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1. Introduction

On the surface, some methods to assess and self-monitor dietary intake may be considered similar;
however, the intended function of each is quite distinct. Methods used in the assessment of dietary intake
aim to measure food and nutrient intake and/or derive dietary patterns for determining diet-disease
relationships, conduct population surveillance, or determine the effectiveness of interventions [1].
In comparison, dietary self-monitoring primarily aims to create awareness and reinforcement of
individual eating behaviours, in addition to tracking foods consumed, and has been particularly useful
in the context of weight management [2]. Advancements in the capabilities of technologies, such
as smartphones and wearable devices, have enhanced the proficiencies of collection, analysis, and
interpretation of dietary intake data in both contexts across the spectrum of users, including consumers,
clinicians and researchers.

In this issue, a range of new articles are presented, and we are fortunate to have a collection
of reviews and empirical studies to assist in the development of understanding and attainment of
new knowledge to assist in progressing this area of research on the use of technology in dietary
assessment methods.

This special issue includes five review papers. Two articles reviewed mobile/smartphone
applications [3,4], including the potential of mHealth apps to increase fruit and vegetable intake [3].
This specific review included eight studies, six of which were effective in increasing fruit and/or
vegetable intake [3]. Additionally, a second paper included a review of recipe functions in 12 popular
dietary smartphone apps and found a large variation in their energy and macronutrient calculations [4].
The main variation between apps occurred at the analysis phase due to the type of food composition
table used to generate nutrient values [4].

A narrative review of new methods for assessing food and energy intake [5] is presented along
with a review on the evaluation of new technology-based tools for dietary intake assessment [6]. This
review of technology-based diet assessment tools, which included tools categorised for both research
and consumer use, showed that the majority (79%) relied on self-reported dietary intakes. Most (91%)
used text entry, 33% used image-based methods, 65% had integrated databases to estimate energy or
nutrients, and less than 50% had customisation features [6]. Technology-based dietary assessment offers
many advantages for research, and is often preferable to consumers over more traditional methods.

In addition, a narrative review in this special issue presents a synthesis of data on the dietary
assessment of shared plate eating, which is reported as a missing link within a large proportion of
methods that collect or focus on individual intake only [7]. Shared plate eating is reported as a particular
issue for low-and lower-middle income countries where this type of eating behavior is common.
Most studies used 24-h recalls—many used tools to assist in quantifying food intake, including food
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photographs and images of portion sizes [7]. The gap in this area of research was identified, as well as
practical set of recommendations provided to move the field forward.

Finally, a systematic review on upper limb sensors for the assessment of eating behaviour
summarises the findings from 69 studies [8]. To date, the majority of studies in the area have been
conducted in controlled environments, among young, healthy individuals, and using accelerometers
in combination with gyroscopes to detect eating activity. Heydarian and colleagues suggest the
development of large datasets are paramount to advancing the field, particularly with regard to the
use of deep learning for the detection of different eating gestures.

The empirical studies in this special issue can be classified into a number of key areas and are
summarised below:

2. Web-Based Dietary Assessment Methods

Three articles are presented around the use of web-based methods, which in this special issue were
applied in two of three studies to the 24-h recall method [9-11]. Interestingly, two studies explored
the useability of technology-based methods in populations where use and acceptability might be
questioned [9,10]. In one study by Polfuss et al., the usability of a technology-based 24-h recall was
explored in individuals with and without disabilities, showing the methods were acceptable [10].
Another study in low income adults identified a range of useability issues with the automated
self-administered dietary assessment tool (ASA24), including the misunderstanding of questions and
uncertainties concerning how to proceed to the next step [9]. These papers provide very practical
suggestions when applying technology to dietary assessment methods in these populations.

3. Image-Based or Image-Assisted Methods

Image-based or image-assisted methods were used to capture dietary intake and are were
reported in this special issue in three studies [12-14], two of which were carried out in pediatric
populations [13,14]. A validation study in young infants investigated the accuracy of image-assisted
food records versus regular food records compared to the objective marker of doubly labelled water
(DLW) method [13]. Another study in children of primary school age (9-12 years) investigated the
accuracy of an electronic image-based food diary compared with a paper-based food diary over a
four-day collection period [14]. The image-based food diary used a combination of photographs and
written descriptions of foods consumed. Similar results were found for macro-and-micro nutrients
for both methods. However, the image-based food diary was less burdensome for researchers and
participants—it was also preferred by the children, and they required less help completing it [14].

4. Mobile/Smartphone Applications for Capturing Intake or Self-Monitoring

An interesting collection of articles are presented which range from quantitative, qualitative, and
mixed method evaluations of the use of applications for dietary self-monitoring. For quantitative
evaluation, the relative validity of the eat and track (EaT) smartphone app for the collection of dietary
intake data was explored in young adults aged 18 to 30 years [15]. This population group is often difficult
to engage in dietary and lifestyle interventions despite their known weight gain trajectory to be higher
than any other population group. In this group the app was compared with dietitian-administered
24-h recalls. Significant differences in dietary energy were found but an agreement for most nutrient
densities were reported at the group level. In another study, the effectiveness of the nutritional app
“MyNutriCart” was reported and compared to a traditional face-to-face counselling session in order
to determine the differences in food choices related to purchase and dietary behavior [16]. While
in this pilot study there were no differences between groups, “MyNutriCart” did lead to significant
improvements in household purchasing behaviours and individual intakes compared to baseline [16].

The Bridge2U mobile app food log was compared to control meal and dietary recall methods in
another study [17]. While carried out in small population group (n = 14), the Bridge2U was reported as
a good dietary assessment method for the assessment of intake at the group level, but data was reported
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to be highly variable for individual assessment [17]. Qualitative data provides very useful insights that
often cannot be obtained through quantitative measurements only. An interesting study in this special
issue reports on a qualitative evaluation of the eaTracker® Mobile App [18]. Structured interviews of
26 participants were analysed to evaluate ways to improve the eaTracker and provide information for
those looking to develop apps to facilitate positive behaviour change. A number of positive aspects,
challenges and suggestions for improvement of the app were collected and reported [18]. An evaluation
of mixed methods is reported in a study by den Braber et al. to comprehensively determine the
requirements of “The Diameter”: an app to monitor diet, physical activity, and glucose values in
patients with Type 2 Diabetes [19]. The study provides useful insight for this population group.

Mobile apps can be used to collect images, but they can also be used to collect voice recordings.
Voice recordings can be used to add details to images which may often not be apparent and/or be used
to collect information where an image of a food or drink maybe missed. An interesting study describes
a voice operated app to determine the accuracy of automatic carbohydrate, protein, fat, and calorie
counting based on the voice descriptions of meals in people with Type 1 Diabetes [20]. In 30 patients,
insulin doses were estimated by a physician using dietary data obtained from VoiceDiab (1 = 16) and
this was compared to dietary data provided by a dietitian (n = 14). No significant differences in insulin
doses or glycaemic control were reported using either system [20].

Wearable cameras are considered a passive technology as opposed to active capture whereby an
individual still needs to be actively involved in the process. Passive measures can reduce the burden
for participants in collecting dietary intake data, however, researcher burden still exists in other stages
of dietary assessment, such as image processing and quantification. In one study of this special issue,
a wearable system called the automatic ingestion monitor (AIM) was used to detect and monitor
participant food intake (n = 40) for three days [21]. This was validated by a comparison with video
observation that was annotated by three researchers to report activities, resting, walking, chewing, and
biting during each eating and drinking episode [21].

If we look at the technology being applied to the analysis part of dietary assessment rather than
the collection phase, when many other papers report on this in this special issue, one study compared
the nutrient estimates based on food volume versus weight [22]. The weights of 35 individual food
volumes were measured (control) and compared to the USDA-SR weights. Significant differences were
found for 80% of foods which suggests that USDA-SR may not provide accurate estimates of dietary
intake when assessed using food volumes [22].

This special issue presents a great set of articles regarding technology-based issues in the collection,
analysis, and interpretation of dietary data.

Author Contributions: T.L.B. and M.E.R. conceptualized and co-wrote this Article.
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Abstract: This study examines the effects of educational text messages on diabetes self-care activities,
cardiovascular disease (CVD) risk awareness, and home food availabilities related to food choices
among patients with type 2 diabetes. Quasi-experimental design was used with 40 patients
(58.0 £ 10.6 years) in the intervention group and 39 (55.7 + 12.2 years) in the control group. In addition
to the usual care provided for all participants, the intervention group received three educational
text messages weekly for 12 weeks. Pre- and post-intervention measures were collected for both
groups. Ninety-four percent of the participants receiving text messages indicated the usefulness
of this program. The intervention group either maintained the same level or demonstrated small
improvements in diabetes self-care activities after the intervention. Significant increases in scores
of CVD risk awareness (57% increase; p = 0.04) and availabilities of fresh fruits (320% increase;
p = 0.01) and fresh vegetables (250% increase; p = 0.02) in the home and weekly total (16% increase;
p = 0.02) and moderate/vigorous (80% increase; p = 0.006) physical activity levels were observed
for the intervention group relative to the control group. The pilot results suggest the feasibility and
usefulness of the text message program for diabetes education. The study is registered with Clinical
Trials.gov (NCT03039569).

Keywords: text messages; type 2 diabetes; diabetes self-care activities; cardiovascular disease risk
awareness; food availability; food choices

1. Introduction

Type 2 diabetes is a complex and chronic illness affecting approximately 30.3 million people in the
United States [1]. Adults with type 2 diabetes have a two to four-fold increase in the risk of developing
cardiovascular disease (CVD), a leading cause of morbidity and mortality in this population [2].
Despite the strong link between type 2 diabetes and CVD, studies have found that patients with
type 2 diabetes are unaware of their risk for developing CVD [3,4]. Nutrition and physical activity
remain critical in the management of type 2 diabetes and are considered key in achieving optimal
glycemic control and reducing major consequences such as CVD, foot damage, and kidney failure [5].
Since poor dietary practice may lead to insulin resistance, which further elevates blood glucose and
lipid levels [6], self-inventory of household foods may offer a practical method for diabetes patients
to monitor their food choices and dietary intake [7], thereby helping patients successfully manage
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the disease [6]. In addition to nutrition and physical activity, diabetes self-care activities include
healthy coping skills, medication adherence, testing and managing blood glucose, problem solving,
and strategies of reducing risk for health complications such as CVD [8]. These self-care activities have
been used as a framework for patient-centered diabetes education.

Successfully managing type 2 diabetes requires life-long behavioral changes that can be challenging
for many diabetes patients. Increasing evidence suggests that patients who take a more active role in
their care achieve better health outcomes [9]. Conventional diabetes education, such as clinic visits
with a health care provider, is commonly used for patients with type 2 diabetes to manage blood
glucose and improve self-care skills. However, patients may have infrequent contact with health care
providers because of their lack of time and transportation, expensive office visits and/or extended time
between appointments. The use of text messages via cellular phones to convey health information and
education represents a novel opportunity and low-cost method for improving diabetes self-care skills
and increasing contact with health care providers. Previous work has demonstrated that text message
interventions improve eating patterns, physical activity, and blood glucose management among
patients with type 2 diabetes [10-13]. In addition, it has been shown that patients who receive short text
messages find this type of intervention feasible and useful for managing the disease [12,13]. Evidence
further suggests that cellular phone-based or web-based tools are particularly useful for patients
living in rural regions with few specialized hospitals and limited access to health care clinics [13-15].
However, when addressing the effectiveness of using text messages for patients with type 2 diabetes,
there is little research on whether a text message intervention would also increase the awareness of
consequences of type 2 diabetes, for example, the risk of developing CVD. In addition, the impact
of using text messages on patients’ home food environment such as the availability of healthy or
unhealthy foods in the home has not yet been examined. The home food environment is particularly
important to investigate for diabetes patients since it is likely to reflect patients’” food choices and
purchase habits. In the current study, diabetes self-care education was performed using unidirectional
text messages. Thus, the objective of the study was to examine the effect of educational text messages
on diabetes self-care activities (general diet for healthy eating, specific diet for healthy eating, exercise,
medication adherence, blood glucose testing, and foot care) and awareness of CVD risk among patients
with type 2 diabetes. Additionally, the study also sought to assess whether the utilization of educational
text messages had an influence on the availability of participants” food choices in the home that were
relevant to type 2 diabetes.

2. Materials and Methods

2.1. Participants

Study participants were recruited from the Methodist Health System Center for Diabetes and
Nutritional Health in Omaha, Nebraska, from February to December 2017. The center is an ambulatory
outpatient clinic for treatment of patients with diabetes. Inclusion criteria were English-speaking
adults with type 2 diabetes aged 30 years or older, self-reported hemoglobin A1C (HbA1C) greater
than 6.5%, and having a cellular phone with the ability to receive text messages. Eligible participants
who came into the clinic for outpatient diabetes care were identified and asked to participate in the
study. All participants who elected to participate in the study were required to provide written
informed consent. Seventy-nine patients (40 in the intervention group and 39 in the control group)
with type 2 diabetes were enrolled in the study. Thirty-five participants in the intervention group and
35 participants in the control group completed the post-intervention surveys. Participants who did not
complete the post-intervention surveys (N = 9) were either lost to follow-up, were no longer interested
in participating, or did not respond to follow-up contact attempts (Figure 1). There were no differences
in demographics and other factors relevant to type 2 diabetes between participants who completed the
post-intervention surveys (N = 70) and those who did not (N =9).
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Eligible criteria:
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English speaking;
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Having a mobile phone
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Figure 1. Flowchart of study participants.
2.2. Study Design

A quasi-experimental design was used in this initial pilot study due to timeframe restraints.
The intervention group (N = 40 patients) started approximately two months earlier than the control
group (N = 39). The first 40 participants recruited were assigned to the intervention group. A survey
regarding participants’ demographics and relevant risk factors for type 2 diabetes was completed by
all the participants at baseline. Participants in both groups received the usual care for type 2 diabetes
including an initial visit and follow-up visits from either a registered dietitian or a certified diabetes
educator. The intervention group received three different educational text messages weekly (on
Monday, Wednesday, and Friday) for 12 weeks (36 text messages in total). The text messages were
sent in the late morning or early afternoon (between 11:00 am and 2:00 pm). The message topics were
different each week during the first six weeks (Weeks 1 to 6; 18 text messages total) and repeated for the
remaining weeks (Weeks 7 to 12; 18 text messages total). The messages consisted of strategies for healthy
eating, being physically active, improving diabetes self-care skills including testing and managing
blood glucose, taking medication, and increasing awareness of the risk of diabetes complications such
as CVD. The text messages developed by the primary investigators were derived from the wording,
topics, and guidelines provided by the American Association of Diabetes Educators (AADE7™) [16].
Each text message was comprised of a short message and a link (which was a novel approach) to
a specific AADE7™ handout that allowed participants to open and retrieve the specific AADE7™
information (Table 1). Text message contents were not piloted before the start of the study. However, the
AADE7™ handouts are available to the patients of the Methodist Health System Center for Diabetes
and Nutritional Health as part of their usual care and diabetes education. Unidirectional text messages
were sent by the project investigators to the participants in the intervention group via a computer-based
text message program through a password protected computer which was only accessed by the
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investigators. Participants” phone numbers used in the intervention were kept confidential and
participants were advised not to reply to the text messages. If participants had a medical concern,
they were advised to contact their physician or call 911. The control group (usual care group) did
not receive text messages. Participants in both the intervention group (usual care and receiving text
messages) and the control group (usual care only) completed surveys regarding their diabetes self-care
activities, dietary intake, physical activity, awareness of CVD risk, and self-inventory of household
foods at baseline and at the 12-week follow-up (conclusion of the intervention). The participants in
the intervention group completed an additional survey to evaluate their satisfaction with receiving
educational text messages for managing diabetes after the intervention was concluded. A $25 gift card
was offered to all study participants. The research project was approved by the Institutional Review
Boards of the University of Nebraska-Lincoln and Nebraska Methodist Health System. The study is
registered with Clinical Trials.gov (NCT03039569).

Table 1. Contents of educational text messages for type 2 diabetes patients.

AADE7™ Handout Titles/Topics Contents of Text Messages ?

1) Eat breakfast every day!

2) There are only three main types of nutrients in foods: carbohydrates, proteins, and fats.
Healthy Eating A healthy meal will include all three of these.
(Weeks 1 and 7) 3) Do not skip meals! Remember to eat regular meals and snacks every day.

For more info:
https:Jwww.diabeteseducator.org/patient-resources/aade7-self-care-behaviors/healthy-eating

1) Think positive! Feeling down? Remember your successes and feel good about your
progress with diabetes.
2) Build healthy relationships. You are not alone when you have diabetes.

?vszr:gzcg(;%% 3) If you are sad, anxious or stressed, go for a walk or stand up and stretch.
For more info:
https:Jwww.diabeteseducator.org/patient-resources/aade7-self-care-behaviors/healthy-coping
1) Checking your blood sugars gives you vital information about your diabetes control.
2) Monitoring your blood sugars helps you know when they are on target.
Monitoring 3) Call your doctor or diabetes educator if you are concerned about your blood sugars.
(Weeks 3 and 9)

For more info: https;/www.diabeteseducator.org/patient-resources/aade7-self-care-behaviors/
aade7-self-care-behaviors-monitoring

1) Being active has many health benefits, like improving blood pressure and blood sugars.
2) If you haven’t exercised for a while, start with a five minute walk and increase gradually.
Being Active 3) Break activity into three ten minute sessions.

(Weeks 4 and 10) For more info:

https:fwww.diabeteseducator.org/patient-resources/aade7-self-care-behaviors/being-active

1) Take notes when you visit with your doctor about your medication.
2) Learn what causes your blood sugar to go above or below target.

Takll)rrl%blz/i;ilsczil:i)ggand 3) Talk to your doctor about how to improve your blood sugar.

(Weeks 5 and 11) For more info: https;jwww.diabeteseducator.org/patient-resources/aade7-self-care-behaviors/
taking-medication
https:Jwww.diabeteseducator.org/patient-resources/aade7-self-care-behaviors/problem-solving
1) See your eye doctor at least once a year
2) Keep a wallet card that lists all of the tests you should be regularly getting and the

Reducing Risks targets for each.

(Weeks 6 and 12) 3) Lowering your cholesterol can decrease your risk for a stroke. Talk to your doctor about

what you can do.

For more info:
https:Jwww.diabeteseducator.org/patient-resources/aade7-self-care-behaviors/reducing-risks

2 Each text message included a link to a specific American Association of Diabetes Educator (AADE7™) handout
(36 text messages total).
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2.3. Outcome Measures

2.3.1. Diabetes Self-Care Activities

Diabetes self-care activities were measured using a previously validated Summary of Diabetes
Self-Care Activities including categories of general diet for healthy eating (following a healthful eating
plan; following one’s eating plan), specific diet for healthy eating (eating >5 servings of fruits and
vegetables; avoiding consuming high-fat foods), exercise (participating in at least 30 minutes of physical
activity per day; participating in a specific exercise session), testing blood glucose (testing blood
glucose; testing blood glucose the number of times recommended by one’s health care provider per
day), medication adherence (taking one’s recommended diabetes medication); and foot care (checking
one’s feet; inspecting the inside of one’s shoes; washing one’s feet; avoiding soaking one’s feet; drying
between one’s toes after washing). Respondents reported on the frequency with which they performed
various self-care activities over the past seven days (how many days per week) [17]. The responses
were scored from 0-7 accordingly; reverse scoring was used for a negative item. Individual items in
each of the diabetes self-care activity categories (general diet for healthy eating, specific diet for healthy
eating, exercise, blood glucose testing, medication adherence, and foot care) were combined to create
an average score for the respective category.

2.3.2. Dietary Intake and Physical Activity

In addition to diet and exercise items included in the aforementioned diabetes self-care activities,
we additionally measured individual’s dietary intake and physical activity. Participants” dietary intake
was measured using a previously validated Block Fat-Sugar-Fruit-Vegetable Screener [18]. This screener
contained 55 questions about frequency of food eaten (none or less than one day, one day, two days,
three to four days, five to six days, or every day/per week) and portion sizes of 32 food items during
the past month. Daily nutrient intakes including total calories were determined based on the data
from the screener. Weekly physical activity levels were measured using the Block Physical Activity
Screener [19]. This brief screening tool contained 11 items including job-related as well as daily life
and leisure activities based upon National Human Activities Patterns Survey data. Total metabolic
equivalent of task (MET) minutes per week for all the activities as well as for moderate/vigorous
physical activities were calculated using the Ainsworth Compendium [20].

2.3.3. CVD Risk Awareness

The CVD risk awareness questions were derived from a questionnaire used in a previous study [21].
Three questions were asked about how seriously a participant was concerned about having a CVD
event in the next five years and in their lifetime (level of concern of CVD risk). The responses to
the questions were scored from 0-3, indicating “no concern”, “low-level of concern”, “somewhat
concerned”, and “highly concerned”, respectively. In this study, we summed the response scores for
these three questions and calculated the mean score for the category. There was an additional question
about how often a participant had a concern about having a CVD event with responses including
“never” (zero times per week), “rarely” (one to two times per week), “sometimes” (three to four times

per week), and “always” (five to seven times per week).

2.3.4. Home Food Self-Inventory

A previously validated home food self-inventory checklist was used to assess the presence and
absence of foods relevant to obesity and type 2 diabetes [22]. The checklist contained a total of
65 healthy and unhealthy food and beverage items including sweet and savory snacks, beverages,
breakfast cereal/oatmeal, breads/pastas, dairy foods, and individual fruits and vegetables. Of these
65 food and beverage items/categories, there were 19 fruit and 16 vegetable items. Each fruit or
vegetable item includes its fresh, canned/jarred/dried, and frozen forms. A “yes/no” format was used
to indicate the availability of the food in the home with “1” indicating “yes” and “0” indicating “no”.
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The classification of “healthy” and “unhealthy” foods and beverages were derived from previous
home food inventory tools [23,24] and followed the “We Can: Go, Slow, Whoa” food system, in which
“Go” foods were considered healthy and “Whoa” foods were unhealthy [25].

Food items on the checklist were grouped into the following categories: all fruits, fresh fruits,
canned/jarred/dried fruits, frozen fruits, all vegetables, fresh vegetables, canned/jarred/dried vegetables,
frozen vegetables, all healthy foods (including fruits and vegetables), and all unhealthy foods.
In addition, we also categorized foods on the checklist into high, medium, and low glycemic index (GI)
foods according to the American Diabetes Association guidelines: low GI foods, GI <55; medium GI
foods, GI ranging from 56 to 69; high GI foods, GI >70 [26]. GI measures how a food that contains
carbohydrate influences blood glucose in comparison to a reference food (e.g., glucose or white
bread) [26]. Similarly, the availability scores for food items in each of the above food categories were
summed and the average score was calculated for the category.

2.4. Data Analysis

To make our quasi-experiment more rigorous, we followed recommendations by Shadish and
colleagues [27], such as testing for baseline differences between groups and including the pre-test
measure of outcomes to address selection bias resulting from not randomizing participants into
groups. Preliminary analyses included comparing baseline characteristics between groups using
t-tests for continuous variables and chi-square analyses for categorical variables. Our primary
analyses included multivariate analysis of covariance (MANCOVA) to assess intervention effects
by examining the differences between the intervention and the control groups at the 12 week
follow-up. Any baseline differences between groups were controlled for in the test of effects at the
12 week follow-up by including the baseline measure of the outcome in the analyses. A proc GLM
(generalized linear model) procedure was used to estimate MANCOVA. To control for experiment-wise
error, the outcome/dependent variables were clustered into the following groups: diabetes self-care
activities, fruit and vegetable availabilities, all healthy and unhealthy food availabilities, and Gl-based
fruit and vegetable availabilities. With MANCOVA, individual variables in each group mentioned
above were analyzed together as group-based outcome/dependent variables (multivariate analysis).
For outcome/dependent variables that were not categorized into a group (CVD risk awareness, MET
minutes for total or moderate/vigorous physical activities, and intakes of dietary nutrients), analysis
of covariance (ANCOVA) estimated by the Proc Glimmix procedure was used to assess the effects
of intervention on these variables. We also used absolute change (time and treatment interaction),
a more stringent test, to estimate intervention effects. Absolute change was determined as follows:
absolute change = [(intervention group follow-up) — (intervention group baseline)] - [(control group
follow-up) — (control group baseline)]. Since this is a pilot study, we used the results from both tests
(MANCOVA/ANCOVA and absolute change) as supporting preliminary evidence for the intervention
effects. Further, to provide perspective on the magnitude of the intervention effects, relative change,
defined as (absolute change/intervention group baseline) x100%, was calculated. The covariates
included in the models were age (continuous), sex, race/ethnicity (white, black, Hispanic, Asian, or
other), education (college graduates or non-college graduates), baseline self-report HbA1C values,
and the length of time of having had type 2 diabetes (<1 year, 1-5 years, or >5 years). For daily
nutrient intake (carbohydrate, sugar, added sugar, total fat, saturated fat, and protein), we repeated the
analyses with additional adjustment for total calorie intake and the results did not change substantially.
An a priori power estimate suggests that our sample size (N = 35 in each group) was adequate for
finding large effects (d = 0.8) and had 70% power for detecting medium effects (d = 0.5), assuming
a = 0.05 (two-tailed) based on Cohen’s recommendations [28]. SAS software version 9.4 (SAS Institute,
Cary, NC, USA) was used for all analyses. We conservatively used two-tailed tests and p < 0.05 was
considered statistically significant.
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3. Results

3.1. Characteristics of Study Participants and Usefulness of Educational Text Messages

Opverall, the mean ages of patients in the intervention and the control groups were 58.0 + 10.6 and
55.7 + 12.2 years, respectively. The majority of the participants were female (65% for the intervention
group; 67% for the control group). The intervention and control groups had similar characteristics at
baseline except for racial/ethnic distribution; a larger proportion of Hispanic participants was observed
in the intervention group than the control group (p = 0.01). In addition, the intervention group had
higher percentages of college graduates (49% vs. 34%) and those who had had type 2 diabetes for at
least five years (73% versus 58%) compared to the control group (Table 2).

Table 2. Baseline characteristics of study participants with type 2 diabetes

Characteristics Intervention Control p Value b

N 40 39
Age (year) 58.0 + 10.6 55.7 +12.2 0.21
Sex (%) 0.82

Male 34.7 329

Female 65.3 67.1
Race/ethnicity (%) 0.01

White 84.0 93.2

Black 2.7 5.4

Hispanic 8.0 0

Asian 2.7 0

Other 2.7 14
BMI (kg/m?) 34.6 £9.05 359 +6.1 0.30
Hemoglobin A1C (%) € 78+14 82+19 0.09
College graduate (%) 49.3 33.8 0.05
Having diabetes <1 year (%) 12.0 20.3 0.17
Having diabetes >5 years (%) 73.3 58.1 0.05
Taking diabetes medication (%) 92.0 91.9 0.98
Current smoker (%) 4.0 8.0 0.30

2 Data are given as mean =+ standard deviation unless otherwise specified. ® p value for difference between the
intervention and control groups by t test for continuous variables and chi-square test for categorical variables.
€ Hemoglobin A1C values were based on self-report values by study participants.

Participants in the intervention group (N = 35) completed a satisfaction survey regarding the
feasibility and usefulness of the educational text messages in helping them with diabetes self-care
management. The majority of the participants (94%) reported the text message intervention program
was useful and stated that they would highly recommend this program to others with type 2 diabetes.

3.2. Diabetes Self-Care Activities, Dietary Intake, Physical Activity, and Awareness of CVD Risk

Overall, there were no statistically significant differences in changes of scores on diabetes self-care
activities after the 12-week text message intervention. However, the intervention group in general
maintained the same level or showed small improvements at the 12-week follow-up compared to the
control group. In addition, weekly MET minutes for both in total (5548 versus 2877; 16% increase;
p = 0.02) and moderate/vigorous physical activity (3163 versus 405; 80% increase; p = 0.006) were
significantly higher for the intervention group than the control group at the 12-week follow-up after
taking into account the baseline values for these variables. There were no significant changes in the
intakes of relevant nutrients after intervention (Table 3).
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Table 3. Diabetes self-care activities, cardiovascular disease (CVD) risk awareness, physical activity
(PA) and dietary intake at baseline and 12-week follow-up.

Variabl Baseline 12-Week Follow-Up Absolute Change ? Relative
ariable Mean (SE)* p?¢ Mean(SE)¢ pd  Mean (SE)* pe Change P

Diabetes Self-Care Activities (day/week)
General diet for healthy eating

Intervention 4.66 (0.43) 0.14 5.18 (0.46) 0.61 0.76 (0.52) 0.15 16%
Control 5.22 (0.46) 4.98 (0.48)

Specific diet for healthy eating
Intervention 4.20 (0.40) 0.93 4.03 (0.43) 0.62  —0.21(0.48) 0.67 ~5%
Control 4.17 (0.43) 4.21 (0.45)

Exercise
Intervention 5.14 (0.61) 0.67 4.45 (0.65) 0.77  —0.07 (0.74) 0.93 -1%
Control 491 (0.65) 4.29 (0.68)

Blood glucose testing
Intervention 5.06 (0.62) 0.08 5.28 (0.66) 0.49 0.57 (0.75) 045 11%
Control 6.01 (0.67) 5.66 (0.69)

Medication adherence
Intervention 6.05 (0.35) 0.51 6.35 (0.38) 0.09 0.33 (0.42) 0.44 5%
Control 5.85(0.38) 5.82(0.39)

Foot care
Intervention 4.23 (0.41) 0.79 4.86 (0.43) 0.08 0.53 (0.49) 0.28 13%
Control 4.13 (0.43) 4.23 (0.45)

CVD Risk Awareness
Intervention 1.01(0.23) 0.21 1.26 (0.25) 0.13 0.58 (0.29) 0.04 57%
Control 1.27 (0.25) 0.94 (0.26)

PA (MET { minute/week)

Total PA
Intervention 4806 (1451)  0.08 5548 (1645)  0.02 768 (1533) 0.62 16%
Control 2904 (1541) 2877 (1602)

Moderate/vigorous PA
Intervention 2112(1435) 025 3163 (1555)  0.006 1688 (1300) 0.20 80%
Control 1042 (1430) 405 (1532)

Dietary Intake

Total calories (kcal/day)
Intervention 1598 (152) 0.43 1499 (161) 0.79 —134 (176) 0.45 —8%
Control 1417 (161) 1452 (9168)

Carbohydrates (g/day)
Intervention 1623 (17.3) 054  153.4(182) 081  -12.5(20.0) 0.53 —8%
Control 140.2 (18.3) 143.9 (19.1)

Total sugar (g/day)
Intervention 58.9 (8.4) 0.52 52.4(8.9) 0.50 0.4(9.7) 0.96 1%
Control 49.6 (8.9) 44.7 (9.3)

Added sugar (g/day)
Intervention 34.8(7.3) 0.39 29.6 (7.7) 0.25 2.1(8.4) 0.80 6%
Control 30.1(7.7) 22.9 (8.0

Total fat (g/day)
Intervention 67.3 (7.0) 0.28 61.1(7.4) 0.89 -7.0(8.1) 0.39 -10%
Control 60.1 (7.4) 60.9 (7.7)

Saturated fat (g/day)
Intervention 23.1(2.5) 0.30 21.0 (2.6) 0.98 -2.1(29) 0.47 9%
Control 21.3(2.7) 21.3(2.8)

Protein (g/day)
Intervention 70.4 (6.9) 0.71 68.3(7.2) 0.62 -5.1(7.9) 0.53 ~7%
Control 62.4(7.3) 65.3 (7.6)

@ Absolute change = [(intervention group follow-up) — (intervention group baseline)] — [(control group follow-up) —
(control group baseline)]. b Relative change = (absolute change / intervention group baseline) x 100%. ¢ Adjusted
mean is presented. 4 p value for difference between the intervention and the control groups by MANCOVA or
ANCOVA adjusting for age, sex, race/ethnicity, education, self-report hemoglobin A1C, and length of time having
had type 2 diabetes at baseline. © p value for absolute change adjusting for age, sex, race/ethnicity, education,
self-report hemoglobin A1C, and length of time having had type 2 diabetes at baseline. fMET = metabolic equivalent
of task.

With respect to CVD risk awareness, there was a statistically significant improvement in the score
regarding how seriously a participant was concerned about having a CVD event (the level of concern)
in the intervention group compared to the control group (57% increase; p = 0.04). However, the average

12



Nutrients 2019, 11, 1314

score was nevertheless at the lower end of the scale (1.26), being between “low-level of concern” and
“somewhat concerned” for the intervention group (Table 3). Similarly, at the baseline, a majority of the
study participants in both groups reported that they were never or rarely concerned about a CVD event
(70% for the intervention group; 68% for the control group). After 12 weeks of intervention, “never” or
“rarely concerned” about CVD risk was reported by 68% of the participants in the intervention group
and 82% of those in the control group.

3.3. Home Food Awvailabilities Related to Food Choices

The intervention group had significant increases in availability scores for fresh fruits (320%
increase; p = 0.01) and fresh vegetables (250% increase; p = 0.02) in the home after the intervention
compared to the control group. When the food availabilities were assessed based on GI values, there
was a significant increase in the score for high GI fruit availability (431% increase; p = 0.001) and a
decrease in the score for medium GI vegetable availability (40% decrease; p = 0.03) for the intervention
group relative to the control group at the 12-week follow-up. It appeared that high GI vegetables were
more likely to be available in the home among participants in both groups (Table 4).

Table 4. Availability of fruits and vegetables in the home at baseline and 12-week follow-up.

Food Availability Baseline 12-Week Follow-Up Absolute Change ? Relative
Mean (SE) ¢ pd Mean (SE) ¢ pd Mean (SE) ¢ pe Change ®

Fruits

Total
Intervention 0.06 (0.04) 0.29 0.08 (0.04) 0.001 0.04 (0.03) 0.15 67%
Control 0.03 (0.04) 0.01 (0.04)

Fresh
Intervention 0.05 (0.09) 0.94 0.17 (0.08) 0.0005 0.16 (0.06) 0.01 320%
Control 0.05 (0.09) 0.01 (0.09)

Canned/jarred/dried
Intervention 0.06 (0.06) 0.15 0.04 (0.05) 0.35 —0.02 (0.04) 0.63 -33%
Control 0.01 (0.06) 0.02 (0.06)

Frozen
Intervention 0.05 (0.04) 0.18 0.02 (0.04) 0.27 —0.008 (0.03) 0.78 -16%
Control 0.02 (0.04) —0.005 (0.04)

Vegetables

Total
Intervention 0.13 (0.05) 0.79 0.11 (0.05) 0.98 —0.009 (0.04) 0.82 =7%
Control 0.12 (0.05) 0.11 (0.05)

Fresh
Intervention 0.06 (0.09) 0.94 0.18 (0.09) 0.0008 0.15 (0.07) 0.02 250%
Control 0.06 (0.09) 0.02 (0.09)

Canned/jarred/dried
Intervention 0.06 (0.06) 0.12 0.05 (0.05) 0.31 —0.02 (0.04) 0.62 -33%
Control 0.01 (0.05) 0.02 (0.06)

Frozen
Intervention 0.04 (0.03) 0.21 0.02 (0.03) 0.11 0.003 (0.02) 0.90 8%
Control 0.02 (0.03) —0.005 (0.03)

All healthy foods
Intervention 1.00 (0.06) 0.45 1.08 (0.06) 0.68 0.01 (0.06) 0.82 1%
Control 1.04 (0.06) 1.10 (0.06)

All unhealthy foods
Intervention 1.41 (0.09) 0.83 1.50 (0.09) 0.75 0.04 (0.10) 0.70 3%
Control 1.42 (0.09) 1.47 (0.10)
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Table 4. Cont.

Food Availability Baseline 12-Week Follow-Up Absolute Change ? Relative
Mean (SE) ¢ pd Mean (SE) ¢ pd Mean (SE) ¢ pe Change ®
Based on Glycemic Index (GI) &

Fruits

Low GI
Intervention 11.03 (215 025  10.68(2.17)  0.05 1.43 (2.35) 0.54 13%
Control 9.06 (2.23) 7.28 (2.34)

Medium GI
Intervention 1475(3.15) 043  1751(3.17)  0.004 527 (3.43) 0.13 36%
Control 12.78 (3.27) 10.27 (3.42)

High GI
Intervention 8.07 (9.68) 002  40.02(9.75  0.03 3479 (10.54)  0.001 431%
Control 25.96 (10.04) 23.13 (10.50)

Vegetables

Low GI
Intervention 8.90 (1.34) 0.77 9.09 (1.35) 0.69 0.74 (1.46) 0.61 8%
Control 931 (1.39) 8.67 (1.45)

Medium GI
Intervention 47.83 (7.85) 0.67 32.24 (7.91) 0.009 —-19.33 (0.03) 0.03 —40%
Control 45.13 (8.15) 48.87 (8.52)

High GI
Intervention 91.58 (15.60) 0.90 65.08 (15.72) 0.08 —23.68(16.99) 0.17 —26%
Control 90.01 (16.20) 87.20 (16.93)

@ Absolute change = [(intervention group follow-up) — (intervention group baseline)] — [(control group follow-up) -
(control group baseline)]. ® Relative change = (absolute change / intervention group baseline) x 100%. ¢ Adjusted
mean is presented. 9 p value for difference between the intervention group and the control group by MANCOVA
adjusting for age, sex, race/ethnicity, education, self-report hemoglobin A1C, and length of time having had type
2 diabetes at baseline. ¢ p value for absolute change adjusting for age, sex, race/ethnicity, education, self—report
hemoglobin A1C, and length of time having had type 2 diabetes at baseline. { Including fruits and vegetables. 8 Low
GI foods: GI <55; medium GI foods: GI between 56-69; high GI foods: GI >70.

4. Discussion

Using text messages via a cellular phone device is a low-cost and simple method of delivering
health information and education. In this pilot study, the intervention group either maintained the
same level or showed small improvements in diabetes self-care activities after 12 weeks of the text
message intervention. Improvements in adherence to following a specific diet plan for diabetes [29],
eating habits [30], physical activity [13,30], and self-care management skills [29] among type 2 diabetes
patients using text messages have been documented previously. In the current study, each patient in the
intervention group received a short text message three days (one message per day) per week. Each text
message also had a link that directed patients to the AADE7™ handout to provide patients additional
information and strategies of diabetes self-care skills, which was a novel approach to diabetes education.
Based on the feedback from study participants, the current educational text message program was
perceived as useful and beneficial (94% responded that yes it was) for helping type 2 diabetes patients
with self-care management, suggesting the feasibility and usefulness of the program.

There are possible explanations for the non-statistically significant improvements in diabetes
self-care activities. First, patients in both intervention and control groups had been receiving the usual
care for type 2 diabetes (clinic visits with registered dietitians or certified diabetes educators) and
therefore might have already been working on their self-care management skills before the intervention.
This was suggested by the baseline data showing patients in both groups having an average of five
days or more per week of engaging in self-care activities such as following eating plans, checking blood
glucose levels, and taking medications. Thus, the positive changes due to the text message intervention
would be more substantial for diabetes patients who do not receive routine care for the disease, such as
those living in rural areas with limited access to health care or having other conditions resulting in
infrequent contacts with health care providers or diabetes educators. Second, the participants in
the control group were not prohibited from seeking diabetes self-care and other health information
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online or through other resources, thereby potentially mitigating differences from the text message
intervention. Third, the relatively short intervention period (12 weeks) may have also contributed
to non-statistically significant results. Promisingly, our results (from the ANCOVA tests) suggest
significant improvements in weekly MET minutes for both total and moderate/vigorous physical
activity in the intervention group compared to the control group at the 12-week follow-up. Although
the results from the more stringent test for absolute change were not statistically significant, given the
pilot study nature, the significant findings based on ANCOVA nevertheless provide preliminary
evidence for the positive effect of the current intervention program on patients’ physical activity levels
as each participant in the program received six messages total on physical activity.

It is established that adults with type 2 diabetes have a two- to four-fold increase in the risk of
developing CVD; however, the majority of study participants in the intervention and the control groups
did not have a high awareness of CVD risk at baseline. This finding was consistent with previous
studies [3,4] that reported adults with type 2 diabetes were unaware of their risk for developing CVD.
The intervention group indeed had a significant improvement in the score regarding the level of a
participant’s concern over having a CVD event after the intervention. However, despite the increase,
the average score was still at the lower end of the scale between “low-level of concern” and “somewhat
concerned” for the intervention group after receiving text messages for 12 weeks. In addition,
being “never” or “rarely concerned” about CVD risk was reported by most of the participants after
the intervention (68% for the intervention group and 82% for the control group). In the current study,
the intervention group received six messages total on the topic of reducing the risk of complications
associated with diabetes. Although each message included a link to an AADE7™ handout addressing
the direct relationship between type 2 diabetes and CVD risk, it is possible that participants did not
click on the added link in the text messages to learn more about this information. Therefore, future
interventions using educational text messages should focus more on increasing participants” awareness
of CVD risk. For example, when creating text messages, one may consider phrasing the messages
with extra emphasis on the strong link between type 2 diabetes and CVD. Furthermore, extending the
intervention period from 12 weeks to six months and including more text messages on the topic may
enhance the impact of intervention on CVD risk awareness. Nevertheless, the significant improvement,
although small as observed in this study, suggests that the current text message program to some
extent made participants aware of CVD risk, a first step towards achieving the ultimate goal that is to
reduce the risk of developing CVD and other diabetes-related complications.

The results from the current study suggest that the 12-week text message intervention had
promising effects on the participants’ food choices that were reflected by the presence or absence of
foods relevant to type 2 diabetes in the home. The study observed significant increases in the availability
scores for fresh fruits and fresh vegetables in the intervention group after receiving educational text
messages for 12 weeks. Although the availability of high GI fruits also increased after the intervention
and the participants in both groups were more likely to store high GI vegetables in the home, we should
not make dietary recommendations for healthy eating solely based on GI values since Gl itself does
not reflect the likely quantity an individual would eat and high GI fruits and vegetables contain other
beneficial compounds such as fiber, vitamins, minerals, and polyphenols. Future diabetes educational
programs using text messages should educate patients on the health benefits of increasing fruit and
vegetable intake (e.g., fiber, vitamins, minerals, and polyphenol content). In addition, educational
messages should address the influence of fruit and vegetable intake on blood glucose levels when eaten
in the appropriate portion sizes to help patients make wise food choices, since GI does not address
portion sizes which are relevant for managing blood glucose levels.

Our study had limitations. The non-randomized, quasi-experimental study design may have
increased baseline differences between the intervention and the control groups due to selection bias.
However, there were no major differences in the relevant characteristics at baseline between the two
groups and the current analyses were adjusted for the relevant covariates to address potential selection
bias. Participants who agreed to enroll in the study may have been more interested in improving
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their diabetes self-care skills and healthy habits relative to those who did not. There is a possibility
that participants in the intervention group deleted the text messages without reading the message
or clicking on the AADE7™ handout link or did not receive some text messages, thus negating any
significant health behavior changes. However, all possible attempts were made to ensure that the
participants were receiving and reading the messages. For example, investigators called participants
several times during the study and visited with them when they came into the clinic on whether
they were receiving the text messages or had any problems with opening the AADE7™ handout
link. During the study, no problems of undeliverable messages were encountered. The results might
be underestimated or overestimated due to loss at follow-up that occurred in the study. However,
there were no differences in demographics and relevant factors at baseline between participants who
completed the post-intervention surveys and those who did not. In addition, participants might know
when to “expect” the messages, which may have some effects on the effectiveness of the intervention.
Lastly, although validated self-report measures were used, objective indicators may be more accurate
for assessing the intervention effects.

5. Conclusions

The results from this pilot study suggest the feasibility and usefulness of using educational text
messages for patients with type 2 diabetes to maintain or improve their diabetes self-care skills. Further,
the current text message program can benefit patients living in rural areas with limited access to health
care or having other conditions resulting in infrequent contacts with health care providers.

The pilot results also demonstrate a small but statistically significant increase in CVD risk
awareness as well as significant increases in physical activity and the availabilities of fresh fruits and
vegetables in the home among participants receiving text messages. Although these results need to be
confirmed by randomized experimental trials in the future, our findings, especially the ones related to
CVD risk awareness and home food self-inventory, add to the growing body of literature on using text
messages to deliver health information to patients with health concerns, including type 2 diabetes.
For future interventions, approaches such as extending the length of the intervention, increasing the
frequency of delivering such messages to participants or combining with other strategies such as
a telephone-based coaching approach may enhance the impact of the program. When revising the
content of the educational messages, one may need to increase the focus on reducing CVD risk by
highlighting the direct relationship between type 2 diabetes and CVD. Also, text messages should
address the importance of including fruits and vegetables in a patient’s daily food intake for health
benefits, and how portion sizes influence blood glucose levels, which may help patients make healthy
food choices.
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Abstract: Obtaining accurate food portion estimation automatically is challenging since the processes
of food preparation and consumption impose large variations on food shapes and appearances.
The aim of this paper was to estimate the food energy numeric value from eating occasion images
captured using the mobile food record. To model the characteristics of food energy distribution in
an eating scene, a new concept of “food energy distribution” was introduced. The mapping of a
food image to its energy distribution was learned using Generative Adversarial Network (GAN)
architecture. Food energy was estimated from the image based on the energy distribution image
predicted by GAN. The proposed method was validated on a set of food images collected from a 7-day
dietary study among 45 community-dwelling men and women between 21-65 years. The ground
truth food energy was obtained from pre-weighed foods provided to the participants. The predicted
food energy values using our end-to-end energy estimation system was compared to the ground
truth food energy values. The average error in the estimated energy was 209 kcal per eating occasion.
These results show promise for improving accuracy of image-based dietary assessment.

Keywords: dietary assessment; food energy estimation; generative models; generative adversarial
networks; image-to-energy mapping; neural networks; regressions

1. Introduction

Leading causes of death in the United States, including cancer, diabetes, and heart disease, can be
linked to diet [1,2]. Measuring accurate dietary intake is considered to be an open research problem,
and developing accurate methods for dietary assessment and evaluation continues to be a challenge.
Underreporting is well documented amongst dietary assessment methods. Compared to traditional
dietary assessment methods that often involve detailed handwritten reports, technology-assisted
dietary assessment approaches reduce the burden of keeping such a detailed report and are preferred
over traditional written dietary record for monitoring everyday activity [3].

In recent years, mobile telephones have emerged and provide unique mechanisms to monitor
personal health and to collect dietary information [4]. Image-based approaches integrating application
technology for mobile devices have been developed which aim at capturing all eating occasions by
images as the primary record of dietary intake [3]. To date, these image-based approaches have
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primarily relied on trained analysts to estimate energy intake from the food images. Validation studies
of the trained analyst have shown limited accuracy within and between the trained analysts [5,6].
Although automated methods are not sufficiently advanced to entirely replace the trained analyst,
these methods hold promise to ultimately improve accuracy and reduce participant and researcher
burden. Several mobile dietary assessment systems have been developed, such as the Technology
Assisted Dietary Assessment (TADA™) system [7,8], FoodLog [9], FoodCam [10], DietCam [11],
and Im2Calories [12], to address some of the challenges of automatically-determined food types and
energy consumed based on image processing and analysis methods. However, developing automatic
dietary assessment techniques remains an open research problem.

Estimating food energy from a single-view food image is an ill-posed problem, as most 3D
information has been lost when the eating scene is projected from 3D world coordinates onto 2D image
coordinates. Several methods have been proposed to estimate food portions from a single-view image.
In Chen et al. [13], 3D models were manually fitted onto a 2D food image in order to estimate the food
portion sizes. However, manual fitting does not scale with larger data sets. Another method used
was participants placing their thumbs in their images as a size reference to estimate the food area and
then the portion size of the food [14]. The inconsistency in the sizes of thumbs is an obvious issue.
The model proposed by Zhang et al. [15] counts the pixels of each food segmentation in the image to
estimate food portion. No 3D information is incorporated into the model. In the approach used by
Aizawa et al. [16], the food image is divided into sub-regions and then food portions are estimated
based on predetermined serving size classifications. Food portion estimation, in this case, is a task of
selecting from limited discrete portion size choices.

We previously developed a 3D geometric-model based method for food portion estimation [17].
Our technique did not require manual tuning of model parameters, and we were able to obtain
accurate food portion estimates [17]. Later, we showed that accurate food portions could be estimated
using geometric models for food objects with well-defined 3D shapes [18]. To further improve the
accuracy of food portion estimation, we incorporated the contextual dietary information of food portion
co-occurrence patterns [19]. However, geometric-model-based techniques estimate food volumes
rather than food energy. With food volumes estimated, food density is still required to compute
the food weights which can then be mapped to food energy using a food composition resource,
such as, the United States Department of Agriculture (USDA) Food and Nutrient Database for Dietary
Studies (FNDDS) [20]. In addition, geometric-model-based techniques require food labels and food
segmentation masks (i.e., location of foods in the image). Errors from automatic food classification and
image segmentation can propagate into the final portion estimation. Therefore, new approaches that
can directly link food images to food energy in the image would be desirable.

Recently, deep learning [21] techniques, especially techniques based on Convolutional Neural
Networks (CNN) [22] have shown substantial success in many computer vision techniques, such as
object detection [23-25], object segmentation [26], and image to image transfer [27-29]. Meyers et al. [12]
proposed a food portion estimation method based on the predicted depth maps [30] of the eating
scene. We have shown there is a tendency of over-estimation using depth image-based techniques,
and an accurate estimation is not always guaranteed, even when depth information is available [18].
Ege et al. [31] used a multi-task CNN [32] architecture for identification of food, ingredients, and cooking
directions. Food energy estimation is treated as a regression task [31], and only one unit in the last
fully-connected layer in the VGG-16 architecture [23] is used for energy estimation. Further analysis
of where the error may come from for energy estimation becomes difficult. Techniques based on
CNN rely highly on well-constructed training data sets with sufficient samples and properly designed
neural network architecture. In this paper, we focused on automatic dietary assessment of food energy
estimation. We used single-view food images captured by users before and after eating their meals.

We proposed the concept of an “energy distribution image”, which was one approach to establish
the relationships between the food image and how food energy was distributed in the food image [33].
Each pixel in the energy distribution image represented the relative food energy weights at the
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corresponding pixel location. The use of an “energy distribution image” enabled us to first visualize
how food energy estimation was spatially distributed across the eating scene.

Generative models learn from real data distribution and can generate samples that are similar
to those in the real data distribution by taking random noises (for example, generate fake faces that
look realistic [34]). In addition, generative models can also take prior information when generating
new samples [27]. Therefore, they are suitable for tasks of image-to-image translation. We used
generative models to predict energy distribution image based on eating occasion image, as generative
models are a natural fit for solving image-to-image translations by its proven capability of learning the
correspondences from one data distribution to another [27]. The aim of this paper was to develop anovel
dietary assessment method to estimate the food energy numeric value from eating occasion images.

2. Methods

To estimate food portions (in energy), the energy distribution image is a new approach to visualize
where foods are in the image and how much relative energy is presented at different food regions.
We used Generative Adversarial Network (GAN) architecture to train the generative model that predicts
the food energy distribution images based on eating occasion images. We built a food image data set
with paired images for the training of the GAN [33]. To complete the end-to-end task of estimating
food energy value based on a single-view eating occasion image, we used a CNN based regression
model to estimate the numeric food energy value using the learned energy distribution images.

2.1. Image-to-Energy Data Set

Food images were collected using the mobile food record (mFR™) as part of the Food in Focus
study, which was a community dwelling study of 45 adults (15 men and 30 women) between 21 and
65 years of age in a 7-day study period [35]. Pre-weighed food pack-outs were distributed to the
participants and uneaten foods were returned and weighted. Briefly, participants captured images of
each eating occasion over the entire period using the mFR™. Providing known foods and amounts
supported the objective of being able to identify the foods consumed and their amounts, which were
used as ground truth for evaluating the proposed method. The food categories provided for breakfast,
lunch, and dinner are listed in Table 1.

Since there is no public data set available for training our generative model, the data set of
image pairs, consisting of eating occasion images and corresponding energy distribution images,
were constructed using the Food in Focus study. The purpose of this data set was to learn the mappings
from food images to the food energy distribution images [33]. This data set was based on the ground
truth food labels, segmentation masks, and energy information from the study where known foods
and amounts were provided [35]. To build this data set, ground truth food labels, segmentation masks,
food energy information, and the presence of the known size fiducial marker were required. To the
best of our knowledge, we are the only group that has collected such a food image data set with all
required information listed above. We used GAN [34] architecture to train the generative model for
the task predicting the food energy distribution image, as GAN has shown impressive success in
training generative models [27-29,36,37]. In addition, GAN is able to effectively reduce the adversarial
space during training [34] compared to other generative models, such as Variational Autoencoders
(VAEs) [38]. Our image-to-energy data set described in Section 2.1 could not cover all food types,
eating scenes, and all possible food combinations. Therefore, GAN’s characteristic reducing adversarial
space was important for our task, as it reduced the chance of the generative model overfitting on
training image pairs. The energy value of the meal image is estimated based on the learned food
energy distribution image by training a CNN. Figure 1 shows the design of the proposed end-to-end
food energy estimation based on a single-view eating occasion image.
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Table 1. Type of food items in eating occasion images separated by breakfast, lunch, and dinner.

Breakfast Lunch Dinner
Bagel Apple Apple
Banana Bagel Banana
English muffin Carrot Broccoli
Grape Celery Celery
Margarine Cherry Cherry
Mayonnaise Chicken wrap Doritos
Milk Chocolate chip Fruit cocktail
Orange Ding Dong Garlic bread
Orange juice Doritos Garlic toast
Pancake Grape Grape
Peanut butter Ham sandwich Lasagna
Ranch dressing Mashed potato Margarine
Saltines Mayonnaise Mashed potato
Sausage Milk Mayonnaise
Strawberry Mustard Milk
Syrup No fat dressing Muffin
Water Noodle soup Orange
Wheaties Peas Peas
Yogurt Pizza Ranch dressing
Potato Rice crispy bar
Potato chip Salad mix
Ranch dressing Strawberry
Salad mix String cheese
Saltines Tomato
Snicker doodle Water
Strawberry Watermelon
String cheese Wheat bread
Tea Yogurt
Tomato
Water
Watermelon
Yogurt

To train the GAN for the task of mapping eating occasion images to energy distribution images,
eating occasion image and energy distribution image pairs were required. There is no device that
can be used to directly capture the “energy distribution image”. We constructed the image-to-energy
distribution data set using food images collected from the Food in Focus study [35]. Each food item
and each eating occasion image were manually labeled and segmented in the data set. The ground
truth energy information of each weighed food item in each eating occasion image was estimated
using the energy values in the USDA Food and Nutrient Database for Dietary Studies.

In order to construct the energy distribution image, we first detected the location of the fiducial
marker [39]. A fiducial marker is a colored checkerboard, as shown in Figure 2a, which is included
in each eating occasion scene image. The marker is used to correct the color of the acquired images
to match the reference colors during food identification and for camera calibration in portion size
estimation [40,41]. The image-to-energy distribution data set could not be constructed if any of the
above components (ground truth food labels, segmentation masks, food energy information, and the
presence of the known size fiducial marker) were missing.
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Figure 1. End-to-end system design of food energy estimation based on a single-view RGB eating
occasion image.
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With the reference of the known size fiducial marker, we removed the projective distortion in
the original image using Direct Linear Transform (DLT) [42] based on the estimated homography
matrix H to create a rectified image. Suppose I is the original eating occasion image; we denote I as
the rectified image that is obtained: I=n1L Following the same rule of notation, for each food k
and its associated segmentation mask Sy, the rectified segmentation can be expressed as: 5, = H™1S;.
For each pixel location (?, i) € §k, a scale factor zi);/ ; is assigned to reflect the distance between the pixel
location (i, j) to the centroid of the segmentation mask ;. Based on the scale factor w; ; assigned to
each pixel location in S, the weighted segmentation masks Sj can be projected back to the original
pixel coordinates denoted as §k, where: §k = HS;, and learn the parameter Py such that:

% = Pk Zv@;)egk Wiy @

(b) (c)

Figure 2. Learning image-to-energy translation using generative models. (a) Eating occasion image I.

(b) Ground truth energy distribution image W. (c) Estimated energy distribution image W.

where ¢y is the ground truth energy associated with food k, Py is the energy mapping coefficient for S,
and ifi? is the energy weight factor at each pixel that makes up the ground truth energy distribution

image. We can then update the energy weight factors Eﬁ in S as:

@5 = Py, W(i,j) € Sk. )

Repeat the above process for all k € {1,..., M}, where M is total number of food items in the eating
occasion image, and then overlay all segments S onto the ground truth energy distribution image W,
whose size is the same as image I = HI. Here, we show a pair of image I and the energy distribution
image W, as shown in Figure 2a,b, accordingly. The estimated energy distribution image shown in
Figure 2c is denoted as W, which is learned from training on pairs of images I and the ground truth
energy distribution image W.

2.2. Generative Adversarial Networks (GAN)

GAN architecture has shown impressive success in training generative models [27-29,36,37].
In GAN, two models are trained simultaneously: a generative model G that captures the data
distribution, and a discriminative model D that determines the probability that a sample came from
the training data rather than G [34]. The common analogy for the GAN architecture is a game between
producing counterfeits (generative models) and detecting counterfeits (discriminative model) [34].
To formulate the GAN, we specified the cost functions. We use 0(C) to denote the parameters of
generative model G and 8(P) to denote the parameters of discriminative model D. The generative
model G attempts to minimize the cost function:

](G)(Q(D)’ Q(G)) )
where the discriminative model D attempts to minimize the cost function:

](D)(Q(D), Q(G)) 4)
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In a zero-sum game, we have:
](G)(Q(D), Q(G)) - _](D)(Q(D), Q(G)) ()

Therefore, the overall cost can be formulated as:

JO(6),60)) = =2 Exepy, (1)llog D(x)] = 5Exep. (o llog D1 (G(2)))] ©)

where x is sampled from the true data pj,, and z is random noise generated by distribution p,. The
generative model takes z and generates fake sample G(z). The goal of the minimax game would then be:

; D)(p(D) p(G

Zflc'ﬁ gm(g_ ] )(9( ), 9! )) @)
Adversarial samples are those data which can easily lead neural networks to make mistakes.
The GAN takes adversarial training samples by its nature, therefore, it could significantly reduce the
adversarial space for the generative models to make mistakes. As a result, the use of GAN architecture
can greatly reduce the training samples needed to model the statistical insights of the true data. During
each update of the generative model G, the generated fake sample G(z) will become more like the true
sample x. Therefore, after sufficient epochs of training, the discriminator D is unable to differentiate

between the two distributions x and G(z) [34].

2.3. The Use of Conditional GAN (¢cGAN) for Image Mappings

We used conditional GAN (cGAN) [27] to estimate the energy distribution image [33], as cGAN
is a natural fit for predicting an image output based on an input image. A cGAN attempts to learn
the mapping from a random noise vector z to a target image y conditioned on the observed image x:
G(x,z) — y. The objective of a cGAN can be expressed as:

LCGAN(G’ D) = Ex/y'vp,m,, (%) [10g D(x/ y)} + Ex»vpdm (x),z~p=(z [log (1 D(x/ G( X, Z)))} (8)

Otherwise, an additional conditional 10ss Leougitional(G) [27] is added to further improve
G(x,z) = y:

Leonditional (G) = Bxypyy(5,9) 2~p=(2) Dy, Glx.2)], ©)

Common criteria used in D(y, G(x,z)) to measure the distance between y and G(x, z) are the L,
distance [43]:

n

1
D(y, G(x,2)) = — Z}(yi ~Glx;zi))? (10)
=
the L distance [27]:

D(y, G(x,z Zl Glxi,zi))| (1)

and a smooth version of the L1 distance:

(yi—G(x1z1)) ol .
Dy, G ={ 2 =Gl <1 (12)
|yl- —G(x;,z) otherwise.
So, the final objective [27,34] is:

G = arg mén ml’)lx LEGAN(GI D) + ALConditionul(G) (13)
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where the generative model G* is used to estimate the energy distribution image W based on the input
eating occasion image I.

2.4. Food Energy Estimation Based on Energy Distribution Images

We were able to obtain the energy distribution image [33] for each RGB eating occasion image
using generative model G trained by GAN. An example of an original food image and an estimated
energy distribution image is shown in Figure 2a,c. Energy distribution images represent how food
energy is distributed in the eating scene. Our goal was to estimate food energy (a numerical value)
based on the estimated energy distribution image. This is essentially a regression task as shown in
Figure 3. We used a CNN-based regression model to conduct the task of estimating energy from energy
distribution images. For the regression model, we used a VGG-16-based [23] architecture, as shown
in Figure 4. As VGG-16 has shown impressive results on object detection tasks, VGG-16 is sufficient
for learning complex image features. We modified the original VGG-16 architecture and added an
additional linear layer, as shown in Figure 4, so that the CNN-based architecture was suitable for
the energy value regression task. Instead of using random initialization for VGG-16 and training
from scratch, we used pre-trained weights of VGG-16 architecture on ImageNet [44]. The pre-trained
weights are indicated in the dash bounding box in Figure 4. We used random initialization for the linear
layer. We then fine-tuned the pre-trained weights of the VGG-16 network for energy value prediction
task based on the building blocks of complex features originally learned from ImageNet [44]. With the
regression model, we can predict the energy of the foods in a single-view eating occasion image.

A

Energy
¢ ) Distribution
Mapping

\

224x224x64
112x112x128
56x56x256
28x28x512
7 S 14x14x512 1x1x4096 1x1x1
HEN =5t
7x7x512 1x1x1000

The network architecture that we use to predict food energy based
on energy distribution image

[ Eating Occasion Energy Value ]

Figure 3. Estimating food energy of a meal based on predicted energy distribution image.



Nutrients 2019, 11, 877

112x128

56x56x256
28x28x512

14x14x512 1x1x4096
L
7xTx512 1x1x1000

1x1x1

Original VGG architecture

Figure 4. The network architecture used to predict food energy based on energy distribution image.

3. Experimental Results

3.1. Learning Image-to-Energy Mappings

We used 202 food images [35] that were manually annotated with ground truth segmentation
masks and labels which we used for training. Data augmentation techniques, such as rotating, cropping,
and flipping, were used to expand the database. In total, there were 1875 paired images (an image pair
contains one eating occasion image and its corresponding energy distribution image) used to train the
c¢GAN and 220 paired images for testing.

Once the cGAN estimated the energy distribution image W, we could then determine the energy
for a food image (portion size estimation) as:

EstimatedEnergy = Z (V~Vlj) (14)
V(i el

To compare the estimated energy image w (Figure 2c) with the ground truth energy image w
(Figure 2b), we defined the error between W and W as:

o Zv(i,j)ef(wi/f - Wi,j)
Energy Estimation Error Rate = ——————— (15)
ZV(i,j)ei(WiJ)

We compared the energy estimation error rates at different epochs for the two different c<GAN
models we used, the encoder-decoder architecture (Figure 5) and the U-Net architecture (Figure 6).
Compared to the encoder-decoder architecture (Figure 5), the U-Net architecture (Figure 6) was more
accurate and stable. The reason is that information from the “encoder” can be directly copied to the
“decoder” layers in the U-Net architecture to provide precise locations [45], which is an idea similar to
ResNet [25].
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Figure 5. Cont.
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Figure 6. Generative model: U-Net. (a) Architecture of U-Net. (b) Error rate of U-Net.

We also compared the energy estimation error rates under different conditional loss settings,
Leonditional (G), using U-Net. We used the batch size of 16 with A = 100 in Equation (13), the Adam [46]
solver with initial learning rate « = 0.0002, and momentum parameters 1 = 0.5, f = 0.999 [27].
We observed that distance measure D(y, G(x,z)) as defined in Equations (10)-(12) using the L; or
Ly norms is better than using smoothed L; norm. At epoch 200, the energy estimation error rates
are 10.89% (using L; criterion) and 12.67% (using L, criterion), respectively. In the experiments,
we included food types whose shapes are difficult to define (for example, fries). Predicting the energy
for these food types is very challenging using a geometric-model-based approach [17].

3.2. Food Energy Estimation Based on Energy Distribution Images

We predicted the food energy of each eating occasion image based on its energy distribution
generated by generative model. The dimension for the predicted energy distribution image was 256 by
256. We resized the predicted energy distribution image from 256 by 256 to 224 by 224 to fit the input
image size of VGG-16 architecture. To resize the output from generative model, we used OpenCV
implementation of image resize, which is based on linear interpolation. The food energy estimation
was then compared to the ground truth food energy from the Food in Focus study. We used 1390
eating occasion images also collected from the Food in Focus study [35], with ground truth food energy
(kilocalories) for each food item in the eating occasion image. A total of 1043 of these eating occasion
images were used for training and 347 of them for testing. The images selected for training and testing
were selected by random sampling. All of the eating occasion images were captured by the users sitting

naturally at a table. There were no extreme changes in the viewing angle. The errors for predicted
food energy in Figure 7 are defined as:

Error = Estimated Food Energy — Ground Truth Food Energy (16)

Figure 8 shows the relationship between the ground truth food energy and the food energy
estimation of the eating occasion images in the testing data set. The dash line in Figure 8 indicates
the ground truth and estimated energy are the same, i.e., estimation error is equal to zero. Therefore,
the points above this line are overestimated, and the points below this line are underestimated.
Figures 9 and 10 show examples of food energies the have been over- and underestimated, and we use
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“+” and “~" to indicate over- and underestimation, respectively. The average ground truth of an eating
occasion image in the testing data set was 538 kilocalories. We observed that the estimation was more
accurate for the eating occasion image with ground truth energy around average, when compared to
those with extremely high or low ground truth energy, such as zero kilocalories. This is due to the fact
that there were not sufficient eating occasion images in our data set with very high or low ground
truth energy provided to the neural networks for training.
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Figure 7. Error distribution of predicted food energy for all eating occasion images.
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Figure 8. Relationship between the ground truth food energy and the food energy predicted for each
eating occasion.

The error distribution of predicted food energies for 347 eating occasion images is shown in Figure 7.
We found that the average energy estimation error was 209 kilocalories. An overestimation is displayed
as a positive number. The average ground truth for all eating occasion images was 546 kilocalories, and
the average ground truth for breakfast, lunch, and dinner eating occasion images was 531 kilocalories,
603 kilocalories, and 506 kilocalories, respectively. The average energy estimation error we obtained
was 209 kilocalories, and the average energy estimation error for breakfast, lunch, and dinner eating
occasion images was 204 kilocalories, 211 kilocalories, and 210 kilocalories, respectively. Several sample
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eating occasion images for overestimated food energy are shown in Figure 9, and eating occasion
images for underestimated food energy are shown in Figure 10 accordingly.

(d) (f)

Figure 9. Examples of over-estimated food energy. (a) Ground truth energy: 287 kCal Predicted energy:
314 kCal Energy error: +27 kCal. (b) Ground truth energy: 520 kCal Predicted energy: 621 kCal
Energy error: +101 kCal. (c) Ground truth energy: 653 kCal Predicted energy: 875 kCal Energy error:
+222 kCal. (d) Ground truth energy: 498 kCal Predicted energy: 579 kCal Energy error: +81 kCal.
(e) Ground truth energy: 705 kCal Predicted energy: 893 kCal Energy error: +188 kCal. (f) Ground
truth energy: 354 kCal Predicted energy: 425 kCal Energy error: +71 kCal.

(d)

Figure 10. Examples of under-estimated food energy. (a) Ground truth energy: 542 kCal Predicted
energy: 472 kCal Energy error: —70 kCal. (b) Ground truth energy: 990 kCal Predicted energy: 732 kCal
Energy error: —258 kCal. (c) Ground truth energy: 508 kCal Predicted energy: 504 kCal Energy error:
—4 kCal. (d) Ground truth energy: 508 kCal Predicted energy: 474 kCal Energy error: —34 kCal.
(e) Ground truth energy: 749 kCal Predicted energy: 629 kCal Energy error: —120 kCal. (f) Ground
truth energy: 1084 kCal Predicted energy: 708 kCal Energy error: —376 kCal.

4. Discussion

We have advanced the field of research for automatic food portion estimation by developing a
novel food image based end-to-end system to estimate food energy using learned energy distribution

31



Nutrients 2019, 11, 877

images. The contributions of this work can be summarized as the following: We introduced a method
for modeling the characteristics of energy distribution in an eating scene using generative models.
Based on the predicted food energy distribution image, we designed a CNN-based regression model
to estimate the energy value based on the learned energy distribution images. We designed and
implemented a novel end-to-end system to estimate food energy based on a single-view RGB eating
occasion image. The results were validated using data generated from the Food in Focus study using
data from the 45 community-dwelling men and women between 21-65 years old consuming known
foods and amounts over 7 days [35].

The advantage of our technique compared to a geometric model-based technique is that the system
is training based. The pre-defined geometric models were limited to cover only certain types of food
with known shapes, which is no longer an issue for training-based methods. In addition, the “energy
distribution image” we introduced enabled us to first visualize how food energy estimation is spatially
distributed across the eating scene (for example, regions of the image containing apple should have
smaller weights due to lower energy (in kcal) compared to regions in the image containing cheese).
Therefore, not only the final estimated numeric energy values could be used to analyze where the error
may have come from, but also the intermediate results of the “energy distribution image” could be used.

As our end-to-end food portion estimation is a training based system, the limitation of the system
is mainly determined by the training data. Expanding the training data set with a larger sample size,
capturing images over a longer period of time, and more food types could improve the accuracy of
automatic food portion estimation. For wider application, future studies need to include diverse eating
styles and patterns, thus broadening the application of these methods to diverse population groups.
These results point to the importance of controlled feeding studies using known foods and amounts.
The results of such studies, on a wider scale, would contribute to wider application of these automated
image-based methods with the benefit of improving accuracy of results. The use of an image-based
system, such as TADA™, which uses the mFR™, is necessary for the automatic food portion estimation.

There are several reasons that may have led to the food energy estimation errors observed. Firstly,
although we used 1875 paired food images to train the generative model using GAN architecture [33],
the amount of food images did not cover all different eating occasions. Similarly, to train the regression
model for numeric energy value prediction, 1043 eating occasion images were used where using more
eating occasion images and food types could improve the accuracy of the end-to-end system. Secondly,
when building the image-to-energy data set [33], the energy distribution images were synthetic images
defined by handcrafted energy spread functions, rather than incorporating real 3D structures or
depth information. Neither depth nor real 3D structure information was available when the study
was conducted to capture eating occasion images [3]. To further improve the accuracy and address
this challenge, we are currently investigating techniques to incorporate depth information into the
end-to-end system where the 3D structures features of the foods in the images can also be learned by
the neural networks.

5. Conclusions

In this work, we proposed a novel end-to-end system to directly estimate food energy using
automatic food portion estimation from eating occasion images captured with an image-based system.
Our system first estimated the image to energy mappings using a GAN structure. Based on the
predicted food energy distribution image, we designed a CNN-based regression model to further
estimate the energy value based the learned energy distribution images. To our knowledge, this method
represents a paradigm shift in dietary assessment. The proposed method was validated using data
collected by 45 men and women between 21-65 years old. We were able to obtain accurate food energy
estimation with an average error of 209 kilocalories for eating occasion images collected from the Food
in Focus study using the mFR™. The training-based technique for end-to-end food energy estimation
no longer requires fitting geometric models onto the food objects that may have issues scaling up, as we
need a large amounts of geometric models to fit different food types in many food images. In the future,
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combining automatically detected food labels, segmentation masks, and contextual dietary information
has the potential to further improve the accuracy of such end-to-end food portion estimation system.
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Abstract: (1) Background: Smartphone dietary assessment apps can be acceptable and valid data
collection methods but have predominantly been validated in highly educated women, and none
specifically measured eating-out habits in young adults. (2) Methods: Participants recorded their
food and beverage consumption for three days using the Eat and Track (EaT) app, and intakes were
compared with three dietitian-administered 24-h recall interviews matched to the same days as the
reference method. Wilcoxon signed-rank or t-tests, correlation coefficients and Bland—Altman plots
assessed agreement between the two methods for energy and percentage energy from nutrients
(%E). (3) Results: One hundred and eighty nine of 216 participants (54% females, 60% resided in
higher socioeconomic areas, 49% university-educated) completed the study. There were significant
differences in median energy intake between methods (p < 0.001), but the EaT app had acceptable
agreement for most nutrient densities at the group level. Correlation coefficients ranged from r = 0.56
(%E fat) to 0.82 (%E sugars), and between 85% and 94% of participants were cross-classified into the
same or adjacent quartiles. Bland—-Altman plots showed wide limits of agreement but no obvious
biases for nutrient densities except carbohydrate in males. (4) Conclusions: The EaT app can be used
to assess group nutrient densities in a general population of 18-to-30-year olds.

Keywords: diet assessment; relative validity; smartphone; young adults; apps

1. Introduction

Young adults (aged 18 to 30 years) have experienced the fastest rate of weight gain of any birth
cohort in Australia [1]. One factor that appears to influence the diets of people in this age group is the
amount of foods eaten prepared away from home, such as fast foods. More frequent consumption of
fast foods has been associated with less healthy eating habits [2]. Young adult Australians consume fast
foods more frequently than other age groups [3], and spend the highest proportion of their household
income on eating out [4].

There have been no recent surveys on the amount and types of foods prepared and eaten away
from home by young adults in Australia. The Measuring Young adults’ Meals (MYMeals) study aims
to fill this research gap [5]. Central to determining what young people are eating are valid and feasible
dietary intake data collection methods.
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Smartphone dietary intake methods can be acceptable and valid ways of collecting dietary data [6].
Considering that 95% of 18-to-34-year olds in Australia own a smartphone [7], it is an accessible way
to collect dietary data from this age group, including those living in rural and remote locations [6,8].

Smartphone applications (apps) can be used as alternatives to traditional pen and paper or
telephone food records or recalls [6]. Advantages of using electronic methods to collect dietary intake
data are that entries can be completed more quickly than traditional methods [8], nutritional analysis
can be conducted in real time, and researcher burden can be significantly reduced [9].

A number of commercial diet collection apps are available, however, validation studies show that
these do not have good agreement with established dietary methods for some nutrients, including
energy, protein, total fat, sugars, fibre and sodium [10,11]. Such differences may be due to the
underlying nutrition composition databases, inadequacy of food listings available and no accounting
for food preparation methods. In addition, many of the commercial apps were developed with
American audiences in mind and therefore contain foods that are different to those available in
Australia [10]. This makes it difficult for Australians to find and log the correct foods, which may
reduce the accuracy of the nutritional data captured [12]. Further, these apps are mostly designed for
weight management, and provide continuous feedback on the amounts of energy and/or nutrients
consumed that may change behaviour, reducing their validity in research settings [6].

There have been three smartphone dietary recording apps (My Meal Mate, electronic Dietary
Intake Assessment (eDIA) and Easy Diet Diary) that have been validated for the research setting using
24-h recalls as the reference method [13-16]. An additional app, electronic Carnet Alimentaire (e-CA,
or “food record” in French), has also been evaluated favourably in a small study of 50 participants [17].
Two of these studies were conducted mostly in women in older age groups [16,17]. One was conducted
in young adults, but the participants were almost exclusively university educated and of high
socioeconomic status [14].

The Eat and Track (EaT) smartphone application is a new app for collection of dietary intake data,
purpose-designed by the research team [18]. The aim of this study was to assess the relative validity
of the EaT app with dietitian-administered 24-h recalls, examining energy and nutrient densities in
a sample more inclusive of the Australian young adult population with respect to education and
socioeconomic status.

2. Materials and Methods

2.1. Sample

Potential participants completed a screening and demographics questionnaire with questions
on age group, educational attainment and residential postcode, to allow the socioeconomic status to
be determined using Socio-Economic Indexes for Areas [19]. Participants were recruited from the
overall MYMeals study population [5]. To satisfy ethics, participants had to give separate consent
to opt into the validation study. This subgroup of participants was randomly allocated to complete
the validation until 20% of the entire MYMeals sample was included. Potential participants were
recruited across New South Wales (NSW), Australia’s most populous state. They were eligible to
participate in both the MYMeals study and the present validation study if they were aged 18 to 30
years, owned a working smartphone, were English-speaking, and consumed at least one meal, snack
or drink purchased outside the home per week. Participants were excluded if they did not meet the
aforementioned criteria, had ever been diagnosed with an eating disorder, were not able to complete
the three days required for the study or were pregnant and/or breastfeeding. Potential participants
completed a screening questionnaire through the online research management platform, REDCap [20],
and provided consent. The study was approved by The University of Sydney Human Research Ethics
Committee (project 2016/546).
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2.2. Eat and Track Smartphone Application (EaT App)

The EaT app was developed by nutrition and information technology experts at the University of
Sydney for the purposes of data collection for the MYMeals study specifically, and is based on the e-DIA
app the researchers developed previously that was validated for nutrients and food groups [14,15].
Key usability modifications to the e-DIA app were the addition of a large, branded fast food database
and improved usability functions (for more information on the development of the EaT app, see [18]).
The nutrition database underpinning the EaT app included 4046 foods and beverages from the
Australian Bureau of Statistics” AUSNUT 2011-2013 database [21], and 2229 food items from the largest
chain outlets in Australia [18,22]. The fast food items are categorised by outlet name and the range of
portion sizes of foods and beverages available at the outlet, for example, small, medium or large fries, to
enhance recording and overcome previously reported difficulties in portion size estimation [14,15,17].
The fast food nutritional composition data is currently restricted to energy, protein, total and saturated
fats, carbohydrates, sugars, and sodium, and does not contain micronutrients [23].

