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1. Introduction

Anthropogenic greenhouse gas emissions are dramatically influencing the environment, and
research is strongly committed in proposing alternatives, mainly based on renewable energy sources [1].
Low-greenhouse gas (GHG) electricity production from renewables is well established, but issues of
grid balancing are limiting its development. Energy storage is a key topic for the further deployment
of renewable energy production [2]. Besides battery and other types of electrical storage, electrofuels
and bioderived fuels may offer suitable alternatives in some specific scenarios [3,4]. This Special Issue
welcomed contributions on energy conversion technologies and use, energy storage, technologies
integration, e-fuels, and pilot and large-scale applications.

2. Technologies for Production and Storage: Enabling Larger Renewable Energy Uptake

In light of the above, this Special Issue collected the latest research papers on relevant topics about
energy production and use. As the predictability of the output from a power production plant is a key
element for a stable, reliable energy infrastructure [5], the Special Issue welcomed the paper “Improved
Probability Prediction Method Research for Photovoltaic Power Output” by Ze Cheng, Qi Liu, and
Wen Zhang. In this interesting piece of work, the authors presented probabilistic prediction methods.
The results showed that existing models can be improved to increase the predictability in photovoltaic
plants power output.

Interestingly, most of the received papers touched, directly or indirectly, the use of alternative
sources of energy for the transport sector. According to a recent International Energy Agency report [6],
emissions from transport are continuing to rise, and several modes of transport appear complex to
decarbonize. This topic is challenging, and many papers in this Special Issue present interesting
analysis and technical solutions.

In “Is Deployment of Charging Station the Barrier to Electric Vehicle Fleet Development in EU
Urban Areas? An Analytical Assessment Model for Large-Scale Municipality-Level EV Charging
Infrastructures” by Giacomo Talluri, Francesco Grasso, and David Chiaramonti, the authors investigated
the minimum charging infrastructure size and cost for two typical EU urban areas (Florence and
Brussels). The analysis shows how policy can steer the deployment of infrastructures, especially with
respect to the distribution of fast vs. slow/medium charging stations (CS). Interestingly, the authors
pointed out that the critical barrier for CS development in the two urban areas is likely to become
the time needed to install CS in the urban context, rather than the related additional electric power
and costs.

Again on the possibility to use electricity to decarbonize transport modes, the Special Issue
contains an interesting paper titled: “PTG-HEFA Hybrid Refinery as Example of a SynBioPTx
Concept—Results of a Feasibility Analysis” by Franziska Müller-Langer, Katja Oehmichen, Sebastian
Dietrich, Konstantin M. Zech, Matthias Reichmuth, and Werner Weindorf. The work analyses the
aviation sector, considering that limited alternative fuels for a CO2-neutral aviation sector have already
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been accepted by ASTM-certificarion process [7]. Among others, synthetic paraffinic kerosene from
hydrotreated esters and fatty acids (HEFA–SPK) is a sustainable aviation fuel. This fuel can be produced
via power-to-gas pathways, and alternative scenarios on feedstocks, electricity supply, necessary
hydrogen supply, and different main products are analyzed. As a result, the attainment of at least 50%
GHG mitigation might be possible: this highly depends on the renewability grade of the hydrogen
provision as well as on the used feedstock. The scenario in which hydrogen is produced by steam
reforming of internally produced naphtha proves to be the best combination of highly reduced GHG
emissions and low HEFA–SPK production costs.

Energy storage can also be based on chemical molecules. Ethanol production from cellulosic
material is considered one of the most promising options for future biofuel production contributing to
both energy diversification and decarbonization of the transport sector [8], especially where electricity
is not a viable option (e.g., aviation). In the paper “What is Still Limiting the Deployment of Cellulosic
Ethanol? Analysis of the Current Status of the Sector” by Monica Padella, Adrian O’Connell, and
Matteo Prussi, a comprehensive overview of the status of cellulosic ethanol production in the EU and
outside the EU is presented. This was made by reviewing the available literature and highlighting
technical and non-technical barriers that still limit cellulosic ethanol production at a commercial
scale. The review shows that the cellulosic ethanol sector appears to be still stagnating, characterized
by technical difficulties as well as high production costs. Competitiveness issues against standard
starch-based ethanol are evident, considering many commercial-scale cellulosic ethanol plants appear
to be currently in idle or on-hold states.

Beside road and aviation, maritime transport is a mode of transport that is seeking low-GHG
alternatives [9]. In the paper “Analysis of Internal Gas Leaks in an MCFC System Package for an
LNG-Fueled Ship” by Gilltae Roh, Youngseung Na, Jun-Young Park, and Hansung Kim, a 300 kW
molten carbonate fuel cell (MCFC) for maritime application system was studied. The paper presented
the challenge to ensure safety in case of a gas leak by applying computational fluid dynamics
(CFD) techniques.

On the same subject, the paper “Analysis of a Supercapacitor/Battery Hybrid Power System for a
Bulk Carrier” by Kyunghwa Kim, Juwan An, Kido Park, Gilltae Roh, and Kangwoo Chun, presented
a hybrid power system combining conventional diesel generators with two different energy storage
systems (ESSs) (lithium-ion batteries (LIB) and supercapacitors (SC)) focused on port operations
of ships. The results show that the proposed system can reduce emissions (CO2, SOx, and NOx)
substantially and has a short payback period, particularly for ships that have a long cargo handling
time or visit many ports with a short-term sailing time.

3. Perspectives on the Future of Research and Developments

All the interesting received contributions allowed covering a wide range of applications of
alternative energy, expanding the original borders and definitions of the Special Issue. Although the
Special Issue is now closed, more in-depth research in renewable energy technologies is expected.
The papers received and the interaction with the author have encouraged us to propose a new Special
Issue titled: “Frontier Trends of Renewable Energy Production and Storage Technologies”.

This new Special Issue is looking for contributions on these topics, and MDPI and the editors of
the journal Applied Sciences are delighted to have the privilege of publishing this Special Issue.

We would like to thank all the authors who contributed to the success of the Special Issue
“Cutting-Edge Technologies for Renewable Energy Production and Storage” and we look forward to
new interesting papers.

Acknowledgments: This issue would have not been possible without the contributions of various talented
authors, hardworking and professional reviewers, and the dedicated editorial team of Applied Sciences. As the
Editor, I would like to congratulate all authors. Finally, I would like to take this opportunity to record my sincere
gratefulness to all reviewers and place on record the gratitude towards the editorial team of Applied Sciences, with
special thanks to Damaris Zhao from MDPI Branch Office.
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Abstract: Due to solar radiation and other meteorological factors, photovoltaic (PV) output is
intermittent and random. Accurate and reliable photovoltaic power prediction can improve the
stability and safety of grid operation. Compared to solar power point prediction, probabilistic
prediction methods can provide more information about potential uncertainty. Therefore, this paper
first proposes two kinds of photovoltaic output probability prediction models, which are improved
sparse Gaussian process regression model (IMSPGP), and improved least squares support vector
machine error prediction model (IMLSSVM). In order to make full use of the advantages of the
different models, this paper proposes a combined forecasting method with divided-interval and
variable weights, which divides one day into four intervals. The models are combined by the optimal
combination method in each interval. The simulation results show that IMSPGP and IMLSSVM have
better prediction accuracy than the original models, and the combination model obtained by the
combination method proposed in this paper further improves the prediction performance.

Keywords: PV; probability prediction; sparse Gaussian process regression; least squares support
vector machine; combination method

1. Introduction

At present, the average natural gas storage in the world is 53 years. There is more coal in storage
than oil and natural gas, and the world’s coal storage capacity is 15,980 tons, which can be mined
for about 200 years [1]. It can be seen that a shortage of fossil fuels is imminent. Photovoltaic (PV)
power generation has developed rapidly in the world in recent years due to its advantages in meeting
energy demands, reducing environmental pollution, and improving energy structure [2]. As a result of
solar radiation and other factors, PV power output has high volatility and randomness, and with the
increase of photovoltaic grid-connected capacity, this adverse impact will bring more and more risks
to grid operation. Therefore, accurate prediction of photovoltaic power generation will be of great
significance to the stability and safety of grid dispatching and power systems [3].

In many previous studies, the prediction of photovoltaic power generation based on physical
models has shown great progress. Zhang et al. [4] established the basic model of the photovoltaic cell
and photoelectric conversion efficiency based on the principle of photovoltaic power generation and
photoelectric conversion efficiency model. Then empirical formulas affecting photoelectric conversion
efficiency were obtained, and reasonable empirical parameters were selected to predict PV output
power. Dolara et al. [5] proposed the three-parameter, four-parameter, and five-parameter equivalent
circuit model comparison method for photovoltaic cells and two thermal models for estimating battery
temperature, which can achieve better accuracy with fewer parameter solutions. However, the creation
of physical model and parameter solving process are complicated, and the anti-interference ability of
the model is poor.

With the development of machine learning technology and computer hardware capabilities,
an increasing number of machine learning and statistical regression methods have been applied

Appl. Sci. 2019, 9, 2043; doi:10.3390/app9102043 www.mdpi.com/journal/applsci5
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to the field of photovoltaic power generation prediction. This includes artificial neural network
algorithms [6], support vector machine (SVM) algorithms [7,8], the ARMAX algorithm [9], the Markov
chain algorithm [10], and so on. Chen et al. [11] proposed a neural network-based photovoltaic power
generation prediction model that can predict power generation under different weather conditions one
day in advance. Chen et al. [12] proposed a solar irradiance prediction method based on the support
vector machine algorithm. This method uses different kernel functions to predict solar irradiance,
which are then compared. Based on the ARMAX algorithm, Li et al. [13] considered meteorological
factors to obtain more-accurate prediction results. A photovoltaic power generation prediction model
based on an improved Markov chain was proposed by Ding [14]. The Markov chain is mainly used to
correct the residual of the prediction model to improve accuracy. However, these algorithms have
obvious defects. It is easy for the neural network algorithm to fall into the local minimum, and the
model is not well explained. The support vector machine has limited processing ability for large
samples of data, and the time series method has weak non-stationary processing ability. Many scholars
have improved the efficiency of models by improving the algorithm. Eseye et al. [15] used the particle
swarm optimization (PSO) to optimize the normalization parameters and kernel parameters of SVM.
The back propagation (BP) neural network algorithm was improved by combining the momentum
term with the variable learning rate, so the defects—the traditional BP learning algorithm is liable to
fall into local minimum points, and has a slow convergence rate—were remedied. The improved BP
neural network is used to improve the predictive performance [16].

The output of PV generation is restricted by its external environment, and the weather has a greater
impact on photovoltaic systems. In order to reduce the impact of weather, data are classified according
to the type of the weather. Some results prove that such methods have a better performance [17,18].
In most models, only conventional variables such as temperature, humidity, and wind speed are
generally considered, so the accuracy of these models will decrease under extreme weather conditions.
The aerosol index (AI) can indicate that there is a strong linear relationship between particulate matter
in the atmosphere and solar radiation attenuation, which has a potential impact on the energy generated
by photovoltaic panels. In [19], based on the classification of seasons, AI can be used as an additional
input parameter to adapt to the complicated environment. The drawback of these methods, then, is
that the accuracy of models depends largely on the accuracy of the weather classification.

The accuracy of predictive models based on statistical learning depends mainly on a large amount
of historical data. However, historical data contains complex information, and there is redundant
information that may not be necessary. Not all weather factors have a significant impact on PV
output, so we need to extract or remove information from historical data to reduce the complexity
of models. In [20], it is shown that temperature and insolation are positively correlated with PV
power, humidity is negatively correlated with PV power, and wind speed has no obvious correlation
with PV power by the correlation analysis. Therefore, air temperature, humidity, insolation, and
historical PV power can be selected as inputs to the prediction model to reduce the complexity of
the data. Zhu et al. [21] proposed a PV output prediction method combining wavelet decomposition
and the artificial neural network (ANN) algorithm. After separating the useful information and
the interference information by wavelet decomposition, the neural network model is used to obtain
the predicted power value. Malvoni et al. [22] combined the quadratic Renyi entropy criteria with
principal component analysis (PCA) to reasonably reduce the data dimension and use least squares
support vector machines (LSSVM) to predict future PV power. This model can facilitate calculation,
while improving accuracy. In addition, it has been found that the introduction of image data can
also improve prediction accuracy. Marquez et al. [23] proposed a method for combining solar cloud
image data and artificial neural network models to predict solar irradiance. Zhu Xiang et al. [24]
used cloud information and cloud maps in numerical weather prediction (NWP) to predict the power
attenuation caused by cloud clusters blocking photovoltaic power plants over the subsequent 4 hours,
then corrected the predicted values to improve the accuracy of model prediction. This type of method
requires more advanced experimental equipment, however.
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Most of the research has aimed to predict a certain value at a certain moment, but it is difficult
for point prediction values to express the uncertainty of the prediction result, which will affect power
grid scheduling and the stability of the power system. Compared with point prediction, probabilistic
prediction makes up for the shortcoming that point prediction cannot measure the uncertainty of
prediction results [25]. Due to the uncertainty of solar resources and the inherent defects of the
prediction model, the point prediction error of solar power cannot be avoided, and the defect that the
point prediction result cannot make a quantitative description of the uncertainty of solar power is
difficult to overcome. In terms of the application of solar power, there needs to be a relatively accurate
estimation of the fluctuation range of solar power, which requires planning, operation, safety, and
stability analysis of the power grid (including solar power generation). The probabilistic prediction
of solar power generation expands the connotations of solar power generation prediction, and can
provide the probability distribution of PV power generation. The diversity of probability distribution
at different time points can provide power system policymakers with an abundance of uncertain
information, including economic dispatch, rotating standby arrangement, and electricity market price
optimization problems. In a word, the probabilistic prediction method can give the possible PV power
value and its probability distribution in the next moment, and provide more-comprehensive prediction
information [26]. However, the current research on probability prediction in the field of photovoltaic
power generation is still in its infancy. Fatemi et al. [27] proposed two parametric probability prediction
methods for predicting solar irradiance by β-distribution and bilateral power distribution, effectively
predicting solar irradiance and accurately describing its stochastic characteristics. Fonseca et al. [28]
assumed the prediction error distribution as the normal distribution and the Laplacian distribution.
The probability distribution of the generated power and the confidence interval value at different
confidence levels was then obtained by the maximum likelihood estimation method. Almeida et al. [29]
used the meteorological data obtained by NWP as input data, and a probability prediction model
based on a quantile regression prediction algorithm was established to study the probability prediction
of photovoltaic power generation. Mohammad et al. [30] combined the probability distribution theory
with the Gaussian mixture method, and the prediction results are consistent with the actual probability
distribution of photovoltaic power under different weather conditions.

Considering that PV output is affected by many weather factors, and that the complexity of a model
will increase if too many variables exist, this paper preprocesses the original data set based on feature
selection and similar sample classifications. It is difficult for the point prediction method to express
the uncertainty of prediction results. Two improved photovoltaic power generation probabilistic
prediction models are proposed in this paper to improve the preliminary prediction performance.
The idea of traditional combination methods is to combine different algorithms to optimize a certain
prediction model without changing the essential structure of the models. Through analysis, it was
found that different models had different advantages during different periods of time. In order to
improve the prediction accuracy by contributing to the advantages of the different models, a new
probability prediction model with multi-interval and variable weight is proposed. The method is
applied to handle the uncertainties of photovoltaic power generation for the first time, to the best of
our knowledge.

The major contributions and innovations of this paper are as follows:
1. The improved grey wolf optimization algorithm is used to optimize the sparse Gaussian process

model and the least squares support vector machine model. The better super-parameter values are
obtained, which improve accuracy.

2. An error correction probability prediction model based on improved least squares support
vector machine (IMLSSVM) is proposed. The model can be corrected by using the historical error
distribution to realize the probability prediction model under the premise of realizing point prediction.

3. A piecewise optimal combination model is proposed that uses different combined weighting
coefficients in different periods to make full use of different prediction models.

7
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2. Single Improved Prediction Model

In this part, two improved prediction models will be introduced. The Gaussian process (GP) is a
generalization of the Gaussian probability distribution. The sparse Gaussian process regression (SPGP)
model is a supervised learning model based on Bayesian theory and statistical theory. Least squares
support vector machine (LSSVM) is a machine learning algorithm based on statistical learning theory.
In order to obtain the optimal solution of the super-parameters, the improved grey wolf optimization
algorithm was used to solve the super-parameters of the SPGP model and LSSVM. In this paper,
improved SPGP model and LSSVM model are used to predict photovoltaic power, respectively.

2.1. Improved Sparse Gaussian Process Regression Model

2.1.1. Sparse Gaussian Process Regression

In the Gaussian process (GP) [31] model, it is assumed that the prior distribution of the observed
values is y given by a Gaussian whose mean is zero and whose covariance is defined by a Gram matrix
K + σ2

nI so that
y ∼ N(0, K + σ2

nI) (1)

where K = k(xn,xn) with k as the kernel function. For a new input X∗, a prediction of the target variable f∗
can be made by using the rules for conditioning Gaussians. The predictive distribution f∗ is a Gaussian
distribution with mean f∗ and covariance cov(f∗). The posterior distribution of the predicted values is

f∗
∣∣∣X, y, X∗ ∼ N(f∗, cov(f∗)) (2)

where f∗ = E[f∗|X, y, X] = K(X*, X)[K(X, X) + σ2
nI]
−1

y, cov(f∗) = σ2
n + K(X*, X∗) −K(X*,X)(K(X, X)+

σ2
nI)
−1 ∗K(X, X∗).
In this paper, the commonly used automatic relevance determination function is chosen as the

covariance function.
k(xp, xq) = σ

2
f exp(− 1

2l2
‖xp − xq‖2) + σ2

nδpq (3)

where xp, xq are the variables of training or test sets, l, σf, σn are the hyper-parameters, and δpq is the
symbolic function.

A main drawback of GP is its high time complexity. A training process requires inverting a
matrix K+σn

2I, which costs O(n3). In order to solve this problem, in this paper, an SPGP model that
adopts the fully independent training conditional approximation (FITC) approximation method [32]
is introduced. The FITC method adopts a pseudo dataset D and uses M samples to approximately
simulate the original dataset, where the number of samples M <<N. So the posterior distribution f

over pseudo targets X can be obtained.

p(f|D, X) =N(KMQ−1
M KMN(Λ + σ2I)

−1
y, KMQ−1

M KM) (4)

where [KM]mm′ = K(xm, xm′ ), QM = KM + KMN(Λ + σ2I)
−1

KNM, [KMN]mn = K(xm, xn), and Λ =

diag(λ), λn = Knn − k�n K−1
M kn. Finally, predictive distribution of test data y∗ can be obtained and it is a

Gaussian distribution with mean μ∗ and covariance σ2∗ .

p(y∗|x∗, D, X) =

∫
p(f|D, X)p(y∗|x∗, X, f)df = N(μ∗, σ2∗ ) (5)

where μ∗ = k�∗ Q−1
M KMN(Λ + σ2I)

−1
y, σ2∗ = K∗∗ − k�x (K−1

M − Q−1
M )k∗ + σ2, σ2∗ = K∗∗ − k�x (K−1

M −
Q−1

M )k∗ + σ2.

The matrix KMN(Λ + σ2I)
−1

KNM is O(M2N). Since M is much less than N, the computational
costs are lower than those of the GP.

8
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2.1.2. Improved Grey Wolf Optimization Algorithm

Because the SPGP model is complicated and the concavity and convexity of the optimization
problem formula (Equation (7) cannot be judged intuitively, traditional convex optimization methods
may not be applicable to the solution of the hyper-parameter in the SPGP model. Moreover, because
this method relies too heavily on initial values, it falls easily into local optimum. Therefore, this paper
introduces an improved grey wolf optimization algorithm to optimize the hyper-parameter. Grey wolf
optimization (GWO) is a heuristic population intelligent optimization algorithm proposed by Mirjalili
in 2014 [33]. It has the advantages of simple principles, less parameters and a strong global search
ability, but there is still much room for improvement in the algorithm.

When dealing with the optimization problem, it is assumed that in the D-dimensional search space,
the number of grey wolves is N, and the position of the i-th wolf is defined as Xi = (X1

i , · · · , XD
i ), where

Xk
i indicates the position of the i-th wolf in the k-th dimension. This paper will improve the algorithm

to obtain an improved grey wolf optimization (IMGWO) according to the following three aspects:
(1) Opposition-based learning algorithm: The initial population is obtained by randomly generated

methods in the GWO algorithm. However, the initial population will affect the search efficiency and
the quality of the solution. Therefore, this paper adopts the method of opposition-based learning to
generate a diverse initial population. Assuming that there is a number x in [m, n], the opposite point of
x is defined as x’ = m+n−x.

(2) Nonlinear convergence factor: A common problem facing optimization algorithms is how to
balance a global search ability with a local search ability. In GWO, the convergence factor decreases
linearly from 2 to 0 over the course of iterations. It cannot reflect the actual search process because
the process is not linear. Therefore, in this paper, a new non-linear convergence factor is proposed:
→
a = 2− 2(k/K))n, where k indicates the current iteration, K is the maximum number of iterations, n is
the attenuation order, and n is 3.

(3) Dynamic weight updating: In the stage of position updating, GWO uses an equal weight
method that ignores the different characteristics of alpha, beta, and delta. The wolves have different
importance for the population, so we need different weights to reflect the different importance. In this
paper, fitness values are used to describe the importance of wolves. Equation (6) is adopted to update
location information: →

X(t + 1) =wα
→
X1 + wβ

→
X2 + wσ

→
X3 (6)

where wi = f (Xi(t))/( f (Xα(t))+ f (Xβ(t))+ f (Xδ(t)))(i = α, β, δ) is the weight coefficient, f (Xi(t)) is

the fitness value, and
→
Xi(i = α, β, δ) is the position of the wolf.

In this paper, the flow chart of the GWO algorithm is given, as shown in Figure 1.
The main difficulty of SPGP lies in the solution of the hyper-parameters. In order to obtain

the hyper-parameters, this paper adopts the sum of root mean square error (RMSE) and continuous
ranking probability score (CRPS) as a target fitness. The fitness is shown as:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min(RMSE + CRPS)

s.t.0 ≤ RMSE ≤ 1
0 ≤ CRPS ≤ 1

(7)
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Update the first  three  
positions of wolves

t=t+1

N

  Calculate the fitness of 
all search agents
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of iterations

Determine the optimal 
solution

Y

end

start

 Initialize 
the grey wolf population 

 Calculate the fitness of 
each search agent

Obtain the first  three  
positions of wolves

Figure 1. The flow chart of grey wolf optimization algorithm.

2.2. Improved Least Squares Support Vector Machine Error Prediction Model

2.2.1. Improved Least Squares Support Vector Machine

Because of the quadratic programming problem under the constraint of inequality in the support
vector machine, the calculation amount is large. In order to improve the calculation speed, Vandewallw
et al. [34] proposed LSSVM in 1999, and converted the inequality constraint into an equality constraint.
The complex convex quadratic programming problem is transformed into a linear equation solution.
Its optimization objective function is as follows:

min{ 12 w ·w + C
2

n∑
i=1
ε2

i }
s.t.yi = w ·ϕ(xi) + b + εi, i = 1, 2 · · · , n

(8)

where w is the weight coefficient vector, C and b are constants, and εi is the error.
In order to solve the minimization problem, the Lagrangian function method is used.

L(w, b, εi,α) =
1
2

w ·w +
C
2

n∑
i=1

ε2
i −

n∑
i=1

αi[w ·ϕ(xi) + b + εi − yi] (9)

where α is Lagrangian factor.
Then we need to take the derivative of these parameters:

∂L
∂w = w− n∑

i=1
αiϕ(xi) = 0

∂L
∂b =

n∑
i=1
αi = 0

∂L
∂εi

= Cεi − αi = 0
∂L
∂αi

= w ·ϕ(xi) + b + εi − yi = 0

(10)
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The LSSVM model can be obtained by solving the above equation, which can be expressed as

f (x) =
n∑

i=1

αiK(xi, x) + b (11)

where K(xi, x) is the kernel function.
This paper implements the optimization process of the LSSVM using the IMGWO algorithm.

2.2.2. Error Probability Distribution of Power Prediction

If the potential law of the prediction error can be properly expressed, then the prediction value
can be corrected to improve the prediction performance. In this paper, the prediction values are
obtained via LSSVM, and the corresponding prediction error values are be obtained by calculation.
The methods for estimating the distribution of error can be divided into parameter estimation and
non-parametric estimation. The parameter estimation assumes that the data sample obeys a known
distribution function, and that the samples are used to estimate the parameter values of the distribution
function. Normal distribution, T-location-scale distribution, and logistic distribution are the distribution
functions commonly used. Non-parametric estimation is based on the characteristics of the sample
data, not a priori estimation of data samples. The entire estimation process is completely driven by the
data samples, and has a strong utility to the problem which is impossible to estimate the characteristics
of its sample data in advance. Kernel density estimation (KDE) [35] is chosen as the nonparametric
estimation method in this paper. X1, X2, · · · , Xn is the overall sample, and x1, x2, · · · , xn represents the
observed values of samples. The kernel density estimate of the probability density function at any
point x is defined as

fh(x) =
1

nh

n∑
i=1

K(
x−Xi

h
) (12)

where fh(x) is the estimated probability density function, h is the window width, and K(·) is the
kernel function.

Through statistical analysis of the error between the actual and predicted values of photovoltaic
power generation, we find that the prediction errors in different power intervals have different
distributions, which is quite different from the distribution of the overall prediction error. Therefore,
this paper divides the data into multiple intervals, and performs statistical analysis on the error of each
interval to calculate the probability density function. When the sample data is relatively sufficient, the
empirical distribution is similar to the overall distribution, and it can be treated as the total distribution.

For the division of intervals, there are no fixed rules to follow. If the number of the intervals is
too large, the amount of sample data in each interval will be small. The empirical distribution will be
different from the overall distribution, which cannot reflect the real information of sample data. On the
contrary, the intrinsic information and the meaning of segmentation statistics will be lost. Assuming
that the length of the interval is ΔP and the power interval range is [P1, P], the power is divided at
equal intervals.

Di = [P1 + (i− 1)ΔP, P1 + iΔP] (13)

where i = 1, · · · , N, and N is the number of intervals.
By dividing the range of each interval by Equation (13), there may be cases where the number of

samples in some intervals is too small. In order to better reflect the distribution of data, it is necessary
to adjust the range of the interval to a certain extent, according to the actual situation.

3. Probability Prediction Combination Model

The essence of the combination method is to find the respective superior information in a variety
of models that can more fully describe the sample information than single model. Therefore, it, with
a stronger anti-interference ability, can effectively reduce the influence of complex environmental
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factors [36]. It should be noted that the performance of any single model directly effects the accuracy
of the combined model. Considering the calculation cost and effect comprehensively, the number
of single models is often taken as two to five. In addition, the quantile regression neural network
(QRNN) model has better performance in predicting PV output [37]. This model and the proposed two
improved models will be used to construct the combined model in this paper. In this part, a piecewise
optimal combination model is proposed that uses different combined weighting coefficients in different
periods to make full use of different prediction models.

3.1. Optimal Combination Method

The optimal combination method is based on the functional relationship between the combination
model and the single model. The objective function is constructed under certain constraints, and
the weight coefficient of the single models in the combination method is solved by maximizing the
objective function.

The non-optimal combination method mainly follows the simple and convenient principle of
obtaining the weight coefficient using methods such as the arithmetic average method, the root mean
square error reciprocal method, the entropy method, and so on. The accuracy of the non-optimal
combination method is generally lower than that of the optimal combination method. In this paper,
the interpretation of the optimal linear combination method is given by taking the sum of squared
prediction errors as the objective function to solve the weight coefficient.

