0 0.8 ≤ e < 1.2
Recessive coupling <0 <0 0.8 ≤ e < 1.2

2.3. EKC Framework

The environmental Kuznets hypothesis indicates an inverted U-type nexus of economic growth
and environmental pollution, which means that along with economic development, CO2 emissions
will first increase and then decrease after the peak level is achieved. The corresponding regression
equation is as follows:

Cit = α1yit + α2y2
it + α0 (5)

Equation (5) describes the EKC relationship between economic growth and carbon emissions. Cit
represents the CO2 emissions of city i in year t; yit represents per capita GDP of city i in year t; assuming
population growth is 0 and the population of city i is ni, then we have Yit = niyit, where Y is GDP;
α1 and α2 are the quadratic and primary coefficients of per capita GDP; and α0 represents the factors
affecting carbon emissions in other areas, including urbanization, regional openness, proportion of
thermal power generation, research and development (R&D) intensity, industrial structure, etc., and is
regarded as a constant term.

However, in subsequent studies, scholars found that a simple quadratic curve may not fully
describe the complex relationship between CO2 emissions and economic growth, as the actual
relationship may be N-, inverted N-, or even bell-shaped, except for the inverted U shape as described
by conventional EKC studies [15,32].

In order to carry out in-depth research on the two phenomena of existing research, we introduced
a cubic curve to extend and supplement the quadratic curve in the EKC model, trying to analyze the
long-term changes in CO2 emissions and economic growth:

Cit = α1yit + α2y2
it + α3y3

it + α0 (6)

Equation (6) reflects the long-term relationship between CO2 emissions and economic growth.
Cit, yit, and α0 remain unchanged, while α1, α2, and α3 are the cubic, quadratic, and primary term
coefficients of per capita GDP, respectively.

To some extent, the presence of EKC could be treated as the result of decoupling. The presence of
an inverted U-shaped EKC actually implies the existence of the strong decoupling, as the emissions
would eventually decrease as GDP per capita continuously increases over time. However, decoupling
does not necessarily lead to conventional inverted U-shaped EKC, because even if the pollutant
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emissions do not decline along with economic development, there might still be weak decoupling as
long as the emissions do not grow as fast as GDP per capita (i.e., the slope of the projection of emissions
gradually decreases) [32].

3. Estimation Method and Data

3.1. Model Relationship Derivation

According to previous assumptions, the non-linear measurement model in economic growth and
carbon emissions can be set as follows:

Cit = ui + α1yit + α2y2
it + α3Xit + εit (7)

Cit = ui + α1yit + α2y2
it + α3y3

it + α4Xit + εit (8)

Equations (7) and (8) are the extended forms of Equations (5) and (6) by adding control variables,
respectively. yit indicates per capita GDP; to test the EKC hypothesis, y2

it and y3
it were added to the

model. To reduce the influence of heteroscedasticity and gauge the elasticity of carbon emissions with
respect to corresponding explanatory variables, the data of Cit was logarithmized, that is, lnCit.

During data processing, 2000 was taken as the base year, and the real GDP for the period of
2007–2016 were computed using the deflator of the base year (i.e., the prices of all commodities were
fixed at the levels of the year 2000). This study also utilized the number of permanent residents in
China’s provinces from 2007 to 2016 to eliminate the influence of population factors on GDP. In this
way, the real per capita GDP of China’s provinces in 2007–2016 were obtained. The empirical study
used the logarithmic per capita GDP, so that the estimated coefficient reflected the elasticity. Since
carbon emissions have an inertial effect, the indicators were susceptible to the previous year’s data.
Therefore, after taking the logarithm, the first-order lag of carbon emissions (ln Ci,t−1) was added to the
model. The dynamic panel data model was used to examine the EKC hypothesis to deal with potential
endogeneity and allow for dynamics. Generally speaking, fixed-effects (hereafter FE) estimators are
prone to endogeneity bias, because regressors may be correlated with the unobserved fixed effects
and the possible bilateral causality between the dependent and independent variables. Using the
instrumental variable estimators and specifically the generalized method of moments (GMM) approach,
the potential endogeneity problem could be well addressed. Therefore, GMM was utilized for the
empirical analysis in this study.

In Equations (7) and (8), Xit represents a collection of control variables, including urbanization rate
(the larger the size of a town, the greater the energy consumption, which increases carbon emissions);
secondary industry added value as a share of GDP (the secondary industry consumes a lot of fossil
fuels); the actual use of foreign capital (the degree of openness affects the quality and level of the town),
and carries on the logarithm, expressed as ln f di; the proportion of thermal power generation (for
which coal is the dominant fossil energy source, which directly affects the amount of CO2 emissions);
and R&D intensity (more efficient use of fossil fuels in technologically developed areas means lower
carbon emissions), and carries on the logarithm, expressed as ln tec.

In summary, the final forms of Equations (7) and (8) are Equations (9) and (10):

ln Cit = ui + λ ln Ci,t−1 + α1 ln gdpit + α2 ln2 gdpit + α3 ln fdi + α4urban
+α5 sec+α6hermal + α7 ln tec + εit

(9)

ln Cit = ui + λ ln Ci,t−1 + α1 ln gdpit + α2 ln2 gdpit + α3 ln3 gdpit + α4 ln fdi
+α5urban + α6 sec+α7hermal + α8 ln tec + εit

(10)

Equations (9) and (10) are the concrete regression equations used in the empirical study, and they
are the specific forms of Equations (7) and (8), respectively. ui is the ith city intercept item and εit is the
error term.
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3.2. Data Sources and Descriptions

Among the explanatory variables, per capita GDP and its index were taken from the China
Statistical Yearbook, and the data for the other control variables come from the provincial statistical
yearbooks. CO2 emission (C) was measured by fossil fuel consumption and cement production. Fossil
fuel consumption data come from the China Energy Statistics Yearbook. Data from cement production
come from the China Stock Market and Accounting Research (CSMAR) Economic and Financial
Database. Emission coefficients were taken directly from the IPCC (2006) [12]. The decoupling elasticity
coefficient (ec) was calculated by CO2 emission (C) and GDP (Y) after reduction.

The descriptive statistics for the selected variables utilized in this study are summarized in Table 2.

Table 2. Descriptive statistics of the variables.

Variable Name Unit Mean Maximum
Minimum

Value
Standard
Deviation

Observation
Value

Total per capita CO2 emissions Kilogram/person 8222.72 26,287.15 2588.47 4565.15 290
Real per capita GDP Yuan/person 28,644.14 92,400 5800 16,533.48 290

Actual use of foreign capital Yuan/person 227.63 2415.01 0 408.84 290
Urbanization rate % 53.52 89.60 28.24 13.68 290

The added value of the secondary industry
Accounts for the proportion of GDP % 47.06 61.50 19.26 8.19 290

Proportion of thermal power generation % 0.78 1 0.09 0.23 290
R&D intensity (R&D) — 1.45 6.01 0.21 1.08 290

Carbon emission decoupling coefficient — 0.55 4.35 −2.78 0.84 290

To show the changing trends in individual provinces, the per capita CO2 emissions in 2007 and
2016 (beginning and ending years of the sample period) and the corresponding average annual growth
rates of all provinces are depicted in Figure 1. As can be seen from the figure, the more developed
provinces had lower average CO2 emissions growth. For example, in Beijing, Shanghai, Zhejiang,
and Guangdong provinces, the average annual growth rate of CO2 remained around 2%, and Beijing
even showed a negative value of −4.3%. The less developed provinces showed higher average CO2

emissions growth, including some central provinces (e.g., Anhui, Jiangxi, Shanxi) and most western
provinces (e.g., Xinjiang, Qinghai, Ningxia). From Figure 1, we can make a preliminary conclusion that
CO2 emissions were connected to economic level, and thus, closely related to economic growth.

 
Figure 1. Average CO2 emissions and annual growth rates for the provinces in 2007 and 2016.
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4. Empirical Results and Discussions

4.1. Environmental Kuznets Curve in China

Based on panel data of 29 provinces in China (excluding Hong Kong, Macao, Taiwan, and Tibet)
during 2008–2017, Stata15 software was used for the empirical analysis. The first-order differential
GMMs estimation was used to process the panel data to ensure reasonable and accurate regression
results. To deal with potential endogeneity from possible bilateral causality between CO2 emissions
and economic growth, the lag period instrumental variable method was adopted in this study. The
lag phases of the logarithmic number of per capita GDP and the logarithmic quadratic term of per
capita GDP were regarded as the current instrumental variables of the quadratic function. The current
instrumental variable of the cubic function was based on the instrumental variable of the quadratic
function, adding a lag period of the logarithmic cubic term of per capita GDP.

In this study, the validity of the model was tested using the Autocorrelation and Hansen tests.
The Autocorrelation test was used to ensure that the model had first-order but not second-order
differential autocorrelation. The Hansen test was used to ensure that there was no overidentification in
the instrumental variables. Table 2 shows the benchmark regression and robustness test results of the
EKC quadratic function and cubic function models.

The rationality of the instrumental variables selected in this study can be confirmed by the results
of the Hansen [31], AR(1), and AR(2) tests, as shown in Table 3. In Equation (1) of Table 3, the cube of
per capita GDP was not introduced, and the regression results indicated that there existed an inverted
U-shaped EKC relationship between CO2 emissions and economic growth, as the quadratic term
(lngdp2) of the real per capita GDP was estimated to be a significantly negative coefficient, while the
original level of logarithmic real per capita GDP (lngdp) was estimated to be significantly positive.

Table 3. Generalized method of moments (GMMs) estimation results of environmental Kuznets curve
(EKC) relationship for per capita CO2 emissions with different specifications and estimation methods.

Benchmark Regression Robustness Test

Variable

Quadratic
Model

Cubic
Model

Quadratic Model Cubic Model

(1) (2) (3) (4) (5) (6) (7) (8)

L.lnC 0.716 ***

(0.027)
0.714 ***

(0.036)
0.815 ***

(0.023)
0.673 ***

(0.028)
0.747 ***

(0.029)
1.074 ***

(0.077)
0.662 ***

(0.038)
0.765 ***

(0.029)

lngdp 0.207 ***

(0.062)
−0.101 ***

(0.039)
0.096 ***

(0.031)
0.102 **

(0.040)
0.187 ***

(0.056)
−1.011 ***

(0.318)
−0.229 **

(0.094)
−0.073 *

(0.045)

lngdp2 −0.043 ***

(0.016)
0.215 ***

(0.039)
−0.024 ***

(0.009)
−0.023 *

(0.015)
−0.041***

(0.014)
0.882 ***

(0.289)
0.339 ***

(0.084)
0.078 ***

(0.034)

lngdp3 — −0.060 ***

(0.012)
— — — −0.246 ***

(0.076)
−0.087 ***

(0.021)
−0.016 ***

(0.009)

lnfdi 0.022 ***

(0.003)
0.016 ***

(0.003)
— 0.030 ***

(0.004)
0.019 ***

(0.004)
— 0.022 ***

(0.004)
0.015 ***

(0.003)

urban −0.006 ***

(0.002)
−0.003 ***

(0.001)
— 0.005 ***

(0.005)
−0.006 ***

(0.002)
— — 0.000 ***

(0.001)

sec 0.001
(0.001)

0.006***

(0.001)
— — 0.002

(0.001) — 0.008 ***

(0.001)
0.006 ***

(0.001)

hermal 0.459 ***

(0.089)
0.232 ***

(0.053)
— — 0.462 ***

(0.092)
— — 0.165 ***

(0.046)

lntec −0.112 ***

(0.027)
−0.123 ***

(0.016)
−0.061 ***

(0.020)
−0.255 ***

(0.045)
−0.092 ***

(0.024)
— −0.214 ***

(0.039)
−0.112 ***

(0.013)

_cons 2.275 ***

(0.201)
2.212 ***

(0.284)
1.637 ***

(0.183)
2.570 ***

(0.206)
2.001 ***

(0.221)
−0.28

9(0.649)
2.598 ***

(0.300)
1.693 ***

(0.222)
AR(1) 0.002 0.001 0.002 0.002 0.002 0.013 0.003 0.002
AR(2) 0.755 0.594 0.644 0.929 0.720 0.937 0.950 0.731

Hansen 0.586 0.723 0.586 0.592 0.540 0.063 0.768 0.695
Curve shape Invert U Invert N Invert U Invert U Invert U Invert N Invert N Invert N

Turning point 111,178 86,476 76,990 88,891 98,581 41,719 88,822 148,476

Numbers in parentheses are standard errors. ***, **, and * indicate significance at the 0.01, 0.05, and 0.1 levels,
respectively. _cons represents a constant term.
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Equation (2) was a regression result of the inverted N-type curve relationship of the EKC curve,
and its shape was determined by the sign of the discriminant and the sign of α1 in Equation (10)
after one derivation. By multiplying the primary term (lngdp) coefficient 0.060, the quadratic term
(lngdp2) coefficient 0.215, and the cubic term (lngdp3) coefficient 0.101 of the real per capita GDP, the
discriminant could be constructed. The calculated discriminant value was more than 0.113, and the
cubic term coefficient was negative. It proved that the shape of the EKC relationship was an inverted N.
At the same time, the levels of real per capita GDP of the two inflection points in the inverted N-type
curve can be calculated based on the estimation results.

To test the robustness of the regression results, this study attempted to obtain different regression
equations by reducing the explanatory variables and using orthogonal differential GMM estimation.
Equations (3), (4), (6), and (7) were used to test the benchmark regression by using the first-order
differential GMM estimation and reducing the explanatory variables. Equations (5) and (8) were used
to test the benchmark regression using the orthogonal differential GMM method. As can be seen
from Table 3, the Hansen, AR(1), and AR(2) tests for all six robustness check equations suggested that
the chosen instrumental variables were reasonable, and the shape of the curve was the same as the
results of the benchmark regression. The inflection points of the curves were also close to the reference
regression inflection point, which proved the robustness of the benchmark regression.

According to the primary (lngdp) and quadratic (lngdp2) coefficients of the quadratic curve, the
real per capita GDP of the inflection point in each inverted U-type quadratic curve was calculated, and
the median was about 83,000 yuan. The estimation results of the cubic curve proved that the shape of
the EKC relationship was an inverted N. However, because the level of per capita GDP corresponding
to the first inflection point in the inverted N curve was relatively low (approximately 15,000 yuan) and
most of the observations were higher than this level, the actual EKC relationship for CO2 emissions
after considering the cubic term of (lngdp) was still a conventional inverted U shape [33]. It should also
be noted that the levels of per capita GDP corresponding to the inflection points for most regressions
were similar, and the median value was about 85,000 yuan (at 2000 prices).

These estimations and findings were mostly consistent with previous findings [34–36]. Moreover,
given that the average national per capita GDP in 2016 was 17,522 yuan, which is considerably lower
than the estimated inflection points of the EKC curve, it is reasonable to expect that China’s CO2

emissions will keep growing in the foreseeable future, and more efforts must be made to achieve the
ambitious goal of having carbon emissions peak before 2030.

In summary, this study investigated the non-linear nexus of CO2 emissions and per capita GDP
by employing the first-order differential GMM estimation method under the control of urbanization
rate, openness, thermal power generation ratio, and R&D intensity. The results include two curves:
quadratic and cubic. The quadratic curve conformed to the inverted U shape, the cubic curve presented
the inverted N shape, and the positions and shapes of the two curves coincided. In addition, this study
tested the robustness of the benchmark regression using the orthogonal difference GMM estimation
and reducing the explanatory variables. Test results showed that the benchmark curve obtained by the
first-order difference GMM estimation was robust. The empirical results proved the core point of this
research: the cubic curve better illustrates the nexus of complex CO2 emissions and economic growth.

4.2. Decoupling Status of 29 Provinces in China

Due to the statistical caliber error caused by the division of jurisdictions in Chongqing and Sichuan,
Chongqing and Sichuan Province were merged into the Sichuan region, and data on Tibet were not
available. Therefore, this study only covered 29 provinces. Table 4 shows the decoupling elasticity
coefficients of CO2 in 29 provinces from 2007 to 2016.
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Table 4. Decoupling elastic coefficient of CO2 in 29 provinces of China for the period 2007–2016.

Province/Year 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Beijing WD SD WD WD SD WD SD SD WD SD
Tianjin WD WD END WD EC WD WD SD SD SD
Hebei WD END EC END WD WD END SD WD WD
Shanxi WD END EC WD WD WD END SD SD WD

Neimenggu WD END EC WD END SD SD WD WD WD
Liaoning WD END END WD SD WD END WD SD RC

Jilin WD WD WD WD END SD WD WD SD SD
Heilongjiang WD END WD EC EC WD SD WD WD WD

Shanghai WD WD EC EC SD END SD SD SD SD
Jiangsu WD EC EC END SD WD END WD WD WD

Zhejiang EC WD WD WD WD SD EC WD SD SD
Anhui WD WD EC EC WD EC END WD WD WD
Fujian WD END END WD END WD WD WD SD SD
Jiangxi EC END END SD WD WD END WD WD WD

Shandong WD WD WD EC WD WD SD WD WD WD
Henan WD WD EC EC WD WD WD WD SD SD
Hubei WD WD WD END EC WD SD WD SD WD
Hunan WD WD EC EC EC SD SD WD SD EC

Guangdong WD WD EC EC EC WD SD SD WD WD
Guangxi EC END END END EC WD WD WD SD WD
Hainan WD EC EC END END SD WD WD WD SD
Sichuan SD END EC END EC WD SD WD SD SD
Guizhou WD SD EC WD WD EC WD WD SD WD
Yunnan WD WD END WD WD WD SD SD SD WD
Shaanxi WD EC EC END WD EC WD WD SD SD
Gansu EC END SD END WD END WD WD SD SD

Qinghai WD END EC SD EC END EC WD WD EC
Ningxia WD END WD END END SD WD WD WD SD
Xinjiang EC EC END EC END END END EC WD EC

Note: WD, weak decoupling; SD, strong decoupling; RD, recessive decoupling; END, expansive negative
decoupling; SND, strong negative decoupling; WND, weak negative decoupling; EC expansive coupling; RC,
recessive decoupling.

During the period 2007–2016, the provinces of China experienced rapid economic growth, with
an average annual GDP growth rate of 11% in 29 provinces. Except for Liaoning Province, which
decreased slightly from 2015 to 2016, the per capita GDP of each province showed an increasing trend
from 2007 to 2016. Therefore, the calculation results contain five types of decoupling. As shown in
Table 4, before 2014, absolute decoupling rarely occurred in all provinces, and no provinces experienced
continuous absolute decoupling. The alternating states of expansive coupling, expansive negative
decoupling, and weak decoupling were more common. The western region had the highest frequency
of alternating, and the eastern region had the lowest. Regarding per capita GDP, the lower the initial
value in 2007, the stronger the alternating frequency. For example, in Beijing and Shanghai, where the
values were higher, the weak decoupling state was more common. However, the western provinces
with low per capita GDP, such as Qinghai, Ningxia, and Xinjiang, had a high frequency of alternation
and rare weak decoupling, and expansive negative decoupling was dominant. Except for a few other
developed provinces, most provinces had a higher frequency of expansive negative decoupling, and
the growth rate of CO2 emissions may have been more than two times the economic growth rate. This
shows that the rapid economic growth of most provinces represents a low-efficiency and extensive
economic growth mode before 2014, bringing great harm to the environment.

Taking 2014 as the starting point for observation, the provinces no longer had expansive negative
decoupling, weak decoupling states became dominant, and a stable strong decoupling state was still
relatively rare. The weak and strong decoupling states often alternated, and the provincial economy
was still growing rapidly. However, the increase in CO2 emissions slowed down and returned to
a reasonable state, and the economic growth style shifted from extensive to relatively intensive.
Comparing the GDP of each province from 2014 to 2016 with the inflection point of the EKC model, it
was found that the per capita GDP of other provinces and cities in China did not exceed the inflection
point of per capita GDP except Shanghai in 2015–2016 and Tianjin in 2016, which suggests that CO2
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emissions would decrease as the economy continues to grow. This confirms the strong decoupling
state of Shanghai for four consecutive years and Tianjin’s stability for three consecutive years. It also
shows that other provinces in China will continue to maintain the alternating state of strong and weak
decoupling until the per capita GDP exceeds the estimated turning point of 85,000 yuan.

The findings of this study are basically in line with some relevant studies. For instance, Peng [37]
used time series data for the period 1980–2008 to evaluate the decoupling effect of China’s CO2 emissions.
The results indicated that expansive negative decoupling and weak decoupling of expansion are the
most common conditions in Chinese provinces, while strong decoupling has never occurred. It is
noteworthy that Peng’s [37] findings reflect that for his sample period of 1980–2008, no provinces
had a high enough income level beyond the inflection point. In a recent study, Bai et al. [38] used
the panel data of Chinese provinces from 2006 to 2015 to calculate the carbon emissions decoupling
index in the transportation sector. Consistent with the results of this research, their study also found
that the decoupling state in the eastern region was significantly better than that in the central and
western regions. According to the empirical study of this paper, China has five decoupling states.
Comparatively, in Bai’s [39] study, apart from the five decoupling states presented in this paper, there
was also evidence for the strong negative decoupling state, which to some extent reflects the periodical
characteristics of the transportation industry [39]. It is also noteworthy that the recessive decoupling
state only appeared once in the measurement of this study (i.e., Liaoning in 2016), and it was also
detected only once in the study of Bai et al. [38] (i.e., Gansu in 2015). This similarity suggests that the
state of recessive decoupling is indeed relatively rare in China. Dong [40] used China’s carbon dioxide
emissions from 1965 to 2016 to verify the existence of emissions using structural break technology [40].
It also confirms that natural gas and renewable energy have an important impact on reducing CO2

emissions. Chen [41] used provincial panel data from 1995 to 2012 to test the EKC hypothesis. The
empirical results showed that there was an inverted U-shaped EKC curve for the eastern part of
China, but not the central and western regions [41]. This conclusion verifies the inflection point value
measured in this paper. Since the central and western regions are less developed, their per capita GDP
is far from the turning point of carbon emissions decreasing with economic growth in 2012. Incomplete
data leads to incomplete curves, and the EKC hypothesis cannot be verified.

5. Conclusions and Policy Recommendations

5.1. Conclusions

This study quantitatively investigated the decoupling effects between CO2 emissions and economic
growth in China. Using the GMM method, this study verified the existence of an essentially inverted
U-shaped EKC relationship for CO2 emissions. Furthermore, by employing the Tapio decoupling
model, the decoupling status of individual provinces for the period 2007–2016 was evaluated. The
main conclusions are as follows.

First, there was an essentially inverted U-shaped relationship between CO2 emissions and
economic growth. The estimation results were robust to different regression specifications and
valid after potential endogeneity was well controlled for. In this regard, this study verifies an EKC
relationship of CO2 emissions and suggests that reasonable economic growth is critical for China
to eventually accomplish its goal of sustainable development, as the peak of CO2 emissions can be
achieved only when the level of economic development is high enough.

Second, the inflection point of carbon dioxide emissions was relatively high (corresponding real
GDP was about 85,000 yuan, measured at the 2000 constant price). Other things being equal, per
capita CO2 emissions would not decline until per capita GDP reaches approximately 85,000 yuan.
Because 85,000 yuan was the estimated level of GDP per capita corresponding to the turning point
of CO2 emissions, according to Xia and Zhong [27], combining the estimation of the results of Tapio
and EKC models, it could be concluded that the level of economic growth must cross this threshold
level corresponding to the turning point to achieve absolute decoupling. This calculated turning point
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was basically consistent when the cubic term of the logarithmic per capita GDP was introduced as
a regressor. And the result of cubic term confirms the robustness of the results in this paper. It is
noteworthy that income levels in the majority of provinces were still considerably lower than this
turning point, suggesting that the peak of CO2 emissions may not be easily achieved in the near future
if the economic development styles in most provinces remain unchanged.

Third, the status of the Tapio decoupling was dependent on the inflection point of annual per
capita GDP and can be broadly divided into two stages. In the first stage, before approaching the
inflection point of 85,000 yuan (real value, with 2000 as the base year), the decoupling would be
unstable, and most provinces would experience both strong and weak decoupling. In the second stage,
after the per capita GDP exceeds the inflection point of 85,000 yuan, the provinces would reach a
relative stable status with strong decoupling.

5.2. Policy Recommendations

Based on the above research conclusions, in order to reduce carbon emissions and
reach China’s emission reduction targets, achieve the 13th Five-Year Plan’s low-carbon green
development, and contribute to global carbon emissions control, this paper proposes the following
policy recommendations:

First, according to the empirical results, the decoupling status of China’s provinces in 2007–2016
was differentiated. Among them, weak decoupling occurred 135 times, strong decoupling occurred
56 times, expansive coupling appeared 47 times, expansion negative decoupling appeared 41 times,
and recessive decoupling only appeared once. Therefore, to curb China’s carbon emissions effectively,
different provinces should adopt different CO2 emission reduction policies on the basis of their
decoupling status. Specifically, for the provinces with weak decoupling, such as the 13 provinces of
Hebei, Shaanxi, Inner Mongolia, etc., in 2016, the development style is, in general, intensive expansion.
The CO2 emissions of these provinces should be further reduced, and more efforts should be made to
move towards strong decoupling while maintaining relatively rapid development. For the provinces
that have strong decoupling, such as the 12 provinces of Beijing, Tianjin, Jilin, etc., in 2016, the level of
economic development is either relatively high or relatively backward. Among them, the main task for
the provinces with higher levels of economic development is to further maintain the status quo and
promote its own development model to the whole country. In contrast, the relatively poor provinces
should strive to achieve fast economic growth while ensuring that the ecological carrying capacity is
not exceeded. For the provinces with expansive negative decoupling, including the seven provinces
of Hebei, Shaanxi, Liaoning, etc., in 2013, their carbon emissions growth is abnormally high, and the
emission reduction capacity lags far behind the economic growth level, suggesting that the economic
development mode is unsustainable. In this regard, these provinces should formulate more stringent
emission reduction policies and strengthen carbon emission reduction capacity. For the provinces
with expansive coupling, such as Hunan, Qinghai and Xinjiang in 2016, their emission reduction
effects have already begun to appear, but carbon emissions are still growing at a faster rate. These
provinces need to continue strictly implementing emission reduction policies and regulations and
move toward a relative decoupling state. For the provinces with recessive coupling, such as Liaoning
in 2016,their level of economic development needs to be promoted, and especially, the problem of
negative economic growth must be solved. For these provinces, it is possible to relax the requirements
for carbon emission control, appropriately adopt a fiscal policy of reducing taxes and tax reductions,
and reduce the environmental governance costs of enterprises.

Second, from the regression results with the cubic term of logarithmic per capita GDP, the estimated
coefficients of thermal power generation and technology input are large in magnitude, suggesting
that they have relatively large impacts on CO2 emissions. Therefore, China should adjust its energy
consumption structure and enhance investments in science and technology in the field of carbon
emissions reduction. When it comes to energy consumption, China should speed up R&D and the
utilization of new energy sources, improve energy utilization efficiency, accelerate the adjustment of
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the energy structure, further reduce dependence on fossil fuels, and actively promote the utilization
of renewable energy. Investment in technology is not limited to research on new energy technology,
but also includes research on carbon emission regulation and capture technology, carbon pollution
control technology, etc. Increasing investment in science and technology with regard to carbon
emissions will not only weaken the impact of the greenhouse effect in China, but also contribute to
the global governance of carbon emissions as a major country and establish a positive image in the
international community.

Last but not least, the distinction between economic growth and economic development should
be emphasized. Government regulators need to recognize that they are not the same. The connotation
of economic development goes far beyond the scope of economic growth. Economic growth is
only determined by the growth of economic indicators such as GDP. On the other hand, economic
development not only requires more economic indicators, but also needs to take into account indicators
such as the ecological environment. A connotation of economic development is to achieve sustainable
economic development. Past experience shows that short-term, rapid, high-polluting economic
growth will bring irreparable harm to the environment and make sustainable economic development
impossible. Therefore, China must regard carbon emission reduction as an important strategy for
sustainable economic development and an important starting point to build a low-carbon economy.
China should work hard to accelerate the upgrading of economic development and undertake intensive
economic growth.

Although this study quantitatively investigates the decoupling between carbon emissions and
economic growth for individual provinces and China as a whole, there are still some limitations, which
could also be possible future research directions. It is noteworthy that this study is purely empirical, but
the theoretical mechanisms for the existence of the decoupling effects between carbon emissions and
economic growth are also important. Therefore, follow-up studies could try to build theoretical models
to thoroughly explain the empirical findings of this research. In addition, given the remarkable gaps in
economic and social development across different cities within a province, the utilization of city-level
data could reveal the decoupling effects more accurately for better and more reasonable policy-making.
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Abstract: The main objective of this paper is to examine the long-term effects of financial development,
economic growth, energy consumption (electricity consumption in the agriculture sector), foreign
direct investment (FDI), and population on the environmental quality in Pakistan during the period of
1980 to 2016. We use CO2 emissions from the agriculture sector as a proxy indicator for environmental
quality. We employ various unit root tests (e.g., ADF, PP, ERS, KPSS) and structural break unit root
tests (Z&A, CMR) to check the stationarity and structural break in the data series. Cointegration tests,
i.e., Johansen, Engle-Granger, and ARDL cointegration approaches are used to ensure their robustness.
Results showed that significant long-term cointegration exists among the variables. Findings also
indicated that an increase in financial development and foreign direct investment (FDI) improves
environmental quality, whereas the increase in economic growth and electricity consumption in the
agriculture sector degrades environmental quality in Pakistan. Based on the findings, we suggest
policymakers should provide a conducive environment for foreign investment. Moreover, it is also
suggested that a reliance on fossil fuels be reduced and a transition to renewable energy sources be
encouraged to decrease the environmental pollution in the country.

Keywords: financial development; carbon emissions; energy consumption; environment quality
cointegration; Pakistan

1. Introduction

The Food and Agriculture Organization (FAO) of the United Nations [1] examined the main
factors of greenhouse gas (GHG) emissions with respect to agriculture, fishery and forestry sectors
which had doubled their emissions in the past 50 years and could increase by as much as 30% in the
future. Agriculture-related emissions from livestock and crops increased from 4.7 billion tons of carbon
dioxide equivalent in 2001 to more than 5.3 billion tons in 2011, an increase of 14%. The increase is
largely due to the increase in total agricultural output of developing countries [1]. The agriculture
sector performs a vital role in the economy of Pakistan, functioning as the backbone of the country’s
economy. The farming sector not only provides food and raw materials but also creates employment
opportunities for a large proportion of the population and provides food, fiber, (fuel from plants) and
other products used to sustain and improve their living standards.

According to Pakistani statistics [2], agriculture accounted for 18.9% of the gross domestic product
(GDP) and it is a source of livelihood for almost 42% of the rural population. The agriculture sector

Energies 2019, 12, 1879; doi:10.3390/en12101879 www.mdpi.com/journal/energies57



Energies 2019, 12, 1879

of Pakistan is made up of five subsectors including major crops, minor crops, livestock, fishing,
and forestry, respectively. The major crops (e.g., wheat, rice, sugarcane, maize, and cotton) accounted
for a 23.60% value addition in the agriculture sector and a 4.45% contribution to the gross domestic
product (GDP). Likewise, the minor crops accounted for 10.80% of agriculture value addition and
2.04% of GDP. Similarly, livestock, fishing and forestry accounted for shares of 58.92%, 2.10% and
2.09% in the agriculture sector respectively, and 11.11%, 0.40% and 0.39% of GDP [2]. Accordingly,
the enormous input from these subsectors to the agriculture segment may responsible for producing
carbon dioxide (CO2) in Pakistan. The negative effects of carbon dioxide (CO2) emission from the
agricultural sector, especially from fossil fuels, as well as the increase of greenhouse gases (GHGs) on
the earth’s surface, pose challenges for all countries of the world, regardless of economy size and the
volume of population. Hence, all countries are responsible for the accumulation of such greenhouse
gases (GHGs).

The earthquake in Haiti, floods in Pakistan and Australia, the tsunami in Japan and wildfires in
Russia were among the most recent past major disasters that could be the consequence of environmental
degradation. These conditions have caused damage to natural resources such as forests and wildlife,
land and agricultural output, infrastructure and, above all, to human life. Economists and environmental
experts believe that these catastrophic events are the main source of disruption to economic and
financial development and have a significant impact on the environment [3].

Most developing countries started to work towards environmentally sustainable financial
activities. However, economic growth activities often lead to an increase in the use of energy,
which in turn contributes to the burning of fossil fuels and subsequently a rise in carbon dioxide
(CO2). This toxic substance increases the amount greenhouse gases (GHGs) and contributes to global
warming. The hazards and consequences of climate change and global warming have led to the
establishment of environmental friendly advocacy organizations. These organizations have made
a significant contribution to the global green movement, promoting conditions in which human beings
and the natural environment can come together to meet socio-economic and environmental needs [4].
Furthermore, financial development is seen as an alternative to achieving a quality environment,
the challenge remains that carbon dioxide emissions are linked to the consumption of energy as a catalyst
for the development and economic growth. In this case, reducing carbon dioxide emissions necessarily
means slowing down the growth of the economy, while the country will not be keen to insist on economic
growth. This requires innovative solutions through which the twin goals of better economic growth
and a sustainable environment can be achieved. As stated in [3] this issue has been in existence since
1960, and since then there has been increased consciousness of the degradation of the environment and
its more harmful influences on climate change and the environment among policymakers, ecological
activists, and economists both at national and international levels. Several countries initially proposed
regulatory policies and rules to address environmental pollution and degradation in pursuing of
economic development.

The present study is different from previous studies in various aspects, and it has four contributions
to the emerging economic literature, which is related to the studies of environmental quality:
(1) we considered carbon emissions from the agriculture sector with reference to some further
economic indicators in Pakistan, where its economy is enormously based on its agriculture output.
(2) We used various unit root tests such as the Augmented Dickey–Fuller (ADF), the Phillips–Perron
(PP), the Elliot, Rothenberg and Stock point optimal (ERS), the Kwiatkowski, Phillips, Schmidt and
Shin (KPSS), Zovit Andrews and the clemente montanes reyes (CMR) tests are also utilized to consider
the structural breaks. (3) For a long-term relationship, the ARDL approach is employed to check the
short-term and long-term relationships between financial development, economic growth, energy
consumption (electricity consumption in the agriculture sector), FDI, population and CO2 emissions in
Pakistan. (4) For the purpose of robustness, cointegration tests (Johansen and Engle-Granger tests) are
applied for approving the long term cointegrating combinations among the variables.
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The purpose of this paper is to analyze the long-term cointegrating association between financial
development and CO2 emissions in Pakistan over the period 1980–2016 by using the Johansen
cointegration test, Engle-Granger cointegration and autoregressive distributed lag (ARDL) bounds
testing cointegration approaches. Only a few studies in the past have investigated the impact of financial
development on CO2 emissions from the agriculture sector as an indicator of environmental quality.
Because of the scarcity of the study, the study can fill this gap and contribute to the growing literature.

The remainder of this paper is organized in this manner: the literature review is stated in Section 2,
and materials and econometric methods are portrayed in Section 3. Moreover, the empirical results
and discussion are enclosed in Section 4, whereas Section 5 concludes the recent study and grants some
policy implications along with future recommendations.

2. Literature Review

In Pakistan, several studies have been done in the past to see the impact of financial development,
power and economic on CO2 emissions. Some of the major studies in this regard done by [5–12].
An investigation has been conducted by in [6] that investigated the long-run cointegration association
between monetary instability and ecological degradation in Pakistan for the period 1971–2009 using
time-series analysis. The study found that financial instability increase environmental pollution in
Pakistan. The study in [11] inspected the effect of financial development, growth, trade, and energy on
CO2 emissions in Pakistan between 1980 and 2015. It was reported that financial development, economic
growth, consumption of power and skills are the increasing factors of CO2 emissions. Furthermore,
it was obtained that there is a long-run association between CO2 emissions, financial development,
energy consumption, capital, trade and economic growth in case of Pakistan. In the existing literature,
some researchers found the insignificant impact of financial development on CO2 emissions [13–15].
A research has been conducted by [3] examined the impact of growth, coal, financial development and
trade on environmental quality in South Africa by using time-series data (1965–2008). Hence, results
indicated that a rise in economic growth raises energy emissions, whereas financial development
reduces it. Their findings also revealed that consumption of coal has a significant contribution to
decline environment in the South African economy. By reducing the growth of energy pollutants, trade
openness improves environmental quality for the case of South Africa.

Applying time-series analysis, [15] studied Turkey by using financial development, energy use,
economic growth, trade openness, and CO2 emissions data from the period 1960–2007. The results
of the analysis revealed that economic growth and trade openness have significant effects causing
environmental pollution but financial development has no significant impact on environmental quality.
Using time-series analysis, [16] examined the impact of financial and economic development as well
as energy on CO2 emissions in China. They found the inverse effect of financial development on
environmental pollution telling that the development of the financial sector has not taken place at the
expense of environmental pollution in China. Additionally, an investigation has been conducted by [17]
investigated the relations between economic growth, energy consumption, financial development, trade
openness and CO2 emissions over the period of 1975–2011 in case of Indonesia. They accomplished
that energy use and economic growth increase CO2 emissions, whereas trade openness and financial
development compact it. As studied by the [18] examined the interplay between financial development,
energy use and GDP on CO2 emissions. Using time-series data for Turkey for the period 1976–1986,
results of the analysis revealed that financial development develops environmental quality while
energy use and economic growth reduce it. The study of [19] has investigated the interplay between
energy consumption, economic growth, and CO2 emissions by applying time-series data for eight
Asian countries covering the period 1991–2013. The study proved that the growth of economic and
consumption of energy have affected environmental degradation.

Inspecting the five western provinces of China, [20] established that the effect of tourism on the
environment is negative for Gansu, Shanxi, Qinghai, and Ningxia. Overall, the negative impact of
economic growth and energy consumption is more significant than tourism on CO2 emission in the
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long run. According to [21,22] investigated an interrelationship between economic growth, level of
energy consumption, financial development and oil prices in context of Italy for 1960 to 2014, where he
found a long run cointegration among the variables under ARDL approach, and elaborated that
estimators for oil prices and real economic growth have a noteworthy impact on level of energy usage.
However, in short run results under the VAR technique, only real economic growth is an impacting
factor for energy consumption. Furthermore, [23] broadened the literature with respect to Belt and
Road Initiative countries for 1980–2016, where a panel of 47 nations acknowledged that financial
development, energy consumption, capital formation, economic output and urbanization detrimentally
fronting to the environmental abatement excluding trade openness which has a favorable link with
CO2 emissions. Similarly, [24] explored an EKC hypothesis considering to BRI 65 countries, results
offered that mean group model authenticate it in all six regions. Likewise, the pooled mean group only
confirmed the EKC hypothesis in developed European region but unacceptable for others.

Indeed, developing, emerging and advanced economies are converging to diminish the scale of
CO2 emissions without disturbing to the pace of sustainable progression. After reforms and open up
the economy in China, the structure of its economic development has been transformed very swiftly,
the operational segments of growth, i.e., agriculture, industry and service sectors tremendously sponsor
to bolster the degree of economic progress in this age of competitiveness. The revealed estimates
enlightened that agriculture, industry, services sectors, energy consumption, and trade detrimentally
deflate to the natural environment of China [25]. Next, an exploration has been conducted [26]
considering industrial growth, energy usage, services sector output and CO2 emissions in China over
the period of 1971–2016. The estimations divulged that industrial growth, services sector and level
of energy utilization have an adverse effect on ecology, whereas the economic output is effectual for
the environmental quality in the long run for China. However, in short-term industrial growth, the
service sector and economic output harmfully effect on the environment. In addition, scrutiny has been
warranted for Pakistan over the time range of 1984–2016, where a long-run interconnection was found
between the variables. As per testified outcomes, gas and electricity consumption have a positive
influence on the agriculture sector proportion of GDP in Pakistan [27].

Some important knowledge has been analyzed and a contribution to the existing body of literature
made by distinguishing our current study and using CO2 emissions from the agricultural sector
as a substitute for environmental quality, the inclusion of population and money market financial
indicators in simulating the association between financial development and environmental quality for
the case of Pakistan.

3. Material and Econometric Methods

The theoretical basis of the present study comes from the expanded theory of production,
which considers energy use to be an additional productive input in addition to workforce and capital.
Once energy use is included in the production function, there is a case for it to be directly related
to carbon dioxide emissions (CO2). The expanded production doctrine also provides a framework
for the use of development of the financial sector as a model of technological progress. This is based
on greater financial development that can increase output and economic growth. Recent empirical
works have employed expanded production theory to simulate the association amongst financial
development, consumption of energy and carbon dioxide emissions (CO2) [28–31]. However, the use
of emissions from the agricultural sector makes the study very different from the available literature.
In addition, modeling the log–log model specification compared to a simple linear-linear specification
would reduce the sharpness of time series data and thus provide efficient results [32].

The empirical model specifications of this current study followed the emerging literature related
to financial development and carbon dioxide emissions (CO2), which provide empirical evidence
to explore the links between growth, energy, financial development and carbon dioxide emissions
(CO2). In addition to the use of agricultural emissions, the study has added the population to further
distinguish our empirical work from earlier studies [3,16,25]. These authors have included financial
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development in their empirical analysis. Following them, the functional form for carbon dioxide
emissions (CO2) in Pakistan can be specified as follows:

CO2t = f (Yt, ECt, FDt, FDIt, POPt) (1)

The study used the log-linear specification in order to examine the interplay amongst dependent
variable and independent variables. This study has formulated the log-linear model and it is specified
as follows:

lnCO2t = λ0 + λ1lnYt + λ2lnECt + λ3lnFDt + λ4lnFDIt + λ5lnPOPt + εt (2)

where lnCO2 is the usual log of carbon dioxide (CO2) from the agriculture sector, lnY stands
for the natural log of economic growth, lnEC represents the natural log of energy consumption
(electricity consumption in agriculture sector), lnFD symbolizes natural log of financial development,
lnFDI indicates natural log of foreign direct investment net inflows, lnPOP represents natural log of
population, λ1,λ2,λ3,λ4,λ5 are coefficients to be estimated, λ0 represents the constant term and εt

denotes the stochastic error term, respectively. The present empirical work is based on the annual time
series data to examine the effects of financial development and economic growth on agricultural CO2

emissions in Pakistan. Data over the period 1980 to 2016 have been taken from the World Development
Indicators (WDI, 2016), Food and Agriculture Organization (FAO, 2014) and Pakistan economic survey
(GOP, 2016). Table 1 reports the description of the selected study variables.

Table 1. Study variables name, symbols, measurement and data sources.

Variable Name Symbol Variable Measurement Data Source

CO2 emissions CO2 CO2 emissions from the agriculture sector (Gg) (FAO, 2014)
Economic growth Y In constant 2010 US$ (WDI, 2016)

Electricity consumption EC Electricity consumption in agriculture sector (Gwh) (GOP, 2016)
Financial development of the

private sector FD Domestic credit to the private sector (% of GDP) (WDI, 2016)

Foreign direct investment FDI Net inflows (% of GDP) (WDI, 2016)
Population POP Total population (million) (GOP, 2016)

Notes: GOP = Government of Pakistan; FAO = The Food and Agriculture Organization of the United Nations;
WDI =World development Indicators.

Estimation Technique

Autoregressive Distributed Lag (ARDL)

The ARDL modelling approach proposed by [33] is used to check whether a long-run cointegration
exists amongst the selected study variables or not. The autoregressive distributed lag (ARDL) modelling
technique has some advantages over the traditional methods [34,35]. First, both the short-run and
long-run parameters can be assessed at the same time. Second, this method can be employed even
if the selected study variables are stationary at I(0), I(1) or a combination of both. Third, the ARDL
modelling approach has been found much more efficient when dealing with a small sample size [29].
The ARDL-bound test cointegrations equations are given by:

ΔlnCO2t = δ0 + δ1

p∑
i=1

ΔlnCO2t−1 + δ2

p∑
i=1

ΔlnYt−1 + δ3

p∑
i=1

ΔlnECt−1

+ δ4

p∑
i=1

ΔlnFDt−1 + δ5

p∑
i=1

ΔlnFDIt−1 + δ6

p∑
i=1

ΔlnPOPt−1

+φ1lnCO2t−i + φ2lnYt−i + φ3lnECt−i + φ4lnFDt−i + φ5lnFDIt−i
+ φ6lnPOPt−i + μt
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ΔlnYt = δ0 + δ1

p∑
i=1

ΔlnYt−1 + δ2

p∑
i=1

ΔlnCO2t−1 + δ3

p∑
i=1

ΔlnECt−1 + δ4

p∑
i=1

ΔlnFDt−1

+ δ5

p∑
i=1

ΔlnFDIt−1 + δ6

p∑
i=1

ΔlnPOPt−1 + φ1lnYt−i + φ2lnCO2t−i

+ φ3lnECt−i + φ4lnFDt−i + φ5lnFDIt−i + φ6lnPOPt−i + μt

ΔlnECt = δ0 + δ1

p∑
i=1

ΔlnECt−1 + δ2

p∑
i=1

ΔlnYt−1 + δ3

p∑
i=1

ΔlnCO2t−1.

+ δ4

p∑
i=1

ΔlnFDt−1 + δ5

p∑
i=1

ΔlnFDIt−1 + δ6

p∑
i=1

ΔlnPOPt−1.

+ φ1lnECt−i + φ2lnYt−i + φ3lnCO2t−i + φ4lnFDt−i + φ5lnFDIt−i
+ φ6lnPOPt−i + μt

ΔlnFDt = δ0 + δ1

p∑
i=1

ΔlnFDt−1 + δ2

p∑
i=1

ΔlnECt−1 + δ3

p∑
i=1

ΔlnYt−1

+ δ4

p∑
i=1

ΔlnCO2t−1 + δ5

p∑
i=1

ΔlnFDIt−1 + δ6

p∑
i=1

ΔlnPOPt−1

+ φ1lnFDt−i + φ2lnECt−i + φ3lnYt−i + φ4lnCO2t−i + φ5lnFDIt−i.
+ φ6lnPOPt−i + μt

(3)

ΔlnFDIt = δ0 + δ1

p∑
i=1

ΔlnFDIt−1 + δ2

p∑
i=1

ΔlnFDt−1 + δ3

p∑
i=1

ΔlnECt−1.

+ δ4

p∑
i=1

ΔlnYt−1 + δ5

p∑
i=1

ΔlnCO2t−1 + δ6

p∑
i=1

ΔlnPOPt−1.

+ φ1lnFDIt−i + φ2lnFDt−i + φ3lnECt−i + φ4lnYt−i + φ5lnCO2t−i
+ φ6lnPOPt−i + μt

ΔlnPOPt = δ0 + δ1

p∑
i=1

ΔlnPOPt−1 + δ2

p∑
i=1

ΔlnFDIt−1 + δ3

p∑
i=1

ΔlnFDt−1.

+ δ4

p∑
i=1

ΔlnECt−1 + δ5

p∑
i=1

ΔlnYt−1 + δ6

p∑
i=1

ΔlnCO2t−1

+ φ1lnPOPt−i + φ2lnFDIt−i + φ3lnFDt−i + φ4lnECt−i + φ5lnYt−i
+ φ6lnCO2t−i + μt

where δ0 represents the constant term, μt stands for the error term, the dynamics for error correction
in the short run are denoted by δ whereas the long-run links is presented in the next half of the
equation symbolized by φ. The ARDL modeling approach employees F-statistics test to decide the
presence of a long-run cointegration amongst the constructed study variables. The null hypothesis
suggests the there is no a long-run cointegration against the alternative hypothesis of there exists
a long-run cointegration among the variables. [33,36] proposed LCB (Lower Critical Bound) and the
UCB (Upper Critical Bound) for large samples and small samples and large samples. A long-run
cointegration among the variables exists if the computed F-statistics is greater than UCB value than the
null hypothesis can be rejected and accepted the alternative hypothesis that a long-run cointegration
exist. Furthermore, the null hypothesis cannot be rejected if the calculated F value is lower than LCB
value and suggested that a long-run cointegration does not exist. However, if the calculated F value
lies between the UCB and LCB, the result is inconclusive. In the present empirical study, we used
the AIC (Akaike Information Criterion) for selection of the lag length. After the optimal lag length
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selections and model estimation, if there exists the long-run cointegration association so the short and
long-run ARDL model equations are the following:

ΔlnCO2t = δ0 + δ1

p∑
i=1

ΔlnCO2t−1 + δ2

p∑
i=1

ΔlnYt−1 + δ3

p∑
i=1

ΔlnECt−1

+ δ4

p∑
i=1

ΔlnFDt−1 + δ5

p∑
i=1

ΔlnFDIt−1 + δ6

p∑
i=1

ΔlnPOPt−1

+ ψ1ECTt−1 + εt

ΔlnYt = δ0 +δ1

p∑
i=1

ΔlnYt−1 + δ2

p∑
i=1

ΔlnCO2t−1 + δ3

p∑
i=1

ΔlnECt−1

+ δ4

p∑
i=1

ΔlnFDt−1 + δ5

p∑
i=1

ΔlnFDIt−1 + δ6

p∑
i=1

ΔlnPOPt−1

+ ψ2ECTt−1 + εt

ΔlnECt = δ0 + δ1

p∑
i=1

ΔlnECt−1 + δ2

p∑
i=1

ΔlnYt−1 + δ3

p∑
i=1

ΔlnCO2t−1 + δ4

p∑
i=1

ΔlnFDt−1

+ δ5

p∑
i=1

ΔlnFDIt−1 + δ6

p∑
i=1

ΔlnPOPt−1 +ψ3ECTt−1

+ εt

(4)

ΔlnFDt = δ0 + δ1

p∑
i=1

ΔlnFDt−1 + δ2

p∑
i=1

ΔlnECt−1 + δ3

p∑
i=1

ΔlnYt−1 + δ4

p∑
i=1

ΔlnCO2t−1

+ δ5

p∑
i=1

ΔlnFDIt−1 + δ6

p∑
i=1

ΔlnPOPt−1 +ψ4ECTt−1 + εt

ΔlnFDIt = δ0 + δ1

p∑
i=1

ΔlnFDIt−1 + δ2

p∑
i=1

ΔlnFDt−1 + δ3

p∑
i=1

ΔlnECt−1 + δ4

p∑
i=1

ΔlnYt−1

+ δ5

p∑
i=1

ΔlnCO2t−1 + δ6

p∑
i=1

ΔlnPOPt−1 +ψ5ECTt−1 + εt

ΔlnPOPt = δ0 + δ1

p∑
i=1

ΔlnPOPt−1 + δ2

p∑
i=1

ΔlnFDIt−1 + δ3

p∑
i=1

ΔlnFDt−1

+ δ4

p∑
i=1

ΔlnECt−1 + δ5

p∑
i=1

ΔlnYt−1 + δ6

p∑
i=1

ΔlnCO2t−1 +ψ6ECTt−1.

+ εt.

where ECTt − 1 represents the error correction term and it is denoted for the long-run equilibrium speed
of adjustment. To check the good fitness of the empirical model, this study used the various diagnostic
tests, including the serial correlation and heteroskedasticity test, while CUSUM (Cumulative Sum of
Recursive Residuals) and CUSUMSQ (Cumulative Sum of Squares of Recursive Residuals) are also
applied to check the stability of the model over the period.

4. Results and Discussions

4.1. Descriptive Statistics, Correlation Matrix, and Unit Root Test Analysis

Table 2 reports the basic statistical description of the study variables and results show that lnCO2,
lnY, lnEC, lnFDI, lnPOP are normally distributed but lnFD does not follow a normal distribution
as suggested by Jarque-Bera test. Though, ARDL approach can solve the problem of non-normality.
Likewise, the results of the correlation matrix are also shown in Table 2 and reveal that economic
growth, electricity consumption in the agriculture sector, FDI and population have a strong positive and
significant correlation with CO2 emissions while financial development has negative and significant
relation with CO2 emissions, respectively.
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Table 2. Descriptive summary and correlation matrix.

LNCO2 LNY LNEC LNFD LNFDI LNPOP

Mean 10.9673 25.4007 8.6769 3.2039 −0.2858 18.6722
Median 11.0014 25.4125 8.6736 3.2065 −0.3683 18.7000

Maximum 11.5157 26.1520 10.0508 4.2008 1.2997 19.0790
Minimum 10.4369 24.4944 7.6333 1.8048 −2.2762 18.1730
Std. Dev. 0.3192 0.4733 0.5872 0.4699 0.8055 0.2674
Skewness −0.0674 −0.2236 0.3443 −0.2623 −0.1500 −0.2489
Kurtosis 1.7805 1.9846 3.3054 5.2553 2.8962 1.9112

Jarque-Bera 2.3206 1.8977 0.87517 8.2663 0.1554 2.2098
Probability 0.3133 0.3871 0.6455 0.0160 0.9252 0.3312

Observations 37 37 37 37 37 37
LNCO2 1.0000

—–
LNY 0.9940 *** 1.0000

(0.0000) —–
LNEC 0.9062 *** 0.9183 *** 1.0000

(0.0000) (0.0000) —–
LNFD −0.3920 *** −0.3376 ** −0.3541 ** 1.0000

(0.0164) (0.0410) (0.0315) —–
LNFDI 0.6928 *** 0.7132 *** 0.6334 *** −0.0485 1.0000

(0.0000) (0.0000) (0.0000) (0.7755) —–
LNPOP 0.9955 *** 0.9981 *** 0.9082 *** −0.3401 ** 0.7022 *** 1.0000

(0.0000) (0.0000) (0.0000) (0.0394) (0.0000) —–

Source: Authors’ computation. Note: ***, ** Significant at 1% and 5% levels, respectively.

4.2. Empirical Results and Discussion

Before testing the cointegration association amongst the study variables, our first step is to examine
their integration order. Although, if the variable is integrated in a dissimilar order, i.e., I(1) or I(0),
the ARDL approach can be used. In doing so, the present empirical study uses several renowned unit
root methods, for instance, ADF, PP, DF-GLS (ESR) and KPSS in order to firstly check the stationarity of
data. Table 3 reports the outcomes of these renowned unit root approaches exhibits that all the study
variables are stationary at the combination of I(0) and I(1). This validates the use of autoregressive
distributed lag (ARDL) bound test approach suggested by [33,37].

Similarly, the results of the Z&A and CMR breakpoint unit root tests are summarized in Table 4.
The results indicated that most of the variables had a unit root problem at level but became stationary
at 1st difference as the test statistics are significant at the given level of significance. On the other hand,
DLNY is stationary at level. Therefore, the estimations confirmed that our variables were stationary at
the required levels, even in the existence of structural breaks, and the bounds testing method could be
employed. The ARDL bounds test is employed to explore the presence of a long-run cointegration.
In this study we have checked the cointegration of all variables and outcomes are described in Table 5.
The ARDL cointegration test outcomes of first equation FCO2 (CO2/Y, EC, FD, FDI, POP) disclose
that there exists significant (at 5% level) a long-run cointegrating association between variables when
CO2 emissions was used as the dependent variable. Likewise, in both equations second and third FY

(Y/CO2, EC, FD, FDI, POP) and FEC (EC/Y, CO2, FD, FDI, POP) indicate that there no-cointegration exist
amongst variables when economic growth and electricity consumption in agriculture sector were used
as the dependent variables. Moreover, in the fourth equation of ARDL bounds test, we used financial
development as a dependent variable FFD (FD/EC, Y, CO2, FDI, POP), results display that there exist
a long-run cointegrating link between the variables. Similarly, the results of the fifth equation of ARDL
bounds test FFDI (FDI/FD, EC, Y, CO2, POP) show that there is no long-run cointegration exist among
variables when the foreign direct investment was used as the dependent variable.
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Table 3. Results of unit root tests.

