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Preface to ”Recent Advances on Quasi-Metric Spaces”

If we were to say that fixed-point theory appeared in Liouville’s article on solutions of differential

equations (1837) in the second quarter of the 18th century, it would not be wrong. This approach

was further developed by Picard in 1890 and entered the literature as a method of successive

approximations. This method was abstracted and extracted as a separate fixed-point theorem in the

setting of complete normed space by Banach in 1922.

For this reason, usually, it is said that fixed-point theory was founded by Banach. In its earlier

iteration, this first fixed-point theorem was known as the Picard–Banach theorem. Later, the analog of

that theorem was proved in the framework of complete metric spaces by Caccioppoli in 1931. In some

literature, the Banach–Caccioppoli theorem is indicated as a first fixed-point theorem in the setting of

a complete metric space.

As we mentioned above, fixed-point theory can be considered as a theory that was derived from

applied mathematics. On the other hand, the techniques belong to functional analysis and topology.

In particular, this theory, and its potential application, has been investigated and focused on by

a great number of researchers. It should be underlined that this theory has been applied in physics,

economics, engineering, computer science, and so on. Indeed, an application for fixed-point theorem

can be found in all fields of quantitative science.

In this Special Issue, we focused on fixed-point results in the setting of quasi-metric spaces and

applications but were not restricted to it. The selected papers express our aims in this regard.

Andreea Fulga, Erdal Karapinar

Special Issue Editors
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We propose a new fixed point theorem which is inspired from both Caristi and Banach. We also
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1. Introduction and Preliminaries

In fixed point theory, the approaches of the renowned results of Caristi [1] and Banach [2] are quite
different and the structures of the corresponding proofs varies. In this short note, we propose a new
fixed point theorem that is inspired from these two famous results.

We aim to present our results in the largest framework, b-metric space, instead of standard metric
space. The concept of b-metric has been discovered several times by different authors with distinct
names, such as quasi-metric, generalized metric and so on. On the other hand, this concept became
popular after the interesting papers of Bakhtin [3] and Czerwik [4]. For more details in b-metric space
and advances in fixed point theory in the setting of b-metric spaces, we refer e.g., [5–17].

Definition 1. Let X be a nonempty set and s ≥ 1 be a real number. We say that d : X × X → [0, 1) is
a b-metric with coefficient s when, for each x, y, z ∈ X,

(b1) d(x, y) = d(y, x);
(b2) d(x, y) = 0 if and only if x = y;
(b3) d(x, z) ≤ s[d(x, y) + d(y, z)] (Expanded triangle inequality).

In this case, the triple (X, d, s) is called a b-metric space with coefficient s.

The classical examples and crucial examples of b-metric spaces are lp(R) and Lp[0, 1], p ∈ (0, 1).
The topological notions (such as, convergence, Cauchy criteria, completeness, and so on) are

defined by verbatim of the corresponding notions for standard metric. On the other hand, we should
underline the fact that b-metric does need to be continuous, for certain details, see e.g., [3,4].

We recollect the following basic observations here.

Mathematics 2019, 7, 308; doi:10.3390/math7040308 www.mdpi.com/journal/mathematics1
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Lemma 1. [14] For a sequence (θn)n∈N in a b-metric space (X, d, s), there exists a constant γ ∈ [0, 1) such that

d(θn+1, θn) ≤ γd(θn, θn−1), for all n ∈ N.

Then, the sequence (θn)n∈N is fundamental (Cauchy).

The aim of this paper is to correlate the Banach type fixed point result with Caristi type fixed
point results in b-metric spaces.

2. Main Result

Theorem 1. Let (X, d, s) be a complete metric space and T : X → X be a map. Suppose that there exists
a function ϕ : X → R with

(i) ϕ is bounded from below (inf ϕ(X) > −∞),
(ii) d(x, Tx) > 0 implies d(Tx, Ty) ≤ (ϕ(x)− φ(Tx))d(x, y).

Then, T has at least one fixed point in X.

Proof. Let θ0 ∈ X. If Tθ0 = θ0, the proof is completed. Herewith, we assume d(θ0, Tθ0) > 0. Without
loss of generality, keeping the same argument in mind, we assume that θn+1 = Tθn and hence

d(θn, θn+1) = d(θn, Tθn) > 0. (1)

For that sake of convenience, suppose that an = d(θn, θn−1). From (ii), we derive that

an+1 = d(θn, θn+1) = d(Tθn−1, Tθn)

≤ (ϕ(θn−1)− ϕ(Tθn−1))d(θn−1, θn)

= (ϕ(θn−1)− ϕ(θn))an.

So we have,
0 <

an+1

an
≤ ϕ(θn−1)− ϕ(θn) for each n ∈ N.

Thus the sequence {ϕ(θn)} is necessarily positive and non-increasing. Hence, it converges to
some r ≥ 0. On the other hand, for each n ∈ N, we have

n

∑
k=1

ak+1
ak

≤
n

∑
k=1

(ϕ(θk−1)− ϕ(θk))

= (ϕ(θ0)− ϕ(θ1)) + (ϕ(θ1)− ϕ(θ2)) + ... + (ϕ(θn−1)− ϕ(θn))

= ϕ(θ0)− ϕ(θn) → ϕ(θ0)− r < ∞, as n → ∞.

It means that
∞

∑
n=1

an+1

an
< ∞.

Accordingly, we have

lim
n→∞

an+1

an
= 0. (2)

On account of (2), for γ ∈ (0, 1), there exists n0 ∈ N such that

an+1

an
≤ γ, (3)

for all n ≥ n0. It yields that
d(θn+1, θn) ≤ γd(θn, θn−1), (4)

2
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for all n ≥ n0. Now using Lemma 1 we obtain that the sequence {θn} converges to some ω ∈ X.
We claim that ω is the fixed point of T. Employing assumption (ii) of the theorem, we find that

d(ω, Tω) ≤ s[d(ω, θn+1) + d(θn+1, Tω)]

≤ s[d(ω, θn+1) + (ϕ(θn)− ϕ(ω))d(θn, ω)] → 0 as n → ∞.

Consequently, we obtain d(ω, Tω) = 0, that is, Tω = ω.

From Theorem 1, we get the corresponding result for complete metric spaces. The following
example shows that the Theorem 1 is not a consequence of Banach’s contraction principle.

Example 1. Let X = {0, 1, 2} endowed with the following metric:

d(0, 1) = 1, d(2, 0) = 1, d(1, 2) =
3
2

and d(a, a) = 0, for all a ∈ X, d(a, b) = d(b, a), for all a, b ∈ X.

Let T(0) = 0, T(1) = 2, T(2) = 0. Define ϕ : X → [0, ∞) as ϕ(2) = 2, ϕ(0) = 0, ϕ(1) = 4. Thus for
all x ∈ X such that d(x, Tx) > 0, (in this example, x �= 0), we have

d(T1, T2) ≤ (ϕ(1)− ϕ(T(1)))d(2, 1),
d(T2, T1) ≤ (ϕ(2)− ϕ(T(2)))d(2, 1),
d(T1, T0) ≤ (ϕ(1)− ϕ(T(1)))d(1, 0),
d(T2, T0) ≤ (ϕ(2)− ϕ(T(2)))d(2, 0).

Thus the mapping T satisfies our condition and also has a fixed point. Note that d(T1, T0) = d(1, 0).
Thus, it does not satisfy the Banach contraction principle.

Remark 1.

1. From Example 1, it follows that Theorem 1 (over metric spaces) is not a consequence of the Banach
contraction principle.

2. Question for further study: It is natural to ask if the Banach contraction principle is a consequence of
Theorem 1 (over metric spaces).

Author Contributions: All authors contributed equally and significantly in writing this article. All authors read
and approved the final manuscript.
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established in the said spaces. Moreover, the discussion is supported with the aid of competent
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point theory.
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1. Introduction

With the introduction of Banach’s contraction principle (BCP), the fixed point theory advanced in
various directions. Nadler [1] obtained the fundamental fixed point result for set-valued mappings
using the notion of Pompeiu–Hausdorff metric which is an extension of the BCP. Later on, many fixed
point theorists followed the findings of Nadler and contributed significantly to the development of
theory (cf. S. Reich [2,3]).

On the other hand, in order to investigate the semantics of data flow networks; Matthews [4]
coined the concept called as partial metric spaces which are used efficiently while building models
in computation theory. On the inclusion of partial metric spaces into literature, many fixed point
theorems were established in this setting, see [5–16]. Recently, Asadi et al. [17] brought the notion
of an M-metric as a real generalization of a partial metric into the literature. They also obtained the
M-metric version of the fixed point results of Banach and Kannan. Also, some fixed point theorems
have been established in M-metric spaces endowed with a graph, see [18].

In this work, we introduce the M-Pompeiu–Hausdorff type metric. Furthermore, we extend the
fixed point theorems of Nadler and Kannan to M-metric spaces for set-valued mappings. Finally,
homotopy results for M-metric spaces are discussed.

Mathematics 2019, 7, 373; doi:10.3390/math7040373 www.mdpi.com/journal/mathematics5
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2. Preliminaries

The symbols N, R and R+ represent respectively set of all natural numbers, real numbers and
nonnegative real numbers. Let us recall some of the concepts for simplicity in understanding.

Definition 1 ([4]). Let X be a nonempty set. Then a partial metric is a function p : X × X → R+ satisfying
following conditions:

(p1) a = b ⇐⇒ p(a, a) = p(a, b) = p(b, b);
(p2) p(a, a) ≤ p(a, b);
(p3) p(a, b) = p(b, a);
(p4) p(a, b) ≤ p(a, c) + p(c, b)− p(c, c);

for all a, b, c ∈ X. The pair (X, p) is called a partial metric space.

The concept of an M-metric [17] defined in following definition extends and generalize the notion
of partial metric.

Definition 2 ([17]). Let X be a non empty set. Then an M-metric is a function m : X × X → R+ satisfying
the following conditions:

(m1) m(a, a) = m(b, b) = m(a, b) ⇔ a = b;
(m2) mab ≤ m(a, b) where mab := min{m(a, a), m(b, b)};
(m3) m(a, b) = m(b, a);
(m4) (m(a, b)− mab) ≤ (m(a, c)− mac) + (m(c, b)− mcb);

for all a, b, c ∈ X. The pair (X, m) is called an M-metric space.

Remark 1 ([17]). Let us denote Mab := max{m(a, a), m(b, b)}, where m is an M-metric on X. Then for
every a, b ∈ X, we have

(1) 0 ≤ Mab + mab = m(a, a) + m(b, b),
(2) 0 ≤ Mab − mab = |m(a, a)− m(b, b)|,
(3) Mab − mab ≤ (Mac − mac) + (Mcb − mcb).

Example 1 ([17]). Let m be an M-metric on X. Then

(1) mw(a, b) = m(a, b)− 2mab + Mab,

(2) ms(a, b) =

⎧⎪⎨⎪⎩
m(a, b)− mab if a �= b,

0 if a = b,

are ordinary metrics on X.

Two new examples of M-metrics are as follows:

Example 2. Let X = [0, ∞). Then

(a) m1(a, b) = |a − b|+ a+b
2 ,

(b) m2(a, b) = |a − b|+ a+b
3

are M-metrics on X.

Let Bm(a, η) = {b ∈ X : m(a, b) < mab + η} be the open ball with center a and radius η > 0 in
M-metric space (X, m). The collection {Bm(a, η) : a ∈ X, η > 0}, acts as a basis for the topology τm

(say) on M-metric X.

6
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Remark 2 ([17]). τm is T0 but not Hausdorff.

Definition 3 ([17]). Let {ak} be a sequence in M-metric spaces (X, m).

(1) {ak} is called M-convergent to a ∈ X if and only if

lim
k→∞

(m(ak, a)− maka) = 0.

(2) If lim
k,j→∞

(m(ak, aj)− makaj) and lim
k,j→∞

(Makaj − makaj) exist and finite then the sequence {ak} is called

M-Cauchy.
(3) If every M-Cauchy sequence {ak} is M-convergent, with respect to τm, to a ∈ X such that lim

k→∞
(m(ak, a)−

maka) = 0 and lim
k→∞

(Maka − maka) = 0 then (X, m) is called M-complete.

Lemma 1 ([17]). Let {ak} be a sequence in M-metric spaces (X, m). Then

(i) {ak} is M-Cauchy if and only if it is a Cauchy sequence in the metric space (X, mw).
(ii) (X, m) is M-complete if and only if (X, mw) is complete.

Example 3. Let X and m1, m2 : X × X → [0, ∞) be as defined in Example 2 for all a, b ∈ X. Then (X, m1)

and (X, m2) are M-complete. Indeed, (X, mw) = ([0, ∞), k|x − y|) is a complete metric space, where k = 5
2 for

m1 and k = 2 for m2.

Lemma 2 ([17]). Let ak → a and bk → b as k → ∞ in (X, m). Then as k → ∞, (m(ak, bk)− makbk
) →

(m(a, b)− mab).

Lemma 3 ([17]). Let ak → a as k → ∞ in (X, m). Then (m(ak, b)− makb) → (m(a, b)− mab), k → ∞,
for all b ∈ X.

Lemma 4 ([17]). Let ak → a and ak → b as k → ∞ in (X, m). Then m(a, b) = mab. Further, if m(a, a) =
m(b, b), then a = b.

Lemma 5 ([17]). Let {ak} be a sequence in (X, m) such that for some r ∈ [0, 1), m(ak+1, ak) ≤ rm(ak, ak−1),
k ∈ N then

(a) lim
k→∞

m(ak, ak−1) = 0;

(b) lim
k→∞

m(ak, ak) = 0;

(c) lim
k,j→∞

mak ,aj = 0;

(d) {ak} is M-Cauchy.

3. M-Pompeiu–Hausdorff Type Metric

The concept of a partial Hausdorff metric is defined in [19,20]. Following them we initiate the
notion of an M-Pompeiu–Hausdorff type metric induced by an M-metric in this section. Let us begin
with the following definition.

Definition 4. A subset A of an M-metric space (X, m) is called bounded if for all a ∈ A, there exist b ∈ X
and K ≥ 0 such that a ∈ Bm(b, K), that is, m(a, b) < mba + K.

Let CBm(X) denotes the family of all nonempty, bounded, and closed subsets in (X, m). For
P, Q ∈ CBm(X), define

Hm(P, Q) = max{δm(P, Q), δm(Q, P)},

where δm(P, Q) = sup{m(a, Q) : a ∈ P} and m(a, Q) = inf{m(a, b) : b ∈ Q}.

7
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Let P denote the closure of P with respect to M-metric m. Note that P is closed in (X, m) if and
only if P = P.

Lemma 6. Let P be any nonempty set in an M-metric space (X, m), then a ∈ P if and only if m(a, P) =

supx∈P max.

Proof.

a ∈ P ⇔ Bm(a, η) ∩ P �= ∅, for all η > 0

⇔ m(a, x) < max + η, for some x ∈ P

⇔ m(a, x)− max < η

⇔ inf{m(a, x)− max : x ∈ P} = 0

⇔ inf{m(a, x) : x ∈ P} = sup{max : x ∈ P}
⇔ m(a, P) = sup

x∈P
max.

Proposition 1. Let P, Q, R ∈ CBm(X), then we have

(a) δm(P, P) = sup
a∈P

{sup
b∈P

mab};

(b) (δm(P, Q)− sup
a∈P

sup
b∈Q

mab) ≤ (δm(P, R)− inf
a∈P

inf
c∈R

mac) + (δm(R, Q)− inf
c∈R

inf
b∈Q

mcb).

Proof.

(a) Since P ∈ CBm(X), P = P. Then from Lemma 6, m(a, P) = sup
x∈P

max. Therefore, δm(P, P) =

sup
a∈P

{m(a, P)} = sup
a∈P

{sup
x∈P

max}.

(b) For any a ∈ P, b ∈ Q and c ∈ R, we have

m(a, b)− mab ≤ m(a, c)− mac + m(c, b)− mcb.

We rewrite it as
m(a, b)− mab + mac + mcb ≤ m(a, c) + m(c, b).

Since b is arbitrary element in Q, we have

m(a, Q)− sup
b∈Q

mab + mac + inf
b∈Q

mcb ≤ m(a, c) + m(c, Q).

Since m(c, Q) ≤ δm(R, Q), we can write above inequality as

m(a, Q)− sup
b∈Q

mab + mac + inf
b∈Q

mcb ≤ m(a, c) + δm(R, Q).

As c is arbitrary in R, we have

m(a, Q)− sup
b∈Q

mab + inf
c∈R

mac + inf
c∈R

inf
b∈Q

mcb ≤ m(a, R) + δm(R, Q).

We rewrite the above inequality as

m(a, Q) + inf
c∈R

inf
b∈Q

mcb ≤ m(a, R) + δm(R, Q) + sup
b∈Q

mab − inf
c∈R

mac.

8
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Again, as a is arbitrary in P, we get

δm(P, Q) + inf
c∈R

inf
b∈Q

mcb ≤ δm(P, R) + δm(R, Q) + sup
a∈P

sup
b∈Q

mab − inf
a∈P

inf
c∈R

mac.

Proposition 2. For any P, Q, R ∈ CBm(X) following are true

(i) Hm(P, P) = δm(P, P) = sup
a∈P

{sup
b∈P

mab};

(ii) Hm(P, Q) = Hm(Q, P);
(iii) Hm(P, Q)− sup

a∈P
sup
b∈Q

mab ≤ Hm(P, R) +Hm(Q, R)− inf
a∈P

inf
c∈R

mac − inf
c∈R

inf
b∈Q

mcb.

Proof.

(i) From (a) of Proposition 1, we write Hm(P, P) = δm(P, P) = sup
a∈P

{sup
b∈P

mab}.

(ii) It follows from (m2) of Definition 2.
(iii) Using (b) of Proposition 1, we have

Hm(P, Q) = max{δm(P, Q), δm(Q, P)}

≤ max

{
[δm(P, R)− inf

a∈P
inf
c∈R

mac + δm(R, Q)− inf
c∈R

inf
b∈Q

mcb + sup
a∈P

sup
b∈Q

mab],

[δm(Q, R)− inf
a∈P

inf
c∈R

mac + δm(R, P)− inf
c∈R

inf
b∈Q

mcb + sup
a∈P

sup
b∈Q

mab]

}
≤ max{δm(P, R), δm(R, P)}+ max{δm(Q, R), δm(R, Q)}

− inf
a∈P

inf
c∈R

mac − inf
c∈R

inf
b∈Q

mcb + sup
a∈P

sup
b∈Q

mab

≤ Hm(P, R) +Hm(R, Q)− inf
a∈P

inf
c∈R

mac − inf
c∈R

inf
b∈Q

mcb + sup
a∈P

sup
b∈Q

mab.

Remark 3. In general, Hm(A, A) �= 0 for A ∈ CBm(X). It can be verified through the following example.

Example 4. Let X = [0, ∞) and m(a, b) = a+b
2 , then clearly (X, m) is an M-metric space. In view of (a) of

Proposition 1, we have

Hm([1, 2], [1, 2]) = δm([1, 2], [1, 2]) = sup
p∈[1,2]

sup
q∈[1,2]

mpq = sup
p∈[1,2]

sup
q∈[1,2]

min{p, q} �= 0.

In view of Proposition 2, we call Hm : CBm(X)× CBm(X) → [0,+∞) an M-Pompeiu–Hausdorff
type metric induced by m.

Lemma 7. Let P, Q ∈ CBm(X) and q > 1. Then for every a ∈ P, there is at least one b ∈ Q such that
m(a, b) ≤ qHm(P, Q).

Proof. Assume that there exists an a ∈ P such that m(a, b) > qHm(P, Q) for all b ∈ Q. This implies that

inf
b∈Q

{m(a, b)} ≥ qHm(P, Q),

that is,
m(a, Q) ≥ qHm(P, Q).

9
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Note that
Hm(P, Q) ≥ δm(P, Q) = sup

x∈P
m(x, Q) ≥ m(a, Q) ≥ qHm(P, Q).

Since Hm(P, Q) �= 0, q ≤ 1, which is a contradiction.

Lemma 8. Let P, Q ∈ CBm(X) and r > 0. For any a ∈ P, there is at least one b ∈ Q such that
m(a, b) ≤ Hm(P, Q) + r.

Proof. Assume that there exists a ∈ P such that m(a, b) > Hm(P, Q) + r for all b ∈ Q. This implies that

inf
b∈Q

{m(a, b)} ≥ Hm(P, Q) + r,

that is,
m(a, Q) ≥ Hm(P, Q) + r.

Now,
Hm(P, Q) + r ≤ m(a, Q) ≤ δm(P, Q) ≤ Hm(P, Q).

Thus, r ≤ 0, which is a contradiction.

4. Fixed Point Results

First, we state the Nadler fixed point theorem in the class of M-metric spaces.

Theorem 1. Let M-metric space (X, m) be M-complete and F : X → CBm(X) be a multivalued mapping.
Suppose there exists λ ∈ (0, 1) such that

Hm(Fa, Fb) ≤ λm(a, b), (1)

for all a, b ∈ X. Then F admits a fixed point.

Proof. Choose q = 1√
λ

and r =
√

λ. Clearly, q > 1 and r < 1. Let a0 ∈ X be arbitrary and a1 ∈ Fa0.

From Lemma 7, for q = 1√
λ

, there exists a2 ∈ Fa1 such that

m(a1, a2) ≤
1√
λ
Hm(Fa0, Fa1). (2)

As Hm(Fa0, Fa1) ≤ λm(a0, a1), so from (2) we have

m(a1, a2) ≤
1√
λ

λm(a0, a1) =
√

λm(a0, a1) = rm(a0, a1).

Now, from Lemma 7, there exists a3 ∈ Fa2 such that

m(a2, a3) ≤ rm(a1, a2).

Continuing in this way, we get a sequence {ak} of points in X such that ak+1 ∈ Fak and for k ≥ 1,

m(ak, ak+1) ≤ rm(ak−1, ak), (3)

that is,
m(ak, ak+1) ≤ rkm(a0, a1). (4)

By Lemma 5, we have
lim
k→∞

m(ak, ak+1) = 0, (5)

10
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lim
k→∞

m(ak, ak) = 0, (6)

and
lim

k,j→∞
m(ak, aj) = 0. (7)

Also the sequence {ak} is M-Cauchy. Thus, M-completeness of X yields existence of a ∈ X
such that

lim
k→∞

(m(ak, a)− maka) = 0.

Since lim
k→∞

m(ak, ak) = 0, we have

lim
k→∞

m(ak, a) = 0. (8)

From (1) and (8), we have
lim
k→∞

Hm(Fak, Fa) = 0. (9)

Now, since ak+1 ∈ Fak, m(ak+1, Fa) ≤ Hm(Fak, Fa). Taking limit as k → ∞ and using (8), we get

lim
k→∞

m(ak+1, Fa) = 0. (10)

As mak+1Fa ≤ m(ak+1, Fa), so we have

lim
k→∞

mak+1Fa = 0. (11)

Using (m4), we have

m(a, Fa)− sup
b∈Fa

mab ≤ m(a, Fa)− maFa

≤ m(a, ak+1)− maak+1 + m(ak+1, Fa)− mak+1Fa.

Varying limit as k → ∞ and using (8)–(11), we get

m(a, Fa) ≤ sup
b∈Fa

mab. (12)

Since mab ≤ m(a, b) for every b ∈ Fa, this implies that

mab − m(a, b) ≤ 0.

Thus
sup{mab − m(a, b) : b ∈ Fa} ≤ 0,

that is,
sup
b∈Fa

mab − inf
b∈Fa

m(a, b) ≤ 0.

This gives
sup
b∈Fa

mab ≤ m(a, Fa). (13)

From (12) and (13), we have
m(a, Fa) = sup

b∈Fa
mab.

Thus, by Lemma 6, a ∈ Fa = Fa.

11
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Example 5. Let X = [0, 2] be endowed with m-metric m(a, b) = |a − b| + a+b
2 . Then (X, m) is an

M-complete M-metric space (as in Example 3). Let F : X → CBm(X) be a mapping defined as

F(a) =
[

0,
1
7

a2
]

for all a ∈ X.

We shall show that for λ ∈ (0, 1), Hm(Fa, Fb) ≤ λm(a, b), i.e., (1) holds for all a, b ∈ X. We have
following three possible cases:

Case I: a = b = p. Then Fa = [0, 1
7 p2] = Fb. Here, for λ ≥ 2

7 ,

Hm(Fa, Fb) =
1
7

p2 ≤ λp = λm(p, p) = λm(a, b).

Case II: a < b. Then Fa = [0, 1
7 a2], Fb = [0, 1

7 b2] and Fa ⊆ Fb. In this case,

Hm(Fa, Fb) = max
{1

7
a2, |1

7
a2 − 1

7
b2|+

1
7 a2 + 1

7 b2

2

}
.

Since a < b, 1
7 a2 < | 1

7 a2 − 1
7 b2|+

1
7 a2+ 1

7 b2

2 . So we get

Hm(Fa, Fb) = |1
7

a2 − 1
7

b2|+
1
7 a2 + 1

7 b2

2

and m(a, b) = |a − b|+ (a+b)
2 . Then one can see that

Hm(Fa, Fb) = |1
7

a2 − 1
7

b2|+
1
7 a2 + 1

7 b2

2

=
1
7
|(a − b)(a + b)|+ 1

7
a2 + b2

2

=
1
7

[
|a − b|(a + b) +

(a + b)2 − 2ab
2

]
≤ 1

7

[
|a − b|+ (a + b)

2

]
(a + b)

=
(a + b)

7
m(a, b).

Case III: a > b. Then Fa = [0, 1
7 a2], Fb = [0, 1

7 b2] and Fb ⊆ Fa. In this case,

Hm(Fa, Fb) = max
{1

7
b2, |1

7
a2 − 1

7
b2|+

1
7 a2 + 1

7 b2

2

}
.

Since b < a, 1
7 b2 < | 1

7 a2 − 1
7 b2|+

1
7 a2+ 1

7 b2

2 . So, we get

Hm(Fa, Fb) = |1
7

a2 − 1
7

b2|+
1
7 a2 + 1

7 b2

2

and m(a, b) = |a − b|+ (a+b)
2 . Following Case II, one can easily show that

Hm(Fa, Fb) ≤ (a + b)
7

m(a, b).

From above three cases, it is clear that (1) is satisfied for λ ≥ 4
7 . Thus, all the required conditions

of Theorem 1 are satisfied. Hence F admits a fixed point, which is a = 0.

12
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Next, we present our fixed point result corresponding to multivalued Kannan contractions in
M-metric spaces.

Theorem 2. Let M-metric space (X, m) be M-complete and F : X → CBm(X) be a multivalued mapping.
Suppose there exists λ ∈ (0, 1

2 ) such that

Hm(Fa, Fb) ≤ λ[m(a, Fa) + m(b, Fb)], (14)

for all a, b ∈ X. Then F admits a fixed point in X.

Proof. Let a0 ∈ X be arbitrary. Fix an element a1 ∈ Fa0. We can now choose a2 ∈ Fa1 such that

m(a1, a2) = m(a1, Fa1) ≤ Hm(Fa0, Fa1).

Again, we can choose a3 ∈ Fa2 such that

m(a2, a3) ≤ Hm(Fa1, Fa2).

Continuing in this way, we get a sequence {ak} such that ak+1 ∈ Fak with

m(ak, ak+1) ≤ Hm(Fak−1, Fak). (15)

Using (14) in (15), we get

m(ak, ak+1) ≤ λ[m(ak−1, Fak−1) + m(ak, Fak)]

≤ λ[m(ak−1, ak) + m(ak, ak+1)].

Thus,

m(ak, ak+1) ≤
λ

1 − λ
m(ak−1, ak).

Let r = λ
1−λ . Since λ < 1

2 , we have r < 1. So,

m(ak, ak+1) ≤ rm(ak−1, ak). (16)

Thus, from Lemma 5, we have
lim
k→∞

m(ak, ak+1) = 0, (17)

lim
k→∞

m(ak, ak) = 0, (18)

and
lim

k,j→∞
m(ak, aj) = 0. (19)

Moreover, the sequence {ak} is a M-Cauchy. M-completeness of X yields existence of a∗ ∈ X
such that

lim
k→∞

(m(ak, a∗)− maka∗) = 0 and lim
k→∞

(Maka∗ − maka∗) = 0.

