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Preface to ”Artificial Intelligence for Smart and

Sustainable Energy Systems and Applications”

The world has begun to focus on migrating energy systems and applications in a smart and

sustainable manner. Environmental experts warn that the average temperature increase of the sea

by 2 degree Celsius may lead to irreversible effects on ice melting and global warming. Government

officials may face economic growth and carbon reduction dilemmas. Whilst continuing to utilize

fossil fuel as the main energy source, artificial intelligence was introduced to improve existing

energy systems and applications. Oweing to the advancement of big data infrastructure and

high-performance computing tools, data collection via energy network sensing devices provides

ground truth and valuable information for further processing and analysis.

This edition aims to share the latest research and results on artificial intelligence in energy

systems and applications for smart and sustainable systems. Special attention is drawn to

non-intrusive load monitoring, electric grids, wireless sensor networks, insulator detection,

rheological property prediction and static Young’s modulus estimation.

Many countries have already replaced traditional electric grids with smart grids by installing

smart meters. In general, advanced metering infrastructure is set up to support two-way

communication between end users and smart meters. With the total electricity consumption of

rooms and buildings, the benefits of smart metering are limited. Therefore, the research problem

of non-intrusive load monitoring (also named electricity disaggregation) from total electricity

consumption to the electricity breakdown of individual appliances has been a key research direction

for smart metering. Recently, granular, or high frequency electricity, data, and deep learning have

become feasible approaches to escalate the performance of electricity disaggregation.

Attention has been drawn to the application of artificial intelligence techniques for electric grid

and wireless sensor networks. Electric grid models for the prediction of peak-demand and tariff have

been proposed. Wireless sensor networks are often linked with traditional wired networks to allow

for mobility and quick installation. However, energy efficient schemes should be deployed to increase

the lifespan of wireless sensors.

Artificial intelligence has been applied and its effectiveness evaluated as a way to improve the

existing software, hardware, algorithms, tools, systems, and applications. The results may drive

new insights that have not been realized by human beings. This collection has gathered works

on insulator detection in inspection imaging, rheological property prediction for CaCl2 brine-based

drill-in fluid, and static Young’s modulus estimation for sandstone formation. In the last decade, we

have witnessed the success and effectiveness of applying artificial intelligence to energy systems and

applications. We expect that energy research will continue to grow worldwide and will contribute

to the vision of a smart city. In particular, edge computing, fog computing, and cloud computing

will mature and the cost will decrease. Thus, the research and industry sectors may begin sharing

computational work on edge, fog, and cloud devices. This is the key to carrying out data analysis

globally and locally.
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Abstract: Human beings share the same community in which the usage of energy by fossil fuels
leads to deterioration in the environment, typically global warming. When the temperature rises to
the critical point and triggers the continual melting of permafrost, it can wreak havoc on the life of
animals and humans. Solutions could include optimizing existing devices, systems, and platforms,
as well as utilizing green energy as a replacement of non-renewable energy. In this special issue
“Artificial Intelligence for Smart and Sustainable Energy Systems and Applications”, eleven (11)
papers, including one review article, have been published as examples of recent developments. Guest
editors also highlight other hot topics beyond the coverage of the published articles.

Keywords: artificial intelligence; computational intelligence; energy management; machine learning;
optimization algorithms; sensor network; smart city; smart grid; sustainable development

1. Introduction

The world mission is not only improving energy systems to become smart but also progressing
sustainable development. It can be further divided into environmental [1], economic [2], and
socio-cultural [3] perspectives. However, there does not exist a perfect energy source as the solution
for sustainable energy. It requires multidisciplinary techniques and systems to achieve the targets.

The rapid advanced development of computer science and engineering enables the implementation
and adoption of artificial intelligence (AI) into various energy systems and applications. This special
issue aims at consolidating recent developments of AI for smart and sustainable energy systems and
applications. Pilot studies are especially welcome. Topics of interest for the special issue include (but
are not limited to):

• New theories and applications of machine learning algorithms in smart grid;
• Design, development, and application of deep learning in smart grid;
• Artificial intelligence in advanced metering infrastructure;
• Multiobjective optimization algorithms in smart grid;
• Disaggregation techniques in non-intrusive load monitoring;
• Modelling and simulation (or co-simulation) in smart grid;
• Internet of Things and smart grid;
• Data driven analytics (descriptive, diagnostic, predictive, and prescriptive) in smart grid;
• Artificial intelligence techniques for security;
• Fraud detection and predictive maintenance;

Energies 2019, 12, 3108; doi:10.3390/en12163108 www.mdpi.com/journal/energies1
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• Demand response in smart grid;
• Peak load management approach in smart grid;
• Interoperability in smart grid;
• Cloud computing based smart grid;
• Vehicle-to-grid design, development, and application.

This Editorial is organized as follows. Section 2 summarizes the published articles in this special
issue. In addition, editors discuss several hot topics beyond the coverage of the special issue articles in
Section 3. Finally, the conclusion is drawn in Section 4.

2. Special Issue Articles

This section not only discusses each of the published articles in the main text but also summarizes
these in the form of a table (Table 1) as a quick review. It is worth mentioning that the topic of
non-intrusive load monitoring (NILM) has contributed five published papers.

Table 1. Summary of the application and methodology of the special issue articles.

Work Application Methodology

[4] # Home energy management and ambient
assisted living Non-intrusive load monitoring techniques

[5] Non-intrusive load monitoring for energy
disaggregation

Genetic algorithm; support vector machine;
multiple kernel learning

[6] Optimizing residential energy consumption Bacterial foraging optimization; flower
pollination

[7] Non-intrusive load monitoring for energy
disaggregation Long short-time memory and decision tree

[8] Energy efficient coverage in wireless sensor
network Distributed genetic algorithm

[9] Estimation of load and price of electric grid

Enhanced logistic regression; enhanced
recurrent extreme learning machine;

classification and regression tree; relief-F and
recursive feature elimination

[10]
Detection of the insulators in power

transmission and transformation inspection
images

Improved faster region-convolutional neural
network

[11] Non-intrusive load monitoring for energy
disaggregation Concatenate convolutional neural network

[12] Non-intrusive load monitoring for energy
disaggregation Linear-chain conditional random fields

[13] Prediction of the rheological properties of
calcium chloride brine-based mud Artificial neural network

[14] Estimation of Static Young’s Modulus for
sandstone formation

Artificial neural network; self-adaptive
differential evolution

# Review article.

The review article “NILM techniques for intelligent home energy management and ambient
assisted living: A review” authored by A. Ruano, A. Hernandez, J. Ureña, M. Ruano, and J. Garcia
provided a constructive review on home energy management and ambient assisted living [4]. The
focus was on NILM, which aimed at producing a breakdown of the energy profile in equipment level
based on the total energy profile of the apartment. Here, the energy profile could be information
related to current, voltage, power, energy, power factor, harmonic distortion, etc. This review article
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divided NILM techniques into four parts: data collection, event detection, feature extraction, and load
identification. The authors highlighted that NILM was a highly scalable but less accurate homecare
monitoring system for ambient assisted living, compared to direct and indirect methods via biosensors
and sensors for activity monitoring.

There are ten technical papers that proposed various AI techniques for energy systems and
applications, towards the goal of smart and sustainable development. The first article “Energy
sustainability in smart cities: artificial intelligence, smart monitoring, and optimization of energy
consumption” [5] written by K. T. Chui, M. D. Lytras, and A. Visvizi formulated the NILM algorithm
as a multiobjective optimization problem. Multiple kernel learning was introduced to the support
vector machine classifier to enhance the classification accuracy by integrating valuable characteristics of
kernels. Weighting factors between kernels were added and solved by a genetic algorithm to optimize
the performance.

M. Awais, N. Javaid, K. Aurangzeb, S. Haider, Z. Khan, and D. Mahmood published an
extended article “Towards effective and efficient energy management of single home and a smart
community exploiting heuristic optimization algorithms with critical peak and real-time pricing tariffs
in smart grids” [6] from the conference paper in the 2018 IEEE 32nd International Conference on
Advanced Information Networking and Applications (AINA) [15]. The residential energy consumption
problem was considered as a heuristic multiobjective optimization problem. The bacterial foraging
optimization algorithm and flower pollination algorithm were utilized to minimize the electricity cost
and peak-to-average ratio while maximizing the user comfort. The trade-off solution was recommended
attributable to conflicting objectives.

In [7], T. T. H. Le and H. Kim presented an article “Non-intrusive load monitoring based on novel
transient signal in household appliances with low sampling rate”. Differing from [4], the authors
divided the NILM framework into three parts: data acquisition, feature extraction, and classification
model. The feature vector was constructed by transient signal. Long short-term memory and decision
tree models were applied for the energy disaggregation problem. The performance evaluation of the
proposed method was tested through five appliances: Samsung monitor, LG monitor, hairdryer, fan,
and air purifier, where the accuracy was up to 97%.

Z. J. Wang, Z. H. Zhan, and J. Zhang in their article “Solving the energy efficient coverage
problem in wireless sensor networks: A distributed genetic algorithm approach with hierarchical
fitness evaluation” [8] proposed a distributed genetic algorithm to address the issue of energy efficient
coverage (EEC) in wireless sensor networks. The authors evaluated the fitness using a hierarchical
approach and constructed a two-level fitness function to determine the number of disjoint sets and
its coverage performance. It was demonstrated to be effective in the maximization of the number of
disjoint sets.

Predicting the load and price of the electric grid have been important tasks for utility in lowering
the electricity cost and improving the service quality for end customers. A. Naz, M. U. Javed, N. Javaid,
T. Saba, M. Alhussein, and K. Aurangzeb have addressed these topics via an article “Short-term electric
load and price forecasting using enhanced extreme learning machine optimization in smart grids” [9].
Two-feature extraction approaches were adopted, namely classification and regression tree, relief-F,
and recursive feature elimination. The extracted features were passed to enhanced logistic regression
and enhanced recurrent extreme learning machines for load and price estimation. Results showed that
the proposed two algorithms outperformed existing methods by 5%.

Z. Zhao, Z. Zhen, L. Zhang, Y. Qi, Y. Kong, and K. Zhang have published an article “Insulator
detection method in inspection image based on improved faster R-CNN” [10]. This paper proposed an
improved faster region-convolutional neural network to detect the insulators in power transmission
and transformation inspection images. It yielded a precision of 81.8% with an enhancement of 28%. It
was noted by the authors that the proposed method was customized to the specific type of insulator.
For other insulators, it required further fine-tuning to achieve an optimal performance.

3
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The article “Concatenate convolutional neural networks for non-intrusive load monitoring across
complex background” was presented by Q. Wu and F. Wang [11]. The concatenate convolutional neural
network was newly proposed as the NILM technique, which was evaluated based on key performance
indicators: accuracy, robustness, and generalization of load recognition. A key observation was
concluded regarding the background load, which is almost stationary in a given short period of time.
This method improved the F1-score, precision, and recall by 12%, 19%, and 4% respectively.

In [12], H. He, Z. Liu, R. Jiao, and G. Yan proposed a novel algorithm named linear-chain conditional
random fields for energy disaggregation in the article “A novel nonintrusive load monitoring approach
based on linear-chain conditional random fields”. This approach has eliminated some obstacles for
performance improvement: (i) they relax the independent assumption of the hidden Markov model,
and (ii) current and real power are included as representative features. As a result, it achieved an
outstanding accuracy of 96–100%.

A. Gowida, S. Elkatatny, E. Ramadan, and A. Abdulraheem wrote an article “Data-driven
framework to predict the rheological properties of CaCl2 brine-based drill-in fluid using artificial
neural network” [13]. Artificial neural network was adopted to forecast the rheological properties of
brine-based drill-in fluid so that it could avoid the loss of circulation, pipe sticking, and hole cleaning.
The correlation coefficient and average absolute percentage error were 0.97 and <6.1%, respectively.

Finally, A. A. Mahmoud, S. Elkatatny, A. Ali, and T. Moussa contributed an article “Estimation of
static Young’s modulus for sandstone formation using artificial neural networks” [14]. The authors
introduced self-adaptive differential evolution on top of artificial neural network to further enhance
the performance of the estimation of static Young’s modulus for sandstone formation. This approach
reduced the average absolute percentage error significantly from 36% to 1%, as well as the perfect
correlation coefficient.

3. Trends and Future Development

Besides the applications in Table 1, there are numerous applications that apply AI for smart and
sustainable energy systems. The guest editors would like to summarize the key topics—renewable
energy, cloud platform, edge computing, fog computing, as well as electric and plug-in hybrid electric
vehicles—in this section. Also, we have attached a few related works as recommended readings in
each field.

Renewable energy (specifically energy harvesting), acting as an alternative of fossil fuels, is one
of the directions to fight against global warming. Typical sources are solar [16,17] and wind [18,19].
Focuses are basically on the reliability and efficiency of energy harvesting. Other emergent topics
include vibration energy [20], water wave energy [21], acoustic energy [22], and waste-to-energy [23].

The cloud platform is not unfamiliar in today’s era, as many smartphone users have linked their
personal information to it. A more advanced technique of the cloud platform possesses not only big
data storage but also massive computation power, which allows complex data analytics for smart grid
data streaming, processing, analyzing, and storage. Readers are encouraged to read the following
articles [24–27].

Edge computing and fog computing are alternatives to cloud computing that offer relatively local
(lower latency) computation. In other words, data processing and loading can be distributed to edge,
fog, and cloud services. For edge computing, it is recommended for readers to read [28,29], and the
readings for fog computing are [30,31].

There is an increasing portion of new buyers purchasing electric or plug-in hybrid electric
vehicles, which can reduce the usage of fuel. Various AI techniques have been applied to plug-in
hybrid electric vehicles, for instance, artificial neural network [32] and integrated model predictive
controller [33]. When it comes to electric vehicles, biased coupling, torque estimation, and cognitive
heuristic techniques were adopted in [34] and deep neural networks in [35].
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4. Conclusions

This special issue is composed of eleven papers (one review article) with various topics and
methodologies in AI for smart and sustainable energy systems and applications. Contributors have
shared many valuable insights on recent developments and beyond. The guest editors have briefly
summarized the details of each work, as well as highlighted four groups of emergent topics in the
energy industry. The guest editors would like to thank the contributions of all colleagues and reviewers.
We hope to witness a lot of real implementation and adoption of AI techniques in the energy industry
in the near future.

Author Contributions: K.T.C. and M.D.L. contributed equally to the design, implementation, and the delivery of
the special issue. All co-editors contributed equally in all the phases of this intellectual outcome.

Funding: The authors would like to thank Effat University in Jeddah, Saudi Arabia, for funding the research
reported in this paper through the Research and Consultancy Institute.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: The ongoing deployment of smart meters and different commercial devices has made
electricity disaggregation feasible in buildings and households, based on a single measure of the
current and, sometimes, of the voltage. Energy disaggregation is intended to separate the total power
consumption into specific appliance loads, which can be achieved by applying Non-Intrusive Load
Monitoring (NILM) techniques with a minimum invasion of privacy. NILM techniques are becoming
more and more widespread in recent years, as a consequence of the interest companies and consumers
have in efficient energy consumption and management. This work presents a detailed review of
NILM methods, focusing particularly on recent proposals and their applications, particularly in the
areas of Home Energy Management Systems (HEMS) and Ambient Assisted Living (AAL), where the
ability to determine the on/off status of certain devices can provide key information for making
further decisions. As well as complementing previous reviews on the NILM field and providing a
discussion of the applications of NILM in HEMS and AAL, this paper provides guidelines for future
research in these topics.

Keywords: non-intrusive load monitoring; home energy management systems; ambient assisted
living; demand response; machine learning; internet of things; smart grids

1. Introduction

Non-Intrusive Load Monitoring (NILM) techniques have become one of the most relevant
alternatives for energy disaggregation, since they provide a method to separate the individual
consumption for certain appliances, respecting consumers’ privacy and often using already-deployed
smart meters. The rise of these NILM techniques has also been fostered by the recent importance of
some emerging domains, such as Internet of Things (IoT), Smart Grids (SG) or Demand Response (DR)
energy programs, where the information provided by NILM can be useful for deciding on further
developments or services.

Most applications that use NILM techniques pursue energy efficiency, using itemised energy
information to give feedback to tenants, who can consequently take actions to reduce their consumption
through “energy awareness”. One of the major advantages of the NILM approach is its non-intrusive
nature; it is also easily deployed if smart meters are already installed.

On the other hand, with the increasing age of the population and medical advances, there is
increasing demand for technology that supports the elderly with leading independent lives.
Many digital solutions have been investigated to achieve personalized care, also taking into account
other aspects such as acceptance and cost. Among them, NILM not only can provide information
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about activities within the home, but also has become an emerging alternative to be used in health and
care applications. In this case, again, non-intrusiveness is the main and crucial advantage for NILM.

Consequently, as a new contribution and a complement to previous reviews in this field, this work
will be focused on Home Energy Management Systems (HEMS) and Ambient Assisted Living (AAL),
which are two domains where NILM has clearly contributed to the proposal of new solutions and
services, with significant ongoing research, oriented to the achievement of a more efficient energy
management, and to the enhancement of AAL systems in response to daily needs of an increasingly
ageing population. The review has been conducted to include recent NILM proposals and work using
NILM techniques, with a particular emphasis on the requirements that these two types of applications
(HEMS and AAL) imply. The analysis includes aspects in the low-level processing (e.g., sampling rate
and signal features) as well as in the high-level (e.g., algorithm considered for load identification).
Additionally, it deals with the involved data sources and highlights the main contributions of each work.

The rest of the manuscript is organized as follows: NILM techniques are reviewed in detail in
Section 2; Section 3 illustrates the application of NILM to Intelligent Home Energy Management;
Section 4 deals with the use of NILM in the AAL domain; Section 5 points out current issues and
presents guidelines for future research; and, finally, conclusions are drawn in Section 6. A summary of
the most important characteristics of the works referenced in this review is presented in the Appendix.

2. NILM Review

A few reviews are already available in the literature about NILM techniques [1–4], which the
reader is encouraged to read. This section briefly introduces NILM techniques and presents significant
references, focusing on the most recent ones, not covered in previous reviews. For that purpose,
the main stages in NILM are:

1. Data collection: electrical data, including current, voltage, and power data, are obtained from
smart meters, acquisition boards or by using specific hardware;

2. Event detection: an event is any change in the state of an appliance over time. An event implies
variations in power and current, which can be detected in the electrical data previously collected
by means of thresholds;

3. Feature extraction: appliances provide load signature information or features that can be used to
distinguish one from another;

4. Load identification: using the features previously identified, a classification procedure takes place
to determine which appliances are operating at a specified time or period, and/or their states.

2.1. Data Collection

The first stage of energy monitoring system is dedicated to data acquisition or collection. This is
an aspect frequently considered as less relevant, but it has major consequences in terms of the types of
application that can later be tackled by NILM algorithms, as well as the performance, granularity, etc.
This data acquisition is commonly related to a device or system, very close to the existing electrical
facilities, where different approaches can be deployed in order to measure certain parameters, such as
currents or voltages, in a certain household or building. Sometimes other parameters, actually coming
from these voltage and current signals, can be determined, such as the real power, the apparent power,
the power factor, or the I-V trajectory [5], and used as features. Not only these parameters, but also
their variation over time, are clues to guide our approach to any further energy disaggregation and
appliance identification. Taking these considerations into account, this section has basically considered
two main criteria when analysing previous works: the sampling rate employed in the data collection
and the type of hardware architecture implemented.

For simplicity’s sake, maybe the most straightforward solution for data collecting is to think
about available commercial plug-in devices. These provide off-the-shelf platforms, normally with
the basic functionality ready to be used, but also with some significant drawbacks, especially in
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terms of sampling rates and flexibility. This trend was already stated in [6], where, after studying
different commercially available smart meters and/or energy monitoring, it was concluded that these
provide the required computational capacity to cope with advanced techniques, such as NILM. Neurio
Technology Inc [7] and Smappee N.V. [8] provide similar energy monitoring solutions, both based
on a current clamp, together with a set of utilities and applications intended to display and process
the collected information as easily as possible. Furthermore, they provide different communication
protocols to report data to other points; Ethernet or Wi-Fi links are the most popular, but this also
includes other protocols such as ZigBee or RS-485. Other companies, such as ONZO Ltd. or Bidgely,
Inc., propose similar approaches, most of them based on a smart meter/sensor and machine learning
for energy disaggregation.

With regard to the drawbacks presented by the commercial solutions, it is worth noting that
most of them are constrained to low sampling rates, 1 Hz maximum [9,10], thus limiting the achieved
performance and the chance to use them in some demanding types of applications. Even worse,
sometimes this sampling frequency is not consistent over time, thus adding a new challenge. In any
case, it is widely accepted that systems providing higher sampling frequencies support deeper analysis
of the measured features in order to achieve better energy disaggregation [11]. In some previous works,
such as [12], the influence of the sampling frequency on the final performance was analysed, concluding
that to implement more feasible and reliable appliance classifiers than those already proposed in the
field, sampling frequencies should be higher than 4 kHz. As a counterpart, the use of high sampling
frequencies is costly, both in terms of software and hardware complexity, and also requires larger
communications bandwidth to transmit data to any monitoring or centralized station. Overcoming
these difficulties is technically feasible nowadays, but the integration of these enhancements into
commercial smart meters will definitely increase the final cost.

Although some smart meters are capable of acquiring signals in the range of kHz [13],
their deployment is not actually so extended among electrical companies, likely due to their higher
cost. This is the reason why those efforts focused on high sampling rates have been particularized in
the design and development of ad-hoc acquisition systems, most of them based on a current clamp and
a voltage sensor, together with fast enough analogue-digital converter. This trend is followed in [14,15],
where an oscilloscope or a power analyser was used as the acquisition module. Furthermore, in order to
employ less expensive and more specific and portable hardware, commercial or ad hoc dedicated data
acquisition modules have been applied to measure voltages and currents [16–20]. A direct example of
this approach is the BLUED database, acquired by a specific hardware design based on a commercial
NI 16-bits acquisition board, which samples current and voltage [21]. Figure 1 gathers the different
aforementioned alternatives for data collection in NILM applications, according to the sampling rate.

Figure 1. Data collection systems for NILM applications versus sampling frequency.
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As has already been mentioned, the main drawbacks of the high sampling frequencies required
by NILM algorithms to boost their disaggregation capabilities and identification performance are the
increase in computational complexity and the real-time constraints associated with any implementation
of these proposals, particularly when commercial smart meters or energy monitors are considered.
For that purpose, different techniques have been proposed, aiming at reducing the algorithms’ load.
One of them is compressed sensing, which achieves a trade-off between the sampling frequency and
the degree and accuracy in the disaggregation [22].

Figure 2 summarizes the above-stated aspects concerning data collection in systems oriented to
NILM applications. It is also used to introduce the concept of locally and remotely computed tasks in
the context of data collection for NILM applications.

Figure 2. General view of the different aspects involved in the process of data collection for NILM applications.

After acquiring raw data, event detection (typically the on/off switching of electrical devices)
should be tackled, as well as some parameters (often classified as steady-state features and transient
ones) determined. These procedures, associated with data acquisition and first processing, can,
depending on the computing capacity of local devices, be computed locally, thus reducing the amount
of data to be transferred to a remote monitoring system. In this way, feature extraction tasks are
sometimes implemented in local devices, especially when high sampling rates are available. In these
cases, the hardware architecture should present a minimum computing capacity, and be designed
keeping in mind that, as they will be finally installed in buildings and households, they should be
portable, plug-in and easy to handle [23]. On the other hand, these features are often reported to
remote centres where they are processed for further applications, such as load identification or even
higher-level tasks, such as energy saving, assisted living, etc.

Keeping in mind the communication needs represented in Figure 2 between the local devices and
the remote computing centres, a last relevant point must be considered: how to transmit event detection
data as well as the features, locally determined. This data link can be tackled by means of a wide range of
technologies and protocols, such as GPRS, PLC, Wi-Fi, Internet and so on, including in-home networks
(ZigBee, Bluetooth, etc.) [24–26]. Another approach consists of subcontracting any telecommunication
supplier or company, as shown in [27] with Orange. In [28] a gateway based on the OSGi framework is
designed to collect information from sensors and smart meters via a ZigBee link.

It is also worth noting that many works in the literature avoid facing the issues that arise from
practical and experimental implementations by verifying their proposals using existing databases
composed of samples measured from real scenarios under different conditions [29]. Some of these
popular databases are REDD [30], BLUED [21], PLAID [31], REFIT [32], TRACEBASE [33], WHITED [34],
UK-DALE [35], DRED [36] or PECAN street (https://www.pecanstreet.org/). This approach allows
researchers to deal in advance with the challenges and problems otherwise found in later stages, such as
event detection or feature extraction, at the expense of limiting their results to the data collection
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system implemented during the creation of the database, with a particular key influence from the
aforementioned sampling rate.

Summing up, the performance and type of hardware setup in the data collection determine the
options available in later stages, enabling in some cases the detection of events in the signals of interest,
and, specially, profiling a feature set that can be used for load identification. Both aspects are tackled in
upcoming sections.

2.2. Event Detection

In NILM, any switch in a signal from a certain steady state to a new one is considered an event.
It is often associated with high sampling rates, as this condition is necessary during the corresponding
signal processing to achieve a suitable performance in the detection of events. Due to the fact that events
are more clearly identified in current signals, compared to voltage ones, it is worth noting that most
previous event detectors have dealt with this type of signal. Furthermore, event detectors typically use
three different approaches, according to previous work [37]: expert heuristics, probabilistic models
and matched filters.

Expert heuristics consist of the creation of a set of rules for each appliance. They commonly
require the initialization of certain variables, such as the total power demand and power variation.
Most previous works based on this approach were published in the 1990s and 2000s, focused on the
detection of main appliances with significant power consumption. On the other hand, probabilistic
models provide a probability, used to make a decision about the occurrence of events. For that
purpose, they require a training process to fix certain variables and learn some statistical models
for appliances and environments. A particularly well-known case is the Generalized Likelihood
Ratio (GLR) method [37,38]. Finally, matched filters are characterized by extracting the signal
waveforms and correlating them with known patterns. Although in this case no previous training or
knowledge is needed about appliances or environments, this approach often implies high sampling
rates. Techniques such as envelope extraction, advanced filtering, Kalman filter and Hilbert transform
are usually involved here in a post-processing stage to achieve suitable event detection and even
energy disaggregation [39–41]. Clustering and bucketing techniques have also been used in event
detection [42].

Event detection is often evaluated in terms of certain metrics [37]. The most relevant ones are
the true positive rate, the true positive percentage, the total power change and the average power
change. The false positive rate and the false positive percentage are less frequently used metrics.
In many cases, all the above metrics are combined into one, usually called a score function, where the
different parameters can be weighted according to their desired influence on the final performance of
the event detector.

In [43] a probabilistic method, based on a Goodness-of-Fit (GOF) methodology, is compared with
an expert heuristic method on the REDD database; the authors found that the GOF event detection
methodology achieves the smallest number of false positives. In [44] an event-based algorithm is
proposed to identify load signatures, according to trajectories of real, reactive and distortion power.
In [45] a simple and fast event detection algorithm is proposed for the variations of the current signal.
Its main advantage is the higher determination accuracy of the beginning of the events. On the other
hand, the detected events are used in [46] to drive a finite state machine based on fuzzy transitions that
disaggregates different appliances on signal sampled at 2 Hz.

More recently, Decision Trees (DT) and Long Short-Time Memory (LSTM) models are used for
event detection [47], obtaining 98.6% and 92.6% detection accuracy, respectively. Furthermore, [48]
presents a very simple detection algorithm used in a low-complexity NILM proposal, achieving suitable
performance in six houses from the REDD dataset.

Another novel approach is presented in [44], where, after pre-processing the voltage/current signals
to enhance the event change detection, that event is classified into certain categories of appliances by
applying principal component analysis (PCA) to the PQD (active, reactive, and distortion powers)
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trajectories captured during the event change. This approach follows the trend of considering event
transients as an additional feature in later appliance identification [2].

In general terms, if event detection is applied, it leads to the determination and selection of
the most representative features for a certain appliance, so they can be used in a later identification.
These features are particularly significant around the change of state (event), thus justifying the
importance of successful event detection when necessary. Figure 3 presents a general overview of
blocks involving such event-based NILM algorithms. The next subsection is dedicated to introducing
these sets of features and how they are employed in appliance identification.

Figure 3. Block diagram of an event-based NILM algorithm to obtain event times and types of loads
involved in each event.

2.3. Feature Sets

Energy disaggregation is achieved by identifying active appliances using a classification procedure.
This way, a set of features must be available that should be closely related, on one hand, to the data
collection and, on the other hand, to the methods that will be used for appliance identification.
NILM features are highly dependent on the sampling rate used, which must be understood as the rate
of the data output by the measurement device and that will be used for disaggregation, not the sampling
rate of the current and voltage that constitute the device’s input. A coarse division, using the threshold
of 1 s for the sampling period, enables separating features between macroscopic or low-frequency and
microscopic or high-frequency. A finer division proposed in [22] and used here divides the range of
sampling rate into six classes: very slow, slower than 1 min; slow, between 1 min and 1 s; medium, faster
than 1 Hz but slower than the fundamental frequency, high, from the fundamental frequency up to
2 kHz; very high, sampling frequency between 2 and 40 kHz; and extremely high, faster than 40 kHz.
In this section we shall use this division, introducing the features used in representative NILM works
and focusing on the most recent ones.

Most applications using very slow or slow sampling employ features obtained from the time
series of power variables: voltage and current, apparent, active and or reactive power, power phase
angle and power factor, etc. We shall assume in the following that the instantaneous values of the
current voltage and power are denoted as i, v and p, respectively; their RMS values as IRMS and VRMS;
the Active, Apparent and Reactive Powers as P, S and Q, respectively; the Total Harmonic Distortion
as THD; and the Power Factor as PF.
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The most employed feature is S, exclusively used in [26,49–51]; P and Q were employed in [52,53].
In a recent work [54] P and VRMS measurements were used, sampled at 1 Hz, obtaining a high level of
accuracy, even with varying supply voltages.

The various time series can be used in several ways. In a number of applications they are used
directly, as it is the case of [55], where the P time series of the Individual Household Electric Power
Consumption Dataset (IHEPCD) [56] is employed; in [57], where P and IRMS are used, taken from
the Almanac of Minutely Power dataset (AMPds); and [58], which employed the S and IRMS series,
from the AMPds and REED datasets. On the other hand, in [59] the power time series is segmented into
sub-sequences that are used to compute the statistical moments of the load consumption, and in [60]
the high-frequency current signal is subject to time-domain transformations.

Time-based features are typically used in eventless NILM algorithms, and the ones belonging
to the low-sampling are typical steady-state ones. Within this sampling category, several other
approaches have additionally been proposed. For instance, the authors of [61] split a power signal into
“powerlets,” which are the minimal group of short sequences (that represent the signal), obtained from
Auto-Regressive models with eXogeneous inputs (ARX), characterizing each appliance. “Shapelets” [62]
are similar, since every shapelet is a small subgroup of a time series.

Moving on to the next sampling category, the medium-rate range allows the characterization of
transient electrical behaviour as appliances change state. While some transients may be visible from
low-rate sampling, medium-rate sampling allows for much more detailed information on the transient
shapes to be acquired. The authors of [63] proposed the use of seven features, extracted from the
current waveform: number of spikes; number of semi-steady states (permanence in the state between 1
and 5 s); number of steady states (permanence longer than 5 s); total time in semi-steady states/length
of the operating waveform; total time in steady states/length of the operating waveform; number of
states per time window; and existence or nonexistence of repeating patterns.

As a time series often provides a high level of redundancy, increasing the model complexity and
possibly leading to a low accuracy, it can be transformed into a frequency domain. This requires
high sampling rates, however. Several features can be extracted from frequency information, such
as harmonics [64] obtained with Fourier transform and multiple frequency bands using information
entropy [65]. Due to its multi-resolution and time-frequency localization property, Discrete Wavelet
Transform (DWT), is also employed [4,66]. Other transforms were also employed, such as the Stockwell
Transform [67], and combinations of different techniques, such as DWT and harmonics [68], have also
been proposed.

Very high rate data allows us to obtain much more detail about each appliance’s waveform,
either from the higher harmonics or from the shape of the raw current and voltage waveforms
themselves. Two-dimensional voltage-current (V-I) trajectories, corresponding to the normalized
steady-state voltage and current signals during one cycle, have already been considered as a likely
method to identify load signatures in terms of features [69]. Generally speaking, the V-I trajectory
presents unique characteristics for appliances with different working principles (resistive or inductive),
which night be collected by wave-shape (WS) features, where it is possible to extract certain features,
such as the looping direction, the enclosed area and the number of self-intersections. More recent
applications [13] used additional features extracted from the V-I trajectory. Other features involving
the shape of the waveforms [70] can be obtained from p(t) and from the Instantaneous Admittance
Waveform (IAW).

Higher-order harmonics can be obtained an using extremely high sampling rate, also enabling
the capture of electric noise. In fact, the authors of [71] showed that the use of high frequency
ElectroMagnetic Interference (EMI) signals enables the differentiation of similar switching mode power
supplies in a home, which cannot be obtained with other techniques. Higher-order harmonics are
employed in [18–20]. The first work is an extension of [65] for the simultaneous operation of various
appliances, whereas the third one proposes to use, instead of the amplitudes of the current harmonics,
the harmonic current phasors. The results show important improvements in performance when
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several combinations of appliances are considered. The second work uses the same type of features,
although employing a different identification procedure. It achieves excellent performance for different
combinations of small nonlinear loads. Unfortunately, as the data used are different and private, the
performance of approaches [19,20] cannot be compared.

The features identified above can be computed from the main power feeder of the house.
However, other information can be used. Variables such as time and duration of usage for a given event
can be inferred just from the main power sensor [72]. In [73–75] the frequency of usage of an appliance,
as well as the correlation of usage of multiple appliances, have been applied. This information can
be extended with users’ behaviour to express the uncertainty for each state of each appliance [76].
Occupancy, which can be measured or inferred in several ways, has been used to reduce the complexity
of NILM algorithms [36]. For HVAC systems, external weather information has also been used [77].

It is not uncommon to use combinations of the features described above, leading in this way to
hybrid approaches. For instance, [70,78] employ P, Q, IAW, p, eigenvalues and switching transient
waveform, as features applied to a “Committee Decision Mechanism.” More recently, feature selection
algorithms have been employed to reduce an original dataset of 55 steady-state and 23 transient
features to the 20 most relevant features [79].

2.4. Load Identification

Using the features described above, computed from the aggregate load, the objective here is to
identify the appliances that are operating at a given time. This can be formulated as a not so simple
optimization or classification problem, as four appliance models are usually considered:

• Type I—On/off devices: most appliances in households, such as bulbs and toasters;
• Type II—Finite-State-Machines (FSM): the appliances in this category present states, typically in a

periodical fashion. Examples are washer/dryers, refrigerators, and so on;
• Type III—Continuously Varying Devices: the power of these appliances varies over time, but not

in a periodic fashion. Examples are dimmers and tools.
• Type IV—Permanent Consumer Devices: these are devices with constant power but that operate

24 h, such as alarms and external power supplies.

This way, for the case of type II appliances, identification is not only translated into which
appliances are active, but also their states. Additionally, some appliances can be replicated (for instance,
two fridges might be available in a household), and it might be necessary to identify the operation/state
of each replicated device using similar load signatures.

As a myriad of approaches has been proposed for this last step of NILM, the aim of this section
is not to provide a deep review of the existing alternatives, but rather to point out important works
on optimization and machine learning (supervised and unsupervised) algorithms used for load
classification. Before introducing them, it should be noted that the performance of the different
algorithms must be compared, using common datasets (please see Section 2.1) and similar performance
criteria (please see [29,80] for a comprehensive list of performance metrics employed).

Optimization approaches use different methods to perform a combinatorial search. Examples are
hybrid programming [81], genetic algorithm [82] and segmented integer quadratic constrained
programming [83]. The main problem with this type of method, however, is their heavy computational
burden. For this reason, most approaches belong to the so-called machine learning algorithms,
involving both supervised and unsupervised methods.

Supervised techniques use offline training to achieve a database of information used to design
the classifier (s). Some common supervised learning techniques that have been applied in NILM
are (shallow) Artificial Neural Networks, mainly Multilayer Perceptron (MLP) [66,84], concatenated
Convolutional Neural Networks (CNNs) [85], Deep Neural Networks [53,86–91], Support Vector
Machines (SVM) [66,92], K-Nearest Neighbours (k-NN) [92–94], naïve Bayes classifiers [64,94,95] and,
recently, linear-chain Conditional random fields (CRFs), which takes into account how previous states
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influence the current state and can deal with multi-state loads [96]. In [97] the performance of three
classifiers, MLPs, Radial Basis Function (RBF) networks and SVM, with different kernels, is compared
by employing odd harmonics (up to the 15th) from the current waveform, measured in a proprietary
experimental setup. It has been concluded that all models provide excellent classification performance
and correctly identified the existing devices, establishing the applicability of the proposed approach.

Unsupervised methods do not require any training prior to classification. This is an important
advantage since, in this way, minimum effort is required from the user and the intrusiveness involved
in building a database is reduced. Feature clustering, and the later labelling of each cluster with
meaningful appliance names has been applied in [98,99]. A fusion of a supervised training process
over available labelled datasets with an unsupervised training method over unlabelled aggregate data
is proposed in [50].

The most recent unsupervised techniques applied to NILM belong to a family of methods that
assume that the electrical signal is the output of a stochastic system, maintaining a representation of
the whole system state, instead of dealing with individual events [100]. Examples are Hidden Markov
Methods (HMM) and variants [14,26,83,100–105].

Another powerful option for solving data mining and signal processing problems is Graph Signal
Processing (GSP). GSP applied to NILM [41,106,107] showed that this approach had remarkable
performance related to the HMM approaches, offering additional advantages compared with
conventional NILM methods, not requiring a training phase and obtaining good performance in
low-sampling environments.

Tables A1 and A2, in the Appendix A, summarize the features employed, the load identification
technique, the main contributions, the data source used, as well as the main application of the most
important works referenced here. Notice that only two applications (HEMS and AAL) have been
considered, identifying the context in which the referenced work was developed. All the other
unlabelled references did not have a specific application in mind. No indication of performance
was incorporated in the tables, as different data sources were used and, even in works using the
same datasets, different houses/frequencies/number of appliances/performance criteria were involved,
making a performance comparison not meaningful. For the sake of readability, references were ordered
according to the sampling frequency employed and divided into two tables. The former considers
approaches requiring data acquired up to medium sampling rates, and the latter proposals requiring
higher sampling frequencies.

Having reviewed the steps comprising NILM methods and the most relevant and recent proposals
in this topic, we will in the next two sections address their use in two important applications,
HEMS and AAL.

3. Home Energy Management Systems

3.1. General Overview of HEMS

Buildings are actually the most demanding sector in terms of consumption, representing 40%
of the total primary energy and accounting for 74% of the electricity sold in the USA [108]. For this
reason, Home Energy Management Systems (HEMS) are becoming increasingly important to invert
the continuously increasing trend in (electrical) energy consumption. Reviews on HEMS can be found
in [109–114], as well as the works included in [115].

HEMS offer advantages to both residential occupants and electricity suppliers. For the former,
HEMS are a means to reduce energy consumption in a household (or, perhaps more important,
the electricity bill) while maintaining occupant’s comfort. Notice that HEMS should not only perform
real-time monitoring and scheduling of various home appliances, based on the user’s preferences,
but are also employed for the management of home renewable energy systems and energy storage
systems, if available [115].
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For the suppliers, the two-way communication enabled by smart grids allows much better
management of the whole electricity network and the implementation of several mechanisms known
as Demand Response. DR are those modifications in the electric usage of costumers, compared to other
previous consumption patterns, as a consequence of the variations in the electricity cost over time, or
incentives payments designed to ease a reduced electricity usage during those intervals with high prices,
or suspected system reliability. Currently, DR are often grouped into two categories: price-driven
and incentive or event-driven. The former can be sub-divided into several forms—time-of-use
pricing, critical peak pricing, real-time pricing and peak-time pricing; while in the latter category
we can find direct load control, emergency demand response programs, capacity market programs,
interruptible/curtailable services, demand bidding/buyback programs and ancillary service market
programs [112,116].

The first step of any HEMS is to monitor the electricity consumption of the several devices
existing in a household. This can be achieved intrusively or using NILM techniques. In general terms,
the non-intrusive approach is more popular both in academia and industry [3], mainly due to the fact
that sub-metering installation is often expensive, difficult to upgrade, and involves certain privacy
issues, thus avoiding any intrusive approach.

By reviewing previous literature [117], the availability of a disaggregated energy bill might be
related to the reduction of domestic electricity consumption by 0.7–4.5% on average. This, as we know,
is obtained with NILM techniques, by estimating the active appliances consumption. The availability
of load disaggregation data via NILM can also enhance some other aspects, such as the load demand
forecasting accuracy, and provide better criteria for companies to decide. For the grid operators,
NILM additionally allows flexible resources management for demand response and tackling with
uncertainty derived from renewable sources [118].

3.2. Use of NILM in HEMS

As mentioned before, a HEMS should schedule conveniently the electrical appliance’s usage,
as well as the electric energy flow, if renewable energy sources and/or storage are available at home.
NILM techniques can also improve this overall goal, but some factors should be taken into consideration.

Firstly, it is important to classify appliances as non-deferrable (or non-schedulable) and deferrable
(schedulable). The former comprises devices such as lighting, cooking or refrigerators, whose operation
cannot be delayed. The latter includes washers and dryers, water pumps, and so on, whose period
of operation can change according to the price of energy. Of special importance are HVAC systems,
such as electric water heaters, and space heating/cooling systems, which sometimes are denoted as
Thermostatically Controlled Loads (TCL). As NILM identifies the appliances that are active at any one
time, it allows us to know in real time which schedulable and non-schedulable appliances are active.

Secondly, in previous sections we have essentially used NILM to identify appliances. For HEMS,
electric consumption should also be estimated, and higher scheduling priority should be given to the
appliances requiring high energy consumption. The level of consumption should also be estimated by
the NILM module, and consumption can be predicted using forecasting methods. It is well known that
HVAC systems actually are the largest part of energy consumption in buildings, and therefore correct
HVAC control is important. Considering again the case of the USA [108], HVAC systems account for
35% of the primary energy and 45% of electricity consumed in buildings.

Thirdly, appliances’ turn-on and turn-off times and time duration are important parameters for
appliance scheduling. Note, however, that for Type II devices, these parameters should be available for
all states of operation. The frequency of usage for each class of appliances can be obtained by means of
these variables.

Finally, appliance flexibility is important for HEMS applications: This is a concept that is not
universally accepted, with different forms proposed for its calculation. One definition, introduced
in [119], is the possibility of the appliance getting involved in DR programs, taking into account not
only the appliance characteristics but also the usage preferences from the user. Note that HVAC and
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power heaters are highly flexible loads, thanks to the inertia of an associated thermal storage and the
need to fulfil some quality constraints [120].

The use of NILM techniques in HEMS has been increasing over the years. Perhaps the first
proposal of using NILM in DR programs was in [121]. The authors analysed the requirements of DR
and proposed a new NILM system with an enhanced load space and measurement approach.

Evolutionary multi-objective power scheduling using NILM techniques has been proposed for
DR in [122]. Based on a real-home assessment of their proposal, the authors conclude that the
automated mechanism is workable and feasible. They pointed out, however, that the power of each
household appliance should be adaptively updated to improve the estimates of the daily power
consumption. As their application did not include renewables, they proposed to include them, together
with a forecasting mechanism for the electricity produced, in future work.

The same authors subsequently proposed a model of a residential consumer-centric Demand-Side
Management [123], employing NILM, achieving, in simulations, a significant reduction (14%) of
the Peak-to-Average Ratio (PAR). For future implementations, the authors proposed employing
edge/IoT-based computing, in order to improve cloud computing technologies [124]. In a more recent
work [125], the same group focused on the improvement of NILM classification, employing for that
Particle-Swarm Optimization to the design of the ANN classifier.

Edge-computing is also advocated in [126]. The authors implemented a load-shifting mechanism,
which allows non-time-constraint applications to be moved from rush hours to off-peak hours.
This implies a reduction in the peak demand of the household, while maintaining the householders’
comfort. Employing day-ahead pricing information, their system is composed of five modules: energy
production, which consists of solar radiation and air temperature predictors, used to forecast the
PhotoVoltaic (PV) energy generation; solar energy management, which manages the flow of energy
between the grid, PV and battery storage; NILM module, which not only disaggregates the energy and
estimates consumptions, but also computes usage patterns and features of each appliance; classifier,
which labels the appliances as schedulable or not and, in the former case, passes this information,
together with adjustable ranking, to the next module; and appliances scheduling, which, based on
the information received from the previous module for deferrable appliances, proposes a dynamic
algorithm to determine which state sequences in a certain appliance provide a lowest electricity cost
over time. Using two test scenarios in a real testbed, they concluded that the use of the proposed HEMS
achieves reductions of electricity consumption and cost of 73% and 82%, respectively. They pointed out
that a better usage of solar energy could be obtained by merging solar energy forecast and appliances
scheduling schemes.

The authors of [76] have addressed appliance-level dispatch with smart plugs for HEMS, employing
in their application the D’hulst concept of appliance flexibility. Assuming that each appliance operation
can be divided into states, these are estimated from the appliance power consumption using a
combination of the minibatch k-means method [127] and the X-means technique [128], followed by
an agglomerative clustering approach. User behaviour is characterized by different variables, such as
state turn-on and off times, state on-duration, state energy consumption, state power value, etc.;
to consider uncertainty, the features are often modelled as Gaussian distributions.

In operation, each state is assigned to an appliance type according to a k-nearest neighbours’
classifier, where the likelihood is determined by means of the Hellinger distance. The appliance type is
derived from weighted voting, where the weight is defined by the state’s power consumption over a
certain time T.

Appliance flexibility depends on the DR application and thus is a function of the start time,
duration, controllability, user behaviour and power. Based on the desired DR event, the DR program
is chosen. Then the HEMS searches for and selects suitable appliances. Finally, the flexibility of the
selected appliances is calculated and inserted into a priority list and the appliances are dispatched
according to that list. This approach has been evaluated on a REDD dataset, obtaining an excellent
classification performance.
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Finally, it is worth noting that new NILM methods have been proposed with application in
HEMS in mind. This is the case, for instance, with [129], where, using only a single active power
sample acquired at the general entry point with a rate of 1 Hz, it is feasible to distinguish turned ON
appliances, their operating modes, as well as power consumption, together with the amount of solar
power. In a more recent work [130], the authors extended their previous solution and were able to
properly forecast the active power demand of a set of five households.

4. NILM in Ambient Assisted Living

4.1. AAL General Overview

Ambient assisted living (AAL) includes products and services for the physical independence
of elderly people. In fact, the current increase of life expectancy has become a public health priority,
mainly in developed countries, and most of the recent technological advances are used for constituting
smart environments to assist the elderly. There are three important aspects or actuation levels to
consider in AAL:

1. Using specific sensors (e.g., wearables, ambient sensors or even smart meters) to measure ambient
(environmental) or physiological (person-related) parameters.

2. Monitoring a particular parameter of activity (e.g., physiological signals, movements or Activities
of Daily Livings - ADL)

3. Taking appropriate decisions or recommendations (e.g., monitoring health deterioration in the
long term or producing alerts for short-term intervention).

Figure 4 shows a general overview of current home monitoring systems in terms of accuracy
and scalability. In general, accuracy is inversely proportional to scalability and to intrusiveness
(and consequently to the grade of acceptance of the systems).

Figure 4. General overview of current homecare monitoring systems for AAL depending on accuracy
and scalability (adapted from [131]).

As can be observed in Figure 3, four levels of accuracy have been considered depending on the
outputs of the home monitoring system: ADL long-term monitoring, ADL alerts, movements and
physiological signals. Scalability, strongly related to intrusiveness, depends on the kind of sensors
needed (wearables, ambient sensors and smart meters). Direct methods may diagnose the health
or monitor the activity directly by evaluating some physiological parameters; on the other hand,
indirect ones can derive it from a parameter that may involve the health status or activity.

Physiological signals related to direct monitoring methods are often blood oxygen saturation,
heart rate and breathing [132]. The acquisition of these signals is normally very accurate, but difficult
to scale since the corresponding transducers required to be attached to the body. Accelerometers and
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gyroscopes in wearables and smartphones allow movement to be estimated, and can detect falls and
gait disorders [133], but their acceptance is still reduced as users must carry them for proper operation.

Most of the approaches for AAL are based on ambient sensor on heterogeneous high-density
sensor networks to perform Activity Recognition. These systems have to deal with overlapped
activities; heterogeneous activity duration; the deployment of a complex and sometimes intrusive
WSN; and with the need of a supervised training process for each individual household [134].

With a very low intrusiveness, a new approach to monitor ADLs by means of electrical signatures
of appliances coming from plug-meters was proposed in [27]. Human activity can be inferred from the
usage pattern of appliances, as they are strongly connected to daily activities. In this case, the activities
monitored were food preparation and eating, hygiene and elimination. It should be noted that any
labelling task, such as the weight of appliances on the activity and finding the activity duration,
depends on the particular person monitored. Electrical events are mapped over daily activities using
a k-means neighbours’ classifier.

In a similar way, other works also proved the correlation between the appliance usage patterns
with ADLs [135]. Here, the authors used the Latent Dirichlet Allocation (LDA) method to map
appliance events with ADLs. The sensor density could be minimised, and the hardware cost and
complexity reduced (of particular importance in large deployments). A major issue to be solved was
again related to the overlapping of tasks and their heterogeneous duration.

The authors of [136] also proposed an approach to monitor the behaviour of the elderly based
on detection of the usage of certain home appliances. In this case, the system is based on a smart
meter that periodically acquires the global energy consumption in the house, associated with some
smart plugs for punctually monitoring specific electrical devices. Although the system is simple and
low-cost, it can detect unusual behaviour in the elderly.

All these methods are intended to measure health deterioration and are deployed for long-term
monitoring. There are other methods that produce alerts during short-term monitoring of a particular
health aspect. These only use the appliance usage pattern instead of inferring ADLs. For example, a relevant
variable to detect changes in routines could be monitoring the kettle or the TV set [137]. Another example
in [138] is the usage patterns of the kettle and fridge during the night to detect sleep disorders.

4.2. Use of NILM in AAL

There are several relevant health features that can be inferred from data obtained with smart
meters or third-party devices installed as unique sensors at home (after applying energy disaggregation
algorithms). These features can be inactivity, sleep disorders, memory issues, variations in activity
patterns, low activity routines, occupancy and unhealthy living [139]. The main advantages of using
smart meters are their flexibility, low cost, ubiquity and ability to generate data over time.

Figure 5 shows a general diagram that most systems follow when using NILM for AAL.

 

Figure 5. General diagram of systems that use NILM in AAL.
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Applications can include launching alerts to caregivers or relatives whether unusual activity
patterns are recognised [140], or even in a further extension, monitoring the progress of some treatments
or living conditions (such as the use of specific devices). For instance, in [131] a unique power usage
profile is derived for every appliance. The usage was categorized into usual and unusual patterns.
Such appliance training methods are common in NILM, and the major challenge is to detect a wide
range of devices with enough accuracy.

One of the first works on this topic, using only disaggregated data from a single home sensor,
can be found in [141]. The system was developed with the main goal of determining load signatures
of appliances to detect daily activities in a smart home. It was based on steady-state operations
and signatures of appliances extracted with a single power analyser. Afterwards, in [101] the
authors proposed the disaggregation of data coming from smart meters in order to monitor health.
They employed an iterative time-dependent HMM to disaggregate appliances, according to a priori
knowledge of the activities of people at home. After the disaggregation, every appliance was bounded
to a certain monitored activity. Other studies, such as the one presented in [142], made use of a smart
meter, which periodically measured the global energy consumption in the house, combined with some
smart plugs for punctually monitoring specific electrical devices. The goal was also to track elderly
behaviour by detecting the usage of home appliances.

Another work on this topic is [131], which also proposes the use of only smart meter data to develop
sustainable models for healthcare in smart homes, with very low intrusiveness, massive deployment and
reduced cost. The usage patterns of appliances are used to evaluate the behaviour of elderly people and
to determine when a subject has modified their routine. The system provides a daily score of normality
regarding the regular behaviour (obtained from previous statistical analysis, using Dempster-Shafer
theory on the disaggregated consumption of several homes). When this score was lower than a
predetermined threshold, an alert could be derived. The same authors, in [141], present an interesting
study of NILM classification, depending on disaggregation accuracy and sampling frequency, and of
homecare monitoring system classification according to accuracy and scalability (where the systems
based on NILM are less intrusive and more scalable, but at the cost of accuracy).

Despite the intrusiveness of these systems being low, privacy can still be an important issue.
The authors of [143] analysed the electricity consumption of more than 5000 households over a
18-month period and deployed several machine learning methods to forecast home occupancy in the
short and long term. The results revealed that the present and future occupancy status of households
can only be established with high confidence based on smart meter data. In this context, it is also
significant to secure the communication and storage techniques and equipment related to smart meter
data, as well as to fulfil the corresponding legislation about how to treat such data.

5. Guidelines for Future Research

Although NILM methods are becoming recognized tools for home energy management systems
and for ambient assisted living applications, several aspects still deserve further research.

NILM has been an active topic of research, mainly due to advances in computational intelligence
and sensing technology. Although NILM has been around for 30 years now, only recently has the
technology made its way into public domain, due to high equipment cost, which hinders the scalability,
and a lack of disaggregation accuracy [6]. Future research and development in this area should focus
on the solutions to these problems.

Current NILM methods work well for two-state appliances, but it is still difficult to
identify some multi-state appliances, and even more challenging with continuous-state appliances.
Typically, supervised methods are able to generalize better to unseen scenarios, e.g., different houses,
than unsupervised techniques. However, they require a huge database and an off-line training
phase. The use of semi-supervised algorithms, requiring some labelled training examples, might be
a mechanism to achieve “low-cost” generalization accuracy. Another aspect would be using special
features, such as time of day, temperature, frequency of appliance usage, and so on, together with more

21



Energies 2019, 12, 2203

classical features obtained from steady and transient signatures. Notice that some of these features are
already employed in HEMS applications.

Finally, the different techniques should be compared using common datasets. Nowadays, there are
several public datasets available; however, these only cover developed countries. Regarding the
established performance criteria, they should also consider the complexity of the solution, both from
the software and hardware points of view, as well as the level of load usage and their usage patterns.

Focusing now on the application of NILM in HEMS, several aspects are worth mentioning.
First, the performance of NILM techniques should be considered according to the final impact and
cost; e.g., a classification accuracy improvement in appliance identification from 85% to 87% can be
translated, in HEMS operations, into a much smaller reduction in electricity consumption (or in the
electricity bill), requiring, however, much more complex hardware and/or software solutions.

Research in HEMS should also consider the absolute improvement that the different types
of apparatus might achieve in the final electricity consumption. A 5% improvement in lighting,
for instance, has much less impact than the same reduction in HVAC equipment consumption. For this
reason, HVAC equipment should not only be efficiently scheduled by the HEMS, but its real-time
control during their periods of operation should be as efficient as possible. The authors of [142],
in a study of a large appliance consumption database in Sydney, Australia, studied the real influence of
air-conditioners on summer demand peaks. By clustering the load profiles and proposing load control
strategies, they estimated that 9% of the total peak demand could be reduced. Model-Based Predictive
Control (MBPC) is the control technique that has the largest potential of energy reduction for HVAC
systems [144]. By employing MBPC approaches such as the one detailed in [145], allowing user-defined
schedules and thus being suitable for HEMS, and allowing different levels of occupants (thermal)
comfort to be considered, the potential for savings in home electricity consumption is large.

As reported before, the concept of appliance flexibility and its calculation deserve further research.
Usage patterns should take into account the type of day, such as weekday, weekend or bank holiday;
season and/or outside weather information (HVAC systems usage is strongly correlated with average
outside air temperature and, therefore, with the season); associations of appliances (for instance,
cookers and range hoods are typically used together); and, obviously, occupancy and occupants’
preferences. Taking all these factors into consideration is not, however, an easy task.

The existence of disaggregated energy achieved by NILM allows us to obtain better forecasts of
energy consumption, which, together with the better forecasts of electricity produced by renewables,
allows for better appliance scheduling and flexibility for DR schemes. In this way, improvements in
HEMS also require research on the forecasting methods applied to the variables at stake. As examples,
as equipment usage depends on household occupation, the authors of [146] proposed a method based
on dynamic genetic programming to detect, and forecast, the occupancy of residential buildings,
starting with their smart meter data. Several techniques for short-term load forecasting can be found
in [147] and in the works included in [148]. Short-term forecasts of the electricity produced by PVs
require forecasts of solar radiation and atmospheric air temperature, the former being the most difficult
due to the existence of clouds. In this time range, machine learning methods are the most used
techniques [149]. There is already commercial instrumentation available that is capable of producing
not only measurements, but also forecasts of weather variables [150].

Regarding AAL, better activity recognition needs to be achieved, requiring smart meters or
third-party devices with higher sampling frequency. The regulations on the way smart meter data are
stored and shared with third parties in health contexts must be adapted from the current situation.
The level of fault tolerance in critical health uses is much lower than in those applications about standard
energy metering, and, consequently, possible responsibility should be clearly defined in case of failure.

In addition, in AAL more advances and contributions are necessary in the field of linking patterns
of energy use to health conditions. That implies the work of multidisciplinary teams, involving
computing and engineering people with specialists and practitioners working in health and care
(with new ethical issues). Novel use cases should be proposed and tested with a representative
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population. Finally, it is important to consider issues concerning user acceptance of smart meters
applied to health domains and compared with other tele-healthcare approaches.

6. Conclusions

Although it was proposed nearly 30 years ago, NILM technology has only made its way to public
domain in more recent years, mainly due to advances in computational intelligence, sensing technology
and the Internet of Things, smart grids and demand response energy programs. Since then, the NILM
field and its applications to home energy management systems and ambient assisted living have
evolved rapidly.

We hope that this review, focusing on proposals that appeared recently in the literature and
pointing out new research issues related to the techniques and their applications in HEMS and AAL,
is able to foster further interest in this technology.

