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Preface to “Recent Advances on Quasi-Metric Spaces”

If we were to say that fixed-point theory appeared in Liouville’s article on solutions of differential
equations (1837) in the second quarter of the 18th century, it would not be wrong. This approach
was further developed by Picard in 1890 and entered the literature as a method of successive
approximations. This method was abstracted and extracted as a separate fixed-point theorem in the
setting of complete normed space by Banach in 1922.

For this reason, usually, it is said that fixed-point theory was founded by Banach. In its earlier
iteration, this first fixed-point theorem was known as the Picard—Banach theorem. Later, the analog of
that theorem was proved in the framework of complete metric spaces by Caccioppoli in 1931. In some
literature, the Banach—Caccioppoli theorem is indicated as a first fixed-point theorem in the setting of
a complete metric space.

As we mentioned above, fixed-point theory can be considered as a theory that was derived from
applied mathematics. On the other hand, the techniques belong to functional analysis and topology.

In particular, this theory, and its potential application, has been investigated and focused on by
a great number of researchers. It should be underlined that this theory has been applied in physics,
economics, engineering, computer science, and so on. Indeed, an application for fixed-point theorem
can be found in all fields of quantitative science.

In this Special Issue, we focused on fixed-point results in the setting of quasi-metric spaces and

applications but were not restricted to it. The selected papers express our aims in this regard.

Andreea Fulga, Erdal Karapinar
Special Issue Editors
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Abstract: In this paper, we revisit the renowned fixed point theorems belongs to Caristi and Banach.
We propose a new fixed point theorem which is inspired from both Caristi and Banach. We also
consider an example to illustrate our result.
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1. Introduction and Preliminaries

In fixed point theory, the approaches of the renowned results of Caristi [1] and Banach [2] are quite
different and the structures of the corresponding proofs varies. In this short note, we propose a new
fixed point theorem that is inspired from these two famous results.

We aim to present our results in the largest framework, b-metric space, instead of standard metric
space. The concept of b-metric has been discovered several times by different authors with distinct
names, such as quasi-metric, generalized metric and so on. On the other hand, this concept became
popular after the interesting papers of Bakhtin [3] and Czerwik [4]. For more details in b-metric space
and advances in fixed point theory in the setting of b-metric spaces, we refer e.g., [5-17].

Definition 1. Let X be a nonempty set and s > 1 be a real number. We say that d : X x X — [0,1) is
a b-metric with coefficient s when, for each x,y,z € X,

(1) d(x,y) =d(y,x);
(b2) d(x,y) =0ifand only if x = y;
(b3) d(x,z) <s[d(x,y)+d(y,z)] (Expanded triangle inequality).

In this case, the triple (X, d, s) is called a b-metric space with coefficient s.

The classical examples and crucial examples of b-metric spaces are I (R) and LP[0,1], p € (0,1).

The topological notions (such as, convergence, Cauchy criteria, completeness, and so on) are
defined by verbatim of the corresponding notions for standard metric. On the other hand, we should
underline the fact that b-metric does need to be continuous, for certain details, see e.g., [3,4].

We recollect the following basic observations here.

Mathematics 2019, 7, 308; doi:10.3390 / math7040308 1 www.mdpi.com/journal /mathematics
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Lemma 1. [14] For a sequence (0y,) e in a b-metric space (X, d, s), there exists a constant vy € [0,1) such that
d(0,41,6,) < vd(0,,6,-1), foralln € N.
Then, the sequence (0 )yen is fundamental (Cauchy).

The aim of this paper is to correlate the Banach type fixed point result with Caristi type fixed
point results in b-metric spaces.

2. Main Result

Theorem 1. Let (X,d,s) be a complete metric space and T : X — X be a map. Suppose that there exists
a function ¢ : X — R with

(i) ¢ is bounded from below (inf p(X) > —o0),
(ii) d(x, Tx) > 0 implies d(Tx, Ty) < (¢(x) — ¢(Tx))d(x,y).

Then, T has at least one fixed point in X.

Proof. Let 0y € X. If Ty = 6, the proof is completed. Herewith, we assume d(6y, T6y) > 0. Without
loss of generality, keeping the same argument in mind, we assume that 6,1 = T6,, and hence

A(On, 0y+1) = d(6n, TO,) > 0. ()
For that sake of convenience, suppose that a, = d(6,,6,_1). From (ii), we derive that

= d(0y,0,41) =d(T6,_1,THy)
< (@(0n-1) — @(T0,-1))d(0,1,0n)
= (¢(0u-1) — @(6n))an.

An+1

So we have,

0.< 51 < (6,1) — 9(6,) for each n € N,
n

Thus the sequence {¢(6,)} is necessarily positive and non-increasing. Hence, it converges to

some 7 > 0. On the other hand, for each n € N, we have

n

Zakjg

=1 %

M=

p (9(6k—1) — 9(6%))
1
(¢(00) — @(61)) + (¢(61) — @(62)) + . + (¢(01-1) — ¢(64))

= ¢(6y) — ¢(0n) = @(6y) —r < 00, as n — oco.

It means that

yo A
n=1 “n
Accordingly, we have
lim L — o, @)
n—eo iy

On account of (2), for 7y € (0,1), there exists ny € N such that

Il < o, 3)
an
for all n > ny. It yields that
d(9n+1/9n) < ’Yd(en/en—l)r 4)
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for all n > ny. Now using Lemma 1 we obtain that the sequence {6, } converges to some w € X.
We claim that w is the fixed point of T. Employing assumption (ii) of the theorem, we find that

d(w, Tw) sld(w,0y11) +d(0y11, Tw)]

<
< sld(w,0,41) + (@(0) — @(w))d(6y, w)] — 0asn — oo.

Consequently, we obtain d(w, Tw) = 0, thatis, Tw = w. O

From Theorem 1, we get the corresponding result for complete metric spaces. The following
example shows that the Theorem 1 is not a consequence of Banach’s contraction principle.

Example 1. Let X = {0,1,2} endowed with the following metric:
d(0,1) =1,d(2,0) =1,d(1,2) = % and d(a,a) =0, foralla € X, d(a,b) =d(b,a), forall a,b € X.

Let T(0) =0, T(1) = 2,T(2) = 0. Define ¢ : X — [0,00) as ¢(2) =2,¢(0) =0, ¢(1) = 4. Thus for
all x € X such that d(x, Tx) > 0, (in this example, x # 0), we have

d(T1,72) < (9(1) — ¢(T(1)))d(2,1),
d(T2,T1) < (9(2) - ¢(T(2)))d(2,1),
d(T1,70) < (9(1) — ¢(T(1)))d(1,0),
d(T2,70) < (¢(2) - ¢(T(2)))d(2,0).

Thus the mapping T satisfies our condition and also has a fixed point. Note that d(T1,T0) = d(1,0).
Thus, it does not satisfy the Banach contraction principle.

Remark 1.

1. From Example 1, it follows that Theorem 1 (over metric spaces) is not a consequence of the Banach
contraction principle.

2. Question for further study: It is natural to ask if the Banach contraction principle is a consequence of
Theorem 1 (over metric spaces).

Author Contributions: All authors contributed equally and significantly in writing this article. All authors read
and approved the final manuscript.

Funding: This research received no external funding.
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1. Introduction

With the introduction of Banach’s contraction principle (BCP), the fixed point theory advanced in
various directions. Nadler [1] obtained the fundamental fixed point result for set-valued mappings
using the notion of Pompeiu-Hausdorff metric which is an extension of the BCP. Later on, many fixed
point theorists followed the findings of Nadler and contributed significantly to the development of
theory (cf. S. Reich [2,3]).

On the other hand, in order to investigate the semantics of data flow networks; Matthews [4]
coined the concept called as partial metric spaces which are used efficiently while building models
in computation theory. On the inclusion of partial metric spaces into literature, many fixed point
theorems were established in this setting, see [5-16]. Recently, Asadi et al. [17] brought the notion
of an M-metric as a real generalization of a partial metric into the literature. They also obtained the
M-metric version of the fixed point results of Banach and Kannan. Also, some fixed point theorems
have been established in M-metric spaces endowed with a graph, see [18].

In this work, we introduce the M-Pompeiu-Hausdorff type metric. Furthermore, we extend the
fixed point theorems of Nadler and Kannan to M-metric spaces for set-valued mappings. Finally,
homotopy results for M-metric spaces are discussed.

Mathematics 2019, 7, 373; d0i:10.3390 / math7040373 5 www.mdpi.com/journal /mathematics
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2. Preliminaries

The symbols N, R and R" represent respectively set of all natural numbers, real numbers and
nonnegative real numbers. Let us recall some of the concepts for simplicity in understanding.

Definition 1 ([4]). Let X be a nonempty set. Then a partial metric is a function p : X x X — RY satisfying
following conditions:

() a=b<=paa)=p(ab)=pbb);
(p2) pla,a) <p(ab);

(p3) p(a,b) = p(b,a);

(ps)  pla,b) < pla,c) +ple,b) —plcc);

forall a,b,c € X. The pair (X, p) is called a partial metric space.

The concept of an M-metric [17] defined in following definition extends and generalize the notion
of partial metric.

Definition 2 ([17]). Let X be a non empty set. Then an M-metric is a function m : X x X — R satisfying
the following conditions:

(my) m(a,a) =m(b,b) =m(a,b) & a="b;

(mp)  mg, < m(a,b) where myy, := min{m(a,a), m(b,b)};
(m3) m(a,b) =m(b,a);

(my)  (m(a,b) —mgp) < (m(a,c) —mac) + (m(c,b) —mep);

forall a,b,c € X. The pair (X, m) is called an M-metric space.

Remark 1 ([17]). Let us denote M, := max{m(a,a),m(b,b)}, where m is an M-metric on X. Then for
every a,b € X, we have

(1) 0< My, +my =m(a,a)+m(b,b),
(2) 0= My, —mg, = |m(a,a) —m(b,b)]|,
(3) Mgy — gy < (Mac — tge) + (Mep — tgp).

Example 1 ([17]). Let m be an M-metric on X. Then

(1) m®¥(a,b) =m(a,b) — 2my, + Mgy,
mia,b) —my ifa#D,
(2) m*(a,b) =
0 ifa=Db,

are ordinary metrics on X.
Two new examples of M-metrics are as follows:

Example 2. Let X = [0,00). Then

(a) ml(u,b):|afb|+#,
(b) my(a,b) = |a—b|+ b

are M-metrics on X.
Let By(a,7) = {b € X : m(a,b) < myy, + n} be the open ball with center a and radius # > 0 in

M-metric space (X, m). The collection {B,,(a,77) : a € X, 11 > 0}, acts as a basis for the topology Ty
(say) on M-metric X.
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Remark 2 ([17]). Ty, is Ty but not Hausdorff.