Due to (18), we get
lim
k→∞

m(ak, a∗) = 0 and lim
k→∞

Maka∗ = 0.

Thus, we have
lim
k→∞

[Maka∗ + maka∗ ] = 0.

This implies that
m(a∗, a∗) = 0 and hence ma∗Fa∗ = 0. (20)

13
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We shall show that a∗ ∈ Fa∗. Since

m(ak+1, Fa∗) ≤ Hm(Fak, Fa∗) ≤ λ[m(ak, Fak) + m(a∗, Fa∗)].

Taking limit as k → ∞, we get

lim
k→∞

m(ak+1, Fa∗) = 2λm(a∗, Fa∗). (21)

Suppose m(a∗, Fa∗) > 0, then we have

m(a∗, Fa∗)− ma∗Fa∗ ≤ m(a∗, ak+1)− ma∗ak+1 + m(ak+1, Fa∗)− mak+1Fa∗ .

Taking limit as k → ∞ and using (21), we get m(a∗, Fa∗) ≤ 2λm(a∗, Fa∗), which is a contradiction
(as 2λ < 1). So

m(a∗, Fa∗) = 0. (22)

Also, using (20), we have

sup
b∈Fa

ma∗b = sup
b∈Fa

min{m(a∗, a∗), m(b, b)} = 0. (23)

From (22) and (23), we get
m(a∗, Fa∗) = sup

b∈Fa
ma∗b.

Thus, from Lemma 6, we get a∗ ∈ Fa∗ = Fa∗.

Example 6. Let X = [0, 1] and m : X × X → [0, ∞) be defined as

m(a, b) =
a + b

2
.

Then (X, m) is an M-complete M-metric space. Let F : X → CBm(X) be a mapping defined as

F(a) =

⎧⎪⎨⎪⎩
[0, a2] if a ∈ [0, 1

2 ],[ a
3

,
a
2

]
if a ∈ [ 1

2 , 1].

Then one can easily verify that there exists some λ in (0, 1
2 ) such that

Hm(Fa, Fb) ≤ λ
[
m(a, Fa) + m(b, Fb)

]
.

Thus F satisfies all the conditions in Theorem 2 and hence it has a fixed point (namely 0) in X.

Example 7. Let X = [0, 1] be endowed with m-metric m(x, y) = x+y
2 . Then (X, m) is an M-complete

M-metric space. We define the mapping F : X → CBm(X) as

F(a) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{1

5
} if a = 0,

[
a

8(1 + a2)
,

a
4(1 + a2)

]
if a > 0.

14
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For a = 0 and b = 1
10 , there does not exist any λ in (0, 1

2 ) such that

Hm(F(0), F(
1
10

)) ≤ λ
[
m(0, F(0)) + m(

1
10

, F(
1
10

))
]
.

Thus F does not satisfy (14) in Theorem 2. Evidently, F has no fixed point in X.

5. Homotopy Results in M-Metric Spaces

The following result is required in the sequel while proving a homotopy result in M-metric spaces.

Proposition 3. Let F : X → CBm(X) be a multivalued mapping satisfying (1) for all a, b in M-metric space
(X, m). If c ∈ Fc for some c ∈ X, then m(a, a) = 0 for a ∈ Fc.

Proof. Let c ∈ Fc. Then m(c, Fc) = sup
b∈Fc

mc,b = sup
b∈Fc

mbb. Also

Hm(Fc, Fc) = δm(Fc, Fc) = sup
b∈Fc

mbb.

Assume that m(c, c) > 0. We have

sup
b∈Fc

mbb = Hm(Fc, Fc) ≤ λm(c, c),

that is,
sup
b∈Fc

mbb ≤ λm(c, c).

Since c ∈ Fc, it is a contradiction. So m(a, a) = 0 for every a ∈ Fc.

Theorem 3. Let O (resp. C ) be an open (resp. closed) subset in an M-complete M-metric space (X, m) such
that O ⊂ C. Let G : C × [μ, ν] → CBm(X) be a mapping satisfying the following conditions:

(a) a /∈ G(a, t) for all a ∈ C \ O and each t ∈ [μ, ν];
(b) there exists λ ∈ (0, 1) such that for every t ∈ [μ, ν] and all a, b ∈ C we have

Hm(G(a, t),G(b, t)) ≤ λm(a, b);

(c) there exists a continuous mapping ψ : [μ, ν] → R satisfying

Hm(G(a, t),G(a, s)) ≤ λ|ψ(t)− ψ(s)|;

(d) if c ∈ G(c, t) then G(c, t) = {c}.

If G(., t1) admits a fixed point in C for at least one t1 ∈ [μ, ν], then G(., t) admits a fixed point in O for all
t ∈ [μ, ν]. Moreover, the fixed point of G(., t) is unique for any fixed t ∈ [μ, ν].

Proof. Consider, the set

W = {t ∈ [μ, ν]|a ∈ G(a, t) for some a ∈ O}.

Then W is nonempty, because G(., t1) has a fixed point in C for at least one t1 ∈ [μ, ν], that is,
there exists a ∈ C such that a ∈ G(a, t1) and as (a) holds, we have a ∈ O.

We will show that W is both closed and open in [μ, ν]. First, we show that it is open.
Let t0 ∈ W and a0 ∈ O with a0 ∈ G(a0, t0). As O is open subset of X, Bm(a0, r) ⊆ O for some

r > 0. Let ε = r + maa0 − λ(r + maa0) > 0. As ψ is continuous on [μ, ν], there exists δ > 0 such that

|ψ(t)− ψ(t0)| < ε, for all t ∈ Sδ(t0),

15
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where Sδ(t0) = (t0 − δ, t0 + δ).
Since a0 ∈ G(a0, t0), by Proposition 3, m(c, c) = 0 for every c ∈ G(a0, t0). Keeping this fact in view,

we have
mpc = 0, for every p ∈ X. (24)

Now, using (iii) of Proposition 2 and (24), we have

m(G(a, t), a0) = Hm(G(a, t),G(a0, t0))

≤ Hm(G(a, t),G(a, t0)) +Hm(G(a, t0),G(a0, t0))

− inf
p∈G(a,t)

inf
q∈G(a,t0)

mpq − inf
q∈G(a,t0)

inf
c∈G(a0,t0)

mqc + sup
p∈G(a,t)

sup
c∈G(a0,t0)

mpc

≤ Hm(G(a, t),G(a, t0)) +Hm(G(a, t0),G(a0, t0))

≤ λ|ψ(t)− ψ(t0)|+ λm(a, a0)

≤ λε + λ(maa0 + r)

= λ(r + maa0 − λ(r + maa0)) + λ(maa0 + r)

≤ r + maa0 − λ(r + maa0) + λ(maa0 + r)

≤ r + maa0 .

Thus for each fixed t ∈ Sδ(t0), G(., t) : Bm(a0, r) → CBm(Bm(a0, r)) satisfies all the hypotheses of
Theorem 1 and so G(., t) admits a fixed point in Bm(a0, r) ⊆ C. But this fixed point must be in O to
satisfy (a). Therefore, Sδ(t0) ⊆ W and hence W is open in [μ, ν].

Next, we show that W is closed in [μ, ν]. Let {tk} be a convergent sequence in W to some s ∈ [μ, ν].
We need to show that s ∈ W .

The definition of the set W implies that for all k ∈ N \ {0}, there exists ak ∈ O with ak ∈ G(ak, tk).
Then using (d), (iii) of Proposition 2 and the outcome of Proposition 3, we have

m(ak, aj) = Hm(G(ak, tk),G(aj, tj))

≤ Hm(G(ak, tk),G(ak, tj)) +Hm(G(ak, tj),G(aj, tj))

≤ λ|ψ(tk)− ψ(tj)|+ λm(ak, aj).

This gives us

m(ak, aj) ≤
λ

1 − λ
|ψ(tk)− ψ(tj)|.

Since ψ is continuous and {tk} converges to s, varying k, j → ∞ in the above inequality, we get

lim
k,j→∞

m(ak, aj) = 0.

As makaj ≤ m(ak, aj), so
lim

k,j→∞
makaj = 0.

Also lim
k→∞

m(ak, ak) = 0 = lim
k→∞

m(aj, aj).

Therefore
lim

k,j→∞
(m(ak, aj)− makaj) = 0 and lim

k,j→∞
(Makaj − makaj) = 0.

Thus {ak} is an M-Cauchy sequence. Using (iii) of Definition 3, there exists a∗ ∈ X such that

lim
k→∞

(m(ak, a∗)− maka∗) = 0 and lim
k→∞

(Mak ,a∗ − maka∗) = 0.
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But lim
k→∞

m(ak, ak) = 0, so

lim
k→∞

m(ak, a∗) = 0 and lim
k→∞

Maka∗ = 0.

Thus, we get m(a∗, a∗) = 0. We shall prove a∗ ∈ G(a∗, t∗). We have

m(ak,G(a∗, t∗)) ≤ Hm(G(ak, tk),G(a∗, t∗))

≤ Hm(G(ak, tk),G(ak, t∗)) +Hm(G(ak, t∗),G(a∗, t∗))

≤ λ|ψ(ak)− ψ(t∗)|+ λm(ak, a∗).

Varying k → ∞ in above inequality, we get

lim
k→∞

m(ak,G(a∗, t∗)) = 0.

Hence
m(a∗,G(a∗, t∗)) = 0. (25)

Since m(a∗, a∗) = 0, we have

sup
b∈G(a∗ ,t∗)

ma∗b = sup
b∈G(a∗ ,t∗)

min{m(a∗, a∗), m(b, b)} = 0. (26)

From (25) and (26), we get

m(a∗,G(a∗, t∗)) = sup
b∈G(a∗ ,t∗)

ma∗b.

Therefore, from Lemma 6, we have a∗ ∈ G(a∗, t∗). Thus a∗ ∈ O. Hence t∗ ∈ W and W is closed
in [μ, ν].

As [μ, ν] is connected and W is both open and closed in it, so W = [μ, ν]. Thus G(., t) admits a
fixed point in O for all t ∈ [μ, ν].

For uniqueness, fix t ∈ [μ, ν], then there exists a ∈ O such that a ∈ G(a, t). Suppose b is another
fixed point of G(b, t), then from (d) we have

m(a, b) = Hm(G(a, t),G(b, t)) ≤ λm(a, b),

a contradiction. Thus, the fixed point of G(., t) is unique for any t ∈ [μ, ν].
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1. Introduction and Preliminary

Fixed point has been considered by many researchers since it was established by Banach [1]
in 1992. The generalizations of the theory were considered by many researchers on various metric
spaces (see, for example, [2–7]). Quasi-metric space was one of the interesting examples that were
considered since it was introduced by Wilson [8] in 1931. We may suggest the following articles to the
reader [8–20].

Definition 1. [8] Let χ be a non-empty set and ρ : χ × χ → [0, ∞) be a given function that satisfies the
following conditions:

(1) ρ(α, β) = 0 if and only if α = β.
(2) ρ(α, β) ≤ ρ(α, γ) + ρ(γ, β) for all α, β, γ ∈ χ.

Then, ρ is called a quasi-metric on χ and the pair (χ, ρ) is called a quasi-metric space.

Example 1. Consider the set χ = [0, 1] and define the function ρ : χ × χ → [0, ∞) such that

ρ(α, β) =

{
α2 − β2 if α ≥ β

1 Otherwise.

Then, (χ, ρ) is a quasi-metric space. To prove this, we need to verify the two conditions of Definition 1.

Condition 1. If α = β, then it is clear that ρ(α, β) = 0. On the other hand, if ρ(α, β) = 0 then we have
0 = α2 − β2 = (α − β)(α + β). Since α, β ∈ [0, 1], we have α = β.

Condition 2. Let α, β, γ ∈ χ. Then, we have three cases:

Case I If α > β and β > γ, then α > γ and hence ρ(α, β) + ρ(β, γ) = (α2 − β2) + (β2 −
γ2) = α2 − γ2 = ρ(α, γ).

Case II If α > β and γ > β, then we have ρ(α, β) + ρ(β, γ) = (α2 − β2) + 1 > ρ(α, γ). This
is because ρ(α, γ) ≤ 1 for all α, γ ∈ [0, 1].

Case III If β > α, then using the same reason as in Case II, we have ρ(α, β) + ρ(β, γ) =

1 + ρ(β, γ) > ρ(α, γ).

Mathematics 2019, 7, 453; doi:10.3390/math7050453 www.mdpi.com/journal/mathematics19
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Therefore, (χ, ρ) is a quasi-metric space. It is clear that (χ, ρ) is not a metric space since ρ(α, β) �= ρ(β, α),
for all α �= β.

Now, we introduce the definitions of convergence and Cauchy of such a sequence in
quasi-metric spaces:

Definition 2. [12,13] Let (χ, ρ) be a quasi-metric space. A sequence (αn) in χ converges to the element α ∈ χ

if and only if
lim

n→∞
ρ(αn, α) = lim

n→∞
ρ(α, αn) = 0.

Definition 3. [12,13] Let (χ, ρ) be a quasi-metric space. A sequence (αn) in the space χ is said to be a
Cauchy sequence if and if, for ε > 0, there exists a positive integer N = N(ε) such that ρ(αn, αm) < ε for all
m, n > N.

Moreover, if every Cauchy sequence in the quasi-metric space χ is convergent, then (χ, ρ) is said to
be complete.

The next notion was given by Khan et al. [21].

Definition 4. [21] A self function ψ on [0, ∞) is called an altering distance function if the following
properties hold:

(1) ψ is non-decreasing and continuous.
(2) ψ(e) = 0 if and only if e = 0.

2. Main Result

Definition 5. Let (χ, ρ) be a quasi-metric space and S1, S2 be two self-mappings on χ. Then, the pair (S1, S2)

is said to be (ψ, φ)−quasi contraction if there exist two alternating distance functions ψ and φ such that, for all
e, w ∈ χ, we have

ψ(ρ(S1e, S2w)) ≤ ψ(M1(e, w))− φ(M1(e, w))

and
ψ(ρ(S2e, S1w)) ≤ ψ(M2(e, w))− φ(M2(e, w))

where

M1(e, w) = max
{

ρ(w, S2w)
1 + ρ(e, S1e)
1 + ρ(e, w)

, ρ(e, S1e), ρ(w, S2w)

}
and

M2(e, w) = max
{

ρ(w, S1w)
1 + ρ(e, S2e)
1 + ρ(e, w)

, ρ(e, S2e), ρ(w, S1w)

}
.

Now, we prove our first result:

Theorem 1. Let (χ, ρ) be a complete quasi-metric space. Let ψ and φ be alternating distance functions and
S1, S2 be two self-mappings on χ such that the pair (S1, S2) is (ψ, φ)−quasi contraction. Then, S1 and S2 have
a unique common fixed point.

Proof. We start the proof of the result by taking an element τ0 ∈ χ. We construct a sequence (τn) in χ

in the following way: τ2n+1 = S1τ2n and τ2n+2 = S2τ2n+1 for all n ≥ 0.
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It is clear that if there exists s ∈ N with τ2s = τ2s+1, then τ2s is a fixed point of S1. Since the pair
(S1, S2) is (ψ, φ)−quasi contraction, we have

ψ(ρ(τ2s+1, τ2s+2))

= ψ(ρ(S1τ2s, S2τ2s+1))

≤ ψ(M1(τ2s, τ2s+1))− φ(M1(τ2s, τ2s+1))

= ψ

(
max{ρ(τ2s+1, τ2s+2), ρ(τ2s, τ2s+1)

})
−φ

(
max

{
ρ(τ2s+1, τ2s+2), ρ(τ2s, τ2s+1)

})
= ψ(ρ(τ2s+1, τ2s+2)− φ(ρ(τ2s+1, τ2s+2)).

From the above inequality, we deduce that ψ(ρ(τ2s+1, τ2s+2)) = 0. Since ψ is an alternating
function, we conclude that τ2s is a fixed point of S1 and S2. Thus, τ2s is a common fixed point of S1

and S2.
Using similar arguments as above, we may show that, if there exists s ∈ N such that τ2s+1 = τ2s+2,

then τ2s+1 is a common fixed point of S1 and S2.
Now, we may assume that τn �= τn+1 for all n ∈ N.
In view of (ψ, φ)−quasi contraction of the pair (S1, S2), we deduce that

ψ(ρ(τ2n+1, τ2n+2))

= ψ(ρ(S1τ2n, S2τ2n+1))

≤ ψ(M1(τ2n, τ2n+1))− φ(M1(τ2n, τ2n+1))

= ψ

(
max

{
ρ(τ2n+1, τ2n+2)

1 + ρ(τ2n, τ2n+1)

1 + ρ(τ2n, τ2n+1)
, ρ(τ2n, τ2n+1), ρ(τ2n+1, τ2n+2)

})
−φ

(
max

{
ρ(τ2n+1, τ2n+2)

1 + ρ(τ2n, τ2n+1)

1 + ρ(τ2n, τ2n+1)
, ρ(τ2n, τ2n+1), ρ(τ2n+1, τ2n+2)

})
= ψ(max{ρ(τ2n, τ2n+1), ρ(τ2n+1, τ2n+2)})− φ(max{ρ(τ2n, τ2n+1), ρ(τ2n+1, τ2n+2)}). (1)

Assume that

max
{

ψ(ρ(τ2n, τ2n+1)), ψ(ρ(τ2n+1, τ2n+2))

}
= ψ(ρ(τ2n+1, τ2n+2)).

Then, Equation (1) implies

ψ(ρ(τ2n+1, τ2n+2)) ≤ ψ(ρ(τ2n+1, τ2n+2))− φ(ρ(τ2n+1, τ2n+2))

a contradiction. Thus,

max
{

ψ(ρ(τ2n, τ2n+1)), ψ(ρ(τ2n+1, τ2n+2))

}
= ψ(ρ(τ2n, τ2n+1)).

Therefore, Equation (1) yields

ψ(ρ(τ2n+1, τ2n+2)) ≤ ψ(ρ(τ2n, τ2n+1))− φ(ρ(τ2n, τ2n+1)). (2)

21



Mathematics 2019, 7, 453

On the other hand, we have

ψ(ρ(τ2n, τ2n+1))

= ψ(ρ(S2τ2n−1, S1τ2n))

≤ ψ(M2(τ2n−1, τ2n))− φ(M2(τ2n−1, τ2n))

= ψ

(
max

{
ρ(τ2n, τ2n+1)

1 + ρ(τ2n−1, τ2n)

1 + ρ(τ2n−1, τ2n)
, ρ(τ2n−1, τ2n), ρ(τ2n, τ2n+1)

})
−φ

(
max

{
ρ(τ2n, τ2n+1)

1 + ρ(τ2n−1, τ2n)

1 + ρ(τ2n−1, τ2n)
, ρ(τ2n−1, τ2n), ρ(τ2n, τ2n+1)

})
= ψ(max{ρ(τ2n−1, τ2n), ρ(τ2n, τ2n+1)})− φ(max{ρ(τ2n−1, τ2n), ρ(τ2n, τ2n+1)}). (3)

From the last inequality, we get

max{ρ(τ2n−1, τ2n), ρ(τ2n, τ2n+1)} = ρ(τ2n−1, τ2n),

and hence

ψ(ρ(τ2n, τ2n+1)) ≤ ψ(ρ(τ2n−1, τ2n))− φ(ρ(τ2n−1, τ2n)). (4)

Combining Equations (2) and (4), we conclude that

ψ(ρ(τn, τn+1)) ≤ ψ(ρ(τn−1, τn))− φ(ρ(τn−1, τn)) < ψ(ρ(τn−1, τn)) (5)

holds for all n ∈ N.
From Equation (5), we conclude that {ρ(τn−1, τn) : n = 1, 2, . . .} is a decreasing sequence.
There exists s ≥ 0 such that

lim
n→+∞

ρ(τn−1, τn) = s.

By allowing n tends to +∞ in Equation (5), we conclude that s = 0 and hence

lim
n→+∞

ρ(τn−1, τn) = 0. (6)

Now, we prove that
lim

n,m→+∞
ρ(τn, τm) = 0.

For two large integer numbers n and m with m > n, we discuss the following cases:

Case 1: n = 2l + 1 and m = 2r + 2 for some l, r ∈ N; that is, n is odd and m is even. By the
(φ, ψ)−contraction of the pair (S1, S2), we have

ψ(ρ(τn, τm))

= ψ(ρ(τ2l+1, τ2r+2))

= ψ(ρ(S1τ2l , S2τ2r+1))

≤ ψ(M1(τ2l , τ2r+1))− φ(M1(τ2l , τ2r+1))

= ψ

(
max

{
ρ(τ2r+1, τ2r+2)

1 + ρ(τ2l , τ2l+1)

1 + ρ(τ2l , τ2r+1)
, ρ(τ2l , τ2l+1), ρ(τ2r+1, τ2r+2)

})
−φ

(
max

{
ρ(τ2r+1, τ2r+2)

1 + ρ(τ2l , τ2l+1)

1 + ρ(τ2l , τ2r+1)
, ρ(τ2l , τ2l+1), ρ(τ2r+1, τ2r+2)

})
(7)
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≤ ψ

(
max

{
ρ(τ2r+1, τ2r+2)(1 + ρ(τ2l , τ2l+1)), ρ(τ2l , τ2l+1), ρ(τ2r+1, τ2r+2)

})
−φ(ρ(τ2l , τ2l+1))

≤ ψ

(
max

{
ρ(τ2r+1, τ2r+2)(1 + ρ(τ2l , τ2l+1)), ρ(τ2l , τ2l+1), ρ(τ2r+1, τ2r+2)

})
≤ ψ(ρ(τ2l+1, τ2l+2)(1 + ρ(τ2l , τ2l+1)))

= ψ(ρ(τn, τn+1)(1 + ρ(τn−1, τn)))

≤ ψ(ρ(τn−1, τn)(1 + ρ(τn−1, τn))).

In view of Equation (7) and the nondecreasing property of the function ψ, we conclude that

ρ(τn, τm) ≤ ρ(τn−1, τn)(1 + ρ(τn−1, τn))

Case 2: n = 2l and m = 2r + 2 for some l, r ∈ N; that is, n and m are both even. Here, we have

ρ(τn, τm) = ρ(τ2l , τ2r+2) ≤ ρ(τ2l , τ2l+1) + ρ(τ2l+1, τ2r+2)

= ρ(τn, τn+1) + ρ(τn+1, τm).

From Case 1, we get

ρ(τn, τm) ≤ ρ(τn, τn+1) + ρ(τn, τn+1)(1 + ρ(τn, τn+1))

≤ ρ(τn−1, τn) + ρ(τn−1, τn)(1 + ρ(τn−1, τn)).

Case 3: n = 2l and m = 2r + 3 for some l, r ∈ N; that is, n is an even number and m is an odd number.
Here, we have

ρ(τn, τm) = ρ(τ2l , τ2r+3)

≤ ρ(τ2l , τ2l+1) + ρ(τ2l+1, τ2r+2) + ρ(τ2r+2, τ2r+3)

= ρ(τn, τn+1) + ρ(τn+1, τm−1) + ρ(τm−1, τm).

From Case 1, we get

ρ(τn, τm) ≤ ρ(τn, τn+1) + ρ(τn+1, τm−1) + ρ(τm−1, τm)

≤ ρ(τn, τn+1) + ρ(τn, τn+1)(1 + ρ(τn, τn+1)) + ρ(τm−1, τm)

≤ 2ρ(τn−1, τn) + ρ(τn−1, τn)(1 + ρ(τn−1, τn)).

Case 4: n = 2l + 1 and m = 2r + 3 for some l, r ∈ N; that is, n and m are both odd. Here, we have

ρ(τn, τm) = ρ(τ2l+1, τ2r+3)

≤ ρ(τ2l+1, τ2r+2) + ρ(τ2r+2, τ2r+3)

= ρ(τn, τm−1) + ρ(τm−1, τm).

Case 1 implies that

ρ(τn, τm) ≤ ρ(τn−1, τn)(1 + ρ(τn−1, τn)) + ρ(τm−1, τm)

≤ ρ(τn−1, τn)(1 + ρ(τn−1, τn)) + ρ(τn−1, τn).
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By summing all cases together, we conclude that

ρ(τn, τm) ≤ 2ρ(τn−1, τn) + ρ(τn, τn+1)(1 + ρ(τn−1, τn)) (8)

holds for all n, m ∈ N.
Letting n, m → +∞ in (8), we have

lim
n,m→+∞

ρ(τn, τm) = 0.

Thus, (τn) is a Cauchy sequence in χ. In view of the competence of the space χ, we find a ∈ χ

such that τn → a as n tends to +∞.
For s ∈ N, we have

ψ(ρ(τ2s+1, S2a))

= ψ(ρ(S1τ2s, S2a))

≤ ψ(M1(τ2s, a))− φ(M1(τ2s, a))

= ψ

(
max{ρ(a, S2a)

1 + ρ(τ2s, τ2s+1)

1 + ρ(τ2s, a)
, ρ(τ2s, τ2s+1), ρ(a, S2a)

})
−φ

(
max{ρ(a, S2a)

1 + ρ(τ2s, τ2s+1)

1 + ρ(τ2s, a)
, ρ(τ2s, τ2s+1), ρ(a, S2a)

})
.

Allowing s → +∞ in above inequality, we get

ψ(ρ(a, S2a)) ≤ ψ(ρ(a, S2a))− φ(ρ(a, S2a)).

The above inequality is correct only if φ(ρ(a, S2a)) = 0 and thus S2a = a. Using similar arguments
as above, we may figure out S1a = a. Thus, a is a common fixed point of S1 and S2.

Now, assume that S1w1 = S2w1 = w1 and S1w2 = S2w2 = w2. In view of (ψ, φ)−contraction of
the pair (S1, S2), we have

ψ(ρ(w1, w2)) = ψ(ρ(S1w1, S2w2)) ≤ 0.

Thus, ψ(ρ(w1, w2)) = 0. Therefore, w1 = w2. Thus, the common fixed point of S1 and S2 is
unique.

By taking

max
{

ρ(w, S2w)
1 + ρ(e, S1e)
1 + ρ(e, w)

, ρ(e, S1e), ρ(w, S2w)

}
= ρ(w, S2w)

1 + ρ(e, S1e)
1 + ρ(e, w)

and

max
{

ρ(w, S1w)
1 + ρ(e, S2e)
1 + ρ(e, w)

, ρ(e, S2e), ρ(w, S1w)

}
= ρ(w, S1w)

1 + ρ(e, S2e)
1 + ρ(e, w)

in Definition 5. Then, the following result holds:

Corollary 1. Let (χ, ρ) be a complete quasi-metric space and S1, S2 : χ → χ be two mappings. Let ψ and φ be
two altering distance functions such that

ψ(ρ(S1e, S2w)) ≤ ψ

(
ρ(w, S2w)

1 + ρ(e, S1e)
1 + ρ(e, w)

)
− φ

(
ρ(w, S2w)

1 + ρ(e, S1e)
1 + ρ(e, w)

)
,

and

ψ(ρ(S2e, S1w)) ≤ ψ

(
ρ(w, S1w)

1 + ρ(e, S2e)
1 + ρ(e, w)

)
− φ

(
ρ(w, S1w)

1 + ρ(e, S2e)
1 + ρ(e, w)

)
.
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Then, S1 and S2 have a unique common fixed point.

If we define ψ and φ on the interval [0,+∞) such that ψ(τ) = τ and φ(τ) = (1 − a)τ where
a ∈ [0, 1) in Theorem 1, we formulate the following result.

Corollary 2. Let (χ, ρ) be a complete quasi-metric space and S1, S2 : χ → χ be two mappings. Let a ∈ [0, 1)
such that

ψ(ρ(S1e, S2w)) ≤ a max
{

ρ(w, S2w)
1 + ρ(e, S1e)
1 + ρ(e, w)

, ρ(e, S1e), ρ(w, S2w)

}
,

and

ψ(ρ(S2e, S1w)) ≤ a max
{

ρ(w, S1w)
1 + ρ(e, S12e)

1 + ρ(e, w)
, ρ(e, S12e), ρ(w, S1w)

}
.