Finally, we should remark that NILM techniques have the potential to be used for other applications
that are outside of the scope of this paper. Examples are, for instance, recommender systems for
energy efficiency, whether for individuals [151], companies or governments, or fault diagnosis
applications [146,152].
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HMM Hidden Markov Model SG Smart Grids
HVAC Heating, Ventilating and

Air Conditioning
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Abstract: Energy sustainability is one of the key questions that drive the debate on cities’ and urban
areas development. In parallel, artificial intelligence and cognitive computing have emerged as
catalysts in the process aimed at designing and optimizing smart services’ supply and utilization in
urban space. The latter are paramount in the domain of energy provision and consumption. This
paper offers an insight into pilot systems and prototypes that showcase in which ways artificial
intelligence can offer critical support in the process of attaining energy sustainability in smart cities.
To this end, this paper examines smart metering and non-intrusive load monitoring (NILM) to make
a case for the latter’s value added in context of profiling electric appliances’ electricity consumption.
By employing the findings in context of smart cities research, the paper then adds to the debate
on energy sustainability in urban space. Existing research tends to be limited by data granularity
(not in high frequency) and consideration of about six kinds of appliances. In this paper, a hybrid
genetic algorithm support vector machine multiple kernel learning approach (GA-SVM-MKL) is
proposed for NILM, with consideration of 20 kinds of appliance. Genetic algorithm helps to solve
the multi-objective optimization problem and design the optimal kernel function based on various
kernel properties. The performance indicators are sensitivity (Se), specificity (Sp) and overall accuracy
(OA) of the classifier. First, the performance evaluation of proposed GA-SVM-MKL achieves Se of
92.1%, Sp of 91.5% and OA of 91.8%. Second, the percentage improvement of performance indicators
using proposed method is more than 21% compared with traditional kernel. Third, results reveal that
by keeping different modes of electric appliance as identical class label, the performance indicators
can increase to about 15%. Forth, tunable modes of GA-SVM-MKL classifier are proposed to further
enhance the performance indicators up to 7%. Overall, this paper is a bold and novel contribution
to the debate on energy utilization and sustainability in urban spaces as it integrates insights from
artificial intelligence, IoT, and big data analytics and queries them in a context defined by energy
sustainability in smart cities.

Keywords: artificial intelligence; demand response; energy; policy making; genetic algorithm;
multiple kernel learning; non-intrusive load monitoring; smart grid; smart metering; support vector
machine; smart cities; smart villages

1. Introduction

Cities are the major consumers of electricity today. Considering the correlation that exists between
energy consumption, the environmental footprint it leaves, and the implications for and of global
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warming [1,2], energy sustainability emerges as one of the key questions that beholds the stakeholders,
including the industry, decision-makers and the society. Consensus has emerged that replacing old
electrical infrastructure by smart grid might be the most effective way of addressing the challenge
worldwide. Microgrid applications like transactive energy framework [3,4], energy management [5–7]
and advanced retail electricity market [8], play an important role in context of smart grid development.
Microgrids are typically supported by generators or renewable wind and solar energy resources and
are often used to provide backup power or to supplement the main power grid during periods of heavy
demand. A microgrid strategy that integrates local wind or solar resources can provide redundancy
for essential services and make the main grid less susceptible to localized disaster. Smart metering
is one of the key features that conditions the functioning of a smart grid [9]. By 2020, worldwide,
the estimated number of smart meters will exceed 800 million, while the penetration rate will be
50% [10,11]. The question is to what extent and how smart metering may contribute to attaining
greater efficiency of a smart grid, e.g., by optimizing it. To address this question, this paper employs
advances in artificial intelligence and big data analytics to query in which ways their integrated use
in context of smart metering and smart grid optimization may yield positive results in the form of
decreased energy consumption and greater energy sustainability. Inserting the discussion in context of
smart cities, adds an additional twist to this discussion. The argument is structured as follows. In the
first section, a review of load monitoring methods is discussed briefly to highlight the value added
of non-intrusive load monitoring. Next, the research methodology is outlined, which is followed by
overview of empirical testing and analysis. Section 5 evaluates the performance of proposed method
and its comparison with related work. Finally a conclusion is drawn.

2. Related Works—Non-Intrusive Load Monitoring (NILM) and Its Value Added

The evolution of modern advanced computational forecasting methods provides new tools
for electricity forecasting and pattern recognition. According to individual smart data and smart
metering techniques will have a great impact in the efficiency of smart energy solutions. In addition,
artificial intelligence techniques and smart grid approaches can set up sophisticated services for
the optimization of energy consumption. Toward this direction advanced demand modelling using
machine learning algorithms will offer new predicting capabilities. Furthermore, Big Data context
increases the complexity of the problem and also requires novel mining techniques based on energy
time series for behavioral analytics. Therefore, user behavior and analysis is directly linked, as is
integrated behavioral analytics and smart energy modelling, metering and solutions.

Recent research focused on intrusive load monitoring (ILM) and non-intrusive load monitoring
(NILM). A study concluded that load monitoring can reduce 20% electricity consumption [12]. In
contrast, ILM is distributed sensing, whereas NILM is single-point sensing. ILM uses more than one
smart meter per apartment (could be one smart meter per power outlet), but NILM uses only one
smart meter in the apartment. Theoretically, more smart meters can yield higher accuracy for the
detection of appliance consumption, because the number of appliances that need to be disaggregated is
lower [13]. However, disadvantages exist. These include: High cost, complex smart metering network
configuration, and management. This paper focuses specifically on NILM and its value added.

Figure 1 shows the general architecture of NILM for electricity suppliers, companies and users.
The NILM benefits to electricity suppliers, manufacturers and users. Electricity suppliers can achieve a
more accurate demand response by understanding the electricity consumption profile of each electric
appliance. Therefore, a better energy demand prediction model can be achieved using the usage
pattern. Furthermore, it tries to lower the gap between total electricity supply and demand, in other
words, the electricity wastage attributable to unused electricity decreases (it is worth mentioning
that the energy supply is always larger than energy demand to ensure it can still fulfill the demand
requirement if abrupt increase in demand occurs). For manufacturers, they would be able to develop
a better understanding of the relationship between appliances and their usage patterns. One may
focus on increasing the energy efficiency of frequently used and power hungry appliances. Last, the
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electricity consumption pattern of each appliance may correct the misunderstanding of end users
whom normally have no idea on electricity consumption. They can formulate a direction to reduce the
electricity bill, especially in power hungry appliance.

 

Figure 1. Non-intrusive load monitoring (NILM)—general architecture: Electricity suppliers,
companies and end users.

Various approaches for NILM have been proposed. For instance, decision tree [14,15], graph
signal processing [16], hidden Markov model [17,18], k-nearest neighbor [19], clustering [20] and
cepstrum-smoothing [21]. It can be seen that the detection interval for some works is not real-time,
8 s in [15] and 1 min in [16–18,20]. This is often impractical because the actual operation time for an
electric appliance is usually not a divider of 1-min or 8 s. When it comes to NILM, unsupervised or
supervised classification is required. It is invalid to define the class label when the operation time is
not a divider of the detection interval. Thus, a real-time detection interval 50 Hz or 60 Hz is required,
which depends on the line voltage standard of the district. The works in [16,20,21] adopt detection
interval of 60 Hz, 50 Hz and 0.5 s respectively. However, these works focused on NILM of 4 or 6
electric appliances, which are far from adequate in the practical situation. The details of [16–21], as
well as comparison between proposed work and these works will be discussed in Section 5.5.

In this paper, a hybrid generic algorithm support vector machine multiple kernel learning
(GA-SVM-MKL) approach has been proposed for NILM of 20 electric appliances. Genetic algorithm
helps to solve the multi-objective optimization problem and design the optimal kernel function based
on various kernel properties. SVM is adopted owning to the fact that it takes key advantages in (i)
avoid over-fitting; (ii) kernel trick; (iii) convex optimization problem; and (iv) good out-of-sample
generalization. The contribution is as follows (i) GA-SVM-MKL is capable of analyzing and
disaggregating the energy profile of single point into list of 20 common types of operating electric
appliances, which is far more than that in existing works; (ii); GA-SVM-MKL achieves Sensitivity (Se)
of 92.1–98.4%, Specificity (Sp) of 91.5–98.8% and overall accuracy (OA) of 91.8–98.6% and (iii) Tunable
modes of GA-SVM-MKL is introduced to enhance the classification performance by 7% because we
can reduce the number of types of appliances in certain period in order to reduce the complexity of
model and thus increase the performance of classification model.

The rest of the paper is organized as follows. The methodology and formulation of the proposed
algorithm is presented in Section 2. Section 3 carries out performance evaluation of the proposed
algorithm and comparison is made with existing methods. Finally, a conclusion is drawn in Section 4.

39



Energies 2018, 11, 2869

3. Research Methodology and Research Problem Formulation

This paper examines to what extent and how smart metering may contribute to attaining greater
efficiency of smart grid, for example by optimizing it by deploying advances from the fields of artificial
intelligence and big data analytics. To address this question, several hypotheses have been made, as
well as corresponding research, including literature review and primary research. Figure 2 depicts
the methodology and the workflow. In brief, the research presented here draws from insights from
three converging fields of scientific inquiry to rethink the question of smart grid optimization. These
insights include:

• Insights from artificial intelligence (AI) and cognitive computing and the value added they bring
into the process of designing, managing and utilizing smart energy systems

• Insights from smart cities and smart villages research, as well as considerations specific to the
debate on sustainability, including the SDGs, and their value added consistent with an emphasis
on wellbeing and inclusive socio-economic growth and development

• Insights from the broad field pertinent to energy supply and demand and related questions the
value added if ICT-driven coherent and effective policymaking

It is at the intersection of these three broad domains that our research question is located.
Accordingly, the more specific research questions that this paper will address include: In which
ways novel ICT-enhanced solutions, including algorithms and data integration, can contribute to
efficient and sustainable consumption of resources, like energy.

“What is the optimal design of classification model for NILM application”. The multiple objectives
optimization problem will be solved by multi-objective genetic algorithm.

“Can we reduce the number of types of appliances in certain period in order to reduce the
complexity of model and thus increase the performance of classification model”. This will be addressed
in Section 5.4.

 
Figure 2. Flow chart of research methodology. AI, artificial intelligence; GA-SVM, generic algorithm
support vector machine.

4. Overview of Empirical Testing and Analysis

The general flow of GA-SVM-MKL classifier for NILM is given in Figure 3. The smart meter will
measure the current and voltage waveform of the apartment continuously. Both waveforms are carried
out signal preprocessing includes dc offset elimination, interval segmentation. In this paper, 0.2 s
interval is selected as of the line voltage standards in Hong Kong, 220 V/50 Hz. Features of each interval
segment are then computed. The features act as input for the embedded and trained GA-SVM-MKL
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classifier. The training of classifier includes signal preprocessing and features extraction. Then,
formulation of different multi-objective SVM classifiers is carried out by various combinations of typical
kernels. The multi-objective optimization problems are solved by genetic algorithm. The optimal
designs of classifier under different combinations of typical kernels can be concluded. It is worth
mentioning that a well-known 10-fold cross-validation is adopted for the training of classifier [22–24].
The outputs of the classifier are types of operating electric appliances and electricity consumption of
operating electric appliances. Based on the outputs of the classifier, three major applications, billing,
demand response and appliance usage pattern can be obtained. Electricity suppliers may utilize all
applications whereas companies and end users may only utilize the appliance usage pattern.

 

Figure 3. Flow chart for the operation of generic algorithm support vector machine multiple kernel
learning (GA-SVM-MKL) classifier for NILM.

This section comprises of three subsections. First, the measurement and preparation of datasets
for training and validation of GA-SVM-MKL classifier are discussed. Second, possible features for
constructing the GA-SVM-MKL classifier are presented. At last, the formulation of optimal design of
GA-SVM-MKL classifier is explained.

4.1. Datasets of Electric Appliances

Figure 4 shows the measurement set up for obtaining the voltage and current waveforms of all
electric appliances. The voltage of 220 Vrms is measured with differential probe using cathode ray
oscilloscope (CRO) with sampling frequency Fs = 10 kHz. A current transformer with ratio 50/5 is
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utilized for measuring the current waveform. The resistor R1 is chosen to be large value (10 MΩ),
which because it has negligible effect to the circuit. The resistor R2 of 10 MΩ is connected in series
with the secondary winding of current transformer to avoid open circuit.

 

Figure 4. Measurement set up for capturing voltage and current waveforms of electric appliances.
CRO, cathode ray oscilloscope.

The datasets consist of 20 electric appliances that are commonly used in typical households. The
measurement allows multiple operation of electric appliances, in other words, the current waveforms
may be superimposed by multiple electric appliances. Table 1 summarizes the electric appliances along
with their type of activity, modes and number of brands being considered. The electric appliances can
be divided into six activities, lighting, cooking, home living, computing, renovating and audio and
video. There is limitation that the measurement cannot cover all brands of each electric appliance, each
electric appliance has at least two brands for consideration. Likewise, there is a maximum number
for each electric appliance operating at any instant in a typical household. For every combination of
electric appliances, the corresponding voltage and current waveforms are recorded for 30 s (equivalent
to 30 × 50 = 1500 samples). Each combination is assigned with a unique class label. It is noted that in
Section 5.1, different modes of electric appliances will be assumed as identical class label and that in
Section 5.2 will be assumed as different class labels.

Table 1. List of electric appliances that have been analyzed.

Type of
Activity

Electric
Appliance

Modes
No. of
Brands

Maximum No.
of Appliances
at One Time

Type of
Activity

Electric
Appliance

Modes
No. of
Brands

Maximum No.
of Appliances
at One Time

Cooking

Electric
stove 2 3 2

Lighting

Fluorescent
light 1 2 3

microwave
oven 3 2 1 Light bulb 1 2 3

cooker 3 2 1 LED tube 1 3 3

Home
living

Ironbrush 4 2 1 LED light
bulb 1 2 3

Vacuum
cleaner 1 2 1

Computing

Notebook 1 6 3

Fan 3 3 2 desktop 1 3 3

Hair dryer 2 3 2
All in one

printer and
scanner

1 2 1

Electric
heater 2 2 1 Mobile

charger 1 5 3

Renovation

Electric
drill 1 2 1

Audio and
video

Radio 1 2 1

Electric
sander 1 2 1 Television 1 2 1
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After measuring the voltage and current waveforms of electric appliances, the waveforms perform
dc offset elimination, whichIndividual samples can be obtained by segmentation of signals with interval
of 0.2 s.

4.2. Features Extraction

F The individual samples I(n) and V(n) are transformed to feature vector. The proposed
GA-SVM-MKL adopts seven features: Maximum current (Imax), root-mean-square current (Irms),
average current (Iavg), active power (Pact), apparent power (Papp), reactive power (Prea) and power
factor (PF). The features can be computed by:

Imax = max{I(n)}, (1)

Irms =
√
[I2(1) + I2(2) + . . . + I2(Fs/50)]/(Fs/50), (2)

Iavg =
1

Fs/50

a=Fs/50

∑
a=1

I(a), (3)

Pact =
1

Fs/50

a=Fs/50

∑
a=1

I(a)V(a), (4)

Papp =
√
[V2(1) + . . . + V2(Fs/50)]/(Fs/50)

×√
[I2(1) + . . . + I2(Fs/50)]/(Fs/50)

, (5)

Prea =
√

Papp2 − Pact2, (6)

PF = Pact/Papp. (7)

It is worth mentioning that dimensionality reduction (e.g., in [11]) is not adopted because all of
these features are essential for distinguishing between electric appliances in nature. The focus will be
devoted on the optimal design of kernel function for building SVM classifier.

4.3. Optimal Design of GA-SVM-MKL Classifier

Denote electric appliances samples by Xij(n) with current Iij(n) and Vij(n) for class i = 1, . . . , Nc

and j = 1, . . . , Ni where Ni = 1500 is the total number of samples in class i. Let feature vector be fij =
{Imax,ij, Irms,ij, Iavg,ij, Pact,ij, Papp,ij, Prea,ij, PFij} corresponds to Xij(n).

When it comes to the selection of kernels, there are five typical kernels k(x1, x2) with inner product
〈x1,x2〉. They are linear kernel, qth degree polynomial kernel, complete polynomial kernel, radial basis
function (RBF) kernel and sigmoid kernel. The expressions of these kernels can be summarized as
follows:

Linear kernel : k1(x1, x2) = 〈x1, x2〉. (8)

qth degree polynomial kernel : k2(x1, x2) = (〈x1, x2〉)q. (9)

Complete polynomial kernel : k3(x1, x2) = (〈x1, x2〉+ c)q. (10)

RBF kernel : k4(x1, x2) = exp(||x1 − x2||2/2σ). (11)

Sigmoid kernel : k5(x1, x2) = tanh(〈x1, x2〉+ c), (12)

where c, σ ∈ �, q ∈ N+.
Different kernels possess different characteristics where there is no single kernel that works well in

all applications. In this paper, the proposed GA-SVM-MKL classifier adopts the idea that by combining
multiple kernels (namely multiple kernel learning), the classifier can achieve better performance for
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NILM after taking the advantages from each kernel. In order to combine kernels to form a new one,
the kernel should obey Mercer’s Theorem. According to [25], there are four properties (P):

P1 : k(x1, x2) = ki(x1, x2) + kj(x1, x2). (13)

P2 : k(x1, x2) = c·ki(x1, x2), ∀c ∈ �+. (14)

P3 : k(x1, x2) = ki(x1, x2) + c, ∀c ∈ �+. (15)

P4 : k(x1, x2) = ki(x1, x2)·kj(x1, x2), (16)

where ki : χ × χ → � and kj : χ × χ → � are any two Mercer kernels. It is noted that properties 1
and 4 can be further extended to infinite number of Mercer kernels.

The optimal design of classifier for NILM is formulated as a multi-objective optimization problem
and solved by genetic algorithm. Multi-objective optimization is an integral part of optimization
activities and has tremendous practical importance, since almost all real-world optimization
problems are ideally suited to be modeled using multiple conflicting objectives [26]. Compared
with single objective optimizations, which usually scalarizing multiple-objectives into one single
objective, multi-objective optimization can give trade-off optimal solutions more accurately. Besides,
the multi-objective optimization has multiple cardinalities of the optimal set, multiple objectives and
different search spaces [27]. The objective functions constitute a multidimensional space, which is
known as objective spaces [28]. The optimal solutions presented in objective spaces are referred to as
Pareto optimal solutions and the set of such solutions are called Pareto Front.

As the objectives conflict with each other, it is usually impossible to obtain one single optimal
objective. Therefore, for obtaining the optimal solutions in multi-objective optimizations, the most
used concept is domination. Assuming for an M-objective minimization problem, candidate solution u
is dominated by another candidate solution v if and only if function values of u is partially less than v,
which is formulated as [26]: {

fm(u) ≥ fm(v)
fm(u) > fm(v)

∀m = 1, 2, . . . , M
∃n = 1, 2, . . . , M

. (17)

Based on the concept of domination, what we prefer are the non-dominated solutions, which
compose the Pareto Front. In this paper, in order to give the optimal design of classifier for NILM,
multi-objective optimization genetic algorithm (MOGA) [27] for solving the multiple kernels is
designed. The flow of the MOGA for the optimal design of kernel functions is shown in Figure 5.
The procedures are as follows: (i) The population size and values of objective function are initialized;
(ii) the values of objective function of individuals in the population are computed using the values
of objective function defined in (i); (iii) ranking the individuals according to the values of objective
function; (iv) the population convergence is dependent on small group of pareto optimal solutions, but
not all optimal solutions attributable to the nature of the stochastic selection errors, given a limited
population size; (v) niche count is introduced to enhance the population diversity by lengthening the
distance between two optimal solutions along the axis of objective functions. The convergence to small
group solutions will be avoided; (vi) a new offspring is generated and the values of objective functions
are evaluated; (vii) ranks assignment and niche count calculation are carried out repeatedly in the new
offspring; and (viii) the algorithm is terminated if it attains the maximum number of generations or if
the output reaches the pareto front. It is noted that there exist other stopping criteria in literature for
stochastic optimization algorithm and can be referred to [29–31].
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Figure 5. Flow chart of the optimal design of the classifier using GA-SVM-MKL.

The multi-objective optimization problem for NILM can be formulated as:

Max Se
Max Sp

Max
∼
D

, (18)

s.t. αj ≥ 0,
N

∑
j=1

αjyj = 0, i = 1, . . . , N, (19)

where Se is the sensitivity of the classifier, Sp is the specificity of the classifier,
∼
D is a margin equals to

distance of closest samples from the hyperplane, αj is the Lagrange multiplier and yj ∈ {−1,+1} is

the output of the classifier. The three objective functions Se, Sp and
∼
D are defined as:

Se = TP/Np, (20)

Sp = TN/Nn, (21)

∼
D =

N

∑
i=1

αi − 1
2

N

∑
i=1

N

∑
j=1

αiαjyiyjkNILM(xi, xj), (22)

where TP is the number of true positive samples, TN is the number of true negative samples, Np is
the total number of positive samples, Nn is the total number of negative samples. The customized
and optimized kernel for NILM, kNILM varies by different combination of typical kernels in (8)–(12)
using Properties 1–4 in (13)–(16). These scenarios are summarized in Appendix A Table A1, which
have been studied and analyzed. It is noted that due to there are infinite scenarios settings, only
property combinations of property (P), P1, P2, P3, P4, P1P2, P1P3, P1P4, P1P5, P2P3, P2P4, P2P5, P3P4,
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P3P5, P4P5 are illustrated and analyzed. These 285 scenario settings cover adequate analysis for taking
the advantages from individual kernel to form a multiple kernel for kNILM.

The proof of combinations of property P1P2, P1P3, P1P4, P1P5, P2P3, P2P4, P2P5, P3P4, P3P5, P4P5

is shown below:
For all r ∈ N and all sequences (x1, . . . , xr) ∈ Xr let K1, K2, K3, K4, KP1P2, KP1P3, KP1P4, KP2P3,

KP2P4 and KP2P3 be the r × r matrices whose i, j-th element is given by k1(xi, xj), k2(xi, xj), k3(xi, xj),
k4(xi, xj), c1k1(xi, xj) + c2k2(xi, xj), k1(xi, xj) + k2(xi, xj) + c, (k1(xi, xj) + k2(xi, xj))(k3(xi, xj)k4(xi, xj)),
c1k1(xi, xj) + c2, ck1(xi, xj)k2(xi, xj) and (k1(xi, xj) + c)k2(xi, xj) respectively. It is required to show that
KP1P2, KP1P3, KP1P4, KP2P3, KP2P4 and KP2P3 are positive semidefinite using only that K1, K2, K3 and K4

are positive semidefinite, i.e., for all r ∈ �r, α′K1α ≥ 0, α′K2α ≥ 0, α′K3α ≥ 0 and α′K4α ≥ 0.

(i) α′KP1P2α = α′(c1K1 + c2K2)α ≥ 0, (23)

(ii) α′KP1P3α = α′(K1 + K2 + c11′)α, (24)

= α′K1α + α′K2α + c
∣∣∣∣1′α∣∣∣∣2 ≥ 0. (25)

(iii) The r2 × r2 matrix H = K1 ⊗ (K3K4) and G = K2 ⊗ (K3K4) are positive semidefinite, that is, for all
a ∈ �r2

, a′Ha ≥ 0 and a′a ≥ 0. Given any α ∈ �r, consider a = (α1e1
′, . . . , αrer

′) ∈ �r2
. Then

a′Ha =
r2

∑
i=1

r2

∑
j=1

aiaj Hij =
r

∑
i=1

r

∑
j=1

αiαj Hi+(i−1)r,j+(j−1)r, (26)

=
r

∑
i=1

r

∑
j=1

αiαjk1(xi, xj)k3(xi, xj)k4(xi, xj). (27)

Similarly, it can be derived that

a′a =
r2

∑
i=1

r2

∑
j=1

aiajGij =
r

∑
i=1

r

∑
j=1

αiαjGi+(i−1)r,j+(j−1)r. (28)

=
r

∑
i=1

r

∑
j=1

αiαjk2(xi, xj)k3(xi, xj)k4(xi, xj). (29)

Thus, a′Ha + a′a

=
r

∑
i=1

r

∑
j=1

αiαj(k1(xi, xj) + k2(xi, xj))(k3(xi, xj)k4(xi, xj)), (30)

= α′KP1P4α ≥ 0. (31)

(iv) α′KP2P3α = α′(c1K1 + c211′)α, (32)

= c1α′K1α + c2
∣∣∣∣1′α∣∣∣∣2 ≥ 0. (33)

(v) α′KP2P4α = α′(cK1K2)α, (34)

= cα′K1K2α ≥ 0. (35)

(vi) α′KP3P4α = α′(K1 + K2 + c11′)α, (36)

= α′K1α + α′K2α + c
∣∣∣∣1′α∣∣∣∣2. (37)

A 10-fold cross validation is used for the for performance evaluation of the kernels [22–24]. The
classifiers are deduced using 1-against-1 multi-class SVM. This is because 1-against-1 multi-class SVM
approach was generally performed better than 1-against-all multi-class SVM [25–28].

46



Energies 2018, 11, 2869

5. Performance Evaluation and Comparisons

This section is divided into five subsections. Section 5.1 discusses the performance of the proposed
GA-SVM-MKL classifiers. In Section 5.2, in order to show the effectiveness of kNILM using multiple
kernels, the performance of classifier using kNILM is compared with either single kernel is used. The
feasibility study of breaking down electric appliances into different modes is discussed in Section 5.3.
Intuitively, some activities like cooking and renovating are carried out in certain period. Thus, the
number of classes for classifier can be reduced when these electric appliances are not in-use and the
classifier is then retrained. Results in Section 5.4 support this hypothesis. Finally, comparison between
proposed GA-SVM-MKL classifier and related works is carried out in Section 5.5.

5.1. Performance Evaluation of GA-SVM-MKL Classifier

285 scenarios for kNILM using P1, P2, P3, P4, P1P2, P1P3, P1P4, P2P3, P2P4 and P3P4, with typical
kernels k1, k2, k3, k4 and k5 are optimally designed. The Se, Sp and overall accuracy (OA) of the
GA-SVM-MKL in each scenario are recorded as shown in Appendix A Table A2. OA is defined as
the average of Se and Sp given that the identical sample size in each class of the classifier. Probability
distribution of the OAs for 285 scenarios is shown in Appendix A, as in Figure A1. The skewness and
kurtosis of the OA for all scenarios are −0.0902 (left skewed) and 1.547 (heavy-tailed) respectively.

OA = (Se + Sp)/2. (38)

All results are obtained using 10-fold cross-validation. Scenario 178 using P1P2 achieves the
best performance with Se of 92.1%, Sp of 91.5% and OA of 91.8%. The average OA using different
properties can be ranked by OAP2P3 > OAP3P4 > OAP2P4 > OAP1P2 > OAP1P3 > OAP1P4 > OAP2> OAP1

> OAP3 > OAP4 with accuracies 87.3%, 86.7%, 85.8%, 83.4%, 76.7%, 76.6%, 75.8%, 75.6%, 75.3%, and
74.7% respectively.

Results reveal that merging kernel properties and adopting multiple kernel learning can achieve
better performance than using single property.

5.2. Comparisons to Single Kernel Based SVM Classifier

The performance of proposed GA-SVM-MKL classifier is compared to traditional SVM classifier
using single kernel k1, k2, k3, k4 and k5. It is noted that this SVM classifier deals with single objective

maximization problem, which maximizes the margin
∼
D which has been defined in (22). The comparison

is shown in Table 2. The proposed GA-SVM-MKL classifier increases the Se, Sp and OA by 21.3–28.6%,
21.5–26.7% and 21.4–27.7% respectively. Among five scenarios using traditional SVM with k1–k5, the
best performance is using k4, which follows by k5, k3, k2 and k1. The better performance of proposed
GA-SVM-MKL can be explained by two reasons. First, GA-SVM-MKL adopts optimal kernel using
multiple kernel learning with kernel properties in which it takes the advantages from each individual
kernel for customization to NILM. Second, traditional SVM aims at single objective optimization,
which maximizes the margin, but not Se and Sp.

Table 2. Comparisons between Proposed and Traditional SVM Classifier.

Method Se (%) Sp (%) OA (%)

GA-SVM-MKL 92.1 91.5 91.8
SVM using k1 71.6 72.2 71.9
SVM using k2 72.3 72.8 72.6
SVM using k3 73.5 74.2 73.9
SVM using k4 75.9 75.3 75.6
SVM using k5 74.9 75.1 75
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5.3. Feasibility Study of Assignment a Class Label for Different Modes of Electric Appliance

Among 20 electric appliances in this study, seven electric appliances, electric stove, microwave
oven, cooker, ironbrush, fan, hair dryer and electric heater have more than one mode. These are
activities of cooking and home living. In Section 5.1, it is assumed that different modes of the same
electric appliances are of the same class. In this section, analysis has been made to assign different
modes of the same electric appliances to be different classes. Thus, the 20 electric appliances can be
extended to 32 electric appliances. Table 3 shows four scenarios S1, S2, S3 and S4 for the performance
comparisons of GA-SVM-MKL classifier between before and after the assignment of new classes.

Compared between S1 and S2, the assignment of new class label for different modes of electric
appliances decreases the Se, Sp and OA by 15.7%, 14.4% and 15.0% respectively. Scenarios S3 and S4
reveal that the decrease in Se, Sp and OA are mainly due to the introduction of new class labels for
activities of cooking and home living. Therefore, the original assumption that different modes of same
electric appliances should be considered as identical electric appliance is verified.

Table 3. Performance evaluation of assignment a class label for different modes in electric appliances.

Scenario (S1 to S4) Se (%) Sp (%) OA (%)

S1: 20 appliances (Different modes, same class) 92.1 91.5 91.8
S2: 32 appliances (Different modes, different classes) 79.6 80.0 79.8

S3: 32 appliances (only cooking related combinations) 77.4 77.1 77.3
S4: 32 appliances (only home living related combinations) 75.3 76.6 76.0

5.4. Tunable Mode for GA-SVM-MKL Classifier

Aforementioned, the 20 electric appliances for study can be divided into six activities, lighting,
cooking, home living, computing, renovating and audio and video. All activities except renovating
are daily used. For cooking, it is periodic activities in which users turn on the electric appliances in
breakfast, lunch or dinner. Thus, it is proposed that GA-SVM-MKL classifier can be tuned for different
electric appliances detection with five tunable modes (TMs).

(i) TM 1 assumes a full range classifier, in which all 20 electric appliances in six activities can
be detected.

(ii) TM 2 can be selected when it is breakfast, lunch or dinner so that electric appliances of cooking
should be detected by the classifier. Provided that there is no renovating, five activities, lighting,
cooking, home living, computing and audio and video can be detected.

(iii) TM 3 is a non-eating period where electric appliances of cooking are not necessary. However,
there is small-scale renovating activity, which allows normal activities inside the house. Five activities,
including lighting, home living, computing, renovating, and audio and video, can be detected.

(iv) TM 4 assumes electric appliances related to cooking and renovating activities will not be
operated. Only four activities, lighting, home living, computing and audio and video will be operated
and detected.

(v) TM 5 assumes a large-scale renovating, in which only electric appliances of renovating (1
activity) are detected.

Table 4 summarizes the modes and the activities of GA-SVM-MKL classifier. For each mode,
a GA-SVM-MKL classifier is trained using 10-fold cross-validation. Practically, end users can enter
the period for breakfast, lunch and dinner during weekday and weekend so that GA-SVM-MKL
classifier can detect electric appliances of cooking in specific time interval. Also, the ability to detect
electric appliances of renovating is turned off until end users specify there is a renovation activity in
their apartment.
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Table 4. Various Modes in GA-SVM-MKL classifier.

Activity
Mode of Classifier

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Lighting � � � � X
Cooking � � X X X

Home living � � � � X
Computing � � � � X
Renovating � X � X �

Audio and video � � � � X

The Se, Sp and OA for the classifier in TM 1 to 5 have been recorded in Table 5. A finding
is observed, the Se, Sp and OA of the classifier increase when the number of activities (or classes)
decreases. This may be explained by fewer classes, the classification problem is less complex. Thus, it
is shown that the proposed mode tunable GA-SVM-MKL classifier can help improving the Se, Sp and
OA for NILM. Compared between TM1 and TM2-TM5, the percentage improvement using tunable
mode is ranged (1.85%, 6.84%), (2.84%, 7.98%), (2.51%, 7.41%) for Se, Sp and OA respectively.

Table 5. Performance Evaluation of GA-SVM-MKL classifier in each tunable modes (TM).

Se | Sp and OA (%) of GA-SVM-MKL Classifier

TM 1 TM 2 TM 3 TM 4 TM 5

Se Sp Se Sp Se Sp Se Sp Se Sp
92.1 91.5 93.8 94.3 94.6 94.1 96.6 96.1 98.4 98.8
OA 91.8 OA 94.1 OA 94.4 OA 96.4 OA 98.6

5.5. Comparisons to Related Works

Related works for NILM include different methods like decision tree [14,15], graph signal
processing [16], hidden Markov model [17,18], k-nearest neighbor [19], clustering [20] and
cepstrum-smoothing [21]. The features, datasets, cross-validation, detection interval, and OA of
each method have been summarized in Table 6. It should be noted that related work in [18] focused
on building a probabilistic appliance model which has been generalized to match previously unseen
households; thus, it did not involve any classifier for NILM.

Table 6. Performance comparisons between GA-SVM-MKL and related works.

Work Features Dataset
Cross-

Validation
Detection
Interval

OA

Decision tree and
wavelet

transform [14]

approximation level and
detail level

Four electric appliances—battery
charger, compact fluorescent lamp,

personal computer and incandescent
light bulb (total 864 samples)

No 0.0167 s
(60 Hz) 96.65%

Decision tree
method [15]

the first increasing edge
at the start of the event
and the last decreasing
edge at the end of the

event

Ten Activities—cooking, washing,
laundering, cleaning, watching TV,

listening to radio, games, computing,
hobbies and socializing (unknown

sample size)

N/A 8 s 59%

Graph signal
processing [16] Active power edges

Nine electric appliances—416
microwave oven, 311 washer dryer, 61
oven, 330 lighting, 2228 refrigerator, 264
dishwasher, 138 stove, 62 heater and 54

air conditioner

No 1 min 77.2%

Factorial Hidden
Markov Model

[17]
Factorial main factors

Five electric appliances—90 microwave
oven, 121 electric stove, 883 refrigerator,

58 dishwasher and 189 lighting
N/A 1 min 70.84%
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Table 6. Cont.

Work Features Dataset
Cross-

Validation
Detection
Interval

OA

Hidden Markov
model [18] log-odds score

Four electric appliances—2228
refrigerator, 416 microwave oven, 311
washing machine and 264 dishwasher

50-fold 1 min N/A

k-nearest
neighbor and

artificial neural
network [19]

maximum, average and
root mean square of the
current wave in transient

stage

Four electric appliances—27 Fan, 30
Fluorescent light, 19 radio and 18

microwave oven
No 0.02 s (50

Hz) 97.87%

Clustering [20]
real power, reactive

power, apparent power
and voltage features

Seven electric appliances—800 oven, 56
refrigerator, 452 dishwasher, 65 lighting,
154 washer, 443 microwave oven, 236

dryer

No 1 min 77.6%

Cepstrum-
smoothing [21]

Frequency and
amplitude of the

dominant peaks in the
smoothed cepstrum

Six electric appliances—television,
computer, monitor, refrigerator, washer
and vacuum cleaner (unknown sample

size)

N/A 0.5 s 96.37%

Proposed
GA-SVM-MKL

Imax, Irms, Iavg, Pact, Papp,
Prea and PF

20 electric appliances—Fluorescent
light, light bulb, LED tube, LED light
bulb, electric stove, microwave oven,

cooker, ironbrush, vacuum cleaner, fan,
hair dryer, electric heater, notebook,

desktop, all in one printer and scanner,
mobile charger, electric drill, electric
sander, radio and television (each of

1500 samples)

10-fold 0.02 s (50
Hz)

91.8%,
94.1%,
94.4%,
96.4%,

98.6% for
TM1 to

TM5

It can be seen that the existing works [15–17,20] using detection interval of 8 s or 1-min interval,
which is far from using real-time data. There are two concerns for using these detection intervals.
First, the operation time of electric appliances is generally not a divider of 8 s or 1-min. It is difficult
to define the class label. On the other hand, it increases the difficulty for the classification, because
(i) detection interval of 8 s, researchers are expected to find out whether the actual operation time
of electric appliance is 1 s, 2 s, . . . or 8 s. (ii) detection interval of 1-min, likewise, the determination
of operation time of electric appliance equals 1 s, 2 s, . . . or 60 s is required. Thus, related works
in [15–17,20] achieve Se, Sp and OA less than 80%.

The detection intervals in [14,19,21] are 60 Hz, 0.5 s and 50 Hz respectively. For OA, these works
achieve 96.65% [14], 94.87% [19] and 96.37% [21]. However, these works only consider the NILM of 4 or
6 electric appliances, which is much less than that in this paper (20 electric appliances). Also, previous
works are lack of or without mentioned one of the most important part in the performance evaluation,
cross-validation. One can pick up a bias training dataset to train the classifier so that the results are not
convincing and reliable. In aforementioned related works, Se and Sp are not given, which is believed to
be important criteria to evaluate both the accuracies in determining the true positive and true negative
samples. It is noted that when Se and Sp are far from each other, the chance of having bias in some
classifiers (toward specific classes) is high.

By comparing the GA-SVM-MKL TM 1-TM5 with [14,19,21] their OAs are similar. Thus, it can
be concluded that the proposed method achieves good performance in NILM when the number of
electric appliances is extended to 20.

We have to comment on the adoption of this method in the real world. Smart metering on real
time basis is quite complicated research problem. The evolution of machine learning techniques along
with real time sensors and big data capabilities will increase our capacity to model, meter and analyze
behavioral patterns over energy consumption. This will help us a lot to understand the linkages
between behavior and energy consumption. From a decision support point of view, irrelevant of the
programing and development environments, e.g., smart grid, the key challenge is to be capable of
aggregating smart energy data for advanced computational processing. Within this context some of
the most challenging future research directions can be:

• Standardization of Smart Energy data sets;
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• Interoperability in the Energy Smart Grid;
• Adoption of machine learning techniques for the provision and measurement of

Behavioral analytics;
• Integration of Smart Grid approaches in Energy Sector with a new era of Key Performance

Indicators (KPIs) and Energy Analytics;
• Large scale experimentation with millions of electrical devices for pattern analysis;
• Optimization of electricity consumption on real time basis based on smart energy data;
• Ontological Engineering and Semantic Annotation of smart energy data.

6. Conclusions

Considering the energy sustainability challenge cities/urban areas are exposed to today, the
objective of this paper was to examine ways of optimizing the use of electricity consumption and
suggest ways of employing these solutions in cities’/urban areas’ context. Specifically, the research
presented in this paper focused on the question of to what extent and how smart metering may
contribute to attaining greater efficiency of smart grid. The hypothesis underlying the research
was that an integrated approach consistent with engaging insights from (i) artificial intelligence,
cognitive computing and big data analytics, (ii) smart cities and smart villages research, and (iii) energy
sustainability debate, may yield novel findings. In fact, having employed a complex methodology,
as a result of research discussed in this paper a genetic algorithm support vector machine multiple
kernel learning (GA-SVM-MKL) approach has been proposed for NILM. A customized kernel has been
designed using typical kernel functions with kernel properties. This approach is customized to specific
problem, which is NILM for energy disaggregation. Applying kernel properties in various types of
kernels can increase the performance of the classifier. Three objective functions have been solved for
the optimal design of the classifier to detect 20 common household electric appliances with five tunable
modes. The effectiveness of GA-SVM-MKL has been demonstrated. To this end, (i) 20 common types
of of electric appliances have been considered, which is far more than that in existing works (at most 10
as in Table 6); (ii) it achieves Se of 92.1–98.4%, Sp of 91.5–98.8% and OA of 91.8–98.6%; and (iii) tunable
modes of GA-SVM-MKL is introduced to enhance the classification performance by 7%.

The authors are aware of the limitations of this research. The consideration of the number of
types of appliance, the number of modes and brands, as well as the maximum number of appliance is
limited. The coverage of the dataset could be extended when it comes to large-scale study. In addition,
investigation of the feature extraction could be one of the solutions to further improve the accuracy of
the classifier.

The contribution of this paper to the research agenda outlined in the Special Issue titled Artificial
Intelligence for Smart Grid is multifold:

First, from a technical point of view it demonstrates the capacity of AI techniques to model
complex problems and to simulate optimized solutions. Furthermore, it proves the new era of
computational problems where the creation and consumption of big data requires efficient and
coherent approaches integrating IoT, big data analytics and AI algorithms:

• Insights from artificial intelligence (AI) and cognitive computing and the value added they bring
into the process of smart systems [32]

• Insights from smart cities as well as considerations specific to the debate on sustainability,
including the SDGs, and their value added consistent with an emphasis on wellbeing and inclusive
socio-economic growth and development [33,34]

• Insights from the broad field pertinent to energy supply and demand and related questions the
value added if ICT-driven coherent and effective policymaking [35–37].

Second, from a strategic management and sustainability point of view, this paper heralds the onset
of a new era of energy-focused data-driven decision-making. This new era defined by the imperative of
energy sustainability requires dynamic real time distributed infrastructure and techniques to manage
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and utilize data flows from millions of devices (IoT), It also requires high speed networks that can bring
together all stakeholders, including energy produces, providers, businesses, end-users, decisionmakers.
This suggests that new research is needed that would focus on the question of how blockchain
technology may effectively serve this role [37]. Indeed, this is subject of our research in-progress.

Additionally, the decision-making point of view, the arguments outlined in this paper suggest that
more attention needs to be devoted to the work in progress undertaken by key stakeholders involved
in efforts geared toward optimizing electricity consumption. This includes the key electric appliances
producers, as well as key actors involved in devising regulatory frameworks, incl. the Organization
for Economic Cooperation and Development (OECD) and the European Union (EU). Arguably, several
of actions undertaken by these actors would benefit from the findings discussed in this paper.

In the direction of future research, several interesting new research areas promote the
interdisciplinary nature of sustainable smart energies research: Based on [38,39] the evolution of
individual smart data and smart metering techniques together with advanced Artificial Intelligence and
Machine Learning approaches will set up new challenges for intelligent energy agents. Sophisticated
and complicated modelling of energy consumption will also allow new analytical processing and
predicting capabilities [38]. The evolution of Data Mining, multidimensional data based and distributed
DataWarehouses, together with Cloud Services will promote the vision of Enengies’ Software, Platform
and Infrastructure as a Service [39,40]. In this direction, user behavior and a behavioral analysis
is directly linked, as is integrated behavioral analytics and smart energy modelling, metering and
solutions [41]. We plan very shortly to present a global survey on the social impact of Big Data for
Sustainable Energy.
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Appendix A

Table A1. Scenario setting for kNILM using properties 1–4 with typical kernels.

No. P kNILM No. P kNILM No. P kNILM No. P kNILM No. P kNILM

1 1 k1 + k1 2 1 k1 + k2 3 1 k1 + k3 4 1 k1 + k4 5 1 k1 + k5
6 1 k2 + k2 7 1 k2 + k3 8 1 k2 + k4 9 1 k2 + k5 10 1 k3 + k3

11 1 k3 + k4 12 1 k3 + k5 13 1 k4 + k4 14 1 k4 + k5 15 1 k5 + k5
16 2 ck1 17 2 ck2 18 2 ck3 19 2 ck4 20 2 ck5
21 3 k1 + c 22 3 k2 + c 23 3 k3 + c 24 3 k4 + c 25 3 k5 + c
26 4 k1k1 27 4 k1k2 28 4 k1k3 29 4 k1k4 30 4 k1k5
31 4 k2k2 32 4 k2k3 33 4 k2k4 34 4 k2k5 35 4 k3k3
36 4 k3k4 37 4 k3k5 38 4 k4k4 39 4 k4k5 40 4 k5k5
41 1.2 c1k1 + c2k2 42 1.2 ck1 + k2 43 1.2 k1 + ck2 44 1.2 c1k1 + c2k3 45 1.2 ck1 + k3
46 1.2 k1 + ck3 47 1.2 c1k1 + c2k4 48 1.2 ck1 + k4 49 1.2 k1 + ck4 50 1.2 c1k1 + c2k5
51 1.2 ck1 + k5 52 1.2 k1 + ck5 53 1.2 c1k2 + c2k3 54 1.2 ck2 + k3 55 1.2 k2 + ck3
56 1.2 c1k2 + c2k4 57 1.2 ck2 + k4 58 1.2 k2 + ck4 59 1.2 c1k2 + c2k5 60 1.2 ck2 + k5
61 1.2 k2 + ck5 62 1.2 c1k3 + c2k4 63 1.2 ck3 + k4 64 1.2 k3 + ck4 65 1.2 c1k3 + c2k5
66 1.2 ck3 + k5 67 1.2 k3 + ck5 68 1.2 c1k4 + c2k5 69 1.2 ck4 + k5 70 1.2 k4 + ck5
71 1.3 k1 + k1 + c 72 1.3 k1 + k2 + c 73 1.3 k1 + k3 + c 74 1.3 k1 + k4 + c 75 1.3 k1 + k5 + c
76 1.3 k2 + k2 + c 77 1.3 k2 + k3 + c 78 1.3 k2 + k4 + c 79 1.3 k2 + k5 + c 80 1.3 k3 + k3 + c
81 1.3 k3 + k4 + c 82 1.3 k3 + k5 + c 83 1.3 k4 + k4 + c 84 1.3 k4 + k5 + c 85 1.3 k5 + k5 + c
86 1.4 k1k1 + k1 87 1.4 k1k1 + k2 88 1.4 k1k1 + k3 89 1.4 k1k1 + k4 90 1.4 k1k1 + k5
91 1.4 k1k2 + k1 92 1.4 k1k2 + k2 93 1.4 k1k2 + k3 94 1.4 k1k2 + k4 95 1.4 k1k2 + k5
96 1.4 k1k3 + k1 97 1.4 k1k3 + k2 98 1.4 k1k3 + k3 99 1.4 k1k3 + k4 100 1.4 k1k3 + k5

101 1.4 k1k4 + k1 102 1.4 k1k4 + k2 103 1.4 k1k4 + k3 104 1.4 k1k4 + k4 105 1.4 k1k4 + k5
106 1.4 k1k5 + k1 107 1.4 k1k5 + k2 108 1.4 k1k5 + k3 109 1.4 k1k5 + k4 110 1.4 k1k5 + k5
111 1.4 k2k2 + k1 112 1.4 k2k2 + k2 113 1.4 k2k2 + k3 114 1.4 k2k2 + k4 115 1.4 k2k2 + k5
116 1.4 k2k3 + k1 117 1.4 k2k3 + k2 118 1.4 k2k3 + k3 119 1.4 k2k3 + k4 120 1.4 k2k3 + k5
121 1.4 k2k4 + k1 122 1.4 k2k4 + k2 123 1.4 k2k4 + k3 124 1.4 k2k4 + k4 125 1.4 k2k4 + k5
126 1.4 k2k5 + k1 127 1.4 k2k5 + k2 128 1.4 k2k5 + k3 129 1.4 k2k5 + k4 130 1.4 k2k5 + k5
131 1.4 k3k3 + k1 132 1.4 k3k3 + k2 133 1.4 k3k3 + k3 134 1.4 k3k3 + k4 135 1.4 k3k3 + k5
136 1.4 k3k4 + k1 137 1.4 k3k4 + k2 138 1.4 k3k4 + k3 139 1.4 k3k4 + k4 140 1.4 k3k4 + k5
141 1.4 k3k5 + k1 142 1.4 k3k5 + k2 143 1.4 k3k5 + k3 144 1.4 k3k5 + k4 145 1.4 k3k5 + k5
146 1.4 k4k4 + k1 147 1.4 k4k4 + k2 148 1.4 k4k4 + k3 149 1.4 k4k4 + k4 150 1.4 k4k4 + k5
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Table A1. Cont.

No. P kNILM No. P kNILM No. P kNILM No. P kNILM No. P kNILM

151 1.4 k4k5 + k1 15yh72 1.4 k4k5 + k2 153 1.4 k4k5 + k3 154 1.4 k4k5 + k4 155 1.4 k4k5 + k5
156 1.4 k5k5 + k1 157 1.4 k5k5 + k2 158 1.4 k5k5 + k3 159 1.4 k5k5 + k4 160 1.4 k5k5 + k5
161 2.3 c1k1(k1 + c2) 162 2.3 c1k1(k2 + c2) 163 2.3 c1k1(k3 + c2) 164 2.3 c1k1(k4 + c2) 165 2.3 c1k1(k5 + c2)
166 2.3 c1k2(k1 + c2) 167 2.3 c1k2(k2 + c2) 168 2.3 c1k2(k3 + c2) 169 2.3 c1k2(k4 + c2) 170 2.3 c1k2(k5 + c2)
171 2.3 c1k3(k1 + c2) 172 2.3 c1k3(k2 + c2) 173 2.3 c1k3(k3 + c2) 174 2.3 c1k3(k4 + c2) 175 2.3 c1k3(k5 + c2)
176 2.3 c1k4(k1 + c2) 177 2.3 c1k4(k2 + c2) 178 2.3 c1k4(k3 + c2) 179 2.3 c1k4(k4 + c2) 180 2.3 c1k4(k5 + c2)
181 2.3 c1k5(k1 + c2) 182 2.3 c1k5(k2 + c2) 183 2.3 c1k5(k3 + c2) 184 2.3 c1k5(k4 + c2) 185 2.3 c1k5(k5 + c2)
186 2.4 ck1(k1k2) 187 2.4 ck1(k1k3) 188 2.4 ck1(k1k4) 189 2.4 ck1(k1k5) 190 2.4 ck1(k2k3)
191 2.4 ck1(k2k4) 192 2.4 ck1(k2k5) 193 2.4 ck1(k3k4) 194 2.4 ck1(k3k5) 195 2.4 ck1(k4k5)
196 2.4 ck2(k1k2) 197 2.4 ck2(k1k3) 198 2.4 ck2(k1k4) 199 2.4 ck2(k1k5) 200 2.4 ck2(k2k3)
201 2.4 ck2(k2k4) 202 2.4 ck2(k2k5) 203 2.4 ck2(k3k4) 204 2.4 ck2(k3k5) 205 2.4 ck2(k4k5)
206 2.4 ck3(k1k2) 207 2.4 ck3(k1k3) 208 2.4 ck3(k1k4) 209 2.4 ck3(k1k5) 210 2.4 ck3(k2k3)
211 2.4 ck3(k2k4) 212 2.4 ck3(k2k5) 213 2.4 ck3(k3k4) 214 2.4 ck3(k3k5) 215 2.4 ck3(k4k5)
216 2.4 ck4(k1k2) 217 2.4 ck4(k1k3) 218 2.4 ck4(k1k4) 219 2.4 ck4(k1k5) 220 2.4 ck4(k2k3)
221 2.4 ck4(k2k4) 222 2.4 ck4(k2k5) 223 2.4 ck4(k3k4) 224 2.4 ck4(k3k5) 225 2.4 ck4(k4k5)
226 2.4 ck5(k1k2) 227 2.4 ck5(k1k3) 228 2.4 ck5(k1k4) 229 2.4 ck5(k1k5) 230 2.4 ck5(k2k3)
231 2.4 ck5(k2k4) 232 2.4 ck5(k2k5) 233 2.4 ck5(k3k4) 234 2.4 ck5(k3k5) 235 2.4 ck5(k4k5)
236 3.4 (k1 + c)k1k2 237 3.4 (k1 + c)k1k3 238 3.4 (k1 + c)k1k4 239 3.4 (k1 + c)k1k5 240 3.4 (k1 + c)k2k3
241 3.4 (k1 + c)k2k4 242 3.4 (k1 + c)k2k5 243 3.4 (k1 + c)k3k4 244 3.4 (k1 + c)k3k5 245 3.4 (k1 + c)k4k5
246 3.4 (k2 + c)k1k2 247 3.4 (k2 + c)k1k3 248 3.4 (k2 + c)k1k4 249 3.4 (k2 + c)k1k5 250 3.4 (k2 + c)k2k3
251 3.4 (k2 + c)k2k4 252 3.4 (k2 + c)k2k5 253 3.4 (k2 + c)k3k4 254 3.4 (k2 + c)k3k5 255 3.4 (k2 + c)k4k5
256 3.4 (k3 + c)k1k2 257 3.4 (k3 + c)k1k3 258 3.4 (k3 + c)k1k4 259 3.4 (k3 + c)k1k5 260 3.4 (k3 + c)k2k3
261 3.4 (k3 + c)k2k4 262 3.4 (k3 + c)k2k5 263 3.4 (k3 + c)k3k4 264 3.4 (k3 + c)k3k5 265 3.4 (k3 + c)k4k5
266 3.4 (k4 + c)k1k2 267 3.4 (k4 + c)k1k3 268 3.4 (k4 + c)k1k4 269 3.4 (k4 + c)k1k5 270 3.4 (k4 + c)k2k3
271 3.4 (k4 + c)k2k4 272 3.4 (k4 + c)k2k5 273 3.4 (k4 + c)k3k4 274 3.4 (k4 + c)k3k5 275 3.4 (k4 + c)k4k5
276 3.4 (k5 + c)k1k2 277 3.4 (k5 + c)k1k3 278 3.4 (k5 + c)k1k4 279 3.4 (k5 + c)k1k5 280 3.4 (k5 + c)k2k3
281 3.4 (k5 + c)k2k4 282 3.4 (k5 + c)k2k5 283 3.4 (k5 + c)k3k4 284 3.4 (k5 + c)k3k5 285 3.4 (k5 + c)k4k5

Table A2. Optimal Design of GA-SVM-MKL Classifier in 285 Scenario using Various Kernel and
Kernel Properties.

No.
Performance (%)

No.
Performance (%)

No.
Performance (%)

No.
Performance (%)

No.
Performance (%)

Se Sp OA Se Sp OA Se Sp OA Se Sp OA Se Sp OA

1 71.8 72.3 72.1 2 73.1 72.7 72.9 3 75.3 76.3 75.8 4 76.4 75.9 76.2 5 72.9 73.6 73.3
6 72.4 72.7 72.6 7 75.7 76.4 76.1 8 78.5 78.8 78.7 9 75.7 76.1 75.9 10 74.8 75.4 75.1
11 79.3 80.1 79.7 12 76.9 77.8 77.4 13 76.5 77.1 76.8 14 77.1 76.2 76.7 15 75.4 74.2 74.8
16 73.4 72.9 73.2 17 74.9 75.3 75.1 18 75.9 76.1 76 19 78.2 78.8 78.5 20 76.2 75.8 76
21 71.9 72.6 72.3 22 74.6 75.1 74.9 23 75.3 76.3 75.8 24 76.7 77.3 77 25 76.8 76.0 76.4
26 70.8 71.5 71.2 27 72.6 72.8 72.7 28 73.6 73.4 73.5 29 75.7 76.3 76 30 73.3 72.9 73.1
31 70.3 71.9 71.1 32 75.1 74.5 74.8 33 78.2 77.6 77.9 34 75.3 76.8 76.1 35 72.9 73.7 73.3
36 77.4 78.4 77.9 37 76.4 77.5 77.0 38 76.3 75.6 76.0 39 76.8 75.3 76.1 40 72.8 73.1 73.0
41 80.3 81.4 80.9 42 79.4 78.8 79.1 43 79.5 78.5 79 44 82.7 83.7 83.2 45 79.4 78.6 79
46 80.4 81.1 80.8 47 84.3 85.1 84.7 48 81.8 82.3 82.1 49 82.4 82.9 82.7 50 81.5 82.4 82.0
51 78.6 79.5 79.1 52 80.1 81.4 80.8 53 83.9 82.9 83.4 54 82.7 81.6 82.2 55 83.5 84.2 83.9
56 85.6 84.9 85.3 57 84.5 84.9 84.7 58 85.3 86.2 85.8 59 84.3 83.6 84.0 60 82.5 83.1 82.8
61 83.5 84.0 83.8 62 86.8 87.2 87 63 85.7 86.4 86.1 64 85.3 85.7 85.5 65 85.2 86.3 85.8
66 84.8 84.2 84.5 67 84.3 85.4 84.9 68 87.3 86.9 87.1 69 85.4 86.7 86.1 70 86.1 86.6 86.4
71 73.4 72.5 73.0 72 74.5 73.8 74.2 73 77.1 76.2 76.7 74 77.5 76.9 77.2 75 75.6 74.9 75.3
76 73.8 74.5 74.2 77 76.3 77.1 76.7 78 79.9 78.5 79.2 79 77.3 78.4 77.9 80 76.3 77.6 77.0
81 81.2 80.6 80.9 82 78.5 79.1 78.8 83 76.8 77.7 77.3 84 76.3 77.4 76.9 85 76.4 75.3 75.9
86 72.4 73.4 72.9 87 73.5 74.2 73.9 88 74.8 75.6 75.2 89 75.6 76.2 75.9 90 74.6 75.1 74.9
91 74.2 73.6 73.9 92 74.1 75.9 75 93 74.3 74.9 74.6 94 76.3 77.4 76.9 95 75.2 74.6 74.9
96 74.5 75.6 75.1 97 75.3 76.2 75.8 98 75.6 76.5 76.1 99 77.8 78.2 78 100 77.4 76.3 76.9

101 75.8 76.4 76.1 102 77.4 78.4 77.9 103 77.5 76.3 76.9 104 80.1 79.7 79.9 105 78.4 79.6 79
106 76.1 75.9 76 107 76.7 77.9 77.3 108 75.4 76.6 76 109 75.7 76.1 75.9 110 74.2 75.8 75
111 73.4 74.8 74.1 112 75.1 74.7 74.9 113 75.1 76.3 75.7 114 75.9 76.7 76.3 115 76.8 75.3 76.1
116 74.8 75.6 75.2 117 75.5 76.1 75.8 118 77.5 76.2 76.9 119 78.1 78.9 78.5 120 77.3 78.2 77.8
121 75.1 75.2 75.2 122 77.4 76.7 77.1 123 77.3 78.9 78.1 124 79.5 78.9 79.2 125 76.3 75.8 76.1
126 75.3 74.5 74.9 127 76.4 77.1 76.8 128 76.1 76.4 76.3 129 78.3 77.3 77.8 130 76.8 75.9 76.4
131 75.4 74.6 75 132 75.8 76.8 76.3 133 76.2 77.3 76.8 134 77.3 76.4 76.9 135 76.8 76.4 76.6
136 76.4 76.2 76.3 137 78.4 77.9 78.2 138 78.1 79.3 78.7 139 81.2 80.4 80.8 140 80.9 80.4 80.7
141 76.4 75.3 75.9 142 76.8 77.4 77.1 143 78.4 79.5 79.0 144 79.6 80.1 79.9 145 79.9 78.9 79.4
146 75.6 76.3 76.0 147 76.2 76.1 76.2 148 77.5 78.4 78.0 149 79.4 78.8 79.1 150 77.9 78.4 78.2
151 75.6 74.8 75.2 152 76.4 76.7 76.6 153 75.6 75.3 75.5 154 78.6 79.1 78.9 155 77.5 78.1 77.8
156 74.6 73.5 74.1 157 74.9 75.8 75.4 158 74.3 75.9 75.1 159 77.6 75.9 76.8 160 75.3 76.3 75.8
161 81.9 82.4 82.2 162 81.8 82.3 82.1 163 83.6 84.6 84.1 164 84.1 84.6 84.4 165 83.3 84.1 83.7
166 83.4 82.7 83.1 167 82.3 83.8 83.1 168 83.5 84.1 83.8 169 84.8 85.7 85.3 170 85.1 84.9 85
171 86.1 85.7 85.9 172 86.8 87.2 87 173 88.9 87.5 88.2 174 91.5 90.3 90.9 175 91.2 90.8 91
176 88.9 89.5 89.2 177 88.6 89.8 89.2 178 92.1 91.5 91.8 179 91.2 91.5 91.4 180 90.3 90.1 90.2
181 88.5 89.2 88.9 182 88.8 89.6 89.2 183 88.3 89.2 88.8 184 88.4 89.7 89.1 185 88.5 89.1 88.8
186 83.1 82.5 82.8 187 83.4 84.1 83.8 188 85.6 84.7 85.2 189 83.9 84.2 84.1 190 83.9 84.5 84.2
191 85.3 86.1 85.7 192 83.7 84.1 83.9 193 85.2 84.6 84.9 194 83.8 82.9 83.4 195 84.1 83.7 83.9
196 83.4 82.7 83.1 197 84.3 85.1 84.7 198 86.3 85.8 86.1 199 84.8 85.7 85.3 200 85.5 86.2 85.9
201 85.7 86.3 86 202 84.9 85.1 85 203 86.1 87.3 86.7 204 84.9 85.3 85.1 205 85.2 86.2 85.7
206 84.5 85.1 84.8 207 85.7 86.8 86.3 208 86.2 86.4 86.3 209 85.9 84.8 85.4 210 84.6 84.9 84.8
211 85.2 86.4 85.8 212 85.7 86.5 86.1 213 86.7 87.1 86.9 214 86.3 87.4 86.9 215 86.7 87.2 87.0
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Table A2. Cont.