Participants were provided with written and video instructions on how to use the EaT app prior
to starting the study, and could access these resources throughout the study period from the MYMeals
study website [5]. Participants using the EaT app selected an eating occasion (Breakfast; Lunch;
Dinner; or Snacks and Drinks) from the landing screen of the EaT app [18]. A free-text box appeared,
and participants typed in the food they had eaten. Shortlists of foods appeared, and participants
could scroll through the provided options, or use keyword prompts to find the food they consumed.
Once the food was selected, participants chose the amount and unit of food (e.g., gram, millilitre, slice,
cup, etc.), and where the food was sourced. Participants also received a portion measures booklet [24]
to assist with estimating portion sizes during recording [18]. If a participant was unable to find a
particular food they consumed, they could enter it manually. When entering a food manually, the app
prompted participants to enter the food or individual ingredients, amounts and units consumed.

2.3. Procedures

After obtaining consent, participants were emailed links to download the EaT app from either
the Apple App Store or Google Play, and the instructional videos on how to use the app to log their
dietary intake. Participants were required to record all foods and beverages they consumed for three
consecutive days. The researchers instructed participants on the days they must record their intakes.
The starting days were staggered across the population to facilitate an even spread of days over the
week. Participants received daily email and/or SMS prompts to remind them to log their intakes
during the study period.

The participants also completed three 24-h recall telephone interviews with research dietitians.
To allow all foods to be captured by both methods, the 24-h recalls were conducted the following
day, but captured data for the same days that the app was used. The automated, online ASA-24
Australia [9,25] was used to conduct the recalls so that the interview process was standardised.
This computerised method involved the dietitian recording all foods and drinks consumed throughout
the day into the ASA-24 Australia as they interviewed the participants. Multiple passes prompt for
additional information on food form, preparation methods, portion size and omitted items. The three
24-h recalls were conducted on the days following each of the data collection days. The ASA-24
Australia uses the AUSNUT 2011-2013 database [9,26], but differs from the EaT app with respect to
the number of fast food items available [18].

At the conclusion of the three 24-h recalls, participants completed an online demographics
questionnaire that included questions on self-reported height and weight data [5], to enable body mass
index (BMI) to be calculated. Participants received a $100AUD gift voucher as compensation for their
time after they had completed all study requirements.
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2.4. Data Cleaning

All EaT app entries were checked by research dietitians in the week following the data
collection days, and participants were contacted to clarify the additional manually entered food
items, any obvious errors such as incorrect unit sizes, and skipped meals. However, to give a true
indication of the relative validity of the EaT app, minimal changes to the data were made. Manually
entered foods (1 = 33) were matched to the nearest entry from the EaT app by one research dietitian,
then checked by two others. If the participant stated brand names for entered items that were not in
the original database, the Nutrition Information Panel data for that item was added to the database by
the research dietitian (2% of total entries). Two Accredited Practising Dietitians each checked all the
data independently for any discrepancies. These were identified and clarified until agreement was
reached. All entries for the ASA-24 Australia recall were downloaded and checked.

2.5. Data Analysis

Daily totals for energy and each nutrient were summed, then means were calculated for
each participant for the three study days. Group means and medians for energy and nutrient
densities (percentage energy (%E) from protein, total and saturated fat, total carbohydrate and sugars,
and sodium per 1000 k]) were determined for both the EaT app and 24-h recall data [27]. Paired t-tests
were conducted on normally distributed data and the Wilcoxon signed-rank test was conducted on
non-parametric data to compare the three days of data from each method.

Correlations between the EaT app and 24-h recalls were assessed using Pearson product-moment
correlation or Spearman rank correlation coefficients for skewed data. Quartiles of intake from each
method were calculated for energy and each nutrient density. Cross-classification was calculated
by the proportion of participants classified into the same, adjacent or extreme quartiles of energy or
nutrient density intake by both methods.

Bland-Altman plots [28] were constructed to assess the agreement between the EaT app and 24-h
recalls for the mean energy and nutrient densities.

Participants’ basal metabolic rate (BMR) was calculated using the Schofield equation [29], based
on the participants’ self-reported weight, age and gender from the demographics questionnaire. Under-
and over-reporters were identified using Goldberg’s cut-offs [30]. Any participants who reported
consuming an average energy intake over the three days of less than 1.0 x BMR were considered as
under-reporters, and if they reported more than 2.4x BMR they were deemed over-reporters [31].
Twenty-eight participants (14.8%) were classified as under-reporters and six participants were classified
as over-reporters (3.2%) by the reference 24-h recall data. The full sample was used for analysis, as
removing mis-reporters did not significantly change results.

IBM SPSS Statistics, version 24 was used to conduct all statistical analyses, and p-values < 0.05
were considered statistically significant.

3. Results

In total, 216 participants were recruited into the validation study. Of these, five withdrew from
the study for personal or employment reasons and 20 did not complete all three days of data collection,
while two were deemed to fail selection criteria, leaving a final sample size of 189 participants.
The mean BMI of participants was 24.9 (SD 5.0). The characteristics of the included participants are
shown in Table 1. It should be noted there are slightly fewer males than the Australian population
proportion of 49%, and the proportion with post-school qualifications (65%) is more than the 56%
reported by the Australian Bureau of Statistics [32].

3.1. Comparing Intakes between 24-h Recalls and EaT App

Significantly more energy was recorded using the 24-h recalls than the EaT app for the total
sample (p < 0.001), females (p < 0.01) and males (p < 0.001) (Table 2). However, there were no significant
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differences in %E from protein, total or saturated fat, or sodium densities. The EaT app recorded
significantly more %E carbohydrate than the recall for the total sample (p = 0.03) and for males
(p =0.01).

Table 1. Sample characteristics.

Participant Characteristics N (%) *?
Gend Female 102 (54)
ender Male 87 (46)
18-24 years 105 (56)
Age bracket 2530 years 84 (44)
Underweight (<18.49 kg/m?) 4(2)
; 2
Body mass index Healthy.welght (18.5-24.9 kzg/m ) 116 (61)
Overweight (25-29.9 kg/m~) 47 (25)
Obese (>30 kg/m?) 22 (12)
Primary school or less 2(1)
. . . Secondary school 64 (34)
Highest education attained Trade or diploma qualification 31 (16)
University degree 92 (49)
High 114
Socioeconomic status ? L(fveerr 75 (TOO))

@ From Socio-Economic Indexes for Areas [19] based on residential postcode, lowest five deciles = lower, highest

five deciles = higher.

Table 2. Differences in energy and nutrient density intakes recorded by the 24-h recalls and Eat and

Track (EaT) app.
Energy and Nutrient Densities Median 24-h Recall (IQR) ¢ Median EaT App (IQR) pd
Entire Sample n = 189
Total energy, k] # 9611 (7947-11,764) 8813 (7051-10,828) <0.001 *
Protein, % energy b 18.3 (15.2-21.6) 18.0 (15.1-21.7) 0.14
Total fat, % energy 2 35.8 (32.0-40.5) 35.6 (31.4-40.5) 047
Saturated fat, % energy @ 12.8 (10.6-15.5) 12.3 (10.5-15.1) 0.21
Carbohydrate, % energy 2 40.4 (35.3-45.7) 41.8 (35.0-47.4) 0.03 *
Sugars, % energy b 15.4 (11.7-21.4) 16.4 (11.8-19.2) 0.81
Sodium, mg/1000 kJ 294.3 (239.5-349.3) 294.5 (237.2-362.3) 0.89
Females n = 102
Total energy, kJ 2 9001 (7752-11,122) 8209 (6818-10,399) <0.01*
Protein, % energy @ 17.5 (14.9-20.3) 17.6 (14.8-21.0) 0.14
Total fat, % energy @ 36.2 (32.0-41.1) 36.6 (32.0-40.8) 0.97
Saturated fat, % energy * 12.9 (10.6-16.0) 12.4 (10.6-15.6) 0.39
Carbohydrate, % energy ? 41.3 (35.6-47.1) 42.2 (34.6-47.6) 0.57
Sugars, % energy ? 18.1 (12.9-22.4) 17.2 (12.2-21.0) 0.14
Sodium, mg/1000 kJ 2 282.8 (229.0-354.8) 282.0 (225.3-363.9) 0.56
Males n = 87
Total energy, kJ 2 10479 (8424-12985) 9140 (7359-11740) <0.001 *
Protein, % energy ° 19.0 (15.5-22.7) 19.2 (15.4-21.9) 0.92
Total fat, % energy @ 34.9 (32.0-40.0) 34.9 (30.6-39.8) 0.29
Saturated fat, % energy * 12.7 (10.5-14.7) 12.3 (9.8-14.6) 0.36
Carbohydrate, % energy ? 40.1 (35.1-43.7) 40.6 (35.9-47.2) 0.01*
Sugars, % energy b 14.2 (11.0-18.1) 15.0 (11.6-18.5) 0.13
Sodium, mg/1000 kJ © 297.1 (249.1-349.0) 301.1 (245.0-362.1) 0.91

2 f-tests for normally distributed data. ® Wilcoxon signed-rank test for non-parametric data. ¢ IQR = interquartile

range. d p < 0.05 considered significant, * denotes significant results.
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3.2. Correlation Coefficients and Cross-Classification

Table 3 shows the correlation coefficients between the 24-h recalls and EaT app. All correlation
coefficients were positive and statistically significant (p < 0.001). Correlations ranged from 0.56 (%E
total fat) to 0.82 (%E sugars) for the total sample. Quartile cross-classification of energy and nutrient
densities with 24-h recalls and the EaT app placed 84% (%E fat) to 96% (%E sugars) of participants
into the same or adjacent quartile. The proportion of participants classified into the extreme quartile
ranged from 0% for %E carbohydrate to 4% for %E fat.

Table 3. Correlation coefficients and cross-classification of energy and nutrient densities between the
24-h recall and Eat and Track (EaT) app.

Energy and Nutrient Correlation Cross-Classification into Quartiles (%)

Densities Coefficients ©  game  Same or Adjacent  Extreme

Entire Sample n = 189

Total energy, k] 2 0.67 50.3 90.5 2.1
Protein, % energy ® 0.73 53.4 93.7 2.1
Total fat, % energy 2 0.56 46.0 84.1 4.2
Saturated fat, % energy 2 0.59 492 84.7 3.7
Carbohydrate, % energy @ 0.79 52.4 95.2 0
Sugars, % energy b 0.82 59.8 95.8 1.1
Sodium, mg/1000 kJ b 0.56 43.3 84.7 32
Females n = 102
Total energy, k] 2 0.69 46.1 90.2 2.0
Protein, % energy @ 0.71 529 93.1 1.0
Total fat, % energy ® 0.61 48.0 86.3 2.9
Saturated fat, % energy @ 0.62 56.9 86.3 2.9
Carbohydrate, % energy # 0.83 55.9 95.1 0
Sugars, % energy ? 0.82 53.9 88.2 0
Sodium, mg/1000 kJ 2 0.51 422 84.3 29
Males n = 87
Total energy, kJ # 0.64 54.0 85.1 2.3
Protein, % energy # 0.72 56.3 90.8 2.3
Total fat, % energy ® 0.50 36.8 80.5 4.6
Saturated fat, % energy * 0.53 43.7 85.1 4.6
Carbohydrate, % energy ? 0.75 50.6 93.1 1.1
Sugars, % energy P 0.74 58.6 90.8 2.3
Sodium, mg/1000 kJ ® 0.56 40.2 85.1 4.6

2 Pearson’s correlation coefficients. P Spearman’s rank correlation. ¢ All correlations were significant (p < 0.01).

3.3. Bland-Altman Plots for 24-h Recalls and EaT App

Bland—-Altman plots showing the agreement between EaT app and 24-h recalls for energy for the
total sample, males and females are presented in Figure 1. Males had a higher mean difference than
females. Agreement between 24-h recalls and the EaT app for the nutrient density for carbohydrate are
shown in Figure 2 because these were the nutrient densities for which a difference was found between
medians. For males, carbohydrate showed underestimation at lower intakes and overestimation at
higher intakes with the app compared with 24-h recalls. There were no biases detected for the other
nutrient densities (plots not shown). The mean difference and 95% limits of agreement between the
EaT app and 24-h recalls for energy and all nutrient densities can be seen in Table 4.
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Figure 1. Bland-Altman plot of 24-h recalls (24H) and Eat and Track (EaT) app for energy intake. (a)
Entire sample, (b) females and (c) males.
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Figure 2. Bland—-Altman plot of 24-h recalls (24H) and Eat and Track (EaT) app for %E carbohydrate.
(a) Entire sample, (b) females and (c) males.

43



Nutrients 2019, 11, 621

Table 4. Agreement between the means of the three days of recording with Eat and Track (EaT) app
with the 24-h recalls.

Nutrient EaT Mean (SD) 24-h Recall Mean (SD) Mean Difference (SD) 95% LOA 2
Total energy, k] 9071 (2908) 9949 (2916) —878 (2363) (—5510, 3755)
Protein, % energy 18.8 (5.0) 18.5 (4.5) 0.3 (3.6) (—6.8,7.4)
Total fat, % energy 36.0 (7.0) 36.3 (6.8) —0.3 (6.5) (—13.0,12.3)
Saturated fat, % energy 12.7 (3.4) 13.0 (3.4) —-0.3(3.1) (—6.3,5.7)
Carbohydrate, % energy 41.3 (8.6) 40.5(7.6) 0.9 (5.3) (—9.5,11.2)
Sugars, % energy 16.5 (6.5) 16.7 (6.4) —0.2 (4.1) (—8.2,7.9)
Sodium, mg/1000 kJ 299.9 (89.4) 303.3 (102.5) —3.4(97.5) (—194.5,187.7)

2 LOA, limits of agreement.

4. Discussion

The present study showed generally good agreement between the EaT app and 24-h recalls
for nutrient densities. This finding is based on nonsignificant differences in group intakes with the
exception of carbohydrates, acceptable correlation coefficients and cross-classification results. Further,
the lack of bias in the Bland—-Altman plots, except for carbohydrate in males, suggests that the EaT
app is suitable for measuring intakes at the group level. Though there was poor agreement for energy
intake, it is well established that self-reported energy intake is not a good measure of true energy
intake [33]. However, energy adjustment can be used to improve estimation of nutrients [33], as has
been applied in our study.

Similar to the EaT app, the apps that have been the subject of validation studies have shown good
correlation with 24-h recalls, though with wide limits of agreement on Bland—Altman tests [13,14,16].
Another study in young adults validated a smartphone app that included text description, and spoken
and photographic descriptions of the foods eaten using the objective measure of energy expenditure
using the Sensewear armband [34]. The study reported high correlations between the methods [34].
However, it needs to be noted that of 90 participants, 13 either failed to record food intakes or wear
the armband for a sufficient period of time and 21 (27%) participants were removed from the analysis
because of energy misreporting [34]. As in other validation studies, the sample was mostly young
educated women [34].

Due to the issues with reporting of energy intake [33], 24-h recalls are not a true ‘gold standard’
reference method of dietary intake collection. This study found low levels of underreporting via the
dietitian-administered 24-h recall. In the latest Australian Health Survey, the rate of underreporting
was 19% of males and 23% of females [35], higher than the rate found in our study (14.8% overall).
To better assess the true validity of the EaT app, future studies using biomarkers or doubly labelled
water should be conducted [33].

A strength of our study is that our sample included higher proportions of males than previous
studies, various education levels and participants from both higher and lower socioeconomic status
areas. This ‘real-world” approach shows that the EaT app is likely to be useful in a diversity of
population groups and may also be developed further into an app for members of the public to record
and monitor their intakes.

An advantage of the EaT app in measuring diet with a focus on eating out is that participants
are able to choose from a greater number of fast food options than was possible with the 24-h recall,
thus increasing their likelihood of selecting the correct item. Using actual portion sizes from the fast
food chains should enable better recording of these foods. For other foods, participants received a
portions booklet used in national nutrition surveys to estimate serving sizes, but moving forward,
inclusion of images within the app may be advantageous. There are some inherent limitations. Due to
the ever-changing food supply, databases may only be accurate at one time point and quickly become
outdated [36]. Fast food chains frequently offer new menu items to encourage customers into their
outlets [37]. In addition, some of the differences between the EaT app and 24-h recalls may be explained
by the differences in the databases used for the 24-h recalls with the ASA-24 Australia containing
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mostly generic fast food options [18]. Not only were there many more fast foods to choose from in
the EaT app, but the fast foods in the EaT app had greater nutrient ranges and higher maximum
values [18,22].

Prospective dietary data collection methods, such as the EaT app, do not rely on participants’
memories, which may be advantageous [6]. However, the selection of this method also introduces a
limitation [14]. Requiring participants to record their intake in the EaT app in real time may improve
the accuracy of the following 24-h recalls. However, the EaT app clears its history at 3:00 am each
day [18], so participants were not able to access their data from the day before.

Overall, EaT is a promising method of collecting dietary intake data of young adults, with a
particular focus on eating out. The EaT app could be used to collect data investigating the types and
contributions of nutrients from different types of food outlets, and investigate effects of environmental
interventions in fast food chain outlets.

5. Conclusions

The Eat and Track smartphone application is a valid way of collecting group nutrient density
intake data in 18-to-30-year olds, with a specific focus on the nutrients of interest when frequently
eating out, that is, sugars, saturated fat and sodium. To further assess the validity of the app, additional
methods that do not rely on food and beverage capture and nutrient databases, such as biomarker or
doubly labelled water studies, should be conducted.
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Abstract: Video observations have been widely used for providing ground truth for wearable
systems for monitoring food intake in controlled laboratory conditions; however, video observation
requires participants be confined to a defined space. The purpose of this analysis was to test an
alternative approach for establishing activity types and food intake bouts in a relatively unconstrained
environment. The accuracy of a wearable system for assessing food intake was compared with that
from video observation, and inter-rater reliability of annotation was also evaluated. Forty participants
were enrolled. Multiple participants were simultaneously monitored in a 4-bedroom apartment using
six cameras for three days each. Participants could leave the apartment overnight and for short
periods of time during the day, during which time monitoring did not take place. A wearable system
(Automatic Ingestion Monitor, AIM) was used to detect and monitor participants’ food intake at
a resolution of 30 s using a neural network classifier. Two different food intake detection models
were tested, one trained on the data from an earlier study and the other on current study data using
leave-one-out cross validation. Three trained human raters annotated the videos for major activities
of daily living including eating, drinking, resting, walking, and talking. They further annotated
individual bites and chewing bouts for each food intake bout. Results for inter-rater reliability
showed that, for activity annotation, the raters achieved an average (+standard deviation (STD))
kappa value of 0.74 (4-0.02) and for food intake annotation the average kappa (Light’s kappa) of 0.82
(40.04). Validity results showed that AIM food intake detection matched human video-annotated
food intake with a kappa of 0.77 (£0.10) and 0.78 (£0.12) for activity annotation and for food intake
bout annotation, respectively. Results of one-way ANOVA suggest that there are no statistically
significant differences among the average eating duration estimated from raters’ annotations and
AIM predictions (p-value = 0.19). These results suggest that the AIM provides accuracy comparable to
video observation and may be used to reliably detect food intake in multi-day observational studies.

Keywords: obesity; dietary assessment; chewing detection; AIM; neural networks; food intake
detection; video annotation; sensor validation
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1. Introduction

Monitoring and assessment of dietary intake and eating behavior is essential for studying and
understanding the factors contributing to obesity and over-weight [1,2]. Traditional approaches
of dietary intake assessment utilize self-report methodologies such as 24 h dietary recall [3],
food frequency questionnaires [4], and electronic devices for record keeping such as personal
data assistants and smart-phones [5]. However, these methods rely heavily on participants” input
which results in participant burden and may also result in inaccurate data [6,7]. Over the past
decade or so, several automatic food intake detection approaches have been proposed to address
the problematic issues associated with self-report by employing different sensing modalities, such
as acoustic [8], piezoelectric (e.g., strain gauge) [9-11] and inertial (e.g., accelerometer [11,12])
sensors. Sensor-based approaches require validation for data collection, signal processing, and pattern
recognition methods. Many sensors have been validated in laboratory studies; however, validation in
unconstrained, free-living or pseudo-free-living environments is required for realistic assessment of
sensor performance [13]. For validation, having a robust and objective ground truth metric is essential.
Three different methodologies have been widely used for establishment of ground truth data for food
intake detection including (1) external observer; (2) push-button by the participant, and (3) video
observations of individuals.

External observers have been used extensively to establish ground truth in previous studies.
For example, several studies using wearable sensors such as ear-pad microphone [14], acoustic sensor
around the neck [15,16] have employed external observers to monitor subjects and manually annotate
the collected sensor data. Methods relying on external observers can be labor intensive and may
not be accurate for marking the start and end of eating activity as the observers themselves are not
involved in the eating activity and mostly rely on visual observation. Another popular approach
for ground truth collection is the annotation by the subjects themselves using either pushbutton or
mobile apps and have been used in conjunction with a wide variety of sensors such as piezoelectric
strain sensor [10,17,18], smart eye-glasses [11,19], and acoustic sensors [20]. The use of push-button
by the participants can provide comparatively accurate start and end times of eating activity and
therefore could potentially be used for accurate assessment of the developed sensors and related
signal processing and pattern recognition methodologies. However, the presence of a push-button
can impact the way people would normally eat and interact with their environment (i.e., one hand is
always busy with the pushbutton) and could also potentially increase participant burden as well as
result in inaccurate labels if the participant is distracted. The accuracy of push-button annotation by
participants is also dependent on the participants pushing the button at the correct time (i.e., at the
actual start and end times of eating). Therefore, there is a need for assessment methods which do not
rely on users.

Another approach for establishing the ground truth data is through video observation of
individuals and does not rely on the users. This approach can potentially be used in conjunction
with any wearable sensor for monitoring food intake such as chewing and swallowing monitoring
systems (piezoelectric strain sensor, swallowing microphones, and electroglottography) [8,21-26],
and wrist monitoring systems for tracking bites (for example MEMS gyroscope based system for
tracking wrist movements [27], accelerometer present in smart-watches [8]). Video-based annotation
methodology has also been utilized in the studies [25,26] for monitoring the feeding behavior of
infants in laboratory conditions. A common theme among all the studies which relied on the video
observation is the use of a single camera fixated on the participant. This restricts participants to a
small defined space, e.g., a dining table, and fails to capture daily activities of the participants. Using a
single camera also limits the number of participants that are generally recruited for a study session
and usually needs one camera per participant. Video based observations are sensitive to the quality of
images/videos taken, orientation of the camera, closeness of the camera to the participant, etc. Another
problem associated with video observation is that the results are subjective and dependent on inter-
and intra-rater reliability of the human annotators. Therefore, multicamera systems are required which
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can capture a wide variety of activities performed by the individuals and do not restrict the movements
of participants to a designated table/space. At the same time, it is essential to evaluate the inter- and
intra-rater reliabilities of the annotation procedure to account for subjectivity of the annotators.

This paper presents results of a study in which multiple participants were monitored
simultaneously in a multiroom (4-bedroom) apartment with six cameras installed in different locations.
Each participant was wearing a multisensor system called Automatic Ingestion Monitor (AIM [10]) for
automatic monitoring of food intake related events. The study was conducted with multiple goals:
(1) to establish the reliability of video observations for monitoring food intake bouts using wearable
sensors in a pseudo-free-living testing environment; and (2) establish the accuracy of the sensor-based
food intake predictions with respect to video observation and evaluate if the AIM sensors can be used
as a replacement for video observation in unconstrained environments.

2. Materials and Methods

2.1. Data Collection Protocol

Forty (20 male and 20 female) healthy participants were recruited (aged 24.5 + 3.4 years;
Body Mass Index (BMI) 26.1 4 5.2 kg/m?; Mean = STD). Participants were recruited by advertisements
placed around the University of Alabama, Tuscaloosa area and in the University newsletter. Individuals
were screened for medical conditions which would impact normal chewing. Those with a history of
eating disorders, food allergies or sensitivities, or other conditions which resulted in avoidance of
consumption of a wide range of foods (e.g., gluten intolerance, peanut allergy) were excluded from the
study. The study protocol was approved by the University of Alabama Institutional Review Board and
all individuals provided informed consent before participation in the study.

2.2. Sensor System

Participants were asked to wear a multisensor system AIM (v1.0) [10] comprised of three
components: a hand gesture sensor worn on the dominant hand, a piezoelectric strain sensor
(LDT0-028K from Measurement Specialties Inc., Hampton, VA, USA) placed on the jaw using medical
adhesive, and a data collection module worn around the neck using a lanyard. The hand gesture
sensor had an RF transmitter (data sampled at 10 Hz), whereas the data collection module had an RF
receiver, and both acted together as proximity sensor to detect characteristic hand to mouth (potential
bite) gestures. The data collection module also had preconditioning and signal processing circuitry
for the jaw motion sensor (sampled at 1000 Hz). It also included a triaxial accelerometer (ADXL335
from Analog Devices, Norwood, MA, USA) for detecting body acceleration (sampled at 100 Hz). Data
from the accelerometer was used for determining physical activity levels. Each participant was also
provided with an Android smartphone with a dedicated app to collect data. Data from the data
collection module were wirelessly transmitted to the phone via RN-42 Bluetooth module with serial
port profile. Details about the sensor system used in this study can be found in [10].

2.3. Experimental Protocol

The observational facility was a 4-bedroom, 3-bathroom apartment with a common living area
and kitchen. One of the bedrooms was used by the research staff and therefore, was blocked from
access to the participants. Each bedroom had a bed, a study chair and desk; while the living area had a
sofa, chairs, dining table, a TV with a game console, and a stationary cycle. The kitchen shelves and
refrigerator were fully stocked with daily eating supplies and a variety of different foods (189 items)
and the supplies were replenished on regular basis to ensure that none of the items were ever out
of stock. A daily inventory was kept of the items consumed. The facility was instrumented with 6
motion-sensitive cameras to capture all the activities performed by the participants. Cameras used in
the study were GW-2061IP (GW Security, Inc., El Monte, CA, USA), which provided video recording at
fully HD resolution (1080p). The locations of the cameras in the apartment are shown in the Figure 1.
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Bathrooms were not monitored due to privacy concerns. Participants were asked to eat only in rooms
that were equipped with cameras.
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Figure 1. Floorplan of the apartment and placement of the six cameras in the apartment. Cameras were
placed such that the area of the coverage is maximized.

Each participant completed the study over three days which were scheduled based on their
availability and had an interval of at least three days in between each test day. On any given day, there
were no more than three participants in the observational facility. This facilitated interactions among
the participants throughout the day, including during meals. On each of the study days, participants
reported to the observation facility between 7:00-8:00 a.m. and participated in the experiment until
8:00 p.m. Participants were trained on how to place the piezoelectric strain sensor on the jaw and then
the participants self-applied the sensor each study day. For all eating occasions, participants had the
option of either eating from the food items available in the apartment’s kitchen or to get food on the UA
campus at one of the three cafeterias or a food court with multiple fast food vendors. Participants could
eat at any time of their choosing, as many times as they wanted, as much as they wanted. They could
leave the facility for short periods of time during which they were not monitored. Research assistants
kept a record of these times and they were subsequently excluded from the analysis. Upon completion
of each study day, participants removed the sensor system and were free to leave.

2.4. Annotation Procedure

To identify the ground truth for each participant’s activities, the video recordings were manually
annotated by three trained human raters (training described below). The annotation process included
two stages—(1) activity annotation and (2) food intake bout annotation. In this case, a food intake bout
is defined as a single sitting of eating which involves several bites and chewing bouts and may or may
not involve liquid intake. This could be a full meal or a small snack. Figure 2 shows an example of the
video screenshot of all six cameras that the raters could see and annotate simultaneously. The activity
annotation consisted of identification of six categories: eating food intake bout boundaries, drinking,
physically active, physically sedentary, talking, and out of view. Brief definitions of these categories of
activities are provided in Table 1a. Some constraints were placed during activity annotation as shown
in Table 1b. Out-of-view segments of the videos were not included in the analysis. Start and end time
of each activity were recorded.
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Cameras ——— &8

Display control

Timeline

Recordings/clips

Chosen camera

Figure 2. A snapshot of the software used for video observation and annotation. The annotator can
view all six cameras simultaneously and can mark start and end of different activities.

Table 1.

activity annotation.

(a) Definitions of categories for activity annotation; (b) Constraints placed on

@

Category

Definition

Food Intake

Participant was consuming solid food items or solid foods combined with
liquids. Eating involved taking bites, chewing, and swallowing of the foods.

Drinking Participant was consuming just liquids, no bite/chewing were involved.

Physically active Participant were moving

Physically Participant was not in motion, including sitting on the couch/chair, working on

sedentary the computer or laying down on the bed etc.

Talking Participant was talking to other participants or talking on the phone.

Out of view Participant was not in the view of any of the 6 cameras

(b)

Constraints Definition

1 Participant cannot be physically active and sedentary at the same time.

2 Participant cannot be eating/drinking and talking at the same time.

3 Participant cannot be out of surveillance and physically active at the same time
with the exception that when the participant was out with the research assistant
getting the food, that was considered as physically active.

4 Restroom use was considered as an out of surveillance category.

After the completion of activity annotation, each food intake bout was further annotated with finer
details of individual bites and chewing sequences. Food intake annotations were performed by using
a 3-button system and a custom-built software. The 3-button system is shown in Figure 3a, in which
button-1 and button-2 were used to indicate bite and chewing events respectively. Additionally, a third
button was employed to record potential out of view /frozen video frames. Brief definitions of these
categories of events in food intake bout annotation are provided in Table 2. Figure 3b shows an
example of the annotation procedure both at activity level and food intake level. For a typical food
intake bout, a bite is followed by a sequence of chews and one or more swallows. Swallowing events
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were difficult to see in the video recordings; therefore, they were not annotated. There were cases
where video frames were lost and the transition among the frames was not smooth. This manifested
as frozen image frames. Timestamps corresponding to these frames was noted and they were not
included in the analysis.

! chengsequences |11V VUL i
/;“ N ewing sequences |
Bout Annotation Out of surveillance /  |* n .
Chew B 2 frozen frame o I
—_—
—_—
Food
tntakee ettt eee 0o
Drinking
Activity  Outof o
annotation  Surveillance
Talking m . .
Physically
Sedentary AAAAAAAAAAA AAAA
Physically
pies '“00'0 : ' ’l‘ I L 2 l
b
( ) 9.00 AM 9.15AM 9.30 AM 9.45AM 10.00 AM 10.15AM 1030 AM

Timeline

Figure 3. (a) The three button systems for annotating the videos of food intake both act activity level
as well as meal level; (b) Example of the annotation procedure both at the activity and food intake

bout level.
Table 2. Definitions of categories for food intake bout annotation.
Category Definition
Bite The moment the participant placed the food into mouth and bit down.
Chewing bout Tracking the jaw movement of the participant immediately after bite

until swallowing the food.

Out of view/frozen frame  Frozen video frames or out of camera view (i.e., the participant was not
in the selected camera)

2.5. Training of Human Anotators

All the raters were trained before conducting annotation on the full dataset. During training,
the raters were provided with specific instructions and supervised by an expert. As a part of activity
annotation training, the raters annotated 10 h of video recording. The full day video was played at
a high playback speed (x8) and raters were instructed to pause the video at times when any of the
six activities took place. To improve annotation, the raters used rewinding and forwarding of the
frames when necessary to identify the start and end times of any category. In addition, raters also
used time-stamp information from the research assistant records along with the video observations
to annotate videos. Since multiple participants could appear in the camera view, the raters were
instructed to complete annotation for one participant at a time and to ignore the other participants
who appeared in the video.

Like the activity annotation, raters were given training on use of the 3-button system and
custom-built program to annotate food intake bouts. In the training, the raters identified every
bite and chewing sequence that took place within a food intake bout. They were instructed to press
button-1 once and release immediately each time the participant took a bite. The chewing button was
pressed for each entire chewing sequence. The 3rd button was pressed and held for as long as the
participant was out of view and for frozen video frames. This process continued until the participant
finished the eating event.
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2.6. Sensor Signal Processing and Pattern Recognition

One of the goals of the study was to establish the reliability of food intake detection by AIM
with respect to the video observations. The same technique can be used for validation of any other
sensor for food intake detection. For the validation of the AIM, annotated data was used as reference.
Two models for food intake detection were tested. The first model was obtained on an independent
dataset trained in a previous study which consisted of a data from 12 participants who wore the AIM
device for 24 h [10]. Those participants didn’t participate in the current study. Data from the current
study were used for testing purposes only. Food intake was detected as 30-s segments labeled as food
intake or non-food intake. The data preprocessing and feature computation algorithms were applied
to the sensor signals as presented in [10] to ensure that models trained in [10] could be used in this
study. The second model utilized the neural network architecture presented in [10], but was trained
and validated on data collected during the present study. In this case, a leave-one-participant out cross
validation scheme was used, where data from one participant (all days) were used for testing and data
collected from the rest of the participants were used for training of the neural networks.

2.7. Statistical Analysis

Statistical comparison was performed to measure the agreement among the raters, and among
the video annotation and the AIM-detected food intake. For computing agreement, Cohen'’s kappa (k)
based inter-rater reliability testing was computed for both activity and food intake bout annotation.
The kappa is represented by the following formula:

«_ Prob(a) — Prob(e) 1)
1 — Prob(e)
where Prob(a) and Prob(e) represent the probability of observed agreement and expected agreement
respectively. The k can range from —1 to +1, where values k < 0 indicate no agreement, 0.60 < k < 0.80
indicate satisfactory agreement and k > 0.80 represent almost perfect agreement.

The inter-rater reliability of the marking of food intake bout boundaries (in the case of activity
annotation) and chewing sequences (in the case of food intake annotation) was also evaluated.
To evaluate the performance of activity annotation, 1 day of 10 h of video was annotated by each of the
three raters after they were trained. For food intake annotation, 10 meals were annotated by each of
the three raters.

The following comparisons were performed. To examine inter-rater reliability among the raters,
kappa statistics between the three raters were computed and then averaged to obtain Light’s kappa.
Light’s kappa indicates the agreement among the raters when the same day data is annotated by
multiple raters. For performance evaluation of the AIM, Light’s kappa was used to measure the
agreement between the prediction by the AIM and a human rater. For completion, we have also
reported the F1-score; which is widely used for performance evaluation of machine learning models.
The Fl-score is the weighted average of recall and precision. Recall indicates the true positive rate
whereas the precision indicates the positive predictive values of the classifier.

Further, a comparison among the average eating duration estimated using the activity level
annotation and food intake bout level annotation of the video and AIM prediction is also provided.
One-way analysis of variance (ANOVA) was performed with a null hypothesis that average eating
duration from all three methods are not statistically different with a p-value of 0.05.

3. Results

For marking food intake events’ boundaries in activity annotation, Light’s kappa (agreement
among the raters) was 0.74. For marking chew sequences in food intake bout annotation, Light’s kappa
was 0.82. Results of the AIM prediction in comparison to the video annotations are given in Tables 3
and 4. Both activity and meal level predictions from the AIM achieved satisfactory agreement with
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video annotation (Cohen’s kappa of 0.77 and 0.76 respectively, for models trained on the present study
dataset). Table 3 also shows the Fl-scores achieved by the classifier for both predicting the activity- and
meal-level annotations. Table 4 shows the results of AIM prediction when AIM models were trained
on the independent dataset from our previous study.

Table 3. Comparison of food intake detection between video based human annotation and AIM
predictions based on leave-one-out cross validation.

Kappa F1-Score
Activity Level ~ Food Intake Boutlevel | Activity Level  Food Intake Bout Level
Mean 0.77 0.76 0.8 0.78
STD 0.1 0.12 0.1 0.12
Table 4. Comparison of food intake detection between video based human annotation and AIM

predictions based on the model from an earlier study [10].

Kappa F1-Score
Activity Level ~ Food Intake Bout level Activity Level  Food Intake Bout Level
Mean 0.74 0.71 0.77 0.74
STD 0.14 0.11 0.12 0.09

Table 5 shows statistics on the durations of the experiments (from start to end), eating duration
marked by the activity level food intake bout annotation, as well as the eating durations predicted by
AIM. One-way ANOVA shows that there are no statistically significant differences (p-value 0.19 > 0.05)
among the average eating durations (over a day) among activity level annotation, food intake bout
level annotation, and the AIM-predicted eating durations.

Table 5. Statistics on Duration of Experiments, Activity, and Food intake bout level eating duration
and AIM predicted eating duration. All durations are in minutes.

Total Duration Act:llitgelg)evel F‘;;i:;‘::};gi‘;ut AIM Predicted
Mean 608.6 66.3 371 494
STD 63.5 30.4 134 13.7
25% 589.0 459 27.3 40.1
50% 619.3 55.3 35.3 48.3
75% 647.4 78.1 43.4 57.5

4. Discussion

The presented study investigated several issues related to evaluation of wearable sensors for food
intake detection in pseudo-free-living environments. Multicamera video observation was used as the
gold standard in detection of food intake, instead of relying on pushbuttons which has limitations [10].
As previous research has shown [13], eating behavior varies significantly between strictly controlled
laboratory conditions and less restrictive, semi-constrained, or free-living environments. Use of video
observation may be a useful tool in establishing the ground truth under the latter conditions.

The use of video-based observation as a means of AIM sensor validation facilitated low participant
burden as participants were not required to record their food intake events. Such an approach has
multiple advantages. First, not relying on participants to self-report their intake could potentially
reduce inaccurate data collection. In addition, presence of multiple cameras did not restrict participants
to a confined eating space and they could eat anywhere in the four-bedroom apartment. This approach
may have helped the participants mimic their usual daily eating habits, which is desirable in studies of
diet and health outcomes.

The inter-rater reliability results for the annotation showed some variability among the raters’
perception of eating and not eating. Kappa values of 0.74 (74% agreement) for activity annotation and
0.82 (82% agreement) for food intake bout annotation is good, but not perfect. Although video-based
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food intake observations have been extensively explored for monitoring in very constrained, laboratory
studies, their use in free-living conditions to provide ground truth for wearable sensors may be less
reliable as indicated by the kappa for inter-rater reliability metrics. A possible alternative to video-based
observation is to use wearable sensors such as the AIM for continuous non-invasive monitoring of
eating behavior. Wearable sensors can potentially provide more objective monitoring compared with
video-based observations.

Two separate AIM prediction models were tested in this study, and both were compared to video
annotation. One model was trained on an independent dataset and the second model was trained on
the data collected in the present study. Both models produced results comparable to video annotation,
with the first (independent) model resulting in kappa values of 0.74 for activity and 0.71 for meal level
annotation. As expected, the recognition model trained on the present dataset had relatively higher
agreement (0.77 and 0.76 agreement with raters for activity and food intake bout level annotation
respectively) compared to the AIM models trained on independent data. In comparison, inter-rater
agreement among raters was 0.74 and 0.82 for activity and food intake bout level, respectively.

One of the possible factors contributing to the strong but not perfect agreement between the AIM
detection and the video annotation is the granularity of the epoch size (30 s) used for sensor data
processing. This granularity was greatly improved in more recent iterations of the AIM devices [19,28],
which were not available at the time of the present experiment. Another source of error is the
discrepancy in the observer’s ratings which, in turn, affected the fidelity of the AIM predictions.
The moderate agreement among raters for video annotation and hence the AIM performance may be
attributed to several factors. In some cases, very short snacking events such as eating a small piece
of candy may have been missed by the raters. However, such short events were likely captured by
the AIM since the AIM is continuously monitoring food intake. Disagreement between the video
observation and the AIM could also potentially be explained by constraint # 2 (Table 1b) imposed on
the annotation where it was decided that the eating and talking could not be annotated simultaneously.
This was because when participants were sitting far from the camera, raters had to zoom in to view the
participant, making the view granular and blurry. Raters faced difficulties distinguishing between food
intake or talking in such blurred frames. While this could have potentially introduced inaccuracies
in the annotation, the AIM would still be likely to capture chewing events during talking if chewing
lasts longer than 15 s in a 30-s epoch. A previous study showed that the AIM is able to detect chewing
while talking [19]. Another major limitation of identifying ground truth through video observation
was the confidence (or lack of thereof) of human raters in their correct identification of the activity
shown on video. Many human activities are complex and do not fall easily into predefined categories.
Similarly, the raters’” expectancy (see what one wants to see) may also have contributed to error.
In previous studies ([10,22]), the AIM was to able to distinguish between eating and other activities
such as talking and walking etc. and therefore is potentially less prone to the difficulties encountered
in video-based observation.

The average experiment duration for all participants was about 10 h out of which about 1 h
(66.1 min) (based on the activity level annotation) was spent on eating related activities. The estimated
average eating time based on the food intake bout level annotation was 37.1 min, whereas the
average estimated eating time based on AIM predictions was 49.4 min. Higher AIM predicted
eating durations can be explained by the possibility of raters not being able to mark some chewing
events due to occlusion or hard to distinguish eating vs. other activities such as talking. Considering
the difficulties in annotating fine level chewing, AIM predicted durations are expected to be more than
the fine level chewing (food intake) and less than the activity level eating annotations. However,
the one-way ANOVA showed that the differences among the average eating duration are not
statistically significant. This shows that estimated eating duration from AIM can provide a good
estimate of actual eating duration.

A previous shorter study in free-living conditions that used a push button ground truth reference
achieved an average Fl-score of 89% when tested on 12 participants using the AIM for 24 h [10]
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compared to an F1-score of 80% for the present study. However, we would expect similar performance
provided more accurate ground truth signal is present. Results of the present study showed that the
AIM can provide a reliable prediction of food intake and can potentially be used in place of direct
video observations which is labor-intensive and prone to error. Sensors used for passive and automatic
detection and identification of food intake have previously been shown to be able to accurately estimate
chew counts and chewing rate [22]. Li et al. has shown that increasing number of chews per bite in
both obese and healthy participant reduced overall food intake [29]. AIM-like devices can be used
for providing near real-time feedback on chewing behavior of individuals and have shown to modify
eating behavior to reduce energy intake in a single meal [30]. Similar sensors have been shown to
be able to estimate mass of intake only by monitoring chewing behavior [14,31]. While the AIM can
accurately detect eating events and can provide information about chewing behavior, in its current
form, it does not have the ability to recognize the type of food being consumed which is critical for
monitoring caloric intake. Further, integration of computer vision techniques for identification of food
type will greatly improve the practical usage of the AIM and similar wearable systems. The present
study, together with previous studies in this area, show that wearable systems can be used for not only
detecting food intake but also providing other valuable information about eating behavior including
quantification of eating rate, duration, and frequency.

5. Conclusions

Human raters achieved an average kappa value of 0.74 and 0.82 for higher level activity annotation
and for finer food intake bout level annotation of eating occasions. The AIM predictions were compared
with the human raters and achieved a kappa value of 0.8 for detection of food intake. AIM-predicted
average eating durations were close to video annotated eating durations. These results indicate that
the AIM can potentially be used in studies of food intake in unrestricted environments and provide
performance like video annotation without the limitations associated with video annotation.
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Abstract: We evaluated the validity and reproducibility of estimated sugar intakes using a food
frequency questionnaire (FFQ) among middle-aged Japanese adults in the Japan Public Health
Centre-Based Prospective (JPHC) study. In subsamples of the JPHC study (Cohorts I and II in
multiple areas), we computed Spearman’s correlations of FFQ results with urine sugar concentrations
and dietary records (DR) for validity; we evaluated correlations between two FFQs for reproducibility.
During 1994-1998, participants (Cohort I: n = 27 [men], n = 45 [women]) provided two (spring and
fall) 24-h urine samples and completed 7-consecutive-day DR per season (I: 7 =99, n = 113; II: n = 168,
n =171) and two FFQs (147 food items) at yearly intervals (I: n = 101, n = 108; II: n = 143, n = 146).
Sugar intakes from FFQ were correlated with urinary sugar (de-attenuated correlations: 0.40; 95%CI:
0.19, 0.58). After adjustment for sociodemographic and lifestyle variables, correlations between FFQ
and DR for men and women were 0.57 (0.42, 0.69) and 0.41 (0.24, 0.55) (I) and 0.56 (0.44, 0.65) and
0.34 (0.20, 0.47) (II), respectively. Correlations between FFQs for men and women were 0.63 (0.49,
0.73) and 0.55 (0.41, 0.67) (I) and 0.66 (0.55, 0.74) and 0.63 (0.52, 0.72) (II). In conclusion, our study
showed moderate FFQ validity and reproducibility for sugar intake evaluation.

Keywords: food frequency questionnaire; sugar intakes; dietary record; East Asians

1. Introduction

The prevalence of obesity and chronic diseases, such as diabetes, is rising steadily worldwide [1,2],
leading to increased financial burden from medical expenses and the need to identify preventive
measures urgently. The potential role of dietary sugar (especially free or added sugars) consumption in
the development of these health conditions has drawn much attention. The World Health Organization
(WHO) recommended in the guideline for sugar intake that the intake of free sugars (added or
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processed sugars, and sugars in honey, syrups, and fruits juices), should be less than 10% of the
energy intake [3]. Previous studies, primarily among Westerners, examined associations between the
consumption of sugars (mono- and di-saccharide; fructose, glucose, and sucrose) and chronic diseases
or conditions, suggesting that the overconsumption of free sugars may lead to chronic diseases [4-6].
Among Japanese populations, however, few previous studies [7,8] have examined the associations
between sugars and health conditions. Moreover, according to previous studies on estimations of
sugar intakes [9,10], amount and source of dietary sugar consumption among Japanese populations
may differ from that among European populations. Owing to these differences between Japanese and
Europeans, health impacts of sugar intakes may also differ. Hence, the impact of sugar intakes on the
health of the Japanese population merits further investigation.

In Japan, the Ministry of Education, Culture, Sports, Science, and Technology published standard
tables of detailed food composition for carbohydrates in 2015 [11]. This further served as a motivation
to quantify the dietary intake of sugars among Japanese populations. The food frequency questionnaire
(FFQ) is widely used and is less burdensome as a dietary assessment method among study participants
than other methods, such as the dietary record (DR). However, it is necessary to verify whether the
health impact of nutrient intakes can be accurately estimated using the FFQ [12]. The Japan Public
Health Centre-Based Prospective (JPHC) study [13] is a large-scale, nationwide, population-based
cohort study with a follow-up period of over 20 years, since its establishment in 1990. In a subsample of
the JPHC study, we examined the validity of sugar intakes estimated based on the FFQ, by comparing
urinary sugar concentrations as an objective biomarker and DR results for 7 consecutive days per
season (28- or 14-d). In addition, the reproducibility was compared using two FFQs completed at a
yearly interval.

2. Materials and Methods

2.1. JPHC Validation Study and Participants

The Japan Public Health Centre-Based Prospective (JPHC) study is a prospective cohort study
conducted on men and women aged 40 to 69 years. Cohorts I (since 1990) and II (since 1993) were living
in five (Ninohe, Yokote, Saku, Ishikawa, and Katsushika) and six (Mito, Kashiwazaki, Chuo-higashi,
Kamigoto, Miyako, and Suita) public health centre (PHC) areas, respectively. A 5-year follow-up study
was conducted in 1995 (Cohort I) and 1998 (Cohort II) using the FFQ. The FFQ was developed based on
weighed 3-d DR survey data from Cohort I participants. Validation studies, for the FFQ, and described
previously [14,15], were carried out among a subsample of participants in the JPHC Study Cohorts I
and II.

In brief, the Cohort I validation study was performed from February 1994 to February 1996 while
Cohort II was performed from May 1996 to February 1998. Participants completed 28 d (14 d for
Ishikawa PHC area) DR, they also completed the FFQ twice, while some in Cohort I also collected 24-h
stored urine. The FFQ, completed by participants after 3 months of completing the DR, was used for
the validation (FFQv). Participants also completed another FFQ (FFQr) at yearly intervals (9-month
interval for Mito PHC area) that was used to determine reproducibility. Sample size calculations
revealed that approximately 112 participants would be required to detect a CC of 0.25 with « = 0.05
and {3 = 0.20 separately for men and women, and Cohorts I and II. A total of 120 married couples
in Cohort I and 196 married couples in Cohort II were recruited. The participants or their spouses
who were out of the age range for the cohorts were excluded. Furthermore, data of the participants
without a complete 28 d (14 d for Ishikawa PHC area) DR or FFQv were excluded from validation,
while those without a complete FFQr were excluded from reproducibility. Thus, data from a total
of 215 participants (102 men and 113 women) from Cohort I and 350 participants (174 men and
176 women) from Cohort IT were included for the validation between DR and FFQv. For the calculation
of partial correlation coefficients, we further excluded those who had missing data for occupation,
smoking status or alcohol intake, leaving a total of 212 participants (99 men and 113 women) from
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Cohort I and 339 participants (168 men and 171 women) from Cohort II. Furthermore, 72 participants
(27 men and 45 women) were included for the validation between the biomarker and FFQv or DR.
From Cohort I, 209 participants (101 men and 108 women) and Cohort II, 289 participants (143 men
and 146 women) were included for the reproducibility between FFQv and FFQr [14,15].

All participants gave their oral or written informed consent for participation in the JPHC
validation study. The protocol for the current study, including data analysis and the measurement of
urinary sugar concentrations, was conducted according to the guidelines laid down in the Declaration
of Helsinki and approved by the human ethics review committee of the National Cancer Centre of
Japan (No. 2016-428).

2.2. Food Frequency Questionnaire in the 5-Year Follow-Up Survey

The FFQ (which included 147 food items) required information about the usual food consumption
during the previous year. Basically, questions about portion size (<0.5 (small)/one (medium)/>1.5
(large) times the reference amount) and frequency (almost never, one to three times per month, one
to two times per week, three to four times per week, five to six times per week, once per day, two to
three times per day, four to six times per day, and seven or more times per day) were asked. Further
questions about consumptions of rice (bowl size/number of bowls per day/consumptions of vitamin
reinforced rice and millet), miso soup (number of days eaten per week or month/number of bowls per
day/taste intensity), alcohol (number of days drank per week or month/amount per day and types
of liquor), supplements (number of tablets per day or week/period), were asked. Additionally, the
added sugar and milk for coffee and tea, the usual cooking method, and the amount of noodles soup
consumed were also enquired.

2.3. Biomarker for Sugar Intakes

Of 215 participants who completed the DR and the FFQv in Cohort I (the cohort used in developing
the FFQ) [16], 72 collected their urine for 24 h. The urine collections were performed for two days
(on any day during the 7-d DR period, once in spring and fall). After recording the total volume of
the urine collected in a portable device (Urine Mate P, Sumitomo Bakelite, Tokyo, Japan), the urine
samples were frozen and stored at —80 °C [14]. Cohort II participants were not asked to provide their
urine samples.

Concentrations of sucrose and fructose in the urine (ug/mL) were measured with a kit (F-kit
Sucrose/D-glucose/D-Fructose; Roche/R-Biopharm AG, Darmstadt, Germany) and NanoDrop
ND-1000 Spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA). A total of 144 samples
(72 participants per season for 2 seasons) were analysed. For quality control, four samples were
measured twice, and the quality of the method was assessed. Intra-assay coefficients of variation (CVs)
were 4.2% or lower. Other samples were measured once.

2.4. Dietary Records

A total of 565 participants in Cohorts I and II completed the 7 consecutive DR days over each of
the four seasons (two seasons [winter and summer], were used for the Ishikawa PHC area because
of the subtropical climate during which seasonal variations were likely to be brief). The participants
were instructed by the research dietitians to record all foods and beverages prepared and consumed;
using a specially developed booklet, they were asked to describe, in as much detail as possible, the
methods and recipes used in the preparation. The dietitians checked the records during the survey
and reviewed them in a standardized way. Details have been reported elsewhere [14,15].

2.5. Food Composition Table of Carbohydrates, and Nutritional Calculation for FFQ and DR

The 2015 standard tables of food composition in Japan for available carbohydrates include
monosaccharides (glucose, fructose, and galactose), disaccharides (sucrose, maltose, lactose, and
trehalose), and polysaccharide (starch), and these can be digested and absorbed in the human body [11].
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Carbohydrates cover 854 of all 2191 food items in the 2015 standard tables of food composition in
Japan [17]. Intakes of glucose, fructose, galactose, sucrose, maltose, lactose, total sugars (sum of these
six mono- or disaccharides), and starch from the FFQ and the DR were calculated using the standard
tables of food composition for the available carbohydrates [11].

In the FFQ, 75 of 147 food items were covered by the table while 72 were not. Eighteen food
items (Table S1) were substituted for by the following methods [18] using different parts of the same
species, similar species, or same species with different cooking or purification methods. Among the
54 remaining food items, 48 with <1 g of carbohydrates available per portion size were regarded
as containing no carbohydrate. Finally, the remaining six foods items (Table S1) were prepared by
dietitians (A.K. and R.K.) using the recipes that were based on the ingredient blending ratio from food
manufacturers, cookbooks, and the component values of proteins, lipids, and carbohydrates listed in
the appendix in the 2015 Japan standard tables of food composition.

For the FFQ, we also included sugars added to foods during cooking in the calculations by
preparing a recipe of the main menus: sugar intakes from table sugar, miso, soy sauce, cooking sake,
and sweet cooking rice wine (mirin). First, the main DR menu (e.g., boiled chub mackerel) for each
food group (meat, fish, vegetable) and each cooking method (raw, simmered, grilled, fried, stir-fried,
others) were selected to cover > 80% of the DR frequent food items. Secondly, selected menu recipes
were prepared by dietitians as described above, and sugar intakes were calculated for each of the menu.
Thirdly, we calculated the weighted average values of sugar intakes for each of the classifications
based on the frequency of occurrence of the menus in the DR because there were multiple menus in
the same classification of dishes. For meat (beef, pork, and chicken), the values of sugar intake were
calculated using food menus. For fish and vegetable, the values of sugar intake were calculated based
on the cooking method (raw, simmered, grilled, fried, stir-fried, and others).

In the DR, a total of 1241 food items were recorded. Of these, 743 were not included in the
2015 standard tables of food compositions for the available carbohydrates. Among food items not
included in the table, we substituted 141 foods with different parts of the same species, similar species,
same species with different cooking or purification methods (119 food items), or recipes prepared by
dietitians (22 food items). The 141 foods included cereals, sugars and sweeteners, pulses, nuts and
seeds, vegetables, fruits, milk and milk products, confectionaries, beverages, seasonings and spices,
and prepared foods. The remaining food items (602: some vegetables and fruits, mushrooms, algae,
fish, meat, eggs, oils and fat, beverages, and seasonings and spices) were not substituted by any other
foods. Only twenty-six out of 602 food items contained more than 5 g available carbohydrate, and
frequencies of consumption for these foods were extremely low. Therefore, they were considered to
have little contribution to the total sugar consumption.

Intakes of energy, protein, fat, and carbohydrate from the FFQ and the DR were calculated using
the 2015 Japan standard tables of food composition [17] for reference.

2.6. Statistical Analysis

Major food groups contributing to sugar intakes, by gender, were identified by sugar intakes from
the DR. The mean intake and standard deviation (mean =+ SD) of glucose, fructose, galactose, sucrose,
maltose, lactose, total sugars (sum of these six mono or disaccharides), starch, energy, protein, fat, and
carbohydrate from the FFQ and the DR were calculated by gender and by cohort groups. Differences
were calculated using the following formula: intakes according to the FFQ—intakes according to the
DR. Mean and 95% confidence interval (95%CI) of the differences were calculated. Spearman’s rank
CCs and Pearson CCs between the FFQv and DR (for validity), and between the FFQv and FFQr (for
reproducibility), were calculated for crude and energy-adjusted values of sugar and macronutrient
intakes. Correlation coefficients calculated with 95%CI using Fisher’s z-transformation.

Energy-adjusted values were estimated using the residual and nutritional density methods.
Nutritional density (% energy) was calculated with the following formula: energy intake from
sugars/total energy intake x 100. The metabolized energy conversion factor (General Atwater factor)
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for monosaccharides is 3.75, and the conversion factor from disaccharides to monosaccharides is
1.05 [19]. Moreover, for validity, partial CCs adjusted for age, areas, occupations (primary industry,
professionals and office workers, self-employed and others, unemployed), body mass index (BMI),
total energy intake, smoking status (never, past, current), and alcohol (nondrinker, <4 days per week,
>5 days per week) were calculated.

Urinary sugars have been suggested as a useful biomarker to estimate the total sugar intakes,
independent of measurement errors from self-reported measures [20]. Spearman’s rank CCs and
Pearson CCs were calculated to compare between DR or FFQv and the sum of the urinary concentration
of sucrose and fructose (urinary sugars). To compare between FFQv and urinary sugars, we used total
sugar intakes from the FFQv and the mean urinary concentrations of sugars collected in the spring and
fall. For the DR, we compared sugar intakes from the mean 14-d DR in spring and fall with urinary
concentrations of sugars, and also compared the mean 7-d DR with urinary sugars separately for
the spring and fall. CCs were reported for crude values, energy-adjusted values (for the DR and the
FFQv, % energy), and creatinine-adjusted values (for urinary sugars, divided by urinary creatinine
concentration (mg/dL)). Furthermore, scatter plots between urinary sugars (creatinine-adjusted) and
sugar intakes (%energy) from the FFQ and mean 14-d DR are shown.

Additionally, to correct for within-individual random error, energy-adjusted (% energy) or
creatinine-adjusted Spearman’s CCs (comparing the FFQv vs. DR; and the urinary sugars vs. the FFQv
and DR) were de-attenuated based on the method in SAS macro (“rankcorr_mmer.sas”) provided by Dr.
Bernard Rosner [12,21,22] using probit transformation and multiplying each with the adjustment factor.
The adjustment factors were calculated by using the following formula for FFQv vs. DR and FFQv

vs. urinary sugars: /1 + %, where k is the average DR days for FFQv vs. DR; or the frequency of the
urine collection for FFQv vs. urinary sugars; and A is the ratio of within- to between-subject variance
within the 14- or 28-day DR or urinary sugars collected twice, using the random-effects model [12].
For urinary sugars vs. the DR, the adjustment factor was taken into account for the within-individual
random errors in measurement of both the DR and urinary sugars. The formula of the adjustment

factor was the following: \/ 1+ %’ X \/ 1+ 2;"’;’:, where kj, is the average DR days and k., is the
frequency of the urine collection; and A, is the ratio of within- to between-subject variance within the
14- or 28-day DR and A, is for urinary sugars [12].

To evaluate intra-subject variations for urinary sugars, the ratio of within- to between-subject
variance (02ys/ 0%ps) and intra-class CCs [ICC; 02y, /(02 + 02ws)] of urinary sugars collected in the
spring and fall were calculated, using the random-effects model [12]. ICCs of the two FFQs and 28- or
14-d DR were also calculated.

In addition, the proportion of participants, who were classified into the same, adjacent, and
extreme categories using the cross classification by quintile [23] for energy-adjusted (% energy) total
sugar intakes or creatinine-adjusted urinary sugar, was calculated. The adjacent categories included the
proportion of participants who were not in the same category by quintile between the two measurement
methods (the FFQv vs. DR or the FFQv vs. urinary sugar), but only in the +1 or —1 difference categories.
The extreme categories included the proportion of participants who were misclassified into the opposite
side class (for example, the class for the FFQv was the highest, but the DR’s was the lowest).

Agreement between total sugar intakes from the FFQv and DR were examined using
Bland-Altman analysis. We plotted the mean total sugar intakes from the FFQv and DR on the x-axis,
and the difference between them (FFQv and DR) on the y-axis using energy-adjusted (% energy) and
log-transformed values. Mean difference &= 1.96 x SD was calculated as the limit of agreement [24-26].

For parametric methods such as Pearson CCs and the Bland-Altman analysis, all nutrient intake
values were log-transformed to fulfill the assumption of normality. Statistical significance was set at a
p value of <0.05. All statistical analyses were implemented in SAS version 9.3.

64



Nutrients 2019, 11, 554

3. Results

For sugar intakes, contribution proportions by food groups were calculated from the DR (men:
n =276, women: n = 289). Contribution proportions of fruits, mostly from apples, citrus, bananas,
and Japanese persimmons, were the highest for total sugars in both men and women. For women,
the proportion of confectioneries in total sugars was higher than that for men (Table 1). In detail,
contribution proportions by foods for each of the mono- and di-saccharides and starch are shown in
Table S2. The mean (SD) of % energy for total and free sugars was 9.5% (3.3%) and 3.9% (2.3%) for men
(1 =276),13.6% (3.2%) and 5.9% (2.3%) for women (1 = 289). For free sugars, the number of participants
who consumed more than 5% was 68 (24.6%) in men and 186 (64.4%) in women. Furthermore, the
number of participants who consumed more than 10% was 6 (2.2%) in men and 16 (5.5%) in women.

For validation, participants’ characteristics were described in previous studies [14,15]. In short,
the mean (SD) age and BMI were 55.6 (5.2) years and 24.3 (3.0) kg/ m? for men in Cohort I (1 = 102); 53.3
(5.3) years and 23.9 (3.1) kg/m? for women in Cohort I (1 = 113); 58.9 (7.6) years and 23.7 (2.6) kg/m?
for men in Cohort II (n = 174); and 55.9 (7.1) years and 23.7 (3.2) kg/ m? for women in Cohort II
(n =176). The percentages of participants who had history of diabetes, hypertension, dyslipidaemia,
and obesity (BMI > 25 kg/ m?2) were 7.8%, 18.6%, 5.9%, and 42.2% for men in Cohort I; 3.5%, 22.1%,
8.0%, and 31.0% for women in Cohort I; 8.1%, 20.1%, 4.6%, and 28.2% for men in Cohort II; and 1.1%,
17.6%, 6.3%, and 29.6% for women in Cohort II, respectively.

Table 1. Major food groups contributing to sugar intakes from the dietary records (Cohorts I and II).

Men (n = 276) Women (1 = 289)
Food Groups (%) Food Groups (%)
Total sugars

Fruits 21.3  Fruits 244
Apples (5.0) Apples (5.5)
Citrus (3.9) Citrus (5.0)
Bananas (3.0) Japanese persimmons (3.5)
Vegetables 14.3  Confectionaries 19.3
Onions (2.1) Traditional fresh and semi-dry confectionery (10.8)
Carrots (1.8) Cake and pastry 2.7)
Japanese Radishes (1.8) Traditional dry confectionery (1.6)
Sugars and sweeteners 14.2  Milk and milk products 13.1
Sugars (13.6) Liquid milk (8.6)
Honey and syrup (0.6) Yogurt (2.4)
- - Ice cream (1.5)
Confectionaries 13.4  Sugars and sweeteners 124
Traditional fresh & semi-dry confectionery (8.1) Sugars (11.8)
Cake & pastry (1.5) Honey and syrup (0.5)
Bun with filling (1.3) - -
Milk and milk products 11.1  Vegetables 12.3
Liquid milk (8.0) Onions (1.7)
Yogurt (1.7) Pumpkin and squash (1.5)
Ice cream (1.0) Carrots (1.5)
Non-alcoholic beverages 8.3  Non-alcoholic beverages 59
Carbonated beverage (3.6) Carbonated beverage (1.8)
Coffee (2.1) Lactic acid bacteria beverage (1.4)
Lactic acid bacteria beverage (1.0) Fruit drinks (1.0)
Seasonings 4.8 Seasonings 3.7
Miso (2.8) Miso (2.1)
Japanese Worcester sauce (0.6) - -
Soy sauce (0.5) - -

Alcohol 4.5

Fermented alcoholic beverage (2.5)

Compound alcoholic beverage (2.0
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Table 1. Cont.

Men (n = 276) Women (1 = 289)
Food Groups (%) Food Groups (%)
Cereals 3.3
Bread (1.9)
Rice (0.8)
Noodles (0.6)
Glucose
Vegetables 26.9  Fruits 30.1
Fruits 20.8  Vegetables 28.0
Alcohol 19.4  Seasonings 14.3
Seasonings 15.1  Non-alcoholic beverages 8.4
Non-alcoholic beverages 8.7  Alcohol 8.4
Cereals 3.9 Cereals 41
Fructose
Fruits 414  Fruits 48.2
Vegetables 32.8 Vegetables 283
Non-alcoholic beverages 13.1  Non-alcoholic beverages 11.1
Cereals 45 Cereals 46
Seasonings 3.6
Galactose
Seasonings 55.6  Milk and milk products 57.2
Milk and milk products 43.8  Seasonings 421
Sucrose
Sugars and sweeteners 27.8  Confectionaries 34.7
Confectionaries 259 Sugars and sweeteners 22,6
Fruits 20.1  Fruits 213
Non-alcoholic beverages 7.9  Vegetables 49
Vegetables 5.9 Non-alcoholic beverages 45
Milk and milk products 3.0 Milk and milk products 4.1
Maltose
Cereals 414  Cereals 32.5
Potatoes 21.5 Potatoes 27.0
Confectionaries 16.8  Confectionaries 22.3
Alcohol 8.8  Alcohol 6.3
Milk and milk products 4.2 Milk and milk products 5.4
Lactose
Milk and milk products 93.0 Milk and milk products 93.0
Non-alcoholic beverages 3.2 Confectionaries 37
Starch
Cereals 90.7 Cereals 85.0
Confectionaries 3.6  Confectionaries 7.0
Potatoes 37

Food groups contributing to at least 3% of sugars intakes were listed. For total sugars, the top three contributing
foods were listed. Non-alcoholic beverages category included 100% fruit juices (including reconstituted fruit juices),
fruit drinks (less than 100% fruit juices), lactic acid bacteria beverages, coffee flavoured milk beverages, maccha,

coffee, cocoa, and carbonated beverages.

3.1. Validation Using Biomarkers as a Reference

Sugar intake assessed with the DR and FFQvV is shown in Table 2. Urinary sugar concentrations
were correlated with total sugars (% energy) from the FFQv (de-attenuated Spearman’s CC: r = 0.40,
95%CI: 0.19, 0.58) (Table 3; Figure 1a); and total sugars (% energy) from the 14-d DR (r = 0.89, 95%CI:
0.82, 0.93) (Table 3; Figure 1b). The 02s/ 0%ps ratios and ICCs, as measures of intra-subject variation,
were high and low for urinary sugars, respectively (0%ys/ 0% ratios: 5.62; ICCs: 0.15, n = 72).

For comparisons of the total sugars form the FFQv and urinary sugars based on the joint
classification by quintile, 63% of the participants were classified into the same or adjacent categories,
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and 6.0% were classified into the extreme categories (Table S3-1). For details, 16 out of the participants
(n = 72) were classified into the same, 45 were classified into the same or adjacent, while 4 were
classified into the extreme categories (Tables S3-1 and S3-2).
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Figure 1. (a) Scatter plots between urinary sugars and total sugars from FFQv (n = 72, Cohort I). FFQv,
food frequency questionnaire for validity. (b) Scatter plots between urinary sugars and total sugars
from DR (1 = 72, Cohort I). DR, dietary record.
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Table 3. The correlations between urinary sugars and dietary sugars by DR or FFQ (1 = 72, Cohort I).

Spearman’s Rank Correlation Coefficient

Crude ! Adjusted 2 De-Attenuated 3

r 95%CI r 95%CI r 95%CI
FFQv vs. urine * 0.25 (0.02, 0.45) 0.27 (0.04, 0.47) 0.40 (0.19, 0.58)
14-d DR vs. urine 4 046  (025,0.62) 048 (028,0.64) 089  (0.82,093)
7-d DR vs. urine (spring) 031  (0.08,050) 024  (0.01,044) 027  (0.04,047)
7-d DR vs. urine (fall) 0.38 (0.16, 0.56) 0.41 (0.19, 0.58) 0.46 (0.26, 0.62)

DR, dietary record; FFQv, food frequency questionnaire for validity; r, correlation coefficient; CI, confidence interval.
The 02ws/o2bs ratios: 5.62 and intra-class correlation (ICC): 0.15 for urinary sugars. ! DR or FFQv (crude) vs.
urinary sugars (crude). 2 DR or FFQv (energy-adjusted by nutritional density method (percentage of energy)) vs.
urinary sugars (creatinine-adjusted). > Adjusted Spearman’s correlation coefficients were multiplied using probit
transformation with regard to repeats of urinary sugar measures (twice) for FFQv vs. urine, repeats of both urinary
sugar measures (twice) and DR measures (14 times) for 14-d DR vs. urine, and repeats of DR measures (7 times) for
7-d DR vs. urine. * Urinary sugar was calculated as the mean of the spring and fall values. ® Dietary sugars from
DR were calculated as the mean of the spring and fall values (the same seasons as when the urine was collected).

3.2. Validation Using DR as a Reference

The major sources of total sugars were sucrose, glucose, and fructose. Total sugar intakes were
higher among women than men. The SD of sugar intake from the FFQ tended to be larger than in
the DR. Overall, total sugar intakes from the FFQv were over-estimated when compared to the DR
(Table 2). For the energy-adjusted (% energy) total sugars, Spearman’s CCs (95%CI) were 0.64 (0.50,
0.74) for men and 0.48 (0.32, 0.61) for women in Cohort I; 0.62 (0.52, 0.71) for men and 0.37 (0.23, 0.49)
for women in Cohort II (Table S4, Figure S1). Results became slightly weaker after adjusting for age,
areas, occupations, BMI, total energy intake, smoking status, and alcohol intake; partial Spearman’s
CCs (95%CI) were 0.57 (0.42, 0.69) for men and 0.41 (0.24, 0.55) for women in Cohort I; 0.56 (0.44, 0.65)
for men and 0.34 (0.20, 0.47) for women in Cohort II (Table 4). The CCs were moderate, and higher
in Cohort I than in Cohort II, and higher for men than for women. De-attenuated Spearman’s CCs
based on the probit transformation method were slightly stronger (Table S5). Pearson CCs also showed
moderate correlations, and de-attenuated Pearson CCs were slightly stronger (not shown in tables).
Furthermore, in any of the cohorts by gender, the differences did not depend on the magnitude of the
mean total sugar intakes (Figure S2).

For comparisons of the FFQv and DR sugars based on the cross classification by quintile, about
80% men and 70% women were classified into the same or adjacent categories of sugar intakes (total
sugars), and less than 6.0% of men and women were classified into the opposite extreme categories
(Table S6).

3.3. Reproducibility

For reproducibility, participants’ characteristics were described in previous studies [15,27].
For almost all of the sugars, estimated intakes from the FFQr were neither over- nor under-estimated
when compared to the FEFQv (Table 5). For total sugars (% energy), Spearman’s CCs (95%CI) were 0.63
(0.49, 0.73) for men and 0.55 (0.41, 0.67) for women in Cohort I; and 0.66 (0.55, 0.74) for men and 0.63
(0.52, 0.72) for women in Cohort II. The CCs were moderate and slightly lower for women (Table 6).
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Table 4. Partial Correlations between FFQv and DR for 28 or 14 days (Validity).

Partial Spearman’s Rank Correlation Coefficient !

Crude Residual Method 2 Density Method 3
r 95%CI r 95%CI r 95%CI
Cohort I

Men (n =99)
Total sugars * 0.49 (0.33,0.63) 0.52 (0.36, 0.65) 0.57 (0.42, 0.69)
Glucose 0.52 (0.36, 0.65) 0.56 (0.41, 0.68) 0.57 (0.42, 0.69)
Fructose 0.54 (0.38, 0.67) 0.54 (0.39, 0.67) 0.55 (0.40, 0.68)
Galactose 0.29 (0.10, 0.46) 0.48 (0.31, 0.62) 0.36 (0.17,0.52)
Sucrose 0.45 (0.28, 0.60) 0.46 (0.29, 0.60) 0.51 (0.35, 0.64)
Maltose 0.41 (0.23, 0.56) 0.45 (0.27,0.59) 0.46 (0.29, 0.60)
Lactose 0.61 (0.48,0.72) 0.54 (0.38, 0.66) 0.56 (0.41, 0.68)
Starch 0.53 (0.38, 0.66) 0.42 (0.24,0.57) 0.37 (0.19, 0.53)
Protein 0.19 (—0.01,0.37) 0.25 (0.06, 0.43) 0.25 (0.06, 0.43)
Fat 0.28 (0.09, 0.46) 0.39 (0.21, 0.55) 0.40 (0.22, 0.55)
Carbohydrate 0.37 (0.19, 0.53) 0.44 (0.26, 0.58) 0.46 (0.29, 0.60)

Women (n = 113)
Total sugars * 0.26 (0.07,0.42) 0.36 (0.19,0.51) 0.41 (0.24, 0.55)
Glucose 0.19 (0.01, 0.37) 0.26 (0.08, 0.42) 0.29 (0.11, 0.45)
Fructose 0.29 (0.11, 0.45) 0.31 (0.13,0.47) 0.35 (0.17, 0.50)
Galactose 0.51 (0.36, 0.63) 0.49 (0.33, 0.62) 0.51 (0.36, 0.63)
Sucrose 0.23 (0.04, 0.39) 0.38 (0.21, 0.53) 0.35 (0.18, 0.50)
Maltose 0.31 (0.13,0.47) 0.41 (0.25, 0.55) 0.37 (0.20, 0.52)
Lactose 0.69 (0.57,0.77) 0.67 (0.56, 0.76) 0.66 (0.54, 0.75)
Starch 0.30 (0.12, 0.46) 0.44 (0.28, 0.58) 0.32 (0.14, 0.48)
Protein 0.18 (0.00, 0.36) 0.28 (0.10, 0.44) 0.27 (0.09, 0.43)
Fat 0.20 (0.01, 0.37) 0.44 (0.28, 0.58) 0.42 (0.25, 0.56)
Carbohydrate 0.20 (0.01, 0.37) 0.44 (0.28, 0.58) 0.39 (0.22,0.54)

Cohort IT

Men (n = 168)
Total sugars * 0.42 (0.28,0.53) 0.56 (0.45, 0.66) 0.56 (0.44, 0.65)
Glucose 0.27 (0.13,0.41) 0.44 (0.31, 0.56) 0.44 (0.30, 0.55)
Fructose 0.42 (0.28, 0.53) 0.53 (0.41, 0.63) 0.52 (0.40, 0.62)
Galactose 0.66 (0.57,0.74) 0.64 (055, 0.73) 0.66 (0.56, 0.74)
Sucrose 0.42 (0.29, 0.54) 0.52 (0.40, 0.62) 0.53 (0.41, 0.63)
Maltose 0.17 (0.02,0.31) 0.26 (0.11, 0.39) 0.29 (0.15, 0.42)
Lactose 0.75 (0.68, 0.81) 0.74 (0.66, 0.80) 0.74 (0.66, 0.80)
Starch 0.43 (0.30, 0.55) 0.55 (0.44, 0.65) 0.46 (0.33,0.57)
Protein 0.16 (0.01, 0.30) 0.41 (0.27,0.53) 0.36 (0.23,0.49)
Fat 0.21 (0.06, 0.35) 0.52 (0.40, 0.62) 048 (0.35, 0.59)
Carbohydrate 0.37 (0.23,0.49) 0.55 (0.43, 0.65) 048 (0.36, 0.59)

Women (n =171)
Total sugars * 0.23 (0.08,0.37) 0.38 (0.25,0.51) 0.34 (0.20, 0.47)
Glucose 0.26 (0.12, 0.40) 0.30 (0.16, 0.43) 0.30 (0.16, 0.43)
Fructose 0.31 (0.17,0.44) 0.32 (0.18, 0.45) 0.32 (0.18, 0.45)
Galactose 0.58 (0.47,0.67) 0.62 (0.52, 0.70) 0.63 (0.53,0.71)
Sucrose 0.18 (0.03,0.32) 0.33 (0.18, 0.45) 0.30 (0.16, 0.43)
Maltose 0.17 (0.02,0.31) 0.18 (0.04, 0.33) 0.19 (0.04, 0.33)
Lactose 0.65 (055, 0.73) 0.72 (0.64, 0.78) 0.72 (0.64, 0.78)
Starch 0.27 (0.13, 0.40) 0.39 (0.25,0.51) 0.34 (0.20, 0.47)
Protein 0.22 (0.07,0.36) 0.30 (0.16, 0.43) 0.28 (0.13,0.41)
Fat 0.28 (0.14, 0.42) 0.41 (0.28,0.53) 0.36 (0.22,0.49)
Carbohydrate 0.14 (—0.01,0.28) 043 (0.30, 0.55) 0.39 (0.25,0.51)

DR, dietary record; FFQv, food frequency questionnaire for validity; CC, correlation coefficient; CI, confidence
interval. ! Correlation coefficients were adjusted for age, area, occupation (primary industry, professionals and
office workers, self-employed and others, unemployed), body mass index (BMI), total energy intake, smoking status
(never, past, current), and alcohol (non-drinker, < 4 days per week, > 5 days per week). 2 Sugar and other nutrients
intakes were adjusted for energy intake by residual model. > Sugar and other nutrients intakes were energy-adjusted
using the density method (percentage of energy). * “Total sugars” represents the sum of the crude consumption of

following saccharides: glucose, fructose, galactose, sucrose, maltose, and lactose.
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Table 5. Sugar intakes assessed with FFQv and FFQr in Cohorts I and IT and differences.