Definition 3 ([17]). Let {ay} be a sequence in M-metric spaces (X, m).

(1) {ay} is called M-convergent to a € X if and only if

lim (m(ag, a) — mgq) = 0.
k—o00

(2) If lim (m(ay, a;) — mayq,) and
k,j—c0 ]

M-Cauchy.
(3)  Ifevery M-Cauchy sequence {ay} is M-convergent, with respect to Ty, toa € X such that klim (m(ay,a) —
—00

im (Maya; — Maya;) exist and finite then the sequence {ay} is called

k,j—o0

Maa) = 0and I}El;o(Muka — Mgq) = 0 then (X, m) is called M-complete.

Lemma 1 ([17]). Let {ay} be a sequence in M-metric spaces (X, m). Then

(i) {ax} is M-Cauchy if and only if it is a Cauchy sequence in the metric space (X, m™).
(ii) (X, m) is M-complete if and only if (X, m") is complete.

Example 3. Let X and mq,my : X x X — [0,00) be as defined in Example 2 for all a,b € X. Then (X,m;)
and (X, my) are M-complete. Indeed, (X, m™) = ([0,00), k|x — y|) is a complete metric space, where k = 3 for
my and k = 2 for my.

Lemma 2 ([17]). Let ay — a and by — bas k — oo in (X, m). Then as k — oo, (m(ay, by) — gy, ) —
(m(a,b) —mygp).

Lemma 3 ([17]). Let ar — aas k — coin (X,m). Then (m(a,b) —mgp) — (m(a,b) —mg), k — oo,
forallb € X.

Lemma 4 ([17]). Let ay — aand ap — bask — oo in (X, m). Then m(a,b) = mgyy. Further, if m(a,a) =
m(b,b), then a = b.

Lemma 5 ([17]). Let {ay} be a sequence in (X, m) such that for some r € [0,1), m(agy1,ar) < rm(ag, ax_1),
k € N then
(a)  lim m(ag,a;_1) =0;
k—s00
(b)  lim m(ay,ar) = 0;
k—roc0

(c) lim my 4 =0;
k,j—o0 Ty

(d)  {ay} is M-Cauchy.

3. M-Pompeiu-Hausdorff Type Metric

The concept of a partial Hausdorff metric is defined in [19,20]. Following them we initiate the
notion of an M-Pompeiu-Hausdorff type metric induced by an M-metric in this section. Let us begin
with the following definition.

Definition 4. A subset A of an M-metric space (X, m) is called bounded if for all a € A, there exist b € X
and K > 0 such that a € By, (b, K), that is, m(a,b) < my, + K.

Let CB™(X) denotes the family of all nonempty, bounded, and closed subsets in (X, m). For
P,Q € CB™(X), define
Hm(P/ Q) = max{ém(P, Q)/ ‘sm(Q/ P)}/

where 8,,(P, Q) = sup{m(a,Q) : a € P} and m(a, Q) = inf{m(a,b) : b € Q}.
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Let P denote the closure of P with respect to M-metric m. Note that P is closed in (X, m) if and
only if P = P.

Lemma 6. Let P be any nonempty set in an M-metric space (X, m), then a € P if and only if m(a, P) =

sup..cp Max-
Proof.

a€P & By(a,n)NP#Q, forally >0

< m(a,x) < may + 1, for some x € P

=

< m(a,x) —may <1
a,x) — Mgy :x € P} =0

a,x):x € P} = sup{my,y : x € P}

& inf{m

= =

& inf{m

< m(a, P) = sup mgy.
xeP

O

Proposition 1. Let P,Q,R € CB"(X), then we have

(a) 6u(P,P)= sup{sup Map };

) (Om(P, Q)*itellgiggmab) (6 (P, R) — inf inf mac) + (0m(R, Q) — Elgfl}g(fgmb)

Proof.
(@) Since P € CB™(X), P = P. Then from Lemma 6, m(a, P) = sup m,y. Therefore, é,,(P,P) =

xeP
sup{m(a,P)} = sup{sup Max }-

aeP aeP  xeP
(b) Foranya e P,b e Qandc € R, wehave

m(a,b) —my, < m(a,c) —mae +m(c,b) — mep.
We rewrite it as
m(a,b) — mgp + mae +me, < m(a,c) +m(c,b).

Since b is arbitrary element in Q, we have

m(a, Q) — sup myp, + Mye + 1nf mey, < m(a,c)+m(c,Q).
beQ

Since m(c, Q) < 4 (R, Q), we can write above inequality as

m(a, Q) — sup mgp + Mae + 1r1(f2 mey < m(a,c)+6u(R,Q).
beQ

As cis arbitrary in R, we have

m(a, Q) — sup mg, + mf Mae + inf inf my < m(a,R) + 5 (R, Q).
beQ CERDEQ

We rewrite the above inequality as

m(a, Q) + 1nf 1nf mep < m(a,R) + 6, (R, Q) + sup gy, — 1nf Mac.
beQ
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Again, as a is arbitrary in P, we get

u(P,Q) + mf mf mep < O (P, R) + 6 (R, Q) + sup sup m,, — mf mf Mac.
aeP beQ acPceR

|

Proposition 2. For any P,Q, R € CB™(X) following are true
() Hu(P,P) = 6,(P,P) = sup{supmy };

acP beP
(i) Hw(P,Q) = Hm(Q P);

) HnlP,Q) - upsupt < Ho(P/R) 4 ()~ fnf inf e i i e

Proof.

(i) From (a) of Proposition 1, we write H,, (P, P) = 6,,(P, P) = sup{sup m}.
a€P beP
(ii) Tt follows from (my) of Definition 2.

(iii) Using (b) of Proposition 1, we have
Hu(P,Q) = max{dn(P,Q),6m(Q, P)}

< max { [0m(P,R) — ;gf inf mge + 6m(R, Q) — mf lgém o+ sulg 2ug Map),
aeP be

[64(Q,R) — inf mf Mac + 6m (R, P) — mf 1nf My, + sup sup mab}}
acPceR acP beQ
< max{d(P,R), (R, P)} + max{du(Q,R),5u(R,Q)}

— inf inf m,. — inf inf m, + sup sup m,
aePceR " ceRpeq aelﬁbeg ab

< Hm(P,R)+Hm(R,Q) — ;glf) 1n1£ Mae — 11€1f blg(f2 Mep + su}; 2up Mgy
acP beQ
O

Remark 3. In general, H,,(A, A) # 0 for A € CB™(X). It can be verified through the following example.

Example 4. Let X = [0, 00) and m(a,b) = %, then clearly (X, m) is an M-metric space. In view of (a) of
Proposition 1, we have

Hm([1,2],(1,2]) = 0w ([1,2],[1,2]) = sup sup mp; = sup sup min{p,q} # 0.
pe(1.2]q€(12] pe(1,2]g€(1,2]

In view of Proposition 2, we call H,, : CB™(X) x CB™(X) — [0, 4+00) an M-Pompeiu-Hausdorff
type metric induced by m.

Lemma 7. Let P,Q € CB™(X) and q > 1. Then for every a € P, there is at least one b € Q such that
m(a,b) < qHu(P,Q).

Proof. Assume that there exists ana € P such that m(a,b) > qH,,(P, Q) forallb € Q. This implies that
inf {m(a,b)} > qHm(P,Q),
beQ

that is,
m(a,Q) > qHu(P,Q).



Mathematics 2019, 7, 373

Note that
Hm(P/ Q) > 5nz(P/ Q) = Supm(X, Q) > m(a/ Q) > qu(P, Q)

xepP

Since Hu (P, Q) # 0, q < 1, which is a contradiction. [J

Lemma 8. Let P,Q € CB"(X) and r > 0. For any a € P, there is at least one b € Q such that
m(a,b) < Hm(P,Q) +r.

Proof. Assume that there exists 2 € P such that m(a, b) > H,,(P, Q) +r forall b € Q. This implies that
inf {m(a,b)} > Hm(P,Q) +r,
beQ

that is,
m(a, Q) > Hm(P,Q) +r.

Now,
Hu(P,Q) +r < m(a,Q) < dm(P,Q) < Hum(P,Q).

Thus, r < 0, which is a contradiction. [

4. Fixed Point Results

First, we state the Nadler fixed point theorem in the class of M-metric spaces.

Theorem 1. Let M-metric space (X, m) be M-complete and F : X — CB™(X) be a multivalued mapping.
Suppose there exists A € (0,1) such that

Hy(Fa, Fb) < Am(a,b), (1)
foralla,b € X. Then F admits a fixed point.

Proof. Choose § = - and = V/A. Clearly, g > 1and r < 1. Let ag € X be arbitrary and a; € Fao.

VA
From Lemma 7, for g = \LFA’ there exists a; € Faj such that
m(a a)<1’H(Fa Faq) 2)
1,42) > \/X m 0,L001).

As Hy(Fag, Fay) < Am(ag,aq), so from (2) we have

%Am(ﬂg,al) = VAm(ag,a1) = rm(ag, a1).

Now, from Lemma 7, there exists a3 € Fa, such that

m(ay,ay) <

m(ap, az) < rm(ay,az).