Intercept/Trend Variables ADF PP ERS KPSS

At level
Intercept LNCO2 0.067279 0.067279 1.086835 0.732173 **

LNY −1.306952 −2.373318 0.591036 0.731082 **
LNEC 0.151339 −0.449389 0.444442 0.691326 **
LNFD −1.247226 −0.989193 −3.126253 *** 0.389965 *
LNFDI −2.165385 −2.054144 −1.807425 0.567661 **
LNPOP −1.735334 −3.504824 ** 1.725230 0.729719 **

Intercept and trend LNCO2 −2.896777 −3.012182 −3.000342 0.132629 **
LNY −3.415602 * 5.743567 ** −1.718915 0.160034 **

LNEC −2.083088 −4.010968 *** −2.103183 0.126498 **
LNFD −2.068319 −1.851540 −3.816892 *** 0.148328 *
LNFDI −2.649033 −2.773817 −2.746427 0.135530 *
LNPOP −5.104828 *** −4.291706 *** −3.335802 *** 0.193353 **

At first difference
Intercept DLNCO2 −5.909376 *** −5.909376 *** −5.982860 *** 0.058512

DLNY −3.575677 *** −3.544302 *** −2.811139 *** 0.374628 *
DLNEC −11.77023 *** −11.89641 *** −2.487519 ** 0.119807
DLNFD −4.612180 *** −4.612180 *** −8.962681 *** 0.367610 *
DLNFDI −5.824703 *** −6.420425 *** −5.737412 *** 0.176450
DLNPOP −2.052846 −1.275548 −0.432306 0.650474 **

Intercept and trend DLNCO2 −5.811907 *** −5.811907 *** −5.905037 *** 0.058439
DLNY −3.658144 ** −3.659494 ** −3.668914 *** 0.112724

DLNEC −11.69367 *** −11.79462 *** −2.569443 0.101405
DLFD −4.661032 *** −4.661032 *** −8.997397 *** 0.359870 ***

DLNFDI −5.741518 *** −6.786958 *** −5.799335 *** 0.150092 **
DLNPOP −0.300854 −0.674946 −1.556024 0.168522 **

Source: Authors’ computation. Notes: ADF; PP; ERS and KPSS indicate the Augmented Dickey–Fuller test;
the Phillips–Perron test; the Elliot, Rothenberg and Stock point optimal test and the Kwiatkowski, Phillips, Schmidt
and Shin test, respectively. ***, ** and * Significant at 1%, 5% and 10% levels, respectively.

Table 4. Results of Zivot-Andrews and CMR structure break unit root tests.

Zivot-Andrews Structure Break Unit Root Test CMR Structure Break Unit Root Test

Variables
Level 1st difference Level 1st difference

T-statistics Breaks T-statistics Breaks T-statistics Breaks T-statistics Breaks

LNCO2 −1.07 1995 −9.81 1996 10.487 1997 0.691 1994
LNY −5.74 2004 - - 7.119 2005 −3.389 1990

LNEC −1.81 2012 −12.28 2011 5.021 2012 0.741 2010
LNFD −3.41 2011 −9.71 1993 −3.389 2013 −0.259 1991
LNFDI −2.85 1992 −6.03 2009 5.962 1989 −0.398 2009
LNPOP −3.09 2009 −6.28 2010 8.943 2000 −12.107 1993

Notes1: Z&A test produced critical values are as; −4.58, −4.93, and −5.34 at 1%, 5%, and 10% respectively. Notes2:
CMR denotes for “Clemente Montanes Reyes” structure break unit root test, where it produced a critical value
−3.560 at 5%.

Table 5. Results of cointegration bounds test.

Model for Estimation F-Statistics Decision

FCO2 (CO2/Y,EC,FD,FDI,POP) ARDL(1, 1, 0, 0, 1, 1) 4.949047 ** Cointegration exist
FY (Y/CO2,EC,FD,FDI,POP) ARDL(1, 1, 0, 0, 0, 0) 1.778916 No-cointegration exist
FEC (EC/Y,CO2,FD,FDI,POP) ARDL(1, 0, 0, 0, 0, 0) 3.348705 No-cointegration exist
FFD (FD/EC,Y,CO2,FDI,POP) ARDL(1, 0, 0, 1, 1, 0) 8.578359 *** Cointegration exist
FFDI (FDI/FD,EC,Y,CO2,POP) ARDL(1, 0, 0, 0, 0, 1) 2.887597 No-cointegration exist
FPOP (POP/FDI,FD,EC,Y,CO2) ARDL(1, 1, 0, 0, 1, 0) 19.73612 *** Cointegration exist

Critical Value Bounds I0 Bound I1 Bound
1% 3.15 5.23
5% 3.12 4.25
10% 3.93 3.79

Source: Authors’ computation. Note: ***, ** Significant at 1% and 5% levels, respectively.
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The last equation for ARDL bounds test FPOP (POP/FDI, FD, EC, Y, CO2) indicates a long-run
cointegration exists among variables when the population is used as the dependent variable. To check the
robustness of our long-run cointegrating results, we employed the Johansen cointegration test by using
trace statistics and max–eigenvalue statistics. The estimated outcomes of (trace and max–eigenvalue)
test are shown in Table 6. The trace and max–eigenvalue statistics values are greater than the critical
value at 5% significance level; showing a long-run co-integration relationship among the variables.
Additionally, the Engle-Granger (EG) cointegration test [38] is utilized to measure the further robustness
of Johansen cointegration test outcomes. It is a dual-step errors-based test, so initially, dependent
variable (LNCO2) is regressed on explanatory variables (Y, EC, FD, FDI, POP) and computed the
residuals from the equation. At that time, calculated residuals are further analyzed by the ADF unit
root test in Table 7, where residuals are stationary at their level. It is an indication for at the first stage
that variables are cointegrated. Moreover, the validation through the second step will be guaranteed
the long run cointegration among the variables effectually. Next, the 1st difference of the residuals is
regressed on its lagged based residuals in simple OLS approach in Table 8. The estimates of calculated
residuals (New-1) in OLS regression results is statistically significant at 5%, which ensured that there is
long-run cointegration among the set of variables. Hence, rejecting the null hypothesis instead of the
alternative is evidence the dataset series are certainly cointegrated.

Table 6. Johansen cointegration test using Trace statistics and Max–Eigenvalue statistics.

Hypothesized Trace 0.05

No. of CE(s) Eigenvalue Statistic Critical Value Prob

None * 0.896802 184.6633 95.75366 0.0000
At most 1 * 0.743880 107.4457 69.81889 0.0000
At most 2 * 0.474210 61.13391 47.85613 0.0018
At most 3 * 0.449581 39.27687 29.79707 0.0030
At most 4 * 0.392142 18.97631 15.49471 0.0143
At most 5 0.058530 2.050617 3.841466 0.1521

Hypothesized Max-Eigen 0.05
No. of CE(s) Eigenvalue Statistic Critical Value Prob

None * 0.896802 77.21766 40.07757 0.0000
At most 1 * 0.743880 46.31176 33.87687 0.0010
At most 2 0.474210 21.85705 27.58434 0.2278
At most 3 0.449581 20.30056 21.13162 0.0650

At most 4 * 0.392142 16.92569 14.26460 0.0185
At most 5 0.058530 2.050617 3.841466 0.1521

Source: Authors’ computation. Note: * 5% level, statistical significance.

Table 7. First step in Engle-Granger cointegration test to calculating the residuals unit root.

ADF Test Statistic at a Level for (Calculated Residuals)

t-Statistic Prob.*
−4.032361 0.0035 ***

Test critical values:

1% level −3.626784
5% level −2.945842

10% level −2.611531

Source: Authors’ computation; ***, * Significant at 1%, 5% and 10% levels, respectively.

66



Energies 2019, 12, 1879

Table 8. Second step in Engle Granger cointegration test for significance evaluation.

Variable Coefficient Std. Error t-Statistic Prob.

D(LNEC) 0.002775 0.0108 0.256973 0.799
D(LNFD) −0.02262 0.007154 −3.16153 0.0037 ***
D(LNFDI) −0.00632 0.006445 −0.98062 0.3349
D(LNPOP) −0.27731 0.696161 −0.39834 0.6933

D(LNY) 0.402064 0.187295 2.146686 0.0403 **
NEW(-1) −0.40261 0.152648 −2.63748 0.0133 **

C 0.017448 0.01602 1.08916 0.2851

Source: Authors’ computation. Note: ***, ** Significant at 1% and 5% levels, respectively.

Table 9 displays the estimated outcomes of both long and short-run of ARDL approach. The CO2

emissions from the agricultural sector is used as a dependent variable while economic growth, electricity
consumption in the agriculture sector, financial development, FDI and population have been used as
independent variables in this empirical study. The estimated outcomes show that economic growth
is significant and inversely linked to CO2 emissions from the agricultural sector at 1% significance
level in the long run. The estimated coefficient of economic growth shows that a 1% increase in
economic growth reduces CO2 emissions from agriculture by 0.45%; this means that economic growth
improves the environmental quality in Pakistan. The empirical outcomes of this study support the
theoretical arguments in the literature that the adoption of cleaner energy sources boosts up the
economic growth that improves environmental quality. Our estimated findings are in line with the
results of previous studies. Reference [39] found that the economic growth and electricity consumption
degrade environmental quality in belt and road initiative (BRI) countries. Reference [40] revealed
that economic growth is inversely associated with CO2 emissions, indicating that economic growth
improves environmental quality in Nigeria. But, our findings are contrary to the results of [21] who
reported that economic growth has a positive and significant effect on CO2 emissions. The long-run
coefficient of the agricultural electricity consumption is positive but it is non-significant. The result
of the positive effect of electricity consumption in the agriculture sector on CO2 emissions is in line
with, and supports the results of earlier research [41,42]. The result shows that presently electricity
is a critical factor for the level of CO2 emissions, which is highly alarming in Pakistan. High-level
use of energy causes high environmental degradation [43]. The carbon-free sources of energy such
as nuclear and wind, related innovative technology is also favorable to improve the quality of the
environment [44]. Likewise, the coefficient of financial development is negative and highly significant
at a 1% significance level in the long run. Financial development coefficient outcomes show that
a 1% rise in financial development has the capacity to reduce the CO2 emissions from the agricultural
sector and improve the environmental quality almost 0.02%. The findings of financial development are
in line with the results of earlier researchers. [24] revealed that financial development significantly
enhances the environmental degradation in the One Belt and One Road region. [18,43] reported that
financial development improves environmental quality in Turkey. Similarly, FDI coefficient results
indicate a positive significant and dominant effect on CO2 in the long run in Pakistan. FDI results
indicated that FDI contributes to environmental degradation. Additionally, the population coefficient
is positive and significantly associated with CO2 emissions in the long run, showing that a 1% increase
in population could increase environmental pollution by 1.42%. The population growth will increase
the land openness for residential construction, agriculture, and other related economic activities.

The finding of this paper is intuitive with the previous study of [45]. Table 9 reports the estimated
outcomes of the short run ARDL technique. Outcomes of the short-run cointegration show that
economic growth has a positive but statistically non-significant effect on CO2 emissions, indicating
that economic growth does not have any statistical influence to cause environmental degradation
in Pakistan. Whereas, financial development has a strong negative association (–0.023) with CO2

in the short-run analysis. Results of financial development indicate that a 1% increase in financial
development reduces the CO2 emissions from the agricultural sector and improves environmental
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quality. FDI has a positive and non-significant effect on CO2 emissions in Pakistan in the short run.
The findings of this study are consistent with the outcomes of [38] Saud et al. (2018) which stated that
an increase in financial development and FDI improve the quality of the environment. Additionally,
the results display a strong positive association (9.022) among the population and CO2 emissions in
Pakistan in the short-run. Results of the population indicate that a 1% increase in population will
increase CO2 emissions by 9.02% in the short-run.

Table 9. Estimated long-run and short-run coefficients of ARDL model.

Variable Coefficient Std. Error t-Statistic Prob.

Long-run estimation
LNY −0.451404 *** 0.163762 −2.756465 0.0105

LNEC 0.008475 0.013542 0.625863 0.5369
LNFD −0.027816 *** 0.007907 −3.517833 0.0016
LNFDI 0.044922 *** 0.009849 4.561101 0.0001
LNPOP 1.425103 *** 0.386299 3.689118 0.0010

Constant −4.829268 4.283987 −1.127284 0.2699
Trend 0.015515 *** 0.004183 3.709142 0.0010

Short-run Dynamics
D(LNY) 0.157755 0.182425 0.864770 0.3951

D(LNEC) 0.007047 0.011039 0.638382 0.5288
D(LNFD) −0.023128 *** 0.007517 −3.076716 0.0049
D(LNFDI) 0.009470 0.006154 1.538790 0.1359
D(LNPOP) 9.022650 *** 3.144515 2.869329 0.0081

DTrend 0.012900 *** 0.004982 2.589351 0.0155
ECM (−1) −0.831464 *** 0.155434 −5.349315 0.0000
R-squared 0.998298

Adjusted R-squared 0.997730
F-statistic 59.170

Prob(F-statistic) 0.000000
Durbin-Watson stat 1.873053

Source: Authors’ computation. Note: *** Significant at 1% level.

To test the stability of the ARDL model this study used various diagnostic tests, for example,
Breusch-Godfrey for serial correlation, White for heteroscedasticity, CUSUM and CUSUMQS for the
stability of the parameters, outcomes are described in Table 10. The diagnostic test results display that
the ARDL model has successfully passed all diagnostic tests. Moreover, the results of CUSUM and
CUSUMQS presented in Figures 1 and 2, indicating that the values of the parameters are stable over
the period.

Table 10. Diagnostic tests for the stability of the ARDL model.

Breusch-Godfrey Serial Correlation LM Test: Serial Autocorrelation

F-statistic 0.166770 Probability 0.8474
Obs*R-squared 0.507160 Probability 0.7760

White Heteroskedasticity Test:
F-statistic 0.047588 Probability 0.8286

Obs*R-squared 0.050317 Probability 0.8225
Ramsey RESET Test: Model Misspecification

F-statistic 1.270951 Probability 0.2703

Source: Authors’ computation. Note: * Significant at 5% level.
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Figure 1. The plot of the cumulative sum of recursive residuals.

Figure 2. The plot of the cumulative sum of squares of recursive residuals.

In order to test the direction of causality between the variables, the study conducted the pair-wise
Granger causality test. The Granger causality approach has three categories such as bidirectional
causality, unidirectional causality, and no causality. Table 11 reports the pair-wise Granger causality
outcomes. The results of the pair-wise Granger causality test show that the null hypothesis that
economic growth does not Granger cause CO2 emissions is rejected at 10% significance level, implying
that economic growth does Granger cause CO2 emissions. However, the null hypothesis that CO2

emissions do not Granger cause economic growth is not rejected, meaning that CO2 emissions do
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not Granger cause economic growth. There is evidence of unidirectional causality running from LnY
→ LnCO2 at the 10% significance level. The results of the Granger causality test failed to reject the
null hypothesis that energy consumption (electricity consumption in the agriculture sector) does
not Granger cause CO2 emissions. However, CO2 emissions Granger cause energy consumption
(electricity consumption in the agriculture sector) at a 1% level of significance. There is evidence of
unidirectional causality running from CO2 → LnEC. The Granger causality test results display that
the null hypothesis that financial development does not Granger cause CO2 emissions is no rejected,
implying financial development does not Granger-cause CO2 emissions. However, the null hypothesis
of CO2 emissions does not Granger-cause financial development is rejected at a 5% level of significance,
implying CO2 emissions does Granger-cause financial development. Thus, a unidirectional causality
has been identified from CO2 → LnFD at the 5% significance level. Moreover, the null hypotheses
that the population does not Granger-cause CO2 emissions is rejected at 5% significance level. There is
evidence of bidirectional causality between LnPOP↔ LnCO2.

Table 11. Granger causality between CO2 and its determinants.

Null Hypothesis F-statistic Probability

LnY does not Granger Cause LnCO2 3.34546 0.0764 *
LnCO2 does not Granger Cause LnY 0.31787 0.5767

LnEC does not Granger Cause LnCO2 1.70653 0.2005
LnCO2 does not Granger Cause LnEC 10.3927 0.0028 ***
LnFD does not Granger Cause LnCO2 2.79801 0.1038
LnCO2 does not Granger Cause LnFD 4.14764 0.0498 **
LnFDI does not Granger Cause LnCO2 0.32867 0.5703
LnCO2 does not Granger Cause LnFDI 2.22259 0.1455
LnPOP does not Granger Cause LnCO2 4.00315 0.0537 **
LnCO2 does not Granger Cause LnPOP 5.69914 0.0229 **

Source: Authors’ computation. Note: *, **, *** indicate rejection of null hypothesis at 10%, 5% and 1% levels of
significance, respectively.

5. Conclusions, Recommendations and Future Implications

This paper examined the effects of financial development, economic growth, electricity
consumption in the agriculture sector, FDI and population on the environmental quality in Pakistan
for the period 1980 to 2016. We used CO2 emissions from the agriculture sector as a proxy indicator for
environmental quality. Several unit root tests (ADF, PP, ERS, KPSS) and structural break unit root tests
(Z&A, CMR) are applied to test the stationarity and structural break in the dataset series. Cointegration
approaches, i.e., Johansen cointegration, Engle-Granger, and ARDL cointegration approaches ensure
their robustness.

The ARDL bounds method establish the long-run cointegration association between financial
development, economic growth, electricity consumption in the agriculture sector, FDI, population
and CO2 emissions. The ARDL bounds method, Engle-Granger, and Johansen cointegration tests
outcomes confirmed the presence of a long-term cointegrating connection among the variables.
The long-run coefficients of economic growth and financial development have negative effects on CO2

emissions. These findings indicate that a 1% increase in economic growth and financial development
will reduce CO2 emissions growth and improve the environmental quality in Pakistan by 0.45% and
0.02% respectively. Whereas, the results of the long-run coefficients of electricity consumption in the
agriculture sector, FDI and population have positive impacts on CO2 emissions. This indicates that
a 1% increase in energy consumption (electricity consumption in the agriculture sector) and FDI net
inflows will degrade environmental quality by 0.008% and 1.42% while a 1% increase in population
could increase environmental pollution by 1.42% in the long-run in Pakistan. Furthermore, in order to
check the direction of causality amongst the study variables, the study applied the pairwise Granger
causality test. The Granger causality test results showed a unidirectional causality between economic
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growth and CO2 emissions. However, there was a bi-directional causality between population and
CO2 emissions.

Based on the findings, our study suggested that the Government and policymakers should further
increase financial development and economic growth, since such development may further improve the
quality of environment in the country. Additionally, the use of energy and CO2 emissions are directly
associated with each other, therefore, our study also suggested that the efficient energy consumption
from fossil sources and a conversion to renewable energy sources, so as to reduce environmental
pollution in the country.

As perceived from the outcomes, the CO2 mitigation guidelines grounded on energy usage and
gross demotic product (income) unaccompanied may not determine to be productive as financial
expansion is an essential fragment of the greenhouse gas (GHG) mitigation strategy. Consequently,
financial growth is extracted to get better environmental quality with regard to the agriculture
sector in Pakistan. Thus, the policy implications may retrieve from the recent study as, to utilize the
financial segment across the banking system, and to reassure energy-efficient and green portfolio
investments. Subsequently, monetary regulatory policy can be outlined to pose minor interest
charges and other markdowns for environmentally friendly manufacturing practices by business
corporations/organizations. However, in the recent time period, the Pakistani financial division and its
various sectors have had a low volume portion and would have to experience an extremely stretched
mode before attaining its optimal point.

In this respect, the state government can support the financial markets by launching a solid
strategic agenda that generates enduring worth for (GHG) emissions cuts and constant provisions
for the expansion of novel technological tools that may guide a low carbon-concentrated country.
Additionally, well-organized capital and financial markets can be an alternative appreciated policy
choice that might be accepted. Hence, this is due to which companies can shrink their liquidity perils
and can activate the needed funds via portfolio divergence, that would be enormously advantageous
in developing a wide-ranging technology foundation in the long run.

Lastly, this recent study spreads the room for future investigations, where the investigators can
practice our methodological procedure to catch the greater awareness of economic development, energy
usage and environmental quality interrelationships with regard to the agriculture sector in nations
other than Pakistan. Supplementary, current ARDL approach may exchange with nonlinear ARDL
(NARDL) or can be upgraded by building an index of financial development in place of exercising
a sole element as a deputation for financial advancement. The on-hand study has employed the
cumulative CO2 emissions dataset for Pakistan; however, in future exploring the linkages between
income, financial expansion and CO2 emissions amount at a disaggregate scale (industry wise) may
offer some improved understandings. Consequently, it may assist policy architects to articulate
environment-friendly monetary and fiscal policies.
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Abstract: In this paper, we present a stylized dynamic interdependent multi-country energy transition
model. The goal of this paper is to provide a starting point for examining the impact of uncertainty
in such models. To do this, we define a simple model based on the standard Solow macroeconomic
growth model. We consider this model in a two-country setting using a non-cooperative dynamic
game perspective. Total carbon dioxide (CO2) emission is added in this growth model as a factor that
has a negative impact on economic growth, whereas production can be realized using either green or
fossil energy. Additionally, a factor is incorporated that captures the difficulties of using green energy,
such as accessibility per country. We calibrate this model for a two-player setting, in which one player
represents all countries affiliated with the Organization for Economic Cooperation and Development
(OECD) and the other player represents countries not affiliated with the OECD. It is shown that,
in general, the model is capable to describe energy transitions towards quite different equilibrium
constellations. It turns out that this is mainly caused by the choice of policy parameters chosen in the
objective function. We also analyze the optimal response strategies of both countries if the model in
equilibrium would be hit by a CO2 shock. Also, here we observe a quite natural response. As the
model is quite stylized, a serious study is performed to the impact several model uncertainties have
on the results. It turns out that, within the OECD/non-OECD framework, most of the considered
uncertainties do not impact results much. However, the way we calibrate policy parameters does
carry much uncertainty and, as such, influences equilibrium outcomes a lot.

Keywords: differential games; environmental engineering; uncertain dynamic systems; linearization;
economic systems; open-loop control systems

JEL Classification: Q43; Q54; Q56; Q58; C61; C72; C73

1. Introduction

Climate change is a key topic on the agenda of most of the world’s leading presidents. Reports of
the European Environment Agency (EEA) [1] and the Intergovernmental Panel on Climate Change
(IPCC) [2] show that the average global temperature is rising. For example, Figure 1a shows the global
land and ocean temperature anomalies, with 1940 as a base year. From this figure we can see that
the average change in temperature per decade is approximately +0.07 ◦C. Besides, according to data
from the National Centers for Environmental Information (NCEI) [3], the total CO2 emission has been
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increasing exponentially over time, see Figure 1b.

(a) Global temperature anomalies (EEA) (b) Global CO2 emission (NCEI)

Figure 1. Climate facts.

According to the IPCC reports, with 90% probability, a doubling (compared to its value in the
year 2000) of CO2 concentration will lead to an increase of the average world temperature by 1.5 ◦C.
This increase will affect all countries. The broadly accepted consensus is therefore that actions are
needed to reduce the level of CO2 emission all over the world. For instance, by using more green
energy instead of fossil energy. However, nowadays fossil fuel reserves are abundant. This means
that it is not easy to convince countries to restrict their use of fossil energy and begin to expand their
green energy use. Currently, using green energy is typically more expensive than using fossil energy.
In particular, countries which experience a period of economic growth could be rather skeptic about
changing their climate policy to a more green policy. They have to invest in green energy resources,
which costs money and could deteriorate their economic growth. There are some policies that try to
mitigate this problem. For instance, introducing a carbon tax, subsidizing the use of green energy and
forming coalitions of countries to get cooperation gains. Each of these policies has its advantages and
disadvantages. For instance, a possible disadvantage of a carbon tax is that it will only work well, if it
is implemented over the whole world. Next to this comes the difficulty to price this tax for legally
emitting CO2. Another policy is to introduce tradable permits that give companies the right to emit
a certain amount of CO2 per year. Again, difficult questions arise about, for instance, the distribution of
these permits over the world. With rapid advances in computing power over the last decade, large-scale
models have become essential to decision-making in public policy. However there are also risks in
using these models. A central issue in the economics of climate change is understanding and dealing
with the vast array of uncertainties. These range from those regarding economic and population
growth, emission intensities and new technologies, the carbon cycle, and climate response, to the costs
and benefits of different policy objectives. Most of the time policy makers must make decisions based
upon the outcome of a model that assumes a lot of (possibly) uncertain parameters. Typically, some
sensitivity analyses on particular parameters are performed to give the policymaker an indication of the
uncertainty involved. However, this may not give a good representation of the uncertainties involved
in the model. What we often want is to give a measure of uncertainty and to provide information
about a possible probability distribution of the outcome(s) of the model. This is hardly possible to
realize. A more down-to-earth approach is performing an elaborate uncertainty analysis consisting
of (see, e.g., [4]): (i) stochastic parameters, where parameters are assumed to be random variables
following specific probability distributions; (ii) stochastic relations, where relations are assumed to
contain a stochastic element; (iii) deterministic, worst-case scenario, where a new variable is added
to the system which can be viewed as nature that is always counteracting the objective(s) of players;
(iv) scenario analyses, where scenarios consisting of combinations of different assumptions about
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possible states of the world are considered. Scenario analyses involve performing model runs for
different combinations of assumptions and comparing the results; (v) extending the model: this means
that some parts of the model are reconsidered and extended where necessary.

Already several studies exist that try to incorporate uncertainty into energy system models,
e.g., Pizer [5] presents a framework for determining optimal climate change policies under uncertainty.
The authors use econometric estimates for some parameters, which are then used to solve the model.
They compare the results with those derived from an analysis with best-guess parameter values.
Their aim is to show that incorporating uncertainty within a climate model can significantly change the
optimal policy recommendations. In particular, they suggest that analyses which ignore uncertainty
can lead to inefficient policy recommendations. Gillingham et al. [6] investigate model and parametric
uncertainties for population, total factor productivity, and climate sensitivity. Estimates for probability
density functions of key output variables are derived, including CO2 concentrations, temperature,
damages, and the social cost of carbon (SCC). The authors investigate uncertainty in outcomes for
climate change using multiple integrated assessment models (IAMs). An IAM is used to assess
policy options for climate change by combining the scientific and economic aspects of climate change.
Details can be found in [7]. This multi-model intercomparison approach is also considered in [8,9].
Furthermore, Fragtos et al. [10] develop a stochastic model of the world energy system that is designed
to produce joint empirical distributions of future outcomes. A representation of all important variables
is derived using causal chains, with time series analysis for providing patterns of variation over
time. Tol [11] investigates the question whether uncertainty about climate change is too large for
running an expected cost benefit analysis. The approach is to test whether the uncertainties about
climate change are infinite. This is done by calculating the expectation and variance of the marginal
costs of CO2 emissions. In short, the author concludes here that climate change is an area that tests
decision analytic tools to the extreme. In this paper we differ from the above-mentioned papers
by several aspects. All models above are trying to quantify uncertainty within an IAM that does
not incorporate interrelations between players. The models are developed to optimize a policy for
a country, without incorporating the interrelations between countries. However, for instance, the use
of fossil energy by one country (and therefore the total CO2 emission of that country) is an externality
to other countries. As there is no supranational agency that controls these emissions, we consider
a dynamic game framework where countries either cooperate, or do not cooperate, in their decisions on
CO2 emissions. One of the main reasons for choosing a dynamic framework is the important property
of CO2 that once it is in the atmosphere, part of it stays there for a long period of time (estimates
range from 30 to 95 years for 50% of the CO2). In this way, we can incorporate both the impact of
long- and short-term strategies. As such, this paper belongs to the literature that uses the framework
of differential games to formulate and analyze intertemporal many decision-maker problems in the
economics and management of pollution (see, e.g., [12,13] for surveys on this literature and [14] for the
economic impact of many issues related to and resulting from global warming).

One of the first papers that treat global warming as a multi-agent problem is [15]. In that
paper, the authors develop a discrete-time, dynamic, multi-agent, general-equilibrium model (RICE)
incorporating climate and economy. They compare a cooperative and a non-cooperative approach
in which all countries choose climate policies to maximize global (respectively own) consumption.
The energy transition model we will develop here uses the same basic economic framework. On a more
detailed level, both models differ as we focus here on a different problem. The most striking
differences between both models are that we distinguish between the use of green energy and
fossils, use a continuous-time framework and a more explicit relationship between the impact of
CO2 emissions on production, and we do not model consumption and temperature effects of CO2

emissions explicitly. Furthermore, our model is closed using a different welfare function. As the focus
of this paper is to explore which factors have a major impact on the transition of fossils towards
using green energy, our welfare function considers that a certain fraction of output must be realized
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using energy, the use of green energy might be more costly than using fossils, and that CO2 emissions
are disliked.

One of the first models that address climate negotiations as a game is developed in [16]. The model,
called World Induced Technical Change Hybrid (WITCH), captures the economic interrelations
between world regions. It is designed to analyze the optimal economic and environment policies in
each world region as the outcome of a dynamic game. In this WITCH model, investment decisions of
countries are also interrelated. As emphasized before, the goal of our research is to provide a starting
point in examining uncertainty in climate models from a dynamic game perspective such as the
WITCH model.

Our benchmark model is closely related to a similar model as used in [17] to analyze the impact
of pollution over time on the fossil fuel/green energy ratio in a dynamic world characterized by four
players that have different interests. Results obtained with that model seem to be quite plausible,
and, therefore, the question in that paper was already posed how robust the presented results are
with respect to different sorts of model uncertainties. This paper tries to provide some additional
information on this issue. For that purpose, we reconsider a somewhat simplified version of that
model in a two-player context. One player represents all countries affiliated with the Organization
for Economic Cooperation and Development (OECD) and the other player represents countries not
affiliated with the OECD, called non-OECD countries. Using a number of the uncertainty approaches
mentioned above under (i)–(v), we investigate which factors (parameters, relations, scenarios, etc.)
impact equilibria and strategies most. That is, we want to get a broad overview of the uncertainty
involved, by applying and evaluating multiple uncertainty approaches as described above. Results of
this study can be used to conclude which parts of similar models need special attention when
calibrating. The outline of the rest of the paper is as follows. In Section 2, we create our simple
dynamic linear two country growth model along the lines of [17] based on the standard Solow growth
model introduced in [18]. We integrate the impact of CO2 emission on economic growth in this model
to get a world energy model. Using an extensive model calibration, we arrive at our benchmark model.
In Section 3, we perform some experiments with this benchmark model. This to illustrate the basic
operation of the model and explain the outcome of the model by investigating the use of the different
forms of energy for both players under different scenarios. Next, in Section 4, we perform an extensive
uncertainty analysis of this model. The approaches (i), (ii), and (iv) for measuring uncertainty in
a model, discussed above, are used to analyze this impact. Section 5 concludes. The appendix contains
elaborations on several issues.

2. The Model

In this section, we formulate our benchmark endogenous growth model. The model is based
upon the standard Solow exogenous growth model introduced in [18]. The model is obtained along
the lines of [17]. Therefore, we do not provide all details here again. Below, we start by introducing the
control, state, and output variables of the dynamic model. Then, we discuss the basic model equations
that describe the dynamic system, and the welfare function that each player wants to maximize.
Then, we adjust the model so that the production function satisfies constant returns to scale. We end
up with a nonlinear model, which means that we cannot solve it directly. Instead, we assume that
both countries operate within the neighborhood of the equilibrium of this nonlinear model. If a shock
occurs to one of the variables, i.e., the model is out of this equilibrium, it is assumed that both players
want to return to the equilibrium as soon as possible. Finally, we approximate the dynamics around
the equilibrium of the (nonlinear) model by a linear model. This model is then used for our benchmark
results about optimal strategies.

In this paper, we consider a two-player setting. With Yi denoting the output, Fi the production/use
of fossil energy, Gi the production/use of green energy, Ki the amount of capital, Li the total population,
Ti the state of technology, Ei the total CO2 emission, and Ai measuring the total factor productivity,
all in country i (i ∈ {1, 2}); the basic model equations are as follows,
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Yi(t) = Ai(Ki(t))αi (Li(t))βi (Ei(t))γi (Ti(t))κi , αi, βi, κi ≥ 0, (1)

K̇i(t) = siYi(t) + sijYj(t)− δiKi(t) + τiTi(t), (2)

Ṫi(t) = giTi(t) + gijTj(t) + εiKi(t), (3)

Ėi(t) = ζiFi(t) + ζijFj(t)− ξiEi(t), (4)

L̇i(t) = ηiLi(t), with j = 2 if i = 1, and j = 1 if i = 2. (5)

That is, in Equation (1) we assume that production is provided by a Cobb–Douglas function
which, in particular, depends on total CO2 emission levels and the state of technology. Notice that,
as CO2 emissions may have a negative influence on the production, γi could be a negative number.
The change in capital (2) is endogenous and depends on domestic and foreign production output,
depreciation of the current capital, and domestic technology. CO2 emissions are included here as
a separate growth factor to model its effect on economic growth as predicted by the IPCC reports.
Technological progress depends on both domestic and foreign technology and the amount of domestic
capital (3). The change in CO2 emission is endogenous too and increases due to domestic and foreign
use of fossil fuels and depreciation of the current stock of CO2 emission (4). We assume that the increase
in CO2 emission due to the domestic use of fossil fuels is proportional to the amount of used fossil
fuels. Finally, labor supply is assumed to grow at a constant rate ηi (5).

Furthermore, with U(t) := μiYi(t)− (Fi(t) + Gi(t)) and E(t) := E1(t) + E2(t), we assume both
countries like to minimize the following objective function,

Oi =
∫ ∞

0
e−θi t

(
U2(t) + πiE2(t) + ρiG2

i (t)
)

dt. (6)

Here, μi is the proportion of output in country i that can only be produced with the use of energy.
This means that μiYi(t) is the required energy at time t. Therefore, Fi(t) + Gi(t), ideally, needs to be
equal to μiYi(t). In mathematical terms, we want U(t) to be as close to zero as possible. Therefore,
we minimize U2(t). In this objective function, the weight of meeting these energy requirements is set
equal to 1 to emphasize the need for realizing this objective. Factor ρi represents the disadvantages
of using green energy for country i. It captures, for instance, the possibly higher price of using green
energy in a country. Furthermore, each country has its own availability of resources. It might be
difficult to use green energy, because there are no resources in the neighborhood. Note that we multiply
this parameter with E2(t) instead of E(t). This is done in order to make larger deviations from the
equilibrium increasingly less preferred than small deviations from the equilibrium. Notice that this
interpretation makes it superfluous to introduce a separate penalty for using fossil energy in the
objective function like in [17]. Factor πi expresses that the higher the CO2 emission, the more it
is disliked. For instance, it may be used to express that emitting lots of CO2 entails costs implied
by environmental changes. Note that, again, we square the variable G(t) for similar reasons as
for E(t). The values of both ρi and πi imply a priority among the terms in the objective. For the
calibration of these two parameters, we refer to Appendix A. For convenience, we rewrite the objective
as a maximization problem. Minimizing (6) is the same as maximizing next total discounted welfare:

Wi =
∫ ∞

0
e−θi t

(
−U2(t)− πiE2(t)− ρiG2

i (t)
)

dt. (7)

Under the assumption that the Cobb–Douglas production functions satisfy constant returns
to scale (i.e., αY(K, L, E, T) = Y(αK, αL, αE, αT), or, in this specific case, the production function
parameters satisfy αi + βi + κi + γi = 1), above equations can be rescaled in terms of effective
labor. Therefore, to achieve constant returns to scale, we define our new set of variables as follows,
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yi := log(Yi
Li
), ki := log(Ki

Li
), ti := log( Ti

Li
), ei := log( Ei

Li
), fi := log( Fi

Li
) and gi := log(Gi

Li
).

Then, Equations (1)–(5) can be rewritten as,

yi(t) = log(Ai) + κiti(t) + αiki(t) + γiei(t)

k̇i(t) = −(ηi + δi) + e−ki(t)
(

sieyi(t) + sije
yj(t)+t(ηj−ηi) + τieti(t)

)
ṫi(t) = −ηi + gi + e−ti(t)

(
gije

tj(t)+t(ηj−ηi) + εieki(t)
)

ėi(t) = −(ξi + ηi) + e−ei(t)
(

ζie fi(t) + ζije
fj(t)+t(ηj−ηi)

)
. (8)

We also rewrite the objective (7) in terms of the new variables. First, we rewrite objective (7) in
terms of labor:

Wi =
∫ ∞

0
L2

i (t)e
−θi t

⎛
⎝−

(
μi

Yi(t)
Li(t)

−
(

Fi(t)
Li(t)

+
Gi(t)
Li(t)

))2

− πi

(
Ei(t)
Li(t)

+
Ej(t)
Lj(t)

Lj(t)
Li(t)

)2

− ρi

(
Gi(t)
Li(t)

)2
⎞
⎠ dt.

= L2
i (0)

∫ ∞

0
e(2ηi−θi)t

⎛
⎝−

(
μi

Yi(t)
Li(t)

−
(

Fi(t)
Li(t)

+
Gi(t)
Li(t)

))2

− πi

(
Ei(t)
Li(t)

+
Ej(t)
Lj(t)

Lj(0)
Li(0)

)2

− ρi

(
Gi(t)
Li(t)

)2
⎞
⎠ dt.

Note that for the second equality we use that ηi equals ηj. This assumption is explained in
Appendix B. Now, we apply the monotone log transformation to this new objective. This means that
we can write the objective in terms of the new variables as follows, i.e., maximizing (7) is the same
as maximizing

wi =
∫ ∞

0
e(2ηi−θi)t

⎛
⎝−u2(t)− πi

(
ei(t) + ∑

j �=i
piej(t)

)2

− ρig2
i (t)

⎞
⎠ dt, (9)

where u(t) = μiyi(t) − ( fi(t) + gi(t)). Furthermore, p = [Ψo Ψno], where Ψi is the total number
of people in country j divided by the total number of people in country i. Next, we calibrate our
parameters in the above model (8) and (9). We choose to concentrate on the OECD countries and
the non-OECD countries as our two parties involved. Note that we want to define a simple case
of two (interrelated) parties for which information is widely available (to be able to calibrate the
parameters). It is highly likely that within one of these groups there is no common interest. It might
be necessary to include more players that do have common interests. This is beyond the scope
of this research. This research can be seen a starting point in examining uncertainty in climate
models from a dynamic game perspective. Therefore, we choose two parties for which information
is widely available. There are two databases where most of the parameters are calibrated from.
http://data.oecd.org from the OECD and http://data.worldbank.org from the World Bank. For the
OECD countries, finding appropriate data is not a problem. For the non-OECD members this
is, in particular for small countries, not always the case. As these small non-OECD countries
are very small in all aspects concerning the variables involved (compared to more developed
(higher-income) non-OECD countries), we exclude them from our analysis. Therefore, for calibration
purposes, we only use information from the higher-income non-OECD countries. A detailed account
for the calibrations of key parameters, initial variables and policy parameters can be found in
Appendix A. Tables 1–3, below, report the results for the OECD (first row in each table) and non-OECD
(second row in each table) countries. We use the acronym O (n-O) for the OECD (non-OECD) countries.

80



Energies 2020, 13, 482

Table 1. Non-spillover parameters.

A α β γ κ η δ τ ε ξ

O 2042.5 0.23 0.76 −0.021 0.027 0.0073 0.062 0.018 0.114 0.023
n-O 499.1 0.35 0.69 −0.050 0.011 0.0073 0.075 0.031 0.031 0.023

Table 2. Initial variables calibration.

y k t e f g

O 10.55 12.30 5.45 2.29 8.13 6.67
n-O 9.85 10.58 5.18 2.46 8.38 5.89

Table 3. Policy parameter calibration.

θ μ π ρ

O 0.04 1.40 0.45/250 0.55/250
n-O 0.06 1.45 0.41/250 0.59/250

Clearly if, e.g., the OECD countries like to determine their optimal use of fossil and green energy
over time by maximizing their welfare (7) subject to the dynamic constraints (1)–(5), these energy levels
depend on the corresponding levels chosen by the non-OECD countries. The same observation applies
of course for the non-OECD countries optimal energy levels. Therefore, additional assumptions are
needed before we can conclude which energy levels are chosen by both sets of countries over time.
A common assumption made within this context is that both sets of countries use such strategies that
neither of them has an incentive to deviate from their strategy. That is, they use (open-loop) Nash
strategies. Assuming that both OECD and non-OECD countries use such strategies to maximize
their welfare, we derive in Appendix B the resulting strategies and, moreover, calculate the resulting
steady state values of the variables. As one can see from the equations tabulated at the end of this
Appendix B, even under these simplifying assumptions, the calculation of these steady state values
is not a trivial task. It requires the solution of a set of 18 highly nonlinear equations. With some
abuse of notation we will call these steady state values, that are obtained assuming players use Nash
strategies, the equilibrium of the model. We use the notation se to indicate the steady state value of
a variable s. Equilibrium values, using our benchmark parameters, are tabulated (again row-wise for
both countries) in Table 4.

Table 4. Equilibrium variables.

ye ke te ee f e ge

O 14.73 28.84 30.40 16.35 12.28 8.33
n-O 16.57 30.92 31.95 16.32 12.26 11.74

We want to briefly discuss two features of this equilibrium. Note that both countries use more
fossil energy than green energy in the equilibrium. There are two model features that play a role in this
phenomenon. First, we do not include changing parameters over time. For instance, it might be the
case that it becomes easier to access green energy over time. However, this effect is beyond the scope of
this research. Second, the initial calibration of the ratio between π and ρ (for details, see Appendix A)
may play a role. If we adjust this ratio, for instance, by multiplying πinitial with a factor (keeping ρ the
same), we end up with different results. As an example, we plot in Figure 2 the equilibrium share of
green energy for different factors. The initial calibration for π is denoted by πinitial.

Note that a higher π means that both countries dislike emitting CO2 more. This effect is also
observed in Figure 2, where we observe that the total share of green energy increases when π increases.
Furthermore, Figure 2 clearly illustrates the sensitivity of the model equilibrium outcomes with respect
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to the choice of these preference parameters, π versus ρ in the utility function. The non-smooth
behavior is probably due to numerical issues, in the sense that the calculation of the full equilibria
did not occur yet for certain values of α. Note that this figure only shows the possible variation
in equilibrium outcomes due to changes in the ratio between π and ρ. In Section 4, we limit the
investigation to the more realistic options of this ratio. In Section 4, we also show that uncertainty in
these policy parameter choices is the major cause for variability in equilibrium outcomes of the model.
On the other hand, we will see that its impact on implied optimal out-of-equilibrium strategies is not
that large and more in line with the impact other sources of uncertainty have.
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Figure 2. Percentage green energy with π = α · πinitial with α ∈ [1, 2.5].

Second, we observe that the non-OECD countries use much more green energy in the equilibrium
than the non-OECD countries. One of the causes of this phenomenon is the difference in the number
of working people for both countries. For the number of working people in OECD (non-OECD) we
use the number 837,816,057 (227,833,932), as discussed in Appendix A. This results in p = [0.27, 3.68]
(see objective (9)). In other words, the weight in the objective of the non-OECD countries on the CO2

emission per capita of OECD countries is 13 times as high as the weight in the objective of the OECD
countries on the CO2 emission per capita of non-OECD countries. Therefore, the CO2 emission of the
OECD countries already negatively affects the objective of the non-OECD countries. To minimize
the impact of the total CO2 emission on their objective, the non-OECD countries may decide to
increase their share of green energy. Therefore, in our model, the difference in number of working
people per country is one of the causes of the non-OECD countries using more green energy than the
OECD countries. Another cause for the discrepancy between the green energy use of both countries is
the fact that total CO2 emission of both countries is equally disliked for both countries. In mathematical
terms, the total CO2 emission in the objective of country i is ei + piej, where j represents the country
not equal to i. However, one may argue that a country should not care that much about the total CO2

emission of another country. One reason might be that an other country cannot influence this CO2

emission directly. This can be quantified by replacing the ei + piej with ei + Mpiej, where M ∈ [0, 1]
represents the proportion of foreign CO2 emission that is disliked by an other country. In Figure 3,
we show for all M ∈ [0, 1] the total share of green energy for both countries. Note that M = 1 is the
original case.

We observe that using M ≤ 50%, results in approximately the same green energy use for both
countries. A higher M results in equilibria in which the non-OECD countries use a greater percentage
of green energy than the OECD countries. Note that for the rest of this paper we keep using M = 1.

To see how the developed model performs if, e.g., shocks occur in the emission level of carbon
dioxide, we assume that both countries operate within the neighborhood of the steady-state values
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mentioned above. We can approximate the dynamics around the equilibrium of the nonlinear model
by the next linear model (see Appendix C):

yli(t) = κitli(t) + αikli(t) + γieli(t),

k̇li(t) = s̃i(yli(t)− kli(t)) + s̃ij(ylj(t)− kli(t)) + τ̃i(tli(t)− kli(t)),

ṫli(t) = g̃ij(tlj(t)− tli(t)) + ε̃i(kli(t)− tli(t)),

ėli(t) = ζ̃i( fli(t)− eli(t)) + ζ̃ij( fl j(t)− eli(t)). (10)

The corresponding parameters are provided, row-wise again, for both countries in Tables 5–7.
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Figure 3. Percentage green energy with ei + Mej with M ∈ [0, 1].

Table 5. Parameter calibration for non-spillover parameters, linearized model.

α γ κ τ̃ ε̃ ξ

O 0.23 −0.021 0.027 0.0854 0.0240 0.023
n-O 0.35 −0.050 0.011 0.0869 0.0111 0.023

Table 6. Parameter calibration for spillover parameter: s̃ and g̃, linearized model.

s̃ (∗10−6) O n-O g̃ O n-O

O 0.1612 0.0367 0.0170 0.0236
n-O 0.0054 0.1499 0.0375 −0.0050

Table 7. Parameter calibration for spillover parameter: ζ̃, linearized model.

ζ̃ O n-O

O 0.0009 0.0297
n-O 0.0009 0.0295

In particular, notice that output gap dynamics in non-OECD countries are more than twice as
vulnerable for CO2 emissions as OECD countries. Therefore, a priori one may expect that the impact of
a CO2 emission shock will have much more consequences in terms of policies in non-OECD countries
than in OECD countries. This will be clearly illustrated in the simulation study performed in the next
section too.

The corresponding objective function for both players can then be approximated by carrying
out a second-order Taylor expansion of the welfare functions wi (9). This results in a quadratic cost
criterion (see Appendix D for details):
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J̃i :=
1
2

∫ ∞

0
[xT(t) uT(t)]H

′′
i

[
x(t)
u(t)

]
dt, i = 1, 2, (11)

where xT = [kl1 kl2 tl1 tl2 el1 el2] is the state variable of our model (10); uT = [ fl1 gl1 fl2 gl2] the
corresponding control variable and matrix H

′′
i is as reported in Appendix D.

Thus, in conclusion, the almost optimal response of both OECD and non-OECD countries when
the model in equilibrium is disturbed can be determined by solving above linear quadratic differential
game (10) and (11). Again, to determine this response, assumptions have to be made on whether both
sets of countries will cooperate or not to fight the disturbance. We consider both options and discuss
them in some more detail in the next section.

3. Benchmark Model Simulations

In this section we illustrate, by considering a couple of scenarios, how models (8) and (9)
will approximately respond if it is out of equilibrium. We visualize the responses by strategy
curves. These curves visualize how the model responds to a shock by showing the percentage
increase (or decrease) of all variables. Therefore, the vertical axes represent percentages. To that
end, we perform two different kind of shocks to the equilibrium: symmetric shocks and asymmetric
shocks. Symmetric shocks are shocks that hit both countries at the same time. Asymmetric shocks
are shocks that occur to just one of both countries. Furthermore, we distinguish between two forms
of cooperation. We have a cooperative situation and a non-cooperative situation. In the cooperative
situation, we discuss a regime where both countries form a coalition. In the non-cooperative situation,
we discuss the regime where both countries play actions in the Nash sense. Within the context of this
paper, we only analyze emission shocks.

To perform the simulations, we use the algorithm developed in [19] to solve N-player affine
linear-quadratic open-loop differential games. Clearly, the use of open-loop strategies is made to
simplify the analysis. A discussion of pros and cons using this setting can be found in, e.g., [17].
In particular, we recall some observations from literature suggesting that the difference between
open-loop and feedback policies in practice might not be that large (see, e.g., [20,21]).

3.1. Asymmetric Emission Shock

We start with an asymmetric positive CO2 emission shock, which hits the non-OECD countries.
Such a shock impacts the model outcomes in two ways. First, it has a direct effect on the welfare
functions of both countries via an increase of total CO2 emission levels. Notice that this negative impact
can only be mitigated by reducing the total amount of fossil energy that is used (cf. (4)). The second
effect is that it directly reduces output in the non-OECD countries. Therefore, instantaneously,
less energy is required in order to meet the production requirements in non-OECD countries. However,
to return to its equilibrium value, in the long end, more energy is required again. Together with the
discounting effect, which makes that future cost are less important than current cost, this makes it
intricate to predict the reaction of both countries in terms of their use of energy in general.

Figure 4 shows the total response over time of both countries in a non-cooperative setting in terms
of energy consumption, f and g, for our parameter setting. The first point that stands out is the scaling
of the reactions in both countries. As the shock only hits the non-OECD countries, we expect less
pronounced reactions in the OECD countries. This is clearly demonstrated in both plots. On a more
detailed level, we see that both countries immediately start to use more green energy and less fossil
energy. This can be explained as follows. For non-OECD countries, initial production is affected by
the CO2 shock. As already indicated above, the only way to mitigate this impact is by reducing the
amount of fossils used, and, to meet the energy requirements for production, increase the amount
of green energy accordingly. For OECD countries, the only direct impact of the shock comes via the
increased total emission level. To compensate this increase they start to reduce their domestic fossil
energy use, and therefore increase their green energy use.
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Figure 4. Control variables.

After some time, we observe even that OECD countries use amounts of fossils slightly above
its equilibrium value. This behavior is explained by the choice of the discount factor. If we decrease
the discount factor of the OECD countries to, for instance, 0.01, then the use of fossil energy by these
countries remains below its equilibrium value anytime. As in that case, the future realization of CO2

levels are also very relevant and, therefore, the instantaneous advantages of using fossils compared to
green energy evaporate. Therefore, in short, the slight percentage increase in fossil energy use shown
in Figure 4 is caused by a relative strong preference for short-term objective gains.

Figure 5 shows the corresponding evolution of capital, technology, and stock of emissions for
both countries. Note that the line corresponding to capital coincides with the line for technology for
both the OECD and non-OECD countries. We see that for both the non-OECD and OECD countries
capital and technology are almost not affected by the emission shock. Moreover, as explained above,
the lagged behavior of emission levels in the OECD countries is due to the increased use of green
energy by the non-OECD countries, which gradually normalizes over time again.
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Figure 5. State variables.

Finally, Figure 6 displays the corresponding output drop occurring over time for both OECD and
non-OECD countries.

Next we consider the case how both countries respond if they decide to fight the shock collectively.
This is modeled by assuming that control instruments by both countries are determined such that the
weighted sum of both welfare functions is collectively minimized. We assume weights to be equal,
i.e., 1

2 . The main difference in the simulation results (strategies) is that the OECD countries increase
their green energy use compared to the non-cooperative setting. This is due to the fact that the amount
of CO2 emission produced by OECD countries greatly affects the objective of non-OECD countries.
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One reason for this is that the OECD countries have four times as much (working) population as the
non-OECD countries (see Appendix A). Now that the OECD countries also care about this objective,
they can directly reduce this effect by increasing their own green energy use even more (and therefore
reducing the total CO2 emission). Finally, Table 8 reports the total losses in the cooperative setting.
Here we use the acronym NC (C) for the non-cooperative (cooperative) setting.
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Figure 6. Output variables.

Table 8. Losses under asymmetric shock.

NC C Loss Reduction (%)

O 0.0010 0.0024 −140.0
n-O 0.0139 0.0102 26.6

First, we see that the total loss in the cooperative setting is lower than the total loss in the
non-cooperative setting. Second, we observe that cooperation for non-OECD countries would be
profitable, where OECD countries would not profit from it. The higher costs of non-OECD countries in
the non-cooperative setting are now shared costs between both countries. This means that a cooperative
setting is likely to be only realistic when OECD countries are in any other way compensated for
this cost-sharing.

3.2. Symmetric Emission Shock

Next, we consider a symmetric emission shock, meaning the OECD countries are now also hit by
an emission shock. We suppose that the shock that hits the OECD countries is relatively as large as the
shock that hits the non-OECD countries. To accomplish this, we base the shocks upon the calculated
equilibrium emission value. Therefore, to have a relative shock for OECD countries of 1 an absolute
shock of (1/16.32) · 16.35 = 1.0018 is used. First, we consider a non-cooperative setting again.

Figure 7 illustrates the response of both countries in terms of energy consumption.
Again, first notice the difference in scale of both responses. Having a closer look at both graphs,
we see that both countries react in a similar way now. They both increase their fossil energy use in
favor of their green energy use. The reaction by the OECD countries is in line with their reaction we
observed in the asymmetric case. As their production is now directly hit by the CO2 shock, they start
to use more green energy in order to close the production gap.

In Figure 8, we again show the results for capital, technology and stock of emissions. Also these
graphs are similar to the asymmetric shock case. The only difference is that the OECD countries
experience now from the outset on an increase in the stock of emissions. Note that this is due to them
being also hit by an emission shock.

Concerning output, we see from Figure 9 that the emission shock hits the non-OECD countries
most; as output in the OECD countries is less vulnerable for CO2 emissions (cf. Table 1, γi, and (1)),
therefore less changes in energy consumption are required to close the production gap.
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Figure 7. Control variables.
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In a cooperative setting, we observe the same changes in response strategies as in the asymmetric
shock case. The OECD countries increase their green energy use to accomplish a total CO2 emission
reduction. Table 9 reports losses for both countries and the corresponding cost reduction under both
cooperation regimes.

Table 9. Losses under symmetric shock.

NC C Loss Reduction (%)

O 0.0228 0.0593 −160.1
n-O 0.3331 0.2386 39.6
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Again, we observe that the total loss in the cooperative setting is lower than in the non-cooperative
setting. Second, we observe that the losses are higher for both countries compared to the losses in the
asymmetric shock scenario. This makes sense, as both countries must deal with an additional shock
now. We also see, similar as in the asymmetric scenario, that the non-OECD countries are the only one
who profit from cooperation. Finally, we observe that the relative changes between the non-cooperative
and cooperative setting are slightly larger than in the the asymmetric shock occurred. Note that this is
likely also caused by the higher total loss when both countries are hit by an emission shock.