No.
Performance (%)

No.
Performance (%)

No.
Performance (%)

No.
Performance (%)

No.
Performance (%)

Se Sp OA Se Sp OA Se Sp OA Se Sp OA Se Sp OA

216 85.8 86.7 86.3 217 88.2 87.1 87.7 218 87.8 88.5 88.2 219 86.3 87.2 86.8 220 85.1 86.3 85.7
221 86.6 87.3 87.0 222 87.3 86.4 86.9 223 88.9 88.2 88.6 224 86.7 87.5 87.1 225 87.5 88.2 87.9
226 85.6 86.8 86.2 227 86.3 87.3 86.8 228 86.1 85.9 86 229 85.4 85.8 85.6 230 85.9 84.3 85.1
231 84.6 85.1 84.9 232 86.1 87.4 86.8 233 87.1 86.4 86.8 234 86.3 87.8 87.1 235 85.2 86.3 85.8
236 83.4 84.9 84.2 237 83.3 84.1 83.7 238 84.9 85.6 85.3 239 84.7 85.1 84.9 240 85.8 86.6 86.2
241 86.1 86.7 86.4 242 85.6 84.8 85.2 243 86.7 85.9 86.3 244 85.3 84.1 84.7 245 85.1 85.9 85.5
246 86.1 85.3 85.7 247 86.2 85.6 85.9 248 87.1 86.3 86.7 249 86.2 85.9 86.1 250 86.1 86.8 86.5
251 87.2 86.4 86.8 252 86.7 85.7 86.2 253 87.8 88.3 88.1 254 86.7 86.5 86.6 255 86.3 87.3 86.8
256 86.4 87.3 86.9 257 86.9 85.8 86.4 258 86.3 87.3 86.8 259 87.1 86.3 86.7 260 87.5 88.1 87.8
261 86.9 87.6 87.3 262 87.4 88.1 87.8 263 89.4 88.4 88.9 264 87.4 86.7 87.1 265 87.4 87.9 87.7
266 86.3 87.4 86.9 267 86.9 87.5 87.2 268 88.2 87.1 87.7 269 85.7 86.4 86.1 270 86.7 87.5 87.1
271 87.5 86.7 87.1 272 87.4 88.3 87.9 273 88.4 87.5 88.0 274 88.6 89.2 88.9 275 86.9 87.2 87.1
276 86.7 86.8 86.8 277 87.1 86.5 86.8 278 88.5 87.5 88 279 86.3 87.2 86.8 280 86.5 86.8 86.7
281 86.4 87.1 86.8 282 86.7 87.8 87.3 283 87.5 88.6 88.1 284 87.1 87.5 87.3 285 86.7 87.9 87.3

 

Figure A1. Probability distribution of overall accuracy for optimal design of GA-SVM-MKL classifier
in 285 scenario using various kernel and kernel properties.
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Abstract: Nowadays climate change problems have been more and more concerns and urgent
in the real world. Especially, the energy power consumption monitoring is a considerate trend
having positive effects in decreasing affecting climate change. Non-Intrusive Load Monitoring
(NILM) is the best economic solution to solve the electrical consumption monitoring issue. NILM
captures the electrical signals from the aggregate energy consumption, feature extraction from
these signals and then learning and predicting the switch ON/OFF of appliances used these feature
extracted. This paper proposed a NILM framework including data acquisition, data feature extraction,
and classification model. The main contribution is to develop a new transient signal in a different
aspect. The proposed transient signal is extracted from the active power signal in the low-frequency
sampling rate. This transient signal is used to detect the event of household appliances. In household
appliances event detection, we applied to Decision Tree and Long Short-Time Memory (LSTM) models.
The average accuracies of these models achieved 92.64% and 96.85%, respectively. The computational
and result experiments present the solution effectiveness for the accurate transient signal extraction
in the electrical input signals.

Keywords: NILM; energy disaggregation; MCP39F511; Jetson TX2; transient signature; decision tree;
LSTM

1. Introduction

Developing countries with rapid urbanization in high buildings construction and the high power
demand are a reason for the need for conversation and efficient energy program. The program requires
monitoring of customer appliances energy consumption in real-time. Using smart meter had led to
NILM enables estimation of individual power consumption used for aggregate power consumption in
energy management recently.

In the factory field, researchers are working on Factory Energy Management System (FEMS) for
efficient electric energy use. In recently, FEMS has been linked with to the Cyber-Physical Systems (CPS)
of Industry 4.0. And the related researches will be more significant in this area [1]. At resident homes,
NILM provides the households understand their consumption usage via a cost-effective real-time
monitoring appliances system. The customers need giving up unwanted activities to avoid producing
unnecessary energy consumption such as the appropriate appliances usage time and appliances
usage optimization. These activities can be obtained showing to customers the consumption of
each appliance in the sum of the total billing to detect excesses or malfunction [2]. Furthermore,
it could be possible notify users of possible savings in their billing electricity. In contrary to this,
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Kelly et al. [3] have argued that it is not proven yet that above activity and the additional feedback
which become saving energy. In addition, there is an increase in micro-grids and renewable energy
facility installation also continuous growth in recently. In purpose of increasing efforts these saving,
automating energy measurement, energy monitoring, and the power management system are needed.
In the load measurement of a power system, load monitoring has the main role that the process of
acquiring and identifying the load [4]. This load monitoring will determine the status of appliances
and their consumption. Besides, it supports to understand the behavior of each load in the whole
power system. There are two types of the load monitoring including Intrusive Load Monitoring (ILM)
and Non-Intrusive Monitoring (NILM).

In ILM, the term “intrusive” means that there is the meter device in the resident house and close
to the appliances to monitor. ILM deploys a measurement of the energy consumption of one or more
household appliances using meter devices. In the ILM ecosystem, more low-end meter devices are
needed. This makes hard to install, maintain, expand as well as expensive. In contrary to ILM, the
term “non-intrusive” in NILM means that no extra equipment is installed in the house. NILM is a
process which gives data from whole house energy consumption. This process includes installing
a sensor device at the panel level and then the appliances will be inferred with being used. NILM
preferred using than ILM because it is cheaper and easier installation. Instead of at least one-meter
device per room, this technique requires only one-meter device for each energy entrance to the house.
Energy disaggregation is another synonym for NILM. This technique estimates the power demand for
each appliance from a single meter which contains the overall demand for several appliances.

A NILM system has three roles including capturing the signals from the aggregate consumption,
extracting the feature uniquely from the load signal and classifying to identify which appliances are
turned ON based on these features extracted. To identify the individual signature of each device,
the NILM system requires several steps such as signal sampling (data acquisition), feature extraction
based on signal analysis from the electrical signals. This paper presents a NILM framework including
data acquisition, data feature extraction, and classification model. The contributions in this NILM
study are: (1) propose a NILM framework, (2) collect the household appliances energy consumption
data set in low-frequency sampling rate, (3) propose the algorithm to extract a new transient signal in
low-frequency sampling rate, (4) improve the performance of NILM model in event detection as well
as load identification.

The main contribution to be presented in this paper is a new approach to extract the transient
uniquely. The proposed transient signal is extracted from the active power signal in the low-frequency
sampling rate. This transient signal is used to detect the event of household appliances. Besides,
an embedded board, Jetson TX2, is used to build the proposed NILM application system. This board
has two roles to use in this research. The first role is to connect with the sensor to request and storage
energy data (data acquisition). The second one is to build machine learning and deep learning models
with high-performance training and testing. It is integrated Graphic Processing Unit (GPU) related
to deep learning and its performance such as LSTM model. Furthermore, NILM Web application
can be built for visualizing NILM result at this board. On the other hand, it can be replaced Jetson
TX2 by other hardware that integrated GPU or normal personal computer (PC) without accelerated
computing. Hence, the roles of Jetson TX2 is the same role with PC that integrated GPU to perform
deep learning model. In summary, Jetson TX2 can connect to the sensor to storage data. Besides, it can
build the machine learning, deep learning models, training, predicting and visualizing the result Jetson
board or the PC has GPU with support high computation in a deep neural networks.

This paper is organized as follows. The next Section introduces the NILM system concept and
presents a related literature works. In Section 3, a NILM framework is proposed. The core of this
NILM framework is to propose the algorithm to develop a new transient signal from power signal
in low-frequency sampling rate. The experimental setup is described and experimental results are
presented in Section 4. Finally, conclusions and future works are drawn in Section 5.
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2. Related Works

The initial NILM approach was proposed by Hart in 1990s [5]. The author introduced the
Non-Intrusive Appliance Load Monitor(NALM) is a software which was able to analyze single point
electrical data and then obtained energy used correspond to individual electrical appliances. Figure 1
shows the first concept of general NILM.

Figure 1. The first concept of NILM based on a single point measurement by Hart [5].

In recently, there are a number of studies have applied and extended this approach by using
directly sampled which is increased the resolving power of the ΔP − ΔQ space such in [6,7]. This
approach has a limitation which cannot distinct appliances has similar in power signal and their
operational principles, for example, hairdryer and iron. Hence, Laughman et al. [8] proposed another
advanced solution. The capable of this idea based on the transient shapes of appliances to recognize
individual load. Besides, they proposed the analysis of the spectral envelopes for continuously
variable loads. However, they have not solved the electric noise of appliance usage yet. Therefore,
Patel et al. [9] proposed a method to avoid the electric noise via combination software and hardware in
household-level current sampling task at 1 MHz. They applied Support Vector Machine (SVM) model
to trained the data to achieve accuracy at 90%. However, this technique has a limitation which requires
high sampling rate with more kHz. Because of the meter device limitation, it is hard to apply in the real
world environment. Furthermore, the need for an adjusting the prediction models on different data on
training data is another drawback. The NILM algorithm needs to detect the appliance operation status
(ON and OFF) from the power measurements. The NILM approaches can be classified as event-based or
state-based based on different event detection strategies.

Event-based methods generated the state transient edges of appliances. This approach uses a
change detection algorithm to determine the start and end of an event such in [10,11]. The significant
information needs to extract to identification the event has occurred, for example, appliance signatures
such as active power, rising or falling edge etc. These extracted features are analyzed to detect the
event based on the appliances and their power consumption estimated. The researcher [12] has used
different classification methods such as K-Means, K-Nearest Neighbour (KNN), SVM, Hidden Markov
Model (HMM) and HMM’s variations to detect event appliance. However, the performance of the
event-based approach is not high because of the fixed threshold in the change detection algorithm, the
large noise, and the similar among steady state signatures. Furthermore, false positive rate or false
alarm rate may arise in the detection of edges methods.

State-based methods do not base on event detection. The idea is how to determine each appliance
operation based on a state machine which is a different state transient using usage pattern of
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appliances [13]. When the appliance is turned ON/OFF or is changed running states, the method
creates new state power signal through a probability distribution to match to the original power
signal of the appliance. HMM and its variants [14–17] are used in state-based NILM. However,
state-based approaches have several limitations. Firstly, the need for expert knowledge to set a
prior value for each appliance by long training periods. Secondly, they have the complexity to
compute [13,18]. Finally, there is not a good way to handle states may stable unchanged for long time
intervals [19]. The requirement for an effective NILM algorithm is unique features or signatures have
to characterize appliance behavior. Appliance signatures are a unique energy consumption pattern of
all appliances. Ahmed Z., et al. [17] used appliance signatures to uniquely identify and recognized
appliance operations from the aggregated load measurements. In feature selection, two main appliance
features are used by NILM research to identify loads including steady-state and transient state [20].

Steady state is extracted when an appliance changes its running states related to sustained changes
in power characteristics. The factors are used in this method including active power, reactive power,
current, and voltage. The steady state signatures extraction of current and voltage do not demand
high-end meter devices. Features at low frequency are used in the most commonly in steady state
features in advance researches. However, the performance of this approach is limited by similarities
among steady state signatures. In recently, deep neural network (DNN) in deep learning field
becomes more attractive and widely system recognition applied in several areas such as handwritten
recognition, speed recognition etc. Specifically, LSTM model is a kind of DNN model which is
applied to classification applications have time series data. In NILM, this model is applied to load
identification on the UK Domestic Appliance-Level Electricity (UK-DALE) dataset using active power
by Kelly et al. [21]. However, the author pointed out the performance limitation on the appliances
have informative events in power signal can be many time steps such as washing machine. Besides,
Kim et al. [22] applied LSTM model on the variant power signals are generated from active power
in low frequency on several public datasets. This method overcomes the long gaps between event
may present a challenge in LSTM. In future NILM works, LSTM model may become more and more
promising and effecting learning method for researchers.

Contrary to the steady state features, before settling into a steady state value, transient state features
are short-term fluctuations in current or power. To create transient feature uniquely, the authors [17]
defined appliance state transients which are shapes, size, duration, and harmonics by sampling current
and voltage waveforms at high frequency. Hence, these transient features can achieve signal uniquely
to a high degree. Besides, they capture all operation cycles in high sampling rates in longer monitoring
time [23]. For example, Patel et al. [9] proposed a custom hardware built to detect the transient noise
in range 0.001 kHz to 100 kHz frequency. Then, the authors used the fact that each appliance in-state
operation transmits noise back to the power line. However, the high sampling rate required is the
major drawback to obtain transient features such as current spikes, transient response time, repeatable
transient power profiles, spectral envelopes, etc. [24]. When using a high sampling rate, the system
demands a costly hardware and complicated to be installed in the home to detect these transient
features [24]. The cause is smart meters report only low-frequency power. In the transient state
analysis, the researchers [25,26] analyzed and captured the load signatures based on wavelet transform
and transient energy algorithm. Artificial Neural Network (ANN) and HMM are used to improve the
performance of NILM in these researches, respectively. Although the results were very much significant,
there are still the little drawbacks. For example, the authors [25] sampled at high frequency for current
and voltage waveform data to capture the transient effect. Nevertheless, doing this will increase
the cost of energy meters because modern energy meters are not equipped with such functionality.
Besides, the authors [26] used the data which have the repeatable transient energy signature for load
identification because of the varying transient with these waveforms. Therefore, the sampling of the
instantaneous load profile for each turn ON transient is required much diligence. In addition, the
authors [27] applied the Wavelet Transform Coefficient (WTC) based on ON/OFF transient signal
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identification in data acquisition. Although WTC works better than Fourier Transform, WTC requires
much longer computation time. Besides, it needs larger machine resource like memory usage.

In summary, the low-frequency or high-frequency data collected is used in classifying appliance
recognition systems based on signature feature extraction. A low-frequency data sampling rate is
implemented in without additional installation by using existing meter infrastructure. Contrary to
this, high-frequency data sampling rate needs adding more hardware installing in data acquisition.
Especially, the limitations of high sampling rate data acquisition are more expensive cost and more
complex in signature database management [28,29]. However, a more accurate and precise analysis can
be provided with more information and assistance [30]. Hence, using a low-frequency sampling rate
is more promising in event detection appliances based on analysis the active power and/or reactive
power. A new necessary technique of NILM has valid three most important factors to introduce
into services for end-users. First thing is an ability to widely appropriately applied in household.
The second thing is the usage of the low-cost device to retrieve the energy consumption. The third
thing is able to recognition appliances with the same power signal and appliances with variable power
signals in the low-frequency sampling data. Hence, in this work, new transient signal is extracted
from the active power signal in the low-frequency sampling rate to overcome the problem in advance
studies.

3. The Proposed NILM Framework

The proposed NILM framework is introduced in this Section. Figure 2 shows the proposed NILM
system. The proposed NILM system includes several components such as energy stream data, sensing
device MCP39F511 (Microchip Technology Inc., Chandler, AZ, USA), an embedded board Jetson TX2
(NVIDIA Corporation, Santa Clara, CA, USA), transient signal extraction and recognition, and energy
monitoring and consumption prediction system.

Figure 2. The proposed NILM framework.

3.1. Energy Stream Data

In data acquisition, several household appliances and the multi-tab power (HJ04009-10010C, KC
Electric Company, Seoul, Korea) to collect energy data are prepared. Five appliances are collected
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including Air-purifier (LG Electronics Inc., Seoul, Korea), Fan (Cixi Xiongsheng Electrical Appliances
Co., Ltd., Ningbo, China), Hairdryer (Korea Hanil Electronics, Seoul, Korea), LG monitor (LG
Electronics Inc., Seoul, Korea), and Samsung monitor (Samsung Electronics Inc., Suwon, Korea).
These appliances are connected to sensing device MCP39F511 via a multi-tab and the sensor’s port.
Table 1 describes models and power consumption of five appliances which are used to collect energy
data.

Table 1. Specifications of five appliances.

Appliance Model Power Consumption (W)

Air-purifier LG AS181DRWT 40
Fan TESS-S1060 40

Hairdryer Patech PH-3050 1300
LG monitor 24MP57VQ 23

Samsung monitor S27D850T 90

Besides, twenty test cases data are also collected. The purpose of testing data collection is to
obtain variant transient signals of five appliances. Each test case corresponds to set up that require
the number of appliances is different. To each appliance, four combinations between this appliance
and 1, 2, 3, or 4 other appliances are create in this work. Therefore, each appliance has four different
transient signals in this collecting process. The process to collect testing data includes two steps as
follows. The first step is to turn ON simultaneously all appliances required for each test. The second
step is to make one appliance transient by turn OFF and then turn ON while other appliances are still
ON. Table 2 presents the process to collect twenty test cases in detail.

Table 2. Twenty tests data information.

No Test Description

1 Test 1 [Air-purifier, LG monitor, Samsung monitor, Fan, Hairdryer] are ON simultaneously.
Turn OFF and then turn ON [Air-purifier] while the other appliances are still ON.

2 Test 2 [Air-purifier, LG monitor, Samsung monitor, and Fan] are ON simultaneously.
Turn OFF and then turn ON [Air-purifier] while the other appliances are still ON.

3 Test 3 [Air-purifier, LG monitor, Samsung monitor] are ON simultaneously.
Turn OFF and then turn ON [Air-purifier] while the other appliances are still ON.

4 Test 4 [Air-purifier and LG monitor] are ON simultaneously.
Turn OFF and then turn ON [Air-purifier] while the other appliance are still ON.

5 Test 5 [Fan and Air-purifier] are ON simultaneously.
Turn OFF and then ON [Fan] while the other appliance are still ON.

6 Test 6 [Fan, Samsung monitor, and Air-purifier] are ON simultaneously.
Turn OFF and then ON [Fan] while the other appliance are still ON.

7 Test 7 [Fan, Samsung monitor, LG monitor, Air-purifier, and Hairdryer] are ON simultaneously.
Turn OFF and then ON [Fan] while the other appliance are still ON.

8 Test 8 [Fan, Samsung monitor, LG monitor, and Air-purifier] are ON simultaneously.
Turn OFF and then ON [Fan] while the other appliance are still ON.

9 Test 9 [Hairdryer, Air-purifier, LG monitor, Fan, and Samsung monitor] are ON simultaneously.
Turn OFF and turn ON [Hairdryer] while the other appliance are still ON.

10 Test 10 [Hairdryer, Air-purifier, LG monitor, and Fan] are ON simultaneously.
Turn OFF and then turn ON [Hairdryer] while the other appliance are still ON.

11 Test 11 [Hairdryer, Air-purifier, and LG monitor] are ON simultaneously.
Turn OFF and then tun ON [Hairdryer] while the other appliance are still ON.

12 Test 12 [Hairdryer and Air-purifier] are ON simultaneously.
Turn OFF and then turn ON [Hairdryer] while the other appliance are still ON.

13 Test 13 [LG monitor, Samsung monitor, Fan, Air-purifier, and Hairdryer] are ON simultaneously.
Turn OFF and then turn ON [LG monitor] while the other appliance are still ON.

14 Test 14 [LG monitor, Samsung monitor, Fan, and Air-purifier] are ON simultaneously.
Turn OFF and then turn ON [LG monitor] while the other appliance are still ON.

15 Test 15 [LG monitor, Samsung monitor, and Fan] are ON simultaneously.
Turn OFF and then turn ON [LG monitor] while the other appliance are still ON.

16 Test 16 [LG monitor and Samsung monitor] are ON simultaneously.
Turn OFF and then turn ON [LG monitor] while the other appliance are still ON.
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Table 2. Cont.

No Test Description

17 Test 17 [Hairdryer, Fan, Samsung monitor, LG monitor, and Air-purifier] are ON simultaneously.
Turn OFF and then turn ON [Samsung monitor] while the other appliance are still ON.

18 Test 18 [Samsung monitor, Fan, LG monitor, and Air-purifier] are ON simultaneously.
Turn OFF and then turn ON [Samsung monitor] while the other appliance are still ON.

19 Test 19 [Samsung monitor, LG monitor, and Air-purifier] are ON simultaneously.
Turn OFF and then turn ON [Samsung monitor] while the other appliance are still ON.

20 Test 20 [Samsung monitor and Air-purifier] are ON simultaneously.
Turn OFF and then turn ON [Samsung monitor] while the other appliance are still ON.

3.2. MCP39F511

The MCP39F511 is a power monitoring device that can measure input power in real time
for the consumer, power distribution units, AC/DC power supplies. This sensor supports 2-wire
serial protocols and Universal Asynchronous Receiver/Transmitter (UART)with enabling select full
speed at up to 115.2 kbps. This sensor has a Power Monitor Demonstration Board which is a fully
functional single-phase power. The system calculates and displays active power, reactive power, RMS
current, RMS voltage, active energy (both import and export), and four quadrants reactive energy.
MCP39F511 changes data acquisition mode compare to a conventional method. In the conventional
method, data acquisition mode is getting energy data stored in registers by sending a command from
PC. In this sensor device, the mode is getting energy data via connecting to Jetson TX2 (see Figure 3)
via some steps as follows.

• Step 1: Jetson TX2 sends a command to switch to single wire mode. This single wire mode
includes twenty bytes such as Header Byte (0 × AB), Header Byte 2 (0 × CD), Header Byte 3
(0 × EF), Current RMSs with Byte 0 to Byte 3, Voltage RMSs with Byte 0 to Byte 1, Active Power
with Byte 0 to Byte 3, Reactive power with Byte 0 to Byte 3, Line Frequency with Byte 0 to Byte 1,
and final is check sum.

• Step 2: Single wire mode is automatically sent whenever the sensing device updates energy data.
• Step 3: The sampling rate is in 15 Hz (see Figure 4).

There is a coherent sampling algorithm to phase lock the sampling rate to the line frequency
based on an integer number of sample per line cycle in the computation cycle of MCP39F511. After
that, it reports all power output quantities at a 2N number of line cycles. The power outputs include
RMS current, RMS voltage, apparent power, active power. The accumulation interval is defined as
an 2N number of line cycles, where N is the value in the Accumulation Interval Parameter register.
Equations (1)–(5) system calculate and display RMS current (IRMS), RMS voltage (VRMS), Apparent
power (S), Active power (P), Reactive power (Q), and Power factor as follows.

RMS current equation (IRMS) with unit is Amps (A):

IRMS =

√
∑2N−1

n=0 (in)2

2N (1)

RMS voltage equation (VRMS) with unit is Volt (V):

VRMS =

√
∑2N−1

n=0 (vn)2

2N (2)

Apparent power equation (S) with unit is Volt-Amps (VA):

S = IRMS × VRMS (3)
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Active power equation (P) with unit is Watts (W):

P =
1

2N

2N−1

∑
k=0

Vk × Ik (4)

In the MCP39F511, Reactive power (Q) with Volt-Amps-Reactive unit (VAR) is measured based
on a θ-degree phase shift in the voltage channel. The common degree is 90-degree phase shift.
Accumulator Unit (ACCU) acts as the accumulator where has the similar accumulation principles
applied to Active power (P). In the Gain Reactive power register, Gain is corrected. In the Reactive
power register, an unsigned 32-bit value is located which is the final output. P is measured by the
formula below.

Q = VRMS × IRMS × sin(θ) (5)

The ratio of P to S or Active power divided by Apparent power is Power factor (PF) measurement.

PF =
P
S

(6)

Figure 3. Data transfer process.

Figure 4. The low sampling rate format data collected in 15 Hz of Air-purifier device.
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3.3. Jetson TX2

Jetson is the low-power embedded platform in the world’s leading. Besides, it enables server-class
AI to compute performance everywhere. Jetson’s features include an integrated 256-core NVIDIA
Pascal GPU, a hex-core ARMv8 64-bit CPU complex, and 8GB of LPDDR4 memory with a 128-bit
interface. Figure 5 shows the CPU complex which combines a dual-core NVIDIA Denver 2 alongside a
quad-core ARM Cortex-A57.

Table 3 shows Jetson TX2 technical specifications in detail. The installation files of Jetson TX2 are
set up including,

• GPU includes Cuda, cudnn
• Machine learning/ deep learning with Tensorflow 1.3
• Python 3rd party lib with Pandas, numpy, jupyter, pyserial, matplotlib etc.
• Power Sensor Interlock is CDC ACM module
• Server includes Node.js 6.11.3, Npm 3.10.10, MongoDB-enterprise

Figure 5. Jetson TX2.

Table 3. Jetson TX2 Technical Specifications.

Feature Byte

CPU NVIDIA PascalTM, 256 CUDA cores
GPU HMP Dual Denver 2/2 MB L2 + Quad ARM A57/2 MB L2

Monitor 8 GB 128 bit LPDDR4 59.7 GB/s
Data capacity 32 GB eMMC, SDIO, SATA
Connectivity 1 Gigabit Ethernet, 802.11ac WLAN, Bluetooth

Etc. CAN, UART, SPI, I2C, I2S, GPIOs

It is a necessary to configure the system for collecting energy data from the appliances. The stream
energy data is calculated in the power sensing device (MCP39F511). When the embedded board
(Jetson TX2) sends a power data request, the sensing device will transfer power data via a single
wire mode transmission frame 15 times per second. After that, Jetson TX2’s processor operates to
sort data received from MCP39F511 and save the data result to database management (MongoDB).
For instance, Figure 6 shows the system configuration diagram to collect data from five household
appliances (Air-purifier, Fan, Hairdryer, LG monitor, and Samsung monitor).
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Figure 6. System configuration diagram collection data.

To collecting and storing the energy data, this paper proposes Algorithm 1. The algorithm consists
of four steps as follows.

• Step 1. Setting up serial connect from NVIDIA Jetson TX2 to MCP39F511
• Step 2. Checking frame with 20-byte frame
• Step 3. Calculating power data including current, voltage, active power, reactive power, frequency
• Step 4. Storing data into NVIDIA Jetson TX2

Algorithm 1 The requesting and storing energy data of Jetson TX2

Require: single_wire_ f rame
Ensure: current (I), voltage (V), activepwr (P), reactivepwr (Q), frequency (F)

1: if Serial.isConnected () then

2: Serial.write (single_wire_ f rame)
3: else

4: print ("serial connection error!")
5: exit()
6: end if
7: while Serial.isConnected() do
8: single_wire_mode =Serial.read()
9: check = check_frame (single_wire_ f rame)

10: if check = True then
11: I, V, P, Q, F = calculate_power_data (single_wire_mode)
12: save_to_database (I,V,P,Q,F)
13: end if
14: end while

In this algorithm , it defines two functions. The first function is check_frame() to check frame
with 20-byte frame in single wire mode. The second one is calculate_power_data() to measure energy
data information in Root Mean Square (RMS).

3.4. Transient Signal Extraction and Recognition

Based on literature observation above, this paper states three problems needing solve as follows.
Problem 1. Analyzing and extracting new transient signal from original power signal in low

sampling rate data in feature extraction.
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Problem 2. Labeling ON/OFF data on new transient signals extracted.
Problem 3. Improving the performance for event detection as well as load identification using a

new transient signal results and machine learning/deep learning models.
This study selects active power factor which is a unique input in this approach. Figure 7 shows in

detail of the proposed solution. The Figure 7a displays the process of this solution. The Figure 7b is to
illustrate the process in Figure 7a, respectively. The proposed method includes three processes, such
as feature extraction, labeling, and classification. The first, the feature extraction task is to generate
the state of the appliance and to extract the transient signal of appliances. The second, labeling task
is to label ON/OFF data with state and transient signals of appliance after extracting. The final,
classification task is to learn and classify the ON/OFF appliance based on the transient signal and
ON/OFF label signal.

(a)

(b)

Figure 7. The proposed technique for transient signal extraction and recognition. (a) The proposed
concept; (b) The illustration of the proposed process.

In feature extraction task, to label ON/OFF for appliance data, this work generates two signals
including State of appliance signal and Transient signal. Hence, this paper proposes two algorithms,
Algorithms 2 and 3.

The main idea of this task is how to detect whether or not rising and falling signals from the active
power signal. The rising signal means appliance is operating (ON state). The falling signal means
appliance is changing state from ON to OFF. Sliding window size of time series data is used to trace
power signal to detect changing signals. Hence, the performance of the changing detection algorithm
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does not depend on the fixed or adaptive threshold, the large measure noise, and similarities among
steady state signatures. Figure 8 shows the changing signals from active power signal of the appliance.

Figure 8. The analysis of active power signal with rising and falling signal.

Algorithm 2 is to generate State of the appliances, denoted by S. S value extracted is used for the
input of Algorithm 4.

Algorithm 2 State of the appliances generation algorithm

Require: Activepwr (P)
Ensure: State of appliance (S)

1: Lp ←− length of P
2: bin ←− histogram (P)
3: threshold ←− bin
4: OFF_state ←− 0
5: ON_state ←− 1
6: for i in range (0, Lp) do
7: if P[i] = 0 then
8: S ←− S || 0
9: else if P[i] < threshold then

10: S ←− S || OFF_state
11: else
12: S ←− S || ON_state
13: end if

14: end for

15: return S

Algorithm 3 is to extract new transient signal from active power signal, denoted by T. T value
is determined based on calculating prior P data (pre_data) and post P data (post_data). To assign
pre_data and post_data values, the requirement is to use the window size w of P time series data and
time shifting time series data of P is +1 for post_data value. The size of w depends on the sample size
of P and periodicity of the data. To get smaller smoothing moving the average of time series data,
there is an initialization of w value is 5. Hence, confidence intervals for the smoothed values are get.
T signal extracted from this algorithm becomes to the input of Algorithm 4. If T value has negative
value it means corresponding to P active power has falling signal, and then setting appliance’s label is
OFF event. In contrast to this, the active power has a rising signal, and then setting appliance’s label is
ON event.
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Algorithm 3 Transient signal extraction algorithm

Require: Activepwr (P)
Ensure: Transient signal extraction (T)

1: Lp ←− length of P
2: w ←− 5
3: T ←− [0]
4: for i in range (w, Lp − w) do
5: T_sum ←− 0
6: for j in range (15) do
7: pre_data ←− P[i − w + j]
8: post_data ←− P[i − w + 1 + j]
9: T_list ←− post_data − pre_data

10: T_sum ←− Σ(T_list)
11: end for

12: T ←− T || T_sum
13: end for

14: return T

In labeling task, this paper generates ON/OFF labeling by the proposed Algorithm 4. T signal
and state of the appliances are extracted by Algorithms 2 and 3, respectively. They become to the input
of this algorithm. The task of Algorithm 4 is to generate ON_label or OFF_label from T signal. This
study defines threshold value is −5 which is a maximum threshold value to determine whether event
status changing from ON to OFF event. If T value extracted at time t smaller than −5 it means that
at that time has occurred event changing from ON to OFF. In case S variable has 0 value, it means
that no event operation. If T value is smaller than threshold, it is assigned label is OFF_label; else
it is assigned label is ON_label. OFF_label value or ON_label value of each appliance are different
values. For example, there are two appliances including Air-purifier and Fan. This paper defines sets
of ON/OFF labels of these appliances as follow. Labels of Air-purifier device are OFF_label=1 and
ON_label=2. And labels of Fan device are OFF_label=3 and ON_label=4. For setting ON/OFF labeling
values of each appliance and twenty-test cases data, this paper mentions the labels for testing data in
next Section.

Algorithm 4 Labeling ON/OFF algorithm

Require: Transient signal extracted (T), State of appliance (S)
Ensure: ON_OFF_label

1: LT ←− length of (T)
2: ON_OFF_label ←−[]
3: threshold ←− −5
4: for i in range (0, LT) do
5: if S[i] = 0 then
6: ON_OFF_label ←− ON_OFF_label || 0
7: else if T[i] < threshold then
8: ON_OFF_label ←− ON_OFF_label || OFF_label
9: else

10: ON_OFF_label ←− ON_OFF_label || ON_label
11: end if

12: end for

13: return ON_OFF_label

In the classification task, this paper evaluates the proposed method using the models in both
Machine Learning (ML) and Deep Learning (DL) fields. For learning T signal and ON/OFF labeling
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signal, Decision Tree and Long Short-Term Memory (LSTM) models are selected in ML and DL,
respectively.

• Decision Tree is a supervised learning method. It is used in both classification and regression
tasks. The input feature of this model is used to infer the output feature by learning simple
decision rules. CART [31] (Classification and Regression Trees) is similar to C4.5, however, two
different to C4.5 are it supports the regression task in numerical target variable and does not need
to compute rule sets. This algorithm builds binary trees based on the feature and threshold with
the largest information gain at each node. In a decision tree algorithm, it needs training vectors
xi ∈ Rn, i = 1, . . . , l and a vector y ∈ Rl . This algorithm needs to recursively partition such that
grouping the same labels in a group together. A feature f and threshold thre f , partition the data
into Tle f t and Tright subsets are contained in each candidate split θ = (j, thre f )

Tle f t(θ) = (x, y)|x f ≤ threj (7)

Tright(θ) = T \ Tle f t(θ) (8)

The impurity is the choice of the classification or regression task. The impurity at j is calculated
based on an impurity function H(j).

G(T, θ) =
nle f t

Nj
H(Tle f t(θ)) +

nright

Nj
H(Tright(θ)) (9)

Select the parameters that minimizes the impurity is formulated by θ∗ as follows.

θ∗ = argminθG(T, θ) (10)

Recurse for subsets Tle f t(θ
∗) and Tright(θ

∗) reaching the maximum allowable depth, Nj <

minsamples or Nj = 1. In the classification task, the output classification represents a region
Rj with Nj observations taking on value 0, 1, . . . , K − 1, for node j.

prjk =
1

Nj
Σxi∈Rj I(yi = k) (11)

be the proportion of class k observations in node j. I(.) is a spitting criterion that makes used of
the impurity measure.

Common measures of impurity are Gini index which is calculated as follows.

H(Xj) = Σk pjk(1 − prjk) (12)

• LSTM has been designed by Hochreiter and Schmidhuber in 1997 [32]. LSTM is an elegant
Recurrent Neural Network (RNN). The LSTM architecture is combined memory cells by replacing
the regular units of the neural network. A memory cell consists of three gates: an input gate, a
forget gate, an output gate and the state of memory cell is called cell state (Figure 9a). In particular,
at the input gate, it allows incoming signal to alter the cell state or block it. On the other hand, the
output gate can allow the cell state to have an effect on other neurons or prevent it. Finally, the
forget gate can modulate cell state of the memory cell. Besides, it allows the cell to remember or
forget its previous state as needed.
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(a) (b)

Figure 9. (a) LSTM Cell; (b) An architecture of LSTM model

The difference between LSTM and the original RNN is hidden units. In LSTM, the hidden
units are replaced by LSTM cells. Figure 9b shows an architecture of LSTM having two input
units, three LSTM cells as hidden units and three output units. The equations below describe
how LSTM processes data. Assumption that Xt = [x1

t , x2
t , x3

t , ..., xnx
t ] is an input vector and

Ht = [h1
t , h2

t , h3
t , ..., hnh

t ], Yt = [y1
t , y2

t , y3
t , ..., y

ny
t ], Ct = [c1

t , c2
t , c3

t , ..., cnc
t ] are hidden, output and cell

vector, respectively. The elements of each vector are units for layers of LSTM. nx, nh, nc and ny are
a number of each units. σ is the logistic sigmoid function, and i, f and o are the input gate, forget
gate and output gate, respectively. The weight matrix superscripts have the obvious meaning.
For example, Whi

t is the hidden-input gate weight matrix and Wxo
t is the input-output gate weight

matrix. bi
t, b f

t , bc
t and bo

t are bias terms at time t.

First is to compute the value for ft, the activation of the forget gate. The output range of ft is from
0 to 1 and the output value will be multiplied by ct−1 when calculating ct. Therefore, ft means an
activation rate of the previous cell state.

ft = σ(Wx f
t

nx

∑
i=1

xi
t + Wh f

t

nh

∑
j=1

hj
t−1 + Wc f

t

nc

∑
k=1

ck
t−1 + b f ) (13)

Second is to compute the value for the input gate it. In common with ft, it is the activation ratio
of the input value xt.

it = σ(Wxi
t

nx

∑
i=1

xi
t + Whi

t

nh

∑
j=1

hj
t−1 + Wci

t

nc

∑
k=1

ck
t−1 + bi) (14)

Third is to compute the value for the cell state ct. Two factors are combined. The first factor is the
previous cell state activated by the forget gate and the second factor is the input value activated
by the input gate.

ct = ftct−1 + ittanh(Wxc
t

nx

∑
i=1

xi
t + Whc

t

nh

∑
j=1

hj
t−1 + bc) (15)

Final is to compute the value of their output gates and use it for the memory block output.

ot = σ(Wxo
t

nx

∑
i=1

xi
t + Who

t

nh

∑
j=1

hj
t−1 + Wco

t

nc

∑
k=1

ck
t−1 + bo) (16)
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ht = ottanh(ct) (17)

Equations (13)–(17) are processed in one LSTM cell. After all process are done in the hidden layer,
it can be calculated for the output units with the hidden vector Ht.

yt = σ(Why
t

nh

∑
i=1

hi
t) (18)

3.5. Energy Monitoring and Consumption Prediction System

This is a web application to display the energy disaggregation results. This paper uses Node.js,
Javascript, and HTML to build the user interface for NILM system. The results of classification are
passed to energy monitoring system.

4. Experiments

This section points data preparation for experiment and experiment results in this approach.
The results including T signals extracted and classification ON/OFF event. This study sets up the
environment for implementation as following Intel R© CoreTM i7-4790 CPU @3.60GHz; GPU: NVIDIA
GeForce GTX 750 (NVIDIA Corporation, Santa Clara, CA, USA) ; RAM: 16GB and Operating System
(OS) : Windows 10; the language programming in Python.

Besides, this paper uses confusion matrix (CM) to evaluate the approach classification model. CM
includes four categories such as True Positive (TP), False Positive (FP), True Negative (TN) and False
Negative (FN). This paper assumes that the positive event means an appliance is turned ON and when
the appliance is turned OFF that it is the negative event. Hence, Recall, Precision, Accuracy, F1-score
are calculated for evaluating the NILM model based on CM.
Recall is a ratio of the number correctly classified to the total number of actual positive samples.

Recall =
TP

TP + FN
(19)

Precision is a ratio of the number of correctly classify to the total number of predicted
positive samples.

Precision =
TP

TP + FP
(20)

Accuracy is a ratio of correctly classify to the total test data.

Accuracy =
TP + TN

(TP + FP) + (FN + TN)
(21)

F1-score is the harmonic average of Recall and Precision.

F1-score = 2 × Precision × Recall
Precision + Recall

(22)

Furthermore, this paper measures loss of NILM model using Loss function such as Mean Squared
Error (MSE).

Loss =
1
n

Σn
i=1(Yt − Yp)

2 (23)

where Yt is the expected output of sample data, Yp is the predicted output of sample data by NILM
approach model.
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4.1. Data Preparation for Experiment

Five appliances data individual and twenty test cases are collected and saved in *.csv files. As
mentioned in the previous Section, this paper selected active power data for input feature in the
experiments. Figure 10 illustrates the active power signals from five active power data of five appliances.

(a) (b) (c)

(d) (e)

Figure 10. Active power signals: (a) Airpurifier; (b) Fan appliance; (c) Hairdryer appliance; (d) LG
monitor appliance; (e) Samsung monitor appliance.

In testing data, this paper named twenty-test cases data files following in Table 4.

Table 4. Twenty-test cases data file name.

No Test File Name Description

1 Test 1 Airpurifier_Transient_LG_Samsung_Fan_Hairdryer_Steady
2 Test 2 Airpurifier_Transient_LG_Samsung_Fan_Steady Air-purifier transient
3 Test 3 Airpurifier_Transient_LG_Samsung_Steady
4 Test 4 Airpurifier_Transient_LG_Steady

5 Test 5 Fan_Transient_Airpurifier_Steady
6 Test 6 Fan_Transient_Samsung_Airpurifier_Steady Fan transient
7 Test 7 Fan_Transient_Samsung_LG_Airpurifier_Hairdryer_Steady
8 Test 8 Fan_Transient_Samsung_LG_Airpurifier_Steady

9 Test 9 Hairdryer_Transient_Airpurifier_LG_Fan_Samsung_Steady
10 Test 10 Hairdryer_Transient_Airpurifier_LG_Fan_Steady Hairdryer transient
11 Test 11 Hairdryer_Transient_Airpurifier_LG_Steady
12 Test 12 Hairdryer_Transient_Airpurifier_Steady

13 Test 13 LG_Transient_Samsung_Fan_Airpurifier_Hairdryer_Steady
14 Test 14 LG_Transient_Samsung_Fan_Airpurifier_Steady
15 Test 15 LG_Transient_Samsung_Fan_Steady LG monitor transient
16 Test 16 LG_Transient_Samsung_Steady

17 Test 17 Samsung_Transient_Airpurifier_LG_Haridryer_Fan_Steady
18 Test 18 Samsung_Transient_Airpurifier_LG_Fan_Steady Samsung monitor transient
19 Test 19 Samsung_Transient_Airpurifier_LG_Steady
20 Test 20 Samsung_Transient_Airpurifier_Steady
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Besides, this paper plotted twenty active power signals from twenty test cases in Figure 11.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 11. Active Power Signals of twenty test cases data: (a–d): test 1 to test 4; (e–h): test 5 to test 8;
(i–l): test 9 to test 12; (m–p): test 13 to test 16; (q–t): test 17 to test 20.
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4.2. Experiment Results

4.2.1. State of Appliance, Transient Signal and ON/OFF Label Results

Firstly, this paper determined and declared ON/OFF label value to use in Algorithm 4. Tables 5
and 6 show ON/OFF labels for five appliances and twenty test cases, respectively.

Table 5. Labeling ON/OFF for each appliance.

Appliance Name
ON/OFF Labeling

ON Label OFF Label

Airpurifier 1 2
Fan 3 4

Hairdryer 5 6
LG monitor 7 8

Samsung monitor 9 10

Table 6. Labeling ON/OFF for twenty test cases.

Test Name
ON/OFF Labeling

ON Label OFF Label

Test 1, Test 2, Test 3, Test 4 1 2
Test 5, Test 6, Test 7, Test 8 3 4

Test 9, Test 10, Test 11, Test 12 5 6
Test 13, Test 14, Test 15, Test 16 7 8
Test 17, Test 18, Test 19, Test 20 9 10

Secondly, this paper implemented Algorithms 2 and 3 to extract State of the appliance and T
signals, respectively. After that, the Algorithm 4 are implemented to label ON/OFF based on each T
signals from five appliances and twenty test cases data. The left, middle, and right of Figure 12 are
State S, T and ON/OFF_label signals obtained from five appliances data, respectively. From observing
these T signal results in this figure, this paper can determine the number of changing status of event
ON/OFF in each appliance. There are two, three, three, five, and four times changing status from ON
to OFF corresponding to air-purifier, fan, hairdryer, LG monitor, and Samsung monitor.

In summary, this paper recognizes that when T signal changes the value from positive to negative
value and smaller than − 5, the event ON/OFF on device will occur. In particular, when the T signal
obtains positive values, it means that the appliance is operating (ON). Contrast to this, the appliance
switches to OFF.

For visualizing the results of twenty test cases, this paper pointed the S, T, and ON_OFF label
results of test 1 to test 4 in Figure 13. Besides, the S, T, and ON_OFF label results of test 5 to test 20 are
plotted in Figures A1–A3 at Appendix A, respectively.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 12. State S, T & ON/OFF label signals of 5 appliances: (a–c): Air-purifier device; (d–f): Fan
device; (g–i): Hair Dryer device; (j–l): LG monitor device; (m–o): Samsung monitor device.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 13. State S, T & ON/OFF label signals of test 1 to test 4 data: (a–c) test 1; (d–f) test 2; (g–i) test 3;
(j–l) test 4.

4.2.2. Classification Results

• In ML, this paper applied Decision Tree model for classification ON/OFF event of the household
appliance in this study. The reason for selecting Decision Tree model in classification task related
to classification accuracy. This study tried to apply other models such as SVM, Random Forest,
Multilayer Perceptrons (MLP), etc., however, the result of them obtained not well. This paper
used T signals for input feature and output feature is ON/OFF labeling for the approached
models. Five T signals extracted from five appliances are training data. The testing data is twenty
T signals extracted from twenty tests data. This paper used CM to display the classification result.
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The performance classification results for detecting ON/OFF of Decision Tree model are shown
in Figure 14. The main diagonal of confusion matrix represents the number of correctly samples
are predicted by the applied model.

Figure 14. Confusion matrix of Decision Tree model for classification ON/OFF label.

Table 7 is classification report for each event detection of five appliances using other performance
metrics such as precision, recall, F1-score. The average accuracy of event detection model on these
appliances data obtained 93%.

Table 7. Classification result for event detection ON/OFF of each appliance.

Label Event Device Precision Recall F1-Score Support

0 No Event 0.95 0.96 0.95 2747
1 Air-purifier_ON 0.82 0.77 0.79 411
2 Air-purifier_OFF 1.00 0.67 0.80 9
3 Fan_ON 0.93 0.91 0.92 739
4 Fan_OFF 0.92 1.00 0.96 24
5 Hairdryer_ON 0.95 0.97 0.96 657
6 Hairdryer_OFF 0.96 0.96 0.96 23
7 LG-monitor_ON 0.87 0.88 0.87 565
8 LG-monitor_OFF 0.82 0.97 0.89 29
9 Samsung-monitor_ON 0.92 0.90 0.91 412
10 Samsung-monitor_OFF 0.83 1.00 0.91 10

avg/total 0.93 0.93 0.93 5629

In summary, Table 8 pointed the average performance of the approached model. The performance
classification of our approach model achieved 92.64% and loss rate was 1.67.

Table 8. Classification result of Decision Tree model on energy data.

Metric Performance

Accuracy 0.926413
Precision 0.927533

Recall 0.926413
F1 0.926778

Loss 1.66637

• In DL, LSTM model is used for classification ON/OFF event of appliances. Similar to Decision
Tree model, this paper used T signals and ON/OFF labeling for input and output features,
respectively. For testing data, this research also used twenty T signals of twenty tests data. Setting
up hyper-parameters of LSTM model are described in Table 9 as follows.
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Table 9. Hyper-parameter of LSTM model in the approach.

Hyper-Parameter Name Value

Input T signals
Hidden size 100
Batch size 893
time step 1

Number of LSTM layers 3
Epochs 5000
Output On_Off_labeling

To evaluate LSTM model, this paper uses accuracy metric and Root Mean Square Error (RMSE)
for measuring performance and loss of the model, respectively. RMSE is the standard deviation
of the residuals (prediction errors). The formula to calculate RMSE is as follows.

RMSE =
√
(pr − ex)2 (24)

where pr is predicted output and ex is expected output.

Figure 15 presents the results of LSTM model for classification ON/OFF of five appliances data.
Besides, LSTM model’s results on test 1 to test 4 data are shown in Figure 16 and the others tests’
results in Figure A4 at Appendix A. The average accuracy of LSTM model obtained 96.85% for
detecting ON/OFF appliances. The loss of LSTM model (RMSE) obtained 0.60632.

(a) (b) (c)

(d) (e)

Figure 15. Classification results of LSTM model on 5 appliances data: (a) Airpurifier device; (b) Fan
device; (c) Hairdryer device; (d) LG monitor device; (e) Samsung monitor device.
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(a) (b)

(c) (d)

Figure 16. Classification results of LSTM model on test 1 to test 4 data: (a) Test 1; (b) Test 2; (c) Test 3;
(d) Test 4.

4.2.3. Applying the Proposed Method on a Publicly Available Dataset

There are several NILM available datasets such as Building-Level fUlly-labeled dataset for
Electricity Disaggregation (BLUED), UK-DALE, Residential Energy Disaggregation Dataset (REDD),
The Almanac of Minutely Power dataset (Version 2) (AMPds2) etc. This paper applied the proposed
method on AMPds2 [33] dataset which is low sampling rate data. Although several data file formats are
published such as Original file format, Tab-delimited, Rdata format, Variable metadata, etc. The original
file format in CSV is used in this paper. In this dataset, there are 19 appliances data in isolation have
already collected and tested in electricity data. There are no publicly aggregated data between the
loads in this dataset. Therefore, this paper only performed and tested on individual load. Among
available loads, 5 appliances data are randomly selected to use in this experiment. These appliances
are Master and South Bedroom, Basement Plugs and Lights, Instant Hot Water Unit, Entertainment:
TV, PVR, AMP, Kitchen Fridge. Besides, ON/OFF label value are determined and declared from 1 to
10 corresponding to each appliance. The information of these appliances and their ON/OFF labels are
described in Table 10 as follows.

Table 10. Five appliances information in AMPds2 dataset selected [34].

CSV File Name Appliance Name Watts (W) ON Label OFF Label

Electricity_B2E Master and South Bedroom 175 1 2
Electricity_BME Basement Plugs and Lights 387 3 4
Electricity_HTE Instant Hot Water Unit 70 5 6
Electricity_TVE Entertainment: TV, PVR, AMP 415 7 8
Electricity_FGE Kitchen Fridge 525 9 10
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About processing dataset, in this dataset, there are 11 electric data features in each appliance
data. Timestamp (TS) feature is Unix timestamp value in this dataset. Electricity measurement is at
one minute intervals. This dataset was collected to total of 1,051,200 readings per meter for 2 years
of monitoring from 2012 to 2014. Therefore, these loads data are big dataset. In testing performance
of the presently proposed methodology, the range of TS in the first 500 readings/samples value
data from 1333263600 to 1333323540 is selected. This range of TS value is converted to Universal
Time Coordinated (UTC) corresponding to the date time range from 2012-4-01 7:00 a.m. to 2012-4-01
15:19 p.m. The total of time series data is 500 min. Because real power P is active power data, hence P
is selected for the input data in the experiment. Figure 17 visualizes five real power P signals time
series data were selected.

(a) (b) (c)

(d) (e)

Figure 17. Active power signal of appliance data: (a) Master and South Bedroom; (b) Basement Plugs
and Lights appliance; (c) Instant Hot Water Unit appliance; (d) Entertainment: TV, PVR, AMP appliance;
(e) Kitchen Fridge appliance.

About feature extraction result, this paper applied the proposed solution to generate and extract
S, T, ON/OFF label signals of each appliance. Figure 18 illustrates these results of each appliance.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 18. State S, T & ON/OFF label signals of 5 appliances: (a–c) Master and South Bedroom device;
(d–f) Basement Plugs and Lights device; (g–i) Instant Hot Water Unit device; (j)–l) Entertainment: TV,
PVR, AMP device; (m–o) Kitchen Fridge device.
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About classification result, this paper applied two approached learning models on this
selected dataset.

• In ML, the classification result of Decision Tree model is presented in Figure 19. Furthermore,
Table 11 presents the event detection results in detail of this confusion matrix result. The average
classification performance of Decision Tree model on this dataset achieved 98.6% accuracy and
loss rate was 0.488.

Figure 19. Confusion Matrix of Decision Tree model for classification ON/OFF label on five appliances
data in AMPds2.

Table 11. Classification result for event detection ON/OFF of each appliance in AMPds2.

Label Event Device Precision Recall F1-Score Support

0 No Event 0.99 0.99 0.99 305
1 Master and South Bedroom_ON 0.95 1.00 0.97 37
2 Master and South Bedroom_OFF 1.00 1.00 1.00 4
3 Basement Plugs and Lights_ON 1.00 0.98 0.99 53
4 Basement Plugs and Lights_OFF 1.00 1.00 1.00 11
5 Instant Hot Water_ON 0.90 0.90 0.90 20
6 Instant Hot Water_OFF 1.00 1.00 1.00 1
7 Entertainment: TV, PVR, AMP_ON 0.95 1.00 0.98 20
8 Entertainment: TV, PVR, AMP_OFF 1.00 1.00 1.00 10
9 Kitchen Fridge_ON 1.00 0.90 0.95 20
10 Kitchen Fridge_OFF 1.00 1.00 0.91 19

avg/total 0.99 0.99 0.99 500

• In DL, the classification result of LSTM model obtained 96.78% accuracy and RMSE was
0.5124. Figure 20 illustrates the predicted results ON/OFF label of 5 appliances compare to
the expected outputs.
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(a) (b) (c)

(d) (e)

Figure 20. Classification results of LSTM model on 5 appliances data selected in AMPds2: (a) Master
and South Bedroom; (b) Basement Plugs and Lights appliance; (c) Instant Hot Water Unit appliance;
(d) Entertainment: TV, PVR, AMP appliance; (e) Kitchen Fridge appliance.

In summary, the presently proposed method achieved high-performance accuracy for load
identification on the AMPds2 dataset with over 96% accuracy on both approached learning models.

5. Conclusions and Further Works

This study built a complete NILM framework including data acquisition, appliance feature
extraction, classification data and monitoring energy data. First, this paper collected the personal
NILM data in low-sampling rate including five household appliances energy data and twenty tests case
data in the data acquisition task. Secondly, state of the appliance and transient signals are extracted to
generate ON/OFF label on personal data in feature extraction task. The proposed transient signal is a
transient signal to detect ON/OFF event of appliances. Thirdly, two models in ML and DL fields are
stated to detect event on loads. In particular, the Decision Tree model and LSTM model are applied to
perform two classification models with average accuracies achieved 92.64% and 96.85%, respectively.
Finally, in monitoring energy data, a website platform system are developed to display the results of
load identification. Besides, the proposed method is applied on a publicly available dataset, AMPds2.
Both approach models obtained over 96% on this sub-data. In future work, this solution can be
applied to extract transient signal on other publicly available datasets to widely apply the proposed
methodology.

6. Data Availability

The household appliances energy consumption data set was downloaded from the figshare
repository with DOI https://figshare.com/articles/NILM_EnergyData/7269692, and other data
generated or analyzed during this study are available from the corresponding author on
reasonable request.
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Abstract: Non-Intrusive Load Monitoring (NILM) provides a way to acquire detailed energy
consumption and appliance operation status through a single sensor, which has been proven to
save energy. Further, besides load disaggregation, advanced applications (e.g., demand response)
need to recognize on/off events of appliances instantly. In order to shorten the time delay for
users to acquire the event information, it is necessary to analyze extremely short period electrical
signals. However, the features of those signals are easily submerged in complex background loads,
especially in cross-user scenarios. Through experiments and observations, it can be found that the
feature of background loads is almost stationary in a short time. On the basis of this result, this paper
provides a novel model called the concatenate convolutional neural network to separate the feature of
the target load from the load mixed with the background. For the cross-user test on the UK Domestic
Appliance-Level Electricity dataset (UK-DALE), it turns out that the proposed model remarkably
improves accuracy, robustness, and generalization of load recognition. In addition, it also provides
significant improvements in energy disaggregation compared with the state-of-the-art.

Keywords: non-intrusive load monitoring; energy disaggregation; deep learning; source separation

1. Introduction

Energy consumption has always been a major concern in the world, which can be alleviated
with accurate and efficient load monitoring methods. There are two branches of load monitoring,
namely intrusive load monitoring (ILM) and non-intrusive load monitoring (NILM). The major
difference between them is the number of sensors. The ILM needs to install at least one sensor at each
appliance to monitor the load respectively, while the NILM needs to install one sensor on the bus per
house merely. The NILM is physically simple at the cost of more complex approaches, thus NILM
based approaches are more widely researched.

NILM contains two main objectives: energy disaggregation and load recognition. Conventional
energy disaggregation aims to obtain energy consumption for every single appliance, which acts on the
entire operation cycle of an appliance, and some research discards event detection and gives a result
at the hour level to disaggregate the energy consumption [1]. The approximate power consumption
of each appliance in a certain period is its main concern, thus the exact on/off time of appliances
is unknown. For online load recognition, appliances are detected from the uncompleted operation
cycle, that is the transient-state process of on/off events. In addition, the result of load recognition
further benefits energy disaggregation. Some advanced applications in the smart grid need to acquire
appliance operation status for remote household control [2], such as demand response. It represents
that the power supply side uses induction mechanism (e.g., price changes over time) to improve end
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users’ energy consumption patterns, which demands for the balance of demand and supply in real
time [3].

Real-time load recognition requires short sample windows and short execution time. The sample
window is usually in seconds, while the execution time is less than a second. Obviously the former has a
more significant impact on real time, thus the transient-state process should be captured and recognized.
High sampling rate is necessary for sufficient information acquisition from transient-state features.
High enough frequency (i.e., 100 kHz or higher) features can easily distinguish different appliances
(e.g., electromagnetic interference (EMI) signatures), but EMI features can only be transmitted within
a few meters, which is not suitable for household or industrial use. This paper uses 2 kHz features,
which introduces interference from background loads, so the emphasis of this paper is to eliminate
the influence of complex background loads. There are diverse types of appliances in different
houses, and even the same type of appliances in different households vary by brand. It is hard
for researchers to collect all combinations of appliances. Briefly, household electrical signals are
multi-source single-channel data. Several similar topics are raised at the task of multi-source signals
processing, such as the cocktail party problem in speech recognition and blind source separation (BSS)
in wireless communications. Multichannel observations are necessary in these areas, whether it is
two-channel audio-visual data [4] or two-channel audio observed signal [5], the data source itself
gives the possibility of separation. Noiseless samples are used for training and being compared with
separated samples in speech recognition methods, and artificial communication signals have the
property of time or frequency separability, or they are orthogonal to each other. Unlike these problems,
people can hardly obtain individual appliance samples in the single-channel scenario by non-intrusive
approaches. To extract the feature of the target appliance from the load mixed with background loads,
this paper utilizes the fact that the electrical signal is approximately stationary in a short time, in other
words, loads are strongly correlated during this period.