Continuing in this way, we get a sequence {a;} of points in X such that a; 1 € Fay and for k > 1,

m(ay, axy1) < rm(ag_y,a), 3)
that is,
m(ay, agyq) < rm(ag, ay). 4)
By Lemma 5, we have
lim m(ay, ax41) =0, (5)
k—o0

10
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lim m(ag, a;) =0, (6)
k—o0
and
lim m(ay, a;) = 0. 7)
k,j—o00
Also the sequence {ay} is M-Cauchy. Thus, M-completeness of X yields existence of 2 € X
such that
lim (m(ay, a) — mgq) = 0.
k—00
Since lim m(ay, a;) = 0, we have
k—ro0
lim m(ag,a) = 0. (8)
k—o0
From (1) and (8), we have
lim M, (Fay, Fa) = 0. 9)
k—oc0
Now, since ay1 € Fay, m(ay, 1, Fa) < H,,(Fay, Fa). Taking limit as k — oo and using (8), we get
lim m(ay,q,Fa) = 0. (10)
k—o0
As Mgy Fa < m(ayy1,Fa), so we have
Jim ma,  po = 0. (1)
Using (m4), we have
m(a, Fa)— sup mg, < m(a, Fa) — mgp,
beFa
< m(a, ak+1) — Mgy + m(”k+1/ F”) — Mg Fa-
Varying limit as k — oo and using (8)—(11), we get
m(a, Fa) < sup mg. (12)
beFa
Since 1y, < m(a,b) for every b € Fa, this implies that
mg — m(a,b) <O0.
Thus
sup{m,, —m(a,b) : b € Fa} <0,
that is,
sup gy, — inf m(a,b) <O0.
beFa beFa
This gives
sup my, < m(a, Fa). (13)

beFa

From (12) and (13), we have
m(a, Fa) = sup mgp.
beFa

Thus, by Lemma 6,4 € Fa = Fa. [

11
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Example 5. Let X = [0,2] be endowed with m-metric m(a,b) = |a —b| + #. Then (X,m) is an
M-complete M-metric space (as in Example 3). Let F : X — CB"(X) be a mapping defined as

F(a) = {0, ;az} forall a € X.

We shall show that for A € (0,1), H,(Fa, Fb) < Am(a,b), i.e., (1) holds for all a,b € X. We have
following three possible cases:
Casel:a =b = p. Then Fa = [0, %pz] = Fb. Here, for A > %,

Hu(Fa, Fb) = ;pz < Ap = Am(p,p) = Am(a,b).

Casell:a < b. Then Fa = [0, }a?], Fb = [0, }b%] and Fa C Fb. In this case,

_ 1,1, 1, 74 + b°
Hu(Fa, Fb) —max{?z ,|7u 7!7 | + #}
1.2, 112
Sincea < b, 1a? < |}a? — J0?| + w. So we get
12 4 152
Ho(Fa, Fb) = |1a2 - —b2| N i i
7 2
and m(a,b) = |a—b| + “+b) . Then one can see that
I P L L
Hy(Fa, Fb) = \741 7b | + 5
1 1a% +1?
= Zla—b)a+b)+>
1 b)? —2ab
:§{‘u,b| (a+b)+ W)fﬂ}
1 b
<50+ 552 o
_ (”;b m(a,b)

Case IIl: @ > b. Then Fa = [0, %az], Fb =10, %bz] and Fb C Fa. In this case,

_ 1o 1, 1, g0°+50
H,(Fa, Fb) _max{7b et = 28|+ T }
1.2, 152
Since b < a, 1b? < |La? — 1p?| 4+ 2° ;71) . So, we get

1, 1 3 + b?

Ho(Fa, Fb) = |§a2 - §b2| + %
and m(a,b) = |a —b| + Hb) . Following Case II, one can easily show that

Hon(Fa, Fb) < & ; 9 1(a, ).

From above three cases, it is clear that (1) is satisfied for A > %, Thus, all the required conditions
of Theorem 1 are satisfied. Hence F admits a fixed point, which is a = 0.

12
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Next, we present our fixed point result corresponding to multivalued Kannan contractions in
M-metric spaces.

Theorem 2. Let M-metric space (X, m) be M-complete and F : X — CB™(X) be a multivalued mapping.
Suppose there exists A € (0, 3) such that

Hy(Fa, Fb) < A[m(a, Fa) +m(b, Fb)], (14)
foralla,b € X. Then F admits a fixed point in X.
Proof. Letag € X be arbitrary. Fix an element a; € Fag. We can now choose 4, € Fa; such that
m(ay,a2) = m(ay, Fay) < "y (Fag, Fay).
Again, we can choose a3 € Faj such that
m(ay, a3) < Hy(Fay, Fap).
Continuing in this way, we get a sequence {a; } such that gy 1 € Fay with
m(ag, agy1) < Hum(Fag_1, Fag). (15)
Using (14) in (15), we get

m(ag, ag1) < Alm(ag—1, Fag_1) + m(ay, Fai)]
< Alm(ag—q, ax) + m(ag, ag41)].

Thus,
A
m(ay, ax1) < 3 m(ax-1, ).
Letr = ﬁ Since A < %, we have r < 1. So,
m(ag, ag1) < rm(ag_q, ag). (16)
Thus, from Lemma 5, we have
lim m(ag, ax.1) =0, 17)
k—rc0
lim m(ak, Ilk) =0, (18)
k—sc0
and
lim m(ay, a;) = 0. (19)

k,j—o0
Moreover, the sequence {a;} is a M-Cauchy. M-completeness of X yields existence of a* € X

such that
lim (m(ag, a*) — mgq) =0 and  lim (Mg — Miguex) = 0.
k—o0 koo

Due to (18), we get
lim m(ag,a*) =0 and lim M+ = 0.
k—o0 k—00

Thus, we have
lirr;o[Muka* + Mg e+] = 0.

k—

This implies that
m(a*,a*) =0 and hence mg«p,+ = 0. (20)

13
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We shall show that a* € Fa*. Since
m(agyq, Fa*) < Hy(Fay, Fa*) < A[m(ay, Fay) + m(a*, Fa*)].
Taking limit as k — oo, we get
kh~>r{o\o m(agyq, Fa*) = 2Am(a*, Fa™). (21)
Suppose m(a*, Fa*) > 0, then we have
m(a*, Fa*) — mgpee < m(a”,agp1) — Mg, +m(ageq, Fa™) —mg, por-

Taking limit as k — oo and using (21), we get m(a*, Fa*) < 2Am(a*, Fa*), which is a contradiction
(as2A < 1). So

m(a*,Fa*) = 0. (22)
Also, using (20), we have
sup g+, = sup min{m(a*,a*),m(b,b)} = 0. (23)
beFa beFa

From (22) and (23), we get
m(a*,Fa*) = sup mgsp.
beFa

Thus, from Lemma 6, we get a* € Fa* = Fa*. O

Example 6. Let X = [0,1] and m : X x X — [0, 00) be defined as

m(a,b) = a;b.

Then (X, m) is an M-complete M-metric space. Let F : X — CB™(X) be a mapping defined as

0.6  ifaclol,
F(a) = aa
53] el

Then one can easily verify that there exists some A in (0, }) such that
Hu(Fa, Fb) < A[m(a, Fa) 4+ m(b, Fb)].
Thus F satisfies all the conditions in Theorem 2 and hence it has a fixed point (namely 0) in X.

Example 7. Let X = [0,1] be endowed with m-metric m(x,y) = ’%y Then (X, m) is an M-complete
M-metric space. We define the mapping F : X — CB™(X) as

{g} ifa=0,

a a

sa+a) aray, 10

14
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Fora=0and b = 7, there does not exist any A in (0, %) such that

Hm(F(O),F(i)) < A[m(0,F(0)) +m(i,p(

10 10 )]

Thus F does not satisfy (14) in Theorem 2. Evidently, F has no fixed point in X.

e

5. Homotopy Results in M-Metric Spaces

The following result is required in the sequel while proving a homotopy result in M-metric spaces.

Proposition 3. Let F : X — CB"(X) be a multivalued mapping satisfying (1) for all a, b in M-metric space
(X, m). If c € Fc for some ¢ € X, then m(a,a) = 0 for a € Fe.

Proof. Letc € Fc. Then m(c, Fc) = supm, ), = supmyy,. Also
beFc beFc

Hu(Fc, Fc) = 8, (Fc, Fc) = supmyy,.
beFc

Assume that m(c,c) > 0. We have

supmyy, = Hu(Fc, Fc) < Am(c,c),
beFc

that is,

supmy, < Am(c,c).
beFc

Since ¢ € F, it is a contradiction. So m(a,a) = 0 for every a € Fc. [

Theorem 3. Let O (resp. C ) be an open (resp. closed) subset in an M-complete M-metric space (X, m) such
that O C C. Let G : C x [, v] — CB™(X) be a mapping satisfying the following conditions:

(@) a¢Gat)forallacC\Oandeacht e [u,v);
(b)  there exists A € (0,1) such that for every t € [p,v] and all a,b € C we have

Hn(G(a,t),G(b, 1)) < Am(a,b);

(c)  there exists a continuous mapping P : [u,v] — R satisfying

Hn(G(a,t),G(a,s)) < Alp(t) —p(s)];
(d) ifceG(ct)then G(c,t) = {c}.

If G(., t1) admits a fixed point in C for at least one t1 € [u,v], then G(., t) admits a fixed point in O for all
t € [p,v]. Moreover, the fixed point of G(., t) is unique for any fixed t € [p,v].

Proof. Consider, the set
W ={teuv]lacG(art)forsomea e O}.

Then W is nonempty, because G(., t1) has a fixed point in C for at least one t; € [y, v], that is,
there exists a € C such thata € G(a,t1) and as (a) holds, we have a € O.

We will show that W is both closed and open in [y, v]. First, we show that it is open.

Let tp € W and ay € O with ag € G(ag, tp). As O is open subset of X, By, (ap,7) € O for some
r>0.Lete =1+ magy — A(r + t14q,) > 0. As 1p is continuous on [, v], there exists § > 0 such that

[p(t) —p(to)| <e, forallt € Ss(ty),

15
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where S5(ty) = (to — d,to + 9).
Since ag € G(ao, to), by Proposition 3, m(c,c) = 0 for every ¢ € G(ap, to). Keeping this fact in view,
we have
mpc = 0, for every p € X. (24)

Now, using (iii) of Proposition 2 and (24), we have

m(G(a,t),a0) = Hm(G(a,1),G(ao, t))
< Hm(G(a,t),G(a,to)) +Hm(G(a, to),G(ao, to))

— inf inf mp; — inf inf mge+ sup  sup  mpe
peG(at) g€G(ato) q€G(aty) c€G(apto) PEG(a,t) cEG (g to)

< Hu(G(a,t),G(a,to)) + Hm(G(a,t0), G (a0, o))
S Ag(t) — ¢(to)| + Am(a, ap)

< Ae+ A(mggy +1)

= A1+ tgay — A(r + Magy)) + A(thga, + 1)

< ¥+ Mggy — A1 + Mgay) + A(1Mgey + 1)

< 7+ Mg,

Thus for each fixed t € Ss(tg), G(.,t) : Bu(ag,r) — CB™(Bw(ag,r)) satisfies all the hypotheses of
Theorem 1 and so G(.,t) admits a fixed point in By, (a9, 7) C C. But this fixed point must be in O to
satisfy (a). Therefore, S5(t9) C VW and hence W is open in [, v].