If xt is the true value of the t-th sample, xit is the predicted value of the t-th sample in the i-th single
model, and eit is the error value of the t-th sample of in the i-th prediction model, then eit = xt − xit.
In order to ensure the validity and unbiasedness of the results, the weight coefficient needs to meet the
following conditions:

m∑
i=1

wi = 1 (14)

where wi represents the weight coefficient of the i-th single model. The sum of the squared error of the
combination model can be expressed as follows:

J =
n∑

t=1

e2
t =

n∑
t=1

m∑
i=1

m∑
j=1

wieitwje jt (15)

Therefore, the linear combination model can use the sum of the squared error as the objective

function. If W = (w1, · · · , wm)
T, Eij = eT

i ej =
N∑

i=1
eitejt, E = (Eij)n×n, R is an n-dimensional column

vector where each element is 1, and E is a square matrix of n× n, which represents the information
matrix of the combined prediction error, then the solution of the weight coefficient can be expressed as
an optimization problem.

minJ =
n∑

t=1
e2

t = LTEL

s.t.RTL = 1
L ≥ 0

(16)

The solution is described in detail in [38]. For the solution of the weight coefficient in the optimal
combination, this paper uses the IMGWO proposed in this paper to solve the problem. The position of
wolves is the value of the weight coefficient.

3.2. Combination Method with Variable Intervals and Weights

In order to fully utilize the characteristics of each model at different time periods, a combination
method with different weights of intervals is proposed. For example, the accuracy of method A at
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interval 1 is higher than that of method B, and the prediction accuracy at interval 2 is lower than that of
method B, so method A and method B will have different weight coefficients in different time intervals.

When the day is divided into H intervals, the corresponding combination model will be respectively
established. In this paper, the daily time period is divided into four intervals. Interval I is from 06:00 to
09:00, interval II is from 09:00 to 12:00, interval III is from 12:00 to 15:00, and interval IV is from 15:00
to 18:00. In the actual experiment, we first need to determine which time interval the predicted data
belongs to, then use the combination model to predict the power generation. In this paper, a flow chart
of the combination method is given, shown in Figure 2.

end

start

data preprocessing

selection of similar 
samples

sunny day

divided into four time 
periods each day

IMSPGP 
algorithm

QRNN 
algorithm

IMLSSVM 
algorithm

IMGWO 
algorithm

combination 
model

cloudy day

divided into four time 
periods each day

IMSPGP 
algorithm

QRNN 
algorithm

IMLSSVM 
algorithm

IMGWO 
algorithm

combination 
model

 

Figure 2. The flow chart of combination algorithm.

4. Experiment

4.1. Data Preprocessing

The dataset used in this paper is acquired from solar power station, from 2012 to 2014, of the
Energy Forecasting Working Group of the Institute of Electrical and Electronics Engineers, including
the 24-hour PV output value of photovoltaic panels and corresponding meteorological parameters
such as surface solar irradiance, atmosphere, irradiance, surface pressure, total cloud amount, and so
on [39]. Since the output of the photovoltaic panel was 0 at night, the data from 6:00 to 18:00 every day
is selected as the raw data.

xij =
xij − xmin,j

xmax,j − xmin,j
(17)

where xij is the i-th data of the j-th variable in the original dataset; xmin,j and xmax,j are the minimum
and maximum values of the j-th variable in the original dataset, respectively; and xij is the i-th new data
of the j-th variable after the normalization. The target variable values were normalized by the Energy
Forecasting Working Group, so its rang is [0,1]. The other 12 variables provided were not normalized,
and had different dimensions. After the normalization, the range of 12 variables are all [0,1].
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If all variables are considered, it will inevitably increase the model complexity and training
time. The random forest algorithm can solve the high-dimensional data classification and regression
problem [40,41]. This paper uses the algorithm to select the variables affecting the PV output value.
The variable description and processing results are shown in Table 1.

Table 1. Variable description.

Name Unit Score

Total column liquid water (TCLW) kg·m−2 13.2
Total column ice water (TCIW) kg·m−2 19.4

Surface pressure (SP) Pa 15.1
Relative humidity at 1000 mbar (RH) % 62.6

Total cloud cover (TCC) 0–1 16.8
10 meter U wind component (10 U) m·s−1 21.7
10 meter V wind component (10 V) m·s−1 13.3

2 meter temperature (2T) K 39.7
Surface solar rad down (SSRD) J·m−2 370.3

Surface thermal rad down (STRD) J·m−2 50.7
Top net solar rad (TSR) J·m−2 208.0
Total precipitation (TP) M 11.4

The 12 variables obtained from the European Centre for Medium-Range Weather Forecasts
(ECMWF) NWP output are independent. Total column liquid water (TCLW) represents the vertical
integration of cloudy liquid water content. Relative humidity at 1000 mbar (RH) is defined with respect
to the saturation of the mixed phase (i.e., with respect to saturation over ice below −23 ◦C, and with
respect to saturation over water above 0 ◦C). Total cloud cover (TCC) is derived from model levels
using the model’s overlap assumption. Top net solar rad (TSR) is the net solar radiation at the top of
the atmosphere. Surface solar rad down (SSRD), surface thermal rad down (STRD), top net solar rad
(TSR), and total precipitation (TP) are all accumulated data.

The importance scores of 12 meteorological parameters can be obtained by the random forest
algorithm. The importance scores of the meteorological factors are shown from Table 1, and the
importance ranking is performed according to the scores of the respective variables. A variable is more
important when its score is higher. If there are too few variable factors left in the feature selection
process, important information may be lost and the prediction accuracy may be affected. Therefore, the
first six feature variables are selected as the input variables set through many tests. The six variables
are SSRD, TSR, RH, STRD, 2T, 10U.

The photovoltaic power generation will show different trends under different weather conditions,
and the prediction accuracy will be improved by classifying the original data and selecting similar
sample. A fuzzy clustering algorithm can deal with similarity and fuzzy relations, so the algorithm is
used to further process the data. On the one hand, too many classification types will make the number
of samples for each type too small. On the other hand, PV output usually shows instability in the
case of bad weather such as rainy days. The data are divided into sunny and rainy days by a fuzzy
C-means clustering algorithm. The algorithm theory and calculation process are described in [20].

4.2. Evaluation Criteria

This paper introduces the evaluation criteria of point prediction value and confidence interval
prediction value, which can evaluate the prediction probability distribution performance.

1) The root mean square error is defined as follows:

RMSE =

√√√√√ N∑
i=1

(yi − y′i )
2

N
(18)
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where N indicates the number of test set data, and yi and y′i represent the i-th predicted value and the
actual value, respectively. The smaller the root mean square error value is, the higher the prediction
accuracy of the model.

2) The continuous ranking probability score is a comprehensive criterion for evaluating
probability prediction performance. It can simultaneously evaluate the calibration degree and
sharpness of the probability distribution. The smaller the value is, the better the prediction effect of the
model will get. CRPS is defined as follows:

CRPS(F, x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∞∫
−∞

{
F(y) − 1

}2dy, y ≥ x
∞∫
−∞

(F(y))2dy , y < x
(19)

where x is the actual observed value and F is the predicted cumulative distribution function.
3) The confidence interval average width (PINAW) represents the average of the confidence

interval widths. The smaller the width value gets, the higher the accuracy. PINAW is defined as follows:

PINAW =

N∑
i=1

(up− down)

N
(20)

where up is the upper bound of the confidence interval, down is the lower bound of the confidence
interval, and N is the number of data in the test set.

4) The prediction interval coverage (PICP) is the ratio of the number of target values falling
within the confidence interval to the total number of predicted samples. The value ranges from 0 to 1.
The closer the value is to 1, the better the prediction performance of the model is. PICP is defined
as follows:

PICP =
γ1−α

N
× 100% (21)

where γ1−α is the number of target values that fall within the confidence interval.
When the PINAW becomes smaller, the PICP becomes larger, and the prediction performance

is better. CRPS is the evaluation criterion that includes coverage and interval width, which can
comprehensively reflect the performance of models.

4.3. Experiment and Analysis

4.3.1. Analysis of Experiment Results for the Single Models

Increasing the similarity between the training sample and the test sample can indirectly improve
the prediction accuracy of the model. The weather conditions in the same months every year were
similar, so the data set was divided into four quarters. In the experiment, one-month data for each
quarter was selected as the test data set, and the three-month data in the same quarter of the previous
year was used as the training data set. For example, the data from 1 to 31 May 2014 were used as test
data, and the data from April, May, and June 2013 as training data.

Since the prior assumption of the GP model conforms to the normal distribution, the normal
distribution theory can be used to calculate the probability prediction result of the photovoltaic
power. The mean and variance of the variable to be predicted can be obtained by the GP model.
The mean is used to indicate the prediction. The mean is used to represent the predicted value of
the variable. Combined with the mean and the variance, we can obtain the probability prediction
results, so as to obtain the upper and lower limits of the confidence interval at different confidence
levels. The confidence interval can be expressed as follows:
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(μ− σ
n

zα/2,μ+
σ
n

zα/2) (22)

where μ is the mean value,σ is the standard deviation, and zα/2 can be obtained by looking up the
table. If the confidence level is 0.95, zα/2 = 1.96.

In this paper, the IMGWO is compared with the GWO and PSO. The results are shown in Figure 3.
The fitness value and iteration number of the IMGWO are 0.1065 and 25 times, respectively. The fitness
value and iteration number of the GWO are 0.1086 and 38 times, respectively. The fitness value and
iteration number of the PSO are 0.1146 and 18 times, respectively. Therefore, the IMGWO has a faster
convergence speed and better fitness than the GWO. Although the convergence speed of the PSO is better
than the IMGWO, the fitness value is larger than that of the IMGWO, indicating that the PSO falls into
the local optimum. From the above analysis, it can be proven that the IMGWO has a stronger global
search ability and better search speed. Figure 4 shows the IMSPGP model prediction results of seven
days selected from May. The first four days are sunny, the last three days are cloudy, and the shaded parts
represent 95% confidence intervals, 80% confidence intervals, and 50% confidence intervals, respectively.
The photovoltaic output shows with certain regularity that the point prediction result is more accurate,
the prediction interval is slightly wider at the peak, and the overall prediction accuracy is higher.

Figure 3. Comparison of fitness values.
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Figure 4. Point forecast and interval forecast over seven days using IMSPGP.

As can be seen from Table 2, IMSPGP had the smallest RMSE and CRPS, with optimal prediction
performance, whether representing a sunny or rainy day. It should be explained that although the
PISAW of the IMSPGP model is larger than that of the GP model and the SPGP model for sunny days,
the PICP value is larger than that of the other two models. In this case, it is necessary to consider the
size of the comprehensive evaluation criterion CRPS. Because the IMPSGP model has the smallest
CRPS, it is shown that the model does improve the prediction effect.
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To obtain the probability prediction results of IMLSSVM, this paper first calculates the prediction
error of the IMLSSVM model for the whole year of 2012. The model is tested in different seasons.
As can be seen from Table 3, the IMLSSVM has better predictive performance than the LSSVM. In terms
of point prediction performance among the models, IMSPGP generally has the highest accuracy. As a
whole, the IMLSSVM model is better than the QRNN model. In order to increase the diversity of the
model, the data of the error distribution are obtained by using the IMLSSVM instead of the IMSPGP.

Table 2. Prediction results of GP, SPGP, and IMSPGP models for May.

Model
Sunny Rainy

RMSE PINAW PICP CRPS RMSE PINAW PICP CRPS

GP 0.0723 0.2900 0.9540 0.0395 0.0872 0.3397 0.9544 0.0482
SPGP 0.0725 0.2900 0.9419 0.0394 0.0872 0.3310 0.9475 0.0480

IMSPGP 0.0654 0.3251 0.9791 0.0356 0.0781 0.3100 0.984 0.0414

Table 3. Comparison of point prediction results in May, August, November, and February.

Month Model
Sunny Rainy

RMSE RMSE

May

IMLSSVM 0.0779 0.0790
LSSVM 0.0793 0.0823
IMSPGP 0.0654 0.0781
QRNN 0.0912 0.0985

August

IMLSSVM 0.1047 0.1275
LSSVM 0.1070 0.1401
IMSPGP 0.1040 0.1090
QRNN 0.1327 0.1210

November

IMLSSVM 0.0933 0.1106
LSSVM 0.1001 0.1170
IMSPGP 0.0819 0.1070
QRNN 0.1075 0.1420

February

IMLSSVM 0.0937 0.1034
LSSVM 0.1038 0.1172
IMSPGP 0.0884 0.0966
QRNN 0.1260 0.1047

Figure 5 shows a scatter plot of the predicted and actual power generation of the IMLSSVM model
for the whole year of 2012. As shown in the figure, the data are not evenly distributed. Therefore,
when segmenting the predicted power, the number of data in each interval will be different according
to the principle of equalization. In order to make the number of samples in each interval roughly the
same, the final division of the intervals is shown in Table 4 after several tests.

Figure 5. Scatter plot of the predicted and actual values using IMLSSVM.
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Table 4. Statistics of samples in each interval.

Interval [0,0.05] [0.05,0.2] [0.2,0.4] [0.4,0.65] [0.65,1]
Number of Samples 1268 905 925 951 911

At the first interval, the length is very short, so the range is set to this value. The approximate
number of samples in each interval is beneficial to the fitting effect of the parameter estimation, while
ensuring the reliability and stability of the error statistics.

In order to find the estimation method that can best describe the model error distribution, this
paper uses the normal distribution, T-location-scale distribution, logistic distribution, and KDE method
to estimate the probability density of the error values in five intervals. As shown in Figure 6, sub-graphs
(a), (b), (c), (d), and (e) represent intervals 1, 2, 3, 4, and 5, respectively. The histogram represents the
distribution of errors. It can be seen from the figure that there are different error distributions among
different power intervals, so it is feasible to use different probability density functions among different
power intervals. In addition, it shows that the probability density curve obtained by the KDE method
fits better with error distribution map. Therefore, this paper will use the KDE method to estimate the
probability density of different intervals.
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Figure 6. Comparison of error probability density functions in different intervals.
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After obtaining the probability density function of each interval, the power interval which the
point prediction value of the IMLSSVM belongs to is determined. Then, the probability density function
of the interval is used as the probability density function of the prediction point, thereby obtaining the
probability distribution. In Figure 7, the forecasting result of seven days in May using IMLSSVM is
shown. Compared with Figure 4, the interval width of the IMLSSVM model is similar to the IMSPGP
model at the same confidence level. In the high-power interval, the value of width becomes larger, but
in the low-power interval, the value of width is slightly smaller than the IMSPGP model, which is
related to the peak-tail characteristic of the probability density function in interval I.
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Figure 7. Point forecast and interval forecast over seven days using IMLSSVM.

The cumulative distribution function graph of each model at multiple time points is made to
further analyze the probability distribution of the model, as shown in Figure 8. The characteristic of
the IMSPGP curve is relatively flat and the performance is general. The QRNN model has steep curve
characteristics in different prediction models, indicating that it has the characteristics of sharp peaks
and thin tails, and the sharpness features are obvious. As shown in sub-graph (b) and (d), when the
power is small, IMLSSVM has increased sharpness compared with other predictive models, and the
cumulative distribution function is better. But when the power value becomes large, the predicted
cumulative distribution function is not so prominent in many predictive models. It can be known from
the above analysis, the three prediction models have different prediction effects.

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

C
D

F 
va

lu
e

 Normalized power value  (a)  

 

 

imlssvm
imspgp
spgp 
qrnn
qr
actual

-0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

C
D

F 
va

lu
e

 Normalized power value  (b)  

 

 

imlssvm
imspgp
spgp 
qrnn
qr
actual

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

C
D

F 
va

lu
e

 Normalized power value  (c)

 

 

imlssvm
imspgp
spgp 
qrnn
qr
actual

-0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

C
D

F 
va

lu
e

 Normalized power value  (d)

 

 
imlssvm
imspgp
spgp 
qrnn
qr
actual

Figure 8. Cumulative distribution function graph.

4.3.2. Analysis of Experiment Results for the Combined Model

In order to obtain a better weight coefficient, this paper uses the arithmetic average method (M1),
continuous ranking probability score reciprocal method (M2), IGWO combination method (M3), and
entropy method (M4) for comparison and analysis. The CRPS value is taken as the fitness value when
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the IGWO combination method is used. The number of wolves is set to 30, and the maximum number
of iterations is 50. The three weight coefficients of the three single models are variables, and the range
are all [0, 1].

Table 5 shows the CRPS of each model in different intervals. It is shown that in the same interval,
each mode has a different CRPS. It is feasible to use the combination with variable intervals and weights.

Table 5. CRPS of each model in different intervals.

Interval Model
Sunny Rainy

CRPS CRPS

I
IMSPGP 0.0176 0.0163
QRNN 0.0084 0.0042

IMLSSVM 0.0134 0.0075

II
IMSPGP 0.0520 0.0542
QRNN 0.0512 0.0618

IMLSSVM 0.0623 0.0599

III
IMSPGP 0.0414 0.0635
QRNN 0.0474 0.0672

IMLSSVM 0.0567 0.0630

IV
IMSPGP 0.0203 0.0228
QRNN 0.0104 0.0121

IMLSSVM 0.0161 0.0118

Table 6 shows the weight coefficients of each model obtained by the combination method, where
w1, w2, and w3 are the weight coefficient values of IMSPGP, QRNN, and IMLSSVM, respectively.
According to the weighting coefficients of each model, the CRPS of various combined models can be
obtained, as shown in Table 7. It can be seen from Table 7 that among the four combined methods,
the IGWO combination method has the smallest CRPS under different weather types (that is, the
probability prediction accuracy is the best among the four methods). Therefore, the three models are
combined using the IGWO combination method.

Table 6. Weights of each model in different intervals.

Interval Weight
Sunny Rainy

M1 M2 M3 M4 M1 M2 M3 M4

I
w1 0.3333 0.3413 0.3410 0.3661 0.3333 0.1207 0.0000 0.3407
w2 0.3333 0.3678 0.6587 0.3094 0.3333 0.5367 1.0000 0.3273
w3 0.3333 0.2908 0.0003 0.3245 0.3333 0.3425 0.0000 0.3320

II
w1 0.3333 0.3425 0.4330 0.3571 0.3333 0.3387 0.2157 0.3371
w2 0.3333 0.3626 0.5659 0.3404 0.3333 0.3079 0.1020 0.3269
w3 0.3333 0.2949 0.0011 0.3024 0.3333 0.3533 0.6823 0.3360

III
w1 0.3333 0.3432 1.0000 0.3593 0.3333 0.3360 0.4695 0.3298
w2 0.3333 0.3724 0.0000 0.3249 0.3333 0.3418 0.1143 0.3419
w3 0.3333 0.2844 0.0000 0.3158 0.3333 0.3222 0.4162 0.3283

IV
w1 0.3333 0.2203 0.1010 0.3630 0.3333 0.2241 0.0000 0.3555
w2 0.3333 0.4191 0.8280 0.2965 0.3333 0.4308 0.4033 0.2998
w3 0.3333 0.3606 0.071 0.3405 0.3333 0.3451 0.5967 0.3446

Figure 9 is the comparison of point prediction errors over seven days for various prediction
models. The RMSE values of the combined model, IMLSSVM model, IMSPGP model, and QRNN
model are 0.0380, 0.0468, 0.0439, and 0.0573, respectively. The combined model has the best predictive
performance. In Figure 10, subgraph (a), (b), (c), and (d) are cumulative distribution functions for
interval I, II, III, and IV, respectively. The CRPS values in the four intervals are shown in Table 8.
Referring to Figure 10 and Table 8, the combined model can obtain the lowest CRPS for the predicted
points at interval II and IV. In the other two intervals, it is not optimal. That indicates that the combined
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model does not achieve the optimal CRPS in each interval, but that for the overall test set the combined
model has higher probability prediction accuracy than the IMSPGP model, the QRNN model, and the
IMLSSVM model, which can be verified in Table 9.

Table 7. CRPS of various combinations.

Model
Sunny Rainy

CRPS CRPS

IMSPGP 0.0348 0.0431
QRNN 0.0326 0.0416

IMLSSVM 0.0407 0.0402
M1 0.0334 0.0395
M2 0.0330 0.0390
M3 0.0306 0.0383
M4 0.0334 0.0395

Table 8. CRPS values in the four intervals.

Model
CRPS

I II III IV

Group 0.0339 0.0321 0.0152 0.0247
IMSPGP 0.0306 0.0342 0.0325 0.0257
QRNN 0.0374 0.0393 0.0084 0.0252

IMLSSVM 0.0543 0.0458 0.0198 0.0348
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Figure 9. Comparison of point prediction error over seven days.
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Figure 10. Multi-point cumulative distribution function in different intervals.
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Table 9. Evaluation indices of different models during four months.

Month Model
Sunny Rainy

RMSE PINAW PICP CRPS RMSE PINAW PICP CRPS

May

IMSPGP 0.0674 0.3160 0.9762 0.0348 0.0856 0.3158 0.9792 0.0431
QRNN 0.0785 0.3352 0.9345 0.0417 0.1038 0.3108 0.9688 0.0402

IMLSSVM 0.0961 0.2590 0.9881 0.0326 0.1271 0.3151 0.9688 0.0416
Group 0.0706 0.2842 0.9762 0.0306 0.0801 0.3129 0.9896 0.0383

August

IMSPGP 0.1077 0.3391 0.9389 0.0538 0.1011 0.3087 0.9583 0.0542
QRNN 0.1087 0.3698 0.9111 0.0560 0.1250 0.3367 0.9444 0.0560

IMLSSVM 0.1393 0.4084 0.9611 0.0552 0.1201 0.3861 0.9583 0.0630
Group 0.1079 0.3405 0.9433 0.0513 0.0988 0.3189 0.9861 0.0480

November

IMSPGP 0.0779 0.3630 0.9703 0.0450 0.1053 0.3085 0.9375 0.0570
QRNN 0.0937 0.3388 0.9322 0.0491 0.1094 0.3549 0.9375 0.0555

IMLSSVM 0.0993 0.3339 0.9915 0.0413 0.1210 0.3833 0.1000 0.0487
Group 0.0808 0.3319 0.9873 0.0397 0.0805 0.3442 0.9792 0.0399

February

IMSPGP 0.0899 0.3241 0.9512 0.0436 0.0876 0.3312 0.9577 0.0489
QRNN 0.0967 0.3350 0.9329 0.0472 0.0865 0.2940 0.9155 0.0430

IMLSSVM 0.1142 0.3168 0.9817 0.0423 0.0895 0.3393 0.9718 0.0431
Group 0.0885 0.3489 0.9878 0.0403 0.0819 0.3420 0.9859 0.0372

In order to further verify the stability and accuracy of the combined model, the data in May,
August, November, and February is taken for further verification analysis. The results of each
indicator are shown in Table 9. Whether it is sunny or rainy, the CRPS values of the combined
model are the smallest. However, on sunny days, there is a case where the IMSPGP model has
higher prediction accuracy than the combined model in terms of point prediction. The main reason is
that the CRPS is adopted as a fitness value in the IMGWO combination method. Taking the results
of May as an example, the combined model has the smallest CRPS value for either sunny days or
rainy days. It should be noted that, on sunny days, the PINAW of the IMLSSVM model is smaller
than that of the combined model, and the PICP of the IMLSSVM model is larger than the PICP of
the combined model. The PINAW and the PICP describe the 95% confidence interval index, which
can reflect the probability prediction performance to a certain extent. The CRPS can describe the
probability prediction performance comprehensively. According to the comprehensive analysis, the
combined model prediction performance improves upon the single model, and has good stability
and practicability since the CRPS of the combined model is smaller. A more-accurate probability
prediction of the PV power means that uncertainty is reduced, thereby lowering the operating costs of
the energy system.

5. Conclusions

In this paper, photovoltaic power generation prediction was deeply studied. Improved sparse
Gaussian process and improved least squares support vector machine were proposed, and the accurate
results of photovoltaic power generation probability prediction were obtained. Through analysis,
we found that the prediction performance of each model was different, and a combined probability
prediction model with different interval weights is proposed to make the best of the characteristics of
each model. Finally, the simulation results showed that compared with single prediction models, the
combined probability prediction model could predict photovoltaic power generation more accurately.
Moreover, whether on sunny days or rainy days, high probability prediction accuracy could be
guaranteed for different months. Therefore, the model has high stability and practicability.
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Abstract: This work investigates minimum charging infrastructure size and cost for two typical
EU urban areas and given passenger car electric vehicle (EV) fleets. Published forecasts sources
were analyzed and compared with actual EU renewal fleet rate, deriving realistic EV growth figures.
An analytical model, accounting for battery electric vehicle-plug-in hybrid electric vehicle (BEV-PHEV)
fleets and publicly accessible and private residential charging stations (CS) were developed, with a
novel data sorting method and EV fleet forecasts. Through a discrete-time Markov chain, the average
daily distribution of charging events and related energy demand were estimated. The model was
applied to simulated Florence and Bruxelles scenarios between 2020 and 2030, with a 1-year timestep
resolution and a multiple scenario approach. EV fleet at 2030 ranged from 2.3% to 17.8% of total fleet
for Florence, 4.6% to 16.5% for Bruxelles. Up to 2053 CS could be deployed in Florence and 5537 CS in
Bruxelles, at estimated costs of ~8.3 and 21.4 M€ respectively. Maximum energy demand of 130 and
400 MWh was calculated for Florence and Bruxelles (10.3 MW and 31.7 MW respectively). The analysis
shows some policy implications, especially as regards the distribution of fast vs. slow/medium CS,
and the associated costs. The critical barrier for CS development in the two urban areas is thus likely
to become the time needed to install CS in the urban context, rather than the related additional electric
power and costs.

Keywords: electric vehicles EV; optimal sizing; charging infrastructure; Markov chain; EV fleet
forecasts; decarbonization

1. Introduction

Mitigating the effects of climate change through greenhouse gas (GHG) emissions reductions is one
of the key challenges of the 21st century. At the core is the issue of overall energy consumption as well
as the need for stronger decarbonization policies. Within this picture, transport sector plays a big role,
globally and at European level: EEA data shows that in 2016, it accounted for a 33.2% share of EU-28
final energy consumptions and for a 24.3% share of GHG emissions [1]. Road transport accounted for
72% of GHG emissions and, within that sector, cars accounted for 60.7%. Moreover, half of EU-28 NOx

emissions and at least 15% of PM10, PM2.5, SOx and CO emissions are transport-related [1,2]; finally,
European transport energy needs are fulfilled by fossil fuels use for more than a 94% share [1].
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Several alternative energy sources and renewable fuels are available—with different level of
technology readiness and market penetration—in order to reduce dependence on fossil fuels: among
them we find biofuels such as biodiesel and bioethanol, renewable hydrocarbons, ligno-cellulosic
ethanol, biomethane, renewable fuels of non-biological origin (RFNBO) recycled carbon fuels, renewable
e-fuels, renewable hydrogen, electricity, etc. None of these alternative fuels and sources alone will ever
completely substitute fossil fuels, at least in a short term, and most of the forecasts see them coexisting
in future fuel mixes [3]; in 2016, in EU-28, biofuels accounted for the bigger share, covering 4.6% of
total final fuel consumption [1].

Anyway, rapid cost reduction of solar and wind power technologies created strong prospects for
further electrification of end-use sectors. Within this framework, electric vehicles (EVs)—especially
passenger cars—are one of the most pursued solutions to achieve large-scale transport sector
decarbonization; anyway, they are not a “drop-in” solution, since they need a new and alternative
charging infrastructure. Official documents such as the Alternative Fuels Infrastructure (AFI)
Directive [4] and the National Plans for alternative fuels and EV charging infrastructure such as [5,6]
are of interest because they express governments forecasts about future EV fleet size and formal
recommendations on topics such as the minimum number of charging stations (CS) to be deployed
and the minimum EV/CS expected ratio.

It is expected that urban areas will be the place of a large-scale infrastructure deployment in
short to mid-term, since they are the most suitable for actual EV use and would receive maximum
benefit from noise and local polluting emission reductions that are related with the shift from internal
combustion engine vehicles (ICEV) to EV. To this regards, stakeholders and decision makers could
benefit from reliable predictions on the dimension and cost of a charging infrastructure suitable for, i.e.,
a municipality area.