FFQv FFQr
Mean SD Median Mean SD Median

Mean of Difference ! (95%CI)

Cohort I

Men (n = 101)
Total sugars 2 (g) 69.3 43.2 61.5 70.4 41.6 61.3 1.1 (—6.7,9.0)
Glucose (g) 17.1 9.0 155 17.9 11.1 15.7 0.8 (—1.1,2.6)
Fructose (g) 139 11.1 12.0 14.1 10.1 11.6 0.2 (—19,2.2)
Galactose (g) 0.2 04 0.1 0.2 0.2 0.1 0.0 (—0.1, 0.0)
Sucrose (g) 28.2 21.6 219 27.9 20.3 23.5 -0.3 (—3.6,3.0)
Maltose (g) 11 0.6 0.9 12 14 0.9 0.2 (—0.1,0.4)
Lactose (g) 8.8 10.2 7.3 9.1 9.7 8.8 0.4 (—2.0,2.8)
Starch (g) 2134 64.7 203.8 2139 71.7 195.4 0.5 (—11.5,12.6)
Energy (kcal) 2403 694 2354 2418 741 2415 14 (—129, 158)
Protein (g) 87.7 35.5 815 87.9 35.0 84.6 0.2 (—6.2,6.6)
Fat (g) 61.5 27.2 59.1 622 29.1 57.1 0.7 (—4.9,6.3)
Carbohydrate (g) 3254 105.5 316.3 326.8 107.8 304.3 14 (—17.8,20.6)

Women (n = 108)
Total sugars 2 (g) 74.2 529 62.8 74.9 32.6 67.9 0.7 (—8.2,9.6)
Glucose (g) l6.4 122 13.7 16.5 7.7 144 0.1 (—1.8,2.1)
Fructose (g) 16.7 15.0 13.1 16.2 8.8 13.8 —0.4 (—2.9,2.0)
Galactose (g) 0.2 0.2 0.1 0.3 0.3 0.2 0.0 (0.0,0.1)
Sucrose (g) 30.7 25.1 23.6 31.1 16.3 29.0 0.5 (—3.8,4.8)
Maltose (g) 12 0.8 0.9 12 0.7 1.0 0.0 (—0.1,0.2)
Lactose (g) 9.1 7.1 9.1 9.6 10.1 8.0 0.5 (—=1.3,2.3)
Starch (g) 179.9 524 172.6 182.8 46.8 177.4 29 (—4.7,10.5)
Energy (kcal) 2048 860 1914 2082 601 1959 33 (—109, 176)
Protein (g) 81.5 44.6 719 81.9 29.4 76.8 0.4 (—74,8.1)
Fat (g) 59.3 329 51.6 61.5 272 54.2 23 (—3.8,8.3)
Carbohydrate (g) 291.4 111.8 2775 295.4 78.9 279.1 4.0 (—13.5,21.5)

Cohort I

Men (n = 143)
Total sugars 2 (g) 64.8 31.3 55.9 68.1 34.2 62.1 34 (-1.1,7.8)
Glucose (g) 16.0 8.5 13.7 16.5 9.0 14.9 0.5 (—0.5,1.6)
Fructose (g) 124 7.7 10.4 13.0 8.6 103 0.5 (—0.5,1.6)
Galactose (g) 0.2 0.3 0.1 02 0.3 0.1 0.0 (0.0, 0.0)
Sucrose (g) 259 147 241 27.6 16.4 25.3 17 (—0.3,3.7)
Maltose (g) 13 0.8 1.0 13 0.8 12 0.1 (0.0,0.2)
Lactose (g) 89 9.2 8.4 9.5 9.4 8.6 0.5 (—1.3,2.4)
Starch (g) 191.6 574 182.5 202.2 58.9 193.9 10.6 (3.4,17.8)
Energy (kcal) 2251 650 2167 2387 740 2210 135 (44, 227)
Protein (g) 80.4 30.1 749 86.6 33.7 81.2 6.2 (1.9,10.5)
Fat (g) 59.0 25.2 54.0 64.8 28.9 58.9 58 (1.6,10.0)
Carbohydrate (g) 296.4 85.2 279.6 3119 90.4 296.5 15.6 (4.9,26.2)

Women (n = 146)
Total sugars 2 (g) 68.6 36.6 59.1 722 421 63.2 3.6 (—2.1,94)
Glucose (g) 147 8.2 132 15.6 9.8 13.8 0.9 (—04,2.1)
Fructose (g) 14.2 9.1 125 15.1 124 12.8 0.9 (—0.8,2.6)
Galactose (g) 0.4 0.5 0.2 0.3 0.4 0.2 0.0 (—0.1,0.1)
Sucrose (g) 274 16.9 239 29.0 19.0 246 16 (~1.0,4.1)
Maltose (g) 12 0.7 1.1 1.3 0.9 1.1 0.1 (—0.1,0.2)
Lactose (g) 10.8 11.6 9.4 11.0 9.6 9.4 0.2 (—=1.7,2.1)
Starch (g) 163.0 38.7 163.5 170.3 40.1 169.5 7.3 (0.9,13.7)
Energy (kcal) 1911 621 1769 2036 635 1893 125 (36, 214)
Protein (g) 75.5 30.1 69.8 80.8 30.4 75.3 53 (1.3,9.4)
Fat (g) 57.5 27.2 50.8 63.1 27.0 58.0 55 (1.4,9.7)
Carbohydrate (g) 267.9 78.6 254.8 280.4 82.8 266.2 124 (1.0, 23.8)

FFQv, food frequency questionnaire for validity; FFQr, food frequency questionnaire for reproducibility; SD,
standard deviation; CI, confidence interval. ! Mean of (intakes from FFQr - intakes from FFQv). 2 “Total sugars”
represents the sum of the crude consumption of the following saccharides: glucose, fructose, galactose, sucrose,
maltose, and lactose.
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Table 6.

Correlations between FFQv and FFQr (Reproducibility).

Spearman’s Rank Correlation Coefficient

Crude Energy-Adjusted Energy-Adjusted ICC for
(Residual) ! (Density) 2 FFQ
r 95%CI r 95%CI T 95%CI
Cohort I

Men (n =101)
Total sugars 0.61 (0.48,0.72) 053 (0.38, 0.66) 0.63 (0.49, 0.73) 0.66
Glucose 0.65 (0.52,0.75) 0.55 (0.40, 0.68) 0.64 (0.51,0.74) 0.63
Fructose 0.65 (0.52,0.75) 0.56 (0.41, 0.68) 0.60 (0.46,0.71) 0.61
Galactose 073 (0.62,0.81) 0.42 (0.24,0.57) 0.66 (0.53,0.76) 0.67
Sucrose 0.75 (0.65,0.82) 0.70 (0.59,0.79) 0.76 (0.67,0.83) 0.75
Maltose 0.58 (0.43, 0.69) 0.68 (0.56,0.77) 0.68 (0.56, 0.78) 0.50
Lactose 0.63 (0.50, 0.74) 0.51 (0.35, 0.64) 0.53 (0.37,0.65) 0.50
Starch 0.69 (0.57,0.78) 0.62 (0.49, 0.73) 051 (0.35, 0.64) 0.46
Energy 0.47 (0.30, 0.61)
Protein 0.56 (0.40, 0.68) 0.47 (0.30, 0.61) 0.56 (0.41, 0.68) 0.60
Fat 0.51 (0.35, 0.64) 0.60 (0.46,0.72) 0.59 (0.44, 0.70) 0.59
Carbohydrate 0.66 (0.53,0.76) 0.65 (0.52,0.75) 0.60 (0.46,0.71) 0.54

Women (n = 108)
Total sugars ® 0.65 (0.52,0.75) 0.57 (0.43,0.69) 0.55 (0.41, 0.67) 0.62
Glucose 0.69 (0.57,0.78) 0.55 (0.41, 0.67) 0.61 (0.48,0.72) 0.63
Fructose 0.65 (0.53,0.75) 0.55 (0.40, 0.67) 0.60 (0.47,0.71) 0.63
Galactose 0.59 (0.45, 0.70) 0.51 (0.36, 0.64) 0.52 (0.37,0.64) 0.54
Sucrose 0.67 (0.55,0.76) 0.61 (0.48,0.72) 0.61 (0.48,0.72) 0.59
Maltose 0.69 (0.57,0.77) 0.64 (0.51, 0.74) 0.67 (0.54, 0.76) 0.68
Lactose 0.74 (0.64, 0.82) 0.74 (0.64, 0.82) 0.75 (0.65,0.82) 0.71
Starch 0.71 (0.60, 0.79) 0.56 (0.42,0.68) 0.60 (0.46,0.71) 0.56
Energy 0.69 (0.58, 0.78)
Protein 0.68 (0.56, 0.77) 0.42 (0.25, 0.56) 0.49 (0.33,0.62) 0.47
Fat 0.67 (0.55,0.76) 0.58 (0.4, 0.69) 0.59 (0.46, 0.70) 0.59
Carbohydrate 0.72 (0.62, 0.80) 0.55 (0.40, 0.67) 0.58 (0.44, 0.69) 0.57

Cohort II

Men (1 = 143)
Total sugars 3 0.63 (0.52,0.72) 0.65 (0.55, 0.74) 0.66 (0.55, 0.74) 0.64
Glucose 0.71 (0.62,0.78) 0.63 (0.52,0.72) 0.66 (0.55, 0.74) 0.63
Fructose 0.64 (0.53,0.73) 0.61 (0.50,0.71) 0.62 (0.51,0.71) 0.63
Galactose 0.72 (0.63,0.79) 0.68 (0.57,0.76) 0.69 (0.60, 0.77) 0.76
Sucrose 0.68 (0.58,0.76) 0.67 (0.57,0.75) 0.68 (0.57,0.76) 0.67
Maltose 0.63 (0.51,0.72) 0.67 (0.57,0.75) 0.68 (0.58, 0.76) 0.78
Lactose 0.68 (0.58,0.76) 0.69 (0.60, 0.77) 0.70 (0.60, 0.77) 0.64
Starch 0.69 (0.59,0.77) 0.64 (0.54,0.73) 0.62 (0.51,0.71) 0.64
Energy 0.59 (0.47,0.69)
Protein 0.60 (0.49, 0.70) 0.61 (0.50, 0.70) 0.60 (0.49, 0.70) 0.68
Fat 0.56 (0.4, 0.66) 0.63 (0.52,0.72) 0.61 (0.50, 0.70) 0.64
Carbohydrate 0.64 (0.53,0.73) 0.69 (0.59,0.77) 0.66 (0.56, 0.75) 0.70

Women (1 = 146)
Total sugars 3 0.64 (0.53,0.73) 0.59 (0.47, 0.68) 0.63 (0.52,0.72) 0.48
Glucose 0.60 (0.49, 0.70) 041 (0.26, 0.54) 0.45 (0.32,0.57) 0.45
Fructose 0.58 (0.46, 0.67) 0.36 (0.21, 0.50) 045 (0.31,0.57) 0.45
Galactose 0.65 (0.55,0.74) 0.61 (0.50,0.71) 0.65 (0.55,0.74) 0.55
Sucrose 0.63 (0.52,0.72) 053 (0.41, 0.64) 0.57 (0.45, 0.67) 0.55
Maltose 0.69 (0.60, 0.77) 0.71 (0.62,0.78) 0.69 (0.59, 0.76) 0.65
Lactose 0.76 (0.68,0.82) 0.79 (0.72,0.84) 0.79 (0.72,0.85) 0.73
Starch 053 (0.40, 0.64) 051 (0.38,0.62) 0.58 (0.46, 0.68) 0.56
Energy 0.60 (0.48, 0.69)
Protein 0.65 (0.54,0.73) 0.52 (0.39,0.63) 0.59 (0.47,0.69) 0.54
Fat 0.60 (0.48, 0.69) 051 (0.38,0.62) 0.50 (0.36, 0.61) 0.37
Carbohydrate 0.58 (0.46, 0.68) 0.50 (0.37,0.61) 0.50 (0.37,0.62) 0.48

DR, dietary record; FFQv, food frequency questionnaire for validity; r, correlation coefficient; CI, confidence interval;
ICC, intra-class correlation coefficient. ! Sugar and other nutrients intakes were adjusted for energy intake by
residual model. 2 Sugar and other nutrients intakes were energy-adjusted using the density method (percentage
of energy). 3 “Total sugars” represents the sum of the crude consumption of the following saccharides: glucose,

fructose, galactose, sucrose, maltose, and lactose.
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4. Discussion

We evaluated the validity and reproducibility of sugar intakes assessed by the FFQ in a subsample
of the JPHC study. For validity, de-attenuated Spearman’s CC was 0.40 between total sugar intake from
the FFQv and urinary sugar concentrations. Furthermore, after adjusting for age, areas, occupations,
body mass index, total energy intake, smoking status and alcohol, partial correlations of sugar intakes
between the FFQv and 28- or 14-d DR ranged from 0.34 to 0.57. These results suggested moderate
validity of the FFQ. Compared with the 1-year interval FFQ, correlations ranged from 0.55 to 0.66,
indicating moderate reproducibility. Our results for the JPHC study verified that it is possible to use
the FFQ for the assessment of the health impacts of sugar intakes. It is expected that future studies will
clarify the health impacts of sugar consumption in Japan.

The results of our study are in general agreement with previous studies. Smith et al. [28] assessed
the validity of the FFQ by comparing it with three 4-d weighted DRs, and the reproducibility
by comparing it with a 12-18-month interval FFQ. Spearman’s CCs of sugar intakes were 0.47
(energy-adjusted, 34 men and 45 women) for validity and 0.67 (96 men and 135 women) for
reproducibility. Willett et al. [29] evaluated the validity and reproducibility of FFQ comparing it
with 28-d DRs and 1-year interval FFQ, respectively, in 173 women. In the study, the Pearson CCs of
sucrose intakes were 0.41 (energy-adjusted) and 0.71 for validity and reproducibility, respectively.

The SD of the total sugar intake assessed with the FFQv was almost double that of the DR,
indicating that the between-person variation would be overestimated. Therefore, when we examine
the association of total sugar intake from the FFQ with disease risks, such misclassification tends to
attenuate relative risk estimates.

Except for glucose and galactose, women consumed larger amount of sugars than men according
to the DR. The difference was remarkable in sucrose intake, because the contribution proportion of
confectionaries (which were one of the main sources of sucrose) was higher in women. Furthermore,
the % energy of free sugars in women was also higher than that for men. These characteristics in the
source of sugars in women might affect the relationship between sugar intake and health conditions.

In the Bland-Altman plots, differences in total sugar intakes (% energy) between the FFQv and
the DR did not differ based on the magnitude of the mean total sugar intakes (% energy). Moreover,
FFQ estimates for total sugar intake were overestimated, especially in men.

Correlations between sugar intakes from the FFQv and DR among women in Cohort II were
weaker than those in other groups. In previous studies, CCs between carbohydrate intakes estimated
from the FFQv and DR among women in Cohort II were lower than for men (Cohort I, men: 0.56;
women: 0.37; Cohort II, men: 0.59; women: 0.39) [15,23]. Because men tend to be unconcerned about
their daily diets, it might have been easier for men to complete the FFQ, which requires simplified
dietary habits [23].

Urinary sugars have been drawing attention as a useful biomarker not affected by measurement
errors in self-reported measures [20] and the use of the same food composition table. We evaluated the
validity of using urinary concentration of fructose and sucrose as an objective biomarker. In this study,
sugar intakes from the FFQv were correlated with the mean concentrations of urinary sugars collected
twice (spring and fall) (r = 0.40, 95%CI: 0.19, 0.58). The correlation between sugar intakes from the
7-day DR and urinary sugars, both collected in spring, was weak (r = 0.27, 95%CI: 0.04, 0.47), while the
correlation between those collected in the fall was moderate (r = 0.46, 95%CI: 0.26, 0.62). For urinary
sugars, 02w/ szs was high and ICC was low; therefore, the concentrations of sugars in urine were
likely to be influenced by within-subject variance and seasonal variations. Furthermore, a previous
study [30] showed that participants who consumed higher added sugar resulted in better correlations
between dietary sugar intakes and urinary sugar excretions (r = 0.77) than those who consumed lower
added sugar (r = 0.15). Thus, the high consumption of sugars might have led to stronger correlations.
In our study, total sugar intakes from the DR in the fall were higher than in spring due to increasing
fruit intakes (interquartile range of total sugar intakes: 46.0-80.3 g/day in spring; 53.6-90.3 g/day in
fall; fruit intakes: 65-192 g/day in spring; 120-273 g/day in fall; n = 72). Therefore, it can be speculated
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that the correlations between urinary sugars and the 7-d DR were higher in the fall than in spring, as a
result of the seasonal variations in total sugar intakes. Of note is the correlation between sugar intakes
and urinary sugars in a previous study [31] in which urine was collected daily based on a 30-day diet
(r = 0.84, total sugars, n = 13). This seems to suggest that multiple measurements of urinary sugars
lead to a high correlation between sugar intakes and urinary sugars and may be more useful than
single or double measurements for examining the validity of sugar intakes.

Our study has several strengths. First, we complemented the standard tables of food composition
for available carbohydrates with the substitution methods, because the tables do not cover all food
items occurring in the FFQ and DR. Furthermore, we also included sugars added to foods during
cooking. Accordingly, most of the food items and menus that contain non-negligible amount of sugars
were included in the nutrient calculation. Secondly, we examined urinary sugars as an objective
biomarker for validation. We found that urinary sugars were useful to some extent in evaluating the
validity of the FFQ.

Despite these strengths, our study had some limitations. First, common errors in sugar intake
assessments from the FFQ and the DR remained because we used the same food composition table for
the nutritional calculation. In both the FFQ and the DR sugar intake estimation, we were unable to
consider the heterogeneity of sugar contents in each food since our estimation was based only on the
sugar content of foods on the standard tables of food composition. Therefore, the correlations between
FFQ and DR might be overestimated. Furthermore, because both of the FFQ and DR are self-reported
dietary assessments, the overestimations of the correlations also possibly existed. By contrast, urinary
sugars were not affected by this limitation of the food composition tables [12] and the property of
these dietary surveys. Our results showed a correlation between sugar intakes from the FFQ and
urinary sugars, supporting the validity of the FFQ. Second, some foods in the FFQ and the DR were
not assigned sugar contents and were not included in the calculations. However, we believe that this
may not have seriously biased our estimates because we evaluated most food items that provide more
than 1 g of carbohydrates per portion size. Third, because the dietary data in this study were collected
before 2000, they may be different from contemporary dietary habits. Therefore, the results in this
study might not be generalizable to studies conducted later. Fourth, correlations of sugar intakes and
urinary sugar concentrations may differ by the form of the sugar in the food. Indeed, consistent with
a previous report [32], urinary sugar concentrations were more strongly correlated with free sugar
intakes measured by the DR than with other sugar intakes in our study (data not shown), suggesting
that the validity of sugar intake by form may deserve further investigation.

5. Conclusions

We observed moderate correlations between sugar intakes from the FFQ and urinary sugar, and
the DR, as well as between the two FFQs at yearly intervals. The FFQ used in the 5-year follow-up
JPHC study may be useful in ranking individuals for sugar intakes in the JPHC study population.
These findings suggest that the FFQ may be helpful in assessing the association of sugar intakes with
health conditions in Japan.

Supplementary Materials: The following are available online at http://www.mdpi.com /2072-6643/11/3/554/s1,
Table S1: Substituted food items in the FFQ, Table S2: Major foods contributing to sugar intake according to
the DR (Cohorts I & II), Table S3-1. Comparison of FFQ for sugar intakes with urinary sugars based on cross
classification by quintile (%), Table S3-2. Frequency and means of FFQ for sugar intakes with urinary sugars based
on cross classification by quintile (Cohort I, n = 72), Table S4: Correlations between FFQv and DR for 28 or 14 days,
Table S5: Rank correlation coefficients between % energy of sugar intake assessed using the DR for 28 days and
FFQv in Cohorts I and II using the probit transformation method with correction for measurement error, Table S6:
Comparison of FFQv with DR for sugar intakes based on cross classification by quintile (%), Figure S1: Scatter
plots between total sugars from FFQ and DR, Figure S2: Bland-Altman plot for the comparison of FFQ and DR in
measuring the total sugar intake.
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Abstract: Adherence to a healthy diet and regular physical activity are two important factors in
sufficient type 2 diabetes mellitus management. It is recognized that the traditional treatment of
outpatients does not meet the requirements for sufficient lifestyle management. It is hypothesised
that a personalized diabetes management mHealth application can help. Such an application ideally
measures food intake, physical activity, glucose values, and medication use, and then integrates this
to provide patients and healthcare professionals insight in these factors, as well as the effect of lifestyle
on glucose values in daily life. The lifestyle data can be used to give tailored coaching to improve
adherence to lifestyle recommendations and medication use. This study describes the requirements
for such an application: the Diameter. An iterative mixed method design approach is used that
consists of a cohort study, pilot studies, literature search, and expert meetings. The requirements
are defined according to the Function and events, Interactions and usability, Content and structure
and Style and aesthetics (FICS) framework. This resulted in 81 requirements for the dietary (1 = 37),
activity and sedentary (1 = 15), glycaemic (1 = 12), and general (n = 17) parts. Although many
applications are currently available, many of these requirements are not implemented. This stresses
the need for the Diameter as a new personalized diabetes application.

Keywords: Type 2 diabetes mellitus; diabetes management; dietary application; dietary assessment;
nutrition; physical activity; blood glucose; mHealth

1. Introduction

Type 2 Diabetes Mellitus (T2DM) is one of the most common chronic diseases, which was recorded
to affect 415 million people worldwide in 2015. Its prevalence is still increasing due to the rise of
obesity and unhealthy lifestyle with an expected prevalence of 642 million in 2040 [1,2].

The two main components of a sufficient diabetes management are adherence to a healthy diet
and regular physical activity. These lifestyle components are important for both glycaemic control,
i.e., keeping blood glucose levels within the target range, and in maintaining long-term health, which
includes the prevention of micro- and macrovascular complications [3]. The risk of developing
complications increases with a poor diet quality and insufficient physical activity [4-6].
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For many T2DM patients, the everyday challenge includes the restriction of carbohydrate intake
and the performance of sufficient physical activity while reducing sedentary behaviour. Another
challenge is to adhere to, often a plethora of, pharmacological agents. In patients that are treated with
insulin, there is the additional burden of insulin injections and the need to monitor blood glucose.
Multiple finger-pricks per day, in combination with an estimation of the carbohydrate content of the
meal, are usually necessary to determine the appropriate pre-meal insulin dose [7,8].

Diabetes healthcare professionals (HCPs) support patients, whereby they provide education and
coaching on lifestyle and pharmacological therapy [9]. However, in the current situation, regular
contacts between patients and professionals are particularly suited to monitor the pharmacological
management of glycaemic control, blood pressure, and dyslipidaemia. It is increasingly recognized
that the traditional set-up of outpatients does not meet the requirements for sufficient lifestyle
management, and therefore efforts for the improvement of lifestyle and self-management do not
reach full potential [10,11]. To illustrate this, we found in the vast majority of T2DM patients that
were treated in our hospital, “ZiekenhuisGroep Twente” (ZGT), where adherence to the guidelines
of physical activity and healthy diet was not met. This was reflected by an average body mass
index (BMI) of 33 kg/m? and a sufficient vegetable intake in only 7% of the patients [12,13]. Of note,
lifestyle behaviour is not measured routinely and objectively in clinical practice. However, objective
measurements are of great importance in adequately mapping lifestyle, because patients grossly
overestimate their healthy lifestyle behaviours [14].

Advances in technology have made it easier to monitor lifestyle, e.g., through smartphone
applications and wearable technology. Worldwide, several initiatives have arisen to transform healthcare
and health support [15-17]. The use of technology can help to incorporate effective lifestyle management
in routine clinical care. Mobile health (mHealth) technology allows for lifestyle parameters to be
monitored objectively and continuously [15]. Objective data provides insight in actual lifestyle habits,
both to the patient and the HCP, while also increasing awareness [18,19]. Additionally, data regarding
carbohydrate- and fat intake, physical activity, medication use, and glucose values can be combined,
which is of importance because these factors influence each other [19,20]. When compared to traditional
methods of obtaining insight in patients’ lifestyle, technology-based methods are ultimately less
expensive, can be used when it suits the patient, and provide objective data. Moreover, technology
can be used for (digital) tailored coaching [21]. Technologies that measure nutrition, physical activity,
or provide glucose values are already available, but there are major limitations [18]. The existing
applications are usually developed for personal use rather than for clinical use; no application exists
that can measure and integrate all of the aspects that are considered to be necessary for an optimal
diabetes management, and coaching functionalities remain only rudimentary [22].

Therefore, our research group aims to develop a digital tool that incorporates lifestyle habits and
glucose management in one application, the Diameter. The core items to be measured by the Diameter
are food intake, physical activity, glucose values, and medication use, with a built-in possibility to add
other relevant items. This information is integrated in such a way that it gives individual patients
and HCPs insight in lifestyle, blood glucose levels, as well as into the effect of lifestyle behaviour on
glucose values in daily life, e.g., the HCPs can use the data about diet to gain insight in the (macro)
nutrients intake and use this in their daily work to be able to treat the patients better. The lifestyle
data can subsequently be used to give patients tailored coaching in order to improve adherence to
lifestyle guidelines and, if necessary, medication use. The Diameter can be implemented as stand-alone
application as well as in blended care forms, in which regular doctor visits are combined with online
interventions. This paper describes the process of formulating the main requirements of the Diameter
to measure dietary intake, physical activity, and glucose levels. The requirements for the evaluation of
medication adherence and coaching will be addressed later.
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2. Materials and Methods

We defined the requirements of the core items of the Diameter using an iterative mixed method
design approach that combines data derived from several sources (Figure 1). Using the findings
from the Diabetes and Lifestyle Cohort Twente (DIALECT), a literature search, and two pilot studies,
the initial requirements were assessed. Subsequently, these preliminary requirements were discussed
and are further elaborated upon in expert meetings to formulate the final set of requirements. The whole
process is based on the approach of “the Function and events, Interactions and usability, Content and
structure, and Style and aesthetics” (FICS) framework to enable the proper communication between
researchers and the developers [23,24]. These requirements provide the foundation for the technology
design of the Diameter, including what the system should do, which data is collected, what should
be displayed, and what the user will experience. Using the iterative approach, the development runs
parallel with the user experience, resulting in continuously made improvements that are based on
feedback from both patients and professionals.

4 N\

8. Should have
4. Expert meetings 5. Requirements 6. FICS framework

1. Cohort Study

2. Literature

9. Could have

10. Wish to have

3. Pilot Studies

S J

Figure 1. Requirements were formulated from insights gathered in the Diabetes and Lifestyle Cohort
Twente (DIALECT) cohort study (1), literature research (2) and pilot studies (3). In expert meetings
(4) these requirements were discussed and new requirements (5) were added. The requirements were
formulated according to the Function and events, Interactions and usability, Content and structure and
Style and aesthetics (FICS) framework (6). The requirements were labelled during expert meetings as
“must” (7), “should” (8), “could” (9), and “wish to” (10) have.

2.1. Cohort Study

As a first source of requirements, experiences in clinical practice were used to evaluate our
methods for the data collection in patients that were included in the DIALECT-2 study. DIALECT-2 is
a cohort study that was performed in ZGT, Almelo and Hengelo, the Netherlands, and it is designed
to investigate the relationship between lifestyle parameters and long-term outcome in T2DM patients.
As such, several parameters of interest for the Diameter are measured in DIALECT-2 [12]. The inclusion
of DIALECT-2 (n = 400) is ongoing and is expected to be completed in 2020. In this study, for
the diet, activity, and glucose part, 64, 98, and 60 patients were included from the DIALECT-2
cohort, respectively.

In DIALECT-2, a food diary was used to assess actual dietary intake. Towards this purpose,
the patients were instructed to register the timing, amount, and type of all dietary intakes for two
consecutive weeks. We have developed software that automatically calculates the intake of food
components and macronutrients from these data, using an algorithm that was based on the Dutch
Food Composition Table [25]. The entry of nutritional data is important for the Diameter, therefore
the food diaries of 64 patients included in DIALECT-2 were analysed to evaluate the adherence of
registration of the food intake. We evaluated adherence of registration for the respective meals during
the day, and whether adherence changes during the two-week registration period. Furthermore, we
investigated the daily distribution and between meal variability of registered carbohydrate intake,
since this parameter is of particular importance in diabetes. The evaluation of adherence in registering
food intake was based on three items: appropriate registration of meal records, appropriate registration
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of time records, and quantitative and qualitative description of content (e.g., 1 glass of milk), expressed
as percentage of total meal moments, with 100% representing full compliance. Carbohydrate intake
was calculated for the three main meal moments (i.e., breakfast, lunch, and dinner), the in-between
meals, and the total intake in grams per day. Variability in carbohydrate intake for each meal was
calculated using the within-person coefficient of variation (COV). Next, we calculated the number of
days needed to get a representative estimation of a person’s true intake with a specified degree of error
using the calculated COV [26].

Second, we assessed the requirements for the collection of data on physical activity. To this
end, we evaluated the process of data collection on physical activity in the first 98 patients that
were included in DIALECT-2. These patients wore a step counting device for one week (Fitbit®
Flex, Fitbit Inc., San Francisco, CA, USA) to measure physical activity and sedentary behaviour.
The measurements with the activity trackers were analysed in terms of the use of activity sensors
by patients, and activity behaviour in terms of activity bouts, sedentary behaviour, and sedentary
bouts. The Fitbit has previously been validated for measuring step count during aerobe activities
and for measuring sedentary behaviour [27-29]. Raw Fitbit data (steps/min) were organized into
ready variables by an algorithm written in MATLAB® (2016b, The MathWorks, Inc., Natick, MA, USA).
We evaluated whether the patients experience limitations in the use of these devices and which are the
technical limitations.

We used a flash glucose monitoring (FGM) device, the Freestyle Libre® (Abbott Diabetes Care,
Alameda, CA, USA), to evaluate the experienced limitations by the first 60 patients that were included
in DIALECT-2 [30]. The Freestyle Libre sensor measures the average subcutaneous interstitial glucose
level every 15 min throughout a two-week period. These glucose values, which serve as a surrogate
for blood glucose, are transferred to a reader by the patients every 8 h. After the registration period of
two weeks, the glucose data was derived from the reader, analysed by a MATLAB script, and then
used for further analysis when > 5 days of measurements, each with > 90% available measurements,
were available. Again, the experiences with the use of these kind of glucose sensors are translated into
requirements for the Diameter.

2.2. Literature Search

We reviewed the existing mobile health (mHealth) applications that monitor dietary intake,
physical activity, or glucose values to investigate the experiences with those applications and to
determine the strength and limitations. There are many basic features in existing applications with
undisputable value. We implicitly intend to use current standard features for the Diameter and will
not formulate these as separate requirements. Rather, for the purpose of this study, we focus on
functionalities that are either new or not yet standard.

A PubMed search was performed in the beginning of 2017 using a combination of the following
search terms: “application”, “diabetes”, “diet”, “eHealth”, “food”, “food diary”, “mHealth”,
“nutrition”, “nutrition diary”, “smartphone”, “physical activity”, “exercise”, “blood glucose”, or
“continuous glucose monitoring”. A selection of relevant studies, which were performed in T2DM,
was used to derive requirements for the Diameter based on the results.

2.3. Pilot Studies

We performed two pilot studies to gain insight into what people experience or want to experience
using a mobile application. The aim of pilot study 1 was to identify the strengths and limitations of
the state-of-the-art existing applications for diet registration. Therefore, in the beginning of 2017, the
major mobile platforms (Apple iOS App Store, Google Play Store) were searched to find suitable diet
registration mHealth applications. The following search terms were used (translated in Dutch): eating,
calorie counter, food, food diary, nutrition, nutrition diary, and diabetes. mHealth applications with
the following criteria were included: functionality on both Apple iOS and Android, at least fifty user
reviews or ratings, capabilities for nutritional monitoring, the presence of a searchable nutritional
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database, the use of Dutch measurement units (e.g., gram, slices, cups), and the latest version of the
application must have been released after 2014. Paid mHealth applications or those that were not
available in Dutch were excluded [31]. For applications that met the criteria, all relevant information,
such as the developer and the average user rating, was documented. This resulted in eight applications
that were downloaded onto a smartphone by the researcher and then evaluated on certain key
characteristics, including e.g., the use of the Dutch Food Composition Table as nutritional database [25],
the possibility of manual entry of products, foods specificity (e.g., whole grain bread or white bread),
and specific time of ingestion. Based on these criteria, the three most suited mHealth applications
were selected for further testing by healthy volunteers for three days, in random order. After the
test period, the usability of the mHealth applications was determined using a ten item-questionnaire
that was based on the System Usability Scale (SUS) and the Unified Theory of Acceptance and Use of
Technology (UTAUT) that was specifically designed for this purpose, and by two open questions to
appoint the strong and weak characteristics [32-34]. The SUS assesses the usability and the UTAUT
predicts the intention to use a technology [35].

In pilot study 2, the aim was to determine disease awareness in T2DM patients. To this end, we
evaluated the awareness and knowledge of T2DM patients on the subject of healthy lifestyle and their
illness. Additionally, we assessed patients’ requirements in future (coaching) technology that supports
better diabetes management and healthy lifestyle choices [36,37].

2.4. Expert Meetings

During monthly expert meetings, the progress regarding the development of the Diameter was
evaluated. The average number of attendants at these meetings was 10, including a wide array of
experts, i.e., clinicians, professors in telemedicine, engineers, software developers, and researchers with
expertise in (technical) medicine, nutrition, biomedical engineering, and computer science. During
these meetings, the preliminary requirements that were derived from the cohort study, literature,
and pilot studies were presented and discussed. Additionally, requirements were formulated during
these meetings based on the expertise of the participants in the meetings. Taking existing applications
regarding diet, physical activity, and glucose values as a starting point, the requirements that were
distinctive as compared to the existing applications described in literature were formulated according
to the FICS categories by a technical physician and then discussed with the experts. The requirements
were prioritized with “must have”, “should have”, “could have”, or “wish to have” during brainstorms
with the experts. This approach was used to ensure clear future communication with software
developers regarding the required system functionality.

3. Results

The requirements that were derived from the cohort study, literature, pilot studies, and expert
meetings are described below for the separate components (diet, physical activity /sedentary behaviour,
glucose values) and as shared (i.e., applicable on all categories) requirements. The requirements are
noted with identification (ID) in parentheses, coded using an F, I, C, or S to classify the requirements
according to the FICS structure. An overview of the requirements, with corresponding ID numbers,
can be found in the four Supplementary Tables S1-54.

3.1. Requirement for Measuring Dietary Intake

3.1.1. Cohort Study

We evaluated two-week food diaries in 64 patients who participated in DIALECT-2. The total
carbohydrate intake of breakfast, lunch, dinner, and in-between meals contributed to 20.0%, 22.8%,
28.2%, and 29.0% of total intake, respectively. The COV was for each meal moment 45.0, 49.9, 53.4, and
70.2, respectively. Consequently, as the COV for carbohydrate intake for in-between meals was the
highest, the in-between meals require the highest number of days (11 days) for a valid estimate within
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30% of the true intake, higher than the number of days that are needed for breakfast (four days), lunch
(eight days), and dinner (nine days) [38]. This information is necessary, because the compliance of
registering diet decreased with in total 4.2% in the two-week period [26]. This indicates that, without
further intervention, these patients will not register their diet properly during longer periods. Patients
need to know what the minimum number of days is to enter their diet to be able to help them properly
with their diabetes management (I1). This will help in motivating them to adhere. In addition, the
Diameter should be intelligent and learn from the previously entered food items and use this to show
smart options to ease dietary registration (F1). For example, it should inquire whether the patient ate
their usual breakfast and, if not, provide the option to enter an alternative breakfast. For dinner, the
system must automatically save different frequently used meals, and it should ask the patient whether
they had eaten one of the saved meals, and, if not, have the option to change the saved meals (e.g.,
portion size). Secondly, to prevent the decline and insufficient registration of diet, the system must
keep track of a personalized history per type of meal to prevent the patient from having to go over
long lists of food options (F2).

In 41% of the patients, the overall description of food intake was not sufficient to draw meaningful
conclusions, with the lowest compliance for dinner registration: Of the 64 patients, 26 were excluded
due to too low compliance, and in 19 of these, this was due to inadequate description of the dinner [26].
In order to improve the overall adherence for diet registration, dinner entry in particular must be
specifically designed to prevent underreporting. Therefore, we conclude that the system should split
the dinner into main components, such as rice/potatoes/pasta, vegetables, meat/fish/meat substitute,
gravy/sauce, and other (dessert/drinks etc.) (E3). Besides the data entry for dinner, the complete
reporting of beverages is an item of concern. To reduce underreporting, we decided that the system
must ask whether the patient drank something when food is entered without beverage (I12).

3.1.2. Literature Search

The literature search resulted in a selection of seven articles, which were suitable to derive
some important requirements for the Diameter. These articles report that the use of mHealth
applications for monitoring nutrition results in barriers for both patients and clinicians [39,40]. Existing
mHealth applications often only record the number of calories, whereas for diabetic patients, specific
nutritional components have particular interest for blood glucose control, i.e., carbohydrates [41].
Specific information is necessary to demonstrate the impact of a specific type of food on the glucose
levels [31,42]. This results in the requirements that the amount of carbohydrates must be displayed
(F4) and the effect of carbohydrates or a specific type of food on the glucose value should be shown
(F5). Patients also appreciate to see, in addition to the amount of consumed calories, the amount of
calories that are left to eat that day and the amount of calories burnt by their physical activity (F6) [43].
Finally, healthy recipe suggestions should also be given (C1) [44].

3.1.3. Pilot Studies

In pilot study 1, 20 healthy volunteers tested the usability of three existing mHealth applications;
FatSecret, MyFitnessPal, and Virtuagym, for the monitoring of dietary intake. We demonstrated that
improvements are necessary to implement a food tool in clinical practice. The usability study led to a
number of requirements for the Diameter. Firstly, the time and date of ingestion should be registered
(F7) before a meal or food product can be entered (S1), and the current date should be shown by
default (S2). Furthermore, household measurements must be connected to the food product (F8), it
should show pictures of food products (S3), it should be possible change or remove entered data (F9),
it should be possible to add food products to a meal category, such as breakfast, lunch, and dinner
(F10), a suggestion must appear when typing the first letters of a food product (I3), it must be made
clear and easy to find the right food products (C3 and C4), an overview must be given of the consumed
calories, amount of fat, carbohydrates, proteins, and percentage dietary reference intakes (F4 and
F11), and often used food products must be remembered as is also described as result of the cohort

84



Nutrients 2019, 11, 409

study (F3). As addition to manual entry, having the optional use of a barcode scanner is often desired
(F12), it should be possible to use the system on a website on the laptop or personal computer (I4),
the application should send reminders or push messages to stimulate complete data input (I5), and it
should provide short educational facts, e.g., explain what a calorie is (C5 and S4) [35].

3.1.4. Expert Meetings

A main point, not yet addressed in the pilot, cohort, and literature study, was how to motivate
patients to persistently use the application. Therefore, the focus of one expert meeting was on this
subject. The attendants were challenged to make a quick design of a food registration tool with
particular focus on attraction and ease of use, and this resulted in some requirements that aimed to
make the tool interactive and visual. One requirement that followed was to display a graphical image
of a plate, bowl, and a glass and to give the option to virtually drag food and drink to this plate and
glass (S5). The idea behind this is that the amounts of food can be more easily determined when
presented on the virtual plate. Also, there are applications in development that use photography
technology to assess diet. This is a promising approach for entry food data, reducing the number of
actions that are required to simply taking a picture of the meal [16,45]. The incorporation of nutrient
estimation using photos taken with the mobile is desired (F13). People usually have a limited repertoire
of meals, hence there must be an option to enter standard meals and to let the system remember earlier
registered meals (F14), and there should also be the option to enter and save own recipes for re-use
(I6). Fourthly, the system should ask smart questions (F15). For example, after initial inquiries on
the regular use of milk and sugar in coffee, the system can ask, ‘did you add sugar as you usually
do?” when the user registers intake of coffee. This reduces the number of required actions, gives the
impression of a personalized approach, and makes it interactive.

Other requirements that followed from the expert meetings are to store the data output per
day and present it separately for breakfast, lunch, dinner, in-between meals, and total carbohydrate
intake (F16). This gives a clear overview of the carbohydrate distribution over the day. Secondly, the
application should be able to give a healthier option of a product that the patient entered (C6), e.g.,
whole grain bread instead of white bread. This gives the patient insight in healthier decisions. Thirdly,
there must be an option to add new products to the database to keep the food database up to date (F17).
Food products that are added by patients should be entered in a separate database. The products in
this database can be checked on nutritional value and then added to the general database to give all
users the ability to register this product. Fourthly, the app must contain a guideline with instructions to
monitor food (C7). Fifthly, the data output is presented in gram per day. For each product, the amount
of e.g., carbohydrates in gram per day should be calculated, based on nutritional values per 100 g of
the food item, as noted in the Dutch Food Composition Table (C8). Finally, it should be possible to use
the system independent of internet connection. At any time of the day, patients should have access to
the food record to limit memory bias (I7).

3.2. Requirements for Measuring Physical Activity and Sedentary Behaviour

3.2.1. Cohort Study

A Fitbit activity tracker was worn by 98 patients of the DIALECT-2 cohort until then to measure
the number of steps per minute during one week. During these measurements we gained general
insight in the applicability of such sensors in daily practice, but also the data on physical activity and
sedentary behaviour of T2DM patients were helpful.

Regarding the applicability, the battery of the accelerometer needs to be charged by the user
approximately every four to five days for 2 h. Some patients forgot to re-attach the sensor after charging.
Some activities, like cycling, a common activity in the Netherlands, are not registered while using an
accelerometer around the wrist. Based on these findings, the following requirements for the Diameter
were formulated: The system must give a notification when the battery is empty (F18) and needs
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detection when the tracker is not worn to give a reminder to wear it (F19). Activities that a regular
accelerometer around the wrist does not detect must also be measured by using an application on the
mobile device that detects cycling (F20) or by the manual insertion of non-recordable activities (I8).

Regarding physical activity, only a few patients met the criteria of an activity bout, which is an
activity of at least 10 consecutive minutes of moderate to vigorous physical activity (MVPA) with
> 95 steps/min [46,47]. About two-thirds of the patients (69%) had no bout of MVPA at all in seven
days, whereas > 150 min MVPA per week is recommended, e.g., to reduce the risk of cardiovascular
diseases [5,6,48]. Nevertheless, the vast majority (93%) were able to achieve the intensity of moderate
activity at one point during the follow-up time, however the duration of the activity was too short [49].
The Diameter should provide education for patients regarding activity bouts and physical activity (C9), in
order to stimulate patients to achieve MVPA bouts, which are beneficial for their diabetes regulation [42,44].
Also, the application should detect when the intensity of MVPA or duration of an activity bout is not met,
in order to provide the basis for the future coaching module to be developed (F21).

Independent of the amount of MVPA, sedentary behaviour increases the risk of morbidity and
mortality [50-53], and it is recommended that sedentary bouts are be interrupted every 30 min with an
activity of light intensity of more than 10 steps/min for at least 1 min [48,54]. Our data demonstrated
that our T2DM patients had no movement for 76% of the total waking hours per day, of which 7 h
were spent in prolonged sedentary bouts of at least 30 consecutive minutes [49]. We therefore want
the system to create awareness regarding sedentary behaviour and motivate patients to minimize
sedentary time (C10).

3.2.2. Literature Search

There are various studies addressing the issue of evaluating physical activity while using mHealth
applications. An important finding was that patients prefer the visual demonstration of their activities,
by, for example, bar charts over merely numerical presentation (S6) [55]. Also, patients liked to be
reminded when they were inactive for a prolonged time period (I9) [43]. Literature also confirmed
the notion of paying attention to the management of body weight management, being closely related
to physical activity and diet. Weight loss strongly contributes to improved glycaemic control. It is
therefore necessary to show patients the burned calories during a performed activity (C11) and to have
an option to register body weight (I11) to follow up on weight (loss) in time (C12) [11,44,48,50]. One of
the aims in lifestyle management is to reduce sedentary behaviour. The Diameter should therefore
detect sedentary periods (I11) and it must give educational information regarding sedentary behaviour
(C10), as also described in the cohort study [39,56].

3.2.3. Expert Meetings

During the expert meetings, some additional requirements concerning physical activity and
sedentary behaviour were formulated: First, there is a strong preference for the option to connect
multiple types of activity sensors (I12). Secondly, the system must start with measuring of a baseline
to determine the current activity and sedentary behaviour of the patient (F22). When, in the future,
a coaching module is added in the Diameter, these baseline data should be available.

3.3. Requirements for Measuring Glucose Values

3.3.1. Cohort Study

In the DIALECT-2 cohort, we performed flash continuous glucose measurements in 60 patients
during two weeks. Following, we gained insights in the applicability of FGM sensors, the
level of glycaemic control, and the daily glucose variability between patients, which are used to
formulate requirements.

First, we investigated the usage of the sensor. Of the 60 patients, 12 patients had to be excluded
because there were less than five days in which at least 90% of data were available. The most important
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causes for data loss were the patient forgetting to scan the sensor by the patient and the premature
loss of the Freestyle Libre sensor. Of the latter, in 35% of the cases, detachment of the sensor was
the problem, 29% of which occurred in the first week. In seven patients, a new sensor was attached.
The system must give notifications to reduce data loss by not scanning the sensor (I13) and it should
have the option to connect a new Freestyle Libre sensor (114).

Regarding the glucose level of these patients, the level is, on average, 58.6% of the time that
patients are in between the glucose target ranges (> 4 mmol/L and < 8.4 mmol/L). The remainder
of the time they have hypoglycaemia (4.2%) or hyperglycaemia (37.2%). Patients need the insight
in their glucose values, including the percentage of hypo-, hyper-, and normoglycaemic episodes,
throughout the day and the progression over time to be better capable in keeping the values between
the target ranges (F23). Besides that, they need insight in their glucose variability (F24). The patients
with high glucose variability need to have these insights to be able to act better on the glucose values
and decrease the variability. To be able to do this, education is needed regarding glucose targets,
glucose variability, and on the unfavourable long-term effects of uncontrolled hyperglycaemia (C13).

3.3.2. Literature Search

There are several glucose sensors on the market that are used for continuous glucose monitoring
(CGM) in the clinical practice of diabetes management. These so-called real-time CGM sensors are
usually used in conjunction with a subcutaneous insulin pump and the use is labour intensive for
the patient, because twice daily calibration by finger pricks is still needed, rendering such sensors
unsuitable for the purpose of the Diameter [57]. We therefore decided to choose the only alternative
currently available, i.e., the Freestyle Libre system. It is obvious that using CGM or FGM provides
detailed information regarding glycaemic control, with the additional advantage of wireless transfer of
the glucose data (I15) [55,58]. For the Diameter, these data are to be used to display glucose trends (F23)
and to provide the patient and HCP with insight about blood glucose levels and glucose variability
(C13), as also described in response to the cohort study. This helps to effectively engage patients and
give them the insight that they need [44,58]. The data should be displayed in an easy understandable
graph that shows how physical activity and nutrients affect blood glucose (S7) [42].

3.3.3. Expert Meetings

Additional requirements concerning blood glucose were formulated based on the expert meetings.
First, the target range for blood glucose should be adjustable to allow for personalized targets (F25).
In addition, there is the wish for an option to warn when the glucose values are out of range. (I16).
Secondly, it is desired that the Diameter can synchronise with insulin pumps and also with other
glucose measuring devices than the FGM currently used (F26). This includes the option of manually
inserting measured glucose values by a finger-prick (I17). Thirdly, the systems should allow for the
development of algorithms that predict glucose levels based on the measured blood glucose data,
physical activity data, and food intake data (C14).

3.4. Shared Requirements

3.4.1. Literature Search

Beside requirements for the separate items to be measured, we also derived some general shared
requirements from the literature for the Diameter. The lack of coordination with the HCPs is a main
issue with currently available lifestyle applications. Data that are collected with such applications by
an individual are not available for the clinicians, and certainly not in an organized fashion. We want
to develop an application that allows for connecting and sharing the data with the care provider
(I18) (I19). This can be achieved by the option to automatically generate a report of the data, which
is digitally sent to the HCP. The communication and information exchange should contribute to
better decision-making [55,58]. Other important requirements are related to the convenience of use.
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To this purpose, the language and tone should be accessible, encouraging, and supportive (C15) [59],
generally intelligible symbols and terms should be used (S8) [59], and the necessity for scrolling must
be minimized (S9) [44]. In addition, medical terminology must be used where needed, but clear
explanations should be provided (C16) [44]. Also, keeping the necessary active use to less than 15 min
a day is desired (120) and the applications must be provided in the native language of the user (C17),
resulting in the persistent use of the app [60]. Finally, costs appears to be a significant concern, with
most people being unwilling to pay anything for apps and discontinuing use when they find that
in-app payments are required, therefore the aim is to provide the app for free (121) [43].

3.4.2. Pilot Studies

In pilot study 2, 19 patients participated in the questionnaires and interviews about awareness
and a technology to support diabetes management. Firstly, the patients were asked questions about the
following subjects to examine their overall awareness: influence of nutrition and exercise on glycaemic
control, diabetes complications, self-management of the respondent, and desirable behaviour on
exercise, nutrition, and weight. Approximately 40% of the patients correctly answered half of the
questions regarding overall awareness. However, most of the respondents did not have the supposed
knowledge regarding the effect of exercise and nutrition on glycaemic regulation. For example, only a
few patients were aware of the effect of even a small percentage of weight loss on the improvement of
the blood glucose level. The level of awareness and the interviews held with the patient, resulted in
requirements to give the patients more knowledge and insight, as noted earlier (F4, F6, F23, C5, C9,
C10, C13, S4). New requirements that were mentioned in the interviews were to also incorporate blood
pressure measurements (122) and incorporate an insulin bolus calculator, i.e., a calculator to determine
the appropriate insulin dose before the meal, based on the current glucose level and the amount of
carbohydrates in the meal (F27) [36].

3.4.3. Expert Meetings

In the expert meetings, it was brought up that patients may have a preference to focus on specific
lifestyle items and this may change in time. For example, the aim may be to get more active, instead
of focusing on healthy diet. It should therefore become possible to use the application selectively
to prevent overload with excessive information (I123). Also, data must be stored according to the
European privacy laws (F28). Thirdly, the data must be stored for at least one year (C18). Fourthly, the
clocks of all different sensors must be synchronized (F29) to ensure that no discrepancies in time can
occur. Fifthly, an overview of the data in the past can be found in an overview per day, per week, and
per month (510). This gives the ability to look at trends. Finally, all of the patients are able to enter all
desired data without assistance, independent of education level (124).

3.5. Overview of the Requirements

The requirements are organised according to the FICS framework and labelled as “must have”,
“should have”, “could have”, and “wish to have”. In total, 81 requirements were formulated, which
are of added value when compared to current applications. Of these, 29 are formulated as functional
requirements, 24 as interactive and usability requirements, 18 as substantive and structural, and 10 as
style, as can be seen in Table 1. Of these requirements, 74% were labelled as “must” and “should” have
and 26% as “could” and “wish to” have. The requirements were labelled during the expert meetings.
The “could” and “wish to” have requirements were labelled in this category, because they were valued
as requirements that are not of utmost importance in this stage of the development of the app, to use
the app, or to receive the desired information and insight. However, these requirements have the
potential to increase the ease of use or have the potential to motivate to use the app more.
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Table 1. The number of formulated requirements as a result of the cohort study, literature search, pilot
study, and expert meetings per FICS category for diet, physical activity (PA), and sedentary behaviour
(SB), glucose values and shared.

Diet (n) PA and SB (n)  Glucose Values (1)  Shared (n) Total (1)

Function & events 17 5 4 3 29
Interaction & usability 7 5 5 7 24
Content & structure 8 4 2 4 18
Style & aesthetics 5 1 1 3 10
37 15 12 17 81

4. Discussion

We are developing a digital tool, the Diameter, with the aim of improving adherence to lifestyle in
patients with T2DM. The tool collects and integrates information of diet, physical activity, and glucose
values, i.e., items that are pivotal for the management of patients with T2DM. In order to formulate the
requirements for this tool, we applied a mixed method design approach in which we used experiences
from large scale data collection in a cohort study, performed a literature search, performed pilot studies,
and organized expert meetings.

Although many applications are already available to assist patients in monitoring lifestyle
behaviour like their diet and physical activity, these applications are not designed for the follow-up
of chronic diseases, like diabetes. Therefore, they lack integration with glucose measurements and
also do not allow blended care, i.e., function in connection with HCPs [39,40,55,61,62]. Due to the
tight relationship between lifestyle and glucose management, an integrated approach using these key
elements, together with a blended care setting, were starting points for us. We evaluated existing
applications for lifestyle and T2DM to determine the requirements for each part of the Diameter.
Of these applications, 15 requirements were of value and were therefore adopted. Additionally, 49 new
requirements were formulated for the diet, physical activity, and glucose value part during the cohort
study, pilot studies, and expert meetings. Besides, shared requirements that are of importance for the
integration of the components also had to be formulated, resulting in another 17 shared requirements.

To achieve adherence to lifestyle advice in diabetes, it is important that patients have knowledge
on how lifestyle behaviours affect their condition. The pilot study concerning awareness showed
there is an urge to improve knowledge of patients on the effects of carbohydrates and activity on the
glucose values. We expect that demonstrating the effects that food choices directly have on glucose
level will provide a very strong feedback mechanism that may help to stimulate healthy behaviour.
The necessity for lifestyle interventions is emphasized by the results of our cohort study that there
is a lot of room for improvement on diet, physical activity, sedentary behaviour, and glucose values.
Therefore, 14 requirements, mostly labelled as content and structure and style and aesthetics, of the
Diameter are related to providing insight in counting carbohydrates, glucose values, physical activity,
and how these factors mutually influence each other.

Almost half of the requirements, 37 out of 81, are formulated for diet registration. From our findings
in the cohort study and the pilot study it was clear that, in order to gain complete and reliable entry
of dietary information, the functionality of a new nutrition entry tool needs substantial improvement
when compared with existing diet applications. The existing applications require frequent manual data
entry and the process of data entry is relatively time consuming. The requirements defined to solve
these issues relate to incorporating smart options, mostly labelled as function and events requirements.
E.g., the application must learn from past entered data and the use this information to ask personalized
questions and to give personalized suggestions in the future. Another functional requirement to
increase the ease of use was to enter a main meal by using pre-defined components.

The integration of smart options is important, not only for the dietary entry, but also in the other
components of the Diameter. For example, the application must recognize when the glucose sensor
needs to be scanned, when the patient has not worn the activity tracker for too long, and it must detect
activities that the activity tracker cannot measure.
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Incorporating the right interaction and usability requirements are also of importance in making
the application more user-friendly and to stimulate maintenance of use. Examples of such requirements
are the possibility to enter own recipes, the possibility to use the app without access to the internet, to
allow own choice of activity tracker and glucose sensor, to enable potential connection with a (digital)
healthcare professional, and individual choice for which educational modules are switched on/-off.

As stated above, providing insight in the effect of diet and activity on the glucose values is a key
element of the Diameter. To this end, the application can generate (e.g., past day, week or month) a
graphical presentation of these data and can recognize and show trends for different time periods.
Reports of the data can be shared with the diabetes professional, allowing for blended care.

The strengths of this study are that the requirements were developed from an integration of four
approaches (cohort study, literature search, pilot studies, and expert meetings), that the requirements
are developed in an iterative process, and the main components for T2DM treatment are taken into
account. However, there are a few sources of potential bias. There could be selection bias, because the
requirements were developed from a complicated T2DM population, which was located in a specific
region in the Netherlands. It is possible that this resulted in other requirements than we would have
found by researching a population less complicated or with different ethnical background. Also, it is
possible that a different composition of the group of experts would have led to other requirements
due to differences in personal experience and specific knowledge. However, when expanding to other
populations, the iterative approach of the development process should circumvent these potential
sources of bias.

With the formulation of the initial requirements that are described in this paper, the first step of
the development of the Diameter has been taken. From here, we intend to let patients use a first version
of the Diameter in a new pilot study. The data generated in this pilot study will serve several purposes.
First, an enhanced set of requirements will be derived. We also intend to formulate requirements
for the monitoring of adherence to pharmacological therapy. Also, in a parallel process, the data
will be used as input for the development of the coaching part of the Diameter to be developed.
The coaching part will be designed to provide data-driven tailored coaching, based on inter alia,
individual patient data, preferences, and comorbidities in order to achieve and maintain adherence to
lifestyle recommendations.

In summary, the development of the Diameter is an iterative process, using a multi-method
approach. Every time after introducing a new version, a pilot study will be performed to evaluate the
app in terms of effectiveness, acceptance, and feasibility, and to fine-tune the requirements.

5. Conclusions

The development of a new tool for patients with T2DM is important, because insight in their
diet, activity, and glucose values is currently lacking. This study describes the development of the
requirements for the first version of the Diameter, which are focused on gathering the necessary data
and giving patients insight. For the development of future versions of the Diameter, in which a tailored
data-driven coaching module will be incorporated inter alia, it is an important step to be able to
efficiently collect lifestyle and glucose data.

Future research is needed to develop the desired application for the patients to receive tailored
coaching, blended in their healthcare. This future research will focus on development of the tailored
coaching module and algorithms that take into account the duration of diabetes, comorbidities, and
personal preferences. Also, research is necessary to optimize the usability of the application for patients
and HCPs by evaluating experiences of different diabetes populations (e.g., first line and second line
healthcare) with the app, evaluating feasibility of the application integrated in clinical care, and by
optimizing adoption and implementation of the application.

Supplementary Materials: The following are available online at http:/ /www.mdpi.com/2072-6643/11/2/409/s1,
Table S1: requirements of the dietary part of the Diameter, Table S2: requirements of the activity part of the
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Diameter, Table S3: requirements of the glucose measurement part of the Diameter, Table S4: requirements of the
shared part of the Diameter.
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Abstract: Nutrient estimations from mixed dishes require detailed information collection and should
account for nutrient loss during cooking. This study aims to make an inventory of recipe creating
features in popular food diary apps from a research perspective and to evaluate their nutrient
calculation. A total of 12 out of 57 screened popular dietary assessment apps included a recipe
function and were scored based on a pre-defined criteria list. Energy and nutrient content of three
recipes calculated by the apps were compared with a reference procedure, which takes nutrient
retention due to cooking into account. The quality of the recipe function varies across selected
apps with a mean score of 3.0 (out of 5). More relevant differences (larger than 5% of the Daily
Reference Intake) between apps and the reference were observed in micronutrients (49%) than in
energy and macronutrients (20%). The primary source of these differences lies in the variation in food
composition databases underlying each app. Applying retention factors decreased the micronutrient
contents from 0% for calcium in all recipes to more than 45% for vitamins B6, B12, and folate in
one recipe. Overall, recipe features and their ability to capture true nutrient intake are limited in
current apps.

Keywords: diet apps; recipe calculations; nutrient retention; food record; dietary intake assessment;
technological innovations

1. Introduction

When assessing the dietary intake of a large population, an accurate dietary assessment plays
a fundamental role [1]. Self-report dietary assessment methods, such as 24-hour dietary recall (24HDR),
dietary record (DR), and food frequency questionnaire (FFQ), are commonly used to assess food
consumption at both individual and population level [2]. Since underreporting, overreporting,
misreporting, and interviewer bias can occur in those methods [3-5], assessing dietary intake
with a high level of accuracy continues to be a major challenge in nutritional epidemiology and
monitoring [6,7]. Moreover, cumbersome procedures of collecting details of foods are time-consuming
and are associated with a high burden for both the respondent and the researcher [8]. This is especially
the case for 24HDR and DR, which are open methods, and for which repeated measurements are
needed to estimate usual dietary intake [9]. The burden laid on respondents can also lead to a low
response rate, which may lead to bias in the survey results and diminish the representativeness of the
sample [10].

Nutrients 2019, 11, 200; doi:10.3390/nu11010200 95 www.mdpi.com/journal /nutrients
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Progress in Information and Communication Technology (ICT) in the past few decades has
led to investigations into innovative strategies to overcome drawbacks of traditional pen-and-paper
and interviewer-based dietary assessment methods [11,12]. One such innovative strategy is the use
of mobile applications (apps) on smartphones for a dietary record. In the last decade, an increase
in the number of smartphone users has led to a proliferation of mobile applications (apps) [13].
A popular category within all these apps are the health and fitness-related apps [14], mostly aimed
at supporting dietary change and weight management [15,16]. Those apps usually include a food
diary function, in which users can record the foods consumed and the consumed quantities. Apart
from searching in a pre-defined food and beverage list and selecting pre-defined portion sizes [17],
various features are available to help identify consumed foods, estimate portion size, and decrease
the burden of food entering. Examples of those features are image-based food recognition and
barcode scanner. Their potential on reducing the respondents” burden, decreasing the effort of
multiple self-administrations and on improving food recording accuracy have been investigated
in both experimental and observational epidemiological studies, and have shown some promising
results [6,18]. However, the knowledge on the performance of other specific features is still limited [19].

One feature of food diary apps is the recipe function for entering mixed dishes prepared at
home. These are dishes consisting of multiple foods, with specific food preparation and often with
cooking involved. For user-friendliness, the recipe function should be structured in a way that could
easily guide the users in recording necessary information of a recipe. It should be able to assess the
recipe intake of an individual, while mixed dishes are often prepared for more than one person [19].
Furthermore, for a better estimation of nutrient intake, an accurate recipe calculation should take
nutrient loss of ingredients during cooking and food processing into account [20].

Some food diary apps have introduced a recipe function through the recent years [21,22]. The
effectiveness of these recipe functions in capturing the food consumption and nutrient intake has not
been fully evaluated. Moreover, the question whether the features of available recipe functions are
also appropriate for dietary assessment as part of large-scale studies remains unanswered. Therefore,
the aim of this study was to make an inventory of recipe function features in apps that could facilitate
the estimation of nutrient intake of a large population. Furthermore, another aim was to evaluate the
accuracy of the recipe function in capturing nutrient intake of popular dietary assessment apps by
comparing their nutrient calculation with a standard calculation procedure.

2. Materials and Methods

The starting point for app selection was an identification of dietary assessment smartphone
apps in the Health & Fitness category of iTunes App Store and Google Play Store in the Netherlands
between 15 and 23 October 2016. This selection was performed by Maringer et al. [20] and resulted
in the identification of 176 dietary assessment apps. Further screening was performed in August
2017. Inclusion of a subselection of apps for this study required the app to meet the following criteria:
(1) user rating >3 in iTunes App Store and Google Play Store, (2) user rating count >500 in iTunes App
Store and Google Play Store, (3) >10,000 downloads in the both stores, (4) a recipe function which was
freely available, actually present and functional. A recipe function was defined as “a functionality in
which the user can create a mixed dish by entering and specifying the amount of each ingredient within
the dish” [23,24]. Each app underwent initial screening based on descriptions and associated images
in the app stores to check for the presence of a recipe function. Apps were downloaded onto a OnePlus
3T smartphone running Android 7.1.1 and a Huawei Mate 8 running EMUI 5.0.1 for analysis. The apps
were checked manually to confirm whether a recipe function was freely available, actually present,
and functional. Basic descriptive information about the apps was identified, such as app name, version
number, operating platforms, number of installs, ratings, whether they can synchronize with their
website, and country of origin. Subsequently, the recipe function of the selected apps was evaluated.

To our knowledge, no widely accepted standard evaluation of the quality of the recipe function of
apps exists. Therefore, a criteria list was made for evaluating features in the individual recipe function
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of apps. For each feature on the criteria list a rubric of assessment was created with a 1 (low)-5 (high)
scoring scale. The criteria list and assessment rubric were modified upon findings from a pilot scoring
and feedback from two nutritionists and three dietitians with different specializations. The criteria list
and assessment include the following aspects of creating an individual recipe: options in searching
ingredients, ways to record relevant information of the recipe, whether raw or cooked ingredients
could be selected, consumed amount for both ingredients and the whole recipe, energy and nutrient
expression, and whether the recipe could be saved and edited later (Table 1). Two researchers scored
all the selected apps according to the criteria list independently. Inconsistent scores among the two
researchers were discussed to reach agreed final scores. For scoring the criterion whether both raw
and cooked foods are available in the food list, nine foods from the three most frequently used Dutch
recipes (explained in next paragraph) were entered in each app (kale, potato, milk, mushroom, onion,
salami, beef, pepper, and tomato).

To be able to evaluate the accuracy of energy and nutrient content estimations, three recipes were
entered into the individual recipe function of each app. The selection of recipes was performed by
exploring the most frequent reported recipes in the Dutch diet using the data of the Dutch National
Food Consumption Survey (DNFCS) 20072010 [25]. Three recipes with different preparation methods,
like stewing, baking, and frying, were chosen from the twenty most frequently consumed recipes.
The chosen recipes were boerenkool stamppot (mashed potato with kale), pizza with salami, tomato,
and mushrooms, and hachee (a traditional Dutch stew based on beef and onions). Raw ingredients
of the recipes were entered in the selected apps and a set of rules for entering ingredients were
followed, in case the exact match of food items or amount indications could not be found across
apps. If available, energy, macro- and micronutrient values of the recipe were obtained based on
the displayed nutrient content in the app. For those apps where the nutrient contents were not
shown at the recipe level, values from ingredients of a recipe were added up by researchers. Then,
nutrient contents from the apps were compared with nutrient contents derived from the Dutch food
composition database (NEVO) [26]. To account for nutrient loss due to cooking, retention factors
suggested by the European Food Information Resource [27] were applied to the nutrients derived
by NEVO, see complete calculation in Supplementary Material (Tables S1-511). A retention factor
larger than 0 and lower than 1 implied nutrient loss due to cooking. A retention factor of 1 was used
for energy and macronutrients for all ingredients in all recipes since they were not easily affected by
cooking. Next to energy and macronutrient, micronutrients such as sodium, potassium, vitamin A
represented as retinol equivalent (RE), vitamin C, calcium, vitamin E, vitamin B1, vitamin B2, vitamin
B6, vitamin B12, and folate were selected for comparison between apps and the reference measure.
Of these, sodium, potassium, and vitamin E had a retention factor of 1 for all ingredients in the three
recipes mentioned above, hence, were deleted from analysis. Calcium also had a retention factor of 1,
but was maintained in the analysis as an example.

General characteristics of the 12 evaluated dietary assessment apps with recipe function were
summarized. For each app, the mean score and standard deviation over all nine criteria was calculated
(see Table 1). The mean and standard deviation of scores across apps were calculated for each
criterion. Energy and nutrient content estimations of the three recipes for each app were analyzed
using descriptive statistics. For nutrients with retention factor of 1, a direct comparison could be
made with the nutrient contents derived from NEVO combining nutrient contents of raw ingredients
in the appropriate amounts. For the micronutrients with retention factors below 1, the reference
was the NEVO nutrient contents of the raw ingredients after applying the relevant retention factors.
For showing the effect of the retention factors, a comparison with NEVO nutrient contents of raw
ingredients without applying retention factors was also made. A difference in values between apps
and the reference of more than 5% from the Daily Reference Intake (DRI) for adults was considered
out of range [28].
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To visualize the correlation between apps and nutrients, a principal component analysis (PCA)
was conducted for each recipe separately with energy and macronutrients divided by their DRIs being
set as variables. The first two principal components represent the most variation. This was done
for energy and macronutrients only, since only 3 apps showed information on absolute amounts of
micronutrients. The descriptive statistics were calculated using Excel 2016 software and the PCA was
conducted in R version 3.5.0 (The R Foundation for Statistical Computing, Vienna, Austria).

3. Results

3.1. App Selection

The starting point was a selection of 176 popular dietary assessment apps with food recording
and available in English identified by Maringer et al. [21]. Then, apps were further narrowed down,
with inclusion criteria of a user rating >3 in the iTunes App Store and Google Play Store, a user rating
count > 500 in iTunes App Store and Google Play Store, >10,000 downloads in the Google Play Store,
and a claimed recipe function in the app description. After manually checking for the presence of an
individual recipe function in 30 included apps, 17 apps were excluded from further evaluation because
of dysfunction of the app, the absence or dysfunctionality of a recipe function, or the inability to use
the app due to requirements of a membership. After final exclusion of one app with a non-functioning
individual recipe function, a total of 12 apps (21% of 57) were selected for evaluation in detail (Figure 1).

‘ 176 dietary assessment apps ‘ 119 apps excluded

8 user rating < 3 iTunes or Google

Play store
110 user rating count < 500 iTunes

or Google Play Store

1 downloaded < 10.000 times

57 dietary assessment apps ‘

27 apps excluded

27 clearly no recipe function

- . based d tis
30 dietary assessment apps probably with a 3580 on app descriptian

recipe function
17 apps excluded

1app only for registered members

of program

3 apps did not function
13 dietary assessment apps with a recipe 13 apps no recipe function to
function create individual recipes

1 app excluded

1 recipe function to create

12 dietary assessment apps with a recipe individual recipe didn’t function

function reviewed

Figure 1. Flow diagram of selection procedure of dietary assessment apps with recipe function showing
the number of apps included or excluded.

General characteristics of the remaining 12 apps can be found in Table 2. All apps operated on an
Android platform, whereas IOS ranked as the second most-prevalent platform (10 apps). The highest
number of installs was 50 million with 1844 thousand ratings for MyFitnessPal, the lowest was
100 thousand installs and 2000 ratings for Nutracheck. The rating scores among the apps ranged from
4.2 to 4.6 with the maximum score of 5.0. Four apps were made by US companies, two apps were
made in Germany, and the rest of apps were made in other countries, mostly northwest Europe.
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Table 2. General characteristics, such as platforms available, number of installs on Google Play Store,
user rating on Google Play Store and country of twelve popular dietary assessment apps with a recipe
function (n = 12).

Rating Google
Installs Play Store (The
App Name (Version) Platforms Google Play Y Country
Store (Million) mfmber of
Ratings/1000)
1 MyFitnessPal (18.6.0) Android, I0S, Windows Phone 50-100 4.6 (1844) USA
Android, I0S, Windows Phone, .
2 FatSecret (7.8.27) Watch OS, Blackberry OS 10-50 4.4 (223) Australia
3 YAZIO (4.0.1) Android, I0S 5-10 4.6 (109) Germany
4 Lose It! (9.4.5) Android, 10S 5-10 4.4 (68) USA
. Android, I0OS, Watch OS,
5 Lifesum (6.2.4) Android Wear 5-10 4.4 (165) Sweden
6 MyPlate (3.2.2) Android, I0S, Watch OS 1-5 4.6 (22) USA
7 MyNetDiary (6.4.7) Android, I0S, Watch OS 1-5 4.5 (26) USA
8 Calories! (8.1.6) Android 1-5 4.3 (10) Germany
9 The Secret of Weight (2.4.24) Android, I0S 1-5 4.3 (14) France
10 Virtuagym Food (2.4.0) Android, IOS 1-5 4.5(28) The Netherlands
11 Health Infinity (HI) (2.0.58) Android 0.1-0.5 429 India
12 Nutracheck (5.0.12) Android, IOS 0.1-0.5 4.3(2) UK

3.2. Qualitative Recipe Function Assessment

Agreed scores given to recipe functions of each app are shown in Table 3. Mean overall score
of both apps and criteria was 3.0 (out of 5.0). The app Calories! had the highest score for its recipe
function with an average score of 3.9 however, in contrast, Calories! had a rating score and number
of installations at the lower range compared to other apps (Table 2). MyPlate and Health Infinity,
on average, had the lowest scores of 2.2 and 2.3, respectively.

The apps that had relative higher popularity, such as MyFitnessPal, Lose It!, Lifesum, and MyPlate,
did not have any criterion that scored 5, while Calories! was achieved a score of 5 three times. Health
Infinity scored 1 most often (three times) compared to other apps.

Specifically, most of the evaluated apps could save a self-created recipe and edit it later, hence,
this criterion ranked the highest (mean = 4.3) compared to other criteria. None of the apps included
reminders for frequently forgotten ingredients, therefore, all apps scored 1 for that criterion. The
available options that existed for searching ingredients for recipes included text search, barcode
scanning, voice record, recent/frequent/saved food, create new food, choose from categories, and
choose from a list of all food in alphabetic order. The number of options ranged from 2 to 6, where
half of the apps had only 2 to 3 options, while only Nutracheck had all 6 options. The most frequently
adopted options were search in a textbox and barcode scanning. FatSecret and Virtuagym Food
had four searching options for food entering, but only two options for adding ingredients to recipes.
In terms of options in searching raw or cooked foods, nearly all apps had both raw and cooked options
for all or at least some foods in their dataset (mean = 3.3). An exception was The Secret of Weight,
where, for the most foods, the text indicated raw while the picture showed cooked foods. In terms of
indicating consumed amount in both ingredients and recipes, in Calories!, one could manually add
a new serving unit to ingredients but not in recipes whereas, in Virtuagym Food, this was the other
way around. Health Infinity had no options to chooe the amount of recipe consumed (scored as 1),
and had only one built-in option when choosing the amount of ingredients. In terms of macronutrient
information, Calories! was the only app that had energy and macronutrients expressed as both absolute
amounts (mg, pug, etc.) and % of Recommended Daily Allowance (RDA). Most apps had energy and
macronutrients shown only in absolute amounts. Since only four apps showed micronutrient for
recipes, the average score for micronutrient availability ranked the second lowest with a score of 2.7.
Among the apps with micronutrients, Calories! and MyNetDiary had both absolute amounts and %
RDA for more than six micronutrients, while Virtuagym Food had only actual amounts. MyFitnessPal
had only % RDA of less than six micronutrients.
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3.3. Accuracy of Energy and Macronutrient Content Estimations

The differences in energy and macronutrient content estimations of the three recipes between
the 12 popular dietary assessment apps and the value derived from NEVO are presented in Table 4.
Macronutrient contents for both recipes and ingredients were not available in The Secret of Weight.
Heterogeneity in differences was observed between recipes and between nutrients. Pizza had fewer
differences >5% (n = 7) in the DRI as compared to boerenkool stamppot (1 = 10) and hachee (1 = 12).
Carbohydrates (1 = 2) and energy (1 = 3) contents had fewer differences >5% in the DRI than protein (1
=13) and fat (n = 11). In total, around 20% of the differences were >5% DRI. Most apps underestimated
the macronutrient content in boerenkool stamppot and pizza, while this was not observed in hachee.

With 7 out of 12, Nutracheck had the most discrepancies >5% in the DRI compared to the
reference, mainly caused by a discrepancy in fat and protein contents. YAZIO and Lifesum only had
one difference of more than 5%. Health Infinity had lower protein contents in all three recipes, whereas
Lose It! had lower fat in all three recipes. Virtuagym Food and YAZIO had similar patterns in all
recipes, and both had lower fat in hachee as outliers. MyNetDiary had all macronutrients being out of
range once, including a lower carbohydrate, lower protein, and higher fat in three recipes, respectively.
In Figure 2, apps are plotted against the first and second principal component of all differences in
macronutrient contents. Macronutrients plotted further from the center indicate a larger variance.
Apps situated in the same direction with a certain nutrient indicate an overestimation of the nutrient
and vice versa. Nutracheck laid outside compared to other apps for all three recipes. MyFitnessPal
was the only app without discrepancies of more than 5%. Therefore, it was located around the center
of the graph in all three recipes.
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3.4. Accuracy of Micronutrient Content Estimations

The micronutrient contents were analyzed for MyNetDiary, Calories! and Virtuagym in which
it was available. The differences in micronutrient content estimations of the three recipes between
the three popular dietary assessment apps, the micronutrient calculated from NEVO values in raw
foods and the reference where retention factors was applied to NEVO are presented in Table 5. For
most micronutrients except calcium, applying retention factors resulted in lower micronutrient levels
than micronutrient levels in raw ingredients. The relative differences between the reference and using
NEVO without applying retention factors ranged from 0% for calcium in all recipes, vitB12 in stamppot
and vitB2 in hachee to more than 45% for vitamins B6, B12 and folate in hachee. Over the 3 recipes,
8 out of 24 differences (33%) were relevant (>5% of DRI) in case of a high content and high vulnerability
of these nutrients of raw ingredients in a certain recipe. The relatively large difference in vitamin B6
and B12 in Hachee can be explained by the sensitivity to heat and the two cooking procedures in this
recipe, i.e. frying and stewing. Whereas, boerenkool stamppot (1 = 5) had more relevant differences
than the other two recipes (1 = 1 and 2 respectively), due to its high contents of vitamin C, vitamin A,
vitamin B1, vitamin B6 and folate even if the retention factor was not so different from 1 (for example,
vitamin A with a retention factor of 0.9).

A larger proportion of difference >5% DRI was found in micronutrients (49%) than in energy and
macronutrients (20%) when compared with the reference values. Among the three apps, MyNetDiary
showed more differences > 5% DRI (1 = 14 out of 24) than the other two apps (Virtuagym n =10,
Calories! n =11) when comparing micronutrient values with the reference. In contrast to macronutrient
comparisons, apps more often overestimated the contents of micronutrient in the recipes. The
number and extent of overestimations were slightly larger when comparing with the reference than
comparing with NEVO without applying retention factors, since the retention factors resulted in lower
micronutrient contents in the reference values. The proportions of relevant differences found after
comparing the apps to NEVO with or without applying retention factors were rather similar (49% vs.
51%), illustrating that in many cases the effects of differences in nutrient databases were much larger
than differences due to applying retention factors.
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4. Discussion

The current study evaluated the recipe function that was available in only one-fifth of the popular
available food diary apps. We found a varying quality of recipe features across selected apps which
were, on average, judged as suboptimal from research perspectives. Furthermore, capturing the
true nutrient intake of mixed dishes is a challenge for this innovative dietary assessment method.
A comparison of energy, macro-, and micronutrient contents of recipes between apps with a reference
standard recipe calculation showed variation in terms of their ability to accurately estimate nutrient
contents. In only three apps was micronutrient information available for recipes, and none of these
apps included a procedure to take nutrient losses due to recipe processing into account, and the
variability in micronutrient content databases was large.