Then, S1 and S2 have a unique common fixed point.

In addition, if we assume S1 = S2 in Theorem 1, Corollary 1, and Corollary 2, then the following
results hold.

Corollary 3. Let (χ, ρ) be a complete quasi-metric space and S1 be a self-mapping on χ. Assume ψ and φ are
two altering distance functions such that

ψ(ρ(S1e, S1w)) ≤ ψ

({
ρ(w, S1w)

1 + ρ(e, S1e)
1 + ρ(e, w)

, ρ(e, S1e), ρ(w, S1w)

})
−φ

({
ρ(w, S1w)

1 + ρ(e, S1e)
1 + ρ(e, w)

, ρ(e, S1e), ρ(w, S1w)

})
.

Then, S1 has a unique fixed point.

Corollary 4. Let (χ, ρ) be a complete quasi-metric space and S1 : χ → χ be a mapping. Let ψ and φ be two
altering distance functions such that

ψ(ρ(S1e, S1w)) ≤ ψ

(
max

{
ρ(w, S1w)

1 + ρ(e, S1e)
1 + ρ(e, w)

})
− φ

(
max

{
ρ(w, S1w)

1 + ρ(e, S1e)
1 + ρ(e, w)

})
.

Then, S1 has a unique fixed point.

Corollary 5. Let (χ, ρ) be a complete quasi-metric space and S1 : χ → χ be a mapping. Let a ∈ [0, 1) such that

ψ(ρ(S1e, S1w)) ≤ a max
{

ρ(w, S1w)
1 + ρ(e, S1e)
1 + ρ(e, w)

, ρ(e, S1e), ρ(w, S1w)

}
.

Then, S1 has a unique fixed point.

The following example shows the validate of our results:

Example 2. On the space χ = [0, 1], define the quasi-metric via

ρ(α, β) =

{
0, if α = β;
max{α, β}, if α �= β,
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In addition, on χ = [0, 1], define the mappings S1 and S2 via S1τ = 1
2 sin2 τ and S2τ = 1

2 τ2. Take the
following altering functions ψ(α) = α

1+α and φ(α) = α
5+5α . Then,

1. ρ induces complete quasi-metric on χ.
2. (S1, S2) is (ψ, φ)− quasi contraction.

Proof. The proof of Part (1) is clear. To verify Part (2), given (e, w) ∈ [0, 1]× [0, 1] with e �= w. Without
loss of generality, we may assume that e > w. Then,

M1(e, w) =

{
ρ

(
w,

1
2

w2
)(

1 + ρ(e, 1
2 sin2 e)

1 + ρ(e, w)

)
, ρ(e,

1
2

sin2 e), ρ(w,
1
2

w2)

}
= e.

Thus,

ψ(ρ(S1e, S2w)) = ψ

(
ρ

(
1
2

sin2 e,
1
2

w2
))

=

max
{

1
2 sin2 e, 1

2 w2
}

1 + max
{

1
2 sin2 e, 1

2 w2
}

≤
1
2 e

1 + 1
2 e

=
e

2 + e

≤
(

4
5

)(
e

1 + e

)
=

e
1 + e

− e
5 + 5e

= ψ(M1(e, w))− φ(M1(e, w)).

Using similar arguments as for the above method, we can prove that

ψ(ρ(S2e, S1w)) = ψ(M2(e, w))− φ(M2(e, w)).

Thus, (S1, S2) is (ψ, φ)−quasi contraction. Thus, by Theorem 1, we deduce that S1 and S2 have a
unique common fixed point.
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1. Introduction and Preliminaries

For the solution of several differential/fractional/integral equations, fixed-point theory plays a
significant role. In such investigations, usually well-known Banach fixed-point theorems are sufficient
to provide the desired results. In the case of the inadequacy, the researcher in the fixed-point theory
proposes some extension of the Banach contraction principle. Among them, we recall one of the
significant theorems given by Popescu [1] inspired from the notion of C-condition defined by Suzuki [2].

Definition 1 (See [3]). Let T be a self-mapping on a metric space (X, d). It is called C-condition if

1
2

d(κ, Tκ) ≤ d(κ, y) implies that d(Tκ, Ty) ≤ d(κ, y), ∀κ, y ∈ X.

Indeed, by using the notion of C-condition, Suzuki [2] extended the famous Edelstein Theorem.
More precisely, For a self-mapping T on a compact metric space (X, d), if T is C-condition and the
inequality d(Tκ, Ty) < d(κ, y), for all κ �= y, then T possesses a unique fixed point.

Popescu [1] considered Bogin-type fixed-point theorem involving the notion of C-condition in a
complete metric space as follows:

Theorem 1. Let a self-mapping T on a complete metric space (X, d) satisfy the following condition:

1
2

d(κ, Tκ) ≤ d(κ, y) (1)

implies
d(Tκ, Ty) ≤ ad(κ, y) + b[d(κ, Tκ) + d(y, Ty)] + c[d(κ, Ty) + d(y, Tκ)] (2)

where a ≥ 0, b > 0, c > 0 and a + 2b + 2c = 1. Then T has a unique fixed point.

Mathematics 2019, 7, 720; doi:10.3390/math7080720 www.mdpi.com/journal/mathematics28
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Another outstanding generalization of Banach mapping principle was given by Pata [4].
Before giving the result of Pata [4], we fix some notations:

For an arbitrary point κ0 in a complete metric space (X, d), we shall consider a functional

‖κ‖ = d(κ,κ0), ∀κ ∈ X,

that will be called “the zero of X”. In addition, ψ : [0, 1] → [0, ∞) will be a fixed increasing function
that is continuous at zero, with ψ(0) = 0.

Theorem 2 (See [4]). Let T be a self-mapping on a metric space (X, d). Suppose that β ∈ [0, α] Λ ≥ 0 and
α ≥ 1 are fixed constants. A self-mapping T possesses a unique fixed point if

d(Tκ, Ty) ≤ (1 − ε)d(κ, y) + Λ(ε)αψ(ε) [1 + ‖κ‖+ ‖y‖]β ,

holds for all κ, y ∈ X and for every ε ∈ [0, 1].

This theorem has been extended, modified, and generalized by several authors, e.g., [5–16].
The main goal of this paper is to introduce new contractions that are inspired from the results of

Suzuki [2], Popescu [1], and Pata [4]. More precisely, our new contraction not only merges these two
successful generalization Banach contractions, but also extends the structure by involving α-admissible
mappings in it. After that, we aim to investigate the existence and uniqueness of this new contraction
in the context of complete metric spaces.

For this purpose, we recall some basic notions and results from recent literature.

Definition 2 ([17]). Let X �= ∅ and α : X × X → [0, ∞) be an auxiliary function. A self-mapping T on X is
called α-orbital admissible if

α(κ, Tκ) ≥ 1 implies that α(Tκ, T2κ) ≥ 1, for any κ ∈ X.

Lemma 1 (See[18]). Let {pn} be a sequence on a metric space (X, d). Suppose that the sequence {d(pn+1, pn)}
is nonincreasing with

lim
n→∞

d(pn+1, pn) = 0,

If {pn} is not a Cauchy sequence then there exists a δ > 0 and two strictly increasing sequences {mk} and
{nk} in N such that the following sequences tend to δ :

d(pmk , pnk ), d(pmk , pnk+1), d(pmk−1 , pnk ), d(pmk−1 , pnk+1), d(pmk+1 , pnk+1),

as k → ∞.

2. Main Results

We start with the definition of the α-Pata–Suzuki contraction:

Definition 3. Let (X, d) be a metric space and let Λ ≥ 0, α ≥ 1 and β ∈ [0, α] be fixed constants.
A self-mapping T, defined on X, is called α-Pata–Suzuki contraction if for every ε ∈ [0, 1] and all x, y ∈ X,
satisfies the following condition

(i) T is an α-orbital admissible mapping
(ii)

1
2

d(x, T x) ≤ d(x, y)

implies
α(x, T x)α(y, T y)d(T x, T y) ≤ P(x, y)
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where

P(x, y) = (1 − ε)max
{

d(x, y), d(x, T x), d(y, T y), 1
2 [d(x, T y) + d(y, T x)]

}
+Λ(ε)αψ(ε) [1 + ‖x‖+ ‖y‖+ ‖T x‖+ ‖T y‖]β .

This is the first main result of this paper.

Theorem 3. Let (X, d) be a metric space and T be a self-mapping on X. If

(i) T on X is α-Pata–Suzuki contraction;
(ii) there exists x0 ∈ X such that α(x0, T x0) ≥ 1;
(iii) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn → x as n → ∞, then α(xn, x) ≥ 1

for all n, we have α(x, T x) ≥ 1;
(iv) α(x∗, T x∗) ≥ 1 for all x∗ ∈ Fix(T ), where Fix(T ) := {x ∈ X : Tx = x}, then T has a fixed

point z ∈ X.

Proof. Due to assumptions of the theorem, there is x0 ∈ X so that α(x0, T x0) ≥ 1. In addition, we set
‖x‖ = d(x, x0), ∀x ∈ X. Since T is an α-orbital admissible mapping, we have

α(T x0, T 2x0) ≥ 1.

and iteratively, we have
α(T nx0, T n+1x0) ≥ 1 for each n ∈ N. (3)

Starting at this point x0 we shall construct an iterative sequence {xn} by xn = T nx0 for
n = 1, 2, 3, · · · . Here, we assume that consequent terms are distinct. Indeed, if there exists k0 ∈ N

such that
T k

0 x0 = xk0 = xk0+1 = T k0+1x0 = T (T kx0) = T (xk0),

then, xk0 forms a fixed point. To avoid from the trivial case, we suppose that

xn �= xn+1 for all n = 1, 2, 3, · · · .

To prove that the sequence {d(xn, xn+1)} is decreasing, suppose on the contrary that

d(xn, xn+1) = max{d(xn, xn+1), d(xn, xn−1)}.

Since 1
2 d(xn−1, xn) ≤ d(xn−1, xn) and since T is a α-Pata–Suzuki contraction, we find that

d(xn, xn+1) = d(T xn−1, T xn)

≤ α(xn−1, T xn−1)α(xn, T xn)d(T xn−1, T xn)

≤ (1 − ε)max
{

d(xn−1, xn), d(xn−1, xn), d(xn, xn+1), 1
2 [d(xn, xn) + d(xn−1, xn+1)]

}
+Λ(ε)αψ(ε) [1 + ‖xn−1‖+ ‖xn‖+ ‖T xn−1‖+ ‖T xn‖]β

≤ (1 − ε)d(xn, xn+1) + K(ε)αψ(ε),

for some K > 0. It follows that d(xn, xn+1) = 0 which is a contradiction. Hence, {d(xn, xn+1)} is a
decreasing sequence, thus tending to some non-negative real number, say, d∗.

As a next step, we shall show that the sequence {‖xn‖} is bounded. For simplicity, let Cn = ‖xn‖,
and hence, we claim that the sequence {Cn} is bounded.
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Since the sequence {d(xn, xn+1)} is decreasing, from the triangle inequality, we find that

Cn = d(xn, x0) ≤ d(xn, xn+1) + d(T xn, T x0) + C1

≤ 2C1 + d(T xn, T x0).

We assert that

1
2

d(xn, xn+1) ≤ d(xn, x0) or
1
2

d(xn−1, xn) ≤ d(xn−1, x0).

Suppose, on contrary that

1
2

d(xn, xn+1) > d(xn, x0) and
1
2

d(xn−1, xn) > d(xn−1, x0).

In this case, we derive that

d(xn−1, xn) ≤ d(xn−1, x0) + d(x0, xn)

<
1
2
[d(xn−1, xn) + d(xn, xn+1)]

≤ d(xn−1, xn),

is a contradiction. Hence, our assertion is held, i.e.,

1
2

d(xn, xn+1) ≤ d(xn, x0) or
1
2

d(xn−1, xn) ≤ d(xn−1, x0).

Also, on account of (3), we have

α(xn, T xn)α(x0, T x0) ≥ 1.

Regarding T is α-Pata–Suzuki contraction, we get

d(T xn, T x0) ≤ α(xn, T xn)α(x0, T x0)d(T xn, T x0)

≤ (1 − ε)max
{

d(xn, x0), d(x0, x1), d(xn, xn+1), 1
2 [d(xn, x1) + d(x0, xn+1)]

}
+Λ(ε)αψ(ε) [1 + ‖xn‖+ ‖x0‖+ ‖xn+1‖+ ‖x1‖]β

≤ (1 − ε)max {Cn, C1, C1 + Cn}+ Λ(ε)αψ(ε) [1 + Cn + C1 + C1 + Cn]
β

≤ (1 − ε)(C1 + Cn) + Λ(ε)αψ(ε) [1 + 2Cn + 2C1]
β .

Consequently, we derive from the above inequality that

Cn = d(xn, x0) ≤ d(xn, xn+1) + d( f xn, f x0) + C1

≤ 2C1 + (1 − ε)(C1 + Cn) + a(ε)αψ(ε).

A simple calculation yields that

εCn ≤ a(ε)αψ(ε) + b,

for some constants a, b > 0. By verbatim of the proof of ([18], Lemma 1.5) it follows that the sequence
{Cn} is bounded.
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In what follows we prove that d∗ = 0 by employing the fact that {Cn} is bounded. Indeed,
we have that

d(xn+1, xn) = d(T xn, T xn−1)

≤ α(xn−1, T xn−1)α(xn, T xn)d(T xn, T xn−1)

≤ (1 − ε)d(xn, xn−1) + Λ(ε)αψ(ε) [1 + ‖xn‖+ ‖xn−1‖+ ‖xn‖+ ‖xn+1‖]β

≤ (1 − ε)d(xn, xn−1) + Λ(ε)αψ(ε) [1 + 2 ‖xn‖+ ‖xn−1‖+ ‖xn+1‖]β

≤ (1 − ε)d(xn, xn−1) + K(ε)αψ(ε),

for some K > 0. As n → ∞ in the inequality above, it follows that d∗ = 0.

As a next step, we shall indicate that {xn} is a Cauchy sequence by using the method of Reductio
ad Absurdum. Assume, on the contrary, that the sequence {xn} is not Cauchy. Accordingly, regarding
on Lemma 1, there exists δ > 0 and two increasing sequences {mk} and {nk} , with nk > mk > k
such that the sequences d(xmk , xnk ),d(xmk , xnk+1),d(xmk−1 , xnk ),d(xmk−1 , xnk+1),d(xmk+1 , xnk+1) tends to δ

as n → ∞.
We claim that 1

2 d(xmk−1 , xmk ) ≤ d(xmk−1 , xnk ). Indeed, if the inequality above is not held, that is,
if 1

2 d(xmk−1 , xmk ) > d(xmk−1 , xnk ) then we get a contradiction. More precisely, by letting k → ∞ in the
previous inequality, we get δ ≤ 0, a contradiction.

Hence, our claim is valid, i.e., 1
2 d(xmk−1 , xmk ) ≤ d(xmk−1 , xnk ). Notice also that

α(xmk−1 , f (xmk−1))α(xnk , f xnk ) ≥ 1 ∀k ≥ N. Since T is α-Pata–Suzuki contraction, we deduce that

d(xmk , xnk+1) = d(T xmk−1 , T xnk )

≤ α(xmk−1 , T (xmk−1))α(xnk , T , xnk )d(T xmk−1 , T xnk )

≤ (1 − ε)max

{
d(xmk−1 , xnk ),d(xmk−1 , xmk ),d(xnk , xnk+1),

1
2
[
d(xnk , xmk ) + d(xmk−1 , xnk+1)

] }
+Λ(ε)αψ(ε)

[
1 +

∥∥xmk−1

∥∥+ ∥∥xnk

∥∥+ ∥∥xmk

∥∥+ ∥∥xnk+1

∥∥]β

≤ (1 − ε)max

{
d(xmk−1 , xnk ),d(xmk−1 , xmk ),d(xnk , xnk+1),

1
2
[
d(xnk , xmk ) + d(xmk−1 , xnk+1)

] }
+K(ε)αψ(ε),

where K > 0. By letting k → ∞ in the obtained inequality above, we get that δ = 0, a contradiction.
Hence, {xn} is a Cauchy sequence. Since X is complete, there exists z∗ ∈ X such that xn → z∗

and by (v) and α(z∗, T z∗) ≥ 1.
Now, we shall prove that z∗ = T z∗. Suppose, on the contrary, that z∗ �= T z∗. For this purpose,

we need to prove the claim: For each n ≥ 1, at least one of the following assertions holds.

1
2

d(xn−1, xn) ≤ d(xn−1, z∗) or
1
2

d(xn, xn+1) ≤ d(xn, z∗).

Again, we use the method of Reductio ad Absurdum and assume it does not hold, i.e.,

1
2

d(xn−1, xn) > d(xn−1, z∗) and
1
2

d(xn, xn+1) > d(xn, z∗),
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for some n ≥ 1. Then, keeping in mind that {d(xn, xn+1)} is a decreasing sequence, the triangle
inequality infers

d(xn−1, xn) ≤ d(xn−1, z∗) + d(z∗, xn)

< 1
2 [d(xn−1, xn) + d(xn, xn+1)]

< d(xn−1, xn),

which is a contradiction, and so the claim holds.
Due to the assumption (v) and the observation (3), we have

α(xn, T xn)α(z∗, T z∗) ≥ 1, holds for all n ∈ N.

Taking 1
2 d(xn, T xn) ≤ d(xn, z∗) into account, the assumption (i) yields that

d(T xn, T z∗) ≤ (1 − ε)max
{

d(xn, z∗), d(z∗, T z∗), d(xn, xn+1), 1
2 [d(xn, T z∗) + d(z∗, T xn)]

}
+Λ(ε)αψ(ε) [1 + ‖xn‖+ ‖z∗‖+ ‖T z∗‖+ ‖T xn‖]β

= (1 − ε)max
{

d(xn, z∗), d(z∗, T z∗), d(xn, xn+1), 1
2 [d(xn, T z∗) + d(z∗, T xn)]

}
+K(ε)αψ(ε),

for some K > 0. By letting n → ∞ in the inequality above, we find that

d(z∗, f z1) ≤ (1 − ε)max
{

0, d(z∗, T z∗), 0, d(z∗ ,T z∗)
2

}
+ K(ε)αψ(ε)

< (1 − ε)d(z∗, T z∗) + K(ε)αψ(ε)

for some K > 0. It implies that d(z∗, T z∗) = 0, a contradiction. Hence z∗ = T z∗.
As a final step, we examine the uniqueness of the found fixed point z∗. Suppose that v∗ is another

fixed point of T that is distinct from z∗. T z∗ = z∗ and T v∗ = v∗. By (v) we have

α(z∗, T z∗) ≥ 1 and α(v, T v∗) ≥ 1.

Since 1
2 d(z∗, T z∗) ≤ d(z∗, v∗) the assumption (i) yields that

d(T z∗, T v∗) ≤ (1 − ε)max
{

d(z∗, v∗), d(z, T z∗), d(v∗, T v∗), 1
2 [d(z

∗, T v) + d(v∗, T z∗)]
}

+Λ(ε)αψ(ε) [1 + 2 ‖z∗‖+ 2 ‖v∗‖]β
< (1 − ε)d(z∗, v∗) + K(ε)αψ(ε)

for some K > 0 that yields that d(z∗, v∗) = 0, a contradiction. Hence z∗ = v∗.

Example 1. Let X = [0, ∞) and let d(x, y) = |x − y| for all x, y ∈ X. Let Λ = 1
2 , α = 1, β = 1 and

ψ(ε) = ε
1
2 for every ε ∈ [0, 1] and a mapping T : X → X be defined by

Tx =

{
1
2 x
2x

i f 0 ≤ x ≤ 1,
i f x > 1.

,

Also, we define a function α : X × X → [0, ∞) in the following way

α(x, y) =

{
1
0

i f 0 ≤ x, y ≤ 1,
otherwise
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Also, we have
1
2
− 1 + ε ≤ 1

2
(1 − 2 +

ε

2
) ≤ 1

2
(ε)

1
2 .

Now
1
2

d(x, Tx) =
1
2
|x − x

2
| ≤ d(x, y)

implies
d(Tx, Ty)

=≤ |Tx − Ty|
= | x

2 − y
2 |

= 1
2 |x − y|

≤ 1
2 P(x, y)

= (1 − ε)P(x, y) + ( 1
2 − 1 + ε)P(x, y)

≤ (1 − ε)P(x, y) + ( 1
2 − 1 + ε) [1 + ‖x‖+ ‖y‖+ ‖Tx‖+ ‖Ty‖]

≤ (1 − ε)P(x, y) + ( 1
2 εε

1
2 ) [1 + ‖x‖+ ‖y‖+ ‖Tx‖+ ‖Ty‖]

Hence, T satisfies all the conditions of theorem and T has a unique fixed point.

Immediate Consequences

In this subsection, we list a few consequences of our main result. These corollaries also indicate
how we can conclude further consequences.

If we let α(x, Tx) = 1 for all x ∈ X, we get the following results:

Theorem 4. Let T be a self-mapping on a metric space (X, d). Suppose that β ∈ [0, α] Λ ≥ 0 and α ≥ 1 are
fixed constants. A self-mapping T possesses a unique fixed point if 1

2 d(κ, T κ) ≤ d(κ, y) implies

d(T κ, T y) ≤ P(κ, y)

where
P(κ, y) = (1 − ε)max

{
d(κ, y), d(κ, T κ), d(y, T y), 1

2 [d(κ, T y) + d(y, T κ)]
}

+Λ(ε)αψ(ε) [1 + ‖κ‖+ ‖y‖+ ‖T κ‖+ ‖T y‖]β .

for all κ, y ∈ X and for every ε ∈ [0, 1].

Let (X,�) be a partially ordered set and d be a metric on X. We say that (X,�, d) is regular if for
every nondecreasing sequence {κn} ⊂ X such that κn → x ∈ X as n → ∞, there exists a subsequence
{κn(k)} of {κn} such that κn(k) � x for all k.

Theorem 5. Let (X,�) be a partially ordered set and d be a metric on X such that (X, d) is complete.
Let T : X → X be a nondecreasing mapping with respect to �. Suppose that β ∈ [0, α] Λ ≥ 0 and α ≥ 1 are
fixed constants such that the self-mapping T satisfies the following condition: 1

2 d(κ, T κ) ≤ d(κ, y) implies

d(T κ, T y) ≤ P(κ, y)

where
P(κ, y) = (1 − ε)max

{
d(κ, y), d(κ, T κ), d(y, T y), 1

2 [d(κ, T y) + d(y, T κ)]
}

+Λ(ε)αψ(ε) [1 + ‖κ‖+ ‖y‖+ ‖T κ‖+ ‖T y‖]β .

for all κ, y ∈ X with κ � y and for every ε ∈ [0, 1]. Suppose also that the following conditions hold:

(i) there exists x0 ∈ X such that x0 � Tx0;
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(ii) (X,�, d) is regular.
(iii) T is nondecreasing with respect to � (that is, κ, y ∈ X, κ � y =⇒ Tκ � Ty.)

Then T has a fixed point.
Moreover, if for all κ, y ∈ X there exists z ∈ X such that κ,� z and y � z, we have uniqueness of the

fixed point.

Proof. Set α : X × X → [0, ∞) in a way that

α(x, y) =

{
1 if κ � y or κ � y,
0 otherwise.

It is apparent that T is an α-Suzuki-Pata contractive mapping, i.e.,

α(κ, y)d(Tκ, Ty) ≤ P(κ, y),

for all κ, y ∈ X. By assumption, the inequality α(κ0, Tκ0) ≥ 1 is observed. In addition, for all κ, y ∈ X,
due to the fact that T is nondecreasing, we find

α(x, y) ≥ 1 =⇒ x � y or x � y =⇒ Tx � Ty or Tx � Ty =⇒ α(Tx, Ty) ≥ 1.

Consequently, we note that T is α−admissible. Now, assume that (X,�, d) is regular. Let {κn} be
a sequence in X such that α(κn,κn+1) ≥ 1 for all n and κn → x ∈ X as n → ∞. From the regularity
hypothesis, there exists a subsequence {κn(k)} of {xn} such that κn(k) � x for all k. On account of α

we derive that α(κn(k),κ) ≥ 1 for all k. Consequently, the existence and uniqueness of the fixed point
is derived by Theorem 3.

3. Application

In this section, we shall consider an application for our main result. Let X = C[0, 1] be the space
of all continuous functions defined on interval [0, 1] with the metric

d(x, y) = sup
t∈[0,1]

|x(t)− y(t)| .

In what follows we shall use Theorem 5 to show that there is a solution to the following
integral equation:

x(t) = y(t) +
1∫

0

k(t, s, x(s))ds, t ∈ [0, 1] (4)

Assume that k(t, s, x) is continuous. Let y ∈ C[0, 1].
We consider the following conditions:

(a) k : [0, 1]× [0, 1]×R×R → R is continuous;
(b) there exists a continuous function γ : [0, ∞]×R → R such that

sup
t∈[0,1]

1∫
0

γ(t, s) ≤ 1;
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(c) there exists ε ∈ [0, 1] such that

1
2

∣∣∣∣∣∣x(s)− y(s)−
1∫

0

k(t, s, x(s))ds

∣∣∣∣∣∣ ≤ |x(s)− y(s)|

implies
|k(t, s, x(s))− k(t, s, y(s))| ≤ (1 − ε) |x(s)− y(s)| ,

for all x, y ∈ X;
(d) there exists x0 ∈ C([0, 1]) such that for all t ∈ [0, 1], we have

ζ(x0(t),
1∫

0

k(t, s, x(s))ds) ≥ 0,

where ζ : X × X → [0, ∞);
(e) For all t ∈ [0, 1], x, y ∈ C[0, 1],

ζ(x(t), y(t)) ≥ 0 ⇒ ζ(

1∫
0

k(t, s, x(s))ds,
1∫

0

k(t, s, y(s))ds) ≥ 0;

(f) If xn is a sequence in C[0,1] such that xn → x ∈ C[0, 1] and ζ(xn, xn+1) ≥ 0 for all n, then
ζ(xn, x) ≥ 0 for all n.

Theorem 6. Suppose that the conditions (a)–( f ) are satisfied. Then, the integral Equation (4) has solution
in C[0, 1].

Proof. Since k and the function y are continuous, now define an operator

T : C[0, 1] → C[0, 1]

write the integral Equation (4) in the form x = T x, where

T x(t) = y(t) +
1∫

0

k(t, s, x(s))ds. (5)

It follows that

1
2
|x(s)− y(s)−

1∫
0

k(t, s, x(s))ds| ≤ (1 − ε)|x(s)− y(s)|
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implies

d(T x, T y) = supt∈[0,1] |T x(t)− T y(t)|

≤ supt∈[0,1]

1∫
0
|k(t, s, x(s))− k(t, s, y(s))|ds

≤ sups∈[0,1]

1∫
0

γ(t, s)ds|k(t, s, x)− k(t, s, y)|

≤ (1 − ε)|x(s)− y(s)|
≤ (1 − ε)max

{
d(x, y), d(x, T x), d(y, T y), 1

2 [d(x, T y) + d(y, T x)]
}

+Λ(ε)αψ(ε) [1 + ‖x‖+ ‖y‖+ ‖T x‖+ ‖T y‖]β λ ≥ 0 α ≥ 1 and β ∈ [0, α].

Define the function α : C[0, 1]× C[0, 1] → [0,+∞) by

α(x, y) =

{
1 i f ζ(x(t), y(t)) ≥ 0, t ∈ [0, 1],
0 otherwise.

For all x, y ∈ C[0, 1], we have

Therefore, all the conditions of Theorem 5 are satisfied. Consequently, the mapping T has a
unique fixed point in X, which is a solution of integral equation.