Literature already presents several studies on EV charging infrastructures, which analyze the
topic from a multitude of points of view. Many of them evaluate the optimal positioning of a given
set of CS through geographic information system (GIS) procedures, such as [7,8] or through traffic
flows analysis such as [9]; they develop a model taking into account residential statistics, parking area
information, electric power distribution network position and other data to define the optimal position
for charging stations, but usually the input data about the number of CS to be deployed have little or
no connection with data on EV fleets circulating in the area or on forecasts about that. Other studies
focus on business and profitability analysis of a specific CS installation [10], while other analyze the
possible interactions between charging EV and RES electrical generation that could take place in urban
areas, such as the one from PV installations [11,12].

Finally, several papers analyze the topic of optimal sizing of EV charging infrastructures.
Unfortunately, reports that specifically evaluate cost and size of large-scale deployments, using
real data and forecasts (such as [13,14]) usually refer to national or international levels and give as
output highly aggregated information; this makes it difficult, afterwards, to scale them down to a
more local level. Several studies can be found, that address the problem at a regional and municipality
level: [15] analyzes the German region of Stuttgart, but it focuses its model on CS availability rate
and is not applied to a real scenario. The study [16] is related to the Italian province of Florence and
uses GPS real data from around 12,000 ICE vehicles, extracting driving and parking patterns to size
the charging infrastructure; anyway, it does not explicitly give as an output a number of CS and the
relative cost, and it does not consider a temporal evolution of the analyzed situation. Lastly, [17,18]
give as an output the forecast size of the charging infrastructure for two different Swiss municipalities,
but neither of them give a proper explanation on the methodology used.

Scope of this work is to define the optimal size of a minimum cost charging infrastructure,
suitable for deployment in an urban area and able to cope with the requests of a given passenger car
EV fleet. This study focuses only on EV passenger cars since they account for the vast majority of
EU-28 circulating road vehicles with an 87% share of total, while, in comparison, light commercial
vehicles accounted for 9.8% (authors elaboration on 2016 Eurostat data [19]). Moreover, this paper will
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investigate the impact of such infrastructure on the existing parking stalls and on the electrical network,
in terms of the average energy and power requests; finally, it will characterize the infrastructure using
performance indicators (PI) such as average daily charging events and global utilization rate.

In order to address these requests, an analytical model has been developed, separately accounting
for battery electric vehicle (BEV) and plug-in hybrid electric vehicle (PHEV) fleets, as well as for
publicly accessible and private residential CS.

Given the primary importance of the inputs related to the size of the circulating EV fleet, an
extensive literature research for EV fleet growth forecasts has been carried out, focusing on reports
related to the two considered areas as well as to the analyzed timeframe. Since substantial differences
between the various forecasts emerged from the research, a novel method for data sorting and
conditioning has been developed, using circulating fleet turnover rate as threshold indicator.

The model has then been applied to the two geographical areas of Florence Municipality for Italy
and Bruxelles for Belgium, over the 2020–2030 period, with a 1-year timestep resolution. Within each
area nine scenarios have been evaluated; they are obtained as the combination of three different EV
circulating fleet forecasts with three possible user’s charging behaviors. The results from this study
could be used to provide further insights to policy makers and local authorities, in order to better
understand and manage the transition period toward a higher share of urban electrical mobility.

To the best of the authors’ knowledge, within the available studies, the one which shares the
closest similarities with present work’s purposes is [20]; anyway, it describes the charging infrastructure
with a lower level of details and it does not implement a model for the estimating of EV fleet growth,
using as input data coming from a single source.

This research article is structured as follows: in Section 2, the inputs needed by the model
together with the related procedures are first defined, whenever relevant; then, the model structure
and embedded algorithms are thoroughly presented. Finally, the outputs and the rationale for the
input scenarios implemented in this paper are reported. The first part of Section 3 reports details of
the numerical values of the inputs used in the various scenario, while the second part discusses the
obtained results, using also several PI. Finally, summary conclusions and closing remarks are given in
Section 4.

2. Model and Methodology

2.1. Model Definition

In order to define the optimal size of the EV charging infrastructure, the model needs as inputs, for
each timestep of the analysis, the number of daily charging events related to both BEV and PHEV fleets
and the corresponding energy requests; moreover, it needs a full characterization of the CS in terms of
expected performances and costs. An input pre-processing phase take place before the model’s core
steps execution, and a post-processing phase, delivering expected outputs is placed after them; this
leads to a four-parts conceptual architecture, thoroughly described in the following sections and also
briefly reported below and in Figure 1:

• The first part is dedicated to data collection and pre-processing.
• The second part performs a discrete-time Markov process to obtain as output the probability

distribution of the charging events over the average range (in days) of BEVs and PHEVs; to do
so it also considers users’ behavior and preferences. Several control criteria are implemented,
in order to assure coherence of the results.

• In the third part the outputs are used to define a constrained space of solutions where all the
possible charging infrastructures complying with EV fleet requests are defined; finally, CS costs
are applied, and the optimal charging infrastructure size and composition is chosen.

• In the fourth and last part the results are processed in order to obtain the desired outputs.
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Figure 1. High-level visual description of the model structure.

The model structure has been conceived so to be flexible enough to capture the complexity of the
evaluated scenarios, while maintaining a simple and lean structure. These initial requirements led to
the following set of features:

• Modular architecture and additivity of the model: Each timestep of the analysis is considered
separately and the model is recursively operated. This approach is used as well within a single
timestep: as an example, BEV and PHEV impacts on infrastructure are separately calculated using
the same module. Partial outputs are collected at the end of each calculation step of and then
post-processed in a final step, in order to obtain the total outputs. This feature allows us to model
flexible and time-evolving scenarios, while remaining sufficiently simple. The downside of this
choice is that it does not allow any change in the operating parameters of the already deployed
infrastructure during the timespan of the analysis.

• Complete battery charge at every charging event: This simplifying assumption derives from the
fact that only few information is available on this specific charging behavior; moreover, it does
not affect the average quantity of energy requested from the charging infrastructure, since it only
depends on average EV fleet size and consumption.

• All vehicles are used every day: This simplifying assumption set vehicles usage pattern as constant
over time. This, together with the evaluation through the average daily travelled distance, allows
us to define an average usage of the charging infrastructure.

• Evaluation of both BEV and PHEV impacts on charging infrastructure: Given the difference in
battery capacities, thus in energy requests during the charging phase, the model takes them into
account separately. This choice allows us to better evaluate the impact on charging infrastructure,
thus, to dimension it more precisely.

• Implementation of publicly accessible and private residential charging infrastructure: Three
different CS power levels are considered within the model to define publicly accessible charging
infrastructure; the CS types used can also be changed through the evaluation time period.
Moreover, it is of primary importance to investigate also the possible extension and impact of a
residential charging infrastructure, since a high number of CS connected to residential distribution
feeders could possibly lead to line congestions and voltage issues [21]. In fact, several studies state
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that early EV adopters are likely to own garages or parking spaces [22] and, more generally, 25–40%
(depending on EU countries) of vehicles owners are also garages or parking owners [20,23].

2.2. Model Structure

2.2.1. Data Collection

This section describes all the necessary inputs, as well as the data collection methods, while
Section 3.1 reports the specific values of the actual data used during model implementation, together
with a description of the data sources. The data collected can be classified under five macro-categories,
spanning from BEV and PHEV fleets size forecast, to their average range and consumption; from parking
spaces availability to users’ behaviors and finally to CS characteristics and costs.

BEV and PHEV fleets forecast over the analysis timeframe:
As already specified in the introduction, only the M1 category light passenger car sector would

be considered in this paper. According to [24], M1 category vehicles are designed and constructed
for the carriage of passengers, comprising no more than eight seats in addition to the driver’s seat.
A literature research was then carried out for forecasts on BEV and PHEV car fleets size, over the
2020–2030 period, with a specific focus in years 2020, 2025 and 2030 and referring to the two evaluated
areas. Unfortunately, no municipality-level results were publicly available, thus the research was
further extended to forecasts evaluating single EU countries, as well as the EU-28 region as a whole.
Following this decision, a methodology to scale down National and EU-28-level data back to the
context of a municipality was then developed. In order to check dataset soundness for model’s scopes,
the methodology also compares the collected forecasts to the existing market conditions, using the
EU-28 global passenger car fleet turnover rate as a threshold for xEV fleet forecast growth rate.

Being the xEV market relatively new and still evolving, it presents different penetration levels
across EU countries; this situation can be related to local factors such as the current development of
the charging infrastructures and the existence (or the lack) of active support schemes and subsidies.
On the other hand, the total passenger vehicle market—mainly composed by ICEV—is well-developed
and with a relatively stable trend in terms of number of circulating vehicles. Following the previous
considerations, the methodology has been developed under two main assumptions:

• Within 2050, the xEV distribution across EU-28 countries will follow that of total passenger fleet.
• The forecasts downscaling is realized sequentially: from EU-28 level to national level, then from

the national level to municipality level.

As the first step of the process, a baseline of auxiliary information is defined for each of the three
geographical levels, to be used by the transfer formulas during dataset downscaling. It is composed by
an historical dataset, evaluated over the 2012–2017 period and composed by four specific entries:

• Total circulating fleet (ICEV, BEV and PHEV): TOT;
• Total circulating xEV (BEV and PHEV): xEV;
• Total new vehicles registrations (ICEV, BEV and PHEV): NRTOT;
• Total new xEV registrations: NREV.

The last two variables, namely new vehicles and new xEV registrations, were selected as control
parameter to check the soundness of the total circulating fleet and total circulating xEV data. Moreover,
the auxiliary baseline comprises a forecast value of 2050 total circulating fleet (TOT), obtained by
literature research.

After this preparation phase, the downscaling process of the xEV fleet forecasts was performed
with the following procedure (the ‘input’ subscript refers to the geographical area analyzed by the
forecast; the ‘output’ subscript refers to the geographical area to which the forecast was being scaled to):

• At the starting year, i.e., 2017, the historical value of
(

xEVoutput
xEVinput

)
2017

, which expresses the ratio

between the xEV fleet circulating in the two considered areas (i.e., EU-28 and Italy), was assumed.
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• At 2050,
(

xEVoutput
xEVinput

)
2050

was assumed equal to
(

TOToutput
TOTinput

)
2050

, which expresses the ratio between the

total circulating car fleets forecast in the two considered areas.

• Finally,
(

xEVoutput
xEVinput

)
Y

was related to the Y-th year of the considered time period and was calculated

under the assumption of a linear behavior, as described in Figure 2.

Figure 2. Scaling down process for the collected xEV fleet size forecast values.

Once the forecasts for the xEV fleets size were scaled down to the municipality level, the resulting
values were compared, for every year of the period, with a threshold value Thy, calculated as following:

Thy =

y∑
i=1

[To ∗ (sharexEV)i ∗ TOTi], (1)

where To is the average EU-28 car fleet yearly turnover, with a value of 5.4% [25,26] and (sharexEV)i is
defined as the xEV share of the EU-28 yearly car turnover, variable over 2020–2030 the period and
assuming the values shown in Table 1. Currently, the share of xEV in the annual turnover equals 0.24%
for Italy (2017 data) and stays below 4% for most of the European countries [13]; however, it has to be
considered the impact that incentives and policies may have on the development of the EV market and
the high probability of being activated in the period considered by this study, as highlighted by [13].

Table 1. Assumed xEV share of EU-28 yearly car turnover for the various years of the
analyzed timeframe.

2020 2025 2030

xEV share of EU-28
yearly car turnover 5% 15% 50%

Finally, TOTy defines the forecast total circulating fleet (ICEV, BEV and PHEV) on the y-th year
of period.

30



Appl. Sci. 2019, 9, 4704

A specific forecast was used in the following steps only if all its values were below the threshold,
otherwise it was discarded. The equation used for evaluation is described below:

xEVy ≤ Thy∀y ∈ (time period). (2)

Finally, the remaining municipality level forecasts were used to define three scenarios for each
municipality considered, using the following criteria:

• Low Scenario: it uses the lowest value of all the selected forecasts for every year of the time period.
• Medium Scenario: it uses an average value calculated from the values of all the selected forecasts

for every year of the time period.
• High Scenario: it uses the highest value of all the selected forecasts for every year of the time period.

Average BEV and PHEV energy consumption and batteries capacity:
Average xEV consumption (expressed in kWh km−1) and battery capacity (expressed in kWh)

has been considered as a variable, to reflect the inevitable technological advances that will take
place over the analyzed period. The values attributed for the year 2020 were obtained from the
analysis of the current BEV and PHEV fleet [27] average consumption—measured using WLTP cycle
estimations [28]—and capacity of the battery pack.

More specifically, the capacity of the battery pack assigned for the first year of analysis timeframe
has been defined as the average of the capacities of the 15 best-seller M1-class BEV (and PHEV),
weighted by sales volumes [29]. In order to consider the actual battery discharging capacity the obtained
values have been reduced by 30% [28], then assigned to variables (battPHEV)2020 and (battBEV)2020.

The same approach was also used to define the average mean BEV consumption (avcBEV)2020,
while to obtain the average mean PHEV consumption (avcPHEV)2020 a further step was required, since
their typical use involves the simultaneous operation of both thermal and electric motor. A literature
study shown that on average PHEVs cover about 32%–55% of their mileage using electric energy taken
from the grid [30]; another approach, presented in [31], suggests an electric load reduction of about
50% compared to BEV vehicles. With a view to make the model easier to implement, the approach
of [31] was chosen to define the (avcPHEV)2020 value, thus defined as the half of (avcBEV)2020.

On the upper end of the timeframe, namely 2030, these variables were estimated through literature
research ([32,33] for consumption and [31,34] for battery capacities). The figures for the remaining
years of the period were obtained as linear interpolation of the two extremes.

Public and private stalls availability:
The objective was to assess the availability of adequate space for the installation of private and

publicly accessible CS, with a view to define upper limits to the planned charging infrastructure and to
allow the evaluation of its impact on stalls occupation.

The following input variables were defined: public parking stalls available on Florence and
Bruxelles areas PPFI, PPBXL and private residential parking available on Florence and Bruxelles areas
PRFI, PRBXL. Data has been collected through research on an existing database; all these variables are
defined as constant during the evaluated period.

CS characteristics definition:
The proper functioning of the model requires the characterization of the charging infrastructure

in terms of:

• Charging power levels (Pk)y: the number of power levels and the related power outputs are defined
after literature research; private residential and publicly accessible CS are accounted separately.

• Capital costs of the various types of CS (Ck)y: they take into account CS cost, installation and grid
connection costs; operation and maintenance costs are not considered.

• Estimated utilization rate of the various types of CS
(
rk, j

)
y
: it is expressed in terms of the maximum

number of charging events manageable by the CS on an average daily basis. They depend on the
assumed daily usage timeframe hk, on the charging power level (Pk)y and on the energy request
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of the charging event Ej; subscript k relates to the power level, while subscript j relates to the
charging energy request class. They are calculated by comparing the hours of assumed daily
availability with the time needed for a charge:

(
rk, j

)
=

hk(
Ej

(Pk)y

) . (3)

The values assumed by these three variables can be updated during the analyzed period; within
this study the same values were used for each analyzed municipality.

Driving and charging behavior of users:
The driving and parking habits of users, together with the way they are expected to use the EV

charging infrastructure, have a great impact on its characterization, and thus on model outputs. A set
of three variables was implemented in order to describe this scenario:

• Average daily driven distance: A literature research focused on urban areas did not return
appropriate results, so national level values were used. Anyway, given the fact that urban travels
are shorter than the average, the data used was more conservative in terms of energy request to
the infrastructure. The values were considered as constant over the timeframe, but differentiated
within the two considered areas: avdFI and avdBXL.

• Use of publicly accessible or private residential CS: It is crucial to estimate the share of BEV and
PHEV that will weigh on average on the public charging infrastructure; therefore, a literature
research has been carried out in order to estimate the percentage of BEV and PHEV that will use
the public charging infrastructure over the y-th year of the period: (%BEVP)y and (%PHEVP)y.

• Charging events probability distribution over the estimated range of the vehicle: Usually xEV
driving range allows for more than one day of use so owners can decide to charge their vehicles
when state of charge (SOC) approaches the minimum level or before. This consideration, together
with the hypothesis of only complete recharges, leads to different possible energy requests for
the single charging event. Thus, it was necessary to develop a methodology to distribute the
probability of the charging events over the whole driving range allowed by the battery size.
Since this situation is strongly related to user behavior modeling, in order to cover the various
possibilities, three different scenarios have been developed, each with a specific probability
distribution over the timeframe. The independent variable is represented by the time elapsed since
the last charging event (normalized to the maximum autonomy) and is therefore included in an
interval [0,1]; the dependent variable p is the probability of a charge event at a given time, defined
as a monotonous increasing function with its values included in the interval [0,1]. Immediately
after a charging event p = 0, while at the end of the driving range p = 1, thus avoiding the
possibility that a xEV runs out of charge. Figure 3 shows the trends of the three functions defining
the different scenarios.
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Figure 3. Scenarios for charging events probability distribution.

2.2.2. I Step: Input Pre-Processing

Some of the inputs described in the previous section have direct use in the model, while others
need to be further processed. More specifically, the forecasts on BEV and PHEV fleets sizes through
the analyzed timeframe were collected as inputs; the model will evaluate separately the number of
BEV and PHEV charging using publicly accessible infrastructure from the ones that will use private
residential infrastructure, so the following new variables have to be defined:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(BEVP)y = (%BEVP)y ∗ (BEV)y

(BEVR)y =
[
1− (%BEVP)y

]
∗ (BEV)y

(PHEVP)y = (%PHEVP)y ∗ (PHEV)y

(PHEVR)y =
[
1− (%PHEVP)y

]
∗ (PHEV)y

, (4)

where (BEVP)y and (PHEVP)y refers to the shares charging on public infrastructure and (BEVR)y and
(PHEVR)y refers to the shares charging on private residential infrastructure, both over the y-th year of
the time period.

Finally, in order to define xEV range as the maximum allowable period of time (measured in days)
between two successive charging events, it has to be defined the new variable [(avrV)A]y as:

[(avrV)A]y =
(battV)y

(avcV)y ∗ avdA
, (5)

where subscript A refers to the geographical area, V to the type of vehicle (BEV or PHEV) and y
to the y-th year of the timeframe. This general notation will be used in the following sections of
this document.
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2.2.3. II Step: Calculation of Daily Charging Events on Publicly Available Infrastructure

In this step of the model the average number of daily charging events related to the BEV and PHEV
circulating fleet is calculated, together with the corresponding energy requests. To do so, the average
number of daily charging vehicles and their SOC at the beginning of the charge have to be estimated.
BEV and PHEV have different electric driving ranges, thus they are separately evaluated within the
model; anyway, since the operations are conceptually identical, in the followings of this section we
would simply refer to xEV without losing generality. A discrete-time Markov chain (DTMC), applied
to a countable, finite state-space was used to obtain the estimate of the average daily distribution of the
SOC levels within the xEV circulating fleet. The DTMC is defined by the transition matrix [A], which
values are obtained by applying the charging events probability distribution p over the specific driving
range considered, with a 1-day timestep:

[A] =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1 (1− p1) 0 · · · 0
p2 0 (1− p2) · · · 0
...

...
...

. . .
...

pn−1 0 0 · · · (1− pn−1)

pn = 1 0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (6)

The transition matrix defines the charging probability of a xEV for each day of the driving range;
once the driving range [(avrV)A]y is defined, also the dimension of the state-space and of the transition
matrix [A] are set accordingly. Figure 4 shows an example of DTMC graph, applied to a 4-days driving
range scenario.

Figure 4. Discrete-time Markov chain (DTMC) plot example, showing the transition probability over a
4-days driving range scenario.

The evolution of the DTMC is calculated with an iterative process—highlighted by Figure 5—that
usually reached convergence within 15 steps. The final stationary probability distribution describes the
average distribution of SOC levels within the xEV circulating fleet. The application of the transition
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matrix [A] to this stationary distribution, finally allows us to stochastically define the average number
of xEV daily charging, for each SOC level.

Figure 5. DTMC iterative process graph, showing the probability distribution across driving range
days (axis “a”) and time (days, axis “t”).

The horizontal axis represents timesteps “a”, which are inscribed within the interval
[
0, [(avrV)A]Y

]
,

while the vertical axis represents the iteration steps. A different SOC is associated to every timestep
“a”, thus a different charging energy request; taking into account the hypothesis of only complete
charges its value Ea can be calculated as:

[(Ea)V ]y = [(avcV)A ∗ avdA]y ∗ a. (7)

The output is then a series of couples (xEVa, Ea), dividing the charging xEV in different groups in
terms of energy requests.

In order to check the stability of the iterative process and the quality of the results, two control
methods were implemented:

• The sum of the elements ai, j for each row of the transition matrix [A] must be equal to one, since
they define all the possible transition events completely:

j∑
j=1

ai, j = 1. (8)

• The total energy recharged by infrastructure (after convergence) must be equal to the average
energy consumed by the xEV fleet using public charging infrastructure (Figure 6):

[(xEVP)A]y ∗ [(avcV)A ∗ avdA]y =

[(amxEV)A]y∑
a=1

xEVa,t ∗ Ea, ∀t >
−
t , (9)

where t is the convergence iteration step.
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Figure 6. Sample comparison of total energy recharged by infrastructure vs. the average energy
consumed by xEV circulating fleet.

2.2.4. III Step: Publicly Available Infrastructure Solutions’ Space Definition and Costs Minimization

Single event charging energy requests Ea are related to specific consumption [(avcV)A]y and to
battery capacity (battV)y, thus they are different between BEV and PHEV; they also evolve during the
time period. The overall range of variation of Ea spans from zero to the maximum value of battery
capacity (battBEV)2030; in order to simplify the model structure, this range has been divided in 10
equally spaced classes, each one with a constant energy value Ej, with:

⎧⎪⎪⎨⎪⎪⎩ Ej = j ∗ (Ea)max
10

E0 = 0
, 1 ≤ j ≤ 10. (10)

Then, every Ea value has been compared with Ej, so that for every Ej−1 ≤ Ea ≤ Ej the model
apply the substitution Ea = Ej. This way, several different values of energy requests Ea are reduced
to only ten values of Ej; this assumption is safe since it always overestimates the energy requests.
The couples (BEVa, Ea) and (PHEVb, Eb) are transformed into

((
BEVj + PHEVj

)
, Ej

)
, thus inscribing

BEV and PHEV energy requests into the same framework and allowing us to use the additive and
modular architecture that was one of the basic choices for the model.

Given the modular architecture of the model, infrastructure size is calculated for every j-th class of
energy requests and, after the cost optimization phase, the total value is obtained by summation. Since(
rk, j

)
y

already takes into account charging energy requests, all the public infrastructure compositions

that are able to satisfy the total number of daily charging events Rj =
(
BEVj + PHEVj

)
are considered

as suitable. The space of the solutions, for every j-th class, is a triangular portion of a plane, as Figure 7
shows, described by the following equations:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Rj = rs, j ∗ sj + rm, j ∗mj + r f , j ∗ f j
sj ≥ 0
mj ≥ 0
f j ≥ 0

, (11)
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where the triplets
(
sj, mj, f j

)
n

define all the n possible combinations of CS that satisfy total daily charging
requests Rj.

 
Figure 7. An example of the space of solutions as calculated by the model with highlighted boundaries.

After all the technically possible solutions are found, CS costs are applied, in order to optimize the
system and find the least-cost solution for each energy level; this is done by searching the minimum
value of the

(
CTOT, j

)
n

term of the equation:

(
CTOT, j

)
n
= Cs ∗ sj,n + Cm ∗mj,n + C f ∗ f j,n, ∀

(
sj, mj, f j

)
n
. (12)

The outputs of this step are the minimum cost of a charging infrastructure suitable for the j-th
class charging request and its composition in terms of CS:⎧⎪⎪⎨⎪⎪⎩ (CMIN) j

(sMIN, mMIN, fMIN)y
, j ∈ [1, 10]. (13)

2.2.5. IV Step: Output Definition

This final step is designed to aggregate the outputs coming from steps II and IV, and to post-process
them with some of the inputs in order to obtain the other PI for the specific charging infrastructure. In
this section the operations needed to accomplish the first goal will be described, while the results of
the latter will be discussed in the next section.

BEV and PHEV daily charging on publicly available infrastructure:
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The total number of xEV daily using the charging infrastructure during y-th year can be obtained
by summation of the values related to every j-th level:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(BEVP)y =

10∑
j=1

(
BEVj

)
y

(PHEVP)y =
10∑

j=1

(
PHEVj

)
y

. (14)

Energy and power demand from publicly available charging infrastructure:
Couples of values

(
Ej, BEVj

)
y

and
(
Ej, PHEVj

)
y

are sufficient for the calculation of total energy

provided by charging infrastructure during y-th year:

(ETOT)y =
10∑

j=1

(
Ej ∗ BEVj

)
y
+
(
Ej ∗ PHEVj

)
y
. (15)

In order to calculate the energy provided by each power level of the infrastructure, each of the j-th
level contributions must be evaluated separately and finally summed:

[(ETOT)k]y =
10∑

j=1

kMIN, j ∗ Ej ∗ rk, j, k ∈ (s, m, f ). (16)

Publicly available charging infrastructure composition and cost:
The number of charging stations for the various CS power levels and their cost are provided as

output for each y-th year and each j-th energy class by the equations state da the end of Section 2.2.4;
total yearly values are obtained by a sum in j and total global values are the obtained by another sum
in i: ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(CMIN) =
∑

i
10∑

j=1

[
(CMIN) j

]
y

(sMIN, mMIN, fMIN) =
∑

i
10∑

j=1

[
(sMIN, mMIN, fMIN) j

]
y

. (17)

Energy and power demand from private residential charging infrastructure
The basic assumption regarding the use of private residential charging infrastructure is that each

vehicle is assumed to be used and charged every day. This simplifying assumption is related to the fact
that, being the stall private and related to the vehicle, this one will be parked there at least once in the
day, ready to be charged. The equation describing the total average daily energy request is:

[(Er)A]y =
∑

V

{[
1− (%xEVP)y

]
∗ (xEV)y ∗ (avcV)y ∗ avdA

}
. (18)

Private residential charging infrastructure cost:
The least cost for the private residential charging infrastructure is obtained using the following

equation:

[(Cr)A]y =

y∑
i=1

∑
V

{[
1− (%xEVP)y

]
∗ (xEV)y ∗ (Cr)y

}
. (19)

The least cost assumption derives from the fact that no overlap in the use of publicly accessible
and private residential charging infrastructure is modeled, while a certain share of it is expected.

2.3. Scenario Definition

A total of 18 working scenarios have been defined; they are the result of a three-step combination
of various assumptions, as described below.
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The first step is related to the two different geographical areas analyzed—here Florence and
Bruxelles—and affects the following input variables:

• Average daily travel avdFI and avdBXL.
• Publicly accessible stalls PPFI and PPBXL.
• Private residential parking PRFI and PRBXL.

The second step considers the three different xEV fleet forecast scenarios calculated for each
geographical area, here defined as low, medium and high; it affects the following inputs variables:

• BEV circulating fleet on y-th year (BEVFI)y and (BEVBXL)y.

• PHEV circulating fleet on y-th year (PHEVFI)y and (PHEVBXL)y.

The final step is related to user behavior modeling and specifically to the charging events
probability distribution over the estimated range of the vehicle p.

3. Results and Discussion

3.1. Input Values Definition for the Implemented Scenarios

In the following sections the specific input values used in the model for this study were described.
BEV and PHEV fleets forecast over analysis timeframe:
An historical dataset was needed as a baseline of auxiliary information for the development of the

transfer formulas for dataset downscaling; the main sources for data collection are shown in Table 2,
with a reference to the area considered.

Table 2. Data sources for historical baseline characterization (FI = Florence, BXL = Bruxelles).

Source EU-28 IT BE FI BXL Data

Centro Studi Continental A [35] - - - X - EVFI
EVIT

Comune di Firenze [36] - - - X - TOT
EAFO [26] X X X - - NREV

ECOSCORE B [37] - - X - X TOT, EV
ENEL e-mobility [14] - X - - - EV

Eurostat [19] X X X - - NTOT, NEV
IBSA [38] - - X X TOT, EV

UNRAE [39] - X - - - NRTOT, NREV
A: Author’s elaboration on ACI data; B: owned by Vito.be.