This is the first study to evaluate the recipe function of current popular dietary assessment apps in
a standardized way in which the quality assessment was performed using a rubric of assessment which
was made prior to the evaluation. The scores of recipe function were discussed by two researchers,
which has eliminated mistakes and the bias of scoring. From the quality assessment of the recipe
functions, apps were given a mean overall score of 3.0 (out of 5.0) where the highest score was 3.9 and
the lowest 2.2. No correlations were found between the scores given in this study and the popularity
and user ratings in app stores. This could illustrate that the recipe function was not the main aspect
contributing to users’ overall app-experiences, or that researchers and users have different needs for
dietary apps [9]. Some simplified features might be favored by users since it was observed that the
user’s time invested for understanding and learning about an app should be small to sustain long-term
app usage [30], whereas researchers are more concerned with features that could enable detailed and
accurate data collection. This preference gap between the app users and researchers is important to
select suitable features to be included in dietary assessment tools for large nutrition monitoring studies.

Although the quality of recipe function in popular apps was not investigated before [13], several
features of a recipe function were investigated by others since they are also relevant for recording food
intake. In terms of options for searching ingredients in apps from the current study, all apps had a text
searching option and the majority of the apps had a barcode function. Barcode scanning has been
shown to save time and was favored by users in recording branded food items, however, the resulting
nutrient intake estimation depends largely on the quality of the underlying food composition database
within the app [31]. An aspect in which these apps differ from many web-based tools is that most
of them do not have portion images, which may due to limited space in the user interface. Previous
research has found that the incorporation of portion images was preferred by all age groups [9].
However the overall advantage of using portion images remains unknown [17]. In terms of nutrient
information, the energy and macronutrient information was more complete in apps than micronutrient
information, and this complied with the fact that energy and macronutrients were more closely
correlated with weight change, which was the aim for most apps.

Features specific for creating recipes were evaluated. For instance, in addition to other basic
features for entering recipes (i.e., add a name, ingredients, and serving number of the recipe), half of
the evaluated apps had the capability to enter a photo and cooking explanation. However, this
information was not used by the app to estimate nutrient intake. A photo of the recipe could
help identify and estimate the amount of food consumed by participants, and could also reduce
the extent of underreporting, especially for people with low literacy levels [17], while a cooking
explanation provided information relevant for nutrient retention estimation. However, with the extra
efforts required in using these features, they might be practical only in small-scale studies. Unlike
computer/web-based dietary assessment tools for research purposes [32], all apps lack reminders
for frequently forgotten ingredients when creating recipes (e.g., oil, spices, sugar, etc.), which may
have partly contributed to the systematic underestimation of macronutrients in most apps found
in other studies [33]. Also, current apps did not have pre-defined recipes that could be adapted by
users whereas, in some computer-based software, standard recipes could be adapted by switching
ingredients or changing the amount of ingredients [32]. However, the practicality of above features to
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be included in apps or to be used by participants, without the help of researchers, remains questionable.
As a simpler alternative, the feature for saving frequently consumed or favorite foods in current apps
was shown to save the efforts of users from entering the same recipes repeatedly and searching for
food in a comprehensive food list [34].

In the present study, differences in energy, macro-, and micronutrient contents were found
between the apps and the reference measure, which could be explained by several reasons. There were
substantial differences in the nutrient contents of the recipe ingredients between apps, showing the
differences in underlying nutrient databases. Apps were made by companies from different countries
and they might have incorporated a nutrient database from their own countries which might have
varying nutrient contents for certain foods, due to different cultivating environments [35]. Another
source of nutrient values might be input from the app users. This has the benefit of customization of
food consumed, however, has shortcomings in the accuracy of nutrients and can lead to quality losses
in the food database [14].

The inability to enter exactly the same ingredients across the apps and the limited choice of food
amounts may additionally explain part of the variation in nutrient estimation [33]. For example, it was
difficult to find an exact match of beef steak in hachee, since there was a large variety of beef steak
in different apps, and food amounts in grams were not available in some apps. However, for most
other recipe ingredients, this problem did not occur. For micronutrients, the difference was also due to
applying retention factors to the reference nutrient values, whereas all apps came up with the nutrient
content of recipes by simply adding up the nutrient content of each ingredient without taking nutrient
retention into account.

Variations of nutrient content of three recipes between apps and the reference measure were
observed in the present study, with fewer variations in energy and macronutrient than in micronutrient
contents. Similarly, comparable energy contents across apps were also observed in a study where
nutrient contents from the barcode scanning of 100 food products in apps were compared with product
labels [31]. Likewise, Griffiths et al. compared the results of five commercial apps with thirty 24 h
dietary recalls collected using the Nutrition Data System for Research (NDSR), and found a better
validity of energy estimation than nutrients [33]. The mean difference of 22 kcal in energy across
all apps and recipes in this study was similar with the 30 kcal mean energy difference of 23 apps
compared with the three days” weighed food record in the study of Chen et al. [14]. The wider range
of energy difference (—167 to 262 kcal) in Chen'’s study compared to the energy difference in our study
(—118 to 141 kcal) is possibly due to a higher number of apps evaluated, and a larger amount of foods
being entered in apps in Chen’s study. These findings indicated a relatively reliable energy estimation
for both generic and branded food items in the current apps. Still, it was noteworthy that the largest
difference of around 345 kcal between apps from both studies could impact the accuracy on both
individual and population nutrient intake estimations. A trend of underestimation of energy and
macronutrient contents in apps compared to reference in our study was consistent with the study
by Griffiths et al. The reason in the study of Griffiths was because the food preparation details were
captured by the reference (NDSR), but not in the apps. By contrast, in our study, the food details were
equally captured by both the reference and apps, and the reporting bias by participants did not exist
since the foods were being entered by researchers. Hence, the main reason of underestimation is the
inaccuracy of the nutrition databases within the apps.

A proper way of calculating the nutrient contents within a recipe requires the consideration of
nutrient loss during cooking. Currently, the nutrient retention for foods based on different cooking
processes is not calculated automatically in any dietary assessment tools, and none of the apps had
instructions on using the recipe function. Although existing recipes in food composition tables take the
nutrient loss into account, none of the food composition databases cover all the variations on recipes
made individually [14]. Alternatively, cooked ingredients could be chosen from the food list. However,
the availability of cooked ingredients was incomplete, and this would also require participants to know
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the amount of the prepared ingredients (which might be smaller due to shrinkage during preparation).
Hence, we entered ingredients as raw ingredients, as that is the most logical option for a user.

This is the first study to investigate the discrepancies of nutrient content between raw ingredients
in different apps, compared to a more accurate estimation that takes the nutrient loss into account. Only
three out of twelve apps had comprehensive micronutrient information, with both actual amounts
and percentage of RDA. The large variation in micronutrient content found in this study implied the
importance of choosing the right nutrient database, especially when micronutrient intake estimation is
part of the study purposes. The input of raw ingredients potentially leads to overestimation of several
heat-sensitive micronutrients, which was shown in the micronutrient comparison between NEVO with
the reference method in this study. Moreover, the results showed that the extent of difference depends
largely on the nutrient contents in the recipe. Therefore, it was suggested that retention factors are
most influential when applied to recipes with high micronutrient contents (e.g., boerenkool stamppot).

NEVO was chosen as the reference measure for nutrient estimations, which was a well-maintained
food composition database that had all the data on the nutrition values that were assessed and has
a standardized food-compiling procedure that follows the guidelines set by EuroFIR [36,37]. Retention
factors applied in this study were the most up-to-date values from the harmonization of retention
factors provided by 17 EuroFIR partners [38]. However, the results of nutrient differences may lack
representativeness in this study, due to a limited recipe selection. To develop a full picture of the
importance of recipe calculation, additional studies, that include more recipes and an evaluation on
their contribution to population nutrient intake, will be needed. Furthermore, the evaluation was done
only from a research perspective in this study, while user perspective was not analyzed for the apps.
Especially factors that could affect the individual’s ability to accurately enter the recipe consumed
were not examined. Further development of an app for large nutrition monitoring studies would
benefit from an evaluation on app users’ perspectives.

5. Conclusions

In popular food diary apps, the quality of recipe functions is suboptimal from a research
perspective. All apps follow a basic nutrition-calculating algorithm, without taking nutrient retention
into consideration. This leads to inaccurate nutrient intake estimations in the case that recipes are an
important source of micronutrients which are vulnerable to the effects of food processing. Moreover,
across apps, there is large variability in nutrient databases. From a research perspective and out of
interest regarding micronutrient intake, a balance between user-friendliness and completeness of the
recipe function is important. In order to obtain more insight into the need for more complex recipe
functionalities, further studies on their potential impact on the nutrient intake estimations in large
nutrition-monitoring studies and users’ perspective are needed.

Supplementary Materials: The following are available online at http:/ /www.mdpi.com/2072-6643/11/1/200/s1,
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Abstract: The Automated Self-Administered Dietary Assessment Tool (ASA24) is a web-based tool
that guides participants through completion of a 24-h dietary recall and automatically codes the
data. Despite the advantages of automation, eliminating interviewer contact may diminish data
quality. Usability testing can assess the extent to which individuals can use the ASA24 to report
dietary intake with efficiency, effectiveness, and satisfaction. This mixed-methods study evaluated
the usability of the ASA24 to quantify user performance and to examine qualitatively usability issues
in a sample of low-income adults (85% female, 48.2 years on average) participating in a nutrition
coupon program. Thirty-nine participants completed a 24-h dietary recall using the ASA24. Audio
and screen recordings, and survey responses were analyzed to calculate task times, success rates,
and usability issue frequency. Qualitative data were analyzed thematically to characterize usability
issues. Only one participant was able to complete a dietary recall unassisted. We identified 286
usability issues within 22 general usability categories, including difficulties using the search function,
misunderstanding questions, and uncertainty regarding how to proceed to the next step; 71.4% of
participants knowingly misentered dietary information at least once. Usability issues may diminish
participation rates and compromise the quality of ASA24 dietary intake data. Researchers should
provide on-demand technical support and designers should improve the intelligence and flexibility
of the ASA24’s search functionality.

Keywords: usability; human factors; dietary assessment; Automated Self-Administered Dietary
Assessment Tool (ASA24); 24-h dietary recall; low socioeconomic status

1. Introduction

Accurate and detailed characterization of dietary intake is essential in nutrition research. However,
assessment of intake is challenging because researchers must typically rely on self-reported methods,
including 24-h dietary recalls, food-frequency questionnaires, and food records [1]. Dietary intake data
collected in this way are subject to bias stemming from systematic measurement error, which may
result in inaccurate and imprecise estimates of dietary intake [2-4]. Compared to other self-reporting
instruments, 24-h dietary recalls capture intake with less bias, and have, therefore, emerged as a
preferred means of dietary assessment [3,4]. Until recently, dietary recalls were typically conducted
in person or via telephone using the computer-assisted Automated Multiple Pass Method. In this
method, trained interviewers use a five-step multiple-pass approach to obtain details of all foods
consumed from midnight to midnight the previous day, with manual data entry and auto-coding for
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most foods [1]. The time and expense of collecting and analyzing data gathered in this way made 24-h
recalls impractical for use in most large, community-based studies.

In 2009, the National Cancer Institute released the Automated Self-Administered 24-h Dietary
Assessment Tool (ASA24): an automated, self-administered web-based tool that guides participants
through completion of a 24-h dietary recall and automatically codes the data [5]. The ASA24-Canada
was released in 2014 and updated in 2016 [6]. The self-administered and automated nature of the
ASA24 has made collection of 24-h dietary recall data feasible in large studies. Nevertheless, despite
its apparent advantages, eliminating contact with an interviewer may introduce additional challenges
and different sources of error, with potential implications for the quantity and quality of the data that
are collected.

A limited number of studies have discussed the usability of the ASA24 in relation to the quality
of dietary intake data collected [2,7]. Although intakes were on average underreported on the
ASA24 compared to more objective measures [2,7], the ASA24 nevertheless appeared to provide
reasonable estimates of dietary intake comparable to, or better than, those derived from other self-report
methods [2,7-9]. Usability related to the acceptability and feasibility of use of the ASA24 has been
examined through retrospective questionnaires and by examining completion rates and intake data.
Findings suggest that lack of internet access and/or lower levels of computer literacy may limit
participation by some populations such as older adults, racial minorities, and those with lower levels
of education [8]. Participant workload may also pose a barrier with some participants finding it simpler
and faster to interact with an interviewer rather than to search for and select foods themselves [8].
Other limitations include difficulties finding exact matches for foods entered in search bars and a
resulting tendency to select items that appear near the top of the list [7,10]. Overall, varying levels of
receptivity to using the tool have been reported [8-10].

Comparing intake data generated by the ASA24 to data generated by other measures can allow
quantification of measurement error. However, such assessments cannot identify critical points in
the reporting process where errors often originate. Similarly, although retrospective reports can
identify socio-demographic characteristics of participants who find the ASA24 challenging to complete,
the comprehensiveness, accuracy, and ultimate usefulness of these data is diminished by a reliance on
participants’ ability to recall specific details of difficulties they encountered during a lengthy reporting
process (~40 min [9,10]) and by the questionable assumption that participants can accurately pinpoint
the errors they made as well as their cause. Moreover, the common use of closed-ended questions to
query participants limits the ability to describe specific qualitative aspects of usability in detail.

In this respect, the science of Human Factors may offer new avenues for understanding how
human-system interactions contribute to dietary measurement error, particularly those associated with
novel technology-enabled assessments such as the ASA24. Human Factors as a science is concerned
with the interaction between people and designed systems, and how human limitations and capabilities
(e.g., limitations in human working memory), and the design of those systems (e.g., the number of
digits an individual has to keep in working memory to complete a task), interact. The study of
usability is a sub-discipline within the Human Factors field that seeks to understand the extent to
which individuals can interact with a system to achieve a desired outcome with effectiveness (i.e.,
the accuracy and completeness with which specified users can achieve specified goals in particular
environments), efficiency (i.e., the resources expended in relation to the accuracy and completeness
of goals achieved), and satisfaction (i.e., the comfort and acceptability of a system to its users and
other people affected by its use) [11]. The construct of usability can also be extended to include
concepts such as learnability, legibility, readability, and comprehension. A simpler way to frame the
usability paradigm is to examine the relationship between usability, utility, and usefulness: a system
may be technically able to deliver utility (i.e., it is technically functional) when used under perfect
circumstances, but usability defines the required effort, and experience of, an individual to access that
utility and ultimately interact with the system to produce a useful outcome [12].
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There are a variety of methods available to evaluate software usability. The present study
follows the guidelines established by the International Organization for Standardization (ISO), where
usability testing of a system engages representative users to complete representative tasks within
the system in order to calculate measures of efficiency, effectiveness, and satisfaction [13]. Usability
testing also includes a methodology to identify usability issues and inform system design through
the collection and analysis of qualitative data regarding users’ perspectives [14]. Techniques such as
the “think-aloud” method encourage users to verbalize cognitive processes while interacting with the
system of interest [15].

To our knowledge, no previous studies have involved structured usability testing of the ASA24
to obtain quantitative measures of efficiency and effectiveness, or to describe qualitative aspects of
usability in detail. Therefore, the purpose of this study was to conduct a structured usability test of the
ASA24 to generate quantitative measures of user performance (i.e., task success, task time, food item
count, and usability issue frequency) and to examine qualitative aspects of usability (i.e., describe
usability issues and user preferences) within a specific user population. The results of the usability
test can provide insights that can be applied to configure and administer the ASA24 in a manner that
makes the tool more usable for individuals completing a dietary recall, thereby increasing the quantity
and quality of the dietary intake data that are collected.

2. Materials and Methods

2.1. Study Design

This was a cross-sectional, mixed-methods study in which qualitative and quantitative data
were collected concurrently and integrated during analysis. Mixed methods were used for purposes
of complementarity to provide a comprehensive and rich understanding of usability issues [16].
This study was conducted as a pre-cursor to a larger funded study designed to investigate the impact of
the British Columbia Farmers’ Market Nutrition Coupon Program (FMNCP) on the dietary intake and
mental and social well-being of program participants. The FMNCP provides low-income households
with 16 weeks” worth of vouchers that can be used to purchase selected healthy foods (e.g., fruits,
vegetables, nuts, seeds, legumes, meats) at participating farmers’ markets in the province of British
Columbia, Canada [17]. The study was conducted in accordance with the Declaration of Helsinki and
received ethical approval from the Conjoint Health Research Ethics Board at the University of Calgary
(REB17-1076).

2.2. Screening Criteria and Recruitment

Study participants were recruited from households participating in the British Columbia
FMNCP. Coupons are normally distributed via local community partner organizations in each
community. Given their existing relationships with FMNCP participants, community partner
organizations were asked to facilitate participant recruitment for the current study. The FMNCP
manager invited approximately 100 community partner organizations to recruit participants through
individual conversations as well as two broadcast emails, of which 13 agreed, with 6 ultimately
enrolling participants spanning 6 different communities. Attempts were made to specifically recruit
organizations working with older adults (>60 years) as well as recent immigrants to ensure the study
population was reflective of FMNCP participants who would participate in the subsequent larger
study. All participating community organizations were asked to recruit study participants via posters
posted on-site, broadcast or direct emails, announcements during programming, and/or in-person
requests. Interested individuals were asked to sign a preliminary consent form granting the research
team permission to contact them directly and conduct eligibility screening.

Participants were deemed eligible to participate if they met the following inclusion criteria: adults
(>18 years of age), not pregnant or breastfeeding, not reporting having a cognitive disability, and able
to speak, read, and write in English. Individuals without home internet/computer access were offered
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access to both at community partner organization sites. A total of 80 participants were screened for
eligibility across the 6 participating community partner sites. Of these, 67 individuals were eligible and
were invited to participate in the study, of which 51 agreed. Of those 51 individuals, 11 either cancelled
or did not show up to their session and were not able to be rescheduled. One individual attempted
to participate but was excluded due to technical difficulties. In total, 39 individuals participated in
the study. Usability testing typically gathers in-depth data from a small number of participants (i.e.,
n = 6-8) and, therefore, our sample size of 39 divided across three groups was deemed sufficient [18].

2.3. Participant Consent and Compensation

Individuals who agreed to participate in the study were sent an e-mail from the research team
containing a link to a web-based data collection platform and a username/login and password for
the ASA24. Participants read through an online consent form embedded within the web-based data
collection platform, and indicated their agreement to participate. Participants were offered $20 worth
of FMNCP coupons in appreciation of their time.

2.4. Online Survey Instruments

As the ASA24 is typically administered along with other multi-component questionnaires,
participants were asked to complete a socio-demographic and health-related survey prior to
using the ASA24 in order to approximate real-world conditions. The web-based data collection
platform (SurveyMonkey 2017; San Mateo, CA, USA) guided participants through completion of
a socio-demographic questionnaire and multi-item scales to assess social connectedness, perceived
stress, and mental well-being, followed by the ASA24 for Canada, 2016 (National Cancer Institute
2016, Rockville, MD). Briefly, the data collection platform consisted of the following:

e Socio-demographics: questions to assess date of birth, gender, race/ethnicity, citizenship status,
country of birth, marital status, pregnancy, perceived health status, household composition,
employment status, education level, household income, receipt of social assistance, food insecurity
status, language ability, and usual fruit and vegetable intake. Items were adapted from existing
surveys [19,20].

e  Social connectedness: the 20-item Social Connectedness Scale-Revised, a valid and reliable scale
that reflects individuals’” perception of their closeness with others [21].

e  Perceived stress: the 10-item version of the Perceived Stress Scale, a valid and reliable measure
of the degree to which respondents perceive their lives to be unpredictable, uncontrollable,
or overwhelming [22].

o Mental well-being: the 14-item Warwick-Edinburgh Mental Well-being Scale, a valid and reliable
measure of both feeling and functioning aspects of mental well-being [23].

e ASA24: the ASA24 guides participants through the process of reporting dietary intake for the
previous day [6]. The version used by the participants asked for a single “midnight to midnight”
recall and included the “location” and “source” modules. In an initial quick list, participants
select an eating occasion, indicate time of consumption, and report all foods and beverages
consumed at that time. Foods and beverages can be entered by typing in specific search terms
and selecting items from a returned list. Details of food types, preparation methods, portion sizes,
and additions are subsequently queried during a detailed pass. The system later prompts users to
recall frequently omitted /forgotten foods and to complete a final review of all items consumed.

2.5. Test Moderation and Procedure

A usability test moderator is a trained researcher who observes and directly interacts with
participants during a usability test. Like all other researcher/participant interactions, moderators
attempt to remain unbiased and neutral in their interactions. However, they also seek to elicit
information from participants regarding their experiences and may provide participants with assistance
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to complete tasks [24]. This interaction generates valuable qualitative data, but creates a scenario that
is less representative of how individuals typically interact with software under real-use conditions.
In the present study, participants were sequentially assigned to complete the ASA24 in one of three
“moderation groups” with varying levels of moderator involvement to account for the strengths and
limitations of moderator interaction. Sequential assignment was chosen to avoid creating groups of
unequal size. Table 1 provides a summary of the differences between the moderation groups that
participants were assigned to.

Table 1. Moderator-participant interactions and data sources in the three session types.

Moderator Participant Audio and Screen Survey
Probing Think-Aloud Recording Completion Data
Unmoderated X X X v
Semi-Moderated X X v v
Moderated v v v v

2.5.1. Moderated and Semi-Moderated Procedure

Participants assigned to the moderated (1 = 10) and semi-moderated (7 = 12) groups scheduled a
session to join an online meeting with one of two trained moderators who adhered to the same protocol.
Participants were encouraged to participate from their computing environment of choice. During
the session, participants completed the previously described survey instruments while moderators
used Adobe Connect Meeting software (Adobe Systems Incorporated 2017; San Jose, CA, USA) to
capture audio and screen recordings. For participants who could not provide digital audio, a telephone
recording was used to capture audio data. Moderators also maintained detailed written notes of
all sessions.

The process of providing assistance to participants was formalized a priori to ensure consistent
moderator—participant interaction. Participants in the moderated and semi-moderated groups were
informed that they should use the ASA24 as they normally would, and that moderators could answer
questions that they had while trying to complete each task. Moderators encouraged participants to
resolve their own problems independently before providing assistance. (For example, if a participant
stated “I do not know what to do now,” the moderator responded “Where do you think you would click
on the page to proceed?”). The moderator allowed participants to experience and express difficulty and
frustration until it was determined that the participant was likely to fail the task and /or withdraw from
the study, at which point the moderator offered to assist the participant to continue using the platform.

2.5.2. Unmoderated Procedure

Participants assigned to the unmoderated group were split into two sub-groups. The first group
of participants (1 = 5) scheduled a time, at their convenience, to participate in the study and complete
the surveys. The second group of participants (1 = 12) received an unannounced email inviting them
to complete the surveys and were given a 36-h time frame in which to do so. Limiting the time frame
for survey completion was intended to minimize reactivity, where participants change their dietary
intake in anticipation of having to report it [25,26]. Participants in the unmoderated group (n = 17)
completed data collection entirely independently and had no contact with the study team. Audio and
screen recordings were not collected for participants in the unmoderated group and only their survey
responses were available for analysis.

2.5.3. Data Collection

The data collection procedures for each of the three moderation groups (as presented in Table 1)
are described in detail below:
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e  Participant think-aloud: the think-aloud procedure involves asking participants to verbalize their
thoughts and feelings as they use a system [15]. Participants were asked to “think aloud” as they
completed the surveys, were encouraged to elaborate on difficulties encountered (both conceptual
and technical in nature), and asked to suggest remedies (where applicable).

e  Moderator probing: moderators encouraged participants to expand on their thoughts as they
worked through the platform and posed clarifying questions. This probing provided a more
comprehensive and in-depth perspective of participants” experiences using the ASA24.

e Audio and screen recording: participants’ screens were recorded while they completed the
survey instruments. Their verbalizations (think-aloud comments and responses to probing
questions) were audio recorded using the Adobe Connect Meeting platform or audio recording
over the telephone.

e  Survey data: a subset of the information entered into the online survey instruments (as described
in Section 2.4) was relevant to the usability test, including participant socio-demographic
information and administrative and food intake data from the ASA24 to measure task completion
and food item count.

2.5.4. Participant Tasks

Usability testing requires participants to complete pre-determined and standardized “tasks” that
are representative of how they would typically interact with a system. Within the context of this study,
the participant’s objective was to complete a dietary recall using the ASA24. The research team defined
four tasks and eight subtasks to meet this objective (see Figure 1). All participants had to complete
the tasks of reading the introduction (which includes the ASA24 User Orientation), reporting meals
(including snacks and drinks), adding details to those meals, and reviewing and completing their
entries. The subtasks varied depending on whether or not the individual had consumed the meal in
question (i.e., breakfast, brunch, lunch, dinner, supper, snack, just a drink, just a supplement).

Introduction/Instructions [———— Breakfast
Brunch

Lunch

Report a Meal
Dinner

ASA24
Supper

Add Details  mmm— Snack

Just a Drink

Review and Complete — Just a Supplement

Figure 1. Participant tasks and sub-tasks while completing a dietary recall with the Automated
Self-Administered Dietary Assessment Tool (ASA24).

2.5.5. Measuring Usability

Measuring usability requires specifying relevant usability metrics. The research team identified
four quantitative metrics relevant to the performance of participants using the ASA24. Task success
was measured for all three moderation groups, while task time, food item count, and usability issue
count could only be quantified for the moderated and semi-moderated groups.

1.  Task success, a nominal variable, was defined in three categories: failure to complete the task,
completion of the task with moderator assistance, and completion of the task without moderator
assistance. The task in this case was completing a dietary recall using the ASA24.

2. Task time, a continuous variable, was defined as the time between a clearly defined start and stop
point for each task.
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a.  Introduction/Instructions: start time when webpage has loaded, stop time when participant
clicks “report a meal” button

b.  Report a meal: start time when participant has selected a meal from dropdown menu, stop
time when participant clicks “finish with this meal” button

c. Add details: start time when participant clicks “add details” button, stop time when ASA24
system loads “review and complete” section

d.  Review and complete: start time when webpage has loaded, stop time when ASA24 system
dialogue box appears indicating participant has finished their dietary recall

3. Food item count, a nominal variable, was included to account for variability in participants’
dietary intake, which directly affects task performance (i.e., participants who had eaten more
food items had more data to enter). This measure was defined as the number of ASA24 output
line items in the analytic file for “Items” per meal. For example, if the separate line items for a
lunch meal were “fruit, Not Specified (NS) as to type” and “water, municipal” then that meal
was assigned a food item count of 2. If there were three separate line items for a meal such as
“fruit, NS as to type”, “water, municipal”, and “cheese, cheddar”, then that meal was assigned a
Food Item Count of 3.

4. Usability issue count, a nominal variable, was defined as the total number of individual usability
issues observed per task. Usability issue identification is defined in detail Section 2.6.2. Generally
usability issues are observable events or actions associated with difficulty completing a task.

2.6. Data Analysis

Data were collected from the online survey described in Section 2.4, as well as audio and
screen recordings from participants in the moderated and semi-moderated groups. The focus of
the quantitative and qualitative analysis presented here is only on the data directly relevant to the
usability test of the ASA24 (i.e., audio/screen recordings, participant characteristics as reported in the
socio-demographic questionnaire, and user data from the ASA24). This section reports the procedures
that were used to transform, aggregate, and analyze these data. Data were originally stratified by
age (i.e., seniors, non-seniors) and session type (i.e., moderated, semi-moderated, and unmoderated
because procedures differed by group). However, performance did not differ by age and, therefore,
data are stratified by session type only.

Two members of the research team worked together to first analyze the audio and screen
recordings to extract relevant qualitative (i.e., usability issues) and quantitative (i.e., usability metrics)
data for subsequent analysis. This audiovisual analysis process is described in Section 2.6.1 and
produced a time-stamped record of events and actions for each participant, which was the foundation
for subsequent analyses. Qualitative data (e.g., a participant verbalizing that they were unable to find a
food item they were searching for) were aggregated and analyzed using thematic analysis, described in
Section 2.6.2. Quantitative data (i.e., participant task times, task success, food item count, and usability
issue count) were analyzed using descriptive and correlational statistics, described in Section 2.6.3.

2.6.1. Audiovisual Analysis

Audio and screen recordings from moderated and semi-moderated sessions were analyzed using
a software package designed for the behavioural analysis of observational data (Noldus Observer XT
(v.14, Noldus Information Technologies, Wageningen, Netherlands). The methodological analysis of
audiovisual recordings of users interacting with a “health system” to derive quantitative and qualitative
data is described in detail by Mackenzie and Xiao [27]. Central to the process are clear and consistent
operational definitions, which analysts assign to events and actions of interest. An operational
definition is the formalization of an observable phenomenon so that a researcher can consistently and
independently detect it. In this case, the phenomena of interest were usability issues and usability
metrics. The two analysts systematically reviewed the audio/screen recordings to identify usability
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issues (described in Section 2.6.2.) and calculate task times and usability issue counts (described in
Section 2.6.3). The two research analysts worked through this process collaboratively and relied on
clear and consistent operational definitions to ensure accuracy in the analysis process.

2.6.2. Qualitative Analyses to Identify and Categorize Usability Issues

Usability issues are observable participant behaviours reflecting inefficiency, ineffectiveness,
dissatisfaction, or confusion during the use of a system, and an interpretation of the cause of those
behaviours relative to the participant’s attempt to complete a task [14]. The research team first identified
individual usability issues specific to each participant through audiovisual analysis. These individual
usability issues were then subject to thematic analysis, which involved identifying, analyzing, and
reporting patterns (themes) within the data [28] to aggregate individual issues into general usability
issues. For example, two users may have separately expressed confusion on how to complete an aspect
of a task, so these two individual issues would be categorized as the general issue “How to Complete
Task Unclear.” To aid in the interpretation of the significance and impact of these general issues, they
were then thematically organized based on their relationship to the usability constructs of efficiency,
effectiveness, satisfaction, and comprehension.

The two research analysts met regularly to review the data and ensure consistency in
interpretations of usability issues. The analysts determined that a point of thematic saturation was
reached during the analysis as few to no new usability issues were being observed in the data [29].
In addition, the frequency distribution of usability issues (presented in Section 3.5.) reveals that
usability issues in the tails of the distribution were being identified.

2.6.3. Quantitative Analyses of Usability Metrics

Descriptive statistics were calculated for task time, task success, usability issue count, and food
item count. Task success was calculated for all three moderation groups and nominally measured as
either failure to complete the ASA24, completion of the ASA24 with assistance, or completion of the
ASA24 without assistance. Average task time and individual usability issue count were calculated
for the moderated and semi-moderated conditions. The proportional frequency of general usability
issues (%) was calculated by dividing the number individual issues counted within a general usability
issue category, divided by the total individual usability issue count. For example, 33 out of the 286
individual usability issues were classified as “Question Not Understood”, the proportional frequency
of the general usability issue “Question Not Understood” was, therefore, 11.5%. The proportion (%) of
participants affected by a general usability issue was calculated by dividing the number of participants
that encountered each general usability issue by the total number of participants. Correlations between
task time, individual usability issue count, and food item count (from the add details task) were
calculated for the report a meal and/or add details tasks using Pearson’s product-moment correlation,
with p < 0.05 indicating statistically significant correlations. These quantitative analyses were conducted
in Microsoft Excel, (2013, Microsoft Corporation, Redmond Washington, WA, USA).

3. Results

3.1. Participant Characteristics

Across all moderation groups, participants were mostly female (85.3%) and non-seniors (55.9%).
The majority of participants had either only a high school diploma or below (41.1%), or a certificate or
diploma below a Bachelor’s degree (including trade certificates and diplomas) (563.7%). While 73.5% of
participants were severely or moderately food insecure, the majority still self-reported being in good
health or better (79.4%). All participants were from low-income households, which is a criterion for
participation in the FMNCP. All participants in the moderated and semi-moderated groups completed
the survey using a laptop or desktop computer. It is not known how participants in the unmoderated
group accessed the ASA24. Further details can be found in Table 2.
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Table 2. Participant characteristics according to moderation group.

Moderated Semi-Moderated ~ Unmoderated ! Total
(n=10) (n=12) (n=12) (n=34)
Age (years), mean =+ standard deviation (SD) ~ 43.9 +20.3 435+ 17.7 572+184 482 +19.0
Seniors, 1 (%) 4(40.0) 4(33.3) 7 (58.3) 15 (44.1)
Non-seniors, 1 (%) 6 (60.0) 8(66.7) 5(41.7) 19 (55.9)
Gender, 1 (%)

Women 7 (70.0) 10 (83.3) 12 (100.0) 29 (85.3)

Men 3(30.0) 2(167) 0(0.0) 5(14.7)

Self-reported health, n (%)

Excellent 0(0.0) 1(8.3) 0(0.0) 1(29)

Very Good 0(0.0) 1(8.3) 3(25.0) 4(11.8)

Good 8(80.0) 7 (58.3) 7 (58.3) 22 (64.7)
Fair 1(10.0) 3(25.0) 2(16.7) 6(17.7)
Poor 1(10.0) 0(0.0) 0(0.0) 1(2.9)
Education level, 1 (%)
Less than high school 1(10.0) 3(25.0) 4(33.3) 8(23.5)

High school 5 (50.0) 1(83) 0(0.0) 6 (17.6)

Trade certificate/diploma 1(10.0) 3(25.0) 0(0.0) 4(11.8)
Certificate or diploma below Bachelor’s 3(30.0) 4(33.3) 7 (58.3) 14 (41.9)
Bachelor’s degree 0(0.0) 0(0.0) 1(8.3) 1(2.9)
Above Bachelor’s degree 0(0.0) 1(8.3) 0(0.0) 1(29)
Employment Status, n (%)
Full-time employment 0(0.0) 2(16.7) 2(16.7) 4(11.8)
Part-time employment 1(10.0) 1(8.3) 1(8.3) 3(8.8)
Unemployed: Looking for work 1(10.0) 0(0.0) 1(8.3) 2(5.9)
Unemployed: Not looking for work 0(0.0) 4(33.3) 2(16.7) 6(17.7)
Student 1(10.0) 0(0.0) 0(0.0) 129
Retired 3 (30.0) 1(8.3) 5(41.7) 9 (26.5)
Other 4(40.0) 4(33.3) 1(8.3) 9 (26.5)
Receiving Social Assistance or Welfare, n (%) 5(50.0) 7 (58.3) 5(41.7) 17 (50.0)
Immigration Status, 1 (%)
Native Canadian
Immigrant: English-speaking country 9 (90.0) 12 (100) 10 (83.3) 31(91.2)
Immigrant: Non-English- 1(10.0) 0(0.0) 2 (16.7) 3(8.8)
speaking country 0(0.0) 0(0.0) 0(0.0) 0(0.0)
Marital Status, 1 (%)
Single, never married 1(10.0) 4(33.3) 4(3.3) 9(26.5)
Living common-law 3(30.0) 1(8.3) 0(0.0) 4(11.8)
Married 1(10.0) 2 (16.7) 1(8.3) 4(11.8)
Separated 2(20.0) 2 (16.7) 0(0.0) 4(11.8)
Divorced 3 (30.0) 1(8.3) 6 (50.0) 10 (29.4)
Widowed 0(0.0) 1(8.3) 1(8.3) 2(5.9)
Did not answer 0(0.0) 1(8.3) 0(0.0) 1(2.9)
Food Insecurity Status, 1 (%)

Food secure 1(10.0) 1(8.3) 3(25.0) 5(14.7)
Marginally food insecure 2(20.0) 2(16.7) 0(0.0) 4(11.8)
Moderately food insecure 3(30.0) 3(25.0) 7 (58.3) 13 (38.2)

Severely food insecure 4 (40.0) 6 (50.0) 2(16.7) 12 (35.3)
Access to Internet at Home, n (%)
Yes 8 (80.0) 11 (91.7) 12 (100.0) 31 (91.2)
No 2(20.0) 0(0.0) 0(0.0) 2(5.9)
Did not answer 0(0.0) 1(8.3) 0(0.0) 1(2.9)
Preferred Internet Access Method 2, 1 (%)
Computer 7 (58.3) 7 (58.3)

Smartphone 3(25.0) 3(25.0)

No Preference 2(16.7) 2(16.7)
Did not answer 1(8.3) 1(8.3)

! Not all participants in the unmoderated group completed the sociodemographic questionnaire; > Some participants
chose both computer and smartphone as preferred methods to access the internet.
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3.2. Successful Completion of Dietary Recall Using the Automated Self-Administered Dietary Assessment
Tool (ASA24)

In the unmoderated group 94.1% of participants (1 = 16) failed to fully complete the ASA24. These
16 failures can be characterized as follows:

e  Three participants did not initiate either the socio-demographic/health-related survey or
the ASA24.

e Two participants initiated the socio-demographic/health-related survey after the 36-h time
window had passed, but did not fully complete it or initiate the ASA24.

e  Eight participants completed the socio-demographic/health related survey within the 36-h time
window, but failed to initiate the ASA24.

e  Three participants completed the socio-demographic/health-related survey and initiated the
ASA24 within the 36-h time window, but did not fully complete the ASA24 (two of the three
participants quit before reporting a meal, and the third participant quit during the add details
section).

Participants in the unmoderated condition were not observed and there are insufficient data
to determine the specific causes of these failures. In the semi-moderated group, 91.7% (n = 11) of
participants completed the ASA24 with assistance from the moderator (one failed to complete the
ASA24), while 100% of the participants (n = 10) in the moderated group completed the ASA24 with
the assistance of a moderator. In total, only one participant was able to complete the ASA24 without
the assistance of a moderator (Figure 2). Because one participant in the semi-moderated group failed
to complete the ASA24, quantitative and qualitative data (task completion times, food item count,
and usability issues) from this participant were not available for analysis. Additionally, one of the 22
participants in the moderated and semi-moderated group accessed the ASA24 help feature.

100%
90%
80%
70% 1
60% 1
50% 1

Percentage of Participants

Un-moderated Semi-moderated Moderated

¥ Task Failure ™ Completed With Assistance ~ Completed Without Assistance

Figure 2. Task success rates for the three groups: unmoderated (n = 17), semi-moderated (1 = 12), and
moderated (1 = 10).

3.3. Time to Complete ASA24 Tasks

Across both the moderated and semi-moderated groups, the average time it took participants to
complete the entire ASA24 (i.e., all four tasks) was 27.4 min (standard deviation (SD) = 12.9). For the
moderated group, the average time to complete all tasks was 33.4 min (SD = 14.1). Average task
completion time for all four tasks in the semi-moderated group was 21.9 min (SD = 8.7). The report a
meal and add details tasks took the longest to complete (Figure 3).
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Figure 3. Average task completion times for each task in the moderated (1 = 10) and semi-moderated
(n = 11) groups. Error bars represent one standard deviation above and below the mean.

3.4. Food Item Count

Food item count provides an indication of differences in the number of steps a participant had to go
through to complete the add details task. The average number of food items reported in the add details
section in the moderated and semi-moderated groups was 11.5 items (SD = 5.7). The average number
of items reported by participants in the moderated group was 12.1 items (SD = 5.6). The average
number of items reported by participants in the semi-moderated group was 10.9 items (SD = 5.6).

3.5. Usability Issue Frequency

There were a total of 286 individual usability issues observed in the moderated and
semi-moderated groups across all four tasks. There were an average of 13.7 individual usability issues
(SD =8.0) identified per participant. The average number of individual usability issues that participants
in the moderated group encountered was 16.6 (SD = 8.7), while those in the semi-moderated group
encountered an average of 11.1 (SD = 6.2) usability issues. The majority of individual usability issues
were encountered during the report a meal and add details tasks (Figure 4).
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Figure 4. Average number of individual usability issues encountered by participants in the moderated
(n = 10) and semi-moderated (1 = 11) groups across all four tasks in the ASA24. Error bars represent
one standard deviation above and below the mean.
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The 286 individual usability issues identified were classified within 22 general usability issue
categories (see Section 3.7 for definitions and examples).

Question Not Understood (11.5%)
Next Step Unclear (9.9%)

AN A

Misclick (8.7%)

Question Skipped
Food Images Confusing 1
Filter Results' Feature Used Incorrectly 1
Example Answers Not Available ]
Undo/Go Back Function Unclear 1
Next Button Results in Lost Content 1
Desired System Feature Not Available :
Terminology Not Understood |
Decriptive Entered with Food Item 1
System Asks Irrelevant Question 1
Desired Answer Option Not Available
String of Items Entered in Search Bar ]
Question Not Completed - Unknown to User

User Specific Terminology Missing

General Usability Issue

Misspell

Submits Incorrect Information - Unknown to User 1
How to Complete Task Unclear
Misclick
Submits Incorrect Information - Known to User
Next Step Unclear

‘Question Not Understood 1

Search Item Missing/Inaccurate

Search Item Missing/Inaccurate (13.6%)

Submits Incorrect Information—Known to User (9.4%)

For example, 33 individual issues
were identified in which participants did not understand a question asked in the ASA24, all of
which corresponded with the general usability issue category of “Question Not Understood”.
The proportional frequency of these general usability issues is presented in Figure 5. This analysis
revealed that the five most frequent general usability issues were:

0%

Figure 5. Proportional frequency (%) of each general usability issue across all ASA24 tasks for
participants in the moderated (n = 10) and semi-moderated (1 = 11) groups.

The frequency with which participants in the semi-moderated and moderated groups encountered
each of the 22 general usability issues is presented in Figure 6. These data indicate the prevalence of
each general usability issue within the sample of participants (e.g., out of 21 participants, 14 (66.7%)
did not understand an ASA24 question at least once). The five most common general usability issues

across all participants were:

SN

Misclick (61.9% of participants, n = 13)

2%

Next Step Unclear (71.4% of participants, n = 15)
Question Not Understood (66.7% of participants, n = 14)
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Food Images Confusing

Filter Results' Feature Used Incorrectly
Question Skipped

Example Answers Not Available
Desired System Feature Not Available
Descriptive Entered with Food Item
Undo/Go Back Function Unclear

Next Button Results in Lost Content

String of Items Entered in Search Bar
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Figure 6. Percentage (%) of participants in the semi-moderated (1 = 11) and moderated (1 = 10) groups
that were observed being affected by each general usability issue at least once.

3.6. Correlated Measures

A strong and statistically significant positive correlation was observed between task time and
individual usability issue count for the report a meal task, 7 (91) = 0.81, p < 0.01. A moderate and
statistically significant positive correlation was observed between task time and individual usability
issue count for the add details task, 7 (89) = 0.54, p < 0.01. A moderate and statistically significant
positive correlation was observed between task time and food item count for the add details task,
7 (89) = 0.53, p < 0.01. Finally, a moderate and statistically significant positive correlation was observed
between food item count and individual usability issue count for the add details task, r (89) = 0.45,
p <0.01.

3.7. Usability Issue Definitions and Examples

The 22 general usability issues and their definitions have been thematically organized based
on their relationship to four typical components of usability: Effectiveness, Efficiency, Satisfaction,
and Comprehension.

3.7.1. Usability Issues Related to Effectiveness

Effectiveness refers to a user’s ability to perform a task [30]. Usability issue-related impediments
to successful completion of the ASA24 are presented in Table 3. A total of 99 out of the 286 (34.6%)
individual usability issues identified relate to the Effectiveness of the ASA24.
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Table 3. Descriptions and examples of usability issues related to Effectiveness.

Usability Issue

Definition

Example/Application

Question not
completed—unknown
to user

User does not answer questions because
they do not realize they are mandatory.

Occurred most often in the “frequently forgotten foods”
section in which some participants did not realize they had to
respond to each question and not just the questions they
found applicable (although the system later forced them to
provide an answer).

Undo/go back
function unclear

It is unclear to user how to undo an
action or revert back to a previous
screen.

Occurred when participants wanted to edit a meal that had
already been submitted as well as general confusion whilst
navigating through the tool.

Next step unclear

User is confused about how to proceed,
particularly when transitioning from
one task to the next.

The language on some buttons did not match the participant’s
expectations (e.g., the button to begin adding details read “add
details” but participants expected to click a button labeled
“next”). Buttons were also often located “below the fold”
meaning that participants had to scroll down to see them.

How to complete task
unclear

User knows what goal they want to
accomplish but are unsure how to do so.

Many participants were unsure how to begin entering their
meals or had other questions about how to do so. For example,
“I'made pizza last night so do they want me to put in pizza
dough, sauce, cheese?”

Submits incorrect
information—unknown
to user

User misinterprets task and enters
incorrect information but do not realize
that they have made an error.

Occurred most often when participants were entering food
items. Most of these issues were clear to the moderators.
However, when moderators suspected that participants had
entered something incorrectly without realizing it, they asked
the participant to clarify what they had intended to do. For
example, entering “coconut” instead of “coconut sugar”, but
believing they had entered coconut sugar.

Question skipped

User chooses not to answer a question.

Occurred when participants decided not to answer a question
that was asked (although the system later forced them to
provide an answer).

Descriptive entered
with food item

User enters either the size, amount,
number of food items, or other
adjectives in the search bar along with
the item itself.

Occurred when entering foods in the search bar (the ASA24
does not recognize adjectives). For example, searching for
“cold cereal” instead of “cereal”.

String of items
entered in search bar

User enters several food items into the
search bar, not realizing that items must
be entered individually.

Occurred when entering foods in the search bar. For example,
entering “eggs and toast and water and coffee” into the search
bar.

3.7.2. Usability Issues Related to Efficiency

Efficiency refers to the effort required by a user to complete a task [30]. In this study, efficiency
related to all of the factors that influenced a participant’s ability to complete tasks in a timely and
logical way. As opposed to Effectiveness, which refers to whether the user can accomplish a task,
Efficiency relates to the effort required to do so. Table 4 presents definitions and examples of usability
issues that relate to the ASA24’s Efficiency. A total of 131 out of the 286 (45.8%) individual usability
issues related to Efficiency. Table 5 lists food items users were unable to find using the ASA24 search
function. Although missing food items reduced the speed of completion, users were still able to
complete the task, albeit inefficiently and with inaccurate data.

Table 4. Descriptions and examples of usability issues related to Efficiency.

Usability Issue

Definition

Example/Application

User-specific
terminology missing

Users search for food items in terms
familiar to them that the system did not
recognize.

Occurred when entering foods in the search bar. For example,
searching for “Palm Bay” instead of the system recognized
“vodka cooler”.

System asks
irrelevant question

User is asked questions that are not
relevant based on answers they have
previously given.

Occurred most frequently during “add details” tasks. For
example, asking participants where they obtained the
ingredients for their tap water.

Search item
missing/inaccurate

Users search for food items in common
language but the system returns either
no results or inaccurate results.

Occurred when entering foods in the search bar. See Table 5
for a list of items not found in the system and items
participants substituted when this occurred.
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Table 4. Cont.

Usability Issue Definition Example/Application

Users proceed to the next task without

correctly submitting the previous task. ~ Occurred most often when participants selected “finish with

Next button results in

lost content

After realizing the error and reverting
back, content previously entered has
been lost.

this meal” (similar to the function of a “next” button) before
correctly adding all food items to the meal.

Submits incorrect
information—known

Users deliberately enter incorrect
information as determined via the
participant’s verbalization that they

Occurred in situations where the participant felt it was too
much work to enter the information accurately, because they
weren’t sure what the correct information was, or because they
wanted to enter the information accurately but did not know

to user doi how to do so. For example, “This is assuming I only had one
were doing so- burger so I am just going to say 3 patties because realistically I
had 3 burgers.”
Users click in a location that is different ~ Occurred often when the participants clicked “next”, which
Misclick from where they need to click to took them to the “add details” task when they had not
accomplish a task. finished reporting all of their meals.
Misspell User makes a spelling mistake when Occurred when entering foods in the search bar or via free

searching for or entering a food item.

text.

Filter results feature
used incorrectly

User misinterprets the list of food items

returned from search and/or uses it
incorrectly.

Occurred when participants reviewed the list of food items
returned from search. For example, the ASA24 offers
functionality to filter the search results. One participant
interpreted those filter options as ingredients for the food
items they were entering, which resulted in confusion.

Table 5. Food items searched by the user that did not return the desired result, and the resulting food
item selected by the user.

Food Item Searched by User

Food Item(s) Selected by User

Apricots
Greek yogurt
Coconut cookie
English muffin
Cherries
Coconut sugar
Green smoothie
Spring water
Gluten free bread
Garlic powder
French vanilla cream
Rice bowl

Chocolate covered almonds

Salt
Pepper
Chipotle steak sandwich
Tacos

Onion (as addition to hamburger)
Tomato (as addition to hamburger)
Dill pickle (as addition to hamburger)

Could not/did not enter item
Fruit-flavoured yogurt
Sugar cookie
Multigrain bread
Fruit salad
Coconut
Fruit smoothie
Bottled water
Whole wheat bread
Could not/did not enter item
Half and half cream
Could not/did not enter item
Candy
Could not/did not enter item
Could not/did not enter item
Steak
Taco
Could not/did not enter item
Could not/did not enter item
Could not/did not enter item

3.7.3. Usability Issues Related to Satisfaction

Satisfaction refers to a user’s subjective impression of how well a system meets their personal
expectations, and can include the desires of the individual with respect to how they would like to use
or interact with a system [30]. Table 6 presents a description of the general usability issues that related
to user Satisfaction in using the ASA24. A total of 12 out of the 286 (4.2%) individual usability issues
related to Satisfaction.
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Table 6. Descriptions and examples of usability issues related to Satisfaction.

Usability Issue Definition Example/Application

Occurred most frequently when answering whether the amount of food
eaten was “usual”, “much more than usual”, or “much less than usual”.
Many participants felt that “more than usual” or “less than usual”
would have provided a more accurate picture of the quantity eaten.

Response options did not
reflect the desired response
options of the user

Desired answer
option not available

Many participants wanted an easier way to accurately represent their
diet than what was offered by the system. For example, many wanted
to report water consumed intermittently throughout the day as
opposed to entering each instance of water consumption individually.

System features do not allow
users to report intake
accurately in a convenient way

Desired system
feature not available

3.7.4. Usability Issues Related to Comprehension

Comprehension refers to whether a user can understand the intended meaning of, and draw
accurate conclusions from, the information presented [31]. Comprehension is relevant to text as well as
images and diagrams [32]. Usability issues related to a participant’s difficulty or inability to understand
questions throughout the ASA24 are presented in Table 7. A total of 44 out of the 286 (15.4%) individual
usability issues related to user Comprehension.

Table 7. Descriptions and examples of usability issues related to Comprehension.

Usability Issue Definition Example/Application

Participants often misunderstood questions. This occurred most frequently
during the “add details” task, when the system switched from requesting
details about one item, to requesting details about another, but participants did
not notice that they were now being asked to add details of a new food item.

Users do not understand
the meaning of a question

Question not
understood

Users do not understand ~ Participants often did not understand specific words used in certain questions.

Terminology not

understood

the terminology contained
within a question

For example, when users were asked to report meals, both “dinner” and
“supper” were response options which led to user confusion.

Example answers
not available

Users are not presented
with the same answer
options as presented in the
question

There was a mismatch between the way some questions were phrased and the
available response options. For example, one participant was asked “String
cheese: was it regular, reduced fat, low fat, non-fat, or something else?” and the
answer options in the dropdown menu were “part skim”, “other”, and “don’t
know”.

Food images
confusing

Food images are not
representative of items
actually consumed

Occurred when food images did not resemble the items that participants had
eaten. For example, one participant who had sliced their zucchini lengthwise
became confused when the system showed a zucchini that was sliced
width-wise.

4. Discussion

This study presents the results of a structured usability test of the ASA24 within a group of
low-income, non-University and food insecure adults (85% female, average age 48.2 years) living in
British Columbia, Canada. Detailed quantitative data describing how effectively (i.e., task success)
and efficiently (i.e., completion time and usability issue count) participants were able to use the ASA24
were collected in real-time and analyzed. In addition, qualitative data were collected and analyzed to
explain why individuals performed the way they did. This approach represents a considerable advance
over previous studies that evaluated the usability of the ASA24 by relying on users to identify and
report retrospectively problematic issues themselves. When considering why researchers, developers,
and users of the ASA24 should be concerned about usability, it is helpful to consider the relationship
between usability, utility, and usefulness [12]. In the context of the ASA24, utility is the system’s
technical capability to enable participants to independently search for, and accurately enter, dietary
intake data in a manner that provides the information that researchers require. Usability refers to
quantitative and qualitative aspects reflecting how individuals feel and behave while interacting with
the ASA24 to access that utility. Usefulness can be considered from two perspectives: (1) how useful is
the ASA24 to users who need to enter dietary intake data and (2) how useful is the ASA24 for nutrition
researchers who rely on the data it captures. A system with “high usability” makes it easy for users to
access its utility and will, therefore, provide data that are more useful for researchers. The purpose
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of performing a usability test of the ASA24 was to quantify user performance such that usability
issues could be identified, quantified and qualitatively described in order to identify opportunities to
improve the tool.

4.1. Findings and Recommendations to Enhance Effectiveness of the ASA24

Only one of 17 participants in the unmoderated group successfully completed a dietary recall
using the ASA24. Thirteen of the 17 failed to initiate the ASA24 altogether while the other three
began the ASA24 but did not complete it. This task failure rate is concerning considering that the
unmoderated group was the most representative of how individuals use the ASA24 outside the context
of a usability test (i.e. without the support of a moderator). Time pressures may have prevented some
participants from initiating the survey within the 36-h time window provided. Others completed
the initial socio-demographic/health-related survey, but failed to initiate the ASA24, suggesting
that problems logging into the ASA24 and/or participant fatigue led to task failure. Because these
participants were not recorded or observed by the moderator it is not possible to identify specific factors
that contributed to task failure. Notably, 58% of unmoderated participants were seniors, whereas less
than half of those in the other groups were seniors. Among those who initiated, but did not fully
complete the ASA24, general usability issues described in Section 3.7.1 can provide a sense of why they
may have struggled successfully to complete the ASA24 independently. Of particular note was the
common issue of participants being uncertain of the sequence of steps needed to complete a task (Next
Step Unclear = 71.4% of participants (15 of 21), How to Complete Task Unclear = 52.4% of participants
(11 of 21)). When participants were unclear on how to proceed with a task, it is likely that without the
support of a moderator they may have exited the system or potentially entered data incorrectly.

Further study is needed to understand task failure in individuals using the ASA24 without the
assistance of a moderator. Website analytics can provide a useful means of determining problematic
sections of the ASA24. For example, a website’s Exit Rate is the percentage of individuals who leave a
website from an individual page [14]. The pages of the ASA24 with the highest Exit Rates will likely
be associated with task failures. These data could be analyzed by ASA24 developers.

In the moderated and semi-moderated groups, 21 of 22 participants completed the dietary recall
process successfully; however, all of these participants relied on assistance from a moderator at
some point to assist them in navigating through usability issues. Whether or not this assistance was
necessary for participants to complete a dietary recall is unclear; however, it is clear that the majority of
participants benefitted from the support of a moderator. These quantitative data indicate that although
the self-administered nature of the ASA24 facilitates data collection, it may ultimately result in low
participation rates for groups who encounter frequent usability issues. As the complexity of interaction
with a software system increases, it is reasonable to expect that a degree of technical support might be
required to support individuals in using that system. None of the participants indicated that they had
used the ASA24 before and, therefore, they can be considered novices, demonstrating performance
typical of a population of untrained users. Based on these findings, researchers relying on the ASA24
to assess dietary intake in similar populations might expect novice users to require technical support
to effectively use the tool for the first time. Thus, availability of on-demand technical assistance may be
important to maximize the quantity and quality of data that are collected via the ASA24 and support
participant retention.

4.2. Findings and Recommendations to Enhance Efficiency of Use of the ASA24

Participants in the present study completed the ASA24 more quickly (~27 min) than has been
reported in other studies (~35 min [9,10]) despite the think-aloud procedure and interaction with
a moderator. However, these times are comparable to the range reported on the ASA24 website
(17-34 min). A strong correlation was observed between task time and food item count in the
moderated and semi-moderated groups, with participants consuming an average of 11.5 items daily.
Although other studies have not reported item count, an average of 11.5 items daily appears low.
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Given that the majority of participants had experienced moderate or severe food insecurity during the
previous month, this low item count may be related to diminished food access and dietary diversity
in our sample, potentially leading to lower ASA24 completion times relative to previous studies.
Other characteristics, such as living alone or aging, may also be implicated due to reduced interest in,
or capacity to cook. Individuals who are less inclined to cook may consume relatively simple meals
with few ingredients. In addition to participant characteristics, the context of completion may also
have been influential. Moderators assisted all participants in the moderated and semi-moderated
groups at least once. Therefore, it is possible that the task completion times we observed are simply
what can be expected when participants have support to use the tool.

Task time itself is a particularly meaningful usability metric when evaluating repetitive tasks [14].
If task time can be reduced for tasks that most participants must perform repeatedly, gains in efficiency
will be achieved. The add details task was the most lengthy to complete for both the moderated and
semi-moderated groups. Therefore, supporting users during the add details task will have the greatest
impact with respect to enhancing efficiency of use of the ASA24.

Another aspect of how efficiently the ASA24 can be used relates to the overall number and types of
usability issues that participants encountered. Participants encountered an average of 13.7 individual
usability issues per session. This is concerning considering that usability issues can diminish data
quality and present opportunities for task failure or study dropout. The most common general usability
issue, experienced by 76.2% of participants (16 of 21), was the inability to find a specific food item.
Considering that one of the primary functions of the ASA24 is to enable users to record food intake
independently, the prevalence of this usability issue is noteworthy. The inability to locate items was a
key source of dietary measurement error. For instance, in the moderated and semi-moderated groups,
71.4% of participants (15 of 21) indicated that they knowingly entered incorrect information at least
once, primarily because they were unable to find a specific food item using the search function. Table 5
demonstrates that when this occurred users often selected other items (e.g., substituting steak for a
chipotle steak sandwich), used the “I can’t find what I'm looking for” function (the impact of which
was having to answer supplemental questions, some of which were irrelevant), or omitted the item
entirely. The quantitative impact of this error is unclear, as the current study was not intended to
quantify measurement error, but rather to examine its source in order to understand how to mitigate
it. However, others have shown that energy intake in adults aged 50-74 years is underestimated by
15-17% on the ASA24 compared to recovery biomarkers, with no difference in mean protein and
sodium densities [2]. The current findings can provide complementary data to understand factors that
contribute to misreporting of energy intake using the ASA24.

Additional search-related usability issues concern findings that participants often entered a string
of items (e.g., “eggs and toast and water and coffee”) or entered additional descriptive information
(e.g., “cold cereal”) into the search bar. Users will increasingly expect any web-based platform they
interact with to provide them with “Google-Like” performance, likely with little appreciation for
the investment that providing this functionality requires of the developer. Therefore, in addition to
adding new food items to the ASA24 database, the intelligence of the ASA24 search algorithm could
be improved to recognize plural forms of food items (e.g., the system returned a result for “taco” but
not “tacos”) and to suggest potential matches when multiple words or descriptors are entered into the
search bar.

Usability issues related to misclicking and misspelling were also prevalent. This could be a
reflection of users not knowing what to do in the system, contributing to data errors or task failures
(e.g., exiting the system). Additionally, entering an incorrectly spelled food item into the system can
lead the user through additional irrelevant questions. This contributes to increased task times, and
potentially decreased user satisfaction. This inefficiency could be quantified in subsequent usability
tests using the metric of “lostness” [33] by comparing the number of steps an individual performs to
the minimum number of steps possible. This calculation would enable the impact of misclicks to be
more thoroughly understood from an efficiency perspective. Some degree of user error (whether typos
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or accidental clicks) is outside the control of designers or researchers, however others can be addressed
through relatively simple design changes (e.g., the visual differentiation or clarification of a button or
text field’s function).

4.3. Findings and Recommendations to Enhance Satisfaction with the ASA24

Satisfaction in use is perhaps one of the most easily conceptualized aspects of usability;
presumably, if someone is happy using a system then it is likely usable. Previous studies have asked
participants to self-report their satisfaction with the ASA24, finding that the majority of participants
had a favourable view of the system [8,34-36]. The current study examined specific system features
that contributed to user satisfaction or dissatisfaction. Given these different outcomes, ability to
compare our findings with those of others was limited. However, similar themes emerged in our study
compared to others’, including frustrations about the time involved in completing a recall and how
to proceed to the next step, not understanding how to use the search function, and not being able to
find food items [10]. Users who feel that a system is not designed to allow them to use it intuitively
are unlikely to want to continue to use that system. One design approach to address satisfaction is to
provide users with shortcuts that allow them to duplicate repetitive actions [37]. Future usability tests
could compare how easy individuals expect a task to be before attempting it (expectation score) to
how easy they found it after completing it (experience score). When users expect a task to be easy to
complete but then find it difficult (i.e., expectation score is much higher than the experience score), it is
very likely to lead to dissatisfaction [38]. This approach would help prioritize potential design changes
specifically to improve satisfaction.

4.4. Findings and Recommendations to Enhance Comprehension of the ASA24

The second most frequent general usability issue identified was Question Not Understood, which
accounted for 11.5% of all issues and was experienced by 66.7% of participants (14 of 21). Often, when
participants were confused, it was observed that they had only partially processed the elements of the
question being asked (e.g., mistaking which particular food item they were being asked about) or that
they had not understood the specific words or phrasing of the question itself (e.g., general comments
such as “I don’t know what this means.”). An individual who does not understand what the ASA24 is
asking them to do, or who becomes confused by terminology or imagery, is likely to have difficulty
using the tool to provide accurate information. A general approach to enhancing comprehension is
to match the user’s mental model (e.g., ensuring language doesn’t exceed the user’s reading level,
presenting visuals in a way that match the way the user consumes the food, requesting measurements
of quantity that align with the user’s method of measurement, etc.). This can be challenging given
the wide variability in individuals’ mental models, particularly for a tool such as the ASA24 that is
intended to be used broadly across multiple populations. Two alternate design strategies that might be
considered would be to: (1) allow users to customize the ASA24 to match their mental model (e.g.,
switching units from metric to imperial, alternative visual depictions of foods, customizable reading
levels for text presentation), or (2) standardize the tool but ensure that it has been optimized to meet
the needs of the majority of users through comparative comprehension testing.

4.5. User Characteristics and Usability Testing

Participants were recruited from a population participating in a nutrition coupon program and
as such were primarily low-income, low- to mid-educated, and food insecure adults, many of whom
were seniors. Older adults and those of a lower socioeconomic status may have lower computer
literacy compared to the general population [39] and it is, therefore, possible that some of the usability
issues identified here may be particular to this sample. As we did not assess computer literacy, it is
unclear whether this was an issue in our sample. Darajeh and Singh [40] have summarized design
recommendations to enhance usability for those with lower computer literacy, including creating
simple layouts with limited clutter, providing user guides, reducing the use of complex terminology,
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creating simple navigation paths, using similar functions for different tasks, and including descriptive
text for tool use. Dietary inequities and strategies to support optimal dietary patterns among older
adults are significant concerns worldwide, and thus our findings can inform nutrition studies among
these priority populations.

4.6. Strengths and Limitations

One of the strengths of the mixed methods approach was the ability to both quantify and
qualitatively describe usability issues, providing a much more comprehensive and in-depth perspective
of the usability of the ASA24. Moreover, the think-aloud procedures and inductive nature of the
analyses enlarged the scope of investigation beyond researchers’ pre-determined questions and
response options to uncover novel usability issues. The qualitative analysis had a sufficient sample
size to reach a point of thematic saturation and we are, therefore, confident that the analysis uncovered
the most salient usability issues in this particular sample.

The validity of a usability test is partially dependent on creating test conditions that reflect the
actual conditions under which a user interacts with a system. The presence of a moderator may
create a Hawthorne or Observer Effect in which participant behavior changes due to being observed,
participants are overly reliant on assistance from a moderator to complete a task, or experience
heightened sensitivity to usability issues. Having participants think-aloud may also create additional
cognitive demand and thereby alter task performance. These factors could all contribute to a test
scenario in which reported usability issues and performance metrics are not perfect representations of
those that would have been encountered during actual use.

In addition, the definition of task failure as used in this study is specific to our methodological
design. Participants were not given multiple attempts to complete the ASA24; if they failed to complete
it upon their first attempt this was recorded as a task failure. However, the tool does allow participants
to complete a dietary recall in multiple attempts. This study also looked at the ASA24 when used in
combination with a socio-demographic/health-related survey. This survey was administered before
the ASA24, which may have influenced participant behavior. For example, completing surveys prior
to the ASA24 may create additional fatigue, affecting motivation to complete the ASA24. Finally,
participants in the unmoderated group may have failed to complete the ASA24 for reasons unrelated
to its usability (e.g., interruptions, variability in motivation). Researchers interested in using the ASA24
in a similar population should be aware of these potentially high participant drop-out rates.

4.7. Help Documentation and Training in Relation to Usability.

The ASA24 does provide a help guide for users and Best Practices information for researchers,
in addition to the help feature embedded in the ASA24 [41]. However, just one of the 22
participants observed in the moderated and semi-moderated groups accessed the ASA24’s help
feature. Help functions do not, however, improve usability because they place the onus of efficient
and effective system use on the user, increasing their workload rather than making system changes to
enhance usability. Moreover, users often do not read support materials [42]. One of the main benefits
of conducting usability testing, or designing usable systems, is that the process will reduce costs
associated with training and customer support [43].

5. Conclusions

This study demonstrates how the usability of the ASA24 affects its usefulness for a particular
group of users entering dietary intake data as well as for researchers studying that information.
One of the primary benefits of the self-administered nature of the ASA24 is the relative ease (for
researchers) with which dietary intake data can be collected. However, the results of this study
highlight important limitations of this self-administered approach. Task success data reveal that the
vast majority of individuals in our sample had difficulty independently using the ASA24 without the
support of a moderator. Moreover, the frequency and nature of usability issues identified suggest that
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information was often entered inaccurately, as 71.4% of participants knowingly misentered dietary
information at least once. Other key usability issues encountered were related to difficulties using
the search function, not understanding certain questions, uncertainty regarding how to proceed to
the next step, and misclicks. It is not clear to what extent our findings are specific to our sample
of primarily non-university educated adult females (average age 48.2 years), with a low household
income. We expect that other groups may encounter similar challenges, albeit perhaps at a lower
frequency. Our findingscan help to understand how the ASA24 can be improved to make it more
intuitive and simple for individuals from a wider variety of populations to use, thereby enhancing
the accuracy of dietary intake reporting. The following recommendations are intended to address key
usability issues users encountered.

5.1. Key Recommendations for Designers of the ASA24

1.  Improve the intelligence of the ASA24 search algorithm such that it is responsive to user search
behaviors including pluralization, synonyms, multi-item searches and misspelling.

2. Remove irrelevant questions (e.g., asking the user where they obtained the ingredients for their
tap water).

3. Useintuitive language and terminology (e.g., instead of a button that says “add details”, change
so it reads “next”).

4. Create a demonstration video that shows participants how to use the ASA24 and that addresses
key usability issues they may encounter (i.e., those that developers cannot remedy through design
changes).

5.2. Key Recommendations for Researchers Using the ASA24

1.  Technical assistance should be available on demand to assist participants who are using the
ASA24, particularly for first time users.

2. Strategies for effective use of the ASA24 should be explained in advance.

3. Request and allow participants to report retrospectively that they entered information that was
not accurate (e.g., if they could not find an exact match for a particular food) and allow them to
report what the actual food was.
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Abstract: Objective: To pilot test the effectiveness of “MyNutriCart”, a smartphone application (app)
that generates healthy grocery lists, on diet and weight. Methods: A pilot randomized trial was
conducted to test the efficacy of using the “MyNutriCart” app compared to one face-to-face counseling
session (Traditional group) in Hispanic overweight and obese adults. Household food purchasing
behavior, three 24-h food recalls, Tucker’s semi-quantitative food frequency questionnaire (FFQ),
and weight were assessed at baseline and after 8 weeks. Statistical analyses included ¢ tests, a Poisson
regression model, and analysis of covariance (ANCOVA) using STATA. Results: 24 participants
in the Traditional group and 27 in the App group completed the study. Most participants were
women (>88%), with a mean age of 35.3 years, more than a high school education (>80%), a family
composition of at least three members, and a mean baseline body mass index (BMI) of 34.5 kg/m?.
There were significant improvements in household purchasing of vegetables and whole grains,
in individual intakes of refined grains, healthy proteins, whole-fat dairies, legumes, 100% fruit juices,
and sweets and snacks; and in the individual frequency of intake of fruits and cold cuts/cured
meats within the intervention group (p < 0.05). However, no significant differences were found
between groups. No changes were detected in weight. Conclusions: “MyNutriCart” app use led
to significant improvements in food-related behaviors compared to baseline, with no significant
differences when compared to the Traditional group. Cost and resource savings of using the app
compared to face-to-face counseling may make it a good option for interventionists.

Keywords: nutritional application; smartphone; DGA; dietary behaviors; household food purchase
behavior; obesity; overweight weight control

1. Introduction

Diet-mediated chronic conditions affect half of the US adult population [1]. These could be prevented
by following the science-based Dietary Guidelines for Americans (DGA) [2]. However, adherence to these
guidelines is suboptimal [3]. In fact, several task forces have pinpointed the gap in translating the DGA
recommendations into positive dietary changes [4-6], noting that the main barrier is the translation of
the guidelines into practical, food-based recommendations and as such, new approaches are needed to
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implement these guidelines. In particular, innovative approaches should aim to improve grocery shopping,
a critical moment when individuals need assistance for purchasing healthy foods [7]. With the huge food
variety available in supermarkets, together with a large amount of nutritional information, and the limited
time to read and understand nutrition labels, individuals may feel overwhelmed [8]. In fact, it has been
reported that the main barrier to healthful shopping is a lack of self-efficacy in choosing healthy foods [9].
Therefore, interventions aimed at guiding individuals to choose healthy foods when grocery shopping may
increase DGA adherence. This could be achieved by leveraging technology to help people make better
choices at the point of purchase.

The use of tablets or smartphones for accessing the Internet is widespread, offering a unique
platform for interventions. In 2016, 68% of all US adults owned a smartphone and 77% of them
downloaded applications (apps) [10]. A myriad of nutrition and fitness apps have become extremely
accessible via portable electronic devices with the capacity to calculate caloric requirements, track
food intake and physical activity, and access healthy cooking information. In fact, studies have found
better self-monitoring adherence and changes in dietary behaviors and/or weight control from using
smartphone apps compared to traditional methods [11,12]. In addition to self-monitoring, a study
found that “nudging” people to make healthy food purchases from local vendors resulted in improved
awareness and consumption of healthy foods [11]. However, there are no available apps that translate
the DGA into a healthy grocery list.

Therefore, in collaboration with technology experts, we developed the “MyNutriCart” app to help
individuals make smart and healthy choices when purchasing foods at grocery stores [13]. This app
automatically generates a healthy grocery list following DGA recommendations and accounts for
the family’s nutritional needs, within a pre-specified budget [13]. The purpose of this study is to
report on the pilot test of this app for improving household food purchase behavior and for improving
individual dietary behaviors, compared to a traditional nutritional counseling face-to-face session in
a convenience sample of overweight and obese Hispanic adults. As a secondary aim, we examined
the potential effect of the intervention on weight control. We hypothesized that the use of the app
would improve household food purchasing behavior when grocery shopping, which in turn would
positively influence the individual frequency and intake of healthy foods and weight control compared
to a traditional nutritional counseling session.

2. Materials and Methods

2.1. Study Design

We conducted a pilot randomized clinical trial to test the effectiveness of the “MyNutriCart” app
on household food purchase behavior, individual dietary behaviors, and individual weight control.
Recruited participants were randomly assigned to either the App group or the Traditional group for
8 weeks. Diet and weight were assessed at baseline and after 8 weeks of intervention. This time
frame was chosen for this pilot study as this is the time frame used in similar studies using apps
with significant changes in diet and/or weight. Recruitment was conducted between December
2015 and March 2016 and all study visits were conducted at the Medical Sciences Campus, University
of Puerto Rico. The Institutional Review Board at this institution approved this study. Prior to the
study, all recruited participants provided written consent.

2.2. Participants, Eligibility, and Recruitment

For this pilot trial, a convenience sample of participants was recruited between January-March of
2016 using flyers posted on the university intranet and around campus, shopping malls, clinics/medical
offices, and by word of mouth. Overweight and obese adults aged 2145 years were invited to
participate in a study to test an app that helps individuals select healthier food, which could impact their
dietary behaviors and weight control. Additional inclusion criteria were: being the main household
shopper (i.e., responsible for >50% of the household grocery acquisition), shopping at a grocery store
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at least once weekly, owning a smartphone (iPhone or Android) with internet access, and willingness
to be randomized into one of the two groups. We excluded those already using apps to monitor diet
and/or physical activity or those enrolled in weight loss programs. Pregnant women, individuals
with chronic health conditions (i.e., diabetes, kidney disease), or with reported food allergies were
deemed ineligible.

2.3. Intervention Groups

Participants were equally randomized to either the App or Traditional groups using a simple
computerized randomization scheme. Participants were assigned their allocation following a
sequentially numbered container mechanism. Randomization was done by the statistician.

2.3.1. “MyNutriCart” (App Group)

Participants allocated to the App group were guided by the research assistant in how to download
and navigate the app. The MyNutriCart app was developed to guide individuals to make smart and
healthy choices when purchasing foods at grocery stores, as recently published [13]. Briefly, the app
provided a healthy grocery list based on the daily nutritional recommendations of the individuals that
constitute the participant’s household. This list took into consideration a pre-defined budget, which
was maximized by connecting to supermarkets’ discounts. It also integrated the following aspects:

e  Estimation of energy requirements for each family member based on age, sex, and physical activity
using the equations from the Dietary Reference Intakes [14]. The app automatically subtracted
500 kcals from the total calculated energy requirement for study participants only (not family
members) to allow for a weight loss of about 1 pound /week [15];

e  General food recommendations from the DGA [2], such as consumption of half of the grains as
whole grains and low-fat dairy products, in addition to a variety of protein foods (beans, eggs,
poultry, fish, and seashells);

e Number of servings per food group, based on the caloric level of each member, as recommended
by the DGA [2]. Servings of each food group from each member were added to get a total of each
food group per day;

e Intended number of days of the shopping event to multiply the servings per food group to get a
total of foods to purchase;

e  Participant’s pre-specified budget and weekly discounts offered by the largest local supermarkets
(which was retrieved from an independent and free website service) to maximize the budget;

e  Sample menus for each caloric level of the household based on local preferences, which were
previously designed by a registered dietitian (RD).

The primary goal of the app use is the establishment of a healthy eating pattern; hence, energy
dense items or foods containing added sugar (i.e., sweetened beverages, juices of any type, alcoholic
beverages, sweets and desserts, and non-healthy snacks) were excluded from the grocery list.
Only healthy versions for the following main food groups were included: fruits, vegetables, dairy
products, cereals and grains, and protein foods. Participants were informed that this list would cover
most of their energy requirements, but not all, as it excluded items not purchased weekly, such as
fats and oils, and other items such as condiments, sauces, spices, coffee or tea, and bottled water.
Participants were also instructed to use the app every time they went grocery shopping or at least
once per week. To generate the list, the user had to open the app before each grocery event, select a
budget amount, and a time frame for that grocery event (i.e., $100 for 7 days). The app then generates
a grocery list for each supermarket included in the app based on their weekly specials. Therefore, each
list generated was unique. Participants were free to choose from the supermarkets included in the
app to do their grocery shopping, based on the convenience of its location, the total amount estimated
to pay if all the foods were purchased, and the discounts offered that week. The app did not include
notifications or reminders to use the app.
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2.3.2. Traditional Nutritional Counseling (Traditional Group)

This group received one face-to-face counseling session with an RD at the beginning of the study.
The RD calculated the participant’s energy requirements using the Dietary Reference Intakes [14] and
subtracted 500 kcals to allow for weight loss [15], similar to the App group. The RD provided the
participant with the MyPlate Tip sheets [16], which are based on the DGA recommendations and contain
the recommended food groups’ servings per caloric level. Also, participants received a sample menu,
similar to the menu included in the app. There were no follow-up calls or additional sessions during
the study.

During the study, all participants were instructed to maintain their usual physical activity level and
to avoid partaking in other programs or sessions related to weight loss or promoting healthy dietary
behaviors. Compliance with these study requirements was verified through a brief questionnaire
at post-intervention.

2.4. Instruments and Measures

Trained research assistants conducted measures and interviews, as described below:
- Socio-demographics

A short questionnaire was completed at baseline with information about age, sex, educational
level, and family composition (number, age, and sex of family members).