4. Conclusions

In this paper, we combine and extend significant fixed-point results, namely Suzuki [2],
Popescu [1], and Pata [4] by involving the admissible mappings. As in [3] (see also [19]), by proper
choice of the auxiliary admissible mapping α and replacing the set P(κ, y) with some concrete subset,
we can derive several more consequences. Since the techniques are the same in [3], we skip the details
and we avoid listing all possible corollaries. Indeed, Theorem 4 and Theorem 5 are the basic examples
of this consideration. Notice also that the given example and an integral equation can be improved
according to choice of α.
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Pata-Type Conditions. Bull. Malays. Math. Sci. Soc. 2019. [CrossRef]

8. Choudhury, B.S.; Metiya, N.; Kundu, S. End point theorems of multivalued operators without continuity
satisfying hybrid inequality under two different sets of conditions. Rendiconti Circolo Matematico Palermo Ser.
2019, 68, 65–81.

9. Geno, K.J.; Khan, M.S.; Choonkil Park, P.; Sungsik, Y. On Generalized Pata Type Contractions. Mathematics 2018,
6, 25.

10. Eshaghi, M.; Mohseni, S.; Delavar, M.R.; De La Sen, M.; Kim, G.H.; Arian, A. Pata contractions and coupled
type fixed points. Fixed Point Theory Appl. 2014, 2014, 130. [CrossRef]

11. Kadelburg, Z.; Radenovic, S. Fixed point theorems under Pata-type conditions in metric spaces. J. Egypt.
Math. Soc. 2016, 24, 77–82. [CrossRef]

12. Kadelburg, Z.; Radenovic, S. A note on Pata-type cyclic contractions. Sarajevo J. Math. 2015, 11, 235–245.
13. Kadelburg, Z.; Radenovic, S. Pata-type common fixed point results in b-metric and b-rectangular metric

spaces. J. Nonlinear Sci. Appl. 2015, 8, 944–954. [CrossRef]
14. Kadelburg, Z.; Radenovic, S. Fixed point and tripled fixed point theprems under Pata-type conditions in

ordered metric spaces. Int. J. Anal. Appl. 2014, 6, 113–122.
15. Kolagar, S.M.; Ramezani, M.; Eshaghi, M. Pata type fixed point theorems of multivalued operators in ordered

metric spaces with applications to hyperbolic differential inclusions. Proc. Am. Math. Soc. 2016, 6, 21–34.
16. Ramezani, M.; Ramezani, H. A new generalized contraction and its application in dynamic programming.

Cogent Math. 2018, 5, 1559456. [CrossRef]
17. Popescu, O. Some new fixed point theorems for α-Geraghty contractive type maps in metric spaces.

Fixed Point Theory Appl. 2014, 2014, 190. [CrossRef]
18. Radenovic, S.; Kadelburg, Z.; Jandrlic, D.; Jandrlic, A. Some results on weakly contractive maps. Bull. Iran.

Math. Soc. 2012, 38, 625–645.
19. Karapinar, E.; Samet, B. Generalized (alpha-psi) contractive type mappings and related fixed point theorems

with applications. Abstr. Appl. Anal. 2012, 2012, 793486. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

38



mathematics

Article

Modified Suzuki-Simulation Type Contractive
Mapping in Non-Archimedean Quasi Modular Metric
Spaces and Application to Graph Theory

Ekber Girgin * and Mahpeyker Öztürk

Department of Mathematics, Sakarya University, Sakarya 54050, Turkey
* Correspondence: ekber.girgin2@ogr.sakarya.edu.tr

Received: 15 July 2019; Accepted: 16 August 2019; Published: 21 August 2019

Abstract: In this paper, we establish generalized Suzuki-simulation-type contractive mapping and prove
fixed point theorems on non-Archimedean quasi modular metric spaces. As an application, we acquire
graphic-type results.

Keywords: non-Archimedean quasi modular metric space; θ-contraction; Suzuki contraction;
simulation contraction

1. Introduction

In the sequel, the letter R+ will denote the set of all nonnegative real numbers.
Let S be a nonempty set and V : S → S be given mappings. A point j ∈ S is said to be:

i. a fixed point of V if and only if V j = j;
ii. a common fixed point of V and Z if and only if V j = Zj = j.

Kosjasteh et al. [1] defined a new control function as follows.

Definition 1 ([1]). Let ζ : [0, ∞)2 → R be a mapping. The mapping ζ is named a simulation function
satisfying the following conditions:

ζ1. ζ (0, 0) = 0,
ζ2. ζ (a, b) < a − b, for all a, b > 0,
ζ3. if {ak} and {bk} are sequences in R+ such that lim

k→∞
ak = lim

k→∞
bk = l, l ∈ R+. Thus,

lim sup ζ (ak, bk)
k→∞

< 0.

Argoubi et al. [2] modified the above and so introduced it as follows.

Definition 2 ([2]). The mapping ζ is a simulation function providing the following:

i. ζ (a, b) < a − b, for all a, b > 0,
ii. if {ak} and {bk} are sequences inR+ such that lim

k→∞
ak = lim

k→∞
bk > 0, and ak < bk, then lim sup ζ (ak, bk)

k→∞
< 0.

For examples and related results on simulation functions, one may refer to [1–8].
Radenovic and Chandok generalized the simulation function combining the C-class function as follows.

Definition 3 ([4]). A mapping G : [0, ∞)2 → R is named a C-class function if it is continuous and satisfies
the following conditions:

Mathematics 2019, 7, 769; doi:10.3390/math7090769 www.mdpi.com/journal/mathematics39
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i. G (a, b) ≤ a,
ii. G (a, b) = a implies that either a = 0 or b = 0, for all a, b ∈ [0, ∞) .

Definition 4 ([4]). A CG-simulation function is a mapping ζ : [0, ∞)2 → R satisfying the following conditions:

i. ζ (a, b) < G (a, b) for all a, b > 0, where G : [0, ∞)2 → R is a C-class function,
ii. if {ak} and {bk} are sequences in (0, ∞) such that lim

k→∞
bk = lim

k→∞
ak > 0, and bk < ak,

then lim sup ζ (ak, bk)
k→∞

< CG.

Definition 5 ([4]). A mapping G : [0, ∞)2 → R has the property CG, if there exists a CG ≥ 0 such that:

i. G (a, b) > CG implies a > b,
ii. G (a, a) ≤ CG for all a ∈ [0, ∞) .

Moreover, using C-class function many researchers investigated some new results combining
other control functions in different spaces [9].

Suzuki [10] proved the following fixed point theorem using a new contraction, which is known as
the Suzuki contraction in literature. Furthermore, many mathematicians generalized this contraction
in other spaces.

Theorem 1 ([10]). Let (S, d) be a compact metric space and V : S → S be a mapping. Suppose that,
for all j, � ∈ S with j �= �,

1
2

d (j, V j) < d (j, �) ⇒ d (V j, V�) < d (j, �) .

Then, V has a unique fixed point in S.

Bindu et al. [11] proved the commonfixed point theorem for Suzuki type mapping in a complete
subspace of the partial metric space.

Theorem 2. Let (S, δ) be a partial metric space and f , g, V, Z : S → S be mappings satisfying:

1
2

min {δ ( f j, V j) , δ (g�, Z�)} ≤ � ( f j, g�) ⇒ φ (V j, Z�) ≤ α (M (j, �))− β (M (j, �)) ,

for all j, � ∈ S, where φ, α, β : [0, ∞) → [0, ∞) are such that φ is an altering distance function, α is continuous,
and β is lower-semi continuous α (0) = β (0) = 0 and φ (t)− α (t) + β (t) > 0, for all t > 0 and:

M (j, �) = max
{

δ ( f j, g�) , δ ( f j, V�) , δ (g�, Z�) ,
δ ( f j, Z�) + δ (g�, V j)

2

}
,

i. V (S) ⊆ g (S) , Z (S) ⊆ f (S);
ii. either f (S) or g(S) is a complete subspace of S;
iii. the pairs ( f , V) and (g, Z) are weakly compatible.

Then, f , g, V, Z have a common fixed point.

Jleli and Samet [12] introduced a Σ-contraction and established fixed point results in generalized
metric spaces. Jleli and Samet [12] also introduced a class of Θ such that Σ : (0, ∞) → (1, ∞)

of all functions, providing the following conditions:

Σ1. Σ is nondecreasing;
Σ2. for any sequence {ak} in (0, ∞), lim

k→∞
Σ (ak) = 1 if and only if lim

k→∞
ak = 0;
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Σ3. there exist r ∈ (0, 1) and l ∈ (0, ∞) such that lim
k→0+

Σ(k)−1
kr = l.

Theorem 3 ([12]). Let (S, d) be a complete generalized metric space and V : S → S be a mapping. Suppose that
there exist Σ ∈ Θ and γ ∈ (0, 1) such that:

d (V j, V�) �= 0 ⇒ Σ (d (V j, V�)) ≤ [Σ (d (j, �))]γ ,

for all j, � ∈ S. Then, V has a unique fixed point.

After that, many authors generalized such a contraction in different spaces [13–17].
Liu et al. [15] modified the class of function Θ exchanging conditions. The class of functions Θ̃

was defined by the set of Σ : (0, ∞) → (1, ∞) satisfying the following conditions:

Σ̃1. Σ is non-decreasing and continuous,
Σ̃2. inf

k∈(0,∞)
Σ (k) = 1.

Lemma 1 ([15]). Let Σ : (0, ∞) → (1, ∞) be a non-decreasing and continuous function with inf
k∈(0,∞)

Σ (k) = 1

and {ak} be a sequence in (0, ∞). Then, the following condition holds:

lim
k→∞

Σ (ak) = 1 ⇔ lim
k→∞

ak = 0.

Zheng et al. [18] denoted new set functions Φ satisfying the following conditions:

Φ1. ϕ : [1, ∞) → [1, ∞) is nondecreasing,
Φ2. for each k > 0, lim

n→∞
ϕn (k) = 1,

Φ3. ϕ is continuous on [1, ∞) .

Lemma 2 ([18]). If ϕ ∈ Φ, then ϕ(1) = 1 and ϕ(t) < t for each t > 1.

Definition 6 ([18]). Let (S, d) be a metric space and V : S → S be a mapping. V is said to be
a Σ − ϕ-contraction if there exist Σ ∈ Θ and ϕ ∈ Φ such that for any j, � ∈ S,

Σ (d (V j, V�)) ≤ ϕ (Σ (N (j, �))) ,

where:
N (j, �) = max {d (j, �) , d (j, V�) , d (j, V�)} .

Theorem 4 ([18]). Let (S, d) be a complete metric space and V : S → S be a Σ − ϕ-contraction. Then, V has
a unique fixed point.

Motivated by the above, we will establish a generalized Suzuki-simulation-type contractive
mapping and obtain fixed point results.

2. Quasi Modular Metric Space

Girgin and Öztürk [19] introduced a new space, which is named a quasi modular metric space.
Furthermore, they gave some topological properties. Moreover, defining non-Archimedean quasi
modular metric space, they proved some fixed point theorems and obtained some applications.

Definition 7 ([19]). A function Q : (0, ∞) × S × S → [0, ∞] is called a quasi modular metric on S
if the following hold:

q1. ξ = η if and only if Qm (ξ, η) = 0 for all m > 0;
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q2. Qm+n (ξ, η) ≤ Qm (ξ, ν) + Qn (ν, η) for all m, n > 0 and ξ, η, ν ∈ S.

Then, SQ is a quasi modular metric space. If in the above definition, we utilize the condition:

q1′ . Qm (ξ, ξ) = 0 for all m > 0 and ξ ∈ S,

instead of (q1), then Q is said to be a quasi pseudo modular metric on S. A quasi modular metric Q on S is called
a regular if the following weaker version of (q1) is satisfied:

q3. ξ = η if and only if Qm (ξ, η) = 0 for some m > 0.

Again, Q is called a convex if for m, n > 0 and ξ, η, ν ∈ S, the inequality holds:

q4. Qm+n (ξ, η) ≤ m
m+n Qm (ξ, ν) + n

m+n Qn (ν, η) .

Definition 8 ([19]). In Definition 7, if we replace (q2) by:

q5. Qmax{m,n} (ξ, η) ≤ Qm (ξ, ν) + Qn (ν, η)

for all m, n > 0 and ξ, η, ν ∈ S, then SQ is called a non-Archimedean quasi modular metric space.

Note that the function Qmax{m,n} is more general than the function Qm+n (ξ, η), so every
non-Archimedean quasi modular metric space is a quasi modular metric space.

Example 1 ([19]). Let S = [0, ∞) and Q be defined by:

Qm (ξ, η) =

{
ξ−η

m if ξ ≥ η

1 if ξ < η.

Then, SQ is a quasi modular metric space with m = 1
3 and n = 2

3 , but is not modular metric space since
Qm (0, 1) = 1 and Qm (1, 0) = 1

3 .

Remark 1 ([19]). From the above definitions we deduce that:

i. For a quasi modular metric Q on S, the conjugate quasi modular metric Q−1 on S of Q is defined
by Q−1

m (ξ, η) = Qm (η, ξ) .
ii. If Q is a T0-quasi pseudo modular metric on S, then the function QE defined by QE = Q−1 ∨ Q, that is

QE
m (ξ, η) = max {Qm (ξ, η) , Qm (η, ξ)}, defines a modular metric space.

Now, we discuss some topological properties of quasi modular metric spaces.

Definition 9 ([19]). A sequence
{

ξp
}

in SQ converges to ξ and is called:

a. Q-convergent or left convergent if ξp → ξ ⇔ Qm
(
ξ, ξp

)
→ 0.

b. Q−1-convergent or right convergent if ξp → ξ ⇔ Qm
(
ξp, ξ

)
→ 0.

c. QE-convergent if Qm
(
ξ, ξp

)
→ 0 and Qm

(
ξp, ξ

)
→ 0.

Definition 10 ([19]). A sequence
{

ξp
}

in a quasi modular metric space SQ is called:

d. left (right) Q-K-Cauchy if for every ε > 0, there exists pε ∈ N such that Qm
(
ξr, ξp

)
< ε for all p, r ∈ N

with pε ≤ r ≤ p (pε ≤ p ≤ r) and for all m > 0.
e. QE-Cauchy if for every ε > 0, there exists pε ∈ N such that Qm

(
ξp, ξr

)
< ε for all p, r ∈ N with p, r ≥ pε.

Remark 2 ([19]). From the above definitions, we deduce that:

i. a sequence is left Q-K-Cauchy with respect to Q if and only if it is right Q-K-Cauchy with respect to Q−1;
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ii. a sequence is QE-Cauchy if and only if it is left and right Q-K-Cauchy.

Definition 11 ([19]). A quasi modular metric space SQ is called:

i. left Q-K-complete if every left Q-K-Cauchy is Q-convergent.
ii. Q-Smyth-complete if every left Q-K-Cauchy sequence is QE-convergent.

3. Common Fixed Point Results

In the sequel, Q is regular and convex and TZ denotes the family of all CG-simulation functions
ζ : [0, ∞)2 → R.

Definition 12. Let SQ be a non-Archimedean quasi modular metric space and V : SQ → SQ be a mapping.
We say that V is a generalized Suzuki-simulation-type contractive mapping if there exist Σ ∈ Θ̃, ϕ ∈ Φ
and ζ ∈ TZ such that:

1
2 Qm (ξ, Vξ) ≤ Qm (ξ, η) implies

ζ (Σ (Qm (Vξ, Vη)) , ϕ (Σ (P (ξ, η)))) ≥ CG

(1)

where:
P (ξ, η) = max {Qm (ξ, η) , Qm (ξ, Vξ) , Qm (η, Vη)}

for all ξ, η ∈ SQ.

Theorem 5. Let SQ be a Q-Smyth-complete non-Archimedean quasi modular metric space and V be the generalized
Suzuki-simulation-type contractive mapping. Then, V has a unique fixed point.

Proof. Define a sequence {ξk} in SQ by:

ξk+1 = Vξk,
(2)

for all k ∈ N. If there exists an k0 such that ξk0 = ξk0+1, then z = ξk0 becomes a fixed point of V.
Consequently, we shall assume that ξk �= ξk+1 for all k ∈ N. Therefore, we have:

Qm (ξk, ξk+1) > 0, for all n = 0, 1, 2... . (3)

Hence, we have:

1
2

Qm (ξk, Vξk) < Qm (ξk, Vξk) = Qm (ξk, ξk+1) implies,

CG ≤ ζ (Σ (Qm (Vξk, Vξk+1)) , ϕ (Σ (P (ξk, ξk+1))))

= ζ (Σ (Qm (ξk+1, ξk+2)) , ϕ (Σ (P (ξk, ξk+1))))

< G (ϕ (Σ (P (ξk, ξk+1))) , Σ (Qm (ξk+1, ξk+2))) ,

(4)

by Definition 5, we get that:

Σ (Qm (ξk+1, ξk+2)) < ϕ (Σ (P (ξk, ξk+1))) , (5)
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where:
P (ξk, ξk+1) = max {Qm (ξk, ξk+1) , Qm (ξk, Vξk) , Qm (ξk+1, Vξk+1)}

= max {Qm (ξk, ξk+1) , Qm (ξk, ξk+1) , Qm (ξk+1, ξk+2)}

= max {Qm (ξk, ξk+1) , Qm (ξk+1, ξk+2)} .

(6)

If:
max {Qm (ξk, ξk+1) , Qm (ξk+1, ξk+2)} = Qm (ξk+1, ξk+2)

for some k ∈ N, then it follows from (5) and Lemma 2 that we get:

Σ (Qm (ξk+1, ξk+2)) < ϕ (Σ (Qm (ξk+1, ξk+2))) < Σ (Qm (ξk+1, ξk+2))

which is a contradiction. Therefore, we have:

P (ξk, ξk+1) = Qm (ξk, ξk+1)

for each k ∈ N. Also, by (5), we have

Σ (Qm (ξk+1, ξk+2)) < ϕ (Σ (Qm (ξk, ξk+1))) .

Repeating this step, we conclude that:

Σ (Qm (ξk+1, ξk+2)) < ϕ (Σ (Qm (ξk, ξk+1)))

< ϕ2 (Σ (Qm (ξk−1, ξk)))

...

< ϕk (Σ (Qm (ξ1, ξ2))) ,

for all k ∈ N. Taking the limit k → ∞ above, by the definition of ϕ and property Θ2, we have:

lim
k→∞

ϕk (Qm (ξ1, ξ2)) = 1. (7)

Thus, from Lemma 1, it follows that:

lim
k→∞

Qm (ξk+1, ξk+2) = 0, (8)

for all k ∈ N. Now, we show that {ξk} is a left Q-K-Cauchy sequence. Assume the contrary. There exists
ε > 0 such that we can find two subsequences {tk} and {sk} of positive integers satisfying the following
inequalities:

Qm
(
ξtk , ξsk

)
≥ ε, and Qm

(
ξtk−1, ξsk

)
< ε. (9)

From (9) and (q5), it follows that:

ε ≤ Qm
(
ξtk , ξsk

)
= Qmax{m,m}

(
ξtk , ξsk

)
≤ Qm

(
ξtk , ξtk−1

)
+ Qm

(
ξtk−1, ξsk

)
< ε + Qm

(
ξtk , ξtk−1

)
.

(10)

On taking the limit as k → ∞ in the above relation, we obtain that:

lim
k→∞

Qm
(
ξtk , ξsk

)
= ε. (11)
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Also, from (9) and (q5), it follows that:

Qm
(
ξtk+1, ξsk+1

)
= Qmax{m,m}

(
ξtk+1, ξsk+1

)
≤ Qm

(
ξtk+1, ξtk

)
+ Qm

(
ξtk , ξsk+1

)
= Qm

(
ξtk+1, ξtk

)
+ Qmax{m,m}

(
ξtk , ξsk+1

)
≤ Qm

(
ξtk , ξtk−1

)
+ Qm

(
ξtk−1, ξsk+1

)
+ Qm

(
ξtk+1, ξtk

)
= Qm

(
ξtk , ξtk−1

)
+ Qm

(
ξtk+1, ξtk

)
+ Qmax{m,m}

(
ξtk−1, ξsk+1

)
≤ Qm

(
ξtk−1, ξsk

)
+ Qm

(
ξsk , ξsk+1

)
+Qm

(
ξtk , ξtk−1

)
+ Qm

(
ξtk+1, ξtk

)
< ε + Qm

(
ξsk , ξsk+1

)
+ Qm

(
ξtk , ξtk−1

)
+Qm

(
ξtk+1, ξtk

)
.

(12)

Next, we claim that:
1
2

Qm
(
ξtk , Vξtk

)
≤ Qm

(
ξtk , ξsk

)
.

If:
1
2 Qm

(
ξtk , Vξtk

)
> Qm

(
ξtk , ξsk

)
= 1

2 Qm
(
ξtk , ξtk+1

)
> Qm

(
ξtk , ξsk

)
,

(13)

then letting k → ∞ in (13), from (11) and (8), we have that 0 > ε is a contradiction. Hence,

1
2

Qm
(
ξtk , Vξtk

)
≤ Qm

(
ξtk , ξsk

)
.

From the generalized Suzuki-simulation-type contractive mapping, we get:

CG ≤ ζ
(
Σ
(
Qm

(
Vξtk , Vξsk

))
, ϕ

(
Σ
(

P
(
ξtk , ξsk

))))
= ζ

(
Σ
(
Qm

(
ξtk+1, ξsk+1

))
, ϕ

(
Σ
(

P
(
ξtk , ξsk

))))
,

(14)

where:
P
(
ξtk , ξsk

)
= max

{
Qm

(
ξtk , ξsk

)
, Qm

(
ξtk , Vξtk

)
, Qm

(
ξsk , Vξsk

)}
= max

{
Qm

(
ξtk , ξsk

)
, Qm

(
ξtk , ξtk+1

)
, Qm

(
ξsk , ξsk+1

)}
.

(15)

Taking the limit k → ∞ using (8), (11), and (12) in (14) and (15), we obtain:

CG ≤ ζ (Σ (ε) , ϕ (Σ (ε))) < G (ϕ (Σ (ε)) , Σ (ε)) .

From Definition 5, we get:
Σ (ε) < ϕ (Σ (ε)) < Σ (ε) .

It follows that Σ (ε) < Σ (ε) , a contradiction. Hence, {ξk} is a left Q-K-Cauchy sequence. As SQ
is a Q-Smyth-complete non-Archimedean quasi modular metric space, there exists u ∈ SQ such that:

lim
k→∞

Qm
E (ξk, u) = 0.

Thus, we have:
lim
k→∞

Qm (ξk, u) = 0 and lim
k→∞

Qm (u, ξk) = 0.

Now, we show that u is a fixed point of V. Assume that Qm (Vu, u) > 0. We claim that for each
k ≥ 0, the following holds:

1
2

Qm (ξk, Vξk) ≤ Qm (ξk, u) .
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On the contrary, suppose that:

1
2

Qm (ξk, Vξk) > Qm (ξk, u) =
1
2

Qm (ξk, ξk+1) > Qm (ξk, u) . (16)

Taking the limit as k → ∞ in (16), we obtain 0 > 0, a contradiction. Thus, the claim is true,
and so, from the generalized Suzuki-simulation-type contractive mapping, we get:

CG ≤ ζ (Σ (Qm (Vξk, Vu)) , ϕ (Σ (P (ξk, u))))

= ζ (Σ (Qm (ξk+1, Vu)) , ϕ (Σ (P (ξk, u))))

< G (ϕ (Σ (P (ξk, u))) , Σ (Qm (ξk+1, Vu))) .

(17)

By Definition 5,
Σ (Qm (ξk+1, Vu)) < ϕ (Σ (P (ξk, u))) , (18)

where:
P (ξk, u) = max {Qm (ξk, u) , Qm (ξk, Vξk) , Qm (u, Vu)}

= max {Qm (ξk, u) , Qm (ξk, ξk+1) , Qm (u, Vu)} .
(19)

Letting k → ∞ in (17)–(19), we have:

Σ (Qm (u, Vu)) < ϕ (Σ (Qm (u, Vu))) < Σ (Qm (u, Vu)) .

That is, Σ (Qm (u, Vu)) < Σ (Qm (u, Vu)), a contradiction. Thus, u is a fixed point of V. Suppose that
there is an another fixed point u∗ of V such that Vu∗ = u∗ and u �= u∗. Then, Qm (Vu, Vu∗) = Qm (u, u∗) > 0,
and:

0 =
1
2

Qm (u, Vu) ≤ Qm (u, u∗) .

By the generalized Suzuki-simulation-type contractive mapping, we have:

CG ≤ ζ (Σ (Qm (Vu, Vu∗)) , ϕ (Σ (P (u, u∗))))

= ζ (Σ (Qm (u, u∗)) , ϕ (Σ (P (u, u∗))))

< G (ϕ (Σ (P (u, u∗))) , Σ (Qm (u, u∗))) .

(20)

From the property of G,

Σ (Qm (u, u∗)) < ϕ (Σ (P (u, u∗))) , (21)

where:
P (u, u∗) = max {Qm (u, u∗) , Qm (u, Vu) , Qm (u∗, Vu∗)} = Qm (u, u∗) . (22)

From (20)–(22), we attain the following ordering:

Σ (Qm (u, u∗)) < ϕ (Σ (Qm (u, u∗))) < Σ (Qm (u, u∗)) ,

which is a contradiction. Hence, u is a unique fixed point of V.

Now, we give some corollaries that are directly acquired from our main results.
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Corollary 1. Let SQ be a Q-Smyth-complete non-Archimedean quasi modular metric space and V : SQ → SQ
be a mapping. If there exists Σ ∈ Θ̃, ϕ ∈ Φ, and ζ ∈ TZ such that:

1
2

Qm (j, V j) ≤ Qm (j, �) implies,

ζ (Σ (Qm (V j, V�)) , ϕ (Σ (Qm (j, �)))) ≥ CG,

for all j, � ∈ SQ, then V has a unique fixed point.

Corollary 2. Let SQ be a Q-Smyth-complete non-Archimedean quasi modular metric space and V : SQ → SQ
be a mapping. If there exists Σ ∈ Θ̃, ϕ ∈ Φ, and ζ ∈ TZ such that:

ζ (Σ (Qm (V j, V�)) , ϕ (Σ (P (j, �)))) ≥ CG

where:
P (j, �) = max {Qm (j, �) , Qm (j, V j) , Qm (�, V�)} ,

for all j, � ∈ SQ, then V has a unique fixed point.

Corollary 3. Let SQ be a Q-Smyth-complete non-Archimedean quasi modular metric space and V : SQ → SQ
be a mapping. If there exists Σ ∈ Θ̃ and ϕ ∈ Φ such that:

1
2

Qm (j, V j) ≤ Qm (j, �) implies,

Σ (Qm (V j, V�)) ≤ ϕ (Σ (P (j, �)))

where:
P (j, �) = max {Qm (j, �) , Qm (j, V j) , Qm (�, V�)} ,

for all j, � ∈ SQ, then V has a unique fixed point.

Corollary 4. Let SQ be a Q-Smyth-complete non-Archimedean quasi modular metric space and V : SQ → SQ
be a mapping. If there exists Σ ∈ Θ̃ and ϕ ∈ Φ such that:

Σ (Qm (V j, V�)) ≤ ϕ (Σ (P (j, �)))

where:
P (j, �) = max {Qm (j, �) , Qm (j, V j) , Qm (�, V�)} ,

for all j, � ∈ SQ, then V has a unique fixed point.

Corollary 5. Let SQ be a Q-Smyth-complete non-Archimedean quasi modular metric space and V : SQ → SQ
be a mapping. If there exists Σ ∈ Θ̃ and ϕ ∈ Φ such that:

Σ (Qm (V j, V�)) ≤ ϕ (Σ (Qm (j, �))) ,

for all j, � ∈ SQ, then V has a unique fixed point.

4. Application to a Graph Structure

Let SQ be a non-Archimedean quasi modular metric space and Δ = {(j, j) : j ∈ SQ} denote
the diagonal of SQ × SQ. Let H be a directed graph such that the set C(H) of its vertices coincides
with SQ and B(H) is the set of edges of the graph such that Δ ⊆ B(H). H is determined with the pair
(C(H), B(H)).
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If j and � are vertices of H, then a path in H from j to � of length p ∈ N is a finite sequence {jp}
of vertices such that j = j0, ..., jp = η and (ji−1, ji) ∈ B(H) for i ∈ {1, 2, ..., p}.