4. Uncertainty Analysis

Clearly in arriving at our linear adjustment model (10) and (11) several approximations are
made, and the question is how sensitive results obtained in this linear model are to inaccuracies in
the original model specification (8) and (9). In Sections 4.1–4.5 below, we consider some potential
inaccuracies and analyze how they impact the results presented in the previous section. To that end
we distinguish two kinds of impact. The impact on the equilibrium values and the impact on the
optimal out of equilibrium strategies. In Section 4.1, we address the consequences of the assumption
that our production functions satisfy constant returns to scale. Section 4.2 considers the effects of
having stochastic parameters. In this section we investigate parameters occurring in the dynamics
of the model. Section 4.3, on the other hand, looks at the parameters occurring in the objective of the
model. Then, in Section 4.4, we assume that the realization of capital contains a stochastic term. Finally,
in Section 4.5, we consider a scenario where both the initial use of green energy and the parameter ρ,
which represents the disadvantage of using green energy, are correlated.

4.1. The Production Function

In this section, we reconsider the assumption that the production functions (1) satisfy constant
returns to scale. After calibration it turned out that the sum of the involved parameters, αi + βi +γi + κi,
was equal to 0.905 for OECD countries and 1.03 for non-OECD countries. The corresponding tabulated
numbers in Table 1 were obtained by normalizing these parameters for both countries. In this section,
we consider how equilibrium values of (8) and (9) change if we fix all but one of these parameters
to their calibrated value, and estimate the remaining parameter as the difference between one and
the sum of the calibrated parameters, e.g., if we calibrate αi = ᾱi, βi = β̄i, γi = γ̄i, we fix κi at
1 − ᾱi − β̄i − γ̄i. We calculate for all four possible combinations corresponding equilibrium values
of (8) and (9). Table 10 reports the average of all equilibrium variables for all these four possibilities.

Table 10. Weighted equilibrium variables.

y k t e f g

O 15.99 29.83 31.39 17.06 13.12 9.24
n-O 16.60 31.91 32.94 17.03 12.79 11.26

Computing the average absolute difference for both countries from the original equilibrium results
in respectively a 6.2% (OECD) and 1.8% (non-OECD) difference. The largest percentual deviation is
for the fossil energy use of the OECD countries. This difference is almost 11%.

4.2. Stochastic Parameters

Next, we consider the case that two of the key parameters in the model—ξ and θ—are only
approximately known. Note that ξ represents the natural depreciation rate of CO2 emissions, and θ

represents the discount factor for future losses.
First, we look at ξ. We initially assumed, based on [22], a CO2 lifetime of 30 years for 50% of the

CO2 emission today. The IPCC, on the other hand, estimates a CO2 lifetime of 50 years for 50% of
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the CO2 emission today. This results in a 20 year difference between the two studies. We estimate
a distribution of the lifetime of CO2 emission as shown in Figure 10.
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Figure 10. Estimated probability distribution ξ.

After performing many simulations, apparently this assumption does not have a large impact on
the resulting equilibrium values and on the value of the objective function. Complementary to this
approach we also compute the equilibrium values for the complete, specified range of CO2 lifetimes.
It turns out that the CO2 lifetime is not affecting the equilibrium values much. Figure 11, shows the
corresponding plot of the equilibrium values for OECD and non-OECD countries.
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(a) OECD equilibria, CO2 lifetimes
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Figure 11. Equilibrium values, CO2 lifetimes.

As we can see in Figure 11, the equilibrium values are rather constant for the specified range of
CO2 lifetimes. By comparing equilibrium outcomes just for extreme choices of this parameter, we get
the percentage changes tabulated in Table 11.

We see that the average percentage difference is less than 2% for both countries.
Finally, we also determine the effect on the optimal strategies that a change in this parameter

has. As an example, Figure 12 shows the effect on the optimal control variables if the lifetime
of CO2 is assumed to be 50 years (New) instead of 30 years (Old) in the non-cooperative setting
when an asymmetric shock only hits the non-OECD countries. We see that both trajectories do not
change much.

Second, we investigate the impact of uncertainty with respect to the discount rate, θ. Note that we
set the discount rate equal to 4% for the OECD countries and 6% for non-OECD countries. According
to data from the Impact Data Source [23], there is a variability with a spread of 0.5 in these numbers.
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Therefore, we consider the case that the discount rate for OECD (non-OECD) countries is normally
distributed with a mean of 4% (6%), and a variance of 0.2%. Similar to the previous case we also
calculate the equilibrium values on a grid where θ1 ranges between 3.5 and 4.5 and θ2 ranges between
5.5 and 6.5. Figure 13 shows the corresponding equilibrium values for the green energy consumption.
Results of the other variables are visualized in Figures A2 and A3 in Appendix E.

Table 11. Percentage difference from original equilibrium.

y k t e f g Average

0.61% 1.13% 1.07% 2.72% 0.54% 0.85% 1.15%
0.79% 1.06% 1.02% 2.46% 1.79% 2.50% 1.60%
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Figure 12. Control variables.

(a) OECD countries (b) non-OECD countries

Figure 13. Equilibrium values, green energy use.

In Figure 13, we observe that both countries have a higher equilibrium value of green energy
use when both discount rates get smaller. Smaller discount rates mean that the short-term goals are
becoming less important compared to the long-term goals (objective values). Second, we observe
that the green energy use of the non-OECD countries depends more on the discount rate of the
OECD countries than vice versa. One of the main reasons for this phenomenon is the parameter γ,
which implicitly determines how much the output is affected by CO2 emission. We calibrated that the
non-OECD countries experience a larger (negative) impact on output when the total CO2 emission
increases in that country (see Appendix A). When the discount factor used in the OECD countries
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is very high, the OECD countries use the smallest amount of green energy (and therefore more
fossil energy). This means that the total CO2 emission in the atmosphere increases. If the non-OECD
countries would also increase their fossil energy use, the total CO2 emission in the atmosphere increases
even more. This would have a large impact on their output. Therefore, the amount of green energy use
for the non-OECD countries depends more on the discount rate of the OECD countries than vice versa
(to reduce the total CO2 emission in the atmosphere).

Similar simulations as for the ξ variable show that changes in the discount factor do not influence
the optimal strategies of both players much. Finally, Table 12 below shows the maximal absolute
percentage difference between all computed equilibria.

Table 12. Percentage difference from original equilibrium.

y k t e f g Average

1.01% 2.15% 2.04% 3.40% 5.29% 7.79% 3.61%
1.18% 2.01% 1.94% 3.43% 4.01% 4.31% 2.81%

We observe that the largest percentage difference occurs in the variables for green and fossil
energy. As discussed, an alternative equilibrium may be reached which results in different values for
these variables. From this table, we see that the average percentage difference in both countries is
below 4%.

4.3. Stochastic Policy Parameters

A parameter which turns out to affect results more than those considered in the previous
subsection is the parameter πi in the objective function. This parameter measures the social cost
of carbon emissions (SCC). That is the (monetized) damages associated with excess carbon emissions in
a given year (relative to its equilibrium value). We use a distribution for this parameter πi, based upon
the results described in [24]. In this paper, 28 studies are listed with all their own estimates of the
social cost of carbon. We exclude some of these studies because they present very extreme results and,
according to this paper, the used methods to arrive at these results are questionable. Figure 14 shows
how often each different value for the social cost of carbon is used in the set of studies. Note that we
divide the values in sectors with a $15 range. The SCC is represented per metric ton of carbon dioxide
emission (/tC).
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Figure 14. Distribution of the social cost of carbon (x), according to the studies discussed ($).

Our initial estimates for π, 0.45/250 for OECD countries, and 0.41/250 for non-OECD countries,
are chosen in line with the most occurring range of SCC values, i.e., 5–20 $/tC. Figure 14 shows
that all remaining studies estimate this cost to be higher. This means that it could be that we are
underestimating this cost by our choice for πi. We sample 100 values from the distribution implied by
the histogram in Figure 14. For each trellis to the right we increase πi by a certain amount. This amount

91



Energies 2020, 13, 482

is based upon [25]. In this report, the economic costs of premature deaths from Ambient Particulate
Matter Pollution (APMP) and Household Air Pollution (HAP) are tabulated as a percentage of GDP
for a list of countries. Classifying the list in OECD and non-OECD countries results in the statistics
shown in Table 13.

Table 13. Economic cost of the specified pollution as a% of GDP.

Minimum Average Maximum

O 0.3% 4.9% 19%
n-O 3.3% 17.0% 35.2%

We assume that our initially estimated πi belongs to the average case in this table. For the OECD
countries, we see that the economic cost of the specified pollution can be 4 times higher than average.
This means that we allow πoecd to become 4 times bigger. This extreme case will correspond to the last
trellis of Figure 14. The same procedure is applied for the non-OECD countries. In this case πnon-oecd
can become approximately 2 times larger than initially calibrated.

After some extensive calculations, we obtain the histograms of equilibrium values plotted in
Figure A4. From these histograms, we see that changing this parameter may have a large impact on
the equilibrium values of e, f and g. To investigate the impact of πi in more detail, Figures A5 and A6
show the equilibrium values for both countries if these parameters are chosen from a grid, where πoecd
ranges from 0.45/250 to 4 · 0.45/250, and πnon-oecd from 0.41/250 to 2 · 0.41/250. The graphs also show
some outliers for the variables y, k and t. Some further simulations show that these are due to slow
convergence of parameters. In Table 14, we state the maximal percentage differences from the original
equilibrium for all possible combinations of π.

Table 14. Percentage difference from original equilibrium.

y k t e f g Average

3.92% 6.50% 6.16% 41.94% 55.15% 110.73% 37.40%
2.98% 5.84% 5.64% 41.71% 52.53% 106.58% 35.88%

We see that most differences occur in the variables e, f , and g. Figures A7 and A8 visualize this
impact from a different perspective. Here, we show equilibrium values for the e, f , and g variables for
both countries, where we focus on the possible impact of the value of π in the other country. The first
thing that draws the attention is that the figures corresponding to the non-OECD countries typically
have a larger black band than the figures corresponding to the OECD countries. This means that for
a given value of πnon-oecd, the variables of the non-OECD countries depend more heavily on the choice
of πoecd than vice versa. Recall that in the analysis about the discount factor, we also concluded that
the amount of green energy used by the non-OECD countries depends more on the discount factor
used by OECD countries than vice versa.

We note that the EU has set itself a long-term goal of reducing greenhouse gas emissions by
80–95% when compared to 1990 levels by 2050. If we assume that we must reach the average of this
long-term goal (87.5% reduction) within 60 years, then we must reduce greenhouse gas emissions by
3.4% each year. This means that we reach this goal when our equilibrium emission value is smaller
than 0.96636 · 22.20 = 4.7064 (using the data from 2014). Computing the equilibrium values using
different values for πoecd, we conclude that we never reach this e if πoecd ∈ (0.45/250, 4 · 0.45/250)
(see also Figure A7). This means, to keep track of this goal, other parameters play a significant role in
reducing the greenhouse gas emissions. For instance, it should become easier to access green energy,
green energy should be subsidized, fossil energy should become more expensive (e.g., by introducing
a carbon tax).

To visualize the impact on strategies and state trajectories, Figures 15–17 show for the asymmetric
emission shock these trajectories in case π = [4 · 0.45/250 2 · 0.41/250]. For comparison reasons we
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also include the corresponding benchmark plots. We see that all variables return slightly earlier to their
equilibrium values when using the higher values for π. As a result, we also see that OECD countries
increase their green energy use more than in the original setting (in percentage). Furthermore, we see
that the non-OECD countries react in the opposite way, by increasing their green energy use less than
in the original setting. This is possible due to the increase in green energy use by the OECD countries,
which reduces the total CO2 emission in the atmosphere. Observe that the strategies differ by at most
1% (the green/fossil energy use of the non-OECD countries) from the original strategies. Finally, due to
the larger reduction in CO2 emission by the OECD countries, the impact of the shock on the output of
the non-OECD countries is slightly smaller than in the benchmark case (see Figure 17).
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Figure 15. Control variables, simulation with π.
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Figure 16. State variables, simulation with π.
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4.4. Stochastic Relations

One of the equations that might be oversimplified is the relation of the accumulation of capital.
Therefore, it seems reasonable to include some uncertainty in the proposed equation. As we do
not know much about the involved uncertainties, we assume that these are normally distributed,
with mean zero and variance 0.1. Furthermore, we truncate this distribution at values that will cause
the initial variable calibration for the largest k to deviate by more than 5%. This means that the
distribution is truncated at −0.05 and 0.05. We then use this “restricted" normal distribution for
sampling. Therefore, capital accumulation, k̇i, is assumed to be generated by the next equation,

k̇i = −(ηi + δi) + e−ki(t)
(

sieyi(t) + sije
yj(t)+t(ηj−ηi) + τieti(t)

)
+ Λ,

where for every simulation constant Λ is drawn once from the restricted normal N(0, 0.2) distribution.
Roughly speaking, we observe that under this assumption equilibrium values, values for the objective
function and strategies are affected similarly as in the considered stochastic parameter context.
See, Figures A9 and A10 in Appendix E. We observe that, as expected, our original equilibrium
values are close to the most occurring equilibrium values. Analogously to the stochastic parameter
case, we also consider the realization of the equilibrium values if we vary Λ between ±0.05. Figure 18
shows the results.
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Figure 18. Equilibrium values, added values.

We see that if we increase Λ, the equilibrium capital value of both countries increases.
This is easonable, as capital accumulation is increased at any point in time with a constant. Therefore,
equilibrium output increases too (see production function). We also see that both the equilibrium
technology values increase as Λ increases. This is due to the fact that, for both countries, technology
accumulation depends positively upon the capital value. Again, by considering a worst-case scenario
from a noise realization perspective, we like to quantify the involved uncertainty. Therefore, we look
at the maximal, absolute percentage difference of the equilibrium values of the simulated relation and
the original equilibrium. The results are tabulated in Table 15.

We conclude that the average percentage difference in both countries is below 4%.

Table 15. Percentage differences from original equilibrium.

y k t e f g Average

1.49% 3.17% 1.75% 3.06% 4.13% 9.35% 3.83%
2.21% 3.11% 1.65% 3.18% 3.99% 8.69% 3.80%
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4.5. Scenario Analysis

In this section, we want to investigate the impact of considering a larger value for the initial
use of green energy in both countries. Initially, we estimated that the total amount of fossil energy
used is 81.1% (OECD) and 92.3% (non-OECD) from the total energy used. In this section, we evaluate
the outcomes of changing these percentages. First, we decrease both percentages by 5%. Note that,
using more green energy, will typically be an outcome of good availability of resources and a reduced
price. This is automatically taken into account by the new values for π and ρ, which are recalculated
based upon the new initial variable calibrations. We calculate the new equilibrium variables under this
scenario and find that this adjustment has no large impact on the values (or on the optimal strategies).

Also for this scenario analysis we calculate, for all possible combinations of ratios between 0
and 5% for both countries, corresponding equilibrium outcomes. This means that we look at the
equilibrium results where the initial f and g are changed. We determine all equilibrium values when
initial values of fossil energy use varies between 76.1 and 81.1% for OECD countries and between
87.3 and 92.3% for non-OECD countries. Next, we compute for all these values the corresponding
equilibrium values. The results are visualized as dots in Figures A11 and A12 of Appendix E. To see
the general structure in the equilibria more clearly, we fit a plane through the equilibrium values for
each variable. This reduces the noise from the fact that the numerical computations for finding the
equilibria may not have been converged yet. Note that the vertical axis has a small range, which
means that a small amount of noise could already be seen in the plot. Again, the maximal percentage
deviations from the original equilibrium are tabulated in Table 16.

Table 16. Percentage difference from origal equilibrium.

y k t e f g Average

1.55% 2.66% 2.40% 12.31% 4.26% 2.57% 4.29%
1.40% 2.17% 1.86% 13.92% 11.03% 6.86% 6.21%

From this table we see that the maximal percentage difference of both countries is on average 5%.
Note that the maximal deviation relates to the total emission variables. This confirms the observation
that the policy parameters have large impact on the equilibrium values, as shown in Section 4.3.

5. Concluding Remarks

In this paper, we consider a simplistic model that analyzes the ratio between fossil energy use and
green energy use within a context of OECD and non-OECD countries. This model can be viewed as
a simplified two-player version of the model considered in [17]. One of the open issues in that paper is
to see how robust the obtained results are with respect to several uncertainties/modeling inaccuracies.
For that purpose, we develop a simplified version here and determine the main factors that impact
the model outcomes most. Starting from some basic economic relationships, we derive our nonlinear,
two-country, growth model. We determine for this model its equilibrium, under the assumption that
both players want to maximize their welfare in a non-cooperative setting. To see how both players will
react to distortions, we derive the corresponding linear dynamics around the equilibrium. Some shock
simulations with this benchmark model turn out to provide results that are not too unrealistic. We also
consider the question if a coalition of OECD countries and non-OECD countries could be profitable for
both countries. It turns out that this is not the case. The non-OECD countries will, in general, not profit
from this, where the OECD countries will. Moreover, we observe that strategies performed under
a cooperative regime are similar except for the fact that they lead to a faster convergence towards
equilibrium values than those performed under a non-cooperative regime.

As already mentioned above, given the large number of uncertainties involved in modeling this
kind of problems, our main objective is to perform an extensive uncertainty analysis. We start with
analyzing the impact of normalizing the parameters in the production function to satisfy constant
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returns to scale. We observe that the equilibrium values may turn out to deviate on average 6% from
the original equilibrium values. Furthermore, we find that small changes to the parameters used
in the dynamics of the model do not affect the outcome of the model much. Adding, for instance,
stochastics to such a particular parameter results in the worst-case, on average, in 4% deviation from
the original equilibrium values. If we add stochastics to a complete state equation, we also may end up
in an equilibrium in which the variables deviate on average 4% from the original equilibrium values.
This means that both changing the set-up of one of the state equations in our model with a small
amount and changing the parameters within such a state equation with a small amount, have a similar
impact on the outcome of the model.

So far, the uncertainty involved seems to have no direct effect on the optimal strategies of both
players in returning to the equilibrium after an emission shock. However, we also investigate the
uncertainty involved in the parameters that occur in the objective function of both players. In particular,
we investigate the effect on the outcome of the model by changing the preference rate for emitting CO2.
This parameter seems to have a slightly larger effect on the optimal strategies than the parameters we
just discussed. Moreover, we show that it has a large impact on the equilibrium ratio between the use
of fossil and green energy. The impact of it on equilibrium values for the remaining variables is in the
order of the above discussed cases. The higher values of π result in strategies in which the variables
return earlier to their equilibrium values.

In Table 17, a short overview is given where the approximate uncertainty is tabulated for each
analysis. This uncertainty is divided in uncertainty in the equilibrium values and uncertainty in the
optimal strategies of both players. The percentage in the left column of the equilibrium values is based
upon the maximal percentage difference with the original equilibrium. The column with the strategies
is based upon the maximal percentage change in using fossil or green energy.

Table 17. Overview of the uncertainties.

Equilibrium Strategies

Shares of income ≈ 6% ≈ 0%
Parameter (dynamics) ≈ 4% ≈ 0%
Parameter (objective) ≈ 37% ≈ 1% 1

Relation ≈ 4% ≈ 0%
Scenario ≈ 5% ≈ 0%

1 As discussed earlier, the structure is approximately the same.

We conclude that the calibration of the parameters that occur in the objective of the players needs
special attention. These parameters carry the most uncertainty for the outcome of the model. Both in
the equilibrium and in the optimal strategies. Note that the strategies may only differ by 1% compared
to the 37% of the equilibrium values. Second, we see that the structure of the optimal strategies after
an emission shock occurred, does not variate much based upon the performed uncertainty analyses.
Changing the parameters of the objective neither affects the path of the variables much. It only
changes the size of the reaction of both players. The direction seems to be very stable against the
uncertainties involved.

Potential lines for further research include extending the uncertainty analysis with a worst-case
scenario expectation by players. This gives an extra dimension to the question what impact (not only
model, but also player’s) uncertainty has on equilibria and strategies. Research performed with similar
models used for different applications usually show that one might expect that players engage into
more short-term active strategies, the larger the worst-case expected level of uncertainty. Furthermore,
we now have performed several uncertainty analyses separate from each other. This can be extended
to analyses, where different uncertainty analyses are combined.

There are also several further research opportunities regarding the model we use. We develop
a simple economic growth model, as we are focusing on the uncertainty involved in such
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models. This model can be extended to more realistic models. As an example, we represent the
interdependencies between countries by a fixed factor. However, the interdependencies between
countries may also be related to trade effects, which depend on the development of market
prices rather than on a fixed part of the gross domestic product. This means that the parameters
related to the interdependencies are time-dependent, therefore the model might be extended with
time-dependent parameters.

Furthermore, we studied a two-player setting containing OECD and non-OECD countries.
A general case in which more players are interrelated can be examined. If the number of players
increases, the number of parameters increases as well. Therefore, more uncertainty may be present
in the system, which means that recommendations about the model calibration phase might be even
more important.

Author Contributions: The authors contributed equally to this work. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Calibrations of Parameters and Initial Values

Appendix A.1. Non-Spillover Parameter Calibration

A: Total factor productivity, A, is in fact the last parameter we calibrate. First, all other initial values
of the variables in our model are calibrated. Finally, A is taken such that the production function
applies for the current state of the world (using the initial variable calibration).

α: According to data from the World Bank [26], the GDP of the OECD countries in 2014 was
49,289,717 million dollars. In the same year, the total investment in capital was 10,111,756 million
dollars. If we divide those numbers, we get the fraction of GDP that is invested in capital,
which gives us a good estimate for αoecd. Similarly, for non-OECD countries total GDP in 2014
was 33,721,083 million dollars and total investment in capital was 12,093,681 million dollars.
Again, the quotient gives us an estimate for αnon-oecd.

β: The labor share in income, βi, is estimated in a similar way using data from the World Bank [26].
For the OECD countries, the gross national income per capita in 2013 was 38,213 US dollars.
In the same year, the disposable income per capita was 26,500 US dollars. If we divide those
numbers, we get the fraction of labor income to total income, which gives us a good estimate for
βoecd. Similarly, for the non-OECD countries the gross national income per capita in 2013 was
21,082 US dollars and disposable income per capita was 15,000 US dollars. The quotient gives us
the estimate for βnon-oecd.

γ: This calibration is based upon [27]. In this paper, the author estimates the economic damage due
to climate change for several regions of the world. To get the results for our two countries, we use
appropriate weights and calculate the weighted emission share of income.

κ: According to data from the World Bank [26], the expenditures on research and development as
a percentage of GDP are 2.4% for OECD countries. This is used as an estimate for κoecd. For the
non-OECD countries this percentage was 1.1%.

η: In this paper we restrict our analysis to the so-called, high-income non-OECD members,
as low-income countries have a (relatively) small impact on global CO2 emission. We use data
from the data bank of the OECD [28]. Figure A1 shows for both countries the population growth.
From this we observe that the assumption that both growth rates coincide is reasonable. We choose
ηi equal to the data of 2014, i.e., ηi = 0.73%.

δ: There is a lot of variety in the service life of different forms of capital. It is difficult to capture
this depreciation of capital in one number. We use the percentage 6.24%, as obtained in [29].
This number is based upon a weighted average for OECD countries. Based upon data from the
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World Bank [26], we assume the depreciation rate of natural capital for non-OECD countries to
be 20% higher than the rate of the OECD countries.

τ: According to Claassen’s logarithmic law of usefulness [30], Yi = log10(Ti), as αi is the capital
share in income, we have Ki = αilog10(Ti). Therefore, the slope of this function at Ti is an estimate
of τi. From the literature we recall that T = 5 is approximately an average starting point of
technology. Because we assume that τi is a linear parameter, we approximate αilog10(Ti) with
a second order Taylor expansion around T = 5 for both countries. This yields the tabulated
estimates for τi.

ε: According to data from the World Bank [26], the expenditures on research and development as
a percentage of GDP are 2.4% (1.1%) for OECD countries (non-OECD countries). So, Toecd =

0.024 · Yoecd = 0.024 · Koecd
αoecd

= εoecdKoecd. And similarly for εoecd.
ξ: Until now, there is no consensus about the exact lifetime of CO2 in our atmosphere. For instance,

the IPCC estimates this lifetime at approximately a hundred years, where other studies start at
thirty years. Based on [22], we use a CO2 lifetime of 30 years for 50% of the CO2 emission today.
The rest of the CO2 emission remains more than several hundreds of years in the atmosphere.
Using these assumptions, we know that approximately 2.3% leaves the atmosphere without
human intervention.

Figure A1. Population growth rate for OECD and (high-income) non-OECD members.

Appendix A.2. Spillover Parameter Calibration

s: Direct saving rates of capital in the country itself, sii, are estimated based on data of the World
Bank [26] on gross national savings as a percentage of GDP. In 2013 these numbers are 20.4%
(29.4%) for OECD countries (high-income non-OECD countries). For the cross-terms we use the
corresponding data for foreign direct investment (net inflows) as a percentage of GDP for both
countries. The results are shown in Table A1.

g: We estimate domestic technological progress due to the domestic state of technology by the
growth of the number of researchers in R&D, as determined by the World Bank [26]. The increase
in domestic technological progress due to foreign technology use is estimated by dividing the
amount of high-technology exports by the domestic country’s GDP (see Table A1).

ζ: The increase in CO2 emission due to the domestic use of fossil fuels is assumed to be proportional
to the amount of used fossil fuels. We set the proportion of CO2 emission due to fossil energy use
for non-OECD countries to 1.00 and for OECD countries to 0.85. We base these numbers on the
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engagement and implementation of CO2 emission reducing production techniques. Furthermore,
we base this on the number of international climate partnerships (e.g., UN Framework Convention
on Climate Change, International Convention on the Prevention of Pollution from Ships, Global
Methane Initiative, Global Data Center Energy Efficiency Task Force, Carbon Sequestration
Leadership Forum, etc.). The cross-terms are obtained by the fact that CO2 emission affects all
countries at the same time. Thus, the increase of CO2 emission in the OECD countries from the
used fossil fuels in non-OECD countries is just the same number as for the non-OECD countries
themselves, so ζoecd,non-oecd = 1.00. The same reasoning holds for ζnon-oecd,oecd. The results are
shown in Table A2.

Table A1. Parameter calibration for spillover parameter s and g.

s O n-O g O n-O

O 0.204 0.009 0.017 0.005
n-O 0.055 0.294 0.177 −0.005

Table A2. Parameter calibration for spillover parameter: ζ.

ζ OECD Non-OECD

OECD 0.85 1.00
non-OECD 0.85 1.00

Appendix A.3. Initial Variable Calibration

All initial values for the variables we use in our model are expressed per (working) capita. For the
number of working people in OECD (non-OECD), we use the number 837,816,057 (227,833,932).

y: Initial output is based upon data about the GDP per capita for 2014, obtained via the World
Bank [26], see Table A3. Therefore, our initial value for the variable y is the logarithm of this
number for both countries, as shown in Table 2.

k: Initial capital per capita for both countries is based on the capital intensities of both countries.
We use the results derived in [31]. However, these results are calibrated for the year 2000.
Therefore, we have to multiply these numbers with the average price increase in the period
2000–2014. In this time period, the prices increased with about 37.5%. The result is shown in
Table A3. Again, by taking the logarithm of these numbers we obtain our initial values for the
variable k, as shown in Table 2.

t: The initial values of t are calibrated using the total number of researchers measured in Full Time
Equivalent (FTE) in 2013. For the OECD countries there were about 4,403,168 FTE researchers
and for non-OECD, there were about 2,111,638 FTE researchers. We multiply these numbers with
the gross average wage in the corresponding country. For OECD countries this wage is equal
to $44,290 and for the non-OECD countries the gross average wage is equal to $19,077 (see the
World Bank [26]). The numbers (per capita) are provided again in Table A3. Again, by taking the
logarithm of these numbers we find our initial values for t, shown in Table 2.

e: The initial CO2 emission per capita is calibrated using information from the World Bank [26].
In the last column of Table A3, the total CO2 emission in metric tons per capita in 2014 is stated.
This number is based on data from 2011 and on the CO2 emission accumulation from the data
bank of the OECD [28]. According to this database the CO2 emission did not change significantly
between 2011 and 2014. Therefore, the results of the 2011 database are used as an initial estimate
for E/L. By taking the logarithm we obtain our initial values for e, stated in Table 2.

f, g: To calibrate the initial values for f , we need an estimate of the total energy used in each country,
and we need data about what fraction corresponds to green energy. We use data from 2013 of the
World Bank [26]. The corresponding estimates are given in Table A4. Again, taking the logarithm
gives us the estimates for the initial values of f and g.
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Table A3. Variable calibration.

GDP/L K/L T/L E/L

OECD $38,349 219,563 233 9.9
non-OECD $19,040 39,418 177 11.7

Table A4. Energy consumption data.

Energy/L % Fossil F/L G/L

OECD 4174 81.1% 3385 789
non-OECD 4712 92.3% 4349 363

Appendix A.4. Policy Parameter Calibration

θ: Calibrations of the discount factors are based upon suggestions taken from [23]. As an example,
the discount factors obtained imply that OECD countries are more interested in future
developments than the non-OECD countries.

μ: The proportion of output that can only be produced with the use of energy, μ, is calibrated with
the assumption that in our base year (2014), this proportion holds for both countries. In other
words, μi =

fi+gi
yi

, where the variables have their initial values.
ρ, π: In the objective, we have to calibrate three different weights. The first weight belongs to the

energy requirements (u2). We set this weight equal to 1. This means that we will set the weights
corresponding to the total emission and the total green energy, respectively, π and ρ, relative to
this 1. First, note that the energy requirements must hold. This means that the π and ρ must be
sufficiently small so that they do not get priority above the energy requirements.

As discussed in the introduction of this paper, ρ represents the disadvantages of using green
energy. For instance, the price of using green energy in non-OECD countries is higher than the
price of using fossil energy. Each country has its own availability of resources, it may be difficult
to use green energy, because there might be no resources in the neighborhood. This is confirmed
by the International Institute for Environment and Development (IIED) [32], who concluded that
a lot of non-OECD countries have little access to the green energy market. Furthermore, adapting
green energy into their system still seems very difficult to achieve. According to data from the
World Bank [26], about 92% of the energy used in non-OECD countries is fossil energy, where this
percentage for OECD members lies just above 80%. Therefore, we will calibrate π and ρ using
the following numbers.

πi =
1

250
·
(

gi
fi + gi

)
and ρi =

1
250

·
(

fi
fi + gi

)
(A1)

Note that the part between brackets represents the fraction of total energy that is currently satisfied
via green energy. In short, a country that currently uses a lot of green energy is assumed to strongly
dislike emitting CO2 compared to a country that is using less green energy. Similarly, a country
that currently uses a lot of fossil energy is assumed to have difficulties with accessing green energy
compared to countries using less fossil energy. Dividing the fraction by 250 addresses the fact that
the energy requirements are met and have a higher priority than the other two factors in the objective.
This number is determined using two criteria. The first criterion is that the energy requirements should
be met. In other words, (μiyi − ( fi + gi))

2 should be converged to (approximately) zero. Note that
it may not be exactly zero due to the fact that we use a certain number of iterations (in this case
20,000) to find the equilibrium. It is possible that the numerical computations did not converge to the
equilibrium yet for all i. The second criterion is that using this factor, the equilibrium values itself
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should be (approximately) converged to one equilibrium. These two criteria are both satisfied using
a factor of 250.

Appendix B. Equilibrium Calculation

In this appendix, we derive the necessary conditions that must be satisfied by state and control
variables assuming the countries play open-loop Nash strategies. Let

Ji(x0, u) :=
∫ ∞

0
hi(t, x(t), u(t))dt (A2)

where the state variable x(t) satisfies the differential equation:

ẋ(t) = f (t, x(t), u(t)), x(0) = x0 (A3)

In our case the functions are

• x(t) :=
[
k(t) t(t) e(t)

]
,

• u(t) :=
[

f1(t) g1(t) f2(t) g2(t)
]
,

• hi(t, x(t), u(t)) := e(2ηi−θi)t
(
(μiyi(t)− ( fi(t) + gi(t)))2 + πi

(
ei + piej(t)

)2
+ ρig2

i (t)
)

,
with i = 1, j = 2, and i = 2, j = 1, respectively.

• f (t, x(t), u(t)) :=
[
k̇(t) ṫ(t) ė(t)

]
,

where the bold printed letters mean that it is a row vector consisting of the functions for all countries i
(so, k = [k1 k2] etc.). We make next assumptions.

Assumption A1. f (t, x, u) and hi(t, x, u) are continuous functions on R
1+n+m. Moreover, for both f and hi

all partial derivatives w.r.t. x and u exist and are continuous.

Assumption A2. The log of fossil fuel use per labor supply and the log of green energy use per labor supply
will not grow forever, so the set of admissible control policies considered in this thesis is given by the set of locally
square integrable functions:

U := {( fi(·), gi(·)) ∈ L2,loc| lim
t→∞

fi(t) = f e
i , lim

t→∞
gi(t) = ge

i ,

lim
t→∞

ki(t) = ke
i , lim

t→∞
ti(t) = te

i , lim
t→∞

ei(t) = ee
i }

Now, let ( fi, gi) ∈ U , i = 1, ..., N be a set of open-loop Nash strategies. Consider next
corresponding Hamiltonians for this game:

Hi := e(2ηi−θi)t
(
(μiyi(t)− ( fi(t) + gi(t)))2 + πi

(
ei(t) + piej(t)

)2
+ ρig2

i (t)
)

+ λi,1(t)

(
−(ηi + δi) + e−ki(t)

(
sieyi(t) + ∑

j �=i
sije

yj(t)+t(ηj−ηi) + τieti(t)

))

+ λi,2(t)

(
−ηi + gi + e−ti(t)

(
∑
j �=i

gije
tj(t)+t(ηj−ηi) + εieki(t)

))

+ λi,3(t)

(
−(ξi + ηi) + e−ei(t)

(
ζie fi(t) + ∑

j �=i
ζije

fj(t)+t(ηj−ηi)

))

101



Energies 2020, 13, 482

Then, using Pontryagin’s maximum principle (see, e.g., in [33]), if there exists an optimal control
function for this problem, then there exist costate functions λi(·) satisfying the following set of equations:

yi(t) = log(Ai) + κiti(t) + αiki(t) + γiei(t) (A4)

k̇i(t) = −(ηi + δi) + e−ki(t)
(

sieyi(t) + ∑j �=i sije
yj(t)+t(ηj−ηi) + τieti(t)

)
(A5)

ṫi(t) = −ηi + gi + e−ti(t)
(

∑j �=i gije
tj(t)+t(ηj−ηi) + εieki(t)

)
(A6)

ėi(t) = −(ξi + ηi) + e−ei(t)
(

ζie fi(t) + ∑j �=i ζije
fj(t)+t(ηj−ηi)

)
(A7)

−λ̇i,1 = ∂Hi
∂ki

= e(2ηi−θi)t
(

2μiαi(μiyi(t)− ( fi(t) + gi(t))
)

+ λi,1(t)e−ki(t)
(

si(αi − 1)eyi(t) − ∑j �=i sije
yj(t)+t(ηj−ηi) − τieti(t)

)
(A8)

+ λi,2(t)εie−ti(t)+ki(t)

−λ̇i,2 = ∂Hi
∂ti

= e(2ηi−θi)t
(

2μiκi(μiyi(t)− ( fi(t) + gi(t))
)

+ λi,1(t)
(

siκie−ki(t)+yi(t) + τie−ki(t)+ti(t)
)

(A9)

− λi,2(t)e−ti(t)
(

∑j �=i gije
tj(t)+t(ηj−ηi) + εieki(t)

)

−λ̇i,3 = ∂Hi
∂ei

= e(2ηi−θi)t
(

2μiγi(μiyi(t)− ( fi(t) + gi(t)) + 2πi
(
ei + piej(t)

) )
+ λi,1(t)siγie−ki(t)+yi(t) (A10)

− λi,3(t)e−ei(t)
(

ζie fi(t) + ∑j �=i ζije
fj(t)+t(ηj−ηi)

)

0 = ∂Hi
∂ fi

= −2e(2ηi−θi)t
(
μiyi(t)− ( fi(t) + gi(t))

)
+ λi,3(t)ζie−ei(t)+ fi(t) (A11)

0 = ∂Hi
∂gi

= −2e(2ηi−θi)t
(
μiyi(t)− ( fi(t) + gi(t))− ρigi(t)

)
(A12)

Note that the first four Equations (A4)–(A7) are the original model equations. Conditions (A11)
and (A12) are the first-order conditions. They state that both players minimize their Hamiltonian
function by the choice of the control variable at each point in time t along the optimal trajectory,
where the actions of the other player are considered to be fixed. In particular, (A12) states that at any
point in time, the gap between the energy required for the output, and the total produced energy
should equal the instantaneous disadvantage of used green energy.

Conditions (A8)–(A10) define the development of the costate variables. They state that the rate
of change of these variables equals the negative derivative of the corresponding Hamiltonian with
respect to the associated state variable. Note that these costate variables allow (under some regularity
conditions [33]) for a so-called shadow-price interpretation. That is, assuming again that the actions of
the other player are fixed, one can consider at any point in time t the minimal cost to go if the system
is in the optimal state x∗(t), i.e.,

Vi(t, x∗(t)) = min
u

∫ ∞

t
hi(s, x(s), u(s))ds, where ẋ(s) = f (s, x(s), u(s)), x(t) = x∗(t).
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Then, λ∗
i,j(t) =

∂Vi(t,x∗(t))
∂xj

. In economic literature, this condition is interpreted as that if pj would

be the price of xj; then, in the optimal situation, this price pj at time t should equal λ∗
i,j(t) [33] (p. 159).

As, by assumption, yi(·), ki(·), ti(·), ei(·), fi(·), and gi(·) in the above equations converge if t
goes to infinity, it follows that e(θi−2ηi)t · λi(t) converges to some stationary value. Moreover, we can
calculate these stationary values using above equations if we assume one more thing:

Assumption A3. We assume that the growth rate of the population for all countries is the same, i.e., ηi =

ηj, ∀i, j.

• This assumption is necessary because we want to enforce that eyj(t)+t(ηj−ηi) does not become
infinity when t grows to infinity. There are two options to accomplish this. We either assume that
the growth rate of the population for all countries is the same, which comes down to eliminating
the t(ηj − ηi)-term. Or, we assume that the logarithms of all variables converge and then rewrite
the model in terms of these variables. We choose the first option, because, in our case, we only
differentiate between two countries: OECD and non-OECD countries. In the model calibration,
we explain why we can indeed use this assumption.

Using this it follows, with λe
i := limt→∞ e(θi−2ηi)tλi(t), that the stationary values ye

i , ke
i , te

i , ee
i , f e

i
and ge

i solve the next set of algebraic equations.

ye
i = log(Ai) + κi te

i + αike
i + γiee

i

0 = −(ηi + δi) + e−ke
i

(
sieye

i + ∑j �=i sije
ye

j + τiete
i

)

0 = −ηi + gi + e−te
i

(
∑j �=i gije

te
j + εieke

i

)

0 = −(ξi + ηi) + e−ee
i

(
ζie f e

i + ∑j �=i ζije
f e
j
)

0 = (2ηi − θi)λ
e
i,1 + 2μiαi(μiye

i − ( f e
i + ge

i ))

+ λe
i,1e−ke

i

(
si(αi − 1)eye

i − ∑j �=i sije
ye

j − τiete
i

)
+ λe

i,2εie−te
i +ke

i

0 = (2ηi − θi)λ
e
i,2 + 2μiκi(μiye

i − ( f e
i + ge

i ))

+ λe
i,1

(
siκie−ke

i+ye
i + τie−ke

i+te
i

)
− λe

i,2e−te
i

(
∑j �=i gije

te
j + εieke

i

)

0 = (2ηi − θi)λ
e
i,3 + 2μiγi(μiye

i − ( f e
i + ge

i )) + 2πi

(
ee

i + piee
j

)
+ λe

i,1siγie−ke
i+ye

i

− λe
i,3e−ee

i

(
ζie f e

i + ∑j �=i ζije
f e
j
)

0 = μiye
i − ( f e

i + ge
i )− 1

2 λe
i,3ζie−ee

i + f e
i

0 = μiye
i − ( f e

i + ge
i )− ρige

i

As a remark, note that the last two equations imply that the equilibrium price of CO2

emission equals 2
ζi e

−ee
i + f e

i
ρige

i . As expected, this price depends on the disadvantages obtained using
green energy.
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Appendix C. Linearization of the Model

Consider next deviations of variables from their equilibrium value: yli(t) := yi(t)− ye
i , kli(t) :=

ki(t) − ke
i , tli(t) := ti(t) − te

i and eli(t) := ei(t) − ee
i . Using these variables we rewrite the model

Equations (8) as follows.

• yli(t) = yi(t)− ye
i = log(Ai) + κiti(t) + αiki(t) + γiei(t)− (log(Ai) + κite

i + αike
i + γiee

i )

= κitli(t) + αikli(t) + γieli(t)

• k̇li(t) = ∂
∂t (ki(t)− ke

i ) = k̇i(t) =
Li(t)
Ki(t)

· K̇i(t)
Li(t)

− ηi

= Li(t)
Ki(t)

1
Li(t)

(
siYi(t) + ∑j �=i sijYj(t)− δiKi(t) + τiTi(t)

)
− ηi

= −(δi + ηi) + si
LiYi
Ki Li

+ ∑j �=i sije
t(ηj−ηi) LiYj

Ki Lj
+ τi

LiTi
Ki ·Li

Next, we use the MacLaurin series expansion of log(x) around xe: x ≈ xe + xe(log(x)− log(xe)),
to approximate above expression,

≈ −(δi + ηi) + si

(
Le

i Ye
i

Ke
i Le

i
+

Le
i Ye

i
Ke

i Le
i
(log( LiYi

Ki Li
)− log( Le

i Ye
i

Ke
i Le

i
)
)
+

∑j �=i sije
t(ηj−ηi)

(
Le

i Ye
j

Ke
i Le

j
+

Le
i Ye

j
Ke

i Le
j
(log(

LiYj
Ki Lj

)− log(
Le

i Ye
j

Ke
i Le

j
)

)
+

τi

(
Le

i Te
i

Ke
i Le

i
+

Le
i Te

i
Ke

i Le
i
(log( LiTi

Ki Li
)− log( Le

i Te
i

Ke
i Le

i
)
)

= −(δi + ηi) + si

(
eye

i −ke
i + eye

i −ke
i (log( LiYi

Ki Li
)− log( Le

i Ye
i

Ke
i Le

i
)
)
+

∑j �=i sije
t(ηj−ηi)

(
eye

j−ke
i + eye

j−ke
i (log(

LiYj
Ki Lj

)− log(
Le

i Ye
j

Ke
i Le

j
)

)
+

τi

(
ete

i −ke
i + ete

i −ke
i (log( LiTi

Ki Li
)− log( Le

i Te
i

Ke
i Le

i
)
)

= s̃i

(
log( LiYi

Ki Li
)− log( Le

i Ye
i

Ke
i Le

i
)
)
+ ∑j �=i s̃ije

t(ηj−ηi)
(

log(
LiYj
Ki Lj

)− log(
Le

i Ye
j

Ke
i Le

j
)

)
+

τ̃i

(
log( LiTi

Ki Li
)− log( Le

i Te
i

Ke
i Le

i
)
)
+

(
−(δi + ηi) + e−ke

i (sieye
i + ∑

j �=i
sije

ye
j+t(ηj−ηi) + τiete

i )

)
︸ ︷︷ ︸

= 0, see the conditions from which the equilibrium values are obtained.

= s̃i

(
log(Yi

Li
)− log(Ye

i
Le

i
)− (log(Ki

Li
)− log(Ke

i
Le

i
))
)
+

∑j �=i s̃ije
t(ηj−ηi)

(
log(

Yj
Lj
)− log(

Ye
j

Le
j
)− (log(Ki

Li
)− log(Ke

i
Le

i
))

)
+

τ̃i

(
log( Ti

Li
)− log( Te

i
Le

i
)− (log(Ki

Li
)− log(Ke

i
Le

i
))
)

= s̃i(yli − kli) + ∑j �=i s̃ije
t(ηj−ηi)(ylj − kli) + τ̃i(tli − kli)

where, s̃i = sieye
i −ke

i and s̃ij = sije
ye

j−ke
i and τ̃i = τiete

i −ke
i .

Similarly, using the MacLaurin series, expansion of log(x) around xe again, we obtain
next approximations.
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• ṫli(t) = ∂
∂t (ti(t)− te

i ) = ṫi(t) =
Li(t)
Ti(t)

Ṫi(t)
Li(t)

− ηi =
Li(t)
Ti(t)

1
Li(t)

(
giTi + ∑j �=i gijTj + εiKi

)
− ηi

= −ηi + gi + ∑j �=i gij
LiTj Lj
Ti Lj Li

+ εi
LiKi
Ti Li

= −ηi + gi + ∑j �=i gije
t(ηj−ηi) LiTj

Ti Lj
+ εi

LiKi
Ti Li

≈ −ηi + gi + ∑j �=i gije
t(ηj−ηi)

(
Le

i Te
j

Te
i Le

j
+

Le
i Te

j
Te

i Le
j
(log(

LiTj
Ti Lj

)− log(
Le

i Te
j

Te
i Le

j
)

)
+

εi

(
Le

i Ke
i

Te
i Le

i
+

Le
i Ke

i
Te

i Le
i
(log( LiKi

Ti Li
)− log( Le

i Ke
i

Te
i Le

i
)
)

= −ηi + gi + ∑j �=i gije
t(ηj−ηi)

(
ete

j−te
i + ete

j−te
i (log(

LiTj
Ti Lj

)− log(
Le

i Te
j

Te
i Le

j
)

)
+

εi

(
eke

i−te
i + eke

i−te
i (log( LiKi

Ti Li
)− log( Le

i Ke
i

Te
i Le

i
)
)

= ∑j �=i g̃ije
t(ηj−ηi)

(
log(

LiTj
Ti Lj

)− log(
Le

i Te
j

Te
i Le

j
)

)
+

ε̃i

(
log( LiKi

Ti Li
)− log( Le

i Ke
i

Te
i Le

i
)
)
+

(
−ηi + gi + e−te

i (∑
j �=i

gije
te
j+t(ηj−ηi) + εieke

i )

)
︸ ︷︷ ︸

= 0, see the conditions from which the equilibrium values are obtained.

= ∑j �=i g̃ije
t(ηj−ηi)

(
log(

Tj
Lj
)− log(

Te
j

Le
j
)− (log( Ti

Li
)− log( Te

i
Le

i
))

)
+

ε̃i

(
log(Ki

Li
)− log(Ke

i
Le

i
)− (log( Ti

Li
)− log( Te

i
Le

i
))
)

= ∑j �=i g̃ije
t(ηj−ηi)(tlj − tli) + ε̃i(kli − tli)

where, g̃ij = gije
te
j−te

i and ε̃i = εieke
i−te

i .

• ėli =
∂
∂t (ei(t)− ee

i ) = ėi(t) =
Li(t)
Ei(t)

Ėi(t)
Li(t)

− ηi =
Li(t)
Ei(t)

1
Li(t)

(
ζiFi(t) + ∑j �=i ζijFj(t)− ξiEi(t)

)
− ηi

= −(ξi + ηi) + ζi
Li Fi
Ei Li

+ ∑j �=i ζij
Li Fj Lj
Ei Lj Li

= −(ξi + ηi) + ζi
Li Fi
Ei Li

+ ∑j �=i ζije
t(ηj−ηi) Li Fj

Ei Lj

≈ −(ξi + ηi) + ζi

(
Le

i Fe
i

Ee
i Le

i
+

Le
i Fe

i
Ee

i Le
i
(log( Li Fi

Ei Li
)− log( Le

i Fe
i

Ee
i Le

i
)
)
+

∑j �=i ζije
t(ηj−ηi)

(
Le

i Fe
j

Ee
i Le

j
+

Le
i Fe

j
Ee

i Le
j
(log(

Li Fj
Ei Lj

)− log(
Le

i Fe
j

Ee
i Le

j
)

)

= −(ξi + ηi) + ζi

(
e f e

i −ee
i + e f e

i −ee
i (log( Li Fi

Ei Li
)− log( Le

i Fe
i

Ee
i Le

i
)
)
+

∑j �=i ζije
t(ηj−ηi)

(
e f e

j −ee
i + e f e

j −ee
i (log(

Li Fj
Ei Lj

)− log(
Le

i Fe
j

Ee
i Le

j
)

)

= ζ̃i

(
log( Li Fi

Ei Li
)− log( Le

i Fe
i

Ee
i Le

i
)
)
+ ∑j �=i ζ̃ije

t(ηj−ηi)
(

log(
Li Fj
Ei Lj

)− log(
Le

i Fe
j

Ee
i Le

j
)

)
+(

−(ξi + ηi) + e−ee
i (ζie f e

i + ∑
j �=i

ζije
f e
j +t(ηj−ηi))

)
︸ ︷︷ ︸

= 0, see the conditions from which the equilibrium values are obtained.

= ζ̃i

(
log( Fi

Li
)− log( Fe

i
Le

i
)− (log( Ei

Li
)− log( Ee

i
Le

i
))
)
+

∑j �=i ζ̃ije
t(ηj−ηi)

(
log(

Fj
Lj
)− log(

Fe
j

Le
j
)− (log( Ei

Li
)− log( Ee

i
Le

i
))

)
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= ζ̃i( fli − eli) + ∑j �=i ζ̃ije
t(ηj−ηi)( fl j − eli)

where, ζ̃i = ζie f e
i −ee

i and ζ̃ij = ζije
f e
j −ee

i .

Appendix D. Objectives Linearized Model

Under the assumption that the players reach an equilibrium in the nonlinear model (8) and (9),
it follows that if this equilibrium is perturbed by a small disturbance, the dynamics of the corresponding
disturbed system are obtained by linearizing the nonlinear system (8) around this equilibrium.
Furthermore, without going into detail (see for more details see, e.g., in [33] (p. 177)), assuming
this disturbance is measured by “ε” one can make a second-order Taylor expansion of the cost function
J(ε) around ε = 0, yielding

Ji(ε) = J∗i + ε
∂Ji(ε)

∂ε
(0) +

1
2

ε2 ∂2 Ji(ε)

∂ε2 (0) + O(ε2).

As for ε = 0 we are at the equilibrium of the optimized nonlinear model, it follows that
∂Ji(ε)

∂ε (0) = 0. Therefore, if the system is out of equilibrium, the consistent optimal response

of players is approximately obtained by minimizing ∂2 Ji(ε)
∂ε2 (0) subject to the linearized model.

Unfortunately, the involved quadratic form depends on the realization of the corresponding
equilibrium paths of as well state, control and co-state variables. As a consequence, basically,
the involved optimization problem reduces to a linear quadratic control problem with time-varying
cost matrices. This time-dependency makes the problem non-standard and difficult to tackle. However,
as our welfare functions wi are assumed to be quadratic functions, we know that the part of Ji(ε) that
does not depend on the co-state variables coincides with wi. Furthermore, due to the convergence of
the variables e(θ−2η)tλi,j, a rough inspection of Equation (5–7) of the algebraic equations defining the
equilibrium indicates that the initial value of these variables at t = 0 will be close to zero. This implies
that the contribution of the costate variables we obtain after twice differentiation of the Hamiltonian
will be probably not that large for smaller values of t, whereas for larger values of t the impact of the
discount factor makes these contributions small.

Note that, with xT(t) = [kl1 kl2 tl1 tl2 el1 el2], uT(t) = [ fl1 gl1 fl2 gl2] and zT := [xT uT ], the welfare
function (9) equals

∫ ∞

0
g(t, z(t))dt, where g(t, z(t)) = e(2ηi−θi)t

⎛
⎝−u2(t)− πi

(
ei(t) + ∑

j �=i
piej(t)

)2

− ρig2
i (t)

⎞
⎠ .

Based on above considerations, we approximate ∂2 Ji(ε)
∂ε2 (0) by

∫ ∞
0 zT(t)H

′′
i z(t)dt,

where H
′′
i = ( ∂2g(z)

∂zi∂zj
) (with some abuse of notation). After some calculations we obtain the

next matrices
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H
′′
1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.2074 0 0.0243 0 −0.0189 0 −0.6440 −0.6440 0 0
0 0 0 0 0 0 0 0 0 0

0.0243 0 0.0029 0 −0.0022 0 −0.0756 −0.0756 0 0
0 0 0 0 0 0 0 0 0 0

−0.0189 0 −0.0022 0 0.0053 0.0010 0.0588 0.0588 0 0
0 0 0 0 0.0010 0.0003 0 0 0 0

−0.6440 0 −0.0756 0 0.0588 0 2.0000 2.0000 0 0
−0.6440 0 −0.0756 0 0.0588 0 2.0000 2.0044 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

H
′′
2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0
0 0.5151 0 0.0162 0 −0.0736 0 0 −1.0150 −1.0150
0 0 0 0 0 0 0 0 0 0
0 0.0162 0 0.0005 0 −0.0023 0 0 −0.0319 −0.0319
0 0 0 0 0.0444 0.0121 0 0 0 0
0 −0.0736 0 −0.0023 0.0121 0.0138 0 0 0.1450 0.1450
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 −1.0150 0 −0.0319 0 0.1450 0 0 2.0000 2.0000
0 −1.0150 0 −0.0319 0 0.1450 0 0 2.0000 2.0047

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Appendix E. Simulations

Appendix E.1. Stochastic Parameter θ

Figure A2. Equilibrium values on grid, OECD countries: fitted plane.
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Figure A3. Equilibrium values on grid, non-OECD countries: fitted plane.

Appendix E.2. Stochastic Policy Parameter π
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Figure A4. Equilibrium values with stochastic πi.
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Figure A5. Equilibrium values OECD countries with different πi.

Figure A6. Equilibrium values non-OECD countries with different πi.

Figure A7. e, f and g for OECD countries.
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Figure A8. e, f and g for non-OECD countries.

Appendix E.3. Stochastic Relation k̇
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Figure A9. Simulation with k̇, Λ stochastic: equilibrium values.

1000 1010 1020 1030 1040 1050 1060 1070 1080 1090
0

5

10

15

20

25

30

35

40

OECD countries
non-OECD countries
Initial equilibrium (OECD)
Initial equilibrium (non-OECD)

Figure A10. Simulation with k̇, Λ stochastic: objective function values.
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Appendix E.4. Scenario Analysis ρ, g

Figure A11. Equilibrium values on grid, OECD countries: fitted planes.

Figure A12. Equilibrium values on grid, non-OECD countries: fitted planes.
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20. Başar, T.; Zhu, Q. Prices of anarchy, information, and cooperation in differential games. Dyn. Games Appl.

2011, 1, 50–73. [CrossRef]
21. Mäler, K.-G.; de Zeeuw, A.J. The acid rain differential game, Environ. Resour. Econ. 1998, 12, 167–184.

[CrossRef]
22. Inman, M. Carbon is forever. Nat. Rep. Clim. Chang. 2008, 2, 156–158. [CrossRef]
23. Impact Data Source. Available online: http://www.impactdatasource.com/choosing-a-discount-rate

(accessed on 30 November 2015).
24. Tol, R. The marginal damage costs of carbon dioxide emissions: An assessment of the uncertainties.