Table 3 highlights the sources used to collect the forecast data for xEV fleets growth. Since
only [13,26,39] reported separately the contribution of BEV and PHEV, an average value of the
allocation suggested by those papers has been used to divide the other forecast data between BEV and
PHEV contributions.

A total of 23 scenarios, from nine different studies was thus selected. Then these were compared
to the maximum assumed turnover for xEV, as described in Section 2.2.1 and only the ones that were
proposing forecasts lower than the maximum assumed turnover for xEV were used in the model. After
this step, 11 scenarios from seven sources remained; Figure 8 shows the results in terms of xEV shares
over the total circulating fleet, for Florence municipality. It also highlights the portion of scenarios
range that overcame the selecting threshold.
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Table 3. Data sources for xEV fleet size forecasts.

Source Paper Analyzed
Area

Release
Year

Proposed Scenarios

N. 2020 2025 2030

Eurelectric * Smart Charging: steering the charge,
driving the change [40] EU-27 2015 3 X X X

Delft-CE Impact analysis for market uptake
scenarios and policy implications [41] EU-27 2011 3 X X X

RSE Roadmap per una mobilità sostenibile [42] IT 2017 1 X X X
Start/CEI CIVES Libro Bianco EV [43] IT 2017 4 X - -

EAFO The transition to a Zero Emission fleet for
cars in the EU by 2050 [26] EU-28 2016 3 X X X

ENEL/Ambrosetti E-Mobility Revolution [14] IT 2017 4 - X X
PoliMi E-Mobility report 2018 [13] IT 2018 3 X X X

ENTSO-E TYNDP 2018 [44,45] IT, BE 2018 3 X X X
European

Commission Clean Power for Transport [46] IT, BE 2017 3 X X X

*: 2020 to 2030 data obtained by linear interpolation.

 
Figure 8. xEV fleet growth forecast—total range of collected data values and highlight of the selected
part (light blue), under threshold limit (red line).

Finally, Table 4 highlights the forecasts for BEV and PHEV circulating fleets during the considered
time period, used in the model as inputs for this research.

Table 4. Battery electric vehicle (BEV) and plug-in hybrid electric vehicle (PHEV) fleet forecasts for the
area of Florence and Bruxelles municipalities—absolute figures.

Area Scenario
BEV PHEV

2020 2025 2030 2020 2025 2030

Florence
Low 73 441 2062 90 517 2544

Medium 202 1414 6344 584 2980 9886
High 672 3968 14,030 1141 6016 21,532

Bruxelles
Low 663 3482 10,334 984 3482 12,168

Medium 1283 6022 18,432 2655 10,266 25,451
High 2689 10,078 35,836 5152 17,591 45,337

Table 5 shows the same data but this time in terms of shares of the total circulating fleets in the
two selected areas.
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Table 5. BEV and PHEV fleet forecasts for the area of Florence and Bruxelles municipalities—shares of
total circulating fleet.

Area Scenario
BEV PHEV

2020 2025 2030 2020 2025 2030

Florence
Low 0.0% 0.2% 1.0% 0.0% 0.3% 1.3%

Medium 0.1% 0.7% 3.2% 0.3% 1.5% 5.0%
High 0.3% 2.0% 7.0% 0.6% 3.0% 10.8%

Bruxelles
Low 0.1% 0.7% 2.1% 0.2% 0.7% 2.5%

Medium 0.3% 1.2% 3.7% 0.5% 2.0% 5.2%
High 0.5% 2.0% 7.3% 1.0% 3.4% 9.2%

Average BEV and PHEV energy consumption and capacity of batteries:
Table 6 shows the results obtained by applying the methodology described in Section 2.2.1 and

subsequently applied in the model.

Table 6. xEV average consumption and capacity assumed forecast values.

2020 2030

BEV PHEV BEV PHEV

Average specific consumption (kWh km−1) (avcV)y 0.192 0.108 0.154 0.086
Average battery useful capacity (kWh) (battV)y 31.6 7.14 59.5 9.8

Public and private stalls availability:
In order to obtain the results highlighted in Table 7 the following sources were investigated:

• For the Florence area, open-data maps and databases developed by the municipality were used to
assess public parking spaces availability [47], while the results of the 2011 census [48] were used
to evaluate private residential parking spaces.

• With regards to the Bruxelles area, open-data databases were used to obtain the number of public
parking spaces available, together with an estimate of private parking spaces in the residential
area [49].

Table 7. Public and private stalls availability in the analyzed areas of Florence (2013 data) and Bruxelles
(2018 data).

Public Stalls (PPA) Private Residential Parkings (PRA)

Florence 65,000 55,800
Bruxelles 318,600 293,000

Definition of CS characteristics:
As a first step in choosing the implemented CS power level a research within existing National

Regulations and EU-28 Directives has been performed, in order to gather suggestions and any provided
prescription. The main sources consulted here were Directive 2014/94/EU [4] and the PNire [5].

Another research has then been performed to understand the current composition of publicly
accessible charging infrastructures in the study areas, using accessible databases such as official
open-data archives of municipalities [50], data from a service provider (Enel) [51] and other unofficial
archives (Opencharger) [52], to understand the current composition of the infrastructure in terms of
quantity, power levels and connection standards used.

The home charging sector has also been considered, evaluating the average installed power as
well as the maximum that can be installed by a European household, to define an upper limit value for
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the power of the recharging system [53]. In conclusion, a literature research was carried out in order to
evaluate the possible future developments of the infrastructure in terms of power levels and usage [34].

At the end of the research phase, the following power values were identified for the various
charging systems used in the model, and finally applied both to Florence and Bruxelles area:

• Private residential charging points Pr: 2 kW
• Publicly accessible charging points: Three power levels and corresponding charging systems,

called slow, medium and fast, have been implemented. The selected power values are listed in
the following Table 8:

Table 8. Charging power levels assumed in the model for this study.

Power Levels
Charging Power

2020–2024 2025–2030

Slow—(Ps)y 7 kW 22 kW
Medium—(Pm)y 22 kW 50 kW

Fast—
(
P f
)

y 50 kW 100 kW

An installation cost has been defined for each CS power level; this value includes the cost of the
charging station, including installation and grid connection costs. Operating costs were not considered,
as they were not part of the scope of the study, nor were maintenance costs; the latter were not
implemented in order maintain the model simple enough.

Learning curves were applied to capital, installation and connection costs, to take into account the
reduction of costs over time related to the effects of industrialization and rationalization of processes.
All the information derives from an extensive literature research (cfr. [10,31,41,46,54,55]) and brought
to the definition of (Cs)y, (Cm)y,

(
C f
)

y
and (Cr)y, related to the y-th year and described in Table 9.

Table 9. Charging station (CS) costs forecast for the various power levels.

2020 2025 2030

Private
Residential—2kW (Cs)y

900 € 810 € 729 €

Slow—7 kW (Cm)y 1783 € 1630 € 1630 €
Medium—22 kW

(
C f
)

y 4800 € 4264 € 4264 €
Fast—50/100 kW (Cr)y 44,000 € 38,798 € 32,564 €

A literature search was then carried out to verify the actual use ratios of existing charging
infrastructures [20,56]. The driving and parking behaviors and daily timeframes of an average user
were mainly derived from the study [23], which specifically analyses driving behavior in various
European countries, including Italy. The results of these evaluations, together with other usage
constraints and the energy request levels Ej, brought to the maximum number of charging events for
level of energy requests reported in Table 10 for each power level of the CS:

Driving and charging behavior of users:
For what it concerns the average daily travelled distance, two different values have been

calculated, for Florence and Bruxelles, as shown in Table 11 the most recent data available (2015) have
been used, from:

• Odyssee-Mure Database [57]: Italy and EU-28.
• ACEA [58]: Belgium.
• ACI—CENSIS [59]: Italy.
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Table 10. Maximum number of charging events daily manageable by each level of energy requests, for
each Charging energy request class.

CS Power Levels
Charging Energy Request Classes—Ej (kWh)

6 12 18 24 30 36 42 48 54 60

2 kW rr, j 1 1 1 0 0 0 0 0 0 0
7 kW rs, j 3 3 3 2 2 2 2 2 2 0

22 kW rm, j 8 8 8 4 4 4 4 3 3 3
50 kW r f , j 12 12 12 12 8 8 8 8 4 4
100 kW r f , j 17 17 17 12 12 12 12 8 8 8

Table 11. Forecast average daily travelled distance by a passenger car over the analyzed areas.

Florence Bruxelles

Average daily travelled distance (km) (avdA) 23.5 30.5

The shares of PHEV and BEV, which are considered as using the publicly accessible charging
infrastructure, were calculated using data coming from [31,60]; the results are reported in Table 12:

Table 12. Share of PHEV and BEV expected to be using the publicly accessible charging infrastructure.

2020 2025 2030

Share of BEV using the publicly
accessible charging infrastructure

(%BEVP)y

56.5% 66.9% 75.8%

Share of PHEV using the publicly
accessible charging infrastructure

(%PHEVP)y

45.6% 58.6% 69.7%

Finally, the charging events probability distribution p over the estimated range of the vehicle, was
defined for three different scenarios (see Figure 3):

• Linear: assumes a linear correlation between the number of days since the last charging events
and the charging event probability.

• Regressive: assumes a correlation between the number of days since the last charging events and
the charging event probability of the kind y =

√
x.

• Progressive: assumes a correlation between the number of days since the last charging events and
the charging event probability of the kind y = x5/3.

3.2. Discussion

The analytical model described in this article was designed to capture the main complexities of the
selected scenarios, while maintaining a simple and lean structure. Therefore, some of the simplifying
assumptions implemented in the model could affect the outputs and the accuracy in some specific areas.

As already stated in Section 2.1, the model did not update the utilization ratio of the already
deployed charging infrastructure to take into account incremental improvement during the time
period. This could potentially lead to a sub-optimal use of the charging infrastructure. Overall,
infrastructure oversizing can be estimated in just a few percentage points from optimum, since it
is directly proportional to utilization ratio. On the other hand, the model evaluates the average
daily values, thus simulating an average use of the charging infrastructure; this could lead to an
underestimation of peak power demand from the grid, as well as to a possible underestimation of the
number of CS needed by the circulating xEV fleet. Finally, the model has to deal with the lack of real
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data related to charging behaviors of users, and with the uncertainty of the forecasts used as inputs;
this situation clearly leads to a corresponding range of variability of the outputs.

All the following outputs will be thus presented in a min–max format, given also the fact that
they will summarize nine different analyzed scenarios for each geographical area. Moreover, it must
be highlighted that the maximum values refer to a threshold situation related to the turnover trends
of passenger vehicles circulating fleet and thus have to be considered as an “upper limit”. That said,
the main results related to public charging infrastructure are reported in Table 13, while the main
results related to private charging infrastructure are highlighted in Table 14, both for Florence and
Bruxelles area.

Table 13. Model results for xEV fleet forecast and publicly accessible charging infrastructure for
Florence and Bruxelles area.

Publicly Accessible Charging Infrastructure

Florence Bruxelles

Output (Cumulative
Values)

2020 2025 2030 2020 2025 2030

EV fleet/Tot fleet (%) Min 0.1% 0.5% 2.3% 0.3% 1.4% 4.6%
Max 0.9% 5.0% 17.8% 1.5% 5.4% 16.5%

Total CS
Min 12 66 194 201 580 1210
Max 199 795 2053 1014 2538 5537

Total costs (k€) Min 24.4 169.6 743.7 369.2 1366.2 4496.5
Max 385.1 2309.5 8323.9 1959.1 6993.4 21,381.9

Average daily charged
energy (kWh)

Min 0.3 2.2 11.0 4.3 20.4 68.7
Max 3538 21,317 81,363 19,514 74,215 244,712

Global utilization rate
Min 10.61% 9.59% 8.88% 11.70% 10.77% 10.27%
Max 16.60% 14.77% 14.34% 14.69% 16.19% 14.44%

EV/CS ratio Min 10 12 18 8 11 15
Max 18 19 27 9 13 19

“Slow A” CS/“Fast” CS ratio
Min n.a. B 59 188 n.a. 166 31
Max n.a. n.a. n.a. n.a. n.a. 72

A Here 7kW and 22kW power levels are assumed as “Slow”; B “n.a.”, whenever present, means that the corresponding
charging infrastructure does not have 50 kW and 100 kW CS.

The average amount of daily energy required by xEV fleet charged on public infrastructure is
assumed to reach more than 80 MWh for Florence and almost 245 MWh for Bruxelles by 2030, for the
most demanding scenario. These values correspond to an average daily electricity consumption of
about 13,500 families in Florence, and about 35,000 families in Bruxelles [53]. Considering an average
delivery window of 20 h, compatible with the assumptions made in the study, this energy demand
theoretically corresponds to an average continuous power requirement of 4 MW for Florence and
12.3 MW for Bruxelles.

The same analysis, when applied to the private residential charging infrastructure, give as results
for the 2030 values of almost 50 MWh for the Florence and almost 155 MWh for Bruxelles for the
most demanding scenario. Considering an average delivery window of 8 h, compatible with the
assumptions made in the study of only night charges, this energy requests corresponds to an average
continuous power requirement of 6.3 MW for Florence and 19.4 MW for Bruxelles.

These outputs show that the share of total energy demands supplied by private residential
charging infrastructure ranged between slightly more than 50% on year 2020 to less than 40% at the
end of the time period, on year 2030. These results were strictly related with the assumption on the
share of xEV using private infrastructure defined in Table 12.
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Table 14. Model results for xEV fleet forecast and private residential charging infrastructure for Florence
and Bruxelles area.

Private Residential Charging Infrastructure

Florence Bruxelles

Output (Cumulative Values) 2020 2025 2030 2020 2025 2030

Total CS
Min 85 442 1676 877 3285 8559
Max 967 4694 13,401 4191 13,253 31,386

Total costs (k€) Min 76.5 367.8 1267.4 1078.2 3736.4 8917.4
Max 870.3 3910.2 10,257.6 3771.9 11,163.1 24,382.1

Average daily charged energy
(kWh)

Min 365 1828 6318 4778 18,033 42,722
Max 3962 18,739 49,524 22,047 67,663 154,527

Share of total charging energy Min 52.1% 45.6% 36.5% 52.9% 46.9% 38.3%
Max 52.8% 46.8% 37.8% 53.0% 47.7% 38.7%

Another interesting perspective for the comparison of both private and publicly accessible
infrastructure was the total cost of installation: private infrastructure results were always more
expensive, up to twice the cost for some scenarios. This poor performance was related to the lowest
EV/CS ratio of residential CS that was assumed to be equal to 1, so that basically for every xEV that
uses the private infrastructure a CS is needed.

Finally, with the aim of verifying the effort to be made to achieve the results described by the
model, the average number of charging stations to be installed each year and the related annual cost
were then calculated. The results were averaged over the two periods 2020–2025 and 2025–2030 for the
areas of Florence and Bruxelles and are shown in Table 15.

Table 15. Yearly steps to deploy the publicly accessible charging infrastructure as sized by the model.

Florence Bruxelles

Output (Annual Mean Values) 2020–2025 2025–2030 2020–2025 2025–2030

CS to be installed in a year Min 11 23 108 112
Max 143 223 464 536

Yearly deployment costs Min 25,387 € 102,789 € 238,265 € 550,855 €
Max 373,816 € 1,075,794 € 1,192,045 € 2,570,283 €

After this brief overall presentation of the results, in the following sections more in-depth analyses
would be presented on specific arguments.

Publicly accessible infrastructure composition:
The most important result obtained from the analysis of model outputs was that the higher the

power CS was the smaller share of the total, as Figure 9 shows. This was related to their worst charging
events/cost ratio rk, j/(Ck)y comparing to slow and medium ones. In other words, the high-power CS was
able to manage less daily charging events for the cost.

Moreover, an inversion trend between slow and medium ones was highlighted during the
timeframe of the analysis. This behavior was related to the shift to higher Ej classes of the energy
requests moving through the time period. The energy distribution pattern between the various power
level also confirmed these findings, showing an even stronger predominance of the medium, 22 kW,
CS power level.

Number of daily charging xEV as a percentage of the total EV fleet:
A consequence of vehicle range and user behavior assumptions, only a share of xEV ranging

from 34% to 89% of theoretical total value
[
(BEVP)y + (PHEVP)y

]
used the charging infrastructure on

an average, daily basis, with the expected trend shown in Figure 10. This finding directly reflected
into less charging events with average higher energy requests. This could lead to a smaller than
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expected infrastructure but with the same average energy request thus, consequentially, possible higher
power request.

 
Figure 9. CS distribution (left) and energy requests distribution within power level (right) for the
publicly accessible charging infrastructure.

 
Figure 10. Publicly accessible charging infrastructure daily charging events for Florence (light blue)
and Bruxelles (light green).

The higher values calculated for Bruxelles area could be related to the higher circulating fleet,
thus to the higher number of PHEV; in fact, PHEV were modeled to a much smaller battery capacity,
so they usually charge more often.

EV/CS ratio:
This parameter describes the number of xEV virtually assigned to each existing CS of the

infrastructure. Higher EV/CS led to costs reduction for the infrastructure and higher revenues for each
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CS; anyway, also negative side effects could occur, such as a higher risk of finding the CS occupied by
other charging xEV. A balance between these aspects were thus found; AFI Directive suggests a 10:1
ratio [4], while Italian PNIRE suggest an average figure of 7:1 [5].

The following equation was used within the model to define this parameter:

(EV/CS)y =

y∑
i=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(BEVP)i + (PHEVP)i[∑

j(sMIN + mMIN + fMIN) j

]
i

⎫⎪⎪⎪⎬⎪⎪⎪⎭. (20)

A rising trend is shown in Figure 11, going through the timespan of the analysis; this is due to
a growing path in the installation of higher power CS—such as medium and fast ones—capable of
higher numbers of daily charging event. Figure 11 shows also that EV/CS ratio figures were spread
over a broader range and were also higher on average for Florence, when compared to Bruxelles.
This again was related to the higher number of PHEV expected to be circulating in Bruxelles, given the
fact that their lower energy requests were optimally fulfilled by the CS of the lowest power level, which
were also the one with the lowest EV/CS ratio. The higher variability of the xEV fleet size forecast for
Florence probably affected also the variability of EV/CS ratio for this area.

Figure 11. Publicly accessible charging infrastructure electric vehicle (EV)/CS ratio for Florence (light
blue) and Bruxelles (light green).

Global use ratio of infrastructure:
An important parameter for business and profitability evaluations is the global usage ratio u,

which is defined within this model using the following equation:

uy =

∑
k[(ETOT)k]y∑

k (kMIN)y ∗ hk ∗ (Pk)y
. (21)

Figure 12 shows that the global use ratio was quite low and rather constant during the whole
period; the results were in line with other researches findings, such as [20,22,56].
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Figure 12. Publicly accessible charging infrastructure utilization rate for Florence (light blue) and
Bruxelles (light green).

Impact of infrastructure on private and public parking:
The impact on public stalls Iy for a given area is defined as following:

Iy =
CSy

xEVy
TOTY

∗ PP
. (22)

The resulting value was low and the trend decreasing in time, as highlighted by Figure 13; this was
the effect of the high value of EV/CS ratio, that also increased in the second part of the period given the
higher share of medium and fast CS.

Figure 13. Public stall usage ratio by publicly accessible charging infrastructure for Florence (light blue)
and Bruxelles (light green).
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The impact on the private infrastructure was higher, given the fact that the probability of an xEV
owner being also a parking owner was twice as high than with an ICEV owner; anyway, the result was
still compatible with the existing situation.

As summarized in the following conclusions, the analysis carried out in this research work clearly
identified elements impacting on policy at different governance levels. The central government layer, in
charge of accelerating the transition to a cleaner transport system and implementing the EU Directives,
will have to allocate the financial resources in the best possible way to allow local governments to
maximize the fast deployment of charging infrastructure “on the ground”. In this respect, the analysis
here carried out about the optimal ratio between slow and medium CS to fast CS is a key element:
results of our analysis did not seem to fully support the widely adopted idea (at the higher centralized
policy level) of favoring fast CS versus slow and medium ones, in regards to cost optimization.

4. Conclusions

This work investigated a lean methodology to estimate the optimal size of a minimum cost
charging infrastructure for passenger vehicles, suitable for deployment in an urban area. An analytical
model was therefore developed to simulate different scenarios, accounting separately for BEV and
PHEV fleets, as well as for publicly accessible and private residential CS. The model needs as inputs,
for each timestep of the analysis, the number of daily charging events related to both BEV and PHEV
fleets and the corresponding energy requests; moreover, it needs a full characterization of the CS
in terms of expected performances and costs. A discrete-time Markov chain (DTMC), applied to
a countable, finite state-space was used to obtain the estimate of the average daily distribution of
the charging events within the circulating fleet, and the corresponding energy requests. Due to the
primary importance of the inputs related to the size of the circulating EV fleet and since substantial
differences between the various forecasts emerged from the research, a novel method for data sorting
and conditioning of EV fleets forecasts was developed, using circulating fleet turnover rate as a
threshold indicator.

The model was then applied to the two selected case studies of Florence Municipality for Italy
and Bruxelles for Belgium, over the 2020–2030 period, with a 1-year timestep resolution; nine inputs
scenarios and three outputs scenarios were defined for each area. The xEV fleet forecasts used as inputs
for this work were presented with a broad range of variability: on 2030 they spanned between 2.3% and
17.8% of the total circulating fleet for the Florentine area, and between 4.6% and 16.5% for Bruxelles.
In absolute terms, this translated to 194 to 2053 passenger cars for Florence and to 1210 to 5536 for
Bruxelles. As a consequence of vehicle range and user behavior assumptions, only a share of xEV
ranging from 34% to 89% of the theoretical total value was expected to use the charging infrastructure
on an average day; this could lead to a smaller than expected infrastructure having the same average
energy request thus, consequentially, a possibly higher power request.

The optimal size for the publicly accessible charging infrastructure, to be reached on 2030, was
estimated in about 194 to 2053 CS for Florence and 1210 to 5537 CS for Bruxelles; these numbers
corresponded to about 0.75 to 8.3 M€ on deployment cost for Florence and to 4.5 to 21.4 M€ for Bruxelles.
On average, it was estimated that 10 to 200 CS has to be installed every year in Florence to comply with
the deployment trend, with the yearly cost of deployment spanning between 25 k€ and 1 M€; these
figures depended on the evaluated scenario and on the selected year of the time period. The same
analysis, projected on Bruxelles, returned an estimate of 100 to 530 CS to be installed every year, for a
cost ranging between 230 k€ and 2.6 M€ per year. The narrower range of values related to Bruxelles
could be explained by the higher minimum level of xEV forecasted in comparison to Florence. Notably,
the higher power CS results to be the smaller share of the total and this is clearly related to their
worst charging events/cost ratio comparing to slow and medium CS. The private residential charging
infrastructure size on 2030 was then estimated in 1700 to 13,400 CS and in 8600 to 31,400, respectively
for Florence and Bruxelles, with deployment costs ranging from 1.3 M€ to 10.3 M€ and from 8.9 M€
and 24.4 M€.
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These higher figures in terms of costs and number of CS are related to the lower EV/CS ratio
of residential CS, that is assumed equal to be 1; moreover, these figures suggest the relevance of a
possible implementation of support schemes for the installation of residential CS, since this could help
to unlock the potential related to households with off-street private parking.

Within the publicly accessible infrastructure, EV/CS ratio results into higher values, spanning
from 8:1 to 27:1 depending on scenarios and time period; these values were also higher than AFI
Directive suggestions for a 10:1 ratio and Italian PNIRE suggestions for an average figure of a 7:1 ratio.
Even with these high EV/CS ratios, the global use ratio of the infrastructure did not rise over 17% of its
theoretical maximum potential, showing an almost constant trend over the period, thus highlighting
the possible need for policies supporting CS profitability, at least during the first transition period.
The impact of the planned infrastructure on the available public stalls results were less pronounced
than that of the ICEV and showed a decreasing trend over the period, as a result of the increasing
EV/CS ratio.

From a grid perspective, the average amount of daily energy required by xEV fleet charged on
public infrastructure was expected to reach more than 80 MWh for Florence and almost 245 MWh for
Bruxelles by 2030, for the most demanding scenario. As a comparison, the private residential charging
infrastructure, was expected to reach 50 MWh for Florence and 155 MWh for Bruxelles; these results
were strictly related with the assumptions on the share of xEV using private infrastructure, as defined
in the model. Based on the assumptions made for the daily charging windows duration, energy
requests translate into average continuous power requirements for the public infrastructure of 4 MW
in Florence and 12.3 MW in Bruxelles; the same analysis made on the private residential charging
infrastructure, gave as a result 6.3 MW for Florence and 19.4 MW for Bruxelles.

Finally, results shown in Section 3.2 made evident that optimal charging infrastructure
configuration was obtained with a higher share—well beyond 90% of the total at 2020—of slow
and medium CS, compared to fast ones. This situation was due to the worst charging events/cost ratio
of the fast CS—if compared to the slow and medium ones—that is obtained from the input used in this
study. It is worth noting that this result was quite different from the suggestion given by PNIRE of a
25% to 50% share of fast CS over the total on year 2020 [5].

Overall, therefore, more than the additional power demand by EV and the associated costs,
the critical issue for developing a charging infrastructure able to meet the EV fleet on the coming
years will most likely lie on the actual implementation of the civil works at urban level, and the
ability to implement these vis-à-vis the EV fleet growth, so to achieve comparable development rates.
This assuming a reasonable incremental rate of EVs in the next decades, thus excluding unrealistic and
excessively optimist or pessimistic assumptions about car renewal rates.
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Glossary

AFI Alternative Fuels Infrastructure GIS Geographic Information System
ACI Automobile Club d’Italia ICEV Internal Combustion Engine Vehicle
BEV Battery Electric Vehicle PHEV Plug-in Hybrid Electric Vehicle
CS Charging Station PI Performance Indicators

DTMC Discrete Time Markov Chain PNIRE
Piano Nazionale Infrastrutturale per la Ricarica
dei veicoli alimentati ad energia Elettrica

EEA European Environment Agency RES Renewable Energy Source
EU European Union RFNBO Renewable Fuels of Non-Biological Origin
EV Electric Vehicle SOC State Of Charge
GHG Greenhouse Gases xEV BEV and PHEV
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Featured Application: This work features a feasibility study of different operating scenarios

for a hybrid refinery producing synthetic paraffinic kerosene from vegetable oil and electrolytic

hydrogen.

Abstract: Limited alternative fuels for a CO2-neutral aviation sector have already been ASTM
certified; synthetic paraffinic kerosene from hydrotreated esters and fatty acids (HEFA-SPK) is one
of these—a sustainable aviation fuel. With the hypothesis to improve the greenhouse gas (GHG)
balance of a HEFA plant by realizing the required hydrogen supply via electrolysis—power to gas
(PTG)—an exemplary SynBioPTx approach is investigated in a comprehensive feasibility study,
which is, regarding this comparatively new approach, a novelty in its extent. About 10 scenarios
are analysed by technical, environmental, and economic aspects. Within the alternative scenarios on
feedstocks, electricity supply, necessary hydrogen supply, and different main products are analysed.
For different plant designs of the hybrid refinery, mass and energy balances are elaborated, along with
the results of the technical assessment. As a result of this environmental assessment, the attainment
of at least 50% GHG mitigation might be possible. GHG highly depends on the renewability grade of
the hydrogen provision as well as on the used feedstock. One important conclusion of this economic
assessment is that total fuel production costs of 1295 to 1800 EUR t−1 are much higher than current
market prices for jet fuel. The scenario in which hydrogen is produced by steam reforming of
internally produced naphtha proves to be the best combination of highly reduced GHG emissions
and low HEFA-SPK production costs.