Recall that H is connected if there is a path between any two vertices, and it is weakly connected
if H̃ is connected, where H̃ defines the undirected graph obtained from H by ignoring the direction
of edges. Define by H−1 the graph obtained from H by reversing the direction of edges. Thus,

B
(

H−1
)
=
{
(j, �) ∈ SQ × SQ : (�, j) ∈ B (H)

}
.

It is more convenient to treat H̃ as a directed graph for which the set of its edges is symmetric,
under this convention; we have that:

B(H̃) = B(H) ∪ B(H−1).

Let Hj be the component of H consisting of all the edges and vertices that are contained in some
way in H starting at j. We denote the relation (R) in the following way:

We have j(R)� if and only if, there is a path in H from j to �, for j, � ∈ C(H).
If H is such that B(H) is symmetric, then for j ∈ C(H), the equivalence class [j]G in V(G)

described by the relation (R) is C(Hj).

Let SQ be a non-Archimedean quasi modular metric space endowed with a graph H and h̄ : SQ → SQ.
We set:

Sh̄ =
{

j ∈ SQ : (j, h̄j) ∈ B (H)
}

.

Definition 13 ([20]). (S, d) is a metric space, and h̄ : S → S is a mapping. Then, h̄ is called a Banach
H-contraction if the following hold:

B1. h̄ preserves edges of H, i.e., for all j, � ∈ S,

(j, �) ∈ B (H) ⇒ (h̄j, h̄�) ∈ B (H) ,

B2. there exists δ ∈ (0, 1) such that:
d (h̄j, h̄�) ≤ δd (j, �)

for all (j, �) ∈ B(H).

After that, many fixed point researchers investigated fixed point results improving the Jachymski
fixed point theorems in [17,21–23].

Now, motivated by [24–26], we generate a new contraction and obtain fixed point results using
a graph structure.

Definition 14. Let SQ be a non-Archimedean quasi modular metric space and h̄ : SQ → SQ be a mapping.
Then, we say that h̄ is a generalized Suzuki-simulation-H-type contractive mapping if the following conditions hold:

H1. h̄ preserves edges of G;
H2. there exists Σ ∈ Θ̃, ϕ ∈ Φ and ζ ∈ TZ such that:

1
2 Qm (j, h̄j) ≤ Qm (j, �) implies,

ζ (Σ (Qm (h̄j, h̄�)) , ϕ (Σ (P (j, �)))) ≥ CG,
(23)

where
P (j, �) = max {Qm (j, �) , Qm (j, h̄j) , Qm (�, h̄�)}

for all j, � ∈ B(H) and for all m > 0.
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Remark 3. Let SQ be a non-Archimedean quasi modular metric space with a graph H and h̄ : SQ → SQ
be a generalized Suzuki-simulation-H-type contractive mapping. If there exists j0 ∈ SQ such that h̄j0 ∈ [j0]H̃, then:

R1. h̄ is both a generalized Suzuki-simulation-H−1-type contractive mapping and a generalized Suzuki-
Simulation-H̃-type contractive mapping.

R2. [j0]H̃ is h̄-invariant, and h̄
∣∣∣[j0]H̃ is a generalized Suzuki-simulation-H̃j0 -type contractive mapping.

Theorem 6. Let SQ be a Q-Smyth-complete non-Archimedean quasi modular metric space with a graph H
and h̄ : SQ → SQ be a mapping.

i. there exists j0 ∈ Sh̄;
ii. h̄ is the generalized Suzuki-simulation-H̃-type contractive mapping;
iii. H is weakly connected;
iv. if {jk} is a sequence in SQ such that lim

k→∞
Qm

E (jk, u) = 0 and (jk, jk+1) ∈ B (H), then there exists

a subsequence
{

jks

}
of {jk} such that (jks , u) ∈ B (H).

Then, h̄ has a unique fixed point.

Proof. Define a sequence {jk} in SQ by:

jk+1 = h̄jk,
(24)

for all k ∈ N. Let j0 be a given point in Sh̄; thus, (j0, h̄j0) = (j0, j1) ∈ B (H) . Because h̄ preserves the
edges of H,

(j0, j1) ∈ B (H) ⇒ (h̄j0, h̄j1) ∈ B (H) .

Continuing this way, we get:
(jk, jk+1) ∈ B (H) .

Then from Theorem 5, we get that {jk} is a left Q-K-Cauchy sequence in SQ. By the Q-Smyth-
completeness of SQ, there exists u ∈ SQ such that:

lim
k→∞

QE
m (jk, u) = 0. (25)

Thus, we have:
lim
k→∞

Qm (jk, u) = 0 and lim
k→∞

Qm (u, jk) = 0. (26)

Now, we show that u is a fixed point of h̄. Using (iv), we get (jks , u) ∈ B (H). We claim that:

1
2

Qm (jks , h̄jks) ≤ Qm (jks , u) . (27)

If
1
2 Qm (jks , h̄jks) > Qm (jks , u) = 1

2 Qm (jks , jks+1) > Qm (jks , u) (28)

and taking the limit s → ∞ in (28), we get 0 > 0, a contradiction. Hence, the claim is true. Since h̄
is a generalized Suzuki-simulation-H̃-type contractive mapping, we have:

CG ≤ ζ (Σ (Qm (h̄jks , h̄u)) , ϕ (Σ (P (jks , u))))

≤ ζ (Σ (Qm (h̄jks , h̄u)) , ϕ (Σ (P (jks , u))))

≤ G (ϕ (Σ (P (jks , u))) , Σ (Qm (hjks , hu))) ,

(29)
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from Definition 5, we get:
Σ (Qm (h̄jks , h̄u)) , ϕ (Σ (P (jks , u))), (30)

where:
P (jks , u) = max

{
Qm (jks , u) , Qm (jks , h̄jks) , Qm (u, h̄u)}

= max
{

Qm (jks , u) , Qm (jks , jks+1) , Qm (u, h̄u)} .
(31)

Taking the limit as s → ∞ in (29)–(31), we get:

Σ (Qm (u, hu)) < ϕ (Σ (Qm (u, hu))) < Σ (Qm (u, hu)) .

It follows that Σ (Qm (u, hu)) < Σ (Qm (u, hu)) , a contradiction. Therefore, we get Qm (u, h̄u) = 0,
that is u = h̄u since Q is regular.

Next, we show that u is a unique fixed point of h̄. On the contrary, we suppose that u∗ is another
fixed point of h̄, i.e., u∗ = h̄u∗ and u �= u∗. Then, there exist σ ∈ SQ such that (u, σ) ∈ B(H)

and (σ, u∗) ∈ B(H). Using (iii), we get that (u, u∗) ∈ B(H̃). Furthermore,

0 =
1
2

Qm (u, hu) < Qm (u, u∗) . (32)

From the generalized Suzuki-Simulation-H̃-type contractive mapping we have:

CG ≤ ζ (Σ (Qm (hu, hu∗)) , ϕ (Σ (P (u, u∗))))

≤ ζ (Σ (Qm (u, u∗)) , ϕ (Σ (P (u, u∗))))

≤ G (ϕ (Σ (P (u, u∗))) , Σ (Qm (hu, hu∗))) .

(33)

Using Definition 5, we get:
Σ (Qm (u, u∗)) < ϕ (Σ (P (u, u∗))) (34)

where:
P (u, u∗) = max {Qm (u, u∗) , Qm (u, h̄u) , Qm (u∗, h̄u∗)}

= max {Qm (u, u∗) , 0} = Qm (u, u∗) .
(35)

From (33)–(35), it follows that:

Σ (Qm (u, u∗)) < ϕ (Σ (Qm (u, u∗))) < Σ (Qm (u, u∗)) .

This is an incorrect statement. Hence, u = u∗.

5. Conclusions

First, motivated by [4,10,15], we established a new contractive mapping, which is called the
generalized Suzuki-simulation-type contractive mapping. Second, in [19], we constituted a new quasi
metric space, which is named the non-Archimedean quasi modular metric space, and so using this, we
attained fixed point theorems via generalized Suzuki-simulation-type contractive mapping. Finally, we
acquired graphical fixed point results in non-Archimedean quasi modular metric spaces.
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Abstract: Simulation functions were introduced by Khojasteh et al. as a method to extend several
classes of fixed point theorems by a simple condition. After that, many researchers have amplified
the knowledge of such kind of contractions in several ways. R-functions, (R,S)-contractions and
(A,S)-contractions can be considered as approaches in this direction. A common characteristic of
the previous kind of contractive maps is the fact that they are defined by a strict inequality. In this
manuscript, we show the advantages of replacing such inequality with a weaker one, involving
a family of more general auxiliary functions. As a consequence of our study, we show that not only
the above-commented contractions are particular cases, but also another classes of contractive maps
correspond to this new point of view.

Keywords: R-function; simulation function; manageable function; fixed point; contractivity condition;
binary relation

1. Introduction

Fixed point theory is a branch of mathematics that has multiple applications in almost all scientific
fields of study. Mainly, it is used to prove the existence (and, in many cases, also uniqueness) of
solutions of great variety of equations arising in theoretical and practical disciplines: matrix equations,
differential equations, integral equations, etc. One of its best advantage is the fact that it permits
us to deal with linear and nonlinear problems, which makes this discipline into an essential part of
nonlinear analysis.

Although it was not the first result in this line of research, Banach contractive mapping principle
is widely considered the pioneering statement. Any new result in this area must generalize such
principle. There are many directions in which it has been extended and improved: by using weaker
contractivity conditions, more general families of auxiliary functions, by involving a partial order,
by considering abstract metric spaces, etc.

In recent times, Khojasteh et al. [1] introduced a new class of auxiliary functions, called
simulation functions, that let us consider a family of contractivity conditions that only involve two
arguments: the distance between two points (d(x, y)) and the distance between their corresponding
images (d(Tx, Ty)) under the considered operator. This work quickly attracted the attention
of several researchers because of its potential applications (see, for instance, the work of
Roldán López de Hierro et al. [2], who slightly modified the original definition, and those of Roldán
López de Hierro and Shahzad [3,4], who presented R-functions as extensions of simulation functions).

The above-mentioned classes of contractions have been included in a new family of contractive
mappings, called (A,S)-contractions, that extend and unify several results in fixed point theory (see [5]).
Theoretical notions introduced in such manuscript were later developed by other researchers (see [6])
even with applications to fuzzy partial differential equations (see [7]) and optimal solutions and
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applications to nonlinear matrix and integral equations (see [8]). However, in the original definition of
(A,S)-contractions, inspired by the previous contributions, the authors established a strict inequality
that must be verified for some pairs of points related under a binary relation. In this manuscript,
we improve such results in several ways: (1) the given family of auxiliary functions is more general;
(2) coherently, the presented contractivity condition is weaker; and (3) the set of points that have
to satisfy the contractivity condition is smaller. These improvements let us show that not only the
above-commented contractions are particular cases of our study, but also new families of contractive
maps correspond to this new approach (see [9–11]). The presented contractions are called ample
spectrum contractions because they are an attempt to generalize all known contractions that are defined
by contractivity conditions that involve only the terms d(x, y) and d(Tx, Ty).

2. Preliminaries

Basic notions and notations for a good understanding of this manuscript are given in [5].
Nevertheless, we recall here the essential facts. Throughout this manuscript, X always stands for
a nonempty set. A binary relation on X is a nonempty subset S of the product space X × X. If (x, y) ∈ S ,
we denote it by xSy. We write xS∗y when xSy and x �= y. Notice that S∗, if it is nonempty, is another
binary relation on X. Two points x and y are S-comparable if xSy or ySx. A binary relation S is:

• transitive: If from xSy and ySz it follows xSz,
• reflexive: If xSx for each x ∈ R,
• antisymmetric: If from xSy and ySx it follows x = y.

Reflexive and transitive binary relations are called preorders (or quasiorders), and, if they are also
antisymmetric, then they are partial orders. The trivial partial order SX is defined by xSXy for each
x, y ∈ X.

From now on, N = {0, 1, 2, 3, . . .} stands for the set of all nonnegative integers and N∗ = N�{0}.
Henceforth, let T : X → X be a map from X into itself, let (X, d) be a metric space and let
A ⊆ R be a nonempty subset of the set of all real numbers. The range (or image) of d is
ran(d) = {d(x, y) : x, y ∈ X} ⊆ [0, ∞).

If Tx = x, then x is a fixed point of T. The maps {Tn : X → X}n∈N defined by T0 =identity, T1 = T
and Tn+1 = T ◦ Tn for all n ≥ 2 are known as the iterates of T. The Picard sequence of T based on x0 ∈ X
is the sequence {xn}n∈N given by xn+1 = Txn for all n ∈ N (hence, xn = Tnx0 for each n ∈ N). When
any Picard sequence of T converges to a fixed point of T, we say that T is a weakly Picard operator, and
if it has a unique fixed point, then T is known as Picard operator.

In [5], the authors used the following terminology. Let S be a binary relation on a metric
space (X, d), let Y ⊆ X be a nonempty subset, let {xn} be a sequence in X and let T : X → X be
a self-mapping. We say that:

• A sequence {xn} ⊆ X is asymptotically regular on (X, d) if {d (xn, xn+1)} → 0.
• T is S-nondecreasing if TxSTy for all x, y ∈ X such that xSy.
• {xn} is S-nondecreasing if xnSxm for all n, m ∈ N such that n < m.
• {xn} is S-strictly-increasing if xnS∗xm for all n, m ∈ N such that n < m.
• T is S-nondecreasing-continuous if {Txn} → Tz for all S-nondecreasing sequence {xn} ⊆ X such

that {xn} → z ∈ X.
• T is S-strictly-increasing-continuous if {Txn} → Tz for all S-strictly-increasing sequence {xn} ⊆ X

such that {xn} → z ∈ X.
• Y is (S , d)-strictly-increasing-complete if every S-strictly-increasing and d-Cauchy sequence {yn} ⊆

Y is d-convergent to a point of Y.
• Y is (S , d)-strictly-increasing-precomplete if there exists a set Z such that Y ⊆ Z ⊆ X and Z is

(S , d)-strictly-increasing-complete;
• (X, d) is S-strictly-increasing-regular if, for all S-strictly-increasing sequence {xn} ⊆ X such that

{xn} → z ∈ X, it follows that xnSz for all n ∈ N.
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We follow the notation given in [12,13]. Next, we list a collection of properties that can be satisfied
by a function φ : [0, ∞) → [0, ∞).

(P1) φ is non-decreasing, that is, if 0 ≤ t ≤ s, then φ (t) ≤ φ (s).
(P10) The series ∑

n≥1
φn (t) converges for all t > 0.

(P11) lim
n→∞

φn (t) = 0 for all t > 0.
(P12) φ (t) < t for all t > 0.
(P13) lim

t→0+
φ (t) = 0.

(P′) φ (0) = 0.

It is clear that (P10) ⇒ (P11) and, on the other hand, (P12) ⇒ (P13).

Proposition 1 ([12,13]). If (P1) holds, then (P10) ⇒ (P11) ⇒ (P12) ⇒ (P13) ⇒ (P′).

Given a function α : X × X → [0, ∞), it is possible to redefine the previous notions in
terms of α (transitivity, α-admissibility, α-nondecreasing character, α-nondecreasing-continuity,
α-strictly-increasing-regularity, (α, d)-strictly-increasing-completeness, (α, d)-strictly-increasing-
precompleteness, etc.). For details, see [5]. Such properties can be translated to the previous setting by
using the binary relation Sα on X given, for x, y ∈ X, by

xSαy if α(x, y) ≥ 1. (1)

Lemma 1. Let (X, d) be a metric space, let T : X → X be a self-mapping and let α : X × X → [0, ∞) be
a function. Then, the following properties hold.

1. The binary relation Sα is transitive if, and only if, α is transitive.
2. T is α-admissible if, and only if, T is Sα-nondecreasing.
3. Given z0 ∈ X, the mapping T is (d,Sα)-nonincreasing-continuous at z0 if, and only if, it is

(d, α)-right-continuous at z0.
4. T is (d,Sα)-nonincreasing-continuous if, and only if, T is (d, α)-right-continuous.

In [5], Shahzad et al. introduced the following notions.

Definition 1. Let {an} and {bn} be two sequences of real numbers. We say that {(an, bn)} is a
(T,S)-sequence if there exist two sequences {xn}, {yn} ⊆ X such that

xnSyn, an = d(Txn, Tyn) > 0 and bn = d(xn, yn) > 0 for all n ∈ N.

If S is the trivial binary relation SX, then {(an, bn)} is called a T-sequence.

Remark 1. Notice that {(an = d(Txn, Tyn), bn = d(xn, yn))} is a (T,S)-sequence if, and only if,

xnS∗yn and an > 0 for all n ∈ N.

Definition 2. We say that T : X → X is an (A,S)-contraction if there exists a function � : A × A → R

such that T and � satisfy the following four conditions:

(A1) ran(d) ⊆ A.
(A2) If {xn} ⊆ X is a Picard S-nondecreasing sequence of T such that

xn �= xn+1 and � (d (xn+1, xn+2) , d (xn, xn+1)) > 0 for all n ∈ N,

then {xn} is asymptotically regular on (X, d) (that is, {d (xn, xn+1)} → 0).

55



Mathematics 2019, 7, 1033

(A3) If {(an, bn)} ⊆ A × A is a (T,S)-sequence such that {an} and {bn} converge to the same limit L ≥ 0
and verifying that L < an and �(an, bn) > 0 for all n ∈ N, then L = 0.

(A4) � (d(Tx, Ty), d(x, y)) > 0 for all x, y ∈ X such that xS∗y and TxS∗Ty.

In such a case, we say that T is an (A,S)-contraction with respect to �. We denote the family of all
(A,S)-contractions from (X, d) into itself with respect to � by AX,d,S ,�,A or, for simplicity, by A� when no
confusion is possible.

If S is the trivial binary relation SX, then T is called an A-contraction (with respect to �).

Condition (A1) implies that A is a nonempty set. In some cases, we also consider the following
properties.

(A′
2) If x1, x2 ∈ X are two points such that

Tnx1S∗Tnx2 and �(d
(

Tn+1x1, Tn+1x2

)
, d (Tnx1, Tnx2)) > 0 for all n ∈ N,

then {d (Tnx1, Tnx2)} → 0.
(A5) If {(an, bn)} is a (T,S)-sequence such that {bn} → 0 and �(an, bn) > 0 for all n ∈ N,

then {an} → 0.

3. Ample Spectrum Contractions

In this section, we slightly modify the axioms given in [5] in a subtle way in order to consider
a wider class of contractions. In what follows, let (X, d) be a metric space, let S be a binary relation on
X and let T : X → X be a self-mapping.

Definition 3. Let {an} and {bn} be two sequences of real numbers. We say that {(an, bn)} is a
(T,S∗)-sequence if there exist two sequences {xn}, {yn} ⊆ X such that

xnS∗yn, TxnS∗Tyn, an = d(Txn, Tyn) > 0 and bn = d(xn, yn) > 0 for all n ∈ N.

Proposition 2. Every (T,S∗)-sequence is a (T,S)-sequence.

Definition 4. We say that T : X → X is a ample spectrum contraction if there exists a function � :
A × A → R such that T and � satisfy the following four conditions:

(B1) A is nonempty and { d (x, y) ∈ [0, ∞) : x, y ∈ X, xS∗y } ⊆ A.
(B2) If {xn} ⊆ X is a Picard S-nondecreasing sequence of T such that

xn �= xn+1 and � (d (xn+1, xn+2) , d (xn, xn+1)) ≥ 0 for all n ∈ N,

then {d (xn, xn+1)} → 0.
(B3) If {(an, bn)} ⊆ A × A is a (T,S∗)-sequence such that {an} and {bn} converge to the same limit L ≥ 0

and verifying that L < an and �(an, bn) ≥ 0 for all n ∈ N, then L = 0.
(B4) � (d(Tx, Ty), d(x, y)) ≥ 0 for all x, y ∈ X such that xS∗y and TxS∗Ty.

In such a case, we say that T is a ample spectrum contraction with respect to S and �. We denote the
family of all ample spectrum contractions from (X, d) into itself with respect to S and � by BX,d,S ,�,A.

In some cases, we also consider the following properties:

(B′
2) If x1, x2 ∈ X are two points such that

Tnx1S∗Tnx2 and �(d
(

Tn+1x1, Tn+1x2

)
, d (Tnx1, Tnx2)) ≥ 0 for all n ∈ N,

then {d (Tnx1, Tnx2)} → 0.
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(B5) If {(an, bn)} is a (T,S∗)-sequence such that {bn} → 0 and �(an, bn) ≥ 0 for all n ∈ N, then
{an} → 0.

Remark 2. The reader can observe the following facts about the previous assumptions:

1. Notice that conditions (B2), (B3), (B′
2) and (B5) establish that, if there exists a sequence (or one point, or

two points) verifying some assumptions, then a thesis must hold. However, we point out that, if such kind
of sequences (or points) does not exist, then conditions (B2), (B3), (B′

2) and (B5) hold.
2. Condition (B2) follows from (B′

2) using x2 = Tx1.
3. None of the previous conditions establishes a constraint about the values { �(0, s) : s ∈ A } because the

first argument is always positive. In fact, it is possible that 0 /∈ A.
4. If xS∗y, then d(x, y) > 0. Hence, 0 /∈ { d (x, y) ∈ [0, ∞) : x, y ∈ X, xS∗y }. Nevertheless, 0 may

belong to A.
5. If S is the binary relation such that xSy if, and only if, x = y, then { d (x, y) ∈ [0, ∞) : x, y ∈ X, xS∗y }

is empty. This is the reason we must impose that A is nonempty.
6. Condition (B1) guarantees that the function � can be applied in the other assumptions. For instance, in

(B2), it is clear that xnS∗xn+1 and xn+1S∗xn+2 because {xn} is S-nondecreasing and xn �= xn+1 for all
n ∈ N.

7. As the reader can easily check in the proofs of the following results, we could also have supposed in Condition
(B3) that {xn} and {yn} are appropriate subsequences of the same Picard sequence {zn = Tnz0} ⊆ X
(in the sense that xn = zp(n) and yn = zq(n) being n ≤ p(n) < q(n) for all n ∈ N). In order not to
complicate the proofs, we do not include such assumption.

Proposition 3. If � (t, s) ≤ s − t for all t, s ∈ A ∩ (0, ∞), then (B5) holds.

Proof. Assume that {an}, {bn} ⊂ (0, ∞) ∩ A are two sequences such that {bn} → 0 and �(an, bn) ≥ 0
for all n ∈ N. Since an, bn ∈ (0, ∞) ∩ A, then 0 < �(an, bn) ≤ bn − an for all n ∈ N. As a consequence,
0 < an ≤ bn for all n ∈ N, which means that {an} → 0.

The previous definition generalizes the notion of (A,S)-contraction, as we prove in the
following result:

Theorem 1. Every (A,S)-contraction is an ample spectrum contraction (with respect to the same function �).
Furthermore, if it satisfies (A′

2) (respectively, (A5)), then it also verifies (B′
2) (respectively, (B5)).

In particular, we prove the following implications:

(A1) ⇒ (B1) ,

(A4) ⇒ (B4) ,

(A2) + (A4) ⇒ (B2) ,

(A3) + (A4) ⇒ (B3) ,

(A4) + (A5) ⇒ (B5) ,(
A′

2
)
+ (A4) ⇒

(
B′

2
)

.

Proof. Let (X, d) be a metric space, let T : X → X be a mapping and let � : A × A → R be a function.
Clearly, (A1) ⇒ (B1) and (A4) ⇒ (B4). Next, we prove the rest of conditions.

[ (A′
2) + (A4) ⇒ (B′

2) ] Let x1, x2 ∈ X be two points such that

Tnx1S∗Tnx2 and �(d
(

Tn+1x1, Tn+1x2

)
, d (Tnx1, Tnx2)) ≥ 0 for all n ∈ N.

Let us denote
x1

n = Tnx1 and x2
n = Tnx2 for all n ∈ N.

57



Mathematics 2019, 7, 1033

Hence, by hypothesis, x1
n = Tnx1S∗Tnx2 = x2

n and Tx1
n = Tn+1x1S∗Tn+1x2 = Tx2

n. Applying
Condition (A4), for all n ∈ N,

�(d
(

Tn+1x1, Tn+1x2

)
, d (Tnx1, Tnx2)) = �(d

(
Tx1

n, Tx2
n

)
, d
(

x1
n, x2

n

)
) > 0.

Therefore, Condition (A′
2) implies that {d(Tnx1, Tnx2)} → 0.

[ (A2) + (A4) ⇒ (B2) ] It follows as in the previous implication by using x1 = x0 and x2 = Tx0.
[ (A3) + (A4) ⇒ (B3) ] Let {(an, bn)} ⊆ A × A be a (T,S∗)-sequence such that {an} and {bn}

converge to the same limit L ≥ 0 and verifying that L < an and �(an, bn) ≥ 0 for all n ∈ N. By
definition, there are two sequences {xn}, {yn} ⊆ X such that

xnS∗yn, TxnS∗Tyn, an = d(Txn, Tyn) > 0 and bn = d(xn, yn) > 0 for all n ∈ N.

As xnS∗yn and TxnS∗Tyn, then it follows from (A4) that

�(an, bn) = �(d(Txn, Tyn), d(xn, yn)) > 0 for all n ∈ N.

Therefore, applying (A3), we conclude that L = 0.
[ (A4) + (A5) ⇒ (B5) ] Let {(an, bn)} be a (T,S∗)-sequence such that {bn} → 0 and �(an, bn) ≥ 0

for all n ∈ N. By definition, there exist two sequences {xn}, {yn} ⊆ X such that

xnS∗yn, TxnS∗Tyn, an = d(Txn, Tyn) > 0 and bn = d(xn, yn) > 0 for all n ∈ N.

As xnS∗yn and TxnS∗Tyn, then it follows from (A4) that

�(an, bn) = �(d(Txn, Tyn), d(xn, yn)) > 0 for all n ∈ N.

Therefore, applying (A5), we conclude that {an} → 0.

The previous theorem provides us a large list of ample spectrum contractions because every
(A,S)-contraction is an ample spectrum contraction. In particular, as the authors proved in [3,5], the
following ones are examples of ample spectrum contractions:

• Banach contractions;
• Meir–Keeler contractions (see [14,15]);
• Z-contractions involving simulation functions (see [1,2]);
• manageable contractions (see [16]);
• Geraghty contractions (see [17]); and
• R-contractions (see [3,5]).

The converse of Theorem 1 is false, as we show in the following example:

Example 1. Let X = {0, 1, 3} be endowed with the Euclidean metric dE(x, y) = | x − y | and the usual order
≤. Hence, (X, dE) is a complete metric space. Let A = ran(dE) = {0, 1, 2, 3} and let T : X → X and
� : A × A → R be defined by

Tx =

{
0, if x ∈ {0, 1},
1, if x = 3;

�(t, s) = 0 for all t, s ∈ A.

Then, T is not an (A,≤)-contraction with respect to � because, if x = 1 and y = 3, then x < y and
Tx < Ty, but � (d(Tx, Ty), d(x, y)) = 0. Let us show that T is an ample spectrum contraction with respect to
� and ≤. Condition (B4) is obvious. Properties (B2) and (B′

2) follows from the fact that any Picard sequence
{xn} of T must verify xn = 0 for all n ≥ 3. Taking into account that any convergent sequence on A is almost
constant (because it is discrete), Axioms (B3) and (B5) are satisfied because such kind of sequences do not exist.
Hence, T is an ample spectrum contraction with respect to � and ≤.
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The notion of (T,S∗)-sequence plays a key role in the definition of ample spectrum contraction.
In fact, if we had not changed the notion of (T,S)-sequence by the concept of (T,S∗)-sequence in
Definition 4, then there would have not been any relationship between (A,S)-contractions and ample
spectrum contractions. We illustrate this affirmation with the following example.

Example 2. Let X = [0, 2]∪C ∪ D, where C = { 10m ∈ N : m ∈ N∗ } and D = { 10m+ 4 ∈ N : m ∈ N∗ }.
Assume that X is endowed with the Euclidean metric dE(x, y) = | x − y | and the usual order ≤. Hence, (X, dE)

is a complete metric space. The range of dE can be expressed as

ran(dE) = [0, 2] ∪ {4} ∪ B where B ⊂ [6, ∞) .