Energy Policy 2005, 33, 2064–2074. [CrossRef]
25. WHO Regional Office for Europe (OECD). Economic Cost of the Health Impact of Air Pollution in Europe:

Clean Air, Health and Wealth; WHO Regional Office for Europe: Copenhagen, Denmark, 2015.
26. World Bank. Available online: http://data.worldbank.org (accessed on 30 November 2015).
27. Tol, R. The damage costs of climate change toward more comprehensive calculations. Environ. Resour. Econ.

1995, 5, 353–374.
28. OECD Data Bank. Available online: http://data.oecd.org (accessed on 30 November 2015).
29. Oulton, N.; Srinivasan, S. Capital Stocks, Capital Services, and Depreciation: An Integrated Framework

(Bank of England Working Paper No. 192). 2003. Available online: http://papers.ssrn.com/sol3/papers.
cfm?abstract_id=492062 (accessed on 30 November 2015).

112



Energies 2020, 13, 482

30. Dipert, B. It’s Elementary [Blog Post]. 15 April 1999. Available online: http://www.edn.com/electronics-
blogs/other/4361480/It-s-elementary (accessed on 30 November 2015).
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Abstract: The urban utility tunnel presents solutions for the sustainable development of urban
underground space, and is an important carrier of power distribution network and integrated energy
systems. Considering the high investment cost of utility tunnels and the limitations of traditional
cost sharing methods (i.e., spatial proportional method, direct-laying cost method and benefit-based
proportional method), it is of great significance to establish a fair and practical cost sharing mechanism.
First, an improved Shapley value-based spatial proportional method is proposed. A comprehensive
decision-making mechanism for utility tunnel construction cost allocation is established by using the
improved spatial proportion, the life-cycle direct-laying cost proportion, and the benefit proportion
of pipeline companies as the cost allocation indexes. The resource dependence theory is introduced
to quantify the bargaining power of each pipeline company in the negotiation of the cost allocation.
The weights of the cost allocation indexes in the comprehensive decision-making model are optimized
with the objective of maximizing the overall satisfaction of the pipeline companies. Simulations based
on the data of utility tunnel pilots in China illustrate that the proposed cost allocation mechanism has
the highest overall satisfaction and is more acceptable and more feasible than the traditional cost
allocation methods. For power companies, the cost of laying power cables can be significantly reduced
by utility tunnels, and laying 10 kV power cables has been shown to have higher economic benefits.

Keywords: urban utility tunnel; cost allocation; Shapley value; life cycle cost; resource dependence
theory; economic benefit evaluation

1. Introduction

With the acceleration of urbanization, residents’ demands for system reliability, power quality and
living environment are increasing. Traditional overhead transmission networks are no longer suitable
for future urban development due to environmental concerns and energy policies [1]. Given this
background, underground power transmission, which presents solutions to some of the environmental
and aesthetic problems involved with overhead transmission, is becoming a major trend. Underground
power corridors are a precondition of realizing the construction of an urban underground power
transmission network, and the urban utility tunnel (UUT), which not only functions as a power
corridor, but also houses municipal engineering pipelines such as communication cables, water supply
pipes, drainage pipes, heating pipes, and gas pipes, is becoming the carrier of the network of future
urban underground integrated energy systems (IES) [2]. UUT permits the installation, maintenance,
and removal of pipelines without the necessity of road excavations, which avoids wasting resources
and causing inconvenience for society, improves the reliability of power supply, increases the value of
developable land, and promotes total urban functionality. The laying of power pipelines into UUT
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has become an important part of the 13th five-year plan of electricity for the State Grid Corporation
in China. However, UUT is more expensive to construct compared to classical solutions for urban
utilities [3]. Relying solely on the financial support of the government, it is difficult to make up for the
high construction costs of utility tunnels. In fact, the increase in network maintainability leads to a cost
reduction of pipeline maintenance and renovation, making pipeline companies the main beneficiaries
of UUT [4]. As a result, the Ministry of Housing and Urban-Rural Development of China, together with
the National Development and Reform Commission, issued an order in 2015, which requires pipeline
companies to pay usage charges to the construction and operation units of the tunnel to alleviate the
financial pressure faced by local governments [5]. Although the value and importance of urban utility
tunnels has been widely confirmed [6,7], the usage charges have put a heavier burden on pipeline
companies, leading to resistance from these companies. Therefore, it is of great significance to establish
a fair and practical cost sharing mechanism for improving the enthusiasm of pipeline companies such
as power companies and communication companies towards participation in the construction of UUT.

The financing criteria are often the key issues when building a utility tunnel. The utility tunnels
in Britain, France and other European countries are considered as communal facilities which are
completely funded by the government. The government owns the UUT and leases it to pipeline
companies in the form of a paid lease [8]. Japan adopts a diversified investment pattern, and the
distribution ratios of pipeline companies as well as road management units is determined based on
the specific conditions of each region according to the utility tunnel law. The diversified investment
pattern is also employed in some UUT pilot projects in China. For example, Taiwan Province adopted
the government-fallback-balance mechanism, which guarantees that the construction cost shared by
pipeline companies is basically the same as the traditional pipeline laying cost, and the remaining
cost (of about 33% of the total cost) is borne by the government. The construction costs of the UUT
pilot projects in Haidong city of Qinghai province and Yinchuan city of Ningxia Hui Autonomous
Region of China are allocated based on the proportion of pipeline laying costs, while the construction
cost of the UUT in Guangzhou Higher Education Mega Center of Guangdong province, China is
allocated according to the proportion of the pipeline cross-sectional area [9]. Indeed, there is no clear
and instructive regulation on the cost-sharing mode for the construction cost of UUT under China’s
diversified investment pattern.

Traditional proportion-based methods, such as the spatial proportional method (SPM) and the
direct-laying cost method (DCM), have been employed in most of the existing publications to allocate
the construction cost of UUT [8–11]. The SPM takes the proportion of area occupied by pipelines
as the allocation ratio of UUT construction cost, and the effective area of a pipeline includes the
cross-sectional area and the necessary operating space for its installation and maintenance. The DCM
allocates the UUT construction cost according to the proportion of pipeline laying cost, including
the direct cost of pipeline laying and the indirect cost of road excavation. Moreover, a modified
incremental method is used in reference [8] to allocate the marginal cost of operation and maintenance
of UUT. A multiobjective programming model is established in reference [10] for UUT construction
cost allocation. An improved proportion-based allocation method which combines SPM with DCM
is proposed in reference [11] to obtain the ultimate cost distribution ratio of pipelines. Subjective
group-decision [12], the Min-Max method [13] and cooperative game theory [14,15] are also used to
solve allocation problems. However, the above-mentioned studies only focus on the cost sharing from
a single point of view and consider more about the rationality of the allocation method in theory,
while the cost allocation among pipeline companies is a multi-attribute decision-making problem
that needs to be solved in practice. In addition, it is worth noting that China’s UUT originates from
underground power corridors, which is different from those in European countries. For example,
the utility tunnel in Paris is derived from underground drainage systems. Therefore, in China, power
cables are considered as the most important pipelines set up in UUT, and the economic benefits
of power companies should receive more attention. Although the difference of construction cost,
operation cost, and maintenance cost between the UUT-laying pipeline and traditional buried pipeline
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within the life cycle of utility tunnel is proposed in references [8,9,11], the additional benefits brought
from power network expansion in the life cycle of UUT are not considered, which makes the evaluation
results inaccurate.

Given this background, a comprehensive decision-making mechanism for UUT construction cost
allocation is proposed to overcome the limitations of traditional cost sharing methods and maximize
the overall satisfaction of pipeline companies, and the economic benefit of UUT-laying power cables
is also evaluated on this basis. First, the traditional SPM is improved based on the Shapley value.
The comprehensive decision-making model of UUT construction cost allocation is established by using
the improved spatial proportion, the life-cycle direct-laying cost proportion and the benefit proportion
of pipeline companies as the cost allocation indexes. The process of determining the cost allocation
ratio of each pipeline company is considered to be a bargaining, and the resource dependence theory
(RDT) is introduced to quantify the bargaining power of pipeline companies. The weights of the
cost allocation indexes are optimized with the objective of maximizing the overall satisfaction of
the pipeline companies. The impact of power network expansion on the economic benefit of power
company within the life cycle of UUT is also considered in the case studies. Hence, the contributions
of this paper can be highlighted as follows:

• An improved spatial proportional cost allocation method is proposed based on the Shapley
value, which takes into account the cross-sectional area of the pipeline itself and the public
operating space, making the cost allocation ratio of each pipeline company more reasonable than
traditional SPM.

• A comprehensive decision-making mechanism of UUT cost allocation is designed based on the
occupied area and the direct laying costs of pipelines, as well as the economic benefits of pipeline
companies. The bargaining power of pipeline companies is analyzed based on the resource
dependence theory, which makes the proposed cost allocation method more practical.

• The impacts of power network expansion are first considered in calculating the economic benefits
of UUT-laying cables under various scenarios, which makes the economic benefit evaluation of
UUT-laying power cables more comprehensive and accurate.

The rest of this paper is organized as follows. In Section 2, the improved SPM, life-cycle DCM
and benefit proportion method for cost allocation are proposed. The comprehensive decision-making
model of UUT construction cost allocation is presented in Section 3. Case studies and conclusions are
presented in Sections 4 and 5, respectively.

2. Proportional Allocation Method for UUT Construction Cost

Construction and maintenance costs are the main costs of an urban utility tunnel. For local
governments, the benefits of UUT are indirect and lie within a long-term perspective, involving special
public benefits such as no disruption of the highway, no traffic interruption caused by trench digging,
and the increase of the developable surface land area. However, the relevant data is difficult to obtain,
since they cannot be easily observed and measured. In this paper, the government is assumed to
bear part of the construction cost of UUT and the total maintenance cost. The concern of pipeline
companies is the allocation of the remaining part of the construction cost, which is much higher than
the cost of traditional buried pipelines, and it is easy to hinder pipeline companies from participating
in UUT construction.

According to reference [5], the main factors to be considered in cost allocation among pipeline
companies include: (1) the proportion of area occupied by pipelines, (2) the cost of traditional buried
pipeline laying, (3) the economic benefits such as the reduction of maintenance cost of UUT-laying
pipeline (compared with the traditional buried pipeline) and the reasonable return on investment in
UUT construction. Therefore, the following three proportional methods are employed to establish the
comprehensive decision-making model for the cost allocation among pipeline companies.
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2.1. Improved Spatial Proportional Method Based on Shapley Value

Generally, the more pipelines are laid in the UUT, the more the underground space is needed and
the higher the construction cost becomes. As a result, the SPM is proposed to allocate the construction
cost based on the proportion of area occupied by the pipelines, which includes the cross-sectional
area of the pipeline itself and the required operating space for its installation and maintenance.
The cross-sectional structure of UUT laying power cables and communication cables is shown in
Figure 1. Apart from the space occupied by systems such as ventilation, lighting, and firefighting,
the space of the UUT is mainly composed of the power cables, communication cables, and their public
operation space (indicated by blue shadows).

Figure 1. Cross-sectional view of the UUT laying power cables and communication cables.

Pipeline companies should not only bear the construction costs related to their own cross-sectional
area, but also share the construction costs of public operating space. The traditional SPM allocates the
public operating space (in the form of cross-sectional area) to each pipeline company according to the
proportion of cross-sectional area of pipelines. However, there is no clear quantitative relationship
between the operating space and the cross-sectional area of pipelines, which makes the traditional SPM
unreasonable. Indeed, compared with multiple single cabins, when pipelines are laid in an integrated
cabin, the total operating space required is reduced, which reduces the construction cost of the UUT,
thus resulting in cooperation benefits. To this context, cooperative game theory could be used to
improve the traditional SPM, and the Shapley value is used to solve the improved spatial proportional
allocation index. The expected incremental cost that pipeline produces when laid into utility tunnel is
the basis for the Shapley value-based cost allocation method, ensuring that the allocation solution is fair
and desirable [16]. Since the order that the pipelines laid into the utility tunnel affects the incremental
cost produced, the Shapley value considers all orders equally and gives them equal weights. Compared
with other cooperative game methods such as Core and Nucleolus, the Shapley value solution is
unique and more acceptable, and has a clear calculation process, which makes it more feasible in cost
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allocation [17]. Let N represent the set of n types of pipelines in the utility tunnel, and the improved
spatial proportion cost allocation index of pipeline i can be expressed as:

ωS
i = Si/

∑
i∈N

Si (1)

Si =
∑

M⊂N

(m− 1)!(n−m)!
n!

(SM − SM−i) (2)

where ωS
i represents the cost allocation index of pipeline i under Shapley value-based SPM. Si is the

occupied area of pipeline i, including the cross-sectional area of pipeline and its allocated public
operating space. M is a virtual set of m types of pipelines including pipeline i, and SM is defined as the
cross-sectional area of the utility tunnel containing these m types of pipelines. The term (SM − SM−i)

models the incremental contribution that pipeline i makes to the cross-sectional area of the utility
tunnel. Although the time complexity of Shapley value is O(n!), it is generally acceptable to the
computer because of the small number of pipeline types. The larger the index ωS

i is, the higher the cost
allocation ratio of pipeline i should be.

2.2. The Life Cycle Direct-Laying Cost Method

The direct-laying cost method (DCM) determines the cost allocation ratio of each pipeline
company according to the proportion of traditional buried pipeline laying cost (referred to as
direct-laying cost). The pipeline company with higher direct-laying cost should bear more allocated
construction cost. The UUT-laying pipelines and traditional buried pipelines vary in service life and
breakage rate, which leads to different maintenance cost and repeated laying frequency of pipelines.
Therefore, when DCM is used for UUT construction cost allocation, the direct-laying cost of pipeline
should be calculated in a specific time period. In this paper, the time period is set to the life cycle of
UUT for the reason that life cycle cost theory considers all stages of UUT from planning, construction,
operation to retirement, avoiding decision-making being limited to a certain period of time [18].
After discounting the direct-laying cost of pipelines in the life cycle to the present value, the DCM
based cost allocation index of pipeline i can be expressed as:

ωC
i =
(
Ci,Tg

)
/
∑
i∈N

Ci,Tg (3)

Ci,Tg =

nz
i∑

t=1

cz
i,t(1 + r)−(t−1)Tz

i +

Tg∑
h=1

czm
i,h (1 + r)−h (4)

nZ
i =
⌈
Tg/TZ

i

⌉
(5)

where ωC
i represents the cost allocation index of pipeline i. Tg is the life cycle of UUT. Ci,Tg is the total

direct-laying cost of pipeline i in Tg. Tz
i is the service life of traditional buried pipeline i and nz

i denotes
the number of its repeated laying times. cz

i,t is the direct-laying cost of pipeline i at the t-th re-laying

and czm
i,h is the maintenance cost at the h-th year. r is the annual interest rate. The larger the index ωC

i is,
the higher the cost allocation ratio of pipeline i should be.

2.3. The Benefit-Based Proportional Allocation Method

According to the benefit principle [19], the benefit-based proportional method (BPM) determines
the cost allocation ratio of each pipeline company according to the economic benefit that the pipeline
produces when laid into a utility tunnel. The economic benefit of each pipeline company (also known
as the investment income) mainly includes the construction cost reduction caused by the decrease of
repeated laying times of the pipeline, and the maintenance cost reduction caused by the decrease of
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pipeline breakage rate and leakage rate within the life cycle of UUT. After being discounted to the
present value, the cost allocation index of pipeline i under BPM can be expressed as:

ωR
i =
(
Rb

i,Tg
+ Rm

i,Tg

)
/
∑
i∈N

(
Rb

i,Tg
+ Rm

i,Tg

)
(6)

Rb
i,Tg

=

nz
i∑

t=1

cz
i,t(1 + r)−(t−1)Tz

i −
ng

i∑
t=1

cg
i,t(1 + r)−(t−1)Tg

i (7)

ng
i =
⌈
Tg/Tg

i

⌉
(8)

Rm
i,Tg

=

Tg∑
h=1

(
czm

i,h − cgm
i,h

)
(1 + r)−h (9)

where ωR
i represents the cost allocation index of pipeline i under BPM. Rb

i,Tg
and Rm

i,Tg
denote the

construction cost reduction and the maintenance cost reduction, respectively. Tg
i is the service life of

UUT-laying pipeline i and ng
i denotes the number of repeated laying times of pipeline i. cg

i,t is the laying

cost of pipeline i in UUT at the t-th repeat and cgm
i,h is its maintenance cost at the h-th year. Similarly,

the larger the index ωR
i is, the higher the cost allocation ratio of pipeline i should be.

3. Comprehensive Decision-Making Mechanism of UUT Cost Allocation Considering the
Bargaining Power of Pipeline Companies

Considering that the cost allocation ratio of each pipeline company varies greatly under the
above-mentioned three allocation indexes, it is difficult to satisfy the wishes of all pipeline companies at
the same time by allocating UUT construction cost with a single index. For example, the water supply
companies will bear a large proportion of UUT construction cost under SPM, while the proportion
under DCM is much smaller because the direct-laying cost of water supply pipelines is much lower
than that of communication and power cables. All pipeline companies want to adopt cost allocation
indexes that are beneficial to themselves, and it is difficult to reach an agreement. To solve this problem,
the cost allocation among pipeline companies is regarded as a process of bargaining in this paper,
and a comprehensive decision-making mechanism is established for the weight determination of the
above-mentioned allocation indexes.

Negotiations are held among pipeline companies on their respective cost allocation ratios, and the
pipeline company’s satisfaction ui with the outcome of the negotiations is defined as:

ui =
ωimax −ωi

ωimax −ωimin
(10)

where ωi is the comprehensive decision result (CDR) of cost allocation ratio of pipeline i. ωimax and
ωimin denote the maximum and minimum cost allocation ratios of pipeline i under different cost
allocation indexes, respectively. If the satisfaction of any pipeline company is too low, the traditional
buried pipeline would replace the UUT-laying pipeline, thus hindering the construction of the utility
tunnel. Thus, the optimization problem for the comprehensive decision-making mechanism of the cost
allocation among pipeline companies is expressed as:

max U =
∑
i∈N

αiui (11)

s.t. ωi = λSω
S
i + λCω

C
i + λRω

R
i (12)

λS + λC + λR= 1 (13)
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ωi(1− λG)Cg ≤ Rb
i,Tg

+ Rm
i,Tg

(14)

0 ≤ ωi ≤ βiωimax (15)∑
i∈N

βiωimax ≥ 1 (16)

where U is the overall satisfaction of pipeline companies, and αi is the coefficient indicating the
bargaining power of the i-th pipeline company. λS, λC, and λR represent the weights of the improved
SPM, DCM, and BPM within the CDR, respectively. Cg is the UUT construction cost and λG is the
proportion of Cg shared by the government. βi is the biggest discount that the pipeline company i
can accept. Inequality constraint Equation (14) is the individual rational constraint, which ensures
that the cost shared by the pipeline company is lower than its net income from laying the pipeline
into a utility tunnel. Inequality constraint Equation (15) limits the cost allocation proportions of
pipeline companies so as to ensure that UUT-laying pipelines will not be replaced by traditional buried
pipelines. Inequality constraint Equation (16) is the group rational constraint, which ensures that the
UUT construction cost can be fully shared by pipeline companies.

It is believed that there is an interdependent relationship between pipeline companies based on
the two facts: (1) the construction of UUT requires mutual cooperation between pipeline companies;
(2) the government shares part of the construction cost of UUT to ensure that pipeline companies can
obtain profits. However, the differences in cost-sharing, the cost-benefit ratio, and payback period
of pipelines companies lead to their different preferences for cooperation, which is reflected in the
differences in bargaining power in alliance negotiations. It can be seen from Equation (11) that the
overall satisfaction of pipeline companies is related to the bargaining power of each pipeline company.
The greater the bargaining power of the i-th pipeline company in the cost allocation negotiation,
the greater its impact on the overall satisfaction of pipeline companies, and the lower the cost allocation
proportion it obtained through optimization. Therefore, the relationship between pipeline companies
is interdependent and competitive. The bargaining power of pipeline companies is analyzed based on
the resource dependence theory (RDT) [20] in this paper.

The RDT focuses on the fact that enterprises require resources from others for survival and
operation, and suggests that resource dependence is an essential part of enterprise relationships and
a reason for the bargaining power imbalance in negotiations [21]. The level of the interdependence
between pipeline companies is mainly determined by two factors, i.e., the importance of external
resources and the possibility of alternative suppliers. The construction of UUT requires the joint
efforts of the government and pipeline companies, and any one of them is irreplaceable, i.e., there
is no alternative suppliers. Thus, the importance of external resources, i.e., the economic benefits
of pipeline companies when laying pipelines into utility tunnel, is the key to measure the level
of interdependence between pipeline companies. The greater the benefit of the pipeline company,
the stronger its dependence on others, the lower the bargaining power in negotiation, and the smaller
αi in Equation (11). The economic benefits of pipeline companies can be measured by indexes such as
a net investment income, payback period, and cost-benefit ratio [22]. Then, the coefficient αi indicating
the bargaining power of pipeline company in the negotiation of UUT construction cost allocation can
be expressed as:

αi = Pi
ωi(1− λG)Cg(
Rb

i,Tg
+ Rm

i,Tg

)2 (17)

Pi = max
{
t
∣∣∣∣Rb

i,t + Rm
i,t −ωi(1− λG)Cg = 0

}
(18)

where Pi is the payback period of pipeline company i. Rb
i,t and Rm

i,t represent construction cost reduction
and the maintenance cost reduction within the time Pi, respectively. It can be seen from Equation (17)
that αi is proportional to the payback period Pi, and inversely proportional to the net investment income
and the cost-benefit ratio (i.e., the ratio of the investment income to the allocated UUT construction
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cost). Equation (18) denotes that the payback period Pi is the maximum value of time t that the net
investment income within t is equal to the allocated cost of pipeline company i.

Although RDT plays an important role in explaining the organization’s behavior, it does have
defects and limitations [23]. Considering the operational environment, relational networks as well as
inter-organizational power dynamics, RDT cannot fully explain the relationship between organizations.
Further research can be conducted on the combination of RDT and other theories, e.g., social network
theory, game theory, and agency theory, to study the cost-sharing negotiations among pipeline
companies, taking into account economic, policy, and social environmental factors.

In summary, the process of the proposed comprehensive decision-making mechanism for UUT
construction cost allocation is shown in Figure 2. Based on the cost allocation mechanism, the economic
benefits evaluation of UUT-laying power cables could also be obtained.

 
Figure 2. Flow chart of comprehensive decision-making mechanism for UUT construction cost allocation.

4. Case Studies

The data of the utility tunnel project of Shanghai Taopu Science and Technology Intelligence
City in China is used for demonstrating the proposed comprehensive decision-making mechanism
for UUT construction cost allocation. The utility tunnel consists of three cabins, in which 110 kV
cables are laid in the high-voltage power cabin, gas pipelines are laid in the gas cabin, and 10 kV
cables, communication cables and water supply pipelines are in the integrated cabin, as shown in
Figure 3. The utility tunnel is 1000 m long, has a service life of 100 years, and has a total construction
investment of 50.9 million CNY. Considering the reduction of civil engineering cost, the improvement
of maintenance efficiency and the improvement of operation environment, reasonable assumptions are
made on the laying cost, service life and maintenance cost of UUT-laying pipelines based on the data
of traditional buried pipelines [24,25]. Assuming that the government shares 40% of the construction
cost. The annual interest rate is 5%, and the largest discount that pipeline companies are willing to
accept is 0.9. The construction cost of the underground power corridor is 5 million CNY/km [26].
Overall, the engineering parameters of the utility tunnel and pipelines are shown in Table 1, and the
parameters of traditional buried pipelines are shown in Table 2.
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Figure 3. Cross-sectional view of utility tunnel in Taopu Science and Technology Intelligence City.

Table 1. Engineering parameters of UUT-laying pipelines.

110 kV Cable 10 kV Cable Water Supply Communication Gas

Occupied space (m2) 6.48 2.26 2.26 4.12 5.40
Type and quantity 12 36 DN300*2 25 DN500*2

Laying cost (104 CNY/km*pipe) 35 20 30 15 70
Service life (years) 75 40 25 40 25

Maintenance cost (104 CNY/km) 0 0 0.2 0.2 0.2

Table 2. Engineering parameters of traditional buried pipelines.

110 kV Cable 10 kV Cable Water Supply Communication Gas

Laying cost (104 CNY/km*pipe) 40 25 60 20 100
Service life (years) 50 25 15 25 15

Maintenance cost (104 CNY/km) 0.1 0.1 1.5 0.2 1.0

4.1. Cost-Sharing Comparison of Pipeline Companies under Different Cost Allocation Methods

The weights of the improved SPM, DCM, and BPM in the comprehensive decision-making result
(CDR) of the UUT cost allocation are 0.3398, 0.3027, and 0.3575, respectively. The allocated cost and
proportion of each pipeline company are shown in Table 3 and Figure 4, respectively.

Figure 4. Cost allocation proportion of pipeline companies.
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Table 3. Cost-sharing of pipeline companies (Unit: 104 CNY).

Power Water Supply Communication Gas

SPM 13.01 6.13 3.36 8.04
DCM 16.26 3.08 6.46 4.74
BPM 13.86 4.70 5.95 6.04
CDR 14.32 4.65 5.31 6.26

It can be seen from Table 3 and Figure 4 that the power company shares a higher proportion of
the cost under different allocation methods, which makes it the most important pipeline company
participating in the construction of a utility tunnel. Specifically, the differences in the cost allocation
proportion of each pipeline company under different allocation methods are summarized as follows:

(1) Under SPM, the UUT construction cost is allocated based on the proportion of area occupied
by the pipelines. For the sake of security, 110 kV cables and gas pipelines should be separated from
other pipelines and need to be laid in their individual cabins, i.e., the high-voltage power cabin and
the gas cabin, making the space occupied by power cables and gas pipelines larger (i.e., 8.75 m2 and
5.40 m2, respectively). The power company also needs to share part of the construction cost of the
integrated cabin where 10 kV cables are laid, which makes it share the highest proportion of UUT
construction cost (i.e., 25.6%).

(2) Under DCM, the proportion of direct-laying costs among pipelines is used to allocate the
UUT construction cost. For power companies, the number of 110 kV and 10 kV cables to be laid is
large, and underground power corridors need to be built for traditional buried cables, resulting in a
higher total direct-laying cost than other pipelines. For water supply/gas companies, the laying cost of
traditional buried pipeline and the frequency of repeated laying are relatively high. However, compared
with the large number of power cables and communication cables laid, the laying of water supply and
gas pipelines is not a high-cost business, which makes the cost shared by water supply companies and
gas companies lower (i.e., 6.0% and 9.3%, respectively).

(3) Under BPM, the cost allocation proportion of each pipeline company is determined according
to the economic benefit that the pipeline produces when laid into a utility tunnel. For power companies,
the total cost of cable laying is reduced because the utility tunnel replaces the traditional underground
power corridor that requires additional investment in construction, resulting in the highest economic
benefits for the power companies. On this basis, the cost allocation proportion of power companies
is the highest (i.e., 28.1%). For water supply and gas companies, compared with the traditional
buried pipelines, UUT-laying pipelines have a lower laying cost, maintenance cost and repeated
laying frequency, which increases their economic benefits. Therefore, the costs shared by water supply
companies and gas companies under BPM are higher than those shared under other methods.

(4) Under the proposed comprehensive decision-making mechanism, the cost-sharing proportion
of each pipeline company is the optimization result of the above-mentioned methods, which maximizes
the overall satisfaction of pipeline companies. As shown in Table 4, the overall satisfaction of
the pipeline companies under SPM, DCM and BPM is 54.8%, 72.5%, and 92.8% of the maximum
overall satisfaction, respectively, which indicates that the proposed comprehensive decision-making
mechanism of UUT cost allocation is more acceptable and more feasible.

Table 4. Economic benefits and overall satisfaction of pipeline companies.

Economic Benefits (106 CNY)
Overall Satisfaction

Power Water Supply Communication Gas

SPM 7.75 0.91 5.55 1.00 54.8%
DCM 4.50 3.97 2.45 4.30 72.5%
BPM 6.90 2.34 2.96 3.01 92.8%
CDR 6.44 2.39 3.60 2.78 100.0%
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4.2. Economic Benefit Evaluation of UUT-Laying Power Cable

Under the comprehensive decision-making allocation mechanism, the power cable laying cost of
the power company reduced by 12.5% (i.e., 6.44 million CNY) in the life cycle of the UUT. The payback
period (i.e., the time when the cumulative laying cost of UUT-laying power cables is lower than that of
traditional buried power cables) of the power company is 51 years, as shown in Figure 5.

Figure 5. Comparison of power cable laying costs.

It is worth noting that the service life of traditional buried cables and UUT-laying cables are
different, which makes the time point of cable re-laying different. Therefore, the cumulative laying
cost of UUT-laying cables may be lower than that of the traditional buried cables during a certain
period, but the power company cannot recover the allocated UUT construction cost. Take a 10 kV
power cable as an example, due to the improvement of environmental conditions, the average service
life of the UUT-laying cable is 40 years, 15 years longer than that of the traditional buried cables. It can
be seen from Figure 5 that in the first 25 years, the UUT-laying cost curve is always higher than the
direct-laying cost curve. Within the payback period, the traditional buried 10 kV cables need to be
re-laid in the 26th and 51st years at a cost of 9 million CNY per time, while the UUT-laying 10 kV cables
only need to be re-laid in the 41st year at a cost of 7.2 million CNY. As a result, in the 15 years period
from the 26th to the 40th year, the UUT-laying cost curve is lower than the direct-laying cost curve,
but in fact the cost shared by the power company is not offset. After the 51st year, the UUT-laying cost
curve is always lower than the direct-laying cost curve, which shows that the power company has
completed cost recovery.

It is important to assume that due to the increase of load in the UUT pilot area, the distribution
network needs to double its capacity in the t1-th and the t2-th year after cable laying. The capacity of
other types of pipelines has also increased at the same time, and cost allocation proportion of each
pipeline company remains unchanged. Then, considering the expansion of distribution network,
the cost comparison of traditional buried cables and UUT-laying cables under two scenarios is shown
in Figures 6 and 7, respectively.

It can be seen from Figures 6 and 7 that when considering the expansion of distribution network,
the payback period of the power company is shortened from 51 years to 26 years under Scenario A,
and 46 years in the case of Scenario B. The power cable laying cost reduction of the power company
within the life cycle of UUT is increased from 6.44 million CNY to 40.22 million CNY (under Scenario A)
and 47.37 million CNY (under Scenario B), respectively. The earlier the distribution network is expanded
or rebuilt, the shorter the payback period is, and the higher the economic benefit of UUT-laying power
cables is. Generally, in the life cycle of UUT (usually 100 years), the expansion of distribution network
and the transformation of power pipelines caused by the growth of regional energy consumption and
the development of distributed generation are inevitable [27]. Therefore, it can be concluded that the
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use of UUT-laying power cables in place of traditional buried cables in areas with rapid load growth
has great economic benefits.

Figure 6. Comparison of power pipeline laying costs under Scenario A.

Figure 7. Comparison of power pipeline laying costs under Scenario B.

In addition, the relationship between the number of cables of different voltage levels laid in the
utility tunnel and the economic benefits of the power company is shown in Figure 8. The upper limit
of the number of 110 kV cables laid in the high-voltage power cabin is 30, and the upper limit of the
number of 10 kV cables laid in the integrated cabin is 60.

It can be seen from Figure 8 that it is not economical for power companies to lay only 110 kV
cables in a utility tunnel. With the increase of the number of 10 kV cables laid in the integrated cabin,
the economic benefits of the power company have been continuously improved. When the number of
110 kV and 10 kV cables reaches their upper limits, the maximum net income (i.e., 15.31 million CNY)
of the power company without considering the expansion of distribution network can be obtained,
and the cost shared by the power company is about 17.56 million CNY, accounting for 34.5% of the
total UUT construction cost. Compared with traditional buried cables, 10 kV UUT-laying cables
have the advantages of lower laying cost, lower maintenance cost, and longer service life (i.e., lower
repeated laying frequency), which is the main source of economic benefits of laying cables in UUT.
Therefore, power companies should pay attention to the coordination of 110 kV and 10 kV UUT-laying
cables in the distribution network planning to maximize their economic benefits.
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Figure 8. The relationship between the number of cables and the economic benefits.

4.3. Cost-Sharing Comparison of Single Integrated Cabin under Different Cost Allocation Methods

It is worth noting that the construction costs of UUT projects in different regions can vary hugely,
which may be caused by the difference of cabin types and regional economic development [11]. To further
prove the effectiveness of the proposed comprehensive decision-making cost allocation mechanism,
the UUT project in Ningbo City, Zhejiang Province, China, is also used for demonstration [28].
The cross-sectional view of utility tunnel of Yincounty Avenue in Ningbo is shown in Figure 9. It is
an integrated cabin in which 10 kV power cables, communication cables, and water supply pipelines
are laid, while 110 kV cable and gas pipeline need not be laid. The total investment in construction is
60 million CNY per kilometer, 40% of which is funded by the government. The engineering parameters
of the tunnel and pipelines are shown in Table 5.

 

Figure 9. Cross-sectional view of the Yincounty Avenue utility tunnel.

Table 5. Engineering parameters of pipelines laid in the Yincounty Avenue utility tunnel.

10 kV Cable Water Supply Pipeline Communication Cable

Occupied space (m2) 2.4 4.8 1.8
Type and quantity 12 DN300 12
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The optimization results of the proposed comprehensive decision-making mechanism are shown
in Table 6. The weights of the improved SPM, DCM, and BPM in the comprehensive decision-making
result (CDR) of the UUT cost allocation are 0.5361, 0, and 0.4639, respectively. As shown in Table 6,
under DCM, the cost-sharing proportion of power company and telecommunications company reaches
the maximum at the same time, i.e., 33.1% and 18.7%, respectively. It is believed that the two companies
will oppose the DCM, and as expected, DCM has the lowest overall satisfaction among the four
methods. The overall satisfaction of the pipeline companies under DCM and BPM is 69.2% and 72.0%
of CDR, respectively. It can be concluded that although the data from different UUT projects may have
an impact on the simulation results, under the proposed comprehensive decision-making mechanism,
the cost-sharing ratio that achieves the maximum overall satisfaction can always be obtained.

Table 6. Cost allocation proportion and overall satisfaction of pipeline companies.

Cost Allocation Proportion
Overall Satisfaction

Power Water Supply Communication

SPM 16.0% 32.0% 12.0% 69.2%
DCM 33.1% 8.2% 18.7% 30.4%
BPM 32.4% 13.3% 14.3% 72.0%
CDR 23.6% 23.3% 13.1% 100%

For power companies, the cost-sharing proportion under SPM (i.e., 16.0%) is significantly lower
than that in Figure 4 (i.e., 25.6%). This is because when only 10 kV cables are laid, there is no need to
build an individual high-voltage power cabin, which reduces the proportion of area occupied by the
power cables. Accordingly, under the comprehensive decision-making mechanism, the cost allocation
ratio of the power company is also reduced. Overall, laying 10 kV power cables in UUT has higher
economic benefits than 110 kV cables.

5. Conclusions

The urban utility tunnel is an important infrastructure of urban multi-energy supply system,
which presents solutions for the sustainable development of urban underground space, and has great
economic and social benefits. To overcome the shortcomings of UUT construction cost allocation
methods in China, a comprehensive decision-making mechanism for UUT cost allocation is designed
in this paper. Firstly, the traditional spatial proportion method is improved based on the Shapley value,
and the improved spatial proportion, the direct-laying cost proportion, and the benefit proportion
of pipeline companies are taken as UUT cost allocation indexes. The bargaining power of pipeline
companies is considered in the decision-making and analyzed based on the resource dependence theory.
The weights of the cost allocation indexes are optimized with the objective of maximizing the overall
satisfaction of the pipeline companies. Simulation results show that the proposed comprehensive
decision-making mechanism for UUT construction cost allocation is more acceptable and more feasible
than traditional cost-sharing methods. For power companies, compared with traditional buried
pipelines, the cost of laying power cables can be significantly reduced by UUT, and the laying of 10 kV
power cables has been shown to have higher economic benefits than laying 110 kV cables.
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Abstract: The industrial sector dominates the global energy consumption and carbon emissions in
end use sectors, and it faces challenges in emission reductions to reach the Paris Agreement goals. This
paper analyzes and quantifies the relationship between industrialization, energy systems, and carbon
emissions. Firstly, it forecasts the global and regional industrialization trends under Representative
Concentration Pathway (RCP) and Shared Socioeconomic Pathway2 (SSP2) scenarios. Then, it projects
the global and regional energy consumption that aligns with the industrialization trend, and optimizes
the global energy supply system using the Model for Energy Supply Strategy Alternatives and their
General Environmental Impact (MESSAGE) model for the industrial sector. Moreover, it develops an
expanded Kaya identity to comprehensively investigate the drivers of industrial carbon emissions.
In addition, it employs a Logarithmic Mean Divisia Index (LMDI) approach to track the historical
contributions of various drivers of carbon emissions, as well as predictions into the future. This paper
finds that economic development and population growth are the two largest drivers for historical
industrial CO2 emissions, and that carbon intensity and industry energy intensity are the top two
drivers for the decrease of future industrial CO2 emissions. Finally, it proposes three modes, i.e., clean
supply, electrification, and energy efficiency for industrial emission reduction.

Keywords: industrialization; industrial CO2 emission; MESSAGE model; Kaya identity;
LMDI approach

1. Introduction

The industrial sector is the largest sector of energy consumption with largest CO2 emission among
the final sectors [1]. In 2017, the total energy consumption of the industrial sector accounted for 29% of
the end-use energy consumption and 24% of the total CO2 emissions. Considering the indirect energy
consumption and CO2 emissions from industrial electricity and heat, the percentage of industrial
energy consumption and emissions are 43% and 42% respectively [2]. In order to understand the role
of the industrial sector in the future energy consumption and emission pathways, especially under
the rapid development of renewable energy and electrification, there is a need to analyze the global
industrialization process, study the energy system and the drivers, and explore a future emission path
for the industrial sector that aligns with the 2 ◦C global temperature control goal of the Paris Agreement.
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There is much existing literature evaluating industrialization from the economic perspective.
Regarding industrialization, Chang Pei-Kang studied the industrialization process and its relationship
with the agriculture sector [3]. In this paper, we define the “industrialization” stage as the proportion of
the manufacturing industries’ output in the GDP structure. The manufacturing industries include iron
and steel, cement, chemicals, pulp and paper, non-ferrous metals, food processing, textiles, leather, and
mining etc. Economists have divided economic development into three stages: pre-industrialization,
industrialization, and post-industrialization [4]. The industrialization process of a country is closely
related to the stage of economic growth [3,4]. The basic characteristics of the industrialization are shown
in the following aspects: (a) The increase in the proportion of manufacturing activities in national
income structure. (b) The increase in the proportion of the labor population in the manufacturing
industry. According to various standards, e.g., income level of GDP per capita, national income structure
(percent of the first, second, and third industry respectively), employment structure, urbanization level,
etc. Therefore, the industrialization stage can be further divided into three sub-stages: initial stage,
intermediate stage, and late stage (Table 1).

Table 1. Different industrialization stages and criterions.

Criterions
Pre-Industrialization

(I)

Industrialization Stages
Post-Industrialization

Stage (V)
Early Stage of

Industrialization
(II)

Intermediate Stage
of Industrialization

(III)

Late Stage of
Industrialization

(IV)

(1) GDP per capita
(2015 USD, in PPP) <1000 1000~5000 5000~18,000 18,000~30,000 >30,000

(2) Economic structure A > I A > 20% and A > I A < 20% and A > S A < 10% and I > S A < 10% and I < S
(3) Urbanization rate by
population Below 30% 30~50% 50~60% 60~75% Above 75%

Note: (1) criterions refers to Chen et al. [5], the standard of per capita GDP levels be updated by the authors;
(2) A denotes agriculture, I denotes second industry, S denotes the services sector.

The manufacturing industries represent the industrialization process and dominate energy
consumption and emission in the end-use sectors. Along with the industrialization process,
the proportion of output value of the manufacturing industries in the national economy will experience
an inverse-U shaped process which is also known as the “Kuznets curve.” In general, the proportion of
the second industry in GDP rises first, then reaches peak, and falls afterwards. The internal structure
of the manufacturing industry will experience the same process as well. During the early stage of
industrialization, the dominant industries are labor-intensive light industries such as the textile and
food sectors, whose proportion will first increase and peak, and then begin to decline at the end of
the early stage. While in the intermediate stage of industrialization, the dominant industries are
capital-intensive heavy industries, such as the iron and steel, cement, electricity, and other energy and
raw material-related industries, in the late stage of industrialization, the dominant industries involve
technology-intensive high-value machining manufacturing, such as equipment manufacturing sectors.
When entering the post-industrialization stage, the proportion of secondary industry output falls, while
the proportion of third industry rises [6]. According to the experience of the major developed countries,
the proportion of industrial output in the total output will keep stable between 20%~30%. This result
is driven by both the international industry transfer and domestic industry upgrade trends [7].

There is also extensive literature regarding industrial energy and emissions. For example, Caraiani
et al. [8] study the causality relationship between energy consumption and economic growth in the
context of emerging European countries, while Ntanos et al. [9] study renewable energy and economic
growth based on European countries. Taeyoung and Jinsoo [10] study the relationship between coal
consumption and economic growth based on the OECD and non-OECD countries. Chen et al. [3]
study the relationship between industrialization and industrial CO2 emissions for China. Wang and
Chen [11] study the decarbonization pathways of industrial energy consumption under 2 ◦C scenario
for a comparison of China, India and Western European countries. Van Ruijven et al. [12] study the
energy use and CO2 emissions from the global steel and cement industries based on model projections.
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International Energy Agency (IEA) studies the industrial energy efficiency and CO2 emissions [13].
However, there are few papers attempting to link the industrialization process with the industrial
energy consumption and CO2 emissions together, especially at the global level [12]. This is one of
the main innovative contributions of this paper: to establish and quantify the relationship between
industrialization, energy system, and carbon emissions.

When identifying drivers of CO2 emissions, Kaya identity [14] is commonly used in
Intergovernmental Panel on Climate Change (IPCC) reports [15] and IEA reports for tracking the trends
of key drivers [16]. As indicated from IEA statistics, energy intensity has decreased by 34% globally
compared with the reference year of 1990, while population and GDP per capita has increased by 41%
and 68% respectively [16]. In order to further study the impact of these drivers, the Logarithmic Mean
Divisia Index (LMDI) approach [17,18] is proposed and widely used to decompose the drivers for
national CO2 emission. For example, Freitas and Kaneko [19] used the LMDI approach to evaluate the
changes in CO2 emissions from energy consumption in Brazil for the period 1970–2009 and the results
demonstrated that economic activity and demographic pressure are the leading forces explaining
emissions increase. Fatima et al. [20] applied LMDI method to study energy-related CO2 emission in
China’s industrial sector and found that CO2 emission experienced a significant increase from 1991 to
2013, and started to decrease in 2016. They also identified that the income effect and labor effect are
the top two contributors to emissions. Arsalan et al. [21] used the LMDI approach to decompose the
changes in CO2 emissions in Pakistan for the time periods of 1990–2017 and found that activity effect,
structural effect and intensity effect were identified as the three major factors responsible for changes in
overall CO2 emissions in the country. Besides Brazil [19], China [20,22,23], and Pakistan [21], the LMDI
approach is also applied in the study for Iran [24], Philippines [25], Spain [26], Portugal [27], Iran [28],
Turkey [29], and Greece [30] etc. In terms of regional study, Wang and Chen [11] applied a 14-region
energy system model (Global TIMES) to analyze the transition pathways of the industrial sector using
the LMDI approach and found that the changes in socio-economic development pattern could slow
the emission growth. Moutinho et al. [31] identified the relevant factors that have influenced the
changes in the level of CO2 emissions among four groups (eastern, western, northern and southern)
of European countries and found that energy mix, switching to cleaner fuels for end-user energy
production contributes significantly to emission reduction. To sum up, most of the previous studies
focused on analyzing national historical data to identify the contribution of drivers in CO2 emission
using the LMDI approach, while the key drivers’ potential in future CO2 emission reductions are yet
to be discussed [17,19–31]. Furthermore, a traditional Kaya identity equation consisting of energy
intensity, CO2 intensity, economy, and population is used in the decomposition analysis, while more
detailed factors are overlooked for better understanding the source of those drivers [11]. Another aim
of this paper is to fill these gaps.

The aim of this paper is to first explore the global industrialization trend, the energy demand,
and emission trend for the world and 11 regions achieving the temperature control goal of 2 ◦C of
the Paris Agreement, and then to expand the traditional Kaya identity to study the drivers of CO2

emissions from historical data and a future scenario using the LMDI approach. Section 2 provides
a description of the method and data, including the industrialization regression and projection
method; energy and emission prediction and optimization software by the Model for Energy Supply
Strategy Alternatives and their General Environmental Impact (MESSAGE) model and Representative
Concentration Pathways (RCPs) and Shared Socioeconomic Pathways (SSPs) scenarios database, the
decomposition method of Kaya identity, and contribution analysis method of the LMDI approach.
Section 3 is the analysis and results, it assesses the global industry development and industrialization
trend in the 21st century, the global energy demand and emissions from the industrial sector under the
2 ◦C scenario, and the decomposition and contribution analysis using the LMDI approach. Section 4
summarizes the modes for industrial emission mitigation. Section 5 presents the conclusions and
future works.
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2. Method and Data

2.1. Industrialization Projection Method

This paper analyzes the status quo of the current industrialization stages globally, for 11 regions.
The world average industrialization rate is 24% in 2015. Based on the industrialization rate and
GDP per capita levels for 11 regions, from Figure 1, it clearly shows the inverse-U shape of the
industrialization process. The least developing region, i.e., Sub-Saharan Africa (AFR) is still at the
first stage of industrialization or Before Industrialization stage. South Asia (SAS) is at the Early stage
of Industrialization. These two regions are still experiencing an increasing trend in terms of their
industrialization rate. According to the criterions from Table 1, and based on the historical data for the
industrialization rate and GDP per capita levels for these six regions, these regions are in different
sub-stages of industrialization. The Central and Eastern Europe (EEU), Former Soviet Union (FSU) and
Latin America and the Caribbean (LAC) are in the late stage of industrialization, while the Centrally
planned Asia and China (CPA), Middle East and North Africa (MEA) and Other Pacific Asia (PAS) are
in the intermediate stage of industrialization. The three most developed regions, i.e., North America
(NAM), Western Europe (WEU), Pacific OECD (PAO) are in the post-industrialization stage.

Figure 1. The status of industrialization globally and across 11 regions in 2015. Note: (1) 11 regions
are defined by International Institute for Applied Systems Analysis (IIASA) [32]. (2) Data of GDP per
capita and industrial output percent are retrieved from the World Bank Database [33]. (3) Dashed
line is the world average; dotted line is the regression line from the 11 regions GDP per capita and
industrialization data.

Based on the historical data of industrialization for the 11 regions across the globe, we develop a
regression method to predict the future industrialization for those regions. The country-level historical
annual data such as the GDP, population and GDP per capita (denoted as gdppc), from 1990 to 2017 are
collected from the World Bank Database [31]. Then, country-level data are aggregated to 11 regions
defined by IIASA [32]. We collect the annual GDP per capita (gdppc) along with its quadratic and cubic
forms as the main explanatory variables. The explained variable is the industrialization level (ind).
The basic regression equation is defined as following:

indit = constant + a·gdppcit + b·gdppcit
2 + c·gdppcit

3. (1)

where i denotes 11 regions, t denotes different years, a, b, c are parameters.
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When we arrive at the regression results for 11 regions, we apply the future gdppc data derived
from the second Shared Social-economic Pathways (SSP2) [34] to predict the future industrialization
level for 11 regions. Two caveats arise here: the first is that there is only one explanatory variable,
gdppc, because we try to catch the relationship between income and industrialization level; the second
is that the prediction period of 2018–2100 is much longer than the historical period in order to match
the “S-curve” method for energy projection and the Kaya and LMDI methods.

2.2. Industrial Energy Demand Projection Method

A hump-shaped function method is used to project the industrial energy demand in each region.
Historical data show that the relationship between the industrial energy consumption per capita and
GDP per capita follows the “S-Curve”: with the increase of GDP per capita, the industrial energy
consumption per capita first increases, and then peaks then decreases along with the industrialization
process [3]. Studies reveal that the “S-curve” method can capture the relationship between industrial
energy consumption per capita and GDP per capita. Based on the industrialization projection method
in Section 2.1, here we apply a simple top-down method, i.e., the “S-curve” method to project the
global energy consumption for the industry sector.

The mathematic equation to describe the S-curve relationship [35] between the industrial energy
consumption per capita and GDP per capita is:

E− Ei = A
exp(α1(G−Gi)) − exp(−α3(G−Gi))

2 cosh(α3(G−Gi))
(2)

where i is the turning point of the S-curve; Gi is the GDP per capita at the turning point; Ei is the
industrial energy consumption per capita at the turning point; α1, α2, α3, and A are country specific
parameters which can be estimated from regression results.

According to the time of industrialization process, industrial structure, duration of industrialization
as studied in Section 2.1 and urbanization development in each country or region, the S-curve could be
classified into three main types: high S type, middle S type, and low S type [35]. Countries categorized
with high S type consumed more energy intensive products than middle and low type, resulting
in a larger magnitude of turning point. Furthermore, the timing of the high S type turning point
occurrence lags middle and low S type, resulting in high GDP per capita when the turning point
occurred. Threshold GDP per capita for different S-curves is summarized in Table 2. Major boundary
conditions and assumptions in the MESSAGE model are described in Table 3.

Table 2. Threshold GDP per capita levels for different S-curve.

Type
Take-Off

Point
Gi and Ei at

Turning Point
Gi and Ei at Zero

Growth Point
Representative Countries

High “S” type

2500~3000

10,000~12,000 15,000~17,000 U.S., Canada
1.6~1.8 2~2.5

Mid “S” type 10,000~12,000 15,000~17,000 Sweden, Belgium
1.4~1.5 1.7~1.8

Low “S” type 7000~9000 10,000~12,000 England, France, Germany,
Japan, Italy, etc.0.6~0.8 0.7~1.2
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Table 3. Major boundary conditions and assumptions.

Items Description

Model related Socio-economic SSP2
Industry energy demand S-Curve

Resource potential Resource curves for each region
Solve Global optimization

Scenario related 2 ◦C target Carbon budget for 2018–2100: 1280 Gt CO2 [1]
Reference scenario No carbon limit, NPi_v4 from IIASA

Technology Exogenous technological progress

In the present study, traditional Kaya identity [14] is further expanded to decompose the industrial
carbon emission and a LMDI approach is used to investigate the contribution of each drivers in carbon
emission based on historical data. Furthermore, on the basis of MESSAGE optimized energy system
results under conditions of the 2 ◦C target, decomposition analysis for projected industrial carbon
emissions is carried out. The analysis framework is shown in Figure 2.
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Figure 2. The framework of present and projection analysis on industrial emission reduction based on
MESSAGE optimization and expanded Kaya equation with LMDI decomposition.

2.3. Expanded Kaya Equation and Contribution Decomposition

2.3.1. Expanded Kaya Equation

Traditional Kaya identity [14] is a commonly used way to decompose carbon dioxide emissions,
which is expressed as the product of four factors: population, GDP per capita, energy intensity and
carbon intensity (see Equation (3)).

CO2 = POP× GDP
POP

× E
GDP

× CO2

E
. (3)

where CO2 is the total CO2 emissions, POP is total population, GDP is economic output, E. is
total primary energy consumption, while GDP/POP denotes GDP per capita indicating income
level, E/GDP represents energy intensity which indicates energy efficiency, CO2/E stands for carbon
intensity, reflecting the effect from energy structure changes.
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Traditional Kaya identity is widely used to decompose carbon emissions [16], but it fails to
consider the impact of industrialization and electrification on carbon reduction. An expanded Kaya
identity is re-written as follows,

CO2 =
CO2
FOF

× FOF
TOE

× TOE
IND

× IND
GDP

× GDP
POP

× POP (4)

Here, the CO2 is the total industrial CO2 emissions, FOF is total industrial fossil fuels consumption,
TOE is total industrial energy consumption, IND is industrial output, GDP is economic output, POP
is total population. Therefore, the industrial CO2 emissions is decomposed into six drivers, while
the CO2/FOF denotes CO2 emission intensity of fossil fuels, FOF/TOE denotes the energy structure of
fossil fuel among total energy consumption, TOE/IND denotes energy intensity of industrial output,
IND/GDP denotes the industrialization level, GDP/POP denotes GDP per capita. This paper applies the
Kaya method, which is in essence a top-down method, while combined with a bottom-up study on
specific industries based on local endowments of different regions.

2.3.2. Contribution Analysis Based on LMDI Approach

When taking all industry sectors into consideration, the total industrial emissions could be
expressed in the following way as in Equation (5).

CO2 =
∑

i j

CO2i j=
∑

i j

CO2i j

FOFij
× FOFij

TOEi
× TOEi

INDi
× INDi

GDP
× GDP

POP
× POP

=
∑

i j

Cij × Sij × Ii ×Qi ×G× P
(5)

where CO2i j is the CO2 emissions arising from fuel j in industrial sector i, FOFij is the consumption
of fuel j in industrial sector i, TOEi is total energy consumption in industrial sector i, INDi is total
industrial output in industrial sector i; Cij,Sij,Ii,Qi,G and P represent the drivers of carbon emission
from carbon intensity, energy structure, industrial energy intensity, economic structure, economic
development, and population, respectively.

According to Ang [18] and present CO2 decomposition, changes in CO2 emission from industry
could be expressed in an additive decomposition way as follows,

ΔCtot = CT −C0 = ΔCcei + ΔCstr + ΔCiei + ΔCestr + ΔCed + ΔCpop (6)

where,

ΔCcei =
∑
i j

CT
ij−C0

i j

ln CT
ij−ln C0

i j
ln
(

CT

C0

)

ΔCstr =
∑
i j

CT
ij−C0

i j

ln CT
ij−ln C0

i j
ln
(

CT

C0

)

ΔCiei =
∑
i j

CT
ij−C0

i j

ln CT
ij−ln C0

i j
ln
(

ST

S0

)

ΔCestr =
∑
i j

CT
ij−C0

i j

ln CT
ij−ln C0

i j
ln
(

IT

I0

)

ΔCed =
∑
i j

CT
ij−C0

i j

ln CT
ij−ln C0

i j
ln
(

QT

Q0

)

ΔCpop =
∑
i j

CT
ij−C0

i j

ln CT
ij−ln C0

i j
ln
(

PT

P0

)

(7)
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3. Results and Discussion

3.1. Industrialization and Its Projection

In this paper, we use the historical industrialization data to predict the future industrialization
process for the 11 regions. The regression results for the 11 regions are as in Table 4. From the regression
results we can find that there are significant downward trends for the most developed regions and also
the post-industrialization regions such as the NAM, WEU, and PAO. With regard to the late stage of
industrialization regions such as EEU and FSU, we can find that there is significant downward trend
for EEU; there is an inverse-U shape for the FSU; there is a downward cube trend for the LAC region.
With regard to the regions in the intermediate stage of industrialization, CPA shows that it has passed
the peak and goes downward of industrialization; MEA and PAS show downward cubic trend. With
regard to the AFR and SAS regions, they show an upward trend, i.e., they are on the left side of the
inverse-U curve and still climbing up of their industrialization levels.