- Household food purchase frequency

This was evaluated from grocery receipts collected at baseline and post-intervention. This method has
been previously validated to assess household food purchasing behavior [17]. In particular, the purchasing
frequency of the following key DGA food groups was evaluated from each grocery receipt: fruits,
vegetables, whole grains, 100% fruit juices, and sugar-sweetened beverages (SSB). These were the only
food groups selected as they were easily identifiable by name from the grocery receipts. Participants were
asked to provide all the grocery receipts available from their grocery events near the baseline visit and
all of their grocery receipts during the study, either by uploading a picture of the grocery receipt in the
app, sending scanned copies by email, or submitting hard copies. We reminded participants throughout
the study to keep all their grocery receipts. Each time the food group was identified in the receipt, it was
counted as a frequency of one. For example, if a receipt showed: grapes $1.05, oranges $2.33, and bananas
$0.99, this was counted as 3 fruits. It was not possible to evaluate amount purchased as this information
was not readily available from all grocery receipts. Results were averaged for each food group from the
available receipts collected at baseline and at post-intervention.

- Dietary behaviors at the individual level

Participants were interviewed by trained research staff to complete the following questionnaires
at baseline and at post-intervention:

e Food frequency questionnaire (FFQ). We used a short version of the Tucker’s semi-quantitative FFQ,
which was validated in Puerto Rican adults [18]. The questionnaire was interview-administered,
and respondents were asked to estimate the frequency of food consumption from 10 categories (daily,
weekly, monthly), using the preceding eight weeks as the reference period. Summary questions for
the frequency of consumption of the following food groups: fruits, vegetables, starchy vegetables,
refined and whole grains, legumes, healthy proteins, red meats, cold cuts and cured meats, whole-fat
and low-fat dairy products, 100% fruit juices, and SSB were conducted.

e Intake of foods using three 24-h dietary recalls. These were conducted during 2 non-consecutive
weekdays and one weekend day using the Nutrition Data System for Research multi-pass method
(5 steps) (Version 25, 2014) [19]. The baseline 24-h recalls were done before participants were
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informed about their group assignment; one was done in person at the baseline visit and the
other 2 recalls were done by phone in the following 2-3 days. For the post-intervention recalls,
we completed the first 2 by phone and the last one when they came to the post-intervention
visit. For the first recall, we used a portion size booklet displaying standardized food servings
as a visual aid for participants to estimate their usual portion sizes. A copy of this booklet was
provided to each participant to take home to help in estimating portion sizes when we called
them to complete the other recalls by phone. Intake (in servings) from the following food groups
were averaged for the 3 days for both baseline and post-intervention recalls: fruits, vegetables,
starchy vegetables, refined and whole grains, legumes, healthy proteins, red meats, cold cuts and
cured meats, whole-fat and low-fat dairy products, 100% fruit juices, SSB, and snacks and sweets.

- Weight control at the individual level

Weight and height were assessed at baseline and at post-intervention (only weight).
These measurements were taken with participants wearing light clothing, no shoes, hats, or any
other objects that could cause interference. Weight was determined in kg using a calibrated scale
(BF-350 TANITA, Arlington Heights, IL, USA) with a 0.1 kg accuracy. Height was measured in cm
using a portable stadiometer, with a 0.1 cm accuracy (Charder HM200P Portable Stadiometer, Taichung,
Taiwan). Measurements were taken in duplicates and averaged. Body mass index (BMI) was calculated
as kg/ m2.

2.5. Data Analysis

Descriptive statistics (frequency and percentage for categorical variables and mean (standard
deviation) for continuous variables) were reported. Comparison between the App and Traditional
groups at baseline and within group changes were performed using Student ¢ tests. Analysis of
covariance (ANCOVA) was used to assess differences between intervention groups for each outcome
assessed, in which intake of foods (in servings) or frequency of food intake or weight/BMI were used
as the dependent variables, group assignment as the fixed factor, and baseline value of the dependent
variables as covariates. The effect sizes were calculated using the partial eta-squared, and the values
0.01, 0.06, and 0.14 were considered small, moderate, and large effects, respectively [20,21]. Due to
the substantial proportion of zeroes in food purchase behavior data, a Poisson regression model was
used to assess the effect of the intervention on the food selection after 8 weeks controlling for baseline
values. All analyses were computed using Stata version 15 (StataCorp, College Station, TX, USA),
and did not adjust for multiplicity nor missing value imputations.

3. Results

A total of 37 participants were randomized to the App group and 38 to the Traditional group,
as shown in Figure 1. Not all participants completed all aspects of the study. Within the Traditional
group, 18 completed the FFQ, 17 completed the 24-h recalls, and 18 completed the grocery receipt
collection. Within the App group, 25 participants completed the FFQ, 15 completed the 24-h recalls,
and 13 completed the grocery receipt collection. A total of 17 (8 in the Traditional group and 9 in
the App group) completed all aspects of data collection (three 24-h recalls, at least two receipts,
the FFQ, and weight measurements, both at baseline and post-intervention). Table 1 summarizes the
characteristics of those who completed at least one aspect of the study. No differences were observed
in baseline characteristics between intervention groups. Most participants were women (>88%), mean
age was 35.3 years, most had more than high school education (>80%), a family composition of at
least three members, and a mean baseline BMI of 34.5 kg/ m?2. Also, no differences were observed in
any of the baseline characteristics between those who completed or fail to complete the study (data
not shown).
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Table 1. Baseline characteristics of study participants by intervention groups (1 = 51).

Variable Traditional group (n =24)  App group (n=27) p Value *
Mean (SD) or %
Age, years 36.8 (5.86) 33.8 (7.30) 0.12
Female sex, % 91.7 88.9 0.56
More than high school education, % 83.3 81.5 0.58
Number of family members in household 3.17 (1.24) 3.11 (1.34) 0.88
Weight (kg) 83.3 (14.9) 93.3 (20.4) 0.09
Height (m) 1.58 (0.06) 1.62 (0.08) 0.12
BMI, kg/m? 33.3 (5.81) 35.6 (7.50) 0.29
Overweight, % 31.6 30.0 0.92
Obese, % 68.4 70.0 .

SD: standard deviation; BMI: body mass index. * t test. Level of significance was p < 0.05.

Enrollment

Assessed for eligibility (n=178)

Excluded (n=80)
——— | + Not meeting inclusion criteria (n=14)
+ Declined to participate (n=66)

’ Completed Baseline Visit (n=98) ‘

— ’ Lost to follow-up (n=23)

Completed Group Assignment Visit
(randomization) (n=75)

Allocation

T

S—

Allocated to App Group (n=37)

Received allocated intervention (n=37)
Did not receive allocated intervention (n=0)

Allocated to Traditional Group (n=38)
* Received allocated intervention (n=38)
Did not receive allocated intervention (n=0)

\4

Follow-Up

—

1

Lost to follow-up (give reasons) (n=10)
Did not complete Final visit (n=10)

applicable) (n=0)

Discontinued intervention (give reasons: not

Lost to follow-up (give reasons) (n=14)
Did not complete Final visit (n=14)

Discontinued intervention (give reasons: not
applicable) (n=0)

v

Analysis

l—(

S

Analysed (n=27)

Excluded from analysis (give reasons: not
applicable) (n=0)

Analysed (n=24)

Excluded from analysis (give reasons: not
applicable) (n=0)

Figure 1. Participant flow chart.
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Results for household food purchase frequency are shown in Table 2. Compliance with grocery
receipts submission was low, therefore, the analysis included participants that had submitted at least
two grocery receipts at baseline and post-intervention. No differences were observed at baseline
between intervention groups. Within groups, we observed a significant increase in the frequency of
purchase of vegetables and whole grains in the App group (p < 0.05) from baseline to post-intervention.
We also analyzed the change of household food purchase frequency during the 8 weeks of the study
using Poisson regression, adjusting for food purchase behavior at baseline. The coefficient associated
with the intervention (App vs. Traditional) is the expected difference in log count between the App
group and the Traditional group. Compared to the Traditional group, the estimated Poisson regression
coefficient was 0.27 for fruits (standard error [SE] = 0.26; p = 0.29), 0.05 for vegetables (SE = 0.19;
p =0.79), 0.46 for whole grains (SE = 0.46; p = 0.41), 1.36 for 100% fruit juices (SE = 0.78; p = 0.08),
and 0.51 for SSB (SE = 0.51; p = 0.09).

Individual food intake, as assessed from three 24-h recalls, is shown in Table 3. At baseline,
the App group consumed significantly fewer servings of whole-fat dairy foods compared to the
Traditional group. Within groups, we observed a decrease in the intake of refined grains, healthy
proteins, and whole-fat dairy products in the Traditional group (p < 0.05) and a significant decrease
in the intake of refined grains, legumes, 100% fruit juices, and sweets and snacks in the App group
(p < 0.05) from baseline to post-intervention. However, when analyzing the change in food intake using
ANCOVA to adjust for baseline data, as shown in Table 4, only a trend for a significant decrease in the
intake of legumes in the App group compared to the Traditional group (p = 0.06) was observed. We also
assessed individual food frequency from the FFQ, as shown in Supplementary Table S1, and found
that at baseline, the App group consumed low-fat dairy foods with less frequency compared to the
Traditional group (p < 0.05). Within groups, we observed a decrease in the frequency of intake of cold
cuts and cured meats in the Traditional group (p = 0.05) and a significant increase in the frequency
of intake of fruits in the App group (p < 0.05) from baseline to post-intervention. However, when
analyzing changes in frequency of food intake using ANCOVA to adjust for baseline data, only a trend
for an increase in the frequency of consumption of whole grains (p = 0.08) and a significant increase
in the frequency of consumption of cold cuts and cured meats in the App group compared to the
Traditional group (p = 0.01) was observed.

For weight and BMI, there were no differences between or within groups, as shown in Supplementary
Table S2. No harm or unintended effects were observed in either of the allocation groups.

Results on the evaluation of the app have been previously published [13]. Briefly, the exit interview
at post-intervention showed that most (>50%) considered the app to be feasible, acceptable, usable at
least once in the last month and they were satisfied; the short survey completed by participants at the
end of their grocery shopping (1 = 23) showed that 73.1% used the app every time they went grocery
shopping and that 26.1% purchased >70% of the recommended products in the list.
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Table 4. Analysis of covariance for individual food intake (servings/day) at 8 weeks (Traditional group
n =17; App group n = 15).

Variable Adjusted Mean Difference 95% CI p Value * Partial Eta-Squared

Fruits 0.13 —0.50, 0.77 0.67 0.006
Vegetables 0.74 —0.12, 1.60 0.09 0.10
Starchy vegetables 0.52 —0.29,1.32 0.20 0.06
Refined grains —0.35 —1.34,0.64 0.47 0.02
Whole grains 0.27 —0.38,0.93 0.40 0.02
Legumes —0.11 —0.23, 0.004 0.06 0.12
Healthy proteins —0.25 —0.88,0.37 0.41 0.02
Red meats 0.68 —0.67,2.04 0.31 0.04
Cold cuts and cured meats —-0.10 —0.42,0.23 0.55 0.01
Regular dairies —0.09 —0.34,0.17 0.49 0.02
Low-fat dairies 0.35 —0.23,0.93 0.22 0.05

100% fruit juices —0.005 —0.16, 0.15 0.94 0.0002
ssBt -0.17 —0.44,0.10 0.21 0.05
Snacks and sweets —0.40 —1.13,0.32 0.26 0.04

Includes nuts, fish, and poultry; ¥ SSB: sugar sweetened beverages. * Analysis of covariance (ANCOVA) was used
to assess differences between intervention groups, with food intake as the dependent variable, group assignment as
the fixed factor, adjusting for food intake at baseline. Level of significance was p < 0.05.

4. Discussion

This is the first study to test an app that generates a shopping list based on energy requirements,
following the DGA and accounting for budget and supermarkets’ discounts. Those using
“MyNutriCart” purchased vegetables and whole grains significantly more frequently at the household
level, while at the individual level they significantly consumed more servings of refined grains,
legumes, 100% fruit juices, and sweets and snacks and significantly consumed fruits more frequently at
post-intervention compared to baseline. However, the Traditional group also had some improvements,
so when analyzing changes in these behaviors during the study between groups using Poisson
regression or ANCOVA, the App group only had a significantly greater frequency of consumption of
whole grains and cold cuts and cured meats with a lower intake of legumes compared to the Traditional
group. No effects on weight control were detected.

As hypothesized, “MyNutriCart” improved some aspects of household food purchasing behavior
(i.e., higher vegetables and whole grains purchase), which translated into a lower intake of refined
grains at the individual level. However, it is interesting to note that purchasing vegetables more
frequently at the household level did not translate into a greater intake of vegetables at the individual
level, although intake did improve somewhat compared to baseline. Since this is a measure of the
household food purchase frequency, it may explain why it did not specifically translate to greater
vegetable consumption at the individual level. However, compared to the Traditional group, none
of the changes regarding household food purchases were significant. This was not expected as
the app considered the household budget, the supermarkets” weekly discounts, and only included
in the shopping list only those fruits and vegetables offered at a reduced price, to maximize the
budget as the price of fresh produce varies considerably depending on the season. Therefore, the app
showed participants that healthy foods could be purchased even within a tight budget. Certain food
purchasing behaviors are easier to be influenced, such as purchasing whole grains as they are readily
available in all supermarkets and most refined grains (i.e., white rice, white bread, white tortillas),
have a healthier whole grain option (i.e., brown rice, whole multigrain bread, whole-wheat tortillas).
In fact, other studies aiming to improve diet quality have found improvements in whole grains [22],
therefore, switching from refined to whole grains seems to be easier than introducing new foods, such
as fruits or vegetables. In particular, consumption of fruits and vegetables was low in both groups
and improvements were observed in the App group including a greater frequency of consumption
of fruits (p = 0.02) and a trend in a greater number of servings of vegetable consumed (p = 0.06) at
post-intervention compared to baseline, which is consistent with other studies conducted in similar
groups [23-26]. Other trials targeting fruits and vegetables among populations with traditionally
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low intakes have also found significant improvements [27,28]. These products are often perceived
as expensive [29,30]; which is the main reason our app only included in the shopping list the fresh
produce that was on sale that week. However, more intensive interventions may be needed to increase
household purchasing of fruits and vegetables and to translate this into a higher individual intake of
these foods.

Currently, there are a limited number of studies investigating the purchase of healthy foods in
grocery stores and improvement in dietary behaviors using a smartphone app, although there are a few
trials that are currently ongoing. A study among 208 adults in Canada testing the “SmartAPPetite” app
for 8-10 weeks found a significant decrease in the intake of soft drinks, sugary and fast foods and an
increase in homemade meals and fruits, particularly among those using the app more frequently [11].
Also, 46% of participants believed that the messaging changed their food purchasing habits [11].
A study testing an app to improve vegetables among 135 overweight adults for 8 weeks found a
significantly greater vegetable intake among the intervention group compared to the control group [31].
Another trial testing the effect of a “SaltSwitch” app among 66 adults with cardiovascular disease
for four weeks found a significant reduction in salt purchase, which resulted in a reduction of 0.7 g
of salt/day per person, compared to the usual care group [32]. Most of these trials showed that
compliance was reduced over time and that those that were more compliant with the intervention
(i.e., greater use of the app) had greater outcome effects. However, results from these trials provide
evidence on the effects of such apps in improving food selection and purchase, although more studies
are needed to understand how individuals use the apps.

Although there are only a few trials testing apps to improve household food purchasing
behavior and dietary behaviors, they have the potential to support/reinforce adherence to the DGA.
However, this technology may be insufficient for helping individuals make the necessary behavioral
changes. As found in our study, only one intervention session without follow-ups or app notifications
to remind participants to use the app, led to only a few significant improvements in dietary behaviors.
More intensive follow-ups with app notifications may be needed to facilitate behavioral change.
Some participants may need more counseling than others, therefore, sessions should be personalized
depending on the level of behavioral change needed by each participant. Also, follow-up sessions may
be necessary to keep participants motivated in using the app, as we previously reported that only 26%
purchased more than 70% of the items recommended on the grocery list at each shopping event [13].
Others have reported that greater app interactions led to greater dietary changes [11]. The low app
use in the present study could also explain the lack of greater changes in the study and also on the
lack of effects on weight; as evidenced by others [33]. Studies testing apps for weight control have
found significant effects [34,35], particularly those using more intensive approaches [12,35] and even
among short-term studies [34,35]. Therefore, interventions using smartphone apps may require several
sessions/ calls/follow-ups during the study to maintain motivation towards using the app.

The present study helped identify the potential of the “MyNutriCart” app to improve household
food purchase and individual dietary behaviors using a randomized clinical trial design; with trained
research assistants and using validated tools. It also helped identify limitations that should be
considered in future investigations, such as its short duration and small sample size. Another limitation
was the lack of follow-up messages or app notifications to remind participants to use the app.
We did not assess their prior experience with healthy eating, which could have affected our results.
The information from grocery receipts was limited to frequency, as amount purchased was not readily
available from all grocery receipts. We did not assess if the frequency of grocery shopping changed
with the study, which could have affected the selection of foods. We also did not assess how many
members of the household each shopping event was intended for; however, the app did take into
account the number of members in the household when coming up with the list. In addition, due to
low compliance with grocery receipts submission, the analysis was based on at least two receipts
at each time, which may not be representative of usual household purchase. We also did not ask if
other household members did complementary grocery shopping during the study, which should be
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accounted for in future studies. “MyNutriCart” was tested among Hispanics and integrated elements
of Hispanic diets, but its conception is based on the DGA, hence its applicability does not exclude
other ethnic groups. Future studies should also integrate all family members, as the app provides
a healthy grocery list for the entire family and we learned at the end of the study that some family
members disliked some of the recommended foods, as previously reported [13].

5. Conclusions

In conclusion, the use of the “MyNutriCart” app led to small improvements in household food
purchase and individual food intake over the 8-week period compared to the initial assessment but
there were basically no significant improvements compared to the Traditional group. Therefore, these
results may suggest that the “MyNutriCart” app is as good as the traditional method for improving
these behaviors. Using such tools could reduce costs and resources for improving household food
purchase and dietary quality. Also, these tools may help reach out to other target groups, that may not
reach out to health professionals for improving their diet. However, neither of the interventions led to
changes in weight control. More intense interventions with greater follow-up visits, app notifications,
calls or messages are needed to achieve greater changes in food-related behaviors and weight outcomes.
In the future, larger and longer trials with more intensive follow-ups may be needed to detect changes
in the desired outcomes.
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Abstract: Overreporting of dietary intake in infants is a problem when using food records
(FR), distorting possible relationships between diet and health outcomes. Image-assisted dietary
assessment may improve the accuracy, but to date, evaluation in the pediatric setting is limited. The
aim of the study was to compare macronutrient and energy intake by using an active image-assisted
five-day FR against a regular five-day FR, and to validate image-assistance with total energy
expenditure (TEE), was measured using doubly labeled water. Participants in this validation study
were 22 healthy infants randomly selected from the control group of a larger, randomized intervention
trial. The parents reported the infants” dietary intake, and supplied images of main course meals
taken from standardized flat-surfaced plates before and after eating episodes. Energy and nutrient
intakes were calculated separately using regular FR and image-assisted FRs. The mean (+ standard
deviations) energy intake (EI) was 3902 + 476 k] /day from the regular FR, and 3905 4- 476 k] /day from
the FR using active image-assistance. The mean EI from main-course meals when image-assistance
was used did not differ (1.7 £ 55 k], p = 0.89) compared to regular FRs nor did the intake of
macronutrients. Compared to TEE, image-assisted FR overestimated EI by 10%. Without validation,
commercially available software to aid in the volume estimations, food item identification, and
automation of the image processing, image-assisted methods remain a more costly and burdensome
alternative to regular FRs in infants. The image-assisted method did, however, identify leftovers
better than did regular FR, where such information is usually not readily available.

Keywords: energy intake; dietary assessment; image-assisted method; infant; food record; doubly
labeled water

1. Introduction

Dietary assessments from food records (FR) are commonly used to assess children’s food and
nutrient intake, and possible relationships between dietary intake and health outcomes [1]. In infants
and young children, parents are asked to record everything that the child has eaten and drunk during
a predefined time period [2]. However, achieving accurate and reliable dietary intake data can be
difficult and demanding: for the parents, the process may be tedious and time consuming [3], and for
the clinician or researcher, the generated data may be subject to bias, making interpretation difficult [4].
Meals with complex content, such as main course meals with several ingredients, are challenging to
remember, record, and to determine the amounts of the various ingredients [5]. In young children,
food records tend to overestimate energy intake, e.g., parents may misreport the child’s intake by
failing to omit food leftovers and spillage from the FRs [4-6]. In order to better understand the complex
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relationships between diet and health in young children, it is important to develop dietary assessment
methods with higher accuracy and precision [7].

Mobile phone applications and cameras have been shown to improve self-reported dietary intake,
and they have likewise increased participants’ user satisfaction, compared to conventional methods [8].
Moreover, information obtained from images seems to reduce random and measurement errors
for energy intake (EI), especially when it comes from complex and diverse foods. In adults, EI is
often underestimated, but this can be corrected with image-assisted dietary assessments [9]. This
was also found among overweight and obese children by using digital camera FRs [10]. Previous
research in pre-school children has shown that EI assessment using images was not significantly
different, compared to measuring total energy expenditure (TEE) with doubly labeled water (DLW) [11].
However, no study to date has investigated methods of active image-assisted FRs in infants [9,12].

The aim of this study was to compare total and main course meal energy and macronutrient
intake in 12-month-old, healthy infants using an active image-assisted five-day FR against a regular
five-day FR, and to validate the total energy intake measured with the image-assisted food record
method against TEE using DLW.

2. Materials and Methods

2.1. Participants and Study Design

The infants in the present study were taking part in an optimized complementary feeding study
(OTIS; ClinicalTrials.gov registration number NCT02634749, (n = 250) among 4—-6 months old, healthy,
full-term infants in Umea, Sweden, measuring the effects of different complementary diets on various
health outcomes and food acceptance. In the present validation study, all infants (1 = 27) belonging to
the control group in the OTIS trial from September 2016 until July 2017 were selected at 12 months
of age. In the control arm of the study (1 = 125), the participants were advised to follow the current,
Swedish dietary recommendations, but they were otherwise not subject to any intervention [13]. In
the present study, as well as in the larger OTIS trial, the inclusion criteria were healthy, singleton
infants, 4-6 months of age, born after >37 weeks of gestation and birth weight > 2500 g, living in Umea
municipality. The exclusion criteria were infants with chronic illnesses, iron deficiency, or any other
biochemical abnormality, or infants been having started feeding with complementary foods at the time
of recruitment.

2.2. Anthropometry

Within two weeks of the participants” 12-month birthday, the infants were invited to the
Pediatric research facility at Umeé University Hospital for information on the study procedures,
measurements and administration of DLW. Anthropometric data were collected according to
standardized procedures [14]: nude weight was measured to the nearest 5 g using electronic scales
(Seca 727, Seca, Hamburg, Germany), recumbent length was measured to the nearest 0.1 cm using an
infantometer (Seca 416, Seca, Hamburg, Germany), and the head circumference was measured to the
nearest 0.1 cm by using a non-stretchable measuring tape (Seca 212, Seca, Hamburg, Germany).

2.3. Doubly Labeled Water

On the same day as the anthropometrical measurements, a pre-dose urine sample was collected
by placing an absorbent pad (Bastos Viegas, Penafiel, Portugal) in the diaper of the infant. Each infant
was then given an oral weighed dose of DLW consisting of 100 mg/kg >H,O and 280 mg/kg H,'80.
Post-dose urine samples were collected at home once daily for 10 consecutive days, with dates and
times recorded for all samples by using absorbent pads as described above, omitting the first urine
portion of the day. The first post-dose urine sample was collected approximately 24 h after the DLW
dose was given and the subsequent pads were collected once daily after that. The parents were asked
to remove the pad once it was wet from urine. Each collected pad was stored at —18 °C. The pads were
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then taken to the Pediatric research facility at Umea University Hospital and thawed, and the urine
content was extracted using a press, collecting the urine in glass bottles. The glass bottles were stored
at —20 °C until transportation to MRC Elsie Widdowson Laboratory, Cambridge, UK for analysis.

2.4. Water Isotope Analysis

Urine samples were prepared for 0 enrichment using the CO, equilibration method [15].
The samples were then analyzed using a continuous flow isotope ratio mass spectrometer (IRMS)
(AP2003, Analytical Precision Ltd., Northwich, Cheshire, UK). For 2H, the samples were analyzed
using a continuous-flow IRMS (Sercon, ABCA-Hydra 20-22, Sercon Ltd., Crewe, UK). All samples
were measured alongside secondary reference standards previously calibrated against the primary
international standards Vienna-Standard Mean Ocean Water (vSMOW) and Vienna-Standard Light
Antarctic Precipitate (VSLAP) (International Atomic Energy Agency, Vienna, Austria). Sample
enrichments were corrected for interference according to Craig [16], and expressed relative to vSMOW.
Analytical precisions (SD) were better than 4-0.4 ppm for 80 and =+ 1.3 ppm for 2H. The rate of CO,
production (R¢p,) was calculated according to Schoeller et al. [17], Rcp, was then converted to TEE
using the equation of Elia and Livesey [18], with the food quotient (FQ) calculated according to Jéquier
et al. [19]. From TEE, metabolizable energy (ME) was calculated according to Wells and Davies [20].

2.5. Food Record and Dietary Assessment

Parents were asked to record everything that their child ate and drank, including breastmilk
and food supplements, e.g., vitamins, using a pre-printed five-day FR. Of these five days, we asked
that at least one day was a Saturday or Sunday. The parents started the recording the day after
the administration of DLW. Each day, the parents recorded the meal type, time of day, and which
foods and drinks the infants were offered, including amounts and brand names. Amounts of foods
and drinks were documented using household measures and for bread etc., in slices. Homemade
recipes were documented separately, including ingredients, quantities and detailed descriptions of
preparation. Unfamiliar dishes were reported in detail with brand name and amounts. Breastmilk
was recorded as ‘meals’ (more than five minutes of breastfeeding) or ‘snacks’ (less than five minutes
of breastfeeding), estimated as 102 or 25 g of milk, respectively [21,22]. The reported food and drink
intake was converted to grams using standardized weights for consumed foods from the Swedish
Food Agency Database [23]. To calculate the mean daily EI (k] /day) and macronutrients sub-classes
(g/day) from the five day FR, we used the software Dietist Net Pro (Kost och Néaringsdata AB, Bromma,
Sweden) and the food composition database (version 17 February 2016) from the Swedish National
Food Administration. The database was complemented with special products for infants used in the
OTIS study, with nutrient contents analyzed and supplied from Semper AB.

2.6. Food Record with an Active Image-Assisted Method

An active image-assisted FR method is a system that captures images, usually photographs,
during eating episodes, and is used to enhance or supplement traditional written or electronic FRs [24].
The images provide objective information such as food type, volume, and leftovers, and may even
record foods that were forgotten and not reported in the food registration [24]. In this study, we
decided to capture two main meals, i.e., the noon (lunch) and late afternoon (dinner) meals, for the
image-assisted part. These two meals were expected to represent 30% of the total daily EI, and they
included more complex and diverse dishes with a larger amount of ingredients mixed together, which
makes assessing the composition and estimating leftovers more challenging [8]. Given the meal
frequency of 12-month-old infants and without specific smart phone applications to facilitate this task,
we also assumed that the workload for the parents would be too great if they would have to record all
of the meals that the child consumed by using the image-assisted method.

During the five-day FR, parents were instructed to serve the two main meals on standardized
flat-surfaced plates, which were provided by the researchers to the participants, and then to capture
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mobile phone images of the plates before and after each meal. The plate served as a reference
marker [25]. The written instructions had four examples of main meals served on the standardized
flat-surfaced plate before and after intake, with images captured at a 90° angle from a mobile phone
camera according to Stumbo (Figure 1) [26]. All 20 images from the 10 main meals during the five-day
FR were sent by the parents, usually by directly sharing the images from the participants” mobile
phones to the study e-mail account. The participants used their own mobile phones for the photos. If
no images were received within five days, a reminder was sent by e-mail to the participant. First, a
trained pediatric dietician calculated the mean, daily energy, and macronutrient intakes from the FRs
without access to the images. In a second step, the images of the main meals were made available for
the dietician, who analyzed the images, taking food leftovers, spillage, etc., into consideration [25]. To
assist the dietician in estimating the food items and food volumes on the plate before and after the
meal, the dietician was provided with images of the standardized flat-surfaced plate with different
quantities of commonly used baby foods, either from glass jars as used in the study, or home-cooked
food comparable to an infant’s normal portion size. These reference images were similar to the
images received from the participants [24]. Finally, the initial calculations from the FR were, if needed,
adjusted depending on the results of the analyses of the main meal images, for example, subtracting
undocumented leftovers and spillages from the initially estimated intake. This generated two sets of
data, one from the regular FR, and one record that included the image-adjusted dietary intakes. The
latter also contained specific information on leftovers that was unaccounted for in the regular FR.

(B)

Figure 1. Images of a main course meal with leftovers before (A) and after (B) an eating session.
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2.7. Pilot Testing

Before embarking on the present study, we performed an unpublished pilot study to assess
the feasibility of using image-assisted FR in infants. Parents of fourteen 8-12 months old, healthy,
free-living infants were asked to do a five-day food record in a similar way as in the present study,
taking mobile phone images of the main course meal together with a regular FR. During the course of
five days, 78 meals were recorded by the participants. When comparing the food records with and
without image assistance, we found that 23 meals (29%) had to be adjusted, since the meal images
contained additional information to correctly estimate the intake from the meals, and 22 of the 23
adjusted meals were overestimations, i.e., the parents had omitted to exclude foods left over or spilled
on or around the plate. This resulted in a mean difference in daily EI between the two estimations of
169 + 146.4 K].

2.8. Group Size Calculation

We based the sample size calculation on the pilot study described above. We estimated that 45% of
participants would have their FR adjusted when image-assistance was added, and that the difference in
EI measured with FRs against TEE with DLW would be 238 + 193.7 k] [4]. Given these circumstances,
and allowing for a 30% attrition rate, we calculated that we would need 25-30 participants (power
90%, alpha = 0.05) in order to show a significant difference in the measurement error in EI between
FRs with and without image-assistance, compared to ME.

2.9. Ethical Considerations

The study was approved by the Regional Ethical Review Board at Umea University, Sweden (dnr
2016-134-32M).

2.10. Statistical Analyses

Statistical analyses were performed using SPSS 24.0 (SPSS, Chicago, IL, USA). For continuous
variables, results are presented as means (& standard deviations, SD or 4 95% confidence intervals, CI)
and for categorical variables as numbers and percentages. Normal distribution for continuous variables
was assessed with the Shapiro-Wilk test. The energy and macronutrient intake were calculated as
kilojoules (k]) and grams (g) per day, respectively. The significance level was set at p < 0.05. Differences
between image-assisted FR and regular FR and image-assisted FR and ME were analyzed separately
with paired sample t-tests. The Bland and Altman method [27] was used to assess the agreement
between regular and image-assisted FRs, and between the image-assisted FR and ME calculated from
DLW. Reliability between ME and the image-assisted FR method was quantified using a two-way
mixed absolute agreement intra-class correlation coefficient (ICC).

3. Results

Of the 27 selected infants, 82% completed the study with a majority being boys (Table 1). Five
infants were excluded; three with missing FR information and images, and two infants had insufficient
urine samples to allow for the analysis of TEE.

3.1. Energy and Macronutrient Intake

Five of the 22 infants were breastfed, usually 2-3 times per day; in the morning, in the evening,
and/or at night. None of the infants were breastfed at the time of any of the main course meals. The
average number of meals per day was 7.1 & 1.1, and image-assistance was used in 29% of these meals.
Mean EI and macronutrient intakes, both overall and from the main course meal, were normally
distributed. Overall, these intakes were not significantly different between the regular FRs and the
image-assisted FRs (Table 2). In particular, EI from the main course meals were a mix of equal numbers
of over- and underestimated meals (Table 3) and therefore the errors were balanced out and had no
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effect on the average energy or macronutrient intake (Table 2). Average ME, calculated from DLW was
3538 + 428 k] /day. Bland—-Altman plots were used to assess agreement between image-assisted FRs
and ME. The mean bias between the methods was 366 k] /day, with limits of agreement of 712 k] /day
(Figure 2). There was no significant association between the mean and the difference of EI and ME
(p = 0.53), indicating no systematic bias across the different levels of EI. The intra-class correlation
(ICC) coefficient was 0.81, indicating high reliability between the two methods.

Table 1. Anthropometric and demographic data of the study infants (n = 22) and their parents.

Mean + SD
Age infants (months) 119+ 0.34
Body weight (kg) 105+ 1.2
Body length (cm) 769 + 3.1
Head circumference (cm) 47.1+09
Mothers age (year) 31£51
Fathers age (year) 32+£53
n (%)
Girls/boys 6 (27)/16(73)
Breastfeeding at 12 mo 5(23)
>1 sibling 10 (45)
Education level Mother
Elementary school 1(4.5)
High school 5(22.7)
University 16 (72.7)
Education level Father
Elementary school 1(4.5)
High school 7 (31.8)
University 14 (63.6)
Born in Sweden
Infant 22 (100)
Mother 21 (95.5)
Father 17 (77.3)

SD: standard deviations

Table 2. Total daily energy and macronutrient intake, and the daily energy and macronutrient intake
from the main course meals (lunch and dinner combined), estimated by regular five-day food records,
and food records with image-assistance in the study infants (n = 22).

Food Record ! Food Record w1th1 Difference ! p for Difference 2
Image-Assistance
Total intake
Energy (k) 3901 + 476 3905 + 476 3.9 £48.0 0.71
Protein (g) 29.8 £5.7 30.1£6.0 02+1.1 0.30
Fat (g) 354 +£6.7 354+£6.5 0.0£0.6 0.89
Carbohydrate (g) 118.3 £ 17.7 1184 +17.2 01+15 0.80
Main course meals
Energy (k]) 1348 + 388 1350 + 377 1.7 £55 0.89
Protein (g) 13.0+39 134 +4.1 04+£15 0.19
Fat (g) 125+42 127 +£39 02+13 0.37
Carbohydrate (g) 38.0 £13.3 38.5 £129 05+42 0.63

1 Values are mean =+ SD, 2 Paired sample f-test.
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Table 3. Numbers of non-adjusted and adjusted meals (corrected by dietician after review of meal
images) with or without leftovers assessed with five-day food records with active image-assistance.

Meals (n = 210) Leftovers n (%) No Leftovers 1 (%) Total n (%)
Non-adjusted meals 67 (53) 74 (89) 141 (67)
Adjusted meals 60 (47) 9 (11) 69 (33)
Underestimated ! 34 (27) 2(3) 36 (52)
Overestimated 2 26 (20) 7 (8) 33 (48)
Total 127 (60) 83 (40) 210

! Underestimated: the recorded amount of food consumed is less than what is estimated from the meal images.
2 Overestimated: the recorded amount of food consumed is more than what is estimated from the meal images.
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Figure 2. Bland—Altman plot showing the mean versus the difference in energy intake estimated from
food records with active image-assistance and metabolizable energy calculated from doubly labeled
water in 22 healthy, 12-month-old infants. The x-axis shows the mean energy intake (EI) per day (k])
from FR with image-assistance and metabolizable energy. The solid line (-) shows the mean difference
of 366 k], and the dashed lines (—) show the 95% limits of agreement (£1.96 SD) of 712 kJ.

When estimating EI from only the main course meals representing 35% of the total daily EI, i.e.,
when the image-assisted method was used, there was no statistically significant difference between the
image-assisted and regular FRs, and no significant differences for any of the macronutrients (Table 2).

3.2. Main Course Meals with an Active Image-Assisted Method

In the five-day FR, 220 main course meals were recorded. Of these, 210 meals (96%) were assessed
with both regular FRs, and the active image-assisted method. Ten meals (4%) were excluded because
of missing images after the eating episode (Table 3). For the majority of meals, the dietician did no
adjustment of the amounts of food consumed from that particular meal after taking the meal images
into account. However, for a third of the meals, some adjustments were made. Out of these adjusted
meals, about half were underestimations on the part of the regular FR, and leftovers were more
common, compared to no leftovers. Of the 22 infants, 17 (77%) had at least one main meal adjusted by
the active image-assisted method. The average number of main meals with leftovers over five days
were 5.8 & 3.3 per infant. Three infants had leftovers from all 10 meals, and one infant had no leftovers
from any of the eating occasions.
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4. Discussion

Previous studies in infants have shown the non-random error to be 5-15% when comparing
energy expenditure, measured with doubly labeled water to recorded dietary intake [1]. Such bias
increases the risk of type II-error and diminishes the power of the study. Image-assistance, where FRs
are complemented with images before and after eating sessions is one possibility to reduce this bias [9].

In the present study, comparing total El in regular and image-assisted FRs, the difference between
methods was only 3.9 k] and not statistically different. The reliability between image-assisted FR and
ME, and the golden standard to assess EI, using ICC was excellent. The bias of 366 k] means that
image-assisted FRs overestimated the EI compared to ME by 10%. This bias was higher but the limits
of agreement were narrower than reported in similar studies [4,11]. Previous studies have shown
that image assistance has been successful in reducing underreporting, but to our knowledge no study
has used the technique in settings when over reporting is an issue, as was the case in the present
study [9,10].

Unaccounted leftovers, i.e., the parts of the meal that are left on the plate or that are lost due to
spillage, are possible sources of systematic error if they are not subtracted from the estimated intake. In
the present study, 60% of the meals that were recorded with active image assistance showed leftovers.
However, in more than half of these eating episodes, the parents correctly modified the FR to include
the leftovers, and in the other half, where the research dietician did adjust the recording, it was equally
common for the dietician to increase the recording as it was to decrease the estimated EI from that
meal. In our earlier pilot study, we found a similar proportion of meals (23/78 meals in the pilot vs
69/210 meals in the present study) had been adjusted, but the regular FR overestimated the energy
intake by 169 k] per day, compared to the image-assisted method. Also, in the pilot, the majority of the
adjusted meals (22/23) were overestimations. In the present study, underestimations were equally
common to overestimations. A possible explanation to this discrepancy may be that the participants in
the present study, being part of a large trial, were more experienced in completing food recordings,
this being their third in six months compared to the participants in the pilot. We speculate that greater
experience explains some of the lower bias in the regular FRs, compared to the image-assisted method
found in our study [28,29]. We do not know to what extent the parents in the present study used the
images to corroborate their recordings, but we did notice that the parents were skilled at allowing for
leftovers in the FRs, which is indicated by the fact that half of the meals where there were leftovers had
been already adjusted by the parent. From the present study, we have no information on the amount
of leftovers or spillage from the eating episodes where image assistance was not used. We can only
speculate that the overestimation of EI compared to ME can be found in unaccounted leftovers, from
for example breakfast and snacks. From the FRs, we know that these meals contained large amounts
of energy dense foods, such as porridge and milk cereal drinks. Another possible error could have
been the preparation of the porridge and milk cereals, where adding too much water could have made
the meals more diluted, reducing the actual EI compared to the recorded EL

The overall energy and macronutrient intake, and its variations, were similar to other studies in
the same age group [30-32]. Also, the parents adhered well to submitting the FRs and images, with less
than 5% of the main meals having missing images. Breast milk intakes were estimated from feeding
episodes and not by direct observation, i.e., test weighing. On average, breast milk contributed to <6%
of the mean total daily energy intake. The energy and nutrient content of the products used in the
present study (porridge, formula, milk cereal drink, baby food in glass jars) were based on high quality
analyzed data supplied from Semper AB.

A strength of the study was that all parents used the same reference marker [25], i.e., the plate
estimated the true area of the food portions, and we omitted images of meals, from which other types
of plates were used. Also, the same dietician managed all FRs, calculated the dietary intake, and
assessed the images, but was blinded as to the outcome, and did not participate in the final analysis,
i.e., when the regular FRs was compared to the image-assisted FRs. In the DLW analyses, we used the
more accurate FQ [19], instead of the generic RQ suggested by Schoeller et al. [17]. The proportion of

155



Nutrients 2018, 10, 1904

parents with university education was higher than people of the same age and gender in the general,
Swedish population, and higher than that reported in a recent iron supplementation study in the same
geographical area [33]. Despite this, we believe that it is possible to generalize the results to other
populations as well.

A limitation in the study was that we did not use the image-assisted method for all meals and
snacks. Our hypothesis was to focus on the main meals, i.e., lunch and dinner, which are more complex
and diverse in terms of ingredients and nutrient value, and to leave breakfast and snacks, which
in this age are less diverse. It is likely that unaccounted leftovers and spillage from energy- and
nutrient-dense foods, such as milk cereal drinks or baby porridge, could have been identified through
image-assistance. However, we believe that the task of providing before and after photos of every
meal and snack, considering the frequency of feedings, including night meals in this age group would
have been almost insurmountable for both the parents and researchers.

Variations among different mobile cameras, ambient light conditions, etc., may have contributed
to some of the subjectivity of the image analysis [34]. All images were taken at 90° to the plate, which is
the most favorable for capturing which ingredients the meal contained. However, to optimize volume
calculations, another photo at 45° would have been preferable [9,24,35]. To improve the quality of the
images, and to aid in the volume estimation, some kind of mobile phone application would have been
desirable, but to the best of our knowledge no such product validated for use in infants is commercially
available [34].

5. Conclusions

In conclusion, in 12-month-old infants, the image-assisted method identifies leftovers better than
regular FR, where such information is usually not readily available, and it may thereby improve the
accuracy of EI and macronutrients. But as seen in this study, parents with earlier experience of food
recording were, in many cases, capable of including leftovers in their records, reducing this source of
systematic bias. It is possible that this compensation was facilitated by the availability of the images
themselves. Also, FRs with or without image-assistance overestimate EI compared to ME. With these
caveats, and without validated commercially available software to aid in the volume estimations, food
item identification, and automation of the image processing, the image-assisted method remains more
costly and burdensome, but possibly a more accurate alternative to regular FRs in infants [34]. In
future validation studies, technical solutions for smartphones are required to better identify food items
and food volumes from images. Such future software applications would make it possible to estimate
more cost-effectively the entire energy intake in infants. Future research should also include training
sessions, both for the participants using the technique, and for professionals involved in the dietary
assessment with images [36].
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Abbreviation

FR Food record

DLW Doubly labeled water

EI Energy intake

ICC Intra-class correlation coefficient

ME Metabolizable energy

SD Standard deviation

TEE Total energy expenditure

OTIS Optimized complementary feeding study
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Abstract: Obesity prevalence is higher in children with developmental disabilities as compared to
their typically developing peers. Research on dietary intake assessment methods in this vulnerable
population is lacking. The objectives of this study were to assess the feasibility, acceptability,
and compare the nutrient intakes of two technology-based dietary assessment methods in children
with-and-without developmental disabilities. This cross-sectional feasibility study was an added
aim to a larger pilot study. Children (n = 12; 8-18 years) diagnosed with spina bifida, Down
syndrome, or without disability were recruited from the larger study sample, stratified by diagnosis.
Participants were asked to complete six days of a mobile food record (mFR™), a 24-h dietary recall via
FaceTime® (24 HR-FT), and a post-study survey. Analysis included descriptive statistics for survey
results and a paired samples t-test for nutrient intakes. All participants successfully completed six
days of dietary assessment using both methods and acceptability was high. Energy (kcal) and protein
(g) intake was significantly higher for the mFR™ as compared to the 24 HR-FT (p = 0.041; p = 0.014,
respectively). Each method had strengths and weaknesses. The two technology-based dietary
assessment tools were well accepted and when combined could increase accuracy of self-reported
dietary assessment in children with-and-without disability.

Keywords: dietary assessment; mobile food record; 24-h recall; developmental disabilities; children;
spina bifida; down syndrome; technology; pediatrics

1. Introduction

Assessment of an individual’s dietary intake is an essential component of the prevention and
treatment of an abnormal weight status [1]. Details of dietary intake provide valuable information
on an individual’s nutritional balance and dietary habits [2,3]. The interest in dietary assessment
has heightened as the prevalence of obesity has increased. However, there is a lack of testing and
development of tools focusing on children with developmental disabilities [4]. This is a critical oversight
as the prevalence of obesity is often higher in children with developmental disabilities as compared to
children who are typically developing [5].

Recommended assessment methods for dietary intake in children vary based on the child’s age
and who is reporting [2,4]. Conclusions from a systematic review identified that the 24-h dietary recall
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reported by the parent for 4 to 11 year olds and dietary history reported by adolescents 16-21 years
of age had the highest level of accuracy when compared to doubly labeled water [2]. Challenges to
obtaining an accurate dietary assessment include social bias, the burden of time to complete, and the
inability of the reporter to estimate portion sizes, identify food preparation methods, and recall
foods consumed [1,6]. Currently there is no recommendation for dietary assessment in children with
developmental disabilities.

Incorporating technology is thought to improve dietary intake accuracy, appeal to a younger
generation, and reduce the burden placed on the reporter [7,8]. One option is the Technology Assisted
Dietary Assessment™ (TADA™) system, an image-based dietary assessment system which uses the
mobile Food Record™ (mFR™) app to collect images of eating occasions [9-12]. The app can be
downloaded onto smart devices (e.g., mobile phone or iPad). The app allows individuals to record
images before and after eating occasions and the images upload in real time to a cloud-based server
along with contextual information, e.g., time.

The collection of dietary intake in real time is thought to reduce recall bias, provide additional
information related to the individual’s eating behaviors, and increase convenience for the reporter [11].
Among 41 adolescents (11-15 years of age), use of the mFR™ was accepted by the majority [10].
Bathgate et al. [13] examined the feasibility of using the mFR™ in 59 adolescents and young adults
(12-30 years of age; M = 21.5 (SD 4.6)) with Down syndrome. In this sample, 86% of the participants
successfully recorded dietary intake using the mFR™ for a minimum of two days [13].

The objectives of this study were to assess the feasibility and acceptability of the mFR™ and a 24-h
dietary recall conducted via FaceTime (24 HR-FT) among children with-and-without developmental
disabilities. FaceTime is an app available on Apple® products that allows individuals to use WiFi
or cellular data to perform a call with video and audio capability. The estimates for total energy
and macronutrient intakes were hypothesized to be similar between the methods. Results from this
exploratory study can inform future studies to better assess dietary intakes among a vulnerable and
understudied population.

2. Materials and Methods

2.1. Study Design and Sample

This study was part of a larger cross-sectional study examining energy expenditure assessment in
36 children with-and-without developmental disabilities [14]. This feasibility study was conducted as
an added aim to the original study through an additional funding mechanism. Institutional Review
Board approval was granted through a Midwestern Children’s Hospital and parents and children
provided written informed consent and assent. Study visits were conducted within a Translational
Research Unit funded by the Clinical and Translational Science Institute of Southeast Wisconsin.

Participants included 12 of the original 36 children diagnosed with Down syndrome, spina bifida,
or no developmental disability. A sample of 12 participants was determined based on funding and
feasibility design. Based on a completed permission to contact form from the parent study, participants
stratified by diagnosis were randomly recruited for this study.

2.2. Measures

2.2.1. Dietary Assessment (mFR™)

Study participants were provided a mini iPad® (i0S version 9.3, Apple Inc., Cupertino, CA, USA)
with the mFR™ and FaceTime app. These community dwelling children were asked to obtain images
before and after all meals/snacks for a 24-h period for a total of six days (4 weekdays and 2 weekend
days) of their choice over a two-week period. Data collection occurred during late summer and fall
seasons. Participants were instructed to eat as usual. The child and parent were provided training and
practiced using the mFR™ with a cafeteria meal. Training focused on technical issues, such as the need
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to incorporate the provided checkered fiducial marker in the eating scene to aid volume estimation
(Figure 1), and problem solving for common mealtime issues such as having seconds or placement of
food labels within the eating scene to assist the intake analysis. Parental assistance was recommended
to be used as needed. Pre- and post-eating occasion images were automatically uploaded to a secure
cloud-based server. A trained team member used the images to enter the food intake and amounts
using Nutrition Data Systems for Research, a computer-based software application [15].

Figure 1. Before and after Mobile Food Record™ images with the fiducial marker.

2.2.2. Dietary Assessment (24 HR-FT)

Participants were instructed that each subsequent day following the mFR™, they would be
asked to complete a 24-h dietary recall conducted via the FaceTime app on the provided mini iPad.
Scheduling of the FaceTime calls were predetermined with the family. The 24 HR-FT was conducted
by a dietitian trained to use a multiple-pass method which included extracting forgotten foods and
detailed portion sizes. During training, participants were provided with a set of standard measuring
cups and spoons, a deck of cards, and 2-dimensional portion size tools for use as a reference during
the recalls. Parental assistance was recommended to be used as needed. At the time of the 24 HR-FT,
the interviewer did not access or preview the mFR™ images.

Following the six days of dietary intake recording by the mFR™ and the 24 HR-FT, the child and
parent were asked to complete a post-study survey. The survey included questions on use of parental
assistance and details specific to each method.

2.3. Statistical Analysis

The dietary intake data collected using the mFR™ and 24 HR-FT were entered and analyzed using
the Nutrition Data System for Research software version 2015 developed by the Nutrition Coordinating
Center (NCC), University of Minnesota, Minneapolis, MN [15]. The survey responses were analyzed
using descriptive statistics. Daily intake of energy (kcal), carbohydrates, fats, and proteins were
compared between the methods with a paired samples t-test. Statistical analyses were performed
using SPSS (IBM SPSS Statistics Version 25; Chicago, IL, USA). Statistical significance was set at a
p-value < 0.05.

3. Results

3.1. Sample Characteristics

The cohort (n = 12) equally represented the three groups (spina bifida (n = 4), Down syndrome
(n = 4), and no disability (n = 4)) with ages between 8 and 18 years old (M = 13.17; SD 3.35) and
included six boys and six girls.
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3.2. Feasibility and Acceptability

The six days of recording dietary intake with the mFR™ and 24 HR-FT were successfully
completed by 12 of the 12 study participants. All 12 children were willing to use the mFR™ and
participate in multiple 24 HR-FT in a future study. See Table 1 for additional results. All parents who
completed the survey (1 = 11) were women. Six parents reported assisting their child with the mFR™
and eight assisted with the 24 HR-FT.

Table 1. Child post-study survey result.

Mobile Food Record (mFR™)

Willing to use TADA mFR™ in future 12/12 (100%)

Ease of use (1-very easy; 10-very difficult) 1 (75%); 3 (8.3%); 4 (8.3%); 9 (8.3%)

Screen easy to read 10 (83.3%) strongly agree and 2 (16.7%) agree

Easy to enter information 8 (66.7%) strongly agree and 4 (33.3%) agree

Information provided was accurate 10 (83.3%) strongly agree and 2 (16.7%) agree

Interfered with daily activities 4 (33.3%) strongly disagree; 7 (33.3%) disagree and 1 (8.3%) agree
24-h Recall by FaceTime (24 HR-FT)

Willing to use 24 HR-FT in future 12/12 (100%)

Ease of use (1-very easy; 10 very difficult) 1 (83.3%); 2 (8.3%); 4 (8.3%)

Easy to recall food 4 (33.3%) strongly agree and 8 (66.7%) agree

Information provided was accurate 7 (58.3%) strongly agree and 5 (41.7%) agree

Interfered with daily activities 5 (41.7%) strongly disagree; 6 (50%) disagree and 1 (8.3%) agree

TADA™: Technology Assisted Dietary Assessment.

3.3. Energy and Dietary Macronutrients

Significant differences were identified for kcals per day from 24 HR-FT (M = 2020, SD = 626)
as compared to mFR™ (M = 1855, SD = 508), t (11) = 2.32, p = 0.041 and for protein (g/day) from
24 HR-FT (M = 80, SD = 27) as compared to mFR™ (M = 69, SD = 19), ¢ (11) = 2.92, p = 0.014 with the
24 HR-FT assessment being higher for both. No significant differences were reported for dietary fats
(g/day) between the 24 HR-FT (M = 81, SD = 32) and mFR™ (M = 75, SD = 25),  (11) = 1.29, p = 0.223.
Similarly, no significant differences were identified for dietary carbohydrates (g/day) when comparing
the 24 HR-FT (M = 250, SD = 73) and mFR™ (M = 233, SD = 70), ¢ = 2.0, p = 0.071.

3.4. Post Hoc Observations

Strengths of the mFR™ included the ability to capture intake not identified by the 24 HR-FT,
which was commonly either a snack or non-nutritive item. Weaknesses included the limited ability
to extract details from the images, e.g., preparation and food density. Strengths of the 24 HR-FT
included the ability to probe and expand on questions related to types of foods and meal components.
Weaknesses of the 24 HR-FT included the child’s inability to accurately remember intake, identify food
preparation details, and estimate portion sizes. Parental involvement was highest among children
with Down syndrome and all groups in the age range of 8 to 12 years. Of the parents who assisted
their children, there was a generalized reduced awareness of complete dietary intake for the child.

4. Discussion

In this feasibility study, the mFR™ and 24 HR-FT dietary assessment methods were both well
accepted by children with and without developmental disabilities. Requesting the use of both methods
for a total of six days within a two-week timeframe was feasible for both child and parent schedules.
This expanded on what was reported by Bathgate and colleagues [13] who tested the feasibility of
using the TADA mFR™ in a slightly older sample of individuals with Down syndrome. In their study,
86% (51/59) of the sample successfully recorded nutritional intake with the mFR™ for a minimum of
two days [13], whereas 100% of the sample in the current study successfully collected both the image
recordings for the mFR™ and the 24 HR-FT for a total of six days. Notable differences between these
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studies were that the sample in the current study was smaller, younger, and included children with
spina bifida and without developmental disabilities. In addition, the current study was able to provide
information on parental assistance with the assessment tools. Benefits and limitations of each of the
dietary assessment methods became evident following execution of this study protocol.

A notable strength of the mFR™ was the ability to capture snacks or non-nutritive food choices
that were often not reported in the 24 HR-FT. This finding was similar across all participant groups
and ages. The omission of this intake in the recalls may have been due to issues of memory, mindless
eating, or social desirability bias.

Challenges related to the mFR™ included difficulty in identifying food items from the uploaded
images on the web server. Having a single 2-dimensional image did not consistently provide sufficient
details regarding the food item, portion size, or the preparation methods. A dietitian completing
a brief review with study participants regarding items needing additional information as done by
Kerr [11] and Bathgate [13] could address these issues. The mFR™ used a fiducial marker to assist
the human eye to estimate volume but potential for error was still present. These challenges are
not specific to the mFR™. Food supplies and systems have produced an infinite number of possible
nutrient compositions per food item creating challenges for any assessment method.

Completion of the 24 HR-FT was well accepted by the study participants. The use of FaceTime
to complete the recall proved to be convenient and offered the investigator and reporter face-to-face
interview benefits. Recall appointments were able to take place anywhere there was an internet
connection decreasing the burden to participants. The face-to-face interview potentially reduced
misreporting by allowing the investigator to observe social cues including eye movements and facial
expressions, which assisted in the determination of when to probe for further information.

A common limitation when using the recall method is the inability for the reporter to remember
all food consumed. When recalling independently, participants sometimes did not remember intake
that they had documented with an image the day before. These image confirmed differences might
have contributed to the larger amount of inaccuracies in the children between 8 and 15 years of
age. In addition to difficulties recalling consumed items, all participants struggled to describe how
food items were prepared, provide food details (e.g., low-fat), and estimate portion sizes. However,
the option of using the provided measuring cups and spoons lessened this problem. When given
the option of having parental assistance with recalls, children with Down syndrome and all children
between 8 and 12 years of age employed this. This may be related to Down syndrome having a higher
potential of cognitive impairment and a poor working memory or it may be indicative of this age
group. When used, parental assistance was not always useful. Parents were often unaware of specifics
related to what their child ate throughout the day. This is not unexpected as food is often consumed
outside of the home or can be eaten independently within the home.

When comparing energy and macronutrient intakes between the two methods, dietary fats and
carbohydrates were consistent with each other, but energy (kcals) and protein intake were significantly
different between the methods with the 24 HR-FT measuring higher for both. The rationale for this
difference is uncertain but may stem from the challenges related to extracting details from the TADA™
images or the added benefit of being face-to-face for the 24 HR-FT. As noted above a review process
after collecting the images might address this [11,13]. Further study would be needed with larger
sample sizes to confirm if these remain consistent findings.

The intent of the study was to compare two novel methods of dietary assessment in children with
and without developmental disabilities. Having the ability to perform each method back-to-back not
only allowed the authors to compare the methods but it also highlighted how unique attributes of
each method could be synergistic if used together. During analysis, it became evident that the TADA™
images captured intake that was not identified by the child during the 24 HR-FT, which may alleviate
issues related to the inability to recall food consumed the previous day. In addition, the 24 HR-FT
could provide the trained interviewer the opportunity to ask questions or to use props to gain valuable
details related to the food in the TADA™ images. While our team did not preview the TADA™ images
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prior to the subsequent 24 HR-FT, deliberately replicating the sequence of these two methods and
using the 24 HR-FT to complement the mFR™ could be extremely valuable and is recommended for
future studies.

Study strengths were the inclusion of children with disabilities, the use of the same food
composition table, and that a single team member entered all data for analysis. Particular limitations
include the small sample size and cross-sectional design that limits the generalizability of study
findings. Also, the errors inherent with interpreting dietary information for data entry to a food
composition table and lack of an objective biomarker.

5. Conclusions

This feasibility study provided valuable information in a vulnerable subset of children who have
a higher prevalence of obesity and could be applied to all children regardless of disabilities. The mFR™
and conducting multiple pass 24-h dietary recalls over FaceTime are two novel methods of assessing
dietary intake. The use of technology appeared to benefit acceptance and willingness to complete the
tools in a sample of children with-and-without developmental disabilities and their parents. Each tool
had its own strengths and weaknesses that could leverage the other. The combination of methods may
increase the accuracy of self-reported dietary assessment in children and is recommended for further
study in larger samples.
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Abstract: Background: eaTracker® is Dietitians of Canada’s online nutrition/ activity self-monitoring
tool accessible via website and mobile app. The purpose of this research was to evaluate the eaTracker®
mobile app based on user perspectives. Methods: One-on-one semi-structured interviews were
conducted with adult eaTracker® mobile app users who had used the app for > 1 week within the
past 90 days. Participants (1 = 26; 89% female, 73% 18-50 years) were recruited via email. Interview
transcripts were coded using first level coding and pattern coding, where first level codes were
grouped according to common themes. Results: Participants mentioned several positive aspects of
the mobile app which included: (a) Dashboard displays; (b) backed by dietitians; (c) convenience
and ease of use; (d) portion size entry; (e) inclusion of food and physical activity recording; and
(f) ability to access more comprehensive information via the eaTracker® website. Challenges with
the mobile app included: (a) Search feature; (b) limited food database; (c) differences in mobile
app versus website; and (d) inability to customize dashboard displayed information. Suggestions
were provided to enhance the app. Conclusion: This evaluation provides useful information to
improve the eaTracker® mobile app and also for those looking to develop apps to facilitate positive
nutrition/physical activity behavior change.

Keywords: mobile applications; adults; nutritional science; qualitative research

1. Introduction

Over the past decade, mobile devices and their applications (“apps”) have become an integral part
of the everyday lives of many Canadians. The Canadian Radio-television and Telecommunications
Commission reported that in 2016, 87%, 77%, and 54% of Canadian adults owned cellphones,
smartphones, and tablets, respectively, which is up from 80%, 51%, and 26%, respectively, in 2012 [1].
Use of mobile apps for health-related purposes has also become popular amongst the general public.
A recent survey study of mobile phone owners from the United States found that almost 60% of
respondents had downloaded a mobile app with health-related content; the authors also found that
use of apps for nutrition and fitness was common [2]. In addition, some apps for monitoring eating and
activity behaviors (e.g., MyFitnessPal (Under Armour Inc., Baltimore, MD, USA)) have had millions of
downloads. The availability of health apps is also expanding daily—a recent report found that about
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200 new health apps are added each day [3]. Dietitians are also now commonly encountering clients
interested in using nutrition apps in their practice [4,5]. However, despite the popularity of nutrition
(and activity) apps, many may have been developed without visible health professional input [6].

Dietitians of Canada’s eaTracker® (http:/ /www.eatracker.ca/) is a free, publicly available
bilingual (English and French) web-based tool that allows members of the public to track their
eating and/or physical activity behaviors and compare them to recommendations (including those
set by Health Canada). Users create an account and enter demographic information including their
month and year of birth, sex, height, weight, self-reported activity level, pregnancy/breastfeeding
status, postal code, province of residence, and country of residence, which allows personalized
recommendations to be determined. Users then have the ability to enter eating and physical activity
behaviors via a database of available choices (~4500 food items from the Canadian Nutrient File
(version 2010) which contains information on average nutrient values for foods available in Canada [7],
and ~159 activities). Following data entry, users are able to receive feedback on consumption of
calories, Canada’s Food Guide [8] servings, 22 nutrients as well as information on physical activity
including minutes of activity, minutes of low effort, moderate effort, high effort, and muscle and bone
strengthening exercise, and number of calories burned through exercise. eaTracker® also contains
other tools such as a recipe analyzer (which allows users to enter ingredients to obtain a nutritional
analysis of their recipe, and save this recipe to expedite future entry of this recipe into eaTracker®),
a goal setting and tracking tool (My Goals) (described elsewhere) [9,10], and the ability for a dietitian
coach to view intake and activity patterns of a group of clients, and provide comments.

In 2014, Dietitians of Canada released free iOS™ and Android™ eaTracker® mobile apps available
via the Apple App Store® (Cupertino, CA, USA), and Google Play™ store (Mountain View, CA, USA).
The mobile app can be used either by itself or in conjunction with the eaTracker® website. The mobile
app allows users to create/access their account, to log and receive feedback on eating and physical
activity behaviors, and to set and track goals using the My Goals feature. Users are able to receive
feedback on intakes of energy, macronutrients, and number of servings from the four Canada’s Food
Guide food groups as well as activity behaviors via the mobile app. Users also have the option to
visit the eaTracker® website to obtain the more comprehensive assessment of their eating and activity
behaviors and use the recipe analyzer. Screenshots of the eaTracker® mobile app are shown in Figure 1.
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Favourites My Meals My Reeipes  Vitamins
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Figure 1. eaTracker® mobile app screenshots.

The purpose of this research was to conduct an evaluation of the eaTracker® mobile app using
qualitative one-on-one semi-structured interviews with users. This evaluation will support future
modifications to the eaTracker® mobile app and the development of other credible, user-friendly,
and effective nutrition and physical activity behavior change mobile apps to optimize the nutritional
status of Canadians.
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2. Materials and Methods

An advisory committee (1 = 5 Dietitians of Canada staff members; researchers from University
of Waterloo) oversaw the project design, methods (including interview protocol), and analyses.
The Dietitians of Canada information technology team also provided expertise and support.
The University of Waterloo Office of Research Ethics provided ethics approval (ORE: #20671; approval
date: April 30, 2015). The Consolidated Criteria for Reporting Qualitative Research (COREQ)
checklist [11] guided study reporting.

Approximately 30 participants were desired a priori for this study; a convenience sampling
strategy was used. eaTracker® users were approached about the study through an email invite sent
via FluidSurveys (FluidSurveys, Ottawa, ON, Canada). Dietitians of Canada sent an email invite on
two occasions (May 12, 2015; June 15, 2015) to eaTracker® users who: (a) Were >18 years, (b) Southern
Ontario residents (based on self-reported postal code in their eaTracker® account), (c) had used
eaTracker® within the past 90 days and, and (d) previously provided permission to be contacted
by Dietitians of Canada. The email invite provided a link to an online survey where users were
asked whether they had specifically used the eaTracker® mobile app within the past 90 days; if they
responded “yes”, they were invited to leave their name and contact information. A research assistant
(TG) then contacted individuals via email or phone to provide more information about the study.
Interested users who had used the eaTracker® mobile app for >1 week were invited to complete
the interview.

One-on-one, semi-structured interviews were conducted by a TG, a female research assistant
who had recently completed a Bachelors degree in Health Studies (with a minor in Nutrition) and
was trained in qualitative research methods. The researcher who conducted the interviews was not
using eaTracker® at the time of the interview, and was at an arms-length from Dietitians of Canada in
order to prevent bias. Participants did not know anything about the researchers except information
provided via the information letter and consent forms. Participants were told that the purpose of
the study was to evaluate the eaTracker® mobile app by obtaining information on user perspectives
regarding app content, service, and functionality. No relationships with participants were established
prior to study commencement. Interviews were conducted in-person (in public locations e.g., coffee
shops), by telephone, or Skype™ (Microsoft Corporation, Redmond, WA, USA). Interviews were
conducted at a time that was convenient for both individuals, and no other individuals were present at
the interview except the participant and researcher. Several interviews were conducted by telephone,
as participants were located across Southern Ontario; however, if participants were located within
close proximity to researchers, efforts were made to conduct in-person interviews. All participants
provided written (in-person interviews) or verbal (telephone or online interviews) informed consent.
The semi-structured interviews were guided by an interview protocol with open-ended questions
designed to address study objectives (Supplementary S1). Both clarifying and elaborating probes were
used to gather additional data [12]. The interview protocol was pilot tested with two individuals from
the target population prior to data collection. Field notes were taken during interviews. Participants
were provided with a free Dietitians of Canada cookbook following the interview as a thank you gift.
No participants dropped out after completing the interview. Interviews were completed until data
saturation was achieved; no repeat interviews were conducted. All interviews took place between May
2015 and August 2015.

All interviews were audio-recorded and transcribed verbatim. Detailed notes were taken for
participants who did not consent to the audio-recording. Any identifying information in the transcripts
was removed to maintain confidentiality. Transcripts were reviewed to correct any errors; transcripts
were not returned to participants for comment and/or correction, and participants did not provide
feedback on study findings.

Data were analyzed using content analysis [13,14]. The interviews were coded by a single trained
coder (TG) using NVivo 10 for Mac (QSR International Pty Ltd., Doncaster, Australia). First level
coding and pattern coding were used, where first level codes were grouped according to common
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themes which were derived from the data [15]. To ensure reliability of coding, a second experienced
coder reviewed a subset of transcripts (~10%) and associated codes, and themes. Any disagreements
were discussed until consensus was reached [16].

3. Results

In total, n = 4135 and 1 = 1082 eaTracker® users were sent an email message on May 12, 2015 and
June 15, 2015, respectively inviting them to participate in the study. In total, n = 129 users completed
information on the recruitment survey. Of those, = 67 eaTracker® users who had used the mobile app
in the past 90 days provided contact information and were contacted by TG, and in total, n = 26 users
participated in the one-on-one semi-structured interview (average length: 36 min; range: 20-64 min);
one interview was not recorded because of participant request (detailed notes were taken instead for
this interview).

Table 1 shows participant demographics and interview methods. Overall, 88.5% of participants
were female, and 73.1% were 18-50 years of age; just under 60% of interviews were done by phone.
The distribution of age and sex for study participants generally reflects the overall population of
eaTracker® users in Canada from July 5, 2015 to September 2, 2015 (1 = 2265) (79.8% female; 75.7%
18-50 years).

Table 1. Participant demographics and interview method.

Number (%)
Sex
Female 23 (88.5)
Male 3(11.5)
Age (years)
18-30 9 (34.6)
31-50 10 (38.5)
51-70 7 (26.9)
Interview Method
Phone 15 (57.7)
Online (e.g., Skype) 2(7.7)
In-Person 9 (34.6)

Participants reported various nutrition and physical activity goals including: Improving specific
eating habits (e.g., follow food guide, consume a balanced diet, plenty of vegetables, decrease saturated
fat intake, reduce sodium intake, decrease meat intake, decrease intake of “bad foods,” meet iron
requirements) (n = 21 participants), weight management (1 = 9), and attaining recommended activity
levels (n =9).

In total, n = 18 and 1 = 11 participants were using the iOS™ and Android™ eaTracker® mobile
apps, respectively. Participants used various devices to access the app; intotal, n =13, n=9,n =5,
and 7 = 2 participants accessed the mobile app via an iPhone®, Android™ phone, iPad® tablet, and
BlackBerry® phone, respectively. Participants mentioned finding out about the eaTracker® mobile
app through different channels; the most common ways were via the eaTracker® website, app stores,
and through their dietitian or a dietitian they followed on social media. Some participants were also
informed about the mobile app through school, the EatRight Ontario website (now rebranded as
http:/ /www.unlockfood.ca/), family and friends, trainers, and media.

Information on duration of eaTracker® mobile app use was obtained for n = 23 participants.
In total, n = 9 participants had used the eaTracker® mobile app between one and three weeks, n = 4
for about two months, n = 7 between three and six months, and # = 3 for a year. Most participants
described themselves as ‘daily users” which could include using the app multiple times/day, using
the app after every meal, or using the app at specific times (e.g., morning to enter foods eaten the day
before). In addition, 7 = 5 users mentioned that they used the app on a weekly basis, and 7 = 4 used
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the app less often than weekly (e.g., every few months). Of the n = 26 participants, n = 13 said that
they would continue to use the eaTracker® mobile app in the future, 1 = 8 said that they would not
continue to use the mobile app, with the remaining being unsure if they would continue or discontinue
eaTracker® mobile app use. Reasons for discontinuation varied and included, for example, preference
for other apps, and the food search feature being difficult to use.

In total, n = 10 participants mentioned using the eaTracker® mobile app at home. Participant
011 stated, “If I'm out for a meal, I'll do it when I get home; always at home. It just takes too long
to do it when I'm out ... you have to type in the whole word.” However, many participants also
reported using the mobile app in any setting and even found that it could be “a discussion point.”
Typically, these participants used the mobile app as soon as they consumed food or beverages. A few
participants also mentioned that the mobile app helped them to increase awareness of the foods they
were eating throughout the day. Participant 026 mentioned that the use of the mobile app allowed
her to “ ... see where I was adding the most calories, cause a lot of these calories were hidden to me.
Once I put them in eaTracker I noticed where I was adding too much.”

3.1. Positive Aspects of the eaTracker® Mobile App

Participants mentioned several positive aspects of the eaTracker® mobile app which included
dashboard displays, backing by dietitians, convenience and ease of use, portion size entry, and inclusion
of both food and activity recording components. These findings are described in detail below.

3.1.1. Dashboard Displays

The dashboard display’s information about quantities of calories (kcal), macronutrients (g),
Canada’s Food Guide servings consumed as well as goals set and physical activity behaviors
(screenshot in Figure 1). Participants felt positively about how the information was organized on the
dashboard and found it visually appealing. Participant 020 mentioned, “I do like the dashboard format
where it’s like a summary at a glance.” Participant 006 mentioned, “I like that (the dashboard is) not
too overly physical, like there’s not too many graphics or pictures and all that, things that typically take
longer to load too that I don’t need.” Participants also liked other aspects of the dashboard including
the ability to change the background picture and to use a swiping motion to view information on
behaviors logged for previous days.

3.1.2. App Backed by Dietitians

Several participants liked that the mobile app was developed by a reputable organization
(Dietitians of Canada), backed by dietitians, and contained Canadian content. Some participants
reported trusting the validity and accuracy of the information presented in the mobile app. For example,
Participant 006 mentioned: “ ... the Canadian focus of it too-right? There’s a lot of US based stuff;
I wanted something that was in Canadian metrics and Canadian context.” The fact that Dietitians of
Canada developed the mobile app was a motivating factor to continue use for some participants such
as Participant 016: “I don’t know I guess I just haven’t given up on it yet. Because it’s gotta be worth it
if the Dietitians of Canada suggest it.”

3.1.3. Convenience and Ease of Use

Most participants found the mobile app was convenient, easy to use, and an easy way to record
both their eating and activity behaviors. Participants also described the mobile app as convenient
because having it on their mobile devices allowed them to record their eating and physical activity
behaviors during leisure time or soon after they had a meal. The perspective that mobile apps are
easier to access versus computers was also described by several participants. Participant 018 explained,
“it’s a lot easier to pick up a phone like off a counter than if you go onto a computer and login and
everything.” In addition, participants that used the website and the mobile app together enjoyed
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the flexibility of being able to access their eaTracker® account in different ways and felt that the two
methods to access the tool complimented one another. Participant 001 explained, “I like how they’re
integrated, (when I) input something on the mobile app, I don’t have to go back to the website to
change it or make sure it’s correct and put something on the website.”

3.1.4. Portion Size Entry

The eaTracker® mobile app provides users with several options for entering portion size
information for the foods they consume (e.g., volume, weight, and count-based units). Participants felt
positively about having access to several units to enter food portion sizes, and felt this was unique to
this mobile app. Participant 008 stated, “I like all the quantities that they provide, that’s really helpful.”
This participant also went on to compare the number of measurements provided in the eaTracker®
mobile app vs. other non-Canadian commercial apps. They explained, “(name of other commercial
app) do(es) have that as well but sometimes they don’t have (the units) that you want and I found that
(the eaTracker® mobile app) was actually better.”

3.1.5. Includes Both Food and Physical Activity Recording

A couple of participants liked that the mobile app included both food and activity recording
components. They felt positively about the fact that the activity and food entry were separate distinct
components with similar layouts all housed within the same mobile app. Participant 022 stated, "I like
that you can enter your physical activity as well as your, your food in there because you know they
both go hand in hand when you're worrying about your health.” Even participants like Participant
001 who had never reported using the physical activity feature appreciated that this functionality was
available. They stated, “(what) I like about the app is that you can add how much physical activity
you've done, I've never used that in the app, but you could, so I like that cause with a lot of the other
apps it’s strictly a food app or strictly health.”

3.1.6. Ability to Access More Comprehensive Information via the eaTracker® Website

A few participants also liked that they could visit the eaTracker® website to retrieve a “more
detailed description” of their food intake through nutritional reports that were not available via the
mobile app. Participant 005 explained that “(the website) gave more information in terms of what
vitamins, the nutritional concepts. (Other mobile apps are) strictly limited to calories, fats, sodium
and a hand full of nutrients but the eaTracker app was more accurate in terms of stuff you wouldn’t
regularly think about.”

3.2. Challenges with the eaTracker® Mobile App

Participants mentioned some challenges with the eaTracker® mobile app which included
difficulties with the search feature, limited food database, differences between the mobile app and
the website, and inability to customize nutrition variables displayed on the mobile app dashboard;
these four findings will be discussed in more detail. Participants also mentioned other challenges,
which included having lunch as the default meal, inability to use the mobile app without Wi-Fi or
cellular data, and finding the mobile app background distracting.

3.2.1. Search Feature

Over half of participants described various difficulties with the eaTracker® food search feature
which made the mobile app tedious to use. There were also a few concerns mentioned with the activity
search feature, although these comments were less common. One reported difficulty was that the
search did not bring up relevant items. Participant 025 explained the challenge: “After I started using
it, I found it really almost too detailed ... like when I was looking for like a thing I have eaten, I got
50 options that came up. But I can’t scroll through and I wasn’t able to find a way to filter them in
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order to find what I was looking for-something that was close enough.” Another challenge was that
the search provided unrelated items. Participants who had used other mobile apps for food data entry
also discussed the benefit of entering foods using a barcode scanner; participants described this entry
as quick as it did not require extra time to search for individual foods. Another participant provided a
suggestion that the mobile app bring up common foods eaten at the same time each day when the app
is opened (instead of having to search for foods) to simplify data entry.

3.2.2. Limited Food Database

Another concern was the limited food database. Almost 50% of participants had concerns
about missing food items from the database, some of which they believed to be common, such as
Greek yogurt. Participant 006 mentioned, “it’s limited, they don’t have Greek yogurt for instance.”
Participant 020 also mentioned: “I didn’t feel like the database of food and nutritional information had
represented what I had actually eaten.” Participants often compared the eaTracker® mobile app food
database to other commercial mobile apps which have much larger food databases, which, according
to participants, contained everything from restaurant foods to packaged foods, and trendy foods (e.g.,
gluten free foods, Goji berries).

Several participants suggested efforts should be made to improve the food database. Participant
021 mentioned: “I would say that it would be good to work on the database of the food. That would
be my biggest comment-just to have more foods available to input would be perfect.” Participants
suggested different ways to improve the food database. One suggestion was to add more restaurant
foods. Participant 003 mentioned: “having restaurants-that would be handy, including Canadian
restaurants, because nowadays a lot of people are eating out at Tim Hortons or Starbucks or whatever
... ” Another suggestion was allowing users to update the database on their own. Participant 025
suggested, “I wonder if there might be an opportunity instead of looking for an option in the list that
would represent what you just had-if you could take a picture or do something with the nutritional
label which is just standard and input it saying this is what I had, right?” Another suggestion was
having a community-based database where users could add in nutrition information from the products
they typically consume which would allow for a greater number of options to be available for users.

3.2.3. Mobile App Differs from the Website

While most participants felt the eaTracker® mobile app was simple to use, some participants
who used the eaTracker® website previously did not enjoy the layout and interface of the mobile
app because it did not resemble the website. Participant 012 mentioned: “I didn’t really understand
(the eaTracker® mobile app). It was just the interface; I wasn’t used to it cause it did look different
from the website ... so yeah, but I definitely didn’t start using it immediately.” In addition, some
participants mentioned concerns that some feedback information available on the website was not
available via the mobile app.