Keywords: hybrid refinery; power-to-gas; biofuel; jet fuel; feasibility study

1. Introduction

The aviation sector is faced with particular challenges in regard to climate protection targets in
light of the Paris Agreement, and at the same time it is faced with the rapid growth of the industry.
Due to comparably long development and implementation phases in this sector as well as the long
lifetime of aircrafts, the implementation of new powertrains (e.g., including batteries or fuels like
hydrogen combined with fuel cells) usually requires several decades. Accordingly, sustainable aviation
fuels (SAF) play a key role in the aviation sector. This is especially true for the so-called renewable
drop in fuels that can be used similarly to conventional fossil jet fuel. Related to climate protection
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strategies, the demand on such renewable SAF is increasing in the medium-term [1,2]. Figure 1 shows
the jet fuel demand of all flights departing in Germany, the CO2 emissions to be reduced, and the
share of required renewable jet fuels to fulfill targets of the Aviation Initiative for Renewable Energy in
Germany e.V. (aireg), International Air Transport Association (IATA), and Climate Action Plan 2050
for Germany (CAP), as well as the required energy-related amounts of renewable SAF with specific
greenhouse gas (GHG) mitigation potentials. According to this, a massive demand on SAF with high
specific GHG mitigation compared to fossil jet fuel is required.

Figure 1. Jet fuel demand of all flights departing in Germany, emissions to be reduced, and the share of
required renewable jet fuels to fulfill targets like of aireg, IATA, and climate protection plan (adapted
from [3]).

Referring to the ASTM standards, which are binding in the aviation sector, only HEFA-SPK will
short- to medium-term be available on the market in significant amounts [1]. Worldwide production
capacities of HVO/HEFA (hydrotreated vegetable oils/esters and fatty acids) were about 224 Petajoule
(PJ) in 2018 [4], of which about 5PJ was HEFA-SPK. According to ASTM D7566 Annex 2, HEFA-SPK
can be blended to a maximum of 50% (v/v) to conventional jetfuel, which has been demonstrated
several times but is not part of regular operation yet.

To produce HEFA, hydrogen is required. It was a hypothesis that renewable-based hydrogen might
have a favorable GHG performance and—based on electrolysis (so called power-to-gas (PTG))—allow
one to integrate renewable electricity. Therefore, it was the target when investigating a PTG-HEFA
hybrid refinery as an example of SynBioPTx concepts in a comprehensive feasibility study. SynBioPTx
stands for using synergies (syn) of biomass-based (bio) and electricity-based (PTx) fuels and product
processes. This novel approach has got increasing interest in recent years, especially from the viewpoint
of Germany where PTx fuels are seen as an important solution for climate-friendly transport and
especially aviation (e.g. [5–9]).
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Part of this first-of-its-kind feasibility study was technical, economic, and environmental
assessments within a set frame given by the initiator of this study, like the size of the PTG-HEFA
production facility to be realized in the time horizon 2024/25 and basic feedstock (here about 500,000
tonnes of jatropha oil). Considering Germany as a focus region for such a PTG-HEFA hybrid refinery
(e.g., like using former mineral oil refinery sites), other sites in potentially favorable regions for PTG
have also been investigated. Comparable studies that consider the combination of HEFA and PTG to
this extent and in such detail are not known by the authors. Nevertheless, there are investigations on
integrating renewable hydrogen into BTL routes (synthetic biomass-to-liquid) like [10,11].

The materials and methods are described, and results are shown and discussed as follows. Finally,
conclusions are drawn.

2. Materials and Methods

The PTG-HEFA hybrid refinery has been assessed for different scenarios with regard to the plant
setup. Technical assessment was done based on dedicated mass and energy balances, but also including
issues on required infrastructure and different frame conditions. These were the base for the economic
assessment with regard to costs and the environmental assessment with regard to GHG emissions.

2.1. Scenarios for PTG-HEFA Plant Setup

The technical feasibility of a PTG-HEFA hybrid refinery with a feedstock input of 500,000 tonnes
per year of jatropha oil to HEFA-SPK was set as reference case to be realized in 2024/25. In addition
to that, nine alternative scenarios have been investigated with regard to different approaches for
electricity supply, hydrogen production, feedstocks, and refinery products. A simplified scheme of the
PTG-HEFA hybrid refinery and the different frame options shows the scope (Figure 2).

Figure 2. Simplified scheme of PTG-HEFA hybrid refinery and scope.

The specific assumptions for the different scenarios are summarized in Table 1. The different
scenarios are grouped with special regard to the following:

(a) Electricity supply: constantly from the electricity grid with the specific electricity mix based on
different primary energy sources, in a dynamic mode with based best cost-effectivity (in case of
cheap spot market prices) whilst using electricity from the grid or as stand-alone power system
based on fluctuating renewable energies (here, onshore wind park and solar photovoltaic park);

(b) Hydrogen supply: based on alkaline electrolysers with different storage systems depending on
the electricity supply and—more conventionally—based on steam reforming from either natural
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gas, biomethane, or internal use of by-products of the HEFA plant such as naphtha and fuel gases
(as is done today in most of the HVO/HEFA plants).

(c) Feedstocks: as alternatives to jatropha oil; rapeseed oil with regard to the domestic option of,
palm oil with regard to cost and specific hydrogen demand, and used cooking oils (UCO) with
regard to lower GHG emissions (according the current regulations in the EU) .

(d) Main product: referring to the different operational modes of a HEFA plant with regard to products,
compared to the HEFA-SPK case, the alternative operation mode is focused on producing diesel.

Table 1. Scenarios and their specific assumptions.

Scenario Feedstock Electricity Supply
Necessary Hydrogen Supply
(Electricity Demand in MW) 1 Main Product

1 (reference) jatropha oil Constant from grid (with
electricity mix): 8000 h a−1

121 MW alkaline electrolyser
incl. tube buffer storage

HEFA-SPK

2 (dynamic) Dynamic from grid (spot
market prices): 4000 h a−1

244 MW alkaline electrolyser
incl. salt cavern storage

3 (stand-alone) Stand-alone system (wind
360 MW and solar 250
MW): 2600 h a−1

373 MW alkaline electrolyser
with operated in varying part
loads incl. salt cavern storage

4 (natural gas) Constant from grid (with
electricity mix): 8000 h a−1

via steam reforming from
natural gas

5 (biomethane) via steam reforming from
biomethane

6 (naphtha) via steam reforming from
naphtha and fuel gas

7 (rapeseed) rapeseed oil 121 MW alkaline electrolyser
incl. tube buffer storage

8 (palm) palm oil

9 (UCO) used cooking oil

10 (diesel) jatropha oil diesel
1 cf. calculations in Section 2.2.1.

2.2. Technical Assessment

As part of the technical feasibility, the plant conception of the PTG-HEFA hybrid refinery has been
elaborated with regard to the different scenarios (Table 1) and—with regard to the assumed startup
of such a plant in 2024/25—based on technologies that are and might be available on commercial
scale. For all the scenarios, relevant mass and energy flows into and out of the plant have been
calculated. Moreover, infrastructural issues with regard to possible locations for such a refinery have
been investigated.

As a detailed description of the methods applied for the technical assessment of the PTG part and
the HEFA part of the hybrid refinery is presented in [12]. Both parts are described briefly below.

2.2.1. PTG part

The power-to-gas part for the hydrogen supply is realized as alkaline electrolysis of water.
The decision to include alkaline electrolysers into the hybrid concept was based on the results of
a comprehensive market assessment (including concrete requests for proposal from international
electrolyser manufacturers) that shows that only this technology can be provided by 2024/25 in the
required capacity (Table 1). The different sizes are based on the calculations made for the different
electricity supply scenarios that influence the annual operating hours of the electrolysers. The shorter
the equivalent full load period of the electrolyser, the larger the capacity of the electrolyser to cover
the hydrogen demand of the HEFA part (121 to 373 MW hydrogen including electricity for hydrogen
compression). The hydrogen demand of the HEFA plant amounts to about 17,500 t a−1. At an
equivalent full load period of 8000 h a−1, the electrolysis plant has to generate about 2.19 t h−1, leading
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to an electricity input of 121 MW. At an equivalent full load period of 2600 h a−1, the electrolysis plant
has to generate about 6.66 t of hydrogen per hour, leading to an electricity input of 373 MW.

The same is true for the required type and size of the hydrogen storage (short-term underground
tube buffer with a volume of 6860 m3 with a net hydrogen storage capacity of 26 t for scenario 1 or
salt caverns with a volume of 104,000/213,000 m3 with a net hydrogen storage capacity of 775/1585 t
for scenario 2 and 3), and thus the additional electricity demand for storage loading and unloading.
The underground tube buffer is based on data from [13]. It has been assumed that for an equivalent
full load period of 8000 h a−1 of the electrolysis plant, the required storage capacity amounts to about
0.5 days of full load operation leading to a net hydrogen storage requirement of about 26 t, which is
approximately the net storage capacity of the underground tube gas storage described in [13]. Salt
caverns only have been applied for scenario 2 and 3, where long-term hydrogen storage is required.
Based on data in [14] and the equivalent full load period of the electrolysis plant, the required storage
loading compressor capacity (about 2.19 tH2 h−1 for an equivalent full load period of 4000 h yr−1 and
about 4.47 tH2 h−1 for an equivalent full load period of 2600 h yr−1) and the required storage volume
have been calculated. The hydrogen storage capacity amounts to about 15 days of full load storage
loading compressor capacity.

2.2.2. HEFA part

The HEFA as multi-process plant (Figure 2) is derived from [15] and includes a pre-treatment of
the feedstock (degumming, bleaching, and neutralisation), two main processing steps (hydrotreating,
subsequent hydrocracking, and isomerisation stages), and a product separation (distillation).

All chemical reactions in the HEFA part (especially conversion of triglycerides of the feedstocks
into linear, oxygen-free paraffins; saturation of double bonds; and hydrogenation on different paths and
cracking) have been analysed on a molecular level according to the exact composition of each feedstock
(data from [16–18]). This has been done in order to calculate the stoichiometric hydrogen demand per
ton of feedstock according to [19,20], and the exact composition of the different fuel products.

The ratio of hydrodeoxygenation and decarboxylation in the conversion of the triglycerides is set
to 73%:27% [21,22]. A calculated 30.2% of the CO2 from decarboxylation is subsequently converted into
methane by either direct conversion [23] or water–gas–shift reaction and CO methanation [24]. For each
feedstock, the cracking rate is set individually depending on the requested product (HEFA-SPK or
diesel).

The distribution of fuel products after the cracking stage is based on a normal distribution
with a mean of half the initial chain length. The standard deviation is set according to the product
distribution described in [25]. The process parameters for both process stages are set in reference
to [26], and multiple cracking of one fatty acid is not taken into account.

As a state-of-the-art technology within HEFA facilities, in scenarios 4-6 the hydrogen production
via steam reforming is considered instead of the PTG part. In the case of steam reforming, the total
electricity demand of the plant is considerably reduced.

2.3. Environmental Assessment

The calculation of the lifecycle GHG emissions for the different scenarios has been conducted
by means of a life cycle assessment (LCA), which is standardized and generally defined within DIN
ISO 14040 and 14044 standards [27,28]. This general LCA approach described within these standards
contains various levels of freedom regarding aspects such as system boundaries, life cycle impact
categories, characterization factors, etc., which allow for a dedicated assessment. From a scientific
point of view, these degrees of freedom are one of the strengths of LCA, but the results are difficult
to compare. Proof of sustainability or, more specifically, evidence of a defined GHG reduction in a
certification system requires a simplified method that allows for robust and consistent GHG accounting.
For this purpose Annex V of the European Renewable Energy Directive (RED) contains an easy
method for the calculation of lifecycle GHG emissions [29]. This method is based on the DIN EN ISO

59



Appl. Sci. 2019, 9, 4047

standards but limits the mentioned degrees of freedom by a clear definition of the system boundaries,
the consideration of by-products and other aspects, which are described in Table 2.

Table 2. Methodology and assumptions for life cycle assessment (LCA).

Methodology Step Assumptions for PTG–HEFA Hybrid Refinery

Goal and scope definition

Considered impact categories Global warming potential (GWP)
Functional unit 1 MJ fuel ex hybrid refinery
System boundary for LCA Well-to-tank-chain including feedstock production (w/o direct or indirect land use

changes), biomass collection of UCO and fuel production.
No consideration of infrastructure (i.e., built up of plants, components, and
vehicles)

Consideration of by-products According to European Renewable Energy Directive (2008/29/EC) allocation of
by-products (here, the subdivision of emissions and demands along the
production chain between HEFA-SPK and naphtha, fuel gas, and diesel) and
according to their energy content (lower heating value)

Inventory calculation

Input/output analysis Consideration of all relevant input and output streams (i.e., energy and feedstock
inputs, auxiliaries and utilities, products and by-products, and waste) within the
system boundary
Concepts based on process simulation, own data, and EcoInvent Version 3.3 [30]
External electrical power based on country specific mixes for 2015, emissions
according to Gemis [31]

Impact assessment

Approach Evaluation of data resulting from input/output analysis regarding potential
environmental impacts by means of so called characterising factor aggregation
with regard to one reference substance

GHG emissions According Forth IPCC Assessment Report (AR4)
CH4 with 25 CO2-eq, N2O with 298 CO2-eq
(w/o consideration of process-related biogenous CO2 emissions) [32]

Result interpretation

cf. Section 3.2

2.4. Economic Assessment

As part of economic feasibility, specific fuel production costs have been calculated referring to the
guideline 6025 of the Association of German Engineers’ (VDI) [33] and by using the dynamic annuity
model that takes all relevant cost items into account:

(a) Capital-linked costs: single and total investments for the different plant designs for the PTG-HEFA
hybrid refinery;

(b) Consumption-linked costs: feedstocks, electricity, and auxiliaries (e.g., water, catalysts, natural
gas and biomethane for steam reforming);

(c) Operation-linked costs: (plant staff, maintenance);
(d) Other costs: administration, insurance.

Revenues from by-products (here naphtha, fuel gas and diesel) are subtracted from the total costs.
These total net-costs divided by the total amount of HEFA-SPK produced (or for scenario 10 for diesel)
yield the specific fuel production costs.

A detailed method description for the economic assessment is presented in [12]. The main
assumptions can be obtained from Table 3.
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Table 3. Main assumptions for fuel production cost calculation (reference year 2015, assessment period
30 years).

Cost Factor Value/Assumption Reference

Total investment

HEFA process units/incl. steam reformer 132/190 million EUR (annual load 8000 h) [34–37]
electrolyser 58 million EUR (annual load 8000 h)

116 million EUR (annual load 4000 h)
176 million EUR (annual load 2600 h)

[38], quotations and
interviews

hydrogen compression and storage 24 million EUR (annual load 8000 h)
38 million EUR (annual load 4000 h)
70 million EUR (annual load 2600 h)

[13,39]

Costs

weighted average cost of capital 8% per year [40]
maintenance HEFA part 2.5% of total investment per year [34,35]
maintenance PTG part 9% of total investment per year [38], quotations and

interviews
administration, insurance, other 2.5% of total investment per year [40]
personnel staff 50,000 EUR per year and person with

full-time equivalent; app. 50 full-time
equivalents required

[35,40,41]

feedstock (jatropha, rapeseed, palm, and UCO) 650/720/547/600 EUR t−1 [4,42]
electricity (reference, dynamic, and

stand-alone)
100/80/80 EUR MWh−1 [12]

auxiliaries steam reformer (natural gas,
biomethane)

480/896 EUR t−1 [43] (biomethane)

..other auxiliaries (water, potassium hydroxide) 2/820 EUR t−1 [40]

Revenues

..naphtha, fuel gas 380/400 EUR t−1 [44]

..diesel, jet fuel 410/425 EUR t−1 [44]

2.5. Excursion on Favorable Regions

In addition to the framework analysed for a PTG-HEFA hybrid refinery in Germany, some
other favorable regions with regard to high potentials for renewable electricity production have been
investigated. Examples for that are Sweden, Spain and Namibia. For these regions, the scenarios 1 and
3 have been analysed with regard to GHG emissions and costs with a special focus on the PTG part
of the hybrid refinery. For the stand-alone case with electricity supply from renewables wind power,
photovoltaics (pv) and concentrated solar power (csp) have been considered. Details about the specific
frame conditions there and the assumptions used for this feasibility analysis can be obtained from [3].

3. Results and Discussion

3.1. Technical Assessment

The results of the mass and energy balances are summarized in Table 4 for the different scenarios.
Detailed discussion of these balances can be obtained from [12]. When jatropha is used as feedstock,
the specific hydrogen consumption is about 35.7 kg per ton feedstock. For alternative feedstocks,
this value is 39.9 kg t−1 for rapeseed; 31.6 kg t−1 for palm; 39.6 kg t−1 for UCO; and, in case of diesel as
the main product, about 29.8 kg t−1

, with direct impact on the electricity demand for the PTG part
(Table 4). The annual demand of potassium hydroxide for the electrolyser is about 940 kg. In case
of steam reforming with external supplied natural gas or biomethane, about 67,200 tons per year are
required; naphtha and fuel gas for steam reforming are provided plant-internally.
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Table 4. Most important mass and energy balances for the different scenarios.

Scenario Inputs Outputs

Feedstock a Electricity b Water a HEFA-SPK a Diesel a Naphtha a Fuel Gas a

1 (reference) 500 988 222 227 40 135 26.4
2 (dynamic) 500 996 222 227 40 135 26.4
3 (stand-alone) 500 999 222 227 40 135 26.4
4 (natural gas) 500 33 254 227 40 135 36.2
5 (biomethane) 500 33 254 227 40 135 36.2
6 (naphtha) 500 32 279 227 40 88 13.7
7 (rapeseed) 500 1088 240 237 45 123 27.1
8 (palm) 500 884 203 249 104 38 25.1
9 (UCO) 500 1096 241 235 43 129 24.7
10 (diesel) 500 826 192 60 328 22 14.7

a kt a−1; b GWh a−1.

The reference scenario requires an input of 500 kt a−1 jatropha oil. Assuming a yield of established
jatropha plantations of 0.5 to 2.2 t ha−1 a−1 [45–47], a cultivation area of between 0.227 and 0.833 million
ha is necessary, which would constitute a substantial portion of the currently cultivated area of roughly
1 million ha. In order to produce the required 999 GWh a−1 of electricity in the stand-alone scenario
using 100% wind and solar power (scenario 3), an appropriate combination would be a wind farm with
360 MW installed power and a solar power park with an area of 625 hectares. In comparison, this is
0.7% of the currently installed wind power in Germany and is substantially larger than the currently
largest German solar park of 363 hectares.

In the scenarios with dynamic power procurement and with a stand-alone power production
(scenarios 2 and 3), large storage capacities are required (775 t and 1585 t of hydrogen). The most
suitable solution is a cavern storage facility in underground salt layers, which can be found in north and
central Germany. Since the feedstock will be transported over high seas (except rapeseed and UCO),
and with offshore wind farms being more productive, a coastal region close to a large international
airport is most suitable for a PTG-HEFA plant of the described dimensions.

Due to its favorable composition, palm oil requires the least hydrogen when being processed
into HEFA-SPK. From a purely technical point of view, palm oil would therefore be favorable when
hydrogen is being produced by electrolysis. In the scenarios 4–6, where hydrogen production via
steam reforming is analysed, the electricity demand is much lower than all other scenarios where the
electricity demand derives almost entirely from the energy demand of the electrolysis. Especially in
scenario 6, where internally produced naphtha and fuel gas are sufficient for the steam reforming
of the required hydrogen, this is a preferable alternative to the reference scenario. Considering the
requirements for hydrogen storage and electricity production in the stand-alone scenario, this is
especially apparent.

3.2. Environmental Assessment

The GHG balances for the scenarios have been conducted according to the described methodology.
Referring to Figure 3, the provision of jatropha-based HEFA-SPK can achieve a GHG reduction of
76% compared to the fossil reference defined in RED. Prerequisite is the exclusive use of electricity
from wind and solar systems to cover the process energy demand. The provision of hydrogen via
electrolysis is electricity-intensive and the use of grid electricity under the forecasted conditions leads
to significantly higher emissions. In particular, the relatively high share of fossil fuels in the German
electricity mix prevents higher GHG reductions. Other ways to reduce emissions from the supply
of HEFA-SPK, in addition to the use of renewable electricity or a significantly higher share of the
same in the electricity mix, is the use of in-process provided naphtha for hydrogen production via
steam reforming. Reductions of more than 70% can be achieved here. On the other hand, the use of
sustainably grown jatropha, which means jatropha grown mainly from extensive cultivation, can reduce
overall GHG emissions.
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Figure 3. Specific GHG emission per scenario for HEFA-SPK and HEFA-diesel, and GHG mitigation
potential compared to fossil reference of the European Renewable Energy Directive (RED).

3.3. Economic Assessment

Based on the results of the technical assessment, specific production costs were calculated.
Referring to Figure 4, the bandwidth of total production costs is from 1295 to 1800 EUR t−1 for
HEFA-SPK, which is well above the current market price of fossil jet fuel of around 425 EUR t−1. Costs
can be lowered to 1210 EUR t−1 for shifting the product values to diesel; this is due to the smaller
production of short-chained, low-value naphtha and fuel gases.

When analysing the impact of the specific cost components to the total costs, feedstock costs
dominate and the contribution from the PTG part is significant. Costs of capital and operation seem
negligible in that context. The scenario of steam reforming with naphtha and fuel seems to be more
favorable than PTG in terms of costs. This is due to the fact that only small amounts of revenue are
lost but large investments in electrolysers and hydrogen storage and therefore also electricity costs
are saved.

A more detailed discussion of the results, an exemplarily sensitivity analysis and comparisons
with results of similar investigations for HEFA fuels are presented in [12].
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Figure 4. Specific fuel production costs per scenario.

3.4. Excursion on Favorable Regions

The results of the GHG and cost calculations are shown in Figure 5, with indication of the minimum
GHG mitigation potential according to RED compared to the fossil reference (60% correspond to 33.8 g
CO2 eq MJ−1) and the price for fossil jet fuel (about 425 EUR t−1). The most favorable scenarios are the
ones with the lowest production costs and at the same time lowest GHG emissions, i.e. with the lowest
GHG mitigation costs. According to this, scenario 6 with internal use of naphtha for hydrogen supply
might be the most favorable option, followed by scenario 10 if diesel is the main product and scenario
8 if palm oil is used as feedstock. Additionally, the exemplary cases for favorable regions do not show
many benefits compared to the German scenarios. Out of them, the reference case in Sweden and the
use of wind power for hydrogen production in Spain are the most favorable options.
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Figure 5. Comparison of production costs and GHG emissions for different scenarios and exemplary
favorable regions.

4. Conclusions

Against the background of a growing aviation sector and the urgent demand on very large amounts
of sustainable aviation fuels (SAF), an approach combining existing HEFA technology together with
alternative hydrogen supply for processing realized via renewable PTG has been analysed in a
comprehensive feasibility study. Ten different scenarios with regard to electricity supply for the PTG
part, the hydrogen supply via electrolysis or steam reforming, different feedstocks for the HEFA part,
as well as different product mixes were investigated from technical, economic, and environmental
points of view.

The technical assessment shows the specific mass and energy balances for the scenario-specific
designs of such PTG-HEFA hybrid refineries. They differ, for instance, with regard to hydrogen
demand, process energy and related product streams. The least hydrogen is required when processing
palm oil to HEFA-SPK (scenario 8) and from a technical point of view it is favorable to generate
hydrogen by steam-reforming, as the electrolysis causes the predominant part of the electricity demand
of the plant and, in the dynamic and stand-alone scenario (2 and 3), creates technical challenges for
storing the hydrogen that can be avoided with constant hydrogen production.

The environmental assessment results allow one to conclude that for all scenarios at least 50%
GHG mitigation can be achieved; but following the EU RED with 60% for new plants, just five of 10
concepts achieve that requirement. The use of as much renewable electricity as possible for the PTG
part, integrated or other biogenic process energy, and the choice of feedstocks are the most relevant
options for high GHG mitigation potentials. Accordingly, all stand-alone scenarios, steam reforming
with naphtha from the HEFA plant, or steam reforming with biomethane and the usage of UCO as
feedstock are environmentally more favorable.

The economic assessment reveals that the specific fuel production costs highly depend on
feedstocks and PTG-related costs. Total production costs are several times higher compared to the
current market price of jet fuel. Disregarding scenario 10 where diesel is the main product, the lowest
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HEFA-SPK production costs are offered, in order, by the scenarios where palm oil is used as feedstock
or hydrogen is produced by steam reforming of internal naphtha or natural gas.

Furthermore, the analysis done regarding favorable regions for the PTG part does not show
significant benefits of one scenario over the others, as all have very low GHG emissions but are in
the upper range of the price spectrum of all examined scenarios. Although producing slightly higher
GHG emissions than the stand-alone options, placing the reference scenario in Sweden would result in
the most favorable option as the production costs are the lowest when considering different regions.

Taking all investigated scenarios and assessments into account, the lowest GHG mitigation costs
arise when internally produced naphtha is used for the hydrogen production by steam reforming
(scenario 6). Focussing on diesel as the main product (10) causes just slightly higher GHG mitigation
costs but does not offer the required GHG mitigation potential of 60% or more. The next best option in
terms of mitigation costs, placing the reference scenario in Sweden, has, compared with the previous
two options, the highest GHG mitigation potential at 73%.

The limited HEFA capacities can cover only a small part of the energy demand of the world
aviation sector, and all scenarios show higher costs than current kerosene supply does. Although other
technologies for renewable sustainable aviation fuels are under R&D&D and new aviation technologies
might become relevant in the long-term, the same applies to aviation and all other transport sectors as
well: total energy demand needs to be drastically reduced and SAF have to be applied in parallel.
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Abbreviations

a annum/year
aireg Aviation Initiative for Renewable Energy in Germany e.V.
app. approximately
ASTM American Society for Testing and Materials
CAP Climate action plan 2050 for Germany
csp concentrated solar power
EU European Union
GHG greenhouse gas emissions
GWP global warming potential
HEFA hydrotreated esters and fatty acids
IATA International Air Transport Association
kt kilo tons (1000 t)
LCA Life Cycle Assessment
PJ Petajoule
PTG power-to-gas (here: based on electrolysis to hydrogen)
PTL power-to-liquid
pv photovoltaics
RED Renewable Energy Directive
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SAF sustainable aviation fuels
SPK synthetic paraffinic kerosine
SynBioPTx synergies (syn) of biomass-based (bio) and electricity-based (PTx) fuels and product processes
UCO used cooking oil
VDI Verein Deutscher Ingenieure (Association of German Engineers’)
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Abstract: Ethanol production from cellulosic material is considered one of the most promising options
for future biofuel production contributing to both the energy diversification and decarbonization of
the transport sector, especially where electricity is not a viable option (e.g., aviation). Compared to
conventional (or first generation) ethanol production from food and feed crops (mainly sugar
and starch based crops), cellulosic (or second generation) ethanol provides better performance in
terms of greenhouse gas (GHG) emissions savings and low risk of direct and indirect land-use change.
However, despite the policy support (in terms of targets) and significant R&D funding in the last
decade (both in EU and outside the EU), cellulosic ethanol production appears to be still limited.
The paper provides a comprehensive overview of the status of cellulosic ethanol production in EU
and outside EU, reviewing available literature and highlighting technical and non-technical barriers
that still limit its production at commercial scale. The review shows that the cellulosic ethanol
sector appears to be still stagnating, characterized by technical difficulties as well as high production
costs. Competitiveness issues, against standard starch based ethanol, are evident considering many
commercial scale cellulosic ethanol plants appear to be currently in idle or on-hold states.

Keywords: cellulosic ethanol; GHG savings; R&D funding

1. Introduction

Ethanol production from cellulosic material such as agricultural residues (e.g., wheat straw
and corn stover) and energy crops (e.g., switchgrass and miscanthus) is considered a highly promising
option for future ethanol production, helping the energy diversification and decarbonization of
the transport sector. Compared to conventional (or first generation) ethanol production from food
and feed crops (mainly sugar and starch based crops), cellulosic (or second generation, 2G) ethanol is
considered to provide better performance in terms of greenhouse gas (GHG) reduction and low risk of
direct and indirect land-use change impacts. Those advantages have led to the promotion of cellulosic
ethanol in the legislation around the globe.