Table 4. The regression results for the 11 regions.

Regions Constant a b c Adj-R2 F-stat p-Value for F

CPA 38 *** 2.22 × 10−3 *** −1.63 × 10−7 *** / 0.78 48.2 2.64 × 10−9

EEU 98.04 *** −1.46 × 10−2 ** 1.02 × 10−6 ** −2.34 × 10−11 ** 0.39 5.07 0.012
FSU 119 *** −1.42 × 10−2 ** 7.53 × 10−7 ** −1.32 × 10−11 ** 0.58 9.57 7.4 × 10−4

LAC 847.4 *** −0.2 *** 1.615 × 10−5 *** −4.34 × 10−10 *** 0.526 11 9.74 × 10−5

MEA 368.2 * −0.12 * 1.42 × 10−5 ** −5.34 × 10−10 ** 0.69 21 6.78 × 10−7

NAM 31.2 *** −2.12 × 10−4 *** / / 0.75 82 1.54 × 10−9

PAS 66.3 *** −9.05 × 10−3 ** 8.08 × 10−7 ** −2.33 × 10−11 ** 0.55 12.2 4.84 × 10−5

PAO 66.4 *** 1.02 × 10−3 *** / / 0.68 57.4 3.83 × 10−8

SAS 16.4 *** 6.24 × 10−3 *** −8 × 10−7 *** / 0.62 23.2 1.99 × 10−6

AFR 4.47 2.48 × 10−2 ** −4.61 × 10−6 ** / 0.45 12 2.22 × 10−4

WEU 39.8 *** −4.93 × 10−4 *** / / 0.91 282 1.78 × 10−15

Note: (1) Significance levels: * denotes p < 0.1; ** denotes p < 0.05; *** denotes p < 0.01. Use R software for regression.
(2) The EEU and FSU regions went through economic recessions in 1990s thus authors use historical data during
period 1998–2017 for regressions.

Based on the SSP2 scenario, we can predict the future industrialization levels of the 11 regions.
The prediction results are as in Figure 3. The figure on the left is for six developed regions; while the
figure on the right is for the five developing regions.

(a) Developed regions (b) Developing regions 

Figure 3. The predicted industrialization results for 11 regions. Note: (a) Developed regions;
(b) Developing regions.

3.2. Industrial Energy Consumption and Demand

In 2017, the direct energy consumption of the industrial sector was 2821 Mtoe, accounting for
29% of end-use energy consumption [2]. The industrial sector’s direct emission is approximately
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7.7 GtCO2, which is about 24% of the world total emissions in 2016 [2]. Based on the historical
emissions of the industrial sector, both direct and indirect emissions are increasing from 1970 to
2010, with a rapid increase after the 2000s, accompanying fast industrialization, especially the heavy
industry development in China. It was also found that the indirect emissions from electricity and
heat consumption in the industrial sector is increasing faster than direct emissions, implying that the
electrification for the industrial sector plays an increasingly important role in mitigation options.

As introduced in Section 2.2, the total industry energy demand is firstly projected using an S-curve
and then energy structure in industry sector is optimized by the MESSAGE model [36]. The identified
parameters in S-curves for 11 regions are listed in Table 5.

Table 5. Major boundary conditions and assumptions.

Regions “S” Type Ei A α1 α2 α3 Gi

(toe/p) ($/capita) (1/$) (1/$) (1/$) ($/capita)

CPA Low 0.75 0.7 0.00002 0.00025 0.00009 9000
EEU Mid 0.55 1 0.000015 0.00025 0.00009 7000
FSU Mid 0.75 1.2 0.000015 0.00025 0.00009 6000
LAC Mid 0.6 1 0.000015 0.00025 0.00009 10,000
MEA High 0.55 1 0.00001 0.00035 0.0001 7000
NAM High 0.75 1 0.000015 0.00025 0.00009 15,000
PAS Low 0.55 1 0.000015 0.00025 0.00009 10,000
PAO Low 0.7 1 0.000015 0.00025 0.00009 9000
SAS Low 0.45 1 0.00002 0.00019 0.00011 10,000
AFR Low 0.39 1 0.00002 0.00019 0.00011 7300
WEU Mid 0.7 1 0.000015 0.00025 0.00009 10,000

The industrial energy consumption per capita estimation from the S-curve model for several
specific regions is shown in Figure 4. Most of the countries in WEU are now in Post-industrialization
stage and they concentrate more on technology-intensive products with high added value in industrial
sectors. Furthermore, lots of efforts have been spent on energy efficiency improvement. For example,
energy intensity in manufacturing sector from Ireland, Denmark, and United Kingdom and United
States decreased by 46%, 26%, 20%, and 9%, respectively in the past five years. Consequently, industry
energy consumption per capita in WEU will experience a decreasing trend in coming years. On the
contrary, countries in SAS and AFR are all developing or undeveloped countries. Those countries
are in the pre-industrialization stage or are experiencing industrialization, and they will pursue
urbanization and economic development in the coming years. With more energy-intensive products
such as steel, cement, chemicals and petrochemicals, and nonferrous metals produced in industrial
sectors, the energy demand will firstly see a significant growing trend in coming years, but it will shift
to a slow decrease as industrialization is completed and energy efficiency improves. In 2016, 34 of
53 countries in Africa are estimated to be in the pre-industrialization stage according to the method
introduced by Chen et al. [5], while 14 countries are in the intermediate-industrialization stage and only
five countries are estimated in the post-industrialization stage. Therefore, considering the relatively
undeveloped situation, AFR is the last region to complete the industrialization process while energy
consumption in AFR will keep increasing due to its upcoming booming economic development and
increasing population.

With the acceleration of industrialization in Africa and Asia and the re-industrialization in Central
and South America, the energy consumption in the industrial sector increases year by year. By 2050,
the direct energy consumption in the industrial sector will increase by 54% to 4230 Mtoe, accounting
for 40% of end-use energy consumption and surpassing the building sector to become the largest
end-use energy consumption sector. In 2100, the industrial energy demand will increase to 5060 Mtoe,
22% more compared to 2050. As discussed in Section 2, a 2 ◦C scenario and a business-as-usual (BAU)
scenario as the reference are used in this study, and the industrial sector is part of the whole global
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energy system in these scenarios [37]. Energy technologies in industry and other sectors are optimized
to provide energy services in the MESSAGE model for both scenarios. As seen in Figure 5, more
electricity is consumed in the 2 ◦C scenario, resulting in less energy consumption compared with the
reference case. In 2050 and 2100, industry energy demand under 2 ◦C conditions are 5% and 20%
respectively less than that in the reference scenario.
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Figure 4. The evaluated regional and global industrial energy consumption per capita estimation from
S-curve model.

Figure 5. Industry energy demand and energy structure in 2050 and 2100 from 2 degree and
reference scenarios.

The energy structure is optimized in the above two scenarios. In the 2 ◦C scenario, total fossil fuel
consumption in the industrial sector fell to 1120 Mtoe in 2050, a decrease of 34% compared with 2017.
The fossil fuel consumption reduction in the industrial sector is mainly due to increasing electricity
consumption and the direct use of clean energy such as solar, bioenergy, and geothermal energy to
provide heat within the low and middle range of temperature. Compared with 2017, the total electricity
consumption in the industrial sector in 2050 increased by about 1240 Mtoe, accounting for 90% of the
industrial energy increment. The share of electricity consumption in the industrial sector increases from
27.1% in 2016 to 48% in 2050 with an average annual growth rate of 0.6 percentage which is four times
the growth from 2000–2017. Besides the increasing electricity consumption, the direct use of renewables
in industry increases more than three times from 2016 to 2050, most of which are solar and bioenergy
deployment. Solar energy utilization in the industrial sector has achieved extensive development
from a few applications. With the increasing maturity of solar energy application technology, the cost
of direct solar technology utilization in the industrial sector has dropped significantly. Solar water
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heaters, solar air heating systems, and solar collector systems are widely used in industrial processes
for low-temperature heating and preheating in high-temperature demand. Furthermore, as the cost
of clean energy power generation declines, hydrogen produced by electrolyzed water will gradually
become economically competitive with fossil fuel energy hydrogen production, which is driving more
hydrogen usage in industrial sector to provide high-temperature heat. 150 Mtoe hydrogen is expected
to be used in 2050 while it increases to 570 Mtoe in 2100. In summary, more electricity and clean energy
are used in 2 ◦C scenario compared with that in the reference scenario, as can be seen from leading to
significant carbon reduction.

If the energy consumption for producing electricity, heat, and hydrogen are also allocated to
consuming sectors, energy consumption in industrial sector increases to 4086 Mtoe in 2016 and
5270 Mtoe in 2050, increasing by 48% and 25% respectively compared with the case without electricity,
heat and hydrogen energy consumption allocating to consuming sectors as shown in Figure 5. As seen
in Figure 6, adjusted industry energy demand in 2 ◦C scenario is comparable to that in the reference
scenario before 2050, while energy demand is smaller in the 2 ◦C scenario after 2050 due to massive
electricity utilization and cleaner energy based power generation.

Figure 6. Adjusted industry energy demand with energy consumption in electricity, heat and hydrogen
are allocated to consuming sectors in 2 degree and reference scenarios.

3.3. Industrial Emissions and Its Projection

It should be noted that CO2 emissions from fuel combustion with electricity, heat, and hydrogen
are allocated to consuming sectors in this research. Total direct and indirect industrial emission in 2016
is 13,537 Mt CO2 accounting for 42% of total emissions. Industrial sector dominates the emissions in
the end-use factors and the emissions differ a lot between countries. Nearly half (43%) of industrial
carbon emissions come from China, while the second largest emission source (United States) accounts
for 8.3% and the third largest emission source (India) accounts for 7.1%. In the case of reference
scenario, carbon emission in 2100 reaches to 17,000 Mt CO2 which is even 25% larger than that in 2016
(see Figure 7). Under conditions of 2 ◦C constraints, the industrial carbon emission in 2050 reduces
to 3690 Mt CO2 decreasing by 73% compared with that in 2016, and the carbon emission is further
reduced to 350 Mt CO2 in 2100 as shown in Figure 7. Carbon intensity improvement, energy intensity
improvement, energy and economic structure optimization are believed to contribute to the carbon
emission reduction in the 2 ◦C scenario [38].
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Figure 7. Projected industrial carbon emissions in 2-degree and reference scenarios.

3.4. Decomposition Analysis of Industrial Carbon Emission

The industrial carbon emission from 1995 to 2015 is decomposed according to the LMDI method
introduced in Section 2. As can be seen from the decomposition results shown in Figure 8, every five-year
CO2 increment is positive from 1995 to 2015 and the increment peaks around 2010. The economic
development and increasing population contribute the most to CO2 incremental growth, while the
economic structure contributes to the decreasing CO2 emissions. Energy structure and industry energy
intensity might contribute positively or negatively to emission reductions depending on the energy
price, energy efficiency improvement, clean energy development rate, etc. Taking the case from 2010 to
2015 as an example, the contribution of carbon emission from economic development, population,
carbon intensity, energy structure, industry energy intensity, and economic structure are 1510, 770, 40,
−160, −700, and −760 Mt CO2 respectively, resulting in a net 700 Mt CO2 increment.

 

Figure 8. Decomposition of industrial carbon emission from 1995 to 2015.

Economic development is the biggest driving force of CO2 emission increase, especially in the
emerging economies like China, Brazil, India, Russia, and South Africa. Based on the World Bank
Database, the averaged GDP growth rate from 2010–2015 in China and India was 8.3% and 7.4%
respectively, while the world’s averaged GDP growth is around 3% [7]. Globally, GDP per capita in 2015
reached to 14,825 USD/person, increasing by 12% compared with that in 2010. Economic development
accounts for 65% of positive emissions. Increasing population is the second largest driver for CO2

emission as industrial energy demand increases. Average population growth in Sub-Saharan Africa
from 2010 to 2015 was 2.76%, more than twice the world’s average growth. Increasing populations
account for 33% of positive emissions. Industrial carbon intensity contributes to positive CO2 emission,
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but its contribution decreases significantly due to much cleaner gas utilization in end-use sectors,
and the use of increasing renewables power generation in power & heat generation sector. The
share of gas consumption in fossil fuels is 30% and 30.4% in 2005 and 2010 respectively. In 2015,
the share of gas further increases to 31.4%. As the share of electricity consumption increases, fossil fuel
consumption in the industrial sector is limited, and therefore industrial carbon emission is restricted.
Carbon intensity only accounts for 2% of positive emissions from 2010 to 2015. As the energy structure
becomes cleaner, the role of energy structure adjustment in 2010–2015 contributes negatively to CO2

emission. In 2010, the share of electricity consumption in the industrial sector was 24.3% with only a 0.2
percentage point increment from 2005. Correspondingly, the share of electricity consumption increased
to 26.5% in 2015 and the increment from 2010 to 2015 was 2.2 percentage points which is 11 times the
increment from 2005 to 2010. The share of fossil fuel consumption decreased by 1.2% from 2010 to
2015 as electricity consumption increased. As a result, energy structure contributed 10% of decreasing
emissions. Industry energy intensity and economic structure contribute for 43% and 47% respectively
in the decreasing emissions. Regarding energy intensity, it decreased from 1.53 to 1.45 toe/thousand
USD with a decline of 5.2%. Declining energy intensity is mainly attributed to continuous energy
efficiency enhancement and production of more high value-added products. Take United States as an
example, energy saving reached to 414 PJ in manufacturing sector from 2010 to 2015. The saved energy
is even more than the energy consumed in manufacturing sector from Austria and Czech Republic. As
the statistics data from IEA members, manufacturing sector saves 1410 PJ from 2010 to 2015, while
chemicals and chemical products sector, paper pulp and printing sector, and non-metallic minerals
sector save 460 PJ, 390 PJ, and 77 PJ, respectively. The manufacturing sector contributes the most
energy savings in industry sector. Due to greater production of high value-added products, 29 of 33
IEA members saw energy efficiency enhancement in the manufacturing sector. Ireland improved its
manufacturing energy efficiency by 46% from 2010 to 2015 [39].

Among the driving factors, economic structure adjustment contributes the greatest emission
reduction. Globally, economic structure transforms from industry driven economy to service driven
economy. The share of industry value added in GDP declined in more than 160 countries, while
service value added in GDP increased from 2010 to 2015. As global statistics data indicate, the share
of industry value added in GDP decreased by 1.5 percentage points, while the share of service value
added in GDP increased by 2.7 percentage point from 2010 to 2015 [7].

As can be seen from the annual industrial emission reduction shown in Figure 9, the industrial
carbon emission path has three stages of characteristics: medium speed decline, high speed decline, and
low speed decline. Maximum annual emission reduction peaks around 2040 to 2050 as −280 Mt CO2/a.
To ensure global temperature rises well below 2 ◦C at the end of this century, the industrial sector
needs to reduce emissions substantially before 2060.

Figure 10 exhibits decomposition of industrial carbon emission from 2015 to 2060. Net negative
emission is required to meet the global 2 ◦C temperature control goal. Contrary to the situation from
2010 to 2015, carbon intensity and industry energy intensity will contribute most of the decreasing
emissions after 2015 rather than the economic structure factor. Carbon intensity could reduce by 28%
from 2015 to 2030 as fossil fuel consumption decreases. The share of fossil fuels in the industrial
sector decreases from 62% in 2015 to 46% in 2030 with an average annual drop of one percentage
point. Compared with the emission in 2015, declining carbon intensity contributes 3600 Mt CO2

decreasing emissions in 2030. Industry energy intensity is the second largest factor contributing to
the decreasing emissions. Compared with industrial carbon emissions in 2015, the declining energy
intensity has reduced carbon emissions by 2800 Mt CO2. Energy intensity is expected to decrease to
22% from 2015 to 2030 due to increased energy efficiency through equipment updates and more digital
equipment applications. Energy structure adjustment also plays an important role in future emission
reduction. Share of fossil fuels reduces by 15% from 2015 to 2030 as electrification rate increases and
more renewables are directly used in the industrial sector. As indicated by the MESSAGE result,
the electrification rate could increase from 26.5% in 2015 to 35.7% in 2030 with an increase of nine
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percentage points, which is five times the increase during same time range from 2010 to 2015. Besides
the contributions from more electricity consumption, the direct use of renewables like solar, modern
bioenergy, and hydrogen in the industrial sector are beneficial for energy intensity improvement. The
direct use of renewables increases by 125% from 2015 to 2030 with more solar and hydrogen energy
applications in the industrial sector. In 2030, the share of solar direct use could reach 37% in terms of
renewables and the share of hydrogen could hit 6% from zero in 2015.

Figure 9. Annual emission reductions in industry sector from 2030 to 2100.

Figure 10. Decomposition of industrial carbon emission from 2015 to 2060.

As can be found from Figure 10, the contribution of population growth and economic development
in driving an increase of emissions declines over time due to population saturation. The world’s
population will peak around 2070. Moreover, economy increase rate decreases over the next several
decades, limiting the positive emission. GDP per capita increases by 30% in 2030 compared with that
in 2020, whereas it only increases by 18% from 2050 to 2060. Totally, compared with emission in 2050,
population and economic development drive an additional 460 Mt CO2 emission in 2060. However,
the role of energy structure transition will become more and more important after 2030, while carbon
intensity is still the biggest contributor to decreasing emission before 2060.

As can be seen from Figure 7, the industrial emission is well controlled after 2060. Even the
emission reduction decreases after 2060 as indicated in Figure 11, it will become increasingly difficult to
reduce emissions more. Consequently, marginal costs of emissions reductions in the industrial sector
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increase, which is also the reason why the government should seize the opportunity to control emissions
in the industrial sector in the earlier stages. From 2060 to 2070, energy structure transition accounts
for 50% of total decreasing emissions and the main contribution of energy structure transition comes
from further electrification development and much cleaner power structure. In 2070, the electrification
rate in industry sector reaches to 62% and clean power generation rate hits more than 90%. Further,
32,200 TWh is expected to be consumed in 2070 which is 3950 TWh more compared to 2060, which
will cover the decreasing fossil fuels and increasing industry energy demand needs. Due to negative
growth in the world population after 2070, the population starts to drive decreasing emissions, but
contributes less than other factors to driving emission reductions.

Figure 11. Decomposition of industrial CO2 emission from 2060 to 2100.

4. Modes for Industrial Emission Mitigation

4.1. Mode 1: Clean Supply-Driven Mode

The clean supply-driven mode refers to the increasing proportion of clean energy power generation
and promoting the direct use of clean energy in the industrial sector. The rich clean energy such as
water, wind, solar, geothermal energy, etc., could be converted into clean power, which will be used
in the industrial sector to realize the support of green power for industrial economic development.
Meanwhile, the clean supply-driven mode promotes more modern bioenergy, solar, and hydrogen
energy in the industry sector. By replacing fossil fuels with more clean energy to adjust the energy
structure, industry sector emissions could be reduced.

Large-scale clean energy development, interconnection and utilization will contribute to the rapid
decline of carbon intensity in the power sector, and the direct utilization of clean energy promotes
the decline of carbon intensity in the end-use sector [40]. By 2050, clean energy utilization will triple
to 6860 Mtoe, three quarters of which will be used for clean energy power generation in the energy
supply. CO2 emissions from the power sector will decrease by more than 95% from 554 g CO2/kWh
in 2015 to 25 g CO2/kWh in 2050. In terms of regional results, the PAO (Australia, Japan and New
Zealand) is expected to have the lowest value of 1.3 g CO2/kWh owing to 93% clean energy share in
power generation and 56% CCS share in fossil fuel power generation. The NAM (North America) is
found to have the highest value of 72 g CO2/kWh, which is attributed to gas power plants in operation
with low CCS share as 30%. Globally, the share of CO2 emissions from the power sector in all energy
sectors will fall from 42% in 2015 to 20% by 2050. The direct utilization of clean energy such as solar
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energy and modern bio-energy can effectively reduce the carbon intensity of energy consumption
in end-use sectors. By 2050, the carbon intensity of end-use energy consumption will decrease from
2.21 t CO2/toe in 2015 to 1.42 t CO2/toe, a drop of more than 35%. The clean energy consumption flow
in 2050 is shown in Figure 12.

Figure 12. Clean Energy Consumption Flow in 2050 (Unit: 100 Mtoe).

As the cost of clean energy power generation continues to fall, clean electricity will increase
significantly, gradually forming a clean dominant power supply landscape. In 2016, clean energy
power generation in the world accounted for 35%, with hydropower, wind power, PV, nuclear power,
and other clean energy sources accounting for 17%, 4%, 1.3%, 10.5%, and 2.1%, respectively. In the 2 ◦C
scenario, it is estimated that clean energy power generation will account for more than 80% by 2050,
broken out as 32% for PV, 23% for wind power, 15% for hydropower, and 6% for nuclear power as
indicated from MESSAGE model results.

Traditional biomass combustion will gradually be replaced by other forms of energy utilization
due to its adverse effects on air quality and human health. Modern bioenergy would be widely used
in industry, transport and building sectors. In 2050, 80% of bioenergy is expected to be used for
industrial heating, while the rest will be used in the transport and building sectors for decentralized
heating. The direct utilization of solar energy is to provide heating or heating collection for the end-use
sectors, which is mainly applied to industrial low temperature heating and hot water and heating in
the building sector. In the industrial sector, the utilization of solar energy is expected to be large-scale
deployed. With the maturity of solar energy application technology, the cost of solar energy used
in the industrial sector has decreased significantly. Solar water heaters, solar air heaters and solar
collectors are widely used in low temperature heating and preheating in the industrial process. First,
as a mature technology, the solar water heater will be popularized worldwide in the near future. Solar
water heaters can increase the water temperature from 25 ◦C to 80 ◦C for boilers, thus saving a lot of
fossil fuels. Second, solar air heaters provide air in the temperature of 50~80 ◦C for drying tea leaves or
processing fruits, spices, cereals, mushroom, vegetables, seafood etc. Third, solar collector systems can
provide steam at up to 300 ◦C to meet industrial heating needs. Applications include mercerizing,
drying and finishing in textile industry; drying, dissolving, thickening, leaching and distillation in
chemical industry; cooking, drying and canning in food industry, craft pulping, bleaching and drying
in pulp and paper industry; drying and cleaning in leather industry.
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4.2. Mode 2: Electricity Consumption-Driven Mode

The electrification in the industrial sector will be further improved, with the electrification rate
reaching 48% by 2050. Global industrialization and urbanization further accelerate energy consumption
of the industrial sector. The total consumption of fossil energy in the industrial sector will drop to
1120 Mtoe by 2050, down 34% from 2017. The decrease of fossil fuels consumption in the industrial
sector is mainly attributed to electricity replacement as discussed in Section 4.3. Compared with 2017,
the total electricity consumption in the industrial sector in 2050 will increase by about 1240 Mtoe,
providing 90% of energy demand increase (Figure 13).
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Figure 13. Energy Consumption and Structure in Industry Sector Based on MESSAGE
Optimization Analysis.

The industrial sector’s carbon dioxide emissions are concentrated in energy-intensive industries,
in which electricity replacement has a great potential for mitigation. Traditional energy-intensive
industries such as iron and steel, chemical and petrochemical, paper pulp and printing consume the
largest amount of energy in the industrial sector, accounting for 69% of end-use energy consumption
and 74% of total CO2 emissions in the industrial sector. Among them, the chemical and petrochemical
industry, which mainly relies on oil and natural gas, accounts for 28%, the largest proportion of
end-use energy consumption in the industrial sector. The iron and steel industry, which relies heavily
on coal, takes the largest share of CO2 emissions in the industrial sector. At present, the global
average electrification rate of traditional energy-intensive industries has much room for improvement.
Electrification can significantly reduce the use of fossil fuels such as coal and oil.

Replacing coal fired boilers with electric boilers and replacing coal and oil heating furnaces with
electric heating furnace could be the alternative of electricity replacement in traditional energy-intensive
industries. In traditional energy-intensive industries, large amounts of coal is burned for heating in
the process of cooking, smelting, drying, firing and annealing in the equipment including industrial
boilers and kilns. For the iron and steel industry, in the process of steelmaking, the replacement
of coal and coke by electricity can be realized by replacing the converter steelmaking with electric
steelmaking, which can shorten the steel production process and save energy consumption required
by iron smelting. For the non-ferrous metal industry, induction furnaces with high heating efficiency
and accurate temperature control are mainly used to replace coke furnaces in the smelting process.
For the paper pulp and printing industries, electric boilers and electromagnetic induction heating
ovens are used to replace coal fired boilers and steam heating ovens in the pulping and drying of the
papermaking process respectively, so as to replace coal, oil, and natural gas with electricity and to
save energy.
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4.3. Mode 3: Energy Efficiency-Driven Mode

Energy efficiency-driven mode refers to meeting energy demand with less energy consumption
through the technical improvement of energy-using equipment in the end-use sectors, technological
innovation of energy supply (power generation, oil and gas exploration and refining), and digital
development of energy systems, thus reducing CO2 emissions in industry, transport, building, power
generation, and other sectors.

In the industrial sector, in order to reduce energy consumption, it could be very helpful to optimize
production processes in energy-intensive industries and to promote the application of digital and
intelligent equipment. Three measurements could be taken in energy-intensive industries. First is
to optimize the production process of energy-intensive industries such as iron and steel, non-ferrous
metals and chemical industry, thus realizing continuous and efficient production process. Enhanced
energy efficiency of the production process reduces energy consumption and emissions significantly,
and process energy saving is gradually transforming to system energy savings. Second is to explore
the characteristics of dynamic balance between supply and demand of energy flow in the production
process, thus improving the intelligent level of energy control system. By carrying out fine management
of the energy system on the basis of informatization and strengthening energy dynamic prediction and
optimal scheduling, the level of energy utilization efficiency will be improved. The third is to promote
the application of the recycling economy model, build an ecological chain of industries for product
manufacturing, energy conversion, waste disposal and recycling, and promote energy conservation
and efficiency in the industrial sector [41].

5. Conclusions

The trends and relationship between industrialization, industrial energy demand and carbon
emission are studied in this paper to meet the temperature control goal of 2 ◦C of the Paris Agreement.
The energy system is optimized using the IAM model of MESSAGE and the LMDI approach is adopted
to track the historical drivers of emission and to investigate potential drivers of future emission with
an expanded Kaya identity. Main conclusions are as follows.

Firstly, historical industrialization of 11 regions is analyzed and a regression method is used to
predict the future industrialization for those regions. Sub-Saharan Africa (AFR), South Asia (SAS),
and Other Pacific Asia (PAS) are still at the early stage of industrialization, and will keep increasing
in terms of industrialization until 2050–2060. There are downward trends for the most developed
regions and also the post-industrialization regions such as the North America (NAM), Western Europe
(WEU), and Pacific OECD (PAO). With regard to the late stage of industrialization regions, such as
East Europe (EEU) and Former Soviet Union (FSU), we find that there are downward trends for EEU
and FSU. There is a re-industrialization then downward trend for the Latin American (LAC) region.
With regard to Centrally planned Asia and China (CPA) and Middle East and North Africa (MEA),
they have passed the peak and goes downward of industrialization.

Secondly, industry energy demand is projected using a hump-shaped function method with
consideration of duration of industrialization and urbanization development and energy structure
is optimized using MESSAGE model. Industrial energy demands in reference scenario and 2 ◦C
scenario are compared in this paper. In the 2 ◦C scenario, fossil fuel consumption in the industrial
sector fell to 1120 Mtoe in 2050, a decrease of 34% compared with that in 2017 which is mainly due to
growing electricity consumption and the direct use of clean energy. When energy consumption for
producing electricity, heat, and hydrogen are allocated to the consumer sector, energy consumption in
the industrial sector increases from 4230 to 5270 Mtoe in 2050, and adjusted industry energy demand
in 2 ◦C scenario is comparable with that in the reference scenario before 2050, while it is smaller than
reference scenario after 2050 due to massive electricity utilization and cleaner energy based power
generation in the 2 ◦C scenario.

Thirdly, an expanded Kaya identity is proposed to decompose carbon emission into six derivers as
carbon intensity, energy structure, energy intensity, economic structure, GDP per capita, and population.
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As studied from the historical industrial carbon emission from 1995 to 2015, economic development
is the biggest driving force for CO2 emission increase, followed by population. Industrial carbon
intensity contributes positive CO2 emission, but its contribution decreases significantly due to much
cleaner gas utilization in end-use sectors, and the use of increasing renewables power generation in the
power and heat generation sector. In the 2 ◦C scenario, carbon intensity and industry energy intensity
will contribute most of the decreasing emissions from 2015 to 2060. Contribution of population and
economy development in driving emission increase declines due to population saturation. After 2060,
it will become increasingly difficult to reduce emissions more, resulting in high marginal costs of
emissions reductions, indicating government should seize the opportunity to control emissions in the
industrial sector in earlier stages.

Finally, three modes for emission reduction are suggested in this study. Clean supply-driven
mode could drive power sector’s emission share decreases from 42% in 2015 to 20% by 2050. Clean
energy direct use could drive carbon intensity in end use sectors to decrease from 2.21 t CO2/toe in 2015
to 1.42 t CO2/toe, with a drop of more than 35%. Electricity consumption-driven mode could drive
total consumption of fossil energy in the industrial sector drop to 1120 Mtoe by 2050, down 34% from
2017, and therefore reducing carbon emissions with a clean supply-driven mode will be extensively
adopted in power sectors. Energy efficiency-driven mode could drive energy consumption reductions
by optimizing production processes in energy-intensive industries, promoting the application of digital
and intelligent equipment.

More studies are needed to explore the industry sector, such as to integrate the top-down method
with a bottom-up method for the projection of future energy consumption and CO2 emissions, have a
detailed study on the manufacturing industries such as the iron and steel, cement etc., and to investigate
global and country-specific industrial emission pathways to meet the 2◦C and 1.5 ◦C goals and their
policy implications [42,43].
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Abstract: The efficiency of a gas turbine can be affected by the use of different biofuels usually with
a relatively Lower Heating Value (LHV). The paper evaluates the impact of calorific value of fuel
on turbine performance and analyzes the possibilities of optimizing turbine construction from the
point of view of maximum efficiency for a particular fuel. The several variants of design of small
power microturbines dedicated to various biofuels are analyzed. The calculations were carried out
for: gas from biomass gasification (LHV = 4.4 MJ/kg), biogas (LHV = 17.5 MJ/kg) and methane
(LHV = 50 MJ/kg). It is demonstrated that analyzed solution enables construction of several kW
power microturbines that might be used on a local scale. Careful design of such devices allows for
achieving high efficiency with appropriate choice of the turbine construction for specific fuel locally
available. Such individually created generation systems might be applied in distributed generation
systems assuring environmental profits.

Keywords: thermodynamic cycles; district distributed power plants; effectiveness; sustainability

1. Introduction

The condition of the energy sector determines the state of the national economy and the level
of economic growth [1,2]. The power sector is currently experiencing a dynamic transformation,
resulting not only from EU conditions, but also from current problems, mainly related to ensuring
energy security to consumers [3–5]. In many European Union countries, it was decided to change
the model of the electricity market [6–8]. There is a gradual retreat from the energy economy based
on the central distribution of oil and other fossil fuels [9–11]. Achieving the synergy effect between
the energy sector’s potential and its customers is now the overriding goal. As a result, dynamic
development on the client side is observed related to photovoltaic panel installations, energy storage,
electric vehicles and broadly understood Smart Homes [12–14]. The concept of smart cities (Smart
City) is constantly evolving, which is a response to the needs of implementing innovative concepts of
city functioning through modern technological solutions and a comprehensive management service,
e.g., in the context of sustainable energy. New technologies in the power industry are becoming the
driving force of the economy, and an important criterion for their development is the impact on the
natural environment [15–17].
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The continuous increase in the demand for energy and its carriers as well as the growing normative
requirements in the ecological aspects including reduction of CO2 emissions cause the necessity of
systematically increasing the share of energy from renewable sources [18–20]. The level of public
awareness along with the increasingly restrictive legal requirements of the European Union in matters
of environmental protection affect the attractiveness of activities and technologies that lead to the
reduction of adverse human impact on the environment [21–23]. Energy operators, faced with the
need to spend large sums on modernization of the power plants and at the same time being aware
of the fact that the existing pollutant emission standards will be further tightened, must opt for
investments in modern technologies that will produce clean energy without harming human health
and the environment [24–26]. The choice of technology is more and more often supported by the
Life Cycle Assessment (LCA), which, due to its comprehensive nature, allows for a full assessment
of the environmental impact of the entire production process, from obtaining raw materials to final
management of waste generated as a result of use of the product [27–29].

Large corporations producing electricity and selling it using international and national distribution
networks due to the large installed capacity are not very flexible [30,31]. Currently, the government’s
actions are aimed at supporting both improving the efficiency of electricity generation and supporting
distributed energy based on local and renewable energy sources [32]. As a rule, this eliminates the
problem of network losses. Energy is produced in the same place where it is used [33,34]. This also
involves the development of smart grids and smart metering [35,36].

Although a constant increase in electricity prices is unavoidable, its freedom of trade and
independent production together with storage can be a tool to control its rising costs [37]. Countries
where political power is based on the export of raw materials lose their ability to exert pressure, which
is a very important element from the point of view of energy security [38]. From the point of view of
the challenges facing each national electricity system, such as the energy security of the state, reduction
of emission and efficiency, only the coexistence of professional and civic energy is right.

The growing prosumer energetics is a chance for a new shape of the energy system, in which
the recipient will be not only a user, but also an active participant. This leads to a visible increase
in the number of prosumer polygeneration centers built [39,40]. In these types of units, most often
turbines, much attention is paid to durability, reliability, low price and efficiency of components and
the entire generator [41,42]. The disadvantage of the domestic power generation sector is the relatively
low efficiency of energy production from coal, and in the case of dispersed power engineering, the
efficiency of small power plants is even lower [43,44], and thermal power plants based on circuits with
organic agents reach efficiency of just a dozen or so percent [45,46]. In the field of prosumer energy,
there are no solutions on the market that allow highly efficient energy production around the clock.
As part of the development of micro electric generators, it is possible to indicate micro-turbines and
bladeless adhesive turbines [47–49].

The search for alternative energy from renewable sources is becoming more and more fashionable
and recommended by, among others, the European Union. At present, this group of energy sources
includes: tides, sea currents, waves, temperature difference of ocean waters, wind power, solar energy,
geothermal energy and energy from biomass. In the case of prosumers, the most popular are solar
collectors, wind turbines and biogas plants.

Currently, such popular solar collectors work only during the day [50]. Other solutions, in turn,
apart from those using solar energy, have relatively low efficiency, hence their installation and operation
is rather unprofitable [51].

An interesting energy source is biogas [52,53]. Its greatest advantage is universality. It can be
used both for the production of electricity and heat, and as motor fuel, whereas wind, water or solar
power plants only provide electricity.

Biogas is an energy vector formed from the microbiological decomposition of organic raw materials
(e.g., of agricultural, industrial or food origin) during the methane fermentation process [54,55]. The
composition of biogas depends on its origin (the type of substrate subjected to the fermentation
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process) [56,57]. A large amount of waste generated by the agri-food industry may contribute to the
construction of many biogas installations located at the source of their use (production plant). This
solution due to the lack of costs of obtaining the substrate and the possibility of using the produced
electricity and heat for technological purposes of the plant is beneficial. The biogas produced can be
used to generate thermal or electrical energy or for combined energy production in CHP (Combined
Heat and Power) systems. The use of biogas for the production of electricity or heat requires the
removal of hydrogen sulphide and water vapor (responsible for the corrosion of equipment) [58,59].

An important place among alternative sources of energy is the wood gas obtained in the gasification
process, which, by supplying the CHP system, can be a competitive source of electricity and heat
generated in cogeneration. This is of particular importance in the generation of energy in distributed
systems, independent of large, centralized energy suppliers [60,61]. Energy is produced directly
at the point of demand, and the system is based on clean and environmentally friendly fuel. In
addition, the ash produced during the gasification process can be used in the chemical industry or as a
natural fertilizer.

The aim of the present work is to estimate the efficiency of several variants of microturbines
operating with a number of biofuels in order to evaluate the effect of the fuel calorific value on turbine
performance as well as to investigate the possibility of optimization of turbine construction in order to
achieve maximum efficiency for a particular fuel. Such optimization should ensure a possibility of
fitting the turbine to local needs for distributed energy generation.

Particular biofuels can differ depending on their chemical composition and the heating values
which play an important role when thermodynamical cycles are considered. Heating values influence
energy balance equations of gas turbine combustion chambers and, as a result, the relations between the
temperatures and the mass (and volume) flow rates of the working media (air, gases) are altered. This,
in turn, shows some impact on the power plant overall efficiency and the design of turbomachinery
flow parts. The paper aims at highlighting this problem, as it has not been discussed thoroughly in
the bibliography. It is so because the micro gas turbines (gas turbines of small and very small output)
operating on biofuels are only at the beginning of their applications in prosumer and distributed energy
power plants. In a typical arrangement of gas turbine engines, the combustion chamber is placed just
in front of the turbine, usually high-quality gas or liquid fuels are used and the hot gases flow through
the turbine flow part. In the case of various biofuels (especially pellets) so-called “external combustion
systems” may be used, which allows the burning of different sorts of fuel (liquid, gas or solid), even of
poor quality, because in these units clean air flows through the compressor and the turbine.

2. Materials and Methods

The Computation Algorithm

In the case of small power plants (from several kW to several hundred kW), the maximum
temperature 850–900 ◦C was assumed before the turbine, and the low efficiency of the components was
assumed, e.g., turbine efficiency equal to 82%, compressor efficiency—80%, efficiency of the electric
generator—90%, efficiency of the combustion chamber—95%. Assumptions adopted for the analysis
are presented in Table 1.
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Table 1. Assumptions adopted for the design analysis of turbine generator variants [62,63].

Description Unit Value

compressor efficiency (-) 0.800
turbine efficiency (-) 0.820

mechanical efficiency (-) 0.980
leakage losses (-) 0.020

generator efficiency (-) 0.900
efficiency of the combustion chamber (-) 0.950

pressure loss in the filter (-) 0.995
pressure loss in the silencer (-) 0.995

pressure losses in the combustion chamber (-) 0.980
pressure loss in the regenerator (-) 0.980

Currently, it is possible to obtain a stable flame during the combustion of low calorific fuels in
a wide range of operating parameters, such as the molar composition of the fuel and the excess air
coefficient. However, the biogas must be properly cleaned and dried so that it does not damage the
turbine. Depending on the origin, the biogas composition is variable. The calorific value depends
primarily on the methane content. Currently, biogas that is combusted in gas turbines has a methane
content from 35% to 100%. As a result of continuous combustion with excess air and low pressures in
the combustion chamber, turbines as well as microturbines have a significantly lower value of exhaust
emissions as compared to the reciprocating engines. The combustion of low calorific gases has a
significant impact on the natural environment by reducing the emission of nitrogen oxides [64].

The analyzed variants compare the possibility of using highly efficient exchangers and considered
5 different configurations of gas turbosets (Figure 1):

• Variant 1: turbine set operating according to the simple open cycle,
• Variant 2: turbine set operating according to the open cycle with regenerator,
• Variant 3: turbine set operating according to the open cycle with combustion chamber at

turbine exit,
• Variant 4: turbine set operating according to the open cycle with external combustion chamber at

turbine exit and high-temperature heat exchanger,
• Variant 5: turbine set operating according to the open cycle with partial bypassing of external

combustion chamber at turbine exit and with high-temperature heat exchanger.

Analyses for gases with very different calorific value were carried out in the presented paper. The
list of combusted gases analyzed is presented in Table 2. For comparison, the analysis was also carried
out for methane (the main component of LNG or natural gas), and hydrogen being an ecological fuel
with very high calorific value.
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Figure 1. Turbine set arrangements being analyzed. Variant 1: turbine set operating according to the
simple open cycle; Variant 2: turbine set operating according to the open cycle with a regenerator;
Variant 3: turbine set operating according to the open cycle with a combustion chamber at the turbine
exit. The air introduced to the combustion chamber has a temperature equal to the temperature just
behind the turbine and it can be compared to the situation when the effectiveness of the regenerator
equals 1. Therefore, the efficiency of variant 3 can be higher than the efficiency of other variants. This
solution has been well known for years [67,68] but it was not used in practice due to the properties of the
materials for regenerators/combustors which did not allow the application of high temperature before
the turbines. Nowadays, due to technological progress we can overcome these problems and propose
variant 3 as a realistic solution. Variant 4: turbine set operating according to the open cycle with an
external combustion chamber at the turbine exit and a high-temperature heat exchanger; Variant 5:
turbine set operating according to the open cycle with partial bypassing of the external combustion
chamber at the turbine exit and with a high-temperature heat exchanger.
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Table 2. The list of analyzed gases with different heating values [65,66].

Fuel Type
Volumetric Composition Density Calorific Value Calorific Value

(-) (kg/m3) (MJ/m3) (MJ/kg)

gas from biomass
gasification

methane 0.09; carbon dioxide 0.133;
carbon monoxide 0.147; hydrogen 0.073;

nitrogen 0.42; water 0.137
1.2107 4.8 4.4

wood gas methane 0.12; carbon dioxide 0.54; carbon
monoxide 0.3; hydrogen 0.04 1.4197 12 8.5

biogas
methane 0.4; carbon dioxide 0.23;

hydrogen 0.16; carbon monoxide 0.1;
nitrogen 0.11

0.9438 16.5 17.5

biogas
methane 0.75; carbon dioxide 0.15; carbon

monoxide 0.02; hydrogen sulfide 0.04;
nitrogen 0.04

0.9002 22 24.4

city gas methane 0.25; hydrogen 0.55; carbon
monoxide 0.08; nitrogen 0.07; oxygen 0.05 0.4525 17.5 38.7

methane methane 1.0 0.6660 36 54.1

hydrogen hydrogen 1.0 0.0835 10.02 120

3. Results

Computations for five variants of the cycles (Figure 1) with seven heating values for each cycle
(Table 2) were performed. The thermodynamical calculations were performed following the classical
approach well known from the bibliography [62,69–71]. First, the parameters in all the characteristic
points of the schemas (turbine cycles) were determined, then the relation between the mass flow rates
in particular elements were estimated, and, finally, the overall efficiencies of the cycles were calculated.
The calculations were performed in the following order: calculations of the compression process in
the compressor, calculations of the expansion line in the turbine, calculations of the regenerator and
the combustion chamber energy balance equations. The following main relationships were used in
the calculations.

The power and specific work of the gas turbine set:

WGT = ηm· .
mT·lT − .

mC·lC (1)

lGT =
WGT

.
mC

= ηm·
( .

mT
.

mC

)
·lT −

( .
mC
.

mC

)
·lC = ηm·

( .
mT
.

mC

)
·lT − lC (2)

The specific work of the compressor and turbine:

lC =
1
ηC
·cpC·T1·

⎛⎜⎜⎜⎜⎜⎜⎜⎝
(

p2

p1

)KC−1
KC − 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (3)

lT = ηT·cpT·T3

⎛⎜⎜⎜⎜⎜⎜⎜⎝1−
(

p4

p3

)KT−1
KT

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (4)

The efficiency of the gas turbine cycle:

ηGT =
WGT

.
Q1

(5)

where the heat flux brought to combustion chamber:

.
Q1 =

( .
mT·h3 − .

mC·h2′
) 1
ηCC

=
.

mf·LHV (6)
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The overall efficiency of the gas turbine unit:

ηGT =
ηm· .

mT·lT − .
mC·lC( .

mT·i3 − .
mC·i2′

)
· 1
ηCC

(7)

and:

ηTG = ηCC·
ηm·ηC·cpT·T3
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C)
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The heat flux transferred from the exhaust fumes in the regenerator is that:

.
QVII, T =

.
mT·(h4 − h5) (9)

The heat flux received by the air in the regenerator is that:

.
QVII, C =

.
mC·(h2′ − h2) (10)

The values of specific heat at constant pressure for particular states of working media were
determined on the basis of their chemical composition and thermodynamical parameters using
REFPROP software.

The most significant results of the calculations are presented in Table 3. The results referred to
methane as fuel (row 6 in Table 2), whereas a reference also showed the results of calculations for
hydrogen fuel (row 7 in Table 2). Variant 1 (Figure 1) is a basic cycle in the power plants with a
gas turbine; therefore, some of the results were related to it. For each of the analyzed variants, the
compression was optimized to maximize efficiency. The effect of the compression on the value of the
efficiency referring to the value of the maximum efficiency of variant 1 for two exemplary fuels is
shown in Figure 2. In this case, the effect of the calorific value of fuel is very clear. For a calorific value
equal to 4 MJ/kg, the compression amounts to approximately 17, and for a calorific value of 54 MJ/kg,
it amounts to approximately 13, which evidently affects the design of the flow part of the turbine and
compressor. As can be easily observed, the calorific value affects the optimum compression value
(maximum efficiency) only for variant 1, but in other cases the type of fuel has a small influence on the
value of the compression (Figure 3). Therefore, when designing the flow part of a gas turbine, operated
in accordance with an open simple cycle (variant 1, often used in low power turbosets), we should pay
special attention to the correct selection of compressor pressure depending on the type of fuel expected.

Table 3. Selected calculation results.

Parameter Variant
Wd (MJ/kg)

4.0 8.5 17.5 24.4 38.7 54.1 120.0

η/ηmeth (-)

V1 1.265 1.109 1.041 1.024 1.008 1 0.989
V2 0.949 0.972 0.988 0.993 0.998 1 1.003
V3 0.981 0.992 0.997 0.998 0.999 1 1.001
V4 0.751 0.893 0.958 0.976 0.992 1 1.011
V5 0.835 0.929 0.972 0.984 0.995 1 1.007

mfuel/mfuelmeth
(-)

V1 16.272 6.793 3.174 2.248 1.402 1 0.448
V2 20.853 7.496 3.296 2.297 1.409 1 0.441
V3 13.782 6.416 3.101 2.221 1.399 1 0.450
V4 18.006 7.124 3.225 2.272 1.409 1 0.446
V5 17.121 7.020 3.220 2.254 1.405 1 0.448
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Table 3. Cont.

Parameter Variant
Wd (MJ/kg)

4.0 8.5 17.5 24.4 38.7 54.1 120.0

mspal/mspalmeth
(-)

V1 1.181 1.069 1.026 1.015 1.005 1 0.993
V2 1.118 1.039 1.014 1.008 1.002 1 0.997
V3 1.039 1.016 1.006 1.004 1.001 1 0.998
V4 1.107 1.038 1.014 1.008 1.003 1 0.997
V5 1.094 1.035 1.013 1.007 1.002 1 0.997

WeGT/WeGTmeth
(-)

V1 1.506 1.178 1.067 1.037 1.010 1 0.984
V2 1.460 1.144 1.053 1.029 1.005 1 0.981
V3 1.000 1.000 1.000 1.000 1.000 1 1.000
V4 1.000 1.000 1.000 1.000 1.000 1 1.000
V5 1.058 1.025 1.013 1.000 1.000 1 1.000

η/ηV1 (-)

V1 1 1 1 1 1 1 1
V2 0.89 1.04 1.13 1.16 1.18 1.19 1.21
V3 1.33 1.53 1.64 1.67 1.70 1.71 1.73
V4 0.73 0.99 1.13 1.17 1.21 1.23 1.25
V5 0.88 1.12 1.25 1.28 1.32 1.34 1.36

∏
opt (-)

V1 17.00 15.00 13.80 13.60 13.40 13.20 13.00
V2 3.60 3.00 2.85 2.80 2.75 2.75 2.70
V3 1.75 1.75 1.75 1.75 1.75 1.75 1.75
V4 2.60 2.60 2.60 2.60 2.60 2.60 2.60
V5 2.90 2.75 2.70 2.65 2.65 2.65 2.65
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Figure 2. The effect of a compression on the value of the efficiency referred to the maximum value of
variant 1 for two exemplary fuels.
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Figure 3. Influence of the structure of the cycle and calorific value of fuel on the optimal compression.

The subsequent drawings (Figures 4–10) show the influence of the cycle’s structure and of calorific
value on maximum efficiency related to the maximum efficiency of variant 1. Only for the smallest
calorific value considered (4 MJ/kg) variant V1 proved itself to be better than variants V2, V4, V5. As
far as effectiveness is concerned, the most advantageous is the variant 3. The disproportion of this
one as compared to variant 1 increases with an increase of the calorific value of the fuel combusted
(collective plot Figure 11). The graph (Figure 12) shows the influence of the structure of the cycle and
calorific value of fuel on the efficiency of the system in relation to the variants using methane as a fuel.
Only for small heating value of the fuel its effect on the efficiency of turbine sets can be noticed.

The drawings (Figures 13–15) show the influence of the fuel cycle structure and its calorific value
on the mass flux of the fuel burned in the combustion chamber as related to the methane mass flux
(Figure 13), and on the exhaust gas mass flux again compared to the variants with methane as a fuel
(Figure 14), and on the effective power in relation to similar variants with methane as a fuel (Figure 15).

In the case of fuel consumption, the conclusions are obvious: an increase in calorific value is
accompanied by a decrease of fuel consumption. This effect is the most visible for variant 2. As a
consequence, the exhaust flux also decreases with an increase in fuel’s calorific value, but in this case
the impact is most pronounced for variant 2. It can also be concluded that in the case of turbine sets
with an external combustion chamber (variants 3, 4, and 5), the change in calorific value does not affect
the unit power of the turbine set.

Cogeneration systems working with organic media are already for many years [72] available in a
wide range of electrical and thermal power. However, only a few examples of ORC (Organic Rankin
Cycle) cogeneration installations with an electric power below 5 kW [73] can be found.

Previous research has shown that it is possible to build a set of microturbines with a capacity of
about 2 kW with higher efficiency than in existing machines [74]. It is worth noting that the relatively
high efficiency of microturbines can be achieved due to a very careful and advanced design process.
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Figure 4. The effect of the cycle structure on its efficiency as compared to variant 1 for heating value
Wd = 4 MJ/kg.
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Figure 5. Influence of the cycle structure on its efficiency as compared to variant 1 for heating value
Wd = 8.5 MJ/kg.
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Figure 6. The effect of the cycle structure on its as compared to variant 1 for heating value
Wd = 17.5 MJ/kg.
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Figure 7. The effect of the cycle structure on its efficiency as compared to variant 1 for heating value
Wd = 24.4 MJ/kg.
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Figure 8. The effect of the cycle structure on its efficiency as compared to variant 1 for heating value
Wd = 38.7 MJ/kg.
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Figure 9. The influence of the cycle structure on its efficiency as compared to variant 1 for methane.

164



Energies 2019, 12, 3173

1

1.21

1.73

1.25
1.36

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

V1 V2 V3 V4 V5

/
V1

Wd = 120 MJ/kg

Figure 10. The influence of the cycle structure on its efficiency as compared to variant 1 for hydrogen.
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Figure 11. Collective diagram of the influence of the structure of the cycle and calorific value of fuel on
the efficiency of the cycle as compared to variant 1.
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Figure 12. Collective diagram of the influence of the structure of the cycle and calorific value of fuel on
its efficiency in relation to the variants of cycles with methane as a fuel.
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Figure 13. Collective diagram of the effect of the structure of cycle and calorific value of fuel on the
mass flux of the fuel recorded in the combustion chamber in relation to the variants of circulation with
methane fuel.
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Figure 14. Collective diagram of the influence of the structure of the cycle and the calorific value of
fuel on the exhaust gas mass flux as compared to the variants of the cycles with methane.
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Figure 15. Collective diagram of the effect of the structure of cycle and calorific value of fuel on the
effective power in relation to the variants of the cycle with methane as a fuel.
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4. Discussion

Variants with external combustion chambers demand particular attention. In fact, this solution has
been known for dozens of years and it has, for example, been considered for nuclear power plants with
High-Temperature Gas-cooled Reactors (HTGR) but only recently has it appeared in turbomachinery
practice, in small output gas turbines for prosumer and distributed energy systems. It is hardly possibly
to find any information in the literature about the design problems and the results of technical analysis.
However, there are a few companies [75–79] which offer small output power plants for different fuels
with external combustion systems. They are characterized by a relatively small compressor ratio which
corresponds well to the results shown in the paper. However, the efficiency of these units is rather
unimpressive (up to about 24% for sets with regenerators). In spite of that they arouse particular
interest due to the fact that they can use various types of fuel, including different biofuels. They can
still be treated as pioneer solutions but it is highly likely that they will become quite popular in the
near future.

5. Final Conclusions

The analysis carried out allowed for the following conclusions:

• In the design of the flow part of gas turbines that burn biofuel (mainly low power ones, dedicated
for distributed energetics), not only the structure of the turbine set, but also the calorific value and
type of fuel should be taken into account.

• Variant 3 is the most-advantageous system due to the efficiency achieved; it allows for increasing
the efficiency with respect to the reference value of variant 1 by even over 70%. Also, higher
values are obtained for fuels with higher heating values (Figure 11).

• The type of fuel affects the cycle efficiency for variant 1 and variant 4 as well as variant 5 (Figure 12).
In the case of variant 1, an increase in calorific value reduces efficiency (up to 30%) as related to
the efficiency of the cycle with methane as a fuel, while in variant 4 and variant 5 an increase
in calorific value increases (up to 20%) the efficiency related to the efficiency of the cycle with
methane as a fuel.

• The change in calorific value has a very significant impact on the amount of fuel combusted in the
combustion chamber (Figure 13); e.g., for a very low heating value (Wd = 4 MJ/kg), the amount of
fuel burned increases by up to 20 times compared to the combusted methane (Wd = 54.1 MJ/kg).

• For fuels with very low calorific values (Wd = 4 MJ/kg and Wd = 8.5 MJ/kg), a clear change in the
mass flux of flue gas flowing through the turbine as related to the exhaust mass flux of methane as
fuel (Figure 14) can be observed; in other cases this change is minor.

• For variant 1 and variant 2, the effect of calorific value on the effective power referring to effective
power with methane used as a fuel (Figure 15) can be seen, while in the remaining variants the
heating value of the fuel shows minimal or no effect on the effective power of the turbine set.

The conducted analyses provide knowledge to help to mitigate potential environmental hazards
through introduction of biofuels into distributed energy generation and optimization of turbines to
such locally available fuels.

The problem still requires further research, but implementation of the findings might contribute
to the reduction of environmental burdens.
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Nomenclature and Units

The following list contains a collection of the most important quantities used in calculations, together with
appropriate symbols and units.Symbols and units used in calculations.

l work of unit mass (kJ/kg)
h enthalpy of unit mass (kJ/kg)
LHV lower heating value (MJ/kg)∏

compression ratio (-)
cp specific heat at constant pressure (kJ/kg·K)
i enthalpy of unit mass (kJ/kg)
m mass flow rate (kg/s)
W power (kW)
p pressure (Pa)
Q heat flux (kW)
R gas constant (kJ/kg·K)
s entropy of unit mass; also: blade pitch (kJ/kg·K); (mm)
T temperature (◦C)
v specific volume (m3/kg)
Wd calorific value (MJ/m3) or (MJ/kg);
η efficiency (-)
κ isentropic exponent (-)

List of used subscripts.
e an effective
hyd hydrogen
G generator
i internal
j unit
C compressor
CC combustion chamber
m mechanical
meth methane
n leaks
ob cycle
opt optimal
spal exhaust gas
T turbine
GT gas turbine set
1, 2, . . . point numbers on diagrams
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44. Lampart, P.; Kosowski, K.; Piwowarski, M.; Jędrzejewski, L. Design analysis of tesla micro-turbine operating
on a low-boiling medium. Pol. Marit. Res. 2009, 1, 28–33. [CrossRef]

45. Mikielewicz, J.; Piwowarski, M.; Kosowski, K. Design analysis of turbines for co-generating micro-power
plant working in accordance with organic rankine’s cycle. Pol. Marit. Res. 2009, 1, 34–38. [CrossRef]

46. Piwowarski, M.; Kosowski, K. Design analysis of combined gas-vapour micro power plant with 30 kw air
turbine. Pol. J. Environ. Stud. 2014, 23, 1397–1401.