Over half of participants wanted more eaTracker® website features available via the mobile
app. Several participants wanted to be able to access progress graphs available on the eaTracker®
website via the mobile app. Participant 012 mentioned: “Well, personally, I would definitely like to see
graphs of everything, so everything that I can see on the website, I should be able to see on eaTracker
mobile app in terms of that analysis portion-so both the like micronutrients, macros as well as the like
food groups.” Others discussed wanting to be able to access the recipe analyzer via the mobile app.
Participant 022, suggested, “I would like to see the recipe analyzer feature added to the app, maybe
that’s way too complicated and there’s a reason why they haven’t put it on there but I would certainly
use it.”

3.2.4. Inability to Customize Dashboard Displayed Information

As mentioned previously, participants liked the concept of the dashboard. However, a few
participants mentioned a limitation of the eaTracker® mobile app was the inability to customize the

172



Nutrients 2018, 10, 1462

specific nutritional variables displayed. Participant 022 mentioned, “I would like to see them add
sugar to that-like grams of sugar, to that little part that goes across it (i.e., dashboard) ... I think a lot
of people are watching their sugar these days and it would be handy to know how much sugar is in
the foods that you're eating.” Participants had varied preferences on the variables that they wanted
to be included or excluded depending on their dietary pattern (e.g., vegetarian) or disease state (e.g.,
diabetes) and wanted the app to be able to accommodate those preferences.

Participants also suggested making the mobile app more interactive by providing customized
recommendations based on user-entered data (e.g., goals, nutrient intake, common foods). Participant
008 stated, “if I could just click on a button, say on the day, when I'm low on something I hit a button
and it tells you to ‘try eating this” and choose a snack that had more of that in it.”

4. Discussion

eaTracker® is one of only a few Canadian mobile apps to support nutrition (and activity) behavior
change. The current evaluation highlights the enthusiasm of users and provides rich feedback to
enhance this mobile app as well as other electronic health tools to optimize nutrition (and activity)
behaviors to prevent and manage chronic diseases such as cardiovascular disease, diabetes, and cancer.

One key finding from this study was that participants liked that the mobile app was developed
by a reputable organization and for some participants, this was a motivating factor to continue
use. Concerns about mobile app credibility and accuracy were also mentioned in a related study by
Dennison et al. [17]. This finding is important as many health, nutrition, and weight management
apps are not developed with input from health care professionals and professional organizations;
Nikolaou and Lean [6] recently found that <1% of weight management apps were developed with
visible professional input. Professionals and professional organizations should consider becoming
involved in app development and making this involvement clearly visible to users. In addition,
implementation of easy ways for consumers to identify nutrition apps developed by dietitians (and
other reputable professionals or organizations) may be helpful. One strategy may be to have a list of
apps and a badge for those developed with this type of input, which is similar to what Dietitians of
Canada does to identify blogs written by dietitians (Dietitians of Canada Member Blogs) [18].

Similar to other qualitative data on user experiences with nutrition mobile apps [17,19-23],
this study found that food data entry is a key topic that affects satisfaction with these types of tools.
Previous qualitative studies with related mobile apps have also identified that users have a strong
desire to record the foods eaten as precisely as possible [17,23], which may be a reason for the high
frequency of this type of comment among participants in the current study. Participants in this study
liked that multiple units were available for food data entry with the eaTracker® mobile app (which
is a limitation of many other similar mobile apps) [19]; however, they encountered challenges with
the search feature, as well as frustrations with the small food database. Generally, other studies
have found that large databases are convenient and well-liked because of the large variety of foods
available which allows an exact item to be found [19,21]. However, difficulties finding correct foods in
large databases have also been reported [19,20]. Difficulties with both large and small food databases
suggests that issues with food databases are present regardless of database size. While the eaTracker®
food database is smaller and does not offer the ability to self-enter foods compared to databases used
in other publicly available apps, it has the potential to provide feedback on a larger selection of dietary
variables because the Canadian Nutrient File database is used rather than relying on information only
available on food labels. Barcode scanners to streamline data entry have been previously reported
to be well-liked [19,23]; however, they are only useful for entry of packaged foods and errors with
these tools have been reported [19]. Future modifications to eaTracker® and other mobile apps will
need to weigh the pros and cons of different options for food entry. Additionally, when the method(s)
are chosen, it is important that users are educated on the rationale and pros and cons of the chosen
food entry option and strategies to ensure success with data entry for the chosen option. For example,
if smaller databases are chosen to be used, users should be provided with strategies on how to find
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the correct foods (e.g., education on searching for the type of food instead of the brand name, e.g.,
searching for hazelnut spread instead of Nutella®) to help promote success and satisfaction with the
tool. In addition, regardless of database size, implementing strategies to streamline data entry (e.g.,
via favorites, commonly entered items, recently entered items, optimizing the search feature) would be
a worthwhile endeavor.

A notable finding from this study was that participants who had been previous users of the
eaTracker® website initially found the eaTracker® mobile app difficult to use. To our knowledge, this is
the first time that this qualitative finding has been reported in users of a mobile nutrition (and activity)
self-monitoring tool. This finding suggests that users may find transitioning to a different format to be
challenging and that it may be necessary to implement strategies to help improve their success.

Participants mentioned that one of their most liked features of eaTracker® is the in-depth feedback
provided on several dietary variables; this feedback is provided in different ways including charts and
graphs. Some participants wanted mobile app access to include more of this personalized information
currently available only on the eaTracker® website. This finding aligns with previous studies in this
area which have found that having access to numbers and graphs about progress in a nutrition and/or
physical activity behavior change mobile app is generally well-liked and can be motivational [21,23-27].
In addition to having the ability to personalize which eaTracker® feedback information is displayed on
the mobile app, personalization of other aspects of the app (e.g., automated recall of favorite foods) (as
has also been found in other related studies [28]) is also desired. This should be considered in future
eaTracker® mobile app modifications and development of future apps.

Strengths and Limitations

This study has several strengths. Sampling occurred until data saturation was reached. In addition,
a variety of participant types were chosen without exclusively focusing on individuals using the app
for weight management. In addition, we captured information on real-world experiences as opposed
to experiences of use as part of a research trial.

While this study has several strengths, there are some limitations that should be mentioned.
It should be noted that only a small subset of eaTracker® users responded to the email invitation
which is common for these types of invitations. In addition, participants who completed the interview
may be more motivated and willing to contribute feedback compared to the general user group.
Participants were also primarily female and 18-50 years of age; however, this distribution generally
reflects the overall population of eaTracker® users. In addition, information on education level, income,
and ethnicity was not collected from participants.

5. Conclusions

This evaluation of the eaTracker® mobile app provides important insight on real-world user
experiences with mobile apps for nutrition (and activity) behavior change. Users liked that the app
was developed by a reputable organization, and had multiple ways to enter food data. Professionals
and developers should keep in mind that users may have difficulty transitioning between a website and
mobile app, and that finding ways to streamline data entry should be a priority. In addition, allowing
users to personalize mobile apps would likely help to increase satisfaction. Ultimately, higher user
satisfaction may result in improved app adherence which may help to improve nutrition (and activity)
behaviors to decrease the burden of chronic disease.

Supplementary Materials: The following are available online at http:/ /www.mdpi.com/2072-6643/10/10/1462/
s1, S1: Interview Protocol for eaTracker® Mobile App Users.
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Abstract: Traditional food frequency questionnaires (FFQs) are influenced by systematic error,
but web-based FFQ (WEB-FFQs) may mitigate this source of error. The objective of this study
was to compare the accuracy of interview-based and web-based FFQs to assess energy requirements
(mERs). The mER was measured in a series of controlled feeding trials in which participants daily
received all foods and caloric drinks to maintain stable body weight over 4 to 6 weeks. FFQs
assessing dietary intakes and hence mean energy intake were either interviewer-administered by
a registered dietitian (IA-FFQ, n = 127; control method) or self-administered using a web-based
platform (WEB-FFQ, n = 200; test method), on a single occasion. Comparison between self-reported
energy intake and mER revealed significant under-reporting with the IA-FFQ (—9.5%; 95% CI, —12.7
to —6.1) and with the WEB-FFQ (—11.0%; 95% CI, —15.4 to —6.4), but to a similar extent between
FFQs (p = 0.62). However, a greater proportion of individuals were considered as accurate reporters
of energy intake using the IA-FFQ compared with the WEB-FFQ (67.7% vs. 48.0%, respectively),
while the prevalence of over-reporting was lower with the IA-FFQ than with the WEB-FFQ (6.3%
vs. 17.5%, respectively). These results suggest less accurate prediction of true energy intake by a
self-administered WEB-FFQ than with an IA-FFQ.

Keywords: food frequency questionnaire; dietary assessment; web; under-reporting; over-reporting;
energy intake

1. Introduction

Dietary assessment is central to nutritional epidemiology, which forms the basis of dietary
guidelines [1,2]. Twenty-four-hour recalls (24HRs) and food frequency questionnaires (FFQs) are
common instruments to collect self-reported dietary intakes [3]. However, the validity of self-reported
data obtained via such memory-based dietary assessment methods, and hence the whole value of
nutrition epidemiology, is being challenged based on their purported inability to correctly reflect true
food and nutrient consumption [4-7]. However, others have argued that despite recognized limitations,
relying on self-reported dietary intake data in epidemiological studies has been instrumental in
developing impactful dietary guidelines and recommendations over the years [1,2,7-10]. One of the
fundamental issues in this heated debate relates to whether 24HRs and FFQs can measure true energy
intake, due among other factors to significant random and systematic errors [1,11-14].
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New methods of dietary assessment using recent technologies are being developed and
examined [15-17] and there is growing interest in the ability of web-based alternatives to improve the
efficiency of data collection. Web-based tools increase the efficiency of the data processing; they can be
completed at any time or location, they offer unique advantage regarding portion size presentation
and food recognition, and they are cost-effective [16,18]. However, the extent to which web-based
delivery methods may mitigate some of the errors seen with more traditional interview-administered
(IA) methods such as FFQs remains uncertain. Previous data have suggested that web-based 24HRs
may be less prone to social desirability bias compared with IA tools [18-20]. The use of digital pictures
in a web-based 24HR has also been proposed to facilitate portion size estimation compared with
an IA-24HR [21]. A recent review of Canadian epidemiological studies reported that web-based
dietary assessment instruments have not yet been used [22]. Thus, the value of web tools needs to be
examined carefully for robustness, validity and reproducibility before their use can be expanded in
large epidemiological studies.

To the best of our knowledge, no study has yet compared the accuracy of an IA-FFQ and
self-administered web-based FFQ (WEB-FFQ) to predict an objective measure of energy requirements
(mERs). The primary objective of this study was therefore to compare the accuracy of an IA-FFQ and a
WEB-FEQ to assess the mER. Our hypothesis was that the WEB-FFQ is more accurate in assessing the
mER than the IA-FFQ.

2. Materials and Methods

2.1. Study Design and Population

As a secondary analysis, subjects included in this study were participants from a series of nine
randomized and fully controlled feeding trials (six published to date) conducted at the Institute of
Nutrition and Functional Foods in Quebec City and at the Richardson Centre For Functional Foods and
Nutraceuticals in Winnipeg from 2008 to 2017. All trials were devised to test the impact of different
diets and nutrients on cardiometabolic risk factors [23-28]. Briefly, participants in these trials were
between 18 and 65 years of age, were non-smokers, and had no history of cardiovascular disease, type 1
or type 2 diabetes, monogenic dyslipidemia, or uncontrolled endocrine disorder. Participants had
to have maintained a stable body weight (within 2.5 kg) for at least 3 months before the onset of the
interventions. All trials considered in the present study were conducted in weight-stable participants.
All participants gave their informed consent for inclusion before they participated in the trials included
in the present study, which were approved by local ethic boards.

2.2. Anthropometric Assessment

Body weight, waist and hip circumference were measured according to standardized procedures
after a 12-hour overnight fast before and after each intervention period [29]. In addition, body weight
was measured continuously throughout all feeding phases, three to five times per week [23-28].

2.3. Reported Energy Intake (rEI)

The IA- and WEB-FFQs were previously validated for use in French-speaking adults and details
have been published elsewhere [15,30]. Briefly, the IA-FFQ is a face-to-face interviewer-administered
FFQ designed to reflect dietary intakes of the past 30 days. The questionnaire is based on
typical food items available in the province of Quebec with a special focus on components of the
Mediterranean diet in a North-American context, which was required for the trials conducted at the
time. The IA-FFQ has 91 items and food models were used in the interviews to facilitate portion size
estimation. Administration of the IA-FFQ by a registered dietitian took approximately 30-45 min using
standardized language across all participants.

The WEB-FFQ is a self-administered web-based questionnaire also designed to reflect dietary
intakes over the past 30 days. Participants completed the WEB-FFQ on-site or at home, using Internet.
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The questionnaire has 136 questions which were based on the Willet FFQ and the previously validated
IA-FFQ [30]. Several serving sizes based on the Supplementation en Vitamines et Mineraux Antioxydants
(SU.VIL.MAX) Food atlas [31] were digitally photographed using standardized dinnerware. Participants
completed either the IA-FFQ or the WEB-FFQ, once during the run-in period (i.e., 0 to 4 weeks)
preceding the first phase of each controlled feeding trial.

2.4. Measured Energy Requirement (mER)

Energy expenditure for each participant was first estimated with validated equations [32] and from
the results of the IA- or WEB-FFQ prior to undertaking the intervention phases of the trials. During
all phases, participants were asked to come to the laboratory of participating centers at least three
times a week in order to pick up meals and snacks and for body weight measurement. Participants
were instructed to consume all and only the foods and caloric drinks provided. Dietetic technicians
prepared all meals and snacks in the metabolic kitchen of participating centers to the nearest 0.1 g.
Participants received all foods and caloric drinks on a daily basis under isoenergetic conditions to
maintain body weight constant over feeding phases of 4 to 6 weeks. Food provision was adjusted
when body weight fluctuated by more than 2 kg over one week or with any major change in reported
hunger or fullness. Participants were instructed to maintain their usual physical activity habits.

mER is considered as a valid estimate of true energy expenditure because energy intake during
the feeding trials was adjusted constantly to achieve body weight stability [23-28]. Furthermore,
controlled feeding studies conducted at the Institute of Nutrition and Functional Foods have been
previously used to assess the validity of another web-based instrument [33]. Only the first phase
of each trial was considered in the present study due to temporal proximity with the completion of
either FFQ. The mER was the mean daily total energy provided to each participant during the fourth
week of all feeding phases. Compliance with the dietary intervention was assessed using various
approaches. Self-reported compliance assessed using checklists was high across all interventions
(>98%) with a large proportion of the prescribed diets (between 30-40%) consumed on-site under
direct supervision of the research staff [23-28]. Subjects included in the analyses were also in weight
stable conditions throughout the various isoenergetic protocols. Changes in main cardiometabolic
outcomes (mostly plasma lipids) in the trials were consistent with expected changes from other studies
in the literature [34-36]. Finally, changes in plasma fatty acid profiles were also consistent with the
dietary intervention [26]. Post- vs. pre-intervention differences in body weight were examined to
further confirm body weight stability and hence isoenergetic feeding conditions. Based on the post- vs.
pre-intervention body weight difference of all participants, an arbitrary cut-off of £1.5SD (0 + 1.85 kg)
change in body weight was chosen to exclude subjects with a large body weight variation after the
intervention. A change within +1.85 kg most likely reflects normal day-to-day variation in body
weight, of which most is due to body water fluctuation [37].

2.5. Statistical Analyses

The statistical software package SAS® Studio (v3.6, Cary, NC, USA) was used for all analyses.
Extreme values of rEI were excluded on the basis of the Outlier Labeling Rule [38]. Outliers are
individual values above Q3 + 2 x (Q3 — Q1) or below Q1 — 2 x (Q3 — Q1) where Q1 and Q3 represent
the 25th and 75th percentiles of the rEI distribution, respectively. Baseline characteristics of the
participants were compared using two-sided Student ¢ tests and chi-square tests, where appropriate.

Mean rEl and mER were compared using MIXED models with self-report flag (indicator variable
for rEI or mER), age, sex, body mass index (BMI), ethnicity, trial and post vs. pre-intervention body
weight difference as fixed effects, and subject as a random effect. Potential statistical differences
between the IA- and WEB-FFQ were assessed with addition of the interaction term FFQ method (IA- or
WEB-FFQ) x self-report flag to the MIXED models. Spearman correlations (rs) were used to examine
the association between rEI and mER with adjustment for age, sex, BMI, ethnicity, trial and post vs.
pre-intervention body weight.
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Participants were also classified as under-reporters, accurate reporters, or over-reporters on the
basis of their ratio of rEI to mER (i.e., a ratio of 1.00 would indicate exact correspondence between
both measures). Confidence limits (CL) were calculated around the rEI:mER ratio based on the
coefficient of variation (CV) for rEI and mER to account for measurement errors and normal variation
in energy expenditure:

CVier? 2
95% CL =42 x (TJrCVmER ) (1)
The CV,g1 (29.3%) is the within-individual CV in rEI obtained from the WEB-FFQ [15]. Repeated
measurement data for the IA-FFQ were unavailable and the same CV,g; was used for both FFQs. The CV g;
was subsequently divided by the number of days (d) recalled by the FFQs (i.e., 30 days). The CV g is
obtained from regression equations of doubly labelled water studies and corresponds to measurement
error and variation in energy expenditure (i.e., 9.1%) over a time span of 8 weeks [39]. This specific time
span was chosen to account for the length of both the dietary intervention and the run-in period of all
trials in the present study, as rEI and mER were not measured concurrently. A multiplicative factor of 2
was applied to the combined CV to obtain 95% confidence limits. Thus, individuals were classified as
under-reporters or over-reporters if their rELmER ratio was below 0.79 or above 1.21, respectively.
Log-binomial regression models were used to assess the association between BMI and sex and
the likelihood of under-reporting. Covariates included in the adjusted models, where appropriate,
were sex, BMI, ethnicity, trial and post vs. pre-intervention body weight difference. A two-sided alpha
level of less than 0.05 was used to assess statistical significance.

3. Results

3.1. Participants

Data from a total of 448 men and women were considered for this study. Twenty-four were
excluded because they did not complete the first phase of the feeding trials, one participant was
excluded because pre-intervention body weight was missing, 12 participants were considered outliers
on the basis of their rEI (n = 5 for the WEB-FFQ and n = 7 for the IA-FFQ) and 84 participants were
excluded because of a post- vs. pre-intervention body weight difference greater than + 1.85 kg (1 = 54
for the WEB-FFQ and n = 30 for the IA-FFQ; Figure 1).

Participants completed a FFQ
n=448

Excluded n =24
- Did not complete the dietary intervention

Participants completed a FFQ and the
dietary intervention
n=424

Excluded n=1
- Pre-intervention body
weight missing

Reported energy intake, measured energy
requirements and body weight difference
data available
n=423

Excluded 1 =96
- Body weight difference > 1.5 SD (£1.85
kg), =84

- rEl values <750 or >4500, n =12

Included in the analyses
n=327

IA-FFQ WEB-FFQ
n=127 n=200

Figure 1. Flow chart of participants. FFQ: food frequency questionnaire; IA: interviewer-administered;
rEL reported energy intake.
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Characteristics of the participants included in the analyses are presented for the IA-FFQ (1 = 127)
and WEB-FFQ (n = 200) in Table 1. Participants in the IA-FFQ group were slightly younger, had
a lower body weight, waist circumference, and BMI, and included more women than participants
in the WEB-FFQ group (all p values < 0.02). The median (interquartile range) time for completion
of the WEB-FFQ was 42.9 (34.0-59.3) min. Mean post- vs. pre-intervention body weight difference
was —0.4 kg (95%CI, —0.6 to —0.3) in men and —0.6 kg (95%CI, —0.8 to —0.5) in women (both
p values < 0.0001), which is within expected range (Table S1).

Table 1. Characteristics of the 327 men and women included in the analyses '.

IA-FFQ WEB-FFQ )2
N =127 N =200
Sex, 1 (%) 0.01
Men 51 (40.2) 108 (54.0)
Women 76 (59.8) 92 (46.0)
Ethnicity, n (%) 0.01
Caucasian 121 (95.3) 172 (86.0)
Other 6 (4.7) 28 (14.0)
Age 3, mean (SD) years 40.9 (16.8) 445 (15.4) 0.04
19-34, n (%) 58 (45.7) 67 (33.5)
35-49, 1 (%) 14 (11.0) 44 (22.0)
50-70, 1 (%) 55 (43.3) 89 (44.5)
Time to completion, minutes - 429 (34.0 to 59.3)
Body weight, mean (SD) kg 72.8 (16.6) 84.6 (15.8) <0.0001
Body mass index, mean (SD) kg/ m? 25.8 (5.4) 29.7 (4.4) <0.0001
Normal, 1 (%) 69 (54.3) 27 (13.5)
Overweight, 1 (%) 31(24.4) 81 (40.5)
Obese, 11 (%) 27 (21.3) 92 (46.0)
Waist circumference, mean (SD) cm 88.4 (14.8) 100.6 (11.8) <0.0001

1 Values are means (SD) for continuous variables except for time to comgletion which is median (interquartile
range). FFQ: food frequency questionnaire; IA: interviewer-administered. * p values indicate differences between
the IA-FFQ and the WEB-FFQ, determined by Student's f test or Chi-squared test. > Analyses were performed on
log-transformed data.

3.2. Reported Energy Intake Compared with Measured Energy Requirements

Mean differences between rEI and mER and rEI:mER ratios are presented by FFQ method and
subgroups in Table 2. Results were similar either expressed as the absolute (in kcal) or relative
(in %) difference between rEI and mER for both FFQs in all subgroups. Among all participants,
the rEI derived from the IA-FFQ was significantly lower than the mER, by —229 kcal (95% CI, —324
to —133; p <0.0001). The rEI derived from the WEB-FFQ was also significantly lower than mER
(—166 keal; 95% CI, —292 to —39; p < 0.0001). The mean differences between rEI and mER were similar
between FFQs (p = 0.62). The IA-FFQ underestimated mean mER in men and women, as well as in
non-obese and obese participants. The WEB-FFQ underestimated mean mER only in men and in obese
individuals. Analyses stratified by sex and body weight classification revealed similar rEI to mER
differences between the IA- and the WEB-FFQ (all p values > 0.30).

Spearman correlations between rEI and mER are presented in Table 2. Among all participants,
the correlation was stronger with the IA-FFQ (rs = 0.50; p < 0.0001) than with the WEB-FFQ (rs = 0.34,
p < 0.0001). In men, the correlation between rEI and mER was significant with the WEB-FFQ (rs = 0.40;
p = 0.0001), but not the IA-FFQ (rs = 0.23; p = 0.12). Inversely, in women, the correlation between
the rEI and mER was significant with the IA-FFQ (rs = 0.63; p < 0.0001), but not with the WEB-FFQ
(rs = 0.20; p = 0.06).
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Table 2. Comparison of reported energy intake (rEI) with measured energy requirement (mER) for
maintenance of body weight during a controlled feeding phase of 4 to 6 weeks '.

n rEI, kcal mER, kcal A rEI-mER, kcal A rEI-mER, % * Spearman CC
IA-FFQ
All 127 2413 £ 602 2642 £558  —229 (—324to —133) t —9.5(—12.7 to —6.1) 0.50 £
Sex
Men 51 2744 £ 605 3161 +467  —417 (—600 to —234) + —14.3 (—19.6 to —8.6) 0.23
Women 76 2191 £491 2294 + 265 —102 (=197 to —8) t —6.1(—9.9 to —2.0) 0.63f
BMI
Non-obese 100 2415+ 610 2594 +546  —179 (—282to —76) —7.8(—11.5to —4.0) 0511
Obese 27 2409 +£582 2822 +573  —413 (—649 to —176) + —15.3 (=219 to —8.1) 0.13
WEB-FFQ
All 200 2519 £962 2684 £536  —166 (—292 to —39) + —11.0 (—15.4 to —6.4) 0.34 ¢t
Sex
Men 108 2764 +£991 3056 +414  —292 (—469 to —116) + —14.9 (—20.5to —8.9) 0401
Women 92 2231 £ 845 2248 + 265 —17 (—198 to 163) —6.3(—13.1to 1.1) 0.20
BMI
Non-obese 108 2583 +1021 2543 + 520 40 (—132t0 212) —4.1(-104t02.7) 039 %
Obese 92 2443 +£888 2850 508  —407 (—585t0 —230)+  —18.5(—24.3to —12.3) 0271

! Values are means (SD) or means (95% CI). BMI: body mass index; CC: correlation coefficient; FFQ: food frequency
questionnaire; IA: interviewer-administered; mER: measured energy requirement; rEI: reported energy intake;
A: delta. * Mean percentage differences between rEl and mER were calculated as 100 x exponential (mean of log rEI
— mean log mER value) - 100; t Indicates a signiﬁcant difference with mean rEI as determined by mixed models,
p < 0.05. Analyses were performed on log-transformed data. } Indicates a significant correlation, p < 0.05.

3.3. Under-Reporting and Over-Reporting

Prevalence and likelihood of under-reporting and over-reporting are shown in Table 3 and Figure 2
respectively. Among all participants, under-reporting was more prevalent with the WEB-FFQ than with
the IA-FFQ (34.5% vs. 26.0%) but the difference did not reach statistical significance. The prevalence
of under-reporting among obese participants was similar with the WEB-FFQ and the IA-FFQ (46.7%
vs. 33.3%; p = 0.24) and also among non-obese participants (24.1% vs. 24.0% respectively). Obese
individuals were more likely to under-report rEI than non-obese individuals with the WEB-FFQ
(prevalence ratio, 1.97; 95% CI, 1.32 to 2.95), but not with the IA-FFQ (prevalence ratio, 0.75; 95% CI,
0.34 to 1.66; Figure 2). The prevalence of under-reporting was similar between the WEB-FFQ and
the IA-FFQ among women (30.4% vs. 21.1%, respectively) and men (38.0% vs. 33.3%, respectively).
Data presented in Figure 2 suggest that women were similarly likely to under-report rEI compared
with men with both FFQs (IA-FFQ: prevalence ratio, 0.66; 95% CI, 0.29 to 1.50; WEB-FFQ: prevalence
ratio, 0.95; 95% CI, 0.62 to 1.45). Finally, over-reporting was more prevalent with the WEB-FFQ than
the IA-FFQ among all participants (p = 0.0005), while subgroup differences were statistically significant
only in non-obese participants (Table 3).

Table 3. Prevalence of under- and over-reporting of energy intake according to agreement with
measured energy requirements !.

FFQ Method n Under-Reporters  Accurate Reporters Over-Reporters p*
All IA 127 26.0 (18.6 to 34.5) 67.7 (58.9 to 75.7) 6.3 (2.8 t0 12.0) 0.0005
WEB 200  345(279t0415)  48.0(409t055.2)  17.5(12.5to 23.5) :
Sex
M 1A 51  333(208t047.9)  60.8 (46.1 to 74.2) 59(1.2t016.2) 012
en WEB 108 38.0(28.8t047.8) 463 (36.7 t0 56.2) 15.7 (9.5 to 24.0) -
W 1A 76 211(125t0319)  72.4(60.9 to 82.0) 6.6(22t014.7) 0.0063
omen WEB 92 304 (21.3t040.9)  50.0 (39.4 to 60.6) 19.6 (12.0 t0 29.2) :
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Table 3. Cont.

FFQ Method n Under-Reporters  Accurate Reporters Over-Reporters p*
BMI
Nomobes 1A 100 24.0(160t033.6)  69.0 (59.0 to 77.9) 7.0 2.9 to 13.9) 0.0019
on-obese WEB 108 24.1(164t0333) 519 (42.0t061.6)  24.1(16.4 to 33.3) :
ob 1A 27 333(165t054.0)  63.0 (424 to 80.6) 3.7 (0.1 t0 19.0) 024
ese WEB 92 46.7 (36.3t057.4) 435 (33.2t054.2) 9.8 (4.6 t0 17.8) -

! Values are percentages (95% CI). Accurate reporters are individuals of which their corresponding rEL:mER ratio
are within the 95% confidence limits of an agreement ratio of 1.00. Under-reporters and over-reporters had a ratio
below 0.79 and above 1.21, respectively. BMI: body mass index; CI: confidence intervals; FFQ: food frequency
questionnaire; IA: interviewer-administered; mER: measured energy requirements; rEI: self-reported energy intake.
* p values indicate at least one significant difference between the IA-FFQ and the WEB-FFQ as determined by the
Chi-squared test.

—@— Crude models
—#— Fully-adjusted models

1A-FFQ .
(n=127) —_—

TT

i

WEB-FFQ P ——
(n=200) ] E —_—,—
0 05 1 15 20 05 1 15 2 25 3
(a) Prevalence ratios for underreporting in (b) Prevalence ratios for underreporting in
women compared with men obese compared with non-obese
individuals

Figure 2. Log-binomial regression analysis showing prevalence ratios with 95% CI for under-reporting
in: (a) women vs. men and; (b) in obese vs. non-obese individuals. Crude models are shown with
circles and adjusted models are shown with triangles. Under-reporters are individuals of which their
corresponding rEI:mER ratio is below 0.79. CI: confidence interval; FFQ: food frequency questionnaire;
IA: interviewer-administered.

4. Discussion

The aim of this study was to compare the accuracy of IA- and WEB-FFQ to assess an objective
measure of energy requirements. Consistent with previous investigations [11], we found that both
FFQs resulted in significant under-reporting of mER by —11.0% (WEB-FFQ) and —9.5% (IA-FFQ).
In general, and contrary to our hypothesis, results indicated that the IA-FFQ performs slightly better
than the WEB-FFQ in attenuating the prevalence of under-reporting and over-reporting in most
subgroups based on sex and body weight classification.

Web-based tools such as the WEB-FFQ are being increasingly used in research for several
reasons, including greater efficiency in administration process and facilitated data management [15-17].
However, studies that have compared the accuracy of traditional IA- and WEB-FFQs in predicting
energy and nutrient intake are scarce to date. Park et al. [40] have recently conducted a large
study comparing self-reported intakes using self-administered web-based instruments, including
a FFQ, against recovery biomarkers. Energy was significantly under-reported by —29 to —34% on
average compared with the doubly labeled water technique, the gold standard reference. The degree
of under-reporting in the study by Park et al. was greater than in the current study (—11% for
the WEB-FFQ), possibly due to different methodologies. Nonetheless, the results by Park et al.
are consistent with results in the present study revealing systematic error when estimating energy
intakes with a WEB-FFQ.

Kato et al. [41] compared two self-administered FFQs that differed only by their format (paper-
vs. web-based) in their ability to accurately predict energy intake, using weighted 12-day food
records as reference for “true” energy intake. Energy intake derived from the WEB-FFQ correlated
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weakly with energy intake derived from the food records, but the correlation was slightly higher
among men than among women (Spearman’s deattenuated correlation coefficients = 0.42 and 0.18,
respectively). This observation is somewhat consistent with our results as the correlation between
rEl and mER for the WEB-FFQ was significant in men, but not in women. Of note, the use of an
objective reference method to assess ER in our study may have yielded weaker correlation between rEI
and mER than those observed in this study by Kato et al. [41]. These authors also found that energy
intakes derived from the WEB-FFQ were within acceptable limits of agreement in men (Bland-Altman
method, 54-178%), and were slightly overestimated in women (Bland-Altman method, 55-220%)
compared with the energy intakes derived from food records. Results from the present study showed
that women had a similar likelihood to under-report energy intake compared with men when using
the WEB-FFQ. The weaker correlation between rEI and mER in women when using the WEB-FFQ
may be due to over-reporting being more prevalent in women than in men, which is consistent with
the overestimation observed by Kato et al. [41]. Nonetheless, these observations contradict previous
IA-24HR data that showed greater under-reporting in women [6]. Future studies should provide
additional insight on potential sex-based differences on the accuracy of web-based tools in predicting
energy requirements.

Another recent study used the doubly labeled water technique to examine the accuracy with
which a WEB-FFQ (i.e., MiniMeal-Q) and a web-based 4 days food record (i.e., Riksmaten method)
predict energy intake [42]. Pearson’s correlations between rEI and mER were 0.28 (non-significant) for
the WEB-FFQ and 0.40 (p < 0.05) for the food records. The WEB-FFQ resulted in a higher prevalence
of under-reporters compared with the foods records (57.5% vs. 40%, respectively) and also a higher
prevalence of over-reporters (15% vs. 5%, respectively). Although this study compared two web-based
dietary assessment tools, the results support that current WEB-FFQ may not be better than other
dietary assessment tool to estimate true energy intake. This observation is consistent with results from
our study in that the WEB-FFQ produced weaker correlation between rEI and mER and a greater
prevalence of under- and over-reporters compared with the IA-FFQ.

The rather large number of participants in this study compared with previous studies along with
measured energy requirements are important strengths. Potential limitations also need to be considered.
Firstly, the WEB-FFQ and the IA-FFQ have notable differences including the number of food items
(greater with the WEB-FFQ) as well as different approaches to present serving sizes (food models vs.
digital images), which could explain, at least partly, differences in the accuracy of mER prediction.
Secondly, different study participants completed the IA- or WEB-FFQ. Therefore, differences observed
in this study may not solely be due to the administration technique per se (i.e., IA vs. WEB) but could
also reflect differences among study participants, although analyses were adjusted for these differences
(i.e., age, sex, BMI, ethnicity). Thirdly, the controlled feeding phases were conducted in free-living
conditions and some of the foods and beverages provided may not have been entirely consumed.
However, the high self-reported compliance combined with the fact that a large proportion of the foods
provided were consumed in the presence of study coordinators, the consistency of the cardiometabolic
changes induced by the interventions and analysis of plasma biomarkers suggest that the risk of
noncompliance in these studies is low. Finally, the significantly lower post- vs. pre-intervention body
weight may suggest insufficient food provision (mER) in the feeding phases, but the weight difference
was small and also added as a covariate in the analyses.

5. Conclusions

In conclusion, results from this study suggest that an IA-FFQ slightly attenuates the prevalence of
under- and over-reporting of mER compared with a WEB-FFQ. Accordingly, the use of the WEB-FFQ
resulted in accurate reporting of energy intake in 48% of all participants compared with 68% with
the IA-FFQ. Considering the efficiency of web-based questionnaires and the importance of dietary
assessment for population-based nutrition studies, our results support the urge to increase the quality
of web-based dietary assessment tools and to further develop objective and innovative assessment
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techniques. Future studies should also examine if specific foods or nutrients are more likely to be
under- or over-reported in web-based compared with traditional tools. The use of metabolomics and
passive measure of one’s food intake through digital imaging and video also have the potential to
improve our ability to assess dietary intake [17,43].

Supplementary Materials: The following are available online at http:/ /www.mdpi.com/2072-6643/10/9/1292/
s1. Table S1: Anthropometric characteristics before and after controlled feeding phases of 4 to 6 weeks in men
and women.
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Abstract: Novel technology-based dietary assessment methods use volume estimates of foods
to assess dietary intake. However, the nutrient content of standard databases is based on food
weight. The goal of this study is to evaluate the accuracy of the United States Department of
Agriculture National Nutrient Database for Standard Reference (USDA-SR) estimates of volume
and the corresponding macronutrient content of the foods. The weights of 35 individual food
volumes were measured (on trial) and compared to the USDA-SR-determined weight for the food
volume. Macronutrient content corresponding to the trial weight and the USDA-SR weight for the
food volume (USDA) were determined using the USDA-SR, and the differences were calculated.
There were statistically significant differences between the USDA and trial weights for 80% of foods
measured. Calorie estimates by USDA weight were significantly lower than that of trial weight for
54% of foods but were significantly greater for 26% of foods. Differences in macronutrient estimates
by trial and USDA weight varied by food type. These findings suggest that nutrient databases based
on food weight may not provide accurate estimates of dietary intake when assessed using food
volumes. Further development of image-assisted dietary assessment methods which measure food
volumes will necessitate evaluation of the accuracy of the processes used to convert weight to volume
in nutrient databases.

Keywords: nutrition; food measurement; nutrient database; dietary assessment

1. Introduction

Traditional dietary assessment tools, such as multiple-day food records and interviewer-assisted
24-h recalls, rely on self-assessment of the amounts of foods eaten. However, it is a well-documented
fact that people cannot accurately recall or estimate the amount of food they consume [1-3]. Emerging
technology-based dietary assessment methods that use images to assess the types and amounts of
foods people consume have the potential to provide more objective estimates of dietary intake. As part
of the development and validation of these new methods, it will be important to consider the accuracy
of standard nutrient databases to estimate nutrient content information from food volumes as opposed
to weights.

The United States Department of Agriculture National Nutrient Database for Standard Reference
(USDA-SR) [4] is the primary source of food composition data in the US and serves as the foundation for
most public and private food and nutrient databases, such as the Nutrition Data System for Research
(NDS-R) [5]. USDA-SR is compiled of data from published and unpublished sources, including the
Food and Nutrient Database for Dietary Studies (FNDDS), studies conducted by the USDA and
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contractors, lab analyses, algorithms, factors, or recipes [6]. The nutrient content information in
these databases is largely based on food weights, not volumes, as food weight is considered the gold
standard of measurement [6,7]. Although density factors have been developed for many of the foods
to enable their conversion into household (volume) measures, the algorithms or processes used within
USDA-SR are not fully known.

In this study, we evaluate the extent to which estimates of food portion sizes measured by
volume differ from those measured by weight, and assess the subsequent differences in estimated
macronutrient content of these food portion sizes when based on volume and weight.

2. Materials and Methods

2.1. Sample Size and Food Selection

Trials were performed on a total of 35 individual foods. Foods from each of the six USDA
MyPlate [8] food categories (fruits, vegetables, grains, dairy, protein foods, and fats/oils) were selected
to reflect the foods most commonly consumed by Americans, while allowing for variation in water
content and shape [9,10]. Combination or mixed foods, such as soups and casseroles, were excluded for
these experiments. A single preparation method was selected for most foods, and for a small number
of foods (1 = 4), multiple preparation methods were applied in order to assess differences in weight
and nutrient content for one food prepared in multiple ways. Independent trials were completed
on ten percent of foods chosen at random (potato (Y2 cup and 10 fries), chicken breast (whole and
chopped), ice cream, regular salad dressing) for quality control.

2.2. Trial Volumes

Selected trial volumes for most individual food trials were based on MyPlate portion sizes [8].
Fruits and vegetables were measured as % cup-equivalents, grains as two ounce-equivalents, and
dairy as one-cup equivalents, except ice cream, which was measured according to the serving size
portion listed on the Nutrition Facts panel (Y2 cup). Protein foods were measured as individual portion
sizes (patty, breast, large egg) between one or three ounce-equivalents, except bacon (three slices),
which was measured according to the serving size portion listed on the Nutrition Facts panel. Fats/oils
were measured between one and two tablespoons, depending on the individual food [8].

2.3. Preparation Methods

All foods were prepared in a commercial-grade metabolic research kitchen at the Fred Hutch
Cancer Research Center (FHCRC) Human Nutrition Lab (HNL) by a single trained dietetic technician
(EKP). Foods needing no preparation, such as raspberries, were measured ‘as purchased’. If a food
needed to be manipulated, alterations included first removing inedible portions, then size being
manipulated (for example, sliced, chopped, or diced). Foods not commonly consumed raw were
cooked according to protocols used by the FHCRC HNL, or by packaging instructions. The preparation
method for each food was chosen based on available options in the USDA-SR 28 [4]. The LangualL
Thesaurus [11] was consulted to define standard size manipulations, and parchment paper with cut
size markings was used for guidance. Details of selected foods, volumes, and preparation methods are
available in Table 1.
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2.4. Data Collection

For each trial, a prepared food was weighed at the test volume to determine its weight in grams,
herein referred to as trial weight. Ten replicates per preparation method were completed for each food.
Foods were measured at the test volume using standard food measuring tools; the same instrument
was used throughout each trial and cleaned (washed and dried) between replicates. For each food
trial, the USDA weight and macronutrient content for the test volume was determined by entering
the test volume directly into USDA-SR to yield the corresponding gram weight and macronutrient
content. For a small number of foods (n = 3), a volume option was not available in the USDA-SR;
thus, the Nutrition Data System for Research (NDSR) database (University of Minnesota, Minneapolis,
MN, USA) [5] was used to determine the corresponding gram weight and macronutrient content.

2.5. Statistical Analysis

For each food trial, the means and standard deviations of the 10 trial weight replicates were
calculated. The USDA weight was set for each test volume at the value obtained from the USDA-SR
database. Percentage differences between the trial and USDA weights, defined as the difference
of trial weight subtracted from USDA weight divided by USDA weight, were determined for each
replicate, and overall mean percentage differences between the trial and USDA weight were calculated.
Similar methods were used to determine absolute differences in macronutrient content between trial
and USDA weight for the selected trial volume of an individual food. For each food, one-sample
t-tests were used to evaluate whether the mean differences between trial (average of 10 replicates),
USDA weights, and nutrient contents were significantly different from zero. Statistical analyses were
conducted using Statistics and Data (STATA) software (Release 14, College Station, TX, USA).

3. Results

Table 2 summarizes the mean trial weight, USDA weight, and mean percentage difference in trial
and USDA weight for test volumes of individual foods. For 80% of food trials, there were statistically
significant relative differences between the USDA and trial weights of the selected trial volume, ranging
from —103.4% for sliced onions to +38.7% for shredded cheddar cheese. Within individual food groups,
relative differences between USDA and trial weights were statistically significant for 65% of fruit
and vegetable, 67% of grain, 100% of dairy, 77% of protein, and 100% of fat/oil foods, though there
were no discernable patterns in either the direction or magnitude of relative weight differences across
food categories.

Table 3 provides estimates of calorie and macronutrient content corresponding to the USDA and
trial weights, and their differences, for selected volumes of individual foods. Absolute differences
between USDA and mean trial weight-derived calorie estimates for selected food volumes ranged
from 0 to 60 kcal, and largely mirrored those reported for weights (Table 2). For 52% of food trials,
calories determined by USDA weight were significantly lower than by trial weight, and for 26% of
foods, calories determined by USDA were significantly greater than by trial weight, although the
absolute value of these differences was small for many foods. The largest calorie differences between
USDA and trial weight were found for dairy foods; calories determined by trial weight for ice cream
were 60 + 3 kcal less than by USDA weight (p < 0.0001). Conversely, for shredded cheddar cheese,
calories determined by trial weight were 59 + 2 kcal greater than by USDA weight (p < 0.0001).
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Table 2. Comparison of mean measured (trial) weights of individual foods to the USDA-SR (United
States Department of Agriculture National Nutrient Database for Standard Reference) 28 database
weight for selected food volumes.

Selected Test Trial Weight USDA Weight % Difference >

Volume (g) Mean (sd) ! (g) Mean 2 Mean (se) 4
Fruits
Strawberries, halved V2 cup 75.8 (5.5) 76.0 0.3(2.3)
Cantaloupe, cubed Y2 cup 85.7 (8) 80.0 —72(32)°
Peaches, sliced Vs cup 110.6 (4.4) 111.0 04 (1.3)
Orange sections Membrane Y5 cup 98.9 (5.1) 90.0 —99(2.0)8
& No Membrane Y2 cup 98.9 (3.9) 90.0 —99(1.4)8
Raspberries, whole s cup 61.8 (3.8) 61.5 —0.5(2.0)
Quartered V2 cup 76.7 (5.1) 62.5 —22.6(2.6)8
Apples Sliced Y cup 87.3(5.2) 545 602 (3.0)8
Chopped Y cup 67.31 (2.5) 62.5 —7.7(13)7
Grapes, seedless, whole Y5 cup 91.8 (2.8) 75.5 —21.6(1.2)8
Bananas, sliced Y2 cup 76.7 (4.5) 75.0 —2.3(1.9)
Avocados, cubed Y2 cup 90.0 (7.3) 75.0 -200(3.1)8
Raisins, packed % cup 442 (22) 41.25 -71(1.7)7
Vegetables
Iceberg Lettuce, chopped s cup 30.0 (2.9) 28.5 —5.3(3.2)
Tomatoes, chopped s cup 107.1 (4.1) 90.0 ~19.0(1.4)8
. 10 fries 479 (6.8) 69.0 30.6 (2.2) 8
Potatoes, French fries Vi cup ® 51.6 (3.6) 52.0 0.9 (1.6)
Onions, raw Sliced s cup 116.9 (15.5) 57.5 —103.4 (8.5) 8
! Chopped Y2 cup 81.3 (3.9) 80.0 —1.6 (1.5)
Sweet Corn, canned, drained V2 cup 87.5(5.7) 105.0 16.6 (1.7) &
Grains
Bread, wheat, sliced 2 slices 58.4(2.7) 58.0 —0.6 (1.4)
Pasta, enriched, spaghetti 1cup 119.0 (3.4) 124.0 4.0(0.9)7
Rice, white, long grain, enriched 1 cup 182.7 (17.7) 158.0 —15.6 (3.5) 7
Dairy
Cheddar cheese, shredded /5 cup 23.1 (1.5) 37.6 38.7(12)8
Ice Cream, vanilla Y5 cup 95.3 (6.5) 66.0 —44.4(15)8
Yogurt, skim 1 cup 260.8 (1.2) 245.0 —64(02)8
Protein
7% fat 4” patty ° 84.2 (3.2) 81.6 —3.1(12)°
Beef,
eet, patty 30% fat 4 patty 712 (3.4) 77.0 75(1.4)8
Chicken Breast, Whole 1 breast 206.2 (43.8) 172.0 -199(5.7)7
without skin, roasted Chopped 1 cup 139.1 (3.9) 140.0 0.7 (0.7)
Egg, large, scrambled 1large egg 439 (2.5) 61.0 28.0 (1.3) 8
Bacon, regular cut, pan-fried 3 slices 26.9 (5.3) 34.5 22.1(4.8)7
Cashews, raw, whole Y cup 5 24.3 (1.9) 16.1 —50.7 (3.8) 8
Almonds, raw, whole Y cup 24.8 (1.9) 179 —38.7(3.3) 8
Pecans, raw, halved Vs cup 20.2 (1.3) 12.4 —63.2 (3.3) 8
Peanut Butter, smooth 2T 29.7 (0.9) 32.0 7.2(0.9)8
Fats and Oils
Margarine 1T 14.3(0.2) 14.1 —1.6 (0.5) ¢
Canola Oil 2T 25.5 (0.3) 28.0 8.8(0.4)8
Mayonnaise 2T 29.0 (0.4) 27.6 —5.1(04)8
Dressing, Italian, regular 2T 30.6 (0.9) 29.4 —4.0(0.7)8
Salsa 2T 32.9 (1.5) 36.0 8.8(1.3)8
Ketchup 2T 34.3(0.3) 34.0 ~1.0(02)7

! Mean and standard deviation determined by 10 experimental weight replicates. ? Estimate of variance not
available from USDA-SR 28. 3 (USDA Weight—Trial Weight)/USDA weight.  Standard error from one-sample
t-test. ° Nutrient content unavailable in USDA-SR 28, value obtained from NDSR (Nutrition Data System for
Research). ® p < 0.05,7 p <0.01, 8 p < 0.001.
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Differences in estimated macronutrient content between USDA and trial weight were dependent
on food type (Table 3). Higher-fat foods, like shredded cheddar cheese and nuts, tended to have
the largest absolute differences in estimates of fat content, although the direction of differences was
inconsistent. In general, the absolute differences in estimated protein content were small for fruit
and vegetable foods, which have lower protein content, but were quite large for protein and dairy
foods. Similarly, absolute differences in estimated carbohydrate content between USDA and trial
weight were largest for grains, dairy, and vegetables, but were relatively small for protein foods and
fats/oils (Table 3).

4. Discussion

In this study we compared weights for selected food volumes measured in a research kitchen
with those derived from the USDA-SR database. Overall, we found statistically significant differences
between the USDA-derived and trial weights for 76% of the foods tested. In addition, there were
significant differences in corresponding calorie estimates derived from the USDA and trial weights for
78% of foods. These findings suggest that the processes used to convert weight into volume in the
USDA-SR may not provide accurate estimates of volume for many foods and may subsequently lead
to inaccurate estimates of caloric and nutrient intake.

Efforts to develop improved methods of dietary assessment that employ more objective measures
of intake have recently gained attention [12-14], with many innovative technologies focusing on the use
of images to estimate food volumes [15-20]. Using images to calculate volumes, these methods hold
promise to provide more accurate estimates of the amounts of foods which people eat. The potential
of these novel approaches, however, may be limited by the fact that nutrient content information in
available databases is currently based on food weights, and estimates of food density, or weight for
unit food volume, are required to convert volume into weight. For many foods in these databases,
food density has been generated; however, little information is available about the algorithms and
processes used to convert weight to volume, and the accuracy of these data are uncertain [6,21,22].

For most of the foods evaluated in this study, USDA weights for the selected trial volume
tended to be greater than the measured weights. For some foods—primarily, fruits, vegetables,
and fats/oils—the absolute differences between the USDA-derived and trial weights for food volume
were modest, indicating that the algorithms or processes used to convert weight to volume for these
foods were relatively accurate. For other foods, such as dairy, high-protein, and some manipulated or
prepared foods, there were substantial differences between the measured and USDA weights for the
trial food volume. Differences between the USDA and measured weight for a given volume may, in part,
have been due to the protocols followed for manipulating or preparing foods. For example, many foods
that required cooking preparations, such as potato, chicken, egg, bacon, and rice, had statistically
significant differences between the USDA and trial weights (all p < 0.05). Cooking time, heat intensity,
and water retention/release can vary through the cooking process and between protocols used (trial vs.
USDA), which may impact cooking yield, thereby contributing to the observed differences in USDA
and trial weight for the selected test volume. For foods that were manipulated, variations in packing
and differences in protocols used for manipulation may account for some differences between the
USDA and measured weight for a given food volume. In our trials, manipulation methods were defined
by the Langual Thesaurus and were standardized across trials. For some foods in the USDA-SR,
different manipulation methods of the same food are grouped together, such as quartered and chopped
apples. As a result, the weight and nutrient content for the same volume of each form of the food is
identical, even though the size, shape, and air space upon packing differs greatly. It is important to note
that image-assessed food volumes will inherently include air space, due to food packing; therefore,
nutrient database conversions for weight to volume will need to be equivalently determined.

Because weight is the standard by which USDA-SR determines nutrient content, differences
between the USDA-derived and trial weight for a given food volume yielded corresponding differences
in calorie and macronutrient content estimates. Over 70% of foods, regardless of food group, that had
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significant differences between USDA-derived and trial weight for a given food volume also had
corresponding significant differences in calorie estimates, though we found no apparent pattern within
or across food groups in the magnitude or direction of these differences. However, the corresponding
differences between USDA and trial weight-derived macronutrient content was dependent on the
nutrient composition of the individual food; foods dense in a specific macronutrient tended to have
greater differences in that macronutrient. For example, for high-fat foods such as pecans, even small
absolute differences between the USDA-derived and trial weights yielded substantial differences in
calorie and fat content estimates (difference between USDA-trial weight-derived weight, calories and
fat: —7.8 g, —53.7 kcal; —5.6 g fat (both p < —0.0001)). The overall impact of differences between
weight and volume-based measures of dietary intake will depend heavily on the individual foods
people eat. In order to further evaluate this potential impact, the extent to which estimates of food
portion sizes measured by volume differ from those measured by weight would need to be measured
for an extensive list of foods.

To our knowledge, this is the first study to report differences in nutrient database information
by volume and weight. Foods were systematically selected based on popularity in the US diet,
and were measured and prepared via standardized methods defined by the Langual Thesaurus.
In addition, multiple replicates were measured for each food and food preparation method, to align
with the sampling methods used for USDA-SR. However, this study is not without limitations.
Data from individual replicates were not publicly available for USDA-SR; thus, our estimates of
mean differences between the trial and USDA relied only on a single value of the USDA mean,
which may be anti-conservative. For some foods, the number of replicates used in this study (1 = 10)
may be less than that assessed by the USDA, which would reduce the accuracy of our measurements
compared to those made by the USDA. In addition, while most preparation methods were available
via the LanguaL Thesaurus, cooking heat and time were unavailable for most cooked foods. Instead,
protocols defined by the Human Nutrition Laboratory at the Fred Hutchinson Cancer Research Center
were followed, and may differ from those used by the USDA. For our trials, we purposely selected
generic options; thus for some foods, the differences reported here may also reflect differences in the
exact foods measured. Lastly, this study was limited to single and non-mixed foods. Although the
foods chosen represent foods commonly eaten by Americans, they may be less representative of foods
prevalent in everyday diets.

5. Conclusions

This study demonstrates that for selected food volumes, substantial differences existed between
the corresponding USDA-derived and trial weights measured in a research kitchen. The differences
between the USDA-derived and trial weights for a selected food volume also resulted in parallel
differences between estimated macronutrient content. As the primary source of food composition data
in the US, researchers rely heavily on the USDA-SR database, either directly or indirectly, to estimate
dietary intake of nutrients.

Given the development of new image-assisted dietary assessment methods that provide objective
measures food volume, it is important to assess the accuracy of nutrient databases to estimate nutrient
content based on food volumes. The findings reported here suggest that the estimation of dietary
intake using food volumes may not provide accurate estimates of nutrient intake. Most nutrient
databases commonly used in the US are based on USDA-SR nutrient data, and thus would be affected
by the same inaccuracies. Whether the same issues are apparent in other food and nutrient databases
around the world is unknown. In order to better understand the impact of these discrepancies on
assessment of dietary and micronutrient intake, further evaluation of the accuracy of processes used to
convert weight to volume in the USDA-SR is warranted.

Author Contributions: E.K.P. and K.B. collected the data. EXK.P. and J.M.S. wrote the first draft with contributions
from M.L.N. All authors reviewed and commented on subsequent drafts of the manuscript.
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Abstract: The aim of this work was to assess the accuracy of automatic macronutrient and calorie
counting based on voice descriptions of meals provided by people with unstable type 1 diabetes
using the developed expert system (VoiceDiab) in comparison with reference counting made by
a dietitian, and to evaluate the impact of insulin doses recommended by a physician on glycemic
control in the study’s participants. We also compared insulin doses calculated using the algorithm
implemented in the VoiceDiab system. Meal descriptions were provided by 30 hospitalized patients
(mean hemoglobin Alc of 8.4%, i.e., 68 mmol/mol). In 16 subjects, the physician determined insulin
boluses based on the data provided by the system, and in 14 subjects, by data provided by the
dietitian. On one hand, differences introduced by patients who subjectively described their meals
compared to those introduced by the system that used the average characteristics of food products,
although statistically significant, were low enough not to have a significant impact on insulin doses
automatically calculated by the system. On the other hand, the glycemic control of patients was
comparable regardless of whether the physician was using the system-estimated or the reference
content of meals to determine insulin doses.

Keywords: carbohydrate counting; protein and fat counting; calorie counting; automatic bolus
calculator; voice description of meals; insulin dosage; glycemic control; diabetes mellitus

1. Introduction

Technical innovations create many possibilities in supporting the treatment of people with
diabetes. According to the Statista Inc. report, smartphone user penetration as a percentage of
the total global population exceeded 25% in 2015 [1]. This percentage is forecast to reach 37% by
the year 2020. Advances in information and communication technologies (ICT) bring a significant
opportunity to develop the integrated healthcare system, which is so difficult to achieve with the
current traditional model of healthcare delivery. Telemedicine has the potential to become a key
element of future integrated care—an important component of the new healthcare model according
to the World Health Organization (WHO) [2]. In 2013, only about 6000 medical applications, i.e.,
medical “apps”, were available in Google Play for Android-based smartphones [3], and this number
increased rapidly in the following years to exceed 45,000 in 2017 [4]. The primary goal of majority
of these medical apps is to help and coordinate continuous healthcare at home [5,6]. There is an
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ongoing discussion as to whether those mobile health (m-health) applications facilitate the gain of
clinical benefits, to what extent they can be integrated with the current healthcare system and, finally,
whether they are safe and do not create potential health risks for the patient. The US Food and Drug
Administration (FDA) classifies the mobile application as a medical device if it is used to prevent,
diagnose, care for or cure the disease. Such an app requires the approval of the Agency before it appears
on the market [7]. The app should only be recommended to patients by health care professionals if its
effectiveness has been scientifically confirmed.

Diabetes is one of the chronic diseases that requires a lot of attention from both the patient and the
healthcare team. Regardless of the type of diabetes, patients require full information about the disease
through continuous education and promotion of health-seeking behaviors as well as regular glucose
monitoring, individual treatment plans, and an early diagnosis to prevent the health threats associated
with complications of diabetes. Telemedicine provides a number of tools that could be helpful in
choosing the right treatment plan, supporting actions to change a patient’s lifestyle, strengthening
motivation regarding health-related activities, facilitating a patient’s ability to self-monitor and control
their condition, and achieving the intended therapeutic goal.

Proper dietary treatment is one of the most important components of diabetes therapy, because
it significantly affects glycemic control. The growing health awareness of patients has increased
the interest in the use of new technologies that can help with dietary intervention and provide
nutritional advice. Compared to traditional methods of diet planning and nutrition assessment,
new technologies have many advantages, including the ability to quickly provide personalized advice.
Several studies have shown that the use of new technologies that provide information and advice on
diet can lead to positive changes in the dietary regimen of a patient, affecting the intake of selected
nutrients [8]. Although there is still debate regarding the effectiveness of using new technologies
in promoting a healthy diet, patients prefer applications that are quickly available and easy to use,
increase the awareness of the type of food consumed and facilitating body weight control. In nine
randomized controlled trials on the use of smartphone apps for promoting a healthy diet and nutrition,
the use of such apps led to the selection of foods recommended by nutritionists, i.e., foods of higher
quality, with lower calorific value and low-fat content, as well as participation in significantly more
intense physical activity. These changes in the lifestyle resulted in significantly greater weight loss
in comparison with people who did not use mobile apps [9]. However, to provide the personalized
dietary advice, an appropriate method for measuring and evaluating food intake is required.

The digital revolution has made it possible to develop new instruments for the quantitative
assessment of consumed food products [10]. Currently, new solutions supporting the estimation of
food consumption use the Internet, mobile technology or both. They are preferred in comparison with
traditional methods by both young people and adults. A global consistent increase in Internet access
over the last few decades has resulted in the emergence of a number of websites that allow estimation
of the consumption of products for both research and commercial purposes [11]. They can be easily
accessed using desktop computers, but also from mobile devices, such as tablets or smartphones.
In contrast to on-paper nutrition assessment methods, online systems have a few advantages—they can
be pre-programmed and digital images of food items can be used to increase food recognition accuracy
and facilitate estimation of portion size. There are four basic methods of food coding: the electronic
food diary, the photo-assisted tutorial, analysis of food photography by trained dieticians and the
automatic analysis of digital food images [12]. Smartphones have enormous potential; apps enable
cheap interventions among large populations [13], they make it possible to record data in real time,
they are convenient to use, and they can provide continuous monitoring of consumed foods because
users usually carry smartphones with them [14].

Automatic or semi-automatic food image analysis systems for dietary assessment are under
continuous development. They achieve recognition accuracy below 90% when tested on databases
consisting of up to a few hundred images of meals/dishes [15]. In recent years, image transducers
have been developed that take serial photos, documenting the consecutive stages of a meal intake
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and enabling the estimation of the quantity of a leftover, uneaten meal [16]. Some of these lifelogging
devices, such as the Microsoft SenseCam camera, along with the data obtained from a conventional
food diary, allow for the improvement of the accuracy of calorie intake calculations [17]. Alternative
approaches, which are based on the voice description of meals [18,19] or the monitoring of activities
related to the meal consumption, e.g., chewing or swallowing [20,21] have been also reported.

Accurate assessment of meals consumed, which includes the correct calculation of carbohydrate
exchange units (CU) (and in some applications, also protein and fat) and energy content in a meal,
is one of the key elements of type 1 diabetes treatment. It is a challenge for many people with
diabetes to estimate the appropriate insulin dose that correctly reflects the size and content of the meal,
the pre-prandial glucose level and the expected level of physical activity. This may be one of the
reasons why many people with type 1 diabetes do not achieve their therapeutic goals, which is
expressed by an elevated level of glycated hemoglobin Alc (HbAlc) of 7.5% (5864 mmol/mol) or
more [22,23]. The prolonged lack of adequate glycemic control in this group of patients results in
increased rates of complications and mortality [24]. Difficulties that exist in adjusting the prandial
insulin dose are, in many cases, the major cause of both postprandial hypoglycemia and, even more
often, hyperglycemia. Therefore, many research works have focused on the evaluation of applications
aimed at the improvement of metabolic control, the reduction of the risk of hypoglycemic episodes,
body weight reduction and improvement of quality of life as well as decision support regarding
prandial insulin dose adjustment based on carbohydrate (CHO) counting. Recently, Tascini et al.
pointed out that new insight concerning the effect of dietary macronutrients on postprandial glycemic
control confirm that prandial insulin doses should combine CHO counting with protein and fat
counting [25]. However, these authors also claimed that a successful application of protein and fat
counting requires suitable and usable algorithms to be developed. Therefore, only a few reports so
far have calculated prandial insulin doses based on integrated CHO, protein and fat counting with
simultaneous evaluation of the accuracy or benefits of these calculations [26-28]. None of these reports
presented data related to the accuracy of prandial insulin dose calculation based on automatic meal
content estimation using a voice description of the meal. Foltynski et al. evaluated the efficacy of such
a system (VoiceDiab) in controlling postprandial blood glucose concentrations in persons with type 1
diabetes treated with a continuous, subcutaneous insulin infusion under ambulatory conditions [18].
One of the limitations of that study was the lack of data regarding the meals eaten because patients
were treated under ambulatory conditions. Other limitations were the fact that almost 75% of the study
group were young patients (<18 years of age) and the mean HbAlc at baseline was 7% (53 mmol/mol),
which means that the majority of participants were achieving the recommended target metabolic
control according to the American Diabetes Association (ADA). These limitations indicate that it was
not possible to determine the difference between the actual meal content and the meal content, which
was estimated based on the voice description of the meals provided by the patient. Even if it were
possible to calculate such differences, they might have been biased by the fact that participants of
that study had, on average, good metabolic control. The accurate estimation of the meal content
by the system based on the voice description provided by the person with diabetes is one of the
necessary conditions to effectively help such a person calculate the proper insulin dose to compensate
for the meal. Such a help is much more desirable in patients who have problems in achieving adequate
metabolic control. However, the question arises of whether such patients are able to describe meals
verbally in a way that makes it possible to automatically estimate the meal content with an accuracy
suitable to calculate insulin doses compensating for these meals. The present study tries to answer this
question. This question is also very important from the point of view of the possible application of
systems using the voice description of meals in people who do not require exogenous insulin, such as
the majority of patients with type 2 diabetes, some women with gestational diabetes and people
without diabetes who want to monitor their diet, for example to control their body weight.

The previously published report by Foltynski et al. [18] aimed to evaluate only the effect of the use
of the VoiceDiab system on postprandial blood glucose concentrations in ambulatory-treated children
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and young people with type 1 diabetes. In contrast to that study, the objective of the current work is
to assess and demonstrate, for the first time, the accuracy of automatic CHO, protein, fat and calorie
counting based on voice descriptions of meals provided by hospitalized adult persons with unstable
type 1 diabetes using the VoiceDiab system, in comparison with reference counting results made by
the dietitian, and to evaluate the effectiveness of the diabetes treatment, depending on whether the
physician determined the insulin dosage based on the composition of meals calculated by the dietitian
or whether it was automatically estimated by the VoiceDiab system. We also evaluated the effect of
differences between macronutrient counting provided by the system and the dietitian regarding the
discrepancy between insulin boluses calculated using the bolus calculator implemented in the voice
expert system. Hence, both studies are significantly different not only because of different objectives
but also due to their different study groups, the design of each study and the analyzed parameters.

2. Materials and Methods

2.1. Study Group

During short-term hospitalization because of unstable diabetes, 30 patients with type 1 diabetes
treated with continuous, subcutaneous insulin infusion were familiarized with the VoiceDiab expert
system and used it to verbally describe meals they intended to eat in order to automatically estimate
the amount of CHO, protein, fat and calories in these meals. The inclusion criteria were as follows:
18 to 50 years of age, duration of diabetes >1 year and ability to comply with dietary recommendations
and hospital procedures. Exclusion criteria included metabolic acidosis, dehydration and electrolytic
disorders, other diagnosed endocrine diseases, chronic kidney disease (serum creatinine >1.5 mg/dL),
proliferative retinopathy and concomitant infections. The study group consisted of 23 women and
7 men, aged 23.8 £ 4.6 (mean + SD) years (from 19 to 38 years), with a duration of diabetes of
12.2 4 6.5 years (from 3 to 26 years) and a varied level of metabolic control, expressed by the mean
HbAlc, of 8.4 + 1.5% (68 £ 16 mmol/mol) (from 6.1 to 12.6%, i.e., from 43 to 114 mmol/mol).

All subjects gave their informed consent for inclusion before they participated in the study.
The study was conducted in accordance with the Declaration of Helsinki, and the protocol was
approved by the Ethics Committee of the Medical University of Warsaw (KB/16/2014).

For each participant, a unified medical history was collected, concerning diet and eating habits,
physical activity, insulin therapy (with particular emphasis on insulin boluses and basal infusion),
the number of daily blood glucose tests, the frequency and severity of hypoglycemic episodes,
and information about other diagnosed diseases, meditation used, smoking habits and alcohol and
drug abuse. The physician analyzed this data to identify factors that could affect the glycemic control
of the study participants.

2.2. The Voice System Design

The system consisted of an Android-controlled smartphone with the client application
communicating wirelessly with servers to perform the following tasks: (1) automatic speech recognition
(ASR) and transformation of the voice description of the meal into text; (2) analysis of the textual
description to determine the composition of the meal; (3) calculation of the insulin dose compensating
the meal according to the algorithm, taking into account either only the CHO content, or the CHO,
protein and fat contents in the meal. A detailed description of the system can be found elsewhere [29].
It is noteworthy that the database of the system contains characteristics of 900 unique food products
and 5000 terms, facilitating effective speech-to-text conversion, including foods that were present in
the hospital menu. However, neither the number of calories, the quantities of CHO, protein and fat
that characterize each product, nor any other data stored in the system database, were adapted to the
characteristics of the hospital menu.

Safety of the patient is a priority in developing technical systems to support the treatment of
people with diabetes. The VoiceDiab system contains a few levels of data input validation and control
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to ensure that the content of meal is calculated based on real data, i.e., that the system correctly
“understands” the verbal description of the meal that the patient intends to deliver: (1) the text that
results from the speech-to-text conversion is displayed in full to let the user validate the correctness
of the automatic speech recognition; (2) each meal segment is associated with three icons indicating
whether the system was able to extract from the voice description of the meal its full characteristics, i.e.,
the name of the food product, portion size or unit of measure and the number indicating the amount
of food (a green icon color indicates that the trait associated with this icon has been recognized on the
basis of the verbal description, yellow means that the feature has been recognized using contextual and
grammatical analysis of the verbal description and red indicates that the system has not recognized
the food segment); (3) for each recognized product, the full characteristics (i.e., name of the product,
portion size or unit of measure and the number) are shown together with the estimated total mass and
the content of CHO, protein, fat and energy to make it possible for the user to verify the correctness
of the data; (4) the user must confirm that the meal was recognized in accordance with the verbal
description to activate the bolus calculator; (5) a bolus exceeding the individually-configured threshold
triggers the display of a warning message.

2.3. Voice System Usage and Built-In Bolus Calculator

Each study participant used the system in the following way. Before starting a meal, the participant
verbally described its composition, giving the name and size (either in units such as grams, ounces
or liters, or in customary units of measure, such as spoons, cups or portions) of each food product
present in the meal. The description was transmitted to the server, and after speech-to-text conversion,
each food product was identified and displayed on the smartphone screen for verification by the
participant. If the identification failed, a warning message showed that the recognition had been
unsuccessful due to an ASR failure or a lack of necessary information in the meal description, e.g.,
when the patient had specified a food product that was not present in the database of the system.
In case of ASR failure, the patient repeated the description of the food product that had not been
properly identified. For each recognized product, the system calculated the calorie content and CHO,
protein and fat contents in grams.

Upon activation, the bolus calculator summarized the total caloric value, the carbohydrate
exchange units (CU) and protein—fat exchange units (PFU) in the whole meal, and finally, the insulin
dose required to compensate for the meal. The PFU was calculated using the following equation:

PFU = (4 x Protein [kcal] + 9 x Fat [kcal])/100. (1)

If the PFU is greater than 1.0 a dual-wave bolus is recommended consisting of a simple bolus and
a square-wave bolus lasting for 4 to 8 h depending on the value of PFU. The total prandial insulin dose
was determined based on the following equation [30]:

IB [U] =CU x ICR + PFU x ICR, where ICR is the insulin to CHO ratio. )

The first part of the sum in Equation (2) denotes the amount of insulin administered in the simple
bolus and the second part denotes the insulin administered in the square-wave infusion of the variable
duration. If the PFU is less than 1.0, then the system reduces it to zero and, consequently, recommends
an insulin dose in the form of a simple bolus [30].

Regardless of the data received through the VoiceDiab system, the dietitian carefully calculated
the content of each meal based on the weight and exact composition of each food product (provided
by a supplier on the product label) present in the meal. The dietitian estimated the caloric value
of the meal, CU and PFU, which were treated as the ground true or reference values. Based on the
reference values of CU and PFU, the reference insulin doses were calculated manually using the same
algorithm that was implemented in the VoiceDiab system. Additionally, a simple bolus (i.e., the first
part of the sum in Equation (2) was calculated as if the patient was using a pen insulin injector. For the
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paired comparison of insulin boluses, the same insulin to CHO ratio (ICR) values were used in the
insulin bolus calculations for each patient, which were equal to 1.5 and 1.0 for breakfast and the other
meals, respectively. The reference counts of calories, CU, PFU and prandial insulin boluses were used
to assess the accuracy and safety of the estimates provided by the VoiceDiab system. We used two ICR
values to calculate insulin doses in all patients to account for the most important circadian changes in
this parameter, but also to clearly show how differences in the meal contents calculated using both
methods were reflected in differences in insulin doses. The VoiceDiab system makes it possible to
program values of ICR for 8 time periods with flexible time limits during the day. Thanks to this
feature, the circadian rhythm of ICR fluctuates, and changes related to illness or menstruation can
also be taken into consideration. The VoiceDiab system cannot automatically estimate ICR. However,
there has not been any other automatic bolus calculator reported that could do that. The values of ICR
have to be programmed by the physician and they can be altered by the educated patient to adjust for
changes in life conditions, e.g., illness.

2.4. Impact of the Method of Macronutrient Counting on Glycemic Control

To assess whether the automatic estimation of meal content based on the voice description of a
meal can be used to control glycemia, the study group was randomly divided into two subgroups.
In the first one, consisting of 14 subjects, aged 23.5 £ 3.8 years with HbAlc equal to 8.6 &+ 1.8%
(70 £ 20 mmol/mol), the insulin boluses were decided by a physician based on the reference meal
content data. In the second one, involving subjects aged 23.7 &+ 5.4 years with HbAlc equal to
8.5 £ 1.3% (69 £ 14 mmol/mol), the physician only had access to the data provided by the system
when determining the insulin dosage. Each study participant was monitored using the continuous
glucose monitoring system.

The following parameters were compared between the subgroups: the mean plasma glucose
concentration (PG), the percentage of time when glucose concentration was normoglycemic, i.e.,
higher than 3.9 mmol/L (70 mg/dL) and lower than 10.0 mmol/L (180 mg/dL) (PNPG), the mean
maximum increase in PG after the main meals and the number and duration of hypoglycemic episodes
(i.e., glucose concentration equal or lower than 3.9 mmol/L or 70 mg/dL).

2.5. Statistical Analysis

The discrepancy in the distribution of the assessed variables from normality was assessed using
the Shapiro-Wilk W test. The results indicated that the distribution of the variables differed from the
normal distribution. Thus, the non-parametric Wilcoxon signed-rank test was used to analyze the
significance of differences between the reference values of caloric content, CU and PFU calculated by
the dietitian and the values of these parameters estimated by the VoiceDiab system. The same test was
used to analyze differences between prandial boluses calculated according to the above-mentioned
algorithm. The statistical analysis was carried out using Statistica version 10 (StatSoft, Inc., Tulsa,
OK, USA). All data are presented as means & SDs and their ranges, i.e., minimum and maximum
values. Differences were considered to be statistically significant when p < 0.05.

3. Results

3.1. Accuracy of Macronutrient and Calorie Counting Based on Voice Descriptions of Meals

During their stay in hospital, patients received five meals a day, including three main meals
and two snacks. All of the study participants used the VoiceDiab system to verbally describe
535 meals consisting of 1644 food products. The routine hospital diet that was served to participants
during the study contained 85 unique food products in different combinations and of different
sizes/weights. Plain bread, butter, potatoes, cottage cheese, tomatoes, apples, ham and boiled eggs
were repeated in the hospital menu most often. Individual meals consisted of 1 to 6 unique food
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products. The average breakfast consisted of 4.1 £ 0.5 products, the morning snack, 2.2 4= 0.5 products,
lunch, 4.0 =+ 0.6 products, the afternoon snack, 1.2 & 0.6 products, and dinner, 4.1 & 0.4 products.

Table 1 presents the results of calorie counting done by the dietitian based on accurate, carefully
collected data regarding the weights and compositions of meals in comparison with the VoiceDiab
system estimates based on approximate information provided by the study participants.

The average calorie content in both snacks estimated by the system did not differ from those
calculated by the dietitian. In the case of the main meals, the differences were statistically significant.
Overall, the system tended to underestimate the calorie count, but the mean differences were
relatively small and equal to —7.2 + 24.4 kcal (—1.7 & 6.2%), —55.6 £ 54.8 kcal (—10.8 & 10.4%)
and —6.5 & 26.0 kcal (—1.2 & 5.4%) for breakfast, lunch and dinner, respectively.

Table 1. Calorie content estimated by the dietician and the VoiceDiab system.

Calorie Content (kcal)

Meal N Dietician System
Mean + SD ! Mean + SD 4
Min-Max Min-Max
388 + 85 381 & 84
Breakfast 110 166-602 159-586 <0.0001
. 92 + 38 90 £+ 28
Morning snack 80 23304 25.38 0.43
507 £ 98 451 £ 97
Lunch 130 338-806 283-766 <0.0001
Afternoon 58 + 31 58 + 28
snack 101 16-163 34-168 046
410 + 86 403 +79
Supper 114 221-661 217661 <0.0001

18D, the standard deviation.

In the case of each meal, except for lunch, the system estimated values of CU which were higher
than those calculated by the dietitian (Table 2). The mean differences were equal to 0.3 & 0.3 CU
(8.8 4 6.4%), 0.0 £ 0.6 CU (0.6 + 12.4%) and 0.3 & 0.2 CU (9.2 + 5.9%), for the consecutive main meals
starting with breakfast. In total, for the three main meals, the difference between the CHO content
estimated by the system and by the dietitian was lower or equal to 1 CU (i.e., £10 g of CHO) in
96.3% of cases.

Table 2. Carbohydrate exchange unit (CU) and the protein—fat exchange unit (PFU) counting by the
dietician and the VoiceDiab system.

Carbohydrate Exchange Units (CU) Protein-Fat Exchange Units (PFU)
Meal N Dietician System Dietician System
Mean + SD Mean £ SD 4 Mean + SD Mean £ SD P
Min-Max Min-Max Min-Max Min-Max
38+08 41+09 23+06 22406
Breakfast 110 29-60 2465 <0.0001 0.7-37 0.6-3.4 <0.0001
. 1.1+04 1.1+05 04+03 04+02
Morning snack 81 05-3.1 05-3.2 0.1 00-1.9 00-1.1 0.1
55+1.0 55+1.0 28+08 23+08
Lunch 130 23-9.1 29-8.0 078 1.2-5.1 0.7-5.2 <0.0001
1.2+04 1.3+04 0.05+0.14 0.05 4+ 0.13
Afternoon snack 100 1026 0925 <0.0001 0.0-0.5 0.0-0.6 0.28
39+09 42409 25+ 0.6 23+£05
Supper 114 2367 2765 <0.0001 0.8-4.4 0742 <0.0001
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The remaining 3.7% estimates differed by not more than £2 CU. The percentage of the results
within the range of £1 CU was equal to 99.1% for breakfast, 90.8% for lunch and 100% for dinner.

The protein and fat contents were underestimated by the system for the main meals with mean
differences of —0.1 + 0.3 PFU (—3.8 & 12.5%), —0.5 £ 0.5 PFU (—17.4 £ 17.6%) and —0.1 £ 0.3 PFU
(—4.5 & 9.4%), respectively. The results were not different for the afternoon snack, which only
sporadically contained protein or fat. For the morning snack, the mean difference was positive with a
large variability between estimates provided by the system and the dietitian (13.3 & 32.6%).

3.2. Effect of Differences in Macronutient Counting on Insulin Doses Estimated Using the Built-In Bolus
Calculator of the VoiceDiab System

Figure 1a shows a comparison between the insulin boluses calculated based on meal composition
provided by the dietitian versus the system, whereas Figure 1b illustrates the absolute differences
between these insulin doses.

}' I M Dietitian
10

M VoiceDiab

Insulin dose [U]

Absolute difference of insulin dose [U]

Breakfast Morning Lunch Afternoon Dinner Breakfast Morning Lunch Afternoon Dinner
snack snack snack snack

(@ (b)

Figure 1. (a) Comparison of insulin doses, and (b) absolute differences of insulin doses calculated based
on carbohydrate (CHO), protein and fat contents provided by the dietitian and the VoiceDiab system.