Due to the powerful feature extraction ability of deep learning, this paper proposes an efficient
network called the concatenate convolutional neural network. The model combines signal processing
and pattern recognition to eliminate the influence of background loads in single-channel data and
recognize different appliances. Features in high-dimensional spectrograms can be extracted in virtue
of the development of deep neural networks. A series of deep convolutional networks for image
classification have been proposed, such as Extreme Inception (Xception) [6], Residual Net (ResNet) [7],
Dense Convolutional Network (DenseNet) [8]. In this paper, high-frequency current data is converted
to spectrograms by Short Time Fourier Transform (STFT) and set as the model input. Two proven
networks are used as the embedding layer to extract spectrogram features. However, it is problematic
to apply object recognition methods to the model input without modification. The recognition object
covers the background in computer vision, thus the background causes little substantial impact of
recognition, whereas the foreground appliance in spectrograms suffers from blurring due to the
superimposition of background loads.

The main contributions of this paper are as follows. (1) The model eliminates the impact
of background loads to a certain extent, and achieves an F1-score of 89.0% in the classification
task. (2) The proposed approach improves the performance of energy disaggregation, especially on
multi-state appliances and programmable appliances. It increases an F1-score of 3–73% and reduces
mean square error (MAE) of 3.1–24.2 watts. The proposed model is evaluated on the UK Domestic
Appliance-Level Electricity dataset (UK-DALE) [9] and the Building-Level fUlly labeled dataset for
Electricity Disaggregation (BLUED) [10]. The proposed model is also compared with several works
in the aspect of energy disaggregation. In the remainder of this paper, the research status of NILM
and the proposed network model will be introduced. Next, the results of the classification and energy
disaggregation experiments are presented. Finally, this paper provides conclusions and future work.
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2. Related Work

NILM was proposed by Hart more than 20 years ago [11], and numerous related research
projects have begun since then. In the demand side management (DSM) program, the home
energy management system comprises active appliances and passive appliances [12]. The active
appliances consist of energy sources and energy storage systems [13,14]. Like most NILM methods,
passive appliances are only considered in this paper. The approaches of improving classification
accuracy or energy disaggregation results are closely related to data acquisition and feature selection.

The sampling rate in data acquisition can be simply divided into high-frequency and
low-frequency, which directly affects the selection of features and approaches. Low-frequency data
is typically used for approaches based on steady-state features, whereas high-frequency data is
used for the transient-state analysis. Low-frequency data is easy to acquire and suitable for energy
disaggregation [15,16]. The fundamental frequency is either 50 Hz or 60 Hz in most countries,
thus sampling at several Hertz or lower is not suitable for spectrum analysis. High-frequency
sampling at over 1 kHz captures features of higher harmonics and further recognizes different loads.
Prior work [17] proved that the power spectrum computed from 15 kHz transient-state data can
identify different loads with the same steady-state active and reactive power.

The higher the sampling frequency, the richer the information obtained. Multiple appliances could
be distinguished by high-frequency signatures. Previous research showed that when the sampling
rate was as high as 1 MHz, the EMI signatures of almost all appliances were distinguishable on
the spectrograms [18], but the signatures could not be transmitted over a long distance, even in
tens of square meters house. Low-noise data with no background load has been measured in some
datasets [19,20], so there is no need to address these problems with complex networks.

In the field of power, the features are almost directly or indirectly derived from current,
voltage, and power. These features in time domain or frequency domain are used in various
methods, which mainly focus on some common machine learning algorithms, such as support
vector machine (SVM) [21], k-nearest neighbors (kNN) [21], decision tree [22], wavelet design [23],
evolutionary algorithm [24], adaptive boost [24], graph signal processing (GSP) [25], hidden Markov
model (HMM) [16,26,27], etc. Even though there are methods show the good robustness under noisy
conditions [26,27], the noise is different from background loads. The signal noise in these works derives
from measurement error and the voltage fluctuation, and prove to have less impact (see Section 3).

The progress of deep learning has a positive impact on feature extraction. Deep neural networks
have been exploited to train high dimensional images or sequences. Auto-encoder (AE) [15,28],
long short-term memory (LSTM) [15,22], and sequence-to-point (Seq2point) neural networks [29] have
been applied to the NILM task to achieve the corresponding targets. The model input of all these
methods is low-frequency time series, without considering the influence of background loads. Their
target lies in offline energy disaggregation, whereas the proposed approach can eliminate background
loads and recognize different appliances. Experiments in Section 4 give a comparison of whether or
not the background load has been processed. Some low-frequency NILM approaches perform in real
time during the load classification or disaggregation [26,30], and the high-frequency approach in this
paper can also achieve short sample windows and short execution time.

3. Concatenate Convolutional Neural Networks

The core idea of this paper is to utilize features extracted by convolutional neural networks
(CNNs), then eliminate the influence of background loads by concatenate networks. The interference
to recognition is divided into two parts: the voltage fluctuation and multiform background loads.
When the voltage fluctuation is regarded as noise, the estimation result on the UK-DALE dataset
shows that the signal-to-noise ratio (SNR) of voltage waveforms is 53 dB. For the measurement error,
current and voltage waveforms have the SNR of 90 dB [9]. On the other hand, background loads might
cause a strong noise on the target appliance. For example, for a 1000 W appliance, the SNR is 10 dB
when background loads are only 100 W, and the SNR is 0 dB when background loads are 1000 W. It is
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obvious that the influence of background loads is much stronger than that of the voltage fluctuation.
Therefore, the main purpose of this paper is to eliminate background loads.

3.1. Problem Statement

Originally, the inspiration about this paper comes from the parallel circuit shown in Figure 1.
Assume that the main circuit current is I0, and the branch currents are I1 and I2 respectively, and the
background load and the target load are Z1 and Z2 respectively. When the switch K is turned off,
we have the equation I0(o f f ) = I1(o f f ), and I0(o f f ) is known. After the switch K is turned on, we have
the equation I0(on) = I1(on) + I2(on) according to Kirchhoff’s current law (KCL), and I0(on) is known.
In the ideal case, it will be ignored that the effect of Z2 on Z1 and the fluctuation of Z1 branch, thus
I1(o f f ) = I1(on), further I2(on) can be expressed by:

I2(on) = I0(on) − I1(on)

= I0(on) − I1(o f f )

= I0(on) − I0(o f f ).

(1)

However, experiments shown in Figure 2 prove that Equation (1) does not strictly hold. Figure 2a
shows the microwave spectrogram without background loads, which is measured in the laboratory.
Figure 2b shows the microwave spectrogram in the UK-DALE dataset, Figure 2c shows the spectrogram
calculated by spectral estimation based on the previous hypothesis of Equation (1). Although there
is a strong correlation between Figure 2a and Figure 2c, spectral estimation does not eliminate the
background load precisely, there are still intermittent spectral lines before the appliance is turned
on. Besides, compared to Figure 2a, some detail components are eliminated in Figure 2c after the
appliance is turned on. These phenomena prove that the background load has a certain degree of
stationarity, but this does not mean it is exactly unchanged, and I1(o f f ) is not equal to I1(on). Accordingly,
the background load needs to be estimated more reasonably.

Figure 1. The parallel circuit.

Figure 2. Spectrograms of microwave. (a) The spectrogram with no background load. (b) The
spectrogram with background loads (c) The estimated spectrogram.
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On this issue, this paper proposes a novel approach, concatenate deep neural network, to estimate
the features of I2(on) indirectly, which can be represented as:

X2(on) = dφ(X0(on), X1(on))

= dφ(X0(on), sϕ(X0(o f f ), X0(on))),
(2)

where sϕ is the function to extract the similar part of two features {X0(o f f ), X0(on)}, dφ is the function
to extract the different part of two features {X0(on), X1(on)}, X with different subscripts are features of
spectrograms computed by the corresponding current, which can be calculated by:

X = fθ(SI) (3)

where SI is the spectrogram. The function fθ is used to extract the features of the mixed load
spectrogram and the background spectrogram.

The inspiration of function sϕ and dφ borrows from Code Division Multiple Access (CDMA),
which allows multiple users to transmit independent information within the same bandwidth
simultaneously, and the orthogonal spreading code is used to distinguish and extract signals from
different users [31].

In the circuit model, the main circuit current I0(t) is given by:

I0(t) =
K

∑
k=1

Ik(t), (4)

where K is the number of branches. The branch current Ik(t) is expressed as:

Ik(t) = Irated
k ck(t) (5)

where Irated
k is the rated current of the load on the k-th branch, which is a constant, and the ck(t)

represents the time-varying noise function of the load.
Since appliances are relatively independent in construction and operation, their noise functions

are almost uncorrelated with each other and can act as the spreading code in CDMA.
The i-th branch current is recovered by multiplying the noise function:

zk(t) =
∫ ti+T

ti

I0(t)ci(t)dt

=
∫ ti+T

ti

K

∑
k=1

Ik(t)ci(t)dt

=
∫ ti+T

ti

K

∑
k=1

Irated
k ck(t)ci(t)dt

(6)

As the spreading code in CDMA is designed, the noise functions are assumed to be orthogonal in
the ideal case, where ∫ T

0
ck(t)ci(t)dt =

{
T, for i = k
0, for i �= k,

(7)

Therefore the branch current is restored as:

zi(t) = Irated
i T. (8)

Unfortunately, unlike CDMA, it is difficult to get the precise “spreading code” for each appliance
in practice, and background loads usually consist of multiple loads. Therefore the method of network
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fitting is used to recover branch current. The first step is to extract the spreading code, and the second
step is to reconstruct the feature of the branch current. Then the simplified form of Equation (4) is:

I0(t) = IB(t) + IL(t)

= Irated
B cB(t) + Irated

L cL(t),
(9)

where IB and IL represent the branch current of background loads and the load to be recognized (i.e.,
target load), respectively. cB(t) and cL(t) are weakly correlated. In practice, it is easy to get the previous
background loads IB′(t) before the target load is turned on. On the hypothesis that background loads
are stationary in a short time, the relationship between the noise functions cB′(t), cB(t) and cL(t) is
stated as: ∫ T

0
ci(t)cB′(t)dt ≈

{
T, for i = B
0, for i = L

, (10)

In fact, such estimation is not rigorous, because stationarity does not mean complete equality,
and weak correlation does not mean strict independence. Thus the similarity learning module sϕ is
equiped to fit Equation (10), and the feature of background loads is obtained by:

f eature(IB(t)) = sϕ (I0(t), IB′(t)) . (11)

For the branch current, IL(t) can be calculated by subtraction through Equation (9). For the
corresponding feature, the difference learning module dφ is used to fit the subtraction operation and
obtain the feature of IL(t) by:

f eature(IL(t)) = dφ ( f eature(I0(t)), f eature(IB(t))) . (12)

In summary, the model consists of an embedding module, a similarity learning module,
a difference learning module and a classifier, which realizes the complete process of feature extraction,
feature selection, and classification.

3.2. Model Architecture

Based on the previous hypothesis, each spectrogram image is split into two blocks representing
the background load and the mixed load as shown in Figure 3. Two blocks are input into the network
simultaneously, which can be seen in Figure 4.

Figure 3. The background load part and the mixed load part of a complete spectrogram.
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+

Figure 4. The structure of concatenate convolutional neural networks (CNNs). The concatenation
operation is channel-wise.

The CNNs in the embedding module are placed at the front end of the network to convert the
image matrix into a vector, which is fθ in Equation (3), and here the module comprises two networks
{ fθ1 , fθ2} with the same structure and different parameters. The similarity learning module sϕ is used
to generate the similar part in the concatenate feature and get the background feature behind the mixed
feature, we refer to this as the “implicit background”, distinct from the “explicit background” extracted
from the background-only load. The concatenation is channel-wise. The difference learning module
dφ converts the features of the mixed load and the “implicit background” to the target feature X2(on).
The final classifier determines the label of the target load through the target feature maps. The loss
function is the cross-entropy function:

L = −
(

C

∑
i=1

yilogZi + (1 − yi)log(1 − Zi)

)
, (13)

where yi is the i-th bit of the one-hot label y of C classes, and Zi is the i-th element of the network
output Z with the softmax activation, which can be represented as:

Z = softmax
(

hσ(X2(on))
)

, (14)

where hσ is the classifier to map the obtained target spectrogram feature to the C-dimensional vector,
and softmax is the activation.

Figure 5 presents the detail architecture of the proposed network with the embedding module
omitted. Similarity learning module seems to be a residual block even though it is not identical.
The shortcut connection here aims to convey information about the mixed feature. Each convolutional
layer (Conv) comprises a 256-filter convolution of kernel size 7 × 2 and stride 1. The kernel size
is determined by the embedding vector computed by the CNN. In all experiments, the size of the
embedding vector (the background feature and the mixed feature) is 7 × 2 × 256. The similarity
learning module is followed by an average-pooling layer (AvgPool) with kernel size 7 × 2 to compress
the feature map in height and width. The output size of two fully connected (FC) layers in the difference
learning module is 256. For the classifier, two FC layers are 64 and C dimensional, respectively.
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Figure 5. The detail architecture of similarity learning and difference learning module. The addition
operation

⊕
in similarity learning module is element-wise.

4. Experiments and Discussion

The proposed approach is compared with two baselines and evaluated on the UK-DALE dataset
and the BLUED dataset to test its universality. An energy disaggregation result on the UK-DALE
dataset will be also provided.

4.1. Dataset and Data Preprocessing

Both the real and imaginary part of spectrograms are taken as model input, in other words,
complex spectrograms are computed instead of power spectrograms or magnitude spectrograms.
The two-channel data is more expressive not only because it contains phase information, but also due
to the additivity of spectrograms in the complex domain. As envisaged, the background load can be
removed from the mixed load on this account.

Every switching event contains 7-second current data, that is, 14,000 data points. As shown in
Figure 6, plenty of samples are drawn to confirm that background loads are stationary in a 7-second
window in most cases. Note that 15-second spectrograms are drawn in this paper in order to give a
more complete demonstration, but this does not affect the 7-second spectrograms actually used in
experiments. The size of an original 7-second spectrogram is 224 × 100 × 2, the first two dimensions
represent frequency and time, and the last dimension represents real and imaginary part. The switching
point of each sample is located slightly after the midpoint of the time axis. As shown in Figure 3,
two blocks are split from the original image as the proposed network input, and the splitting line is in
the midpoint of the time axis. Every block of input image has a size of 224 × 50 × 2.

4.1.1. UK-DALE

Most of our experiments are based on the UK-DALE dataset. The UK-DALE dataset contains
electrical data from 5 houses for up to 655 days. A 1/6 Hz aggregate (mains) and individual appliance
(submetered) power data were recorded for each house. Houses 1, 2, and 5 are selected as our
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original data source because only these 3 houses contain 16 kHz aggregate voltage and current data,
then 16 kHz data is downsampled to 2 kHz to draw spectrograms. For submetered data, dataset authors
did not record 16 kHz data. The switching events are detected with the help of submetered data
(6-second time interval). For all experiments on UK-DALE, house 1 and house 5 data are set as the
training set, and house 2 data is set as the test set to measure the generalization ability of our model.
Seven classes of appliances are used for classification—kettle, fridge, dish washer (DW), microwave
(MW), washing machine (WM), laptop or monitor (LCD), and running machine (RM). The number of
appliances in each house and appliance spectrograms are shown in Table 1 and Figure 6, respectively.

Table 1. The number of appliance events per house in UK Domestic Appliance-Level Electricity dataset
(UK-DALE).

Appliance House 1 House 2 House 5

Kettle 4430 508 171
Fridge 7525 2172 2453

DW 2797 163 235
MW 536 299 29
WM 12311 785 521
LCD 4022 862 387

Figure 6. Spectrograms drawn from appliances in UK Domestic Appliance-Level Electricity dataset
(UK-DALE).

4.1.2. BLUED

Unlike the UK-DALE dataset, the BLUED dataset collects data from a house for only 8 days,
which also has dozens of appliances, so each appliance has very few samples. Table 2 shows the
selected appliances to facilitate comparison with the published work based on Fast Shapelets [32].
Raw data (12 kHz) is also downsampled to 2 kHz to draw the same size spectrogram as the one in the
UK-DALE dataset. The validation set accounts for 33% and a 3-fold cross-validation is adopted.
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Table 2. Appliances used in Building-Level fUlly labeled dataset for Electricity Disaggregation
(BLUED).

Appliance Label #Events

Fridge Phase A, 1 282
Lights1 (backyard lights, washroom light, bedroom lights) Phase A, 2 17
High-Power1 (Hair dryer, air compressor, kitchen aid chopper) Phase A, 3 18
Lights2 (desktop lamp, basement light, closet lights) Phase B, 1 38
High-Power2 (printer, iron, garage door) Phase B, 2 52
Computer and monitor (computer, LCD monitor, DVR) Phase B, 3 130

4.2. Experimental Infrastructure

All neural networks in classification tasks are implemented using TensorFlow and trained on
NVIDIA GeForce GTX 1080 GPUs.

In this paper, all networks are trained using Adam optimizer [33], and the initial learning rate is
set to 0.001 for all networks, although some exceptions will be supplemented later.

4.3. The Recognition Result on UK-DALE

Two different prevalent networks are chosen as the embedding module of the model: Xception
and DenseNet-121. We name these models Concatenate-CNNs. Meanwhile, two baselines are used to
compare with the proposed networks. The model input and description is shown in Table 3.

Table 3. Model input and description.

Model Model Input Model Description

CNN (baseline 1) One 224 × 100 × 2 original
spectrogram CNN with a FC classifier

CNN-SE (baseline 2)
One 224 × 100 × 2 original
spectrogram subtracts the estimated
background

CNN with a FC classifier

Concatenate-CNN Two 224 × 50 × 2 spectrograms split
from the original spectrograms

CNN with a similarity learning module,
a difference learning module and a FC
classifier

The first baseline is to classify appliances without the disposal of background loads. The original
224× 100× 2 spectrogram is input into the CNN without concatenate features and following networks.

The second baseline is to deal with the background load with spectral estimation (SE). The model
input is the estimated target spectrogram which is shown in Figure 2c, the network is the same as
the first baseline, and we call this CNN-SE. In this case, the background current is assumed to be
invariant during the window. Specifically, the background feature is obtained by calculating the
average spectrum of the first 3 seconds in the entire 7-second window, the target spectrogram is
obtained by subtraction between the original spectrogram and the calculated background spectrogram.

In Concatenate-DenseNet-121 and its two baselines, the growth rate is set to 32 and the
compression rate is 0.5. Other parameters have been illustrated in the last section.

Here are three metrics to evaluate the performance. ’Recall’ indicates the proportion of samples
of one class are correctly recognized, which is given by:

recall =
TP

TP + FN
. (15)

’Precision’ represents the proportion of samples recognized as one class and truly belong to that
class, which is calculated by:
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precision =
TP

TP + FP
. (16)

where true positives (TP) are the number of events correctly classified when the appliance was on, false
positives (FP) are the number of events classified as on being the appliance off, and false negatives
(FN) represent the number of events classified as off being the appliance on.

The F1-score combines recall and precision, here appliance events are classified without estimating
the power consumption, thus the F1-score is reported [34], which is given by:

F1 − score = 2 · precision · recall
precision + recall

. (17)

Table 4. Comparison of the proposed model and two baselines on house 2 data of the UK-DALE
dataset with recall (%), precision (%), and F1-score (%). Best results are shown in bold.

Model Metrics Kettle Fridge DW MW WM LCD RM Average

Xception
Recall 91.3 98.1 79.1 98.7 96.9 63.5 42.9 81.5

Precision 91.7 99.9 39.1 98.3 77.6 99.5 81.8 84.0
F1-score 91.5 99.0 52.3 98.5 86.2 77.5 56.3 80.2

Xception-SE
Recall 97.6 93.9 77.3 98.7 96.3 87.6 33.3 83.5

Precision 93.0 99.0 35.9 98.7 95.6 98.3 87.5 86.8
F1-score 95.3 96.4 49.0 98.7 95.9 92.6 48.3 82.3

Concatenate-Xception
Recall 99.6 99.6 84.7 96.7 98.9 71.9 52.4 86.2

Precision 95.3 99.5 40.7 99.7 93.0 98.4 91.7 88.3
F1-score 97.4 99.6 55.0 98.1 95.9 83.1 66.7 85.1

DenseNet-121
Recall 100 99.8 71.8 99.7 95.5 81.2 71.4 88.5

Precision 91.4 99.6 66.9 98.7 85.7 99.4 71.4 87.6
F1-score 95.5 99.7 69.2 99.2 90.3 89.4 71.4 87.8

DenseNet-121-SE
Recall 99.2 86.4 87.7 99.0 97.8 74.2 71.4 88.0

Precision 95.6 99.9 22.3 99.7 95.5 99.5 78.9 84.5
F1-score 97.4 92.7 35.6 99.3 96.7 85.0 75.0 83.1

Concatenate-DenseNet-121
Recall 100 99.6 77.9 99.3 92.4 93.0 57.1 88.5

Precision 92.5 99.2 62.6 100 95.9 98.9 85.7 90.7
F1-score 96.1 99.4 69.4 99.7 94.1 95.9 68.6 89.0

The performance of these models on the UK-DALE dataset is reported in Table 4. The performance
of concatenate models is highly depended on the embedding module, and concatenate structure
improves the classification result on this basis. For two different CNNs as embedding layers,
Concatenate-CNN models perform better than two baselines in average F1-score, as well as recall
and precision for most appliances. The proposed model can achieve an equilibrium result among
appliances in F1-score. However, the second baseline (spectral estimation) is just slightly better than
the first baseline in Xception-SE, and DenseNet-121-SE is even worse than DenseNet-121. Accordingly,
Concatenate-CNN models can eliminate background loads better, and the results make clear that
background loads are not exact stationary. It is not rigorous to estimate the target spectrogram by
directly subtracting the background spectrogram (baseline 2).

In Table 5, six options of network parameters in the similarity learning module and the difference
learning module are compared. Small differences among models 1/2/3/4 prove that the proposed
model is insensitive to FC output size/Conv filter size. Model 4 is marginally better than model 2, but
the huge parameters increase model complexity and inference time. Model 2 is slightly better than
model 6 and significantly better than model 5, which indicates that Conv kernel size has an observable
effect on the model. To sum up, model 2 is selected for the rest of this paper.
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Table 5. F1-score (%) on house 2 data of the UK-DALE dataset. Fully connected (FC) output size/Conv
filter size and Conv kernel size are tuned in Concatenate-DenseNet-121.

No. FC Output Size/Conv Filter Size Conv Kernel Size F1-score

1 128 (7,2) 88.1
2 256 (7,2) 89.0
3 512 (7,2) 88.5
4 1024 (7,2) 89.5
5 256 (3,2) 87.1
6 256 (5,2) 88.1

To further visualize the effectiveness of the model, the network’s response to two same class
samples at different layers is shown in Figure 7, and the mixed feature and the target feature have been
indicated in Figure 4. The shown mixed feature is averaged in height and width, retaining channel
data. The difference of features is obtained by calculating the absolute value of the difference between
the two columns on the left. Within a class, the target feature is more similar than the mixed feature,
that is to say, the difference of target features (DF_target) is smaller than the difference of mixed load
features (DF_mixed).

Figure 7. An example of the network Concatenate-DenseNet-121’s response at different layers. The
model input is two kettle samples with different background loads. For each layer, the output is
reshaped to form a 2D image.

4.4. The Recognition Result on BLUED

The BLUED dataset contains many types of appliances with few samples, thus the model
parameters of Concatenate-DenseNet-121 on UK-DALE are retained and applied to the BLUED
dataset to avoid overfitting, then the BLUED data is trained for 30 epochs at a small learning rate
of 0.0001.

The result of classification on the BLUED dataset is shown in Table 6. The Concatenate-DenseNet-
121 distinguishes 6 classes of appliances, whereas the Fast Shapelets algorithm [32] trains a single
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Table 6. The performance of classification on the BLUED dataset.

Label Recall Precision F1-score

A1 98.8 95.5 97.1
A2 50.0 91.7 64.4
A3 71.4 94.4 81.2
B1 82.1 84.2 83.1
B2 94.1 98.0 96.0
B3 87.5 76.4 81.6

Average 80.7 90.0 83.9
Fast Shapelets [32] 77.6 69.7 72.3

classifier on each phase, which only needs to distinguish 3 classes at a time. Nevertheless, the proposed
approach improves recall by 3.5%, precision by 19.1%, and F1-score by 11.8%. The result on the BLUED
dataset shows the validity of the model on small samples.

4.5. The Energy Disaggregation Result on UK-DALE

The main goal of this paper is to recognize the type of appliances, and energy disaggregation
is considered a by-product. Switching events recognized by the previous appliance recognition
algorithm determine where the appliance cycle is located, thus the appliance recognition results have
a great impact on energy disaggregation. On-events are recognized by the Concatenate-DenseNet-121
network, then off-events are recognized through the power of previous on-events. After determining
on/off time, the disaggregated active power data is derived from the translation and smoothing of
the aggregate data. The entire process of energy disaggregation is summarized in Algorithm 1 and
Figure 8 is an example of energy disaggregation.

Algorithm 1 Work Flow of Energy Disaggregation

Require: The aggregate power data at time t, PA(t)

The on-events recognized by the classification task, Eon = {Eon(1), . . . , Eon(n)}
The power of individual appliance l, Pl

1: Set threshold Tl for appliance l
2: Detect a falling edge e
3: if e matches the power of Eon(k) ∈ Eon then

4: Determine the appliance label l and on/off time ton/to f f of an operation cycle
5: for i = ton to to f f do

6: PA(i) ← PA(i)− PA(ton) # Translation
7: if |PA(i)− Pl | > Tl then

8: PA(i) ← Pl # Smoothing
9: end if

10: end for

11: Delete Eon(k) in Eon
12: end if
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Figure 8. An example of energy disaggregation. The red dashed box stands for interference from other
appliances. The blue circle stands for on/off points of an operation cycle.

Five target appliances are selected for energy disaggregation except for LCD and RM in the
classification task. The performance is presented on house 2 appliances with the training of house 1
and 5 data. True or false binary judgments no longer depend only on the classification of switching
events, but whether each data point matches, thus the F1-score here takes power estimation into
account, called the M-fscore in [34]. Mean absolute error (MAE) is introduced to measure the error in
every single point [15]. Figure 9 shows the disaggregation result on house 2. The proposed model is
compared with the best result in Kelly and Knottenbelt’s paper [15] in terms of F1-score and MAE,
that is, the “Rectangles” architecture, and the performance is also compared with the result of AE [28]
in F1-score and seq2point network [29] in MAE.

The energy disaggregation results of the recognition model outperform the network dedicated
to energy disaggregation. With high disaggregation accuracy, concatenate CNNs can be used as an
auxiliary tool for energy disaggregation. Compared with the other two methods, all the metrics are
greatly improved, especially MAE is reduced in DW, MW, and WM.

The result proves that once the type of switching event is determined, the power waveform does
not need a point-to-point reconstruction with neural networks or other approaches. The nuances in
waveforms have a small effect, but the influence of incorrect appliance recognition is more critical.
The events in the proposed approach are different from those in Kelly and Knottenbelt’s paper [15].
The event number of washing machine in this paper (Table 1) far exceeds theirs (less than 600). This
is because multiple state transitions in each entire operation cycle are monitored in this paper. The
location of every state transition greatly improves the result of energy disaggregation. Multi-state and
programmable appliances will be a trend in the future, thus it is difficult to capture and train the entire
operating cycle due to numerous combinations of states. It is worth mentioning that the approach
in this paper recognizes appliances by high-frequency data, while the other methods in this section
used low-frequency data. Obviously, high-frequency data is conducive to locating and distinguishing
appliance events, and eliminating the influence of background loads facilitates energy disaggregation.
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Figure 9. Energy disaggregation results on the UK-DALE dataset.

Table 7 records the average execution time (AET) of the Concatenate-DenseNet-121 model.
The CPU option means the model is executed with an Intel Core i3 processor and 8 GB RAM. The GPU
option has been stated in Section 4.2. The AET consists of the inference time of the classification task
and the running time of the disaggregation task. The AET of the proposed model is short enough to
meet the requirement of continuous operation.

Table 7. The average execution time (AET) of the proposed model.

Model AET (ms)

Concatenate-DenseNet-121 (CPU) 221

Concatenate-DenseNet-121 (GPU) 69

5. Conclusions

The concatenate convolutional neural networks proposed in this paper can apply favorably
to appliance recognition and energy disaggregation. The proposed models are evaluated on two
real world datasets: UK-DALE and BLUED. Experiment results show the capacity of the proposed
model, which can partly resist the interference of the background load on both large and small
samples. Besides, the approach presents great generalization ability in appliance recognition and
energy disaggregation. The hypothesis of short time stationarity is a premise of the proposed model,
which also restricts the window length of samples at the same time. However, there is still the exception
that the transient-state process of some appliances is more than three seconds (e.g., running machine).
Therefore, we intend to break through the restriction and estimate target features from the longer time
mixed load in the future.
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26. Makonin, S.; Popowich, F.; Bajić, I.V.; Gill, B.; Bartram, L. Exploiting HMM sparsity to perform online
real-time nonintrusive load monitoring. IEEE Trans. Smart Grid 2016, 7, 2575–2585. [CrossRef]

27. Cominola, A.; Giuliani, M.; Piga, D.; Castelletti, A.; Rizzoli, A.E. A hybrid signature-based iterative
disaggregation algorithm for non-intrusive load monitoring. Appl. Energy 2017, 185, 331–344. [CrossRef]

28. Barsim, K.S.; Yang, B. On the Feasibility of Generic Deep Disaggregation for Single-Load Extraction.
In Proceedings of the 4th International Workshop on Non-Intrusive Load Monitoring, Austin, TX, USA,
7–8 March 2018; pp. 1–5.

29. Zhang, C.; Zhong, M.; Wang, Z.; Goddard, N.; Sutton, C. Sequence-to-point learning with neural networks
for non-intrusive load monitoring. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence,
New Orleans, LA, USA, 2–7 February 2018; pp. 2604–2611.

30. Mocanu, E.; Nguyen, P.H.; Gibescu, M. Energy disaggregation for real-time building flexibility detection.
In Proceedings of the 2016 IEEE Power and Energy Society General Meeting (PESGM), Boston, MA, USA,
17–21 July 2016; pp. 1–5.

31. Hanzo, L.; Yang, L.L.; Kuan, E.L.; Yen, K. Single and Multi-Carrier DS-CDMA: Multi-User Detection Space-Time
Spreading Synchronisation Networking and Standards; John Wiley & Sons: New York, NY, USA, 2003; pp. 35–80.

32. Patri, O.P.; Panangadan, A.V.; Chelmis, C.; Prasanna, V.K. Extracting discriminative features for event-based
electricity disaggregation. In Proceedings of the 2014 IEEE Conference on Technologies for Sustainability
(SusTech), Ogden, UT, USA, 30 July 2014; pp. 232–238.

33. Kinga, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International
Conference for Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015.

34. Makonin, S.; Popowich, F. Efficient sparse matrix processing for nonintrusive load monitoring (NILM).
Energy Efficien. 2014, 8, 809–814. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

108



energies

Article

A Novel Nonintrusive Load Monitoring Approach
based on Linear-Chain Conditional Random Fields

Hui He †, Zixuan Liu †, Runhai Jiao * and Guangwei Yan

School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China;
huihe@ncepu.edu.cn (H.H.); zixuanliu@ncepu.edu.cn (Z.L.); yanguangwei@ncepu.edu.cn (G.Y.)
* Correspondence: runhaijiao@ncepu.edu.cn
† These authors contributed equally to this work.

Received: 28 March 2019; Accepted: 7 May 2019; Published: 11 May 2019

Abstract: In a real interactive service system, a smart meter can only read the total amount of
energy consumption rather than analyze the internal load components for users. Nonintrusive
load monitoring (NILM), as a vital part of smart power utilization techniques, can provide load
disaggregation information, which can be further used for optimal energy use. In our paper, we
introduce a new method called linear-chain conditional random fields (CRFs) for NILM and combine
two promising features: current signals and real power measurements. The proposed method relaxes
the independent assumption and avoids the label bias problem. Case studies on two open datasets
showed that the proposed method can efficiently identify multistate appliances and detect appliances
that are not easily identified by other models.

Keywords: load disaggregation; nonintrusive load monitoring; conditional random fields; feature
extraction

1. Introduction

1.1. Background

As the core of an interactive service system, smart power utilization is one of the essential
components of a smart grid. There are three aspects to the key technologies associated with this:
advanced metering infrastructure (AMI) standards, systems, and terminal technologies; intelligent
two-way interactive operation mode and supporting techniques; and the interaction between the user’s
electrical environment and energy consumption patterns. In actual production, we must break through
the bottleneck regarding the meter only being able to read the total amount of energy consumption
rather than analyzing the internal load components for users. Load monitoring can not only improve
the power information collection system and intelligent power system but also support two-way
interactive service and smart power utilization. Nonintrusive load monitoring (NILM), which is a vital
part of smart power utilization techniques, can achieve fine-grained tracking of energy consumption
and provide load disaggregation information without any intrusive device installation. These data can
be further applied to optimize energy conservation strategies.

1.2. Literature Review and Motivation

NILM was first proposed by Hart [1], who devised a method for appliance load monitoring by
only identifying electrical appliances within the aggregate power consumption data. This method
decomposes the aggregated data into the actual power components of each load and avoids cumbersome
device installation. Since then, many new methods have been introduced for load disaggregation,
such as Bayes [2] and support vector machines (SVMs) [3,4]. Bayes has shown good performance in
some experiments. However, it requires the appliances to have stable power measurements, which is
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almost nonexistent in reality. Comparably, SVM performs better using low-frequency features. Chui [3]
proposed a hybrid genetic algorithm support vector machine multiple kernel learning approach
(GA-SVM-MKL), which solves the problems that current algorithms are limited by data granularity and
consideration of fewer appliances. It has enhanced the performance indicators (sensitivity, specificity,
and overall accuracy) up to 21% compared with traditional methods. Lai [4] used a hybrid SVM/GMM
classifier that successfully achieved ubiquitous recognition service. In their model, GMM is employed
to describe the distribution of the current measurement to find the power similarity, while SVM is
applied to identify the appliances. However, an SVM method can be arbitrary given a large dataset
and requires tedious training for best kernels and parameters.

The hidden Markov model (HMM) has become a mainstream algorithm, as it can include appliances’
state transition in its learning. Specifically, the task of NILM can be considered as assigning label
sequences to a set of observation sequences. Thus, for a given set of aggregated load data, HMM-based
approaches are naturally suitable for performing tasks such as identifying tags or disintegrating electrical
loads. In previous works, HMM and its variants have improved the accuracy of NILM. Zia [5] applied
an HMM-based method to identify personal devices and found that it can effectively distinguish the
power consumption patterns of the appliances. Kong [6] proposed a hierarchical HMM (HHMM)
framework for modeling household appliances, which provides a promising representation of devices
with multiple built-in modes and different power consumption profiles. Kim [7] investigated the
effectiveness of several unsupervised disaggregation methods and demonstrated that a conditional
factorial hidden semi-Markov model performs better than other methods. Kolter [8] adopted factorial
HMM and developed a convex formulation of approximate inference to make the inference algorithm
computationally efficient and avoid the issues of local optima. Agyeman [9] came up with a variant of
the HMM to identify loads and operation states by practicable measurable parameters. Their results
show that the method can provide power usage information in a nonintrusive manner and is ideal for
participation in the demand response market.

Nevertheless, the above models assume that any observation in the sequences is independent
of the other [10]. In other words, the aggregated load data at any given time only depend on the
states of loads at that time and have no association with previous ones. That is not appropriate for a
realistic environment. The current data, such as the appliance power consumption, are highly relevant
to an extended range of previous observations. There is a weakness in HMM-based models called the
label bias problem [11]. When one state transitions to another, the Viterbi algorithm may choose the
state with fewer outgoing transitions and takes little notice of the observations. Extraordinarily, the
algorithm even ignores the observations if a state has a single outgoing transition. In this case, the
result is highly relevant to the training set. If one state is slightly more common in the training set, the
algorithm will prefer this transition, whatever the next observation may be.

Conditional random fields (CRFs) have also been used by Panikos [12] as an unsupervised
model for energy disaggregation. They apply a clustering method and histogram analysis to detect
the selected loads for residential users and have obtained higher-accuracy results compared with
previous methods. However, they only detect the on/off states of devices and cannot handle multistate
appliances. Additionally, CRFs can extract various features for training, but they only use power
measurements as a feature, which may fail to make full use of the advantages of the CRF model.

In our paper, we have proposed a method called linear-chain CRFs for load disaggregation, which
perfectly solves the above problems. Our linear-chain CRF model defines a log-linear distribution
over all of the observation sequences in the aggregate data, which relaxes the requirements for the
independence of observation data in HMM. It not only considers the influence of the previous state on
the current state but can also incorporate all useful information in the observation, which makes it
more viable in reality. Since CRFs define a log-linear distribution over all of the label sequences given
in the observations, the transition metric between different state changes and the weights can be traded
off. Thus, our linear-chain CRF model avoids the label bias problem. In addition, our model does not
require the stable power measurements needed for Bayes as well as the exhausting parameter training
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needed for SVM. Moreover, by quantizing the power probability density function for each load, we can
easily identify multistate appliances. We also employ two promising features: current signals and real
power measurements to develop our model. Experimental results on two open datasets demonstrate
that the proposed model is feasible for a NILM task.

1.3. Contributions

Our main contributions are as follow:

• We proposed a method called the linear-chain CRF model for load disaggregation and achieved
accuracy of 96.04–99.94%. It is demonstrated that this method is effective for the NILM task.

• Because we relaxed the independent assumption required by HMM-based models and avoided
the label bias problem, the performance is enhanced by 2.21% compared to existing models.

• We combined two promising features: current signals and real power measurements to build our
model, which improved the accuracy of the model significantly.

2. Methodology

Figure 1 shows the goal of our model: breaking down the aggregate data into the actual power
consumption of each appliance. Figure 2 illustrates the main framework of our linear-chain CRF model
for NILM. First, submeter data of each load was used to create the probability density function for
each appliance to acquire the working states. Then, the states of the appliances were grouped to tag
and segment the smart meter data. Next, our model extracted features over the training set according
to the feature templates. Consequently, the improved iterative scaling algorithm (IIS) was used to train
the linear-chain CRF model. Finally, we adopted the Viterbi algorithm to disaggregate the states for
each appliance given the aggregate power data.

 

Figure 1. Cont.
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Figure 1. Aggregated load data acquired from smart meters and disaggregating results produced from
the model.
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Figure 2. Main framework of our linear-chain CRF model for NILM.

2.1. Probability Mass Functions

Various appliances, such as washing machines, have multiple operating states. The simple on state
cannot reflect the real state change when the appliance is working. To identify the different working
states of multistate type appliances at a given time, we used the approaches of Stephen [13] to quantize
power probability mass function (PMF) for each appliance. We took the PMF as the probability density
function (PDF) for their working states. Figures 3 and 4 show the power PDF of some appliances in
AMPds2 [14] and REDD house 2 [15]. Compared with low power measurements, most probabilities of
high power measurements were excessively low, so we enlarged the y-axis scale appropriately to make
it clear.
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Figure 3. Power probability density function of some appliances in AMPds2.
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Figure 4. Power probability density function of some appliances in REDD house 2.

When the power measurement of the appliance is distributed in a certain power range, it indicates
that the device is in a specific working state. By figuring out the power distribution and finding the
power range of the concentrated power distribution, we could analyze the working states for appliances.
Let P(n) represent the probability of n, where n is the number of possible observed power measurements.
In Stephen’s [13] paper, they found the power range by capturing the peak, which is defined as when
the slope on the left in the PDF is positive and the slope on the right is negative, which is to say:

P(n) − P(n− 1) > 0 (1)

P(n + 1) − P(n) ≤ 0 (2)

P(n) > ε = 0.00021 (3)

where ε is used to make sure that the probabilities under this value will not be quantized as a state.
However, on the one hand, we considered that the value of ε was hard to generalize since it varied in
different datasets and different appliances. Furthermore, this method pays more attention to the peaks
with higher probability. However, these peaks are mainly distributed in low power measurements,
and most of them are noises rather than states. In fact, some high power measures include some major
working states, to which importance should be attached. Therefore, we combined some states with low
power measurements and concentrated on the states with high measurements according to the PDF of
each appliance. On the other hand, this approach was used to identify a load with a finite number
of operating states and that worked worse when the appliances belonged to continuously variable
devices. It was apparent to see from the PDF that some appliances, such as dining room plugs and
instant hot water units, were not multistate appliances. Thus, it was inapplicable to quantize their
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PDFs for working states. We simply determined the on/off states for this type of appliance. More
details are discussed in Section 3.

2.2. Segmenting Data

CRFs are a framework for segmenting and labeling sequential data. Let S = {s1, s2, . . . , sn} be
the label sequences, and P =

{
p1, p2, . . . , pn

}
be the observation sequences. A graphical structure of

linear-chain CRFs is shown in Figure 5, which demonstrates that the input of our model is a series of
sequences. Our templates then extract features throughout each chain. Therefore, segmenting smart
meter data is crucial for feature extraction and model performance. CRFs are adept at dealing with a
sentence with no more than 20 tokens. Considering that the working state of an appliance from an
hour or 30 min ago has little effect on the current working state, we segmented smart meter data into
a sequence for the AMPds2 datasets every 10 min and every minute for the REDD dataset in terms
of their different sampling rates (per minute in AMPds2 and per 3 s in REDD). Then, 10 tokens were
included in a sequence for the AMPds2 datasets and 20 for the REDD dataset, which made our model
perform more efficiently compared with other segmentation methods.

Figure 5. General graphical structure of a linear-chain CRF model.

2.3. Extracting Features

Let Y =
{
y1, y2, . . . , yn

}
be the label sequences, X = {x1, x2, . . . , xn} be the observation sequences,

λ = {λk} ∈ R, μ =
{
μk
} ∈ R be the parameter vectors, and P(y|x) represent the linear-chain CRFs. Then,

define the probability of marking a tag sequence Y on a given observation sequence X as follows [16]:

P(y|x) = 1
Z(X)

exp

⎛⎜⎜⎜⎜⎜⎜⎝
∑
i,k

λktk(yi−1, yi, x, i) +
∑

i,l

μlsl(yi, x, i)

⎞⎟⎟⎟⎟⎟⎟⎠ (4)

Z(x) =
∑

y
exp

⎛⎜⎜⎜⎜⎜⎜⎝
∑
i,k

λktk(yi−1, yi, x, i) +
∑

i,l

μlsl(yi, x, i)

⎞⎟⎟⎟⎟⎟⎟⎠ (5)

where tk is a transition feature function depending on the current state i and previous state i − 1
in the label sequence given the observation sequences; sl is a state feature function depending
on the current state i in the label sequence, which is also viewed as a local feature function; and
λ = {λk} ∈ R, μ =

{
μk
} ∈ R are the parameter vectors, which index the weights of the corresponding

tk and sl function and can be learned by our model.
We defined feature functions tk and sl using feature templates. A feature template has the form of

a single state Sn or some combination of current states and previous states Sn−k . . . Sn. For example,
assume that we have a power measurement sequence: 1919, 1918, 1921, 106, 107, 105, 106, 2, 3, 1.
The corresponding state sequence is: 2, 2, 2, 1, 1, 1, 1, 0, 0, 0. A single state Sn template refers to series
state functions snj, where n is the position of the current token and j is the number of appliance states.
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Let the current token be the fifth one; then, we define s51 : if (state = 1 and power measurement = 107)
return 1 or else return 0; s52 : if (state = 2 and power measurement = 107) return 1 else return 0; s53: if
(state = 0 and power measurement = 107) return 1 else return 0. Similarly, templates have the form of
Sn−k . . . Sn, representing several transition functions tnj where n is the position of the current token,
n− k is the position of the previous token, and j is the number of appliance states. Let k = 1; then, we
construct functions as follows: t51 : if (state = 1 and power measurements = 106, 107) return 1 else
return 0; t52 : if (state = 2 and power measurement = 106, 107) return 1 else return 0; t53 : if (state = 0
and power measurement = 106, 107) return 1 else return 0. The whole process is shown in Figure 6.

 
Figure 6. Process of extracting features.

Our model constructs L ∗N feature functions according to the feature templates designed, where L
represents the number of output types, and N represents the number of expanded features. In practice,
many feature functions are constructed. For example, in our experiments, 4,704,668 feature functions
were produced for five loads (CWE, DWE, FRE, HPE, and WOE) in AMPds2. The excessive feature
functions increased the complexity of our model and made it difficult for subsequent training and
testing. Actually, some measurements in the dataset were inaccurate or completely noisy, which made
those feature functions considering these measurements unnecessary. We found that the frequency of
these feature functions’ occurrence was much less than normal functions. Therefore, we ignored those
functions with fewer than three occurrences, which reduced the complexity greatly.

2.4. Improved Iterative Scaling (IIS) Algorithm

Formulas (4) and (5) define the primary form of linear-chain CRFs. The parameters λk and μl are
the corresponding weights to be estimated from the training set. From Formula (4), we can easily
discover that the definition of P(y|x) is similar to a maximum entropy model. Actually, the CRF model
is motivated by the principle of maximum entropy. Thus, we could apply the IIS algorithm of the
maximum entropy model for parameter learning.

To simplify, let there be M1 transition feature functions and M2 state feature functions,
M = M1 + M2, defined as

fk(y, x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
n∑

i=1
tk(yi−1, yi, x, i), k = 1, 2, . . .M1

n∑
i=1

sl(yi, x, i), k = M1 + l; l = 1, 2, . . . , M2

(6)
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ωk =

{
λk, k = 1, 2, . . .M1

μl, k = M1 + l; l = 1, 2, . . . , M2
(7)

ω = (ω1,ω2, . . . ,ωM)T (8)

F(y, x) = ( f1(y, x), f2(y, x), . . . , f3(y, x))T. (9)

Then, CRF can be normalized as a product of vector ω and F(y, x):

Pw(y|x) = 1
Zw(x)

exp(ω · F(y, x)) (10)

Zw(x) =
∑

y
exp(ω · F(y, x)). (11)

Given the empirical distribution P̃(x, y), the log-likelihood function Lp̃(Pw) of conditional
probability distribution P(y|x) is defined as:

Lp̃(Pw) = log
∏
x,y

P(y|x)P̃(x,y) =
∑
x,y

P̃(x, y)logP(y|x) (12)

When P(y|x) is defined as (10), the log-likelihood function can be derived as followed:

Lp̃(Pw) =
∑
x,y

P̃(x, y)logP(y|x) = ∑
x,y

P̃(x, y)logPw(y|x)
=
∑
x,y
[P̃(x, y)ω · F(y, x) − P̃(x, y)logZw(x)]

=
∑
x,y
[P̃(x, y)

M∑
k=1
ωk fk(y, x) − P̃(x, y)logZw(x)]

=
N∑

i=1

M∑
k=1
ωk fk(yi, xi) −

N∑
i=1

Zw(xi)

(13)

Assuming the current vector ω = (ω1,ω2, . . . ,ωM)T, the IIS algorithm tries to find the best vector
ω+ δ = (ω1 + δ1,ω2 + δ2, . . . ,ωM + δM)T, which increases the value of the log-likelihood function.
According to Adam [16], the IIS algorithm finds out the increment vector δ = (δ1, δ2, . . . , δM)T by
solving the renewal equation for transition feature Function (14) and state feature Function (15):

∑
x,y

P̃(x)P(y|x)
n+1∑
i=1

tk(yi−1, yi, x, i)exp(δkT(y, x)) = Ep̃[tk] (14)

where k = 1, 2, . . . , M1; yi and yi−1 refer to the current and previous power measurements; y depends
on all states. ∑

x,y
P̃(x)P(y|x)

n∑
i=1

sl(yi, x, i)exp(δkT(y, x)) = Ep̃[sl] (15)

where k = M1 + l; l = 1, 2, . . . , M2, T(y, x) is the summation of all feature functions:

T(y, x) =
∑

k

fk(y, x). (16)

The complete IIS algorithm is shown in Algorithm 1 below.
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Algorithm 1. Improved iterative scaling algorithm.

1: for k ∈ (1, M)
2: ωk = 0
3: repeat

4: for k ∈ (1, M)
5: if k ∈ (1, M1)
6: δk →

∑
x,y

P̃(x)P(y|x)∑n+1
i=1 tk(yi−1, yi, x, i) exp(δkT(y, x)) = Ep̃[tk]

7: if k ∈ (M1 + 1, M)
8: δk →

∑
x,y

P̃(x)P(y|x)∑n
i=1 sl(yi, x, i) exp(δkT(y, x)) = Ep̃[sl]

9: ωk ← ωk + δk
10: until ωk converge

2.5. Viterbi Algorithm

The Viterbi algorithm for CRF prediction is similar to the one for HMM. Assuming that the
observation sequences are {x}, then the task of prophecy is to find the max probability of label
sequences {y∗}:

y∗ = argmax
y

(Pw(y|x))= argmax
y

1
Zw(x)

exp(ω · F(y, x))= argmax
y

exp(ω · F(y, x))= argmax
y

(ω · F(y, x)). (17)

Therefore, the prediction problem for CRF is converted to max
y

(ω · F(y, x)). The Viterbi algorithm

is shown in Algorithm 2 below.

Algorithm 2. Viterbi algorithm for CRF prediction.

1: Step 1: initialization
2: for j ∈ (1, m)
3: δ1( j) = ω · F(y0 = start, y1 = j, x)
4: Step 2: recursion
5: for i ∈ (2, n)
6: δi(l) = max

1≤ j≤m

{
δi−1( j) +ω · F(yi−1 = j, yi = l, x)

}
7: ϕi(l) = argmax

1≤ j≤m

{
δi−1( j) +ω · F(yi−1 = j, yi = l, x)

}
8: l = 1, 2, ..., m
9: Step 3: terminate
10: max

y
(ω · F(y, x)) = max

1≤ j≤m
δn( j)

11: yn = argmax
1≤ j≤m

δn( j)

12: Step 4: traceback
13: for i ∈ (n − 1, 1)
14: yi = ϕi+1(yi+1)

3. Experiment and Analysis

3.1. Data

The tests were conducted using real monitoring data from AMPds2 [14] and REDD house 2 [15].
The AMPds2 dataset collected the electricity usage of a Canadian family for two years, with a sampling
frequency of one reading every minute. It monitored 24 appliances, but only 21 were kept, for they
did not detect any data of the removed appliances for the entire measurement time. There were just a
few missing data or errors in the dataset, and the algorithm was used to populate the missing data
so that the whole dataset was contiguous. This facilitated the division of sequences in subsequent
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model training. In terms of electricity data, AMpds2 provided 11 measurements: voltage, current,
frequency, displacement power factor, apparent power factor, real power, real energy, reactive power,
reactive energy, apparent power, and apparent energy, which made it easy to select different features
for improving model performance. Developed specifically for load disaggregation, the REDD dataset
gathered real power consumption in some homes over several months, with a sampling frequency
of approximately 3 s for every reading. In our experiments, we only used the data of house 2 in the
REDD dataset, which included 10 types of equipment: lighting, refrigerator, dishwasher, washer-dryer,
bathroom GFI, kitchen outlets, oven, microwave, electric heat, and stove.

3.2. Experimental Setup

Firstly, we segmented smart meter data into a sequence for AMPds2 datasets every 10 min and
every 1 min for the REDD dataset, as discussed in Section 2.2. We chose the power measurements
and current signals in AMPds2 and single power measurements in REDD for disaggregation. Then,
we designed several templates for feature extraction. Table 1 shows the list of the feature templates
used in our experiments. Among them, Templates 1 and 2 refer to the single power signature in REDD
house 2 and AMPds2, respectively, while Templates 3 represent the double signatures: power and
current in AMPds2.

Table 1. List of feature templates.

Templates 1 Templates 2 Templates 3 Meaning of the Template

Sn Sn Sn current state
Sn−1Sn Sn−1Sn Sn−1Sn current state and previous state

Sn−2Sn−1Sn Sn−2Sn−1Sn Sn−2Sn−1Sn current state and previous two states
Sn−3...Sn / 1 Sn−3...Sn current state and previous three states
Sn−4...Sn / Sn−4...Sn current state and previous four states
Sn−5...Sn / Sn−5...Sn current state and previous five states
Sn−6...Sn / / current state and previous six states
Sn−7...Sn / / current state and previous seven states
Sn−8...Sn / / current state and previous eight states

1 This template does not have this feature.

Only extracting features over a continuous period of time was meaningful, which directly reflected
the influence of previous states. If the time interval between two measurements is too large, for
example 30 min, then it is not necessary to construct a transition function for these two measurements,
because the state of an appliance half an hour ago has little effect on the current state. However, the
timestamps in REDD house 2 was not continuous, so we found those intervals and just segmented
data through those continuous data. Next, CRF++ [17] was used to build our model. CRF++ is an
open-source CRF tool for continuous data annotation and segmentation, which is easy to use and
customizable. We removed the features function for which the occurrences were less than three to
further reduce the complexity of our model as claimed in Section 2.3. Additionally, a hyper-parameter
C need to be selected in CRF++ to trade the balance between overfitting and underfitting. We found
that the optimal value is 1.5 after cross-validation. All our work was carried out in Python 3 and C++.
We also used 10-fold cross-validation to acquire the best error estimation.

3.3. Evaluation Metrics

In our paper, let Acc be the accuracy, T be the correct prediction, and F be the incorrect prediction.
Then, Acc is defined as

Acc =
T

T + F
(18)

This metric has normally been adopted by many researchers such as Stephen [13] and Kolter [15].
However, we do not think this indicator can properly reflect the performance of the model. Therefore,
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we adopted a new evaluation indicator: total load accuracy. Let xi, i = 1, 2, . . . , N be the appliances
monitored in the house, l j, j = 1, 2, . . . , M be the observation sequences, and TAcc be the total loads’
accuracy. We employed the following notation:

f (xi, l j, i, j) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if the predicted state of i appliance at j

is the same as the real state
0 otherwise

(19)

Then, the total loads’ accuracy TAcc is defined as

TAcc =
1
M

M∑
j=1

N∏
i=1

f
(
xi, l j, i, j

)
. (20)

Each load has one state at any given time; the total load’s accuracy refers to the accuracy that
all appliance states are assigned correctly at a given time. We combined this index for estimation
because we believed that it could reflect the overall prediction ability of our model for the whole
house. However, the accuracy results were generally lower than results in other papers, which only
considered a single appliance’s on/off accuracy.

3.4. Experiment Results and Analysis

To better test the accuracy of our linear-chain CRF model, we chose seven appliances in REDD
house 2: lighting, stove, microwave, washer-dryer, refrigerator, dishwasher, and disposal. Figure 7
illustrates the seven loads’ on-duration accuracy in REDD house 2. Obviously, the refrigerator showed
the best score, while the disposal scores were very low. The low accuracy results were due to there
being less disposal data working in the training sets. We also found that the power measures of
the washer-dryer were mainly distributed from 0 to 10 all the time, which was purely low for a
normal washer-dryer and similar to other appliances’ off state. Thus, our model mostly tagged the
washer-dryer working when the measurements varied from 1 to 10, which made the accuracy results
higher. We inferred that the washer-dryer in REDD house 2 did not work and the measurements were
completely noisy.

 
Figure 7. Seven loads’ on-duration accuracy in REDD house 2.

We extracted some test sequences, as shown in Figure 8. It illustrates the real state changes of the
electrical appliances which were working within a period of 150 s, as well as the inference results of our
linear-chain CRF model according to the same data. It is clear that our model worked when different
electrical appliances were used at the same time. Nevertheless, errors may have occurred when the
power’s values of different working states of electrical appliances were similar. For example, during
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the period from 100 to 150 s, the total power decreased because the refrigerator stopped working.
However, our model identified that the light and microwave stopped working while the refrigerator
started working.

   

 
Figure 8. Comparison between appliances’ real and estimate states.

Figure 9 shows each test’s total loads’ accuracy in REDD house 2. Among them, 1 load refers
to the refrigerator only; 2 loads mean the refrigerator and microwave; 3 loads stand for the kitchen
outlets, microwave, and dishwasher; 4 loads indicate the lighting, microwave, washer-dryer, and
refrigerator; 5 loads represent the refrigerator, lighting, dishwasher, microwave, and stove; 6 loads
denote the lighting, stove, microwave, refrigerator, dishwasher, and disposal; 7 loads show the lighting,
stove, microwave, washer-dryer, refrigerator, dishwasher, and disposal. We can see that the correct
rate of accurate prediction of all electrical appliances at each moment was over 88% throughout the test
time. This indicates that our model could correctly reflect the working state of all electrical appliances
in the house tested at any time, not just for a single device.
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Figure 9. Each test total loads’ accuracy in REDD house 2.

As our linear-chain CRF model can combine more than one feature, we chose the current signals
together with power measurements for parameter learning to test whether it promotes the performance
of our model or not. Further, we hoped to estimate how well our model disaggregates loads in other
datasets. We used five loads (including CDE, DWE, FRE, HPE, and WOE) in AMPds2 and verified the
accuracy of a single power feature and double features. Figure 10 shows that using dual features can
improve the efficiency to some extent. When it is challenging for the classifier to judge the state of the
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appliance only by the power value, the multiple features can provide an inferential basis by providing
other state parameters. For example, our model performed much better in identifying the wall oven
using double features, which was better than using a single feature by 32.49%.

 
(a) (b) 

Figure 10. (a) Radar charts with five loads (CDE, DWE, FRE, HPE, and WOE) accuracy in AMPds2. (b)
Histogram charts with five loads accuracy. “Single” means that only power measurements were used,
while “Double” means that power measurements and current signals were both included.

In Stephen’s [13] paper, they used a sparsity HMM and obtained a perfect result. Thus, an
experiment was conducted to assess the performance of the proposed linear-chain CRFs. We used
REDD house 2 to test the performance for each model. Stephen divided their tests into three categories:
Denoised, Noisy, and Modeled. Our tests belonged to the Noisy configuration, which neither removes
the noise in the aggregate observation sequences nor tries to model the noise as a load [13]. Therefore,
the Noisy configuration is the most realistic configuration for testing. We found that the use of different
datasets and measurement metrics made it nearly impossible to compare different algorithms. Thus,
the same datasets and measurement metrics have been used as recommended in Stephen’s paper.
Firstly, we identified each load working state by quantizing its PMF. In Stephen’s [13] paper, they
quantized both power and current observations. We just quantized power measurements, because
it was enough to describe the working states for each appliance. Tables 2 and 3 show Stephen’s and
our results for some appliance state quantization in the AMPds2 dataset. ‘\’ refers that the appliance
does not have certain working state. In Stephen’s results, they classified the low-power operating state
of the appliance in detail while grouping all high-power operating states into one state. Hence, the
quantization results generated by Stephen are not reasonable. In contrast, we roughly clustered the
appliances into a low-power operating state while dividing the high-power operating states in detail.
That is more in line with the actual working state of the appliances.

Table 2. Our state quantization results in AMPds2.