47. Turbines Markets 2016–2024: Steam, Gas Turbines, Wind, Others—Global Strategic Business Report 2018.
Available online: https://markets.businessinsider.com/news/stocks/turbines-markets-2016-2024-steam-gas-
turbines-wind-others-global-strategic-business-report-2018-1021662041 (accessed on 18 August 2019).
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Abstract: Decision problems related to the wind energy require considering many, often interrelated
and dependent on each other, criteria. To solve such problems, decision systems based on Multi-Criteria
Decision Analysis (MCDA) methods are usually used. Unfortunately, most methods assume
independence between the criteria, therefore, their application in decision problems related to
the wind energy is debatable. This paper presents the use of the Analytic Network Process (ANP)
method to solve a decision problem consisting in selecting the location and design of a wind farm.
The use of the ANP method allows capturing the complexity of the decision problem by taking into
consideration dependencies between criteria. As part of the verification of the solution, the results of
the ANP method were compared with those of the Analytic Hierarchy Process (AHP) method, which
uses only hierarchical dependencies between criteria. The conducted verification showed that the
inter-criteria dependencies may have a significant influence on the obtained solution. On the basis
of the conducted sensitivity analysis and the research into robustness of the rankings to the rank
reversal phenomenon, it has been found out that the ranking obtained with the use of the ANP is
characterized by a higher quality than by means of the AHP.

Keywords: Multi-Criteria Decision Analysis; sustainable wind energy management; sensitivity
analysis; rank reversal; Analytic Network Process; Analytic Hierarchy Process

1. Introduction

One of the biggest challenges of today’s energy management is adapting it to the demands of low
carbon economy characterized by, most of all, the use of renewable energy sources (RES) [1]. The fact
can be confirmed in the Polish energy policy, for which major priorities are, among other things: energy
efficiency improvement, reduction of pollutions from the energy sector, development of renewable
energy and an increase in the use of RES [2,3]. The Polish energy policy in this area is coherent with
the policy of the European Union (EU), which assumes that there will be at least a 20% reduction of
greenhouse gas emissions by 2020 compared to the 1990 levels and it requires increasing a share of
renewable energy in gross final energy consumption to about 20% in 2020 from its member states [4].
In a broader perspective, i.e. by 2030, at least 40% reduction of greenhouse gas emissions is assumed in
relation to 1990 and the share of renewable energy in total energy consumption is 32%. The minimum
contribution of Member States to the new framework for 2030 should be the achievement of the national
targets for 2020 [5]. It should be noted that the objectives set for 2020 have a chance to be met at the
level of the European Union (without dividing them into individual Member States). According to the
Eurostat data, in 2016 the share of renewable energy in energy consumption in the whole EU amounted
to 17% [6]. In turn, the emission of greenhouse gases was reduced in the period 1990-2016 by 22.4% [7].
Nevertheless, the analysis of the quoted sources [6,7] indicates that some Member States have little
chance of achieving the targets set for 2020.

The Polish Energy Law Act defines renewable energy as biogas, biomass, geothermal, river fall,
sea wave and tidal, solar, and wind energy [8]. Among the above-mentioned RES, the great potential
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for energy production, both in Poland and in the EU, have wind farms [2,4]. It is because onshore
wind farms are characterized by the low capital investment and levelised cost of electricity as well as
one of the shortest construction period of all RES power stations [9–11]. The comparison of the most
popular RES technologies [12] with regard to costs, construction time, lifetime and installed capacity
in Poland and in the EU [9–11,13] are presented in Table 1.

Table 1. Comparison of basic RES technologies with regard to necessary investment and installed capacity.

Energy Source

Capital
Investment
2017 (2016
USD/kW)

Levelised Cost of
Electricity

2017—World
(2016 USD/kWh)

Levelised Cost of
Electricity

2017—Europe
(2016 USD/kWh)

Construction
Time (Year)

Life-Time
(Year)

Installed
Capacity in

Poland—2017
(MW)

Installed
Capacity in
EU—2017

(MW)

Onshore Wind 1 477 0.06 0.08 1 25 5 798 152 751
Offshore Wind 4 239 0.14 0.15 2 25 - 15 835
Hydropower 1 535 0.05 0.12 3 30 969 130 411
Bioenergy 2 668 0.07 0.07 2 20 1 075 36 341
Geothermal 2 959 0.07 0.08 2 25 - 846
Solar Photovoltaic 1 388 0.1 0.13 0 25 268 106 546
Concentrating Solar Power 5 564 0.22 - 2 25 - 2 308

As for the considerably greater installed power of wind farms with reference to other RES in
Poland, apart from lower capital investment, the installed power results from the enormous potential
of the wind in Poland. It is assumed that the Polish potential of wind is bigger than in countries,
such as Denmark and Sweden, in which an important part of the energy is obtained from the wind.
The potential is equal to that of Germany, which is the “world’s wind giant” [8]. It is forecasted that
by 2020 the installed RES capacity in Poland will amount to circa 10,000 MW, of which about 50%
will be wind energy [2]. Therefore, Poland is expected to experience a dynamic increase in wind farm
construction investment.

The most important decision problems whose solutions will lead to a successful realization of
a wind farm project are selection of a location [14] and selection of a project design [15]. Decision
problems concerning wind energy, and similarly other decision issues related to RES management,
are multi-criteria decision making problems that require consideration of many contradictory and
mutually correlated criteria comprising economic, environmental, social as well as technological and
spatial issues [14–20]. Single-criterion decision making methods are not able to deal with such decision
problems correctly [21]. In solving such problems, Multi-Criteria Decision Analysis (MCDA) methods
can be applied since they are able to deal with multiple and conflicting criteria [22]. However, most
MCDA methods assume independence between criteria [23], therefore, it is difficult to apply the
methods to complex decision problems in which there are mutual dependencies between criteria [24].
Issues related to RES and sustainable management [24,25], especially problems dealing with wind
energy [15], are this kind of decision problems.

The aim of this article is to select a project design and the location of an onshore wind farm in
Poland. The selection should be based on a decision model which takes into account dependencies
between criteria. The methodological contribution of this article consists in the comparison of the
solution obtained using inter-criteria dependencies (based on the ANP approach) with the solution of
the decision model which do not take into consideration interdependencies between criteria (based
on the AHP approach). This will allow assessing the impact of taking into account the dependencies
between criteria on the obtained results. Additionally, an analysis of intrinsic characteristics of the
MCDA methods, and thus a formal selection of the MCDA method applied to the decision problem
can also be treated as an important contribution. Section 2 contains the analysis of the literature on
MCDA methods related to the decision problems in the wind energy field. Section 3 discusses the
applicability of MCDA methods in decision problems in the field of wind energy. Additionally in
Section 3, the proposed methodology was presented. In Section 4, the approach was applied to the
decision problem consisting in selecting the location and design of a wind farm in Poland. Section 5
deals with a summary of research results. Also, further research directions are pointed out.
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2. Literature Review

The MCDA methods are often used for solving decision problems related to RES, such as, among
other things, the selection of a location for an RES-based power plant, selecting an energy production
technology, evaluation of the influence of a renewable energy power station on the environment, an
analysis of different scenarios of RES development, optimization of the energy production, etc. [17,26].
The most popular MCDA methods used for solving decision problems in the field of RES are first
of all: the AHP and ANP, MAVT, MAUT, TOPSIS, PROMETHEE, ELECTRE [18] as well as fuzzy
methods [27]. Also, hybrids were employed, which are a combination of various MCDA methods [26].
Applications of the MCDA methods in the field of RES are presented in the papers [17–19,22,26,27].
In the context of decision support, in the literature, the most often mentioned type of renewable energy
is wind energy [18]. Publications concerning decision support in wind energy include, most of all,
the construction of decision models and the construction of DSS (Decision Support System) and GIS
(Geographical Information System) systems.

An example of constructing a decision model for selecting a wind farm location is [28]. In this
paper, evaluation criteria and their weights, presented in a decision model for the sake of selecting a
wind farm location, were determined. On the other hand, in [29] a decision model was constructed
in order to select a location of an onshore wind farm. The problem of constructing a decision model
for selecting an onshore wind farm location is also dealt with in [30], a hybrid farm in [31,32], and
an offshore wind farm in [14]. GIS decision systems were proposed, among other things in [33–38].
These systems evaluate the potential of onshore areas with regard to situating wind farms on the areas.
Similarly, in [39] a GIS, which allowed evaluating a location of hybrid power stations based on wind and
solar energies, were presented. In [40] and [41], a GIS-based DSS systems considering potential onshore
wind farm locations were discussed. The problem of constructing a DSS for selecting an offshore wind
location was attempted in [42,43]. Decision models dealing with a location selection and the design of a
wind farm related to the selection are presented in [44–46]. Similarly, in [47], the location and design of
a hybrid power plant were selected. As far as decision problems closely related to the project design of
a wind farm are concerned, such an issue was discussed in [15,48]. To the wind farm design are also
related technical aspects of wind turbines [16,49,50] as well as, in a broader context, risk assessment [51].
On the other hand, in [52], a decision model used for evaluating the influence of a wind farm on the
environment in a given location was presented. Table 2 includes a list of publications dealing with the
issue of decision support in the area of wind energy on the basis of MCDA methods.

The analysis of Table 2 indicates that in decision problems concerning wind energy, the AHP
method is often used, both in its crisp and fuzzy versions. It is employed to determine the weight
of criteria and preference aggregation. A generalization of the AHP, namely the ANP, and different
variants of the ELECTRE method are rarely used. Sporadically, other MCDA methods, such as TOPSIS,
PROMETHEE, Weighted Overlay, WLC, OWA, DEMATEL, Conjunctive Method, are used. Other
MCDA methods are employed in individual cases. It should be noted that in order to solve decision
problems related to wind energy, decision models characterized by various complexities are used.
The number of criteria ranges from 5 to as many as 35. These criteria are often related to each other
and dependent on one another. For example, in the publication [15], the following criteria were used:
generating cost, generating profit, and payback period. As it can be easily found out the payback
period results from, among other things, the calculation of costs and profits.
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Table 2. The use of MCDA in decision support concerning wind energy.

Type of Solution No. of Criteria MCDA Approach Reference

DM 15 Fuzzy DEMATEL (CD); ANP (CW) [28]
DM 7 Fuzzy AHP (CW); Fuzzy VIKOR (PA) [29]
DM 5 AHP [30]
DM 20 * AHP [31]
DM 11 * ELECTRE II [32]
DM 22 Fuzzy ELECTRE III [14]
GIS 7 AHP (CW); OWA (PA) [33]
GIS 6 AHP (CW); WLC (PA) [34]
GIS 10 LM; ELECTRE TRI [35]
GIS 10 Fuzzy AHP (CW); Fuzzy TOPSIS (PA) [36]
GIS 5 AHP (CW); WO (PA) [37]
GIS 13 CM (EA); AHP (CW); ELECTRE III, ELECTRE TRI, SMAA-TRI (PA) [38]
GIS 10 * OWA [39]
DSS, GIS 14 CM (EA); WO (PA) [40]
DSS, GIS 8 AHP (CW); WLC (PA) [41]
DSS 31 Fuzzy DEMATEL (CD); Fuzzy ANP (CW); Fuzzy ELECTRE (PA) [42]
DSS 10 AHP (CW); PROMETHEE II (PA) [43]
DM 29 AHP [44]
DM 9 C-K-Y-L (with indifference threshold) [45]
DM 10 AHP; PROMETHEE II [46]
DM 27 * Fuzzy AHP [47]
DM 11 NAIADE I [48]
DM 35 FCI (sub-criteria PA); GIFOGA (criteria PA) [15]
DM 14 Fuzzy ANP [16]
DM 9 IFE (CW); Fuzzy TOPSIS (PA) [49]
DM 11 AHP [50]
DM 9 Fuzzy ANP [51]
DM 14 AHP [52]

Abbreviations: *—wind energy criteria; Type of solution: DM—Decision model; DSS—Decision Support System;
GIS—Geographical Information System; MCDA approach (method): AHP—Analytic Hierarchy Process; ANP—
Analytic Network Process; C-K-Y-L—Condorcet–Kemeny–Young–Levenglick method; CM—Conjunctive Method;
DEMATEL—DEcision MAking Trial and Evaluation Laboratory; ELECTRE—ELimination Et Choix Traduisant la
REalité; FCI—Fuzzy Choquet Integral; GIFOGA—Generalized Intuitionistic Fuzzy Ordered Geometric Averaging;
IFE—Intuitionistic Fuzzy Entropy; LM—Lexicographic Method; NAIADE—Novel Approach to Imprecise Assessment
and Decision Environments; OWA—Ordered Weighted Averaging; PROMETHEE—Preference Ranking Organization
METHod for Enrichment Evaluation; SMAA—Stochastic Multi-objective Acceptability Analysis; TOPSIS—Technique
for Order of Preference by Similarity to Ideal Solution; VIKOR—VIšekriterijumsko KOmpromisno Rangiranje;
WLC—Weighted Linear Combination; WO—Weighted Overlay; TRI—Triage; MCDA approach (application): CD—
criteria dependencies defining; CW—criteria weighting; EA—elimination of areas; PA—preference aggregation.

Because of inter-criteria dependencies and other elements of specificity of decision problems in
the field of RES, an important issue is the selection of a proper MCDA method which can be used
in decision problems in the area of wind energy. This is important because solutions to a decision
problem may vary depending on the method used [53]. Differences between methods result primarily
from: the different way in which weights are taken into account in the decision problem, differences in
calculation procedures and the application of additional parameters of the decision problem by the
different methods [54].

3. Methodological Background

3.1. Choosing an MCDA Method for Decision Problems in the RES Field

As it was pointed out in [55], appropriateness of an MCDA method to the specificity of a decision
problem is essential for its selection. This means that there is no universal method that can be applied to
all decision problems [56]. Therefore, determining the specificity of a decision problem is a significant
step when selecting an MCDA method, and after this step, to a given problem a method should be
selected which complies with specific characteristics.

On the basis of reference sources [24,57–59], in which the issue of an MCDA method selection for
decision problems in the fields of RES and sustainability was considered, the following characteristics
determining the specificity of decision problems were taken into consideration:
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• the issues of a decision which was being considered [58],
• applied preference relations and a way of organizing alternatives [58,59],
• a compensation degree of criteria [24,57–59],
• discrimination power of criteria [57,59],
• a type of applied information [24,57–59],
• applying weights of criteria [24,57–59],
• support for many decision-makers [24,58,59],
• using dependencies between criteria [24,59].

MCDA methods are designed for solving different reference problematics. One can distinguish
the following problematics [60]: choice (P.α)—aids the decision-maker in choosing a subset that is as
small as possible so that a single alternative can eventually be chosen from the subset; sorting (P.β)—
aids the decision-maker by assigning each alternative to a category, where the categories are defined
beforehand as a function of certain norms; ranking (P.γ)—aids the decision-maker by building an order
of alternatives, that is obtained by placing alternatives into equivalence classes that are completely or
partially ordered according to preferences; description (P.δ)—aids the decision-maker by developing a
description of alternatives and their consequences.

In MCDA methods, an order between decision alternatives a and b is expressed by means of
relations describing preference situations. Depending on an MCDA method, one can list the following
relations: indifference (a I b)—which means that alternatives are equal, strict preference (a P b)—which
means that there is a strong advantage of an alternative a over b, weak preference (a Q b)—which
means that there is a weak advantage of an alternative a over b, outranking (a S b)—which includes an
indifference relation, a weak one and a strict preference relation, incomparability (a R b)—which means
that none of the remaining relations takes place [60]. The incomparability relation is related to a way
of organizing alternatives in the ranking problematics. That is, when an MCDA method does not take
into consideration the incomparability relation, the method usually allows obtaining a total order, i.e.,
full comparability of all alternatives in the ranking. Otherwise, a partial order is achieved, what means
that there may be alternatives which cannot be compared to other ones in the obtained ranking [61].

An important characteristic of multi-criteria methods in the context of sustainability and RES
problems is the degree of compensation of the criteria. In the literature [56], there are three basic
degrees of compensation: (1) full compensation—meaning that the low values of some criteria can be
fully compensated for by the high values of other criteria, (2) no compensation—meaning that the low
values of some criteria cannot be compensated for in any way by other criteria, (3) partial compensation—
being the intermediate step between full and no compensation. In many methods, absolute compensation
is excluded by using a veto threshold (v) as well as an incomparability relation, which is usually related
to it. It is important to note that the concept of strong sustainability is reflected by a low degree of
compensation and also weak sustainability corresponds to a high degree of criteria compensation [59].

The discriminating power of the criteria refers to how preference relations are established. Absolute
discriminating power means that even a minimal advantage of an alternative a over b with regard to a
given criterion c results in a strict preference (a P b) relation. On the other hand, applying non-absolute
discriminating power results in a situation where indifference (a I b) or weak preference (a Q b) relations
take place. Non-absolute discriminating power usually requires using indifference (q) and preference
(p) thresholds [60] in an MCDA method.

Both action performance and criterion weights can be expressed on different scales, depending
on the nature of the data. Qualitative and quantitative scales are the most common, while Roy [62]
indicates that they can be identified with ordinal and cardinal scales respectively. A data nature refers
to whether they are certain or uncertain [63]. Certain data (deterministic) have a crisp form, whereas
uncertain data (non-deterministic) can be expressed in a fuzzy form [63] or by defining a proper value
of indifference or preference thresholds [24,57]. The information type refers to the performance of
decision alternatives and weights of criteria. An MCDA method may: not use weights of criteria,

179



Energies 2019, 12, 749

accept weights expressed on an ordinal scale or operate on weights presented on a cardinal scale [24].
In addition, some methods offer the possibility of aggregating information from many decision-makers
or reflecting different priorities or scenarios.

Most MCDA methods assume independence between criteria what is not a realistic assumption
in many real-world problems [23]. These methods cannot be easily applied to more difficult decision
problems [24], because omitting existing dependencies between criteria does not allow the problem to
be correctly reflected in a decision model what results in obtaining wrong solutions [64].

Table 3 depicts the basic characteristics of the MCDA methods. Table 3 takes into account only
method families whose applicability is confirmed by the analysis of reference literature presented in
Section 2. Table 3 particularly presents MCDA methods which were used at least twice in decision
problems related to wind energy. Consequently, methods which had been incidentally used in this area
were eliminated from further analysis. In addition, Table 3 also includes the latest MCDA methods
used in sustainability and wind energy issues: BWM (Best Worst Method), COMET (Characteristic
Objects Method), NEAT F-PROMETHEE (New Easy Approach To Fuzzy PROMETHEE), PROSA
(PROMETHEE for Sustainability Analysis).

In papers dealing with a selection of an MCDA method suitable for applying in RES and
sustainability fields, recommendations of characteristics, which such a method should meet, were
defined. The characteristics are presented in Table 4.

On the basis of Table 4, it can be stated that the selected method should generate a full ranking
of alternatives (total order without incomparability). The MCDA method solving decision problems
related to wind energy management should be characterised by non-absolute discriminating power
of the criteria, i.e., it should apply q and p thresholds. Additionally, it should apply at most partial
compensation of criteria. The method should be able to capture quantitative and qualitative information
since in RES problems there are the two types of information [59]. What is more, it is recommended
that the method takes into consideration uncertainty of information, makes it possible to support
group decisions and allows capturing hierarchical and horizontal dependencies between criteria. When
analysing Table 4, one ought to notice that in decision problems dealing with wind energy, no MCDA
methods meeting the above-mentioned requirements are usually used. The PROMETHEE II and ANP
methods meet the most of the listed characteristics. The PROMETHEE II method does not allow using
other than hierarchical dependencies between criteria, whereas the ANP does not make it possible
to define indifference and preference thresholds what results in absolute discriminating power of
the criteria. Both methods meet seven recommended characteristics. An advantage of the ANP over
PROMETHEE is the ability of presenting mutual inter-criteria dependencies in a decision model, thus,
such a model could, to a greater extend, present the complexity of a decision problem in the field of
RES and sustainability [25].
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What is more, it should be noted that the ANP is a generalization of the AHP in which a problem
of a network structure, as opposed to a hierarchical one, is considered [78]. In other words, the AHP
and ANP methods are based on the same calculation apparatus. However, the AHP does not allow
modelling other than hierarchical dependencies between criteria [79]. Therefore, solving a decision
problem by means of the AHP and ANP methods will allow examining the influence of applying
inter-criteria dependencies on an obtained solution, thus the influence of computational algorithms
used in individual MCDA methods will be eliminated. Such a comparison is vital since the AHP
method is often used in decision problems concerning wind farms. As a consequence, the author of
this paper made a decision to use the ANP method as an engine of a proposed solution.

The AHP and ANP methods are based on utility theory. Both methods can be presented in three
steps of the calculation procedure:

1. identifying the decision problem and preparing a problem model in the form of a hierarchical
structure (AHP) or a network structure (ANP),

2. carrying out pairwise comparisons (alternatives and criteria),
3. achieving a solution with the use of supermatrix [80].

In the hierarchical structure, the decision problem is modelled in the form of objective, criteria,
sub-criteria and alternatives. Therefore, only hierarchical relationships are used in it. In the network
model, apart from hierarchical dependencies, inner and outer dependencies between criteria/sub-
criteria and feedbacks are also modelled [81], i.e., dependencies directed contrary to the classical
hierarchy. These differences allow creating more complex decision models using the ANP method. An
overview of the network decision model is shown in Figure 1.

 

 
Figure 1. Network structure in the ANP method.

To compare the alternatives or criteria in both methods, pairwise comparison matrices are used.
Any such matrix M ought to be positive and reciprocal, according to the formula (1):

mji =
1

mij
(1)

The main diagonal of the matrix contains unit values. For each matrix M, the preference
vector W = [w1, . . . , wn] is calculated, which determines the weights of the criteria considered or
the assessment of alternatives. Saaty recommends calculating the vector W using the eigenvector
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method [82], but other methods of determining the vector W, e.g., column sums, power method, simple
geometric mean, are often used in the literature in order to simplify the calculation procedure [80].
The eigenvector method consists in solving Equation (2):

MW = λmaxW (2)

where λmax is the highest eigenvalue of the M matrix. It should be emphasized that in the M matrix only
minor inconsistencies are allowed, which arise due to incomplete transitory preferences [81]. Moreover,
if the data in the matrix are represented on their natural scales, then the M matrix is always consistent.

Both methods allow obtaining a solution to a decision problem with the use of supermatrix [83].
At the beginning, the interfactorial dominance supermatrix [84] is defined, which indicates relations
between elements of the decision-making model. In the next step, the unweighted supermatrix is
defined, in which eigenvectors W are placed in individual pairwise comparison matrices. A weighted
supermatrix is obtained on the basis of the unweighted supermatrix by normalizing column sums
to a unit value (stochastic supermatrix). In the last step, the limit supermatrix is reached using the
formula (3):

LSM = lim
k→∞

1
N

N

∑
k=1

WSMk (3)

where WSM stands for a weighted supermatrix. A limit supermatrix represents global priorities to
solve a decision problem (weighting of criteria, global values of alternatives) [66].

3.2. Proposed Methodology

The used research procedure, whose goal is to select a project design and the location of an onshore
wind farm, was based on a decision process model defined by Roy [60]. Therefore, the verification
model had the following stages:

1. determining a goal of the decision and alternatives;
2. developing criteria;
3. modelling preferences;
4. investigating and developing the recommendation.

Stages 2–4 were carried out separately for the AHP and ANP methods.
In Stage 2 for the ANP, sub-criteria used for solving a decision problem were defined and

dependencies between them were determined. These dependencies were presented in a network ANP
decision model, whereas for the AHP, a hierarchical decision model, which was similar to the network
model, but did not take into consideration dependencies between criteria, was constructed.

In Stage 3, initial weights of criteria and sub-criteria were attributed. It should be stressed that in
the conducted research, each of the criteria was attributed the same weight. Analogically, sub-criteria
within one criterion were also considered equally important. After performing the ANP procedure, the
influence of the network model on sub-criteria weights, which were finally obtained, was examined and
the weights were compared to the initial importance. Additionally, for the network model, the influence
of a cluster containing decision alternatives on the obtained sub-criteria weights was examined. It was
carried out by determining sub-criteria weights on the basis of a complete model containing the goal
of the decision, criteria, sub-criteria and decision alternative clusters, and by determining sub-criteria
weights on the basis of a model from which a decision alternative cluster was deleted.

Stage 4 consisted in determining a ranking of alternatives with the use of the ANP and AHP and
comparing obtained rankings. The rankings were determined by means of comparing alternatives in
pairwise comparison matrices. Usually, in pairwise comparison matrices, Satty’s fundamental scale
(a qualitative scale [1,2,...,9]) is used. However, the ANP and AHP methods also allow presenting
data on their natural scale [85]. In the case of this paper, performances of alternatives for individual
criteria are presented on natural scales. The comparison of rankings was carried out with the use
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of a sensitivity analysis as well as research into the susceptibility of rankings to the rank reversal
phenomenon. In this way, the influence of dependencies between sub-criteria on the obtained solution
was examined. It should be noted that comparing the results of the operation of the ANP with any
other method, different from the AHP, would not enable such research. It results from the fact that the
ANP and AHP methods are based on the same computational apparatus, but they differ in that the
ANP takes into consideration dependencies between criteria. However, other methods employ different
computational algorithms and, therefore, differences in obtained results could be caused by the very
differences and not by inter-criteria dependencies. The research procedure is depicted in Figure 2.

 
Figure 2. Research procedure

4. Results

4.1. Determining a Goal of the Decision and Developing Criteria

The goal of the decision was the selection of a location for an onshore wind farm in Poland
related to its specific design. Four decision alternatives were considered, which had different values of
individual sub-criteria.

Another step was to select criteria and sub-criteria against which decision alternatives would be
evaluated. On the basis of the literature analysis presented in Section 2, a set of criteria and sub-criteria
for evaluating locations and designs of onshore wind farms, presented in Table 5, was prepared.
Technical, economic, spatial, social and environmental criteria were singled out. For each criterion,
detailed sub-criteria taken from the literature were attributed. Here, a certain level of sub-criterion
generalization was accepted in order to avoid many sub-criteria having the same or similar meaning
which could occur in the set. For instance, in the paper [48], an “energy production capacity” criterion
was used, whereas in [43], “energy production”, in [51], “power production”, and in [15] and [31],
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“annual on-grid energy” were applied. All the criteria in this work were generalized as “annual energy
production”, since, in fact, they refer to it.

Table 5. Criteria and sub-criteria for evaluating locations and designs of onshore wind farms.

Criteria Sub-Criteria Reference

C1—Technical
C1.1 Annual mean wind speed (at the height of 100 m) [14,15,28,31,33–37,40,42,44,46,47,52]
C1.2 Output power of wind turbine [15,16,29,44,47,50]
C1.3 Power transmission grid voltage [46,52]

C2—Economic

C2.1 Annual energy production [15,31,38,43,44,46–48,50,51]
C2.2 Investment cost [14–16,29–32,43,46–48,50]
C2.3 Annual operation and maintenance costs [14–16,29,30,32,46–48,50]
C2.4 Annual profit [14,15,31,41,42,46,49]
C2.5 Payback period [14,15,31,43]

C3—Social
C3.1 Social acceptability [29,31,32,42,43,46,48]
C3.2 Employment [14,15,49]

C4—Spatial C4.1 Distance to main roads [28,33–40,46]
C4.2 Distance to power transmission grid [14,31,32,35,36,38–40,42,43,46]

C5—Environmental C5.1 Distance to protected areas (i.e., Nature 2000) [34,38–41,43,46]

Table 6 contains a full characteristic of alternatives, with regard to the criteria.

Table 6. Criteria and sub-criteria for evaluating locations and designs of onshore wind farms

Criteria Sub-Criteria
Alternatives

A1 A2 A3 A4

C1—Technical
C1.1 Annual mean wind speed (at the height of 100 m) (m/s) 6.75 7.12 6.95 6.04
C1.2 Output power of wind turbine (MW) 0.53 0.58 0.57 0.38
C1.3 Power transmission grid voltage (kV) 220 400 220 220

C2—Economic

C2.1 Annual energy production (MWh) 106 784 86 374 104 857 46 603
C2.2 Investment cost (mln PLN) 455.40 336.60 415.80 277.20
C2.3 Annual operation and maintenance costs (mln PLN) 8.86 7.17 8.70 3.87
C2.4 Annual profit (mln PLN) 27.98 22.63 27.47 12.21
C2.5 Payback period (years) 16.3 14.9 15.1 22.7

C3—Social
C3.1 Social acceptability (%) 59 24 61 26
C3.2 Employment (number) 1062 606 831 533

C4—Spatial C4.1 Distance to main roads (km) 6 10 7 3
C4.2 Distance to power transmission grid (km) 2 3 60 2

C5—Environmental C5.1 Distance to protected areas (binary) 1 9 1 9

What needs explaining are the values of alternatives for sub-criterion C5.4—a distance to protected
areas. Because there is no possibility of attributing the “0” value to a criterion in the ANP and AHP,
binary values reflected on Saaty’s fundamental scale [66] was used here. When a location was situated
outside, protected areas it got a “9”, otherwise it was given a “1”.

Another step was to determine dependencies between sub-criteria. The dependencies were
formulated on the basis of the literature analysis. The dependencies between sub-criteria are presented
in Table 7. In cells of Table 7, literature sources, from which information was taken about individual
dependencies, were marked. The direction of dependency is defined from rows to columns, e.g., the
sub-criterion C1.1 has influence on the C1.2.

Table 7. Dependencies between sub-criteria based on the literature sources

C1.2 C2.1 C2.2 C2.3 C2.4 C2.5 C3.1

C1.1 [38,41]
C1.2 [38,41]
C2.1 [86] [86]
C2.2 [48] [87]
C2.3 [52]
C2.4 [87]
C3.2 [14,28]
C4.1 [38] [38]
C4.2 [38]
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For the considered decision problem were constructed two network models considering
dependencies between sub-criteria and a hierarchical model which does not consider dependencies of
this type. One of the network models, which can be determined as complete, contained the considered
decision alternatives. The second network model included only the aim of the decision, criteria and
sub-criteria. Therefore, the evaluation of decision alternatives was not possible in the second model and
it was constructed only for the sake of obtaining the weight of criteria and sub-criteria for comparison.
The complete decision model containing decision alternatives and considering dependencies between
sub-criteria is presented in Figure 3.

 

Figure 3. Decision model with alternatives and dependencies between sub-criteria

4.2. Modelling Preferences

The criteria and sub-criteria were attributed initial weights and preference directions presented
in Table 8. Also, Table 8 contains sub-criteria weights obtained as a result of conducting the ANP
computational procedures for network models with and without presented decision alternatives.
It should be stressed that the AHP method, unlike the ANP, in the whole computational procedure
uses criteria and sub-criteria weights defined at the beginning and it does not set their new values.

The analysis of Table 8 points out that the final weight of criteria (sub-criteria) changes significantly
with reference to predefined values, as a result of applying the ANP calculation procedure. In general,
the weight of a sub-criterion which other sub-criteria influence is increasing. Consequently, the weight
of another sub-criteria in a given cluster is decreasing. Moreover, taking into consideration the cluster
of alternatives in the decision model influences the result of sub-criteria weights. This effect can be
seen in the case of an interdependent pair of sub-criteria C3.1 and C.3.2. The effect of weight changes
takes also place in the case of sub-criteria which are not mutually dependent on each other, what can
be illustrated by a criterion C1.3.
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Table 8. Weights of criteria

Criteria
Predefined
Weight

Sub-Criteria
Preference
Direction

Weight—Predefined
and AHP

Weight—ANP
without Alternatives

Weight—ANP
with Alternatives

C1 0.2
C1.1 max 0.333 0.25 0.286
C1.2 max 0.333 0.5 0.428
C1.3 max 0.333 0.25 0.286

C2 0.2

C2.1 max 0.2 0.118 0.16
C2.2 min 0.2 0.061 0.116
C2.3 min 0.2 0.151 0.185
C2.4 max 0.2 0.306 0.293
C2.5 min 0.2 0.364 0.246

C3 0.2
C3.1 max 0.5 0.667 0.6
C3.2 max 0.5 0.333 0.4

C4 0.2
C4.1 min 0.5 0.5 0.5
C4.2 min 0.5 0.5 0.5

C5 0.2 C5.1 max 1 1 1

4.3. Investigating and Developing the Recommendation

4.3.1. Preference Aggregation

The last stage was to determine the utilities and ranking of alternatives as well as the analysis of
the utilities and ranking. The rankings obtained for the AHP and ANP methods are shown in Table 9.

Table 9. Utility and rank of alternatives.

Alternative A1 A2 A3 A4

Utility AHP 0.237 0.275 0.195 0.293
ANP 0.235 0.279 0.218 0.268

Rank
AHP 3 2 4 1
ANP 3 1 4 2

When analysing Table 9, one can notice that the AHP and ANP rankings are different from one
another with regard to the obtained values of alternative utilities. The differences result from, most of all,
different weights of sub-criteria obtained by means of the AHP and ANP methods. The presentation of
dependencies between sub-criteria also influences the obtained differences. The dependencies influence
the form of a weighted supermatrix used in the AHP and ANP methods. Unweighted, weighted and
limit supermatrices obtained for the AHP and ANP methods are shown in Appendix A. The most
significant differences with regard to utilities can be noticed in the case of alternatives A3 and A4, since
they amount to 0.023 and 0.025 respectively. The differences seem to be insignificant, however, they can
influence their positions in the ranking. It is shown in the case of alternatives A2 and A4, for which
a slight change in the utilities obtained by means of the ANP method with reference to the utilities
determined by the AHP influenced the exchange of their positions in the rankings.

As for the comparison of qualities of rankings obtained with the AHP and ANP methods, it is
not possible in a mathematical sense [88]. It results from the fact that MCDA methods, such as the
AHP and ANP, are used in problems in which individual decision alternatives are Pareto-optimal
solutions [89]. Also, in the decision problem which is being examined, all considered alternatives belong
to Pareto-front solutions (they are Pareto-optimal solutions). However, Pareto-optimal solutions are
not comparable in a mathematical programming sense. This means that one cannot formally decide
which alternative is better than another one [90]. That’s why, in the present paper, the comparison of the
results obtained with the use of the AHP and ANP methods was conducted on the basis of a sensitivity
analysis [91] and the examination of occurrence of the rank reversal phenomenon [92,93].

4.3.2. Sensitivity Analysis

The sensitivity analysis carried out by the author of the present paper is more precise than the
analysis proposed by the author of the AHP and ANP methods, i.e. Saaty. Saaty finds out that because
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of the complexity of a network or hierarchical structure, the sensitivity analysis of precise numerical
values is difficult to carry out, that’s why he suggests using an abstract value P (perturbation) based
on linear optimization and describing a trend of changes [66] (Chapter 15). However, in the sensitivity
analysis presented in this paper, the precise numerical value of a weight of criteria and sub-criteria
were obtained. A dedicated solution to a decision problem is obtained for these weights. Hence, such
stability intervals based on the numerical value of weights were also determined.

In the presented model of a decision problem, there are two levels of a hierarchy of criteria. This
fact has been used in the present author’s sensitivity analysis. As a result, in this case, the sensitivity
analysis is an issue consisting of three dimensions which are: possible weights of a criterion (e.g., C1)
and a sub-criterion (e.g., C1.1) belonging to it as well as utilities of alternatives. It results from the fact
that the real weight of a sub-criterion is the product of the weight of a criterion and a sub-criterion.
For instance, for weights depicted in Table 8, the real predefined weight of sub-criteria C1.1, C1.2 and
C1.3 amount to 0.0666. However, for a weight C1 = 0.1 and a weight C1.1 = 0.666, the real weight
amounts to 0.0666, whereas for C1.2 and C1.3 the real weight C1.1 amounts to 0.01665. In consequence,
for the two cases, where the real weight is C1.1 = 0.0666, the result will be different utility values of
individual alternatives of individual values.

The sensitivity analysis was carried out on the basis of implementation of the AHP and ANP
methods in the MATLAB software. Plane graphs presenting utility values of individual alternatives in
the function of the weight of the criterion C1 and sub-criterion C1.1 are shown in Figure 4a (for the
AHP method) and 4b (for the ANP method). Other graphs are depicted in Supplementary Materials.

(a) (b) 

Figure 4. Utility of alternatives determined by means of: (a) the AHP method; (b) the ANP method;
depending on the weight of the criterion C1 and sub-criterion C1.1.

Table 10 presents selected intervals of stability of the AHP and ANP solutions. Stability intervals
for criteria were determined on the assumption that all sub-criteria contained in a given criterion have
equal predefined weights. On the other hand, stability intervals for sub-criteria were determined on
the assumption that superior criteria weights are equal. As a result of the sensitivity analysis it was
found out that, assuming an equal weights of criteria, only changes to weights of sub-criteria presented
in Table 10 can influence the ranking of alternatives.
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Table 10. Stability intervals of rankings

AHP ANP

Criterion/
Sub-Criterion

Stability Interval (Weight) Nominal
Weight

Criterion/
Sub-Criterion

Stability Interval (Weight) Nominal
Weight

Min Max Range Min Max Range

C1 0 0.32 0.32 0.2 C1 0.11 0.52 0.41 0.2
C2 0 0.63 0.63 0.2 C2 0 0.57 0.57 0.2
C3 0 0.33 0.33 0.2 C3 0 0.31 0.31 0.2
C4 0.13 0.4 0.27 0.2 C4 0.02 0.29 0.27 0.2
C5 0.11 1 0.89 0.2 C5 0.13 0.99 0.86 0.2
C2.2 0 0.95 0.95 0.2 C2.3 0 0.97 0.97 0.2
C2.6 0 0.95 0.95 0.2 C2.4 0 0.72 0.72 0.2
C4.1 0.01 1 0.99 0.5 C4.1 0 0.85 0.85 0.5
C4.2 0 0.99 0.99 0.5 C4.2 0.15 1 0.85 0.5

When analysing Table 10, it can be noticed that the ranking obtained with the AHP method is
almost as stable as the solution generated by means of the ANP method. In both cases, the ranges of
stability intervals, with relation to a predefined weight of criteria and sub-criteria (see Table 8), is wide
enough to acknowledge the rankings obtained by means of both AHP and ANP as stable rankings.

4.3.3. Rank Reversal Phenomenon Analysis

The analysis of ranking robustness to the rank reversal phenomenon was based on the
implementation of the AHP and ANP methods in the MATLAB software. The analysis was conducted
by constructing an alternative A5 which was examined along with alternatives A1–A4. A ranking,
which was obtained in this way, of five alternatives, was compared with the reference ranking presented
in Table 9. If the sequence of alternatives A1–A4 was changed with relations to the reference ranking,
the rank reversal phenomenon was considered to have taken place. The alternative A5 was constructed
on the basis of random data in two ways, that is both (1) taking into consideration dependencies
between sub-criteria and (2) without taking into account the above-mentioned dependencies.

In the case of constructing the alternative A5, in which inter-criteria dependencies were taken
into account, only the values of independent sub-criteria were random, i.e. C1.1, C1.3, C3.2, C4.1, C4.2,
C5.1. On the basis of the values of independent criteria, the values of the remaining sub-criteria were
determined. The value interval of the sub-criterion C1.1 was determined on the basis of the annual
average wind speed in Poland [94]. The value of C1.2 as a dependent sub-criterion was determined on
the basis of the formula for the wind power energy for a generic turbine: P = (1/2)dACv3, where d is the
air density (equal to 1.225 kg/m3), A is the rotor’s blades swept area (equal to 6362m2), Cp is the power
coefficient (equal to 0.45), and v representing the wind speed [95]. The values of individual parameters
of the formula were taken from the specification of one wind turbine [96]. Three permissible values of
C1.3 result from the fact that the voltages of the national power grid of higher voltages used in Poland
amount to 110kV, 220kV, and 400kV [97]. The value of C2.1 (annual energy production) was calculated
as the product of the number of wind turbines (N), energy generated by a single turbine (C1.2) and the
number of hours in a year (8760) [41]. Determining the value of C2.2 (investment cost) was based on
the fact that the value of capital investment for an onshore wind farm in Poland amounts to 6.6 million
PLN/MW [98]. Approximate costs of constructing a service road to the wind farm were added to the
amount (1 million PLN/km). The calculations of C2.3 (operation and maintenance costs) take into
consideration the fact that the operation costs of a wind farm in Poland amounts to 83 PLN per one
MWh of the energy generated by the wind farm [98]. To the operation costs, the costs, estimated at
10.000 PLN/km, related to the transport and delivery of service elements were also added. To put
it simply, a yearly profit (C2.4) from selling the energy can be determined as the difference between
incomes from the energy sales and operational costs incurred to generate the energy sold. Incomes are
above all influenced by a current energy price. However, new law defining so-called RES auctions has
been recently introduced in Poland. The reference price, for an RES auction, of the onshore wind energy
generated in a wind farm of combined power greater than 1MW in 2016 amounts to 385PLN/MWh [99].
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The reference price in the bidding can be lowered to some extent, therefore, in the prepared simulation,
the price of 345 PLN/MWh was taken. Moreover, it was assumed that the profit is reduced by the
maintenance cost of the connection to the grid, estimated at 10.000 PLN/km. The payback period
(C2.5) was calculated as a ratio of the investment costs to annual profits. Social acceptability (C3.1) is
a random value increased by an employment factor amounting to 1% per 100 potential work places
related to the construction and maintenance of a power plant. The number of potential work places
(C3.2) was determined with the use of a conversion factor, according to which 1MW generates ca. 15.4
work places [98]. The distance to main roads (C4.1) and the distance to the power transmission grid
(C4.2) were determined as random values within the range of 1–15 km, whereas for a criterion C5.1
(distance to protected areas) the value of yes or no was drawn. In addition, for some independent
sub-criteria, deviation in the range of up to 15% of the calculated value was admitted.

The construction of the alternative A5 without taking into consideration dependencies between
sub-criteria consisted in drawing the value of every sub-criterion C1.1–C5.1 from determined ranges
of values. The ranges for the sub-criteria were calculated on the basis of minimal and maximal values
which could be obtained with the use of the dependencies described above. The way of determining
sub-criterion values for the alternative A5 is presented in detail in Table 11.

Table 11. The way of generating the alternative A5 which does not take into consideration and considers
dependencies between sub-criteria.

Sub-Criterion No Dependencies between Sub-Criteria Implementation of Dependencies between Sub-Criteria

C1.1 Random <5, 7.5> (m/s) Random <5, 7.5> (m/s)
C1.2 Random <0.22, 0.74> (MW)

(
1
2 ∗ 1.225 ∗ 6362 ∗ 0.45 ∗ C1.13

)
/1000000 (MW)

C1.3 Random {110; 220; 400} (kV) Random {110; 220; 400} (kV)
C2.1 Random <16321, 186311> (MWh) (N ∗ C1.2 ∗ 8760) +/- 15% (MWh)
C2.2 Random <169.2, 586.5> (mln PLN) (P ∗ 6.6 + C4.1) +/- 15% (mln PLN)
C2.3 Random <1.16, 17.96> (mln PLN)

(
C2.1∗83
1000000 + 0.01 ∗ C4.1

)
+/- 15% (mln PLN0

C2.4 Random <4.66, 73.91> (mln PLN)
(

C2.1∗345−C2.3
1000000 − 0.01 ∗ C4.2

)
+/- 15% (mln PLN)

C2.5 Random <7.9, 36.3> (years) C2.2/C2.4 (years)
C3.1 Random <19, 93> (%) Random <15, 80> +0.01 ∗ C3.2 (%)
C3.2 Random <393, 1328> (number) P ∗ 15.4 +/- 15% (number)
C4.1 Random <1, 15> (km) Random <1, 15> (km)
C4.2 Random <1, 15> (km) Random <1, 15> (km)
C5.1 Random {1; 9} (binary) Random {1; 9} (binary)
N - Random <10, 25> (number)
P - N ∗ 3 (MW)

Abbreviations: N—number of turbines; P—installed power.

The results of examining the robustness of the rankings to the rank reversal phenomenon are
shown in Table 12. It should be noted that the generator of random numbers before each test was reset,
what guarantees the repeatability of results.

Table 12. The occurrence of the rank reversal phenomenon in examined rankings depending on the
way of generating the alternative A5.

Dependencies
between

Sub-Criteria of
the Alternative A5

The Number of
Samples of the
Alternative A5

AHP Ranking ANP Ranking

The Number
of Changed
Rankings

The Number
of Changes in
Rankings

The Number
of Changed
Rankings

The Number
of Changes in
Rankings

Independent 1000 samples 4 7 0 0
10,000 samples 17 32 1 2

Dependent 1000 samples 10 19 0 0
10,000 samples 66 127 1 2

Figure 5a,b present the number of changed rankings depending on the number of samples of the
alternative A5.
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(a) (b) 

Figure 5. The number of changed rankings for the alternative A5 generated: (a) without considering
dependencies between sub-criteria; (b) when taking into account dependencies between sub-criteria

The analysis of research results points out that when the alternative A5 was constructed without
or with the implementation of dependencies between criteria, the ANP ranking had much higher
robustness to the rank reversal. It might be assumed that the higher robustness resulted from the fact
that the ANP method, unlike the AHP, took real dependencies between sub-criteria into consideration.
The robustness of the rankings to the rank reversal phenomenon is especially important in decision
problems in which new alternatives may appear for consideration. Decision problems related to the
selection of wind farm location are this kind of problems.

It should be pointed out that conclusions drawn from the sensitivity analysis as well as the
research into the rank reversal phenomenon occurrence refer only to the comparison of ranking shown
in Table 9 and obtained by means of the AHP and ANP methods. Without further research, the
results cannot be generalized and related to the quality of other solutions obtained by means of the
indicated MCDA methods. However, on the basis of the conducted research in should be noted that
the application of the ANP method in the decision problems concerning wind farm location and design
makes it possible to obtain a solution with a higher value than by means of the AHP. Furthermore,
after analysing the literature [23,25,64,100,101], one can find out that taking into consideration real
dependencies between criteria in the decision model makes the model precisely reflect the real decision
problem and allows obtaining a more reliable solution.

5. Discussion

The application analysis, presented in Section 2, of the MCDA methods in decision problems
in the field of wind energy points out that in order to solve these problems the MCDA methods are
used, although usually they do not take into consideration dependencies between criteria or they
allow considering only hierarchical dependencies (criteria – sub-criteria). It takes place even though
many authors notice that in such decision problems, methods which allow modelling dependencies
between criteria ought to be used [15,24,25]. The ANP is a method of this kind. Due to this fact, the
decision model, prepared for the problem of the selection of the location and design of a wind farm
was based on the ANP method. Therefore, it takes into consideration complex dependencies between
decision-making criteria. However, the ANP method does not meet all expectations with regard to the
MCDA methods used in the RES issues [24,57–59], since it does not allow applying indifference and
preference thresholds, therefore, the ANP is characterized by absolute discriminating power of the
criteria. It indicates the need for further development of the MCDA methods and requires working
out a method combining the features of the ANP (dependencies between criteria) and outranking
methods (indifference and preference thresholds) such as PROSA (PROMETHEE for Sustainability
Analysis) [77] and NEAT F-PROMETHEE (New Easy Approach To Fuzzy PROMETHEE) [76].
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As part of the verification of the obtained solution, it has been demonstrated that taking
into consideration dependencies between criteria in the decision model can influence the obtained
recommendation of the decision. It was obtained by comparing solutions gained for the network ANP
model and the hierarchical AHP model. A significant observation refers to the differences between
sub-criteria weights (see Section 4.2). The weights were obtained by means of the ANP method with
the considered cluster of alternatives or without it. The differences, in the author’s opinion, question
the publications in which the ANP method is only used to obtain the weight of criteria and sub-criteria,
e.g., [28].

On the basis of the conducted sensitivity analysis and the research into the robustness of the
rankings to the rank reversal phenomenon, it has been found out that the ranking obtained with the
use of the ANP method is characterized by higher quality. Moreover, on the basis of the literature
one can state that the solution obtained with the ANP method is more reliable owing to the fact that
it considers inter-criteria dependencies [102]. However, it is obvious that the network model (ANP)
allows reflecting the decision problem more precisely than the hierarchical model (AHP).

As regards the policy recommendations that can be defined on the basis of the study carried out, a
number of issues need to be identified here, mainly related to the analysis of potential decision-making
alternatives (see Table 6). First of all, it should be noted that in many areas of Poland a power grid
with relatively low voltages is available (220kV). This grid should be systematically developed to
operate at 400 kV and 750 kV voltages, which will improve the robustness of transmission lines against
voltage and power fluctuations generated in the grid by high-capacity wind turbines. As regards the
economics of this type of investment, it should be noted that the availability of the road network makes
it possible to reduce investment costs and operating costs to a certain extent. Therefore, onshore wind
farms should be located close to the main roads. However, in Poland, areas with good wind conditions
are usually poorly covered with the road network. Therefore, in addition to the development of the
power grid, the development of the road network is also important. Another issue is the relatively low
public acceptance of wind energy investments. This is due to the fact that a few years ago in Poland
wind energy was developed without taking into account social costs. Wind farms were built very close
to human settlements, which resulted in a continuous decrease in public acceptance of this type of
investment. Meanwhile, the development of wind energy should be carried out with respect for the
inhabitants of the areas in the vicinity of which wind power plants are being built. This development
should take into account not only economic and environmental but also social issues. Therefore, this
development should be sustainable in economic, environmental and social terms.

Among the limitations of the study presented, it should be pointed out that the comparison of the
AHP and ANP methods was carried out in a single case study. Therefore, conclusions drawn from
the sensitivity analysis as well as the research into the rank reversal phenomenon occurrence only
refer the decision problem presented in this study. Without further research, the results cannot be
generalized and related to the quality of other solutions obtained by means of the indicated MCDA
methods. However, on the basis of the conducted research it should be noted that the application of
the ANP method in the decision problems concerning wind farm location and design makes it possible
to obtain a solution with a higher value than by means of the AHP. Furthermore, after analysing the
literature [23,25,64,100,101], one can find out that taking into consideration real dependencies between
criteria in the decision model makes the model precisely reflect the real decision problem and allows
obtaining a more reliable solution. Another constraint linked to the decision problem itself is that
the decision-maker, when considering a similar decision problem, may formulate other criteria, the
inclusion of which may, of course, be given a different ranking of alternatives. Finally, it should be
noted that this is an ex-ante study so that the values of the alternatives in terms of evaluation criteria
are uncertain and may change to some extent [103].
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6. Conclusions

When summing up the studies carried out, it is important to note their methodological and
practical contribution to management science, and in particular to the decision analysis. One should
mention here:

• formal selection of the MCDA method for decision problems in the field of RES and sustainability,
based on the analysis of intrinsic characteristics of individual methods,

• consideration of different locations and projects for the construction of onshore wind farms,
• comparison of rankings obtained using the AHP (without dependencies between criteria) and

ANP (with inter-criteria dependencies) methods in order to assess the impact of such dependencies
on the solution obtained,

• study of the quality of the solutions obtained through a sensitivity analysis and rank reversal
phenomenon analysis.

Obviously, the prepared solution should be continuously developed. A natural direction of
further work is to extend the decision model with other criteria and sub-criteria of evaluating onshore
wind farms as well as to include other RES decision problems in the metamodel. Furthermore, an
interesting issue would be presenting the decision model in the form of an ontology, what would make
it possible to infer new knowledge from the model [104]. It would also be a natural development of
the functionality of the model in the direction of an ontological knowledge base.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1073/12/4/749/s1,
Figure S1–12: Utility of alternatives determined by means of: (a) the AHP method; (b) the ANP method; depending
on the weight of the criterion Cx and sub-criterion Cx.y.
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80. Ziemba, P.; Wątróbski, J.; Jankowski, J.; Piwowarski, M. Research on the Properties of the AHP in the
Environment of Inaccurate Expert Evaluations. In Selected Issues in Experimental Economics. Proceedings of
the 2015 Computational Methods in Experimental Economics (CMEE) Conference, Międzyzdroje, Poland, 17–19
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Abstract: The energy embodied in construction services consumed by industrial sectors used to
increase capacities has led to massive energy-related carbon emissions (ERCE). From the perspective
of consumer responsibility, ERCE embodied in construction services is driven by technological
changes and the increases in final demand of various sectors, including final consumption, fixed
assets investment, and net export. However, little attention has been paid to decomposing
sectoral responsibilities from this perspective. To fill this research gap, we propose a dynamic
hybrid input–output model combined with structural decomposition analysis (DHI/O-SDA model).
We introduce DHI/O modeling into the estimation of ERCE embodied in construction services from
the perspective of consumer responsibility and introduce SDA into DHI/O models to improve the
resolution of the estimate. Taking China as a case study, we verified the DHI/O-SDA model and
present the bilateral relationships among sectoral responsibilities for ERCE embodied in construction
services. A major finding is that the “Other Tertiary Industry” sector is most responsible for ERCE
embodied in construction services and strongly influences other sectors. Therefore, controlling the
final demand increase of the service industry will be the most effective policy to reduce the ERCE
embodied in construction services.

Keywords: energy-related carbon emissions; embodied energy; fixed assets investment; dynamic
hybrid input–output model; structural decomposition analysis

1. Introduction

The Intergovernmental Panel on Climate Change (IPCC) has pointed out that reducing greenhouse
gas emissions can help mitigate global greenhouse effects [1]. According to the Fifth Assessment
Report of the IPCC [2], the energy-related carbon emissions (ERCE) of industrial processes accounted
for approximately 65% of anthropogenic greenhouse gas emissions worldwide in 2010. To reduce
ERCE, energy conservation remains an important task in addition to the development of low-carbon
energy sources.

Energy conservation not only includes improving technological efficiency (such as reducing
energy consumption per unit of energy services provided), but also reducing demand for energy
services. Energy services can be categorized as “operation services” and “construction services” [3].
The former indicates the services required by an economy to maintain current living standards with

Energies 2019, 12, 1456; doi:10.3390/en12081456 www.mdpi.com/journal/energies205
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existing infrastructure and energy devices, and the latter indicates the services required for expanding
the capacities of various industrial sectors. Construction services normally involve investments in
infrastructure and energy devices, which cause direct and indirect energy consumption and ERCE.
Therefore, the conservation of construction services (for example, by avoiding the insufficient use
of infrastructure and production capacities caused by overcapacity or frequent construction and
demolition) must not be neglected in energy conservation analysis and planning.