In the EU, the current 2009 Renewable Energy Directive (RED) [1] and Fuel Quality Directive
(FQD) [2] (in force until 2020), contain a 10% renewable energy target for the transport sector by
2020 and a 6% GHG reduction target for transport (set in FQD) that are both expected to be met
largely with food-based biofuels. In response to the controversial issue of indirect land use change
(ILUC), related to the global market-mediated agricultural area expansion, the 2015 ILUC Directive [3],
amending RED and FQD, introduced a cap on crop-based biofuels, which can contribute up to 7% of
the final consumption of transport energy in 2020. The directive [3] also introduced requirements for
reporting ILUC emissions and measures to promote advanced biofuels. It [3] requires Member States to
promote the use biofuels produced from feedstocks listed in Part A of Annex IX (which includes waste,
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residue, non-food cellulosic, and ligno-cellulosic feedstocks) by setting a non-legally binding target of
0.5% in energy content for their use in transport fuel. RED [1] also has a ‘double-counting’ mechanism,
according to which the energy content of those biofuels is double counted towards the overall renewable
energy in transport target. The recast of RED, Directive EU 2018/2001 [4], with effect from 1 July 2021,
makes advanced biofuel mandate compulsory containing a sub-target of 3.5% for advanced biofuels
for 2030 within the 14% target for renewable energy in transport. Advanced biofuels are defined
by the directive as ‘biofuels that are produced from the feedstock listed in Part A of Annex IX’ that
includes among others, agriculture and forestry residues as well as energy crops. Those biofuels will
continue to count double towards the targets. In addition, biofuels must meet a 65% greenhouse gas
reduction threshold (in installation starting operation from 1 January 2021), to try to ensure substantial
GHG savings compared to fossil-based fuels.

Focusing on the US, a fuel is classified as advanced on the basis of its lifecycle GHG savings
(which need to be at least 50% when compared to fossil fuels). Cellulosic biofuel is an advanced
biofuel subcategory: it is required to have a greater than or equal to 60% GHG saving compared
to a 2005 petroleum baseline [5]. The Renewable Fuel Standard (RFS) program required 36 billion
gallons of biofuels to be used by 2022, of which at least 16 billion gallons were supposed to come from
cellulosic biofuels [6]. However, every year, the Environmental Protection Agency (EPA) has exercised
its ‘cellulosic waiver authority’ to reduce the cellulosic biofuel target. In 2014, EPA also redefined
the term ‘cellulosic biofuels’ expanding the definition to include certain types of biogas and ethanol
from corn kernel fiber [7]. Since then, most of the increase in cellulosic biofuel consumption is
from biogas, in either compressed or liquefied form. The current cellulosic biofuel mandate (2019)
has been set by EPA at 418 million gallons, corresponding to about 5% of the target envisioned by
the Energy Independence and Security Act of 2007 [8]. Moving to Brazil, the recent RenovaBio program
aims to decrease transport emissions by 10% in the next 10 years favoring fuels with lower carbon
intensities [9]. Like the US Renewable Fuel Standard, it favors fuels with lower carbon intensities
and biofuel producers will receive credits based on the lifecycle emission savings of their fuel compared
to fossil fuel. Other programs for the promotion of second generation ethanol in Brazil include the Joint
Support Plan for Industrial Technological Innovation in Sugarcane-based Ethanol and Chemistry
Sectors (PAISS Program) that provides funding aiming to boost Brazil’s presence in more advanced
technologies [10].

In China, the “Implementation Plan for the Expansion of Ethanol Production and Promotion
for Transportation Fuel”, jointly announced by the National Development and Reform Commission
(NDRC) and other ministries in September 2017, targets a national shift in production to cellulosic
technology by 2025. Cellulosic ethanol production is supported via a subsidy of 600 RMB (Renminbi)
per ton (about 78 €/t) since 2014. However, prospects for 2018 are uncertain since updates on the subsidy
program have not been announced at this time [11].

In addition to the aforementioned policy measures, the evolution of the cellulosic ethanol
sector is influenced by various aspects, such as past and current R&D investments, production costs
as well as technical and environmental issues that must all be taken into account in order to provide
a comprehensive picture of the sector and its future challenges.

Already in 2002, Badger [12] provided a general review on ethanol from cellulose in US concluding
that “although several ethanol-from-cellulose processes are technically feasible, cost-effective processes
have been difficult to achieve”. Kumar et al. in 2016 [13] and more recently Liu et al. in 2019 [14]
reached similar conclusions. They both reported that cellulosic ethanol is still not competitive compared
to conventional ethanol and efforts are still needed to reduce costs.

The main purpose of this review is to provide a comprehensive overview of the status and different
aspects of cellulosic ethanol production both inside and outside the EU, highlighting technical
and non-technical barriers that still limit its production at commercial scale. A literature review of
the status of cellulosic ethanol plants in the EU and worldwide is carried out in Section 2. Section 3
reports GHG emission savings and production costs associated to cellulosic ethanol production.
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An analysis of R&D funding and programs mainly in EU is provided in Section 4, while barriers to
large scale deployment of cellulosic ethanol are discussed in Section 5. Section 6 draws conclusions.

2. Current Cellulosic Ethanol Production Process in Commercial Plants

Cellulosic ethanol production can be summarized in four main steps: pretreatment, hydrolysis,
fermentation, and product recovery (Figure 1).

Figure 1. Cellulosic ethanol process.

Pretreatment makes the lignocellulosic biomass more amenable to biological conversion ensuring
complete substrate utilization. Several pretreatment technologies have been developed and tested
at various scales [13,14], and steam explosion has been recognized as the one most widely used by
industrial companies [15]. In addition, hydrolysis (of the cellulosic and hemi-cellulosic structures)
can also be enhanced by means of enzymes or dilute acid pretreatments. Following pretreatment,
enzymatic hydrolysis is the most commonly applied hydrolysis method, although the cost of enzymes
currently takes a major proportion of the production costs [15] (see Section 3 for more details on
production costs). Bacteria or yeasts are then used to ferment sugars into ethanol.

In terms of production, around 109 billion liters (or 86 million tons) of ethanol were globally
produced in 2018, most of which was made by US (56%), followed by Brazil (28%), EU (5%), and China
(4%) [16]. For cellulosic ethanol, commercial size plants have been constructed in Europe, US, Brazil,
and China, but regular and reliable production is yet to be proven. The actual cellulosic ethanol
production to date has been markedly below the installed capacity.

For the EU, ePURE reports that almost 200 kt of European ethanol has been produced from
ligno-cellulosic, other RED Annex IX-A feedstocks, or other feedstocks, representing 4% of the total
ethanol production in 2017 [17]. However, according to the US Department of Agriculture (USDA)
Global Agricultural Information Network (GAIN) report, EU28 annual production of cellulosic ethanol
was estimated to be around 40 kt in 2017 down to 10 kt in 2018 [18]. In the US, the EPA’s 2018 RFS
data reports US cellulosic biofuel production levels, from which it’s possible to estimate a total of
about 30 kt of cellulosic ethanol produced domestically in 2017 [8]. In Brazil, total cellulosic ethanol
production is estimated to be 25 million liters (or 20 kt) for 2018 representing an insignificant share of
total ethanol production in Brazil [9]; while, for China, 2018 cellulosic ethanol production is forecast to
stop at 20 million liters (or 16 kt) as its major cellulosic project appears idle [11].

There are several first-of-a-kind commercial scale cellulosic ethanol plants at a global level,
according to the International Energy Agency (IEA) database [19] and other sources [9,11,18,20–24],
although operations of some of the plants are currently idle or on-hold (Table 1).

Only a few commercial scale plants are reported as operational in Norway, US, and Brazil.
In addition to the plants listed in Table 1, Quad County Corn Processors and six other plants

(using the Edeniq technology) adapted their conventional corn ethanol refineries to produce ethanol
from corn kernel fiber, known as 1.5 generation technology. As reported in Section 1, it will qualify
as cellulosic biofuel in US following the EPA definition. However, corn kernels consist of a significant
content of fibers (10–12%) that impact on the conversion of fermentable sugar, but they are mainly
comprised of starch [7]; therefore, they should not be strictly considered as second generation ethanol
production plants. Other plants are also planning to produce 1.5 generation ethanol: D3Max and ICM
are developing their own technologies [7].
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Table 1. Overview on a global commercial scale cellulosic ethanol plants.

Company Project Country
Output Capacity

(ktons)
Status Start-Up Year

Abengoa Bioenergy Biomass of Kansas, LLC Commercial (acquired
by Synata Bio Inc. [21]) US 75 idle 2014

Aemetis Aemetis Commercial US 35 planned 2019

Beta Renewables (acquired by Versalis [22]) Alpha US 60 on hold 2018

Beta Renewables (acquired by Versalis) Energochemica EU (Slovakia) 55 on hold 2017

Beta Renewables (acquired by Versalis) Fujiang Bioproject China 90 on hold 2018

Beta Renewables 1 (acquired by Versalis) IBP-Italian Bio Fuel EU (Italy) 40 idle 2013

Borregaard Industries AS ChemCell Ethanol Norway 16 operational 1938

Clariant Clariant Romania EU
(Romania) 50 under

construction 2020

COFCO Zhaodong Co. COFCO Commercial China 50 planned 2018

DuPont
Commercial facility
Iowa (acquired by
VERBIO [23])

US 83 idle 2016

Enviral Clariant Slovakia EU (Slovakia) 50 planned 2021

Fiberight LLC Commercial Plant US 18 under
construction 2019

GranBio Bioflex 1 Brazil 65 operational 2014

Henan Tianguan Group Henan 2 China 30 Idle 2011

Ineos Bio

Indian River County
Facility (acquired by
Alliance Bio-Products
in 2016 [24])

US 24 idle NA

Longlive Bio-technology Co. Ltd. Longlive China 60 Idle 2012

Maabjerg Energy Concept Consortium Flagship integrated
biorefinery

EU
(Denmark) 50 on hold 2018

POET-DSM Advanced Biofuels Project Liberty US 75 operational 2014

Raízen Energia Brazil Brazil 36 operational 2015

St1 Biofuels Oy in cooperation with North
European Bio Tech Oy Cellunolix® EU (Finland) 40 planned 2020

1 Joint venture of Mossi & Ghisolfi Chemtex division with TPG.

The POET-DSM Advanced Biofuels LLC is reported as operational, but it is not clear how much
ethanol it is currently producing. The plant has been inaugurated in 2014 in Iowa with a production
capacity of 75 kt per year of cellulosic ethanol from corn stover and cob. In summer 2017, the company
installed a new pretreatment technology and announced the construction of an on-site enzyme
manufacturing facility that will cut costs associated with the process [25]. According to Schill [20],
the plant has reached the targeted 70 gallons per ton of biomass and further optimization is in progress.

One of the world’s largest cellulosic ethanol production facilities, the Beta Renewables plant
officially opened at Crescentino (Italy) in 2013 but it has been shut down since 2017 due to a restructuring
effort of the parent chemical company Mossi & Ghisolfi [26]. The plant had an annual capacity of 40 kt
of ethanol produced from wheat straw, rice straw, and giant reed (Arundo donax). On November 1,
2018, Eni’s chemical subsidiary Versalis acquired the Mossi Ghisolfi Group’s green portfolio and it is
currently in the process of defining an action plan to restart the activities of the Crescentino plant [18].

Two commercial scale plants are in operation in Brazil. One is the Bioflex 1 plant from Granbio
that began production in September 2014, with a current production capacity of about 65 kt per year;
the other one is Raízen’s Costa Pinto Unit with an annual production capacity of 36 kt of ethanol from
bagasse using a technology developed by Iogen Energy, a joint venture of Raízen and Iogen Corp.
According to USDA GAIN Brazil report [9], this is the only one producing at relatively large scale.

Other projects have been announced for the production of cellulosic ethanol, mainly in the EU.
The construction of a new full scale commercial cellulosic ethanol plant has been announced in 2017 by
Enviral, the largest producer of bioethanol in Slovakia, that recently signed a license agreement to use
Clariant’s Sunliquid®technology [27]. The plant is planned to be integrated into the existing facilities
at the Enviral’s Leopoldov site (in Slovakia) producing 50 kt per year of ethanol from agricultural
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residues. Clariant has also announced on-going construction of the first large-scale commercial
Sunliquid®plant for the production of cellulosic ethanol in Romania [28].

The Cellunolix®project (managed by St1 Biofuels Oy in cooperation with North European Bio
Tech Oy) is planned to be operational in 2020 in Finland with an annual capacity of 40 kt. The plant
will use saw dust and recycled wood as feedstock and will be located at UPM’s Alholma industrial
area [18].

In China, COFCO announced plans to build several 63 million liters (or 50 kt) capacity cellulosic
fuel ethanol plants in future [11].

3. GHG Emissions and Production Costs of Cellulosic Ethanol

Cellulosic ethanol from feedstocks such as agricultural residues and energy crops is generally
considered to be environmentally sustainable providing higher reduction of GHG emissions and zero
or low indirect emissions from land use change compared to conventional (or first generation) ethanol
production from food and feed crops.

Focusing on the framework after 2020, the RED recast [4] specifies that biofuels must meet
a 65% greenhouse gas reduction threshold, compared to fossil fuels, in installations starting operation
from 1 January 2021.

The methodology to calculate ‘life-cycle’ GHG emissions is set by the Directive in Annex V part
C [4]. GHG emissions should be calculated by taking into account all emissions associated to all steps
of the production and use of biofuels, from cultivation of raw materials, to processing into biofuels,
and transport and distribution of all products. Emissions from carbon stock changes caused by direct
land-use change, if they occurred, should also be taken into account. The total GHG emissions are
referred to as ‘direct emissions’. The Directive includes a list of default GHG emission values for
the main biofuels that economic operators can use only if biofuels are produced without direct land
use change.

The default value associated to cellulosic ethanol from wheat straw is 16 gCO2eq/MJ [4] that,
compared to the fossil fuel comparator, results in 83% GHG emission reduction. A similar value can be
assumed for perennial grass (such as miscanthus and switchgrass) ethanol [29].

However, those values do not include accounting of GHG emissions associated with changes in
the carbon stock of land resulting from indirect land use change (ILUC) and other indirect effects.

The ILUC issue refers to global market-mediated agricultural area expansion in response to
increased biofuel demand. If crops grown on existing arable land are used to make biofuels and are
diverted from food and feed production, then the gap in the food supply will be partly filled by
the expansion of cropland, because of the necessity to replace the food production. This is referred
to as indirect land use change [30]. Economic models are typically used to estimate global land use
change consequences due to an increased biofuel demand (more details on how the economic models
work and on alternative approaches to estimate ILUC can be found in [30]). ILUC has been estimated
by numerous studies in the literature and in regulatory analyses; results show that ILUC emissions
can be significant for food-based biofuels [3,30–34]. Nevertheless, non-food feedstocks may also have
a land use change impact as well as other indirect emissions as a result of the displacement with
existing uses [29,31].

The emissions from land use change calculated by the GLOBIOM (Global Biosphere Management
Model) [31] associated to the increase in the demand of cereal straw based ethanol in the EU corresponds
to 16 g CO2eq/MJ of ethanol (assuming 20 years of amortization) in the case of unsustainable
straw removal and 0 g CO2eq/MJ when straw removal is no more than 33–50% of the total straw
biomass (considered as the sustainable straw removal in the study [31]). These emissions result from
the conversion of land for new cropland for extra cereals production and from the soil organic carbon
impact of removing crop residues in unsustainable management [31].

For energy crops/perennial grasses, land use change emissions depends on which type of land is
used for their production (existing agricultural land, unused land such as abandoned agricultural land,
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or high-carbon stock land such as forests) which will in turn be determined by what is more profitable
for farmers to do compared to growing other crops or leaving the land uncultivated [35]. Emissions from
land-use change estimated by the GLOBIOM model [31] for miscanthus and switchgrass Fisher-Tropsch
biodiesel (a value in the same order of magnitude can be assumed for ethanol) produced in the EU
are negative (−12 gCO2eq/MJ), indicating that land use change from these crops actually reduces
GHG emissions compared to a baseline case without them, mainly due to the increase in soil carbon
stock where they are grown [29,31]. Most other modeling studies, reviewed in [36], found that energy
crops are not likely to displace food and fiber crops on agricultural land, but would mostly be grown
on abandoned agricultural land, cropland-pasture, and other unused land with low-carbon stocks,
resulting in low or negative ILUC emissions. However, there is some uncertainty in the magnitude
of energy crop ILUC emissions and additional considerations on the environmental risks of energy
cropping as well as options for risk mitigation can be found in [35].

A lifecycle analysis looking at indirect effects, i.e., including emissions which would arise when
replacing a material that has been diverted from its original use into fuel production was performed
by [29] for a number of pathways, and included wheat straw to ethanol. For this pathway, the current
usage of straw in heat and power generation and livestock bedding and feed, mushroom cultivation,
and horticulture was considered (more detail of the analysis can be found in [29]). The authors
estimated a value of 8 g CO2eq/MJ (central estimate) of indirect emission for wheat straw ethanol.

Direct and indirect emissions for the two considered pathways are summarized in the following
table (Table 2).

Table 2. Estimated greenhouse gas (GHG) emissions (direct and indirect) associated with cellulosic
ethanol production from cereal straw and perennial crops.

Direct Emissions from RED Recast,
Annex V—Default Values [4]

(g CO2eq/MJ)

Indirect Emissions
(ILUC Emissions from
Valin et al., 2015 [31])

(g CO2eq/MJ)

Indirect Emissions
(Displacement Emissions

from ICCT, 2017 [29])
(g CO2eq/MJ)

Ethanol from wheat straw 16

16
if unsustainable straw removal
is assumed (more than 33–50%)

0
if sustainable straw removal

is assumed (less than 33–50%)

8
displaced uses: Livestock bedding
and feed; mushroom cultivation;

horticulture; heat and power

Ethanol from perennial grass
(miscanthus and swithgrass) 16 −12 0

no existing uses

Several sources mention costs as the main issue for the development of the cellulosic ethanol
sector [12–14]. Results from recent studies investigating production costs of advanced biofuels,
including cellulosic ethanol, are summarized below.

These studies are: the Joint Research Centre (JRC), Eucar and Concawe (JEC) cost analysis
(in publication) [37], the 2017 European Commission report by the Sub Group on Advanced Biofuels
(SGAB) [38], and the 2016 report from the International Renewable Energy Agency (IRENA) [15].

For cellulosic ethanol from agricultural residues or woody biomass, cost ranges reported by
the three studies (for different years) are summarized in Figure 2.

The cost ranges depend on the assumptions on the various components of the cost calculations
and, in particular, on the cost of feedstock, the scale of the plants, and capital cost.

Being at an earlier stage of commercialization, cellulosic ethanol is still facing significant
technology challenges and is showing significant capital and operational costs due to the complexity
of the conversion processes and low maturity of the technology, but there is potential for future cost
reduction [37].

The cost of feedstock is the major contributing factor depending on its accessibility,
transportation costs, and also the alternative use. Feedstocks that are used in cellulosic ethanol
plants have usually regional prices and they are traded locally. Their price depends on the local amount
of production as well as their competing uses [39].
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Figure 2. Production costs ranges of cellulosic ethanol from different studies. * Data extracted from
Figure 18 of the report; ** Data from original source (reported for first commercial plants) has been
converted from US dollar to Euro assuming 2015 exchange rate).

Cost of enzymes also represents a relevant cost component of the operational costs [15,37,40]
and reducing this cost is key to making cellulosic ethanol economically viable [40]. Comparing the costs
of three approaches for producing enzymes (off-site, on-site, and integrated), Johnson [40] found that
the integrated method has the lowest cost.

Generally, the reported ranges of production costs for cellulosic ethanol appear to be substantially
higher compared to conventional ethanol prices and far from being competitive with fossil fuel [37].

4. R&D Investment in Recent Years

This section collects information on relevant projects related to cellulosic ethanol funded under
the European Union’s Research and Innovation Funding programs in the last decade, namely the Seventh
Framework Programme (FP7) (that covers the 2007–2013 period) and the current Horizon 2020 program
(H2020) (that covers the 2014–2020 period). The projects were collected for the purpose of the Low
Carbon Energy Observatory (LCEO) project, an administrative arrangement executed by DG-JRC for
DG-RTD to provide data and analysis on developments in low carbon energy supply technologies.
One of the technologies under analysis is the ‘Sustainable advanced biofuels’ sector, where cellulosic
ethanol is considered. The LCEO project (started in April 2015) produces its main reports on a two-year
cycle: the first set of reports was produced in 2016 (not publicly available) while the second set was
prepared in 2018 and will be publicly available in 2019. In the reports, an analysis, in terms of objectives
and main achievements of projects related to advanced biofuels technologies (including ‘fermentation’)
was performed to define the project impacts on the development of the technology [41,42]. However, for
the purpose of this paper, the number of considered projects has been limited exclusively to the projects
which involve research on the cellulosic ethanol sector. Projects were collected from the European
Commission’s Community Research and Development Information Service (CORDIS) [43], that is
the primary source of results from the projects funded by the EU’s framework programs for research
and innovation, by adopting ‘cellulosic ethanol’ or ‘fermentation’ as keywords.

Projects on cellulosic ethanol in both programs received the greatest amount of EU funding when
considering all projects related to the advanced biofuel sector, with a share of around 27% in the recent
H2020 program [42].

Figure 3 shows the number of FP7 (started between 2008 and 2015) and H2020 projects
(started between 2015 and 2017) and the corresponding total amount of EU public funding. In general,
projects in the cellulosic ethanol sector are large projects in terms of total investment needed for
their implementation.
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Figure 3. Numbers of Seventh Framework Programme (FP7) and Horizon 2020 program (H2020)
projects and total amount of EU funding (million EUR) identified for cellulosic ethanol.

Figure 4 shows the total amount of EU funding by project coordinator countries identifying
the leading countries involved in the development of this technology. The projects are mainly
coordinated by Italy, Germany, and France.

Figure 4. Total amount of EU funding by project coordinator country.

In the US, the Department of Energy (DoE) is supporting R&D projects through the Biomass
Research and Development Initiative (BRDI). In 2018, DoE announced up to $3 million in funding
for advanced biofuels, bioenergy, and biobased products and two selected projects received between
$1 million to $2 million to develop biofuels from cellulosic ethanol and ligno-cellulosic biomass,
respectively. Other funding was made available under the BioEnergy Engineering for Products
Synthesis program, with a total funding of up to $28 million (in 2018), supporting projects that are
aiming to create efficient conversion processes for biomass and waste derived fuels (16 projects were
selected for this program). Process Development for Advanced Biofuels and Biopower is another
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program that supports 10 projects with $22 million. Some of the projects within this program are
researching renewable fuels derived from domestic biomass feedstocks and wastes [44].

5. Technology Trends and Barriers to Large Scale Deployment

The trend in development of cellulosic ethanol production has been towards projects seeking to
show (and indeed improve) upon the overall production chain; important to demonstrating the viability
of this pathway. Overall, the development of both energy and cost effective pretreatment, hydrolysis
and fermentation, remain the challenges hindering large-scale deployment of lignocellulosic biomass
conversion to ethanol.

5.1. Pretreatment

One of the major challenges of lignocellulosic to ethanol is to ensure optimization of biomass
conversion into components and by-products. Pretreatment schemes ensuring optimized use of
the biomass continue to be developed. Raw material flexibility, minimum inhibitor formation, as well
as maximum carbohydrate yields are central targets. Using feedstocks available in quantities large
enough to supply a factory (as opposed to tiny amounts upon which a laboratory test could be carried
out) brings its own technological challenges: the variability in quality and composition of the feedstock
is clearly recognized as a key point, resulting in the need for a robust pretreatments section [45].
Among the various techniques applied in real plants, enzymatic hydrolysis has proven to be efficient,
but enzymes cost can account for up to 30–50% of the total cost of ethanol production. In order to
overcome this barrier, new types of cellulases are being studied, such as bacterial enzyme complexes.
Additionally, the presence of lignin during hydrolysis behaves as an inhibitor when it deposits itself
onto cellulose in biomass, making it inaccessible to enzymes, or it can even adsorb the enzymes
itself [14].

5.2. Fermentation

Simultaneous utilization of pentose sugars by highly effective industrial yeast strains is still
a challenge in developing continuous fermentation, which is expected to increase the yield and reduce
the cost of the final product. The tolerance of ethanol producing bacteria for high substrate, inhibitor,
and product concentration still needs to be improved; its progress on developments of co-fermenting
microbes have been slower than projected. Review on “present technical issues” hindering cellulosic
ethanol production indicated microbial species had been engineered to ferment both C5 and C6 sugars,
but ethanol yields were low, and the microbes had low tolerance to high ethanol contents compared to
C5 fermenting microbes [46]. Liu et al. [14] further reported that there has been considerable work
trying to improve co-fermenting bacteria for at least four decades to date, but still today, it’s possible to
recognize familiar difficulties amongst various projects.

Other ethanol producing organisms such as yeasts, Escherichia coli, Klebsiella oxytoca,
Lactobacillus sp., Clostridium sp., and others are developed for the simultaneous utilization of pentose
and hexose sugars but their practical application has still to be proven. Alcohol producing strains
with the ability to hydrolyze polymeric substrates have been in development for some time; although
high end product concentration and selectivity (toward greater production of the desired alcohol),
and insensitivity to inherent and generated inhibitors and process conditions remain major goals.

High dry matter concentration in a fermentation batch is also desirable as this will give high
product concentration and help product recovery from fermentation broth. This could be achieved
by developing novel process layouts involving systems aiming at immobilization of the fermenting
organisms by the advanced use of non-fouling membrane systems, encapsulation of the organisms
in polymer beads, etc. Efficient product separation is another advantage of advanced fermentation
set-ups. This could be a critical step in the direction of a transfer from the current batch-wise into
continuous fermentation processes, which would represent a more effective conversion.
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5.3. Downstream

Downstream processing of products requires advances in membrane or adsorbent technology.
One challenge is effective separation of alcohols from water. There is a need for membranes with high
removal capacity of product, e.g., for pervaporation or suitable absorbents. Separation and rectification
technology is the most demanding and needs further research on materials (membranes and adsorbents).
The need to add water to the fermentation mixture to keep viscosity low and to limit bacteria inhibition
creates another issue as the water will need to be driven-off during distillation. Thus, work to improve
this need for water addition would likely improve the overall plant energy balance [14].

5.4. By-Products

The fate of lignin and hemicelluloses are one of the important challenges to be overcome.
Processing has to avoid unfavorable conditions for sugar re-formation (back-reaction),
chemical derivatization (pentoses to furfural, lignin to sulfo-lignin, and formation of lignin-carbohydrate
complexes), and physical change. Separated raw material constituents (i.e., lignin and extractives) can be
further converted into value-added products, for which a lot of research has been done. Fermentation
broth as well as solid residues (including bacterial/yeast cell mass) are nutrient rich and can be recycled
into the process, used as feed for animals, or added to biogas plants. However, it should be noted that
an effective separation process for the biomass constituents after pretreatment remains a challenge.

6. Conclusions

Despite policy targets and significant R&D funding in the last decade (under EU and other programs),
the cellulosic ethanol process appears to be still stagnating, mainly due to technical difficulties and high
production costs that makes it uncompetitive with starch based ethanol production or fossil fuels [47].
External factors such as low oil prices may have also affected production [15]. Globally, there are several
commercial scale cellulosic ethanol plants, but a substantial number of these plants are currently in idle
or on-hold states.

Microbial strains which can ferment pentose and hexose sugars under large industrial-scale
production are still under development, despite the past four decades of work and significant
investment in R&D.

Finally, the authors note there are other possible issues potentially hindering future efficient
cellulosic ethanol production, such as feedstock logistics, and storage; nevertheless, these aspects have
not been analysed in this work, as they are likely to become relevant only once robust and efficient
cellulosic ethanol production chains will be proven in regular operation, and at a reasonable scale.
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Abstract: The airflow inside the housing of a 300-kW molten carbonate fuel cell (MCFC) system is
designed to ensure safety in case of a gas leak by applying computational fluid dynamics (CFD)
techniques. In particular, gas accumulating zones are identified to prevent damage to vulnerable
components from high temperature and pressure. Furthermore, the location of the alarm unit with
the gas-leak detector is recommended for construction of safe MCFC ships. In order to achieve this,
a flow-tracking and contour field (for gas, temperature, and pressure) including a fuel-cell stack
module, balance-of-plant, and various pipes is developed. With the simulated flow field, temperature
flow is interpreted for the heating conditions of each component or pipe in order to find out where
the temperature is concentrated inside the fuel cell system, as well as the increase in temperature at
the exit. In addition, the gas leakage from the valves is investigated by using a flow simulation to
analyze the gas and pressure distribution inside the fuel cell system.