Appliance\Max Power 0 1 2 3

B1E 1 6 623 \
BME 10 600 1571 \
DWE 8 300 848 \
EQE 20 34 52 \
FRE 50 300 581 \
HPE 500 2000 3701 \
UTE 0 10 41 65
WOE 0 2300 3200 3896
B2E 9 200 1000 \
CDE 7 1000 5614 \
FGE 8 400 1497 \
OUE 0 305 \ 1 \

1 This type of appliance does not have this state.
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Table 3. Stephen’s state quantization results.

Appliance\Max power 0 1 2 3

B1E 0 1 6 9999
BME 0 5 10 9999
DWE 0 4 8 9999
EQE 0 34 38 9999
FRE 0 100 107 9999
HPE 0 3 39 9999
UTE 0 10 41 9999
WOE 0 2 9999 \
B2E 0 5 9 9999
CDE 0 7 9999 \
FGE 0 3 8 9999
OUE 0 9999 1 \ 2 \

1 The maximum power value set by Stephen. 2 This type of appliance does not have this state.

Next, we compared some different appliance combinations in REDD house 2, and the results are
shown in Table 4. The combinations are the same as in Figure 9. Our disaggregate results were slightly
better than Stephen’s results, demonstrating that a basic linear-chain CRF model performs better,
especially for the case that includes a kitchen outlet (three loads). Most common algorithms cannot deal
with kitchen outlets because their power values change irregularly according to the appliances plugged
into them. By extracting previous states, our model could improve accuracy to some extent. However,
our model scored lower than sparse HMM when it came to four loads involving a washer-dryer. We
found that the power value of the washer-dryer in REDD house 2 was excessively low. Thus, compared
with HMM, which only extracted the last information, our model was more prone to obtaining errors.

Table 4. Accuracy comparison between the linear-chain CRF model and other algorithms.

Load\Acc (%) Linear-Chain CRFs Sparse HMM SVM-rbf SVM-Linear SVM-Sigmoid

1 load 99.94 99.01 99.91 100 94.38
2 loads 99.27 99.00 98.39 96.32 81.82
3 loads 98.80 87.45 81.23 79.81 76.35
4 loads 96.04 98.52 92.40 90.31 88.41
5 loads 96.87 94.69 92.12 88.03 88.85
6 loads 97.40 95.28 93.22 85.83 88.84
7 loads 96.68 95.56 90.90 86.80 87.83

In addition, the proposed method was compared with algorithms which were not based on the
probabilistic graph model. We chose the SVM with three different kernels: radial basis function (rbf)
kernel, linear kernel, and sigmoid kernel. There were several parameters that had to be determined
cautiously to fit for the study, because a higher or lower figure can affect the results considerably and
may lead to local maxima or overfitting. “C” is the penalty parameter of all three kernels, and “gamma”
is the parameter of the rbf and sigmoid kernels. We employed a grid search to find the best parameters
on a small scale of datasets. Then, we employed the best parameters to train the model on all of the
training sets and then tested the performance on the test data. The best accuracy rate was obtained
when C = 1.0 and gamma = 1.0. The accuracy results are shown in Table 4. It is clear that the rbf kernel
was more suitable for identifying appliances in REDD house 2 compared with linear and sigmoid
kernels. Moreover, the accuracy rates have a tendency to decrease when there are more appliances,
while our model remained reliable. In fact, with the increase in the number of appliances, the total
loads’ accuracy will decline as shown in Figure 9. However, by extracting a large number of state
change characteristics of appliances, the recognition accuracy for most appliances can still be very high.
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4. Conclusions

In this paper, we introduced a linear-chain CRF model for load disaggregation and demonstrated
that this graphical model is feasible for a NILM task. We combined two features together: the power
measurements and current signals. Feature templates were used for constructing feature functions,
and the IIS algorithm was applied for parameter learning. Then, the Viterbi algorithm was utilized for
decoding and estimated the accuracy results in AMPds2 and REDD house 2. Our accuracy results
verified the feasibility and effectiveness of our model.
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Abstract: Nowadays, automated appliances are exponentially increasing. Therefore, there is a need
for a scheme to accomplish the electricity demand of automated appliances. Recently, many Demand
Side Management (DSM) schemes have been explored to alleviate Electricity Cost (EC) and Peak to
Average Ratio (PAR). In this paper, energy consumption problem in a residential area is considered.
To solve this problem, a heuristic based DSM technique is proposed to minimize EC and PAR with
affordable user’s Waiting Time (WT). In heuristic techniques: Bacterial Foraging Optimization
Algorithm (BFOA) and Flower Pollination Algorithm (FPA) are implemented. Furthermore,
a novel heuristic algorithm has been proposed by merging the best features of the aforementioned
existing algorithms. We test the proposed scheme on single homes and on smart community
(involving multiple households). Different Operational Time Intervals (OTIs) are also considered
for implementation. We have performed simulations for validating the our scheme. Results clearly
demonstrate that the proposed Hybrid Bacterial Flower Pollination Algorithm (HBFPA) shows
efficacy for EC and for reduction of PAR with reasonable user WT.

Keywords: scheduling; demand side management; smart grid; home energy management

1. Introduction

Human life has been made easy in many aspects due to the progress in various fields of science.
Electricity is one field of science that has made human life easier in various ways. It is generated from
different aspects of nature, i.e., from wind stations, nuclear power plants, hydro-power plants and
water turbines. Electricity providers are not able to resist load requirements of customers because of the
huge increase in the human population, buildings and industries and other infrastructure. The demand
for electricity has been increased due to the automation in various sectors. For handling this intense
condition, utilities propose to their customers to balance their electricity usage during the day and try
to avoid maximum usage in the peak hours by keeping their eye on the highly demanding hours and
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their extra wastage. The energy that is required by the residential sector is thirty to forty five percent
of total energy usage around the globe [1]. It is evidently stated that Energy Demand (ED) is growing
endlessly, and it is expected that it will reach up to 56% of the current usage in 2040. Using some
intelligent systems and techniques, the user can control this high Load Demand (LD). This demand can
be achieved by giving some incentives to the customers, i.e., reduction in Electricity Cost (EC) in low
demanding hours. Energy consumption minimization using Demand Side Management (DSM) can
also be attained by planning the usage of electricity and by adopting the deployment methods which
directly impact the customer’s LD. There are different pricing tariffs that are being used by the utility.
These pricing tariffs are Critical Peak Pricing (CPP) tariff, Real-Time Pricing (RTP) tariff, Day Ahead
pricing (DAP) tariff and the Time of Use (TOU) tariff. Many of these have been implemented to get
incentives. The domestic customers consume 18% of this electricity 2011 [2] and it is continuously
increasing. Many algorithms are being proposed to optimize the energy demand and many of them
are inspired from biology, artificial intelligence and nature.

In our model, we have considered 14 appliances which are categorized by consumer’s actions.
The Length of Operational Time (LOT) is dissimilar for the different appliances [3]. The considered
Parameters are: reduction of EC, PAR and load consumption with affordable Waiting Time (WT).
We are optimizing the problem using a novel hybrid approach for single homes as well as multiple
homes, i.e., ten, thirty and fifty homes with power consumption patterns and dynamic Power Rating
(PR). Some steps we mentioned here are:

• Load shifting strategy from high power demanding hours to low power demanding hours.
• Planning constraints in which different incentives are given to the customers by utility for flexible

load shifting because of variation in quality of services provided by them.

This work is an extension of [4]. Motivated from meta-heuristic algorithms, this paper considers
the Flower Pollination Algorithm (FPA), Bacterial Foraging Optimization Algorithm (BFOA) and
their hybrid algorithm for optimizing the energy consumption in single as well as multiple homes.
Our current work presents CPP and RTP pricing tariffs in Home Energy Management (HEM) to
decrease the consumer’s EC and Peak to Average Ratio (PAR). The PAR is considered to minimize the
rebound peaks in off-peak hours.

The rest of the paper is planned as following: the literature review is described in Section 2.
Section 3 covers the problem statement and our planned solution with detailed description is explained
in Section 4. Our achieved results and the discussions based on them are proved via simulations in
Section 5 and what has been learned through this research is summarized and concluded in Section 6
with its future work.

2. Literature Review

Recently, many optimization methods have been proposed to accomplish various objective
functions, i.e., lessening the EC and PAR. Various struggles are made for the cost-effective consumption
of electricity. In the current section, the previous research explored and described by other researchers
on various optimization methods are discussed.

The meta-heuristic methods named: FPA and Harmony Search Algorithm (HSA), which are
applied by other researchers to assess the performance in HEM [5]. Tariq et al. have considered one
home with various appliances working both automatically and manually. The CPP tariff is used with
the proposed scheme to shift the load from on-peak to off-peak hours for EC minimization and User
Comfort (UC) maximization. Nonetheless, no consideration has been given to the dynamic PRs of the
various appliances.

In [6], the researchers explored an effective DSM model for the residential users. The DSM model
uses the Binary Particle Swarm Optimization Algorithm (BPSO), Genetic Algorithm (GA) and Ant
Colony Optimization (ACO) Algorithm. All of these algorithms are heuristic algorithms that reduce
the EC, PAR and maximize UC. Main objectives of this research are deduced using three basic methods:
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GA, BPSO and ACO using TOU and Inclined Block Rate (IBR) pricing tariffs. However, computational
complexity is not considered by Rahim et al.

HEM controller is designed by applying heuristic techniques as: GA, BFOA, Wind Driven
Optimization Algorithm (WDO), BPSO and Genetic Binary Particle Swarm Optimization (GBPSO)
in [7] using RTP pricing tariff. In this paper, main emphasis is on reduction in cost and PAR.
The GA accomplishes well in the reduction of PAR and BPSO outperforms in cost minimization.
However, a trade-off between EC and delay is existing in the proposed techniques. The simulations
showed that the method achieved better results in the specified circumstances. Table 1 shows the brief
summarized related work.

In [8], the HEM system is explored which integrate Renewable Energy Resources (RES) using
different energy supplements and performs with DSM instantaneously. Therefore, the recommended
HEM supports the users in curtailing the consumption and scheduling of appliances in the home to a
specific level. When the boundary exceeds a specific level, the appliances will get-off by the utility
itself. In this paper, DAP signals and heuristic algorithms are applied to acquire optimum solutions.

For the optimization of optimization problem, Power Scheduling Technique (PST) is explored,
where the user can flow the initial and finish times of the appliances and can decrease the power usage.
EC in the current exploration is publicized by electric suppliers beforehand [9]. The results validate
that the scheduling technique outperformed in terms of low EC highly proficiently.

With the consideration of supplier’s services, to stabilize the load for avoiding huge electricity
usage is necessary. In addition, the supplier has to generate excess electricity to achieve the load
demand. To annihilate the aforementioned issue, a crucial requirement to rise the power consumption
agreement with low rates [10] is presented here. The results based on simulations proved that there is
a specific limit beyond which the algorithm schedular keep working and pause some appliances for
some duration. It supports to continue the LD for low EC and pause the appliances for use at a later
time. The TOU tariff is applied for balancing the load appropriately.

By shifting the load, the customer can delimit the high LD. A critical situation for the checker
creates, when the shareholder’s capacity of increasing energy incomes get inadequate [11]. Generally,
peaks can be decreased and valleys can be occupied which helps in balancing the LD.

In the paper [12], the deliberation of the Smart Meter (SM) model is presented, this model
comprises Demand Side (DS) production to improve the cost. The cost is used to control the correction
variables to improve the solution. This work halts a new pricing tariff for optimum procedures of
the Smart Grid (SG), which uses PSO scheme to find the optimum results to loss limits and Demand
Response (DR) stability.

The BFOA is hybrid with GA and is applied in [13]. In their work, they used RTP pricing scheme
is taken into account to improve the load of the customer, UC and EC. Nevertheless, the dynamic PR
for a smart community with varying appliances is not considered.

In this paper [14], DR patterns and procedures are implemented and reviewed by classifying
different schemes to decrease power consumption for DR variables which reduce the total power usage
by effectively applying DR method, depend on the contribution of customer and contribute to power
decrease in the highly demanding hours by consuming Dynamic Pricing Patterns (DPP). The proposed
method produce the DPP for predicting methods that reflects the probabilistic performance of the
appliances. In [15], the researchers categorized the appliances into three categories, which are base
load appliances, non-deferrable and deferrable. The key objectives attained are WT minimization,
PAR reduction and cost reduction.

The DSM approach is applied to attain the objective of load balancing for residential, commercial
and industrial zone [16]. It reduces the demand of load in peak hours with signification decrease in the
bill. The results based on simulations shows an obvious reduction in cost by applying the PSO method.

The researcher in [17] proposed an effective HSA method that is implemented to schedule the
DSM. The pricing tariff used by Geem et al. is TOU. Therefore, many simulations are performed and
their results show that HSA performs better compared GA.
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The hybrid of a fuzzy technique with FPA is applied to accept possibility that uses various methods
for accommodating variation in mutually local and global pollination [18]. The FPA outperforms than
its hybridized fuzzy version. Results are compared with different mathematical models. However,
time computation is ignored in this paper.

The altered FPA is explored in [19], which uses scaling factor for controlling local pollination.
The efficiency is intended from various mathematical equations, simulations and four diverse
power systems.

In [20], storage devices, i.e., batteries have a limit for charging and discharging to avoid any
type of loss, and controllers are installed on them. In the residential area, controller’s load is shifted
into the slot of low-cost, which means that charge the battery when EC is low and consumes that
electricity when the demand is high in order to meet the load demand. At the end, it is concluded that
higher battery capacity results in optimal usage of power and EC minimization. The EC and PAR are
minimized by the proposed scheme in [21]. However, renewable energy resources and installation cost
is completely ignored.

In [22], the cost is reduced by using GA. However, the UC is ignored and PAR is also neglected
in this paper. The EC is minimized with the reduction in PAR in [23]. However, UC is neglected
completely. A famous approach with its hybrid version is proposed in [24] using a hybrid algorithm of
FPA and Tabo Search Algorithm (TSA) to solve the optimization for unconstrained problems. However,
UC is ignored. In [25], the authors used FPA to optimize linear antenna arrays. The FPA outperforms
other nature-inspired algorithms, including PSO, ACO and cat swarm optimization.

In [26], the authors proposed distributed energy resource aggregator as a new player to manage
the energy along with the financial interactions in the day-ahead market. Graditi et al. in [27] propose
a novel algorithm based on glowworm swarm particles optimization for optimal management of
shiftable load in micro-grids (MGs). The authors also propose an optimal bidding strategy in an MG
environment for selling and buying of energy by prosumers [28]. An analog ensemble method is
applied for uncertainty caused by the intermittent nature of the renewable energy sources (RESs).
The results revealed that the proposed methodology is effective during the hours when electricity
price is high and the prosumer is willing to take risks. In [29], the authors use MG, which connects
wind turbine and photovoltaic in a grid-connected mode to supply the energy in a smart home.
Meta-heuristic algorithms and their hybrids are proposed to reduce the consumer’s EC, PAR and WT.
The results show that the hybrid schemes outperform the existing algorithms.

SGs have emerged in order to overcome the challenges of energy i.e., aging infrastructure,
electricity losses, environmental problems, etc., caused by traditional grids [30]. In [31], the authors
use metaheuristic algorithms along with optimal stopping rule to reduce the EC, PAR and WT of
appliances. The rebound peak created in the off-peak hours are mitigated through multiple knapsack
capacity limits. The authors in [32] define the user comfort by employing time and device based
appliances’ priorities. An evolutionary accretive comfort algorithm based on GA is considered to
achieve the maximum user comfort in three different user budget scenarios. The results reveal that an
increase in the budget value increases the user comfort along with cost per unit comfort index value.
However, the OTI considered in [31,32] is composed of one hour. In reality, some appliances may take
less time to complete their operations.
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3. Problem Statement, Objectives and Mathematical Formulation

In this section, the problem statement of this paper and mathematical formulation are discussed.

3.1. Problem Statement

In the aforementioned literature, complete benefits have not been taken from a smart grid. EC and
PAR are minimized by many researchers and some researchers focus on UC and load shifting to
off-peak hours from on-peak hours as in [13,33]. However, aforementioned parameters are not catered
by any related work simultaneously. OTI of one hour is taken into consideration in aforementioned
papers, which is not feasible, i.e., if the OTI is of one hour and the operational time interval of any
appliance is 40 min, then the remaining slots will be unused. To tackle this problem, 1, 20, 30 and
60 min Operational Time Intervals (OTIs) are taken into account and their comparative analysis is also
done in this paper. Towards efficient energy management positive features of both BFOA and FPA are
exploited and a novel proficient heuristic hybrid algorithm is proposed in real time and the CPP tariff
to tackle EC and PAR minimization problems with an affordable user’s WT simultaneously.

3.2. Objectives

The main objectives of this paper include:

• Scheduling of home appliances,
• EC and PAR reduction,
• Balancing the load,
• Maximizing the UC,
• Trade-off between EC and UC exploited,
• Comparative analysis is also presented.

3.3. Mathematical Modeling

For solving the problem, mathematical equations has been modled. The Total Cost (TC) is
determined for four different OTIs using Equations (1)–(4) with CPP and RTP tariffs in cents and
power usage of various appliances in kilowatt hours (kWh). The various terms in equations and their
symbolizations are provided in Table 2. The fitness function is determined using Equations (5) and (6).

The total load usage of a complete day for four OTIs is determined using Equations (7)–(10) while
Equation (11) calculates the load per slot. α shows the ‘ON/OFF’ status of an appliance that is shown
in Equation (12). The main emphasis is on objective functions as stated before. We have to decrease the
total EC as in Equation (13) and diminish the PAR achieved using Equation (14) with affordable WT.
One of our key objectives is load shifting as assessed in Equation (15). We have used some functions in
these equations, which are: mean to find mean value, minimum as ‘min’ to find minimum value and
‘std’ is used to find standard deviation.

A day is divided into two scenarios: the first one is on-peak hours representing high electricity
cost and the other one is off-peak hours representing a low electricity cost while seeing the ‘mean’ of
given pricing tariff. The proposed Algorithm needs to fulfil our objective functions, and the algorithm
will move the load to off-peak hours from the on-peak hours. It helps in reducing the PAR and EC.
PAR is calculated using Equation (16), which is a ratio between maximum scheduled load and average
unscheduled load. The list of appliances and their PRs are given in Table 3:
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Table 2. Terms used in equations and their notations.

Terms Notations

Electric rate per slot (t) EPt
rate

Power rating per appliance (ap) Pap
rate

Maximum population size Np
Appliance load Load
Scheduled load Lsch

oad
Unscheduled L Lunsch

oad
Domain of electric rate Erate

Fitness function EF
Load per slot (t) Lt

oad
Appliances app

TC =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1440

∑
t=1

EPt
rate × Pap

rate, (1)

72

∑
t=1

EPt
rate × Pap

rate, (2)

48

∑
t=1

EPt
rate × Pap

rate, (3)

24

∑
t=1

EPt
rate × Pap

rate, (4)

Ef = min

⎧⎨
⎩ l

i∈NPop
oad ≥ mean(lUnsch

oad ) i f EPt
rate ≤ mean(Erate), (5)

l
i∈NPop
oad > std(lUnsch

oad ) ∧ l
i∈NPop
oad < mean(lUnsch

oad ), EPt
rate > mean(Erate), (6)

Lsch
oad =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1440

∑
t=1

Lt
oad, (7)

72

∑
t=1

Lt
oad, (8)

48

∑
t=1

Lt
oad, (9)

24

∑
t=1

Lt
oad, (10)

Lt
oad = Pap

rate × app, (11)

α =

{
1, i f the appliance is ON,

0, i f the appliance is OFF,
(12)

Object1 = min(cost), (13)

Object2 = min(PAR), (14)

Object3 = Load, (15)

PAR =
max(Lsch

oad)

Average(Lsch
oad)

. (16)
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Table 3. Power rating and length of operational time for operational time interval 20 min.

Group Appliances PR (kWh) LOTs

Controllable Appliances

Oven 1.30 10.0
Kettle 2.00 1.00

Coffee Maker 0.80 4.00
Rice Cooker 0.85 2.00

Blender 0.30 2.00
Frying Pan 1.10 3.00

Toaster 0.90 1.00
Fan 0.20 15.0

Shiftable appliances
Washing Machine 0.50 6.00

Clothes Dryer 1.20 6.00

Non-Shiftable Appliances

Dish Washer 0.70 8.00
Vacuum Cleaner 0.40 8.00

Hair Dryer 1.50 2.00
Iron 1.00 6.00

4. Proposed Methodology

In proposed methodology for HEM, appliances are categorized into three types, which are
explained in detail below.

4.1. System Model

In this section, the architecture of the proposed model is discussed in detail as shown in Figure 1.
It elaborates both single home and a smart community with multiple homes.

Figure 1. Proposed system model.
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In our scenario, single and multiple homes: 10, 30 and 50 homes with four different time slots
(1, 20, 30 and 60 min) are considered with dynamic PR appliances. RTP and CPP tariffs are used to
calculate the EC. Meanwhile, selection of proper time slots help to achieve aforementioned objective
functions and improve the efficacy of proposed model.

4.2. Appliance Classification

In a specific time slot appliances are presented with ’ON/OFF’ status using [0, 1] and categories
into two types; by determining their behavior, which are given as follows;

• Shiftable Appliances ,
• Controllable Appliances,
• Non-Shiftable Appliances.

4.2.1. Shiftable Appliances

Deferrable appliances are named as shiftable appliances because these appliances can be moved
to another slot but without interruption during the working slot. It cannot be halted until its time slot
terminates. In our scenario, washing machine and dishwasher are shiftable appliances.

4.2.2. Controllable Appliances

Interruptible appliances are termed as controllable appliances. Operational time of such appliances
cannot be altered, i.e., fan.

4.2.3. Non-Shiftable Appliances

Uninterruptible appliances are schedulable but non-shiftable. These appliances cannot be
interrupted and their energy feeding configurations and OTI cannot be altered, i.e., dishwasher.
All appliances with their PRs are listed in Table 3.

4.3. Pricing Tariff

The price is determined agreeing to utility defined tariffs. Various pricing tariffs are applied
to decrease the EC and PAR, which inspires the customers to move the load to off-peak hours from
on-peak hours. Different tariffs such as DAP, TOU, CPP, IBR and RTP are available in literature.
Among all aforementioned pricing tariffs, CPP and RTP pricing tariffs are considered to conduct
simulations. A brief introduction is explained below.

4.3.1. CPP

CPP is an electric service price with respect to time which is implemented on people having
usage of electricity cost more than 20 kW and they are equipped with a meter that records its usage
after every fifteen minutes. The main purpose of CPP is to provide people with more information so
that they can decide when and how they have to use electricity. CPP rates are applied only if your
usage is more than 20 kW. If you are not following a CPP tariff, then you have to pay alternative rates.
The CPP pricing scheme is shown in Figure 2. In CPP, a communication device is needed that has to
communicate in both ways:

• to send how much consumption has taken place from customers to utilities,
• and to send information to customers from utilities
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(a)

(b)

Figure 2. Pricing tariff. (a) Critical peak pricing.; (b) Real time pricing.

4.3.2. RTP

In the RTP scheme, price depends on hours and it varies hourly. Normally, prices are fixed in
RTP, which influence the customer’s usage in peak hours. It reflects marginal cost like Wholesale EC,
atmospheric conditions and generator faults. Different pricing schemes from utilities impose different
retail prices for different hours. RTP is implemented in the interval metering technologies that measure
its consumption. It also records separate consumptions for every hour. The RTP scheme is shown in
Figure 2.

4.4. Implemented Techniques

In this section, implemented techniques (BFOA, FPA, and Hybrid Bacterial Flower Pollination
Algorithm (HBFPA)) are explained in detail.

4.4.1. BFOA

A beautiful aspect of nature is that it eliminates the animals that have less foraging behavior.
The nature helps those species which possess the good searching behaviors and methods. After few
generations, the weak ones are substituted by the healthy ones. Initially, the BFOA method has been
proposed by ‘Passsino’ and ‘Kevin’ [34] in 2002. The approach in BFOA is that, initially, it allows the
cells to group arbitrarily. Three successive phases are of the BFOA are explained below and algorithm
for BFOA is discussed in [4] .
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BFOA Steps

BFOA steps are explained as follows:

• Chemotaxis: the period of a bacteria’s life is measured by the number of these steps, where the
fitness J (i) of the bacteria is measured by contiguity to another bacteria’s new position O (i), then
a tumble besides the measured price surfaces one at a time by adding a unit step scope C (i) and it
lies between [−1, 1] in the direction of tumble. We generate a vector A (i) for representation of
this random direction called as ‘Tumble’.

• Reproduction: where bacteria performed well to move on their generation and the only cells that
can perform are those that have done well in their life time.

• Elimination and Dispersal: where cells are discarded and new random cells are inserted having
low probability.

The algorithm for BFOA is explained in [4].

4.4.2. FPA

The FPA is a nature inspired method that is stimulated by the pollination procedure of plants [35].
It is predictable that more than one million different classes of plants exist in the world and most of
them are from flowering classification. The basic tenacity of flower is to reproduce their offspring via
pollination process. The types of pollination are as follows.

Types of Pollination

There are two kinds of flower pollination, namely;

• Biotic pollination,
• Abiotic pollination.

Most of the plants go through biotic pollination (also called as ‘local pollination’), which involves
transfer of pollens within flowers of the same plant. A few of them perform abiotic pollination. Wind and
many other natural processes help the flowers to perform pollination either locally or globally.

Pollinators are basically the pollen vectors that are huge in number. It is estimated that more
than twenty thousand types of pollen vector exist in the world. Honeybee is the best example of a
pollinator. These pollinators visit certain flowers simultaneously and maintain the consistency of
flowers. This consistency involves the advantage of evolutionary purposes, which maximizes the
reproduction steps of flowers. This consistency helps the pollinator in different ways, as they require
minimum cost investment and more guarantee to intake the pollens.

Types of Different Processes in Pollination

The pollination can be achieved by two processes explained as follows:

• Self-pollination,
• Cross-pollination.

Cross-pollination is done from pollen vectors of different species of flowers while self-pollination
occurs in the same flower. Cross pollination occurs at longer distances, which is why it is also
called global pollination. One of the most important steps of this procedure is flower consistency,
which can be achieved as an incremental stepping process using the difference or similarity between
flowers. According to biological evolution, the survival of the best plant is the main objective of flower
pollination, which is considered as a plant optimization process of different species.

From the biological evolution point of view, the objective of flower pollination is the survival of
the plant and the optimal reproduction of plants in terms of number as well as the fitness. This can be

136



Energies 2018, 11, 3125

considered as a plant species optimization process. All of the above factors and processes of flower
pollination interact with each other to achieve the optimal reproduction. Therefore, this motivates us
to design new optimization algorithms.

FPA Steps

In 2012, the FPA algorithm was developed by ‘Xin-She’ Yang and named as ’FPA for Global
Optimization’ [36]. For easiness, the following four steps are used.

• Biotic cross-pollination is calculated as a process of global-pollination in which pollen vectors
transport pollinators by means of Levy flights.

• Abiotic and self-pollination are used for local-pollination.
• Pollinators sustain flower’s uniformity by reproduction probability.
• The transferring of local and global pollination is calculated by a switch probability p, belongs to

[0, 1].

The FPA Algorithm is shown in [4].

4.5. Hybridization

The method of hybridization basically contains a combination of two or more meta-heuristic
techniques. If a technique maintains its identity while coupling with others, it will be a ‘strong
coupling’ and, if other techniques take charge of its inner work, it will be a ‘weak coupling’. During
this hybridization, these techniques follow the steps of other techniques and control the strategy of
newly proposed hybrid algorithms.

4.5.1. HBFPA

The steps of our explored HBFPA are explained in Algorithm 1. Terms used in HBFPA are
explained in Table 4 and probability value is taken as (0.5) in HBFPA. Fitness in HBFPA is calculated
using Equations (17) and (18):

F = (1 − u(1))2 + D, (17)

where ‘D’ is
D = 100 × (u(2)− u(1)2)2 + 100 × (u(3)− u(2)2)2. (18)

Here, ‘u’ is the appliance’s cost.

Table 4. Terms used in hybrid bacterial flower pollination algorithm and their notations.

Terms Notations

OTIs t
Total time in hours T

Upper bound α
Lower bound β

Appliances D
Fitness EF

Maximum population size Np
Newly generated population Xnew

Old generated population X

In order to have a better understanding of HBFPA, a numerical example is illustrated in Figure 3.
In Figure 3, a solution represents the status of 14 appliances. The one value states that the appliance is
ON in the given time-slot while the 0 value shows the device OFF status. The HBFPA fitness function
evaluates each solution in terms of EC and given constraints. Finally, a solution based on minimum
EC is selected for that time-slot and the population is updated for the next generation.
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Algorithm 1 Algorithm for HBFPA
Parameters Initilization
The lower bound (β)
The upper bound (α)
For appliances dε D
All OTIs t in T
for Population← 1 to Np do

for j ← 1 to D-1 do

Flowers are generated randomly

end for

end for

Levy flight
N = Maximum iterations
for j ← 1 to N do

for Pop← 1 to Np do

for i ← 1 to Ns do

Tumble using Levy flight
Calculate the Ef using Eq. (5), (6)
Go to new location
Calculate the Ef again using Eq. (5), (6)
if Ef (Xnew) < Ef (X) then

Update the population using swimming

Calculate the Ef using Eq. (5), (6)
else

Bacteria tumble using Levy flight
Take a random direction move
Calculate the Ef using Eq. (5), (6)

end If

end for

Update global population
end for

end for

Return the best solution with less EC

Figure 3. Hybrid bacterial flower pollination algorithm numerical example.
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5. Simulation Results and Discussion

In this section, simulations and results with proper justification are described in order to specify
the performance of the proposed hybrid algorithm using RTP and CPP price tariffs. Therefore, to judge
the productivity of proposed technique and to describe its optimality for single home and a smart
community, we have done different simulations for variable time horizon using different OTIs (24, 48,
72 and 1440) for a complete day, starting from 1:00 a.m. to the following 1:00 a.m.

5.1. For Single Homes

In this portion, a single home is considered with 14 appliances and EMC is installed in the home
for scheduling of appliances according to price tariff defined by the utility side. Plots for load, EC,
PAR and affordable WT using OTI of 20 min are given below:

5.1.1. Load Consumption

Load consumption for single homes using both pricing tariffs are explained as follows.

Load Consumption using CPP

The performance of the proposed hybrid algorithm is evaluated using a CPP price tariff.
Our proposed hybrid algorithm outperformed as compared to benchmark schemes. Algorithm is
envisioned to evade peak formation in any obvious slots of working hours. Therefore, price reduction
happens. Our proposed and implemented technique performed fabulously in the case of different
power consumption patterns. Figure 4 shows the behavior of load using CPP with four different OTIs.
However, total load should be equal before and after scheduling.

(a) (b)

(c) (d)

Figure 4. Load for single home using critical peak pricing. (a) load using operational time interval of
1 min; (b) load using operational time interval of 20 min; (c) load using operational time interval of
30 min; (d) load using operational time interval of 60 min.
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Load Consumption Using RTP

Load consumption patterns using RTP are shown in Figure 5 for four different OTIs. In RTP
pricing tariff, the scheduler efficiently manages the load and shifts from high rated hours to low rated
hours. This load shifting is performed to reduce the EC. BFOA and FPA reduce the EC to some extent;
however, the proposed algorithm outperforms. However, this load shifting affects UC.

(a) (b)

(c) (d)

Figure 5. Load for single home using real time pricing. (a) load using operational time interval of
1 min; (b) load using operational time interval of 20 min; (c) load using operational time interval of
30 min; (d) load using operational time interval of 60 min.

5.1.2. Electricity Cost

EC for a single home using both pricing tariffs are explained as follows.

Cost Using CPP

The appliance performance in terms of cost are calculated using heuristic optimization techniques
and, as a result of this work, the hourly cost is reduced. The proposed technique performed well as
compared to FPA and BFOA. CPP remains the same throughout the year except critical peak periods
where the price is high. Therefore, the cost pattern is almost similar for all OTIs because, in CPP,
peak generation time is the same for all OTIs. Simulation results reveal that the proposed optimization
technique reduces the total EC as shown in Figure 6a using CPP. EC values for a single home using
CPP are shown in Table 5.
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Table 5. Electricity cost for 24 h (for single home).

Techniques
Cost (Cents) Using CPP

1 min 20 min 30 min 60 min

Unscheduled 1.5323 × 103 1.1210 × 103 1.2912 × 103 1.1319 × 103

BFOA 848.3800 829.7933 753.6100 952.7100
FPA 785.6600 777.5267 804.0100 1.0423 × 103

HBFPA 785.6600 725.2600 608.0100 762.3100

(a) (b)

(c)

Figure 6. Total cost, waiting time and peak to average ratio for a single home using critical peak
pricing. (a) Electricity cost using operational time interval of 1, 20, 30, 60 min; (b) Waiting time using
operational time interval of 1, 20, 30, 60 min; (c) Peak to average ratio using operational time interval of
1, 20, 30, 60 min.

Cost Using RTP

Cost minimization is the main objective for which the hybrid heuristic technique is designed
to optimize the DSM using the RTP tariff. Figure 7a elucidates EC of all OTIs. The figures clearly
demonstrate that benchmark schemes outperformed in terms of EC; however, the proposed hybrid
algorithm outperformed by sacrificing UC with affordable WT. EC values for single homes using RTP
are shown in Table 6.

Table 6. Electricity cost for 24 h (For single home).

Techniques
Cost (Cents) Using RTP

1 min 20 min 30 min 60 min

Unscheduled 362.3626 269.1267 344.2463 333.1345
BFOA 280.0945 265.0310 291.4513 275.6915
FPA 286.3116 267.5580 300.4783 276.2255

HBFPA 267.9894 235.0647 269.3313 275.1495
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(a) (b)

(c)

Figure 7. Total cost, waiting time and peak to average ratio for single home using real time pricing.
(a) Electricity cost using operational time interval of 1, 20, 30, 60 min; (b) Waiting time using operational
time interval of 1, 20, 30, 60 min; (c) Peak to average ratio using operational time interval of 1, 20, 30,
60 min.

5.1.3. Peak-to-Average Ratio

PAR is the value of maximum peak created to the average of total load which a user consumes in
a day. The objective is to reduce PAR, which guarantees that created peaks are minimal. PAR for single
homes using both pricing tariffs are explained as follows.

PAR Using CPP

When the proposed hybrid algorithm is applied to compute PAR using CPP, the proposed technique
outperforms then state of the art schemes. The PAR reduction helps the utility to maintain its constancy
and finally the price reduces. The HBFPA schedules the appliances efficiently and turns the appliances
‘ON’ in off-peak hours to avoid generating extra peaks in on-peak hours as shown in Figure 6c for four
different OTIs using CPP tariffs. PAR values for a single home using CPP are shown in Table 7.

Table 7. Peak to average ratio for 24 h (for single homes).

Techniques
PAR Using CPP

1 min 20 min 30 min 60 min

Unscheduled 7.241 4.9 3.47 3.3784
BFOA 3.4365 6.48 3.99 3.43
FPA 3.5248 3.68 2.22 2.2289

HBFPA 6.2047 4.4388 3.4657 3.2657

PAR Using RTP

Figure 7c shows PAR using RTP tariffs for different OTIs (1, 20, 30 and 60 min). PAR is calculated
by a proposed algorithm that gives good results with maximum PAR reduction. Hence, it can be
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clearly observed that our hybrid algorithm performs efficiently in the variable OTIs and improves the
efficacy of scheduler. PAR values for single homes using RTP are shown in Table 8.

Table 8. Peak to average ratio for 24 h (for single homes).

Techniques
PAR Using RTP

1 min 20 min 30 min 60 min

Unscheduled 7.5619 6.3920 6.4850 3.6803
BFOA 4.5242 3.6784 3.8245 3.3175
FPA 5.4937 3.6784 3.4365 2.2289

HBFPA 6.2047 4.3417 4.2125 3.2138

5.1.4. Waiting Time

EC is the important parameter in HEM. There exists a trade-off between EC and UC. Here, UC is
basically the WT of appliances to turn them ‘ON’ (how much a user waits to turn the appliances ‘ON’).

Waiting Time Using CPP

Figure 6b shows a WT comparison for four different OTIs using CPP price tariffs. If the user turns
appliance an ‘ON’ without considering peak hours, then there will be no WT in that case. By applying
the proposed algorithm, consumer have to wait for off-peak hours. The selection of variable OTI affects
the WT. It can be easily evaluated that the proposed hybrid algorithm has maximum affordable WT
than aforementioned algorithms. WTs for single homes using CPP are shown in Table 9.

Table 9. Waiting time for 24 h (for single homes).

Techniques
Waiting Time Using CPP

1 min 20 min 30 min 60 min

BFOA 137.3321 154.1667 86.7857 139.2857
FPA 140.0812 153.3929 102.6786 147.8571

HBFPA 214.3473 227.5595 149.8214 135.00

Waiting Time Using RTP

HBFPA successfully achieves the PAR and cost reduction using RTP tariff. However, there exists
a trade-off between EC and UC. Therefore, users are unable to attain much UC. WT of four scenarios
using RTP are shown in Figure 7b. It is concluded that affordable WT (delay) with maximum UC is
attained. However, for EC reduction, the user’s comfort is compromised. WTs for a single home using
RTP are shown in Table 10.

Table 10. Waiting time for 24 h (for single homes).

Techniques
Waiting Time Using RTP

1 min 20 min 30 min 60 min

BFOA 54.9940 130.9762 80.2500 133.5714
FPA 59.7152 147.9762 90.5357 165.00

HBFPA 153.5777 228.5714 160.1786 130.00

5.2. For Multiple Homes

We optimize the appliances using BFOA, FPA and the proposed hybrid heuristic algorithm for
multiple homes (10, 30 and 50 homes). Different homes may have different PRs. Therefore, the proposed
algorithm has selected PRs dynamically. Random PRs are mentioned in Table 11.
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Table 11. Random power ratings in (kWh).

Appliances Power Rating 1 Power Rating 2 Power Rating 3 Power Rating 4

Washing-Machine 0.50 0.70 0.90 0.40
Clothes Dryer 10.0 1.20 1.40 1.60
Dish Washer 0.38 0.50 0.70 0.80
Vacuum Cleaner 0.80 1.00 0.20 0.50
Hair Dryer 1.50 1.20 1.40 1.70
Iron 1.00 1.30 1.50 1.20
Oven 1.30 1.50 1.70 1.90
Kettle 2.00 2.15 2.40 2.14
Coffee Maker 0.80 0.40 0.50 0.20
Rice Cooker 0.85 0.89 0.72 0.79
Blender 0.30 0.47 0.40 0.70
Frying Pan 1.10 1.50 1.90 2.00
Toaster 0.90 1.00 0.50 0.70
Fan 0.20 0.50 0.40 0.70

5.2.1. OTI 1 min

Load consumption, EC, PAR and WT for multiple homes using both pricing tariffs with OTI of
1 min are explained as follows.

Load Using CPP

Figure 8 clearly illustrates the load scheduling for multiple homes (10, 30 and 50 homes) using
real-time scenarios with random power ratings and power consumption patterns. The notable thing
in figures is that BFOA and FPA performed well while shifting load from on-peak to off-peak hours;
however, the proposed hybrid algorithm outperformed.

(a) (b)

(c)

Figure 8. Load for multiple homes: (10, 30 and 50) using critical peak pricing. (a) load using operational
time interval of 1 min for 10 homes; (b) load using operational time interval of 1 min for 30 homes;
(c) load using operational time interval of 1 min for 50 homes.
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EC, PAR and WT Using CPP

We implemented HBFPA for multiple homes to reduce overall cost, reduction in PAR with
affordable WT and, as a result of this work, EC per slot is minimized as shown in Figure 9a. Affordable
WT is shown in Figure 9b with reduction in PAR as shown in Figure 9c. EC, WT and PAR values for
multiple homes are shown in Tables 12–14, respectively.

×

(a) (b)

(c)

Figure 9. Electricity cost, waiting time and peak to average ratio for multiple homes: (10, 30 and 50)
using critical peak pricing. (a) Electricity cost using operational time interval of 1 min; (b) Waiting time
using operational time interval of 1 min; (c) Peak to average ratio using operational time interval of
1 min.

Table 12. Electricity cost for 24 h (for multiple homes).

Techniques
Cost (Cents) Using CPP for OTI 1 min

10 homes 30 homes 50 homes

Unscheduled 4.2213 × 105 1.2535 × 106 2.1077 × 106

BFOA 3.8669 × 105 1.1425 × 106 1.9247 × 106

FPA 4.4563 × 105 1.2881 × 106 2.1096 × 106

HBFPA 0.2128 × 105 0.7098 × 105 1.2205 × 106

Table 13. Waiting time for 24 h (for multiple homes).

Techniques
WT Using CPP for OTI 1 min

10 homes 30 homes 50 homes

BFOA 544.0428 1.7259 × 103 2.8516 × 103

FPA 722.7521 2.0134 × 103 3.6380 × 103

HBFPA 1.5302 × 103 4.5947 × 103 7.6534 × 103
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Table 14. Peak to average ratio for 24 h (for multiple homes).

Techniques
PAR Using CPP for OTI 1 min

10 homes 30 homes 50 homes

Unscheduled 75.9236 233.9259 381.1938
BFOA 46.1947 137.6369 231.5394
FPA 49.2012 150.6242 248.5587

HBFPA 61.5829 180.9010 304.4469

Load Using RTP

Figure 10 shows load shifting for 10, 30 and 50 homes using OTI of 1 min. It is clearly shown in
figures that proposed HBFPA outperformed and beat BFOA and FPA very well.

(a) (b)

(c)

Figure 10. Load for multiple homes: (10, 30 and 50) using Real time pricing. (a) load using operational
time interval of 1 min for 10 homes; (b) load using operational time interval of 1 min for 30 homes;
(c) load using operational time interval of 1 min for 50 homes.

EC, WT and PAR Using RTP

The proposed algorithm is implemented on multiple homes using the RTP price tariff.
The scheduler schedules the appliances for multiple homes and reduces EC by sacrificing UC. Overall
cost reduction is shown in Figure 11a while affordable WT is demonstrated in Figure 11b and minimized
PAR is shown in Figure 11c. EC, WT and PAR values for multiple homes are shown in Tables 15–17.
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×

(a) (b)

(c)

Figure 11. Electricity cost, waiting time and peak to average ratio for multiple homes: (10, 30 and 50)
using real time pricing. (a) Electricity cost using operational time interval of 1 min; (b) Waiting time
using operational time interval of 1 min; (c) Peak to average ratio using operational time interval of
1 min.

Table 15. Electricity cost for 24 h (for multiple homes).

Techniques
Cost (Cents) Using RTP for OTI 1 min

10 homes 30 homes 50 homes

Unscheduled 2.6912 × 105 7.9680 × 105 1.2990 × 104

BFOA 2.0976 × 105 6.2206 × 105 1.0124 × 106

FPA 2.1458 × 105 6.3795 × 105 1.0328 × 106

HBFPA 2.0176 × 105 5.9593 × 105 9.7160 × 105

Table 16. Waiting time for 24 h (for multiple homes).

Techniques
WT Using RTP for OTI 1 min

10 homes 30 homes 50 homes

BFOA 574.6065 1.6632 × 103 6.7364 × 103

FPA 746.8147 2.1254 × 103 4.5967 × 103

HBFPA 2.7175 × 103 3.6963 × 103 7.6552 × 103
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Table 17. Peak to average ratio for 24 h (for multiple homes).

Techniques
PAR Using RTP for OTI 1 min

10 homes 30 homes 50 homes

Unscheduled 77.0644 232.1643 394.5380
BFOA 45.6238 138.9392 234.6092
FPA 50.2105 153.5715 253.3993

HBFPA 57.1704 184.7282 302.1077

5.2.2. OTI 60 min

Load consumption, EC, PAR and WT for multiple homes using both pricing tariffs with OTI of
60 min are explained as follows:

Load Using CPP

We have done simulations with OTI of 60 min using CPP tariffs to reduce the creation of peaks
in on-peak hours and proposed HBFPA. HBFPA successfully shifts the load from on-peak hours to
off-peak hours. Figure 12 clearly elaborates that the proposed scheme is projected to evade peak
formations in any obvious slot of occupied hours.

(a) (b)

(c)

Figure 12. Load for multiple homes: (10, 30 and 50) using critical peak pricing. (a) load using
operational time interval of 60 min for 10 homes; (b) load using operational time interval of 60 min for
30 homes; (c) load using operational time interval of 60 min for 50 homes.

EC, WT and PAR Using CPP

The proposed hybrid algorithm optimizes the problem by reducing cost and PAR with affordable
WT using a real-time scenario. Thus, overall cost reduction is shown in Figure 13a and UC or WT is
demonstrated in Figure 13b and PAR minimization is illustrated in Figure 13c. EC, affordable WT and
minimized PAR values are shown in Tables 18–20.
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×

(a) (b)

(c)

Figure 13. Electricity cost, waiting time and peak to average ratio for multiple homes: (10, 30 and 50)
using critical peak pricing. (a) Electricity cost using operational time interval of 60 min; (b) Waiting
time using operational time interval of 60 min; (c) Peak to average ratio using operational time interval
of 60 min.

Table 18. Electricity cost for 24 h (for multiple homes).

Techniques
Cost (Cents) Using CPP for OTI 60 min

10 homes 30 homes 50 homes

Unscheduled 1.5059 × 104 4.2003 × 104 7.1746 × 104

BFOA 1.0666 × 104 2.9568 × 104 4.9553 × 104

FPA 1.0836 × 104 2.9822 × 104 5.1076 × 104

HBFPA 0.83 × 105 2.5075 × 104 4.274 × 104

Table 19. Waiting time for 24 h (for multiple homes).

Techniques
WT Using CPP for OTI 60 min

10 homes 30 homes 50 homes

BFOA 1.0043 × 103 3.2093 × 103 5.1507 × 103

FPA 1.0757 × 103 3.2429 × 103 4.1714 × 103

HBFPA 1.3836 × 103 4.1714 × 103 6.8836 × 103
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Table 20. Peak to average ratio for 24 h (for multiple homes).

Techniques
PAR Using CPP for OTI 60 min

10 homes 30 homes 50 homes

Unscheduled 38.7901 112.7401 189.7837
BFOA 23.5727 78.1047 120.4385
FPA 24.6797 75.6910 129.6416

HBFPA 30.3457 98.0471 167.4858

Load Using RTP

Load plots for multiple homes (10, 30 and 50 homes) using OTI 60 with RTP tariffs are
given in Figure 14 for four different OTIs with random PRs and power consumption patterns.
HBFPA outperformed in shifting load from on-peak to off-peak hours efficiently for multiple homes
(10, 30 and 50 homes) than FPA and BFOA, respectively.

(a) (b)

(c)

Figure 14. Load for multiple homes: (10, 30 and 50) using real time pricing. (a) load using operational
time interval of 60 min for 10 homes; (b) load using operational time interval of 60 min for 30 homes;
(c) load using operational time interval of 60 min for 50 homes.

EC, WT and PAR Using RTP

Scheduling using RTP tariffs is discussed in this section. BFA and FPA outperformed in EC
minimization for smart community; however, a implemented hybrid algorithm outperformed the
aforementioned algorithms. EC minimization is shown in Figure 15a, UC with affordable WT is shown
in Figure 15b and PAR reduction is shown in Figure 15c. EC, affordable WT and PAR reduction values
are shown in Tables 21–23.
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×

(a) (b)

(c)

Figure 15. Electricity cost, waiting time and peak to average ratio for multiple homes: (10, 30 and 50)
using real time pricing. (a) Electricity cost using operational time interval of 60 min; (b) Waiting time using
operational time interval of 60 min; (c) Peak to average ratio using operational time interval of 60 min.

Table 21. Electricity cost for 24 h (for multiple homes).

Techniques
Cost (Cents) Using RTP for OTI 60 min

10 homes 30 homes 50 homes

Unscheduled 3.9954 × 103 1.2170 × 104 2.0437 × 104

BFOA 3.1541 × 103 9.6811 × 103 1.6242 × 104

FPA 3.1884 × 103 9.8798 × 103 1.6251 × 104

HBFPA 3.1877 × 103 1.6242 × 103 1.6039 × 104

Table 22. Waiting time for 24 h (for multiple homes).

Techniques
WT Using RTP for OTI 60 min

10 homes 30 homes 50 homes

BFOA 1.4314 × 103 4.0729 × 103 6.7364 × 103

FPA 1.4371 × 103 3.8336 × 103 6.869 × 103

HBFPA 1.3964 × 103 4.1579 × 103 6.9236 × 103

Table 23. Peak to average ratio for 24 h (for multiple homes).

Techniques
PAR Using RTP for OTI 60 min

10 homes 30 homes 50 homes

Unscheduled 37.3187 115.6367 195.2858
BFOA 25.9190 74.4312 122.2942
FPA 25.8770 80.9041 129.3206

HBFPA 33.8192 102.8952 166.9638
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Here, an inclination is made that explains that the more a consumer sacrifices his luxury, low price
rates will be given to him by utility. Our proposed technique outperforms in the case of different
power consumption patterns and random PRs.

5.3. Feasible Regions

In mathematical optimization, a feasible region is the unique set of nominee solutions for the
suggested scheme. Four constraints should be preserved while computing feasible regions:

• Min cost, Min Load,
• Min cost, Max Load,
• Max cost, Min Load,
• Max cost, Max Load.

Point ‘P5’ is cutting the overall area at point ‘P2’ in Figure 16 and in Figure 17, which
shows the maximum cost in scheduled cases. Therefore, point ‘P5’ shows feasible regions for our
objective functions.

Feasible Region Using CPP

In this paper, feasible regions are formulated using CPP price tariffs. The pointers (P1, P2, P3, P4,
P5) have shown the possible feasible regions against different OTIs. The area of feasible regions is
shaded with a cyan color. For details, follow Figure 16.

(a) (b)

(c) (d)

Figure 16. Feasible regions for a single home using critical peak pricing. (a) Operational time interval
of 1 min; (b) Operational time interval of 20 min; (c) Operational time interval of 30 min; (d) Operational
time interval of 60 min.

Feasible Region Using RTP

In this section, feasible regions are formulated using an RTP price tariff. The Pointers (P1, P2, P3,
P4, P5) have shown the possible feasible regions against different OTIs using RTP. The area of feasible
regions using RTP are shaded with a cyan color. For depth details, follow Figure 17.
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(a) (b)

(c) (d)

Figure 17. Feasible regions for a single home using real time pricing. (a) Operational time interval of
1 min; (b) Operational time interval of 20 min; (c) Operational time interval of 30 min; (d) Operational
time interval of 60 min.

5.4. Performance Trade-Off

In this section, the trade-off between two parameters is discussed. Simulation results show the
existing trade-off between EC and affordable WT. EC diminishes as the user sacrifices his luxury by
deferring his activity. Therefore, to get the benefit in one context, the user has to compromise on some
other parameters. The trade-off between EC and UC is demonstrated in the figures above.

6. Conclusions and Future Work

In this research work, DR and DSM are the main factors to maintain a balance between supply
and demand of electricity. In this paper, to minimize EC and PAR with an affordable user’s WT, a novel
heuristic algorithm has been proposed. Our novel algorithm is proposed using two pricing schemes:
CPP and RTP and four performance parameters (EC, PAR, load balancing and UC) are considered
to evaluate our proposed algorithm with dynamic PR. Results show the efficacy of a novel heuristic
hybrid algorithm HBFPA for a single home and smart community with multiple homes. When CPP
is used, the HBFPA has achieved an EC value of 762.3100 cents for a single home as compared to
unscheduled load EC value 1131.9 cents at 60 min OTI. The BFOA and FPA have achieved EC values
of 952.71 cents and 1042.3 cents, respectively. When RTP is used at 60 min of OTI, the ECs achieved
for the unscheduled case, BFOA, FPA and HBFPA are 333.1345, 275.6915, 276.2255 and 275.1495 cents,
respectively. The HBFPA has achieved the PAR value 3.2657 as compared to unscheduled case 3.3784
for 60 min OTI using CPP. At 60 min OTI, the average WT of HBFPA, BFOA and FPA are 135, 139.2857
and 147.8571 min, respectively. Similarly, EC and PAR are minimized with an affordable user’s WT
by helping the scheduler to schedule the load from on-peak hours to off-peak hours for multiple
home scenarios. From the results, it has been cleared that the implemented scheme outperformed
the aforementioned existing algorithms. However, there exists a trade-off between the cost and
user’s comfort.

In the future, multiple optimization techniques will be integrated with renewable energy resources,
dynamic programming and the cloud concept to schedule the home appliances to reduce cost and
PAR despite using electricity management controllers. There will be a scenario when some homes
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may consist of a few number of appliances and there may exist some homes with a greater number
of appliances.

Author Contributions: M.A., N.J., and K.A. proposed and implemented the novel schemes; S.I.H., Z.A.K., and
D.M. completed the mathematical modeling. All authors together refined the manuscript. Finally, M.A., N.J.,
responded to the queries of the reviewers.

Funding: The authors extend their appreciation to the Deanship of Scientific Research at King Saud University
for funding this work through research group NO (RG-1438-034).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Mehreen, G.; Patidar, S. Understanding the energy consumption and occupancy of a multi-purpose academic
building. Energy Build. 2015, 87, 155–165.

2. Today in Energy—U.S. Energy Information Administration (EIA). Available online: https://www.eia.gov/
todayinenergy/detail.php?id=12251 (accessed on 3 August 2018).

3. Logenthiran, T.; Srinivasan, D.; Shun, T.Z. Demand side management in smart grid using heuristic
optimization. IEEE Trans. Smart Grid 2012, 3, 1244–1252. [CrossRef]

4. Awais, M.; Javaid, N.; Mateen, A.; Khan, N.; Mohiuddin, A.; Rehman, M.H.A. Meta Heuristic and Nature
Inspired Hybrid Approach for Home Energy Management Using Flower Pollination Algorithm and Bacterial
Foraging Optimization Technique. In Proceedings of the 2018 IEEE 32nd International Conference on
Advanced Information Networking and Applications (AINA), Krakow, Poland, 16–18 May 2018; pp. 882–891.
[CrossRef]

5. Tariq, M.; Khalid, A.; Ahmad, I.; Khan, M.; Zaheer, B.; Javaid, N. Load Scheduling in Home Energy
Management System Using Meta-Heuristic Techniques and Critical Peak Pricing Tariff. In Proceedings of
the International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, Barcelona, Spain, 8–10
November 2017; Springer: Cham, Switzerland, 2017; pp. 50–62.

6. Rahim, S.; Javaid, N.; Ahmad, A.; Khan, S.A.; Khan, Z.A.; Alrajeh, N.; Qasim, U. Exploiting heuristic
algorithms to efficiently utilize energy management controllers with renewable energy sources. Energy Build.
2016, 129, 452–470. [CrossRef]

7. Mahmood, D.; Javaid, N.; Alrajeh, N.; Khan, Z.A.; Qasim, U.; Ahmed, I.; Ilahi, M. Realistic scheduling
mechanism for smart homes. Energies 2016, 9, 202. [CrossRef]

8. Ahmad, A.; Khan, A.; Javaid, N.; Hussain, H.M.; Abdul, W.; Almogren, A.; Alamri, A.; Niaz, I.A. An Optimized
Home Energy Management System with Integrated Renewable Energy and Storage Resources. Energies
2017, 10, 549. [CrossRef]

9. Ma, K.; Yao, T.; Yang, J.; Guan, X. Residential power scheduling for demand response in smart grid. Int. J.
Electr. Power Energy Syst. 2016, 78, 320–325. [CrossRef]

10. Muralitharan, R.S.; Shi, Y. Multiobjective optimization technique for demand side management with load
balancing approach in smart grid. Neurocomputing 2016, 177, 110–119. [CrossRef]

11. López, M.A.; Torre, S.; Martín, S.; Aguado, J.A. Demand-side management in smart grid operation
considering electric vehicles load shifting and vehicle-to-grid support. Int. J. Electr. Power Energy Syst.
2015, 64, 689–698. [CrossRef]

12. Chanda, S.; De, A. A multi-objective solution algorithm for optimum utilization of smart grid infrastructure
towards social welfare. Int. J. Electr. Power Energy Syst. 2014, 58, 307–318. [CrossRef]

13. Khalid, A.; Javaid, N.; Mateen, A.; Khalid, B.; Khan, Z.A.; Qasim, U.Demand side management using
hybrid bacterial foraging and genetic algorithm optimization techniques. In Proceedings of the 2016 10th
International Conference on Complex, Intelligent, and Software Intensive Systems (CISIS), Fukuoka, Japan
6–8 July 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 494–502.

14. Vardakas, J.; Zorba, N.; Verikoukis, C.V. A survey on demand response programs in smart grids: Pricing
methods and optimization algorithms. IEEE Commun. Surv. Tutor. 2015, 17, 152–178. [CrossRef]

15. Aslam, S.; Iqbal, Z.; Javaid, N.; Khan, Z.A.; Aurangzeb, K.; Haider, S.I. Towards efficient energy management
of smart buildings exploiting heuristic optimization with real-time and critical peak pricing schemes. Energies
2017, 10, 2065. [CrossRef]

154



Energies 2018, 11, 3125

16. Gupta, I.; Anandini, G.N.; Gupta, M. An hour wise device scheduling approach for demand side management
in smart grid using particle swarm optimization. In Proceedings of the 2016 National Power Systems
Conference (NPSC), Bhubaneswar, India, 19–21 December 2016; IEEE: Piscataway, NJ, USA, 2016.

17. Geem, Z.W.; Yoon, Y. Harmony search optimization of renewable energy charging with energy storage
system. Int. J. Electr. Power Energy Syst. 2017, 86, 120-126. [CrossRef]

18. Valenzuela, L.; Valdez, F.; Melin, P. Flower pollination algorithm with fuzzy approach for solving
optimization problems. In Nature-Inspired Design of Hybrid Intelligent Systems; Springer: Cham, Switzerland,
2017; pp. 357–369.

19. Dubey, H.M.; Pandit, M.; Panigrahi, B.K. A biologically inspired modified flower pollination algorithm for
solving economic dispatch problems in modern power systems. Cognit. Comput. 2015, 7, 594–608. [CrossRef]

20. Kakran, S.; Chanana, S. Smart operations of smart grids integrated with distributed generation: A review.
Renew. Sustain. Energy Rev. 2018, 81, 524–535. [CrossRef]

21. Mary, G.A.; Rajarajeswari, R. Smart grid cost optimization using genetic algorithm. Int. J. Res. Eng. Technol.
2015, 3, 282–287.