Let A = ran(dE) and let T : X → X and � : A × A → R be defined by

Tx =

⎧⎪⎪⎨⎪⎪⎩
x
4

, if x ∈ [0, 2] ,

1 +
1
m

, if x = 10m ∈ C (for some m ∈ N∗),

0, if x = 10m + 4 ∈ D (for some m ∈ N∗);

�(t, s) =

{
0, if t > 1 and s ≥ 1,
s
2
− t, otherwise.

Notice that T satisfies the following properties.

(p1) T(X) ⊂ [0, 2]. In particular, | Tx − Ty | ≤ 2 for all x, y ∈ X.
(p2) If x, y ∈ X are two different points such that x ∈ C ∪ D or y ∈ C ∪ D, then | x − y | ≥ 4. In particular,

if | x − y | < 4, then x, y ∈ [0, 2].
(p3) For all x0 ∈ X, the Picard sequence of T based on x0 verifies xn+1 = Tx0

4n for all n ∈ N. Thus, every
Picard sequence of T converges to zero.

Let us show that T is an ample spectrum contraction with respect to � and ≤.
(B2) Let {xn} ⊆ X be a Picard S-nondecreasing sequence of T such that

xn �= xn+1 and � (dE (xn+1, xn+2) , dE (xn, xn+1)) ≥ 0 for all n ∈ N.

Since {xn} → 0, {dE (xn, xn+1)} → 0.
(B3) Let {(an, bn)} ⊆ A × A be a (T,<)-sequence such that {an} and {bn} converge to the same limit

L ≥ 0 and verifying that L < an and �(an, bn) ≥ 0 for all n ∈ N. By definition, there are two sequences
{xn}, {yn} ⊆ X such that

xn < yn, Txn < Tyn, an = dE(Txn, Tyn) > 0 and bn = d(xn, yn) > 0 for all n ∈ N.

As an = dE(Txn, Tyn) ∈ [0, 2], then L ≤ 2. Since {bn = dE(xn, yn)} → L ≤ 2, there exists n0 ∈ N

such that dE(xn, yn) < 4 for all n ≥ n0. By (p2), we have that xn, yn ∈ [0, 2] for all n ≥ n0. Therefore, for all
n ≥ n0,

an = dE(Txn, Tyn) =
∣∣∣ xn

4
− yn

4

∣∣∣ = | xn − yn |
4

=
bn

4
.

Letting n → ∞, we deduce that L = L/4, so L = 0.
(B4) Let x, y ∈ X be two points such that x < y and Tx < Ty. To prove that � (d(Tx, Ty), d(x, y)) ≥ 0,

we observe three cases.

� If � (d(Tx, Ty), d(x, y)) = 0, then (B4) holds. Hence, in what follows, we can assume that

� (d(Tx, Ty), d(x, y)) =
| x − y |

2
− | Tx − Ty | = y − x

2
− (Ty − Tx) ,

which corresponds to the case in which | Tx − Ty | ≤ 1 or | x − y | < 1.
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� If | x − y | ≥ 4, then, by (p1),

� (d(Tx, Ty), d(x, y)) =
| x − y |

2
− | Tx − Ty | ≥ 4

2
− 2 = 0.

� On the contrary case, if | x − y | < 4, then x or y cannot belong to C ∪ D. Then, necessarily, x, y ∈ [0, 2],
thus

� (d(Tx, Ty), d(x, y)) =
| x − y |

2
− | Tx − Ty | = | x − y |

2
−
∣∣∣ x

4
− y

4

∣∣∣ = | x − y |
4

> 0,

which means that (B4) holds.

In any case,(B4) holds.

The following result is useful in order to study when an ample spectrum contraction can have
multiple fixed points.

Proposition 4. Let (X, d) be a metric space endowed with a binary relation S and let T : X → X and
� : A × A → R be two maps such that (B1), (B′

2) and (B4) holds. If ω, ω′ ∈ X are two S-comparable fixed
points of T, then ω = ω′.

Proof. Reasoning by contradiction, assume that ω and ω′ are two distinct fixed points of T. As ω and
ω′ are S-comparable, we can suppose, without loss of generality, that ωSω′. Hence, ωS∗ω′ and also
TωS∗Tω′. Let an = d (ω, ω′) > 0 for all n ∈ N. By using (B4), for all n ∈ N,

� (an+1, an) = �
(
d
(
ω, ω′) , d

(
ω, ω′)) = �

(
d
(
Tω, Tω′) , d

(
ω, ω′)) ≥ 0.

Therefore, it follows from (B′
2) that {an = d (ω, ω′)} → 0, which is a contradiction. Thus,

ω = ω′.

4. Fixed Point Theorems Involving Ample Spectrum Contractions

Once we have changed the notions of (T,S)-sequence and (A,S)-contraction by the concepts of
(T,S∗)-sequence and ample spectrum contraction, we are ready to introduce the main results of the
manuscript, which is the aim of the current section. Concretely, as we show below, the following one is
the most general theorem of this manuscript.

Theorem 2. Let (X, d) be a metric space endowed with a transitive binary relation S and let T : X → X
be an S-nondecreasing ample spectrum contraction with respect to � : A × A → R. Suppose that T(X) is
(S , d)-strictly-increasing-precomplete and there exists a point x0 ∈ X such that x0STx0. Assume that at least
one of the following conditions is fulfilled:

(a) T is S-strictly-increasing-continuous.
(b) (X, d) is S-strictly-increasing-regular and Condition (B5) holds.
(c) (X, d) is S-strictly-increasing-regular and � (t, s) ≤ s − t for all t, s ∈ A ∩ (0, ∞).

Then, the Picard sequence of T based on x0 converges to a fixed point of T. In particular, T has at least
a fixed point.

Notice that the metric space (X, d) needs not to be complete.

Proof. Let x0 ∈ X be a point such that x0STx0 and let {xn+1 = Txn}n≥0 be the Picard sequence
of T based on x0. If there exists some n0 ∈ N such that xn0+1 = xn0 , then xn0 is a fixed point of T,
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and {xn} converges to such point. On the contrary case, assume that xn �= xn+1 for all n ∈ N. As T is
S-nondecreasing and x0STx0 = x1, then xnSxn+1 for all n ∈ N, and, as S is transitive,

xnSxm for all n, m ∈ N such that n < m. (2)

In fact, as xn �= xn+1 for all n ∈ N, then

xnS∗xn+1 and TxnS∗Txn+1 for all n ∈ N. (3)

Let consider the sequence {d(xn, xn+1)} ⊆ A. Taking into account Equation (3) and the fact that
T is an ample spectrum contraction, Condition (B4) implies that, for all n ∈ N,

�(d
(

Tn+1x0, Tn+2x0

)
, d
(

Tnx0, Tn+1x0

)
) = � (d(Txn, Txn+1), d(xn, xn+1)) ≥ 0.

Applying (B2) ,we deduce that {xn = Tnx0} is an asymptotically regular sequence on (X, d),
that is, {d(xn, xn+1)} → 0.

Let us show that {xn} is an S-strictly-increasing sequence. Indeed, in view of Equation (2),
assume that there exists n0, m0 ∈ N such that n0 < m0 and xn0 = xm0 . If p0 = m0 − n0 ∈ N�{0},
then xn0 = xn0+k p0 for all k ∈ N. In particular, the sequence {d(xn, xn+1)} contains the constant
subsequence {

d(xn0+k p0 , xn0+k p0+1) = d(xn0 , xn0+1) > 0
}

k∈N
,

which contradicts the fact that {d(xn, xn+1)} → 0. This contradiction guarantees that xn �= xm for all
n �= m, thus xnS∗xm for all n, m ∈ N such that n < m, that is, {xn} is an S-strictly-increasing sequence.

Next, we show that {xn} is a Cauchy sequence reasoning by contradiction. If {xn} is not a Cauchy
sequence, then there exist ε0 > 0 and two subsequences {xn(k)} and {xm(k)} of {xn} such that

k ≤ n(k) < m(k), d(xn(k), xm(k)−1) ≤ ε0 < d(xn(k), xm(k)) for all k ∈ N,

lim
k→∞

d(xn(k), xm(k)) = lim
k→∞

d(xn(k)−1, xm(k)−1) = ε0.

Let L = ε0 > 0, {ak = d(xn(k), xm(k))} → L and {bk = d(xn(k)−1, xm(k)−1)} → L. As
n(k) < m(k) (and n(k) − 1 < m(k) − 1), then xn(k)S∗xm(k) and xn(k)−1S∗xm(k)−1. Thus, {(ak, bk)}
is a (T,S∗)-sequence. Since L = ε0 < d(xn(k), xm(k)) = ak and

� (ak, bk) = �
(

d(xn(k), xm(k)), d(xn(k)−1, xm(k)−1)
)

= �
(

d(Txn(k)−1, Txm(k)−1), d(xn(k)−1, xm(k)−1)
)
≥ 0

for all k ∈ N, Condition (B3) guarantees that ε0 = L = 0, which is a contradiction. As a consequence,
{xn} is a Cauchy sequence. Since {xn}n≥1 ⊆ T(X) and T(X) is (S , d)-strictly-increasing-precomplete,
there is a subset Z ⊆ X such that T(X) ⊆ Z ⊆ X and Z is (S , d)-strictly-increasing-complete.
In particular, as {xn} is an S-strictly-increasing and Cauchy sequence, there exists z ∈ Z ⊆ X such
that {xn} → z. Let us show that z is a fixed point of T considering three cases.

Case 1. Assume that T is S-strictly-increasing-continuous. In this case, {xn+1 = Txn} → Tz,
so Tz = z.

Case 2. Assume that (X, d) is S-strictly-increasing-regular and condition (B5) holds. In this case,
as {xn} is an S-strictly-increasing sequence such that {xn} → z, it follows that

xnSz for all n ∈ N. (4)
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Since T is S-nondecreasing,
TxnSTz for all n ∈ N. (5)

Let an = d(xn+1, Tz) = d(Txn, Tz) and bn = d(xn, z) for all n ∈ N. Clearly, {bn} → 0. Notice that

bn = 0 ⇒ an = 0 (6)

because
bn = 0 ⇔ xn = z ⇒ xn+1 = Txn = Tz ⇔ an = 0.

Let consider the set

Ω = {n ∈ N : an = 0} = {n ∈ N : d(xn+1, Tz) = 0} .

Subcase 2.1. Assume that Ω is finite. In this case, there exists n0 ∈ N such that d(xn+1, Tz) = an > 0
for all n ≥ n0. By (6), d(xn, z) = bn > 0 for all n ≥ n0. In this case, {(an, bn)}n≥n0 is a (T,S)-sequence
(because an = d(Txn, Tz) > 0 and bn = d(xn, z) > 0 for all n ≥ n0). In particular, xn �= z and Txn �= Tz
for all n ≥ n0. By Equations (4) and (5), we deduce that xnS∗z and TxnS∗Tz for all n ≥ n0. It follows
from (B4) that

�(an, bn) = � (d(Txn, Tz), d(xn, z)) ≥ 0 for all n ≥ n0.

As a consequence, as (B5) holds, we conclude that {an = d(xn+1, Tz)} → 0, that is, {xn+1} → Tz,
which guarantees that Tz = z.

Subcase 2.2. Assume that Ω is not finite. In this case, there exists a subsequence {xn(k)} of {xn}
such that

d(xn(k)+1, Tz) = 0 for all k ∈ N.

Hence, xn(k)+1 = Tz for all k ∈ N. Since {xn} → z and
{

xn(k)+1

}
→ Tz, Tz = z.

Case 3. Assume that (X, d) is S-strictly-increasing-regular and � (t, s) ≤ s − t for all t, s ∈ A ∩ (0, ∞).
Proposition 3 guarantees that Item (b) is applicable.

In any case, we conclude that z is a fixed point of T.

In the following result, we describe sufficient conditions in order to guarantee uniqueness of the
fixed point.

Theorem 3. Under the hypotheses of Theorem 2, assume that the following properties are fulfilled:

� Condition (B′
2) holds; and

� for all x, y ∈ Fix(T), there exists z ∈ X such that z is, at the same time, S-comparable to x and S-comparable
to y.

Then, T has a unique fixed point.

Proof. Let x, y ∈ Fix(T) be two fixed points of T. By hypothesis, there exists z0 ∈ X such that z0 is, at
the same time, S-comparable to x and S-comparable to y. Let {zn} be the Picard sequence of T based
on z0, that is, zn+1 = Tzn for all n ∈ N. We prove that x = y by showing that {zn} → x and {zn} → y.
We first use x, but the same argument is valid for y.

Since z0 is S-comparable to x, assume that z0Sx (the case xSz0 is similar). As T is S-nondecreasing,
znSx for all n ∈ N. If there exists n0 ∈ N such that zn0 = x, then zn = x for all n ≥ n0. In particular,
{zn} → x and the proof is finished. On the contrary case, assume that zn �= x for all n ∈ N. Therefore
znS∗x and TznS∗Tx for all n ∈ N. Using the contractivity Condition (B4), for all n ∈ N,

0 ≤ �(d(Tzn, Tx), d(zn, x)) = �(d(Tn+1z0, Tn+1x), d(Tnz0, Tnx)).

It follows from (B′
2) that {d(Tnz0, Tnx)} → 0, that is, {zn} → x.
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5. Consequences

In this section, we illustrate how many well known theorems in fixed point theory (that involve
only d(x, y) and d(Tx, Ty) in their contractivity conditions) can be deduced from our main results.

5.1. Meir–Keeler Contractions

Meir and Keeler generalized the Banach theorem in a way that have attracted much attention in
the last 40 years.

Definition 5 (Meir and Keeler [15]). A Meir–Keeler contraction is a mapping T : X → X from a metric
space (X, d) into itself such that for all ε > 0, there exists δ > 0 verifying that if x, y ∈ X and ε ≤ d(x, y) <
ε + δ, then d(Tx, Ty) < ε.

Lim characterized this kind of mappings in terms of a contractivity condition using the following
class of auxiliary functions.

Definition 6 (Lim [14]). A function φ : [0, ∞) → [0, ∞) is called an L-function if

(a) φ(0) = 0;
(b) φ(t) > 0 for all t > 0; and
(c) for all ε > 0, there exists δ > 0 such that phi(t) ≤ ε for all t ∈ [ε, ε + δ].

Each L-function must satisfy:

φ(t) ≤ t for all t ∈ [0, ∞) . (7)

Theorem 4 (Lim [14], Theorem 1). Let (X, d) be a metric space and let T : X → X be a self-mapping. Then,
T is a Meir–Keeler mapping if, and only if, there exists an (non-decreasing, right-continuous) L-map φ such that

d(Tx, Ty) < φ(d(x, y)) for all x, y ∈ X verifying d(x, y) > 0. (8)

Meir and Keeler [15] demonstrated the following fixed point theorem by using a result of Chu
and Diaz [18].

Theorem 5 (Meir and Keeler [15]). Every Meir–Keeler contraction from a complete metric space into itself
has a unique fixed point.

We prove that this result can be immediately deduced from our main statements.

Theorem 6. Every Meir–Keeler contraction is an ample spectrum contraction that also verifies (B′
2) and (B5).

Proof. Let (X, d) be a metric space and let T : X → X be a Meir–Keeler contraction. By Theorem
4, there exists an L-map φ : [0, ∞) → [0, ∞) verifying Equation (8). Let A = ran(d) and let define
�φ : A × A → R by �φ(t, s) = φ (s) − t for all t, s ∈ A. Let us show that T is an ample spectrum
contraction with respect to �φ.

(B′
2) Let x1, x2 ∈ X be two points such that

Tnx1 �= Tnx2 and �φ(d
(

Tn+1x1, Tn+1x2

)
, d (Tnx1, Tnx2)) ≥ 0 for all n ∈ N.

As d (Tnx1, Tnx2) > 0, it follows from Equations (7) and (8) that, for all n ∈ N,

d
(

Tn+1x1, Tn+1x2

)
= d (TTnx1, TTnx2) < φ(d (Tnx1, Tnx2)) ≤ d(Tnx1, Tnx2).
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As {d(Tnx1, Tnx2)} is a bounded-below decreasing sequence of real numbers, it is convergent.
Let L ≥ 0 be its limit. To prove that L = 0, we reason by contradiction. Assume that L > 0. Hence,

0 < L ≤ d(Tn+1x1, Tn+1x2) < φ(d(Tnx1, Tnx2)) ≤ d(Tnx1, Tnx2) for all n ∈ N.

Letting ε = L > 0 in Condition (c) of Definition 6, there exists δ > 0 such that φ(t) ≤ ε = L for all
t ∈ [ε, ε + δ]. As {d(Tnx1, Tnx2)} ↘ L+, there exists n0 ∈ N such that L < d(Tn0 x1, Tn0 x2) < L + δ for
all n ≥ n0. Therefore,

φ(d(Tn0 x1, Tn0 x2)) ≤ ε = L < φ(d(Tn0 x1, Tn0 x2)),

which is a contradiction. Thus, L = 0 and {d (Tnx1, Tnx2)} → 0.
(B2) It follows from (B′

2).
(B3) Let {(an, bn)} ⊆ A × A be a T-sequence such that {an} and {bn} converge to the same limit

L ≥ 0 and verifying that L < an and �φ(an, bn) ≥ 0 for all n ∈ N. By definition, there exist two
sequences {xn}, {yn} ⊆ X such that

an = d(Txn, Tyn) > 0 and bn = d(xn, yn) > 0 for all n ∈ N.

Notice that, from Equation (8), for all n ∈ N,

L < an = d(Txn, Tyn) < φ(d(xn, yn)) = φ (bn) ≤ bn.

To prove that L = 0, assume that L > 0. Letting ε = L > 0 in Condition (c) of Definition 6, there
exists δ > 0 such that

φ(t) ≤ ε = L for all t ∈ [ε, ε + δ] .

As {d (xn, yn)} ↘ L+, there exists n0 ∈ N such that L < d (xn, yn) < L + δ for all n ≥ n0.
Therefore,

φ(d (xn0 , yn0)) ≤ ε = L < φ(d (xn0 , yn0)),

which is a contradiction. Thus, L = 0.
(B4) It is clear that, for all x, y ∈ X such that d(x, y) > 0 and d(Tx, Ty) > 0, Theorem 4

guarantees that
�φ (d(Tx, Ty), d(x, y)) = φ (d(x, y))− d(Tx, Ty) > 0.

(B5) Let {(an, bn)} be a T-sequence such that {bn} → 0 and �φ(an, bn) ≥ 0 for all n ∈ N. Then,
for all n ∈ N,

0 ≤ �φ(an, bn) = φ (bn)− an,

which means that 0 ≤ an ≤ φ (bn) ≤ bn. Therefore, {bn} → 0 implies {an} → 0.

Theorem 7. Theorem 5 follows from Theorems 2 and 3.

Proof. From Theorem 6, every Meir–Keeler contraction is an ample spectrum contraction that also
verifies (B′

2) and (B5), thus Theorems 2 and 3 are applicable in order to conclude that every Meir–Keeler
contraction has a unique fixed point.

5.2. Samet et al.’s Contractions

In [9], Samet et al. introduced the following kind of contractions and proved the following results.
Let us denote by Ψ the family of nondecreasing functions ψ : [0, ∞) → [0, ∞) such that Σn∈Nψn(t) < ∞
for each t > 0, where ψn is the nth iterate of ψ.
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Definition 7. Let (X, d) be a metric space and T : X → X be a given mapping. We say that T is
an α - ψ - contractive mapping if there exist two functions α : X × X → [0, ∞) and ψ ∈ Ψ such that

α(x, y) d(Tx, Ty) ≤ ψ(d(x, y)) for all x, y ∈ X. (9)

The main results in [9] can be summarized as follows.

Theorem 8 (Samet, Vetro and Vetro [9], Theorems 2.1, 2.2 and 2.3). Let (X, d) be a complete metric space
and T : X → X be an α - ψ - contractive mapping satisfying the following conditions:

(i) T is α - admissible (that is, if α(x, y) ≥ 1, then α(Tx, Ty) ≥ 1);
(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1; and
(iii) at least, one of the following conditions holds:

(iii.1) T is continuous; or
(iii.2) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n and {xn} → x ∈ X as n → ∞,

then α(xn, x) ≥ 1 for all n.

Then, T has a fixed point, that is, there exists x∗ ∈ X such that Tx∗ = x∗.
Furthermore, adding the condition:

(H) for all x, y ∈ X, there exists z ∈ X such that α(x, z) ≥ 1 and α(y, z) ≥ 1,

we obtain uniqueness of the fixed point of T .

To show that the previous theorem can be seen as a consequence of our main results, we present
the following statement in which we use a more general class of auxiliary functions.

Theorem 9. Let (X, d) be a metric space and T : X → X be a given mapping. Assume that there exist two
functions α : X × X → [0, ∞) and ψ : [0, ∞) → [0, ∞) such that ψ is nondecreasing, limn→∞ ψn (t) = 0 for
all t > 0, and also

α(x, y) d(Tx, Ty) ≤ ψ(d(x, y)) for all x, y ∈ X. (10)

Then, T is an ample spectrum contraction with respect to Sα that also verifies (B′
2) and (B5).

Proof. Let Sα be the binary relation on X given in (1). Let A = ran(d) and let define γ : A → R and
�γ : A × A → R by, for all t, s ∈ A,

γ (s) = inf ({ α(x, y) : d (x, y) = s }) ,

�γ (t, s) = ψ (s)− t γ (s) .

Notice that γ is well defined because if s ∈ A = ran(d), then there exist xs, ys ∈ X such
that d(xs, ys) = s, and we can take infimum in a nonempty, subset of non-negative real numbers.
Furthermore, as γ (d(x, y)) ≤ α(x, y) for all x, y ∈ X, then, by (10),

�γ (d(Tx, Ty), d(x, y)) = ψ (d(x, y))− d(Tx, Ty) γ (d(x, y))

≥ ψ (d(x, y))− d(Tx, Ty) α (x, y) ≥ 0.

Hence, (B4) holds. Let us prove the rest of properties.
(B′

2) Let x1, x2 ∈ X be two points such that

Tnx1S∗
α Tnx2 and �φ(d

(
Tn+1x1, Tn+1x2

)
, d (Tnx1, Tnx2)) ≥ 0 for all n ∈ N.
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Since Tnx1S∗
α Tnx1, then α(Tnx1, Tnx2) ≥ 1 and Tnx1 �= Tnx2 for all n ∈ N. By using Equation

(10) and Proposition 1, for all n ∈ N,

d(Tn+1x1, Tn+1x2) ≤ α(Tnx1, Tnx2) d(TTnx1, TTnx2)

≤ ψ (d(Tnx1, Tnx2)) ≤ d(Tnx1, Tnx2).

As {d(Tnx1, Tnx2)} is a bounded-below non-increasing sequence of real numbers, it is convergent. Let
L ≥ 0 be its limit. Hence,

0 ≤ L ≤ d(Tn+1x1, Tn+1x2) ≤ ψ(d(Tnx1, Tnx2)) ≤ d(Tnx1, Tnx2) for all n ∈ N.

As ψ is nondecreasing, for all n ∈ N,

d(Tnx1, Tnx2) ≤ ψ(d(Tn−1x1, Tn−1x2)) ≤ ψ2(d(Tn−2x1, Tn−2x2)) ≤ . . . ≤ ψn(d (x1, x2)).

Taking into account that d (x1, x2) > 0, then limn→∞ ψn (d (x1, x2)) = 0, and letting n → ∞ in

0 ≤ L ≤ d(Tnx1, Tnx2) ≤ ψn(d (x1, x2)),

we conclude that L = limn→∞ d(Tnx1, Tnx2) = 0.
(B2) It follows from (B′

2).
(B3) Let {(an, bn)} ⊆ A × A be a (T,Sα)-sequence such that {an} and {bn} converge to the same

limit L ≥ 0 and verifying that L < an and �γ(an, bn) ≥ 0 for all n ∈ N. By definition, there are two
sequences {xn}, {yn} ⊆ X such that

xnSαyn, an = d(Txn, Tyn) > 0 and bn = d(xn, yn) > 0 for all n ∈ N.

Hence, α (xn, yn) ≥ 1 for all n ∈ N. To prove that L = 0, we reason by contradiction. Assume that
L > 0. By Property (P12) of Proposition 1, ψ(L) < L. It follows from Equation (10) that

ψ(L) < L < an = d(Txn, Tyn) ≤ α (xn, yn) d(Txn, Tyn) ≤ ψ (d (xn, yn)) ≤ d (xn, yn) = bn. (11)

Since {bn} → L, then limn→∞ ψ (d (xn, yn)) = L. As ψ is nondecreasing, the following limit exists
and takes the value

lim
s→L+

ψ (s) = lim
n→∞

ψ (d (xn, yn)) = L.

As ψ is nondecreasing, ψ(L) ≤ ψ(s) ≤ ψ(t) for all L ≤ s ≤ t, so

ψ(L) < L = lim
s→L+

ψ (s) ≤ ψ (t) for all t ∈ (L, ∞) .

Taking in mind that L ≤ ψ (t) for all t ∈ (L, ∞), next, we distinguish two cases.
(Case 1) Assume that ψ(t) > L for all t ∈ (L, ∞). In this case, let t0 ∈ (L, ∞) be arbitrary. Then,

ψ(t0) > L. Therefore, ψ2(t0) = ψ(ψ(t0)) > L. Repeating this argument, ψ3(t0) = ψ(ψ2(t0)) > L.
Similarly, by induction, ψn(t0) > L for all n ∈ N, which contradicts the fact that limn→∞ ψn (t0) = 0.

(Case 2) Assume that there exists L′ > L such that ψ(L′) = L. In this case, as ψ is nondecreasing,
for all t ∈ (L, L′], we have that L ≤ ψ (t) ≤ ψ(L′) = L, so ψ(t) = L for all t ∈ (L, L′]. Since
{bn = d (xn, yn)} ↘ L+, there exists n0 ∈ N such that d (xn0 , yn0) ∈ (L, L′]. Hence, ψ (d (xn0 , yn0)) = L,
which contradicts the strict inequality in Equation (11) because

L < an0 ≤ ψ (d (xn0 , yn0)) .

In any case, we get a contradiction, so L = 0.
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(B5) Let {(an, bn)} be a (T,Sα)-sequence such that {bn} → 0 and �γ(an, bn) ≥ 0 for all n ∈ N. By
definition, there exist two sequences {xn}, {yn} ⊆ X such that

xnSαyn, an = d(Txn, Tyn) > 0 and bn = d(xn, yn) > 0 for all n ∈ N.

In particular, α (xn, yn) ≥ 1 for all n ∈ N. It follows from Equation (10) that

0 < an = d(Txn, Tyn) ≤ α (xn, yn) d(Txn, Tyn) ≤ ψ (d (xn, yn)) ≤ d (xn, yn) = bn.

Since {bn} → 0, then {an} → 0.

Corollary 1. Every Samet et al.’s α - ψ - contraction (in the sense of Definition 7) is an ample spectrum
contraction with respect to Sα that also verifies (B′

2) and (B5).

Proof. It follows from the fact that, if ψ ∈ Ψ, then Theorem 9 is applicable because ψ is nondecreasing
and limn→∞ ψn (t) = 0 for all t > 0 (recall Proposition 1).

Theorem 10. Theorem 8 immediately follows from Theorems 2 and 3.

Proof. By Corollary 1, every Samet et al.’s α - ψ - contraction is an ample spectrum contraction with
respect to Sα that also verifies (B′

2) and (B5), thus Theorems 2 and 3 are applicable.

5.3. Some Meditations about a Nonsymmetric Condition

In [1], Khojasteh et al. introduced the notion of simulation function as a mapping ζ : [0, ∞)×
[0, ∞) → R satisfying the following conditions:

(ζ1) ζ(0, 0) = 0;
(ζ2) ζ(t, s) < s − t for all t, s > 0; and
(ζ3) if {tn}, {sn} are sequences in (0, ∞) such that lim

n→∞
tn = lim

n→∞
sn > 0, then

lim sup
n→∞

ζ(tn, sn) < 0.