Next, we show that W is closed in [y, v]. Let {t; } be a convergent sequence in W to some s € [y, v].
We need to show thats € W.

The definition of the set VW implies that for all k € N\ {0}, there exists a, € O with ay € G(a, ti).
Then using (d), (iii) of Proposition 2 and the outcome of Proposition 3, we have

m(ak/ ﬂ]) = Hm(g(ﬂkr tk)/ g(ﬂj, t]))
< Hm(g(ﬂk, fk), g(ﬂk, t])) -+ Hm(g(llk, tj),(](aj, t]))
< Alp(t) = (E)] + Amay,a).
This gives us
m(agap) < 77 [9(t) = $(t)].

Since 1 is continuous and {f;} converges to s, varying k, j — oo in the above inequality, we get

lim m(ay, a;) = 0.
k,j—ro0
As mnka/- < m(ukf ll/'), SO

lim Maya; = 0.
k,j—o00

Also lim m(ay, ay) = 0 = lim m(aj, a;).
k—vo0 k—o0
Therefore
k,ljigloo(m(uk’ aj) — May;) =0 and k,ljigloo(Makﬂf ~ Maa;) = 0.
Thus {a;} is an M-Cauchy sequence. Using (iii) of Definition 3, there exists a* € X such that

lim (m(ag,a*) — Mae) =0 and  lim (Mg, o+ — ngpe-) = 0.
k—eo k—o0

16
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But lim m(ay, a;) = 0, so
k—sc0

lim m(a,a*) =0 and lim Mg, = 0.
—00 k—o0
Thus, we get m(a*,a*) = 0. We shall prove a* € G(a*,t*). We have

m(ag, G(a",t°)) < Hu(G(ar, 1), G(a", 1))
< Hn(Glag, 1), G(ar, %)) + o (G (ag, ), G (a*, 1))
< AMplay) — ()| + Am(ag, a”).

Varying k — oo in above inequality, we get

lim m(ay, G(a*,t*)) = 0.
k—o0

Hence
m(a*,G(a*,t*)) = 0. (25)

Since m(a*,a*) = 0, we have

sup Mg, = sup min{m(a*,a*),m(b,b)} =0. (26)

begG(a*t*) beg(a* t*)
From (25) and (26), we get
m(a*,G(a*,t*)) = sup Mg
beG(a*,t*)

Therefore, from Lemma 6, we have a* € G(a*,t*). Thus a* € O. Hence t* € W and W is closed
in [y, v].

As [p,v] is connected and W is both open and closed in it, so W = [y, v]. Thus G(., t) admits a
fixed point in O for all t € [y, v].

For uniqueness, fix t € [y, v], then there exists 2 € O such thata € G(a,t). Suppose b is another
fixed point of G (b, t), then from (d) we have

m(a,b) = Hm(G(a,t),G(b, 1)) < Am(a,b),
a contradiction. Thus, the fixed point of (., t) is unique for any t € [, v]. O
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a quasi-metric space. We also investigate the existence and uniqueness of the fixed point for a couple
functions under that contraction.

Keywords: quasi metric space; altering distance function; (i, ¢) —quasi contraction.

1. Introduction and Preliminary

Fixed point has been considered by many researchers since it was established by Banach [1]
in 1992. The generalizations of the theory were considered by many researchers on various metric
spaces (see, for example, [2-7]). Quasi-metric space was one of the interesting examples that were
considered since it was introduced by Wilson [8] in 1931. We may suggest the following articles to the
reader [8-20].

Definition 1. [8] Let x be a non-empty set and p : x X x — [0,00) be a given function that satisfies the
following conditions:

(1) p(a,B) =0ifand only if « = B.
@) pla,p) < play) +p(y,p) foralla, B,y € x-

Then, p is called a quasi-metric on x and the pair (x, p) is called a quasi-metric space.

Example 1. Consider the set x = [0, 1] and define the function p : x x x — [0, c0) such that
- B2 ifa>
ple p) = { e =p

1 Otherwise.
Then, (), p) is a quasi-metric space. To prove this, we need to verify the two conditions of Definition 1.

Condition1.  Ifa = B, then it is clear that p(a, B) = 0. On the other hand, if p(«, B) = O then we have
0=a?—p2=(a—p)(a+p). Sincea, B € [0,1], we have « = B.
Condition 2. Let a, B,y € x. Then, we have three cases:

Casel Ifa > Band B > v, then a > v and hence p(w, B) + p(B,v) = («> — B2) + (B —

7?) =0 =" =p(w,7). ,

CaseIl  Ifa > Bandy > B, then we have p(x, B) + (B, 7) = (a* — B2) +1 > p(a, 7). This
is because p(«,y) < 1 forall a,y € [0,1].

CaseIll  If B > a, then using the same reason as in Case II, we have p(a, B) + p(B,v) =

1+p(B,7) > p(a, 7).
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Therefore, (x, p) is a quasi-metric space. It is clear that (x, p) is not a metric space since p(«, B) # p(B, ),
forall a # B.

Now, we introduce the definitions of convergence and Cauchy of such a sequence in
quasi-metric spaces:

Definition 2. [12,13] Let (x, p) be a quasi-metric space. A sequence (xy,) in x converges to the element & € x
if and only if

Jlim p(an, a) = lim p(a,an) = 0.
Definition 3. [12,13] Let (x,p) be a quasi-metric space. A sequence (xy) in the space x is said to be a
Cauchy sequence if and if, for € > 0, there exists a positive integer N = N (€) such that p(0,, a,) < € for all
m,n > N.

Moreover, if every Cauchy sequence in the quasi-metric space x is convergent, then (x,p) is said to
be complete.

The next notion was given by Khan et al. [21].

Definition 4. [21] A self function 1 on [0,c0) is called an altering distance function if the following
properties hold:

(1) 4 is non-decreasing and continuous.
(2) p(e) = 0ifand only ife = 0.

2. Main Result

Definition 5. Let (x, p) be a quasi-metric space and Sy, S be two self-mappings on x. Then, the pair (S1,52)
is said to be (, ¢)—quasi contraction if there exist two alternating distance functions 1 and ¢ such that, for all
e,w € x, we have

¥(p(S16, Saw)) < P(Mi(e,w)) = p(Mi(e, w))

and
P(p(S2¢, S1w)) < P(Ma(e,w)) — p(Mz(e, w))
where
M; (e,w) = max {p(w, Syw) %,p(e, S1e), p(w, Saw) }
and
M;(e,w) = max {p(w, Slw)%,p(e, Sze), p(w, Sw) }

Now, we prove our first result:
Theorem 1. Let (x, p) be a complete quasi-metric space. Let ¢ and ¢ be alternating distance functions and
S1, Sy be two self-mappings on x such that the pair (S1,S2) is (, ¢)—quasi contraction. Then, Sy and Sy have

a unique common fixed point.

Proof. We start the proof of the result by taking an element 15 € x. We construct a sequence (1) in x
in the following way: 1,41 = S1T2; and T, 42 = S2Tp,41 foralln > 0.

20



Mathematics 2019, 7, 453

It is clear that if there exists s € N with 1) = Tps11, then Ty, is a fixed point of S;. Since the pair
(S1,S2) is (1, ¢) —quasi contraction, we have

P(o(T2s41, T2s42))
= P(o(S172s, S22541))
< p(Mi(Ts, T2s41)) — ¢(Mi(Tas, Tas41))

= 1/1<max{p Ts11, 2542, P(TZSITZS+1)}>
—¢

max{ (T25+1/T25+2)/P(T2sxT25+1)})
= P(0(T2s11, T2s12) — PlP(T2s 41, T2s42))-

From the above inequality, we deduce that (0(T2s+1, Tos+2)) = 0. Since ¥ is an alternating
function, we conclude that 7y, is a fixed point of S; and S,. Thus, 1o, is a common fixed point of S;
and S;.

Using similar arguments as above, we may show that, if there exists s € N such that ;11 = T2s42,
then Ty, 1 is a common fixed point of 51 and S,.

Now, we may assume that 7, # 7,41 foralln € N.

In view of (1, ¢) —quasi contraction of the pair (51, S2), we deduce that

(o211, 2012))

P(o(S1T2n, S2Ton41))

P(M1 (21, T2n11)) — ¢ (M1 (20, 201 1))
1+ p(TZHr T2n+1)
1+ o(Ton, Tans1)

IN

= ¥ ( max {p(’r2n+1, Tont2)

1+ p(t2n, Tan+1) )

T ;T 14 o(tr. T 1)

¢<max { (T2n+1, T2nt2) 1+ 0(Tan, Tons1)

= p(max{p(tu, Tni1), 0(T2ns1, Tons2) }) — ¢(max{p(ton, T2ns1), 0(Toni1, T2ns2) ). (1)

2 0( T2, Ton41), P(Tong1, Tons2)

’ P(Tzn, Tn+1 )/ P(T2n+1/ T2n+2) })

Assume that
max {lIJ(P(Tzn,Tan))r¢(P(Tzn+1,rzn+2))} = P(o(T2n+1, Ton+2))-
Then, Equation (1) implies
Y(p(T2n+1, T2n+2)) < P(p(T2n41, T2n+2)) — P(O(T2n+1, T2n+2))
a contradiction. Thus,
{020 T00), (201, T2)) | = (P (20 20))

Therefore, Equation (1) yields

P(o(m2n11, T2n42)) < P(0(T20, T2nv1)) — PlO(T20, Tans1))- 2
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On the other hand, we have

P(o(T2n, T2n41))

P(p(S2T2n-1,51720))

P(Ma(t2n-1, T2n)) — ¢(Ma (201, T20))

1+ p(T2n-1,T2n)

1 +P(T2n71rT2n)
1+ p(tn-1, T

‘P(max{ (TZWTZW-H)l+zgén—1ré:;

= Y(max{p(tu-1,%2n), 0(T2n, T2n11)}) — P(max{o(t2n—1, 2n), 0(T2n, T2an+1) })- 3)

IN I

4’ ( max {P(TZn/ T2n+l) ’ P(Tanlx TZn)/ P(T2n/ T2n+l) }>

0(T2n—1,T2n), 0(T20, T2n41) })

From the last inequality, we get

max{ (-1, 1), 0(T2n, Ton+1)} = P(T2n—1,T2n),

and hence

P(o(t2n, T2ny1)) < P(0(T2n-1,720)) — P(0(T2n-1, T2n))- )

Combining Equations (2) and (4), we conclude that

$(p(tn, Tar1)) < P(0(Ta—1, 7)) = ¢(0(Tu1,T)) < P(0(Tu1,Tn)) ®)

holds for all n € N.
From Equation (5), we conclude that {p(1,-1, T;) : n = 1,2,...} is a decreasing sequence.
There exists s > 0 such that

n1~1>m P(Tn 1/Tn)* S.