22. Bharathi, C.; Rekha, D.; Vijayakumar, V. Genetic Algorithm Based Demand Side Management for Smart Grid.
Wirel. Pers. Commun. 2017, 93, 481–502. [CrossRef]

23. Whitley, D. A genetic algorithm tutorial. Stat. Comput. 1994, 4, 65–85. [CrossRef]
24. Hezam, I.; Abdel-Baset, M.; Hassan, B. A hybrid flower pollination algorithm with tabu search for

unconstrained optimization problems. Inf. Sci. Lett. 2016, 5, 29–34. [CrossRef]
25. Prerna, S.; Kothari, A. Linear antenna array optimization using flower pollination algorithm. SpringerPlus

2016, 5, 306.
26. Graditi, G.; di Somma, M.; Siano, P. Optimal Bidding Strategy for a DER aggregator in the Day-Ahead

Market in the presence of demand flexibility. IEEE Trans. Ind. Electron. 2018, 66, 1509–1519.
27. Graditi, G.; di Silvestre, M.L.; Gallea, R.; Sanseverino, E.R. Heuristic-based shiftable loads optimal

management in smart micro-grids. IEEE Trans. Ind. Inf. 2015, 11, 271–280. [CrossRef]
28. Ferruzzi, G.; Cervone, G.; Monache, L.D.; Graditi, G.; Jacobone, F. Optimal bidding in a Day-Ahead energy

market for Micro Grid under uncertainty in renewable energy production. Energy 2016, 106, 194–202.
[CrossRef]

29. Iqbal, Z.; Javaid, N.; Iqbal, S.; Aslam, S.; Khan, Z.A.; Abdul, W.; Almogren, A.; Alamri, A. A Domestic
Microgrid with Optimized Home Energy Management System. Energies 2018, 11, 1002. [CrossRef]

30. El-Hawary, M.E. The smart grid-state-of-the-art and future trends. Electr. Power Compon. Syst. 2014, 42,
239–250. [CrossRef]

31. Khan, A.; Javaid, N.; Ahmad, A.; Akbar, M.; Khan, Z.A.; Ilahi, M. A priority-induced demand side
management system to mitigate rebound peaks using multiple knapsack. J. Ambient Intell. Hum. Comput.
2018, 1–24. [CrossRef]

32. Khan, A.; Javaid, N.; Khan, M.I. Time and device based priority induced comfort management in smart
home within the consumer budget limitation. Sustain. Cities Soc. 2018, 41, 538–555. [CrossRef]

33. Yang, X.-S. Flower pollination algorithm for global optimization. In Proceedings of the International
Conference on Unconventional Computing and Natural Computation, Orléans, France, 3–7 September 2012;
Springer: Berlin/Heidelberg, Germany, 2012; pp. 240–249.

34. Passino, K. Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst.
2002, 22, 52–67.

35. Balasubramani, K.; Marcus, K. A study on flower pollination algorithm and its applications. Int. J. Appl. Innov.
Eng. Manag. 2015, 3, 230–235.

36. Rodrigues, D.; Yang, X.-S.; de Souza, A.N.; Papa, J.P. Binary flower pollination algorithm and its application
to feature selection. In Recent Advances in Swarm Intelligence and Evolutionary Computation; Springer: Cham,
The Netherlands, 2015; pp. 85–100.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

155



energies

Article

Solving the Energy Efficient Coverage Problem in
Wireless Sensor Networks: A Distributed Genetic
Algorithm Approach with Hierarchical
Fitness Evaluation

Zi-Jia Wang 1, Zhi-Hui Zhan 2,* and Jun Zhang 2

1 School of Data and Computer Science, Sun Yat-sen University, Guangzhou 510006, China;
wangzjia@mail2.sysu.edu.cn

2 Guangdong Provincial Key Laboratory of Computational Intelligence and Cyberspace Information,
School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006,
China; junzhang@ieee.org

* Correspondence: zhanapollo@163.com; Tel.: +86-138-2608-9486

Received: 30 October 2018; Accepted: 13 December 2018; Published: 18 December 2018

Abstract: This paper proposed a distributed genetic algorithm (DGA) to solve the energy efficient
coverage (EEC) problem in the wireless sensor networks (WSN). Due to the fact that the EEC
problem is Non-deterministic Polynomial-Complete (NPC) and time-consuming, it is wise to use a
nature-inspired meta-heuristic DGA approach to tackle this problem. The novelties and advantages in
designing our approach and in modeling the EEC problems are as the following two aspects. Firstly,
in the algorithm design, we realized DGA in the multi-processor distributed environment, where a
set of processors run distributed to evaluate the fitness values in parallel to reduce the computational
cost. Secondly, when we evaluate a chromosome, different from the traditional model of EEC problem
in WSN that only calculates the number of disjoint sets, we proposed a hierarchical fitness evaluation
and constructed a two-level fitness function to count the number of disjoint sets and the coverage
performance of all the disjoint sets. Therefore, not only do we have the innovations in algorithm,
but also have the contributions on the model of EEC problem in WSN. The experimental results show
that our proposed DGA performs better than other state-of-the-art approaches in maximizing the
number of disjoin sets.

Keywords: wireless sensor networks; energy efficient coverage; distributed genetic algorithm

1. Introduction

Wireless sensor networks (WSN) have become a hot research topic and have been widely used in
numerous real-world applications, such as traffic monitoring [1], mobile computing [2], environmental
observation [3], and many others [4–6]. In these sophisticated environments, in order to make full
coverage and get more accurate results, many nodes should be randomly deployed in the area, causing
a waste of resources. Since the sensor nodes are equipped with limited battery resources and the
replacement of the battery is not feasible in many applications, low power consumption has become
a critical factor to be considered when designing the WSN. Therefore, research into energy saving
to prolong the network lifetime has become one of the most significant issues in WSN. Moreover,
the energy saving in WSN is a significant research topic in smart and sustainable energy systems and
applications [7–9].

Due to the significance of the energy efficient problem in the WSN [10–12], many efforts have been
made to tackle this problem. These proposed techniques are generally divided into two categories,
where one is to design efficient protocols to reduce the energy consumption and the other one is to
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schedule the nodes to work efficiently. For the first category, protocols such as for the medium access
control [13], for transmission [14], and for communication [15] have been proposed in the literature for
reducing energy consumption. While the second categorized technique concentrates on scheduling
the nodes, resulting in energy preservation and longer network lifetime. These two categories both
have contributions to the energy efficiency for WSN from different approaches. The focus of this
paper belongs to the second category, which is the energy efficient coverage (EEC) problem in the
WSN [16,17].

In EEC, the sensor nodes are divided into different disjoint sets with the constraint that each
set can guarantee the full coverage of the whole monitored area. In that way, in any time, only the
necessary sensor nodes in one set are activated while the other sensor nodes that monitor the same
regions can be turned off. These different disjoint sets work one by one and therefore the network
lifetime can be prolonged. Moreover, with more disjoint sets that can be formed, longer network
lifetime can be obtained because the nodes are scheduled to work energy efficiently [18–20]. Therefore,
it is very interesting and promising for the approaches in [21–23] to divide the deployed sensor nodes
into maximal disjoint sets and schedule the sets to work in turn. In this paper, we also focus on
maximizing the number of disjoint sets.

Even though the above methods have been applied to the EEC problem [21–23], they can easily
get trapped into local optima and cannot achieve or guarantee the full coverage because the EEC
problem is NPC [21]. Therefore, in this paper, we proposed distributed genetic algorithm (DGA) to
solve the EEC problems in WSN to further improve the performance due to the superior adaptation
and strong global search ability of GA. Moreover, two major novel designs and advantages of DGA
are described as follows:

(1) DGA is realized in the multi-processor distributed environment by the master-slave distributed
model, where a set of processors run distributed to evaluate the fitness values in parallel to reduce the
computational cost.

(2) When we evaluate a chromosome, different from the traditional model of EEC problem in
WSN that only calculates the number of disjoint sets, a hierarchical fitness evaluation mechanism
is proposed and a two-level fitness function with biased attention to the sets with larger coverage
percentage is designed.

Therefore, not only do we have the innovations in algorithm, but also have the contributions on
the model of EEC problem in WSN. The experimental results show that our proposed DGA performs
better than other state-of-the-art approaches in maximizing the number of disjoin sets.

The rest of this paper is organized as follows. Section 2 gives the problem description of the EEC
in the WSN and reviews some related work. Section 3 proposes our methodology for solving EEC in
the WSN by using DGA. Section 4 presents the experimental results between our approach and other
state-of-the-art approaches in the literature. Conclusions are given in Section 5.

2. Energy Efficient Coverage Problem in WSN

The EEC problem is a fundamental and significant research topic in the WSN. In this section,
we present the formulation of the EEC and review the related work on this problem.

2.1. Problem Formulation

Given an L × W (Length × Width) rectangle area A and D randomly deployed sensor nodes.
The EEC is to divide the nodes into several disjoint sets and then schedule these sets to work one by
one. As the nodes do not have to work all the time, the energy can be significantly preserved. The aim
of the EEC is to maximize the number of disjoint sets, with the constraint that each set can provide the
full coverage for the monitored area.

In order to know whether the sensor network provides full coverage in the area A, we assume
that the location of each sensor node is known in advance [19,24]. Moreover, the area is divided into
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many grids and the coverage issue can be transformed to check whether each grid is covered by at
least one active sensor node [19].

All the D sensors form the sensors set S = {s1, s2, . . . , sD}, where each sensor node si is with the
location (xi, yi) and the sensor radius R. For any grid g(x, y) ∈ A in the monitored area, the relationship
between the si and the g is defined as:

P(si, g) =

{
1, if (x − xi)

2 + (y − yi)
2 ≤ R2

0, otherwise
(1)

where 1 means that the grid g is covered by the sensor si while 0 means the sensor si does not cover the
grid g. Therefore, for any grid g in the monitored area, if there exist at least one sensor si(1 ≤ i ≤ D)
that makes P(si, g) = 1, we say that A is fully covered by the sensor network.

In the EEC, the set S is divided into M subsets Sj (1 ≤ j ≤ M), and with the objective of maximizing
the value of M, as:

f = max K
subject to (i) ∪K

i=1 Si ⊆ S
(ii) Si ∩ Sj = Φ

(iii)
(
⊕sj∈Si P(sj, g)) = 1, ∀g ∈ A

(2)

Here, the constraint (i) means that the unitization of all the subsets Sj must belong to the original
set S. The (ii) indicates that there is no intersection between any two different subsets Sj1 and Sj2.
The (iii) represents that for any grid g in area A, there exists at least one sensor si in Sj which can
cover the grid g. Obviously, these constraints can guarantee that each subset Sj can fully cover the
monitored area.

2.2. Related Work

With the development of evolutionary computations (ECs) like GA [25,26], ant colony
optimization (ACO) [27,28], particle swarm optimization (PSO) [29,30], and differential evolution
(DE) [31,32], many researchers have applied ECs into solving the EEC problems in WSN, such as
PSO-based [33] and ACO-based [34] approaches. Specifically, in [33], Zhan et al. extended the
binary PSO (BPSO) to solve the EEC problem by finding a minimal set of nodes again and again to
maximize the number of disjoint sets. Lin et al. [34] proposed the ACO-based approach to maximize
the number of connected covers, called ACO-MNCC, to maximize the lifetime of heterogeneous WSNs
by transforming the search space of the problem into a construction graph. Besides, in [35], Yang et al.
proposed a probabilistic model to tackle the EEC problem in WSN, which transforms the area converge
into point converge. It greatly reduces the dimension of problem. Lee et al. [36] also tried to solve the
EEC problem in the WSN by using the ACO, which designs three pheromones to balance the local
exploitation and global exploration. Meanwhile, they also introduced a probabilistic sensor detection
model, which makes the algorithms more realistic [37].

Some researchers have also used GA for solving the EEC in the WSN recently. For example,
Lai et al. [25] proposed a GA-based method to maximize the disjoint sensor covers called GAMDSC.
However, there is still much room for improvement. First, their works only solved the small-scale
problems (up to 140 sensors). When the scales of problems increase, their performance often face
difficulties. Second, parallel or distributed methods can further improve the performance and save the
computational time.

3. Methodology: DGA for the EEC Problem

In this section, the DGA for solving the EEC problem in WSN is implemented and described.
The master-slave distributed framework is first given. Then the chromosome representation and the
hierarchical fitness evaluation mechanism are described. After that, the genetic operators, including
the selection, crossover, and mutation are proposed. At last, the overall algorithm is presented.
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3.1. Distributed Framework of DGA

In DGA, the master-slave distributed model is used. The processor whose role is to control the
whole evolutionary process including crossover, mutation, and selection operations, is called MASTER.
The other processors, which are responsible for chromosomes’ evaluation to reduce the computational
costs, act as SLAVEs. To give an overview of the DGA, the master-slave distributed structure is
depicted in Figure 1. In each generation, the master sends chromosomes to slaves, while the slaves
evaluate the chromosomes and return their corresponding fitness values back to the master [38].

Figure 1. The distributed framework of the distributed genetic algorithm (DGA).

3.2. Chromosome Representation

The aim of the EEC problem is to maximize the number of disjoint sets. Therefore, the first thing
is to determine how many sets the nodes can be divided into at most. This is also the upper bound
of the disjoint sets number K [23]. Since the area has been divided into many grids, for each grid i,
we find out the number of sensors ki that cover the grid i. Then, the minimal ki is the upper bound
number of disjoint sets, i.e., K = min{ki}.

With the upper bound K determined, we can encode the chromosome in a very intuitive manner
that each gene is an integer in the range of [1, K]. Therefore, the chromosome is a string of integers
with the length of D, where D is the number of sensor nodes. The representation is

X = [x1, x2, . . . , xD], where xi ∈ Z and 1 ≤ xi ≤ K (3)

In (3), the value of xi denotes which set the ith sensor belongs to. Figure 2 gives two examples
of the chromosome representation. In the examples, D is 4 and K is 2. In Figure 2a, the chromosome
is Xa = [1, 2, 1, 2], meaning that the first and the third sensors belong to the 1st set while the second
and the fourth sensors belong to the 2nd set. In this case, it can be observed that both the 1st and the
2nd sets can provide full coverage for the monitored area. However, in Figure 2b, the chromosome is
Xb = [1, 2, 1, 1], meaning that the first, the third, and the fourth sensors belong to the 1st set while only
the second sensor belongs to the 2nd set. In this case, only the 1st set can provide full coverage for the
monitored area, but the 2nd set cannot.

Figure 2. Illustration of the chromosome representation.
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3.3. Hierarchical Fitness Evaluation

In order to evaluate the chromosome, herein, a hierarchical fitness evaluation mechanism and a
two-level fitness function are proposed.

First, the genes are grouped into different sets according to their values. Then a check procedure
is performed on each set to see whether the nodes in the set can provide full coverage. As we divide
the monitored area into L × W grids, for each set Si, we can count the grids number G that is covered
by the sensor nodes in set Si. Therefore, we can obtain the coverage percentage fi as:

fi =
G

L × W
(4)

Note that if fi is equal to 1, it means that the set Si can provide full coverage for the monitored
area. In this way, we can count and obtain the number of disjoint sets (denoted as M) in the population
which can achieve the full coverage. When two chromosomes A and B are compared, A wins B if A
has a larger disjoint set number (larger M). The number of disjoint sets M is regarded as the first-level
fitness evaluation.

However, to meet the case where the two chromosomes A and B have the same disjoint set
number, we further designed a fitness function with biased attention to the sets with larger coverage
percentage, so called the second-level fitness evaluation, which is calculated as:

F = ∑K
i=1 wi × fi (5)

where K is the upper bound of the disjoint sets and wi is the weight for the set Si. Herein, we give
the biased attention to the sets with larger coverage percentage. That is because the set with a higher
coverage percentage has a higher probability to achieve the full coverage. Therefore, we first sort the
sets according to their coverage percentages in descending order, then the weight wi for the set Si is set
as wi = 10,000.0/ri, where ri is the rank of the set Si in the sort of coverage percentage.

In that way, if two chromosomes A and B have the same disjoint set number, then the one with a
larger fitness value is preferred (larger F).

3.4. Genetic Operators

The genetic operators in DGA consist of the selection, crossover, and mutation. In this subsection,
we will briefly describe the implementations of these operators.

3.4.1. Selection

In the selection implementation, we use the tournament selection strategy. Specifically, in each
selection, partial of the chromosomes are randomly selected to compete for survival. The winner enters
into the next generation. Repeat the selection operator until a population size of chromosomes have
been selected.

3.4.2. Crossover

After the selection, the survived chromosomes recombine to create offspring. First, for each
chromosome, a random value in range [0, 1] is generated. If the value is smaller than the crossover
probability pc, then the chromosome is used as one of the parents. After all the parents have been
determined, every two parents are randomly mated to create two offspring. A crossover position
k is randomly generated and the genes from the kth position of the two parents are exchanged,
as shown in Figure 3a. In this way, two new chromosomes, so called offspring are generated and enter
the population.
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3.4.3. Mutation

The chromosomes will perform a mutation operation after the crossover. For each gene in a
chromosome, a random value in range [0, 1] is generated and compared with the mutation probability
pm. If the random value is smaller than pm, then the mutation occurs. As shown in Figure 3b, when the
mutation occurs, the gene is set as a random integer in the range [1, K].

k

Figure 3. The illustration of the crossover and mutation operators.

3.5. Complete Algorithm

With the designs of the chromosome representation, fitness function, and the genetic operators,
the DGA for solving the EEC problem is shown in Figure 4 and is described as the following seven steps.

Figure 4. The flowchart of the DGA for solving the energy efficient coverage (EEC) problem in the
wireless sensor networks (WSN).

Step 1: Initialization. The N chromosomes in the population are initialized at master. Each gene
in the chromosome is set as a random integer value in the range [1, K] as (3).
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Step 2: Evaluation. Each chromosome is evaluated as (5) at the slave and returns its fitness to the
master. Then the best chromosome with the highest fitness can be determined. This chromosome is
compared with the historical best one and will replace the historical best one if it is better. Otherwise,
the historical best chromosome will replace the worst chromosome in the current generation.

Step 3: Selection. The selection operation has been discussed in Section 3.4.1.
Step 4: Crossover. The crossover operation has been discussed in Section 3.4.2.
Step 5: Mutation. The mutation operation has been discussed in Section 3.4.3.
Step 6: Termination check. If the termination criteria is met, go to Step 7. Herein, the termination

criteria include the obtaining of the upper bound K or reaching the maximal generation number.
Otherwise, the algorithm goes to Step 2 and continues the next generation evolution.

Step 7: Terminate. Output the best chromosome as the final solution.

3.6. Computational Complexity

Herein, we denote the population size and the dimension of problem (the number of sensors) as
N and D, respectively. First, in the initialization, the computational complexity of DGA is O(N × D),
which is obtained by step 1 in MASTER process of Figure 4. Then, as for the chromosomes evaluation,
the computational complexity is O(N), as obtained by steps 3–4 in the MASTER process and steps
2–4 in the SLAVE process of Figure 4. After that, in the chromosome evolution, since we used the
tournament selection, the computational complexity is O(N2 × D), as obtained by steps 6–8 in the
MASTER process of Figure 4. Therefore, the overall computational complexity of DGA is O(N2 × D).

4. Experiments and Comparisons

4.1. Algorithms Configurations

The parameter configurations of the DGA are listed as Table 1 and are described as follows.

Table 1. The Parameters Configurations of DGA.

Parameter Configuration

N 40
Generation 200

pc 0.8
pm 0.01

The population size is 40. Several processors are used here to evaluate the fitness of chromosomes.
In each tournament selection round, 20% of the chromosomes are randomly chosen and compete
for survival. The crossover probability pc and mutation probability pm are 0.8 and 0.01, respectively.
The algorithm terminates at the maximal generations of 200 or it obtains the upper bound K of the
disjoint sets number.

4.2. Experimental Results and Comparisons

In our experiments, we choose several EA-based algorithms, including a PSO-based method
(BPSO [33]) and a GA-based method (GAMDSC [25]) to compare with our proposed DGA. To have a
reliable and fair comparison, the parameter configurations of all the competitor algorithms are set the
same as suggested in their original papers.

Herein, the network topology configurations used in [19] are adopted. That is, with the monitored
area 50 m by 50 m, the sensing range R spans 8 m, 10 m, and 12 m, whilst the deployed nodes number N
can be 100, 150, 200, 250, and 300. For each case with N original deployed nodes, we randomly deploy
the D nodes in the network to form the topology. Note that the D nodes must provide the full coverage.
Otherwise, the nodes are randomly deployed again until the network is fully covered. On each case,
we generate three different random topologies. Therefore, there are totally 3 × 3 × 5 = 45 cases in
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this experiment. Due to the stochastic characteristic of the algorithms, we simulate each case on each
topology 10 times and the mean results are recorded for statistics. All the approaches are dealing with
the same test environments, resulting in a fair comparison.

The simulation results are presented and compared in Table 2. For clarity, the best results are
highlighted in boldface. The results show that the DGA outperforms the other approaches on most of
the cases. Also, DGA can maximize the number of disjoin sets and obtain the upper bound K in most of
the cases, except cases 34, 42–44, while other algorithms can only find few disjoin sets. Moreover, with
the increase in the number of nodes, especially in cases 37–45, the superiority of DGA is increasingly
obvious, which further indicates the dominance of DGA when solving the complicated EEC problem
in WSN.

Table 2. Experimental Results of Comparisons.

Case No.
Topology Upper

Bound K
All

Combinations

Mean Disjoint Set Number M Error

Node Range GAMDSC BPSO DGA GAMDSC BPSO DGA

1
100 8

2 2ˆ100 2.000 2.000 2.000 0.000 0.000 0.000
2 2 2ˆ100 2.000 2.000 2.000 0.000 0.000 0.000
3 2 2ˆ100 2.000 2.000 2.000 0.000 0.000 0.000

4
100 10

2 2ˆ100 2.000 2.000 2.000 0.000 0.000 0.000
5 2 2ˆ100 2.000 2.000 2.000 0.000 0.000 0.000
6 2 2ˆ100 2.000 2.000 2.000 0.000 0.000 0.000

7
100 12

2 2ˆ100 2.000 2.000 2.000 0.000 0.000 0.000
8 2 2ˆ100 2.000 2.000 2.000 0.000 0.000 0.000
9 4 4ˆ100 3.900 3.600 4.000 0.025 0.100 0.000

10
150 8

2 2ˆ150 2.000 2.000 2.000 0.000 0.000 0.000
11 2 2ˆ150 2.000 2.000 2.000 0.000 0.000 0.000
12 2 2ˆ150 2.000 2.000 2.000 0.000 0.000 0.000

13
150 10

3 3ˆ150 3.000 3.000 3.000 0.000 0.000 0.000
14 4 4ˆ150 3.500 3.200 4.000 0.125 0.200 0.000
15 3 3ˆ150 3.000 3.000 3.000 0.000 0.000 0.000

16
150 12

5 5ˆ150 4.200 5.000 5.000 0.000 0.000 0.000
17 3 3ˆ150 3.000 3.000 3.000 0.000 0.000 0.000
18 4 4ˆ150 3.800 4.000 4.000 0.050 0.000 0.000

19
200 8

2 2ˆ200 2.000 2.000 2.000 0.000 0.000 0.000
20 2 2ˆ200 2.000 2.000 2.000 0.000 0.000 0.000
21 3 3ˆ200 3.000 3.000 3.000 0.000 0.000 0.000

22
200 10

3 3ˆ200 3.000 3.000 3.000 0.000 0.000 0.000
23 4 4ˆ200 3.500 3.300 4.000 0.125 0.175 0.000
24 5 5ˆ200 5.000 4.600 5.000 0.000 0.080 0.000

25
200 12

7 7ˆ200 5.900 6.200 7.000 0.157 0.114 0.000
26 8 8ˆ200 7.200 6.600 8.000 0.100 0.175 0.000
27 9 9ˆ200 7.300 7.500 9.000 0.189 0.166 0.000

28
250 8

3 3ˆ250 3.000 3.000 3.000 0.000 0.000 0.000
29 3 3ˆ250 3.000 3.000 3.000 0.000 0.000 0.000
30 5 5ˆ250 4.900 4.100 5.000 0.020 0.180 0.000

31
250 10

5 5ˆ250 5.000 5.000 5.000 0.000 0.000 0.000
32 7 7ˆ250 6.300 6.600 7.000 0.100 0.057 0.000
33 6 6ˆ250 5.700 5.900 6.000 0.050 0.016 0.000

34
250 12

11 11ˆ250 9.900 9.700 10.00 0.100 0.118 0.091
35 9 9ˆ250 8.600 8.700 9.000 0.044 0.033 0.000
36 8 8ˆ250 8.000 8.000 8.000 0.000 0.000 0.000

37
300 8

6 6ˆ300 6.000 6.000 6.000 0.000 0.000 0.000
38 3 3ˆ300 3.000 3.000 3.000 0.000 0.000 0.000
39 5 5ˆ300 5.000 5.000 5.000 0.000 0.000 0.000

40
300 10

7 7ˆ300 7.000 6.600 7.000 0.000 0.057 0.000
41 7 7ˆ300 7.000 6.800 7.000 0.000 0.029 0.000
42 9 9ˆ300 8.300 7.400 8.400 0.100 0.178 0.067

43
300 12

11 11ˆ300 10.60 10.00 10.10 0.036 0.091 0.082
44 12 12ˆ300 10.80 10.90 11.30 0.100 0.092 0.058
45 9 9ˆ300 8.800 8.600 9.000 0.022 0.044 0.000
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We also compare the Error values of these approaches when dealing with the EEC problem.
The Error is calculated as

Error = (K − M)/K (6)

where K is the upper bound in each case and M is the mean disjoint set number obtained by the
approach. The Error values of DGA are smaller than 0.1 in all the cases and most of the Error values
are 0, indicating the DGA is very promising in producing high quality solutions.

4.3. Effects of Parameters

The DGA involves two parameters, the crossover probability pc and the mutation probability pm.
In this part, we investigate the two parameters based on the same topologies as in Section 4.2.

First, the pc is set as 0.8 and the pm varies from 0.01 to 0.09. The mean Error values of the 45 cases
with different pm are plotted in Figure 5. As we can see, the small value of pm generally performs
better than the large value of pm. That may because the larger pm destroys the convergence ability,
which makes the algorithm act like a random search and cannot converge to a promising region.
Therefore, the investigated results indicate that the DGA obtains the best performance when the pm is
set as 0.01.

Er
ro
r

Pm

Error

Figure 5. The mean Error values obtained by the DGA with different pm.

Then, the pc is investigated, with the pm set as 0.01. The value of pc spans from 0.1 to 0.9, with
the step 0.1. The mean Error values of the 45 cases with different pc are plotted in the Figure 6. It can
be observed that the large value of pc may be generally better than the small value of pc. This may be
due to large pc can making the good information of the chromosome spread fast in the population.
This is very helpful for the algorithm to use good information to search in the promising region,
and therefore results in better performance. However, a too-large pc value will sometimes make the
algorithm converge too fast and be trapped into local optima. For example, when pc = 0.9, the mean
Error values are worse than that when pc = 0.8. In general, pc = 0.8 is promising for the DGA to obtain
satisfying results.
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Figure 6. The mean Error values obtained by the DGA with different pc.

4.4. Speedup Ratio

Another advantage of DGA is the parallel implementation, where several processors in DGA are
used to evaluate the fitness of chromosomes independently. Table 3 shows the computational times of
DGA on all the 45 cases with different processors.

Speedup ratio is the metric to measure the performance of a distributed or parallel algorithm,
and it varies with the numbers of processors and the computation cost of the case. Herein, we use the
small-scale case 1 and the large-scale case 45 as two representative instances. We test the speedup of
DGA on these two cases and draw the speedup curve with the increasing processors, from 2 to 10,
shown in Figure 7.

Figure 7. Speedup ratios achieved by DGA on two typical cases.

As we can see, the speedup ratio consistently grows with the increase of the number of processors
on both of these two cases. However, the increase of speedup ratio slows down when the number
of processors increases from 6 to 10. That may due to the huge communication cost among many
processors. Even so, the speedup ratio still keeps growing with the increasing of the number of
processors. Moreover, the speedup ratio of case 45 is larger the case 1. That may because case 45 is
more complicated than case 1, which will cause more computation cost than case 1. Therefore, under a
similar communication cost, the higher computation cost will directly lead to a higher speedup ratio in
case 45.
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Table 3. Computational time of DGA (s).

Case No.

Processors
2 3 4 5 6 7 8 9 10

1 101.53 74.26 54.91 41.07 35.78 32.09 29.45 27.62 25.59
2 123.24 90.50 71.44 57.29 53.83 50.38 46.36 42.50 39.85
3 133.24 96.64 77.30 69.96 62.33 59.80 54.87 50.64 48.59

4 116.77 85.19 70.76 63.55 56.58 52.39 48.84 43.78 39.49
5 147.74 100.36 87.53 73.46 65.86 59.73 53.92 50.05 48.74
6 132.90 95.19 83.47 71.41 64.11 58.53 53.29 49.39 47.98

7 158.20 107.27 88.06 76.62 68.54 63.16 56.23 52.28 49.77
8 144.34 103.50 86.77 77.06 68.96 62.38 57.05 52.48 49.21
9 258.93 169.97 130.72 101.29 89.81 80.90 72.86 65.29 61.41

10 188.84 120.19 93.42 82.38 71.84 64.46 56.94 50.00 47.80
11 178.36 118.36 93.21 81.42 70.64 63.89 56.37 49.08 46.32
12 206.96 128.08 98.24 84.18 73.99 65.19 58.03 53.99 50.02

13 253.12 142.81 110.06 94.95 84.88 77.37 73.10 69.00 67.81
14 321.11 205.79 158.70 139.89 126.43 113.42 100.45 90.67 84.10
15 272.37 164.89 142.60 123.77 105.18 90.94 78.09 69.07 63.82

16 386.60 267.58 201.73 175.17 139.95 123.07 110.80 100.43 94.91
17 284.46 214.86 151.65 123.60 104.80 90.44 88.16 79.07 73.94
18 308.81 223.46 176.00 143.88 122.89 110.73 97.94 89.17 82.92

19 267.02 178.39 145.59 123.05 101.54 90.55 81.90 74.43 69.95
20 284.36 193.04 152.46 125.60 104.22 95.95 86.24 79.70 74.18
21 349.97 249.11 185.50 145.96 120.79 108.76 96.98 88.63 83.98

22 351.04 246.52 189.91 156.78 136.28 122.45 109.88 102.45 96.40
23 445.03 323.38 236.05 196.38 167.02 147.60 129.79 120.12 115.23
24 533.63 354.34 286.87 242.26 219.79 189.75 162.89 147.38 139.96

25 627.89 457.94 346.32 271.15 224.81 198.03 176.26 166.13 157.15
26 682.48 475.31 363.82 288.01 236.70 209.82 189.36 175.76 170.80
27 744.13 501.08 389.95 305.20 248.85 228.48 216.66 206.95 199.67

28 436.20 281.56 233.98 198.82 165.39 145.43 134.42 119.83 112.49
29 412.85 265.29 215.59 194.15 169.05 148.05 133.49 120.88 112.55
30 563.58 378.05 295.38 245.90 202.31 171.01 156.44 148.80 141.01

31 591.87 380.09 308.38 254.81 214.68 189.08 169.17 161.44 156.99
32 680.79 485.09 354.86 278.55 236.14 201.17 188.06 179.64 173.99
33 625.32 454.75 336.59 257.97 224.26 200.25 184.99 171.09 166.34

34 1687.20 1153.09 916.81 799.34 684.47 585.99 509.48 451.04 424.53
35 871.04 578.18 449.48 388.74 343.93 309.37 264.36 241.62 225.94
36 778.21 560.31 401.16 372.50 327.59 290.98 262.23 236.73 220.14

37 1014.52 697.61 580.35 502.69 439.96 384.46 321.52 288.86 272.87
38 836.59 580.41 446.17 385.78 332.98 294.35 251.36 222.99 210.33
39 958.63 635.55 528.04 418.04 350.24 303.71 264.91 244.66 233.68

40 1302.70 825.53 671.78 598.59 522.32 451.68 400.26 363.22 342.84
41 1412.63 915.99 732.56 603.58 508.87 449.00 414.48 382.68 367.28
42 2297.81 1542.50 1208.43 1048.97 915.04 801.93 713.63 638.74 586.86

43 2416.68 1651.56 1217.74 1082.13 951.69 837.25 732.56 651.62 606.25
44 2530.80 1754.12 1317.12 1181.00 1008.09 886.37 782.98 696.21 634.14
45 1916.47 1144.10 845.52 692.63 605.70 534.16 484.21 449.11 421.29

5. Conclusions

In this paper, DGA is proposed to solve the EEC problem in the WSN to achieve or guarantee the
full converge. In the implementation, DGA is realized in the multi-processor distributed environment,
where a set of processors run distributed to evaluate the fitness values in parallel to reduce the
computational cost. Moreover, when we evaluate a chromosome, different from the traditional model
of EEC problem in WSN that only calculates the number of disjoint sets, hierarchical fitness evaluation
mechanism is proposed and a two-level fitness function with biased attention to the sets with larger
coverage percentage is further designed. Therefore, not only do we have the innovations in the
algorithm, but we also have the contributions to the model of the EEC problem in WSN. Simulations
have been conducted and the experimental results confirm the effectiveness and efficiency of the
proposed approach when compared with the state-of-the-art approaches.
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For future work, we wish to further improve the performance of DGA by considering the potential
uncertainties, so as to make DGA more applicable in the real applications. Moreover, we wish to apply
the DGA into other more complicated optimization problems, like data routing [39], cloud resource
scheduling [40], supply chain managing, even in a dynamic and multi-objective environment [41,42],
not only in the WSN.
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Nomenclature

DGA distributed genetic algorithm
EEC energy efficient coverage
WSN wireless sensor networks
D the number of sensor nodes
M the number of disjoint subsets
K the upper bound of the disjoint sets number
N the number of chromosomes
pc crossover probability
pm mutation probability
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Abstract: A Smart Grid (SG) is a modernized grid to provide efficient, reliable and economic energy
to the consumers. Energy is the most important resource in the world. An efficient energy distribution
is required as smart devices are increasing dramatically. The forecasting of electricity consumption is
supposed to be a major constituent to enhance the performance of SG. Various learning algorithms
have been proposed to solve the forecasting problem. The sole purpose of this work is to predict
the price and load efficiently. The first technique is Enhanced Logistic Regression (ELR) and the
second technique is Enhanced Recurrent Extreme Learning Machine (ERELM). ELR is an enhanced
form of Logistic Regression (LR), whereas, ERELM optimizes weights and biases using a Grey
Wolf Optimizer (GWO). Classification and Regression Tree (CART), Relief-F and Recursive Feature
Elimination (RFE) are used for feature selection and extraction. On the basis of selected features,
classification is performed using ELR. Cross validation is done for ERELM using Monte Carlo and
K-Fold methods. The simulations are performed on two different datasets. The first dataset, i.e.,
UMass Electric Dataset is multi-variate while the second dataset, i.e., UCI Dataset is uni-variate.
The first proposed model performed better with UMass Electric Dataset than UCI Dataset and the
accuracy of second model is better with UCI than UMass. The prediction accuracy is analyzed on
the basis of four different performance metrics: Mean Absolute Percentage Error (MAPE), Mean
Absolute Error (MAE), Mean Square Error (MSE) and Root Mean Square Error (RMSE). The proposed
techniques are then compared with four benchmark schemes. The comparison is done to verify the
adaptivity of the proposed techniques. The simulation results show that the proposed techniques
outperformed benchmark schemes. The proposed techniques efficiently increased the prediction
accuracy of load and price. However, the computational time is increased in both scenarios. ELR
achieved almost 5% better results than Convolutional Neural Network (CNN) and almost 3% than
LR. While, ERELM achieved almost 6% better results than ELM and almost 5% than RELM. However,
the computational time is almost 20% increased with ELR and 50% with ERELM. Scalability is also
addressed for the proposed techniques using half-yearly and yearly datasets. Simulation results show
that ELR gives 5% better results while, ERELM gives 6% better results when used for yearly dataset.

Keywords: smart grid; forecasting; load; price; CNN; LR; ELR; RELM; ERELM
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1. Introduction

For electricity generation and distribution, Traditional Grids (TGs) are used. The infrastructure
of TG is getting obsolete, which results in energy loss and less efficient output. Due to the usage of
outdated infrastructure, intensive power losses are being faced. This intensive power loss leads to
load shedding, which is one of the major issues of today’s world [1]. TGs use fossil fuels like coal,
petrol, diesel, etc., for the combustion process of turbines. The extensive use of fossil fuels lead to
natural resource depletion and increase in pollution. The literature has suggested to use Renewable
Energy Sources (RES) and to modify the existing TGs by incorporating the latest technologies and
updated infrastructure to overcome these issues. The new and modified form of TG is the Smart Grid
(SG) [2]. The Information and Communication Technology (ICT) is integrated with TG to make SG.
It provides bi-directional communication between consumers and utility. It monitors, protects and
optimizes the generation, distribution and consumption of electric energy. It incorporates the latest
technologies in TG: technical, control and communication technologies, to enable efficient energy
transmission. With an ever increasing dilemma of energy shortage and cost inflation, people are
attracted towards the SG. It provides the consumers with a reliable, economical, sustainable, secure
and efficient energy as it uses intelligent methods. In SG, Demand Side Management (DSM) is used,
which encourages the consumers to efficiently optimize the energy usage. DSM allows efficient load
utilization by shifting maximum load from on-peak hours to off-peak hours. Thus, it reduced the cost
of electricity. The differences between TG and SG are summarized in Table 1 [3].

Table 1. Differences between TG and SG.

TG SG

Analogue Digital
One way communication Two way communication

Centralized power generation Distributed power generation
Small number of sensors Large number of sensors

Manual monitoring Automatic monitoring
Difficult to locate failures Easy to locate failures

Data analytics is the phenomenon of dealing with big data obtained from different sources.
Big data is the term used for the datasets having large volume, velocity, variety and veracity. It has the
problem of extreme complexity which makes the processing of data difficult. Data analytics techniques
are the necessity for the processing of big data. Data analytics can be used in a number of fields.
For example, handling the financial details of customers by a bank, dealing with the flight details of
different passengers by an airline company, dealing with the electricity load and price forecasting of
consumers, etc. In SG, data analytics is used to minimize the electricity cost and to improve the service
quality of energy utilities. It is also used to predict the future patterns of electricity consumption.
Forecasting is done to schedule the load consumption from on-peak hours to off-peak hours for next
day, week or month to reduce the electricity cost and enhance user comfort [4].

The terms forecasting and prediction are used interchangeably in this article. The case with load
and consumption is similar. The sole purpose of this work is to increase the accuracy of load and price
forecasting. Two techniques are proposed to solve the aforementioned objectives, i.e., ELR and ERELM.
Furthermore, two types of datasets are used, i.e., uni-variate and multi-variate. UCI is the uni-variate
dataset. Uni-variate dataset contains one variable, i.e., load in this paper. However, real-time data has
a number of variables. Thus, multi-variate dataset is required to handle multiple variables to achieve
a better understanding. In this paper, multi-variate dataset, i.e., UMass Electric Dataset is used to
predict the load and price. Two types of scenarios are considered in this paper, i.e., residential load and
smart meters load. The proposed techniques outperformed existing techniques in terms of forecasting
load and price. Consequently, energy prediction assists in energy management on the residential and
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utility side. List of abbreviations that are used in this paper is given in Table 2. Whereas, Table 3 shows
complete list of symbols.

Table 2. List of abbreviations.

Abbreviation Full Form

AEMO Australia Electricity Market Operators
AI Artificially Intelligent

ANN Artificial Neural Network
ARIMA Auto Regressive Integrated Moving Average
ARMAX Auto Regressive Moving Average with Exogenous variables

BP Back Propagation
CART Classification and Regression Technique
CNN Convolutional Neural Network
DAE Deep Auto Encoders

DE-SVM Differential Evolution Support Vector Machine
DNN Deep Neural Network
DRN Deep Residual Network
DSM Demand Side Management
DWT Discrete Wavelet Transform
ELM Extreme Learning Machine
EPEX European Power Exchange
ELR Enhanced Logistic Regression

ERELM Enhanced Recurrent Extreme Learning Machine
FFNN Feed Forward Neural Network
GCA Gray Correlation Analysis
GWO Grey Wolf Optimization
GRU Gated Recurrent Unit

ISO NECA Independent System Operator New England Control Area
KELM Kernel Extreme Learning Machine
KPCA Kernel Principal Component Analysis

LR Logistic Regression
LSTM Long Short Term Memory
MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error
MISO Midcontinent Independent System Operator
MLP Multi Layer Perceptron
MLR Multi Linear Regression
MSE Mean Square Error

NLS-SVM Nonlinear Least Square Support Vector Machine
NN Neural Network

NYISO New York Independent System Operator
OS-ELM7 Online Sequential Extreme Learning Machine

PJM Pennsylvania–New Jersey–Maryland
PSO Particle Swarm Optimization
RBM Restricted Boltzmann Machine

RELM Recurrent Extreme Learning Machne
ReLU Rectified Linear Unit
RES Renewable Energy Sources
RFE Recursive Feature Elimination

RMSE Root Mean Square Error
RNN Recurrent Neural Network

SARIMA Seasonal Auto Regressive Integrated Moving Average
SBELM Sparse Bayesian Extreme Learning Machine

SDA Stacked De-noising Autoencoders
SG Smart Grid

SLFN Single Layer Feedforward Network
SM Smart Meters
TG Traditional Grid

TVC-ABC Time Varying Coefficients Artificial Bee Colony
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Table 3. List of symbols.

Symbol Description

x Actual value
x’ Predicted value
t Time slot
y Output
h Step size
m Mean
Av Actual value
Fv Forecasted value
T Total time duration
N Total number of samples
α Fittest wolf 1
β Fittest wolf 2
δ Fittest wolf 3
ω Remaining wolves

The rest of the paper is organized as: Section 2 deals with related work, Section 3 contains
the detailed description of techniques used in this paper. Section 4 covers the proposed system
models. Results and their discussion are given in Section 5, whereas Section 6 consists of evaluation
of the proposed models using the performance metrics. Conclusion and future studies are discussed
in Section 7.

1.1. Motivation

The authors in [5] used Multi Layer Perceptron (MLP) and Artificial Neural Network (ANN) to
solve the load and price forecasting problem. We proposed an enhanced technique to increase the
accuracy of load and price forecasting based on a modified loss function. In Reference [6], authors
used ELM and RELM to predict electricity load. We proposed an enhanced technique to optimize
weights and biases of network for efficient load forecasting. Furthermore, two scenarios are considered
and two different types of datasets are used to predict the load and price efficiently.

1.2. Problem Statement

Data of SGs are increasing dramatically so an efficient technique is required to predict the
load and price of electricity. Authors in [6] used Recurrent Extreme Learning Machine (RELM)
to predict the electricity load. However, in RELM, weights and biases are randomly assigned
which leads to drastic variations in prediction results. An enhanced technique is proposed to solve
the aforesaid issue. In Reference [7], authors used Convolutional Neural Networks (CNNs) for
predicting the energy demand. However, CNN involves tuning of a number of layers which makes it
spatio-temporal complex.

In this paper, two enhanced techniques are proposed to increase the accuracy of load and price of
electricity efficiently. Uni-variate and multi-variate datasets are used for both techniques. Furthermore,
analysis of both residential and utility data is performed collectively.

1.3. Contributions

The following are the contributions of this paper:

• Feature engineering is performed using Recursive Feature Elimination (RFE), Classification And
Regression Technique (CART) and Relief-F

• Two new classification techniques are proposed, i.e., Enhanced Logistic Regression (ELR) and
Enhanced Recurrent Extreme Learning Machine (ERELM)

• In ELR, the loss function of Logistic Regression (LR) is modified to increase the prediction
accuracy
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• The Grey Wolf Optimizer (GWO) learning algorithm is used with Recurrent Extreme Learning
Machine (RELM) to optimize weights and biases in order to improve the forecasting accuracy

• The proposed techniques predict the electricity load and price efficiently
• ELR is used to predict the load and price of a smart home, whereas ERELM is used for forecasting

the load of smart meters
• Cross validation is performed using K-Fold and Monte Carlo methods for assigning the fixed

optimal values to weights and biases. This further increases the efficiency of GWO
• The accuracy of the proposed techniques is evaluated using the performance metrics, i.e., Mean

Absolute Error (MAE), Mean Square Error (MSE), Mean Absolute Percentage Error (MAPE) and
Root Mean Square Error (RMSE)

2. Related Work

Many forecasting techniques have been used in the past for load and price forecasting.
These techniques can be categorized in three main groups: data driven, classical and Artificial
Intelligence (AI). Data driven techniques consider past data to predict the desired outcomes. Classical
methods comprise of the statistical and mathematical methods like Autoregressive Integrated Moving
Average (ARIMA), Seasonal Autoregressive Integrated Moving Average (SARIMA), Random Forest
(RF), etc., whereas AI methods mimic the behaviour of biological neurons like Feed Forward Neural
Network (FFNN), Convolutional Neural Network (CNN), Long Short Term Memory (LSTM), etc.

2.1. Electricity Load Forecasting

In Reference [8], behavioural analytics are performed using Bayesian network and Multi Layer
Perceptron (MLP). A number of experiments were performed using the data obtainedfrom the smart
meters. Both short-term and long-term forecasting was performed. In Reference [9], Multiple Linear
Regression (MLR) is used for forecasting purpose. However, it has the limitation that it can not be
used for long term prediction. The authors in [10] used residual network for forecasting load on the
basis of weather data. The authors in [11] used Restricted Boltzmann Machine (RBM) to train the data
and Rectified Linear Unit (ReLU) to predict the electricity load. In Reference [12], Discrete Wavelet
Transform (DWT) and Inconsistency Rate (IR) methods are proposed to select the optimal features
from the feature set which helps in dimensionality reduction. Sperm Whale Algorithm (SWA) helps to
optimize the parameters of SVM. Authors in [13] proposed a model for Short Term Load Forecasting
(STLF). Mutual Information (MI) is used for feature selection whereas, better forecasting results are
achieved by modifying the Artificial Neural Network (ANN). In Reference [14], authors predicted 24 h
ahead cooling load of buildings using deep learning. The results show that deep learning techniques
enhanced the load prediction. Similarly in [15], authors used Recurrent Neural Network (RNN), which
groups the consumers into pool of inputs. The proposed model is implemented using Tensorflow
package and it achieved better results.

ELM is a generalized single hidden layer FFNN learning algorithm that is proposed by the
authors in References [16,17]. It proved to be effective in both regression and classification methods.
In References [18,19], authors used the NNs for achieving better load prediction. In ELM learning
processes, input weights and biases are randomly assigned, whereas output weights are calculated
using the Moore–Penrose generalized inverse technique. In Reference [20], authors used Sparse
Bayesian ELM for multi-classification purposes. The authors in [21] used Particle Swarm Optimization
(PSO) and Discrete Particle Swarm Optimization (DPSO) techniques for efficient load forecasting.
Authors in [22] implemented GWO with NNs to optimize weights and biases. It is proved that
optimization of weights and biases increases the efficiency of network. In References [23], ELM is
trained using back propagation by using context neurons as input to hidden and input layers. Accuracy
is improved by further adjusting weights using previous iteration errors, whereas biases and neurons
selection affect prediction accuracy as already discussed in [6].
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2.2. Electricity Price Forecasting

In Reference [24], different models are used for price forecasting. These models belong to the class
of deep learning. Based on the simulation results, it is proved that deep learning models perform better
than the statistical models. In this paper, Gated Recurrent Unit (GRU) is used which is a variant of RNN.
GRU outperformed LSTM and many other statistical models in terms of accuracy. In Reference [25],
price forecasting is done using a variant of Auto Regressive Moving Average Model (ARMAX), i.e.,
Hilbertian ARMAX which uses the exogenous variables. The functional parameters used are modeled
as the linear combinations of the sigmoid functions. These parameters are then optimized using a
Quasi Newton (QN) algorithm. In Reference [26], two AI networks: CNN and LSTM are used for
price forecasting in PJM electricity market. In Reference [27], Deep Neural Network (DNN) is used
to extract complex patterns from the price dataset of Belgium. In Reference [28], Gray Correlation
Analysis (GCA) is used along with Kernel Principal Component Analysis (KPCA) to deal with the
dimensionality reduction issue. For prediction, Support Vector Machine (SVM) is used in combination
with Differential Evolution (DE), where DE is used to tune the parameters of SVM. In Reference [29],
a variant of autoencoder is used. This method comprises of encoder and decoder. First, the data is
encoded to deal with space complexity. Once the output is obtained, it is decoded into original form.
The authors in [30] implemented an enhanced form of Artificial Bee Colony (ABC) known as Time
Varying Coefficients Artifical Bee Colony (TVC-ABC) for parameter tuning of Nonlinear Least Square
Support Vector Machine (NLS-SVM). Inputs are first fed to ARIMA and then the output of ARIMA
is given to NLS-SVM. This ARIMA + TVC-ABC NLS-SVM is a Multi Input Multi Output (MIMO)
forecast engine. Limitations of gradient decent methods led researchers to evolve ELM based upon
local minima, learning rate, stopping condition and iterations of learning [31]. ELM performance is
different from traditional learning algorithms because it gives comparatively less forecasting error as
well as proposing better generalization performance in [32].

Different versions of ELM have also been proposed by researchers such as Kernel Based Extreme
Learning Machine (KELM). Robust classification is done in this paper. It is inspired by Mercer
condition [33]. Related work is summarized in Table 4.
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In literature, short term load and price forecasting using the conventional techniques is performed
on individual basis mostly, whereas we used short term load and price forecasting simultaneously
using enhanced techniques which surpasses the conventional techniques in terms of accuracy. The first
proposed technique, i.e., ELR outperformed LR in terms of prediction accuracy, whereas the second
proposed technique ERELM outperformed ELM and RELM using GWO and performs much better
due to weights and biases optimization.

3. Existing and New Techniques

In this section, the existing and the proposed techniques are discussed.

3.1. Classification and Regression Technique (CART)

CART is a type of decision tree algorithm which consists of both classification and regression
procedures and is used to predict the continuous and discrete variables, respectively. CART uses
historical data to build decision trees. These newly built trees are then used for classification of data.
It is a binary recursive process. Binary process has only two output values, i.e., 0 and 1. The algorithm
will search for all possible values and variables before performing the split operation [34]. The CART
method has three main parts:

• Construction of maximum tree,
• Choice of right tree size,
• Classification of data using the constructed tree.

The construction of a maximum tree refers to splitting of the tree till the last set of observations.
This is the most time-consuming phase in CART. Constructing the maximum trees is a complex method
which can have more than hundred levels. Therefore, the trees must be optimized before being used
for classification of the data. The classification problems are the ones which involve discrimination
between entities, e.g., discrimination among students to decide which student will be awarded with
the degree this year. On the other hand, regression uses historical data patterns to predict the future
values, e.g., load and price prediction of homes. The steps of CART are stated below:

• Problem definition,
• Variable selection,
• Specifying the accuracy criteria,
• Selecting split size,
• Determine the threshold to stop splitting,
• Selection of the best tree.

3.2. Recursive Feature Elimination (RFE)

RFE is a feature extraction process. It selects a set of most important features which are least
redundant. As the name is self defining, it is an iterative process which keeps running in a loop unless
all the best features are selected. The selected features are then ranked in the order they are being
removed from the feature set. The computation time depends upon the number of features which
need to be eliminated [35]. The pseudocode of RFE is given in Algorithm 1.

178



Energies 2019, 12, 866

Algorithm 1: Pseudocode of RFE

1 Input Initialization
2 Tuning the model using the training set
3 Calculating the performance
4 Calculating variable importance
5 for (Each subset size S(i), i = 1...S) do

6 Selecting the most important variables from S(i)
7 Preprocessing the data
8 Tuning the model using predictions
9 Calculating the performance

10 Recalculation of the rankings
11 end

12 Establish the performance profile using S(i)
13 Determine the number of important variables
14 Use the model corresponding to optimized S(i)
15 End

3.3. Relief-F

Relief-F is an extensively used method for feature selection. This method randomly selects an
instance R and then find its nearest hits and miss instances. The nearest hits are the k-nearest neighbors
of the selected random instance R. Afterwards, the average of all the weights of the nearest hits and miss
is calculated to select the next instance. The pseudocode of Relief-F is discussed in Algorithm 2 [36].

Algorithm 2: Pseudocode of Relief-F

1 Input Initialization
2 Assign weights to all attributes (A): W[A]=0
3 for (i = 1 to m) do

4 Randomly select an instance Ri
5 Find k-nearest hits, Hj
6 end

7 for (All other classes C != class (Ri)) do

8 Find k nearest misses, Mj(C)
9 end

10 for (A = 1 to a) do

11 Update weight of all attributes using Equation (1)

W[A] = W[A]− ∑k
j=1 − di f f (A,Ri,Hj)

m,k + ∑C!=class(Ri)
P(C)

1−P(class(Rj)) ∑k
j−1

di f f (A,Ri,Mj(C))
m,k (1)

12 end

13 Perform feature selection
14 End

3.4. Convolutional Neural Network (CNN)

CNN is a type of NN. It is built from neurons and work like the biological neurons. Each neuron
is fed with some input, and then it performs a dot product and finally gives the output. It consists
of more than one convolutional layer; followed by a multilayer NN. The basic type of CNN is a 2D
network and is mostly used for images. The layers in CNN are: pooling layer, dense layer, dropout
layer and convolutional layer. For forecasting data, 1D CNN can also be used. It also has an activation
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function like Sigmoid, ReLU, Tanh, etc. When new inputs are given to CNN, it does not know the
exact feature mapping. Therefore, it creates a convolutional layer and then convolves this layer to find
the correct feature mapping. The pooling layer in CNN has the ability of shrinking the large inputs.
The most widely used activation function for CNN is ReLU. Its working is simple; whenever a negative
number occurs, it is replaced by 0. Hidden layers are also present in CNN. The error minimization is
performed using these layers.

3.5. Logistic Regression (LR)

LR is a type of statistical model used for regression. It is used to analyze a given dataset and
then perform predictions using the independent variables. The outcome of LR is in the binary form.
The main aim of LR is to describe a pattern between independent and dependent variables. There are
two main parameters of LR: loss function and sigmoid function. The features should be in the binary
form to use the LR method. Hence, normalization of data is required before implementing the LR
model on the available data. The sigmoid function used in LR is given in following equation [37]:

sigmoid(t) =
1

1 + e−t . (2)

Logistic loss function is given by the following equation, which is taken from [37]:

loss f unction(t) =
1
m
(−ytlog(h)− (1 − y)tlog(1 − h)). (3)

3.6. Enhanced Logistic Regression (ELR)

ELR is proposed in this paper. It is an enhanced form of LR technique. In ELR, a new loss function
is used. Loss function is a group of objective functions that need to be minimized. It is a measure
of how good a prediction model performs in predicting the outcome. Minimizing the value of the
loss function increases the prediction accuracy. In this paper, the loss function is being minimized to
enhance the prediction accuracy. The equation for the loss function of ELR is given below:

newloss f unction(t) =
0.1
m

(−ytlog(h)− (1 − y)tlog(1 − h)). (4)

ELR is used to predict electricity load and price efficiently for a smart home and load of smart
meters. Two different datasets, i.e., UMass Electric Dataset and UCI Dataset are used to test the
proposed technique.

3.7. Grey Wolf Optimizer (GWO)

In this section, GWO technique is discussed in detail. In the proposed model, the metaheuristic
technique GWO is used. It follows the social leadership and hunting mechanism of grey wolves as
shown in Figure 1. The population is based on groups, i.e., alpha (α), beta (β), gamma (γ) and omega
(ω). α , β and γ are considered as the fittest wolves who guide other wolves (ω) in search space. Grey
wolves update their location according to the positions of the three fittest wolves, i.e., α, β and γ [22].
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(X,Y)(X*-X,Y*)

(X*-X,Y)

(X,Y*)

(X*,Y)

(X,Y*-Y)(X*,Y*-Y)(X*-X,Y*-Y)

(X,Y)

Figure 1. Grey wolf social hierarchy.

The general steps that are followed in GWO are:

• Parameters of grey wolves are initialized such as maximum number of iterations, the population
size, upper and lower bounds of search space,

• Calculate fitness value to initialize the position of each wolf,
• Select three best wolves, i.e., α, β and γ,
• Calculate the positions of the remaining wolves (ω),
• Repeat from step 2 if current solution is not satisfied,
• The fittest solution is taken as α.

The pseudocode of GWO is given in Algorithm 3.

Algorithm 3: Pseudocode of GWO

1 Input Initialize population of Grey wolves Xi(1, 2, 3, ....n), a, A and C
2 Calculate fitness value of each search agent Xα, Xβ, Xγ respectively
3 Output Predicted desired value
4 for (t < max number of iterations) do

5 for (each search agent) do

6 Update position of each agent as per formulated problem
7 end

8 Update a, A and C
9 Calculate fitness value of each agent

10 Update Xα, XβandXγ t = t + 1
11 end

12 return Xα
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3.8. Recurrent Extreme Learning Machine (RELM)

RELM is a single hidden layer neural network (SHLRN). It is a feedback intra network that uses
output or hidden layers as given in Equation (5) [6]:

y =
m

∑
j=1

β jg

(
n

∑
i=1

wi,jxi +
n+r

∑
n=i+1

Wi,jδ(t − 1 + n) + bj

)
, (5)

where δ represents delay, t shows current iteration and r indicates total number of context neurons.
Context neurons are connected backward from output to input. These neurons perform similar to
input neurons and hold delayed values of output neurons. The learning method to update weights
and biases of ELM and RELM is similar to that shown in Figure 2.

δ(n-2)

x1
x2

Xk

xn-1

Xn

b1
b2

bk

bm-1

bm

y

δ(n-1)

δ(n-r)

Figure 2. Functioning of RELM.

Weights and biases are decided randomly. Optimal results against weight and biases are utilized
in RELM on a random basis. Training dataset is used to calculate the unknown weights of hidden
layer. The unknown weights of hidden layer are calculated using a Moore–Penrose generalized
inverse technique.

3.9. Enhanced Recurrent Extreme Learning Machine (ERELM)

ERELM is an enhanced form of RELM, whereas RELM is an enhanced form of ELM. ERELM is a
single layer FFNN. In RELM, weights and biases are decided randomly, whereas the output weights
are determined analytically. The output weights are determined using a simplified generalized inverse
operation. The issue with ELM is that the classification boundary is not well defined and usually
misclassifies some samples. To overcome this shortcoming, a new technique is proposed.

In the proposed technique, i.e., ERELM, weights and biases are decided after optimization using
GWO algorithm. GWO finds the optimized solution which minimizes RMSE. Cross validation in
ERELM is done using Monte Carlo and K-Fold methods. The Monte Carlo technique is used to
model the probabilistic nature of the random variables. It performs risk analysis using the probability
distribution. The common probability distributions used with Monte Carlo are: normal, uniform,
triangular, discrete, etc. In K-Fold cross validation process, the entire dataset is divided into batches
of K samples. The value of K could be any positive integer. Most commonly used K-Fold method is
10-Fold cross validation method, in which the value of K is 10. Each batch formed after splitting of data
in the validation process is termed as fold. The pseudocode of ERELM is discussed in Algorithm 4.
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Algorithm 4: Pseudocode of ERELM

1 Input Original dataset of N sample, objective function
2 Output Predicted desired value
3 begin

4 Assign the input weights wi and biases bi as received from GWO
5 Calculate the hidden layer output matrix H, where H = hij (i = 1, ..., N), j = (1, ..., K) and

hij = g(wj.xi + bj)

6 Calculate the output weight matrix as β = H+T, where H+ shows Moore-Penrose
generalized inverse of H matrix

7 Updated weights are given as context neurons to input and hidden layers
8 end

4. Proposed System Models

Two system models are proposed in this section. The description of these models are given below.