Shortly after, Roldán López de Hierro et al. [2] pointed out that Condition (ζ3) is symmetric in
both arguments of ζ, which is not necessary. Hence, these authors introduced the following variation
in Axiom (ζ3):

(ζ3) if {tn}, {sn} are sequences in (0, ∞) such that lim
n→∞

tn = lim
n→∞

sn > 0 and tn < sn for all n ∈ N, then

lim sup
n→∞

ζ(tn, sn) < 0.

In this way, they removed the symmetry of a key function involved in the contractivity condition.
After that, Roldán López de Hierro and Shahzad [3] presented the concept of R-contraction, which
is intimately associated to an R-function � : A × A → R. Such kind of functions must satisfy the
following conditions (see [3], Definition 12):

(�1) If {an} ⊂ (0, ∞) ∩ A is a sequence such that �(an+1, an) > 0 for all n ∈ N, then {an} → 0.
(�2) If {an}, {bn} ⊂ (0, ∞) ∩ A are two sequences converging to the same limit L ≥ 0 and verifying

that L < an and �(an, bn) > 0 for all n ∈ N, then L = 0.

Questions immediately arise: Why did the authors impose

L < an for all n ∈ N (12)
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in Assumption (�2)? Why did they not consider

L < bn for all n ∈ N (13)

rather than Equation (12)? A first response we can give is that both assumptions are interesting in order
to remove the symmetry in the variables of � in Assumption (�2) because the role of the sequence {an}
is different from the role of {bn}. However, are Equations (12) and (13) equivalent? The response is no:
we do believe that the condition in Equation (12) is better than the one in Equation (13). We justify it
by the following fact: using the hypothesis in Equation (12), it is easy to check that every Meir–Keeler
condition is an R-condition (see Theorem 25 in [3]). However, if we have only assumed that Equation
(13) holds, then some Meir–Keeler contractions would not have been R-contractions. To illustrate it,
we modify Example 2 in the following way.

Example 3. Let X = [0, 1] ∪ C ∪ D, where C = { 10m ∈ N : m ∈ N∗ } and D = { 10m + 1 + 1
m ∈ N :

m ∈ N∗ }. If X is furnished with the Euclidean metric dE(x, y) = | x − y | for all x, y ∈ X, then (X, dE) is
a complete metric space. Let T : X → X be the self-mapping defined by

Tx =

⎧⎪⎪⎨⎪⎪⎩
x
4

, if x ∈ [0, 1] ,

0, if x = 10m ∈ C (for some m ∈ N∗),

1 − 1
2m

, if x = 10m + 1 + 1
m ∈ D (for some m ∈ N∗);

Notice that Tx ∈ [0, 1) for all x ∈ X. Therefore,

dE(Tx, Ty) < 1 for all x, y ∈ X. (14)

Let us show that T is a Meir–Keeler contraction in (X, dE). Indeed, let φ : [0, ∞) → [0, ∞) be the function
given by

φ (t) =

{ t
2

, if t ∈ [0, 1] ,

1, if t > 1.

Clearly, φ is an L-function, and we claim that Equation (8) holds. Let x, y ∈ X be such that d (x, y) > 0.
Suppose, without loss of generality, that x < y.

• If x, y ∈ [0, 1], then dE(x, y) ≤ 1 and

dE(Tx, Ty) = dE

( x
4

,
y
4

)
=
∣∣∣ x

4
− y

4

∣∣∣ = | x − y |
4

<
| x − y |

2
= φ(dE(x, y)).

• If x ∈ [0, 1] and y ∈ C ∪ D, then dE(x, y) > 1, and it follows from Equation (14) that

dE(Tx, Ty) < 1 = φ(dE(x, y)).

• If x, y ∈ C ∪ D, then dE(x, y) > 1 and, similarly, dE(Tx, Ty) < 1 = φ(dE(x, y)).

In any case, Equation (8) holds and Theorem 4 ensures us that T is a Meir–Keeler contraction in (X, dE).
In fact, Theorem 21 in [3] guarantees that the function �φ : [0, ∞)× [0, ∞) → R given by

�φ(t, s) = φ(s)− t for all t, s ∈ [0, ∞) ,

is an R-function on [0, ∞) verifying (�3). In particular, it satisfies Axiom (�2). Let us show that �φ would
not satisfy (�2) if we replace Equation (12) with Equation (13). Indeed, let {xn}n∈N∗ and {yn}n∈N∗ be the
sequences in X given by

xn = 10n and yn = 10n + 1 +
1
n

for all n ∈ N.
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Therefore, for all n ∈ N,

an = dE(Txn, Tyn) = dE

(
0, 1 − 1

2n

)
= 1 − 1

2n
> 0 and

bn = dE(xn, yn) = dE

(
10n, 10n + 1 +

1
n

)
= 1 +

1
n
> 1.

Hence, for all n ∈ N,

�φ(an, bn) = �φ

(
1 − 1

2n
, 1 +

1
n

)
= φ

(
1 +

1
n

)
−
(

1 − 1
2n

)
= 1 −

(
1 − 1

2n

)
=

1
2n

> 0

However, L = 1 is not zero. Therefore, �φ does not satisfy (�2) if we replace Equation (12) with Equation
(13). Thus, in this case, there would be Meir–Keeler contractions that are not R-contractions.

As it can be easily checked, Property (�2) that R-functions must satisfy leads to Condition (A3)

for (A,S)-contractions and Condition (B3) for ample spectrum contractions.

(B3) If {(an, bn)} ⊆ A × A is a (T,S∗)-sequence such that {an} and {bn} converge to the same limit
L ≥ 0 and verifying that L < an and �(an, bn) ≥ 0 for all n ∈ N, then L = 0.

If we have assumed the condition in Equation (13) rather than the condition in Equation (12) in
(B3), then the same arguments given in Example 3 prove that there would be Meir–Keeler contractions
that are not ample spectrum contractions. As a consequence, we conclude that the assumption in
Equation (12) is more appropriate than the one in Equation (13) in the context of fixed point theory.

Nevertheless, in the next subsection, we are going to show that, under some very recent
contractivity conditions, they would be equivalent.

5.4. Shahzad et al.’s Contractions

In [10], Shahzad et al. presented some coincidence point results for a new class of contractive
mappings that they called (α, ψ, φ)-contractions. They used the following kind of auxiliary functions.

Definition 8 (Roldán López de Hierro [10], Definition 3.5). Let FA be the family of all pairs (ψ, φ) where
ψ, φ : [0, ∞) → [0, ∞) are two functions verifying the following two conditions:(
F 1
A
)

If {an} ⊂ (0, ∞) is a sequence such that ψ (an+1) ≤ φ(an) for all n ∈ N, then {an} → 0.(
F 2
A
)

If {an}, {bn} ⊂ [0, ∞) are two sequences converging to the same limit L and such that L < an and
ψ (bn) ≤ φ(an) for all n ∈ N, then L = 0.

As a consequence of their main coincidence results, they presented the following statement (see
the necessary preliminaries in [10]).

Theorem 11 (Shahzad, Karapınar and Roldán López de Hierro [10], Theorem 6.1). Let (X, d) be a metric
space, let α : X × X → [0, ∞) be a function and let T : X → X be a mapping such that the following conditions
are fulfilled:

1. there exists a subset A ⊆ X such that T(X) ⊆ A and (A, d) is complete;
2. α is transitive and T is α-admissible;
3. there exists (ψ, φ) ∈ FA such that

α(x, y) ψ (d(Tx, Ty)) ≤ φ (d(x, y)) for all x, y ∈ X; (15)

and
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4. at least one of the following conditions holds:

(a) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and T is (d, α)-right-continuous; or
(b) there exists x0 ∈ X such that α(Tx0, x0) ≥ 1 and T is (d, α)-left-continuous.

Then, T has, at least, a fixed point.
Additionally, assume that φ(0) = 0, ψ−1({0}) = {0}, and the following property holds:

(U) for all fixed points x and y of T, there exists z ∈ X such that z is, at the same time, α-comparable to x and
to y.

Then, T has a unique fixed point.

In the following definition, we modify the second condition.

Definition 9. Let GA be the family of all pairs (ψ, φ) where ψ, φ : [0, ∞) → [0, ∞) are two functions verifying
the following two conditions:(
F 1
A
)

If {an} ⊂ (0, ∞) is a sequence such that ψ (an+1) ≤ φ(an) for all n ∈ N, then {an} → 0.(
G2
A
)

If {an}, {bn} ⊂ [0, ∞) are two sequences converging to the same limit L and such that L < bn and
ψ (bn) ≤ φ(an) for all n ∈ N, then L = 0.

The same theorem can be proved in this case.

Theorem 12. Let (X, d) be a metric space, let α : X × X → [0, ∞) be a function and let T : X → X be a
mapping such that the following conditions are fulfilled:

1. There exists a subset A ⊆ X such that T(X) ⊆ A and (A, d) is complete.
2. α is transitive and T is α-admissible.
3. There exists (ψ, φ) ∈ GA such that

α(x, y) ψ (d(Tx, Ty)) ≤ φ (d(x, y)) for all x, y ∈ X. (16)

4. At least one of the following conditions holds:

(a) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and T is (d, α)-right-continuous; or
(b) there exists x0 ∈ X such that α(Tx0, x0) ≥ 1 and T is (d, α)-left-continuous.

Then, T has, at least, a fixed point.
Additionally, assume that φ(0) = 0, ψ−1({0}) = {0}, and the following property holds:

(U) For all fixed points x and y of T, there exists z ∈ X such that z is, at the same time, α-comparable to x and
to y.

Then, T has a unique fixed point.

Let us show how this last result can be deduced from Theorems 2 and 3. The key is the
following result.

Lemma 2. Let (X, d) be a metric space, let α : X × X → [0, ∞) be a function and let T : X → X be a mapping
such that the following conditions are fulfilled:

1. There exists (ψ, φ) ∈ GA such that

α(x, y) ψ (d(Tx, Ty)) ≤ φ (d(x, y)) for all x, y ∈ X. (17)
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2. There exist two distinct points x0, x1 ∈ X such that α (x0, x1) ≥ 1.

Then, T is an ample spectrum contraction with respect to a function � and Sα that also verifies (B′
2).

Proof. Let us consider

A = { d (x, y) ∈ [0, ∞) : x, y ∈ X, xS∗
α y }

= { d (x, y) ∈ [0, ∞) : x, y ∈ X, x �= y, α (x, y) ≥ 1 } .

As d (x0, x1) ∈ A, then A is nonempty. Let us define the function γ : A → R, for all t ∈ A, by

γ (t) = inf ({ α(x, y) : x, y ∈ X, xS∗
α y and d(x, y) = t }) .

To prove that γ is well defined, let t ∈ A be arbitrary and let

Ωt = { α(x, y) : x, y ∈ X, xS∗
α y and d(x, y) = t } .

By definition, as t ∈ A, there exist xt, yt ∈ X such that xtS∗
α yt and t = d (xt, yt). Therefore,

α (xt, yt) ∈ Ωt, so this set is nonempty. Moreover, let x, y ∈ X be arbitrary points such that xS∗
α y and

d(x, y) = t. Hence, α(x, y) ≥ 1. This proves that α(x, y) ≥ 1 for all number α(x, y) ∈ Ωt. Taking into
account that Ωt is nonempty and bounded below by 1, we can take infimum, which means that γ(t) is
well defined. In particular, we have proved the following facts:

γ(t) = inf Ωt ≥ 1 for all t ∈ A; (18)

γ (d (x, y)) ≤ α(x, y) for all x, y ∈ X such that xS∗
α y. (19)

Considering the pair (ψ, φ) ∈ GA, let � : A × A → R be defined, for all t, s ∈ A, by

� (t, s) = φ (s)− γ (s) ψ (t) for all t, s ∈ A.

We claim that T is an ample spectrum contraction with respect to � and Sα that also verifies (B′
2).

We demonstrate each condition. (B1) is obvious.
(B4) Let x, y ∈ X be arbitrary points such that xS∗

α y and TxS∗
α Ty, that is, α (x, y) ≥ 1, α (Tx, Ty) ≥

1, x �= y and Tx �= Ty. Therefore, applying Equation (17),

α(x, y) ψ (d(Tx, Ty)) ≤ φ (d(x, y)) . (20)

In particular, it follows from Equations (19) and (20) that

� (d(Tx, Ty), d(x, y)) = φ (d(x, y))− γ (d(x, y)) ψ (d(Tx, Ty))

≥ φ (d(x, y))− α(x, y)ψ (d(Tx, Ty)) ≥ 0,

so (B4) holds.
(B′

2) Let x1, x2 ∈ X be two points such that

Tnx1S∗
α Tnx2 and �(d

(
Tn+1x1, Tn+1x2

)
, d (Tnx1, Tnx2)) ≥ 0 for all n ∈ N.

Notice that Tnx1S∗
α Tnx2 and Tn+1x1S∗

α Tn+1x2 imply that d (Tnx1, Tnx2) and d
(
Tn+1x1, Tn+1x2

)
belong to A. Let

an = d (Tnx1, Tnx2) > 0 for all n ∈ N.
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In particular, as γ ≥ 1, then

0 ≤ �(d
(

Tn+1x1, Tn+1x2

)
, d (Tnx1, Tnx2)) = � (an+1, an)

= φ (an)− γ (an) ψ (an+1) ≤ φ (an)− ψ (an+1) ,

that is, ψ (an+1) ≤ φ (an), for all n ∈ N. Since (φ, ψ) ∈ GA, Condition
(
F 1
A
)

implies that {an} → 0,
that is, {d (Tnx1, Tnx2)} → 0, which means that (B′

2) holds.
(B2) It immediately follows from (B2).
(B3) Let {(a′n, b′n)} ⊆ A × A be a (T,S∗

α )-sequence such that {a′n} and {b′n} converge to the same
limit L ≥ 0 and verifying that L < a′n and �(a′n, b′n) ≥ 0 for all n ∈ N. By definition, there exist two
sequences {xn}, {yn} ⊆ X such that

xnS∗yn, TxnS∗Tyn, a′n = d(Txn, Tyn) > 0 and b′n = d(xn, yn) > 0 for all n ∈ N.

As γ ≥ 1, then

0 ≤ �(a′n, b′n) = φ
(
b′n
)
− γ

(
b′n
)

ψ
(
a′n
)
≤ φ

(
b′n
)
− ψ

(
a′n
)

,

that is, ψ (a′n) ≤ φ (b′n), for all n ∈ N. Since (φ, ψ) ∈ GA, Condition
(
G2
A
)

(applied to {an} = {b′n} and
{bn} = {a′n}) implies that L = 0, which means that (B3) holds.

As a consequence, we conclude that T is an ample spectrum contraction with respect to � and Sα

that also verifies (B′
2).

Lemma 2 permits us to show that Theorem 12 is a particular case of the above-presented main
statements.

Theorem 13. Theorem 12 follows from Theorems 2 and 3.

Proof. Assume that all the hypotheses of Theorem 12 hold. For instance, assume that there exists
x0 ∈ X such that α(x0, Tx0) ≥ 1 and T is (d, α)-right-continuous (notice that Condition (4.b) requires
a version of Theorems 2 and 3 in which T is non-increasing). Let {xn+1 = Txn}n≥0 be the Picard
sequence of T based on x0. If there exists some n0 ∈ N such that xn0+1 = xn0 , then xn0 is a fixed point
of T, and {xn} converges to such point. In this case, the part about existence of a fixed point of T is
finished. On the contrary case, assume that xn �= xn+1 for all n ∈ N. Let Sα be the binary relation on X
given, for x, y ∈ X, by

xSαy if α(x, y) ≥ 1. (21)

By Lemma 1:

• As α is transitive, Sα is transitive.
• As T is α-admissible, T is Sα-nondecreasing.
• As T is (d, α)-right-continuous, T is Sα-nonincreasing-continuous, thus T is

Sα-strictly-increasing-continuous (T satisfies Item (a) of Theorem 2).

By Hypothesis 1 of Theorem 12, there exists a subset A ⊆ X such that T(X) ⊆ A and (A, d) is
complete. In particular, T(X) is (Sα, d)-strictly-increasing-precomplete. Finally, Lemma 2 guarantees
that T is a an ample spectrum contraction with respect to � and Sα that also verifies (B′

2). As all
hypotheses of Theorem 2 are satisfied, T has at least a fixed point.

Following the statement of Theorem 12, additionally, assume that φ(0) = 0, ψ−1({0}) = {0}, and
the following property holds:

(U) For all fixed points x and y of T, there exists z ∈ X such that z is, at the same time, α-comparable
to x and to y.
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Then, Theorem 3 is applicable, thus T has a unique fixed point.

Remark 3. Notice that, in fact, we have proved that every Shahzad et al.’s contraction in the sense of Theorem 11
is an ample spectrum contraction with respect to an appropriate function �.

5.5. Wardowski’s F-Contractions

Definition 10 (Wardowski [11], Definition 2.1). Given a function F : (0, ∞) → R , let consider the following
properties:

(F1) F is strictly increasing, that is, F(t) < F(s) for all t, s ∈ (0, ∞) such that t < s.
(F2) For each sequence {tn}n∈N of positive real numbers we have that {tn} → 0 if, and only if, {F(tn)} →

−∞.
(F3) There exists λ ∈ (0, 1) such that lim

t→0+
tλF (t) = 0.

If (X, d) is a metric space, a mapping T : X → X is an F-contraction if there exist a positive number
τ > 0 and a function F : (0, ∞) → R satisfying properties (F1)-(F3) such that

τ + F (d (Tx, Ty)) ≤ F (d (x, y)) for all x, y ∈ X such that d (Tx, Ty) > 0.

Theorem 14 (Wardowski [11], Theorem 2.1). Let (X, d) be a complete metric space and let T : X → X be
an F-contraction. Then, T has a unique fixed point x∗ ∈ X, and for every x0 ∈ X a sequence {Tnx0}n∈N is
convergent to x∗.

Lemma 3. Every F-contraction is an ample spectrum contraction.

Notice that in the following proof we do not use Property (F3).

Proof. Let (X, d) be a metric space and let T : X → X be an F-contraction with respect to a constant
τ > 0 and a function F : (0, ∞) → R. Let λ = e−τ ∈ (0, 1), let A = [0, ∞) and let φ : (0, ∞) → (0, ∞)

and � : A × A → R be the functions:

φ (t) =
{

eF(t), if t > 0,
0, if t = 0;

� (t, s) = λ φ (s)− φ (t) for all t, s ∈ [0, ∞)

Property (F1) implies that φ is strictly increasing on (0, ∞) and Property (F2) guarantees that for
each sequence {tn}n∈N of positive real numbers we have that

{tn} → 0 if, and only if, {φ(tn)} → 0. (22)

We claim that T is an ample spectrum contraction with respect to � and the trivial preorder SX.
Property (B1) is obvious.

(B2) Let {xn} ⊆ X be a Picard sequence of T such that

xn �= xn+1 and � (d (xn+1, xn+2) , d (xn, xn+1)) ≥ 0 for all n ∈ N.

Therefore, for all n ∈ N, d (xn, xn+1) > 0 and

0 ≤ � (d (xn+1, xn+2) , d (xn, xn+1)) = λ φ (d (xn, xn+1))− φ (d (xn+1, xn+2)) ,

so
0 ≤ φ (d (xn+1, xn+2)) ≤ λ φ (d (xn, xn+1)) .

73



Mathematics 2019, 7, 1033

In particular, {φ (d (xn, xn+1))} → 0, and the property in Equation (22) guarantees that
{d (xn, xn+1)} → 0.

(B3) Let {(an, bn)} ⊆ A × A be a (T,S∗
X)-sequence such that {an} and {bn} converge to the same

limit L ≥ 0 and verifying that L < an and �(an, bn) ≥ 0 for all n ∈ N. By Definition 3, an > 0 and
bn > 0 for all n ∈ N. To prove that L = 0, assume, by contradiction, that L > 0. Notice that for all
n ∈ N,

0 ≤ �(an, bn) = λ φ (bn)− φ (an) .

As φ is strictly increasing,

0 < φ (L) < φ (an) ≤ λ φ (bn) < φ (bn) .

This means that L < an < bn. Since φ is strictly increasing, the following limit exists:

L′ = lim
s→L+

φ (s) .

Furthermore, 0 < φ (L) ≤ L′. As {an} → L, {bn} → L and L < an < bn for all n ∈ N, then

L′ = lim
s→L+

φ (s) = lim
n→∞

φ (an) = lim
n→∞

φ (bn) .

Taking limit as n → ∞ in φ (an) ≤ λ φ (bn), we deduce that L′ ≤ λ L′, which contradicts the fact
that L′ > 0. Therefore, L = 0.

(B4) Let x, y ∈ X be two points such that Tx �= Ty. In particular, d (Tx, Ty) > 0. Hence,

τ + F (d (Tx, Ty)) ≤ F (d (x, y)) ⇔ eτ+F(d(Tx,Ty)) ≤ eF(d(x,y))

⇔ eF(d(Tx,Ty)) ≤ e−τ eF(d(x,y)) ⇔ φ (d (Tx, Ty)) ≤ λ φ (d (x, y))

⇔ λ φ (d (x, y))− φ (d (Tx, Ty)) ≥ 0 ⇔ � (d (Tx, Ty) , d (x, y)) ≥ 0.

Therefore, T is an ample spectrum contraction with respect to � and SX .

As a consequence, Theorem 14 is a simple consequence of Theorems 2 and 3.
Finally, we point out that the present techniques can be easily generalized to guarantee existence

and uniqueness of multidimensional coincidence/fixed points following the techniques described
in [19–25].
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Abstract: We obtain a characterization of Hausdorff left K-complete quasi-metric spaces by means of
α–ψ-contractive mappings, from which we deduce the somewhat surprising fact that one the main
fixed point theorems of Samet, Vetro, and Vetro (see “Fixed point theorems for α–ψ-contractive type
mappings”, Nonlinear Anal. 2012, 75, 2154–2165), characterizes the metric completeness.
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1. Introduction and Preliminaries

In their interesting and germinal paper [1], Samet, Vetro, and Vetro obtained various fixed point
theorems in terms of α–ψ contractions which allowed them to deduce, in an elegant and direct way,
several important and well-known fixed point results from [2–5]. Many authors have continued the
research of this type of contractions and their generalizations in different contexts (see e.g., [6–12]).
Recently, Fulsa and Taş [13] have presented a careful and extensive study for several generalized α–ψ

contractions in the realm of quasi-metric spaces.
In this note we obtain a characterization of Hausdorff left K-complete quasi-metric spaces by

means of α–ψ-contractive mappings from which we deduce the somewhat surprising fact that one
the main fixed point theorems of Samet, Vetro, and Vetro [1] (Theorem 2.2) characterizes the metric
completeness (see Corollary 1 at the end of the paper).

Let us recall that the problem of characterizing the metric completeness in term of fixed point
theorems has been studied and solved by several authors with different approaches (see e.g., [14–17])
and that this study has been extended in recent years to some types of generalized metric spaces as
partial metric spaces [18,19] and quasi-metric spaces [20,21].

In order to help the reader, we recall some notions and properties of quasi-metric spaces which
will be used in this paper. Our basic reference is [22].

A quasi-metric space is a pair (X , ρ) such that X is a set and ρ is a quasi-metric on X , i.e., ρ is a
function from X ×X to [0, ∞) such that for all ζ, η, θ ∈ X :

(i) ζ = η if and only if ρ(ζ, η) = ρ(η, ζ) = 0, and

(ii) ρ(ζ, θ) ≤ ρ(ζ, η) + ρ(η, θ).

Given a quasi-metric ρ on X the family {Bρ(ζ, ε) : ζ ∈ X , ε > 0}, where Bρ(ζ, ε) = {η ∈ X :
ρ(ζ, η) < ε} for all ζ ∈ X and ε > 0, is a base for a T0 topology τρ on X .

(X , ρ) is called a T1 quasi-metric space if τρ is a T1 topology, and it is called a Hausdorff
quasi-metric space if τρ is a T2 topology.

Mathematics 2020, 8, 16; doi:10.3390/math8010016 www.mdpi.com/journal/mathematics76
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A quasi-metric space (X , ρ) is said to be left K-complete if every left K-Cauchy sequence converges
with respect to τρ, where, by a left K-Cauchy sequence we mean a sequence (ζn)n∈N in (X , ρ) such
that for each ε > 0 there exists nε ∈ N satisfying ρ(ζn, ζm) < ε whenever nε ≤ n ≤ m.

2. Results

We start this section by recalling some known concepts.
As usual, we denote by Ψ the family of nondecreasing functions ψ : [0, ∞) → [0, ∞) such that

∑∞
n=1 ψn(t) < ∞ for all t ≥ 0.

Let X be a set, T : X → X and α : X ×X → [0, ∞). Following [1] (Definition 2.2), we say that T
is α-admissible if α(ζ, η) ≥ 1 implies α(T ζ, T η) ≥ 1; ζ, η ∈ X .

As in the metric case [1] (Definition 2.1), given a quasi-metric space (X , ρ) we say that a mapping
T : X → X is an α–ψ-contractive mapping if there exist two functions α : X ×X → [0, ∞) and ψ ∈ Ψ
such that α(ζ, η)ρ(T ζ, T η) ≤ ψ(ρ(ζ, η)) for all ζ, η ∈ X .

The following slight modification of condition (iii) in Theorem 2.2 of [1] constitutes a crucial
ingredient in obtaining our main result:

Let (X , ρ) be a quasi-metric space and α : X ×X → [0, ∞). We say that (X , ρ) has property (A)
(with respect to α) if for any sequence (ζn)n∈N in X satisfying α(ζn, ζn+1) ≥ 1 for all n ∈ N and such
that ρ(ζ, ζn) → 0 as n → ∞ for some ζ ∈ X , it follows that α(ζ, ζn) ≥ 1 for all n ∈ N.

Definition 1. Given a quasi-metric space (X , ρ), an α–ψ-contractive mapping T : X → X will be called an
α–ψ-SVV contractive mapping if: (i) T is α-admissible; (ii) there exists ζ0 ∈ X such that α(ζ0, T ζ0) ≥ 1;
(iii) (X , ρ) has property (A) (with respect to α).

By using the preceding definition, Theorem 2.2 of [1] can be reformulated as follows: Every
α–ψ-SVV contractive mapping on a complete metric space has a fixed point.

Our first result provides a quasi-metric extension of Theorem 2.2 of [1] (its proof is only an
adaptation of the original proof of Samet, Vetro, and Vetro).

Theorem 1. Every α–ψ-SVV contractive mapping on a left K-complete quasi-metric space has a fixed point.

Proof of Theorem 1. Let T be an α–ψ-SVV contractive mapping on a Hausdorff left K-complete
quasi-metric space (X , ρ). Then, there exists an α-admissible function such that T is α–ψ-contractive,
(X , ρ) has property (A), and α(ζ0, T ζ0) ≥ 1 for some ζ0 ∈ X .

For each n ∈ N let ζn := T nζ0. If there exists m ∈ N such that ζm−1 = ζm, then ζm is a fixed
point of T . Assume then that ζn �= ζm for all n, m ∈ N∪{0}. Since α(ζ0, ζ1) ≥ 1 and T is α-admissible
we deduce that α(ζn, ζn+1) ≥ 1 for all n ∈ N∪{0}. As in the proof of Theorem 2.1 of [1] we obtain
ρ(ζn, ζn+1) ≤ ψn(ρ(ζ0, ζ1)) and deduce that (ζn)n∈N is a left K-Cauchy sequence in (X , ρ) (see [1]
(p. 2156)). Since (X , ρ) is left K-complete there exists θ ∈ X such that ρ(θ, ζn) → 0 as n → ∞. From
property (A) it follows that α(θ, ζn) ≥ 1 for all n ∈ N∪{0}. We shall show that θ is a fixed point of T .
Indeed, for each n ∈ N∪{0} we have: ρ(T θ, ζn+1) = ρ(T θ, T ζn) ≤ α(θ, ζn)ρ(T θ, T ζn) ≤ ψ(ρ(θ, ζn)).

Since ρ(θ, ζn) > 0, we deduce that ψ(ρ(θ, ζn)) < ρ(θ, ζn) (see e.g., [1] (Lemma 2.1)), and, hence,
ρ(T θ, ζn) → 0 as n → ∞. Since (X , ρ) is Hausdorff we conclude that θ = T θ.