By allowing 7 tends to +co in Equation (5), we conclude that s = 0 and hence

lim o(T,—1,Ta) = 0. (6)

n—+oo

Now, we prove that

nrr%gn P(anTm) =0.

For two large integer numbers 1 and m with m > n, we discuss the following cases:

Case 1: n = 21+ 1 and m = 2r+ 2 for some /,r € N; that is, n is odd and m is even. By the
(¢, ) —contraction of the pair (S1,S2), we have

P (o(Tn, Tm))
= P(p(T241, T2r12))

P(o(S1721, S2T2r41))
P(Mi (T2, T2r41)) — (M (T2, T2r41))
1+ p(T21, T2141)
1+ p(T21, T2r41)

14 p(To1, To141)
14 p(T21, T2r41)

IN

[ < max { T 41, T2r42) ,0(T21, T2141), 0 (T2 41, T2r42) })
—¢

max { (Tor41, T2r42) ,0(T21, Tor1), P (T2r 41, T2r42) })

@)
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< 9 ( max { 11, Tors2) (1 + 0( 21, Ta141)), (T2t T2141), 0(T2r 41, T2r42) })
—¢(0(T21, T2141))

< 9 ( max { o211, T2r12) (1 + (121, T2141)), 0(T21, T2141), (2041, T2r12) })

< P(o(tas1, Targ2) (14 (T2, T2141)))

= (T, Tur1) (1 + 0(Tu-1,Tn)))

< 4’(P(Tn 1/Tn)(1+p(Tn71/Tn)))'

In view of Equation (7) and the nondecreasing property of the function ¢, we conclude that

0(T, T) < p(Tu—1, ) (1 + p(Ty—1,Tu))

Case 2: n = 2l and m = 2r + 2 for some [, € N; that is, n and m are both even. Here, we have

o(T, ) = p(T1, 2rv2) < p(T2, Ta41) + (T4, T2r42)
= 0(Tu, Tus1) + (Tug1, Tn)-

From Case 1, we get

(T, Tut1) + 0(T, Tu1) (1+ (T, Tug1))

P(Tn/ Tm) <
< p(Ta—1, ) + (a1, T) (T + p(T—1, ™) )-

Case 3: n = 2] and m = 2r + 3 for some [, 7 € N; that is, 1 is an even number and m is an odd number.
Here, we have

P(Tn/Tm) = P(721,T2r+3)
< o(Ta, Ta41) + P(T21+1, Tr42) + P(T2r+2/ Try3)

P(Tnz Tn+1) + P(Tn+1/ Tmfl) + p(Tmfl/ Tm)~

N

From Case 1, we get

P(Tnl Tn+1) +P(Tn+lr Tmfl) +P(Tn171/Tm)
(T, Tus1) + (T, Tar1) (1 + (T, Tus1)) + 0(Tn—1, Tn)
Zp(Tnfll Tn) +‘0(Tn,1,1'n)(l +‘0(Tn,1, Tn))‘

P(Tn/ Tnz)

ININ A

Case 4: n =21 + 1 and m = 2r + 3 for some [, r € N; that is, n and m are both odd. Here, we have

P(Tn,Tm) = P(TZI+1/T2r+3)
o(T2r41, Tor+2) + 0(T2r42, T2r4:3)
P(Tm Tm—l) +P(Tm—1r Tm)-

IN

Case 1 implies that

0(Tu—1, ) (14 p(Tu—1, ™)) + 0(Tu—1, Tmr)
0(T-1, T) (14 p(Tu—1,T)) + p(Tu—1, Tu)-

(T, Tim)

ININ
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By summing all cases together, we conclude that
(T, T) < 20(Tu—1, Tn) + 0(T, Tug1) (1 + p(Ta-1, ) ®)

holds for all n,m € N.
Letting 1, m — 400 in (8), we have

n,n%lgloop(rm Tm) =0

Thus, (7,) is a Cauchy sequence in x. In view of the competence of the space x, we find a € x
such that 7, — a as n tends to +oo.
For s € N, we have

P(0(T2s5+1, S24))
= P(p(S1725,520))

(M1 (125, a)) — (M1 (125, a))
Lbpltaen)
1+P(Tzsrﬂ) s 025, T2s+1), P4, 02

1+p(TZS/a)

IN

P < max{p(a, Sya)

~p((max{p(o,520) Pl o), (0, 520) | ).

Allowing s — +o0 in above inequality, we get

¥(o(a,52a)) < p(p(a,S2a)) = ¢(p(a, S2a)).

The above inequality is correct only if ¢(p(a, Soa)) = 0 and thus Spa = a. Using similar arguments
as above, we may figure out Sja = a. Thus, a is a common fixed point of S; and S,.
Now, assume that S;w; = Sowy = wy and Sjwy = Swy = ws. In view of (P, ¢) —contraction of
the pair (51, S), we have
P(o(wr, w2)) = Y(o(S1w1, Sawz)) < 0.

Thus, ¥(p(wy, w)) = 0. Therefore, w; = wy. Thus, the common fixed point of S; and S; is
unique. [

By taking
1+ o(e, Sqe 1+ (e, Sie
max {p(w, Szw)i1 +pp((e ;)) ,p(e, S1e), p(w, Szw)} = p(w, Szw)i1 +pp((e ;))
and 1 S 1 S
+ o(e, Spe + ple, 5ze
max {p(w, Sﬂu)%,p(a Sze), p(w, Slw)} =p(w, Slw)%

in Definition 5. Then, the following result holds:

Corollary 1. Let (x, p) be a complete quasi-metric space and S1,Sy : x — x be two mappings. Let i and ¢ be
two altering distance functions such that

Vlo(sie syw) < (oo Se) LD ) — p(pt, 530) TGS ),

and
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Then, Sy and Sy have a unique common fixed point.

If we define 1 and ¢ on the interval [0, +0) such that (1) = T and ¢(7) = (1 — a)7T where
a € [0,1) in Theorem 1, we formulate the following result.

Corollary 2. Let (x,p) be a complete quasi-metric space and S1, Sy : x — x be two mappings. Let a € [0,1)
such that

1+ p(e, Sie)

P(p(S1e, Sow)) < amax {p(w,Szw) T+ ple,w)

ple, S10), p(w, szw>},

and

1+ p(e, S12e)

P(p(Sze, S1w)) < amax {P(wfslw) T+ p(e,w)

,0(e,512¢), p(w, S1w) }
Then, Sy and Sy have a unique common fixed point.

In addition, if we assume S; = S; in Theorem 1, Corollary 1, and Corollary 2, then the following
results hold.

Corollary 3. Let (x,p) be a complete quasi-metric space and Sy be a self-mapping on x. Assume ¢ and ¢ are
two altering distance functions such that

%IP(& S1e), p(w, Syw) })

Ao

vesieso) < y({ow s
,p(e, 513)/P(w/51w)}>~

Then, Sy has a unique fixed point.

Corollary 4. Let (x,p) be a complete quasi-metric space and Sy : x — x be a mapping. Let 1 and ¢ be two
altering distance functions such that

p(p(Sie, Sw)) < zp(max {p(w,SW)%}) - 4’(‘“" {p(w’slw)%})'

Then, Sy has a unique fixed point.
Corollary 5. Let (x, p) be a complete quasi-metric space and Sy : x — x be a mapping. Let a € [0,1) such that

1+ p(e, Sie)

P(p(S1e,S51w)) < amax {P(w’slw) 1+p(ew)

,p(e, S1e), p(w, Slw)}.
Then, Sy has a unique fixed point.
The following example shows the validate of our results:

Example 2. On the space x = [0, 1], define the quasi-metric via

0, ifa=p;

pla,p) = { max{a, B}, ifa #B,
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In addition, on x = [0,1], define the mappings Sy and Sy via S1T = %sin2 Tand ST = %Tz. Take the
following altering functions p(a) = 14 and ¢p(a) = 5% Then,

1. pinduces complete quasi-metric on x.
2. (S1,82) is (¢, ¢) — quasi contraction.

Proof. The proof of Part (1) is clear. To verify Part (2), given (e, w) € [0,1] x [0,1] with e # w. Without
loss of generality, we may assume that e > w. Then,

1 1+ ,l 2 1 i
= e
Thus,
1., 1,
P(p(S1e, Sow)) = 1}7<p<§sm e'§w>>

12, 1.2
max{§51n e,iw}

1 +max{%sinze,%w2}
le

1+%e
e

2+4e

= <%> <1ie>

e e
1+e 5+5e¢
= P(Mi(e,w)) — (M (e, w)).

Using similar arguments as for the above method, we can prove that

¥(p(Sae, S10)) = p(Ma(e,w)) — p(Ma(e, w)).

Thus, (51, S2) is (¢, ¢) —quasi contraction. Thus, by Theorem 1, we deduce that S; and S, have a
unique common fixed point. [J
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Abstract: In this paper, we aim to obtain fixed-point results by merging the interesting fixed-point
theorem of Pata and Suzuki in the framework of complete metric space and to extend these results by
involving admissible mapping. After introducing two new contractions, we investigate the existence

of a (common) fixed point in these new settings. In addition, we shall consider an integral equation
as an application of obtained results.
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1. Introduction and Preliminaries

For the solution of several differential /fractional/integral equations, fixed-point theory plays a
significant role. In such investigations, usually well-known Banach fixed-point theorems are sufficient
to provide the desired results. In the case of the inadequacy, the researcher in the fixed-point theory
proposes some extension of the Banach contraction principle. Among them, we recall one of the
significant theorems given by Popescu [1] inspired from the notion of C-condition defined by Suzuki [2].