In the case of all meals, except for the morning snacks, the differences between insulin boluses
were statistically significant (p < 0.001). However, the mean absolute difference did not exceed 0.70 U
for any meal, and it was below 0.32 U for both snacks and dinner. The mean daily prandial insulin
dose in all full days of hospitalization was equal to 25.6 + 4.6 U when calculated based on the meal
content estimated by the dietitian and 25.8 + 4.4 U when the estimates provided by the VoiceDiab
system were used, meaning that the average difference was equal to just 0.2 = 0.8 U (p = 0.059).

Figure 2a shows, for each meal and for all meals together, the percentage of the prandial insulin
doses calculated based on the meal estimates made by the system which were equal to their reference
values, those that were in the range of 0.0-0.5 U, 0.5-1.0 U, 1.0-2.0 U and those that differed by more
than 2 U from the reference values. The majority of the insulin doses (78.7%) differed by + 0.5 U
at most from the reference values and only 1.3% went beyond the +2 U range. When we used the
values of CU to calculate simple insulin boluses (Figure 2b), neglecting the protein and fat contents
in meals, the results were similar, i.e., 81.7% of boluses were different from their reference values
by 0.5 U or less, and only 1.1% differed by more than 2 U (of which 0.9% concerned insulin doses
compensating breakfast).
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Figure 2. Mean relative absolute differences of insulin doses calculated according to Equation (2) based
on estimates of carbohydrate exchange units (CU) and protein—fat exchange units (PFU) provided by
the dietitian and the VoiceDiab system for (a) dual-wave boluses; (b) simple boluses. The insulin to
carbohydrate ratio (ICR) was assumed to be 1.5 U/CU for breakfast and 1.0 U/CU for all other meals.

3.3. Impact of the Method of Macronutrient Counting on Glycemic Control

The average PG and PNPG were similar for both subgroups, ie., 7.3 4+ 0.8 mmol/L
(131 £ 15mg/dL) vs. 7.5 £ 0.9 mmol/L (135 & 16 mg/dL), and 76 + 7% (p = 0.42) vs. 75 + 7%
(p = 0.79), respectively. The maximum increase in PG was equal to 4.3 £ 1.4 mmol/L (77 £ 25 mg/dL)
vs. 4.7 + 1.8 mmol/L (85 & 33 mg/dL) (p = 0.37) after breakfast, 3.7 + 1.7 mmol /L (67 & 30 mg/dL)
vs. 4.0 = 1.7 mmol/L (72 4 30 mg/dL) (p = 0.55) after lunch and 3.9 + 1.3 mmol/L (71 £ 24 mg/dL)
vs. 4.3 & 0.9 mmol/L (77 & 17 mg/dL) (p = 0.11) after dinner, in the first and the second subgroups,
respectively. In the first subgroup, hypoglycemia episodes occurred 2.1 4 0.8 times per day, whereas
in the second subgroup, they occurred 2.0 + 1.3 per day (p = 0.77). The daily duration of hypoglycemic
episodes was equal to 120 £ 70 min in the first subgroup and 95 & 74 min in the second subgroup
(p=0.35).

4. Discussion and Conclusions

Since the mid 1990s, ICT technology has been used to support the treatment of people with type 1
diabetes, based primarily on the telemonitoring of patients’ metabolic states and courses of treatment as
well as teleconsultations. Telehome care systems have been used to support type 1 diabetes treatment
in a few clinical trials, demonstrating a few benefits of this type of the care over routine periodical
check-ups of patients’ states in the physician’s office [31-35]. Rapid development and a widespread
use of smartphones created the basis for the development and clinical validation of m-health solutions,
making it possible to monitor or support the treatment of people with diabetes in real time [36,37].
Currently, using smartphones, it is possible to transfer a lot of data to the treatment team, such as the
results of glucose monitoring, meal size and composition or information on physical activity. However,
the more data that is transferred, the more time and effort the therapeutic team needs to analyze
these data and effectively support patients. Automatic bolus calculators can reduce the burden on the
treatment team, helping patients to adjust their insulin doses to the size and composition of meals [38].
As indicated in the study by Franc et al., frequent support of treatment with a smartphone coupled
to a website and the use of automatic bolus calculators may lead to a significant reduction in HbAlc
in people with poorly-controlled type 1 diabetes. With less frequent use of smartphone apps, it is
beneficial to frequently use teleconsultation services [39]. However, determination of the appropriate
dose of insulin administered before the meal depends on the relatively accurate assessment of a meal
by calculating, primarily, its CHO content.
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The ability of the patient to accurately estimate the size of a meal depends on many factors,
including quality of education, frequency of recurrent training and daily practice of such calculations
by the patient. According to the survey carried out in people with type 1 diabetes and poor glycemic
control, the average error in CHO counting in meals consumed during the day (three main meals and
two snacks) was equal to 4.2 CU, and it tended to increase in people with long-term diabetes subjected
to systematic education [40]. Brazeau et al., analyzed the differences between CHO estimates made by
patients with long-term type 1 diabetes and calculations carried out by dieticians using a computer
analysis program and found that the average absolute difference was equal to 15.4 4- 7.8 g (20.9 4= 9.7%)
of CHO per meal, which, on average, contained 72.4 + 34.7 g of CHO [41]. In this study, the CHO
content in 63% out of the total of 448 meals was underestimated. Bishop et al. showed, by analyzing the
most frequently eaten foods, that, in a group of teenagers, only 23% were able to estimate CHO content
with an error not exceeding £10 g in their daily diet despite the selection of common meals [42]. In up
to 52% of these teenage patients, the difference between their calculations and those made by dieticians
was within the range of £-30 g. Similar mistakes in CHO counting are made by adults with type 1
diabetes [43]. Currently, new systems are emerging which are aimed at supporting people with type 1
diabetes in CHO counting. The GoCARB system uses computer vision technology for this purpose.
The user places a reference card next to the meal and takes two images using a smartphone camera.
The system was developed based on the following minimum assumptions: the image contains only
one dish/plate, which must be round, and various food products are not mixed on the plate. After
taking photos, the images are transmitted to a dedicated server via a WiFi network, where a series of
computer image processing operations are performed. All computer vision modules operate on the
server, while the mobile phone is used only to acquire images, calculate CU and visualize the results.
A comparison was made between the calculations performed by people with type 1 diabetes without
system support and with the use of the system. An error below £20 g per meal from the total of
114 meals was noted in 58.8% and 80.7% of participants, respectively, showing the advantage of using
the system [44]. The caloric, CHO, protein and fat contents in food products can be calculated using
numerous available publications as well as computer programs and mobile apps that have built-in
calculators or databases to facilitate the capacity to obtain information on foods [45]. Often the quality
of calculations is affected by the size of the portions.

Patients with type 1 diabetes often face a difficult choice of whether they need only to account
for the CHO content of the meal or whether they should also include the contents of protein and fat
to determine the insulin dose. Bell et al. attempted to determine differences between postprandial
glucose concentrations after eating a high-fat, high-protein meal compared to a low-fat and low-protein
meal with the same CHO content, and to determine differences in the insulin doses that should be
applied following each of these meals to achieve the best postprandial glycemic control. The authors
showed that in the case of a meal containing 40 g of fat and 27 g of protein in addition to 50 g of CHO,
the insulin dose should be increased by 65 + 10% using a dual-wave bolus carried out for 2.4 h to
achieve adequate post-meal glycemic control [46]. Wolpert et al. assessed that the consumption of a
high-fat lunch caused an average increase in insulin demand of about 42% with significant differences
in individual patients [47]. A few studies have shown that the consumption of high-protein and
high-fat meals results in an increase and delay in the postprandial glucose rise [48,49], indicating the
need to include these nutrients in the determination of insulin doses. The VoiceDiab system make
it possible to compensate for such meals using the dual-wave insulin bolus. Nevertheless, it is also
possible to pre-program the system to calculate insulin doses based solely on CHO content in meals to
be administered in a form of a simple bolus or an injection with a pen injector.

The question remains as to what extent errors in the calculation of CU affect glycemic control.
Based on studies in groups of children and adolescents with diabetes, it has been demonstrated that
an inaccuracy of £10 g does not impair postprandial glycemia [49], but a discrepancy of £20 g or
more significantly influences glycemic control after the meal [50]. In spite of the fact that in our
study, differences between CU counts estimated by the VoiceDiab system and the dietitian were
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significant from a statistical point of view, they were lower than +10 g of CHO in more than 96% of
the analyzed main meals and in 100% of snack meals. They were lower than £20 g in the remaining
4% of the main meals. This result shows that inaccuracies that are introduced both by patients during
subjective estimation of the size of a meal, and by the system which uses average characteristics
of food products, should not have a significant negative impact on the setting of insulin doses and
consequently, on postprandial glycemic control. Such a statement is further confirmed by (1) the results
of the application of the VoiceDiab system in a group of ambulatory patients with type 1 diabetes
characterized by good metabolic control and treated using insulin pumps, in whom the system proved
to be effective in increasing the percentage of 2-hour postprandial glucose in the normoglycemic
range by applying the insulin bolus algorithm implemented in the VoiceDiab system [18]; and (2) the
results of the glycemic control of the participants of this study, where an expert determined the
insulin dosages.

Through analyzing and summarizing the impact of differences in CU and PFU calculations on
the resultant insulin doses estimated according to the algorithm implemented in the VoiceDiab system,
we demonstrated that in over 91% of meals, the absolute difference in insulin doses were smaller than
1 U. The biggest discrepancies were noted in the calculation of pre-lunch insulin doses, where 26% of
the differences were larger than 1 U.

Confirmation of the ability of the VoiceDiab system to provide meal content estimates that are
similar to those calculated by a dietitian is an important step on the way to the further utilization
of modern technology to support people with type 1 diabetes as well as other groups of patients
who need to estimate the macronutrient contents of their meals. However, from the type 1 diabetes
perspective, it should be emphasized that the automatic bolus calculator is just one element of the
whole infrastructure that should be present to make it possible to adequately train and follow-up
people with diabetes and ensure safe and efficient usage of new technology. This infrastructure is
necessary for the patients but also for clinicians who have expertise in insulin management and are
willing to accept the responsibility for ensuring that each patient receives adequate training and
follow-up [51]. To reduce the risk of patients using inappropriate parameters in their daily regimens,
patients should fully understand how to use bolus calculators. Otherwise, they may be exposed to
the avoidable risk of potentially dangerous changes in glycemic control. Hirsch and Parkin, in their
report on the safety and efficacy of smartphone bolus calculator apps, listed four key components of
automated bolus calculator training: (1) determine the patient’s competency in utilizing insulin therapy
and self-management skills; (2) assess the appropriateness of the patient’s basal dose and key insulin
parameters, including the insulin sensitivity factor and ICR, blood glucose targets, and prescribed
dosage adjustments for exercise and changes in health status; (3) utilize structured self-monitoring of
blood glucose with patients; (4) monitor patient therapy consistently [51]. Generally, these should be
key components of the training of any person with type 1 diabetes regardless of whether she or he is
going to use an automatic bolus calculator. In fact, all these components were a part of the treatment
plan or the education program of the patients participating in the current study. However, due to
the study’s main purpose and the fact that after hospitalization, the study participants had not been
using the VoiceDiab system, it was not determined whether it would be possible to reproduce the
results that were obtained in younger patients with good metabolic control in the previously reported
study in this study group of individuals under ambulatory conditions [18]. Nevertheless, during
hospitalization, the current study participants achieved lower mean PG values than those participating
in the other study.

The meal content data estimated by the system can also be effectively used by the physician
in a less formally-defined expert algorithm to effectively manage the intensive insulin treatment;
this was confirmed by the comparable glycemic control of study participants whose insulin boluses
were determined by the physician based on the reference meal data and those for whom meal content
data calculated by the system was used. The differences were not significant regardless whether
we analyzed indices characterizing the average daily glycemia, the glucose concentration rise after
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meals or the frequency and duration of hypoglycemic episodes. However, the lack of differences in
glycemic control between both subgroups during this study should be interpreted with due caution,
because, despite the fact that efforts were made to exclude patients with diagnosed endocrine disorders
other than diabetes, it cannot be ruled out that participants might have had other medical conditions
affecting their glycemic control. It should be mentioned, however, that none of the patients reported any
coexistent disease or use of medications that may affect glycemic control. Hence, based on the results
of the medical history that was collected, it can be stated that in case of the study participants, the most
probable causes of unstable metabolic control were related to diabetes and included inappropriate
health behaviors, insufficient daily blood glucose tests, fear of hypoglycemia and difficulties related
to the proper adjustment of the bolus to the meal content. Nevertheless, participants could have
intentionally or accidentally not informed the physician about medical conditions affecting their
glycemic control.

Summing up, people with type 1 diabetes, despite education, face several difficulties in adjusting
their insulin dosage based on their own estimates of the CHO content of meals. These difficulties
may be even more pronounced when a complex insulin bolus is determined to compensate for not
only CHO, but also protein and fat content. The developed system, which uses an intuitive user
interface, is simple to use and quickly provides information on meal composition that may be used to
automatically calculate prandial insulin doses. The obtained results and the literature data indicate
that the accuracy of CU and PFU estimates computed by the system is sufficient to calculate insulin
doses, either automatically using the algorithm implemented in the VoiceDiab system, or manually
using the algorithm based on the knowledge and experience of a physician; these doses were also
shown to be close to those calculated based on the reference values of CU and PFU established by
the dietitian.

Supplementary Materials: The following are available online at http:/ /www.mdpi.com /2072-6643/10/4/518/s1,
Table S1: Basic characteristics of the study group, Table S2: Carbohydrate exchange units (CU), protein—fat
exchange units (PFU) and calorie contents of meals calculated by the dietitian and estimated by the
VoiceDiab system.
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Abstract: The purpose of the study was to investigate if an Evernote app-based electronic food diary is
an acceptable method to measure nutrient intake in children aged 9-12 years. A convenience sample
of 16 nine- to twelve-year-olds from Dunedin, New Zealand, completed a paper-based food dairy on
four days, followed by four more days using a photo-based diary on an iPod. This photo-based diary
used a combination of photographs and short written descriptions of foods consumed. The photo-based
diaries produced similar results to written diaries for all macronutrients and major micronutrients
(e.g., calcium, fibre, vitamin C). Spearman correlation coefficients between the two methods for all
nutrients, except sugars, were above 0.3. However, burden on researchers and participants was reduced
for the photo-based diary, primarily due to the additional information obtained from photographs.
Participating children needed less help from parents with completing the electronic diaries and preferred
them to the paper version. This electronic diary is likely to be suitable, after additional formal validity
testing, for use in measuring nutrient intake in children.

Keywords: children; dietary assessment; nutrients

1. Introduction

A healthy diet is essential in childhood because it is associated with current and future health [1,2].
Therefore, dietary assessment methods appropriate for children are vital. Several traditional methods
are used to measure energy and nutrient intake, including 24-h recalls, food frequency questionnaires
(FFQs) and food records. The 24-h recall method is used in large-scale surveys in New Zealand, such as
the New Zealand Adult Nutrition Survey [3]. An important limitation of this method is recall bias,
where people cannot accurately remember everything they consumed [4]. Using 24-h recalls is especially
difficult in children as several people may need to be interviewed to ensure all the food consumed is
accurately reported [5]. For example, parents, teachers and friends’ parents may need to be consulted
depending on where the child was on the specified day [5]. Children may not always be able to accurately
describe what they have eaten. For similar reasons, while comprehensive self-completed FFQs are used
commonly in large-scale studies of adults to determine long-term dietary intake [4,5], they are not ideal
for comprehensive dietary assessment in children.

Weighed food diaries are the gold standard of dietary assessment, but are not suitable for children
as this method is time consuming and places a high burden on participants and caregivers. Estimated
food diaries are an alternative method, but accurate portion size estimation is an issue for children,
requiring additional parental help [5]. A more recent method of collecting dietary data is using food
photography. This involves participants taking photos of the food and drink they are going to consume,
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then another photo when they are finished [6]. A description of the photo can be added to provide
extra information. The image can be used to determine what the person is eating and how much of it
he/she ate. Benefits of this method are that portion size does not need to be estimated and there is a low
participant burden [6]. Research suggests that younger people are more compliant with electronic nutrient
data collection methods compared to paper-based methods (75% compared to 50% compliance) [7].
An increasing number of young people have smartphones, or other smart devices, therefore developing
an electronic application (app) for these may be a cost-effective, low burden method of data collection.
Previous U.S. research results suggest food photography is a valid and practical way to measure adult
nutrient intake [8] and children’s food intake [9] when compared to food records. Therefore, the aim of
this pilot study was to determine the acceptability of an Evernote app-based food diary (photo-based
diary) on an iPod for measuring dietary intake in children, in comparison to traditional written food
records, and to assess its usability in this population.

2. Materials and Methods

2.1. Subjects and Study Design

We aimed to recruit a convenience sample of 16 children aged nine to twelve years recruited from
Dunedin, New Zealand via word of mouth. Investigators asked people they knew with children of
eligible age or those who worked with children of eligible age to contact us for information if they
wanted to take part. They in turn also spoke to parents of eligible children about the study.

Only children who (a) were literate and therefore able to complete the diaries, either on their own,
or with help from parents, (b) were available throughout the study period (i.e., not going away from
Dunedin during the study period) and (c) gave permission for audio-recording of the group interview
(where applicable) were eligible to participate.

Parents and children were required to provide written informed consent before entering the study.
Ethical approval for the study was obtained from the University of Otago Human Ethics Committee
(Ref 13/265, 20 September 2013).

2.2. Data Collection

We used the sequential explanatory mixed method for this study. Participants and their caregiver
met with a researcher and were first given a written food diary, as the reference method, to record all
food and drinks consumed over 4 days. Child/parent pairs were given verbal instructions on how
to complete the diary, and written instructions were contained within the diary. Both of these were
tailored to be understood by children of eligible age. Child participants were asked to complete the
diary on 4 non-consecutive days, including a weekend day, with help from their primary caregiver if
necessary. Participants were asked to include brand names of food and drinks to improve the accuracy
of the final results. Where, possible the researcher would meet with the participant and their parent
after the first day of recording to ensure all the necessary information was recorded.

A few days after completing the written food diary, each participant was given an iPod with the
Evernote app on it. The Evernote app contained a basic food dairy, set up in the same way as the
paper diary. This photo-based diary contained defined sections to record each eating occasion with
space to write a short summary of the food and drink consumed. It also contained a designated space
to add photographs of the meal before and after consumption, to estimate the proportion of food
consumed. Participants were shown how to use Evernote, to photograph effectively and record details
of each entry underneath each photo. As with the written diaries, they were provided with tailored
instructions and examples; these focused on the electronic aspects of recording intake. Participants
were asked to complete the photo-based diary on 4 non-consecutive days, including a weekend day.
After all diet records were completed, all child and parent participants were invited to group interviews
to gain feedback on the photo-based diary, particularly with respect to its ease of use compared to
the paper diary. Child participants were invited to 1 interview and parents to a separate interview
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afterwards, so that any additional topics of interest that arose from the child interview could be covered
in the parent interview.

2.3. Food Record Coding and Statistical Analyses

A trained researcher entered data from all food diaries into Kai-culator, a bespoke dietary assessment
software application developed by the Department of Human Nutrition, which uses the 2014 version
of the New Zealand food composition database ‘NZ FOODfiles’ (Version 1.08d, Department of Human
Nutrition, University of Otago, Dunedin, New Zealand).

The photographs obtained from the photo-based diary were used to augment written information
provided by participants, including pictures of additional helpings, if present. If foods in the diaries
were not in the database, a similar product was substituted. For example, one participant consumed
a German-made chocolate biscuit. The nutrient data for this product were searched for on Google,
and the closest matched New Zealand biscuit was used.

When insufficient data were available to match food exactly, standardized substitutions were
assumed. For example, if a ‘handful” or ‘scoopful” of hot chips was recorded in the food diary,
the quantity was estimated if there was a photo, using standard portion photos developed for use in
New Zealand national nutrition surveys, or it was assumed to be equal to 144 g, a typical portion size for
this age group in New Zealand, using data from the most recent national survey. Nutrient information
was obtained for all participants from all diaries, and simple descriptive statistics (mean and SD) were
undertaken. Spearman’s correlation coefficients (SCC) were calculated to assess agreement between the
nutrient information obtained from the electronic and written food diaries. As suggested by experts in
the field of dietary assessment methodology [10,11], SCC of 0.3 and above were considered acceptable.

3. Results

All participants completed at least three days for both the paper and photo-based diaries. A total of
64 days of entries from a possible 64 was included in the final analysis of the electronic diaries and 58 days
for the written diaries. The results from Table 1 show that nutrient intakes generated from the photo-based
diary were similar to those from the written food diary for all participants together and for boys and girls
separately. SCCs for all participants for all nutrients, with the exception of sugars, were above 0.3. SCCs
conducted for boys and girls separately showed similar results with the exception of sugars, where the
SCC for girls was 0.3. Intakes from the written and photo-based diaries were broadly comparable to,
but lower than those intakes from children who participated in the most recent Children’s Nutrition
Survey in New Zealand (CNS) in 2002 [12]. When data from boys and girls were combined, carbohydrate
intake was 30 g higher from the written diary (around 5% of a child’s energy intake) compared to the
photo-based diary. Boys had a higher energy intake than girls, as expected.
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The information provided in the photo-based diary made data entry easier and more straightforward
than the written diary for several reasons. Firstly, typed information was easier to read than the children’s
handwriting. Photos in the photo-based diary provided additional information compared to what children
included in some of the written diaries. Examples of this were a lack of detail in the written entries
on foods that do not make up a main component of a meal, e.g., not documenting tomato sauce when
consuming chips, grated cheese added to the top of pies, custard or cream added to a cake, or the exact
composition of sandwiches. When reported in both diaries, some cheese sandwich photographs from the
electronic food diaries showed additional food information not commonly reported in the written food
diaries, such as tomatoes, vegetables or salad and bread type. Similarly, the amounts of butter added to
toast or nuts contained in a handful were able to be more accurately estimated from photographs than
from the paper diaries. Investigation of the photographs showed that other foods such as gravy or sauces
tended not to be reported in the written diary or in the photo-based diary, even though these could be
seen in the photographs. Drinks were not always reported by all participants, even when a can or carton
of a drink was photographed as part of a meal.

Five children and three parents attended the group interviews, and the other child and parent
participants provided written feedback on the photo-based diary. Individual feedback from all participants
and their parents showed that the photo-based diary was more acceptable than the written diary, as it
reduced the burden of writing everything down. If the children were unable to record everything in
writing at the time of consumption, e.g., at a birthday party or a family gathering, they appreciated being
able to photograph the food and add additional information when they returned home. There were
several other examples of this, particularly relating to busy time periods. One was where participants
made their school lunch the night before. They took a photo then, and as they did not have time to
complete a full diary entry at lunchtime, they took a picture of the leftovers at the time and provided the
written text that evening.

Parents and children reported that the iPod had the advantage of novelty over the written diary,
which led to the children being more motivated to fill in the photo-based diary, compared to the written
diary. Specific comments from the children were that the iPod is ‘a lot more portable than the paper
diary’, ‘writing everything down is boring” and ‘the autocorrect for spelling in the iPod diary also
make recording everything easy’. Two children reported that the electronic diaries were quicker to
complete than the paper diaries, but the other three said that the two methods took similar amounts of
time. Two participants needed help from parents to fill in the paper diary as ‘It's neater when my mum
does it’, but were able to complete the photo-based diary on their own. Similarly, all participants had
some help with estimating portion sizes for the paper diaries from parents. This was corroborated by
comments from parents such as ‘I did quite a lot of the writing” and ‘My daughter was more concerned
with how she was spelling things and whether people would be able to read, so I did most of the
writing on the paper diaries’.

Generally, although participants preferred the photo-based diary, one participant found the
keyboard on the iPod too small, and ‘struggled to type” as it is ‘really hard because you might type
the wrong letter but when you have the book you can write it correctly’. When this was discussed
further, all participants thought it would be easy to complete on a larger smartphone. One participant
was not allowed to use the iPod at school, but they took photos of all the food they took to school
and kept leftovers and packaging of food bought at school to photograph at the end of the school
day. Reponses from parents indicated that they preferred the photo-based diary as less input was
needed from them than for the paper diary. When parents helped with the photo-based diary, it was
with the food descriptions, not photographs, e.g., how a particular food was cooked or information
on some of the ingredients in composite dishes. One participant noted that their ‘mum doesn’t like
technology’, but that they were willing for them to use it for ‘important” purposes, such as school or
research; the other participants agreed with this comment.
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4. Discussion

Electronic food diaries produced similar results to written food diaries in children aged 9-12 years.
Nearly all nutrient values were comparable between the food diaries. The only substantial difference
was a higher carbohydrate intake from the iPod diaries. As we found acceptable correlations of 0.3 or
above [10,11] for all nutrients except sugar, the results indicate that the photo-based diary shows
promise as a valid dietary assessment tool for this age group. However, we must interpret these results
with caution, due to the small sample size, and a further, larger validity study is needed to confirm
these results. However, these results strengthen current research that suggests that technology may be
an appropriate tool to measure nutrient intake [8,9].

In terms of comparing our study results with those from the only available nationally-representative
dataset, the results are broadly comparable, although some small differences are seen. This is likely
to be due to the different time periods in which data were collected as the CNS data are from 2002.
Data from the two most recent adult nutrition surveys suggest that major changes in food consumption
have occurred in New Zealand over the 10-year period between these surveys [13], which may account
for some of the differences seen. The CNS used one 24-h recall from a parent to collect dietary information,
which may have contributed to the observed differences.

Photo-based collection methods are becoming more feasible due the wide-spread use of
smartphones by people of all ages, including older children. Current smartphones with high quality
cameras are now available and inexpensive [13], meaning that this is technology accessible to most
people, and smartphones, or other devices, can be provided by researchers to those without. iPods
were provided for children as they do not generally have access to smart phones. The photo-based
diary is suitable for and has been tested on a variety of Android-based mobile phones, as well as
iPhones and iPads.

Electronic food diaries have the benefit of providing extra details not always included in written
food diaries. Items such as mayonnaise on chips are often omitted from food diaries, possibly resulting in
underreporting of energy intake [7-9]. As such foods can be seen in photos, they can be accounted for
by the researcher, possibly leading to more accurate results [7-9], and this may explain the additional
carbohydrate intakes seen in the iPod data. An important advantage of electronic food diaries is that it is
that researchers can more easily gain enough information to enter food records into the database for more
accurate nutrient intake estimates. When using the paper food diary, parents often had to be asked extra
questions about their child’s food intake because not enough detail was provided, e.g., how many slices of
bread a sandwich had or how many potatoes were eaten with dinner. The photo-based diary overcomes
this because it can be seen clearly in the photos how much food was eaten. This reduces researcher and
participant burden. A further advantage is that leftovers can be photographed. Children often do not eat
all that is provided; recording these results accurately is important.

Another important benefit of taking photos of food and drinks is that the burden of estimating
portion size is transferred from the participant to the researcher. Children find it difficult to accurately
estimate the amount of food they are consuming, resulting in inaccurate nutrient intake results [9].
Researchers and dietitians who have training in portion size estimation have been shown to produce
estimates that highly correlate with weighed food portions [14]. Electronic food diaries are therefore
likely to have a high accuracy level.

Study limitations included the small sample size and representation of New Zealand’s population;
some results and feedback may not be generalizable to all New Zealand children. During this study,
furthermore, children sometimes forgot to take the iPod with them and were forced to rely on memory
to write down what they had eaten at a later time. This may have reduced the accuracy of the results as
no photo was provided and information was not recorded straight away. However, the same problem
occurred with the written food diary, showing that the photo-based diary should be no less accurate
than a written diary. An interesting observation was some parents and one school seemed to resist
technology use, such as portable devices, but these devices were permitted to be used for academic or
research purposes. This challenge would require further thought in a larger validation study.
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A further possible limitation is that by asking all participants to complete the paper diary
first, followed almost immediately (usually 4-7 days later) by the photo-based diary could lead
to over-estimation of the agreement between methods. Indeed, experts in the validation of dietary
methods recommend that a sufficient time period elapse between completion of the dietary assessment
methods used to minimise learning effects. However, most of these recommendations come from the
field of FFQ validation [11], where the learning effects are primarily related to test-retest reliability.
As the principal of the two methods tested in this study was essentially the same, the information
provided around writing down information in both diaries was the same and the only additional
instruction for the photo-based dairy was based on the photos, learning effects should be minimal
between the two methods. However, we acknowledge that (a) randomising participants as to which
diary they complete first and (b) using a greater washout period may have led to lower agreement
between methods. It is important to note that this study is not a formal validity study. It was designed
to initially assess the feasibility of the diary as a first step before a larger, formal validity study with
a larger sample size and appropriate statistical methods such as Bland—Altman.

In conclusion, this study supports the use of electronic food diaries in children, pending further
formal validation. Electronic food diaries produce comparable results to written food diaries, have the
advantage of being more fun for participants to fill in and provide more information to facilitate data
entry for researchers. Using iPods reduces the burden on participants by replacing the need to write
down comprehensive descriptions of food consumed with information from photos and may have
an important role in child research in the future.

5. Conclusions

This novel method of dietary data collection reduces burden for participants and researchers,
and allows for the more accurate coding of diet records, as it requires less estimation around portion
sizes from participants [4]. The detail available from the photographs makes coding decisions more
straightforward than from traditional diaries. As participants reported enjoying completing the
electronic diaries, greater compliance may be seen in larger studies compared to paper diaries.
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Abstract: Wearable motion tracking sensors are now widely used to monitor physical activity, and
have recently gained more attention in dietary monitoring research. The aim of this review is to
synthesise research to date that utilises upper limb motion tracking sensors, either individually or
in combination with other technologies (e.g., cameras, microphones), to objectively assess eating
behaviour. Eleven electronic databases were searched in January 2019, and 653 distinct records
were obtained. Including 10 studies found in backward and forward searches, a total of 69 studies
met the inclusion criteria, with 28 published since 2017. Fifty studies were conducted exclusively
in laboratory settings, 13 exclusively in free-living settings, and three in both settings. The most
commonly used motion sensor was an accelerometer (64) worn on the wrist (60) or lower arm (5),
while in most studies (45), accelerometers were used in combination with gyroscopes. Twenty-six
studies used commercial-grade smartwatches or fitness bands, 11 used professional grade devices,
and 32 used standalone sensor chipsets. The most used machine learning approaches were Support
Vector Machine (SVM, n = 21), Random Forest (n = 19), Decision Tree (n = 16), Hidden Markov Model
(HMM, n = 10) algorithms, and from 2017 Deep Learning (1 = 5). While comparisons of the detection
models are not valid due to the use of different datasets, the models that consider the sequential
context of data across time, such as HMM and Deep Learning, show promising results for eating
activity detection. We discuss opportunities for future research and emerging applications in the
context of dietary assessment and monitoring.

Keywords: eating activity detection; hand-to-mouth movement; wrist-mounted motion tracking
sensor; accelerometer; gyroscope

1. Introduction

Recent advances in the accuracy and accessibility of wearable sensing technology (e.g., commercial
inertial sensors, fitness bands, and smart watches) has allowed researchers and practitioners to utilise
motion sensors mounted on the upper limbs (i.e., lower arm/wrist, upper arm) to assess dietary
intake and eating behaviour in both laboratory and free-living conditions. Inertial sensors such as
accelerometers (e.g., [1,2]) and gyroscopes (e.g., [3,4]), as well as proximity sensors (e.g., radio-frequency
identification (RFID) [5,6]), can be used to detect and quantify characteristic hand-to-mouth gestures
associated with food and beverage consumption. As such, compared to other types and/or positioning
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of sensors (e.g., mounted to a user’s neck or head), this technology offers advantages in terms of
detecting the timing and amounts of eating behaviour in an unobtrusive, accessible, and affordable
way that yields high levels of technology acceptance [7-9]. Disadvantages, including the limited ability
to detect brief snacks and the type and amounts of food being consumed [10], can be addressed by
combining these sensors with other active (e.g., self-reporting with a food record or recall) and passive
capture methods (e.g., microphone, video). In this vein, one can use the data gained from upper
limb motion sensors to (1) improve and complement traditional dietary assessment methods [11]
(e.g., by triggering reminders to actively take a photo when an eating occasion is detected), and (2) to
support the delivery of dietary behaviour change interventions, for instance by capturing characteristic
hand-to-mouth movements (e.g., [1,12]).

Overall, the field of wrist-mounted motion tracking sensors for the measurement of eating
behaviour has evolved rapidly over the past decade. In 2012, Dong and colleagues [13] used a relatively
expensive device (about US $2000 per device) called the InertiaCube3 (tri-axial accelerometer, tri-axial
gyroscope, and tri-axial magnetometer) that was wired to a separate reader device. Within only a few
years, the price of these sensors dropped to less than US $200. At the same time, sensors have now
substantially reduced in size, operate wirelessly, and are powered by rechargeable batteries (e.g., [9,14]).
High-quality motion tracking sensors are available within off-the-shelf, commercial smart watches that
can be purchased at a fraction of the price of earlier devices and by the general population, not just
researchers. Fuelled by these technological advances, and with wearable motion tracking devices
experiencing rapid growth in areas such as fitness [15], the field of monitoring and assessing eating
behaviour and dietary intake using these technologies is evolving. Another factor contributing to the
rapid proliferation of motion tracking devices is their high level of technology acceptance; such devices
have become increasingly culturally acceptable and unobtrusive to wear [7-9,16]. Combined with
machine learning methods, the collection of movement data from wrist-mounted motion tracking
sensors can be used to extract meaningful information about a person’s daily activities (e.g., eating
behaviour and physical activity) in a continuous, scalable, and discreet way [2,17].

Several recent reviews have explored how wearable sensors have been applied to the field
of nutrition for assessment or monitoring of eating behaviour and/or dietary intake [10,15,16,18—
20]. However, previous reviews have focused on a wider range of wearable sensors (e.g., camera,
microphone) located on various parts of the body (e.g., ear, temple, torso) and included a range
of eating-related activities [10,16,18,19] (e.g., chewing, swallowing), or focused on smoking [15].
Hassannejad and colleagues [18] reviewed two main approaches used to try and automate dietary
monitoring. The first approach was to automatically extract information on food content based on
image analysis and the second approach was to extract the information sourcing data from wearable
sensors to detect eating behaviour. Kalantarian and colleagues [10] provided a general overview of
dietary monitoring technology (e.g., acoustic, image, inertial, and manual food diaries). Prioleau and
colleagues [16] focused specifically on wearable sensors such as cameras, microphones, and motion
sensors placed on different body locations (e.g., ear, mouth, neck, upper limb). Vu and colleagues [19]
provided an overview of data analytic and sensing platforms for wearable food intake monitoring,
covering a wide range of systems including acoustic, inertial, muscle activity, proximity, and visual
sensors, rather than focusing on a specific type of wearable sensors. Parate and colleagues [15] reviewed
approaches designed for detecting eating and smoking behaviours where hand gestures are involved.
Doulah and colleagues [20] conducted a systematic review of studies focusing on estimating dietary
energy intake (i.e., amount of consumption, energy density, and food recognition), covering a range of
image-based approaches (e.g., depth, smartphone, or wearable cameras) and wearable sensors (e.g.,
chewing sound, jaw motion, or wrist motion sensors). However, to the best of our knowledge, there is
currently no systematic review of the current state of research available that specifically focuses on the
use of upper limb-mounted motion tracking sensors for assessing eating behaviour.

This review differs from existing reviews in the area in that it includes a systematic search and
thereby follows a rigorous process with two reviewers to provide an overview of the current state of
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research on upper limb-mounted motion sensors for assessing eating behavior across the 69 identified
studies. Given the wide availability and affordability of upper limb-mounted motion sensors, an
understanding of the study settings, sensor configurations, detection approaches, and eating behaviour
assessment in the extant literature is important in order to progress research in this area and inform the
application of these approaches in practice. Hence, the aim of the current review is to summarise the
current evidence on use of upper limb-mounted motion sensors for assessing eating behaviour.

2. Materials and Methods

2.1. Definition of Common Terms

Table 1 provides an overview of the terms and definitions employed in the current review.
Throughout this review, we use the term motion sensor to refer to wearable motion tracking or wearable
motion detection sensors, unless specified otherwise. Wearable motion sensors are usually integrated
into a tracking device mounted on the wrist or other parts of the upper limbs (e.g., activity tracker,
fitness tracker, smart watch). The tracking device commonly consists of several different motion
sensors such as inertial sensors and proximity sensors. A proximity sensor can detect the presence of
nearby objects and therefore requires a separate sensing device. An inertial sensor can detect changes
in linear or angular momentum. The two most widely-used inertial sensors are three-dimensional
micromachined microelectromechanical systems (MEMS) accelerometers and gyroscopes. While the
tri-axial accelerometer measures magnitude and direction of acceleration on X, Y and Z axes, the tri-axial
gyroscope measures the rate of rotation on yaw, pitch, and roll axes. The studies across the field have
used a variety of different terms to refer to the same concept. Action classes are the desired types of
events to be detected through the artificial intelligence models. The action classes vary depending on
the machine learning approach taken and the behaviour assessment outcomes expected. These classes
need to be predefined with labels (i.e., tagged), and used in the process of data annotation to mark
the events (e.g., using video cameras or self-report push buttons). The events are marked with the
start time, end time, and a label (action class) that described what the event is about. An event may be
marked with multiple labels (e.g., drinking, left hand).

Table 1. Terms used in this review with synonyms and definitions.

Term Synonyms Used in the Literature Definition
. Event/activity Different categories that the classifiers (detection models) are trained
Action classes e . .
classifications/categories and tested to classify
Artificial Artificial intelligence approach,

. . . K . Th h f i i havi i
intelligence model machine learning algorithm e approach used for automatic eating behaviour detection

Search through references of included studies to find other relevant

Back h ¢
ackward searc studies that are not found through database search

Eating activity Eating and drinking activity
Eating behaviour Food intake detection, eating Assessing whether the participant is eating (including drinking) and
assessment detection, ingestion monitoring what their eating characteristics are
Forward search Search for relevant studies that cited included studies

F-score is a measure of accuracy. While accuracy is the total number of
F-score F1 score, F-measure correctly classified items divided by all classified items, F-score is
harmonic average of the precision and recall.

Hand-to-mouth The movement of hand carrying food with or without utensils to the
Hand-to-mouth movement
gesture mouth

Motion tracking sensors, motion  Sensors used to detect movements. Wearable motion sensors focused

Motion sensors . . . A . .
detection sensors, activity tracker  on in the current review include upper limb-mounted motion sensors.

An individual who has successfully participated in a study (i.e., not
Participant Subject counting individuals who were invited but did not participate or
individuals with failed measurements)

Region of body that includes shoulder, upper arm, lower arm, wrist,

Upper limb Arm and hand
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2.2. Search Strategy

For the current review, we included studies that (1) used at least one wearable motion sensor,
(2) that was mounted to the wrist, lower arm, or upper arm (referred to as the upper limb in this review),
(3) for eating behaviour assessment or human activity detection, where one of the classified activities is
eating or drinking. We explicitly also included studies that additionally employed other sensors on
other parts of the body (e.g., cameras, microphones, scales). In order to identify studies that meet these
criteria, we constructed the search string to include three parts (motion sensor, mounted to upper limb,
eating behaviour assessment). The search string was then iteratively developed from a set of key studies
that were identified in an initial search as well as from MeSH headings and consultation with a medical
librarian. Using multiple combinations of search terms shown in Tables Al and A2 a comprehensive
search was conducted to interrogate electronic archives across medical and health sciences as well
as computing disciplines for studies published in English. In computing the ACM digital library,
AIS electronic library (AISeL), IEEE Xplore, ScienceDirect, SpringerLink archives and in health sciences
the CINAHL, MEDLINE, EMBASE, Ovid, Web of Science and Scopus archives, eleven in total were
searched. In order to account for the breadth of publications in health and computing-focused outlets,
the search covered peer-reviewed studies published in book chapters, journals, and full conference
proceedings (excluding abstract-only/extended-abstract papers). Particularly in computing, studies
are often published as full conference papers. The search terms combination was adapted to each
electronic archive due to their limitation on search input. The search was conducted in January 2019
and backward and forward search was done after the included studies were identified.

The review protocol was registered with Prospero system (the CRD42018089493). The primary
outcomes assess upper limb-mounted motion sensors and devices used to detect hand-to-mouth
gestures associated with eating. This is to identify what types of sensors were used, how the sensors
were combined or used together, and where on the upper limb they are mounted. The secondary
outcomes assess the algorithms and techniques utilised to analyse the output of the sensors used on
body for motion tracking associated with eating occasions, the environmental conditions under which
the experiments were been conducted (e.g., setting, food items, serving vessels and eating utensils),
and the characteristics of eating behaviour that were assessed (e.g., bite count, duration of eating,
quantification of amounts, and type of the food eaten).

2.3. Selection Process

The results of the database search were imported into a web-based tool (Covidence [21]), duplicate
items were identified and removed, and the rest of the studies were title- and abstract-screened by
two of four independent reviewers (H.H., M.A., T.B., M.E.R\) to identify studies that potentially meet
the inclusion criteria. The full text articles were then retrieved and assessed for eligibility by two of
the four independent reviewers, with discrepancies resolved by discussion with a third independent
reviewer who was not involved in assessing that particular study.

Following the selection of studies, two reviewers independently extracted relevant information
using a custom-made data collection form; any discrepancies regarding this data were resolved by
discussion with a third reviewer. Data from the selected studies were captured and summarised in
Table 2 which was constructed for the purpose of this review. These were initially pilot tested with seven
studies to ensure all data was extracted and appropriate. Due to the nature of this review evaluating
the performance of technology, a risk of bias assessment was not deemed to be necessary/appropriate
by the research team. Countries of data collection were categorised by economies according to a UN
report [22].
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3. Results

In total, 792 studies were identified through the search strategy, after removing 139 duplicates,
653 studies were screened on title and abstract. Of these, 111 were full-text reviewed independently by
two authors, with a third author coming in if consensus was needed. With six studies found through
backward search and four studies found through forward search, 69 studies were included in the
review (Figure 1).

Studies retrieved from

11 databases (n = 792) | Duplicates (n = 139)

Found through
backward search (n = 6)

Found through forward
search (n = 4)

Title and abstract

Excluded in title and abstract
screened (n = 653)

screening — not relevant (n = 542)

Excluded in full-text assessment (n = 52)

15 Study type not relevant

14 Sensor or sensor placement not relevant

1 Sensor type not specified

11 Not relevant to dietary intake assessment
3 Not dietary intake

6 Outcomes not relevant / No data collection
2 Similar study of the authors already included

Full-text assessed for
eligibility (n = 111)

v v

| Included for data extraction (n = 69)

[ Included ] [ Eligibility } [ Screening ] [Identiﬁcation}

Figure 1. Flow diagram of article selection process in the systematic review.

This review provides a narrative synthesis of the findings from the included studies and uses
these finding to structure a conceptual framework (Figure 2). In particular, we reviewed the selected
studies to identify common components and implicit design choices that are involved in carrying out
research in this area. We then synthesised this knowledge into a conceptual overview. The framework
depicts an overview of the process of assessing eating behaviour using upper limb-mounted motion
sensors and the different components involved in the process. Thereby, study design pertains to the
environmental conditions that the participants experience as well as the requirements, instruments,
and instructions for data collection process. In contrast, sensor configuration summarises the specific type,
sampling frequency, and position of the employed motion sensor(s). These are the main components
required to build a model to detect eating behaviour shown under detection approach. This process
leads to identifying and assessing dietary behaviour which is depicted under behaviour assessment.
The framework provides a structure for the synthesis and presentation of results in this review. Please
note that some subcategories are not shown in Figure 2 because no studies were identified for them.
For instance, none of the reviewed studies used sensor frequencies between 21 and 24 Hz.
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Study Design

Participant Demographics

Eating Utensil (Lab)

Sensor Configuration

Upper Limb Sensor Selection

Detection Approach

Action Classes

Behaviour Assessment

Eating Gesture Classification

Participants (1291)

No restrictions (5)

Inertial: Acc (64), Gyro (45),

Eating vs non-eating (22)

[Female: 50.4%, Male: 49.6%] Fork (26) Acc & Gyro (45) Eating detailed (17) Gesture Classification (29)
Lab Median: 8 Knife (16) Proximity: REID (4) Non-eating detailed (12) Single-step (28)
Free-living Median: 6 Spoon (28) Vametic caupling () Eating and non-eating Two-step (1)

Chopsticks (8)
Hands and fingers (20)
Not reported (12)
Cup (7), Glass (4)

detailed (16)

Capacitive proximity (1)
Other: Electrohydraulic (1)

Country of Data Collection

USA (33)
Europe (21)
Other countries (15)

Approach Category
Sensor Device

Eating Activity Classification
Standalone chipset (32) — )

Food (Lab) Commercial grade (26) . I
Study Year Professional grade (1) Activity Classification (38)
Single-step (28)
Y <=2010 (11) Upper Limb Sensor Position » Algorithm » Two-step (10)
2011 <=Y <=2014 (13) Wrist (61) General activity
2015 <=Y <=2016 (17) Dominant hand only (55) SVM (21), Classification (10)
2017 <= Y (28) Comparator Both hands (13) RF (19), DT (16),
Finger (5), Lower arm (5) Rule-based (11),
Envi t Lab N NB (11)
nvironmen Video camera (30) Sensor Fusion HMM (10)
Laboratory (53) Time synchronised (2) Wearable, on body (24) KNN (9), Eating Characteristics
Free-living (18) Not Reported (21) Stationary, not on body (9) . Classification
Both (3) - Audio added (7) Deep Learning (5),
Semi-Controlled (10) Free-living Scale added (6) Regression (5),
X Wearable camera (3) Camera added (3) ANN (4), Food type and amount (2)
Group Size (Lab) Mobile app (5) Proximity added (3) FSS (3), Eating action and utensil (2)
Individual (32) Push button (4) DBSCAN (2), Drink type and volume (1)
Group (10) User diary (5) EENEOHETEdUeNIcy DBN (1), FSM (1), GMM (1) About to eat prediction (1)
Communal (0) Other self-reports (2) 5<Hz<20(15) HTM (1), KM (1), Culture specific (3)

25 < Hz < 65 (22)
80 < Hz <186 (13)

Not reported (2)

Not reported (11) Optimization (1), PCFG (1)

Figure 2. Conceptual framework of components for assessing eating behaviour with upper
limb-mounted motion sensors.

3.1. Study Design

3.1.1. Participant Demographics

The number of participants ranges from one (i.e., [8,24,28,31,36,44]) to 276 [52] (median: 8 in lab
setting, 6 in free-living setting). The total number of participants who successfully participated in the
experiments was 1291. Of the included studies that reported participant gender (n = 36, 52.2%), 50.4%
of participants were female and 49.6% were male. According to the demographic data where social
class was reported, the participants were commonly university students.

3.1.2. Country of Data Collection

In all studies, all data collection was done in the country of the first author’s affiliation. Most
studies were conducted in the US (n = 33, 47.8%), followed by Europe (n = 21, 30.4%). Singapore, South
Korea, India, and Mexico had two studies each. Australia, Canada, and Japan hosted one study each.
As it can be seen the data is mostly collected in high-income countries (94.2%). Only two studies were
conducted in a lower-middle-income country (India). No study collected data in a low-income country.

3.1.3. Study Year

Up to and including 2010, only 11 studies (15.9%) were published in this field, with 13 Studies
(18.8%) published between years 2011 and 2014. Seventeen studies (24.6%) were published between
years 2015 and 2016. Interestingly, 40.6% of the studies (28 studies) were published in 2017 or later.

3.1.4. Environment

The majority of the studies were conducted exclusively in controlled laboratory settings (1 = 50,
72.5%; e.g., [55,65]), followed by exclusively free-living settings (n = 15, 21.7%; e.g., [5,51]), with fewer
being conducted in both settings (1 = 3, 4.3%; [2,3,7]). One study (1.4%) did not report the environment
setting. The three studies that considered laboratory as well as field data used the data collected in the
laboratory for training the machine learning models and the data from the free-living environment
for evaluating the model’s performance (e.g., [2,3,46]). The laboratory environment may affect the
participant’s natural behaviour in the progress of experiment. Therefore, 10 studies (14.5%) conducted
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semi-controlled experiments in laboratory environments (i.e., [2,14,65]) or in a cafeteria, restaurant, or
dining hall (i.e., [1,12,39,52,60,61,77]).

The laboratory environment commonly involved participants sitting individually (e.g., [25]) at a
table or in a group (e.g., four people [1,39]) around a table recorded with video camera(s) to capture
the eating session. In a study by Amft and Troster [25], participants were instructed to perform
non-eating tasks such as reading a newspaper (including turning pages), scratching their head, and
answering a simulated mobile phone call. The leftover food from the participant’s meal could either be
weighed throughout the experiment to keep track of food consumed [48] or at the end of the session
to estimate the total amount of the food consumed [17,55]. However, few studies measured leftover
food [17,39,48,52,55].

Studies in free-living environments commonly allowed participants to perform their daily activities
during the day while wearing the sensor(s). The longer duration experiments involved more non-eating
associated activities (e.g., driving, watching TV and working on a computer) than eating activities.
Thomaz and colleagues [2] conducted an experiment in both settings. For the laboratory setting,
the average duration of the data collection was 31 min which included 48% eating activities. In contrast,
of the two experiments conducted in free-living conditions, one had an average duration of 6 h and
included 6.7% eating activities while the other one was carried out over 31 days and included only
3.7% eating activities. Several studies indicate challenges associated with field data collection. In a
free-living study by Dong and colleagues [41], data from ten out of a subsample of 30 individuals were
discarded due to poor compliance with keeping manual records of activities (e.g., misinterpreting the
instructions and starting/stopping recording for meals only). In a study by Sharma and colleagues [51],
data collected from 10% of the 104 individuals were discarded because they failed to wait ten minutes
between wearing the device and the first meal.

Among the 53 studies conducted in the laboratory, 32 studies (60.4%) asked participants to
eat individually from a discrete plate (e.g., [26,65]), 10 studies (18.9%) were carried out in groups
comprising between two to four people (e.g., [1,12]), and 11 studies (20.8%) did not report the group
size. In group settings, participants were still provided with discrete plates of food and/or asked to
self-serve on to their own individual plate. No experiment was reported asking the participants to
share food from one or more plates (communal eating).

3.1.5. Eating Utensils

The utensils most commonly used in laboratory experiments were spoons (1 = 28, 52.8%), followed
by forks (n = 26, 49.1%), knifes (n = 16, 30.2%), and chopsticks (1 = 8, 15.1%). Five studies (9.4%)
conducted in the laboratory applied no restriction on the type of eating utensils. Eating with hands
or fingers was reported in 20 studies (37.7%) conducted in the laboratory. Twelve studies (22.6%)
conducted in the laboratory did not report what utensils were used. The studies that reported drinking
vessels used cups (1 = 7, 13.2%) or glasses (n = 4, 7.5%). However, participants were served with
yogurt in a mug in one study [24] and the use of a straw to drink beverages was reported in four
studies [3,17,40,48]. Zhang and colleagues [17] reported that drinking from a straw for longer than 30 s
produced unusual motion sensor data which was disregarded as a single gesture.

3.1.6. Food

In the experiments conducted in free-living conditions the participants consumed their own food
(n =18, 26%). In contrast, food in the laboratory settings was commonly provided for participants by
researchers. Only in one laboratory study [3], participants were asked to bring their own foods and
drinks. One of the most reported foods eaten with a fork and knife in the experiments was lasagne
(i.e., [2,23-26,65], n = 6). Rice (e.g., [6,35,42]) and soup (e.g., [35,40,53]) were commonly eaten with a
spoon, whereas pizza (e.g., [12,40,48]) and bread (e.g., [12,43,48]) were commonly eaten with hands.
Kim and colleagues [35] collected data from participants eating rice with both chopsticks and spoon.
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Some of the other food items reported in laboratory settings were chips/fries, burger/sandwich,
fruit, meat/steak, pasta, salad, vegetables, yoghurt, and snack foods (e.g., cake, candy, chocolate,
ice-cream, popcorn). In addition, various beverages (e.g., coffee, juice, smoothie, soda, tea, and water)
were provided for participants to drink while consuming food. Some studies (e.g., [1,12,48]) provided
the participants with multiple food options so they could self-select amounts and types of food. These
studies were usually conducted in a semi-controlled environment. In comparison, two laboratory
studies (i.e., [32,64]) exclusively examined drinking behaviour. In one of these studies, Amft and
colleagues [32] used nine different drink containers to investigate the recognition of container types
and the volume of fluid consumed from the container.

The duration of an uninterrupted eating episode in a controlled environment depends on the
number of hand-to-mouth gestures and chewing time, which is directly related to the food type.
Sen and colleagues [7] observed that eating episodes ranged from 51 s for fruit to 19 min for rice.

3.1.7. Comparator

To facilitate sensor data analysis, collected data must be annotated with differing labels to represent
actions and events that occurred. The annotated data is then used to train the machine learning
models and evaluate their performance. One approach for data annotation is to let participants
self-report the investigated activities in real-time using a mobile app and/or a push-button technique
(i.e., [5,6,14,37,45,54]). Further, some studies in free-living environments combined a push-button
approach with a pen and paper diary (e.g., [5]) or an electronic food diary on a smartphone (e.g., [54])
completed by the participant. However, these commonly employed comparator techniques rely on
participants to provide an accurate and complete record of activities. Hence, it is not possible to
unambiguously establish ground truth. By contrast, for experiments conducted in laboratory settings,
ground truth can be established by using objective observation instruments. This is commonly achieved
through video cameras.

Of the 53 laboratory studies, 32 (60.4%) reported the comparator. Thirty (56.6%) used video
recordings to establish ground truth (mostly surveillance video with one study using a wearable
camera [42]), while the other two studies (3.8%) used different time synchronisation mechanisms
(timestamps for predetermined tasks [56] or alarms to instigate drinking [64]). Of the 18 free-living
studies, only two (11.1%) did not report the comparator. Five studies (27.8%) used a diary, five
(27.8%) used a self-report mobile app, and four (22.2%) used a button on the wearable sensor device.
Interestingly three studies (16.7%) used wearable camera to establish ground truth on the free-living
environment and two studies (11.1%) used other self-report/self-recall approaches.

3.2. Sensor Configuration

3.2.1. Sensor Selection on the Upper Limbs

The most commonly used motion sensors that were mounted on the upper limbs are (tri-axial)
accelerometers (1 = 64, 92.8%) and (tri-axial) gyroscopes (1 = 45, 65.2%). Interestingly, all 45 studies
that used a gyroscope also used an accelerometer. Seven studies (10.1%) used proximity sensors on
the upper limbs. This includes RFID sensors (four studies; [5,6,37,45]), magnetic coupling sensors
(two studies; [28,32]), and capacitive proximity sensor (one study, combined with accelerometer; [34]).
One study [49] used electrohydraulic sensors. Additional proximity sensors mounted to the drinking
vessel [29] or the eating utensils (fork, knife and cup) [36] were also reported. Amft and colleagues [32]
used a magnetic coupling sensor where the field emitting sensor was attached to the shoulder while
the receiver unit was attached to the wrist.

3.2.2. Sensor Device

The majority of studies directly used standalone sensor chipsets rather than an integrated recording
device (n = 32, 46.4%). Twenty-six studies (37.7%) used off-the-shelf, commercial-grade smartwatches
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or fitness bands, such as Microsoft Band and Pebble watch. Eleven studies (15.9%) used professional
grade devices with embedded sensors such as Shimmer and XSens. In recent years, more studies
have tended to use off-the-shelf, commercial-grade smartwatches or fitness bands and less studies
employed standalone sensor chipsets. One study [41] used the accelerometer and gyroscope embedded
in a smartphone (iPhone 4) mounted on the forearm (wrist). However, a smartphone was used in
another study [2] to conduct a pilot formative experiment before collecting data using accelerometer
and gyroscope sensor modules. One study [28] used a professional grade device (Xsens) as well as a
standalone sensor chipset.

3.2.3. Sensor Position on Upper Limbs

Sixty-one studies (88.4%) used at least one motion sensor on the wrist and five studies (7.2%)
reported at least one motion sensor mounted to the lower arm. Four studies [44,58,63,74] used an
inertial sensor on a finger in addition to the wrist, while another study [9] only used an accelerometer
worn on an index finger. Five studies (7.2%; [23-26,28]) used motion sensors on the upper arm as well
as wrist or lower arm. One study [36] used motion sensors only on utensils (fork, knife and cup), and
another study [49] used electro-hydraulic sensors on both hands. Fifty-five studies (79.7%) used the
motion sensors only on the dominant eating hand, while thirteen studies (18.8%) used the motion
sensors on both hands.

3.2.4. Sensor Fusion

Thirty-three studies (47.8%) combined upper limb-mounted motion sensors with other sensors on
different parts of the body or in the environment. Twenty-four of these studies (34.8%) used different
types of sensors on or attached to the participants” body (i.e., torso, chest, upper back, head, jaw, throat,
ear, foot) or in participants’ pocket in addition to their upper limbs. The other studies (n=9, 13.0%)
used sensors placed in the participants’ environment (e.g., camera, scale, and proximity). For example,
Amft and Troster [25] used (inertial) motion sensors including accelerometer, gyroscope, and compass
on lower arm, upper arm, and upper back, all attached onto a jacket to detect movement activities.
Further, they used an ear microphone (electret miniature condenser microphone) to detect chewing
activities as well as a stethoscope microphone mounted to the hyoid and an electromyogram (EMG)
mounted to the infra-hyoid throat to detect swallowing activities. Six studies (8.7%) used scales to
measure the weight of food consumed throughout the experiment (i.e., [17,39,48,52,55,64]). Further,
several studies combined motion sensor data with audio (n = 7, 10.1%; [24,25,48,50,57,59,62]) or video
camera recordings (n = 3, 4.1%; [31,72,74]) to detect eating behaviour. For instance, Mirtchouk and
colleagues [48] combined accelerometer data from each participant’s both wrists and head with audio
data recorded from a pocket audio recorder. Garcia-Ceja and colleagues [59] combined accelerometer
data with audio data collected from a smartphone placed on a table in the same room as the participant
to record environmental sound.

3.2.5. Sensor Sampling Frequency

Sensor sample rate (frequency) is the number of data items the sensor collects per second.
Forty-nine studies (71%) reported the sample rate, with frequencies for the wrist-mounted motion
sensors, ranging from 5 Hz [58] to 186 Hz [64]. Among these, 15 (21.7%) used a frequency of lower or
equal to 20 Hz, 22 (31.9%) used a frequency between 25 Hz and 65 Hz, and 13 (18.8%) used a frequency
of 80 Hz or more. The median sampling frequency was 50 Hz. Five studies [1,12,39,51,52] used both
an accelerometer and a gyroscope with a 15 Hz sample rate frequency, whereas three studies [23-25]
also used both an accelerometer and a gyroscope but with a higher rate of 100Hz.

3.3. Detection Approach

This section discusses the categories that eating detection approaches fall into, algorithms used
to build detection approaches, and types of gestures and activities defined for prediction, referred to
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in this review as action classes. Detection approaches commonly involved three consecutive stages:
pre-processing, feature extraction, and building an eating action detection model.

3.3.1. Action Classes

The action classes at the simplest level (binary) were eating and non-eating actions (1 = 22, 31.9%).
Thereby, we can distinguish between gesture detection (characteristic low-level actions) and activity
detection (high-level actions). In 17 studies (24.6%) only eating associated actions were detailed to
subcategories. In 12 studies (17.4%) only non-eating associated actions were detailed to subcategories.
In 16 studies (23.2%) both eating and non-eating associated actions were subcategorised. Kim and
colleagues [35], defined the classes to detect the utensil type in addition to the eating action. Amft and
colleagues [32] defined nine different drinking vessels as the action classes for the purpose of container
type and fluid level recognition.

3.3.2. Approach Category

We can identify two approaches for eating behaviour assessment: eating gesture detection and
eating activity detection. At the lower level, in eating gesture detection (n = 29, 42%), the aim is to detect
characteristic eating gestures that are the building blocks of eating occasions while in eating activity
detection (n = 38, 55.1%), the aim is to detect the occasions when the participant was eating. For instance,
a period of time can be categorised as an eating occasion when at least a certain number of eating
gestures occur in a row. There are mainly two different approaches to implement an eating activity
detection solution single-step and two-step. In the single-step approach (n = 28, 40.6%; e.g., [6,42,47]),
the eating detection model is trained on pre-processed motion data with the aim of detecting the
pre-defined activities (e.g., eating events versus non-eating events). In the two-step approach, two
different models are consecutively employed where typically the first model is responsible to detect
the desired hand gestures using pre-processed data as input. The model at the second step uses the
output of the first step as its input to detect the desired activities (n = 10, 14.5%; e.g., [7,51,60]).

Further, sensor fusion methods may also be utilised in the two above-mentioned approaches.
In the fusion approach (e.g., [6,59,72]), researchers collect data using multiple sensors on different
body parts or combine wearable and stationary sensors, as opposed to collecting data from sensor(s)
mounted on one position on body. In this approach typically multiple classifiers are used where the
outputs of the classifiers will be aggregated to detect desired activities based on action classes.

3.3.3. Algorithm

Table 3 provides an overview of the machine learning algorithms and detection approaches used
in the reviewed studies. It also demonstrates the experiments conducted to compare the performance
of the machine learning algorithms. Thereby, in order to avoid repetitions, each comparison study
is only listed once, namely for the algorithm where the comparison yielded the best performance.
Twenty-two studies (31.9%) compared the performance of different algorithms. Naive Bayes was used
for benchmarking where multiple algorithms were compared.
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3.4. Eating Behaviour Assessment

3.4.1. Eating Gesture Classification

The aim of eating gesture classification is to detect characteristic gestures involved in ingestive
behaviours (e.g., hand-to-mouth gestures). Such gestures are produced when an individual picks
up food and moves it towards his/her mouth (hand-to-mouth movements, with or without utensils).
Twenty-nine studies (42%) targeted only different aspects of eating gesture classification. Detecting
eating gestures is often achieved with a single-step classification technique. However, researchers
in [67] used two steps for eating gesture classification. They used a sliding window technique to first
detect stationary periods, where the participants were more likely to eat, and the model then detected
eating-associated gestures in the next step.

3.4.2. Eating Activity Classification

Twenty-eight studies (40.6%) used a direct detection approach for eating activity classification, i.e.,
detecting eating activities without detecting eating gestures first (e.g., [6,33,65]). Ten studies (14.5%)
built eating gesture detection models as the first step to then detect eating activities in the second step
(e.g., [2,51,60]). In other words, these studies employed a two-step detection approach, where the
eating gestures detected in the first step are used to build a model in the second step to differentiate
eating and non-eating activities (e.g., brushing teeth, combing hair, talking on the phone, walking,
watching TV, and writing). Ten studies (14.5%) conducted general activity detection where eating
activities were included in the data collection process along with a range of other activities and then
classified in the activity detection approach (e.g., ambient assisted living).

3.4.3. Eating Characteristics Classification

In addition to detecting eating gestures and eating activities, six studies (8.7%) aimed to detect
further characteristics of eating behaviour, i.e., food type and amount detection (1 = 2, 2.9%; [38,48]),
eating action and utensil detection (n = 2, 2.9%; [35,71]), drink type and volume detection (1 = 1,
1.4%; [64]), and also about-to-eat and time until the next eating event prediction (n = 1, 1.4%; [50]).
Mirtchouk and colleagues [48] investigated food type detection and amount consumed. Kim and
colleagues [35] detected different types utensils (i.e., chopsticks, hand, spoon) as well as eating and
non-eating gestures such as stirring, picking up rice, and using tissue. Rahman and colleagues [50]
designed a system to predict the next eating occasion. Soubam and colleagues [64] detected drink
type and volume in addition to eating and drinking gesture detection. Three studies (4.3%, [35,38,71])
specifically explored the Asian eating style. Cho and Choi [71] focused on eating action and utensil
detection specifically for Asian-style food intake pattern estimation (chopsticks vs. spoon).

4. Discussion

The current review set out to synthesise existing research that describes the use of the upper
limb-mounted motion sensors for assessing eating behaviour. Based on the 69 studies identified in our
search, we are able to document the current body of research in the detection of eating activities (e.g.,
drinking, eating) and individual eating gestures (e.g., specific hand-to-mouth movements). To this date,
most studies were carried out in laboratory conditions with university student (young healthy adults),
with limited application in free-living settings or in diverse publication groups. Devices used were
predominantly accelerometers in combination with gyroscopes worn on the wrist of the dominant
hand, and the focus so far lied on distinguishing eating from non-eating activities.

4.1. Research Environments and Ground Truth

The conditions and restrictions of the research environments have implications for different aspects
of the eating detection approach; these are important considerations, given that the majority of the
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included studies were conducted in a laboratory setting. As a result, the accuracy achieved in testing
models with data collected from the free-living settings may be lower compared to models trained and
tested on the laboratory data. However, few studies collected data from free-living environments for
evaluation purposes. Using data collected from free-living environment for training purposes will
likely help improve the performance of detection models in less controlled settings. Future studies may
overcome this issue by combining laboratory and free-living data approaches in a multi-stage approach
to study design. Few studies have combined lab and free-living data (e.g., [2,3,46]) to date. For instance,
Ye and colleagues [43] first trained a model in a laboratory study. In a follow-up study [54], they then
used buttons on a smart watch (Pebble) and an app (Evernote) to confirm or reject detected eating
occasions when testing the model in free-living setting.

To implement a machine learning model to automatically identify eating gestures, accurate data
containing the target activities or the “ground truth” is required. The machine learning model then
learns from this data and can later be used for automated eating activity detection. Objective ground
truth tools (e.g., video cameras) are more practical in laboratory settings. Such controlled settings are
imperative to increase the accuracy of data annotation which is crucial for building and evaluating
classifiers. Only a few studies in free-living settings have used passive capture of video as the
measure of ground truth (e.g., [31]). In contrast, most studies in free-living settings rely on participants
self-reporting the target activities by using tools such as diaries or push buttons on a device [5].
However, even for data for which a video recording exists, the annotation of the exact start and end
times of eating gestures can be ambiguous, which in turn may affect a model’s accuracy. Difficulties
could include the assessment of the exact moment when the hand-to-mouth movement starts and
when the hand returns to an idle state, synchronisation across multiple devices or sensors (e.g., wrist
sensor for gesture capture with video of eating activity; [48]), obstruction of ground truth measurement
due to unrelated movements, people, or objects in certain settings such as communal eating.

4.2. Eating Context and Population Groups

The characteristics of eating movements, and the volume of food consumed, may change in
different contexts (e.g., when the participant is stressed, walking, or working). However, the impact of
context on the accuracy of automatically detecting eating gestures is yet to be explored. Snacking or
in-between meal eating has widely been disregarded in the surveyed studies, possibly because it is
difficult to detect sporadic eating-associated with hand-to-mouth movements in a free-living setting
and it could easily be confused with other movements. Eating behaviour assessment is often based on
a two-step approach that links individual eating gestures to timeframes of eating activities. Further,
the majority of lab studies provided food to participants, often with a limited variety in type, which
is in contrast to the wide variety of food available in free-living settings. Further, the majority of
studies in laboratories were carried out with university students, therefore the movement data may
not be representative for other population segments (e.g., elderly, young children, clinical populations).
Another important contextual factor is eating culture. For instance, Cho and Choi [71] and Kim
and colleagues [35,38] specifically explored the Asian eating style and found that hand movements
associated with eating with a spoon are characteristically different from those associated with eating
with chopsticks. Different cultural aspects of eating behaviour have been overlooked in the literature.
For instance, at this stage there are no studies that consider data from communal and shared plate
eating (e.g., with servings from a shared dish [79]). Abkenar and colleagues [62] investigated a context
where two participants shared a meal together, yet this did not involve a shared dish. Communal eating
is an important form of eating in many cultures (e.g., [79-81]). Further, there has been no study that
has considered using upper limb motion sensors for detecting eating behaviour of individuals from
low and lower-middle income countries. All of the settings mentioned will likely include additional
challenges due to characteristic hand movements associated with serving food from communal dishes
to individual serving vessels.
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4.3. Advanced Models and Deep Learning

Machine learning algorithms employed to detect eating behaviour are distinguished by whether
and how they consider the sequential context. Classifiers such as K-nearest neighbours (KNN) or
support vector machine (SVM) do not explicitly utilise the sequential aspect of data. By contrast,
classifiers such as Hidden Markov Model (HMM) and Recurrent Neural Networks (RNN) take into
account the sequential context, using previous states of data to predict the current state of data. The latter
types have gained more attention recently ([61,68,71,73,75]). In the current review most studies used
approaches that do not model the sequential context of data across time (e.g., 21 SVM, 19 Fandom
Forest, 16 Decision Tree, 9 KNN) while recently more studies have considered the sequential context
(10 HMM, 4 RNN). These recent models have shown promising results. For instance, Ramos-Garcia
& Hoover [39] found that HMM outperforms KNN by approximately 13% when distinguishing
between four activities (rest, bite, drink, using utensils). Further, they found that taking into account
inter-gesture sequential dependencies further improves model performance (up to 96.5% accuracy).
Kyritsis and colleagues [61] showed that replacing HMM with RNN improves the performance of the
model even more. Taken together, these results hint at the importance of utilising the sequential context.

Notably, up to 2017, there was no study that utilised deep learning to detect eating behaviour in
this context. Driven by the growing computing power, and specifically the availability of GPU-based
high-performance computing, researchers increasingly explore the application of deep networks such
as CNN and RNN (specifically Long Short-Term Memory networks, LSTM) to various classification
problems (e.g., since 2010 in human affect recognition [82]). Since 2017, five studies have investigated
the application of deep learning for assessing eating behaviour based on movement sensors ([61,68,
71,73,75]). Results show that in an end-to-end deep learning solution a combination of CNN and
RNN performs significantly better than a CNN-only solution while the models have no knowledge of
micro-movements, also known as sub-gestures [73]. This will also simplify the annotation process since
less detailed labelling regime will be required. As another example, Papadopoulos and colleagues [75]
showed how an eating detection dataset can be used to (pre)train a LSTM and then fine-tune it on
unlabelled data to adapt to a new participant using semi-supervised approved, allowing for a more
personalised approach. Another application of deep learning is sensor fusion.

4.4. Public Database Development

Deep learning may not have been applied earlier in the eating behaviour context due to the
inherent need for large datasets to train deep networks. Notably, compared to other domains such
as object and human affect (e.g., face) recognition, there are few publicly available eating behaviour
datasets with the total number of observations being relatively small (e.g., compared to affective
computing where public datasets with millions of records exist; [83]). A related problem is that in
order to accurately compare the performance of different classifiers, the models need to be evaluated
using the same data. Hence, collecting and publishing reusable datasets can help researchers to
compare the accuracy of models implemented based on different detection approaches. In recent
years a few databases have been made public. In 2015, Thomaz and colleagues [2] published a lab
and two free-living datasets (20 lab participants, seven free-living participants, one longitudinal
free-living participant; http://www.ethomaz.com). In 2016, Mirtchouk and colleagues [48] published
a wrist motion and audio sensors dataset (six participants; http://www.skleinberg.org/data.html).
In 2017, Kyritsis and colleagues [61] published a food intake cycle dataset (10 participants; https:
//mug.ee.auth.gr/intake-cycle-detection). Finally, in 2018, Shen and colleagues [77] published a dataset
that consists of 51,614 manually labelled gestures from 169 participants that was developed over
the course of several studies (http://cecas.clemson.edu/$\sim$ahoover/cafeteria). This highlights the
considerable amount of time and effort to prepare such a dataset. The growing availability of such
datasets will help advance training classifiers in this area. In particular, publicly available datasets
can provide the opportunity to pre-train models that can then be enhanced and improved on for
specific hand gestures, or for a specific participant [75]. Further, this will allow better comparison
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and reconciliation of different ways of annotating eating gestures, which in turn facilitates enhanced
comparison of the accuracy achieved across different types of sensors and algorithms.

4.5. Granularity of Eating Behaviour Detection and Sensor Fusion

In the context of dataset availability, it is noteworthy that the majority of studies, and especially
those published in earlier calendar years, exclusively focus on a binary detection in terms of eating
versus non-eating; both in terms of detecting overall eating occasions as well as individual hand
gestures. While this binary classification provides a range of interesting insights (e.g., in terms of
identifying the time, duration, and speed of eating), it does not consider other important aspects of
eating such as the type (e.g., rice vs noodle [38]; distinguishing different drinks [64]) and amount
of food being consumed (e.g., drink volume [64]), the category of eating utensil and serving vessel
used (e.g., distinguishing chopsticks, hand, and spoon [35]), or related hand gestures (e.g., using
cutlery to prepare food items for intake, using spoon to transfer food into serving vessel). Over time,
the binary detection of eating occasions and individual hand-to-mouth movements has improved
substantially. However, improving the detection of eating utensils and the amount of food that is
being consumed will require more sophisticated models, larger reference datasets, and synthesis with
established dietary assessment tools. Image-based food records [84] are well suited to complement
data capture of hand-to-mouth movement data, due to the collection of type and amount of food,
in addition to timing, and are preferred to traditional methods such as weighed food records [85].
Leveraging the potential of automating model configuration and employing end-to-end models that
require less detailed annotations could be important steps in this direction.

In terms of sensor fusion, studies combined (1) different kinds of motion sensors (e.g., accelerometer,
gyroscope, magnetic coupling and RFID sensors), (2) upper limb-mounted motion sensors with motion
sensors mounted to other body parts (e.g., torso, jaw; [37]), and (3) motion sensors with other different
types of sensors (e.g., camera, microphone, scales). Particularly when non-motion sensors are used,
the goal is usually to narrow down the location (e.g., which room in smart homes, [31]) or activity
of the user and, hence, reduce or remove confounding gesture types in free-living settings. Further,
in earlier studies, some primarily focused on accelerometers because at that time gyroscopes required
considerable amounts of energy. However, with the recent advances in gyroscope and battery
technologies, these obstacles have been overcome for most settings. Further, in an effort to save energy,
some studies used a hybrid approach where the gyroscope was only activated when the accelerometer
detected a series of eating associated gestures [70]. A similar approach was used to start recordings
with wearable cameras [7]. Shibon and Amft [76] applied a controller to the sensing and processing
system to increase the sample and processing rate once a rotational hand gesture is detected. Hence,
despite the progress in technology, these approaches might still be useful in scenarios where access
to power is limited (e.g., in low and lower-middle income country settings) or where motion data
is to be complemented with energy or storage intensive video recordings. However, concerns on
privacy of wearable cameras need to be acknowledged, and the impact on behaviours relating to eating
has not been determined. Alternatively, active image capture methods, such as image-based food
records collected via mobile devices [84], allow for collection of data on food type and amount, meal
composition and temporal eating patterns which could be combined with wrist motion sensor data in
new ways such as to verify intake data from such self-reported tools.

4.6. Applicability in Dietary Assessment and Eating Behaviour Interventions

While initially, studies relied on specialised research equipment or dedicated hardware
prototypes, recent advances in accuracy and affordability of wearable sensing technology have
made commercial-grade sensors widely accessible. Increasingly, studies rely on off-the-shelf devices
such as smart watches, demonstrating that such devices are considered reliable and accurate for
detecting eating behaviour (e.g., [61,62,67]). This has important implications for the real-world
feasibility of using this technology for dietary assessment and monitoring [86]. In particular, because
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watches have been worn on the wrist for more than a century, using wearable sensors on the wrist is
an unobtrusive solution for collecting movement data. Hence, readily available smartwatches could
provide the infrastructure to implement end-user applications that allow to track eating behaviour
(e.g., [86,87]). However, the software infrastructure is yet to be developed to collect, store, and analyse
personal data. For instance, the computing power of smart watches could be used for an online
detection of eating behaviour and the delivery of context-sensitive behavioural recommendations.
Further, by establishing a data exchange with health practitioners and others, such systems could
provide targeted recommendations that promote positive health outcomes [88]. In the case of disease
management, for instance, this data could be used by health practitioners to keep track of a patient’s
dietary intake behaviour and characteristics and provide them with useful dietary advice.

4.7. Strengths and Limitations of the Current Review

The current review has strengths and limitations that should be considered in the interpretation
of its findings. A strength is that it is the first systematic review on the automatic detection of eating
behaviour based on upper limb-mounted motion sensors following a rigorous review approach.
Based on this, this review provides the first comprehensive overview of study settings, sensor
configurations, action classes, performance comparisons, and detection approaches for assessing
eating behaviour from upper limb motion sensors. The developed framework conceptualises the
components and implicit design choices that researchers and practitioners need to consider when
carrying out studies and may hence facilitate further research in this area. Further, by searching across
11 different databases, we cover health and dietary assessment journals as well as computing-focused
ones. Nevertheless, it needs to be acknowledged that only considering studies published in English
language may constitute a limitation. Further, due to the limitation of number of search terms,
our search string only covers plural forms for word combinations. This is based on the advice of a
medical librarian we consulted with that search databases will automatically detect plural forms for
single terms (e.g., “smartphone” will cover “smartphones”) but not for word combinations (e.g., “arm
movement” will not cover “arm movements”). Finally, focusing only on upper limb-mounted wrist
sensors does not take into account other sensor positions (e.g., head, neck) and associated sensor fusion
approaches (e.g., microphone).