4.1. Proposed System Model 1

The proposed system model consists of residential load and price data of a SH. The SH under
consideration consists of six rooms and eight heavy appliances. The proposed model consists of four
basic steps, i.e., normalization of data, feature selection using CART and RFE, feature extraction using
Relief-F and finally forecasting of load and price using CNN, LR and ELR. ELR is a proposed technique
which outperformed CNN and LR in terms of prediction accuracy. In this model, short term forecasting
is performed to make decisions for efficient load and price scheduling for the near future.

The first proposed model is shown in Figure 3.

UMass 
Electricity 

Market

Data 
Normalizat

ion

Data 
Cleaning

Data 
Pre-Processing

ResultsLoad And Price 
Data

Forecasting 
using

1. CNN
2. LR

3. ELR

Feature 
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Figure 3. Proposed system model 1.

4.2. Proposed System Model 2

The second proposed system model is shown in Figure 4.
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Figure 4. Proposed system model 2.

In the second system model, a load of 10 smart meters is taken. Subsequently, comparison is
performed with multivariate residential data. The first step in this model is the preprocessing of data;
after the data is preprocessed, the best parameters are selected using RELM. The optimization of RELM
is performed using GWO. GWO optimizes biases and weights to improve the accuracy. Thereafter,
the proposed technique ERELM reduces forecasting error. Cross validation is performed using Monte
Carlo and K-Fold methods.

The simulation results and the assessment of both proposed models is done on the basis of four
different performance metrics: MAPE, MAE, RMSE and MSE. The results show that the proposed
techniques beat the existing techniques in terms of prediction accuracy.

5. Simulation Results and Discussion

This section covers the simulation results of the proposed models. The results are given in this
section along with their discussion. The simulations are performed in Spyder (Python 3.6 package)
provided by Anaconda (a data science platform manufactured by Anaconda, Inc. located in Austin,
Texas, USA) on HP 450G ProBook, having 1 TB Hard Drive and 8 GB RAM.

5.1. Simulation Results and Discussion of Proposed System Model 1

The simulation results and discussion of proposed system model 1 is given below.
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5.1.1. Data Description

The first dataset is taken from UMass Electric Dataset [38]. It is a multivariate dataset used for
forecasting purpose. Half-yearly and yearly data is taken for the year 2016 to address scalability.
The dataset contains the half-hourly load and price values of a single home. The dataset is divided
into a 70:30 ratio, i.e., seventy percent data is used for training, whereas the remaining thirty percent is
used for testing. Preprocessing of the dataset is done to remove the Not a Number (NaN) and blank
values. UMass dataset is used for both proposed system models. Though, it performs much better
when used with ELR.

Table 5 shows the features of UMass Electric Dataset excluding the target features. The targeted
features are “Load” in case of load prediction and “Price” in case of price prediction. The values are
given in standard units, i.e., kW for load and cents/kWh for price. The dataset is normalized in the
range [0–1].

Table 5. Features in UMass Electric Dataset.

Original Features

Air Conditioner (AC), Furnace, Cellar lights, Washer, First floor lights, Utility
room + Basement, Garage outlets, Master bed + Kids bed, Dryer, Panels, Home
office, Dining room, Microwave, Fridge

5.1.2. CART

Table 6 shows the results of CART used to predict load and price using UMass Electric Dataset.
CART gives respective values for different features.

Table 6. Results of CART for UMass Electric Dataset.

Features Load Values Price Values

AC 0.6653 0.6633
Furnace 0.0103 0.0101

Cellar lights 0.0018 0.0011
Washer 0.0029 0.0029

First floor 0.0032 0.0026
Utility + Basement 0.0615 0.0670

Garage 0.0036 0.0070
M. bed + K. bed 0.0080 0.0059

Dryer 0.1890 0.1927
Panels 0.0033 0.0030

Home office 0.0826 0.0083
Dining room 0.0079 0.0084
Microwave 0.0296 0.0262

5.1.3. RFE

After using the CART technique, RFE is implemented for feature selection. RFE keeps on iterating
unless model is left with only the most prominent features. The choice of features depend upon
requirements. The results of RFE are given in Table 7.

RFE assigns two values to the features, i.e., True and False. In the proposed model, number of
selected features through RFE is 8, when used for UMass Electric Dataset. The RFE selected features
are: AC, cellar lights, washer, garage, master bed + kids bed, panels, dining room and microwave.
For a UCI Dataset, RFE did not give any output as it is a uni-variate dataset.
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Table 7. RFE features for a UMass Electric Dataset.

Type Number of Features

Original 16
Selected 8
Rejected 8

5.1.4. Relief-F

Relief-F is used for feature extraction. The threshold for Relief-F is 10. Table 8 shows the Relief-F
features for UMass Electric Dataset. It did not give any output when used with UCI Dataset because it
is uni-variate.

Table 8. Relief-F features for UMass Electric Dataset.

Parameters Values

Threshold 10
Selected features 5

Nearest Neighbors 3

5.1.5. Load Forecasting

Figure 5a,b show the load prediction comparison of three different techniques for one day using
two different hourly datasets. Similarly, Figure 6a,b show the load prediction comparison for one week
using two different hourly datasets. From Figure 7a,b, monthly load prediction comparison can be
observed. In this case, to avoid the cluttering of the graphs, data is taken after every four hours. These
figures show that the proposed technique ELR outperformed LR and CNN for both datasets. It can be
envisioned that the load prediction with ELR is close to the actual data. The prediction results obtained
using a UMass Electric Dataset are better than the UCI Dataset.
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Figure 5. Cont.
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Figure 5. One day load prediction.
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Figure 6. One week load prediction.

187



Energies 2019, 12, 866

25 50 75 100 125 150 175
Hours

No
rm

al
ize

d 
Lo

ad

Actual
CNN
LR
ELR

0.0

0.2

0.4

0.6

0.8

1.0

(a) Load prediction using UMass

0. . 2 4. 622 60. 6. 2 64.
81u57

2 H2

2 H0

2 Ho

2 Hr

2 Hs

6 H2

N1
5m

al
ize

d 
L1

ad

Actual
CNN
LR
ELR

(b) Load prediction using UCI

Figure 7. One month load prediction.

5.1.6. Price Forecasting

Figure 8 shows the price prediction comparison of three different techniques for one day using
UMass Electric Dataset. Similarly, Figure 9 shows the price prediction comparison for one week using
UMass Electric Dataset. From Figure 10, monthly price prediction comparison can be observed. In this
case, data is taken every four hours. These figures show that the proposed technique ELR outperformed
LR and CNN for UMass Electric Dataset in terms of price prediction. It can be envisioned that the
price prediction with ELR is close to the actual data.

188



Energies 2019, 12, 866

Actual
CNN
LR
ELR

Hours

0.0

0.2

0.4

0.6

0.8

1.0

4 8 12 16 20 24

N
or

m
al

iz
ed

 P
ric

e

Figure 8. One day price prediction using UMass.

84 14 24 64 044 084 014 024
s oCr.

t AuCal
LNN
RE
HRE

4 4

4 8

4 1

4 2

4 6

0 4

N
or

m
al

iz
ed

Pc
riA

e

Figure 9. One week price prediction using UMass.

25 50 75 100 125 150 175
Hours

No
rm

al
ize

d 
Pr

ice

0.0

0.2

0.4

0.6

0.8

1.0 Actual
CNN
LR
ELR

Figure 10. One month price prediction using UMass.

5.2. Simulation Results and Discussion of Proposed System Model 2

The simulation results and discussion of proposed system model 2 are given in this section.

5.2.1. Data Description

The second dataset is taken from the UCI machine learning repository. It is a uni-variate dataset
developed by Artur Trindade [39]. Consumption of 370 substations is taken under consideration to
analyze the load of smart meters. Daily data of meter ID: 166, 168, 169, 171, 182, 225, 237, 249, 250 and
257 substation is shown in Figure 11. The periodicity of load consumption can be observed. Pattern
of intervals give trend of load consumption that later helps in prediction of future electricity load.
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UCI Dataset is used for both proposed system models. In order to analyze scalability, half-yearly and
yearly datasets are used. It performs well for smart meters because the only targeted feature is load.
The values of load are given in kilo-Watts. This dataset is also normalized in the range [0–1].

Figure 11. Daily load consumption of 10 different substations.
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5.2.2. Results Discussion

Multiple approximation function is used in order to find optimal forecasting accuracy.
These functions include hard limit, sine, tanh and sigmoid function. Number of neurons and
context neurons are assumed as 2 and 5. The MT166 dataset is selected to finalize functions that
are producing optimal results. The dataset is normalized and scaled before use to remove spikes and
noise in data. ELM, RELM and ERELM are tested on all functions one by one as given in Table 9.
Sigmoid approximation function performed better than other functions. The simulations for the second
proposed model are carried out on both datasets using the sigmoid approximation function.

Table 9. Obtained RMSE using ELM, RELM and ERELM.

Transfer Function Forecasting Approach Training Testing

ELM 0.0532 0.0535
Hard Limit RELM 0.0412 0.0423

ERELM 0.0332 0.0345

ELM 0.0513 0.0525
Sin RELM 0.0352 0.362

ERELM 0.0321 0.0523

ELM 0.0634 0.0673
Tanh RELM 0.0453 0.0463

ERELM 0.0341 0.0321

ELM 0.0423 0.473
Sigmoid RELM 0.0341 0.0381

ERELM 0.0214 0.0235

In Table 10, simulation results of both datasets are given using six months of data. Cross validation
is done using Monte Carlo and K-Fold. Simulations show that the proposed technique outperformed
the conventional techniques in perspective of forecasting and gives minimum RMSE. Monte Carlo gives
better results as compared to K-Fold. Similarly, Table 11 addresses the scalability of the proposed system
and proves that the prediction accuracy increases with the increase in size of dataset. The Figure 12a,b
show regression line produced by predicted and actual load using ELM. Similarly, Figure 13a,b show
greater RMSE as compared to a proposed technique in regression plot using RELM. Figure 14a,b show
plots produced by ERELM, where the regression line shows actual and predicted electricity load with
minimum RMSE.

Table 10. Obtained RMSE for half-yearly testing data using ELM, RELM and ERELM by Monte Carlo
and K-Fold cross validation.

Datasets
ERELM RELM ELM RNN LR

Monte
Carlo

K-Fold
Monte
Carlo

K-Fold
Monte
Carlo

K-Fold
Monte
Carlo

K-Fold
Monte
Carlo

K-Fold

MT166 0.0235 0.0265 0.0734 0.0788 0.0824 0.0883 0.08234 0.0852 0.0853 0.0873
MT168 0.0134 0.0162 0.0421 0.0462 0.0524 0.0423 0.0854 0.0862 0.0756 0.0763
MT169 0.0153 0.02352 0.0531 0.0353 0.0382 0.0463 0.0853 0.0873 0.0735 0.0762
MT171 0.0354 0.0423 0.0524 0.0552 0.0634 0.0643 0.0854 0.0852 0.072 0.0712
MT182 0.0242 0.0353 0.0252 0.0352 0.0835 0.0952 0.0753 0.0776 0.0934 0.0952
MT235 0.0153 0.0142 0.0344 0.0397 0.0634 0.0643 0.0865 0.934 0.981 0.0991
MT237 0.0243 0.0297 0.0534 0.0535 0.0752 0.0795 0.0756 0.0762 0.0795 0.08255
MT249 0.0143 0.0163 0.0524 0.0532 0.0624 0.0693 0.0862 0.0891 0.0753 0.0778
MT250 0.0342 0.0452 0.0535 0.0562 0.0853 0.0873 0.0764 0.0784 0.0874 0.0894
MT257 0.0242 0.0215 0.0413 0.0413 0.0642 0.0683 0.0753 0.0794 0.0893 0.0934
UMass Electric 0.0398 0.0315 0.0534 0.0563 0.0681 0.0685 0.0712 0.0891 0.0888 0.0913
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Table 11. Obtained RMSE for yearly testing data using ELM, RELM and ERELM by Monte Carlo and
K-Fold cross validation.

Datasets
ERELM RELM ELM RNN LR

Monte
Carlo

K-Fold
Monte
Carlo

K-Fold
Monte
Carlo

K-Fold
Monte
Carlo

K-Fold
Monte
Carlo

K-Fold

MT166 0.0224 0.0242 0.0651 0.0665 0.0756 0.0801 0.08732 0.0792 0.0862 0.0851
MT168 0.0124 0.0151 0.0634 0.0732 0.0521 0.0410 0.0831 0.0731 0.0701 0.0678
MT169 0.0144 0.0224 0.0501 0.0553 0.0424 0.0431 0.0812 0.0912 0.0741 0.0872
MT171 0.0142 0.0401 0.0421 0.0538 0.0512 0.0682 0.0781 0.0792 0.0712 0.0882
MT182 0.0182 0.0200 0.0242 0.0250 0.0743 0.0791 0.0824 0.0701 0.0892 0.0822
MT235 0.0142 0.0152 0.0301 0.0362 0.0582 0.0602 0.0852 0.0892 0.0889 0.0986
MT237 0.0224 0.0267 0.0513 0.0521 0.0623 0.0632 0.0701 0.0789 0.0862 0.0813
MT249 0.0132 0.0157 0.0421 0.0613 0.0523 0.0623 0.0782 0.0802 0.0671 0.0742
MT250 0.0242 0.0273 0.0412 0.0501 0.0602 0.0692 0.0682 0.0772 0.0785 0.0864
MT257 0.0324 0.0472 0.0401 0.0513 0.0602 0.0744 0.0623 0.0702 0.0876 0.0882
UMass Electric 0.0332 0.0412 0.0542 0.0552 0.0582 0.0603 0.0701 0.0771 0.0821 0.0891

It is clearly visible that predicted values are very close to the actual electricity load. Table 12
gives computational time comparison for execution of training and testing data of ELM, RELM and
ERELM. ERELM has great computational time as compared to ELM and RELM due to its metaheuristic
behaviour. Thus, there is a tradeoff between accuracy and computational time.

Table 12. Computational time comparison of ERELM, RELM and ELM execution.

Forecasting Technique Training Time (s) Testing Time (s)

ERELM 0.653 0.0346
RELM 0.0043 0.0012
ELM 0.00124 0.001076
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(a) ELM regression line plot for UMass

Figure 12. Cont.
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Figure 12. Regression line plots using ELM.
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Figure 13. Regression line plots using RELM.
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Figure 14. Regression line plots using ERELM.

6. Performance Metrics

The performance of the proposed system models is evaluated on basis of four performance
metrics. These performance metrics are: MAE, MSE, RMSE and MAPE. Out of these four, MAPE is
given in terms of percentage whereas, the other three are given as absolute values:

MAPE =
1
T

TM

∑
tm=1

| Av

Fv
| ∗ 100, (6)
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RMSE =

√√√√ 1
T

TM

∑
tm=1

(Av − Fv)2, (7)

MSE =
1
T

TM

∑
tm=1

(Av − Fv)
2, (8)

MAE =
∑N

n=1 |(Fv − Av)|
N

. (9)

The accuracy of the model is calculated using the following equation:

Accuracy = 100 − RMSE. (10)

Tables 13–15 show the load performance metrics comparison for half-yearly and yearly data to
address the scalability issue. The dataset being used is UMass Electric Dataset. Similarly, Tables 16–18
show the price performance metrics comparison for half-yearly and yearly data to address the
scalability issue using the UMass Electric Dataset.

Table 13. Load performance metrics comparison for one day using the UMass Electric Dataset.

Metrics
Half-Yearly Data Yearly Data

CNN LR ELR CNN LR ELR

MSE (abs. val) 8.84 5.84 4.77 10.2 8.97 6.8
MAE (abs. val) 9.24 5.25 4.34 8.75 6.25 4.24
RMSE (abs. val) 10.62 7.64 6.18 10.4 6.6 5.2
MAPE (%) 25.44 22.45 18.48 36.3 33.3 30.5
Accuracy (%) 89.38 92.35 93.82 89.6 93.4 94.8

Table 14. Load performance metrics comparison for one week using the UMass Electric Dataset.

Metrics
Half-Yearly Data Yearly Data

CNN LR ELR CNN LR ELR

MSE (abs. val) 20.2 17.97 12.97 18.9 16.5 11.3
MAE (abs. val) 8.82 6.87 5.28 8.75 6.25 5.19
RMSE (abs. val) 16.25 13.12 10.18 15.76 12.98 9.64
MAPE (%) 25.65 22.19 17.41 33.2 25.9 22.8
Accuracy (%) 83.75 86.88 89.81 84.24 87.02 91.36

Table 15. Load performance metrics comparison for one month using the UMass Electric Dataset.

Metrics
Half-Yearly Data Yearly Data

CNN LR ELR CNN LR ELR

MSE (abs. val) 25.82 21.82 17.37 24.02 20.56 14.25
MAE (abs. val) 10.55 8.23 6.79 10.35 8.15 5.33
RMSE (abs. val) 17.85 14.77 11.79 12.55 9.98 6.52
MAPE (%) 29.13 27.13 23.39 25.45 21.2 20.6
Accuracy (%) 82.15 85.72 88.21 87.45 90.02 93.48
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Table 16. Price performance metrics comparison for one day using the UMass Electric Dataset.

Metrics
Half-Yearly Data Yearly Data

CNN LR ELR CNN LR ELR

MSE (abs. val) 15.08 14.39 10.09 12.58 10.85 8.6
MAE (abs. val) 8.25 7.65 6.01 7.85 7.05 5.88
RMSE (abs. val) 16.63 14.99 12.98 15.05 11.52 9.85
MAPE (%) 19.02 18.59 17.11 20.05 18.85 15.55
Accuracy (%) 83.37 85.01 87.02 84.95 88.48 90.15

Table 17. Price performance metrics comparison for one week using the UMass Electric Dataset.

Metrics
Half-Yearly Data Yearly Data

CNN LR ELR CNN LR ELR

MSE (abs. val) 14.05 12.80 11.22 15.02 13.45 11.25
MAE (abs. val) 7.55 6.04 5.03 8.02 7.05 5.25
RMSE (abs. val) 13.05 11.30 9.47 12.55 10.45 8.64
MAPE (%) 14.25 13.71 13.03 16.45 15.75 15.25
Accuracy (%) 86.95 88.70 90.53 87.45 89.55 91.36

Table 18. Price performance metrics comparison for one month using the UMass Electric Dataset.

Metrics
Half-Yearly Data Yearly Data

CNN LR ELR CNN LR ELR

MSE (abs. val) 19.45 18.91 16.47 20.05 18.54 13.35
MAE (abs. val) 8.95 7.70 6.44 9.35 8.15 6.42
RMSE (abs. val) 14.78 13.75 11.48 12.44 11.02 9.45
MAPE (%) 21.44 20.54 18.89 23.36 22.55 19.45
Accuracy (%) 85.22 86.25 88.52 87.56 88.98 90.55

Tables 19–21 show the load performance metrics comparison for half-yearly and yearly data to
address the scalability issue. The dataset being used is UCI Dataset.

Table 19. Load performance metrics comparison for one day using the UCI Dataset.

Metrics
Half-Yearly Data Yearly Data

CNN LR ELR CNN LR ELR

MSE (abs. val) 15.05 12.47 10.56 18.20 14.3 10.4
MAE (abs. val) 12.45 10.34 8.56 21.47 18.37 16.61
RMSE (abs. val) 18.52 15.54 13.45 16.22 13.78 10.16
MAPE (%) 28.24 25.34 20.45 27.05 23.25 20.05
Accuracy (%) 81.48 84.46 86.55 83.78 86.22 89.84

Table 20. Load performance metrics comparison for one week using the UCI Dataset.

Metrics
Half-Yearly Data Yearly Data

CNN LR ELR CNN LR ELR

MSE (abs. val) 25.20 19.66 15.77 13.25 8.34 7.2
MAE (abs. val) 11.35 10.01 8.24 13.98 12.47 11.39
RMSE (abs. val) 22.45 19.25 16.45 20.25 17.80 13.11
MAPE (%) 28.56 25.45 19.63 30.50 25.45 18.52
Accuracy (%) 77.55 80.75 83.55 79.75 82.20 86.89
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Table 21. Load performance metrics comparison for one month using the UCI Dataset.

Metrics
Half-Yearly Data Yearly Data

CNN LR ELR CNN LR ELR

MSE (abs. val) 28.35 25.55 21.68 15.50 13.8 5.47
MAE (abs. val) 15.35 10.34 8.95 23.46 19.3 17.7
RMSE (abs. val) 23.97 20.87 17.69 20.02 17.17 14.49
MAPE (%) 31.23 29.43 25.67 27.45 25.35 20.02
Accuracy (%) 76.03 79.13 82.31 79.98 82.23 85.51

Tables 22 and 23 represent accuracy of proposed technique ERELM using RMSE, MSE and
MAE, using half-yearly and yearly data. Results represent that ERELM outperformed in all
performance metrics.

Table 22. Accuracy of ERELM using RMSE, MSE and MAE for half-yearly data.

Datasets RMSE MSE MAE

MT166 0.0235 0.00055 0.0243
MT168 0.0134 0.00017 0.0135
MT169 0.0153 0.00023 0.0174
MT171 0.0354 0.00125 0.0352
MT182 0.0242 0.00058 0.0252
MT235 0.0153 0.00023 0.0253
MT237 0.0243 0.00059 0.0254
MT249 0.0143 0.00020 0.0153
MT250 0.0342 0.001169 0.0342
MT257 0.0242 0.00058 0.0253

UMass Electric 0.0256 0.00071 0.0623
Arithmetic Mean 0.0227 0.00055 0.024218

Standard Deviation 0.00600 0.000350 0.006515

Table 23. Accuracy of ERELM using RMSE, MSE and MAE for yearly data.

Datasets RMSE MSE MAE

MT166 0.0224 0.00041 0.0215
MT168 0.0124 0.00016 0.0142
MT169 0.0144 0.00015 0.0162
MT171 0.0142 0.00124 0.0221
MT182 0.0200 0.00042 0.0224
MT235 0.0142 0.00047 0.0201
MT237 0.0224 0.00015 0.0241
MT249 0.0132 0.00012 0.0142
MT250 0.0242 0.00102 0.0163
MT257 0.0324 0.00045 0.0177

UMass Electric 0.0332 0.00061 0.0546
Arithmetic Mean 0.02027 0.00047 0.02212

Standard Deviation 0.00712 0.00034 0.01077

7. Conclusions and Future Work

In this paper, electricity load and price forecasting are performed using two techniques. UMass
Electric Dataset is used to predict day ahead, week ahead and month ahead load and price of a SH.
Six months of hourly data are considered for day ahead and week ahead prediction, whereas four
hours of data are considered for month ahead prediction. It is a multi-variate dataset. The data is first
normalized and split into a training set and testing set. Feature engineering is then performed using three
different techniques: RFE, CART and Relief-F. For efficient load and price prediction, a new technique,
i.e., ELR is proposed. ELR outperformed CNN and LR in terms of prediction accuracy. ELR is used
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for UCI Dataset as well. It is a uni-variate dataset having data of smart meters of different substations.
The results show that the first proposed model works well with UMass Electric Dataset. The techniques
used are then accessed on the basis of four different performance metrics, i.e., MAPE, MAE, MSE and
RMSE. The simulation results show that ELR outperformed LR and CNN for both datasets.

For accurate short term load forecasting, a new technique, i.e., ERELM is proposed. Short
term forecasting is performed to ensure efficient load scheduling and price reduction. Parameter
optimization of RELM is done using GWO. GWO optimizes biases and weights to improve the
accuracy. Prediction accuracy is further increased using Monte Carlo and K-Fold. ERELM is used with
both datasets. The results show that ERELM works well for UCI Datasets. It is observed that ERELM
outperformed ELM and RELM for both datasets. The phenomenon of scalability is also addressed
using both proposed techniques. Results prove that the prediction accuracy increases with the increase
in size of dataset.

In future, the proposed methods will be used to perform mid-term and long-term forecasting.
Weights and biases of ERELM will be further optimized using better methods. Furthermore, efficient
work is required to reduce the computational time of ELR and ERELM.
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2. Yoldaş, Y.; Önen, A.; Muyeen, S.M.; Vasilakos, A.V.; Alan, İ. Enhancing smart grid with microgrids:

Challenges and opportunities. Renew. Sustain. Energy Rev. 2017, 72, 205–214. [CrossRef]
3. Shaukat, N.; Ali, S.M.; Mehmood, C.A.; Khan, B.; Jawad, M.; Farid, U.; Ullah, Z.; Anwar, S.M.; Majid, M.

A survey on consumers empowerment, communication technologies, and renewable generation penetration
within Smart Grid. Renew. Sustain. Energy Rev. 2018, 81, 1453–1475. [CrossRef]

4. Zhou, K.; Fu, C.; Yang, S. Big data driven smart energy management: From big data to big insights.
Renew. Sustain. Energy Rev. 2016, 56, 215–225. [CrossRef]

5. Nazar, M.S.; Fard, A.E.; Heidari, A.; Shafie-khah, M.; Catalão, J.P.S. Hybrid model using three-stage algorithm
for simultaneous load and price forecasting. Electr. Power Syst. Res. 2018, 165, 214–228. [CrossRef]

6. Ertugrul, Ö.F. Forecasting electricity load by a novel recurrent extreme learning machines approach. Int. J.
Electr. Power Energy Syst. 2016, 78, 429–435. [CrossRef]

7. Muralitharan, K.; Sakthivel, R.; Vishnuvarthan, R. Neural network based optimization approach for energy
demand prediction in smart grid. Neurocomputing 2018, 273, 199–208. [CrossRef]

8. Shailendra, S.; Yassine, A. Big Data Mining of Energy Time Series for Behavioral Analytics and Energy
Consumption Forecasting. Energies 2018, 11, 452. [CrossRef]

9. Ahmad, T.; Chen, H. Short and medium-term forecasting of cooling and heating load demand in building
environment with data-mining based approaches. Energy Build. 2018, 166, 460–476. [CrossRef]

10. Kunjin, C.; Kunlong, C.; Qin, W.; Ziyu, H.; Jun, H.; He, J. Short-term Load Forecasting with Deep Residual
Networks. IEEE Trans. Smart Grid 2018, 99. [CrossRef]

11. Seunghyoung, R.; Noh, J.; Kim, H. Deep neural network based demand side short term load forecasting.
Energies 2016, 10, 3.

12. Liu, J.P.; Li, C.L. The short-term power load forecasting based on sperm whale algorithm and wavelet least
square support vector machine with DWT-IR for feature selection. Sustainability 2017, 9, 1188. [CrossRef]

13. Ahmad, A.; Javaid, N.; Guizani, M.; Alrajeh, N.; Khan, Z.A. An accurate and fast converging short-term load
forecasting model for industrial applications in a smart grid. IEEE Trans. Ind. Inform. 2017, 13, 2587–2596.
[CrossRef]

14. Fan, C.; Xiao, F.; Zhao, Y. A short-term building cooling load prediction method using deep learning
algorithms. Appl. Energy 2017, 195, 222–233. [CrossRef]

198



Energies 2019, 12, 866

15. Shi, H.; Xu, M.; Li, R. Deep learning for household load forecasting—A novel pooling deep RNN. IEEE Trans.
Smart Grid 2018, 9, 5271–5280. [CrossRef]

16. Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: theory and applications. Neurocomputing 2006,
70, 489–501. [CrossRef]

17. Huang, G.B.; Zhou, H.; Ding, X.; Zhang, R. Extreme learning machine for regression and multiclass
classification. IEEE Trans. Syst. Man Cybern. Part B 2012, 42, 513–529. [CrossRef] [PubMed]

18. Fallah, S.N.; Deo, R.C.; Shojafar, M.; Conti, M.; Shamshirband, S. Computational Intelligence Approaches
for Energy Load Forecasting in Smart Energy Management Grids: State of the Art, Future Challenges,
and Research Directions. Energies 2018, 11, 596. [CrossRef]

19. Zeng, Y.R.; Zeng, Y.; Choi, B.; Wang, L. Multifactor-influenced energy consumption forecasting using
enhanced back-propagation neural network. Energy 2018, 127, 381–396. [CrossRef]

20. Luo, J.; Vong, C.M.; Wong, P.K. Sparse Bayesian extreme learning machine for multi-classification. IEEE Trans.
Neural Netw. Learn. Syst. 2014, 25, 836–843. [PubMed]

21. Yu, J.; Wang, S.; Xi, L. Evolving artificial neural networks using an improved PSO and DPSO. Neurocomputing
2008, 71, 1054–1060. [CrossRef]

22. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
23. Saremi, S.; Mirjalili, S.Z.; Mirjalili, S.M. Evolutionary population dynamics and grey wolf optimizer.

Neural Comput. Appl. 2015, 26, 1257–1263. [CrossRef]
24. Lago, J.; De Ridder, F.; De Schutter, B. Forecasting spot electricity prices: deep learning approaches and

empirical comparison of traditional algorithms. Appl. Energy 2018, 221, 386–405. [CrossRef]
25. González, J.P.; San Roque, A.M.; Perez, E.A. Forecasting functional time series with a new Hilbertian ARMAX

model: Application to electricity price forecasting. IEEE Trans. Power Syst. 2018, 33, 545–556. [CrossRef]
26. Kuo, P.H.; Huang, C.J. An Electricity Price Forecasting Model by Hybrid Structured Deep Neural Networks.

Sustainability 2018, 10, 1280. [CrossRef]
27. Wang, K.; Xu, C.; Zhang, Y.; Guo, S.; Zomaya, A. Robust big data analytics for electricity price forecasting in

the smart grid. IEEE Trans. Big Data 2017, 5, 34–45. [CrossRef]
28. Lago, J.; De Ridder, F.; Vrancx, P.; De Schutter, B. Forecasting day-ahead electricity prices in Europe: the

importance of considering market integration. Appl. Energy 2018, 211, 890–903. [CrossRef]
29. Long, W.; Zhang, Z.; Chen, J. Short-Term Electricity Price Forecasting with Stacked Denoising Autoencoders.

IEEE Trans. Power Syst. 2017, 32, 2673–2681.
30. Ghasemi, A.; Shayeghi, H.; Moradzadeh, M.; Nooshyar, M. A novel hybrid algorithm for electricity price and

load forecasting in smart grids with demand-side management. Appl. Energy 2016, 177, 40–59. [CrossRef]
31. Huang, G.B.; Chen, L.; Siew, C.K. Universal approximation using incremental constructive feedforward

networks with random hidden nodes. IEEE Trans. Neural Netw. 2006, 17, 879–892. [CrossRef] [PubMed]
32. Bartlett, P.L. For valid generalization the size of the weights is more important than the size of the network.

In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 1997; pp. 134–140.
33. Scardapane, S.; Comminiello, D.; Scarpiniti, M.; Uncini, A. Online sequential extreme learning machine with

kernels. IEEE Trans. Neural Netw. Learn. Syst. 2015, 26, 2214–2220. [CrossRef] [PubMed]
34. Loh, W.Y. Classification and Regression Trees. Wiley Interdisciplinary Reviews: Data Mining and Knowledge

Discovery; John Wiley and Sons Inc.: Hoboken, NJ, USA, 2011; Volume 1, pp. 14–23.
35. Recursive Feature Elimination. Available online: https://topepo.github.io/caret/recursive-feature-

elimination.html (accessed on 10 November 2018).
36. Durgabai, R.P.L. Feature selection using ReliefF algorithm. Int. J. Adv. Res. Comput. Commun. Eng. 2014, 3, 10,

8215–8218.
37. Logistic Regression. Available online: https://ml-cheatsheet.readthedocs.io/en/latest/logistic-regression.

html (accessed on 10 November 2018).
38. UMass Electric Dataset. Available online: http://traces.cs.umass.edu/index.php/Smart/Smart (accessed on

10 November 2018).
39. Lichman, M. UCI Machine Learning Repository; University of California: Irvine, CA, USA, 2013.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

199



energies

Article

Insulator Detection Method in Inspection Image
Based on Improved Faster R-CNN

Zhenbing Zhao *, Zhen Zhen, Lei Zhang, Yincheng Qi, Yinghui Kong and Ke Zhang

School of Electrical and Electronic Engineering, North China Electric Power University, Baoding 071003, China;
zz_hbdl@sina.com (Z.Z.); ai_zhanglei1212@126.com (L.Z.); qiych@126.com (Y.Q.);
kongyhbd2015@ncepu.edu.cn (Y.K.); zhangke41616@126.com (K.Z.)
* Correspondence: zhaozhenbing@ncepu.edu.cn; Tel.: +86-159-3377-3709

Received: 20 February 2019; Accepted: 25 March 2019; Published: 28 March 2019

Abstract: The detection of insulators in power transmission and transformation inspection images
is the basis for insulator state detection and fault diagnosis in thereafter. Aiming at the detection
of insulators with different aspect ratios and scales and ones with mutual occlusion, a method
of insulator inspection image based on the improved faster region-convolutional neural network
(R-CNN) is put forward in this paper. By constructing a power transmission and transformation
insulation equipment detection dataset and fine-tuning the faster R-CNN model, the anchor
generation method and non-maximum suppression (NMS) in the region proposal network (RPN)
of the faster R-CNN model were improved, thus realizing a better detection of insulators.
The experimental results show that the average precision (AP) value of the faster R-CNN model was
increased to 0.818 with the improved anchor generation method under the VGG-16 Net. In addition,
the detection effect of different aspect ratios and different scales of insulators in the inspection images
was improved significantly, and the occlusion of insulators could be effectively distinguished and
detected using the improved NMS.

Keywords: insulator; Faster R-CNN; object detection; RPN; deep learning

1. Introduction

As one of the most important infrastructures in power systems, insulators play an important
role in the safe operation of transmission lines and substations [1]. However, insulators mostly work
outdoors, which makes them prone to becoming dirty, cracked, and damaged, and thus threatens the
safety and stability of power grids. For the insulator state detection and fault diagnosis thereafter, the
accurate detection of insulators in power transmission and transformation inspection images provides
a foundation and is of great importance.

In recent years, the continuous development of helicopters, unmanned aerial vehicles (UAVs),
and other high-altitude operation platforms has brought new opportunities to power transmission
and transformation inspection work [2]. However, there are the following limitations in the process
of manually judging patrol images: Firstly, it relies on inspection personnel with rich professional
experience to avoid misjudgments or omissions; secondly, the flood of generated images or video data
makes the maintenance speed too slow and the cost too high when only using manual judgment [3].
Therefore, the application of computer vision technologies for the detection of insulators in patrol
inspection images has great significance for the running state of intelligent detection of insulators, and
it can greatly save manpower and materials whilst also improving monitoring efficiency [4].

At present, the existing insulator image detection methods are mainly divided into two categories:
One based on pixels or artificial features, the other based on the deep learning model. In the detection
methods of insulators based on pixels or artificial features, the idea of threshold segmentation was
adopted in [5], which basically relies on the saturation of the image to extract insulator objects;

Energies 2019, 12, 1204; doi:10.3390/en12071204 www.mdpi.com/journal/energies200



Energies 2019, 12, 1204

however, the relatively poor ability to distinguish objects with similar saturation makes it unpractical.
In the insulator detection methods based on the deep learning model, Tao G [6] learned insulator
characteristics through the convolution neural network in complex aerial images, and then those
characteristics were applied to identify a variety of insulators. However, the detection effect of this
method is not satisfactory. Deep convolutional neural networks [7] were adopted in [8] to realize
insulator status detection. The experimental results showed that a result obtained by the pre-trained
model for classification was more accurate than the shallow features by hand-crafted models, which
verifies the effectiveness of deep learning to extract object features. The fast region-convolutional
neural network (R-CNN) [9] model was adopted in [10] to realize insulator detection in the background
of complex aerial photography. This method can only detect the insulators in visible images with a
relatively low accuracy. The faster R-CNN [11] was introduced in [12] to detect the spacer bar, pressure
sharing ring, and shockproof hammer in the images in power systems; but it is only a direct application
of faster R-CNN. The faster R-CNN was introduced in [13] to detect insulators in the images with
complex backgrounds, but no improvements were made on the basis of the external characteristics of
the insulators and the accuracy was low.

The method based on the deep learning model is rarely applied in insulator detection [14].
When setting the parameters, such as the shape of the object and the object scales, it only satisfies the
detection requirements of general objects, and so is not suitable for the insulator object when applying
the faster R-CNN directly to insulator image detection as it causes false detection, missed detection,
and other problems. Therefore, further study is needed into the faster R-CNN model which also
considers the intrinsic characteristics of insulators. In view of this, a method for insulator detection in
inspection images based on an improved faster R-CNN is presented in this paper.

2. Description of Problem

It is extremely difficult to detect insulators accurately in transmission lines with deep learning.
The difficulties mainly lie in the following two aspects: First, in the power system, the insulators have
different aspect ratios and dimensions due to the special functions of the insulators and the different
distances away of the inspection machines; second, the insulators have serious occlusion problems
due to the complexity of the outdoor environment. These problems greatly increase the difficulty of
insulator detection based on the deep learning detection model.

2.1. Insulator Detection with Different Aspect Ratios and Different Scales

In the classic faster R-CNN models, the setting of an anchor in the region proposal network
(RPN) only meets the general object detection requirements; when it comes to the detection of an
insulator in inspection images, the detection results are not satisfactory. Some cases of poor insulator
detection results in power transmission and transformation inspection images after fine-tuning of
faster R-CNN are demonstrated in Figure 1. There are two horizontal insulators whose color is close to
the background in Figure 1a. Only a small part of one insulator can be detected, and the size of the
output box does not fit the insulator well. In Figure 1b, there are two tilting insulators. The shape of the
left insulator umbrella disc is not obvious and it is close to a column. The application of the classical
faster R-CNN model fails to detect it. In Figure 1c, the insulators are of various scales. For the insulator
in the lower-right corner, because it is small, it is missed in the detection frequently. In Figure 1d,
there are two nearly vertical insulators, but the complex background and the mutual-occlusion cause a
failure in the detection of both insulators, and furthermore, a false detection is generated. Therefore, it
is far from enough to fine-tune the faster R-CNN model by using the constructed professional database.
The anchor generation method in the RPN needs to be improved according to the characteristics of
insulators from a deeper level.
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(a) (b) (c) (d) 

Figure 1. Insulator detection images obtained by fine-tuning the faster R-CNN: (a) Detection of
insulators with color close to background; (b) detection of tilting insulators; (c) detection of insulators
with different scales; (d) detection of insulators with occlusion problems.

It can be observed that the insulators have a specific outer shape which is generally slender, and
their aspect ratio is numerically slightly larger than general objects. As shown in Figure 2, the aspect
ratio of the insulators varies from 2.5:1 to 8.5:1. This inherent characteristic of insulators makes it
necessary to adjust the aspect ratio of the anchor in the parameter setting part of the RPN.

Figure 2. Schematic diagram of insulators with different aspect ratios.

In addition, most of the insulator images from the field also vary in size. The reference anchor
with the size of 16 × 16 in the original RPN does not meet the requirements for accurate detection of
smaller-scale insulators in power transmission and transformation inspection images. Furthermore,
after a magnification of the benchmark anchor for three scales (8, 16, 32), the ability to detect small-scale
insulators is reduced.

In view of the above two points, to achieve accurate detection of insulators with different aspect
ratios and different scales in power transmission and transformation inspection images, the inherent
characteristics should be considered and incorporated into the faster R-CNN, and the anchor generation
method in the RPN should be modified according to the insulator characteristics.

2.2. Insulator Detection Under Mutual Occlusion

Non-maximum suppression (NMS) is a widely applied post-processing algorithm to perform
redundant removal in object detections. The traditional NMS which performs greedy clustering based
on a fixed threshold is manually designed. It greedily selects the detection results with high scores
and deletes those adjacent results that exceed the threshold. Specifically, the bounding boxes are
sorted according to the score, and the one with the highest score is retained; while the boxes whose
overlapping area with the retained one is larger than a certain ratio are removed. However, as can be
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seen in Figure 3, this method has the following problem: Only one output box remains for the two
insulators blocking each other in the figure after operation of the traditional NMS, that is to say, the
two insulators are not accurately detected.

 

Figure 3. Result of removing redundant boxes by original non-maximum suppression (NMS).

The traditional NMS method mainly suppresses the bounding boxes through the intersection
over union (IoU) threshold, but the IoU threshold needs to be manually set. If the IoU threshold is
set too high, the bounding box suppression may be insufficient; on the contrary, too low a threshold
may lead to multiple correct bounding boxes coming back together. In insulator images obtained in
power transmission and patrol inspection, the insulator superposition and occlusion problem often
occurs. Aiming specifically at this phenomenon, this paper proposes a more reasonable suppression
method based on the traditional NMS algorithm to solve the problem of mutual occlusion of insulators
in the image.

3. Insulator Detection Method Based on Improved faster R-CNN

By analyzing the insulator characteristics and the faster R-CNN model, we propose a detection
model for the insulator features. The anchor generation method and NMS in the RPN of the faster
R-CNN model are improved, respectively. The specific improvement method is as follows.

3.1. Construction of Transmission and Transformation Insulation Equipment Detection Database

Deep learning, as a multi-layer and hidden layer representation learning method, is constructed by
simple nonlinear modules [15]. These nonlinear modules not only convert the input representation into
a more abstract representation but also automatically learn very complex functions [16]. Deep learning
relies on a large number of sample images for the training of the models. Therefore, in order to achieve
higher insulator detection accuracy, a large number of insulator images are needed as a training set,
which enables the neural network to learn features in line with the object characteristics. At present, the
design and application of deep learning models is mostly aimed at public data sets of visible light, such
as MNIST [17], ImageNet [18], and PASCAL VOC [19], but transformation devices in power system [20]
are not included. In order to better understand the characteristics of the insulator, this paper first
constructs a professional transmission and transformation electrical insulation equipment detection
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dataset that only contains transmission and transformation line insulation equipment. It provides a
base for studying the method of insulator object detection.

The database of power transmission and transformation equipment constructed in this paper
contains 2535 infrared transmission images, with 7343 insulators being labeled. The images acquired
on-site are infrared images, which meet the needs of practical applications. Various situations were
considered during the selection of the images. About 33 transmission lines, four substations, one
converter station, and several indoor high-voltage laboratories of 110~500 kV of different grades
across the country were chosen. As regards the materials, the insulators made of glass, porcelain, and
composite were all considered; besides, insulators with different angles and different scales, such as
top view, bottom view, and head view were selected as well. Figure 4 demonstrates the diversity of
the constructed dataset. Altogether, 85% of the total images were used as a training set, and for the
remaining images, a total of 380 images and 200 visible images were used as test sets. It is worth noting
that we had previously conducted a large number of experiments, indicating that the model trained
only with infrared images has no effect on the detection of visible light images, so only the infrared
images were trained to avoid repeated work [21]. Using the constructed database to fine-tune the
faster R-CNN under the VGG-16 Net [22], the insulator detection effect in the power transmission and
patrol images was improved significantly. The average precision (AP) value of the faster R-CNN in the
VGG-16 Net reached 0.640. However, the improvement in the method with only fine-tuning does not
meet the requirements of insulator detection in the inspection images. How to further improve the
detection accuracy on this basis became the issue we focused on.

 

Figure 4. Diversity display of infrared image detection database for power transmission and
transformation insulation equipment.

3.2. Framework of Method

In view of the two problems mentioned above, this paper proposes the faster R-CNN model,
which can be considered as a combination of the RPN and the fast R-CNN. Firstly, the RPN and
the fast R-CNN part were fine-tuned using the constructed power transmission and transformation
equipment detection database. After that, considering the inherent characteristics of the insulator, the
anchor generation method and the NMS in the RPN were improved in the fine-tuned RPN. Finally,
the improved RPN and the fine-tuned fast R-CNN part were combined to form the improved faster
R-CNN model. At this time, the power transmission and patrol images were applied as the test images
for insulator detection. In such a way, a more accurate detection effect was achieved. The block
diagram of the insulator image detection method based on the improved faster R-CNN model is
demonstrated in Figure 5.
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Figure 5. Framework of insulator images detection method based on improved the faster
region-convolutional neural network (R-CNN).

3.3. Anchor Generation Method Improvement

The core of the faster R-CNN model is the use of the RPN to generate candidate object regions.
Unlike traditional multi-scale sliding window approaches, the faster R-CNN applies the sliding
window to the convolutional feature map generated by the convolutional neural network in the RPN.
In order to effectively deal with object detection with different scales, the RPN uses three different
types of anchors. The aspect ratios of each anchor are 1:1, 1:2, and 2:1, respectively. Meanwhile, three
different scales are applied to each anchor for zooming. To be specific, a reference anchor is set first,
and the size of this reference anchor in the faster R-CNN model is 16 × 16. Then, with the reference
anchor area staying unchanged, its aspect ratio is set to 1:1, 1:2, and 2:1. The anchors of the three
different aspect ratios are then zoomed in by three scales (8, 16, 32), and finally a total of nine anchors
are obtained. Figure 6 shows the structure of the generation of region proposals using the RPN, and
Figure 7 shows an example of nine different-scale anchors.
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Figure 6. Process of generate candidate object area structure using RPN.

 
Figure 7. Anchor examples with nine different scales.

Considering the two problems found when detecting the insulators with different aspect ratios
and different scales in power transmission and transformation inspection images, to make the detection
method more suitable for insulators, the new RPN adopts five different aspect ratios to combine six
scaling scales in the improvement of the RPN in the faster R-CNN model. Thus, a total of 30 anchors
were obtained. The five aspect ratios are 1:1, 1:2, 1:3, 2:1, and 3:1, and the six scaling scales are 2, 4,
8, 16, 32, and 64, respectively. In order to fit the new scaling scale better, the new anchor size of the
benchmark changes from 16 × 16 to 8 × 8.

3.4. NMS Improvements

Differing from traditional NMS methods, the improved NMS in this paper reorders the scores
according to the function to suppress the obtained bounding box. For the regions generated by faster
R-CNN and their corresponding score si, the bounding box M with the highest score is first sorted, and
then the remaining bounding box bi and the IoU value of the bounding box iou(M, bi) are calculated
(iou(M, bi) ∈ [0,1]). The conventional NMS method reserves a bounding box in which iou(M, bi) is
smaller than the threshold according to the manually set IoU threshold Nt, and deletes the bounding
box in which iou(M, bi) exceeds the threshold, as shown in Equation (1). In the improvement of the
NMS, instead of discarding the box with the IoU value greater than the threshold in the traditional
NMS, the scores are reduced by a certain function and then reordered after the transformation, and the
final detection result is obtained.

si =

{
si, iou(M, bi) < Nt

0, iou(M, bi) ≥ Nt
(1)
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si =

{
si, iou(M, bi) < Nt

sie−
iou(M,bi)

2

2 , iou(M, bi) ≥ Nt
(2)

Specifically, the bounding boxes score si is transformed according to Equation (2). It can be seen
from Equation (2) that through the improved transformation, the higher the overlapping area of the
to-be-processed box bi and the highest score box M, the lower the score si of the bi; and the smaller the
iou(M, bi) value, the slower the si decreases. Similarly, the larger the iou(M, bi) value, the faster the si
decreases. This stops the remaining insulators from being directly removed when there are multiple
mutually occluded insulators in the input image, even if the IoU values of the two boxes are too large.
At the same time, the IoU value score can be appropriately reduced so that the output result can be
displayed as the final detection result.

4. Experimental Results and Analysis

In order to verify the effectiveness of our method, several test pictures in the infrared image
detection database of the power transmission and transformation equipment were used to test and
observe the experimental results. The analysis of the experimental results was carried out both
qualitatively and quantitatively.

4.1. Detection Experiment of Insulators with Different Aspect Ratios

In order to verify the improved RPN, the detection experiments of different aspect ratio insulators
were carried out. A comparison of the detection results of the insulators in power transmission and
transformation inspection images by the traditional RPN and the improved RPN is demonstrated in
Figure 8. Figure 8a,c,e are the experimental results obtained by traditional RPN while Figure 8b,d,f
are the experimental results obtained by the improved RPN. In Figure 8a,c, the aspect ratio of the
output boxes is 1:1 or 1:2, which is not a suitable size for insulators. In Figure 8b,d, the aspect ratio of
the final output boxes is significantly larger, and the narrow insulator object almost completely fits.
In Figure 8e, to some extent, the insulator object is blocked by the framing frame of the infrared camera
so that the final output of the output boxes does not completely contain the insulator. In Figure 8f,
the final test results effectively overcome the isolation of the infrared camera frame and the detection
accuracy is significantly improved.

  
(a) (b) 

  
(c) (d) 

Figure 8. Cont.
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(e) (f) 

Figure 8. Detection results of insulators with different aspect ratios. (a,c,e) Results obtained by
traditional RPN; (b,d,f) results obtained by improved RPN.

4.2. Detection Experiment of Insulators with Different Scales

In order to verify the detection effect for different scale insulators by using the improved RPN,
experiments on insulators with different scales were carried out. A comparison of the detection
results of the insulators using the traditional RPN and the improved RPN in power transmission
and transformation inspection images was performed and is demonstrated in Figure 9; dealing
specifically with insulators with different scales. Figure 9a,c,e,g are show the experimental results
obtained by traditional RPN, while Figure 9b,d,f,h show the experimental results obtained by the
improved RPN. As can be seen in Figure 9a,c,e,g, the faster R-CNN model can detect larger-scale
insulators more accurately, but the missed detection rate for small-scale insulators is extremely high.
In Figure 9b,d,f,h, after the application of the small-scale reference anchor in the RPN, the detection
problem for small-scale insulators is greatly improved and small insulators in the image can also be
detected accurately.

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 9. Cont.
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(g) (h) 

Figure 9. Detection results of insulators with different scales. (a,c,e,g) Results obtained by traditional
RPN; (b,d,f,h) results obtained by improved RPN.

4.3. Detection Experiment of Insulators Under Mutual Occlusion

In order to verify the detection effect of the NMS on the mutual occluded insulators, a mutual
occluded insulator test was carried out. Figure 10 is the score distribution of each bounding box
output by Figure 3. Figure 10a represents for the distribution of the bounding box scores before the
improvement of the NMS, while Figure 10b is the distribution of the bounding box scores after the
improvement of the NMS. For the sake of easy observation, the scores of the top 100 test boxes out
of 300 were selected to clearly show the trend of the score change. It can be seen from the score
distribution that after the improvement of the score mapping relationship in the traditional NMS, the
improved bounding box score reduces the redundancy of error detection under the top 10 boxes with
the highest scores. At the same time, the two insulators in the middle of Figure 3 can be detected
separately. The final detection results are shown in Figure 11.

  
(a) (b) 

Figure 10. Score distribution of bounding boxes. (a) Before improvement; (b) after improvement.
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Figure 11. Results of eliminating redundant boxes with improved NMS.

4.4. Comparison Experiment with Other R-CNN Object Detection Models

In the R-CNN series model, the region-based fully convolutional networks (R-FCN) [23] and
single shot multibox detector (SSD) [24] are two new object detection models proposed after the faster
R-CNN model. R-FCN uses a region-based full convolutional network for object detection, which can
realize fully shared computation between the outputs of each convolutional layer. SSD is based on
the idea of regression and is combined with the anchor generation mechanism in the faster R-CNN
model. It makes use of the multi-scale region features at various locations of the full figure to make
regressions while generating candidate object regions.

A comparison of the detection results among the RPN in the faster R-CNN model, the R-FCN, and
the SSD methods are made in Figures 12 and 13. Figure 12a shows the experimental results obtained by
the method proposed in this paper, while Figure 12b,c shows the experimental results obtained by the
R-FCN and SSD methods, respectively. Figure 13a shows the recall-accuracy results obtained by the
method proposed herein, while Figure 13b,c shows the recall-accuracy results obtained by the R-FCN
and SSD methods, respectively. It can be seen from the figures that through the improvement of the
RPN and NMS method of the faster R-CNN model, the detection accuracy of the insulator in power
transmission and transformation inspection images is higher than that of the R-FCN and SSD methods.
The method in this paper effectively solves the problem of insulator detection with different aspect
ratios and different scales. At the same time, the missed detection rate is also significantly reduced.
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(a) (b) (c) 

Figure 12. The detection results of our method, and the R-FCN and SSD methods. (a) Proposed method;
(b) R-FCN; (c) SSD.

(a) (b) (c) 

Figure 13. Result comparison of the proposed method, and the R-FCN and SSD methods. (a) Proposed
method; (b) R-FCN; (c) SSD.

4.5. Quantitative Analysis on Experimental Results

In addition to the qualitative observation of the experimental results, this paper also makes a
quantitative analysis of the performance difference before and after the improvement from a numerical
perspective. The experimental results were quantitatively analyzed mainly by precision recall (PR)
curve and AP value. The horizontal axis of the PR curve is the recall rate of the object detection, while
the vertical axis is the accuracy of the object detection, which demonstrates the relationship between
accuracy and recall rate. The AP value is the area surrounded by the PR curve and the horizontal
and vertical axis. Figure 14 shows the PR and the AP values for the faster R-CNN model using the
VGG-16 Net before and after modification by the proposed method. After using the transmission and
transformation electrical insulation equipment detection database to fine-tune the faster R-CNN model,
the AP value of the faster R-CNN model using the VGG-16 Net reached 0.640. On this basis, after the
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improvement of the anchor generation method and NMS in the RPN, the AP value of faster R-CNN
using the VGG-16 Net is increased to 0.818, which is 27.81% higher than before the improvement.
The PR curve is also smoother and closer to the upper-right corner, which proves the effectiveness of
the method.

  
(a) (b) 

Figure 14. Precision recall (PR) curve and average precision (AP) value of the faster R-CNN model
under VGG-16 Net. (a) Before improvement; (b) after improvement.

5. Conclusions

This paper proposes an insulator detection method based on the detection data set of insulation
equipment trained by a fine-tuned faster R-CNN model. It can detect insulators with different aspect
ratios and different scales as well as mutually occluded ones in the power transmission and inspection
images effectively. In this paper, the anchor generation method and NMS method in the faster R-CNN
model RPN are improved, respectively. The experimental results show that the improvement of the
anchor generation method increases the AP value of the faster R-CNN model to 0.818 by using VGG-16
Net. The detection effect of different aspect ratios and different scales of insulators in inspection images
is improved significantly. Meanwhile, the problem of missed insulators as a result of occlusion is
also resolved with the proposed NMS improvement method. It can effectively realize the separate
detection of the insulators in the image, which lays a solid foundation for further state detection and
fault diagnosis of insulators.

It is noted that different types of insulators are not distinguished in our method. In order to
provide a more reliable guarantee for state detection and fault diagnosis of insulators, further research
on high-quality detection methods for different types of insulators will be done in the future.
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Abstract: Calcium chloride brine-based drill-in fluid is commonly used within the reservoir section,
as it is specially formulated to maximize drilling experience, and to protect the reservoir from being
damaged. Monitoring the drilling fluid rheology including plastic viscosity, PV, apparent viscosity,
AV, yield point, Yp, flow behavior index, n, and flow consistency index, k, has great importance in
evaluating hole cleaning and optimizing drilling hydraulics. Therefore, it is very crucial for the mud
rheology to be checked periodically during drilling, in order to control its persistent change. Such
properties are often measured in the field twice a day, and in practice, this takes a long time (2–3 h for
taking measurements and cleaning the instruments). However, mud weight, MW, and Marsh funnel
viscosity, MF, are periodically measured every 15–20 min. The objective of this study is to develop new
models using artificial neural network, ANN, to predict the rheological properties of calcium chloride
brine-based mud using MW and MF measurements then extract empirical correlations in a white-box
mode to predict these properties based on MW and MF. Field measurements, 515 points, representing
actual mud samples, were collected to build the proposed ANN models. The optimized parameters of
these models resulted in highly accurate results indicated by a high correlation coefficient, R, between
the predicted and measured values, which exceeded 0.97, with an average absolute percentage error,
AAPE, that did not exceed 6.1%. Accordingly, the developed models are very useful for monitoring
the mud rheology to optimize the drilling operation and avoid many problems such as hole cleaning
issues, pipe sticking and loss of circulation.

Keywords: mud rheology; drill-in fluid; artificial neural network; Marsh funnel; plastic viscosity;
yield point

1. Introduction

Drilling Fluids are considered a key element in the drilling operation. Conventional drilling fluids
are water-based, oil-based or synthetic-based fluid systems, which are used in the drilling process
to give the best performance under certain temperatures and pressures experienced downhole [1].
Drilling the section from the sea-bed/land to the top of the reservoir is different, regarding the economic
value of the final project, compared to the reservoir section. As in the top sections, the concerns are to
seal the permeable formations, and help sustain the wellbore stability.

Special measures will be taken into consideration while drilling the reservoir section to avoid
damaging the reservoir and plugging the reservoir pores. For that target, special drilling fluids are used,
called reservoir drill-in fluids (RDFs), which are specially formulated to maximize drilling experience
and protect the reservoir from being damaged until the completion process is proceeded [2].

Energies 2019, 12, 1880; doi:10.3390/en12101880 www.mdpi.com/journal/energies215
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There are many types of RDFs with different chemical compositions, but the concern of this
study is about the clear brine-based mud which is often used within completions, as the presence
of solids is a major contributor to formation damage [3]. However, when used as drilling fluid,
the solids-free nature of brine operationally improves the rate of penetration (ROP), stabilization of
sensitive formations, density, and abrasion or friction [4]. Clear brine fluids properties are easier to
maintain than conventional solids-laden fluid systems, so that when properly run, clear systems require
very little maintenance, because many functional issues are inherently solved by the dissolved salts.
Clear brine fluids also allow for drill site cost reductions because of the ability to reuse the fluid [5].

Brine fluids can be prepared with one salt or a combination of salts. All salts provide unique
properties to the base fluid. Saturated brines fluids provide excellent inhibitive properties and lubricity,
as compared to conventional aqueous fluids. With optimal heat transference characteristics, they can
greatly improve bit life, and increase the rate of penetration in hard rock drilling. Among the different
salts used for clear-brine systems, calcium chloride has been selected, as it is considered one of the most
economic brine systems, with its broad range of densities (from 9.0 to 11.6 ppg), availability, low cost,
and its ability to reduce the water activity of the fluid [6].

1.1. Drilling Fluid Rheology

Drilling fluid rheology plays a key role in optimizing drilling performance [7]. These properties
significantly affect the efficiency of the hole cleaning and the drilling rate [8], which are critical factors
controlling the performance of drilling operation [9]. These rheological properties include mud density
to provide the control on the formation pressure, while PV, YP, AV, n and k are used for controlling
hole cleaning and optimizing the drilling performance [10]. Plastic viscosity of the drilling fluid is
crucial for optimizing the drilling operation [11]. It is an indication of the solid content in the drilling
fluid which may negatively affect the drilling performance when it exceeds critical limits, and can
cause many problems like pipe sticking and decreasing the rate of penetration [12]. Yield point can be
simply stated as the attractive forces among colloidal particles in drilling fluid [11]. The optimization of
yield point is central to controlling the efficiency of hole cleaning [10,13]. Moreover, apparent viscosity
is considered a key factor in the optimization of mud hydraulics while drilling [8]. In addition, the
parameters k and n can be used for evaluating hole cleaning during the drilling operation [14].