Keywords: ship structure; LNG-fueled ship; green ship; numerical analysis; flow characteristics;
molten carbonate fuel cell system

1. Introduction

The policies for marine environmental regulations of the International Maritime Organization
(IMO) and governments have recently been strengthened to reduce air contaminants and greenhouse
gases, including nitrogen oxides (NOx), sulfuric oxides (SOx), and carbon dioxide (CO2). Marine
engineers have therefore considered various strategies for building green ships such as developing a
highly efficient propeller, modification of fan shapes, and optimization of an operational window [1–3].
In particular, in 2016, the IMO Marine Environment Protection Committee (MEPC) restricted the
emissions of SOx from 3.5% to 0.5% for marine ships in the entire ocean until 2020 [4]. Today, many
shipping firms are adopting liquefied natural gas (LNG) as marine fuel in an attempt to replace
conventionally used heavy fuel oil (HFO). The use of LNG in ships is considered to be a way to safely
use boil-off gas (BOG) that is naturally generated by heat leaks. As one option, the application of fuel
cells to ships is being considered [5]. However, the ultimate goal of shipbuilders is to replace diesel
engines, which emit greenhouse gases, with regenerative energy generators (zero-emission ships).

Energy storage systems (ESSs), and sunlight have received significant attention as environmentally
friendly energy sources for green ships in the future [6]. Among these, fuel cells (FCs) have strong
potential as an alternative to traditional marine propulsion power plants owing to their high efficiency,
easy modularization, multi-fuel flexibility, and environmental friendliness [7]. In addition, FCs
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can essentially offer a silent and vibration-free operation, reducing the need for noise insulation
of machinery. In particular, high-temperature molten carbonate fuel cells (MCFCs) have various
advantages for green ships, because they achieve a system efficiency of more than 80%, with negligible
air-pollutant emissions when the waste heat is recovered. Furthermore, it may be economically efficient
to use fuels such as LNG and liquefied hydrogen (H2) carriers in gas-fueled and gas carriers, because
MCFCs can use the BOG emitted from the LNG ship [8,9]. However, the development of green ships
using fuel cells is still at a primitive stage, because of the considerable cost and time needed for
construction of ships. Furthermore, liquefied gas carriers and gas-fueled ships may pose a high risk of
explosion and fire from gas leaks, resulting from the localized damage (thermal expansion) of system
components caused by high heat, because MCFCs are operated at a high temperature [10]. In addition,
in order to use fuel cells in gas-fueled and gas carriers, severe weather and sea winds are considered
among the design parameters needed to build a highly stable green ship with fuel cells.

In this regard, mathematical modeling plays an important role by significantly reducing the need
for repetitive experiments and confirming concepts for building ships [11–13]. Moreover, several
technical issues associated with the high operating temperature, such as explosion and fire caused by
high heat, can be explored and thus mitigated through the new design and development progress
for MCFC green ships. Ovrum and Dimopoulos (2012) [14] first reported the modeling work for an
MCFC auxiliary power unit installed on board a vessel. They developed a modular dynamic model
consisting of a set of partial differential and non-linear algebraic equations, employing 2D and 3D solid
geometry and real gas properties to provide insight into the process dynamics and cell performance.
Marra et al. [15] also presented the modeling approach as a tool for improving the current collector
and gas distributor designs, optimizing MCFC performance with new technological solutions. This
approach played a fundamental role in the thermal management of the MCFC, which is one of the most
crucial points in performance improvements. However, there have been no reports of a safety study on the
application of the MCFC system to a ship that comprehensively evaluates a computational fluid dynamics
(CFD) analysis while considering intentional leakage simulation in the marine environment. Analysis of
intentional leakage can indicate the design guidelines for a safe system and thus prevent potential damage.

Hence, to design highly efficient and stable MCFC green ships, we analyzed the characteristics
(flows and distribution) of gas, heat, and pressure for the FC systems, e.g., stack, pipes, heat exchangers
(HEXs) and balance-of-plant (BOP), by using the simulation tools referred to in the open literature. In
particular, zones of localized high gas concentration, temperature, and pressure are identified, and
design parameters needed to build safe MCFC ships, such as the location of the alarm unit with the
gas leak detector and the capacity of exhaust fans, are recommended to prevent damage to system
components from high heat and pressure. This study is expected to significantly contribute to the
increased practical use of MCFCs in merchant marine applications.

Figure 1 is a schematic diagram of a fuel-cell system (BOP and stack) as an auxiliary power unit
that can produce 300 kW of electricity by using the boil-off gas (BOG) of the LNG carrier. The BOG (as
the fuel) generated from the LNG tank is fed to the pre-converter and anode side, and air (oxidant) is
supplied from the cathode side to produce 300 kW of electricity through chemical and electrochemical
reactions in the stack. The reactions are as follows:

Anode : H2 + CO2−
3 ↔ H2O + CO2 + 2e− (1)

CO + CO2−
3 ↔ 2CO2 + 2e− (2)

CH4 + H2O↔ CO + 3H2 (3)

CO + H2O↔ CO2 + H2 (4)

Cathode : CO2 +
1
2

O2 + 2e− ↔ CO2−
3 (5)
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Figure 1. Scheme of boil-off gas (BOG) treatment system with fuel cell system for a liquefied natural
gas (LNG)-fueled ship.

In this study, the characteristics of flow inside the 300-kW fuel-cell system was analyzed using
CFD. To prevent gas leaks from inside the BOP, it is very important to identify the status of internal air
flow and to find an appropriate location for installing the equipment for gas detection.

2. CFD Simulation Method

2.1. Modeling and Boundary Conditions

Figure 2 shows a 3D CAD model of the components inside the BOP, which is designed to operate
the 300-kW MCFC stack. Inside the BOP is a pretreatment device used to provide fuel to the anode
and oxidant to the cathode. The anode side of the BOP includes the pre-converter, polisher, humidifier,
recycle blower, etc. The pre-converter converts the methane from the BOG to about 10% hydrogen to
supply to the stack. The humidifier produces steam, which is supplied to the anode side of the stack
for the electrochemical reaction in the stack. The polisher and recycle blower recirculate the exhaust
gas at the end of the stack.

 

Figure 2. Component locations in a molten carbonate fuel cell (MCFC) stack package.

The grid system of the package (without the external components) was created using the ANSYS
Design Modeler [16] and ICEM-CFD [17]. An unstructured tetrahedron grid technique was efficiently
applied to create the overall grid system. The grid cells with a prism shape were applied near a specific
solid wall to resolve the relatively high velocity gradient. The uniform thickness ratios were maintained
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for the grid cell layers with different unit cells. Thus, in this analysis, approximately 20 million grid
cells were used. The solution was independent from computational cell numbers.

The louvers on the outer walls of the package room shown in Figure 3a were installed to assist in
supplying air to the inside of the room to cool the equipment. The blue parts of the figure indicate the
points where air is supplied to the room. The room air was set to atmospheric pressure and an ambient
temperature of 25 ◦C. As shown in Figure 3b, the air heated by the devices inside the package was
released through the exhaust fans installed on the roof. As shown in Figure 3b, in order to release the
air at a speed of 10.3 m·s−1 through each exhaust pipe, the performance of the applied exhaust fan
was 5000 m3·h−1 and the cross-sectional area of the exhaust pipes was 0.135 m2. The heating surface
(shown in blue in Figure 2) was set according to the specific heat fluxes for the heating area shown
in Table 1. Since the package room is exposed to the outside, heat is transferred through the walls
according to the surroundings; and the heat-transfer coefficient was set as 100 W·m−2K−1 to simulate
the convective heat transfer of a weak wind. To identify the leakage in the system, fuel was modeled
as leaked intentionally at the red points in Figure 4 with listed gas composition in Table 2. The leaked
gas path line is traced by the CFD, and provides the supporting data to locate gas leak detectors.

Figure 3. Conditions of the inlet and outlet of the balance-of-plant (BOP) package: (a) louver installation
locations (inlet) and (b) exhaust pipe locations (outlet).

Table 1. Heat flux of the heating area of the stack package model.

Area [m2] Total Heating Area [m2] Heat Value [kW] Heat Flux [W/m2]

Humidifier 1.189
1.515 1.00 660.1

EG-2012 0.326

Polisher 1.134
2.651 2.426 915.1

EG-2011 1.517

EG-2010 7.281 7.281 4.00 549.3

Pre-converter 2.507
8.368 2.00 239.0FG-2008 1.959

FG-2009 3.902

Recycle blower 1.865

9.537 1.68 176.2EG-4008 1.484

EG-4009 5.689

Air heater 0.499

Stack module 53.111 53.111 9.00 169.5
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Figure 4. Leaked valve positions in the MCFC stack package.

Table 2. Leaked gas composition.

HV249 HV302

Mole Fraction Mass Fraction Mole Fraction Mass Fraction

CH4 0.938 0.8934 0.1498 0.1751

H2O 1.134 2.651 0.3196 0.4196

H2 - - 0.4127 0.0606

CO2 - - 0.0874 0.2803

Air 0.062 0.1066 0.0305 0.0644

2.2. Governing Equations

The governing equations of mass, momentum, turbulence, and heat transfer were applied in
accordance with the buoyancy effect in the internal airflow simulation. In Reynolds averaging, the
velocity vector v is decomposed into the mean and fluctuating velocity components as v = v + v′.
Likewise, a scalar, φ (such as pressure, energy, and other quantities) is decomposed as φ = φ+φ′. The
incompressible Reynolds-averaged Navier–Stokes (RANS) equations are defined as follows [18]:

∂ρ

∂t
+ ∇ · (ρv) = 0 (6)

∂
∂t
(ρv) + ∇ · (ρvv) = −∇p + ∇ · (2μs− ρv′v′) + ρg (7)

where ρ is the density calculated from the ideal gas equation of state, t is time, p is the mean pressure,
μ is the molecular viscosity and s = 1

2

(
∇v + ∇vT

)
is the mean strain-rate tensor. The quantity −ρv′v′

is defined as the Reynolds stress tensor, and ρg is the gravitational body force. To close the RANS
equations, the Reynolds stress tensor is modeled on the basis of the Boussinesq approximation
as follows:

ρv′v′ = 2μts− 2
3
ρKI (8)

where μt is the turbulent viscosity, the turbulent kinetic energy is defined as K = 1
2 v′v′, and I is the

unit tensor.
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Turbulent kinetic energy K and turbulence dissipation rate ε for the turbulence model were
calculated using Equations (9) and (10) [18].

∂(ρK)
∂t

+ ∇ · (ρvK) = ∇ ·
[(
μ+

μt

Prk

)
∇K

]
+ Pk − ρε (9)

∂(ρε)

∂t
+ ∇ · (ρvε) = ∇ ·

[(
μ+

μt

Prε

)
∇ε

]
+
ε
k
(Cε1Pk −Cε2ρε) (10)

where Pk is the generation of turbulent kinetic energy caused by the mean velocity gradients and
buoyancy, Cε1 and Cε2 are the model constants, and Prk and Prε are the turbulent Prandtl numbers for K
and ε, respectively. Here, the turbulent viscosity μt is calculated by combining K and ε as μt = ρCμ K2

ε ,
where Cμ is a constant.

The energy equation is modeled using the concept of the Reynolds analogy to turbulent
momentum transfer:

∂
∂t

(
ρCpT

)
+ ∇ ·

(
ρCpvT

)
= ∇ ·

[
k∇T − ρCpv′T′

]
+ ST (11)

where Cp is the heat capacity, T is the temperature, and k is the molecular thermal conductivity. The

turbulent thermal conductivity is calculated as kt = μt
Cp
Prt

, in which Prt is the turbulent Prandtl number.

The ρCpv′T′ term is defined as kt∇T and the source term ST includes a volumetric heat source.

3. Results and Discussion

3.1. Concentration Distribution

Methane was assumed to be leaked from the HV249 and HV302 valves. The gas from HV249
diffused throughout the entire chamber. The volume fraction of methane was plotted from 0 to 5%,
which is the lower limit to explode, as shown in Figure 5a. Near HV302, methane was located at the
point because of the small composition in the leaked gas. The iso-surface of the methane volume
fraction of 2% covered around one quarter of the BOP chamber, which should be ventilated by carrier
gas from the louver on the right-hand side in Figure 5b. Therefore, the gas detector should be located
on the ceiling, and the evacuating jet fan should operate in an emergency to suck flammable gas from
the chamber.

Figure 5. (a) Volume fraction distribution and (b) 2% iso-surface of leaked methane inside the MCFC
stack package.

In contrast, hydrogen leakage from HV302 differed from the methane distribution. The average
hydrogen concentration was much lower than that of methane and it quickly diffused to the whole
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chamber, as shown in Figure 6a,b. The low concentration of 1% which accumulated behind the stack
because of stagnant flow is not dangerous, but it must be circulated by a blowing or suction fan.

Figure 6. (a) One vertical section and (b) horizontal sections of the volume fraction of leaked hydrogen
inside the MCFC stack package.

3.2. Flow Fields

Figure 7 shows the velocity vectors of the vertical sections of inlet and outlet flow. Inlet gas from
the louvers on the right-hand side flowed to the holes on the ceiling, as shown in Figure 7. The average
speed from the louvers was 4.2 m·s−1, whereas the whole range covered from zero to 5 m·s−1. The red
spot in the chamber observed near HV249 indicates leaked jet flow. The left-hand side louvers on the
front panel blew at an average speed of 3.8 m·s−1, which was lower than the right-hand side because
of the structure. The wing side of the louvers was positioned at 45◦ towards the internal side of the
package, and the path lines formed in this direction passed through the louvers. The colors of the path
lines in the figure represent the temperature distribution, showing that the temperature of the cables
passing through the internal components had increased.

Figure 7. Velocity vectors of the MCFC stack package.

Path lines from the right-hand side louvers scattered rigorously to the outside and carried methane
from the chamber in Figure 8a,b. In contrast, the left-hand side flow field has a few path lines with high
temperature, because of the stagnant flow near the stack. Even though the concentration of hydrogen
is less than the lower limit for an explosion, circulating flow is necessary to flush out the flammable
gas from the chamber.
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Figure 8. Path lines of inlet flows from louvers and outlet flows to the exit holes on the ceiling (a)
frontal view and (b) backside view.

3.3. Temperature Fields

The skin temperature of the polisher and humidifier components, from the ambient temperature
to the highest temperature of 200 ◦C, is shown in Figure 9a,b and indicates that the air temperature
distribution in the vertical sections of the chamber was not uniform, despite the cooling air from the
louvers. Because the BOP package is in contact with internal heat, the air temperature in the upper
part of the package is a result of the influence of the increased density and upward flow of the exhaust
air. In particular, the temperature of the upper side of the fuel cell stack was as high as that of the
polisher because of accumulating flow, which relates to the flow field. Additionally, the hot leaked
flow from the HV302 was stagnant near the stack. The average outlet temperature of the two exit holes
was about 31.5 ◦C.

Figure 9. Temperature distribution of the MCFC stack package at outer temperature 25 ◦C: (a) surface
temperature at heating pipe and (b) yz plane.

3.4. Pressure Fields

Figure 10 shows the vertical section of pressure distribution inside the package. The range of
pressure was shown to be 101,313–101,320 Pa, and it was observed that low pressure was caused by
the velocity increment near the exhaust pipe region, which lead to a static pressure drop. However, it
can be concluded that the pressure differences inside the package were relatively insignificant.
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Figure 10. Pressure distribution at vertical section inside the MCFC stack package at 25 ◦C.

4. Conclusions

The flow characteristics inside a fuel cell balance-of-plant (BOP) package were analyzed through
computational fluid dynamics (CFD) techniques. The simulation was used to interpret the characteristics
of gas, pressure, and temperature flows according to chemical species. The developed model indicated
that the inside flow structure plays an important role not only in heating the internal units, but also
in the distribution and emission of the leaked gas. In addition, the heat flow was confirmed to be
controlled, excluding the entrance and exit of the stack module. However, the flow field through the
stack module, the outer walls of the package, and the top of the module were not cooled to the ambient
temperature. Moreover, temperature increases were observed at the rear side of the stack module, in
the stagnant area at the top of the stack module, and within the leaked gas accumulated in these areas.
Therefore, the density distribution can be decreased by lowering the temperature inside the package
and quickly venting the leaked gas. The capacity to supply external air should thus be designed by
generating a smooth flow between the stack module and the outer walls of the package.

The interpretation of the 300-kW MCFC BOP package model shows that the flow of air generated
inside the package and the surface temperature of the heating apparatus influenced the flow of heat
and air in the package. In other words, if the heat generated is higher than that of the exothermic
device, the temperature of the surface of the heated ventilation system would need to be kept at less
than the ambient temperature. In this case, the design of the airflow inside the device is important for
preventing an increase in the temperature of the internal device.

The simulation of gas leakage and fuel gas density in the BOP package has indicated that the
natural gas line should be ventilated to the outside of the chamber because methane diffused in
all directions throughout the whole chamber, whereas the hydrogen gas flowed directly upwards.
Therefore, the safety ventilation outlet should be located with the gas alarm on the ceiling near the
hydrogen pipeline. For maximum safety, the ventilation and alarm systems should be designed
according to the simulated flow field.
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Abstract: Concerns about harmful exhaust emissions from ships have been an issue.
Specifically, the emissions at ports are the most serious. This paper introduces a hybrid power
system that combines conventional diesel generators with two different energy storage systems (ESSs)
(lithium-ion batteries (LIB) and supercapacitors (SC)) focused on port operations of ships. To verify
the proposed system, a bulk carrier with four deck cranes is selected as a target ship, and each size
(capacity) of LIB and SC is determined based on assumed power demands. The determined sizes are
proven to be sufficient for a target ship through simulation results. Lastly, the proposed system is
compared to a conventional one in terms of the environmental and economic aspects. The results
show that the proposed system can reduce emissions (CO2, SOX, and NOx) substantially and has
a short payback period, particularly for ships that have a long cargo handling time or visit many
ports with a short-term sailing time. Therefore, the proposed system could be an eco-friendly and
economical solution for bulk carriers for emission problems at ports.

Keywords: hybrid power system; lithium-ion battery (LIB); supercapacitor (SC); alternative maritime
power (AMP); bulk carrier

1. Introduction

Although road vehicles currently represent about 70% of total greenhouse gas (GHG) emissions in
the transport sector, other forms of transport—including aviation, maritime, and off-road vehicles—are
also substantial emissions sources and are expected to see continued growth in the coming years.
Specifically, the maritime sector is expected to rise gradually because of its slower improvement
efficiency compared to other vehicles; its GHG share is expected to increase from 10% in 2018 to 20% in
2060 among the global transport-related GHG emissions [1].

In this regard, many countries and the international maritime organization (IMO) have been
implementing environmental regulations or policies, especially in emission-control areas (ECAs), which
are designated areas near ports where ships are required to further reduce emissions. For example,
the sulfur limit is currently 0.1% within ECAs; it is 35 times stricter than the outside ECAs. These strict
regulations are related to the fact that premature deaths have been increasing each year due to
cardiopulmonary disease and lung cancer caused by pollutants emitted from ships at ports [2].
Shipping emissions in East Asia accounted for 16% of global shipping CO2 in 2013, compared to
only 4%–7% in 2002–2005. This increase in emissions resulted in large adverse health impacts, with
14,500–37,500 premature deaths per year [3].

Therefore, ship owners have been making efforts to reduce harmful emissions using exhaust gas
treatment systems such as sulfur dioxide (SOX) scrubbers, selective catalyst reactors (SCRs), or changing
ship fuels from heavy fuel oil (HFO) to liquefied natural gas (LNG) or marine gas oil (MGO), etc.
In addition, major ports have been expanding shore power facilities (or alternative maritime power
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(AMP)), which can supply electric power for ships from land-based electric power plants while staying
at a port. Notably, low voltage AMP facilities have already been installed in many dominant ports
worldwide. Additionally, high voltage (3.3kV, 6.6kV, 11kV, etc.) AMP facilities are being installed
in major ports for large ships such as in the U.S., Canada, European countries, China, etc., and the
European Union (EU) requires European ports to offer shore-based electricity to ships by 2025.

In this regard, hybrid systems using an energy storage system (ESS) have gained attention as an
alternative solution to solve the environmental issues in the marine industry, and research regarding
hybrid systems has already been performed. For example, Lan et al. [4] proposed a hybrid system
combined with a photovoltaic (PV) generation system, a diesel generator, and batteries. Choi et al. [5]
and Han et al. [6] each proposed a fuel cell–battery hybrid system for a boat. In addition, Ovrum et al.
proposed a hybrid system with lithium-ion batteries (LIBs) and diesel generators for a bulk carrier [7].

However, there is not much research regarding the supercapacitor (SC) and LIB hybrid system
yet, except for some research focused on small ships; Trieste et al. chose a SC as the power source
for a ferry and proposed a charging strategy [8], and Bellache et al. investigated the LIB–SC hybrid
system to improve the dynamic response of a boat [9]. On the contrary, many research studies have
been conducted to develop the LIB–SC hybrid system for land vehicles, especially in [10–14]; these are
SC–LIB hybrid systems for electric cars. These results show that the hybrid system could improve
system performance by overcoming individual limitations (disadvantages) and enabling synergistic
effects. In other words, LIBs, which are the most common battery types, have a high energy density;
however, their power densities are low compared to that of an SC of the same size. Also, LIBs have a
short life cycle compared to an SC, which has an approximately 1000× longer life cycle than LIBs (refer
to Table 1).

Table 1. Comparison between lithium-ion batteries (LIBs) and supercapacitors (SCs) [15–20].

Type
Energy Density

(Wh/kg)
Power Density

(W/kg)
Life Cycles

(cycles)
Voltage
(V/cell)

Charging/Discharging
Time

Lithium-ion Battery (LIB) 150~250 50~2,000 500~2,000 3.6~4.2 Minutes ~ Hours
Supercapacitor (SC) 5~10 ~100,000 500,000~2,500,000 2.7~3.0 Seconds ~ Minutes

This paper proposes an SC–LIB hybrid system for a ship focused on port operations, where most
emissions are caused by onboard engine-generator sets (gensets). The rest of this paper is structured as
follows: in Section 2, detailed explanations of a target ship and the proposed system are presented.
In Section 3, the capacity (size) of the LIB and SC is determined with the given assumed operating
conditions. And in Section 4, harmful exhaust emissions at a port are calculated and compared between
the conventional system and proposed one based on simulation results. Additionally, an economic
study for the entire lifetime of a ship is performed in that section. Lastly, the results are reviewed along
with a conclusion. The novelty of this paper is a new approach toward the eco-friendly power system
of a bulk carrier using two kinds of ESSs.

2. System Description

2.1. Target Ship

In this paper, a medium-sized bulk carrier was selected as the target ship. The target ship’s
deadweight was about 50,000 tons, and it had five hatches. The target ship was fitted with three
gensets as power sources and four electric-driven deck cranes (Figure 1). In addition to these deck
cranes, windlass/mooring winches were also of the electric-driven type controlled by each motor drive.
Although hydraulic-driven equipment has been used for a long time, it has many disadvantages
including low efficiency, high noise and vibration, high maintenance cost, pollution risk through oil,
etc. [21]. Therefore, the use of electric-driven equipment has been increasing in the marine industry.
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Figure 1. Typical layout of a bulk carrier with deck cranes [22].

In general, this kind of bulk carrier has four (4) operation modes, as below:

• Normal seagoing mode (at sea);
• Port in/out mode (near a port);
• Cargo loading/unloading mode (at a port);
• Harbor mode (at a port).

First, in the normal seagoing mode, the heaviest electric load is the main engine (M/E) auxiliaries
and engine room auxiliaries to propel the ship, and additional electric power is required to maintain the
living environment for crews at sea. In the port in/out mode, the heaviest load is the windlass/mooring
winches, which are used for lowering/pulling an anchor or hauling-in/winding mooring ropes.
The second heaviest load is the ballast pumps, which are used for pumping water into/out from ballast
tanks in preparation for cargo loading/unloading or cargo hold cleaning. Additionally, the load on
the main air compressors and M/E auxiliary blowers also increases because of the slower speed or
frequent stops of a ship while approaching/departing a port.

In the cargo loading/unloading mode, the heaviest load is the onboard deck cranes used for cargo
loading or unloading to the shore-side, which is a highly repetitive process. The second heaviest load
is the ballast pumps, which ensures the stability of a ship even though its weight is changed during
(un)loading cargo. Lastly, in the harbor mode, the majority of the load comes from the activities of
crews such as from the air conditioner compressor, lighting, galley, and laundry equipment, etc.

2.2. Conventional System

The simple layout of a conventional power system is shown in Figure 2. Even though three
gensets are installed as power sources, the number of gensets in operation is different depending on
the power required for each operation mode. Primarily, only one genset is in operation in the normal
seagoing mode with about 54.3% load factor (Table 2). The second generator is only used for the port
in/out operations or the crane operations, and the last one is installed for redundancy.

Table 2. Comparison of power demands between a conventional and the proposed system.

Mode 1�Normal Seagoing 2� Port In/Out 3� Load/Unload 4�Harbor

Maximum demand power 380 kW 700 kW 1015 kW 250 kW

Conventional system Power sources G1 G1 + G2 G1 + G2 G1
Gensets in use (load factor) 1 × 700 kW (54.3%) 2 × 700 kW (50.0%) 2 × 700 kW (71.4%) 1 × 700 kW (35.7%)

Proposed system Power sources G1’ G2 + LIB AMP + SC AMP
Gensets in use (load factor) 1 × 500 kW (76.0%) 1 × 700 kW (71.4%) - -
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Figure 2. Layout of a conventional power system.

The steps for one voyage cycle in a conventional system are shown in Figure 3. Step 3 includes
not only deck crane operation for cargo handling but also simply staying at a harbor. In this study,
it was assumed that three (3) of four (4) deck cranes were in operation during cargo handling, because
safety risks would be increased if all cranes were in operation simultaneously.

Figure 3. Docking/undocking procedure of a ship in a conventional system.

2.3. Proposed System

In the proposed system, one of the onboard gensets was replaced with two kinds of ESSs (LIB and
SC). The LIB and SC were used as a power source during port operations. Also, one of the remaining
gensets was downsized from 700 kW to 500 kW to obtain a higher fuel efficiency in the normal seagoing
mode. The layout of the proposed power system is shown in Figure 4.

Figure 4. Layout of the proposed power system.
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The reason for adopting two different ESSs was that each has different characteristics as an energy
storage system. In the case of port in/out operations, high load demand occurred only twice (port-in
and port-out). Thus, the LIB was more suitable because of its high energy density. On the other hand,
the SC was more suitable for highly repetitive deck crane operations because of its long life cycle
capacity and high power density. Therefore, the number of gensets in operation in each mode was
changed, as shown in Table 2, and it was shown that load factors of the onboard gensets increased to
above 70% even in the normal seagoing mode and port in/out mode. In the proposed system, two steps
were added for one voyage cycle, as shown in Figure 5, because of the AMP connection/disconnection
processes for shore power.

Figure 5. Docking/undocking procedure of a ship in the proposed system.

3. Proposed Hybrid Power System

The main purpose of the proposed system was to reduce harmful emissions at ports (especially in
ECAs) rather than in the normal seagoing mode at sea. In the port in/out mode, in which additional
power is required for a short time, the LIB was selected as an auxiliary power source that replaced
a stand-by onboard genset. In the cargo loading/unloading mode, in which additional power is
repeatedly required hundreds to thousands of times depending on cargo quantity, the SC and AMP
were selected as the main power sources that replaced onboard gensets.