Definition 1 (See [3]). Let T be a self-mapping on a metric space (X, d). It is called C-condition if

%d(%, Ts) < d(s,y) implies that d(Ts, Ty) < d(s,y),Vs,y € X.
Indeed, by using the notion of C-condition, Suzuki [2] extended the famous Edelstein Theorem.
More precisely, For a self-mapping T on a compact metric space (X,d), if T is C-condition and the
inequality d(T, Ty) < d(s,y), for all s« # y, then T possesses a unique fixed point.
Popescu [1] considered Bogin-type fixed-point theorem involving the notion of C-condition in a
complete metric space as follows:

Theorem 1. Let a self-mapping T on a complete metric space (X, d) satisfy the following condition:

%d(%, Ts) < d(s,y) (1)
implies
d(Ts, Ty) < ad(s,y) + bld (s, T») +d(y, Ty)] + c[d(>, Ty) + d(y, T»)] 2)

wherea > 0,b > 0,c > 0and a+2b+ 2c = 1. Then T has a unique fixed point.

Mathematics 2019, 7, 720; do0i:10.3390 / math7080720 28 www.mdpi.com/journal /mathematics
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Another outstanding generalization of Banach mapping principle was given by Pata [4].
Before giving the result of Pata [4], we fix some notations:
For an arbitrary point s¢ in a complete metric space (X, d), we shall consider a functional

Il = d(5¢,50), Vs € X,

that will be called “the zero of X”. In addition, ¢ : [0,1] — [0, c0) will be a fixed increasing function
that is continuous at zero, with (0) = 0.

Theorem 2 (See [4]). Let T be a self-mapping on a metric space (X,d). Suppose that p € [0,a] A > 0 and
a > 1 are fixed constants. A self-mapping T possesses a unique fixed point if

d(To,Ty) < (1= e)d(xy) + A)*p(e) [+ ||| + Ily[1P,
holds for all »¢,y € X and for every e € [0,1].

This theorem has been extended, modified, and generalized by several authors, e.g., [5-16].

The main goal of this paper is to introduce new contractions that are inspired from the results of
Suzuki [2], Popescu [1], and Pata [4]. More precisely, our new contraction not only merges these two
successful generalization Banach contractions, but also extends the structure by involving a-admissible
mappings in it. After that, we aim to investigate the existence and uniqueness of this new contraction
in the context of complete metric spaces.

For this purpose, we recall some basic notions and results from recent literature.

Definition 2 ([17]). Let X # @ and a : X x X — [0, 00) be an auxiliary function. A self-mapping T on X is
called a-orbital admissible if

a(s, Ts) > 1 implies that a (T, TZ%) > 1, forany » € X.

Lemma 1 (See[18]). Let {p,} be a sequence on a metric space (X, d). Suppose that the sequence {d(py+1, pn)}
is nonincreasing with

Jim d(put1,pn) =0,

If {pn} is not a Cauchy sequence then there exists a & > 0 and two strictly increasing sequences {my} and
{ny} in N such that the following sequences tend to ¢ :

d(Pmk, Py ) d(Pmk/ Py )r d(Pmk,lr Pnk)/ d(Pnzk,lr Py ), d(PmkHr Pnyiq )r

as k — oo,

2. Main Results

We start with the definition of the a-Pata—Suzuki contraction:

Definition 3. Let (X,d) be a metric space and let A > 0, « > 1 and B € [0,a] be fixed constants.
A self-mapping T, defined on X, is called a-Pata—Suzuki contraction if for every € € [0,1] and all x,y € X,
satisfies the following condition

(i) T is an a-orbital admissible mapping
(if)

%d(x, Tx) < d(x,y)

implies

a(x, Tx)a(y, Ty)d(Tx, Ty) < P(x,y)
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where

Plry) = (1 max{d(xy),d(x, Tx),d(y, Ty), 1 [d(x, Ty) +dly, To)]
FAG) (&) [+ 1l + lyll+ [T+ [ TyIP.

This is the first main result of this paper.

Theorem 3. Let (X, d) be a metric space and T be a self-mapping on X. If

(i) T on X is a-Pata—Suzuki contraction;

(ii) there exists xo € X such that a(xg, T xg) > 1;

(iii) if {xn} is a sequence in X such that a(xy, X, 1) > 1 for all n and x, — x as n — oo, then a(x,,x) > 1
for all n, we have a(x, Tx) > 1;

(iv) a(x*,Tx*) > 1 forall x* € Fix(T), where Fix(T) := {x € X : Tx = «x}, then T has a fixed
point z € X.

Proof. Due to assumptions of the theorem, there is xp € X so that a(xp, Txp) > 1. In addition, we set
|x|| = d(x,x0),Vx € X. Since T is an a-orbital admissible mapping, we have

a(Txo, T?x0) > 1.

and iteratively, we have

a(T"x0, T"xg) > 1 foreachn € N. (3)
Starting at this point xo we shall construct an iterative sequence {x,} by x, = T"xq for
n=1,2,3, . Here, we assume that consequent terms are distinct. Indeed, if there exists kg € N

such that
Texo = xg, = X1 = TR xg = T(T¥x0) = T (x,),

then, xj, forms a fixed point. To avoid from the trivial case, we suppose that
Xp # Xpyq foralln =1,2,3,--- .
To prove that the sequence {d(x,, x,+1)} is decreasing, suppose on the contrary that
d(xp, xy11) = max{d(xu, x,11),d(xn, Xy-1)}-
Since %d (xp—1,xn) < d(x;-1,x,) and since T is a a-Pata—Suzuki contraction, we find that
d(xp, xp11) =d(Txp-1,Txn)

< zx(an, Txnfl)“(xn, Txn)d(Txnfl/ Txn)

< (1 - E) max {d(xnfll xn)rd(xn—l/ xn)/d(xn/ xn+1)/% [d(xm xn) + d(xnfl/ xn+l)]}
FA) () [1+ x| + [1xall + | Txn1 ]l + | TP

< (1 —&)d(xn, xu11) + K(e)*9(e),

for some K > 0. It follows that d(x,, x, 1) = 0 which is a contradiction. Hence, {d(x,, x,11)} is a
decreasing sequence, thus tending to some non-negative real number, say, d*.

As a next step, we shall show that the sequence {||x, ||} is bounded. For simplicity, let C, = ||x,]|,
and hence, we claim that the sequence {C, } is bounded.
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Since the sequence {d(x,, x,1+1)} is decreasing, from the triangle inequality, we find that
Cn =d(xn,x0) < d(xu,xy41) +d(Txn, Txo) +C

<2C + d(Txn/ TxO)'

We assert that
1 1
Ed(x,,,xnﬂ) < d(xu,xq) or Ed(xn_l,xn) <d(x;-1,%0)-

Suppose, on contrary that

1 1
Ed(xn,xnﬂ) > d(xy,x0) and Ed(x,,,1,xn) > d(x,-1,X0)-

In this case, we derive that

d(xp-1,xn) < d(xp-1,%0) +d(x0, Xn)
1
< 2 [d(xn—1,xn) +d(xn, Xp41)]
< d(xn—lrxn)/

is a contradiction. Hence, our assertion is held, i.e.,

%d(x,,,xnﬂ) < d(xu,xq) or %d(x,,_l,xn) <d(xy-1,%0)-
Also, on account of (3), we have
a(xp, Txn)a(xg, Txg) > 1.
Regarding T is a-Pata—Suzuki contraction, we get
A(Txn, Txo) < a(xy, Txn)a(xo, Txo)d(Txn, Txo)
< (1-eymax{ d(xn,%), dlxon), d(¥axns1), %[, x1) +d(xo,%11)] }
FALE) Ple) [L+ onll + 130 + nsa | + 2]
< (1—¢)max{Cy, C1,Cy + Cp} + Ae)*(e) [+ Cp + Cy + Cy + C]P
< (1—¢€)(C1 + Cu) + Ale)*p(e) [1 +2C, +2C1]F .
Consequently, we derive from the above inequality that
Cu = d(xn,x0) < d(xn, Xus1) +d(fxn, fxo) +C1
<2C; + (1 —¢€)(C1 + Cu) +ale)*yp(e).
A simple calculation yields that
eCp < a(e)*y(e) + b,

for some constants a,b > 0. By verbatim of the proof of ([18], Lemma 1.5) it follows that the sequence
{Cy} is bounded.
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In what follows we prove that d* = 0 by employing the fact that {C,} is bounded. Indeed,
we have that

d(xpi1, %) = d(Txn, Txy—1)
< a(xu—1, Top—1)a(xn, Tan)d(T 2, Txn-1)
< (1= e)d (0, Xn1) + Ale)*p(€) [L+ %l + 1xn1ll + %]l + [|%04211]°
< (1= €)d(xn, x0-1) + A€)*$(e) [142 |3 + [1x0all + 1411

< (1 —e)d(xn, xy-1) + K(e)*9(e),

for some K > 0. As n — o in the inequality above, it follows that d* = 0.

As a next step, we shall indicate that {x, } is a Cauchy sequence by using the method of Reductio
ad Absurdum. Assume, on the contrary, that the sequence {x,} is not Cauchy. Accordingly, regarding
on Lemma 1, there exists 6 > 0 and two increasing sequences {m;} and {ny} , with n > my > k
such that the sequences d (X, Xn, ) ,d (X, X1 )8 (X_ys X )8 (X1 X)Xy 10 Xy, ) tends to &
asn — 0.

We claim that %d(xm 1 Xmy) < d(Xm,_, Xu, ). Indeed, if the inequality above is not held, that is,
if %d (Xmy_ys Xy ) > d(Xm,_,, ¥n,) then we get a contradiction. More precisely, by letting k — co in the
previous inequality, we get 6 < 0, a contradiction.

Hence, our claim is valid, i.e., %d(xmkil, Yoy) < Ay, Xny ) Notice also that
a(xmy g, f (X ))a(xn,, fxn,) > 1Vk > N.Since T is a-Pata-Suzuki contraction, we deduce that

d(Xmy, Xny) = (T Xy, T Xuy)

< “(xmk,lz T(xmk,l ))“(xnkr T, xnk)d(Txmk,lz Txnk)

% [d(x”k’ Xomy) + A (X Xnpeyq )}

<(1-¢) max{ A (Xmy_ys Xy ) A (Xmy_y s Xy ) A (Xgs X ), }
A P(e) [T+ [[xme |+ [ng |+ m ]| + 1% 117

% [d(x’lk' xmk) + d(x"lk—l’ x”k+1 )}
+K(e)"p(e),

< (l —S) max{ d(xmk,lrxnk)/d(xmk,lrxmk)/d(xnk/xnkﬂ)r }

where K > 0. By letting k — oo in the obtained inequality above, we get that 6 = 0, a contradiction.
Hence, {x, } is a Cauchy sequence. Since X is complete, there exists z* € X such that x,, — z*
and by (v) and a(z*, Tz*) > 1.
Now, we shall prove that z* = 7 z*. Suppose, on the contrary, that z* # 7z*. For this purpose,
we need to prove the claim: For each n > 1, at least one of the following assertions holds.