5. Conclusions

To date, 69 studies have investigated upper limb-mounted motion sensors for automatic eating
behaviour recognition. These studies were predominantly laboratory based and were undertaken by
university students, employed shallow machine learning architectures, and focused on distinguishing
eating from non-eating activities. At this stage, five studies have successfully employed deep learning
architectures in this context. The availability of large public databases will be paramount to progressing
the development of more fine-grained eating behaviour assessment approaches. This will allow future
research to directly compare the accuracy of different classifiers, consider multiple contextual factors
inherent to eating (e.g., communal eating, culture), and to transfer those models from controlled
laboratory conditions to practical free-living settings in different countries (e.g., low and lower-middle
income) and eating contexts (e.g., home vs work environment, social gatherings).
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Appendix A

Table Al. Search strategy string.

Search String

(accelerometer OR gyroscope OR smartwatch OR “inertial sensor” OR “inertial sensors” OR “inertial sensing”
OR smartphone OR “cell phone” OR wristband) AND (“dietary intake” OR “dietary assessment” OR “food
intake” OR “nutrition assessment” OR “eating activity” OR “eating activities” OR “eating behavior” OR
“eating behaviour” OR “energy intake” OR “detecting eating” OR “detect eating” OR “eating episodes” OR
“eating period”) AND (“bite counting” OR “counting bites” OR “hand gesture” OR “hand gestures” OR “arm
gesture” OR “arm gestures” OR “wrist gesture” OR “wrist gestures” OR “hand motion” OR “hand motions”
OR “arm motion” OR “arm motions” OR “wrist motion” OR “wrist motions” OR “hand movement” OR “hand
movements” OR “arm movement” OR “arm movements” OR “wrist movement” OR “wrist movements” OR
“hand to mouth” OR “hand-to-mouth” OR “wrist-worn” OR “wrist-mounted”)

Table A2. Search strategy databases (English only results).

Database name Result
ACM 10
AIS Electronic Library 55
CINAHL 16
EMBASE !
IEEE 2 140
MEDLINE !
Ovid databases 3 54
ScienceDirect 4 133
Scopus 161
SpringerLink 205
Web of Science 18
Total results before removing duplicates 792
Total results after removing duplicates 653

! Results from Ovid databases include results from databases EMBASE and MEDLINE. ? Due to limitation on
the length of the search string that IEEE database accepted, the search string was broken up to smaller parts (see
Supplementary Material). 3 Ovid databases include Books@Ovid, Embase, Emcare, MEDLINE. The following
option were chosen to be included in the results: AMED (Allied and Complementary Medicine) 1985 to September
2017, Books@Ovid September 25, 2017, Embase 1947 to present, Emcare (Nursing and Allied Health) 1995-present,
International Pharmaceutical Abstracts 1970 to September 2017, Medline 1946-present, University of Newcastle
Journals. * ScienceDirect database web search did not accept the search terms “hand-to-mouth” and “hand to
mouth”. Therefore, these two search terms were excluded from the search string submitted to ScienceDirect. Also
due to limitation on the length of the search string that ScienceDirect database accepted, the search string was
broken up to smaller parts (see Supplementary Material).
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Abstract: Shared plate eating is a defining feature of the way food is consumed in some countries
and cultures. Food may be portioned to another serving vessel or directly consumed into the mouth
from a centralised dish rather than served individually onto a discrete plate for each person. Shared
plate eating is common in some low- and lower-middle income countries (LLMIC). The aim of this
narrative review was to synthesise research that has reported on the assessment of dietary intake
from shared plate eating, investigate specific aspects such as individual portion size or consumption
from shared plates and use of technology in order to guide future development work in this area.
Variations of shared plate eating that were identified in this review included foods consumed directly
from a central dish or shared plate food, served onto additional plates shared by two or more
people. In some settings, a hierarchical sharing structure was reported whereby different family
members eat in turn from the shared plate. A range of dietary assessment methods have been used in
studies assessing shared plate eating with the most common being 24-h recalls. The tools reported
as being used to assist in the quantification of food intake from shared plate eating included food
photographs, portion size images, line drawings, and the carrying capacity of bread, which is often
used rather than utensils. Overall few studies were identified that have assessed and reported on
methods to assess shared plate eating, highlighting the identified gap in an area of research that is
important in improving understanding of, and redressing dietary inadequacies in LLMIC.

Keywords: shared plate eating; dietary assessment; lower middle income countries

1. Introduction

The need to make dietary data more widely available has been reported as one of 10 global
research priorities [1]. Access to accurate dietary data relies on use and publication of validated dietary
assessment methodologies in a range of settings. Current evidence relating to dietary assessment is
focused at the individual level without considering energy and nutrients that may be consumed from
shared plate eating. Shared plate eating is an important factor to consider in dietary assessment as it
may contribute a substantial proportion of energy and nutrient intake, particularly in those parts of
the world where this is how the majority of food is consumed.

Internationally the way foods and dishes are consumed and the factors that influence consumption
vary from region to region [2]. In many high-income countries (HIC) food items are most commonly
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served on discrete plates for individuals to consume. In other regions dishes are often served centrally
with individuals consuming directly from a shared central plate. Shared plate eating has been shown
to be evident in many countries, most commonly in Asian countries and low- and lower-middle
income countries (LLMIC) [3]. It is likely that the low representation of dietary assessment information
relating to shared plate eating is the result of dietary assessment methodology originating in HIC,
where shared plate eating is less common.

Assessing dietary intake in low- and lower-middle income countries (LLMIC) is necessary for
dietary data to become more available and more applicable to nutrition priorities, but has unique
challenges. Compared to high-income countries (HIC), there is substantially less information reported
about the way food is prepared, served, and eaten in LLMIC. Details related to how foods are consumed,
methods of food preparation, recipes and how nutrient composition data has been compiled and
nutrients analysed from the collected intake data and additionally food composition databases are
sparse [2,3].

Dietary intake assessment occurs less often in LLMIC and predominantly relied heavily on
adaptation of methods used in HIC. For these reasons the data collection methods have been tailored
to food consumption from individual plates or servings. Therefore, minimal research attention has
focused on shared plate eating where food is directly consumed into the mouth from a centralised
dish rather than served individually onto a discrete plate for each person. Shared plate eating is more
prevalent and often a defining feature of the way food is often consumed in many LLMIC [4] when
compared generally to HIC. When shared plate eating does occur in HIC such as a group sharing pizza
or hot chips, it is usually associated with an abundant supply of food. Examples include celebrations
or cafeteria, or family-style American meals, all of which differ in context and content from shared
meals in LLMIC.

Consuming food in this manner typically occurs multiple times throughout a meal and also when
parents are feeding their children. Shared plate eating (sometimes referred to as communal eating) is
often overlooked in dietary assessment. Challenges in quantification of shared plate eating include
accurate estimation of the number of spoonfuls or handfuls of each dish consumed, the amount eaten
from each spoonful /handful, and the highly variable nutrient composition of dishes for which nutrient
content have not been characterised or where the composition of each spoonful or handful may vary
due to the contents of the dish (for example a meat and vegetable soup where one spoonful may be
more liquid based and contain less meat and vegetables and next spoonful may contain more meat
and vegetables and less liquid). Additionally, the associated literacy and numeracy skills required by
an individual to self-report or for a trained observer to estimate intake from shared plates have not
been well described or quantified.

In addition to the complexity of shared plate eating common in LLMIC, food and nutrient
databases are less available compared to HIC [5]. Additional reasons for less dietary intake research
being conducted in LLMIC compared to HIC include a lack of context-specific validated dietary
assessment tools, low availability of trained personnel to collect and analyse intake data, and limited
infrastructure and resources to co-ordinate population-based surveys [5].

A review by Ngo et al. 2005 [6] summarised studies that have adapted traditional dietary assessment
measures for use in ethnic and/or minority groups, with a specific focus on those of European immigrant
groups. The most common dietary assessment methods included in the previous review were interviewer
administered food frequency questionnaires (FFQs), 24-h recalls (24HR), and the weighed food record
(WER) [6]. Adaptations to these traditional dietary assessment tools for ethnically diverse groups in
LLMIC included identifying key dishes or foods, which may differ from the general population, and
determining relevant portion sizes prior to data collection. In addition to the dietary tools, issues also exist
with respect to food quantification, limited recipes or unclear recipe construction and lack of inclusion
of traditional dishes within nutrient databases [7]. Critical information needed to process dietary data
is often also limited or missing in LLMIC, such as country-specific food composition databases and
tables of conversion to allow quantification of context-specific portion size [7]. Visual aids have been
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used in previous studies to assist in quantification of portion size, however it was more common to
use standard serving sizes from other studies or countries to quantify intake not population specific [5].
Using pre-defined serving sizes to estimate portion size is likely to incur a bias and incorrect estimation
of food intake, especially when the common portion size of dishes in LLMIC are unknown.

In LLMIC, the use of 24HR has been recommended over other methods such as WFR, due to
the perception of being less time consuming and having a lower participant burden [5]. A review of
existing dietary assessment in LLMIC identified that while 24HR was most commonly performed using
pen and paper, there were substantial costs and burden associated with using this method, particularly
the increased time for researchers to code and then analyse data [5]. Unique costs associated within
LLMIC have been previously identified and included costs for externally-based researchers to provide
training and supervision to upskill research assistants, as well as costs to expand the food composition
database, and for logistics (e.g., transportation) and equipment (e.g., internet connections, laptops,
mobile phones, phone cards).

Electronic data capture and use of technology has been suggested as potentially very useful in
LLMIC, given that it is likely to be less expensive and more time effective than traditional pen and
paper methods [5]. In this way, electronic data capture may overcome some of the identified costs
and also potential language/ communication issues. Standardised and streamlined technologies can
provide improvements in a range of areas previously acknowledged to improve the ease, time and
cost of data collection and processing, and also ensure high-quality standardised data entry, analysis,
consistency and comparability across dietary data [7,8].

While externally-based researchers have expertise related to dietary assessment methodologies and
understanding of the food supply in their respective countries, it has been identified that identification
of foods is more accurate if it involves local people with food expertise [5]. Prynne et al. [5] reported
that agreement relating to estimated energy intake by internal and external coders and researchers is
quite high, but that at a micronutrient levels understanding of the local food supply and eating habits is
essential for more reliable nutrient estimates.

Research focused on shared plate eating in LLMIC has not been previously reviewed and
synthesised, but is important in improving the accuracy of assessing dietary intake in these settings.
The aim of the current paper is to provide a narrative synthesis of current research that has reported on
the assessment intake from shared plate eating, investigated specific aspects such as individual portion
size estimation tools from shared plate eating and use of technology to guide future development
work in this area.

2. Overview of Research

The majority of studies that have assessed shared plate eating were undertaken in LLMIC
including: Gambia [9] Burkino Faso [10-12] and Egypt [13], two in Nepal [14,15], two in India [16,17],
Sri Lanka [18] and Zambia [19] with one study each identified as undertaken in Japan and Israel [20]
representing higher income countries [21] (Table 1). Studies on shared plate eating were carried out
with mothers and children [10,11], children only [14,15,18,19], or adults [9,13,16,17,20,21]. Sample sizes
ranged from 17 to 3908. Shared plate eating was found to contribute between 30 and 88% of total daily
energy intake [20]. More frequent shared plate eating was reported in rural locations when compared
with urban areas [20]. There was no trend identified towards more studies being published in recent
years with three studies published in the 1990s and only 3 studies published in 2010 or later.
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2.1. Variants of Shared Plate Eating

The review identified that different forms of shared plate eating exist, with multiple people eating
from one central dish the most common [15]. Others forms of shared plate eating identified included
interpolate (or post-serve) sharing defined as two or more people eating from the same plate after
serving from a central dish [15]. Food sharing was reported to occur at both meals and snacks and for
both adults and children [15].

Shared plate eating was reported to involve complex rules around food distribution based on
family structure [22]. For example, an adult male family member may eat first and be offered the
protein components of meal first, while women and children will eat from what remains after the
men have eaten. This may lead to certain individuals receiving disproportionately less of the food or
substantially different meal compositions, and hence varying nutrient intakes at the household level.
Further, the feeding of young children differs substantially between households and for children of
different ages, which may determine whether a child is self-feeding or being fed by another [23].

2.2. Methods of Assessing Dietary Intake

Dietary assessment methods used to assess intakes from shared plate eating (Table 1) were varied
and included 24HR (four studies) [11,12,19,20], two studies that used direct observation [14,15] or
food weighing [10,21], and one study using a dietary survey study [17]. Two studies utilised multiple
dietary methods; one study used [16] interviews, diet history questionnaire and 24HR while another
study used direct observation and ingredient weighing to capture dietary intake [9]. Only one used an
objective biomarker, which was doubly-labelled water, to estimate total energy expenditure and to
compare energy intake assessed by direct observation [9].

2.3. Direct Observation Methods

Direct observation was used in a variety of ways to assess shared plate eating in three studies;
two in Nepal [14,15] and one in Gambia [9]. In the study of adult males in Gambia [9] the contribution
of two cooked meals per day to energy and nutrient intake of adult males was determined using
doubly-labelled water and algorithms based on observation of household food preparation and
consumption. The process involved identification and weighing of each ingredient prior to being
added to each cooking pot. A researcher observed the preparation process and documented the
addition of each ingredient. When the meal was ready for consumption the weight of each empty
eating bowl was determined, then weighed again after the addition of the staple (i.e., rice, grains) and
again after the addition of each respective meal component. The body weight of each person and the
food they consumed from each dish was recorded. The observer remained in the house to weigh any
remaining/ leftover food [9].

In the same study the average weights of six common staple foods (rice, sorghum, sanyo, findo,
maize, cassava) consumed at each meal and who consumed these foods was determined through direct
observation. Estimated intakes for common additions (such as sauces, spices, herbs and condiments)
were also determined. Through use of this technique, an algorithm was created to quantify the
distribution between individuals of food from shared plate dishes.

Doubly-labelled water was used to verify total energy intake of adult males, with urine collected
over a period of ten days. The results indicated that estimation from two cooked meals was equivalent
to 80% of an individual’s total energy expenditure, with the remainder likely to be contributed by
snacks between meals which were not assessed in the study. As data collection occurred periodically
throughout the year, distinct seasonal changes in the total energy intakes consumed and associated
weight status were reported. Higher energy intakes and weight status were reported from October to
April coinciding with and following the harvest season in Gambia, and showed a steady decline in
middle months of the year.
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The accuracy of visual estimations of children’s food intake during shared plate eating compared
to individual-plate eating scenarios was investigated by Shankar et al, 2001 [14] in a study involving
male and female Nepali children. In this study, eight trained observers estimated food portions
consumed by children enacting common eating scenarios. Test foods were selected from food groups
regularly eaten in this region (grains, vegetables, pulses, fruits, meats, dairy, mixed dishes). Foods were
weighed at the start of the meal as a reference measure to improve estimations by trained observers,
and at the end of meal to quantify volumes of leftover food. Foods were categorised by food group and
categorised as individual-plate or shared-plate. Observed food weight estimates were compared to
actual weights of 69 food portions of children eating alone and 26 portions where children were eating
from a shared plate. Analyses revealed that observer estimates of dark green leafy vegetables (141%)
and fruits (139%) tended to be overestimated by the trained observers whereas grains and mixed foods
(98% and 96%) were closer to weighed method. Overall, food weights under field conditions were
highly correlated with actual weights for individual-plate (r = 0.89) and less accurately for shared plate
eating (r = 0.84). Accuracy of estimations was influenced by food weight with greater error associated
with food quantities of less than 70 grams. Mothers or primary caretakers were not always present
during a child’s meal and therefore may not have observed the portion eaten, which suggests that
proxy report for children’s intake is not always suitable in these settings [14].

Another direct observation study that involved Nepali children [15] was used to investigate
dietary differences between children with Vitamin A deficiency and those who were Vitamin A
sufficient. Household intake was recorded, however the observers focused predominantly on child
intake. Food was visually estimated by trained observers as amount consumed and amount lost to
spillage, with total estimations completed for everyone except the last person eating as these were
ascertained by subtraction. Each food consumed was categorised into a group. A code was assigned to
each member of the shared plate eating episode and other members who joined the meal but not the
shared plate, with a second food specific code used to readily identify shared plate eating. A feeding
episode was defined as all food consumed within a 30 min time frame. For a child, the mean number
of feeding episodes was 3.9 and, on average 2.6 people, were at a shared eating occasion. A meal
was defined as when three or more people were eating. Shared plate eating accounted for 26% of all
feeding episodes compared with 14% for interpolate feeding and seven percent classified as post-serve
sharing. Children who ate from shared plates ate larger portions, and were more than twice as likely
to consume grains, carotenoid rich vegetables, pulses, fruit, dairy, and meat as children eating from
an individual plate. Results from this study identified that children in a shared plate eating situation
were more likely to eat Vitamin A-rich foods than children eating individually.

2.4. 24-Hour Recalls

Four studies used 24HR to assess dietary intake from shared plate eating [11,12,19,20], each
using variations of standard 24HR protocols that were reported as appropriate for the setting and
study design.

A study in West Africa [11] involved assessment of shared plate eating or collective/ communal
dishes by a trained field worker. A qualitative recall of all foods consumed during the previous
24 h was administered to women with children aged under five years. Collective/communal dishes
were initially identified by the women in the compound, with the woman in charge then providing
a complete list of all the ingredients that were used. The number of different ingredients was counted
but quantification (i.e., nutrients) of intake was not measured. A food variety score (FVS) and diet
diversity score (DDS) were determined based on either the number of different items or food groups
that were consumed the day before the survey [11]. The mean FVS was 8.3 4= 2.9 items (range 4 to 20),
indicating a low number of different ingredients. The DDS was 5.1 + 1.7 food groups (range 2 to 10),
indicating very basic diets. Market days were taken into consideration relative to when recalls were
conducted, as diet diversity scores were higher on market days due to women eating more vegetables,
although not a greater food quantity.
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A subsequent study also by Savy et al. [12] was conducted in Burkina Faso to compare dietary
diversity scores measured over a 1-day and a 3-day period, and to assess their relationships with
socio-economic characteristics and the nutritional status of rural African women who eat communally.
A single recall interview for the three previous days was conducted, and included a spontaneous
description, followed by prompting for forgotten foods. Verification of ingredients in dishes mentioned
was then conducted with the woman responsible for food preparation [12]. Food consumed outside the
compound was accounted for through prompted questions. A dietary diversity score (DDS), defined
as the number of different food groups consumed by each woman over a given reference period,
was calculated by researchers. Foods were grouped using a nine-item classification: cereals/roots/tubers;
pulses/nuts; vitamin-A-rich fruits/vegetables; other vegetables; other fruits; meat/poultry/fish; eggs;
milk/dairy products; oils/fats. Quantification and food frequency were not considered, with the scores
used in analysis as discrete quantitative variables and after categorisation into tertiles. The mean DDS
was 3.5 for a 1-day recall, and increased to 4.4 when calculated from a 3-day recall (p < 0.0001). The DDS
calculated from a 1-day recall was higher when a market day occurred during the recall period. Both
scores were linked to the sociodemographic and economic characteristics of the women. Women in the
lowest DDS tertile calculated from the 1-day recall had a mean BMI of 20.5 and 17.7% of them were
underweight, versus 21.6 and 3.5% for those in the highest tertile (p < 0.0003 and p < 0.0007, respectively).
Authors concluded that the DDS calculated from a 1-day dietary recall was suitable for predicting the
women’s nutritional status, with market days requiring consideration.

In an Israeli (defined as a HIC) study [20], it was identified that individuals could provide
information at the individual level for bread and food served onto an individual plate, but accuracy
was not known for eating from a common plate of varying sizes or eating directly from a larger
platter. The United States Department of Agriculture (USDA) 24HR recall multiple pass method was
modified for trained interviewers to record three eating practices; (i) individual plate (ii) eating from
a common plate (small, medium or large) with bread, and (iii) eating directly from a larger platter.
As bread is often used as the utensil for eating from common dishes, the ‘carrying capacity of bread”
was quantified for 28 common dishes prior to the 24HR recalls. The average carrying capacity of bread
was reported as 1.3 grams of solid/semi-solid food per gram of bread and 1.0 grams liquid dishes per
gram of bread [20]. The modified 24HR recalls were completed using photographs as reporting aids
for shared plate foods. The photos showed shared plates with different relative portions removed,
and participant selected the photograph that was representative of their portion. Portion sizes for
individual foods were reported using standard 24HR recall methods. Mean (SE) energy intake was
9648 (276) kilojoules (kJ)/day for men and 8230 (172) kJ/day for women, of which carbohydrates
accounted for 63 to 64%. Energy intake to estimated energy requirement (EER) ratios ranged from 0.87
to 0.93 among non-dieters who ate the usual amount on the recall day. The authors concluded that
the modified 24HR recall produced plausible estimates of energy and nutrient intakes, comparable
to those obtained in other populations. The modified questionnaire was proposed as a model for
modifying instruments to quantify individual dietary intake in other populations that practice shared
plate eating.

2.5. Weighed and Estimated Record

In a study by Iwaoka [21], Japanese mothers (1 = 64) who prepared meals for their daughters were
asked to weigh and record all the ingredients used for cooking. The mothers reported the proportions
of the shared dish and/or food eaten by each household member. Results obtained from data collection
by mothers were compared to independently collected, self-reported shared dish consumption by
daughters. Mothers were reported to underestimate intake of their daughters when compared to
self-reported intake of the daughters for energy intake (kJ), macronutrient contribution and within
food types, including rice and soup dishes [21]. Fifty percent of under-reporting by the mothers was
attributable to rice, the staple food.
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2.6. Dietary Survey

Ferrucci et al. [17] analysed data from 3625 participants in the Indian Health study. The overarching
health study included questions specific to household /communal spice and oil intake, acknowledging
the nutritional contributions these make to Indian dietary intake. The number of spices consumed was
collected via a ‘food preparer questionnaire’. The questionnaire included detailed information on 19
spices and oils, in order to quantify how much was purchased (g or kg/number in household) within
a particular timeframe (week/month). The gram weight of spices purchased from markets was known
to the population group and was linked to the data on the number and ages of people in the household.
To account for the varying amount of food consumed by different age groups, individuals less than five
years were counted as 0.7 individuals, 5-12 years as 0.9 of a person unit and individuals greater than age
12 years were counted as 1.0. The total weight per item per household was then divided by the total
person units to calculate per capita consumption of the spice.

2.7. Use of Technology in Assessment of Shared Plate Eating

Four identified studies reported on how technology had been modified to account for shared
plate eating, or to improve the quantification of shared plate eating [10,16,17,20].

A variety of forms of technology were used, three were predominantly for assisting in the
collection of dietary intake information. Ferruci et al. [17] and Daniel et al. [16] used a computer
based diet questionnaire using software called Interactive Nutrition Assistant- Diet in India Study
(NINA-DISH), which was comprised of four components (i) defined questions on frequency and
portion size (ii) an open ended section for each meal time (iii) food preparer questionnaire and (iv) 24 h
recall. The system includes a user interface, business logic and the database, so that it can be imported
to any database with minimal modifications. The inclusion of multiple methods to assess dietary
intake, combined with versatile computer software make such methods generalisable to assessment of
shared plate eating in other LLMIC.

Prynn et al. [10] used an electronic method for direct entry for coding diet diaries which included
shared plate eating and was constructed around the hierarchal food menu structure that allowed
easy adaptation to the Gambian food database. This hierarchal structure starts with rice: rice alone,
boiled rice mixed with each of the basic five sauces, rice cooked with ground nuts and thin rice
porridge. The third level offers each of the preceding rice levels with common additions such as fish
or vegetables.

Abu Saad et al. [20] modified the Unities States Department of Agriculture USDA 24HR
multiple-pass recall for the three eating practices (i) eating an item as an individual plate (ii) eating
from a common plate with bread (iii) eating directly from a larger platter, this tool was initially piloted
in 40 locals and results confirmed that individuals could estimate the amount of bread consumed.

All four of these studies provide evidence of the potential for technology used in dietary
assessment in HIC to be adapted for use in assessing shared plate eating in LLMIC.

2.8. Tools to Assist in Portion Size Estimation from Shared Plates

A study by Thoradeniya [18] investigated different types of portion size estimation tools used to
quantify Asian foods. Small photographs, life photographs, line drawings, and use of utensils as aids
were trialed. All aids except utensils correlated with actual intakes of foods, with household utensils
found to only be correlated for vegetables (r = 0.69, p < 0.01). Estimations using line diagrams were the
most accurate with correlations of 7 = 0.73 for cereal-based food and r = 0.86 for vegetables (p < 0.01).
Line diagrams also performed well overall, with 64% correct estimations, 18% overestimated and
18.1% underestimated, compared to household utensils with 0.6% correct estimations. Higher accuracy
and precision were achieved with small photographs for amorphous foods and line diagrams for
non-amorphous foods. The combination of small photographs (for vegetables) and line diagrams (for
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other foods) achieved a high correlation (r = 0.959, p < 0.001), percentage correct estimations (68.3%)
and low under estimations (19.9%) and over estimations (11.8%) [18].

Jerome et al. [13] collected ethnographic data on food consumption patterns in Egypt where
shared plate eating is common. This case study focused on the local cultural rules regarding food
distribution and consumption, and associated rules regarding the order of eating and drinking (who
eats or drinks first or last) and how food-consumption priorities are assigned. It was acknowledged
that it may not be culturally appropriate to collect individual-level dietary intake data in settings where
food is served communally to a household, family or extended family, and highlighted the challenges
of determining whether everyone ate something from every dish and how much of each item was
consumed by each person in shared plate eating. The importance of improving quantification was
emphasised, given that shared plate eating is commonplace in the majority of the ‘non-Western world’.

3. Discussion

This narrative review identified that studies assessing shared plate eating were predominantly
carried out in LLMIC’s in addition to two HIC’s, Israel and Japan. There was a particular focus on
mothers and children particularly for reporting of dietary intakes. Overall, there were few studies
identified, highlighting the identified gap in research in this area. Considering the publication year of
studies reviewed here there were only few studies included published in the last 10 years. The lack
of research in this area may be partly attributed to previously identified challenges associated of
conducting dietary intake assessment research in LLMIC [5]. Challenges for LLMIC include language,
food composition database limitations, unknown nutritional compositions of traditional foods and
spices, high biodiversity of staples [24], variable portion sizes, and low access to trained workers
familiar with dietary assessment and eating behaviours.

Most dietary assessment studies to date have been done in HICs where it is more common to eat
from discrete or individual plates. Discrete plate eating in comparison to shared plate eating is easier
to capture and quantify as individuals are likely to be more aware of what foods, and the amount
they are consuming. Shared plate eating is not as frequent in the home setting in HICs where it is
more common to serve or be served discrete plates of food for each individual in the household and
when eating out. However, with increasing globalisation, including migration, shared plate eating
is becoming more widespread. All of these factors contribute to making shared plate eating of high
interest in the dietary assessment field.

It was identified that shared plate eating occurred at both meals and snacks [15], although most
studies focused on consumption at meal times only. The importance of assessing between-meal dietary
intake or across a whole 24 h period was highlighted in a doubly labeled water biomarker study
that indicated that snacks accounted for 20% of total energy expenditure [9]. As research into shared
plate eating progresses, consideration will need to be given to capturing dietary intake data from
snacks, particularly where the eating occasion structure and the form of shared plate eating may vary
at different meal occasions.

A variety of modes of shared plate eating were found to exist including: eating directly from
a central dish, placing portions on to discrete plates to be consumed by individuals, or post-plate
sharing whereby food from the central dish is placed on a secondary plate that is shared by multiple
people. Post-plate shared eating was reported for both adults and children [12]. Therefore, collection
of preliminary ethnographic data collection to ascertain the cultural norms about shared plate eating,
before embarking on dietary assessment studies is of high importance [2]. Qualitative data analysis
will allow for an appropriate dietary method to be selected and modified to ensure the data collected
reflects the usual consumption [13].

In this review, mothers or the female household members were usually responsible for reporting
and quantifying dietary intake data from shared eating episodes [13]. This is likely to be attributed
to the mother’s role in in the procurement and preparation of food, the cognitively challenging tasks
of estimating foods consumed [13], and the age of children in the included studies, with many being
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young children under six years old [10,11,14]. However, in situations where the mother is not always
at home for eating occasions [14], or when an individual within the commune is responsible for food
preparation [9] the mother may not be the most appropriate dietary intake reporter. This could be
pre-empted by collection of ethnographic data.

Food from shared plate eating contributed the majority of total daily energy intake in the two
included studies that reported energy intake [9,20]. Despite the 24HR method being used in three other
studies [6,7,10], the dietary intake data was used for purposes other than calculation of energy and
nutrient intake such as food and diet variety. There is considerable potential for shared plate eating
data collection to improve in order for more accurate and comparable dietary intake to be obtained and
reported. Accurate assessment of shared plate eating is currently limited by difficulty in quantification,
particularly when shared dishes vary in nutrient and fluid proportions [20]. Even if a single dish is
served the nutrient composition of each portion is likely to be variable, demonstrating the complexity
of this area of dietary assessment.

In all studies, observers or interviewers were reported to have undertaken training from researchers,
however the components of the training were not well reported. Training is likely required including
how many dishes are served, who is eating from each plate, how many people ate from a particular dish,
the serving vessel (hands/ utensils/ breads) and nutrient compositions of each mouthful. A previous
review of technology-based dietary assessment tools found that technologies exhibiting substantial
practical constraints and a lack of demonstrated feasibility for use in LLMICs [8]. It has been previously
recommended that to increase collection of dietary data in LLMICs, development of contextually
adaptable, interviewer-administered dietary assessment platform areas would be of benefit. In the
studies reviewed in the current paper that utilised technology, it was identified that the purpose was
primarily assist in standardizing the collection of dietary information.

Recommendations apparent from this review for the progression of research to refine the dietary
assessment methodology of shared plate eating include:

(1) Consideration of seasonality which influences the availability and dietary contribution of different
foods at different times of year, and harvest season may result in a period of more plentiful food
supply for several months, usually once per year [9].

(2)  For optimal accuracy in dietary intake estimation, consideration should be given to weighing the
staple food, as discrepancies in estimation of the staple are likely to account for the majority of
overall daily energy discrepancy [21].

(3) Modified 24HR with photographs of shared plate with portions removed may serve as a model
for shared plate eating assessment [20], as these may be easier for participants to estimate than
photographs of individual portions.

(4) Clearly defined aims are required in order to adequately capture relevant dietary intake data.
For example, if calcium consumption is of interest then increased attention to consumption of
edible bones is important, or if micronutrients such as sodium are being assessed, condiment and
sauce consumption requires more detailed assessment as these can be significant contributors [17].

(5) Combination approaches to portion size estimation are recommended, rather than one tool in
isolation from other methods [18].

(6) Consideration if culturally appropriate to evaluate individual dietary intakes and maybe
household intake i.e., group level might be in some regions more acceptable. A clearly defined
preparation and planning phase with ethnographic data is essential [7].

(7)  The use of consistent terminology to describe shared plate eating in published research would be
valuable to and further the field of research for regions/areas where shared plate eating is the
cultural norm, the method of quantification of shared plate eating should be reported so data can
be consolidated across studies where possible. Alternately, if shared plate eating has not been
taken into consideration in assessment where it is known to occur, this should be acknowledged
a limitation of research.
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(8) Less intrusive methods of assessing shared plate eating, compared to direct observation, need to
be developed to ensure dietary undertake assessment is undertaken as objectively as possible.
Direct observation studies can influence the way people eat, can be prohibitively expensive and
can be inaccurate compared to weighed intake [14].

The use of technology as a means of assessing dietary intake has increased in parallel to the
development of image-based methods, wearable devices, and online methods of administering
dietary assessment tools [25]. As evidenced in this review, the application of such approaches to
shared plate eating remain relatively untested with very few studies reviewed in this last 10 years.
However, Caswell et al. [19] have reported efficient collection of 24HR data using tailored software
on a tablet platform in a rural district in central Zambia. The tool was considered easy to use by
trained interviewers without prior nutrition training or computing experience to administer a 24HR to
caregivers on dietary intakes of children participating in an efficacy trial. If technology approaches
can be to individual dietary-level dietary assessment in similar demographic groups to that reported
by Caswell et al. [19], the extension of this into shared plate eating warrants substantial research
investment, particularly considering the need for improved dietary intake and nutritional status of
populations who engage in shared plate eating [8]. For camera devices there is a need to investigate
the acceptability of this approach, as it yet to be established and tested in a range of population groups
and different ethnicities.

4. Conclusions

Shared plate eating is a very common food consumption modality, particularly in LLMIC, but is
under-represented in dietary assessment literature. Key factors identified as contributing to improved
assessment of shared plate eating were accurate assessment of staple food intake and the need for
combined approaches to portion size estimation. It is recommended that dietary assessment methods
match the cultural context in which data is being collected, and that technology methods be considered
to replace direct observation. Progress in the dietary assessment of shared plate eating depends on use
of consistent terminology and documentation of the methods used to quantify shared plate eating,
so data can be consolidated across studies where possible.
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Abstract: A wide range of chronic diseases could be prevented through healthy lifestyle choices,
such as consuming five portions of fruits and vegetables daily, although the majority of the adult
population does not meet this recommendation. The use of mobile phone applications for health
purposes has greatly increased; these applications guide users in real time through various phases of
behavioural change. This review aimed to assess the potential of self-monitoring mobile phone health
(mHealth) applications to increase fruit and vegetable intake. PubMed and Web of Science were
used to conduct this systematized review, and the inclusion criteria were: randomized controlled
trials evaluating mobile phone applications focused on increasing fruit and/or vegetable intake as
a primary or secondary outcome performed from 2008 to 2018. Eight studies were included in the
final assessment. The interventions described in six of these studies were effective in increasing fruit
and/or vegetable intake. Targeting stratified populations and using long-lasting interventions were
identified as key aspects that could influence the effectiveness of these interventions. In conclusion,
evidence shows the effectiveness of mHealth application interventions to increase fruit and vegetable
consumption. Further research is needed to design effective interventions and to determine their
efficacy over the long term.

Keywords: mobile app; mHealth; fruits; vegetables; self-monitoring; healthy diet

1. Introduction

The health benefits of consuming fruits and vegetables have been extensively demonstrated. These
beneficial effects are attributed to their high contents of fibre, vitamins, minerals and phytochemicals
(mainly antioxidants) together with negligible amounts of fat. Increased consumption of fruits
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and vegetables has been associated with reduced risks of many chronic diseases, such as obesity,
cardiovascular diseases, type II diabetes, osteoporosis and certain cancers, as well as all-cause
mortality [1,2]. In fact, it was estimated that in 2013, 7.8 million premature deaths worldwide could be
attributed to low fruit and vegetable intake [1]. Moreover, adequate intake of fruits and vegetables
could avoid approximately 31% of ischaemic heart disease, 19% of stroke, 20% of oesophageal cancer
and 19% of gastric cancer cases [3].

Health authorities, such as the World Health Organization (WHO), recommend a daily intake
of at least 400 g of fruits and vegetables, which corresponds to 5 servings of 80 g per day [4]. For the
purpose of encouraging fruit and vegetable consumption in all women, children and men so they meet
the recommended intake, the WHO launched an international programme termed “5 a day”, which
has been adopted by most national governments, including Spain, France, Germany and the United
Kingdom. Similarly, the Dietary Guidelines for Americans advise that one-half of the plate should be
fruits and vegetables [5], and Canada’s Food Guide recommends including plenty of vegetables and
fruits in daily meals and snacks to prevent the risk of heart diseases [6].

International organizations and national governments have set increasing fruit and vegetable
intake as a priority. Despite the numerous and diverse public health campaigns implemented in
recent decades to promote increased consumption of fruits and vegetables in Western countries,
the average intake remains far from these recommendations, reflecting the modest impact of these
kinds of interventions. Data from a European Food Safety Authority (EFSA) analysis based on national
dietary surveys revealed that only 4 of the European Union (EU) member states reported adequate
consumption of fruits and vegetables [7]. The success of the last major campaigns conducted worldwide
that intended to increase fruit and vegetable consumption has been reviewed by Rekhy et al. [8], who
concluded that these interventions were quite effective in the short term but generally failed over the
long term despite the enormous cost and effort they require. Importantly, it is inferred from the same
work that the effectiveness of these health programmes is greater when factors such as behavioural
changes, goal setting, clear messages and interactive approaches are included.

In recent years, strategies for promoting long-term adherence to different interventions have
focused on multidisciplinary approaches. For example, management of weight loss depends
on multiple factors, such as behaviour, a cognitive component, personality traits and even the
patient-therapist interaction [9]. This multifaceted approach has been proven successful for weight loss
maintenance over the long term (up to 42 months) by means of coaching strategies [10]. Integrative
health coaching conducted by telephone calls has been used as a tool for enhancing treatment outcomes
in type 2 diabetic patients, who are able to improve their adherence to medication and glycated
haemoglobin, a marker of long-term blood glucose levels [11]. Johnson et al. showed that health
coaching delivered by videoconference was an effective strategy for reducing weight and ameliorating
insulin-resistance markers in obese individuals [12]. Overall, health coaching and behavioural changes
have arisen as key elements for achieving substantial and long-term adherence to healthy habits.
Therefore, such approaches represent a promising strategy for increasing the consumption of fruits
and vegetables.

In this scenario, current advances in information and communication technologies (ICTs), also
known as eHealth [13], might provide a wide array of supportive tools, allowing a wide deployment
of coaching and behavioural change strategies to the general population. Importantly, it is inferred
from the same work that the effectiveness of these health programmes is greater when factors such
as self-monitoring, goal setting, clear messages and interactive approaches are included. MHealth
applications, which are used on mobile phones and wireless devices, such as tablets, personal digital
assistance (PDA) devices, and so on, could be a better method to improve people’s lifestyles [13]
than traditional face-to-face education methods [14]. The mHealth App Developer Economics study
showed an increase of 25% year-to-year from 2015 to 2017 of the number of mHealth applications [15].
Moreover, from the mHealth Economics report, an increase from 2.1 billion smartphone users in 2016
to 2.5 billion in 2019 [16] is expected. Mobile technologies allow interactions with users in real-time
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and the delivery of health interventions at any time [17] and can act in different environmental and
behavioural contexts [17]. Mobile technologies have been demonstrated to be a valid tool for dietary
self-monitoring [18]. Toro-Ramos et al. showed that using a mobile phone application that provides
nutritional and behavioural education together with coaching promoted clinically significant long-term
weight loss, reduced blood glucose levels and improved different lipid markers in overweight and
obese individuals [19]. There are several basic mobile and web journaling applications that allow users
to set weight-loss goals, collect daily calorie target chart data to reflect trends over time, and record
food consumption and exercise levels. The indicative paradigms of journaling applications are weight
management applications, such as Weightbot© (2017 Meeco Labs, Linz, Austria), Loselt© (2008-2019
FitNow, Inc, Saint Honoré, Paris), InsideTracker© (2009-2019 Segterra, Inc, Cambridge, MA, U.S.A.),
FoodLog®© (2013 foo.log, Inc, Tokyo, Japan), Cronometer© (2011-2019, Cronometer.com, Revelstoke,
BC, Canada), MyFitnessPal© (2009-2019 MyFitnessPal, Inc, San Francisco, CA, U.S.A.), MyPlate©
(2017 LIVESTRONG.COM, Santa Monica, CA, U.S.A.), EasyFit© (2016 Cellularline, Reggio Emilia,
Italy), FatSecret© (2019, FatSecret, Victoria, Australia), MyNetDiary© (2018 MyNetDiary Inc, Marlton,
NJ, U.S.A.), and so on, which enable the user to enter weight and body composition measurements,
visualize curves, superimpose trends and track progress. Following standard paper-based analogues
to obtain information on nutrition habits, mobile applications provide electronic forms and efficient
interfaces to assist in logging food intake and beverages in terms of types, meal courses, total meal
calories, recipes, photos, and so on. These applications calculate energy intake and balance, report
additional parameters and visualize summaries [20]. Three systematic reviews demonstrated the
efficacy of mHealth applications to prevent obesity in young people [21-23], but there is a lack of
scientific evidence of the effects on fruit and vegetable consumption, while the majority of published
studies focus on weight management and physical activity improvement [24]. Thus, new technologies
represent a promising opportunity in fields such as nutrition and health monitoring [25-27].

Increasing and improving the consumption of fruits and vegetables in the general population
represents a challenge for public health that has not yet been resolved. ICTs might represent an
opportunity to achieve this objective. Therefore, we conducted a systematized review of the last
10 years to assess whether interventions based on mobile phone applications result in positive outcomes
and to identify the main weaknesses of the different approaches used to date.

2. Materials and Methods

The present paper is a systematized review and has some characteristics of a narrative review
and some of a systematic review [28].

2.1. Search Strategy

Article searches were limited to a recent time range of 10 years, considering that the use and
availbility of mobile phone applications, which are the key tools evaluated in the present review,
increased only a few years ago, starting from 2007, when they appeared on the market. In this sense,
there is a lack of published trials on the use of mobile phone applications for health interventions before
2010 [29-31]. This systematized review was based on two electronic databases: PubMed and Web of
Science. The search strategy involved peer-reviewed and English-language articles. For the search
strategy, the following keywords were used separately or in combination: ‘Self-monitoring” AND
‘Fruit and Vegetables” OR ‘Healthy meals’, ‘Fruit and vegetables’ AND ‘Mobile health applications’
OR ‘eHealth” OR ‘mHealth” OR “Mobile technology’, and ‘Mobile phone applications” AND ‘Fruit
and Vegetables'.

2.2. Selection Criteria and Data Collection

The PubMed and Web of Science databases were searched, resulting in a total of 1208 articles,
as shown in the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)
flow diagram for systematic reviews and meta-analysis (Figure 1); of these articles, 228 were found in
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MEDLINE (PubMed) and 980 in Web of Science. During the screening of possible articles, the reference
lists of the full-text articles were assessed for eligibility and cross-checked; it was decided to evaluate
articles from these lists when they focused on the same outcome, resulting in the identification of
14 articles for further screening. The titles and abstracts of the 1222 total articles were screened by
two researchers (EM. and E.L.) to determine if they fulfilled the eligibility criteria. The articles had to
include clinical trials and other experimental studies designed to develop, test or validate a mobile
phone application for dietary self-monitoring in which fruit and/or vegetable intake was one of the
principal outcomes (primary and/or secondary). Studies including other health concerns (physical
activity, weight control, sugar-sweetened beverage intake, takeout meals, dietary habits, etc.) were
included, and no limitations were made in terms of the type of population (gender, age, race, health
status). Studies using web-based self-monitoring technologies were excluded, which focused the
search on mobile phone applications only. This selection process was performed by two reviewers
(EM. and E.L.). In cases of discrepancy, a third reviewer (L.T.) was consulted.

Following the screening, 1196 articles were excluded on the basis of their title or abstract.
The remaining 26 articles were subjected to a detailed examination of the abstract to determine
their eligibility on the basis of the inclusion criteria. Of these, 18 were excluded due to the type of
technology tool used or lack of results, leaving 8 peer-reviewed papers included in the current review.

=
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Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2009 flow
diagram for the systematic review and meta-analysis of the article selection process.

2.3. Data Extraction

Data extraction from the included studies was performed by two reviewers working
simultaneously (EM. and E.L.) and revised by all others. The data extraction tables include the
following study variables: name of the article, authors, year of publication, name of the intervention or
mobile phone application, country, type of intervention, objective, intervention duration, number of
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participants, population, description of the mobile phone application (name and measurement of the
outcome), brief description of the intervention, results of fruit and vegetable consumption variables,
and conclusions of the study.

2.4. Quality of Studies Included

The quality of the included studies was assessed using the standardized framework of the
Quality Assessment Tool for Quantitative Studies, developed by the Effective Public Health Practice
Project. This tool consists of 8 items: selection bias, study design, confounders, blinding, data
collection methods, withdrawals and dropouts, intervention integrity and analysis. This tool allows the
categorization of each study’s methodological quality as weak (>2 weak category ratings), moderate
(1-3 strong category ratings and 1 weak category rating) or strong (>4 strong category ratings and no
weak category ratings) (Table S1).

3. Results

The systematized search identified 1222 articles, of which eight studies were found to meet the
inclusion criteria to be considered in the review (Table S2).

The most relevant characteristics of the data extracted from the included studies are presented in
Table 1 and Table S2: Relevant information regarding the data extracted from the included studies.

The eight studies included were randomized controlled trials (RCTs) [32-39], one of which was a
pilot study [32], and included a total of 1524 participants at baseline. Additionally, the participants
covered a large age range, from 16 to 71 years, and one of the interventions was conducted through
parents, although the target population was children. In the vast majority of cases, the participants did
not present any disease. Most of the studies were conducted in the United States (1 = 4), followed by
Australia (n = 2), the Netherlands (n = 1) and Sweden (n = 1).

From the selected studies, two studies aimed to evaluate the effectiveness of mobile phone
applications in stimulating both fruit and vegetable intake [34,38], two targeted only vegetable
consumption [32,33], three tested whether a multicomponent intervention integrating a mHealth
application could improve dietary habits (including the increase of fruit and/or vegetable intake) and
physical activity [35,37,39], and only one assessed the effectiveness of a mobile phone application to
achieve a healthy weight and healthy body fat percentage by changing daily servings of fruits and
vegetables [36].

Moreover, different methodologies were used to improve fruit and/or vegetable intake: (a) three
of the studies used personalized informative and motivational messages (text and/or audio) [34,38,39];
(b) seven added personal dietary feedback at a regular frequency [32-38]; (c) three sent push
notifications to remind users about their goals [32,33,36]; (d) two provided rewards as incentives [35,37];
(e) three provided remote coaching support through mobile phone calls, emails and in-person
meetings [35,37,39]; (f) one offered the possibility of receiving support from a dietitian or a
psychologist [36]; and (g) two provided access to further informative material and information through
a diet booklet [39] and a mobile phone application [36,39].

Fruit and/or vegetable intake was assessed by the Food Frequency Questionnaire (FFQ) in three
RCTs [32-34], by a dietary record in one study [35], by self-monitoring through a mobile phone
application in two studies [36,38], and by categorical questions in the other two studies [37,39].
Moreover, the results were expressed as servings, pieces/day or pieces/week of fruits and/or
vegetables in six RCTs [32-35,37,38]; grams of fruits and/or vegetables in one RCT [36]; and percentage
of participants who consumed >2 servings or pieces of fruits and/or vegetables per day in one
RCT [39].

Six of the eight studies included were effective in increasing fruit and/or vegetable intake. Of these,
five studies [32,33,35,37,39] demonstrated that the interventions were effective for increasing vegetable
consumption, and interestingly, all of them included a self-monitoring component implemented
by a mobile phone application. Some of the included studies used other methodologies apart
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from self-monitoring: four used dietary feedback [32,33,35,37] and three provided remote coaching
support [35,37,39]. Furthermore, three studies [34,35,37] reported that the interventions were effective
for increasing daily fruit consumption. All three mHealth interventions included a self-monitoring
component by mobile phone application and personal dietary feedback, while two of them [35,37]
provided a financial incentive as a reward and remote coaching support. The increase in intake ranged
from +2.4 servings/day to +10.6 servings/day.

Moreover, from the effective interventions identified in the present review, two focused on
overweight adults [32,33], three focused on adults with unhealthy lifestyles [34,35,37], and one focused
on young adults characterized by unhealthy lifestyles [39].

Half of the included studies considered the improvement of fruit and/or vegetable intake [32-34,38]
as the primary outcome, and the other half considered it to be a secondary outcome [35-37,39].

Of the four RCTs that designated increasing fruit and/or vegetable intake as the primary
outcome [32-34,38], two were only effective in increasing vegetable intake [32,33], one showed was
only effective in increasing fruit intake [34], and the last one presented no improvement [38]. These
four RCTs lasted from 2 to 6 months and were population stratified by common characteristics.

Mummabh et al. have iteratively developed a theory-driven mobile phone application called
Vegethon to increase vegetable consumption through self-monitoring, goal setting, feedback, and
social comparison [40]. Vegethon has been tested in two studies: A RCT pilot study [32] and a
RCT [33]. The target population of the Vegethon pilot study comprised 17 overweight adults aged
18-50 years [31,32] who were randomized for the use of the Vegethon mobile phone application as
the intervention group or to a wait-listed control condition. The intervention group was instructed
to use the Vegethon application and encouraged to self-monitor and increase their vegetable intake.
At 12 weeks, the results showed that vegetable intake was significantly increased in the intervention
group by +7.5 servings/day (from 6.0 + 2.7 to 13.5 + 8.1) compared with the decrease in the control
group of —3.1 servings/day (from 7.0 £ 5.9 to 3.9 £ 2.0), resulting in a significant difference of
+10.6 servings/day between both groups (p = 0.02). Moreover, as mentioned, the effectiveness of
Vegethon in increasing vegetable consumption was also verified in an RCT among 135 overweight
adults aged 18-50 years [20]. The intervention was the same as in the pilot study. The intervention
group reported an increase of +0.7 servings/day of vegetables (from 6.7 4= 5.2 to 7.4 &= 5.4), while the
control group reported decreased vegetable consumption of —1.7 servings/day (from 8.1 & 8.2 to
6.4 + 4.3), resulting in a significant difference of +2.4 servings/day between both groups (p = 0.04). As
a result, the Vegethon mobile phone application was effective in improving vegetable consumption.
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3.1. Increasing Daily Fruit and/or Vegetable Consumption as the Primary Outcome

The study by Elbert et al. [34] provides evidence-based insight into the effects of a mobile health
application in changing fruit and vegetable intake in a 6-month intervention. This study was a 3-arm
RCT that included a population of 146 adults aged 16-71 years. The intervention groups (A and B)
were exposed monthly to tailored health information and feedback in the form of either (A) an
audio-based intervention or (B) a text-based intervention via mobile phone application over a 6-month
period. Participants in the control group only completed the baseline and post-intervention measures.
After 6 months, the average fruit intake, measured by a food frequency questionnaire, increased by
+3.3 pieces/week (from 14.2 4 10.6 to 17.5 £ 11.1) in intervention group A, whereas in intervention
group B, the average fruit intake decreased by —0.6 pieces/week (from 14.8 £ 11.1 to 14.2 & 6.9),
and in the control group, the average fruit intake increased by +0.4 pieces/week (from 13.4 & 10.4 to
13.8 &= 9.4). However, the intake of vegetables was not improved by these interventions.

In another 3-arm RCT, the Connecting Health and Technology study [38], Kerr et al. aimed to
evaluate the effectiveness of tailored dietary feedback and weekly text messaging to improve the
dietary intake of fruits and vegetables among other dietary improvements over a 6-month period in a
population-based sample of men and women aged 18-30 years. Participants were randomized into
three groups: (A) a group that received dietary feedback and weekly text messages, (B) a group that
received dietary feedback only and (C) a control group (that received any intervention). Dietary intake
was assessed using a mobile food record application in which participants captured images of the
foods and beverages they consumed over 4 days at baseline and at 6 months post-intervention. After 6
months of intervention, participants in group B and the control group demonstrated a significantly
increased daily intake of vegetable servings (+0.4 & 0.1, p = 0.002 and +0.4 & 0.1, p = 0.02, respectively),
while group A demonstrated a significantly decreased daily intake of fruit servings (—0.2 £ 0.1;
p = 0.03). However, no significant differences between groups in terms of fruit and vegetable intake
were observed (p < 0.05).

3.2. Increasing Daily Fruit and/or Vegetable Consumption as a Secondary Outcome

Of the four RCTs that designated increasing fruit and/or vegetable intake as the secondary
outcome [35-37,39], one revealed that the intervention was effective in both targets [37], two were
partially effective [35,39], and the last one was not effective for either of the two targets [36]. These
four RCTs lasted from 3 to 9 months, and all of the RCTs were population stratified.

The Make Better Choices (MBC) study [35] was a comparative 4-arm RCT designed to discern the
optimal approach to simultaneously target diet and physical activity. The MBC study [35] consisted of
a 6-month intervention (3-week intervention and 5-month follow-up) with 204 adults aged 21-60 years
who were randomized into one of four behavioural change prescriptions. The MBC study compared
four different behaviours: (1) 5 fruit/vegetable servings; (2) saturated fat consumption of less than
8% of total calories; (3) physical activity of at least 60 min/day; and (4) sedentary leisure of less
than 90 min/day. The intervention consisted of present and remote coaches accessed by a mobile
personal digital assistant (PDA) that tailored the behavioural strategies based on the baseline data of
the participants. Moreover, participants received financial incentives when they reached the goals.
The two groups targeted to increase fruit and vegetable intake (Group B and Group C) seemed more
successful than the other two groups targeted to change other behaviours: Group B increased from
1.3 £ 1.1 servings/day at baseline to 5.6 & 1.1 servings/day at the end of the intervention, and
Group C increased from 1.2 4 0.9 servings/day at baseline to 5.5 £ 1.0 servings/day at the end
of the intervention. The two groups that were not targeted to improve fruit and vegetable intake
(Group A and Group D) seemed less successful than the other two groups: Group A increased from
1.1 + 0.9 servings/day at baseline to 1.7 + 1.1 servings/day at the end of intervention; Group D
increased from 1.4 & 1.1 servings/day at baseline to 1.9 £ 1.6 at the end of intervention. However,
the differences between baseline and the end of intervention regarding fruit and vegetable intake in
each group and among groups were not reported by the researchers.
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Another study related to the MBC study was the MBC 2 trial [37], a 3-arm RCT that tested
whether a multicomponent intervention of 9 months (6-month intervention and 3-month follow-up)
integrating a mHealth application, modest incentives and remote coaching could sustainably
improve dietary habits and physical activity. Participants were randomly assigned to one of two
interventions. Intervention group (A) targeted performing moderate to vigorous physical activity
(MVPA) simultaneously with other diet and activity targets, and intervention group (B) targeted the
same goals but sequentially. The control intervention group only addressed improving stress and sleep.
After 6 months, fruit and vegetable intake increased by +6.6 servings/day in group A (simultaneous),
by +7.4 servings/day in group B (sequential) and by +0.5 servings/day in the control group.

In the third study, Partridge et al. [39] performed a 2-arm RCT from a larger mHealth lifestyle
program called “TXT2BFiT” to improve dietary and physical activity behaviours among 248 young
adults aged 18-35 years who were at high risk for the development of obesity. The intervention
group comprised 8 weekly motivational text messages, 5 personalized coaching calls, 1 weekly email,
a diet booklet and a mobile phone application that provided education, self-monitoring, access to a
community blog and support resource, over 3 months. Control group participants only received 4 text
messages and dietary and physical activity guidelines. Intervention participants were more likely to
consume greater quantities of vegetables after 3 months compared to control participants (p = 0.009).
Additionally, at 3 months, the proportion of participants with a vegetable intake of >2 servings/day
increased from 34.1% to 64.3% in the intervention group and from 36% to 48% in the control group.

The Mobile-Based Intervention to Stop Obesity in Pre-schoolers (MINISTOP) [36] aimed to help,
through intervention by their parents, 315 children aged 4.5 years to improve their body status,
nutritional habits and physical activity via a smartphone application during a 6-month intervention.
Participants were randomly assigned to the intervention or control group: the intervention group
received a 6-month mHealth application to register information about their child’s food consumption
and physical activity; and the control group received a pamphlet on healthy eating and physical activity.
The differences between baseline and the follow-up for the intervention group resulted in an increase
of 2.9 + 78.9 g/day of fruits and —6.7 £ 42.1 g/day of vegetables consumed, while for the control
group, decreases of —12.1 + 87.9 g/day of fruits and —3.6 & 39.7 g/day of vegetables were observed.
However, no significant differences between groups were observed in fruit or vegetable intake.

3.3. Quality Appraisal and Risk of Bias in the Included Studies

Analysis of the quality of the included studies showed that all of the studies were of weak quality
(>2 weak category ratings). The best good quality items were the study design and dropouts, whereas
the other items were of poor quality.

4. Discussion

The present review aimed to investigate the current literature on the potential use of mobile
phone applications to self-monitor and increase the intake of fruits and/or vegetables. From a search
of the literature, eight studies were included in the final screening for evaluation. The present review
proposes that mobile phone applications that include a self-monitoring component have great potential
in improving fruit and vegetable intake, supporting the important health benefits associated with
technology-based interventions. Six of the eight studies included in the review were effective. These
studies focused on overweight adults and adults or young adults with unhealthy lifestyles. Thus,
it could be inferred from the current review that the interventions delivered through mobile phone
applications that successfully improved the intake of fruits and/or vegetables had something in
common: stratification of a specific population that has common interests and motivations. Focusing
on the age of the participants, it was observed that 5 studies targeting the adult population (18-60 years)
were effective, 2 studies targeting young adults (18-35 years) were not effective or partially effective,
and 1 study targeting children through their parents was not effective. Age seems to be an irrelevant
factor in determining the effectiveness of the intervention, while other factors, such as participants’

272



Nutrients 2019, 11, 686

common interests, play a key role in achieving an increase in fruit and vegetable intake. Indeed,
population selection is one of the characteristics considered in social marketing principles to enable
healthy choices [41]. Moreover, two [32,33] of the six effective studies focused on increasing fruit
and/or vegetable intake in targeted overweight adults, suggesting that the effectiveness of these types
of interventions could be influenced by specific motivations, such as overweight-associated health
risks. Pre-existing health problems in the study population were related to increased effectiveness
of the intervention compared with the effectiveness observed in the population without diseases, as
demonstrated in a previous review [23].

Furthermore, it seems that both outcomes, increased fruit and vegetable daily intake, were better
achieved when self-monitoring and dietary feedback were used in the intervention. However, two of
the analysed RCTs that failed to increase fruit and vegetable consumption [36,38] also included these
methodologies together with push notifications or motivational text messages. These contradictory
results could be explained because in one of these studies, parents were responsible for improving
the fruit and vegetable consumption of their children [36]; thus, it seems that monitoring the dietary
intake of children via their parents is not effective in improving dietary habits.

On the other hand, increasing fruit and/or vegetable intake was not the primary outcome for
all of the eight included studies. Four studies had decreasing body weight or body fat or improving
diet and activity behaviours as their primary outcome, while increasing fruit and/or vegetable intake
was set as a secondary outcome [35-37,39]. In these trials, the effects on fruit and/or vegetable intake
evaluated as a secondary outcome were unclear. Thus, our results suggested that when the increase of
fruit and/or vegetable intake was defined as the primary outcome, the intervention was more effective
than when it was defined as a secondary outcome.

All of the eight studies included in this review implemented a self-monitoring and self-reporting
component through a mobile phone application to set and control users’ daily fruit and/or vegetable
intake goals. Considering the other parts of the methodologies of the studies included in the review,
all the studies were randomized controlled studies ranging from two to nine months of intervention
and reported the need for further investigations to observe the effects over time. From the results
presented in this systematized review, it was observed that an increase of fruit and/or vegetable intake
could be observed from two to nine months, and an early rise in vegetable intake compared to that in
fruit intake was found, which required more time to achieve an effective improvement.

The increased amount of fruit and/or vegetable intake is an important point to be discussed.
Considering that one serving is equal to a minimum of 80 g [42], the minimum increase achieved in the
eight studies included in the present review of +2.4 servings/day is an approximately 200 g increase in
fruit and/or vegetable intake. Accordingly, an increase of 200 g/day of fruit and/or vegetable intake is
associated with an 8%-16% reduction in the relative risk of coronary heart disease, 13%-18% reduction
in the risk of stroke, 8%-13% reduction in the risk of cardiovascular diseases, 3%—4% reduction in the
risk of cancer, and 10%—-15% reduction in the risk of all-cause mortality [1].

The use of mHealth applications has increased, but the question of whether these applications
are better than traditional methods is still open. Users have demonstrated general acceptability
and adherence to mobile phone tools [43,44] in comparison with the traditional methods of dietary
self-monitoring [45,46] because of their personal tailoring, low cost, and interactivity [47]. Furthermore,
self-monitoring though mobile phone applications seems to provide easier and real-time dietary
assessments [48] and is also associated with better quality dietary data compared with traditional
methods, which could be affected by users’ memory [44]. However, more evidence is needed for
mHealth applications because the majority of these applications are developed with minimum feedback
users and little support [49]. Although self-monitoring via mobile phone applications seems to have
positive effects on fruit and/or vegetable intake, its relationship with an effective improvement of
dietary habits has not yet been confirmed. Although mobile phone applications have been widely
tested in weight-loss trials [24,50], their utilization for the improvement of specific target food group
intake is still scarce.
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Comparing different methodologies used to increase the consumption of fruits and/or vegetables,
a systematic review from 2005 that considered 44 studies using diverse approaches, but not mobile
phone applications, observed increases in fruit and vegetable intake from 0.1 to 1.4 servings/day
in heathy adults [23]. Computer-tailored information and interventions using telephone contacts
were found to represent an adequate alternative to face-to-face education and counselling-based
interventions [23]. Notably, the improvements in fruit and/or vegetable intake observed in the studies
included in the present review (range: +0.2 to +7.5 servings/day of fruit and vegetable), which used
mobile phone applications, seem to be greater than those obtained from interventions employing more
traditional methodologies.

Finally, although the use of different mobile phone applications in several studies [9,11,19,51]
shows a positive outcome in increasing the awareness of the quality of food intake, improving dietary
habits and educating individuals, it is clear that the implementation of mHealth applications for fruit
and/or vegetable intake promotion can deeply affect the final outcome. Moreover, it seems that only
monitoring fruit and/or vegetable intake may not be sufficiently engaging; thus, implementing smart
techniques for individual engagement, such as expert feedback [9,10,12,19] or positive rewards, could
affect the final success of the mobile phone application [12,19]. In other words, it is well known that the
effectiveness of mHealth applications depends on the usability their interface, feedback, rewards, and
so on. A complete comparison would require using different mobile phone applications and studying
their usability and effectiveness in the same population group. Unfortunately, most of the mobile
phone applications used are built in-house and thus are not publicly available for direct comparison.
Moreover, implementation of an extensive usability study is beyond the scope of this paper.

Additionally, assessment of food intake through web and mobile app tools requires the
collaboration of individuals and thus can be subjective, retrospectively biased, and suffer from low
compliance. It is tedious for people to continuously annotate their food intake over long periods of time.
In addition to the fact that having to annotate all meals is embarrassing and subjective, people generally
do not remember all the food they have eaten. Another important drawback of manual annotation
is food underreporting [20]. Moreover, many health applications are not created by nutritional
professionals. Additionally, we cannot assume that food diaries based on personal annotations of
a few days are representative of an individual’s complete diet [20]. Recently, some web-based and
mobile applications have included automatic food recognition that is based on smartphone pictures.
Some applications have very recently claimed to introduce this option: Loselt!© (2008-2019 FitNow,
Inc., Saint Honoré, Paris), MyFitnessPal© (2009-2019 MyFitnessPal, Inc., San Francisco, CA, U.S.A.),
CalorieMama®© (2017, Azumio, Inc., Redwood city, CA, U.S.A) and FatSecret© (2019, FatSecret, Victoria,
Australia). This ability makes the process of food intake reporting easier, faster and more pleasant, but
it currently suffers from not being able to recognize a large amount of foods in the diet, demonstrating
sub-optimal performance and limited recognition of different types of dishes.

In general, the majority of the articles included in the present systematized review discussed
future interventions, such as larger-scale and longer trials, rather than technical improvements of
mHealth applications. Regardless, some design elements could be taken into account for the future
development of mHealth applications to improve vegetable and fruit intake, such as (a) inclusion of a
validated tool to register food intake and to improve dietary assessments [38]; (b) weekly messages
to reinforce the health recommendations about vegetable and fruit intake [39]; (c) remote connected
coaching [37]; (d) remainders to buy fruits and vegetables when people are in the supermarket
(e) interactive information between users and coaches [34,35]; and (f) tracking and sensor technologies
as an interactive information system [34].

There are several limitations in this review. First, the majority of the trials included in this
review presented the following limitations: the population sample was not representative of the
community setting because of the small size, level of education, gender and origin [32-36,38,39] and
low reliance of the data, which were self-reported by participants [32,33,35-39]. Second, the reviewed
studies expressed results on the primary outcome (fruit and/or vegetable intake) using different
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units of measure, such as g/day, servings/day, pieces/week and percentage of people consuming
>2 servings/day. Third, a description of the amount of grams considered to be a serving of fruit
and/or vegetable intake was not provided. Fourth, the self-monitoring tool type was not the same for
all the studies, which influenced the presentation of the final results (servings/day or week, g/day,
percentage, etc.), and could be better expressed in future studies as servings/day or g/day. Fifth, only
two databases were used to search for results: PubMed and Web of Science. Although these databases
are the most commonly used, the inclusion of other databases could have increased and influenced the
final results of the review. Sixth, the present paper is a systematized review, i.e., the review process
is shorter than that of a systematic review, may or may not include comprehensive searching, may
or may not include quality assessment, and describes the uncertainty around the findings and the
limitations of the methodology [28]. Finally, although the study quality was not an inclusion criterion,
the weakness of the majority of the included studies presents problems for the generalizability of the
results of this systematized review.

5. Conclusions

The present review demonstrates that effective interventions to increase fruit and vegetable
consumption using mobile phone applications last from two to nine months and are characterized by
a stratified population that shares the same motivation to achieve better dietary habits. Furthermore,
the inclusion of behavioural change techniques, such as dietary feedback together with self-monitoring
and remote coaching support, has been identified as a key element that can definitively facilitate the
adoption of new dietary habits. This issue strongly suggests that behavioural theory-based strategies
must be considered when designing dietary mHealth application interventions. Further research
on mHealth applications is needed to design more effective interventions and to determine their
efficacy over the long term. Although evidence shows a promising future for mHealth applications to
promote healthy nutrition, it is an open question as to how to ensure that the maturity and popularity
of these applications is similar to those of other tools for the promotion of healthy habits, such as
activity trackers.

Supplementary Materials: The following are available online at http:/ /www.mdpi.com/2072-6643/11/3/686/s1,
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data extracted from the included studies.
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Abstract: Background: New technology-based dietary assessment tools, including Web-based
programs, mobile applications, and wearable devices, may improve accuracy and reduce costs
of dietary data collection and processing. The International Life Sciences Institute (ILSI) Europe
Dietary Intake and Exposure Task Force launched this project to evaluate new tools in order to
recommend general quality standards for future applications. Methods: A comprehensive literature
search identified technology-based dietary assessment tools, including those published in English
from 01/2011 to 09/2017, and providing details on tool features, functions and uses. Each of the
43 tools identified (33 for research and 10 designed for consumer use) was rated on 25 attributes.
Results: Most of the tools identified (79%) relied on self-reported dietary intakes. Most (91%) used
text entry and 33% used digital images to help identify foods. Only 65% had integrated databases for
estimating energy or nutrients. Fewer than 50% contained any features of customization and about
half generated automatic reports. Most tools reported on usability or reported validity compared
with another assessment method (77%). A set of Best Practice Guidelines was developed for reporting
dietary assessment tools using new technology. Conclusions: Dietary assessment methods that utilize
technology offer many advantages for research and are often preferable to consumers over more
traditional methods. In order to meet general quality standards, new technology tools require detailed
publications describing tool development, food identification and quantification, customization,
outputs, food composition tables used, and usability / validity testing.

Keywords: dietary assessment; mobile technologies; Web-based technologies

1. Introduction

The opportunities provided by the internet to link large scale food and nutrient databases with
automated dietary recording has led to growth in the number of online dietary assessment tools [1].
New technologies for measuring diet can be categorized according to the type of technology being used,
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such as Web-based or online tools, mobile systems (apps), camera-based tools, and other developing
technologies, such as consumer purchase data and wearable sensors. Traditional methods relied
heavily on self-reporting of foods consumed either using food frequency questionnaires (FFQ) or
with paper-based recalls or diaries. All of the traditional methods lacked accuracy as a result of
problems including the ability to recall food consumed, difficulties with portion size estimations or
limited food composition tables [2]. Considerable manual input and time was required for coding
and converting foods recorded into nutrients. This meant that in large-scale cohort studies it was not
generally possible to collect detailed food intake information, and studies relied on food frequency
questionnaire data, which is subject to greater measurement error than other self-report measures [3,4].
Use of computerized tools facilitated data coding, and incorporation of the automated multiple-pass
method (AMPM) standardized data collection for national surveys [5,6]. New methods have allowed
for an expansion and potential improvement on the traditional methods. The use of the Internet makes
larger-scale collection of food and nutrient information practical with lower costs and burden for both
researchers and participants [7]. Study participants can be invited to take part in research electronically
via email or text [8]. Users of new technology tools can more easily identify foods consumed through
interactive searchable databases [9]. They can provide real-time results and feedback [1] and can
include enhanced options for portion size description, such as using digital images [10], and more
relevant lists of branded food items [9].

It is often not clear how relevant a particular dietary assessment tool is for research as a result
of limited information provided on the development process and lack of validation. An evaluation
of new technologies to assess diet may help understanding of their potential to replace, improve,
or complement traditional methods. Due to the rapid development of new technologies, existing
reviews of the area quickly become out of date, including obsolete technologies such as personal
digital assistants or PDAs [11]. Highlighting features of new technologies, such as those found in
Web-based recalls or apps, in comparison with tool elements reflecting traditional approaches may
help to identify techniques that can enhance dietary measurement [12]. Recently, clear guidance in
terms of dietary assessment tool choice and reporting has been published [2,13]. However, guidance
on the development of new tools with quality criteria for their assessment is still lacking.

In 2016, the International Life Sciences Institute (ILSI) Europe Dietary Intake and Exposure Task
Force (http:/ /ilsi.eu/task-forces/food-safety /dietary-intake-and-exposure/) established an expert
group on evaluation of new methods for dietary intake assessment. The aim of the group was to
review new technologies for diet assessment in terms of features, sources and quality of data, and
validity. The review presented here will help to understand the relative merits of particular new tools
and applications currently available for dietary intake assessment. We have critically evaluated tools,
including their sources of data, applicability for research, ease of use by different population groups,
and ability to handle a wide range of foods and beverages. In a second step, we also suggest guidelines
for quality standards to improve reporting of dietary intake assessment tools.

The objectives of this paper are to: (i) report on a comprehensive review of tools for dietary
assessment using new technologies which are applicable for use in research, commercial, clinical and
public health contexts; (ii) to develop guidelines for quality criteria required for a good quality tool; and
(iii) to make recommendations for future reporting of dietary assessment tools using new technologies.

2. Materials and Methods

2.1. Inclusion Criteria and Search Strategy

Comprehensive literature searches were conducted to identify articles pertaining to new
technologies for dietary intake assessment using key word searches with the following inclusion
criteria: (1) publications were in English, (2) articles were published from January 2011 to September
2017, and (3) sufficient information was available to evaluate tool features, functions, and uses. Various
search terms were used related to dietary or nutrition surveys, nutrition assessment, and the use of
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technologies, including mobile apps, Web-based tools, online or Internet tools, and software. PubMed,
PLOS, BioMED, Science Direct and Ovid databases were used, each with slightly different search terms
(Supplemental Table S1). The searches were limited to articles published after 1 January 2011 because
the field of technology development for dietary intake assessment is advancing rapidly, and tools
developed prior to 2011 have been previously evaluated [12]. Dietary assessment tools were identified,
details of which were available in one or more publications.

2.2. Evaluation Criteria and Data Extraction

The Expert Group, comprised of the authors of this manuscript, identified 25 attributes related
to data entry, identification and quantification of foods, customization, output, usability and validity,
which were used to evaluate each dietary assessment tool (Supplemental Table S2). Under the heading
of Data Entry, we assessed whether the tools relied on text entry, digital images and/or bar-code
scanners, and whether they also collected information about health characteristics or physical activity.
For the Identification and Quantification of Foods, we assessed whether the foods or beverages
were automatically identified from an image or required manual identification, the source of food
composition data used, and how the intake amounts were quantified, either by weights or household
measures, or estimated from digital images. In the Customization section, we assessed whether the
tool allowed the user to add missing foods, custom recipes or dietary supplements, and whether the
program used machine learning to adapt the list of foods to user preferences. Under Output, we
considered whether the tool provided data on energy, macro- and micro-nutrient intakes, food groups
consumed, time of intake and meal name, and whether the tool generated automated reports. Finally,
we assessed Usability and Validity by checking whether there were any reports of user feedback, time
to complete the assessment, and whether any validation studies had been conducted.

The features of each dietary assessment tool were assessed independently by two members of the
Expert Group from details provided in the publications, and any discrepancies were discussed at the
Expert Group level. If the publications identified in the searches did not provide the sufficient detail to
complete the assessment, additional literature, websites, contacts with authors, or tool use itself were
used to attempt to fill gaps.

3. Results

3.1. Search Results

The PRISMA diagram showing the search flow and inclusion/exclusion of studies appears in
Figure 1. A total of 4695 articles were initially identified. Duplicates were removed and the remaining
articles screened (title and abstract) to eliminate those that were not relevant to meet the project
objectives, yielding a total of 800 publications related to dietary intake databases, applications, and
tools. The goal of this review was to identify unique technology-based tools for dietary intake
assessment, including smartphone applications, those that captured digital images of foods and
beverages for the purpose of dietary intake assessment, and dietary assessment tools available from
the Web or that were accessed from a personal computer (PC). From the 800 articles that mentioned
dietary assessment in the title or abstract, 151 were related to new technologies for dietary intake
assessment, and of these, 66 were additional references for tools already identified. Papers describing
the remaining 85 tools were reviewed in detail. A further 42 were excluded following the detailed
review: 14 were deemed to be not relevant because they were editorials (1 = 1), review papers (1 = 4),
or did not describe a new tool for dietary intake assessment (1 = 9); 16 were missing sufficient detail to
do our evaluation; seven of the tools were developed and reported on prior to 2011, thereby meeting
our exclusion criteria; and five were eliminated because the publications referred to a tool that had
been subsequently renamed. In the latter case, the updated tool name was retained for our evaluation.
Consequently, we included 43 unique tools in our evaluation.
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Figure 1. PRISMA diagram used to identify technology-based tools for dietary intake assessment.

3.2. Characteristics of Included Studies

In total, from the 43 tools identified, 33 tools were for use in research or surveillance and 10 tools
intended for direct consumer use (Table 1), and since several of the attributes differed between the
research/surveillance tools and those designed for consumers, we separated them. Of the 33 tools
used for research or surveillance, nn = 21 (64%) were Web-based to be used on a computer; n = 6 (18%)
were optimized to be used on smartphones; 1 = 3 (9%) were for PC only (not Web-based); 1 = 2 (6%)
used wearables for data collection and n = 1 (3%) was designed to be used on a tablet. Of the 10 tools
identified for consumer use, 1 = 8 (80%) were optimized for smartphone use and 1 = 2 (20%) were
Web-based to be used on a computer. Of the 33 tools designed to collect dietary data for research
purposes, n = 16 (48%) were designed for adults exclusively, n = 11 (33%) were for all ages, and n =6
(18%) were exclusively for children and/or adolescents. Of the 10 tools designed for consumer use,
n =7 (70%) were for adults exclusively, while n = 3 (30%) were designed for all ages. Among all
the tools designed for research purposes, n = 17 (52%) collected dietary intake over the previous 24h
using dietary recalls; n = 11 (33%) collected food records, while the rest collected intakes via food
frequency questionnaires (1 = 3; 9%) or imaging systems (1 = 2; 6%). Of the 10 tools designed for
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consumer use, most of them collected food records (n = 8; 80%), while n = 2 (20%) collected food
frequency questionnaires.

Although all of these tools used technology for dietary intake data collection, not all of the tools
automatically coded the intake information to generate energy and nutrients (Table 1). Of the tools
assessed here, 15 of the 43 (35%) were used for data capture only and required a dietitian or a coder to
enter the items and portions in another tool later to estimate energy and nutrient intakes. These are
identified as “not integrated into the tool” in Table 1. Another large difference in the tools was the
source of food composition data and the number of items available. Tools designed to assess food
consumption frequency (Evident II, Food4Me, GraFFS, IDQC, Oxford WebQ, and WebFFQ) included
135-200 individual line items (individual foods or aggregated food categories). Those designed for
children varied, with SNAP and WebCaaFE including a limited list (49 and 32 foods and beverages,
respectively), while WebFR and WebDASC included a more extensive list of 550 and 1300 items,
respectively. Tools that relied on national food composition tables ranged from about 1000 items to
more than 45,000 if branded foods were also included (e.g., myfood24), and were largely complete
with respect to nutrients. The source of food composition was reported in all but one case, but the
number of foods included in the database was missing for six of the tools. The daily time to complete
each tool was reported in 18 of the 43 studies. The times ranged from an average low of 14 min to as
much as 45-60 min, but most tools were completed within 15-35 min.

The use of images also differed considerably among tools. TADA, Snap-N-Eat, and DietCam
automatically coded foods and beverages from digital images [14-16], and RFPM used semi-automatic
coding of images to facilitate data entry. GoOCARB automatically coded carbohydrate content of food
categories identified from images. Chest-worn cameras, like eButton or Microsoft SenseCam, captured
digital images throughout the day but required subsequent coding by nutritionists for nutrient intake
estimates. Several tools, CHAT, FoodNow, NANA, NuDAM, and TECH, used digital images to
enhance reporting of food intakes, along with text or voice recordings. FoodLog used images as a
visual diary of food intakes for patients with diabetes, and Microsoft SenseCam used images as a
memory aid for food records.
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