3.1. Port In/Out Mode

In this mode, the mooring and windlass winches were the heaviest loads unless bow thrusters
were installed onboard. The combined windlass/mooring winch, which is used to handle both anchors
and mooring ropes together, is typically installed towards the fore side of a ship, and mooring winches
are installed towards the aft side. The specifications of the selected winches are described in Table 3.

Table 3. Specifications of windlass/mooring winches.

Classification Specification

Type Electric-Driven Type

Rated motor capacity Combined windlass/mooring winch 100 kW × 2 (Forward) (one is standby)
Mooring winch 50 kW × 3 (AFT) (one is standby)

Rated pulling force Combined windlass/mooring winch 300 kN
Mooring winch 150 kN

Motor drive type Active front-end (bi-directional) type

Electric voltage AC 440 V
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The regenerated power rate when lowering an anchor was difficult to define due to various
factors such as the inertia of the motor, angular speed, rotation speed, and mechanical loss, etc. [23].
Therefore, regenerated power rate was assumed to be about 50%, according to similar cases [7,24,25].
The power demands for one operation cycle were assumed, as shown in Table 4, based on empirical
evidence from crews. In this study, the instantaneous peak braking and initial starting power were not
taken into consideration for simulation simplification. Based on the battery manufacturer’s datasheet,
the specifications of the selected LIB modules are shown in Table 5.

Table 4. Expected power demands for the port in/out mode.

Operation Mode Time (min) Power (kW) Energy (kWh)

Port-in

1� Lowering (heaving up) an anchor 5 −50 −4.15
2� Veering out and hauling in mooring ropes to the port side 10 200 1 33.40

Total 15 - 29.25

Port-out
3� Pulling (hoisting) an anchor 10 100 16.70

4� Winding mooring ropes to onboard rope drums 10 150 2 25.05
Total 20 - 41.75

1 Combined windlass/mooring winch (100 kW × 1), mooring winch (50 kW × 2). 2 Combined windlass/mooring
winch (50 kW × 1), mooring winch (50 kW × 2).

Table 5. Specifications of the selected LIB module [26].

Category Specification

Cell type Lithium nickel manganese cobalt oxide (NMC)
Nominal voltage 88.8 VDC

C-rate Max. 1.4 C (continuous)
Stored energy 10 kWh

Capacity 112 Ah
Weight 90 kg
Size (m) 0.58 (L) × 0.32 (W) × 0.38 (H) (0.0705 m3)

The minimum capacity of the LIB is calculated as shown below [27]:

Cmin = (Ed × ka) / (Vdc × kDoD × ke) (Ah), (1)

where Cmin (Ah) is the minimum battery capacity, Ed (VAh) is the demanded energy, Vdc (V) is the
nominal battery voltage, kDoD is the battery depth of discharge (DoD), ka is the battery aging factor, ke

is the system efficiency, and other factors are not considered. In this case, ke was set to 0.9, ka was set
to 1.2, and kDoD was set to 0.8, assuming that the operating range of the state of charge (SOC) was
10%–90%. The output voltage of the SC pack was determined to be DC 355 V, which was achieved by
arranging four (4) battery modules in series. Moreover, two (2) parallel strings were required to meet
the demanded energy capacity. Therefore, Cmin was calculated to be about 196.0 Ah, and the designed
battery capacity (ELIB_design) was calculated to be about 76.5 kWh, incorporating a 10% safety margin
(ks) as below. The specifications of the selected LIB pack are shown in Table 6. This LIB pack was split
into two sets with the same capacities, and installed at different places for safety reasons.

ELIB_design = Cmin × Vdc × ks = 196.0 Ah × 355 V × 1.1 � 76.5 (kWh) < 80 (kWh). (2)
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Table 6. Specifications of the selected LIB pack.

Category Specification

Target terminal voltage 355 V
Configuration 2 strings × 4 modules in series
Usable energy 80 kWh

Total weight (8 modules) 720 kg
Total size (8 modules) 0.5642 m3

3.2. Cargo Loading/Unloading Mode

In this mode, the onboard deck cranes were the heaviest loads, and they needed repetitive peak
power while unloading or loading cargo. These cranes were generally required to perform three
functions, namely, to hoist/lower, to luff and to slew.

• Hoisting (lowering) is bringing up (down) a crane wire while a crane jib remains in a
constant position.

• Luffing is the raising or lowering of a crane jib.
• Slewing is the swinging round (or rotation) of a crane.

Among these crane operations, the biggest load is the hoist motor, which raises and lowers cargo.
When lowering the cargo, the motor drive must be capable of handling the inverse power by feeding
it back to the onboard main power grid. The specifications of the selected deck crane are shown in
Table 7.

Table 7. Specifications of the selected deck crane.

Classification Specifications

Crane type Electric-driven type

Hoisting max. capacity 30 t
Max. lifting height 40 m

Crane weight 45 t
Hoisting/slewing speed 20 m/min (full load) 40 m/min (no load)

Luffing speed 10 m/min (full load)

Motor rated power

Hoisting 145 kW
Luffing 90 kW
Slewing 40 kW

Grab 20 kW

Motor drive type AFE (bi-directional) type
Electric voltage AC 440 V

The power demand for hoisting or luffing is dependent on the weight required to carry the cargo
by a crane, as shown in the below equation. The crane jip weight (mj) is only applied to the luffing
operation [28,29]:

Phoist = (mh × vh) / (6.12 × η) = ((mload +mg + (mj)) ×vh) / (6.12 × η) (kW), (3)

where, mh (t) is the hoisting weight, mload (t) is the cargo load weight, mg (t) is the grab weight, vh

(m/min) is the hoisting speed, and η is the mechanical efficiency. In this study, mload was set to the
maximum load of 30 t, mg was assumed to be 5 t, mj was 10 t, and η was 0.85. The power demand for
slewing was also dependent on the weight required to turn the load by a crane, as shown below:

Pslew = (ms × vh) / (6.12 × η) = ((mload +mst) × RS × vs) / (6.12 × η) (kW), (4)
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where, ms (t) is the slewing weight, mst (t) is the weight of the slewing structure, Rs is the resistance
to slewing, vs (m/min) is the slewing speed, and η is the mechanical efficiency. In this study, it was
assumed that mst was 10 t, η was 0.85 and Rs was 0.2. The regenerative power rate was assumed to be
50% according to similar cases [7,24,25] as mentioned in Section 3.1. There are ten (10) steps for a deck
crane operation, and the expected power demands for one cycle are assumed, as shown in Table 8,
based on the empirical evidence from crews. Then, the minimum energy of the SC pack (Esc_min) was
obtained through the demand energy (Esc_demand), aging factor (ka), safety factor (ks), and the system
efficiency of (ke). If ka was assumed to be 1.2, ks was assumed to be 1.1, and ke was assumed to be 0.9,
The Esc_min is calculated as below:

Esc_min = Esc_demand × (ka/ke) × ks = 1,005.92 (Wh) × (1.2/0.9) × 1.1 � 1.48 (kWh) � 5,311 (kJ). (5)

Table 8. Expected power demands for deck crane operations.

No. Step Time (s) Power (kW) Energy (Wh)

� Lowering with no load 20 −19.2 −106.68
� Grab (close) 10 20.0 55.56
� Hoisting with full load 25 134.6 934.66
� Luffing in (up) 5 86.5 120.15
� Slewing to port side 15 34.6 144.18
� Lowering with full load 15 −67.3 −280.44
� Grab (open) 5 20.0 27.78
	 Hoisting with no load 10 38.4 106.68

 Slewing to ship side 10 23.1 64.17
� Luffing out (down) 5 −43.3 −60.14

Total About 4 min/cycle (including
overhauling time) 1005.92 Wh/cycle

In most applications, the SC pack is assembled in modules, and these are connected in series and
parallel to increase both the working voltage and overall capacitance. The total capacitance of the SC
pack (CSC,t) is then evaluated as:

CSC,t = CSC,module × (P/S) (F), (6)

where P is the number of parallel strings and S is the number of series modules. The selected SC module
specifications are as shown in Table 9. Then, the SC pack capacity was calculated using Equation (7).

ESC = (1/2) × CSC,t × VSC,t
2 (J), (7)

where VSC,t is the voltage of an SC pack, which is proportional to the number of SC modules. In general,
the voltage variation of an SC pack is to be kept between 100% and 50% of its maximum voltage.
As shown in Figure 6, the LIB offers a fairly constant discharge voltage performance throughout the
spectrum of usable energy, whereas the SC voltage shows a linear and decreasing behavior from the
maximum value up to 50% in general. Even if the stored energy is proportional to the product of the
capacitance for the square of the voltage, the delivered power decreased in the discharging phase
because the current is limited [31,32]. Thus, the available energy of the designed SC pack (ESC_design) is
calculated by the following equation [31,33]:

ESC_design = (1/2) × CSC,t × (VSC,t,max
2 − VSC,t,min

2) = (1/2) ×
CSC,t × (VSC,t,max

2 − ((1/2)×VSC,t,max))2) = (3/8) × CSC,t × VSC,t,max
2 (J),

(8)

where VSC,t,max is the maximum terminal voltage, and VSC,t,min is the minimum terminal voltage of the
SC pack. If the output voltage of the SC pack was determined to be DC 625 V, which was achieved by
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arranging five (5) SC modules in series, then, the SC pack needed have three (3) parallel strings to
obtain the demand capacity according to the below equation:

Esc_design = (3/8) × (CSC,module×(P/S)) × VSC,t,max
2 = (3/8) ×

(63 (F) × (3/5)) × (625 (V))2 � 5,537 (kJ) � 1.54 (kWh) > 1.48 (kWh).
(9)

The design specifications of the SC pack are as shown in Table 10. If the SC pack was discharged,
it could be charged with a C-rate of 180 within about 20.1 seconds during the luffing (10) and lowering
(1) steps.

Table 9. Specifications of the selected SC module [30].

Category Specification

Rated capacitance 63 F
Rated voltage 125 V

Max. initial equivalent DC series resistance (ESRDC) 18 mΩ
Max. leakage current (at 25 ◦C) 10 mA

Number of cells 48 in series
Stored energy 140 Wh

Usable specific power 1700 W/kg
Specific energy 2.3 Wh/kg

Cycle life (at 25 ◦C) 1,000,000 cycles
Weight 61 kg
Size (m) 0.619 (L) × 0.425 (W) × 0.265 (H) (0.0697 m3)

Figure 6. Comparison of charging/discharging characteristics between SC and LIB.

Table 10. Specifications of the selected SC pack.

Category Specifications

Target terminal voltage 625 V
Configuration 3 strings × 5 modules in series
Usable energy 5537 kJ (1.54 kWh)

Total weight (15 modules) 915 kg
Total size (15 modules) 1.0455 m3
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4. Results and Discussion

4.1. Simulation Results

A simulation was conducted using MATLAB/Simulink (MathWorks, Natick, MA, USA) which is
a graphics-based simulation environment to validate whether the determined capacities of the LIB
and SC packs were suitable for each required power demand. Figure 7a shows the LIB pack with
two parallel strings of four modules each, as indicated in Table 6. Figure 7b presents the SC pack
with three parallel strings of five modules each, as specified in Table 10. Each LIB and SC pack was
charged or discharged according to each required power demand, shown in Tables 4 and 8. The LIB
and SC modules used in the simulation were the generic models provided in Simulink. The applied
parameters were obtained from the data in Tables 5 and 9, which were based on the manufacturer’s
specifications [26,30], and the other parameters were assigned predetermined default values in the
model (Table 11).

 
(a) LIB pack model. (b) SC pack model. 

Figure 7. Simulation models of the proposed energy storage systems (ESSs).

Table 11. Applied parameters of LIB and SC modules for the simulation.

Model Description Value Unit

Li-ion Battery (LIB)

Nominal voltage 88.8 V
Rated capacity 112 Ah

Fully charged voltage 103.36 V
Nominal discharge

current 48.70 A

Internal resistance 7.93 mΩ

Supercapacitor (SC)

Rated capacitance 63 F
Rated voltage 125 V
Surge voltage 130 V
Initial voltage 122 V

Equivalent DC series
resistance (ESRDC) 18 mΩ

Leakage current 10 mA

The change in the voltage and SOC of the designed LIB pack according to the power demand is
shown in Figure 8. The lowest SOC of the LIB pack was 49.3% after port-in, and 40.1% after port-out,
so the capacity of the designed LIB pack was sufficient for windlass/mooring winch operation. In other
words, its SOC was within the limited operating range (10%–90%). The change in the voltage and SOC
of the designed SC pack during cargo handling is shown in Figure 9. The lowest SOC of each SC pack
was 67.7% after the first operation cycle, so the designed SC pack capacity was sufficient for deck crane
operation. In other words, its SOC was within the limited operating rage (50%–100%), and it could be
recharged by shore power for a short time during steps 1 and 10, as mentioned in Section 3.2.

104



Appl. Sci. 2019, 9, 1547

Figure 8. LIB pack voltage and state of charge (SOC) changes (port in/out mode).

Figure 9. SC pack voltage and SOC changes (deck crane mode).
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4.2. Fuel Consumption and CO2 Emissions

The fuel consumption of a genset varies depending on the load factor, as shown in Figure 10,
and the lowest fuel consumption is between 70%–85%. In this study, this graph was used to calculate
the fuel consumption of the gensets. The emissions from fuels can be calculated by multiplying the fuel
consumption of the onboard engine with the emission factor (Ef). This Ef varies according to the engine
type (main and auxiliary engines, auxiliary boilers), engine rating, engine speed, type of fuel, etc. [34].

Total emissions (kg) = Fuel consumption × Ef. (10)

Figure 10. Example of a genset fuel consumption graph [35].

For CO2 emissions, the Ef for each fuel type was based on IMO guidelines [36]. The Ef of HFO was
3.114 based on its lower calorific value of 40,200 kJ/kg and carbon content of 0.8493. The Ef of MGO
was 3.206 based on its low calorific value of 42,700 kJ/kg and carbon content of 0.8744. And, the Ef

of SOX emissions was calculated by multiplying 0.02 with the sulfur content S (%) present in the
fuel. In the case of MGO, S (%) did not exceed 0.1 %, whereas the average value of HFO was 2.7%.
The Ef used for NOX emissions was the suggested value for Tier I ships without the use of a scrubber
system. These emission factors are summarized in Table 12 [37]. Based on the emission factors,
the emissions from onboard gensets for the conventional power system were calculated as shown in
Table 13, and those for the proposed power system were calculated as shown in Table 14.

Table 12. Emission factors for different pollutant types.

Fuel
Emission factors

CO2 (g·CO2/g·fuel) SOX (g·SOX/g·fuel) NOX (g·NOX/g·fuel)

Heavy Fuel Oil (HFO) 3.114 0.054 0.057
Marine Gas Oil (MGO) 3.206 0.002 0.057

Table 13. Emissions from onboard gensets for each mode (conventional system).

Mode
Electric Power
Demand (kW)

Time (h)
Fuel Efficiency

(g/kWh)
Fuel (kg)

Emissions (kg)

CO2 SOX NOX

Normal seagoing (10 days) 380 240 195 17,784.0 55,379.38 960.34 1013.69

Port in/out
Excluding winch loads 500 2 [38]

198
198.0 634.79 0.40 11.29

Winch (Port-in) 29.25 kWh (Table 4) 5.8 18.59 0.01 0.33
Winch (Port-out) 41.75 kWh (Table 4) 8.3 26.61 0.02 0.47

Cargo loading/unloading
Excluding crane loads 550 120 1

192
12,672.0 40,626.43 25.34 722.30

Crane loads (3 cranes) 1.01 kWh × 3 each ×
1800 cycle 2 (Table 8) 1047.2 3357.32 2.09 59.69

Harbor 250 48 213 2556.0 8194.54 5.11 145.69

Total - 34,271.3 108,237.66 993.31 1953.46

1 Assuming crane operators work in shifts of 6 h (120 h = 6 h × 20 turns) [39]. 2 Assuming each crane was operated
for 15 cycles per hour (1800 cycles = 120 h × 15 cycles).
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Table 14. Emissions from onboard gensets for each mode (proposed system).

Mode
Electric Power
Demand (kW)

Time (h)
Fuel Efficiency

(g/kWh)
Fuel (kg)

Emissions (kg)

CO2 SOX NOX

Ship power
(AMP)

Normal seagoing
(10 d)

Ship loads 380 240 191 17,419.2 54,243.39 940.64 992.89
LIB Charging

(After port-out) 80 kWh × (85%–40.1%) 191 6.8 21.18 0.37 0.39

Port in/out
(Excluding winch loads) 500 2 192 192.0 615.55 0.38 10.94

Total - 17,618.0 54,880.12 941.39 1004.23

Even though the ESS did not generate harmful emissions directly at a port, the emissions were
generated indirectly, because it had to be recharged using the AMP; shore power was originally
transferred from land-based power plants. Thus, the generated emissions from the used shore power
were calculated as shown in Table 15. In this study, emission factors that generated 1 kWh of electricity
were assumed to be 151 g·CO2/kWh, 0.03 g·SOX/kWh, and 0.16 g·NOX/kWh based on a European
electricity company [40]. This value changed depending on the country. For example, in Denmark
where the dominant electricity power source is from wind power plants (about 44%, 2016) [41], the total
CO2 emission factor is 75 g/kWh, whereas the world average is 507 g/kWh [42].

Table 15. Emissions from shore charging (proposed system).

Mode Electric Power Demand (kW) Time (h)
Emissions (kg)

CO2 SOX NOX

Shore power (AMP)
Cargo loading/unloading

Excluding crane loads 550 120 9966.00 1.98 10.56

Crane loads (SC charging) 1.54 kWh × 3 each × (97.4%–67.7%) ×
1800 cycle 372.95 0.07 0.40

Harbor
LIB charging (After port-in) 80 kWh × (90%–49.3 %) 4.92 0.00 0.01

Harbor loads 250 48 1812.00 0.36 1.92

Total 80,502.41 kWh 12,155.86 2.42 12.88

Overall, the proposed system could reduce CO2, SOX, and NOX emissions, especially in the cargo
handling and harbor modes at a port (Figure 11c,d). There was about a 77% reduction for CO2, about a
93% reduction for SOX, and a 99% reduction for NOX. On the contrary, the emission reduction rates for the
normal seagoing mode (Figure 11a) and the port in/out mode (Figure 11b) were not high (under 10%).

In addition, the emission reduction rate varied depending on the ship’s schedule. As shown in
Table 16, when the cargo handling time was 60 h, the emission reduction rate was approximately 28%
for CO2, 4% for SOx, and 35% for NOx, but this increased to 45%, 6%, and 56% each for 180 h of long
cargo handling operations. And, as shown in Table 17, when the sailing time was 20 d, the emission
reduction rate was approximately 26% for CO2, 4% for SOx, and 32% for NOx, but this increased to 50%,
8%, and 64% each for 5 d of short sailing time. Therefore, the proposed system is more eco-friendly if a
ship has a long cargo handling time or visits many ports with a short-term sailing time.

Table 16. Comparison of emissions according to different cargo handling times.

Cargo Handling
Time at a Port (h) t1

Conventional System (ton/yr) Proposed System (ton/yr) Emission Reduction (%)

CO2 SOX NOX CO2 SOX NOX CO2 SOX NOX

60 1724.91 19.59 31.25 1237.33 18.86 20.23 28.27 3.73 35.26
90 1944.83 19.73 35.16 1289.03 18.87 20.29 33.72 4.36 42.29
120 2164.75 19.87 39.07 1340.72 18.88 20.34 38.07 4.98 47.94
150 2384.67 20.00 42.98 1392.41 18.89 20.40 41.61 5.55 52.54
180 2604.59 20.14 46.89 1444.11 18.90 20.45 44.56 6.16 56.39

1 Assuming that the ship visits 20 ports per year with a sailing time of 10 d.
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Table 17. Comparison of emissions according to different sailing times.

Sailing Time for
Port-To-Port (d) 1

Conventional System (ton/yr) Proposed System (ton/yr) Emission Reduction (%)

CO2 SOX NOX CO2 SOX NOX CO2 SOX NOX

5 (27 ports/yr) 2174.79 13.85 39.06 1,077.69 12.78 14.06 50.45 7.73 64.00
10 (20 ports/yr) 2164.75 19.87 39.07 1,340.72 18.88 20.34 38.07 4.98 47.94
15 (16 ports/yr) 2174.84 23.58 39.36 1,506.52 22.63 24.22 30.73 4.03 38.47
20 (13 ports/yr) 2127.02 25.40 38.57 1,576.63 24.50 26.13 25.88 3.54 32.25

1 Assuming that the ship stays at a port for 200 h with a cargo handling time of 120 h.

 
(a) Normal seagoing mode (b) Port in/out mode 

 
(c) Cargo (un)loading mode (d) Harbor mode. 

Figure 11. Comparison of emissions for each operation mode.

4.3. Economic Study

An economic study was conducted to compare the conventional power system and proposed one.
Some assumptions were made for the study (below) since it was difficult to obtain exact data from the
industry, and the data were changeable depending on the cases.

• Only the main equipment was considered;
• The bulk carrier visited 20 ports per year;
• The lifespan of the ship was 25 years.

First, the initial capital expenditure (CAPEX) is the sum of the equipment cost for the system.
The cost data for the main equipment were obtained from several references [43–47]. The cost of the
LIB was assumed to be 600 /kWh USD, and it was changeable according to the C-rate capacity, cell
type, and cooling method, etc. The CAPEX results for the conventional and proposed systems are
shown in Table 18. Secondly, the operational expenditure (OPEX) is the sum of each fixed operation &
maintenance (O&M) cost, fuel cost for genset(s), and the electricity cost; only the electricity cost for the
AMP was considered for the proposed system (Table 19).

The fixed O&M cost data of each main equipment were obtained from several references [48–50].
In this study, the variable O&M costs, which included cooling water or consumable materials used in
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maintenance, were assumed negligible because they comprised a relatively small portion in general
power systems [51–53]. It was also assumed that it was necessary to switch the onboard fuel from HFO
to MGO in port areas to meet environmental regulations for the conventional power system. The total
savings during N years is the sum of the yearly savings (Syear), taking into account the interest rate (i)
for the capital, as below [54]:

Total savings =
∑N

n=1

Syear

(1 + i)n . (11)

In this study, i was set to 5%, and the annual inflation rates for the fixed O&M cost (a), fuel oil
cost (b), and electricity cost (c) were set to 2% each. The replacement of the LIB and SC packs was
considered with a replacement cost rate of 80% [55] of the initial cost. And the lifespan was assumed
to be about 10 years for the LIB [56] and 15 years for the SC [17].

Table 18. Comparison of the capital expenditure (CAPEX) for each system.

Type Conventional Power System Proposed Power System

Main
equipment

cost

Equipment Cost No. Equipment Cost No.

Generator (700 kW) 149,800 USD 3 Generator (500 kW) 107,000 USD 1
Crane converter (300 kW) 90,000 USD 4 Generator (700 kW) 149,800 USD 1

- - - LIB (40 kWh) 24,000 USD 2
- - - SC (1.54 kWh) 15,400 USD 4
- - - Converter of LIB (40 kW) 12,000 USD 2
- - - Converter of SC (280 kW) 84,000 USD 4
- - - AMP converter (750 kW) 225,000 USD 2
- - - Cable system for AMP 1,300 USD 1

Total cost 809,400 USD 1,177,700 USD

Thus, the payback period was obtained by solving for n when the initial investment cost was
equal to the sum of the yearly savings. Payback occurred at around 5.8 years where the curve passed
through the zero of the y-axis in the case of the below assumptions:

• The electricity cost for the AMP was 9.2 cents/kWh;
• The HFO cost was 400/t USD, and the MGO cost was 630/t USD.
• The LIB cost was 600/kWh USD, and the SC cost was 10,000/kWh USD.

However, the payback period increased to around 10 years or deceased to around 4 years according
to the electricity and fuel costs, as shown in Figure 12a,b; these were more critical variables compared to
the LIB or SC cost during the lifetime of a ship, as shown in Figure 12c,d. For a 25-year lifespan of a ship,
the total savings would be about 0.78 million USD, and the difference was greatly dependent on the fuel
and electricity cost, as shown in Figure 13. Even though electricity cost was additionally included for the
proposed system, it could be economically beneficial because of the fuel savings (up to 60.2%) compared
with the conventional one.

 
(a) Electricity cost variations (b) Fuel cost variations 

Figure 12. Cont.
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(c) LIB cost variations (d) SC cost variations 

Figure 12. Cumulative saving costs for the lifespan of a ship depending on each variation.

Table 19. Comparison of the operational expenditure (OPEX) for each system per year.

Type Conventional Power System Proposed Power System

Fixed O&M
cost /year

Equipment Unit cost (/kW/yr) No. Equipment Unit cost (/kW/yr) No.

Generator (700 kW) 15 USD 3 Generator (500 kW) 15 USD 1
Crane converter (300 kW) 2 USD 4 Generator (700 kW) 15 USD 1

- - LIB (40 kWh) 3 USD 2
- - - SC (1.54 kWh) 5.55 USD 4
- - - Converter (LIB) (40 kW) 2 USD 2
- - - Converter (SC) (280 kW) 2 USD 4
- - - AMP converter (750 kW) 2 USD 2

Total cost 33,900/year USD 23,674/year USD

Type
Fuel

Consumption
No. of visited

ports/yr
Unit
price

Fuel
Consumption

No. of visited
ports/yr

Unit
price

HFO 17.784 (t/port) 20 400/t USD 1 17.426 (t/port) 20 400/t USD 1

MGO 16.487 (t/port) 20 630/t USD 1 0.192 (t/port) 20 630/t USD 1

Electricity
(AMP) - - - 80,502.41 (kWh/port) (Table 15) 20 9.2 cents/kWh 2

Total cost 350,008/year USD 289,952/year USD

1 BW380, BW0.1%S price (as of Jan. 2018) [57]. 2 At Halifax port (Canada) [58,59].

Figure 13. Total life cycle costs for conventional and proposed systems based on present values
(25 years; i = 5%; a, b, c = 2%; electricity cost = 9.2 cents/kWh).

In addition, the payback period varied depending on the ship’s schedule. As shown in Figure 14,
when the cargo handling time was 60 h, payback occurred at around 10.2 years, but this decreased to
4.2 years for 180 h of long cargo handling operations. And, as shown in Figure 15, when the sailing
time was 20 d, payback occurred at around 8.2 years, but this decreased to 4.5 years for 5 d in a short
sailing time. Therefore, the proposed system is more economical if a ship has a long cargo handling
time or visits many ports with a short-term sailing time.
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Figure 14. Cumulative saving costs for the lifespan of a ship depending on different cargo handling
times (assuming that the ship visits 20 ports per year with a sailing time of 10 days).

Figure 15. Cumulative saving costs for the lifespan of a ship depending on different sailing times
(assuming that the ship stays at a port for 200 h with a cargo handling time of 120 h).

5. Conclusions

This paper presents a new alternative solution to reduce harmful emissions at ports, which are
mostly generated from onboard gensets. The hybrid power system with two different ESS types is
proposed for port operations based on a bulk carrier with deck cranes. In the target ship, the LIB is
optimal for the port in/out mode, and the SC is optimal for highly repetitive deck crane operations.
To verify the proposed system, the optimal sizes for the LIB and SC are determined according to the
load demands, and each capacity is verified using simulations. The emission reductions are then
compared with those of the conventional power system. Lastly, an economic study is performed based
on the expected CAPEX and OPEX of each system.

The results show that the emission problems in port areas can be solved using this onboard
hybrid power system with an AMP facility. And these environmental benefits would be increased if
shore power is only generated by clean power sources such as solar power, wind power, fuel cells,
etc. Moreover, the economic study shows that this proposed system will be beneficial in terms of the
total lifespan of a ship. Particularly, this proposed system can be more advantageous for ships that
have a long cargo handling time or visit many ports with a short-term sailing time. However, benefits
are highly variable depending on the fuel oil cost for gensets and the electricity cost for the AMP.
Even though this paper focused on one type of ship, the two types of ESSs (LIB and SC) could also be
applied to other ship types. Therefore, this new approach to for eco-friendly ship could be helpful for
many ship owners who are faced with urgent environmental regulation problems.
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