1 o 1 «

Ed(xnfllxn) <d(xy-1,2") or id(xn/xn+l) < d(xn,z%).
Again, we use the method of Reductio ad Absurdum and assume it does not hold, i.e.,
1 ‘ 1 %
54(xn1,3n) > d(xp1,27) and 3d(xn, x41) > d(xn,27),

2
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for some n > 1. Then, keeping in mind that {d(x,,x,+1)} is a decreasing sequence, the triangle
inequality infers
d(xy—1,2) < d(xp-1,2%) +d(z", xn)
< %[d(xn,l, Xn) + d(%Xn, Xn41)]
< d(xy_1,%n),

which is a contradiction, and so the claim holds.
Due to the assumption (v) and the observation (3), we have

a(xn, Txy)a(z", Tz") > 1, holds forall n € N.
Taking %d (xn, Tx) < d(xy,2") into account, the assumption (i) yields that
A(Tx,, Tz*) < (1—¢) max{ d(xy,z%), d(z*,Tz%), d(xn,xu11), % [d(xn, Tz*) 4+ d(z*, Txp)) }
FA(E) ple) [+ nll + 127+ T2 + [ TP
=(1-¢) max{ d(xn,z%), d(z%,Tz"), d(xn,xpe1), 3[d(xn, Tz*) +d(z%, Txn)) }

+K(e)"y(e),

for some K > 0. By letting # — co in the inequality above, we find that

4z, f21) < (1= ) max {0,d(z", T2"), 0, %5550} + K(e)*p(e)
< (1= 9, T2) + K& ple)

for some K > 0. It implies that d(z*, Tz*) = 0, a contradiction. Hence z* = Tz*.
As a final step, we examine the uniqueness of the found fixed point z*. Suppose that v* is another
fixed point of 7 that is distinct from z*. 7z* = z* and Tv* = v*. By (v) we have

a(z®,Tz*) > Tand a(v, To*) > 1.
Since 3d(z*, Tz*) < d(z*,v*) the assumption (i) yields that

A(Tz*, Tv*) < (1—¢)max {d(z*,v*) d(z, Tz),d(v*, To*), } [d(z*,Tv)+d(v*,Tz*)]}
+A(e) p(e) [+ 22" + 2|0 )]P
< (1—e)d(z*,v*) + K(e)*y(e)

for some K > 0 that yields that d(z*, v*) = 0, a contradiction. Hence z* = v*. [

Example 1. Let X = [0,00) and let d(x,y) = |x —y| forallx,y € X. Let A = 1, a =1, = 1and
Ple) = €1 for every € € (0,1] and a mapping T : X — X be defined by

Ty ix ifo<x<i,
T 2« ifx>1 "7

Also, we define a function a : X x X — [0, 00) in the following way

1 ifo<xy<l,
a(x,y)—{ fosxy

0 otherwise

33



Mathematics 2019, 7, 720

Also, we have

1 € 1, 1
Z <Z(1=24+5)< Z(e)2
: 1+e< 2(1 2+2) < 2(5)2
Now
~d(x, Tx) = Z|x — §| <d(x,y)
implies
d(Tx, Ty)
=<|Tx — Ty|
—|x_Y
2T
=zlx—yl
< 3P(xy)
=(1—-€e)P(x,y) + (3 —1+€)P(x,y)
<(1-¢)P(x,y) + (3 -1 +e) [1+[lxl + Iyl + I Tx[| + | Tyll]
< (1=e)P(x,y) + (3e€2) [1+[|x[| + Iyl + | Tx[| + | Ty]]

Hence, T satisfies all the conditions of theorem and T has a unique fixed point.

Immediate Consequences

In this subsection, we list a few consequences of our main result. These corollaries also indicate
how we can conclude further consequences.
If welet a(x, Tx) = 1 for all x € X, we get the following results:

Theorem 4. Let T be a self-mapping on a metric space (X, d). Suppose that p € [0,a] A > 0and « > 1are
fixed constants. A self-mapping T possesses a unique fixed point if d (3¢, T¢) < d(s¢,y) implies

d(T»,Ty) < P(s,y)

where
Pley) = (1) max {d(oe,y), (e, Toe), dly, Ty), } (4, Ty) + dly, )]}
A P(e) [L+ 1l + [yl + [Tl + [ Tyll)P
forall 5,y € X and for every ¢ € [0,1].

Let (X, <) be a partially ordered set and d be a metric on X. We say that (X, <, d) is regular if for
every nondecreasing sequence {3, } C X such that s, — x € X as n — oo, there exists a subsequence
{3k} of {5e} such that 3¢, () < x forall k.

Theorem 5. Let (X, =) be a partially ordered set and d be a metric on X such that (X,d) is complete.
Let T : X — X be a nondecreasing mapping with respect to <. Suppose that p € [0,a] A > 0and « > 1 are
fixed constants such that the self-mapping T satisfies the following condition: 3d(s¢, T s¢) < d(s¢,y) implies

d(T>,Ty) < P(»y)

where
P(y) = (1—e)max{d(sy),d( T3),d(y, Ty), } [d( Ty) +d(y, T5)| |

A P(e) [+ 12l| + [lyll + [Tl + [ TyllP
forall 3¢,y € X with > <y and for every € € [0,1]. Suppose also that the following conditions hold:

(i)  there exists xg € X such that xo < Tx;
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(i) (X, =,d) is regular.
(iii) T is nondecreasing with respect to < (that is, ¢,y € X, 2y = T <X Ty.)

Then T has a fixed point.
Moreover, if for all s,y € X there exists z € X such that s, < z and y < z, we have uniqueness of the
fixed point.

Proof. Seta : X x X — [0, 00) in a way that

) lifx2yorxr=y,
w(xy) = { 0 otherwise.

It is apparent that T is an a-Suzuki-Pata contractive mapping, i.e.,
a(>,y)d(T3x, Ty) < P(,y),

for all 5,y € X. By assumption, the inequality a (529, T>¢) > 1is observed. In addition, for all s,y € X,
due to the fact that T is nondecreasing, we find

a(x,y) >1=x>yorx =y=— Tx > Tyor Tx < Ty = a(Tx,Ty) > 1.

Consequently, we note that T is « —admissible. Now, assume that (X, <, d) is regular. Let {5z, } be
a sequence in X such that (3¢, 5¢,41) > 1for all n and s, — x € X as n — co. From the regularity
hypothesis, there exists a subsequence {5z, } of {x,} such that 5,y < x for all k. On account of «
we derive that a(z,(), ) > 1 for all k. Consequently, the existence and uniqueness of the fixed point
is derived by Theorem 3.  [J

3. Application
In this section, we shall consider an application for our main result. Let X = C[0, 1] be the space

of all continuous functions defined on interval [0, 1] with the metric

d(x,y) = sup |x(t) —y(t)].
te(0,1]

In what follows we shall use Theorem 5 to show that there is a solution to the following
integral equation:

1
x(t) = y(0) + [ K(t,s,x(s))ds,t € [0,1] 4
0
Assume that k(t, s, x) is continuous. Let y € C[0,1].

We consider the following conditions:

(@) k:[0,1] x [0,1] x R x R — R is continuous;
(b) there exists a continuous function 1 : [0,00] x R — R such that

1

sup /’y(t,s) <1;
tel0,1] 0
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(©

(d)

(®)

there exists ¢ € [0, 1] such that

1
x(8) = y(s) — [ klt,s,x())ds| < [x(s) ~ y(s)]
0

N[ =

implies

[k(t,s,x(s)) = k(t,5,y(s))| < (1 —¢) [x(s) —y(s)],
forall x,y € X;
there exists xg € C([0,1]) such that for all t € [0, 1], we have

1

S(xolt), [ K(t,s,x(s))ds) > 0,

0
where { : X x X — [0, c0);
Forallt € [0,1], x,y € C[0,1],

1 1
Ce(), (1) 2 0= £ [ K(t,5,x(9)ds, [ K(t,5,y())ds) = 0;
0 0

If x, is a sequence in C[0,1] such that x, — x € C[0,1] and {(xy,x,41) > O for all n, then
{(xn,x) > 0 for all n.

Theorem 6. Suppose that the conditions (a)—(f) are satisfied. Then, the integral Equation (4) has solution
in C[0,1].

Proof. Since k and the function y are continuous, now define an operator

T :C[0,1] = C[0,1]

write the integral Equation (4) in the form x = 7 x, where

Tx(t) = y(t) + / k(t,5,x(s))ds. )
It follows that

1
2156 = y(s) = [ K, x(5))ds) < (1= )[x(5) — (5|
0
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implies
d(Tx, Ty) =supycpq|Tx(t) = Ty(t)
1

< supyepo ] f |k(t,s,x(s)) — k(t,s,y(s))|ds

< SUPepo ) /7 (t,s)ds|k(t,s, x) —k(t,s,y)|

g

< (-9 —y(s)
( e)max{d(x v),d(x, Tx),d(y, Ty), } [d(x, Ty) +d(y, Tx) |
A P(E) [1+ 12+ Iyl + I Tl + Tyl 220 a>1landpe[0,a].

Define the function a : C[0,1] x C[0,1] — [0, +0) by

0 otherwise.

a(x,y) = { 1 if glx(t),y(t) = 0,t € [0,1],

For all x,y € C[0,1], we have

Therefore, all the conditions of Theorem 5 are satisfied. Consequently, the mapping 7 has a
unique fixed point in X, which is a solution of integral equation. [

4. Conclusions

In this paper, we combine and extend significant fixed-point results, namely Suzuki [2],
Popescu [1], and Pata [4] by involving the admissible mappings. As in [3] (see also [19]), by proper
choice of the auxiliary admissible mapping « and replacing the set P(5, y) with some concrete subset,
we can derive several more consequences. Since the techniques are the same in [3], we skip the details
and we avoid listing all possible corollaries. Indeed, Theorem 4 and Theorem 5 are the basic examples
of this consideration. Notice also that the given example and an integral equation can be improved
according to choice of a.
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1. Introduction

In the sequel, the letter R ; will denote the set of all nonnegative real numbers.
Let S be a nonempty setand V : S — S be given mappings. A point j € S is said to be:

i. afixed point of V if and only if V] = j;
ii. acommon fixed point of V and Z if and only if V) = Zj = ;.