As for metric spaces [1] (Theorem 2.1), a slight modification of the proof of Theorem 1 shows the
following result where the property (A) is replaced by continuity of T . More precisely we have

Theorem 2. Let (X , ρ) be a Hausdorff left K-complete quasi-metric space and T : X → X be an
α–ψ-contractive mapping such that

(i) T is α-admissible;
(ii) there exists ζ0 ∈ X such that α(ζ0, T ζ0) ≥ 1;
(iii) T is continuous.

77



Mathematics 2020, 8, 16

Then T has a fixed point.

Theorems 1 and 2 can not be generalized to T1 left K-complete quasi-metric spaces (see e.g., [23]
(Example 5)).

Let us recall that if ρ is a quasi-metric on a set X , then the function ρs defined on X ×X by
ρs(ζ, η) = max{ρ(ζ, η), ρ(η, ζ)} is a metric on X . We give an example for a quasi-metric space (X , ρ)

where we can apply both Theorem 1 and Theorem 2 but not [1] (Theorem 2.2) because the metric space
(X , ρs) is not complete.

Example 1. Let X := {0} ∪ {1/n : n ∈ N}∪{n : n ∈ N\{1}}. It is routine to check that (X , ρ) is a
Hausdorff quasi-metric space where (the quasi-metric) ρ is defined as follows:

ρ(ζ, ζ) = 0 for all ζ ∈ X .
ρ(0, 1/n) = 1/n for all n ∈ N.
ρ(1/n, 1/m) = 1/n whenever n < m.
ρ(0, n) = 2−n for all n ∈ N\{1}.
ρ(n, m) = |2−n − 2−m| for all n, m ∈ N\{1}, and
ρ(ζ, η) = 1 otherwise.

Observe that (X , ρ) is left K-complete: The sequence (1/n)n∈N is left K-Cauchy and converges to 0,
whereas the sequence (n)n∈N is Cauchy in the metric space (X , ρs), and hence left K-Cauchy in (X , ρ), and also
converges to 0. However, we have ρ(n, 0) = 1 for all n ∈ N, and thus the metric space (X , ρs) is not complete.

Now define T : X → X as T 0 = 0, T n = n + 1 for all n ∈ N, and T (1/n) = n for all n ∈ N\{1}.
We show that T is an α–ψ-SVV contractive mapping for α given by α(0, n) = α(n, n + 1) = 1 for all

n ∈ N, and α(ζ, η) = 0 otherwise; and ψ ∈ Ψ given by ψ(t) = t/2 for all t ≥ 0.
Indeed, since α(1, T1) = α(1, 2) = 1, we deduce by the definition of T and the construction of α that T

is α-contractive. Also, the property (A) is clearly satisfied since ρ(0, n) → 0 as n → ∞, and α(0, n) = 1 for
all n ∈ N. It remains to check that T is an α–ψ-contractive mapping. To this end, it suffices to consider the
following two cases:

Case 1. ζ = 0, η = n, n ∈ N. Thus, we obtain

α(ζ, η)ρ(Tζ, Tη) = α(0, n)ρ(0, n + 1) = 2−(n+1) ≤ 1
2

ρ(0, n) = ψ(ρ(ζ, η)).

Case 2. ζ = n, η = n + 1, n ∈ N. Thus, we obtain

α(ζ, η)ρ(Tζ, Tη) = α(n, n + 1)ρ(Tn, T(n + 1)) = ρ(n + 1, n + 2)

= 2−(n+2) =
1
2

ρ(n, n + 1) = ψ(ρ(ζ, η)).

Therefore, all conditions of Theorem 1 are satisfied.
Clearly, we can also apply Theorem 2 because T is continuous (with respect to τρ).

Now, we present an easy example where we can apply Theorem 1 but not Theorem 2.

Example 2. Let X := {0, ∞} ∪N. Clearly (X , ρ) is a Hausdorff left K-complete quasi-metric space where (the
quasi-metric) ρ is defined as follows:

ρ(ζ, ζ) = 0 for all ζ ∈ X .
ρ(0, 1/n) = 1/n for all n ∈ N, and
ρ(ζ, η) = 1 otherwise.

Now define T : X → X as T 0 = 0, T ∞ = ∞, and T n = ∞ for all n ∈ N.
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Since ρ(0, n) → 0 as n → ∞, but ρ(T 0, T n) = ρ(0, ∞) = 1, we conclude that T is not continuous.
However, it is obvious that T is an α–ψ-SVV contractive mapping for α given by α(∞, ∞) = 1, and α(ζ, y) = 0
otherwise, and any ψ ∈ Ψ.

In our main result (Theorem 3 below), we prove that Theorem 1 characterizes left K-completeness
of Hausdorff quasi-metric spaces. However, Theorem 2 does not provide such characterization even in
the case of metric spaces, as Suzuki and Takahashi constructed in [24] an example of a non-complete
metric space for which every continuous self map has fixed points.

Theorem 3. A Hausdorff quasi-metric space is left K-complete if and only if every α–ψ-SVV contractive
mapping has a fixed point.

Proof of Theorem 3. Let (X , ρ) be a Hausdorff left K-complete quasi-metric space. By Theorem 1,
every α–ψ-SVV contractive mapping on (X , ρ) has a fixed point.

Conversely, suppose that (X , ρ) is a Hausdorff quasi-metric space which is not left K-complete.
Then there exists a left K-Cauchy sequence (ζn)n∈N (of distinct points) in (ζ, ρ) which is not convergent
for τρ. Put A = {ζn : n ∈ N}. Since ρ(ζ1,A\{ζ1}) > 0, there exists h1 ∈ N, with h1 > 1, such that
ρ(ζ j, ζk) < ρ(ζ1,A\{ζ1})/2 whenever h1 ≤ j ≤ k. Similarly, there exists h2 ∈ N, with h2 > max{2, h1},
such that ρ(ζ j, ζk) < ρ(ζ2,A\{ζ2})/2 whenever h2 ≤ j ≤ k. In this way we obtain a subsequence
(hn)n∈N of (n)n∈N such that hn > max{n, hn−1} and ρ(ζ j, ζk) < ρ(ζn,A\{ζn})/2 whenever hn ≤ j ≤ k.

Define T : X → X and α : X ×X → [0, ∞) as follows:
T ζn = ζhn for n ∈ N, and T ζ = ζ1 for ζ ∈ X\A, and
α(ζ, η) = 1 if ζ = ζn and η = ζm for n, m ∈ N with n < m, and α(ζ, η) = 0 otherwise.

We first note that α(ζ1, T ζ1) = 1 because 1 < h1.
Moreover T is α-admissible. Indeed, if α(ζ, η) ≥ 1, then ζ = ζn and η = ζm with n < m.

So α(T ζ, T η) = α(ζhn , ζhm) = 1 because hn < hm.
Next, we show that T is α–ψ-contractive for ψ ∈ Ψ given by ψ(t) = t/2. Indeed, by the

construction of α it suffices to check the case that ζ = ζn and η = ζm with n < m. Thus, we obtain

α(ζ, η)ρ(T ζ, T η) = α(ζn, ζm)ρ(ζhn , ζhm) <
1
2

ρ(ζn,A\{ζn})

≤ 1
2

ρ(ζn, ζm) =
1
2

ρ(ζ, η) = ψ(ρ(ζ, η)).

Finally, note that (X , ρ) trivially satisfies the property (A) because the only convergent sequences
in A are those that are eventually constant.

We have shown that T is an α–ψ-SVV contractive mapping without fixed point. This contradiction
concludes the proof.

Corollary 1. A metric space is complete if and only every α–ψ-SVV contractive mapping has a fixed point.
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Abstract: The novel delay-dependent asymptotic stability of a differential and Riemann-Liouville
fractional differential neutral system with constant delays and nonlinear perturbation is studied.
We describe the new asymptotic stability criterion in the form of linear matrix inequalities (LMIs),
using the application of zero equations, model transformation and other inequalities. Then we
show the new delay-dependent asymptotic stability criterion of a differential and Riemann-Liouville
fractional differential neutral system with constant delays. Furthermore, we not only present the
improved delay-dependent asymptotic stability criterion of a differential and Riemann-Liouville
fractional differential neutral system with single constant delay but also the new delay-dependent
asymptotic stability criterion of a differential and Riemann-Liouville fractional differential neutral
equation with constant delays. Numerical examples are exploited to represent the improvement and
capability of results over another research as compared with the least upper bounds of delay and
nonlinear perturbation.

Keywords: asymptotic stability; differential and riemann-liouville fractional differential neutral
systems; linear matrix inequality

1. Introduction

Differential systems, or more generally functional differential systems, have been studied
rather extensively for at least 200 years and are used as models to describe transportation systems,
communication networks, teleportation systems, physical systems and biological systems, and so
forth. Parts of fractional-order systems have not received much attention by reason of absence of
appropriate utilization circumstances over the past 300 years. However, during the last 10 years
fractional-order systems have been widely investigated as they have the qualification to explain
various phenomena more precisely in many fields, for example, biological models, material science,
finance, cardiac tissues, quantum mechanics, viscoelastic systems, medicine and fluid mechanics [1–8].
Caputo fractional differential systems have been studied in many types of stability such as uniform
stability [9], Mittag-Leffler stability [10–13], Ulam stability [14], finite time stability [15,16] and
asymptotic stability [17,18]. Nevertheless, the stability of Riemann-Liouville fractional differential
systems is seldom considered, see References [19,20].

The neutral systems with time delays have already been applied in many fields, such as heartbeat,
memorization, locomotion, mastication and respiration, see References [21–24]. Accordingly, the issue
of stability analysis for differential and Riemann-Liouville fractional differential neutral systems has
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attracted researchers. The asymptotic stability criteria for certain neutral differential equations (CNDE)
with constant delays have been discussed in References [25–29] by applying Lyapunov-Krasovskii
functional and several model transformations. In References [30–33], the researchers considered
the exponential stability problem for CNDE with time-varying delays by several methods. In
Reference [30], the results were established without the use of the bounding technique and the
model transformation method, while researchers have studied it by using radially unboundedness,
the Lyapunov-Krasovskii functional approach and the model transformation method in Reference [32].
Moreover, in Reference [34] Li et al. presented the asymptotic stability conditions for fractional neutral
systems in the form of matrix measure and matrix norm of the system matrices. However, the criteria,
drafted in the form of matrix norm, are more conservative, while Liu et al. used the Lyapunov direct
method to establish the asymptotic stability criteria of Riemann-Liouville fractional neutral systems in
the form of LMIs [35].

This paper is involved with the analysis problem for the asymptotic stability of differential
and Riemann-Liouville fractional differential neutral systems with constant delays and nonlinear
perturbation by applying a zero equation, model transformation and other inequalities. The novel
asymptotic stability condition is instituted in the form of LMIs. Then we show the new delay-dependent
asymptotic stability criterion of differential and Riemann-Liouville fractional differential neutral
systems with constant delays. In addition, the improved delay-dependent asymptotic stability criterion
of differential and Riemann-Liouville fractional differential neutral systems with single constant delay
and the new delay-dependent asymptotic stability criterion of differential and Riemann-Liouville
fractional differential neutral equations with constant delays are established. Numerical examples
represent the capability of our results as compared with other research.

2. Problem Formulation and Preliminaries

We introduce a differential and fractional differential neutral system with constant delays and
nonlinear perturbation

t0 Dq
t [x(t) + Cx(t − τ)] = −Ax(t) + Bx(t − σ) + f (x(t − σ)), t > 0, (1)

x(t) = �(t), t ∈ [−κ, 0],

for 0 < q ≤ 1, the state vector x(t) ∈ Rn, A, B, C are symmetric positive definite matrices with ‖C‖ < 1,
τ, σ are positive real constants and � ∈ C([−κ, 0];Rn) with κ = max{τ, σ}.

The uncertainty f (.) represents the nonlinear parameter perturbation satisfying

f T(x(t)) f (x(t)) ≤ δ2xT(t)x(t), (2)

f T(x(t − σ)) f (x(t − σ)) ≤ η2xT(t − σ)x(t − σ), (3)

where δ, η are given constants.
Next, the Riemann-Liouville fractional integral and derivative [36] are defined as, respectively

t0 D−q
t x(t) =

1
Γ(q)

∫ t

t0

(t − s)q−1x(s)ds, (q > 0), (4)

t0 Dq
t x(t) =

1
Γ(n − q)

dn

dtn

∫ t

t0

x(s)
(t − s)q+1−n ds, (n − 1 ≤ q < n). (5)

Lemma 1. [37] For x(t) ∈ Rn and p > q > 0, then

t0 Dq
t (t0 D−p

t x(t)) = t0 Dq−p
t x(t). (6)
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Lemma 2. [17] For a vector of differentiable function x(t) ∈ Rn, positive semi-definite matrix K ∈ Rn×n and
0 < q < 1, then

1
2 t0 Dq

t (xT(t)Kx(t)) ≤ xT(t)Kt0 Dq
t x(t), (7)

for all t ≥ t0.

3. Main Results

Consider the asymptotic stability for system (1) with constant delays and nonlinear perturbation.
We define a new variable

Ψ(t) = x(t) + Cx(t − τ). (8)

Rewrite the Equation (1) in the following equation

t0 Dq
t Ψ(t) = −Ax(t) + Bx(t − σ) + f (x(t − σ)). (9)

Theorem 1. Let δ and η be positive scalars, if there are any appropriate dimensions matrices Qj(j = 1, 2, 3)
and symmetric positive definite matrices Ki(i = 1, 2, 3, 4, 5) such that satisfy

∑ =

⎡⎢⎢⎢⎢⎢⎣
−Q1 − QT

1 Ω(1,2) Q1C − QT
3 K1 K1B

∗ Ω(2,2) Q2C + QT
3 0 0

∗ ∗ Ω(3,3) 0 0
∗ ∗ ∗ −K5 − σI 0
∗ ∗ ∗ ∗ −K3 + ση2 I

⎤⎥⎥⎥⎥⎥⎦ < 0, (10)

where
Ω(1,2) = −K1 A + Q1 − QT

2 ,
Ω(2,2) = Q2 + QT

2 + K2 + K3 + τK4 + δ2K5,
Ω(3,3) = Q3C + CTQT

3 − K2.

Then the system (1) is asymptotically stable.

Proof of Theorem 1. For symmetric positive definite matrices Ki(i = 1, 2, 3, 4, 5) and any appropriate
dimensions matrices Qj(j = 1, 2, 3). Consider the Lyapunov-Krasovskii functional

V(t) =
2

∑
i=1

Vi(t), (11)

for

V1(t) = t0 Dq−1
t ΨT(t)K1Ψ(t),

V2(t) =
∫ t

t−τ
xT(s)K2x(s)ds +

∫ t

t−σ
xT(s)K3x(s)ds

+
∫ t

t−τ
(τ − t + s)xT(s)K4x(s)ds

+
∫ t

t−σ
f T(x(s))K5 f (x(s))ds.

Computing the differential of V(t) on the solution of system (1)
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V̇(t) =
2

∑
i=1

V̇i(t). (12)

The differential of V1(t) is computed by Lemma 2

V̇1(t) = t0 Dq
t ΨT(t)K1Ψ(t)

≤ 2ΨT(t)K1(t0 Dq
t Ψ(t))

= 2ΨT(t)K1[−Ax(t) + Bx(t − σ) + f (x(t − σ))]

+2ΨT(t)Q1[−Ψ(t) + x(t) + Cx(t − τ)]

+2xT(t)Q2[−Ψ(t) + x(t) + Cx(t − τ)]

+2xT(t − τ)Q3[−Ψ(t) + x(t) + Cx(t − τ)]. (13)

Taking the differential of V2(t), we obtain

V̇2(t) = xT(t)K2x(t)− xT(t − τ)K2x(t − τ)

+xT(t)K3x(t)− xT(t − σ)K3x(t − σ)

+τxT(t)K4x(t)−
∫ t

t−τ
xT(s)K4x(s)

+ f T(x(t))K5 f (x(t))− f T(x(t − σ))K5 f (x(t − σ))

≤ xT(t)K2x(t)− xT(t − τ)K2x(t − τ)

+xT(t)K3x(t)− xT(t − σ)K3x(t − σ)

+τxT(t)K4x(t) + δ2xT(t)K5x(t)

− f T(x(t − σ))K5 f (x(t − σ)). (14)

Next, from (3), we obtain

0 ≤ ση2xT(t − σ)x(t − σ)− σ f T(x(t − σ)) f (x(t − σ)). (15)

According to (13), (14) and (15), we can conclude that

V̇(t) ≤ ξT(t)∑ ξ(t), (16)

where ξ(t) = col{Ψ(t), x(t), x(t − τ), f (x(t − σ)), xT(t − σ)}.
Since linear matrix inequality (10) holds, then the system (1) is asymptotic stability.

Next, we consider system (1) with f (x(t − σ)) = 0,

t0 Dq
t [x(t) + Cx(t − τ)] = −Ax(t) + Bx(t − σ) t > 0, (17)

x(t) = �(t), t ∈ [−κ, 0],

for 0 < q ≤ 1, the state vector x(t) ∈ Rn, A, B, C are symmetric positive definite matrices with ‖C‖ < 1,
τ, σ are positive real constants and � ∈ C([−κ, 0];Rn) with κ = max{τ, σ}.

Corollary 1. If there are any appropriate dimensions matrices Qj(j = 1, 2, 3) and symmetric positive definite
matrices Ki(i = 1, 2, 3, 4) such that satisfy⎡⎢⎢⎢⎣

−Q1 − QT
1 −K1 A + Q1 − QT

2 Q1C − QT
3 K1B

∗ Q2 + QT
2 + K2 + K3 + τK4 Q2C + QT

3 0
∗ ∗ Q3C + CTQT

3 − K2 0
∗ ∗ ∗ −K3

⎤⎥⎥⎥⎦ < 0. (18)

84



Mathematics 2020, 8, 82

Then the system (17) is asymptotically stable.

Proof of Corollary 1. For symmetric positive definite matrices Ki(i = 1, 2, 3, 4) and any appropriate
dimensions matrices Qj(j = 1, 2, 3). Consider the Lyapunov-Krasovskii functional

V(t) =
2

∑
i=1

Vi(t), (19)

for

V1(t) = t0 Dq−1
t ΨT(t)K1Ψ(t),

V2(t) =
∫ t

t−τ
xT(s)K2x(s)ds +

∫ t

t−σ
xT(s)K3x(s)ds

+
∫ t

t−τ
(τ − t + s)xT(s)K4x(s)ds.

According to Theorem 1, we present the asymptotic stability criterion (18) of system (17).

Next, we consider system (1) with f (x(t − σ)) = 0 and σ = τ,

t0 Dq
t [x(t) + Cx(t − τ)] = −Ax(t) + Bx(t − τ) t > 0, (20)

x(t) = �(t), t ∈ [−τ, 0],

for 0 < q ≤ 1, the state vector x(t) ∈ Rn, A, B, C are symmetric positive definite matrices with ‖C‖ < 1,
τ is positive real constants and � ∈ C([−τ, 0];Rn).

Corollary 2. If there are any appropriate dimensions matrices Qj(j = 1, 2, 3) and symmetric positive definite
matrices Ki(i = 1, 2, 3) such that satisfy⎡⎢⎣−Q1 − QT

1 −K1 A + Q1 − QT
2 Q1C − QT

3 + K1B
∗ Q2 + QT

2 + K2 + τK3 Q2C + QT
3

∗ ∗ Q3C + CTQT
3 − K2

⎤⎥⎦ < 0. (21)

Then the Equation (20) is asymptotically stable.

Proof of Corollary 2. For symmetric positive definite matrices Ki(i = 1, 2, 3) and any appropriate
dimensions matrices Qj(j = 1, 2, 3). Consider the Lyapunov-Krasovskii functional

V(t) =
2

∑
i=1

Vi(t), (22)

for

V1(t) = t0 Dq−1
t ΨT(t)K1Ψ(t),

V2(t) =
∫ t

t−τ
xT(s)K2x(s)ds

+
∫ t

t−τ
(τ − t + s)xT(s)K3x(s)ds. (23)

According to Theorem 1, we present the asymptotic stability criterion (21) of system (20).
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4. Application

t0 Dq
t [x(t) + px(t − τ)] = −ax(t) + b tanh x(t − σ) t > 0, (24)

x(t) = �(t), t ∈ [−κ, 0],

for 0 < q ≤ 1, the state vector x(t) ∈ R, a, b, p are real constants with |p| < 1, τ, σ are positive real
constants � ∈ C([−κ, 0];R) with κ = max{τ, σ}.

Corollary 3. If there are positive real constants ki(i = 1, 2, 3, 4, 5) and real constants qj(j = 1, 2, 3) such
that satisfy ⎡⎢⎢⎢⎢⎢⎣

−2q1 −k1a + q1 − q2 q1 p − q3 k1b 0
∗ 2q2 + k2 + k3 + k4τ + k5 q2 p + q3 0 0
∗ ∗ 2q3 p − k2 0 0
∗ ∗ ∗ −k5 − σ 0
∗ ∗ ∗ ∗ −k3 + σ

⎤⎥⎥⎥⎥⎥⎦ < 0. (25)

Then the Equation (24) is asymptotically stable.

Proof of Corollary 3. For positive real constants ki(i = 1, 2, 3, 4, 5) and real constants qj(j = 1, 2, 3).
Consider the Lyapunov-Krasovskii functional

V(t) =
2

∑
i=1

Vi(t), (26)

for

V1(t) = k1t0 Dq−1
t Ψ2(t),

V2(t) = k2

∫ t

t−τ
x2(s)ds + k3

∫ t

t−σ
x2(s)ds

+k4

∫ t

t−τ
(τ − t + s)x2(s)ds + k5

∫ t

t−σ
tanh x2(s)ds.

According to Theorem 1, we present the asymptotic stability criterion (25) of system (3).

5. Numerical Examples

Example 1. The fractional neutral system :

t0 Dq
t [x(t) + Cx(t − 0.5)] = −Ax(t) + Bx(t − σ) + f (x(t − σ)). (27)

Solving the LMI (10) when A =

[
1.45 0

0 1.45

]
, B =

[
0 0.4

0.4 0

]
, C =

[
−0.1 0

0 −0.1

]
, we have a set of

parameters that ensures asymptotic stability of system (27) which η = 5 × 103, δ = 1 and σ = 0.5 as follows:

K1 = 108 ×
[

3.5993 0
0 3.5993

]
, K2 = 107 ×

[
1.3106 0

0 1.3106

]
, K3 = 108 ×

[
1.5730 0

0 1.5730

]
,

K4 = 106 ×
[

9.7620 0
0 9.7620

]
, K5 = 108 ×

[
3.5456 0

0 3.5456

]
, Q1 = 108 ×

[
2.9931 0

0 2.9931

]
,

Q2 = 108 ×
[
−3.0980 0

0 −3.0980

]
, Q3 = 107 ×

[
−2.2267 0

0 −2.2267

]
.
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Moreover, the least upper bound of the parameter σ that ensures the asymptotic stability of system (27) is
1.3227 when η = 5 × 103 and δ = 1. Table 1 represents the least upper bound σ of this example for various
values of η, δ.

Table 1. The least upper bound of σ for Example 1.

η = 5 × 103 η = 6 × 103 η = 7 × 103

δ = 0.8 6.4920 4.5076 3.3117
δ = 0.9 4.1166 2.8588 2.1003
δ = 1 1.3227 0.9185 0.6748

Example 2. The fractional neutral system :

t0 Dq
t [x(t) + Cx(t − τ)] = −Ax(t) + Bx(t − 1.2). (28)

Solving the LMI (18) when A =

[
1.45 0

0 1.45

]
, B =

[
0 0.4

0.4 0

]
, C =

[
−0.1 0

0 −0.1

]
, we have a set of

parameters that ensures asymptotic stability of system (28) which τ = 0.6 as follows:

K1 =

[
44.0782 0

0 44.0782

]
, K2 =

[
32.9861 0

0 32.9861

]
, K3 =

[
32.6501 0

0 32.6501

]
,

K4 =

[
31.8793 0

0 31.8793

]
, Q1 =

[
14.6090 0

0 14.6090

]
, Q2 =

[
−56.7801 0

0 −56.7801

]
,

Q3 =

[
−3.3600 0

0 −3.3600

]
.

Moreover, the least upper bound of the parameter τ that ensures the asymptotic stability of system (28) is
3.7 × 1022.

Example 3. The fractional neutral system :

t0 Dq
t [x(t) + Cx(t − τ)] = −Ax(t) + Bx(t − τ). (29)

Solving the LMI (21) when A =

[
3 −1
0 1

]
, B =

[
0.2 0.1
0 0.1

]
, C =

[
0.1 0
0 0.2

]
, we obtain the least upper

bound of the parameter τ that ensures the asymptotic stability is 2.86 × 1024. By the criterion in [35], the least
upper bound of the parameter τ is 2.99 × 1021. This example represents our result is less conservative than these
in [35].

Example 4. The differential equation, which is considered in [25,27,30–32]:

d
dt
[x(t) + 0.35x(t − 0.5)] = −1.5x(t) + b tanh x(t − 0.5). (30)

By using linear matrix inequality (25), the comparison for the least upper bound b that ensures asymptotic
stability of Equation (30) are represented in Table 2.
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Table 2. The least upper bound of b for Example 4.

Deng et al. (2009) [25] 0.889
Nam and Phat (2009) [27] 1.405

Chen and Meng (2011) [31] 1.346
Chen (2012) [30] 1.405

Keadnarmol and Rojsiraphisal (2014) [32] 1.405
Corollary 3 1.4051

Example 5. The differential equation in [27,30,31,38]:

d
dt
[x(t) + 0.2x(t − 0.1)] = −0.6x(t) + 0.3 tanh x(t − σ). (31)

By using linear matrix inequality (25), the comparison for the least upper bound delay σ that ensures
asymptotic stability of Equation (31) are represented in Table 3.

Table 3. The least upper bound of σ for Example 5.

Nam and Phat (2009) [27] 2.32
Rojsiraphisal and Niamsup (2010) [38] 2.32

Chen and Meng (2011) [31] 1021

Chen (2012) [30] 1.34 × 1021

Corollary 3 6.21 × 108

Example 6. The fractional neutral equation :

t0 Dq
t [x(t) + px(t − 0.5)] = −ax(t) + b tanh x(t − 0.5). (32)

Solving the LMI (25), we have a set of parameters that ensures asymptotic stability of Equation (32) which
a = 0.75, b = 0.3 and p = 0.4 as follows:
k1 = 3.1544, k2 = 1.0324, k3 = 1.0749, k4 = 0.7170, k5 = 0.7385, q1 = 0.7587, q2 = −1.9721,
q3 = 0.4433.

Furthermore, the least upper bound of b that ensures the asymptotic stability of Equation (32) is 0.6873
with a = 0.75, p = 0.4. Table 4 represents the least upper bound b of this example for various values of a, p.

Table 4. The least upper bound of b for Example 6.

a = 0.25 a = 0.5 a = 0.75 a = 1 a = 1.25

p = 0.2 0.2449 0.4898 0.7348 0.9797 1.2247
p = 0.4 0.2291 0.4582 0.6873 0.9165 1.1456
p = 0.6 0.2000 0.3999 0.5999 0.7999 0.9999
p = 0.8 0.1500 0.2999 0.4499 0.5999 0.7499

6. Conclusions

The aim of this paper is a novel asymptotic stability analysis of differential and Riemann-Liouville
fractional differential neutral systems with constant delays and nonlinear perturbation by applying
zero equations, model transformation and other inequalities. The new asymptotic stability condition
is given in the form of LMIs. Then we show the new delay-dependent asymptotic stability criterion
of a differential and Riemann-Liouville fractional differential neutral system with constant delays.
Furthermore, we propose the improved delay-dependent asymptotic stability criterion of differential
and Riemann-Liouville fractional differential neutral systems with single constant delay and the
new delay-dependent asymptotic stability criterion of differential and Riemann-Liouville fractional
differential neutral equations with constant delays. Numerical examples illustrate the advantages and
applicability of our results.
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