The conservation of construction services is especially important in developing countries that
are experiencing rapid industrialization, and in those whose demands for energy services are far
from saturated, as exemplified by China after 2000. Using fixed assets investment as an indicator
of construction services, two previous studies [4,5] verified that energy consumed for construction
services accounted for a large proportion in China, and found that a considerable amount of potential
energy savings can be captured by conserving construction services. In existing work related to
estimating energy consumption and ERCE embodied in construction services [4–8], the responsibility
for energy consumption and ERCE embodied in construction services was mainly attributed to the
sectors that directly provide construction services. Therefore, the policy implication was mainly to
control the investments in the construction and manufacturing sectors to reduce energy consumption
and ERCE embodied in construction services. However, much of the construction services in these two
sectors are not due to their own needs, but to the increase in other sectors’ final demand, including
final consumption, fixed assets investment, and net export. The increase in the final demand of various
sectors is the deeper reason for the need for construction services, and for energy consumption and
ERCE embodied in construction services. Therefore, restricting the final demand increase of the
sectors that mainly consume construction services may be more effective. Accordingly, we needed to
clarify the drivers of construction services from the perspective of each sector’s final demand increase,
meaning from the perspective of consumer responsibility. This approach involves the redistributing
the investment responsibility of each sector based on the final demand increases. To this end, we must
introduce the dynamic hybrid input–output (DHI/O) method, because there are limitations in the static
hybrid input–output method applied in previous studies.

This paper introduces the DHI/O model into the decomposition of sectoral responsibility for
energy consumption and the ERCE embodied in construction services from the perspective of consumer
responsibility. Moreover, structural decomposition analysis (SDA) is combined with the DHI/O model
to further improve the resolution of the model, and shapes a dynamic hybrid input–output model
combined with structural decomposition analysis (DHI/O-SDA model). Being the largest ERCE emitter
in the world, China is used as a case study to demonstrate the model.

This paper provides two key contributions. First, this is an early attempt to introduce the DHI/O
model into the analysis of energy consumption and the ERCE embodied in construction services.
We also firstly introduce SDA into the DHI/O model to differentiate the energy consumption and the
ERCE embodied in construction services caused by technology changes from those caused by final
demand increases. Such a model is essential for formulating energy conservation policies in developing
countries that are experiencing rapid industrialization to reduce energy consumption and the ERCE
embodied in construction services. Second, using the DHI/O-SDA model, we present the sectoral
responsibilities for the ERCE embodied in the construction services consumed by China from 2007 to
2012. Based on these outcomes, we discussed the policy implications of reducing ERCE embodied in
construction services in China. These policies are presented from a new perspective that emphasizes
more control of the final demand increase of the sectors that mainly consume construction services.

The rest of this paper is organized as follows: Section 2 reviews the related literature, Section 3
introduces the methodology and data, Section 4 presents the results, uncertainties, and discussions of
our study, and Section 5 provides our conclusions and policy implications.

206



Energies 2019, 12, 1456

2. Literature Review

Construction services directly consumed by various sectors can be quantified as a proportion of
fixed assets investment. Generally, fixed assets are invested in sectors for two reasons: primarily to
increase the production capacities for meeting the increasing demand on production, and to compensate
for the loss in the existing production capacities of the sectors [9]. The former reason can be regarded
as the demand for construction services, or construction services-related fixed assets investment
(CSFAI), whereas the latter as the demand for operation services. Therefore, as an assumption,
estimating the energy consumption and ERCE embodied in construction services consumed by various
sectors is equivalent to calculating the energy consumption and the ERCE embodied in the CSFAI of
various sectors.

The total quantities of direct and indirect energy consumed by various sectors to produce final
demands (including CSFAI) are usually estimated using embodied energy analysis. The concept of
embodied energy analysis, which was initially called vertical analysis, was introduced by Bullard and
Herendeen [10] to describe both direct and indirect primary energy invested in production. Some
studies applied embodied energy analysis to estimate the energy consumption or ERCE embodied in
the fixed assets investment of various economies. For example, Fu et al. [5] estimated the embodied
energy and the ERCE of various types of final demand products in China. Acquaye et al. [6] calculated
the ERCE of the Irish construction sector in 2005. Liu et al. [7] calculated the energy consumption
embodied in the final demand products of China’s economic sectors and found that considerable
amounts of energy were consumed in the “Construction” and “Other Service Activities” sectors.
Huang et al. [8] estimated the ERCE embodied in the construction activities of 40 countries in 2009,
which accounted for 23% of the total ERCE embodied in the global economic activities. Most of these
studies applied static hybrid input–output models, which assumed fixed assets investment as a given
exogenous variable rather than a result of output increases. Therefore, the responsibilities for energy
consumption and the ERCE embodied in fixed assets investment were often taken by the sectors mainly
providing fixed assets investment, such as the construction and manufacturing sectors.

To treat fixed assets investment as an endogenous variable and establish the relationship between
fixed assets investment and the final demand increase of each sector, we decided to adopt a DHI/O
method for this study. Because in the dynamic input–output model, which was developed by
Leontief [11], the fixed assets investment in various sectors is represented as a set of coefficients related
to the increase in each sector’s output between time series [12]. Therefore, the responsibilities of fixed
assets investment are allocated to various sectors based on the total output increases. By establishing
the relationship between the final demand increase and the total output changes, the fixed assets
investment can be estimated from the final demand increase. To this end, Pauliuk et al. [13] built a
dynamic input–output model with a comprehensive set of life cycle inventories to analyze the influence
of final demand increase on fixed assets investment, and differentiated the fixed assets investment
caused by construction and operation services. This is the only study we found that tried to analyze
the connection between CSFAI and final demand increase. However, that study did not calculate the
energy consumption and the ERCE embodied in the CSFAI.

In the field of energy analysis, the DHI/O model was introduced by Rhoten [14]. Researchers
have applied DHI/O models in predicting the total energy consumption or energy consumption of
different energy sources (such as coal, oil, gas, and non-fossil electricity) under multiple optimization
objectives [15–18]. The DHI/O models have also been adopted for analyzing the development of
renewable energy [19] and bioenergy [20]. However, decomposing the responsibilities for the energy
and the ERCE embodied in the fixed assets investment (especially the CSFAI) of each sector according
to the final demand increase of each sector has received little attention. We speculate that this
is mainly because scholars in the field of dynamic input–output modeling have not paid enough
attention to the energy consumption and the ERCE embodied in the construction services sectors
in developing countries. Therefore, the application of the DHI/O method in the decomposition of
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sectoral responsibility for energy consumption and ERCE embodied in construction services from the
perspective of each sector’s final demand increase is still an open field for research.

In addition to the increase in the final demand of each sector, technological changes may
also lead to increases in the total output of various sectors, which may lead to CSFAI and energy
consumption and ERCE embodied in construction services. Several previous studies have shown that
technological changes can result in changes in the total output as the final demand increases of various
sectors [21–23]. Therefore, by distinguishing the total output changes caused by technological changes
and that caused by final demand increase, we can further improve the accuracy of the decomposition
of CSFAI responsibility and improve the resolution of the calculation. This improvement can be
achieved by using SDA, which was first proposed by Chenery et al. [24] to identify the influence of
each factor (including the final demand increase of each sector and technological changes) on the
total output change. Subsequently, many studies applied SDA to identify the contributions of the
final demand increase of each sector and technological changes on the output change for various
economies [25–31]. By introducing SDA into the dynamic input–output model, we can further separate
the CSFAI responsibilities of each sector into one part caused by the final demand increase and the
other part caused by technological changes. To the best of our knowledge, this type of study has not
been conducted because previous SDA studies have overlooked energy consumption and the ERCE
embodied in construction services.

Our literature review indicates that the energy consumption and the ERCE embodied in
construction services can be estimated by calculating the energy consumption and the ERCE embodied
in the CSFAI of various sectors. To redistribute the responsibilities for energy consumption and
the ERCE embodied in CSFAI to sectors that consume the CSFAI for increasing their final demand,
the DHI/O method must be introduced. Furthermore, SDA can be introduced to differentiate the
output increase caused by the final demand increase from that caused by technological changes. The
combination of SDA and the DHI/O model marks a new direction in dynamic input–output analysis
that can improve the resolution of estimates of energy consumption and the ERCE embodied in
construction services from the perspective of consumer responsibility.

3. Methodology and Data Preparation

3.1. DHI/O-SDA Model

This section describes the development of a DHI/O-SDA model for estimating the energy
consumption and the ERCE embodied in CSFAI from the perspective of consumer responsibility. Given
the strong correlation between ERCE and energy consumption, the results are displayed in terms of
ERCE only. The three steps for establishing a DHI/O-SDA model are illustrated in Figure 1.

The first step (Step 1; the dark blocks with slanting lines on the left side of Figure 1) involves
establishing the hybrid input-output tables and preparing the data for further decomposition and
estimation. Using the energy balance tables and input–output tables for different years, a set of
energy-economy hybrid input–output tables are built.

The second step (Step 2; the blue blocks with vertical lines in the middle of Figure 1) involves using
SDA to distinguish the output changes caused by the final demand increase of various sectors from
those caused by technological changes. The changes in total output of various sectors are calculated
by comparing the hybrid input–output tables from different years. The results of Step 2 are the
changes in the output of various sectors caused by final demand increases of various sectors and by
technological changes.

The last step (Step 3; the red blocks on the right side of Figure 1) involves estimating the
energy consumption and ERCE embodied in CSFAI. Step 3 includes three parts: (1) estimating the
CSFAI quantities by the dynamic input–output method based on the output changes caused by the
final demand increases of various sectors and the technological changes; (2) estimating the energy
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consumption embodied in the CSFAI using embodied energy analysis; and (3) calculating the ERCE
caused by energy consumption using the IPCC-recommended carbon accounting method [32].

Figure 1. Three steps for establishing a dynamic hybrid input–output combined with structural
decomposition analysis (DHI/O-SDA) model.

3.1.1. Establishment of Energy-Economic Hybrid Tables

The energy-economy hybrid input–output table is obtained by replacing the economic value of the
energy sector in the conventional economic input–output table with the physical quantity of various
types of energy. The final demands of each sector can be classified into final demand excluding import
(FDEI) and import. The reason why import is separated from final demand is that import values are
negative relative to other final demands. Therefore, in sectors with large amounts of imports, the total
final demand including import may be negative, which prevents the analysis of how many CSFAI are
needed in those sectors.

The direct input coefficient of sector i to sector j, aij
t, can be defined as the ratio of the economic

value produced by sector i and consumed by sector j to the total output of sector j in year t. If sector i or
sector j is an energy sector, the economic value should be replaced by the quantity of energy product.
The Leontief inverse matrix of year t can be calculated by:

Lt = (I − At)−1 (1)

where Lt represents the Leontief inverse matrix of year t, I represents the identity matrix, At is the
direct input matrix composed of aij

t, and (I − At) must be a non-singular matrix. At least two hybrid
input–output tables for two consecutive years must be established for further analysis.

3.1.2. SDA

Comparing the hybrid input–output tables of years t and t + 1, the changes in some parameter
matrices from t to t + 1 can be estimated by Equations (2)–(4):

ΔLt = Lt+1 − Lt (2)

Δxt = xt+1 − xt (3)

Δft = ft+1 − ft (4)

where ΔLt is the change in the Leontief inverse matrix between the two years, xt = (x1
t,x2

t, . . . ,xn
t)T

stands for the total output of year t, Δxt is the change in the outputs between the two years, ft = (f1t,f 2
t,

. . . ,fnt)T represents the final demands of year t including FDEI and import, and Δft is the change in the
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final demands between the two years. The physical meaning of xt can be considered as the outputs of
all sectors embodied in the final demand. Carbon emissions embodied in the outputs of all primary
energy sectors in xt is the ERCE.

In SDA, the change in the outputs between the two years consists of two parts: changes due to the
final demand increase and changes due to technological changes. We assumed that the weight of the
two parts are equal. Thus, the output changes from year t to t + 1 year can be described as:

Δxt = 1/2ΔL− ( f t + f t+1) + 1/2(Lt + Lt+1) − Δ f (5)

Equation (5) produces a decomposition of the total change in outputs into two parts. The first
part is attributable to technological changes and can be defined as Δxt

byL, as shown in Equation (6).
The second part represents the contribution of the final demand increase to the output changes and
can be defined as Δxt

byf, as shown in Equation (7):

Δxt
byL = 1/2ΔL− ( f t + f t+1) (6)

Δxt
by f =

1/2(Lt + Lt+1) − Δ f t (7)

Δxt
byf can be further decomposed into the changes in the outputs caused by the FDEI increase of

each sector and the change in the outputs caused by the change of import, as shown in Equation (8):

Δxt
by f =

∑
i

Δxt
byFDEI,i + Δxt

byimports =
∑

i

1/2(Lt + Lt+1) − Δ f t
byFDEI,i +

1/2(Lt + Lt+1) − Δ f t
byimports (8)

The change in the outputs between the two years is decomposed into three categories: the change
due to technological changes, the changes due to the FDEI increase of each sector, and the change due
to the change of import. A more detailed derivation process can be found in Miller et al. [12].

3.1.3. CSFAI Estimation, Embodied Energy Analysis and ERCE Calculation

In the traditional DHI/O model, fixed assets investment is taken as the endogenous variable of
the output changes between two consecutive time instances. As discussed by Holz et al. [9], fixed
assets investment is produced for both CSFAI and operation services-related fixed assets investment.
We assumed that the ratio of the CSFAI to the total fixed assets investment in various sectors is pcsfait.

In the conventional dynamic input–output model, the capital coefficient bt
ij is defined as the ratio

of “the value of the output of sector i that is held by sector j as stock” [12] to the total output increase of
sector j in year t. However, only the CSFAI rather than the total fixed assets investment can be taken
as the result of changes in output. This capital coefficient is meaningful only when the total output
increases of sector i are positive. To solve these two problems, a similar coefficient, called “positive
capital coefficient” ct

ij, is proposed in this paper. This coefficient is defined as the ratio of the CSFAI in
sector i that is held by sector j to the sum of the positive output increases.

The definition of ct
ij is based on the assumption that the CSFAI is only caused by positive output

increase, and negative output changes have no effect on the CSFAI in various sectors. As energy
consumption and the ERCE embodied in the CSFAI occur during the installation of fixed assets and
cannot be recycled even if the fixed assets are either idle or retired, only the CSFAI caused by a positive
demand increase leads to new energy consumption and ERCE. Otherwise, energy consumption and
the ERCE embodied in the CSFAI in a sector with a decreasing demand is zero, but not negative.
Therefore, the aforementioned assumption is reasonable when analyzing historical data because the
fixed assets have been installed. ct

ij can be calculated with historical CSFAI data and energy-economy
hybrid input–output tables.

Because CSFAI is correlated with positive changes in outputs corresponding to the decomposition
of the change in the outputs, CSFAI can also be decomposed into three categories: CSFAI due to
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technological changes, CSFAI due to the FDEI increase of each sector, and CSFAI due to the change in
imports. The CSFAI caused by various factors can be estimated, as shown in Equations (9)–(11):

CSFAIt
byL,i j = ct

i j − Δxt
byL, j (9)

CSFAIt
byFDEI,i j = ct

i j − Δxt
byFDEI, j (10)

CSFAIt
byimports,i j = ct

i j − Δxt
byimports (11)

The output embodied in the CSFAI can be calculated by:

xt
CSFAI = Lt −CSFAIt (12)

where xt
CSFAI is the output embodied in CSFAI. The output of the primary energy sector represents the

embodied energy of CSFAI.
The method we adopted for estimating ERCE from energy consumption is recommended by the

IPCC [32]. As carbon dioxide (CO2) is the most important greenhouse gas, the ERCE in this paper only
focuses on CO2. The ERCE resulting from the embodied energy can be estimated by Equation (13)
as follows:

ERCE =
∑
EE

QEE × LHVEE × fCO2,EE (13)

where QEE is the quantity of one type of embodied energy, LHVEE represents the low heat value of the
embodied energy, and fCO2,EE is the CO2 emission factor of the embodied energy. ERCE is the sum of
the CO2 emissions of all types of embodied energy, and fCO2,EE is determined by the carbon content of
the embodied energy and the carbon oxidation rate.

The basic assumptions of DHI/O models still apply, such as energy supply equals energy
consumption, and there is only one type of product in most sectors. There are three other assumptions.
First, the installation process of fixed assets begins and ends within the same time series. Second,
the fixed assets invested in the last time series play a role in the industrial production of the next time
series. Third, each sector operates on a certain activity in each time series.

3.2. Data Preparation

As a rapidly developing country, China is the largest carbon emitter in the world. From 2008 to
2010, the Chinese government spent a lot of money to promote economic development, a large part
of which were used for construction services, including infrastructure construction and expansion of
industrial capacity [33]. This period is special and important for the analysis of China’s construction
services. The energy embodied in construction services constitutes a large part of the total energy
consumption in China [4,5], which has led to a massive ERCE. Estimating the ERCE embodied
in construction services and identifying which sector is key to reducing the ERCE embodied in
construction services consumed by China are necessary. Therefore, taking China from 2007 to 2012 as
an example can demonstrate this model, and can also provide some data support for China to create
and change relevant policies.

In this study, we adopted the input–output tables for China for 2007 [34], 2010 [35], and 2012 [36]
published by the National Bureau of Statistics (NBS) of China. To be consistent with the sectors settings
in the energy balance tables published by NBS, the input–output tables for each year were merged into
21 sectors for the DHI/O-SDA model, as shown in Appendix A. By replacing the economic value of the
original input–output tables with the energy quantities in the energy balance tables for China and the
final energy consumption by industrial sector tables for China for 2007, 2010, and 2012 [37], the hybrid
input–output tables for China for 2007, 2010, and 2012 were established, respectively. Because the
statistical data of energy balance tables published by NBS are not high enough in resolution, it is
difficult to separate the specific energy utilization data of some sectors from their merged sectors,
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such as other tertiary industry. Due to lack of input–output tables for China for 2008, 2009, and 2011,
we linearly expanded the HI/O tables for these three years according to the ratio of gross domestic
product. The tables of investment in fixed assets by industry for China from 2007 to 2012 [38] were
adopted to set the proportion of fixed assets invested by each sector. The pcsfai of sector 04 in 2007,
2010, and 2012 and related assumptions were obtained from the study of Zhang et al. [39]. Due to lack
of pcsfai data, we set other sectors’ pcsfai to the same value as that of Sector 04 (Electric Power). This
assumption is reasonable as discussed by Zhang et al. [39].

For simplicity, we assumed the carbon oxidation rate to be 100%. We also adopted a low heat value
and CO2 emission factor of each primary fossil energy source from IPCC [32], as shown in Table 1.

Table 1. Low heat value and CO2 emission factor.

Primary Fossil Fuel Low Heat Value (TJ/t) CO2 Emission Factor (kg/TJ)

Coal 0.0293 98,300
Crude oil 0.0423 73,300

Natural gas 0.048 56,100

4. Results, Uncertainties and Discussions

4.1. ERCE Embodied in CSFAI Caused by Each Sector

The ERCE embodied in the CSFAI caused by the final demand increase of each sector (including
FDEI increases and import) and technological changes is shown in Figure 2. From 2007 to 2011,
the FDEI increase of sector 21 (Other Tertiary Industry) always caused the most ERCE embodied in
CSFAI in China. From 2007 to 2009, sector 18 (Construction) caused the second most ERCE embodied
in CSFAI, followed by sector 16 (Other Manufacture). From 2010 to 2011, Tech (technological changes)
overtook sector 18 (Construction) as the second largest cause of ERCE embodied in CSFAI, while sector
18 (Construction) was third. Sectors 21 (Other Tertiary Industry) and 18 (Construction) made large
sectoral contributions to the ERCE embodied in CSFAI from 2007 to 2011 because the FDEI increases in
these two sectors were the largest among all the sectors. Therefore, the policy implication is that these
sectors should receive priority for reducing the ERCE embodied in construction services.

 

Figure 2. Energy-related carbon emission (ERCE) embodied in the constructive services-related fixed
assets investment (CSFAI) caused by the final demand increase of each sector and technological changes.

Import and Tech (technological changes) have been causing the ERCE embodied in CSFAI during
each time period. Classically, the overall effect of technological changes should be to reduce the ERCE
of an economy. However, based on the assumptions in this paper, Import and Tech (technological
changes) may cause the ERCE emitted. Because technological changes also increase the demand of
some sectors, which causes an increase in construction services; in turn, energy consumption and ERCE
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embodied in CSFAI increase. In this study, technological changes mainly caused output increases in
sector 21 (Other Tertiary Industry), sector 04 (Electric Power), and five other sectors. The increase in
the output demand of sector 21 (Other Tertiary Industry) is because many tertiary industries related to
technology development, such as technical services and scientific research, are included in sector 21
(Other Tertiary Industry). More high-tech products were powered by electricity, which resulted in the
output demand increase of sector 04 (Electric Power). The ERCE embodied in the CSFAI caused by
technological changes was greater after 2010, which may be related to China’s technological innovation
policy. The Chinese government paid more attention to scientific and technological innovation after
2010. At the 18th National Congress of the Communist Party of China in 2012, innovation was
considered an important development strategy for China [40].

Based on the distribution of sectoral responsibility from the perspective of consumer responsibility,
the responsibilities for energy consumption and the ERCE embodied in construction services undertaken
by some sectors were different than those reported in previous studies. For example, sectors 06 (Ferrous
Metals) and 08 (Non-metallic) were considered to be responsible for the huge energy consumption and
the ERCE embodied in the construction services, as argued in this paper. These two sectors consumed
huge amounts of energy to provide fixed assets investment (11% and 5% of the total intermediate
energy consumption by all the sectors in 2012, respectively). However, the ERCE embodied in the
CSFAI caused by the FDEI increase in sectors 06 (Ferrous Metals) and 08 (Nonmetallic) only accounted
for less than 1% of all the ERCE embodied in CSFAI in all sectors. This occurred because the huge
quantities of energy consumption and ERCE in these two sectors for producing CSFAI was attributable
to the final demand increase of other sectors, especially sectors 21 (Other Tertiary Industry) and 18
(Construction). This result reflects the necessity of redistributing sectoral responsibilities for ERCE
embodied in construction services energy consumption from the perspective of consumer responsibility.
Unlike previous studies, the result of this paper clarify the importance of sector 21 (Other Tertiary
Industries), instead of manufacturing sectors, in reducing ERCE embodied in construction services.

4.2. ERCE Embodied in CSFAI Caused by Sectoral a Unit of FDEI Increase

Based on the DHI/O-SDA model, the ERCE embodied in the CSFAI consumed by each sector
caused by a unit of FDEI increase of each sector were estimated. Table 2 shows the format of the
results obtained.

Table 2. Format of DHI/O–SDA model results table.

The Cause of
ERCE

Embodied in
CSFAI

ERCE
Embodied in

CSFAI
Consumed by

Sector 1

. . .

ERCE
Embodied in

CSFAI
Consumed by

Sector j

. . .

ERCE
Embodied in

CSFAI
Consumed by

Sector n

Unit FDEI
increase of

sector 1
ER11 . . . ER1j . . . ER1n

...
...

...
...

...
...

Unit FDEI
increase of

sector i
ERi1 . . . ERij . . . ERin

...
...

...
...

...
...

Unit FDEI
increase of

sector n
ERn1 . . . ERnj . . . ERnn

In the table, ERij represents the ERCE embodied in the CSFAI consumed by sector j and caused
by a unit of FDEI increase of sector i. The results table can be analyzed in the horizontal and vertical
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directions. In the horizontal direction, there are three indicators: (1) ER, which is the ERCE embodied
in the CSFAI consumed by each sector caused by a unit of FDEI increase in any specific sector; (2) TE,
which is the sum of the ER in each sector caused by a unit of FDEI increase in any specific sector; and (3)
PEC, which is the proportion of ER in the TE caused by a unit of FDEI increase in any specific sector.

ERij is an element of the results table. The ER in each sector represents the ERCE embodied in the
CSFAI consumed by each sector when the FDEI in any specific sector increases by one unit (meaning
the increase in one sector leads to ER in n sectors). By analyzing ER, we can determine which sector
will produce the most ERCE embodied in construction services because of a unit of FDEI increase in
any specific sector.

TE is sum of ERij in a row, which can be estimated by Equations (14). The TE caused by sector i
represents the total influence of a unit of FDEI increase in sector i on the total ERCE embodied in the
CSFAI. By analyzing TE, we evaluated the efficiency of reducing the ERCE embodied in the CSFAI by
restricting the FDEI increase of sector i:

TEi =
∑

j

ERij (14)

PEC is the proportion of ERii to the TE of sector i, which can be estimated by Equation (15). PEC
represents the driving influence of sector i’s unit FDEI increase on the CSFAI in various sectors. The
higher the PEC, the less the FDEI increase of the sector results in the CSFAI in other sectors:

PECi =
ERii∑
j

ERij
(15)

In the vertical direction, the results demonstrate the influence of each sector’s unit FDEI increase
on the ER in one sector (meaning the increase in n sectors leads to ER in one sector). The results can be
used to identify the sector for which the FDEI increase would be most influential in causing ER in the
target sector.

Appendix B provides the full results of the ERCE embodied in the CSFAI consumed by each
sector caused by a unit of final demand increase of a specific sector in China in 2007–2008, 2008–2009,
2009–2010, 2010–2011, and 2011–2012.

4.2.1. Analysis in the Horizontal Direction

ER

For most sectors (20 of 21 in 2007–2010 and 19 of 21 in 2010–2012), a unit FDEI increase in one
sector caused the most ER in the sector itself. However, sector 18 (Construction) was an exception in
that a unit FDEI increase in this sector resulted in the most ER in sectors 21 (Other Tertiary Industry),
19 (Transport), 04 (Electric Power), 08 (Nonmetallic), and 06 (Ferrous Metals) because these sectors are
important in supporting the production of sector 18 by providing materials, transportation, assistant
services, and energy supply.

A unit FDEI increase in most sectors caused a relatively high ER in sector 21 (Other Tertiary
Industry), which indicates that the increase in the FDEI in various sectors requires a large increase
in products from sector 21. The products of sector 21 provide important support for the CSFAI
caused by the FDEI increase in various sectors. Therefore, although not directly providing most of
the construction services, sector 21 is key to conserving construction services from the perspective of
consumer responsibility.

TE

The TE caused by each sector’s FDEI increase is shown in Figure 3.

214



Energies 2019, 12, 1456

 
Figure 3. TE (left coordinate axis, bar) and the PEC (right coordinate axis, point) caused by a unit
increase of sectoral FDEI.

In 2007–2012, a unit FDEI increase in sector 14 (Textile) caused the most TE. The strong influence
of a unit FDEI increase in sector 14 (Textile) on the TE is because the total ERCE embodied in the
CSFAI caused by the FDEI increase in sector 14 was small (less than 2% of all the ERCE for fixed assets
investment in 2007–2012), but the total increase in FDEI of sector 14 was much smaller.

In 2007–2012, the TEs caused by a unit increase in FDEI in sector 14 (Textile), sector 21 (Other
Tertiary Industry), and sector 04 (Electric Power) remained high and were always more than 6t CO2.
Therefore, an increase in the FDEIs of these three sectors would lead to the fastest increase in the ERCE
embodied in the CSFAI in China. However, as the total quantity of the ERCE embodied in the CSFAI
caused by sector 14 (Textile) and sector 04 (Electric Power) was small, policy makers might not focus
on these two sectors to reduce the ERCE embodied in construction services. Sector 21 (Other Tertiary
Industry) was in the top five sectors on the TE list in 2007–2012. The total quantity of ERCE embodied
in the CSFAI caused by the FDEI increase in sector 21 was also the largest. Thus, to reduce the energy
consumption and ERCE embodied in construction services, the most efficient approach would be to
restrict the FDEI of sector 21.

PEC

The PEC of each sector is shown in Figure 3. In 2007–2012, the PEC of some sectors, such as sectors
21 (Other Tertiary Industry), 14 (Textile), and 04 (Electric Power), were more than 50%. Therefore,
an increase in the FDEI of these three sectors would cause most of the ERCEs embodied in CSFAI in
their own sectors, which has relatively little impact on the ERCEs embodied in the CSFAI of other
sectors. When the FDEI of these three sectors increases, other sectors consume only a little of the ERCEs
embodied in CSFAI.

4.2.2. Analysis in the Vertical Direction

Two sectors in 2010–2011 were selected as target sectors to illustrate the vertical analysis. Sector
04 (Electric Power) is adopted as a common case, and sector 06 (Ferrous Metals) is adopted as a
special case.
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The result of sector 04 (Electric Power) is relatively common for most sector, because a unit FDEI
increase in sector 04 (Electric Power) caused the most ER in this sector. Besides sector 04 (Electric
Power), a unit FDEI increase in sector 07 (Non-ferrous Metals), followed by sector 09 (Chemical) and
sector 08 (Non-metallic), caused the most ER in sector 04 (Electric Power). The production of these
sectors requires a huge amount of electricity. To produce more FDEI in these sectors, sector 04 (Electric
Power) needs to expand production capacity to provide more electricity, which results in more ER.
Therefore, to restrict the energy consumption and the ERCE embodied in the CSFAI consumed by
sector 04 (Electric Power), reducing the FDEI increase in sector 04 (Electric Power) would be the most
efficient strategy, whereas decreasing the FDEI of sector 07 (Non-ferrous Metals), sector 09 (Chemical),
and sector 08 (Non-metallic) would be less efficient.

The result for sector 06 (Ferrous Metals) is a special case because the FDEI in sector 06 (Ferrous
Metals) decreased in 2010–2011. The most ER in sector 06 (Ferrous Metals) was caused by a unit FDEI
increase in sector 12 (Machinery), followed by sector 13 (Automobiles) and sector 18 (Construction).
Sector 06 (Ferrous Metals) provides the main materials for the production of these three sectors, so it
is reasonable for a large increase in ER in sector 06 (Ferrous Metals) to be caused by a unit of FDEI
increase of these sectors. Therefore, instead of continuously reducing the FDEI in sector 06 (Ferrous
Metals), restricting the FDEI in sector 12 (Machinery), followed by sector 13 (Automobiles) and sector
18 (Construction) would be most efficient to reduce the energy consumption and the ERCE embodied in
CSFAI consumed by sector 06 (Ferrous Metals). This result could be a reference case for policy makers
to eliminate capacity expansion in sector 06 (Ferrous Metals), which is an important task stipulated by
the State Council of China [41].

The results of vertical analysis are useful for policy makers to reduce energy consumption and
ERCE embodied in construction services consumed by a specific sector. From the vertical analysis of
the results, it can be found that the energy consumption and ERCE embodied in construction services
consumed by a specific sector is affected by the FDEI increase of several sectors, or even all the sectors,
in the economy to varying degrees. Therefore, to reduce energy consumption and ERCE embodied in
construction services consumed by a specific sector more efficiently, policy makers need to consider
not only the restriction of the FDEI of the specific sector itself, but also the impact of the FDEI increase
of each sector on the specific sector, and make a systematic policy. To this end, it is necessary to adopt
the vertical analysis proposed in this paper, which can provide quantitative data support.

4.3. Uncertainties and Discussions

4.3.1. Verification of the Model Result

To verify the validity of our model and estimation, we compare ERCE embodied in the final
demands of various sectors of China in 2007 estimated separately in our paper with those of Fu’s work.
In this paper, the result of the total ERCE responsibility of China in 2007 was 5.9 Gt. The results of this
paper are reasonable in comparison to those of Fu et al. [5], where the total ERCE of China in 2007 was
reported as 6.3 Gt. The total ERCE result of these two papers are close, with the main reasons for the
difference are the different processing methods for system errors in the energy balance tables and the
input–output tables and different carbon emission factors.

4.3.2. Comparisons with the Results from 2012 to 2015

To compare with the new development in China, we update the analysis results of decomposing
ERCE embodied in CSFAI to various sectors from the perspective of consumer responsibility from
2012 to 2015, as shown in Figure 4.

After 2012, the main reasons for China’s ERCE embodied in CSFAI are the increase in the FDEI of
sector 21 (Other Tertiary Industry), the increase in the FDEI of sector 18 (Construction) and technological
changes. The proportion of ERCE embodied in CSFAI caused by these three factors in total ERCE
embodied in CSFAI increases from 57% in 2011–2012 to 79% in 2014–2015. This shows that restricting
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the increase of FDEI in sector 18 (Construction) and 21 (Other Tertiary Industry) is more important for
reducing ERCE embodied in CSFAI in 2012 to 2015.

Compared with the results of 2011–2012, the changes of ERCE embodied in CSFAI caused by
the increase of FDEI in five sectors were more than 100 Mt in 2012 to 2015, which were sector 12
(Machinery), 16 (Other Manufacture), 18 (Construction), 19 (Transport) and 21 (Other Tertiary Industry),
respectively. The ERCE embodied in CSFAI caused by the increase of FDEI in sector 12 (Machinery)
and 19 (Transport) in 2012 to 2015 is less than it in 2011–2012, whereas the ERCE embodied in CSFAI
caused by the increase of FDEI in sector 16 (Other Manufacture), 18 (Construction) and 21 (Other
Tertiary Industry) increases in 2012 to 2015. Although the results have changed, the main conclusion of
distributing the responsibilities of ERCE embodied in consumption services from the perspective of
consumer responsibility in 2012 to 2015 is basically consistent with those in 2007 to 2012, which is that
sector 18 (Construction) and 21 (Other Tertiary Industry) bear the highest responsibility for China’s
ERCE embodied in construction services, and should be given priority attention in reducing ERCE
embodied in construction services.

 

Figure 4. ERCE embodied in CSFAI caused by the final demand increase of each sector and technological
changes from 2011 to 2015.

4.3.3. Comparison of DHI/O and DHI/O-SDA Models

The purpose of our paper is to observe the responsibility of ERCE embodied in CSFAI caused
by the final demand increase of each sector. However, the construction services will be caused by
technological changes and the increase of sectoral final demand at the same time. Therefore, it is
necessary to remove the impact of technological changes on construction services. SDA was used to
remove the impact of technological changes by distinguishing the output increase caused by the final
demand increase of various sectors and the output increase caused by technological changes. Without
the SDA, the total output increase caused by technological changes would be apportioned to the total
output increase caused by the change in final demand, and the ERCE embodied in the CSFAI caused by
final demand increase would contain an uncertain proportion of influence due to technological changes.
This coupling of impacts would prevent policymakers from analyzing the impact of the increased final
demand of each sector on construction services and the ERCE caused by construction services.

We used China in 2010–2011 as an example to illustrate the difference between with and without
SDA in the DHI/O model to estimate the ERCE embodied in the CSFAI, as shown in Figure 5. Here,
the results of most sectors are affected by the SDA method. Without SDA, the estimation of ERCE
embodied in the CSFAI of sector 08 (Non–metallic), sector 09 (Chemical), sector 18 (Construction),
sector 21 (Other Tertiary Industry), and Import are significantly higher, and the impact of technology
changes cannot be analyzed.
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Figure 5. Comparing DHI/O modeling with and without SDA for estimating ERCE embodied in CSFAI.

4.3.4. Sensitivity Analysis of pcsfait

The pcsfait of various sectors was assumed to be the same as that of sector 04 (Electric Power),
which is a relatively common sector that directly influences the CSFAI. We analyzed the sensitivity of
each sector’s pcsfait to the ERCE embodied in the CSFAI caused by the sector in 2010–2011, which is
the ERCE responsibility of each sector from the consumer side, as shown in Figure 6.

 

Figure 6. Sensitivity analysis of pcsfait.

The influence is linear and the ERCE embodied in the CSFAI increases with pcsfait. The results
show that an influence of a 20% change in pcsfait in most sectors will cause changes of less than 10% in
the ERCE responsibility of the sector. The ERCE embodied in the CSFAI caused by sectors 14 (Textile),
21 (Other Tertiary Industry), 19 (Transport), and 01 (Coal) are most affected by changes in pcsfait.
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Therefore, for some sectors, pcsfait has an impact on their ERCE responsibilities, so we should estimate
the pcsfait of each sector as accurately as possible. For 9 of the 21 sectors, the changes in pcsfait have
little effect on their ERCE responsibilities (changes less than 5%), so they can be said to be insensitive
to changes in pcsfait.

4.3.5. Statistical Error Analysis

The statistical errors in this paper mainly come from the errors of input–output tables and energy
balance tables published by NBS. The errors of input–output tables are mainly caused by the unequal
total input and output of each sector in the table, whereas the errors of energy balance tables are
mainly caused by the difficulty in accurately measuring losses in energy conversion, utilization and
transportation. In this paper, we deal with the errors as one of the final demands in the DHI/O-SDA
model. There are two advantages of this treatment. First, it guarantees the balance of input and output
in the input-output tables and energy balance tables. Second, the position of the errors in this model is
consistent with it in the original input–output tables and energy balance tables, without introducing
new assumptions and errors. However, this will inevitably lead to some errors in the intermediate
production of some sectors to be calculated as errors in the final demand, which will result in the
inaccurate estimation of the direct input matrix A. The calculation based on matrix A will have different
degrees of errors. Because there is a strong correlation between the input and output of each sector in
the input–output model, statistical errors of any sector may affect the calculation results of all sectors
in the model.

4.3.6. Limitations of the DHI/O-SDA Model

In addition to the common limitations of the hybrid input–output model, the DHI/O-SDA model
has two main limitations, corresponding to its main assumptions. The first limitation is that some
of the fixed assets may not be installed in one time step, as assumed in this study. Some fixed assets
are invested to meet the final demand increases of the next several time steps. To simulate this
phenomenon, it is necessary to set a construction delay in the fixed assets and to classify the CSFAI into
several categories caused by the final demand increase in various time steps. This approach requires
using a ratio to determine the quantities in each CSFAI category. With more detailed data and longer
time series data, these multiple time step influences on CSFAI could be analyzed by a multiple time
delay model, which would give a full view of the energy consumption and ERCE embodied in the
CSFAI from time series. The development and testing of multiple time delay models could be the
subject of future research work.

The second limitation is that the DHI/O-SDA model does not take into account the changes
in capacity utilization rate in various sectors. We assume that the capacity utilization rate of each
sector has always been constant, so when the production demand increases, sectors need to consume
construction services to meet the higher production demand. However, there is another way for
sectors to meet higher production demand, which is to maintain the existing production capacities
but increasing capacity utilization rate. To introduce the influence of capacity utilization rate on
the quantities of construction services consumed by various sectors in the model, it is necessary
to establishing mathematical relations between the capacity utilization rate of each sector and its
production demand gap. The model with these relations can better reflect the changes in energy
consumption and ERCE embodied in construction services of the economy caused by the increase of
sectoral final demand. This will also be another subject direction of improving this DHI/O-SDA model.

5. Conclusions and Policy Implications

A DHI/O-SDA model was proposed in this paper. Using this model, the ERCE of construction
services (or CSFAI) due to the final demand increase in various sectors and technological changes
can be estimated, and the key sector for reducing the ERCE embodied in construction services can be
identified. The ERCE embodied in construction services consumed by each sector caused by a unit of
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development in each sector can be analyzed in the horizontal and vertical directions. This analysis can
reveal several sectoral interrelationships.

China in 2007–2012 was used as a case study to demonstrate our DHI/O-SDA model. The main
findings by the DHI/O-SDA model, which can’t be revealed by previous models, are: (1) the final
demand increase in sector 21 (Other Tertiary Industry) was the main cause of the ERCE embodied in
construction services. (2) For most sectors in China, a FDEI increase in one sector causes the greatest
ERCE embodied in construction services consumed by the same sector. A FDEI increase in most
sectors causes a relatively high ERCE embodied in construction services consumed by sector 21 (Other
Tertiary Industry). (3) The vertical analysis of model results for a target sector provide data support for
formulating policies for reducing the ERCE embodied in construction services.

The Chinese government has realized the importance of reducing construction services for energy
conservation and ERCE reduction. It has published extremely strict policies to restrict capacity
expansion in the major industries providing construction services (such as the steel industry and
the cement industry) in order to restrict the continued consumption of construction services in these
industries. For example, China’s State Council has issued two policies that strictly prohibit new
production capacity in the steel industry [41] and cement industry [42]. These policies are reasonable
in China, because the capacity utilization rate of these industries is not saturated. However, if China
continues to build infrastructure and let the tertiary industries such as real estate develop at a rapid
pace as in recent years, it is debatable whether it is appropriate to continue to implement these policies.
First, after the capacity utilization rate of the steel industry and the cement industry has reached
saturation, these two industries must consume construction services to provide more products to meet
the increased final demand of other sectors. Second, the effect of simply preventing the steel industry
and the cement industry from consuming construction services to reduce energy consumption and
ERCE embodied in construction services may not be as effective as controlling the increase in final
demand of tertiary industries such as real estate. Our paper can provide quantitative data support
for this debate. The DHI/O-SDA model can estimate the amount of construction services that the
steel industry and the cement industry must consume as final demand increases in other sectors after
capacity utilization rate is saturated, and the energy consumption and carbon emissions embodied
in the construction services. The results show that for reducing the ERCE embodied in construction
services consumed by one specific sector, we must analyze all the sectors that affect the specific
sector and implement a systematic control policy, rather than just restrict the FDEI of the specific
industry itself.

Considering the significant regional disparity in energy and industry development across the
world, future application of the DHI/O-SDA model in other developing regions would be insightful.
The model can be modified to include a multiple time delay function. Another potential future study
would involve building mathematical relations between the capacity utilization rate of each sector
and its production demand gap in the model. The model can also be used in forecasting energy
consumption and the ERCE embodied in construction services caused by various influencing factors.
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Abbreviations

CO2 Carbon dioxide
CSFAI Constructive Services-related Fixed Assets Investment
DHI/O Dynamic Hybrid Input–output

DHI/O-SDA model
Dynamic Hybrid Input–output model combined with Structural
Decomposition Analysis

ER
ERCE embodied in CSFAI consumed by each sector caused by a unit
of final demand increase in any specific sector

ERCE Energy-related Carbon Emission
FDEI Final Demand Excluding Import
IPCC Intergovernmental Panel on Climate Change
NBS National Bureau of Statistics
pcsfai Ratio of CSFAI to the total fixed assets investment

PEC
Proportion of ER in the TE caused by a unit of final demand increase
of any specific sector

SDA Structural Decomposition Analysis

TE
Sum of ER in each sector caused by a unit of final demand increase
of any specific sector

Appendix A

The original input–output tables for 2007, 2010, and 2012 have 135, 42, and 139 sectors respectively. However,
the sectors in the original input–output table do not match those in the energy balance table. Thus, in this study,
the sectors were merged into 21 sectors to match the energy balance table, as shown in Table A1.

Table A1. Sector setting.

Sector (Full Name)
Sector

(Abbreviation)
Code in

This Paper
Code in I/O
Table, 2007

Code in I/O
Table, 2010

Code in I/O
Table, 2012

Mining and Washing of Coal Coal 01 006 02 06006

Extraction of Petroleum and Natural Gas Petroleum and
Natural Gas 02 007 03 07007

Processing of Petroleum, Coking, and Processing of
Nuclear Fuel

Petroleum
Processing 03

037
11

25039
038 25040

Production and Supply of Electric Power, Heat
Power, and Gas Electric Power 04

092 23 44096
093 24 45097

Agriculture, Forestry, Animal Husbandry,
and Fishing

Agriculture 05

001

01

01001
002 02002
003 03003
004 04004

Smelting and Pressing of Ferrous Metals Ferrous Metals 06

057

14

31059
31060
31061

058
059
060

062 32063

Manufacture of Raw Chemical Materials and
Chemical Products

Chemical 09

039

12

26041
040 26042
041 26043
042 26044
043 26045
044 26046
045 26047
046 27048
047 28049
048 29050
049 29051
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Table A1. Cont.

Sector (Full Name)
Sector

(Abbreviation)
Code in

This Paper
Code in I/O
Table, 2007

Code in I/O
Table, 2010

Code in I/O
Table, 2012

Non-Energy Mining Mining of
Non-energy 10

008
04
05

08008
009 09009
010 10010

Manufacture of Foods, Drinks, and Tobacco Foods 11

011

06

13012
012 13013
013 13014
014 13015
015 13016
016 13017
017 13018
018 14019
019 14020

Manufacture of Machinery Machinery 12

064
065
066
067
068
069
070
071
072

16

34065
34066
34067
34068
34069
34070
35071
35072
35073
35074

Manufacture of Automobiles, Railway, Ship,
Aerospace, and Other Equipment Automobiles 13

073
074
075
076

17

36075
36076
37077
37078
37079

Manufacture of Textile, Apparel, Accessories,
Leather, Fur, Feather, and Related Products,

and Footwear
Textile 14

025
026
027
028
029
030
031

07
08

17026
17027
17028
17029
17030
18031
19032
19033

Manufacture of Paper; Paper Products; Articles for
Culture, Education, and Arts and Crafts; and

Printing and Reproduction of Recording Media
Paper 15

034
10

22036
035 23037
036 24038

Wholesale, Retail Trade, and Hotel, Restaurants Wholesale 20
108

30
31

51103
109 61112
110 62113

122 77126
123 78127
124 79128
125 80129
126 82130
127 83131
128 84132
129 85133
130 86134
131 87135
132 88136
133 89137
134 93138
135 90139

Appendix B

The results of the ERCE embodied in the CSFAI consumed by each sector caused by a unit of final demand
increase of a specific sector of China are provided in Table A2.
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Abstract: This paper examines energy efficiency across 28 selected European Union (EU) Member
States and reviews the potential for energy recovery from waste according to the efficiency scores
obtained. The efficiencies are assessed through data envelopment analysis (DEA) and the following
variables are used, inputs: final energy consumption, labour, capital, population density and outputs:
gross domestic product (GDP), nitrogen oxide (NOx) emissions, sulphur oxide (SOx) emissions and
greenhouse gas (GHG) emissions for the years 2008, 2010, 2012, 2014 and 2016. Results show that
most countries maintain their efficiency scores with only a few marginally improving theirs and at
the same time, it is noticed that most are decreasing after 2012. Based on these efficiency scores, this
paper recommends moving towards waste-to-energy with two main objectives, namely sufficient
and sustainable energy production and effective treatment of municipal solid waste (MSW). This
option would enhance the circular economy, whereas prioritization needs to be given to prevention,
preparation for reuse, recycling and energy recovery through to disposal. Together with the EU
Commission’s competition strategy, these options would ensure reliable energy supplies at rational
prices and with the least environmental impacts. Moreover the efficiency scores need to be examined
along the financial crisis which has been affecting the EU since 2008, showing a decrease in those
efficiency scores after 2012 under a more imminent crisis.

Keywords: waste; energy; environmental efficiency; energy recovery; data envelopment analysis;
circular economy

1. Introduction

One of the major challenges of the 21st century is the continuous increase of municipal solid
waste (MSW) production as well as its management. According to the European Union (EU) Waste
Framework Directive (WFD) 2008/98/EC, ‘any substance or object which the holder discards or intends
or is required to discard’ is defined as waste. The main treatment options for MSW include, among
others, landfill, incineration, recycling and composting. Both developed and developing countries
have been dealing with the issue of sustainable waste management and are investigating ways to meet
national and international standards in order to reduce their overall environmental impact. The main
issues that have been pestering developed countries are potential ways to decrease the amount of
waste going to landfill and increase the recycling and recovery of materials. The Waste Hierarchy
(Figure 1) has been affecting countries’ management options as it gives priority to preventing waste,
but even if and when it is created, it should be prepared for reuse, recycling and energy recovering and
only disposed to landfill if no other option is possible [1].
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Figure 1. Waste hierarchy [1].

To date many EU Member States have failed to implement waste prevention practices and therefore
the regulations that have been set out by WFD [2]. In general Southern and Eastern Europe countries
are shown to have the largest implementation gaps regarding their waste management systems [2].
Figure 2 shows EU Member States that have been performing above (blue), below (purple) and average
(green) regarding their waste management.

Figure 2. Waste management performance across Europe [2].

A significant part of the Europe 2020 growth strategy has been sustainable growth towards a
‘smart, sustainable and inclusive economy’ under the notion of the circular economy, while achieving
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lower greenhouse gas emissions by 20% compared to levels of 1990, generating 20% of its energy
from renewable sources and to increase energy efficiency by 20% [3]. These measures could bring net
savings to EU Member States, while increasing resource productivity by 30% by 2030, enhancing Gross
Domestic Product (GDP) by nearly 1% and creating 2 M additional jobs while also reducing EU carbon
emissions by 450 Mt by 2030 [4]. The framework of measures for the promotion of energy efficiency is
set out by Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012 on
energy efficiency addressing the achievement of the 20% target on energy efficiency in 2020.

In addition to those, the 2030 climate and energy framework covers EU-wide targets and
policy objectives for the period 2021 to 2030, with the main targets being: at least 40% cuts in
greenhouse gas (GHG) emissions (from 1990 levels), at least 32% share for renewable energy and at
least 32.5% improvement in energy efficiency [5]. Moreover the 2050 EU long-term strategy stresses the
opportunities that a climate neutral Europe may bring as well as challenges that may appear, without
revising the 2030 targets nor launching new policies [6]. Overall this strategy is meant to provide a
framework for the EU to achieve the Paris Agreement objectives and tackle climate change by limiting
global warming to below 2 ◦C and attempting to limit it to 1.5 ◦C [6].

Generally it is noticed that the global economy is highly reliant on fossil fuels such as oil, gas and
coal, resulting in higher GHG emissions [7,8]. Due to the volatile price of oil and the environmental
degradation occurring because of fossil fuels’ use, a turn towards renewable energy sources has been
noticed [9]. Along those lines the public has become more sensitive to environmental issues, therefore
most countries will be forced to make real changes in their energy mix [10].

Energy efficiency improvement can provide many benefits apart from cost efficiency such as
energy savings, air pollution control and GHG emission reduction as well as energy security and
health benefits [11,12]. It is essential to combine technological options and implementation approaches
to improve energy recovery efficiency of the urban and industrial system and achieve low-carbon
cities [13]. In those regards, the development of advanced computational techniques has enabled the
evaluation of energy efficiency [14].

Such a tool is data envelopment analysis (DEA) which has been accepted throughout the academic
community as a useful benchmarking technique [14]. DEA is a non-parametric linear programming
method used to measure the efficiency of selected decision making units (DMUs) [15]. Initially it was
intended to be applied in microeconomic studies, but comes handy in macroeconomic analysis too [16].

In the present paper DEA was used at a macroeconomic level, to evaluate energy efficiency in 28
selected EU Member States with the aim to identify the current levels of efficiency as well as to assess
the potential of using MSW to regain energy and ensure reliable supplies for all at reasonable prices
with the least potential impacts taking the financial crisis into account too. The existing literature
shows that there is a major gap in current research as researchers have not attempted to evaluate
energy efficiency among EU Member States in order to understand what this means and its potential
implications for the MSW sector especially under the circular economy concept. This study therefore
aims to also provide EU energy efficiency levels that could act as an incentive to move more towards
energy recovery from waste and realise a circular economy in full.

Apart from this Introduction, the rest of the paper is structured as presented below. Section 2
provides the background research on this topic by reviewing the main elements of energy recovery
from waste (Section 2.1) as well as the relevant existing DEA studies (Section 2.2) with Section 3
showing the proposed methodology along with the data used. Section 4 presents the empirical findings
while Section 5 analyses the results and their implications. Finally the last section (Section 6) concludes
the paper.
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2. Background

This section provides some main points to introduce the topic of energy recovery from waste and
the various options with which this can be made (Section 2.1). Then Section 2.2 reviews some of the
studies that have used DEA in evaluating energy efficiency, leading to the methodology part in the
following section, Section 3.

2.1. Energy Recovery from Waste

As already mentioned, the burning of waste for recovering energy is called incineration and it
happens under a high temperature, therefore it is also called thermal treatment [17]. MSW can act
as a source of energy through waste incineration; for instance in Denmark waste incineration covers
approximately 5% of the electricity demand and 20% of the district heating demand [8]. With the
use of incineration wastes’ form is reduced from 95 to 96%, depending how many materials can be
recovered as well as their composition; therefore incineration does not achieve the omission of landfill
completely but reduces the amount of waste disposed that way [17]. Figure 3 presents the main inputs
and outputs from incineration.

Figure 3. Schematic representation of incineration inputs and outputs [18].

In 2009 there were 449 Incineration plants across 20 Western and Central European countries with
a total throughput of around 69.4 Mt [19]. In 2016 there were 512 plants in Europe alone, providing a
total incineration capacity of 93 Mt [20]. In many countries such as Germany and Japan, incinerators
are widely used to treat both MSW and industrial waste [21]. Incineration has been raising a lot of
controversy regarding its potential use. Generally public disagreement can affect political willingness
to support incineration, which has been the case especially for Spain and Greece [22].

Some other relatively new technologies include pyrolysis and gasification but these have not yet
been fully employed in the EU [18]. Pyrolysis is the thermal decomposition of materials in the absence
of oxygen [23]. The pyrolysis of biomass results in the production of char, liquid and gaseous products
(Figure 4) [24]. It can be divided into three main parts: conventional pyrolysis, fast pyrolysis and flash
pyrolysis [25]. More recently research has focused on fast pyrolysis in which case waste is decomposed
quickly under high temperatures and produces bio-oil. The main features of a fast pyrolysis process
are [26]:
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• very high heating and heat transfer rates
• carefully controlled temperature of around 500 ◦C
• rapid cooling of the pyrolysis vapours.

Figure 4. Schematic representation of single pyrolysis process inputs and outputs [18].

Bio-oil that is produced through pyrolysis can replace fuel oil or diesel, for instance in boilers,
furnaces, engines and turbines for producing electricity [23]. Even though the production of crude
bio-oils has been researched extensively, little progress has been made to produce additives or
transportation fuel extenders from these oils, therefore this is an area that has to be further examined [27].

Gasification is actually a process between pyrolysis and incineration because it comprises of the
partial oxidation of waste [19]. Gasification involves heating carbon rich waste in sub-stochiometric
conditions, whereas the majority of carbon is transformed into a gaseous material leaving an inert
residue from the breakdown of organic molecules [18]. In gasification (Figure 5) carbon based wastes
are heated in the absence of oxygen to produce a solid, low in carbon and energy from syngas which is
a fuel gas mixture consisting of hydrogen and carbon monoxide [19], and can therefore be considered
as a thermochemical process. Gasification is highly efficient and has low environmental emission rates
therefore it is a quite desirable technology [28]. It is a viable alternative to incineration specifically for
thermal treatment of homogeneous carbon-based waste and for pre-treated heterogeneous waste [29].

Figure 5. Schematic representation of gasification inputs and outputs [18].
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In addition to the methods described above, a further treatment method is anaerobic digestion
(AD) which includes the bacterial decomposition of organic material in almost anaerobic conditions
whose by-products include biogas and digestate [18]. There are two main types of anaerobic digestion
called thermophilic and mesophilic – the primary difference between them is the temperatures used in
the process; thermophilic processes reach temperatures of up to 60 ◦C whereas the mesophilic ones
normally run at about 35–40 ◦C [30].

The high degree of flexibility associated with AD is considered one of the most important
advantages of the method, since it can treat several types of waste, ranging from wet to dry and from
clean organics to grey waste [18]. Therefore it’s a quite desirable option, and for instance in the UK
alone there were about 378 AD combined heat and electricity (CHP) plants in 2015 [31]. AD (Figure 6)
can in comparison to composting better treat waste with a higher moisture content and can occur
usually between 60% and 99% moisture content [18]. Hence kitchen waste and other putrescible wastes
which are high in moisture can be an excellent feedstock for AD, whereas woody wastes including a
higher proportion of lignocellulosic materials are better suited to composting [32].