Kosjasteh et al. [1] defined a new control function as follows.

Definition 1 ([1]). Let { : [0,00)2 — R be a mapping. The mapping { is named a simulation function
satisfying the following conditions:

G £(0,0)=0,

{2. ((a,b) <a—b,foralla,b>0,

(3. if {ayx} and {by} are sequences in R such that klim ay = klim by =1,1 € Ry. Thus,
—00 —00

limsup ¢ (ag, b)) < 0.

k—ro0
Argoubi et al. [2] modified the above and so introduced it as follows.

Definition 2 ([2]). The mapping { is a simulation function providing the following:

i. {(ab)<a—>b,forallab>0,
ii.  if {ar} and {by} are sequences in R such that kljm a = klim by > 0,and ay < by, then limsup ¢ (ay, by) < 0.
—00 —00

k—o0

For examples and related results on simulation functions, one may refer to [1-8].
Radenovic and Chandok generalized the simulation function combining the C-class function as follows.

Definition 3 ([4]). A mapping G : [0, oo)2 — R is named a C-class function if it is continuous and satisfies
the following conditions:
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i. G(ab)<a,
ii. G (a,b) = aimplies that either a = 0orb =0, forall a,b € [0,00).
Definition 4 ([4]). A Cg-simulation function is a mapping ¢ : [0, oo)2 — R satisfying the following conditions:

i.  {(ab) <G (ab)forallab>0,whereG :[0,00)* — Risa C-class function,
ii. if {ax} and {by} are sequences in (0,c0) such that klim by = klim ap > 0, and by < a,
—00 —00

then limsup g (ag, by) < Cg.
k—o0

Definition 5 ([4]). A mapping G : [0, )% — R has the property Cg, if there exists a Cq > 0 such that:

i. G(a,b)> Cgimpliesa > b,
ii. G (a,a) <Cgforalla € [0,00).

Moreover, using C-class function many researchers investigated some new results combining
other control functions in different spaces [9].

Suzuki [10] proved the following fixed point theorem using a new contraction, which is known as
the Suzuki contraction in literature. Furthermore, many mathematicians generalized this contraction
in other spaces.

Theorem 1 ([10]). Let (S,d) be a compact metric space and V : S — S be a mapping. Suppose that,
forall 1,0 € Swithj # ¢,

V) <Al > AWV <d(,0).
Then, V has a unique fixed point in S.

Bindu et al. [11] proved the commonfixed point theorem for Suzuki type mapping in a complete
subspace of the partial metric space.

Theorem 2. Let (S, ) be a partial metric space and f,g,V,Z : S — S be mappings satisfying:

%min {0(f1,vy),6(gt, 20} < E(f1,80) = (V3 20) <a(M(1,0)) = p(M(,0)),

forall 1,0 € S, where ¢, a, B : [0,00) — [0,00) are such that ¢ is an altering distance function, a is continuous,
and B is lower-semi continuous « (0) = B (0) = 0and ¢ (t) —a (t) + B (t) > 0, forall t > 0 and:

M0, 0) = max {3 (17,91), 047, v0) 8 5t,20), UL EOT 2LV,

i V(S)cg(S), Z(S)<f(S)
ii. either f(S) or g(S) is a complete subspace of S;
iii. the pairs (f, V) and (g, Z) are weakly compatible.

Then, f,g,V,Z have a common fixed point.

Jleli and Samet [12] introduced a X-contraction and established fixed point results in generalized
metric spaces. Jleli and Samet [12] also introduced a class of ® such that £ : (0,00) — (1,00)
of all functions, providing the following conditions:

Y. Xisnondecreasing;
¥,. for any sequence {ay} in (0, c0), klim Y (ag) = 1if and only if klirn ay = 0;
—00 —00

40



Mathematics 2019, 7, 769

Y;3. thereexistr € (0,1) and I € (0,00) such that kli%l+ % =1
—

Theorem 3 ([12]). Let (S, d) be a complete generalized metric space and V : S — S be a mapping. Suppose that
there exist . € @ and vy € (0,1) such that:

d(Vive) #0 = X(d(V), V) <[2d(0)",
forall 1,0 € S. Then, V has a unique fixed point.

After that, many authors generalized such a contraction in different spaces [13-17].
Liu et al. [15] modified the class of function ® exchanging conditions. The class of functions ®
was defined by the set of . : (0,00) — (1, 00) satisfying the following conditions:

. Tis non-decreasing and continuous,
Y. inf Z(k)=1
2 ke(0,0) (k)
Lemma 1 ([15]). Let ¥ : (0,00) — (1, 00) be a non-decreasing and continuous function with . i(nf )Z (k) =1
€(0,00

and {ay } be a sequence in (0, c0). Then, the following condition holds:

lim £ (llk) =1 & lima=0.
k—o0 k—o0

Zheng et al. [18] denoted new set functions @ satisfying the following conditions:

P;. ¢:[1,00) — [1,00) is nondecreasing,
®,. foreachk >0, ILm o" (k) =1,
n—00

®3. ¢ is continuous on [1,0) .
Lemma 2 ([18]). If ¢ € P, then ¢(1) = 1 and ¢(t) < t foreach t > 1.

Definition 6 ([18]). Let (S,d) be a metric space and V : S — S be a mapping. 'V is said to be
a ¥. — g-contraction if there exist ¥. € @ and ¢ € ® such that for any j,{ € S,

Z(d(Vy, V) <e(Z(N(G.0)),

where:

N (j,£) = max{d (5, €),d (;,VE),d(;,VL)}.

Theorem 4 ([18]). Let (S, d) be a complete metric space and V : S — S be a £ — ¢-contraction. Then, V has
a unique fixed point.

Motivated by the above, we will establish a generalized Suzuki-simulation-type contractive
mapping and obtain fixed point results.

2. Quasi Modular Metric Space

Girgin and Oztiirk [19] introduced a new space, which is named a quasi modular metric space.
Furthermore, they gave some topological properties. Moreover, defining non-Archimedean quasi
modular metric space, they proved some fixed point theorems and obtained some applications.

Definition 7 ([19]). A function Q : (0,00) x S x S — [0,00] is called a quasi modular metric on S
if the following hold:

q1. ¢ =nifandonly if Qy (¢, 17) = 0 forallm > 0;
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92 Qutn (§,17) < Qi (8,v) + Qu (v, 1) forallm, n > 0and §,5,v € S.
Then, S is a quasi modular metric space. If in the above definition, we utilize the condition:
gr. Qm (&) =0forallm>0and¢ €S,

instead of (q1), then Q is said to be a quasi pseudo modular metric on S. A quasi modular metric Q on S is called
a regular if the following weaker version of (q1) is satisfied:

q3. ¢ =nifand only if Qu (&, 1) = 0 for some m > 0.

Again, Q is called a convex if for m, n > 0and &,n,v € S, the inequality holds:
s Qurn (§,1) < 7255 Qm (6, v) + 5755 Qn (v, 1) -

Definition 8 ([19]). In Definition 7, if we replace (q2) by:

5 Qmax{mn} (& 1) < Qum (&,v) + Qu (v, 17)

forallm,n > 0and ¢,n,v € S, then Sq is called a non-Archimedean quasi modular metric space.

Note that the function Qpay{m,} is more general than the function Quix (¢, 77), so every
non-Archimedean quasi modular metric space is a quasi modular metric space.

Example 1 ([19]). Let S = [0, 00) and Q be defined by:

S fexy
Q’”(g’”){ 1 if & <.

Then, Sq is a quasi modular metric space with m = % and n = %, but is not modular metric space since
Qu (0,1) = Land Qy (1,0) = 1.
Remark 1 ([19]). From the above definitions we deduce that:

i.  For a quasi modular metric Q on S, the conjugate quasi modular metric Q' on S of Q is defined

by Qu' (S, 1) = Qu (1,€) -
ii. If Q is a To-quasi pseudo modular metric on S, then the function QF defined by QF = Q=1 v Q, that is

an (&,n) =max{Qu (& n),Qm (1,8)}, defines a modular metric space.
Now, we discuss some topological properties of quasi modular metric spaces.

Definition 9 ([19]). A sequence {gp} in Sq converges to ¢ and is called:

a.  Q-convergent or left convergent if &, — & < Qu (G, g,,) — 0.
b.  Q l-convergent or right convergent if & — & < Qu (&p, &) — 0.
c.  QF-convergent if Qp (¢,&p) = 0and Qp (&,,&) — 0.

Definition 10 ([19]). A sequence {p} in a quasi modular metric space Sq is called:

d.  left (right) Q-K-Cauchy if for every e > 0, there exists pe € N such that Qu (&, &p) < eforall p,r € N
with pe <r <p (pe < p <r)and forallm > 0.

e.  QE-Cauchy if for every € > 0, there exists pe € N such that Qu (&p, &) < € forall p,r € N with p,r > pe.

Remark 2 ([19]). From the above definitions, we deduce that:

i.  asequence is left Q-K-Cauchy with respect to Q if and only if it is right Q-K-Cauchy with respect to Q~;
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ii. asequence is QF-Cauchy if and only if it is left and right Q-K-Cauchy.

Definition 11 ([19]). A quasi modular metric space Sg is called:

i.  left Q-K-complete if every left Q-K-Cauchy is Q-convergent.
ii.  Q-Smyth-complete if every left Q-K-Cauchy sequence is QF-convergent.

3. Common Fixed Point Results

In the sequel, Q is regular and convex and T denotes the family of all C;-simulation functions
7:]0,00)> > R.

Definition 12. Let Sq be a non-Archimedean quasi modular metric space and V : Sg — Sq be a mapping.
We say that V is a generalized Suzuki-simulation-type contractive mapping if there exist L € ©, ¢ € ®
and { € Tz such that:
2Qu (&,VE) < Qu (&)  implies
@
C(2(Qu (Ve Vi), ¢ (2(P(Em))) = C

where:

P (&, 1) =max{Qu (&,1),Qu (5, V), Qu (1, Vn)}
forall¢,n € Sq.

Theorem 5. Let Sq be a Q-Smyth-complete non-Archimedean quasi modular metric space and V' be the generalized
Suzuki-simulation-type contractive mapping. Then, V has a unique fixed point.

Proof. Define a sequence {{;} in Sq by:

Ckr1 = Vi @

for all k € N. If there exists an ko such that i, = Gk 41, then z = i) becomes a fixed point of V.
Consequently, we shall assume that & # ¢y for al