The rheological properties can be measured in the laboratory using mud balance and viscometer.
The mud balance is used to measure the mud weight while the rheometer is used to measure
(PV, YP, AV, n and k). However, this process takes a relatively long time (2–3 h for taking measurements
and cleaning the instruments) which makes it difficult to be performed periodically and practically in
the field. Therefore, it is taken as a common procedure that only density and Marsh funnel viscosity
are measured periodically every 15–20 min, using mud balance and Marsh funnel devices. On the
other hand, a complete mud test (including all the drilling fluid properties), using the mud balance
and viscometer, is performed twice a day. Marsh funnel viscosity provides an indication of the changes
in the rheology of the drilling fluid. This funnel was first introduced by Marsh [15]. This tool is cheap
and takes a short time, so it can be utilized to give field measurements frequently and estimate some
parameters like yield stress [16]. Based on the literature, there are two models developed to predict the
drilling fluid viscosity from mud density and Marsh funnel measurements. These two measurements
were used as inputs to calculate the effective viscosity of the drilling fluid as stated by Pitt [17] in
Equation (1). Then a modification on the previous model was introduced by Almahdawi et. al. [18],
who figured out that changing the value of the constant to 28 in Equation (2) instead of 25 presented by
Pitt [17], is more effective give more accurate results, as compared to Equation (1).

AV = D(T − 25) (1)

AV = D(T − 28) (2)
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where AV is the apparent viscosity in cP, D is the fluid density in g/cm3, T is the Marsh funnel time
in sec.

Several mathematical models have been mentioned in the literature for estimating the fluid
rheological properties using Marsh funnel devices. Some of them suggested using the temporal
variations in the fluid height in the funnel to determine different rheological parameters such as
PV, YP and AV [19–22]. They introduced a methodology to determine the shear rate and the shear
stress on the walls of the Marsh funnel from the measured discharged fluid volume of the Marsh
funnel at different points. Then several rheological parameters have been related to the obtained
shear rate and shear stress. Abdulrahman et al. [23] investigated different water-based drilling fluids
using the Marsh funnel and showed that PV and AV can be estimated using consistency plots and the
methodology described in [19]. However, these models showed considerable discrepancies between
the results obtained from the Marsh funnel and the standard viscometers. Other studies tried to model
the fluid volume flow in the Marsh funnel with higher order polynomial functions, rather than the
simplified functions used in the previously mentioned studies [24,25]. This attempt was to simulate
the fluid temporal height in the Marsh funnel more properly, and to get closer results of rheological
parameters to those obtained from the standard viscometers.

The objective of this work is to develop new models using artificial neural networks, ANN,
to predict the rheological properties of the CaCl2 brine-based drilling fluid depending on frequent
measurements of MW and MF. The real-time measurements of these parameters are very helpful for
identifying the efficiency of the hole cleaning, optimizing the drilling fluid hydraulics, equivalent
circulating density calculations and swab and surge pressure determination.

1.2. Artificial Neural Network (ANN)

Artificial intelligence, (AI), can be simply defined as the computer science branch for creating
intelligent machines [26] to exhibit human brains to make predictions and help take the right decisions
for the future scenarios [27]. Recently, different AI methods such as fuzzy logic, FL, support vector
machine, SVM, genetic algorithm and artificial neural network, ANN, have been applied in petroleum
engineering, and specifically in the field of drilling fluid engineering. Some of these applications
include fluid flow patterns prediction in wellbore annulus [28], stuck pipe prediction [29], drilling
hydraulics optimization [30], frictional pressure loss estimation [31], hole cleaning and prediction of
cutting concentration [32], estimation of the static Poisson’s ratio from log data [33].

ANN is one of the most common AI techniques which has the ability to deal with different
engineering problems with high complexity that exceed the computational capability of classical
mathematics and procedures [34]. It is based on analogy with biological neural networks to simulate
the performance of the human biological neural system [35]. The elementary units for ANN are
neurons [36]. The structure of the ANN consists of three main types of layers. The first one is for the
input parameters. The second one is called hidden layers, which include the neurons assigned with the
transfer functions between the inputs and the outputs. The third type is for the outputs. These layers,
with the suitable training algorithm, describe the nature of the problem [37]. The performance of the
network is controlled by key parameters including the number of neurons, weights and biases [38].
To optimize the weight and biases, the network is trained using different algorithms to achieve the
lowest possible error. Among these algorithms is Levenberg-Marquardt (LM), which is an iterative,
curve fitting algorithm. This algorithm proved its outstanding performance in solving non-linear
least-squares problems [39].

There are many ANN applications of ANN in the field of drilling fluid in the last few years. Some of
these researches are the prediction of filtration volume and mud cake permeability of water-based mud
(WBM) [40], drill cutting settling velocity prediction [41], prediction of differential pipe sticking [42],
lost circulation prediction [43], hole cleaning efficiency of foam fluid [44], rheological properties of
invert emulsion mud [45], invert emulsion mud rheology [46] and spud mud rheology prediction [47],
generating geomechanical well logs [48], prediction of oil PVT properties [49].
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Based on the literature, more than 50 percent of the applications in the drilling fluid area used
ANN for the predictions and got high accurate results. Accordingly, ANN has been selected for
building the proposed models in this study [26].

2. Methodology

2.1. Data Description

A typical sample of the data for CaCL2 brine-based drill-in fluid (515 field data for actual mud
samples) is listed in Table 1, including

(
MW, MF, PV, and Yp

)
. The drilling fluid samples are collected

after the mud was cleaned from the cuttings by using the shale shaker MW and MF are measured in
the field using a mud balance and Marsh funnel, respectively. The rheometer is used for measuring the
rheology of the mud, namely PV, and Yp at atmospheric pressure and 120oF. The collected data have a
wide range as follows: MW ranges from 43 to 119 Ib/ f t3, MF ranges from 26 to 135 s/quart, PV ranges
from 10 to 54 cP, and YP ranges from 8 to 41 Ib/100 f t2. Figure 1 shows that MW has R of 0.36 and 0.76
with YP and PV respectively while MF has R of 0.86 with YP and 0.36 with PV.

Table 1. A typical sample of the CaCl2 brine-based drilling fluid collected data.

MW, Ib/ft3 MF, s/quart PV, cP YP, Ib/100 ft2

78 62 8 21
80 45 8 22
88 62 12 18
73 50 11 20
65 48 11 21
75 44 12 20

 
Figure 1. The relative importance of MW and MF with the rheological properties (YP and PV) of CaCL2

brine-based mud in terms of the correlation coefficient, R.

For better prediction using AI models, data should be analyzed and filtered [50]. Therefore,
the selected data have been cleaned from any noise and false values for higher representation quality.
The filtration process included eliminating all the values that cannot be representative, like negative
values. Finally removing the outliers that show significant deviation from the other values of a variable,
the outliers were removed using a box and whisker plot, in which top whisker represents the upper
limit of the data, and the bottom whisker represents the lower limit of the data, then any value beyond
these limits is considered an outlier and removed [51]. These limits are determined by dividing the
data into four equal divisions (quartiles) along with using the minimum, maximum, mean and median
parameters [52] obtained from the statistical analysis of the data listed in Table 2.
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Table 2. Statistical Analysis of the CaCl2 brine-based mud collected data.

Parameter MW, Ib/ft3 MF, s/quart PV, cP YP, Ib/100 ft2

Min. 43 26 10 8
Max. 119 135 54 41
Mean 85.45 56.33 22.59 25.88
Mode 76 109 44 33
Range 72 50 19 24

Skewness 0.50 1.43 1.29 0.83

2.2. Development of ANN Models

The collected data were used to calculate R600 and R300 (rheometer readings at 600 and 300 rpm,
respectively) using Equations (3) and (4). These two parameters are very crucial for identifying fluid
properties and flow regimes. Then, the apparent viscosity, AV, flow behavior index, n, and flow
consistency index, k, are calculated using Equations (5)–(7) respectively.

R600 = PV + R300 (3)

R300 = PV + Yp (4)

AV =
R600

2
(5)

n = 3.32× log
(

R600

R300

)
(6)

k =
R600

1022n (7)

For all the upcoming developed models, different scenarios have been performed to optimize the
ANN variables to reach the highest accuracy with the lowest possible error for prediction using different
combinations of the available options of the ANN variables. The optimized parameters obtained from
the tuning process of these parameters are summarized in Table 3. The chosen architecture for the
developed models includes three layers:

– Input layer: It contains input features which are MW and MF.
– (One) Hidden layer: It contains the optimized number of neurons which was found to be

20 neurons.
– Output layer: It contains the output parameters, which are (PV, YP, AV, n and k individually).

The network was trained using the Levenberg-Marquardt (LM) algorithm to get the optimized
weights and biases. The neurons are arranged to be trained using a learning rate of 0.12. Activation
function of the tan-sigmoidal type (tansig) was assigned between the input and hidden layers while
the pure-linear function was assigned between the hidden and output layers. Figure 2 shows a typical
schematic of the architecture of the developed ANN model.

Table 3. Summary of the optimized parameters for the developed ANN models.

Neural Network Parameter Types and Range

Training Algorithm Levenberg Marquardt
Number of neurons 20

Number of hidden layer(s) 1
Learning rate 0.12

The hidden layer transfer function Tan-sigmoidal
The outer layer transfer function Pure-linear

Training ratio 70%
Testing ratio 30%
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Figure 2. Typical schematic for the architecture of the developed ANN models.

3. Results and Discussion

3.1. Yield Point (YP) Model

An ANN-Based model was developed using MW and MF as inputs to predict the YP values.
The obtained data were divided into ratios 70:30 for training and testing the model, respectively.
Figure 3 shows the high match between the measured and the predicted YP values from the developed
ANN model in terms of R of 0.97 and AAPE of 3.9%. Thereafter, a new correlation has been developed
using the ANN model to predict YP based on MW and MF. First, the inputs should be normalized
using Equations (8) and (9) to substitute the values MWn and MFn in Equation (10); where MWn refers
to the first normalized input, and MFn refers to the second normalized input.

MWn = 0.036(MF− 64) + 1 (8)

MFn = 0.133(MF− 26) + 1 (9)
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Figure 3. Measured YP vs. Predicted YP from the ANN model.

Then, the normalized value YPn is calculated using Equation (9) with its optimized coefficients
listed in Table 4.

YPn =

⎡⎢⎢⎢⎢⎢⎢⎣
N∑

i=1

w2,i

⎛⎜⎜⎜⎜⎜⎜⎝ 2

1 + exp
(
−2
(
MWn ×w1i,1 + MFn ×w1i,2 + b1,i

)) − 1

⎞⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦+ b2 (10)

where i is the index of the neuron in the hidden layer, N is the optimized number of neurons for only
one hidden layer, which is found to be 20, w1 is the weight vector linking the input and the hidden
layer, w2 is the weight vector linking the hidden and output layer, b1 is the biases vector for the input
layer, and b2 for the output layer.

Finally, the required YP value can be obtained by denormalizing YPn using Equation (11).

Yp = 16.5(Ypn + 1) + 8 (11)

Table 4. The optimized coefficients for estimating the normalized YPn in Equation (10).

Neuron
Index

Input Layer Weights
Hidden Layer

Weights
Input Layer

Biases
Output

Layer Bias

i w1i,1 w1i,2 w2,i b1,i b2
1 −4.251 5.585 −0.950 5.530 −0.508
2 −0.709 −6.857 −0.155 4.936 -
3 2.631 5.539 0.168 −4.752 -
4 −0.743 6.411 1.005 3.899 -
5 −4.986 5.903 −0.932 3.661 -
6 −5.203 −0.250 −1.022 3.135 -
7 4.859 4.645 −0.410 −2.792 -
8 −1.185 −6.192 0.721 2.879 -
9 4.188 −3.646 −1.697 −3.015 -

10 3.238 −5.080 0.297 −0.585 -
11 0.708 −7.849 −0.380 0.213 -
12 −4.893 −9.220 −0.428 −1.489 -
13 2.227 −6.971 −1.173 2.051 -
14 3.101 5.504 −1.046 1.840 -
15 −6.059 −1.558 −0.030 −3.063 -
16 −5.020 3.702 −0.902 −3.873 -
17 2.892 5.503 −0.260 4.287 -
18 −0.736 −5.668 0.190 −5.818 -
19 4.290 −4.592 0.639 5.571 -
20 −4.290 4.570 −0.686 −6.252 -
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3.2. Apparent Viscosity (AV) Model

Similarly, AV was predicted using ANN, based on MW and MF. The model was trained using
70% of the available data, while 30% of the data were used for testing the model. Figure 4 shows
the high R between the predicted and the measured AV values, which is 0.99 with AAPE of 3.2%.
Afterward, a new correlation for predicting AV was extracted from the developed ANN model. To use
this correlation, the inputs should be normalized at first using Equations (12) and (13) to substitute
the values MWn and MFn in Equation (14); where MWn refers to the first normalized input, and MFn

refers to the second normalized input.

MWn = 0.036(MF− 64) + 1 (12)

MFn = 0.053(MF− 35) + 1 (13)

Then, the normalized value AVn is calculated using Equation (14) with its optimized coefficients
listed in Table 5.

AVn =

⎡⎢⎢⎢⎢⎢⎢⎣
N∑

i=1

w2,i

⎛⎜⎜⎜⎜⎜⎜⎝ 2

1 + exp
(
−2
(
MWn ×w1i,1 + MFn ×w1i,2 + b1,i

)) − 1

⎞⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦+ b2 (14)

Finally, AV can be predicted by denormalizing AVn using Equation (15).

AV = 27(AVn + 1) + 19 (15)

Table 5. The optimized coefficients for estimating the normalized AVn in Equation (14).

Neuron
Index

Input Layer Weights
Hidden Layer

Weights
Input Layer

Biases
Output

Layer Bias

i w1i,1 w1i,2 w2,i b1,i b2
1 2.960 7.136 −0.950 −5.667 1.535
2 −5.586 −7.703 −0.155 2.751 -
3 4.037 5.355 0.168 −1.886 -
4 −3.362 3.743 1.005 2.292 -
5 6.295 −5.066 −0.932 −8.110 -
6 0.406 7.091 −1.022 6.492 -
7 −10.26 −8.654 −0.410 −0.995 -
8 −0.572 −9.022 0.721 −0.909 -
9 −7.565 4.329 −1.697 4.884 -

10 −4.256 3.855 0.297 2.094 -
11 6.458 1.765 −0.380 1.786 -
12 4.537 −4.152 −0.428 1.324 -
13 −5.410 3.103 −1.173 −2.553 -
14 −4.859 −2.202 −1.046 −1.924 -
15 −7.190 1.704 −0.030 −4.783 -
16 2.196 −5.993 −0.902 2.408 -
17 −0.576 6.113 −0.260 −4.569 -
18 −2.889 −4.782 0.190 −4.645 -
19 −3.799 −7.588 0.639 −2.337 -
20 −3.877 4.861 −0.686 −6.301 -
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Figure 4. Measured AV vs. Predicted AV from the ANN model.

3.3. Plastic Viscosity (PV) Model

For PV, another ANN model was developed based on MW and MF. For building the model, the
ratio of the training to testing points is 70:30. The model gave high accurate results indicated by a high
R of 0.98 between the predicted and the measured PV values and maximum AAPE of 6.1% as shown in
Figure 5. A new correlation has been extracted from the model to predict PV without the need to run
the ANN model.

 

 
Figure 5. Measured PV vs. Predicted PV from the ANN model.

First, the inputs should be normalized using Equations (16) and (17) to substitute the values
MWn and MFn in Equation (18); where MWn refers to the first normalized input, and MFn refers to the
second normalized input.

MWn = 0.037(MF− 64) + 1 (16)

MFn = 0.105(MF− 35) + 1 (17)

Then, the normalized value PVn is calculated using Equation (18) with its optimized coefficients
listed in Table 6.

PVn =

⎡⎢⎢⎢⎢⎢⎢⎣
N∑

i=1

w2,i

⎛⎜⎜⎜⎜⎜⎜⎝ 2

1 + exp
(
−2
(
MWn ×w1i,1 + MFn ×w1i,2 + b1,i

)) − 1

⎞⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦+ b2 (18)

Finally, PV can be predicted by denormalizing PVn using Equation (19).

PV = 22(PVn + 1) + 10 (19)
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Table 6. The optimized coefficients for estimating the normalized PVn in Equation (18).

Neuron
Index

Input Layer Weights
Hidden Layer

Weights
Input Layer

Biases
Output

Layer Bias

i w1i,1 w1i,2 w2,i b1,i b2
1 −3.740 4.001 1.983 9.616 −1.831
2 −3.304 −5.296 −1.243 −5.482 -
3 −11.57 −3.788 3.380 7.537 -
4 −6.403 −2.376 −4.833 4.301 -
5 1.308 7.156 −0.307 2.069 -
6 0.457 −12.03 1.182 1.413 -
7 −3.684 10.384 −0.141 3.236 -
8 1.511 −3.887 1.414 −3.601 -
9 −7.490 −1.848 1.788 6.460 -

10 −5.945 −6.028 −0.985 5.412 -
11 2.211 −1.365 −1.087 −1.030 -
12 6.136 −3.409 1.093 3.100 -
13 −0.450 −2.759 0.560 1.993 -
14 15.104 15.336 0.612 1.763 -
15 8.423 2.774 0.501 7.032 -
16 −6.361 −2.459 −0.544 −1.495 -
17 −5.252 5.003 1.075 −1.282 -
18 −4.470 −4.547 1.533 −5.938 -
19 −3.457 6.210 1.761 −2.930 -
20 3.769 −5.543 1.014 5.828 -

3.4. Prediction Power Law Model Parameters (n and k)

Following the same procedure, another two models have been developed using ANN to predict n
and k based on MW and MF. For the prediction of n, the R between the measured and the predicted
values was 0.98 with AAPE of 2.4% as shown in Figure 6. While for the prediction of k, the R was
0.99 with AAPE of 3.6%, as indicated in Figure 7. Then new correlations for estimating n and k were
extracted from the developed ANN models.

 
Figure 6. Measured n vs. Predicted n from the ANN model.
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Figure 7. Measured k vs. Predicted k from the ANN model.

In the beginning, the inputs should be normalized using Equations (20) and (21) for the correlation
of n and Equations (22) and (23) for the correlation of k in order to substitute the values MWn and
MFn in Equations (24) and (25); where MWn refers to the first normalized input and MFn refers to the
second normalized input.

For the Correlation of Parameter n:

MWn = 0.026(MF− 43) + 1 (20)

MFn = 0.018(MF− 26) + 1 (21)

For the Correlation of Parameter k:

MWn = 0.036(MF− 64) + 1 (22)

MFn = 0.022(MF− 30) + 1 (23)

Subsequently, the normalized values nn and kn can be estimated using Equations (24) and (25),
respectively, with their optimized coefficients listed in Tables 7 and 8, respectively.

nn =

⎡⎢⎢⎢⎢⎢⎢⎣
N∑

i=1

w2,i

⎛⎜⎜⎜⎜⎜⎜⎝ 2

1 + exp
(
−2
(
MWn ×w1i,1 + MFn ×w1i,2 + b1,i

)) − 1

⎞⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦+ b2 (24)

kn =

⎡⎢⎢⎢⎢⎢⎢⎣
N∑

i=1

w2,i

⎛⎜⎜⎜⎜⎜⎜⎝ 2

1 + exp
(
−2
(
MWn ×w1i,1 + MFn ×w1i,2 + b1,i

)) − 1

⎞⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦+ b2 (25)

Eventually, the predicted values of n and k can be estimated using Equations (26) and
(27), respectively.

n = 0.244(nn + 1) + 0.263 (26)

k = 2.78(kn + 1) + 0.731 (27)
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Table 7. The optimized coefficients for estimating the normalized nn in Equation (24).

Neuron
Index

Input Layer Weights
Hidden Layer

Weights
Input Layer

Biases
Output

Layer Bias

i w1i,1 w1i,2 w2,i b1,i b2
1 11.343 −1.862 −0.798 −9.530 −0.867
2 2.093 −7.313 −1.517 −7.827 -
3 −0.197 7.842 −0.937 5.778 -
4 6.518 −3.319 2.163 −5.132 -
5 4.967 1.743 −1.977 −3.641 -
6 −5.643 −4.788 0.789 2.501 -
7 7.452 −2.491 1.194 −1.205 -
8 −8.873 1.168 1.495 0.426 -
9 −3.821 0.042 −8.516 2.781 -

10 −4.896 1.759 6.460 3.734 -
11 −6.355 −8.089 0.160 −0.850 -
12 −12.05 3.917 −1.539 −1.785 -
13 9.180 −0.935 −2.199 2.377 -
14 2.500 −6.815 −2.203 3.462 -
15 −3.105 4.973 −0.752 −3.526 -
16 −4.068 4.687 −1.196 −3.731 -
17 8.037 9.291 0.592 9.212 -
18 6.726 5.979 0.963 3.974 -
19 4.042 −5.058 1.376 5.431 -
20 4.585 −3.606 −0.777 6.701 -

Table 8. The optimized coefficients for estimating the normalized kn in Equation (25).

Neuron
Index

Input Layer Weights
Hidden Layer

Weights
Input Layer

Biases
Output

Layer Bias

i w1i,1 w1i,2 w2,i b1,i b2
1 −6.753 −1.103 1.041 −9.530 −0.106
2 8.434 3.590 −2.501 −7.827 -
3 −5.541 2.870 0.111 5.778 -
4 −2.502 −4.938 −0.160 −5.132 -
5 1.257 −4.551 0.671 −3.641 -
6 −6.886 0.157 0.523 2.501 -
7 2.427 −3.904 1.129 −1.205 -
8 3.711 −4.231 −0.680 0.426 -
9 −4.383 −2.456 −4.228 2.781 -

10 3.781 2.628 0.781 3.734 -
11 4.197 −0.920 −0.658 −0.850 -
12 −5.986 7.171 −0.378 −1.785 -
13 5.429 4.213 −2.285 2.377 -
14 3.700 −7.289 −1.825 3.462 -
15 4.037 3.723 2.991 −3.526 -
16 5.432 2.211 −1.677 −3.731 -
17 7.672 −3.691 5.346 9.212 -
18 −1.757 6.114 2.971 3.974 -
19 2.719 2.906 2.767 5.431 -
20 −7.991 −2.637 1.733 6.701 -

3.5. Validation of the Apparent Viscosity (AV) Model vs the Models in the Literature

As mentioned in the introduction, Pitt [17] introduced a numerical model to calculate the apparent
viscosity using Equation (1). After using the collected data, the results obtained using Equation (1)
showed a coefficient of determination R2 of 0.5 and AAPE of 32.2%. Also, Almahdawi et al. [18]
concluded that Equation (2) using the constant 28 is more appropriate than 25 in Equation (1), and the
results obtained by applying Equation (2) to estimate AV using MF readings give R2 of 0.5 and AAPE
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of 23.6%, as shown in Figure 8. However, the developed correlation for the ANN model gives highly
accurate results, as shown in Figure 9 with R2 of 0.98, and AAPE does not exceed 3.2%.

 

Figure 8. Prediction of AV using Pitt’s [17] and Almahdawi’s et al. [18] correlations.

 

Figure 9. Prediction of AV using the developed ANN model (AAPE of 3.2%).

4. The Value of Predicting the Drilling Fluid Rheology in Real-Time

For drilling optimization, it is very important to have periodic monitoring of the parameters
affecting the drilling process. Mud system design and hole cleaning processes are affected by the
pressure losses within the system which rely on the properties of the drilling fluid used, and the
efficiency of the cuttings removal from the hole. Pressure losses can be obtained once the parameters
of the Bingham model YP and AV and power low model (n and k) are obtained. Annular pressure
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losses can be calculated by Equation (28) based on the real-time values of (YP and AV), which can be
obtained from the developed ANN model.

Also, equivalent circulating density, ECD, can be calculated from Equation (29) [53] using the
obtained pressure loss value, so that surge and swab pressures can be determined to help predict
critical drilling problems such as pipe sticking and well control issues [54].

Δp =

⎛⎜⎜⎜⎜⎝ PV × v

1000(d2 − d1)
2 +

Yp

200(d2 − d1)

⎞⎟⎟⎟⎟⎠L (28)

ECD = MW +
Δp

0.052× h
(29)

where Δp is the annular pressure loss (in psi), PV is the predicted plastic viscosity (in cP), YP is the
predicted yield point (in Ib/100 f t2), v is the average annular velocity (in ft/s), d1 is the inside diameter
of the hole or casing, (in inches), d2 is the outside diameter of the drill pipe, (inches), L is the drill pipe,
or drill collar length (in ft), MW is the mud density (in ppg), h is the hole depth (in ft), and ECD is the
equivalent circulation density (in ppg).

Accordingly, the ability of the prediction of the rheological properties in real-time can help avoid
many problems during drilling with early detection of these problems by identifying the anomaly in
normal behavior trends. This will optimize the drilling operation and save money by minimizing the
drilling time.

5. Conclusions

In this work, new models have been developed using ANN to predict the rheological properties of
CaCL2 brine-based drill-in fluid in a real-time (15–20 min) including (PV, YP, AV, n and k) using 515
field data measurements of MW and MF in ratios 70:30 for training and validating the ANN models
respectively. Accordingly, the following conclusions can be drawn:

(1) The new ANN models can predict the rheological parameters
(
PV, Yp, AV, n, and k

)
in real time

based on MW and MF with high accuracy (R was greater than 0.97 and AAPE was less than 6.1%).
(2) The optimization process for the ANN models showed that the optimized parameters yielding

the highest accuracy and the lowest error were 20 neurons for only one hidden layer,
the Levenberg-Marquardt algorithm of learning rate 0.12. The activation function linking
the input and hidden layers was the tan-sigmoidal function, while a linear function was used for
linking the hidden and output layers.

(3) The extracted correlations from the developed ANN models provide the ability to estimate the
rheological properties of CaCL2 brine-based mud directly without the need to run the models.

(4) These models are very helpful in the calculations of rig hydraulics, surge and swab pressures,
and ECD.

(5) The developed correlations can help in predicting several drilling problems by providing the
ability for real-time monitoring of the hole cleaning performance, and detecting any abnormal
changes in the normal trends to avoid interrupting problems like sticking. As a result, this will
save on the drilling cost, and it optimizes the drilling operation.
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Abstract: In this study, we used artificial neural networks (ANN) to estimate static Young’s modulus
(Estatic) for sandstone formation from conventional well logs. ANN design parameters were optimized
using the self-adaptive differential evolution optimization algorithm. The ANN model was trained
to predict Estatic from conventional well logs of the bulk density, compressional time, and shear
time. The ANN model was trained on 409 data points from one well. The extracted weights
and biases of the optimized ANN model was used to develop an empirical relationship for Estatic

estimation based on well logs. This empirical correlation was tested on 183 unseen data points from
the same training well and validated using data from three different wells. The optimized ANN
model estimated Estatic for the training dataset with a very low average absolute percentage error
(AAPE) of 0.98%, a very high correlation coefficient (R) of 0.999 and a coefficient of determination
(R2) of 0.9978. The developed ANN-based correlation estimated Estatic for the testing dataset with a
very high accuracy as indicated by the low AAPE of 1.46% and a very high R and R2 of 0.998 and
0.9951, respectively. In addition, the visual comparison of the core-tested and predicted Estatic of the
validation dataset confirmed the high accuracy of the developed ANN-based empirical correlation.
The ANN-based correlation overperformed four of the previously developed Estatic correlations in
estimating Estatic for the validation data, Estatic for the validation data was predicted with an AAPE of
3.8% by using the ANN-based correlation compared to AAPE’s of more than 36.0% for the previously
developed correlations.

Keywords: static young’s modulus; artificial neural networks; self-adaptive differential evolution
algorithm; sandstone reservoirs

1. Introduction

Young’s modulus is a measure of the sample stiffness against being subjected to a uniaxial load [1].
Static Young’s modulus (Estatic) is an essential parameter required to develop the geomechanical earth
model [2] which is required for fracture mapping and designing [3]. A complete description of the
in-situ stresses which requires assessment of different petrophysical and mechanical parameters is
also needed during the drilling operations to ensure wellbore stability [4]. Several previous studies
confirmed the impact of the Estatic on both fracture design and wellbore stability [1,5].

Lithology is one of the main factors affecting the Estatic. According to Howard and Fast [6] and
Fjaer et al. [1], Estatic for shale ranges from 0.1–1.0 MPsi; for sandstone it is between 2 and 10 MPsi;
and for limestone it is between 8 and 12 MPsi [6]. These ranges confirm the very large variation in
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Estatic in different formations, as well as the wide range for same lithology type. These facts indicate
the necessity to estimate Estatic along the different sections of the drilled well.

Currently, two methods are available for assessing the rocks elastic parameters, these are, namely,
(1) laboratory measurements, and (2) through applying empirical correlations. The elastic properties
of a rock sample could be measured in the laboratory using either dynamic or static method. The
dynamic method involves estimating the modulus from measurements of density, compressional and
shear waves velocities while the static method directly measures the deformation in the rock caused by
subjecting a sample to uniaxial or triaxial load [7]. In oil and gas fields, the shear and compressional
wave velocities measured by the wireline logging [8]. The determined acoustic velocities are then used
to calculate the dynamic Young’s modulus (Edynamic), Equation (1):

Edynamic =
ρVS

2
(
3VP

2 − 4VS
2
)

VP
2 −VS

2 (1)

where ρ represents the bulk formation density in g/cm3, VS and VP denote the shear and compressional
wave’s velocities in km/s, and Edynamic is the dynamic Young’s modulus in GPa.

For the same rock, usually the laboratory-measured Edynamic is significantly greater than
Estatic [9–11]. Edynamic could be 1.5–3 times greater than Estatic [12,13], and in some cases Edynamic

could be up to ten times larger than Estatic [14–16]. The difference is attributed to the strain amplitude
between the two testing techniques, and it decreases with the increase in the strength of the rock [17].

The reservoir in situ stress-strain conditions are truly represented by the static elastic
parameters [18], determination of these parameters requires retrieval of real core samples along
the reservoir section which is a costly and time-consuming process [13,19]. To minimize the high cost
of retrieving the core samples and performing laboratory tests; usually few cores samples are collected
from the targeted (reservoir) interval, the laboratory evaluated properties of these core samples are
used to develop empirical correlations based on the well log data, to evaluate the required core-derived
properties. Dynamic elastic modulus could then be calibrated using these log-based correlations
to predict the static modulus throughout the reservoir depths [3]. The applicability of log-derived
correlations will be restricted to the formations used to develop these correlations, thus, because
of the complexity of the heterogeneous formations, the log-derived correlations will not be able to
capture the trend of the static parameters changes. To overcome this limitation different empirical
correlations were developed to estimate Estatic from the Edynamic, every correlation is restricted for a
specific formation type.

Eissa and Kazi [20] developed a generalized empirical equation to predict the Estatic as a function
of both Edynamic and formation density. The authors developed this correlation (Equation (2)) based
on the regression analysis of 76 tests, with data collected from different sources, and they found that
considering the formation density improved the predictability of the Estatic considerably:

log10 Estatic = 0.02 + 0.77 log10

(
γEdynamic

)
(2)

where Estatic and Edynamic are in Gpa, and γ is the formation density in g/cm3.
Canady [21] developed another generalized empirical correlation (Equation (3)) which could

also be used effectively to estimate the Estatic for any rock type. This correlation enabled prediction
of the Estatic where only Edynamic is known, the results of the Estatic predicted with (Equation (3)) was
compared to previously available correlations and it found to be well correlated to these models:

Estatic =
ln
(
Edynamic + 1

)
×
(
Edynamic − 2

)
4.5

(3)

where Estatic and Edynamic are in GPa.
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Najibi et al [22] developed another simple correlation (Equation (4)) to evaluate the Estatic for
Sarvak and Asmari limestone based on only the compressional velocity (Vp). This model is very useful
when the shear velocity (Vs) is not available:

Estatic = 0.169 × VP
3.24 (4)

where Estatic is in Gpa, and Vp is in km/s.
Recently, Fei et al. [23] developed an empirical correlation to predict Estatic from Edynamic especially

for sandstone formation. The developed equation (Equation (5)) is based on the triaxial tests conducted
on 22 sandstone core samples:

Estatic =
(
0.564 Edynamic

)
− 3.4941 (5)

Estatic and Edynamic are in GPa.
Mahmoud et al. [24] developed empirical correlations for Estatic estimation for different rock types.

The developed correlations do not require the knowledge of Edynamic and they directly evaluated Estatic

based on the bulk density, shear, and compressional time data.
It is clear from the literature that obtaining the Estatic required retrieve cores from specific depth of

the well which is costly and time consuming which required to perform the laboratory analysis. In
addition, the analysis will be performed for specific well which cannot easily generalized through the
entire field while using the developed empirical correlations had their own limitations such as core
type, data range and accuracy. The main objective of this study is to develop an ANN model to predict
Estatic from the well logs using a real field data (592 core and log data points) which were collected from
the whole sandstone field. Furthermore, a new empirical correlation will be developed for estimating
Estatic for sandstone reservoirs; the correlation is developed based on the extracted weights and biases
of the optimized ANN model.

2. Uses of Artificial Intelligence in Estimating Rock Mechanical Parameters

The use of artificial intelligence (AI) techniques in many scientific fields, including the petroleum
industry, started in the early 1990s. Since then many publications have treated various areas of
petroleum engineering, including the prediction of the bubble point pressure, evaluation of drilling
mud, interpretation of the well log data, reservoir characterization, recovery factor estimation,
optimization of rate of penetration, and many more.

Recent publications (2016–2018) reported several studies that used AI in estimating rock mechanical
parameters. These studies used various AI techniques to: predict failure parameter for carbonates [25];
compare ANN, ANFIS, and SVM in predicting static Poisson’s ratio [26]; develop empirical correlation
for static Young’s modulus [27]; develop an ANN-based correlation to predict sonic transit time [28];
estimation of the unconfined compressive strength (UCS) based on the ANN [29]; and use ANN in
estimating Young’s modulus, Poisson’s ratio, and UCS from log data [30].

3. Methodology

An artificial neural network (ANN) is an artificial intelligence technique developed to enable
estimation, classification, identification, decision making by a machine program in various conditions
or situations. Different ANN structures are currently available; the simplest ANN structure is called
the multi-layered perceptron (MLP) which is used in this study. The MLP consists of a single input
layer, one or several hidden layers (mid-layers) and one output layer.

The performance of the ANN depends on many design parameters, such as the training/testing
dataset ratio, number of the hidden (training) layers, the number of neurons in each training layer, and
the training and transferring functions. The optimization of different combinations of these design
parameters requires a long computational time.
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Differential evolution (DE) is an accurate, reliable, fast, and robust optimization technique, which
has been used to solve effectively different numerical optimization problems. The main limitation
for the DE is the need to set the values of the DE control parameters which is problem-dependent,
thus, parameter tuning is time-consuming. Omran et al. [31] developed the self-adaptive differential
evolution (SaDE) algorithm, which does not require parameter tuning.

In this study, the SaDE optimization algorithm will be used to speed up the optimization process to
select the different design parameters of the ANN model to predict Estatic. A new empirical correlation
for estimating Estatic for sandstone reservoirs will be developed based on the extracted weights and
biases of the optimized ANN model.

3.1. Data Preparation

In this study, the ANN model was trained using well log data of bulk density, compressional time,
and shear time as inputs to predict the core-derived Estatic as an output. The input well log data has
been selected based on their correlation coefficient with Estatic, the importance of the input parameters
considered in this study in estimating Estatic is reported by several previous studies. Eissa and Kazi [20]
confirmed the ability of improving Estatic prediction by incorporating the formation density, and the
necessity of Edynamic, which is dependent on the compressional and shear transit times as reported by
several previous studies [21–24].

Data collected in this study are from four wells: 598 data points from Well-A; 34 data points from
Well-B; six data points from Well-C; and 11 data points from Well-D. The majority of the data belongs to
Well-A, therefore, it will be used to build and test the ANN model which will then be used to develop
an ANN-based correlation. The rest of the unseen data which was collected from Well -B, Well-C, and
Well-D will be used to validate the developed ANN-based correlation. All the study data are collected
from sandstone formations in the Middle East.

Data preparation and preprocessing are the most important steps to ensure a highly accurate
prediction of the objective property using any of the AI techniques [32]. As stated earlier the input
variables are log-derived, which will be used to predict a core-derived output. Thus, the first step in
this study is to perform a depth matching between the core-derived Estatic and the log data, gamma ray
log was considered to perform the data matching. Then, statistical analysis was performed on the
input and output parameters to remove data outliers. For the purpose of outlier removal, all parameter
values without a range of ±3.0 standard deviation are considered an outlier and not considered to
develop the ANN model. Six data points (outliers) from Well-A were removed in this process.

3.2. Training the ANN Model

The 592 data points of Well-A, log data, and their corresponding core-derived Estatic were
considered as valid data to build the ANN model. Sixty-nine percent (409 data points) of Well-A data,
were randomly selected to train the ANN model.

Table 1 summarizes the statistical analysis of the training dataset. The analysis shows that the
bulk density (ρb) for the input dataset ranges from 2.312–2.968 g/cm3; the compressional time (ΔTC)
ranges between 44.3 and 77.8 μsec/ft; the shear time (ΔTS) is between 73.2 and 136.1 μsec/ft; and Estatic

ranges from 7.5–92.8 GPa.
The relative importance of the input parameters is shown in Figure 1. The bulk density and

compressional time are strong functions on Estatic with correlation coefficients of 0.724 and−0.815, respectively,
while the Estatic dependence on the shear time is moderate with a correlation coefficient of 0.439.

Design parameters of the ANN model were optimized using the SaDE algorithm, the best
combination of design parameters is the one that enables prediction of the Estatic with the lowest
average absolute percentage error (AAPE), as well as highest correlation coefficient (R) and coefficient of
determination (R2). During the optimization process, we evaluated the performance of different training
functions such as Levenberg–Marquardt backpropagation (trainlm), gradient descent with momentum
backpropagation (traingdm), Gradient descent with adaptive learning rate backpropagation (traingda),
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Bayesian regularization backpropagation (trainbr), and conjugate gradient (traincgf); different transfer
functions such as tan-sigmoid (tansig), log-sigmoid (logsig), and pure line (purelin); number of hidden
layers from 1–3; and the number of neurons per each hidden layer from 5 to 30 on estimating the Estatic.

Table 1. Statistics of the training dataset.

Statistical
Parameter

ρb, g/cm3 ΔTC, μsec/ft ΔTS, μsec/ft Estatic, Gpa

Minimum 2.312 44.3 73.2 7.5
Maximum 2.968 77.8 136.1 92.8

Range 0.656 33.4 62.9 85.3
Standard Deviation 0.106 4.69 8.39 13.93

Sample Variance 0.011 22.0 70.3 194.0
Kurtosis 0.569 4.262 1.673 0.167

Skewness 0.011 1.569 0.564 0.186

Figure 1. The relative importance of the training dataset input parameter.

The SaDE algorithm was applied using MATLAB software developed by MathWorks (Natick,
Massachusetts, U.S.A.) to select the optimum combinations of the ANN design parameters. Based
on the optimization process, the combination of the parameters summarized in Table 2 was found to
optimize the ANN performance for Estatic prediction. As listed in Table 2, trainbr is the best training
function that optimizes the Estatic predictability of the ANN model. trainbr is a network training
function that updates the weight and bias values of for the ANN model based on Levenberg–Marquardt
optimization, and it determines the correct output variable after minimizing a combination of weights
and squared errors in a process called Bayesian regularization [33]. logsig is the optimum transfer
function. The use of a single hidden (training) function (i.e., a single layer) with 20 neurons also
optimized predictability of the ANN model for Estatic. Figure 2 shows the structure of the suggested
ANN model for Estatic prediction.

Table 2. Combination of the design parameters.

Parameter Value

Learning function trainbr
Transfer function logsig

Number of hidden layers 1
Number of neurons 20
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Figure 2. The designed structure for the ANN model with a single hidden layer and 20 neurons.

3.3. Evaluation and Validation of the Developed ANN-Based Empirical Correlation

The remaining 31% of the Well-A dataset, which comprises 183 data points, are considered for
evaluating the developed ANN-based empirical correlation. Model validation is important step that is
preferably performed on unseen data. The three wells (Well-B: 38 data points, Well-C: six data points,
and Well-D: 11 data points) are used in model validation. All testing and validation data are within
the range of the training data which used to develop the model to ensure high accuracy in predicting
Estatic. The ability of the developed ANN-based empirical correlation in evaluating the Estatic for the
validation data collected from Well-B will be compared with four of the available correlations, namely,
Eissa and Kazi [20], Canady [21], Najibi et al. [22], and Fei et al. [23] correlations are presented earlier
by Equations (2)–(5).

3.4. Evaluation Criterion

The predictive power of the developed ANN-based empirical correlation in estimating Estatic will
be evaluated based on the AAPE, R2, R, and visualization check.

4. Results and Discussion

4.1. Training the ANN Model

The ANN model was trained using 409 randomly selected data points of bulk density,
compressional time, and shear time as inputs, and core-derived Estatic as output. The training
data were collected from Well-A. The optimization process was conducted using the SaDE algorithm.
The optimized design parameters of ANN model are summarized in Table 2. Figure 3 shows the
well log data and their depth corresponding core-derived and predicted Estatic values for the training
dataset. As shown in Figure 3 the ANN model predicted the Estatic with very high accuracy where the
AAPE is only 0.98% and R equals 0.999. A visual check of the plot confirms the excellent matching
between the core-derived and the predicted Estatic.
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Figure 3. From left to right, bulk density, compressional transit time, shear transit time, and their
corresponding predicted and core-derived static Young’s modulus values of the training set of Well-A.

Figure 4 presents the cross-plot of the core-derived and the predicted Estatic of the training dataset.
The ANN model is highly accurate in estimating the Estatic as confirmed by the very high R2 of 0.9978.

Figure 4. Cross-plot of the core-derived and predicted Estatic of the training dataset.
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4.2. Developing the ANN-Based Empirical Correlation

The proposed ANN-based empirical model is given in Equations (6)–(10):

Esn =
N∑

i = 1

w2i

1

1 + e−(w1i,1ρbn+w1i,2 ΔTcn+w1i,3 ΔTsn+b1i )
+ b2 (6)

where Esn is the normalized Estatic, N represents the number of neurons in the hidden layer
(N = 20 neurons), i is the index of each neuron in hidden layer, w1i denotes the weight associated with
input and hidden layers for each input parameter, b1i is the bias associated with hidden and input
layers, w2i represents the weight associated with hidden and output layers, b2 is the bias associated
with hidden and output layers (b2 = −1.0767). All weights and biases associated with the hidden and
output layers are summarized in Table 3.

Table 3. The extracted weight and biases of the hidden layer of the optimized ANN model.

i w1i,1 w1i,2 w1i,3 b1i w2i

1 −4.368 20.303 −14.485 −3.638 5.437
2 −0.216 1.507 2.017 4.178 −2.494
3 1.792 −2.322 −21.160 −3.877 −4.132
4 0.269 0.057 −0.949 1.777 6.325
5 1.498 −19.164 3.620 6.726 9.261
6 13.802 12.907 −0.662 2.170 0.640
7 3.466 8.897 1.549 −3.110 4.174
8 −4.369 −0.142 17.692 1.732 5.813
9 −1.604 21.932 −1.059 −9.030 5.608
10 10.803 −12.301 24.520 16.752 9.748
11 14.298 13.932 0.070 0.895 −5.642
12 −49.173 −25.972 −1.332 15.768 9.929
13 −3.062 15.989 −11.554 −3.115 −4.766
14 −18.124 −17.674 0.206 −1.307 −3.944
15 40.409 23.746 0.690 −14.273 −11.118
16 6.280 3.526 −8.930 2.199 −0.945
17 7.010 3.251 −11.579 1.502 1.544
18 19.888 7.137 0.149 −8.787 −1.596
19 −32.100 −16.426 −1.400 11.426 −23.697
20 −3.053 1.125 19.499 2.853 −9.194

In Equation (6) the values of ρbn , ΔTcn , and ΔTsn are the normalized input parameters calculated
from Equations (7), (8), and (9) respectively:

ρbn = 2.994(ρb − 2.312) − 1 (7)

ΔTcn = 0.0578(ΔTc − 44.341) − 1 (8)

ΔTsn = 0.0318(ΔTs − 73.187) − 1 (9)

The computed value of Esn in Equation (6) is in the normalized form and should be converted to
real value by using Equation (10):

Es =
Esn + 1
0.0234

+ 7.4987 (10)

4.3. Testing the Developed ANN-Based Empirical Correlation

The developed ANN-based empirical correlation, Equations (6)–(10), was tested using the
183 unseen, randomly selected, data points from Well-A. Figure 5 compares the core-derived Estatic and
the estimated Estatic. As shown in Figure 5, the ANN-based empirical correlation predicted the Estatic

for the unseen data with very high accuracy, where the AAPE is only 1.46% and R is 0.998. A visual
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check of the plot in Figure 5 confirms the excellent matching between the core-derived and predicted
Estatic.

Figure 5. Predicted and core-derived Estatic of the testing data, Well-A.

Figure 6 presents the cross-plot of the core-derived and the predicted Estatic of the testing dataset.
The ANN-based empirical correlation is highly accurate in estimating the Estatic as confirmed by the
very high R2 of 0.9951.
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Figure 6. Cross-plot of the core-derived and predicted Estatic of the testing dataset.

4.4. Validation of the Developed ANN-Based Empirical Correlation

The developed ANN-based empirical correlation (Equations (6)–(10)) was finally verified using
38 data points from Well-B, six data points from Well-C, and 11 data points from Well-D. Figure 7
compares the core-derived Estatic of Well-B and the predicted Estatic that developed using ANN-based
empirical correlation.

 

Figure 7. Plot of the predicted and the core-derived Estatic for the validation datasets collected from
Well-B, Well-C, and Well-D.
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The plot in Figure 7 confirms the highly accurate predictive accuracy of the ANN-based empirical
correlation in estimating the Estatic; which is validated by the low AAPE of 3.8% and high R of 0.991 in
addition to the visual check of the plot. Similarly, the core-derived and the predicted Estatic values
for Well-C and Well-D were plotted in Figure 7. Due to the limited number of data points in Well-C
and Well-D, it was enough to check the predictive accuracy of the ANN-based empirical correlation
visually. In all three wells used in validation, the ANN-based empirical correlation was able to provide
a continuous profile of the predicted Estatic that conforms to the available core-derived values.

Figure 8 presents the cross-plot of the core-derived and the predicted Estatic of the 38 data points
of Well-B, which are used in validating the ANN-based empirical correlation. This plot affirms the
high accuracy of the developed ANN-based empirical correlation in estimating Estatic as confirmed by
the very high R2 of 0.9816.

Figure 8. Cross-plot of the core-derived and predicted Estatic of the validation dataset.

4.5. Comparing the Developed ANN-Based Empirical Correlation to the Available Correlations

Predictive accuracy of the ANN-based empirical correlation was compared with the accuracy of
four available developed correlations. Data collected from Well-B was used for the purpose of this
comparison. Figure 9 compares predictive accuracy of the ANN-based correlation with the accuracy
of Eissa and Kazi [20], Canady [21], Najibi et al. [22], and Fei et al. [23], correlations in estimating
Estatic for the validation dataset of Well-B. Eissa and Kazi [20], Canady [21], Najibi et al. [22], and
Fei et al. [23] correlations are presented earlier by Equations (2)–(5). As indicated in Figure 9, the
ANN-based correlation overperformed all the four correlations in evaluating = Estatic with an AAPE of
3.80% compared to an AAPE of 37.2%, 36.3%, 61.7%, and 68.5% for the Estatic values predicted using
Eissa and Kazi [20], Canady [21], Najibi et al. [22], and Fei et al. [23]. These results confirm the high
accuracy of the developed ANN-based empirical correlation for Estatic estimation.
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Figure 9. Comparison between predictive accuracy of Eissa and Kazi [20], Canady [21], Najibi et al. [22],
Fei et al. [23], and ANN-based correlations in estimating Estatic for the validation dataset of Well-B.

5. Conclusions

In this study, self-adaptive differential evolution (SaDE) was employed to optimize the ANN
design parameters to predict the static Young’s modulus (Estatic) for sandstone formations using well
log data of the bulk density, compressional time, and shear time. The ANN model was trained and
tested using real field measurements of 592 data points. Based on the results of this study, the following
points are concluded:

1. The developed ANN model was capable of estimating Estatic for the training dataset with very
high accuracy, as indicated by the low AAPE of 0.98%, very high R of 0.999, and R2 of 0.9978.
The ANN-based empirical correlation was able to predict Estatic for the testing dataset (unseen)
accurately; the Estatic values of the testing dataset were estimated with AAPE, R, and R2 values of
1.46%, 0.998, and 0.9951, respectively.

2. The developed empirical correlation was validated using a dataset composed of unseen 55
data points of three wells. Validating the developed correlation using the dataset of Well-B (38
points) revealed a highly accurate prediction of the developed correlation where AAPE, R and R2

valueswere 3.8, 0.991 and 0.9816 respectively.
3. The ANN-based empirical correlation is useful in predicting continuous profile of static Young’s

modulus for sandstone formation using conventional log data, bulk density, shear transit time
and compressional transit time when there are no available cores.

4. Comparing the predictive accuracy of the ANN-based correlation with four of the available
empirical equations confirmed the high accuracy of the ANN-based correlation which was able
to estimate the Estatic for the validation data of Well-B with an AAPE of 3.8% compared with an
AAPE of more than 36.0% for all available correlations.
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Nomenclature

AAPE Average absolute percentage error
ANN Artificial neural networks
ΔTC Compressional transit time
ΔTS Shear transit time
E Young’s modulus
Estatic Static Young’s modulus
Edynamic Dynamic Young’s modulus
logsig Log-sigmoid
R Correlation coefficient
R2 Coefficient of determination
ρb Bulk density
SaDE Self-adaptive differential evolution
trainbr Bayesian regularization backpropagation

References

1. Fjaer, E.; Horsrud, H.P.; Raaen, A.M.; Risnes, R. Petroleum Related Rock Mechanics; Elsevier B. V.: Amsterdam,
The Netherlands, 2008.

2. Chang, C.; Zoback, M.D.; Khaksar, A. Empirical relations between rock strength and physical properties in
sedimentary rocks. J. Pet. Sci. Eng. 2006, 51, 223–237. [CrossRef]

3. Gatens, J.M.; Harrison, C.W.; Lancaster, D.E.; Guldry, F.K. In-situ stress tests and acoustic logs determine
mechanical properties and stress profiles in the devonian shales. SPE Form. Eval. 1990, 5, 248–254. [CrossRef]

4. Nes, O.M.; Fjaer, E.; Tronvoll, J.; Kristiansen, T.G.; Horsrud, P. Drilling time reduction through an integrated
rock mechanics analysis. J. Energy Res. Technol. 2012, 134, 2802:1–2802:7. [CrossRef]

5. Meyer, B.R.; Jacot, R.H. Impact of stress-dependent Young’s moduli on hydraulic fracture modeling. In
Proceedings of the 38th U.S. Symposium on Rock Mechanics, Washington, DC, USA, 7–10 July 2001.
ARMA-01-0297.

6. Howard, G.C.; Fast, C.R. Hydraulic Fracturing. In Doherty Memorial Fund of AIME, Society of Petroleum
Engineers of AIME; Henry L.: New York, NY, USA, 1970; Monograph Volume 2 of SPE.

7. Barree, R.D.; Gilbert, J.V.; Conway, M.W. Stress and rock property profiling for unconventional reservoir
stimulation. In Proceedings of the SPE Hydraulic Fracturing Technology Conference, The Woodlands, TX,
USA, 19–21 January 2009. SPE-118703-MS.

8. Colin, C.; Potter, S.; Darren, F. Formation elastic parameters by deriving S-wave velocity logs. CREWES Res.
1997, 9, 1–10.

9. King, M.S. Wave Velocities in Rocks as a Function of Changes in Over burden Pressure and Pore Fluid
Saturants. Geophysics 1966, 31, 50–73. [CrossRef]

10. Rinehart, J.S.; Fortin, J.-P.; Baugin, P. Propagation Velocity of Longitudinal Waves in Rock. Effect of State
of Stress, Stress Level of the Wave, Water Content, Porosity, Temperature Stratification and Texture. In
Proceedings of the 4th Symposium on Rock Mechanics, University Park, PA, USA, 30 March–1 April 1961.
ARMA-61-119.

11. Simmons, G.; Brace, W.I. Comparison of Static and Dynamic Measurements of Compressibility of Rocks.
J. Geophys. Res. 1965, 70, 5649–5656. [CrossRef]

12. Abdulraheem, A.; Ahmed, M.; Vantala, A.; Parvez, T. Prediction of Rock Mechanical Parameters for
Hydrocarbon Reservoirs Using Different Artificial Intelligence Techniques. In Proceedings of the Saudi
Arabia Section Technical Symposium, Al-Khobar, Saudi Arabia, 9–11 May 2009. SPE-126094-MS.

244



Energies 2019, 12, 2125

13. Larsen, I.; Fjær, E.; Renlie, L. Static and Dynamic Poisson’s Ratio of Weak Sandstones. In Proceedings of the 4th
North American Rock Mechanics Symposium, Seattle, WA, USA, 31 July–3 August 2000. ARMA-2000-0077.

14. Bai, P. Experimental research on rock drillability in the center of junggar basin. Electron. J. Geotech. Eng. 2013,
18, 5065–5074.

15. Ca, H.; Xi, L.; Guo, L. Rock mechanics study on the safety and efficient extraction for deep moderately
inclined medium-thick orebody. Electron. J. Geotech. Eng. 2015, 20, 11073–11082.

16. Li, P.; Liu, X.; Zhong, Z. Mechanical Property Experiment and Damage Statistical Constitutive Model of
Hongze Rock Salt in China. Electron. J. Geotech. Eng. 2015, 20, 81–94.

17. King, M.S. Static and Dynamic elastic moduli of rocks under pressure. In Proceedings of the 11th U.S.
Symposium on Rock Mechanics, Berkeley, CA, USA, 16–19 June 1969. ARMA-69-0329.

18. Wang, Z.; Nur, A.A. Dynamic versus static elastic properties of reservoir rocks. J. Seism. Acoust. Veloc. Res.
Rocks 2000, 19, 531–539.

19. Khaksar, A.; Taylor, P.G.; Fang, Z.; Kayes, T.; Salazar, A.; Rahman, K. Rock strength from core and logs, where
we stand and ways to go. In Proceedings of the EUROPEC/EAGE conference and exhibition, Amsterdam,
The Netherlands, 8–11 June 2009. SPE-121972-MS.

20. Eissa, E.A.; Kazi, A. Relation between static and dynamic Young’s moduli of rocks. Int. J. Rock Mech. Min.
Sci. Geomech. Abstr. 1988, 25, 479–482. [CrossRef]

21. Canady, W.J. A Method for Full-Range Young’s Modulus Correction. Presented at the North American
Unconventional Gas Conference and Exhibition, The Woodlands, TX, USA, 14–16 June 2011. Paper
SPE-143604-MS. [CrossRef]

22. Najibi, A.R.; Ghafoori, M.; Lashkaripour, G.R.; Asef, M.R. Empirical relations between strength and static
and dynamic elastic properties of Asmari and Sarvak limestones, two main oil reservoirs in Iran. J. Pet. Sci.
Eng. 2015, 126, 78–82. [CrossRef]

23. Fei, W.; Huiyuan, B.; Jun, Y.; Yonghao, Z. Correlation of Dynamic and Static Elastic Parameters of Rock.
Electron. J. Geotech. Eng. 2016, 21, 1551–1560.

24. Mahmoud, M.A.; Elkatatny, S.A.; Ramadan, E.; Abdulraheem, A. Development of Lithology-Based Static
Young’s Modulus Correlations from Log Data Based on Data Clustering Technique. J. Pet. Sci. Eng. 2016,
146, 10–20. [CrossRef]

25. Tariq, A.; Elkatatny, S.A.; Mahmoud, M.A.; Zaki, A.; Abdulraheem, A. A New Approach to Predict Failure
Parameters of Carbonate Rocks using Artificial Intelligence Tools. In Proceedings of the SPE Kingdom of
Saudi Arabia Annual Technical Symposium and Exhibition, Dammam, Saudi Arabia, 24–27 April 2017.
SPE-187974-MS.

26. Elkatatny, S.M.; Tariq, Z.; Mahmoud, M.A.; Abdulraheem, A.; Abdelwahab, A.Z.; Woldeamanuel, M.
An Artificial Intelligent Approach to Predict Static Poisson’s Ratio. In Proceedings of the 51st US Rock
Mechanics/Geomechanics Symposium, San Francisco, CA, USA, 25–28 June 2017. ARMA 17-771.

27. Tariq, Z.; Elkatatny, S.M.; Mahmoud, M.A.; Abdulazeez, A. A Holistic Approach to Develop New Rigorous
Empirical Correlation for Static Young’s Modulus. In Proceedings of the Abu Dhabi International Petroleum
Exhibition & Conference, Abu Dhabi, UAE, 7–10 November 2016. SPE-183545-MS.

28. Tariq, Z.; Elkatatny, S.M.; Mahmoud, M.A.; Abdulazeez, A. A New Artificial Intelligence Based Empirical
Correlation to Predict Sonic Travel Time. In Proceedings of the International Petroleum Technology
Conference, Bangkok, Thailand, 14–16 November 2016. IPTC-19005-MS.

29. Tariq, Z.; Elkatatny, S.M.; Mahmoud, M.A.; Abdulraheem, A.; Abdelwahab, A.Z.; Woldeamanuel, I.M.
Development of New Correlation for Unconfined Compressive Strength for Carbonate Reservoir Using
Artificial Intelligence Techniques. In Proceedings of the 51st US Rock Mechanics/Geomechanics Symposium,
San Francisco, CA, USA, 25–28 June 2017. ARMA 17-428.

30. Tariq, Z.; Elkatatny, S.M.; Mahmoud, M.A.; Abdulraheem, A.; Abdelwahab, A.Z.; Woldeamanuel, M.
Estimation of Rock Mechanical Parameters using Artificial Intelligence Tools. In Proceedings of the 51st US
Rock Mechanics/Geomechanics Symposium, San Francisco, CA, USA, 25–28 June 2017. ARMA 17-301.

31. Omran, M.G.H.; Salman, A.; Engelbrecht, A.P. Self-adaptive Differential Evolution. In Computational
Intelligence and Security; Hao, Y., Liu, J., Wang, Y., Cheung, Y.-m., Yin, H., Jiao, L., Ma, J., Jiao, Y.-C., Eds.; CIS
2005. Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3801.

245



Energies 2019, 12, 2125

32. Al-Anazi, A.F.; Gates, I.D. A support vector machine algorithm to classify lithofacies and model permeability
in heterogeneous reservoirs. Eng. Geol. 2010, 114, 267–277. [CrossRef]

33. MathWorks. Available online: https://www.mathworks.com/help/deeplearning/ref/trainbr.html;jsessionid=
7cc70c77fdb3f0bb58ed870c69c7 (accessed on 1 April 2019).

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

246



MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Energies Editorial Office
E-mail: energies@mdpi.com

www.mdpi.com/journal/energies





MDPI  
St. Alban-Anlage 66 
4052 Basel 
Switzerland

Tel: +41 61 683 77 34 
Fax: +41 61 302 89 18

www.mdpi.com ISBN 978-3-03928-890-8 


	Blank Page