Figure 6. Schematic representation of AD inputs and outputs [18].

The process of AD provides a source of renewable energy, since waste is broken down to produce
biogas (a mixture of methane and carbon dioxide), which can be used to produce energy. The biogas can
be used threefold: to generate electricity, to power on-site equipment and any excess electricity can be
exported to the national grid [18]. Possible uses include its potential to provide heat, electricity or both.
Alternatively, the biogas can be ’upgraded’ to pure methane, often called biomethane, by removing
other gases. One cubic metre of biogas at 60% methane content converts to 6.7 kWh energy [33].

Therefore incentives are provided by the EU to encourage small to medium enterprises and farms
to employ AD to gain economic benefits from their organic waste; for instance the UK Renewable Heat
Incentive (RHI) scheme provides quarterly payments over twenty years for non-domestic thermal
energy production using renewable resources [31].

Finally another important waste-to-energy technology is mechanical biological treatment (MBT)
through which the so-called refuse derived fuel (RDF) or solid recovered fuel (SRF) can be produced.
RDF generally includes sewage sludge, waste wood, calorific fractions of household and commercial
waste, shredder lightweight fractions, scrap tyres, food byproducts [34]. MBT is a process designed to
optimise the use of resources by recovering materials for one or more purposes and stabilising the
organic fraction of residual waste [18].
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Some of the benefits of MBT include the fact that materials and energy can be recovered, space
requirements are reduced and gas and leachate emissions from landfill are reduced at the same time [18].
MBT systems basically comprise of two simple ideas: either to separate the waste and then treat or
to treat the waste and then separate [19]. Aerobic biological unit processes are used to ‘stabilise’ the
organic fraction, to reduce its biodegradability and therefore its ability to generate methane, whereas
anaerobic biological unit processes can help produce biogas from the organic portion of MSW [35].
Figure 7 presents a schematic representation of the MBT inputs and outputs. In those regards RDF
must fulfill general quality requirements in order to be safely and efficiently used such as [34]:

• well defined calorific value
• low chlorine content
• quality controlled composition (few impurities)
• defined grain size
• defined bulk density
• availability of sufficient quantities with required specifications.

Figure 7. Schematic representation of MBT inputs and outputs [18].

In relation to the aforementioned information, it should be noted that there is an increasing interest
in the development and application of heat recovery systems worldwide, driven by government
regulatory requirements both from an environmental and an economic perspective [36]. For instance
in the EU, 70% of the total energy use in the industrial sector is for thermal processes and about 1/3 of
this energy is waste, which could be recovered and used instead [37].
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The waste heat recovery market is projected to continue to rise and thus far the EU is the dominant
player accounting for 38% of the global market [36]. Of course every industry shows different potential
for waste heat which can be seen in Table 1.

Table 1. Waste heat potential per industry (%) [37].

Industry Waste Heat Potential (%)

Iron and steel 11.4
Chemical and petrochemical 11.0

Non-ferrous metal 9.59
Non-metallic minerals 11.4

Food and tobacco 8.64
Paper pulp and print 10.56

Wood and wood products 6.00
Textile and leather 11.04

Other 10.38

Moreover efficient energy recovery means that access to heat distribution infrastructure which
utilises recovered excess heat is essential [38]. Closing this section it should be noted that the EU
Commission suggests that more investments should be made to AD processes than incineration,
in order to ensure that increases in recycling and reuse do not find any obstacles [39].

2.2. Use of DEA in Energy Efficiency Studies

Many studies have focused on the field of energy and environmental efficiency with the use of
DEA. Efficiency is the ratio of output to input; a state of absolute efficiency is achieved when the best
possible output per input is realised and it is not possible to amend this without changing technology
or any other factors in the production process [35]. Some researchers have composed a list of the main
studies working on this topic [40,41]. In more detail, Mardani et al. [40] identified a total of 144 papers
between 2006 and 2015. The specific focus of those studies can be seen in Table 2.

Table 2. Distribution papers based on application areas (Adapted from [40]).

Application Fields Number of Papers Percentage (%)

Environmental efficiency 23 15.97
Economic and eco-efficiency 14 9.72

Energy efficiency 35 24.31
Renewable and sustainable energy 23 15.97

Water efficiency 4 2.78
Energy performance 8 5.56

Energy saving 6 4.17
Integrated energy efficiency 6 4.17

Other application areas 25 17.36
Total 144 100

Sueyoshi et al. [41] present DEA applications from 1980 to 2010 (693 studies) and a considerable
increase in research has been noticed after 2000. The first research work on energy efficiency
was by Färe et al. [42]. Further studies focused both on developed countries such as Canada [43],
USA [44], selected Organisation for Economic Co-operation and Development (OECD) ones [45,46]
and developing countries like Korea [47] and India [48].

These studies have focused on different aspects of energy efficiency. For instance Zhou et al. [45]
by using DEA measured the carbon emissions’ performance of eight regions worldwide in 2002, while
they examined the environmental efficiency of 26 OECD countries from 1995 to 1997 [45]. Halkos
and Tzeremes [7] examined energy consumption on countries’ economic efficiency levels and DEA in
that case presents economic efficiency variations among the examined countries. Additionally the
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effects of renewable energy on the technical efficiency of 45 economies during 2001–2002 was studied
by Chen and Hu [49] showing that increasing the use of renewable energy improves an economy’s
technical efficiency.

Chen et al. [21] evaluated the performance-based efficiencies of 19 largescale municipal incinerators
in Taiwan with different operational conditions for 2002–2005, leading to optimal management strategies
for promoting the quality of solid waste incineration. Moreover the renewable energy sector in Greece
is examined through DEA for 78 firms for 2006–2008 showing that the majority of the firms operating
in the Greek renewable sector are based on the production of wind energy [10].

Hu and Wang [50] measured the energy efficiency of 29 regions in China and propose a total factor
energy efficiency evaluation method. The technical efficiency of energy utilities in China and Taiwan
was also studied by Yeh et al. [51]. The same approach but with the incorporation of environmental
efficiency as well was followed by Bian and Yang [52]. Furthermore Zhou and Ang [53] measured
energy efficiency using both energy and non-energy inputs. Wang et al. [54] created a mixed efficiency
model which includes both economic and environmental efficiency attempting to proportionally
increase desirable outputs and decrease undesirable outputs.

Wang et al. [55] evaluated energy and environmental efficiency of 29 regions in China with
an improved DEA model. Yang et al. [56] modeled carbon emissions from travel in Beijing using
microsimulation modelling and investigating the effects of the major transport policies. Finally
Song et al. [57] developed an improved method by which to evaluate resource and environmental
efficiency with the evaluation of resource inputs into the objective function and focus on resource
inputs, undesirable outputs and desirable outputs simultaneously.

3. Research Methods, Data and Production Frameworks

3.1. The Proposed Methodology—An Overview of DEA

As mentioned already DEA is used to assess the efficiency of selected DMUs, whereas each unit is
compared with all others [12] and aims to identify the ones that are operating inefficiently [35]. That
way both good and bad outputs can be taken into account [15]. Efficient DMUs achieve a rating of 1
(or 100%) and these constitute the efficiency frontier showing the non-efficient DMUs as well [12,58].

In DEA analysis it is not necessary to assume that there is any specific relationship between inputs
and outputs [59]. DEA models are either input-oriented minimizing inputs or output-oriented models
maximizing outputs without the use of more inputs [60]. The relevant formulations of those two
models are as follows [14]:

Input-oriented Min θ0

Subject to:

θ0xi0 −
n∑

k=0

xikλk ≥ 0. ∀i (1)

− yj0 +
n∑

k=0

yjkλk ≥ 0. ∀ j

λk ≥ 0. ∀k

Output oriented Max (1/θ0)

Subject to:

xi0 −
n∑

k=0

xikλk ≥ 0. ∀i (2)

− yj0

θ0
+

n∑
k=0

yjkλk ≥ 0. ∀ j

λk ≥ 0. ∀k
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where θ0 is DMU 0’s efficiency score, is DMU k’s contribution on the targets of DMU 0, yj0 is output j
quantity for DMU 0, xi0 is output i quantity for DMU 0 and n is the quantity of DMUs used on the
model. Moreover the decision varialbes are θ and λ. Farrell’s [61] input measure operationalization of
efficiency was introduced via linear programming estimators by Charnes et al. [62]. Therefore for a
given DMU operating at a point it can be defined as:

Ψ̂DEA =
{
(x, y) ∈ Rp,q

+

∣∣∣ y ≤ n∑
i=1

γiYi; x ≥ n∑
i=1

γiXi, for (γ1, . . . ,γn)

s.t.
n∑

i=1
γi = 1;γi ≥ 0, i = 1, . . . , n

}
.

(3)

where x and y are the input and output vectors.
DEA has been widely used in research mainly because one can use multiple inputs and outputs

without assigning weights on those and at the same time efficiencies are calculated based on the best
operating DMU and not on average performance levels [63]. On the contrary a disadvantage of DEA is
that is that it produces a separate linear programme for each DMU thus creating a computational mess
when there are a lot of DMUs taken into account [60].

3.2. Bias Correction and Returns of Scale in DEA

Bootstrap is used in most DEA studies as the DEA estimators have been proven to be biased by
construction so it is necessary to correct and estimate the relevant bias [64–66]. In that case a simulation
of the data generating process (DGP) is applied whereas the estimator copies the sampling distribution
of the original estimator [67]. At the same time the sensitivity of the efficiency scores relative to the
sampling variations of the estimated frontier is defined as well [64].

The bootstrap bias estimate for the original DEA estimator θ DEA (x, y) can be calculated as:

ˆBIASB(θ̂DEA (x, y) = B−1
B∑

b=1

θ̂∗DEA, b (x,y) − θ̂DEA (x,y) (4)

where B stands for bootstrap replications performed.
The biased corrected estimator of (x, y) can be calculated as:

θ̂DEA (x,y) = θ̂DEA (x,y) − ˆBIASB (θ̂DEA (x,y)) = 2 θ̂DEA (x,y) − B−1
B∑

b=1

θ̂∗DEA, b (x,y) (5)

This procedure also provides confidence limits on the efficiencies in order to present the true
efficient frontier within the specified interval [68]. Therefore the (1−α) × 100—percent bootstrap
confidence intervals can be obtained for θ(x, y) as:

1
δ̂DEA (X,Y)− nc∗1−a/2

≤ θ (x, y) ≤ 1
δ̂DEA (X,Y)− nc∗a/2

(6)

These calculations have also been applied in this research as will be presented in Section 4.
Another important element that needs to be considered in the DEA analysis is if constant returns

to scale (CRS) or variable returns to scale (VRS) deem suitable for each specific case. Under CRS as
originally designed by Charnes et al. [62] (CCR model) a full proportionality between all inputs and
outputs is assumed [69] which could be the case when firms operate at the optimal level [70]. It is
possible to disregard this information by using VRS. As originally designed by Banker et al. [71] (BCC
model) VRS accounts for the use of technical and scale efficiencies in DEA. This method includes both
increasing and decreasing returns to scale. Therefore following Simar’s and Wilson’s [64] bootstrap
approach we compare between CRS and VRS according to these hypotheses:
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Ho : Ψθ is CRS
H1 : Ψθ is VRS
The test statistic mean of the ratios of the efficiency scores is then provided by:

T (Xn) =
1
n

n∑
i=1

θ̂CRS, n (XI, Yi )

θ̂VRS, n (XI, Yi )
(7)

Then the p-value of the null-hypothesis can be obtained:

p− value = prob (T (Xn) ≤ Tobs ] H0 is true) (8)

where Tobs is the value of T computed on the original observed sample Xn and B is the number of
bootstrap reputations. Then the p-value can be approximated by the proportion of bootstrap values of
T*b less the original observed value of Tobs such as:

p− value ≈
B∑

b=1

I
(
T∗b ≤ Tobs

)
B

(9)

Based on these equations, calculations have been performed on Stata and it is shown that for
the data used (Section 3.3) and the designed frameworks (described in further detail in Section 3.4),
CRS is more appropriate following the CCR model [62] as the results obtained are higher than 0.05
thus accepting the null hypothesis (B = 999). The specific results are shown in Table 3.

Table 3. Stata results on testing CRS vs. VRS in this study’s two models for all examined years.

Frameworks 2008 2010 2012 2014 2016

M1 0.6507 0.8809 0.2252 0.5075 0.4795
M2 0.6016 0.8138 0.3393 0.5736 0.5816

In the case of the CRS or CCR models, the efficiency frontier is a straight line crossing the point of
origin and the best performers (efficient DMUs) [72]. Figure 8 presents the graphical representation of
the efficient and inefficient DMUs along the frontier, in which case DMU2 is the best performer and
is used as a reference for all other DMUs. In those regards further improvement of efficiency scores
for inefficient DMUs can be achieved through the implementation of good practices of the efficient
ones [73].

Figure 8. Graphical representation of the efficiency frontier of CCR model [72].
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3.3. Data Used

For this paper’s analysis the MaxDEA for Data Envelopment Analysis programme (MaxDEA
Basic 6.6 – 2015 edition) is used. Table 4 presents the descriptive statistics of the inputs and outputs
used in the different DEA frameworks and for all the years and for all the examined countries.

Table 4. Descriptive statistics for all DEA models.

Final Energy
Consumption

(Mt Equivalent)

GDP (M
Euro)

Labor
(Thousand

Persons)

Capital (M
Euro)

Population
Density (Persons

per km2)

SOx
Emissions (t)

NOx
Emissions (t)

GHG Emissions
from Energy

(Thousand t of CO2

Equivalent)

2008

Mean 42.1 1,781,373.4 7986.4 104,801.4 169.6 130,041.6 74,443.1 142,163.4
St. dev 56.0 5,096,821.3 10,180.0 148,216.2 243.2 176,282.2 100,320.9 197,222.1

Min 0.5 6128.7 158.6 1203.1 17.5 12.0 783.0 2833.4
Max 217.6 27,193,630.0 38,541.5 520,809.0 1295.5 628,644.0 382,978.0 820,242.4

2010

Mean 41.5 1,787,110.4 7774.2 91,911.8 171.4 96,084.9 66,404.0 135,553.4
St. dev 55.5 5,103,808.5 10,076.9 136,804.0 246.3 132,887.3 94,477.9 189,697.4

Min 0.5 6599.5 162.6 1411.6 17.6 11.0 863.0 2598.1
Max 219.7 27,224,599.0 38,737.8 501,449.0 1311.7 545,404.0 334,748.0 802,121.3

2012

Mean 39.6 1,878,639.0 7548.8 94,847.8 172.7 84,384.5 65,251.6 128,695.0
St. dev 53.3 5,394,392.0 9951.5 145,091.9 249.9 119,172.7 97,298.8 183,709.8

Min 0.5 7168.4 170.7 1299.8 17.8 10.0 779.0 2818.9
Max 212.1 28,781,064.0 38,320.6 554,746.0 1329.2 485,523.0 366,449.0 785,284.2

2014

Mean 38.0 2,058,682.8 7622.2 97,341.0 175.1 62,735.0 55,019.0 119,113.9
St. dev 51.3 6,103,555.2 10,096.1 150,749.6 258.2 94,256.0 85,032.2 173,002.8

Min 0.5 8505.4 186.8 1465.4 18.0 15.0 728.0 2470.1
Max 208.9 32,583,424.0 38,907.7 587,549.0 1375.2 425,649.0 300,824.0 762,351.1

2016

Mean 39.6 2,235,599.6 7819.9 106,622.6 178.8 43,531.1 46,821.9 119,581.1
St. dev 53.1 6,647,143.6 10,365.3 160,493.8 271.3 67,884.9 72,540.6 173,095.0

Min 0.6 10,343.0 204.6 2435.6 18.1 17.0 612.0 1426.9
Max 216.4 35,474,186.0 40,165.1 634,029.0 1,450.2 296,757.0 295,747.0 771,900.6

In this analysis the variables used include: final energy consumption, GDP, labour, capital,
population density, nitrogen oxide (NOx) emissions (from energy), sulphur oxide (SOx) emissions
(from energy) and GHG emissions (from energy) with data obtained from Eurostat. In total 28 EU
Member States are examined for the years 2008, 2010, 2012, 2014 and 2016. The following units are
used for each factor of this analysis:

• Final energy consumption: Mt equivalent
• GDP: current prices (M Euro)
• Labor: number of persons (thousand persons)
• Capital: gross fixed capital formation (current prices, M Euro)
• Population density: persons per km2

• SOx emissions: t (from energy production and distribution)
• NOx emissions: t (from energy production and distribution)
• GHG emissions: thousand t of CO2 equivalent (from energy production and distribution)

Based on these data, Figure 9 presents the trend of energy consumption levels, SOx, NOx and
GHG emissions for all examined years on an average EU basis for the 28 countries taken into account.
It is noticed that all indicators have dropped since 2008 especially SOx and NOx emissions, while
energy consumption and GHG emissions are on the rise again after 2014.
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(a) Final energy consumption (million tonnes) 

 

 
(b) GHG emissions (million tonnes) 

 
(c) NOx emissions (thousand tonnes) 

 

 
(d) SOx emissions (thousand tonnes) 

Figure 9. Trend of the main components of the present analysis.

At the same time it is noticed that the share of energy from renewable sources is also on the rise in
the EU Member States as shown in Figure 10, showing also how far those countries are from achieving
their 2020 target. So far Sweden, Finland, Denmark, Estonia, Croatia, Lithuania, Romania, Bulgaria,
Italy, Czech Republic and Hungary have managed to accomplish this.

Figure 10. Share of energy from renewable sources 2004–2016 (in % of gross final energy consumption)
(Eurostat data).
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3.4. Environmental Production Frameworks

Following studies such as those of Wang et al. [55] and Chien and Hu [74], where capital, labor,
population density (M2 framework) and energy consumption are used as inputs and GDP (desirable
output), carbon dioxide and sulphur dioxide (undesirable outputs), this paper’s analysis produces two
production frameworks as presented in Figure 11 (M1 framework) and Figure 12 (M2 framework).
Population density is a factor that has not been used in previous research regarding energy efficiency
but it is a strong inequality measure which affects regional and interregional policies and in turn
regional and interregional socioeconomic development [50]. In both frameworks a radial model is
used, which is output oriented (as presented in Section 3.1).

 

 

 

M1 

Labor force 

Capital 

GDP 

Final energy 

consumption

NOx emissions 

          SOx 

                 GHG 

Figure 11. Description of M1 environmental production framework.

 

 

 

M2 

Labor force 

Capital 

GDP 

Final energy 
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          SOx 

                 GHG 

Population density  

Figure 12. Description of environmental production framework (M2 indicator).

Overall to evaluate the energy efficiency of the studied EU Member States, DEA was used
to examine all countries’ parameters, classify and quantify the variables, model the problem and
determine the best performing DMUs. These were then analysed and recommendations are provided.

4. Result

Under the M1 framework the highest performers are: Hungary, Luxembourg, Sweden; whereas
the lowest performers are: Estonia, Bulgaria, Greece and Slovenia. For framework M2 the picture is
quite similar. Table 5 shows the efficiency scores of all examined countries for the whole time period
studied. Also Table 6 presents the average scores (year-wise) per country per modelling framework.
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Table 5. Results of M1 and M2 frameworks for the EU countries for 2008, 2010, 2012, 2014 and 2016.

M1 M2

Country 2008 2010 2012 2014 2016 2008 2010 2012 2014 2016

Austria 0.528 0.523 0.529 0.531 0.527 0.528 0.523 0.529 0.531 0.527
Belgium 0.507 0.507 0.508 0.507 0.506 0.507 0.507 0.508 0.507 0.506
Bulgaria 0.501 0.501 0.501 0.501 0.501 0.501 0.501 0.501 0.501 0.501
Croatia 0.515 0.516 0.514 0.513 0.513 0.515 0.516 0.514 0.513 0.513
Cyprus 0.502 0.502 0.502 0.502 0.502 0.502 0.502 0.502 0.502 0.502

CzechRepublic 0.534 0.532 0.529 0.528 0.530 0.534 0.532 0.529 0.528 0.530
Denmark 0.567 0.579 0.588 0.604 0.572 0.567 0.579 0.588 0.604 0.572
Estonia 0.501 0.501 0.501 0.501 0.501 0.501 0.501 0.501 0.501 0.501
Finland 0.503 0.503 0.503 0.503 0.503 0.503 0.503 0.503 0.503 0.503
France 0.510 0.510 0.510 0.512 0.510 0.510 0.510 0.510 0.512 0.510

Germany 0.504 0.504 0.503 0.503 0.503 0.504 0.504 0.503 0.503 0.503
Greece 0.502 0.502 0.502 0.502 0.502 0.502 0.502 0.502 0.502 0.502

Hungary 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Ireland 0.504 0.506 0.506 0.506 0.507 0.504 0.506 0.506 0.506 0.507

Italy 0.508 0.508 0.507 0.507 0.506 0.508 0.508 0.507 0.507 0.506
Latvia 0.511 0.506 0.507 0.507 0.503 0.511 0.506 0.507 0.507 0.503

Lithuania 0.502 0.502 0.502 0.502 0.502 0.502 0.502 0.502 0.502 0.502
Luxembourg 1.000 1.000 1.000 1.000 0.824 1.000 1.000 1.000 1.000 0.824

Malta 0.502 0.502 0.502 0.502 0.505 0.502 0.502 0.502 0.502 0.505
The Netherlands 0.508 0.508 0.507 0.506 0.505 0.508 0.508 0.507 0.506 0.505

Poland 0.504 0.504 0.504 0.503 0.504 0.504 0.504 0.504 0.503 0.504
Portugal 0.503 0.503 0.503 0.502 0.502 0.503 0.503 0.503 0.502 0.502
Romania 0.505 0.506 0.505 0.505 0.506 0.505 0.506 0.505 0.505 0.506
Slovakia 0.502 0.502 0.502 0.502 0.502 0.502 0.502 0.502 0.502 0.502
Slovenia 0.502 0.502 0.502 0.502 0.502 0.502 0.502 0.502 0.502 0.502

Spain 0.503 0.504 0.503 0.503 0.503 0.503 0.504 0.503 0.503 0.503
Sweden 0.649 0.596 0.621 0.665 0.606 0.650 0.608 0.622 0.665 0.606

United Kingdom 0.503 0.503 0.503 0.503 0.503 0.503 0.503 0.503 0.503 0.503

Table 6. Average scores per country and per modelling frameworks.

M1 M2

Country Average Average

Austria 0.528 0.528
Belgium 0.507 0.507
Bulgaria 0.501 0.501
Croatia 0.514 0.514
Cyprus 0.502 0.502

CzechRepublic 0.530 0.530
Denmark 0.582 0.582
Estonia 0.501 0.501
Finland 0.503 0.503
France 0.510 0.510

Germany 0.503 0.503
Greece 0.502 0.502

Hungary 1.000 1.000
Ireland 0.506 0.506

Italy 0.507 0.507
Latvia 0.507 0.507

Lithuania 0.502 0.502
Luxembourg 0.965 0.965

Malta 0.503 0.503
The Netherlands 0.507 0.507

Poland 0.504 0.504
Portugal 0.503 0.503
Romania 0.506 0.506
Slovakia 0.502 0.502
Slovenia 0.502 0.502

Spain 0.503 0.503
Sweden 0.628 0.630

United Kingdom 0.503 0.503
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The obtained results are biased and therefore following the bootstrap technique presented in
Section 3, the bias corrected results need to be applied in our analysis. Tables A1 and A2 (Appendix A)
present the efficiency scores of the 28 countries, the bias corrected efficiency scores and the 95-percent
confidence intervals: lower and upper bound obtained by B = 999 bootstrap replications using the
algorithm described in Section 3.2.

According to the bias corrected efficiency measures the countries with the higher environmental
efficiency scores (i.e., >0.497) over the years are reported to be:

• Framework M1: Bulgaria, Cyprus, Estonia, Greece, Lithuania, Malta and Slovenia.
• Framework M2: Bulgaria, Cyprus, Estonia, Greece, Lithuania and Slovenia.

The two modelling techniques used in this analysis cannot be compared to each other since
they use different inputs and outputs. A lack of common environmental policies among EU Member
States can be seen in their energy efficiency levels regarding energy consumption and the relevant
emissions. With regards to changes over the years and as can be seen in Figure 13, most countries seem
to maintain their efficiency scores with only Czech Republic, Finland, Ireland, Malta, Romania and
Slovenia marginally improving theirs. At the same time, it can be noticed that most countries have
higher environmental efficiency scores over 2010 and 2012 with a decrease after that.
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5. Discussion

The efficiency scores obtained and presented in the previous section show that EU-wise
environmental efficiency levels regarding energy consumption and emissions tend to be quite low.
The world’s tension level of energy supply is worsened over the years and efforts are being made
to replace traditional fossil fuels with more sustainable options achieving a good balance between
economic development and environmental protection [75]. Energy from waste is the largest source of
renewable energy today in the EU and is expected to hold this place until 2030, reaching a share of
60–70% [40].

The ‘International Energy Efficiency Scorecard’ published in 2014 by the American Council for
an Energy-Efficient Economy stresses that countries can maintain their resources, address global
warming, stabilize their economies and reduce the costs of their economic outputs by using energy
more efficiently [76]. This can be seen graphically also in Figure 9 where a decrease in emissions’ level
is generally noticed. The results obtained from the current analysis are also in connection with the
EU’s targets for energy and climate as presented in Figure 14.

 
Figure 14. EU’s framework for energy and climate for 2020 and 2030 (Adapted by [77]).

In connection to that, nations have been moving towards waste-to-energy with two main objectives,
namely sufficient and sustainable energy production and effective treatment of MSW by reducing its
volume by about 87% [78]. Both these two factors need to be taken into account when considering
this option [79]. A major issue to make sure this option is viable, both from an economic and an
environmental perspective, is to take into consideration the resource characteristics, such as their
location, amount and quality [80]. The results of this study presenting energy efficiency should be
considered to avoid unnecessary entropy production but also to make processes more cost effective
and ecofriendly [81]. The main benefits from waste-to-energy include [82]:

• It transforms waste from a problem into a resource.
• Energy generated contributes to primary energy savings from other energy sources.
• It can reduce greenhouse-gas emissions when it replaces more carbon-intensive energy sources.
• Waste to landfill is reduced heavily.
• Waste treatment time is extremely short compared with landfills.
• It also enables treatment of hazardous waste.

At the same time, the main associated risk is that those systems become highly dependent on and
justify societies’ increasingly uneconomical consumption levels, while also having unintended negative
effects (such as higher levels of energy and material use throughout a society, increasing upstream
environmental impacts) [82]. Moreover it is essential to create a network of the waste by-products,
electricity and heat between multiple sectors throughout the world [83,84]. Figure 15 presents a map
of waste-to-energy plants in Europe for 2017, in which capacity is seen to be overall stable compared to
2016, with only the UK increasing its capacity.
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Figure 15. Waste-to-energy in Europe in 2017 (with red: waste thermally treated (in Mt) and with blue:
plants operating in Europe) [85].

The necessary treatment that is to be used depends highly on the nature and volume of the waste
stream with the main factor taken into account being its energy content (calorific value) and as a rule of
thumb waste-to-energy option should be considered when the incoming waste has an average calorific
value of at least 7 MJ/kg [86]. Table 7 presents the average net calorific values for most common MSW
waste streams.

Table 7. Approximate net calorific value (MJ/kg) [87].

Fraction Value

Paper 16
Organic material 4

Plastics 35
Glass 0

Metals 0
Textiles 19

Other material 11

Overall the European Commission 2017 (Ref. [38]) recommends the main technologies that could
be used [88]:

• co-incineration in combustion plants: with gasification of SRF and co-incineration of the resulting
syngas in the combustion plant.

• co-incineration in cement kilns.
• incineration in dedicated facilities:

◦ the use of super heaters and heat pumps
◦ the utilisation of the energy contained in flue gas
◦ distributing chilled water through district cooling networks.
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• Bio-methane for further distribution and utilisation.

In this regard Scarlat et al. [20] perform a suitability analysis as to where waste-to-energy plants
are best to be built, which can be seen graphically on Figure 16. The potential plants (shown in green)
are interrelated with the results of the current analysis, as according to their analysis, there is great
potential to build plants for instance in the Czech Republic, Croatia, France, Hungary, Italy, Spain
and UK. For those countries the current analysis found that energy efficiency scores are overall quite
low in comparison to other countries. Also Greece and Bulgaria show a great potential for building
waste-to-energy plants which makes sense according to this analysis as for these countries efficiency
scores are quite low as well.

 
Figure 16. Suitability map for waste-to-energy plant location [20].

Energy efficiency levels across the 28 EU examined countries are quite low overall with only a few
differentiated countries. As it stands, waste management is a crucial part in the context of the circular
economy whereas prioritization needs to give to prevention, reuse, recycling and energy recovery and
as a last resort disposal to landfills [89]. Therefore the circular economy requires a better understanding
of existing waste infrastructure, including location and capacity [90]. The circular economy aims to
accomplish the optimum production through the 3R principle—reduce, reuse and recycle—while
minimizing resource utilization, pollution emissions and waste discarded [91].

To deliver the circular economy governments need to collaborate with various partners to combine
scientific research, policies and regulations, thus adopting a long-term policy framework [90]. Along
those lines, the EU Commission’s Circular Economy Package drives the treatment options that have
been used by EU Member States. This package’s aim is the acceleration of Europe’s transition towards
circular economy as well as the waste reduction targets across EU Member States [92]. Therefore it is
essential to preserve the worth of products, materials and resources in the economy as much as possible
and minimize waste generated [4]. Hence waste-to-energy addresses the problems of energy demand,
waste management and GHG emissions at the same time, achieving a circular economy system [93].
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By 2020 196 billion kWh of sustainable energy could be produced through waste-to-energy plants
which makes an equivalent of the energy produced by 6-9 nuclear stations or 25 coal power plants [94].

At the same time one of the EU Commission’s priorities is also a European Energy Union which
ensures reliable energy supplies at rational prices for businesses and consumers and with the least
environmental impacts [95]. This union would enhance the economy and attract investments thus
creating new jobs opportunities [77]. Competition policy in the EU is essential for the internal market
with the first liberalisation directives established in 1996 (electricity) and 1998 (gas) and the second
liberalisation directives adopted in 2003 [95]. This competition policy aims mainly to ensure that
companies compete fairly, providing more choices to consumers and helping reduce prices and improve
quality [96,97].

Despite these regulations, markets seem to be largely national and with relatively few cross-border
trade, therefore the EU Commission has paid great attention into controlling potential mergers (such
as the proposed merger between EDP and GDP in Portugal), into setting up rules for mergers and in
controlling state aid to energy companies across the EU [95]. In more detail, it is essential to have an
EU competition policy, mainly to achieve [96]:

• Low prices for all: more people can afford to buy products and businesses are encouraged
to produce.

• Better quality: competition encourages businesses to improve the quality of goods and services
they sell and to attract more customers and expand their market share.

• More choice: businesses will try to make their products unique.
• Innovation: in their product concepts, design, production techniques, services, etc.
• Better competitors in global markets: competition would enhance European companies’ strength

outside the EU and enable them to hold their own against global competitors.

Also waste-to-energy could relieve the EU from foreign imports, for instance in 2012 it imported 4
million TJ of natural gas from Russia, whereas waste-to-energy could substitute 19% of Russian gas
imports [94]. Unfair competition will only hinder the clean energy transition as far as Member States
continue to provide fossil fuel subsidies, such as direct subsidies to uneconomical coal mines, capacity
mechanisms for emission intensive power plants, tax relief for company cars or diesel fuel and similar
measures [77]. More detailed research conducted in China by Zhang et al. [97] shows that raw material
price subsidies increase profits both for recycling and biofuel companies, but investment subsidies
only produce greater profits for recycling companies. One important and unexpected issue that needs
to be taken into account and has undoubtedly affected energy efficiency in EU Member States is the
financial crisis from which the EU has been suffering severely after 2008. This can also be noticed in
the efficiency scores obtained through the present analysis, whereas efficiencies have decreased after
2012 when the crisis became more imminent.

As for the future steps, the EU plans for a climate-neutral Europe by 2050 through investments to
realistic technological solutions, the empowering of citizens and aligning action in key areas such as
industrial policy, finance, or research [6]. In those regards studies suggest that the potential for using
heat from waste could be an equivalent to 200 billion kWh per year by 2050 [90]. Therefore it is essential
to already have consultations with young people, citizens affected by the energy transition, inventors,
social partners and civil society, mayors and other politicians to show the potential of realizing this
energy transition [78].

6. Conclusions and Policy Implications

The current paper examines energy efficiency across 28 selected EU Member States and reviews the
potential for energy recovery from waste according to the efficiency scores obtained for the examined
Member States. The efficiencies are assessed through DEA under CRS and the following variables
are examined: final energy consumption, GDP, labour, capital, population density, NOx emissions
(from energy), SOx emissions (from energy) and GHG emissions (from energy) from Eurostat data and
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for the years 2008, 2010, 2012, 2014 and 2016. The two models that are designed use two outputs one
desirable (GDP) and one undesirable (aerial gas emissions – GHG, SOx and NOx) with different inputs
in each case.

The bias corrected efficiency scores show that overall Bulgaria, Cyprus, Estonia, Greece, Lithuania
and Slovenia are efficient under both frameworks. Also most countries seem to maintain their efficiency
scores with only the Czech Republic, Finland, Ireland, Malta, Romania and Slovenia marginally
improving theirs. At the same time, it can be noticed that most countries have higher environmental
efficiency scores over 2010 and 2012 with a decrease after that.

These efficiency scores show that EU-wise environmental efficiency levels regarding energy
consumption and emissions tend to be quite low overall, therefore it is suggestible to move towards
waste-to-energy with two main objectives, namely sufficient and sustainable energy production and
effective treatment of MSW. This option would enhance the circular economy, whereas prioritization
needs to give to prevention, preparation for reuse, recycling and energy recovery through to disposal,
such as landfilling. Waste to energy addresses the problems of energy demand, waste management
and GHG emissions simultaneously.

Together with the EU Commission’s competition strategy, these options would ensure reliable
energy supplies at rational prices for businesses and consumers and with the least environmental
impacts. Along with these and taking into account the current analysis’ results, it is essential to account
for the financial crisis which affects EU since 2008. Namely the efficiency scores show a decrease after
2012 when the crisis became more imminent (Figure 13). Regarding future steps towards a climate
neutral Europe, investments into technology along with the empowering of citizens and industry need
to be considered.

The models of the present research could be enriched with additional control variables which
could incorporate specific characteristics of EU countries, such as their technological level regarding
waste management especially, their institutional background and their education level to name a few.
Moreover once data become available it would be useful to expand this research with more recent data
to better reflect today’s situation.
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Appendix A

Table A1. Bias corrected efficiency scores of countries’ by modelling framework. Framework M1.

Country Score Original Bias Corrected Bias Std Lower Upper 2008

Austria 0.528 0.461 0.067 0.027 0.402 0.498
Belgium 0.507 0.490 0.017 0.006 0.475 0.499
Bulgaria 0.501 0.498 0.004 0.001 0.494 0.499
Croatia 0.515 0.475 0.040 0.012 0.439 0.493
Cyprus 0.502 0.496 0.006 0.002 0.491 0.499

Czech Republic 0.534 0.446 0.087 0.026 0.367 0.484
Denmark 0.567 0.396 0.171 0.052 0.241 0.474
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Table A1. Cont.

Country Score Original Bias Corrected Bias Std Lower Upper 2008

Estonia 0.501 0.499 0.002 0.001 0.496 0.500
Finland 0.503 0.495 0.009 0.003 0.486 0.499
France 0.510 0.486 0.023 0.008 0.465 0.498

Germany 0.504 0.494 0.010 0.003 0.485 0.499
Greece 0.502 0.496 0.006 0.002 0.491 0.499

Hungary 1.000 −0.304 1.304 0.385 −1.490 0.248
Ireland 0.504 0.494 0.010 0.003 0.484 0.498

Italy 0.508 0.487 0.021 0.006 0.468 0.496
Latvia 0.511 0.485 0.025 0.010 0.463 0.499

Lithuania 0.502 0.496 0.006 0.002 0.491 0.499
Luxembourg 1.000 −0.287 1.287 0.331 −1.037 0.255

Malta 0.502 0.497 0.005 0.002 0.492 0.499
The Netherlands 0.508 0.489 0.019 0.007 0.472 0.498

Poland 0.504 0.494 0.010 0.003 0.485 0.498
Portugal 0.503 0.495 0.008 0.002 0.488 0.499
Romania 0.505 0.492 0.013 0.004 0.480 0.498
Slovakia 0.502 0.496 0.006 0.002 0.491 0.499
Slovenia 0.502 0.497 0.005 0.002 0.492 0.499

Spain 0.503 0.495 0.009 0.003 0.487 0.499
Sweden 0.649 0.294 0.355 0.142 −0.025 0.490

United Kingdom 0.503 0.495 0.007 0.002 0.489 0.499
2010

Austria 0.523 0.466 0.057 0.020 0.415 0.495
Belgium 0.507 0.489 0.018 0.006 0.472 0.498
Bulgaria 0.501 0.498 0.004 0.001 0.494 0.499
Croatia 0.516 0.475 0.042 0.013 0.437 0.494
Cyprus 0.502 0.496 0.006 0.002 0.491 0.499

Czech Republic 0.532 0.449 0.082 0.024 0.375 0.484
Denmark 0.579 0.376 0.203 0.061 0.192 0.466
Estonia 0.501 0.499 0.002 0.001 0.497 0.500
Finland 0.503 0.496 0.007 0.002 0.489 0.499
France 0.510 0.485 0.026 0.009 0.461 0.497

Germany 0.504 0.494 0.009 0.003 0.486 0.499
Greece 0.502 0.497 0.006 0.002 0.492 0.499

Hungary 1.000 −0.313 1.313 0.376 −1.508 0.229
Ireland 0.506 0.491 0.015 0.005 0.478 0.498

Italy 0.508 0.486 0.022 0.006 0.467 0.496
Latvia 0.506 0.492 0.014 0.005 0.479 0.499

Lithuania 0.502 0.497 0.005 0.001 0.492 0.499
Luxembourg 1.000 −0.302 1.302 0.338 −1.195 0.226

Malta 0.502 0.496 0.006 0.002 0.491 0.499
The Netherlands 0.508 0.488 0.020 0.007 0.470 0.498

Poland 0.504 0.494 0.010 0.003 0.485 0.498
Portugal 0.503 0.495 0.008 0.003 0.487 0.499
Romania 0.506 0.491 0.014 0.004 0.478 0.498
Slovakia 0.502 0.497 0.006 0.002 0.491 0.499
Slovenia 0.502 0.497 0.005 0.002 0.492 0.499

Spain 0.504 0.493 0.011 0.003 0.483 0.499
Sweden 0.596 0.359 0.237 0.084 0.144 0.479

United Kingdom 0.503 0.496 0.007 0.002 0.489 0.499
2012

Austria 0.529 0.459 0.070 0.027 0.397 0.497
Belgium 0.508 0.488 0.020 0.007 0.469 0.498
Bulgaria 0.501 0.498 0.003 0.001 0.495 0.499
Croatia 0.514 0.478 0.037 0.011 0.444 0.494
Cyprus 0.502 0.497 0.006 0.002 0.491 0.499

Czech Republic 0.529 0.454 0.076 0.022 0.385 0.486
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Table A1. Cont.

Country Score Original Bias Corrected Bias Std Lower Upper 2008

Denmark 0.588 0.375 0.213 0.078 0.184 0.488
Estonia 0.501 0.499 0.002 0.001 0.497 0.500
Finland 0.503 0.495 0.008 0.002 0.488 0.499
France 0.510 0.485 0.025 0.008 0.462 0.497

Germany 0.503 0.495 0.008 0.003 0.488 0.499
Greece 0.502 0.497 0.004 0.001 0.494 0.499

Hungary 1.000 −0.306 1.306 0.383 −1.494 0.244
Ireland 0.506 0.492 0.014 0.005 0.479 0.498

Italy 0.507 0.489 0.018 0.006 0.472 0.498
Latvia 0.507 0.491 0.016 0.006 0.477 0.499

Lithuania 0.502 0.497 0.005 0.002 0.492 0.499
Luxembourg 1.000 −0.279 1.279 0.347 −1.133 0.273

Malta 0.502 0.497 0.005 0.001 0.492 0.499
The Netherlands 0.507 0.489 0.018 0.006 0.472 0.498

Poland 0.504 0.494 0.010 0.003 0.485 0.498
Portugal 0.503 0.496 0.007 0.002 0.489 0.499
Romania 0.505 0.492 0.013 0.004 0.480 0.498
Slovakia 0.502 0.497 0.006 0.002 0.491 0.499
Slovenia 0.502 0.497 0.004 0.001 0.493 0.499

Spain 0.503 0.495 0.008 0.002 0.488 0.499
Sweden 0.621 0.328 0.293 0.112 0.064 0.485

United Kingdom 0.503 0.496 0.007 0.002 0.490 0.499
2014

Austria 0.531 0.460 0.071 0.030 0.396 0.499
Belgium 0.507 0.489 0.018 0.006 0.472 0.497
Bulgaria 0.501 0.498 0.003 0.001 0.495 0.499
Croatia 0.513 0.480 0.033 0.010 0.450 0.494
Cyprus 0.502 0.497 0.005 0.001 0.493 0.499

Czech Republic 0.528 0.456 0.072 0.022 0.391 0.487
Denmark 0.604 0.358 0.246 0.097 0.138 0.492
Estonia 0.501 0.499 0.002 0.001 0.497 0.500
Finland 0.503 0.495 0.008 0.002 0.489 0.499
France 0.512 0.482 0.030 0.009 0.454 0.496

Germany 0.503 0.496 0.007 0.002 0.490 0.499
Greece 0.502 0.498 0.004 0.001 0.494 0.499

Hungary 1.000 −0.297 1.297 0.396 −1.475 0.270
Ireland 0.506 0.491 0.016 0.005 0.476 0.498

Italy 0.507 0.489 0.019 0.006 0.471 0.497
Latvia 0.507 0.491 0.015 0.007 0.477 0.500

Lithuania 0.502 0.496 0.006 0.002 0.491 0.499
Luxembourg 1.000 −0.117 1.117 0.458 −1.106 0.465

Malta 0.502 0.497 0.006 0.002 0.491 0.499
The Netherlands 0.506 0.491 0.016 0.005 0.476 0.498

Poland 0.503 0.495 0.009 0.003 0.486 0.498
Portugal 0.502 0.496 0.006 0.002 0.490 0.499
Romania 0.505 0.492 0.014 0.004 0.479 0.498
Slovakia 0.502 0.496 0.006 0.002 0.491 0.499
Slovenia 0.502 0.497 0.005 0.001 0.493 0.499

Spain 0.503 0.496 0.007 0.002 0.489 0.499
Sweden 0.665 0.281 0.384 0.162 −0.064 0.496

United Kingdom 0.503 0.496 0.007 0.002 0.489 0.499
2016

Austria 0.527 0.456 0.071 0.022 0.402 0.488
Belgium 0.506 0.487 0.018 0.004 0.478 0.496
Bulgaria 0.501 0.498 0.003 0.001 0.495 0.499
Croatia 0.513 0.480 0.033 0.009 0.450 0.492
Cyprus 0.502 0.497 0.005 0.001 0.493 0.499
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Table A1. Cont.

Country Score Original Bias Corrected Bias Std Lower Upper 2008

Czech Republic 0.530 0.458 0.072 0.021 0.382 0.480
Denmark 0.572 0.326 0.246 0.056 0.236 0.469
Estonia 0.501 0.499 0.002 0.001 0.497 0.500
Finland 0.503 0.496 0.008 0.002 0.488 0.498
France 0.510 0.479 0.030 0.007 0.462 0.493

Germany 0.503 0.496 0.007 0.002 0.490 0.498
Greece 0.502 0.498 0.004 0.001 0.494 0.499

Hungary 1.000 −0.297 1.297 0.350 −1.482 0.148
Ireland 0.507 0.492 0.016 0.005 0.473 0.496

Italy 0.506 0.487 0.019 0.004 0.476 0.496
Latvia 0.503 0.488 0.015 0.003 0.488 0.499

Lithuania 0.502 0.496 0.006 0.002 0.492 0.499
Luxembourg 0.824 −0.293 1.117 0.258 −0.607 0.376

Malta 0.505 0.499 0.006 0.003 0.482 0.497
The Netherlands 0.505 0.489 0.016 0.003 0.481 0.497

Poland 0.504 0.495 0.009 0.003 0.486 0.498
Portugal 0.502 0.496 0.006 0.002 0.490 0.499
Romania 0.506 0.493 0.014 0.005 0.475 0.496
Slovakia 0.502 0.497 0.006 0.002 0.491 0.498
Slovenia 0.502 0.498 0.005 0.002 0.491 0.499

Spain 0.503 0.496 0.007 0.002 0.489 0.498
Sweden 0.606 0.222 0.384 0.086 0.110 0.457

United Kingdom 0.503 0.496 0.007 0.002 0.488 0.498

Table A2. Bias corrected efficiency scores of countries’ by modelling framework. Framework M2.

Country Score Original Bias Corrected Bias Std Lower Upper 2008

Austria 0.528 0.461 0.068 0.027 0.400 0.498
Belgium 0.507 0.490 0.017 0.006 0.475 0.499
Bulgaria 0.501 0.498 0.004 0.001 0.494 0.499
Croatia 0.515 0.475 0.040 0.012 0.439 0.493
Cyprus 0.502 0.496 0.006 0.002 0.491 0.499

Czech Republic 0.534 0.446 0.087 0.026 0.367 0.484
Denmark 0.567 0.396 0.171 0.052 0.241 0.474
Estonia 0.501 0.499 0.002 0.001 0.496 0.500
Finland 0.503 0.495 0.009 0.003 0.486 0.499
France 0.510 0.486 0.023 0.008 0.465 0.498

Germany 0.504 0.494 0.010 0.003 0.485 0.499
Greece 0.502 0.496 0.006 0.002 0.491 0.499

Hungary 1.000 −0.304 1.304 0.385 −1.490 0.249
Ireland 0.504 0.494 0.010 0.003 0.484 0.498

Italy 0.508 0.487 0.021 0.006 0.468 0.496
Latvia 0.511 0.485 0.025 0.010 0.463 0.499

Lithuania 0.502 0.496 0.006 0.002 0.491 0.499
Luxembourg 1.000 −0.287 1.287 0.330 −1.037 0.255

Malta 0.502 0.497 0.005 0.002 0.492 0.499
The Netherlands 0.508 0.489 0.019 0.007 0.472 0.498

Poland 0.504 0.494 0.010 0.003 0.485 0.498
Portugal 0.503 0.495 0.008 0.002 0.488 0.499
Romania 0.505 0.492 0.013 0.004 0.480 0.498
Slovakia 0.502 0.496 0.006 0.002 0.491 0.499
Slovenia 0.502 0.497 0.005 0.002 0.492 0.499

Spain 0.503 0.495 0.009 0.003 0.487 0.499
Sweden 0.650 0.218 0.431 0.173 −0.178 0.387

United Kingdom 0.503 0.495 0.007 0.002 0.489 0.499
2010

Austria 0.523 0.466 0.058 0.020 0.414 0.495
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Table A2. Cont.

Country Score Original Bias Corrected Bias Std Lower Upper 2008

Belgium 0.507 0.489 0.019 0.006 0.472 0.498
Bulgaria 0.501 0.498 0.004 0.001 0.494 0.499
Croatia 0.516 0.475 0.042 0.013 0.436 0.494
Cyprus 0.502 0.496 0.006 0.002 0.491 0.499

Czech Republic 0.532 0.449 0.082 0.024 0.375 0.484
Denmark 0.579 0.376 0.203 0.062 0.192 0.467
Estonia 0.501 0.499 0.002 0.001 0.497 0.500
Finland 0.503 0.496 0.007 0.002 0.489 0.499
France 0.510 0.485 0.026 0.008 0.461 0.497

Germany 0.504 0.494 0.009 0.003 0.486 0.499
Greece 0.502 0.497 0.006 0.002 0.492 0.499

Hungary 1.000 −0.311 1.311 0.378 −1.504 0.233
Ireland 0.506 0.491 0.015 0.005 0.478 0.498

Italy 0.508 0.487 0.022 0.006 0.467 0.496
Latvia 0.506 0.491 0.014 0.005 0.479 0.499

Lithuania 0.502 0.497 0.005 0.001 0.492 0.499
Luxembourg 1.000 −0.306 1.306 0.337 −1.203 0.219

Malta 0.502 0.496 0.006 0.002 0.491 0.499
The Netherlands 0.508 0.488 0.020 0.007 0.470 0.498

Poland 0.504 0.494 0.010 0.003 0.485 0.498
Portugal 0.503 0.495 0.008 0.003 0.487 0.499
Romania 0.506 0.491 0.014 0.004 0.478 0.498
Slovakia 0.502 0.496 0.006 0.002 0.491 0.499
Slovenia 0.502 0.497 0.005 0.002 0.492 0.499

Spain 0.504 0.493 0.011 0.003 0.483 0.499
Sweden 0.608 0.139 0.468 0.176 −0.262 0.304

United Kingdom 0.503 0.496 0.007 0.002 0.489 0.499
2012

Austria 0.529 0.459 0.071 0.027 0.395 0.497
Belgium 0.508 0.488 0.020 0.007 0.469 0.498
Bulgaria 0.501 0.498 0.003 0.001 0.495 0.499
Croatia 0.514 0.478 0.037 0.011 0.444 0.494
Cyprus 0.502 0.497 0.006 0.002 0.491 0.499

Czech Republic 0.529 0.454 0.076 0.022 0.385 0.486
Denmark 0.588 0.375 0.213 0.079 0.183 0.488
Estonia 0.501 0.499 0.002 0.001 0.497 0.500
Finland 0.503 0.495 0.008 0.002 0.488 0.499
France 0.510 0.485 0.025 0.008 0.462 0.497

Germany 0.503 0.495 0.008 0.003 0.488 0.499
Greece 0.502 0.497 0.004 0.001 0.494 0.499

Hungary 1.000 −0.306 1.306 0.383 −1.494 0.244
Ireland 0.506 0.492 0.014 0.005 0.479 0.498

Italy 0.507 0.489 0.018 0.006 0.472 0.498
Latvia 0.507 0.491 0.016 0.006 0.477 0.499

Lithuania 0.502 0.497 0.005 0.002 0.492 0.499
Luxembourg 1.000 −0.279 1.279 0.347 −1.133 0.273

Malta 0.502 0.497 0.005 0.001 0.492 0.499
The Netherlands 0.507 0.489 0.018 0.006 0.472 0.498

Poland 0.504 0.494 0.010 0.003 0.485 0.498
Portugal 0.503 0.496 0.007 0.002 0.489 0.499
Romania 0.505 0.492 0.013 0.004 0.480 0.498
Slovakia 0.502 0.497 0.006 0.002 0.491 0.499
Slovenia 0.502 0.497 0.004 0.001 0.493 0.499

Spain 0.503 0.495 0.008 0.002 0.488 0.499
Sweden 0.622 0.190 0.431 0.170 −0.212 0.349

United Kingdom 0.503 0.496 0.007 0.002 0.490 0.499
2014

Austria 0.531 0.459 0.072 0.031 0.395 0.500
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Table A2. Cont.

Country Score Original Bias Corrected Bias Std Lower Upper 2008

Belgium 0.507 0.489 0.018 0.006 0.472 0.497
Bulgaria 0.501 0.498 0.003 0.001 0.495 0.499
Croatia 0.513 0.480 0.033 0.010 0.450 0.494
Cyprus 0.502 0.497 0.005 0.001 0.493 0.499

Czech Republic 0.528 0.456 0.072 0.022 0.391 0.487
Denmark 0.604 0.358 0.246 0.098 0.136 0.491
Estonia 0.501 0.499 0.002 0.001 0.497 0.500
Finland 0.503 0.495 0.008 0.002 0.489 0.499
France 0.512 0.482 0.030 0.009 0.454 0.496

Germany 0.503 0.496 0.007 0.002 0.490 0.499
Greece 0.502 0.498 0.004 0.001 0.494 0.499

Hungary 1.000 −0.297 1.297 0.396 −1.475 0.270
Ireland 0.506 0.491 0.016 0.005 0.476 0.498

Italy 0.507 0.489 0.019 0.006 0.471 0.497
Latvia 0.507 0.491 0.015 0.007 0.477 0.500

Lithuania 0.502 0.496 0.006 0.002 0.491 0.499
Luxembourg 1.000 −0.117 1.117 0.458 −1.106 0.465

Malta 0.502 0.497 0.006 0.002 0.491 0.499
The Netherlands 0.506 0.491 0.016 0.005 0.476 0.498

Poland 0.503 0.495 0.009 0.003 0.486 0.498
Portugal 0.502 0.496 0.006 0.002 0.490 0.499
Romania 0.505 0.492 0.014 0.004 0.479 0.498
Slovakia 0.502 0.496 0.006 0.002 0.491 0.499
Slovenia 0.502 0.497 0.005 0.001 0.493 0.499

Spain 0.503 0.496 0.007 0.002 0.489 0.499
Sweden 0.665 0.277 0.389 0.162 -0.073 0.489

United Kingdom 0.503 0.496 0.007 0.002 0.489 0.499
2016

Austria 0.527 0.460 0.067 0.022 0.401 0.489
Belgium 0.506 0.491 0.015 0.004 0.478 0.496
Bulgaria 0.501 0.498 0.004 0.001 0.495 0.499
Croatia 0.513 0.479 0.034 0.009 0.450 0.492
Cyprus 0.502 0.497 0.005 0.001 0.493 0.499

Czech Republic 0.530 0.451 0.079 0.021 0.382 0.480
Denmark 0.572 0.392 0.180 0.056 0.235 0.469
Estonia 0.501 0.499 0.002 0.001 0.497 0.500
Finland 0.503 0.495 0.008 0.002 0.488 0.498
France 0.510 0.484 0.025 0.007 0.462 0.493

Germany 0.503 0.496 0.007 0.002 0.490 0.498
Greece 0.502 0.497 0.004 0.001 0.494 0.499

Hungary 1.000 -0.322 1.322 0.350 −1.482 0.148
Ireland 0.507 0.489 0.018 0.005 0.473 0.496

Italy 0.506 0.490 0.016 0.004 0.476 0.496
Latvia 0.503 0.495 0.008 0.003 0.488 0.499

Lithuania 0.502 0.497 0.006 0.002 0.492 0.499
Luxembourg 0.824 0.070 0.754 0.258 −0.607 0.376

Malta 0.505 0.493 0.012 0.003 0.482 0.497
The Netherlands 0.505 0.492 0.013 0.003 0.481 0.497

Poland 0.504 0.494 0.009 0.003 0.486 0.498
Portugal 0.502 0.496 0.006 0.002 0.490 0.499
Romania 0.506 0.490 0.017 0.005 0.475 0.496
Slovakia 0.502 0.496 0.006 0.002 0.491 0.498
Slovenia 0.502 0.496 0.006 0.002 0.491 0.499

Spain 0.503 0.495 0.007 0.002 0.489 0.498
Sweden 0.606 0.211 0.395 0.140 −0.149 0.360

United Kingdom 0.503 0.495 0.008 0.002 0.488 0.498
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